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Abstract

Today wind turbines are assuming great importance in the generation of electrical power worldwide. Due to

the increased dimensions of the rotor blades, design of a wind turbine is a very complex and multidisciplinary

task in which aeroelasticity plays a crucial role. In this context, the present thesis proposes the development of

numerical aeroelastic tools for the analysis of performance, response and aeroelastic stability of horizontal-axis

wind turbines. The objective of the present work is the formulation of numerical solvers combining accuracy and

numerical e�ciency that can be useful in the preliminary phase of the design process. A nonlinear beam model

for blades structural dynamics is coupled with di�erent aerodynamic models of increasing complexity able to

predict unsteady e�ects due to wake vorticity, �ow separations and dynamic stall. Several computational �uid

dynamics and structural dynamics coupling approaches are investigated to take into account rotor wake in�ow

in�uence on downwash. Sectional steady aerodynamic coe�cients are extended to high angles of attack in order

to characterize wind turbine operations in deep stall regimes. The �rst aeroelastic tool proposed is based on a

spectral approach in which the Galerkin method is applied to the aeroelastic di�erential system; to improve the

e�ciency of the proposed solver, a novel approach for the spatial integration of additional aerodynamic states,

related to wake vorticity and dynamic stall, is introduced and assessed. The second aeroelastic formulation

is based on the Finite Element Method (FEM); Hamilton's principle is applied to derive blade equations of

motion on which a devoted �fteen-degrees-of-freedom �nite element is introduced to model kinematics and

elastic behavior of rotating blades. Spatial discretization of the aeroelastic equations is carried-out to derive

a set of coupled nonlinear ordinary di�erential equations solved by a time marching algorithm. Di�erent time

marching schemes are discussed and compared. Due to the aeroelastic similarity between wind turbine and

helicopter rotor blades, validation of the FEM-based solver �rstly deals with the response and performance of

helicopter rotors in hovering and forward �ight. Then, the performance of a wind turbine examined in terms

of blade elastic response and delivered thrust and power is predicted and the results are compared with those

provided by the solver based on modal approach, as well as with experimental data.
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Chapter 1

Introduction

Wind is a source of renewable energy coming from air �owing across the earth's surface and, historically, people

have always used this kind of energy. Probably, the most important application has been ship propulsion using

sails before the invention of the steam and the internal combustion engines. Wind has also been used in windmills

to grind grain (Figure 1.1) or to pump water for irrigation. At the beginning of the twentieth century, electricity

came into use and windmills gradually became wind turbines as the rotor was connected to an electric generator.

The �rst electrical grids were characterized by high losses, thus electricity had to be generated close to the site of

use. However, diesel engines and steam turbines gradually took over the production of electricity and only during

the two world wars, when the supply of fuel was scarce, wind power �ourished again. The development of more

e�cient wind turbines was pursued in several countries as Germany, United States, France, United Kingdom,

Denmark and with the oil crisis in 1973, wind turbines became interesting again for many countries that wanted

to be less dependent on oil imports. Thus, many national research programs were initiated to investigate the

possibilities of utilizing wind energy.

Figure 1.1: Windmills

9
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Today wind turbines are playing an increasing role in the generation of electrical power worldwide. According

to the orientation of the rotor shaft axis, wind turbines can be divided into horizontal (HAWT) and vertical

(VAWT) axis. The �rst (see Figure 1.2a) have the shaft (almost) parallel to the ground whilst the second

(Figure 1.2b) in vertical position. HAWTs, which are the most common types, are more e�cient compared to

the VAWTs and they can be easily scaled up to the large size required for commercial production; however,

VAWTs have the advantage that they can generate power with wind from any direction without using a yaw

control mechanism.

(a) Horizontal Axis Wind Turbine (b) Vertical Axis Wind Turbine

Figure 1.2: Modern wind turbines

O�shore installations of wind turbines are assuming a greater importance, due to many advantages with respect

to onshore applications: the availability of wind resource is more frequent and more powerful; o�shore wind

farms (group disposition of wind turbines, see Figure 1.3) have smaller negative impact on landscape aesthetics

since they are not completely visible from the shore; transport of big wind turbine components is signi�cantly

easier with ships than trucks or trains on land. Thus, o�shore wind energy market is constantly growing, despite

the high construction costs of new projects.
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Figure 1.3: O�shore wind farm

Wind represents a good alternative to more conventional energy sources: electricity produced by the wind

doesn't generate CO2 emissions; it can be combined with a diesel engine to save fuel; in a windy site, the price

of the produced electricity is competitive with the production price from more common methods. However,

drawbacks are also present: noise, especially due to the aerodynamics of rotating blades, visual and nature

supplies which can reduce energy production if su�cient wind is not present.

The design of a wind turbine is a complex multidisciplinary problem; indeed, in order to obtain a good trade-

o� between performance and costs, many considerations and analysis in di�erent research and design areas have

to be made and taken into account. Wind turbine power generation is directly connected with the aerodynamic

performance of the blade, which is strictly related to its structural dynamics; thus, with today larger turbines,

structural aspects become increasingly important [1, 2]. However, the interest in multidisciplinary design is not

just limited to aero-structural optimization: electronical devices to control wind turbine are continuously devel-

oped (i.e. the yaw mechanism to keep the rotor in the �ow direction), blade materials to increase performance

are investigated and also the optimal placement of a wind turbine is analyzed [3].

From an aeroelastic point of view, wind turbines rotor modelling represents a challenging task involving

di�erent physical aspects. The accurate prediction of unsteady airloads under attached and separated �ow con-

ditions as well as structural behavior requires suitable modelling and devoted solution techniques to characterize

rotor stability and response. Wind turbines operations are also a�ected by atmospheric turbulence, ground

boundary layer, temporal and spatial variations in wind and thermal convection. The in�uence of an upstream

unsteady wake emanated by the tower or another wind turbine also represents a problem to correctly predict

wind turbine performance. Thus, reliable and economic design of wind turbines that can operate over long

periods of time is very di�cult. Moreover, the increasing size of commercial wind turbines (today rotor diameter

size reach values higher than 160 m [4]) leads to more �exible and lower sti�ness blades and hence to strong

coupling between aerodynamics and structural dynamics. Thus, aeroelasticity has become a critical issue in the

preliminary design of wind turbines. Due to the increased dimensions of wind turbine blades, many important

factors have to be taken into account in the preliminary design phase: aeroelastic problem linearization is valid

under the assumption of small deformations and displacements, whilst �exibility of the modern blades leads to
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important nonlinearities that cannot be ignored in the numerical solution; the introduction of active aeroelastic

control technology represents a possible solution for large wind turbines since it can alleviate blade loads and

increase the turbine blade length without exceeding fatigue damage on the system, and resulting in an increased

power production; due to the abundant wind energy on the sea and the decreasing cost per kilowatt, greater

consideration and interest on o�shore applications is posed, thus, aerohydroelastic models have to be developed

to predict interactions between the �oating platform and wave loads.

Advanced design tools are required to perform fast aeroelastic response simulations of the entire wind turbine,

including tower, drive train, rotor and control system. Hence, multidisciplinary numerical tools with good

levels of accuracy and operating at low computational costs are of great interest for designers. Successful

analysis and design of wind turbines relies on adequate aerodynamics and structural dynamics rotor modelling,

including application of suitable techniques for space and time aeroelastic system integration [5]. Concerning

rotor aerodynamics modelling, solution tools able to take into account unsteady operating conditions induced by

both wind gradients and motion of deformable blades, are mandatory. State-of-the-art aerodynamics codes for

wind turbines design involve well assessed engineering methods based on enhanced Blade Element Momentum

Theory (BEMT) techniques, that include tuned-up corrections to model blade tip �ow, wake dynamic in�ow

and dynamic stall [6]. More recently, Computational Fluid Dynamics (CFD) tools based on Reynolds Averaged

Navier-Stokes Equations (RANSE), and Direct and Large Eddy Simulation (DES and LES) aerodynamics solvers

have shown the capability to achieve a physically consistent description of turbine �ow-�eld, thus interest in

coupled CFD-CSD (Computational Structural Dynamics) techniques is increasing as well [7, 8]. Nevertheless,

due to the high computational costs, they are not well suited for aeroelastic analyses in practical preliminary

design and aero-servo-elastic applications [9]. In this scenario, three-dimensional, potential-�ow methods [10, 11]

represent an advanced convenient alternative to BEMT codes. Speci�cally, solvers based on Boundary Element

Methods (BEM) e�ciently predict rotor airloads and wake in�ow in attached �ow operating conditions [12].

A drawback of these methods is that viscosity e�ects (like, for instance, unsteady �ow separation occurring in

o�-design operations) can be only approximately described through inclusion of engineering models, such as

dynamic in�ow or dynamic stall models. From a blade structural point of view, Friedmann [13] derived the

earliest formulation to describe wind turbine blade motion; the blade was assumed to be an elastic beam �xed

to the hub and its dynamics was governed by a set of coupled �ap-lag-torsional nonlinear partial di�erential

equations. Hodges and Dowell [14], using Hamilton's principle, derived nonlinear equations for an hingeless

helicopter rotor blade undergoing moderate displacements, and this formulation was then extended by Kallesoe

[15] to wind turbine rotor blades. Speci�c codes for the construction of 3D �nite element models of wind turbine

blades were developed [16]; however, due to the high computational e�ort, blades were modeled as a series of

1D equivalent beam elements in many aeroelastic codes.

These considerations have inspired the present work with the objective of developing aeroelastic models to

predict performance of horizontal axis wind turbines in steady or unsteady conditions. The proposed solvers can

be suitably positioned amongst the current literature on the subject and are based on well-assessed structural

and sectional aerodynamics. The �rst aeroelastic formulation proposed is based on a spectral approach; the

aerodynamic model is coupled with a nonlinear, integro-di�erential formulation governing structural dynamics

of bending-torsional blades subject to moderate deformations. The main distinguishing feature of this model

is the use of a three-dimensional, unsteady BEM solver for incompressible, potential, attached �ows, combined

with the widely used Beddoes-Leishman (B-L) dynamic stall model, also including leading and trailing edge
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separation e�ects. In the absence of a well assessed and accepted procedure for including three-dimensional

e�ects in aerodynamic load formulations based on sectional theories, di�erent coupling strategies are proposed

and investigated in order to assess their e�ectiveness in the prediction of global (rotor thrust and power) and

local (blade loading) quantities by comparison with available experimental and numerical data. The resulting

aeroelastic di�erential system is integrated through the Galerkin approach, with the introduction of a novel,

and computationally e�cient, technique for spatial integration of additional aerodynamic states related to wake

vorticity and dynamic stall. Steady-periodic rotor response is evaluated by a harmonic balance technique at

reduced computational costs, whilst a time marching solution algorithm is applied to evaluate responses to

arbitrary inputs. Deep stall regimes are analyzed by extension of airfoil static coe�cients to high angles of

attack based on �at plate theory, whilst centrifugal e�ects are considered by widely used empirical corrections.

The second formulation proposed is based on the Finite Element Method (FEM) technique and is intended

for moderate displacements. The level of accuracy in the physical description of the �uid-structure interaction

makes this approach among those having a leading position in wind turbine aeroelastic simulations; furthermore,

analyzing blades with complex geometries, the FEM technique gives the possibility to increase the number of

elements in speci�c blade portions. Blade aerodynamics is simulated using di�erent quasi-steady and unsteady

sectional models, whilst the structural dynamics of the blade is modeled using the same formulation of the �rst

model. Wake in�ow e�ects are modeled by the simple momentum theory approach, by the Drees model, or by a

more advanced description obtained through an unsteady, three dimensional, free wake panel method. Aeroelastic

blade equations are �rstly obtained in weak-form through the application of Hamilton's principle; the resulting

nonlinear partial-integral equations of motion are then reduced to a set of nonlinear ordinary di�erential equations

by the spatial FEM-based discretization, then solved through a time-marching scheme. Due to the aeroelastic

similarity between helicopter and wind turbine rotor blades, validation results obtained with this formulation

with respect to literature data are �rstly presented by studying the structural and aeroelastic behavior of

helicopter main rotors in hovering and forward �ight; �nally, blade response and delivered performance of a

horizontal axis wind turbine are predicted.

In the following chapters, the developed aeroelastic formulations will be described in detail and results

obtained from the numerical applications will be discussed. In particular, in the next chapter FEM-based rotor

aeroelastic modelling will be proposed and the Galerkin method, applied in the aeroelastic solver based on a

spectral approach, is also presented. Several sectional aerodynamic formulations will be discussed in Chapter 3,

where the enhancement of 2D loads modelling for three dimensional applications will be also proposed along with

semi empirical corrections for high angle of attack regimes. Finally, results obtained by the numerical applications

of the proposed tools will be collected in Chapter 4 where the validation of the aeroelastic formulations will be

outlined considering helicopter and wind turbine rotors in di�erent operating conditions.



Chapter 2

Rotor aeroelastic modelling

In the present chapter, the FEM-based formulation to study rotor blades aeroelasticity is presented. Firstly,

reference frames are introduced, then the Hamilton's principle is applied to derive the equations of blade motion,

forced by the aerodynamic loads. These equations are written in nondimensional form to avoid scaling issues,

and terms up to second-order are kept according to the ordering scheme presented. A devoted �fteen-degrees of

freedom �nite element for the spatial discretization of the blade dynamics is introduced and the methodology

used to obtain the generalized aerodynamic nodal forces is discussed. The set of nonlinear ordinary di�erential

equations governing rotor aeroelasticity are solved by a time marching technique.

The last section of this chapter deals with the introduction of the aeroelastic formulation based on a spectral

approach; the Galerkin method applied to the resulting aeroelastic di�erential system is presented.

2.1 Reference frames de�nition

The following frames of reference are used herein (see Figure 2.1):

� Hub-�xed non rotating (XH , YH , ZH): centered at the rotor hub with unit vectors ÎH , ĴH , K̂H .

� Hub-rotating (X, Y , Z): has the origin coincident with (XH , YH , ZH) frame and rotates about the ZH

axis with a constant angular velocity ΩK̂. Its unit vectors are indicated as Î, Ĵ , K̂. The transformation

between the non rotating and rotating system is de�ned as
Î

Ĵ

K̂

 =

 cosψ sinψ 0

− sinψ cosψ 0

0 0 1




ÎH

ĴH

K̂H

 = TRH


ÎH

ĴH

K̂H

 (2.1)

where the azimuth angle ψ is equal to Ωt.

� Undeformed blade (x, y, z): has the origin at the hub, is �xed with the undeformed blade and is rotated

about the Y axis of the precone angle βpc. The x axis is coincident with the elastic axis of the blade and

the y axis is in the plane of rotation pointed towards the leading edge of the blade. Its unit vectors are î,

ĵ, k̂. The coordinate transformation between the hub-�xed rotating and the undeformed blade reference

14
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frame is 
î

ĵ

k̂

 =

 cosβpc 0 sinβpc

0 1 0

− sinβpc 0 cosβpc




Î

Ĵ

K̂

 = TUR


Î

Ĵ

K̂

 (2.2)

The transformation matrix from the hub-�xed non rotating frame of reference to the undeformed blade

reference is achieved by combining transformation matrices in equations (2.1) and (2.2) to obtain TUH =

TURTRH .

Figure 2.1: De�nition of frames of reference: hub �xed non rotating (XH , YH , ZH), hub rotating (X, Y , Z) and
undeformed blade (x, y, z)

� Deformed blade (ξ, η, ζ): η and ζ have origin on the elastic axis and are principal axes of the cross

section; the corresponding unit vectors are îξ, ĵη, k̂ζ .

Blade section elastic displacements are de�ned in Figure 2.2. An adequate description of the deformed blade

requires six variables: three translational and three rotational, and any out of plane deformations of the cross

section. Using the Eulero-Bernoulli beam assumption, out of plane deformations are neglected, which results

in plane sections remaining plane after deformation; a further simpli�cation consists in expressing two of the

three angles as derivatives of the de�ection variables. Thus four deformation variables, three de�ections and

one rotational angle, completely determine the deformed geometry. A point P on the undeformed elastic axis

undergoes de�ections u, v, w in the x, y, z directions, respectively, and moves to a point P ′. Then blade cross
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section containing P ′ is subjected to a rotation θ1 about the deformed elastic axis. The total blade pitch is

de�ned as

θ1 = θ0 + φ̂ (2.3)

where θ0 is the rigid pitch angle due to cyclic and collective controls (if present) and pretwist, while φ̂ is the

elastic twist. Rigid pitch angle expression for a blade with linear pretwist is

θ0 = θroot + θtwx+ θcoll + θ1c cosψ + θ1s sinψ (2.4)

where θroot is the pitch at blade root, θtw is blade linear pretwist, x is the nondimensional position along the

blade span in the undeformed frame of reference, θcoll is collective pitch, θ1c and θ1s are cyclic pitch controls.

The elastic twist is de�ned as

φ̂ = φ−
ˆ x

0

∂w

∂x

∂2v

∂x2
dx (2.5)

where φ is the elastic twist about the undeformed elastic axis, whilst φ̂ is de�ned about the deformed elastic

axis. The nonlinear term appearing in the above equation is designed as kinematic pitch rotation in [17]. In

the following, the ordering scheme will allow φ̂ to be simpli�ed to φ, due to moderate de�ections and to the

nonlinearity of the term.

Figure 2.2: De�nition of blade elastic displacements and undeformed/deformed blade frames of reference

Following [18], the coordinate transformation between the undeformed and the deformed blade reference frames

is given by
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îξ

ĵη

k̂ζ

 =

 cos β̄ cos ζ̄ cos β̄ sin ζ̄ sin β̄

− sin θ̄ sin β̄ cos ζ̄ − cos θ̄ sin ζ̄ cos θ̄ cos ζ̄ − sin ζ̄ sin β̄ sin θ̄ cos β̄ sin θ̄

− cos θ̄ sin β̄ cos ζ̄ + sin θ̄ sin ζ̄ − sin θ̄ cos ζ̄ − sin ζ̄ sin β̄ cos θ̄ cos β̄ cos θ̄




î

ĵ

k̂

 = TDU


î

ĵ

k̂


(2.6)

where the Euler angles ζ̄, β̄, θ̄ can be written in terms of blade deformation as

cos ζ̄ =
√

1−v′2−w′2√
1−w′2 sin ζ̄ = v′√

1−w′2

cos β̄ =
√

1− w′2 sin β̄ = w′

θ̄ = θ1

(2.7)

Substituting the above relations and simplifying to second order terms yields the transformation matrix between

deformed and undeformed blade positions:

TDU =


1− v′2

2 −
w′2

2 v′ w′

−v′ cos θ̄ − w′ sin θ̄
(

1− v′2

2

)
cos θ̄ − v′w′ sin θ̄

(
1− w′2

2

)
sin θ̄

v′ sin θ̄ − w′ cos θ̄ −
(

1− v′2

2

)
sin θ̄ − v′w′ cos θ̄

(
1− w′2

2

)
cos θ̄

 (2.8)

2.2 Nondimensionalization and ordering scheme

The present formulation is written in nondimensional form. This avoids scaling problems during computations

and increases the generality of the analysis. The fundamental physical quantities are nondimensionalized by the

reference parameters given in Table 2.1 where R is the blade radius, m0 and Ω0 are the reference mass for unit

length and angular speed, respectively, that can be di�erent from the blade mass m, and the rotor angular speed

Ω.

Physical quantity Reference parameter

Length R
Time 1/Ω

Mass for unit length m0

Velocity ΩR
Acceleration Ω2R

Force m0Ω2
0R

2

Moment m0Ω2
0R

3

Energy or Work m0Ω2
0R

3

Table 2.1: Nondimensionalization of physical quantities

The azimuth angle ψ can be considered as the nondimensional time, therefore, time derivatives are written as

(˙) = ∂()
∂t = ∂()

∂ψ
∂ψ
∂t = Ω∂()

∂ψ

(̈ ) = ∂2()
∂t2 = ∂2()

∂ψ2
∂2ψ
∂t2 = Ω2 ∂

2()
∂ψ2

(2.9)

In deriving a nonlinear equations system, it is necessary to neglect higher-order terms to avoid over-complicating

the equations of motion. To this aim, the same ordering scheme used in [14] has been adopted in this work;
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speci�cally, terms up to second order are retained in the analysis by introducing the nondimensional quantity ε,

such that ε � 1. Some third order terms related to elastic torsion are also retained in the energy expressions.

The order of magnitude of the non dimensional quantities is:

EA
m0Ω2

0R
2 = O

(
ε−2
)

v
R ,

w
R , φ̂, βpc,

kA
R ,

km1

R , km2

R , αs, λ,
EB2

m0Ω2
0R

5 ,
EC2

m0Ω2
0R

5 = O (ε)
ed
R ,

eg
R ,

ea
R = O

(
ε3/2

)
u
R ,

EB1

m0Ω2
0R

6 ,
EC1

m0Ω2
0R

6 , λT = O
(
ε2
)

x
R ,

m
m0
, ∂
∂ψ ,

∂
∂x , µ, cosψ, sinψ, θ0, θtw, θ1c, θ1s,

EIy
m0Ω2

0R
4 ,

EIz
m0Ω2

0R
4 ,

GJ
m0Ω2

0R
4 = O (1)

(2.10)

where EA is the axial sti�ness, EIy and EIz are �ap and lag bending sti�ness, respectively and GJ is the

torsional sti�ness. The antisymmetric warping function λT [14], representing the out of plane distortions of the

section, speci�es the distribution of the axial warping displacements around the cross section, EC1and EC2 are

constants related to the warping rigidity of the beam section, EB1and EB2 are other sectional constant due

to blade pitch [18], kA is the radius of gyration, km1 and km2 are the �apwise and chordwise mass moments of

inertia for unit blade length, respectively, whereas αs represents the shaft angle, λ the total induced in�ow and

µ the advance ratio de�ned as µ = V cosαS
ΩR . Finally, three sectional o�set are introduced: the aerodynamic o�set

ed between the aerodynamic and elastic centres positive backward, the blade center of gravity o�set eg from the

elastic axis (positive forward) and the tensile axis o�set ea from the elastic axis (positive forward). The ordering

scheme is systematically and consistently adopted in the calculation of the total energy.

2.3 Aeroelastic formulation: Hamilton's Principle

A nonlinear elastic blade model ([14], [19]) is used in the developed aeroelastic solver. The blade is assumed to

be a long, straight, slender, elastic, homogeneous and isotropic beam undergoing �ap and lag bending, elastic

twist (or torsion) and axial deformation. The theory is intended for moderate displacements. The analysis

is developed for an isolated rotor having blades with pretwist, precone and chord-wise o�sets of the center of

mass, aerodynamic center, and tension center from the elastic axis. The possible presence of hinge o�set is

considered. Structural dissimilarities among rotor blades are neglected whereas advanced tip shapes, such as

swept-tip or tapered-tip, are not modeled. Governing equations of motion are derived from the generalized

Hamilton's principle applicable to non-conservative systems

δΠ =

ˆ ψ2

ψ1

(δU − δT − δW ) dψ = 0 (2.11)

with ψ1,2 de�ning the azimuth angles between which motion is analyzed whereas δU , δT and δW represent the

virtual variation of the strain energy, kinetic energy and work done by external forces, respectively, written as

the sum of contributions from each rotor blade. For the b− th blade, equation (2.11) is written in the discretized

form as

δΠ =

ˆ ψ2

ψ1

[
Nb∑
b=1

(δUb − δTb − δWb)

]
dψ (2.12)

where Nb is the total number of rotor blades. The following sections describe the derivations of each term in
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(2.12).

2.3.1 Strain energy

Since each rotor blade is considered to be a long slender isotropic beam, the uniaxial stress assumption (σyy =

σyz = σzz = 0) is applicable. Using Hooke's law, the relationship between stresses and strains is given by

σxx = Eεxx

σxη = Gεxη

σxζ = Gεxζ

(2.13)

where εxx is the axial strain, whilst εxη and εxζ are engineering shear strains.

Under these assumptions, strain energy variation of the b− th blade can be expressed as

δUb =

ˆ R

0

¨
A

(Eεxxδεxx +Gεxηδεxη +Gεxζδεxζ) dηdζ dx (2.14)

where the general nonlinear strain displacement equations to second order are [14]

εxx = u′ + v′2

2 + w′2

2 − λTφ
′′ +

(
η2 + ζ2

) (
θ
′

0φ
′ + φ′2

2

)
+

−v′′
[
ηcos

(
θ0 + φ̂

)
− ζsin

(
θ0 + φ̂

)]
− w′′

[
ηsin

(
θ0 + φ̂

)
+ cos

(
θ0 + φ̂

)] (2.15)

εxη = −
(
ζ +

∂λT
∂η

)
φ′ (2.16)

εxζ =

(
η − ∂λT

∂ζ

)
φ′ (2.17)

The axial de�ection u, can be written as the sum of a contribution from the elastic axis axial de�ection (ue)

and another one from the foreshortening e�ect which results in a kinematic axial de�ection due to �ap and lag

de�ections of the section:

u = ue −
1

2

ˆ x

0

(
v′2 + w′2

)
dx (2.18)

For the b− th blade, a virtual variation of the degrees of freedom yields a virtual variation of strain energy; the

resulting expression in nondimensional form is given by

δUb
m0Ω2

0R
3 =
´ 1

0

(
Uu′eδu

′

e + Uv′′δv
′′ + Uw′δw

′ + Uw′′δw
′′ + Uφ̂δφ̂+ Uφ̂′δφ̂

′ + Uφ̂′′δφ̂
′′
)
dx̄ (2.19)

where all quantities are written in nondimensional form:

Uu′e = EA

[
u
′

e + k2
Aθ
′

0

(
φ̂
′
+ w′v′′

)
+ k2

A

φ̂
′

2

]
− EAea

[
v′′
(

cos θ0 − φ̂ sin θ0

)
+ w′′

(
sin θ0 + φ̂ cos θ0

)]
(2.20)
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Uv′′ = v′′
(
EIz cos2 θ0 + EIy sin2 θ0

)
+ w′′ (EIz − EIy) cos θ0 sin θ0 − EAeau

′

e

(
cos θ0 − φ̂ sin θ0

)
+

−φ̂′EB2θ
′

0 cos θ0 + w′′φ̂ (EIz − EIy) cos 2θ0 − v′′φ̂ (EIz − EIy) sin 2θ0+

+
(
GJ + EB1θ

′2
0

)
φ̂
′
w′ + EAk2

Aθ
′

0w
′u
′

e

(2.21)

Uw′ =
(
GJ + EB1θ

′2
0

)
φ̂
′
v′′ + EAk2

Aθ
′

0v
′′u
′

e (2.22)

Uw′′ = w′′
(
EIy cos2 θ0 + EIz sin2 θ0

)
+ v′′ (EIz − EIy) cos θ0 sin θ0 − EAeau

′

e

(
sin θ0 + φ̂ cos θ0

)
+

−φ̂′EB2θ
′

0 sin θ0 + w′′φ̂ (EIz − EIy) sin 2θ0 + v′′φ̂ (EIz − EIy) cos 2θ0+
(2.23)

Uφ̂ = w′′2 (EIz − EIy) cos θ0 sin θ0 + v′′w′′ (EIz − EIy) cos 2θ0 − v′′2 (EIz − EIy) cos θ0 sin θ0 (2.24)

Uφ̂′ =
(
GJ + EB1θ

′2
0

)
w′v′′ +

(
GJ + EB1θ

′2
0

)
φ̂
′
+ EAk2

A

(
θ
′

0 + φ̂
′
)
u
′

e − EB2θ
′

0 (v′′ cos θ0 + w′′ sin θ0) (2.25)

Uφ̂′′ = EC1φ̂
′′

+ EC2 (w′′ cos θ0 − v′′ sin θ0) (2.26)

For the sake of clarity, some terms of equation (2.19) are derived in Appendix A.

2.3.2 Kinetic energy

The kinetic energy of the b−th blade, δTb, depends on the blade velocity. This velocity is generally due to: blade
motion relative to the hub, as well as the motion of the hub itself. This relationship is expressed mathematically

as

~V = ~Vb + ~Vh (2.27)

where ~Vb is the velocity of the blade relative to the hub and ~Vh is the velocity (at the blade) induced by the

motion of the hub. Given a point P belonging to the undeformed blade elastic axis with coordinates (x, 0, 0),

after the deformation it has moved to the point P ′ (x+ u, v, w). Then the blade section undergoes a rotation

θ1 about the deformed elastic axis (see Figure 2.2). The components of the position vector ~r of a material blade

point P after deformation are indicated as (x1, y1, z1) in the undeformed blade coordinate system

~r = x1î+ y1ĵ + z1k̂ (2.28)

where
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x1 = u+ x− λTφ′ − v′ (y1 − v)− w′ (z1 − w)

y1 = v + (y1 − v)

z1 = w + (z1 − w)

(2.29)

in which v′ (y1 − v) and w′ (z1 − w) are radial shortenings due to lagwise and �apwise de�ections respectively,

whilst the deformations due to the rotation of the section about the deformed elastic axis are de�ned as

(y1 − v) = ηcosθ1 − ζsinθ1

(z1 − w) = ηsinθ1 + ζcosθ1

(2.30)

Noting that the unit vectors in equation (2.28) depend on time, time derivation of the position vector ~r yields

the following components of the absolute velocity of a blade point in the undeformed blade reference system

Vbx = ẋ1 − Ωy1cosβpc

Vby = ẏ1 + Ωx1cosβpc − Ωz1sinβpc

Vbz = ż1 + Ωy1sinβpc

(2.31)

The variation of kinetic energy of the b− th blade is given by

δTb =

ˆ R

0

¨
A

(
ρs~Vb · δ~Vb

)
dηdζ dx (2.32)

where A is the cross section and ρs represents its mass density. Substituting equation (2.31) in (2.32), the

resulting nondimensional variation of kinetic energy is

δTb
m0Ω2

0R
3 =
´ 1

0
µs

(
Tueδue + Tvδv + Twδw + Tv′δv

′ + Tw′δw
′ + Tφ̂δφ̂+ TF

)
dx̄ (2.33)

where

Tue =
Ω

Ω0
(x+ ue + 2v̇ − üe) (2.34)

Tv = Ω
Ω0

[
eg

(
cos θ0 + θ̈0 sin θ0

)
+ v − φ̂eg sin θ0 + 2ẇβpc + 2v̇′eg cos θ0

]
+

+ Ω
Ω0

[
2ẇ′eg sin θ0 − v̈ +

¨̂
φeg sin θ0 − 2u̇e + 2

´ x
0

(v′v̇′ + w′ẇ′) dξ
] (2.35)

Tw =
Ω

Ω0

[
−xβpc − θ̈0eg cos θ0 − 2v̇βpc − ẅ − ¨̂

φeg cos θ0

]
(2.36)

Tv′ =
Ω

Ω0

[
−eg

(
x cos θ0 − φ̂x sin θ0 + 2v̇ cos θ0

)]
(2.37)

Tw′ =
Ω

Ω0

[
−eg

(
x sin θ0 + φ̂x cos θ0 + 2v̇ sin θ0

)]
(2.38)

Tφ̂ = Ω
Ω0

[
−k2

m
¨̂
φ−

(
k2
m2 − k2

m1

)
sin θ0 cos θ0 − xβpceg cos θ0 − veg sin θ0 + v′xeg sin θ0

]
+

+ Ω
Ω0

[
−w′xeg cos θ0 + v̈eg sin θ0 − φ̂

(
k2
m2 − k2

m1

)
cos 2θ0 − ẅeg cos θ0 − k2

mθ̈0

] (2.39)
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TF = − Ω

Ω0
(x+ 2v̇)

ˆ x

0

(v′δv′ + w′δw′) dξ (2.40)

Some example of the procedure to obtain terms in equation (2.33) are presented in Appendix A.

2.3.3 External forces virtual work

External forces and moments on blades contribute to the virtual work on the system. In the present work only

distributed aerodynamic loads are considered. Thus, for a given virtual variation of the degrees of freedom of

the system, the virtual work (in nondimensional form) done by the aerodynamic loads recasts

δWb

m0Ω2
0R

3
=

ˆ 1

0

(
LAu δu+ LAv δv + LAwδw +MA

φ̂
δφ̂
)
dx̄ =

ˆ 1

0

(
δuTLA

)
dx̄ (2.41)

where δuT =
(
δu, δv, δw, δφ̂

)
is the virtual elastic displacement and LTA =

(
LAu , L

A
v , L

A
w, M

A
φ̂

)
is the vector

collecting sectional forces and moments referred to the deformed blade con�guration, projected in the undeformed

frame of reference (Oxyz). For clarity, the method used for the computation of aerodynamic forces and moment

is discussed in detail in Section 2.4.2.

2.4 Blade equations of motion

2.4.1 Finite element discretization in space

Each blade is discretized into a number of beam elements, having �fteen degrees of freedom (DOFs) distributed

over �ve element nodes (two boundary nodes and three internal nodes). There are six degrees of freedom at

each element boundary node, corresponding to u (axial displacement), v (lag de�ection), v′ (lag bending-slope),

w (�ap de�ection), w′ (�ap bending-slope) and φ̂ (twist) (see Figure 2.3 for details).

Figure 2.3: Sketch of the rotor blade discretized into �nite elements (top); local nodes and elemental degrees of
freedoms (bottom, left); elemental forces and moments (bottom, right).
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Moreover, there are two internal nodes for the elastic axial de�ection u and one internal node for the elastic

twist φ̂ (Figure 2.3). These DOFs correspond to cubic variations of the axial and �ap-lag bending de�ections

and quadratic variation of the elastic torsion. Between elements, continuity of displacements and slope for

�ap-lag de�ections, as well as continuity of displacements for elastic twist and axial de�ections, are assured.

This kind of element provides physically consistent linear variations of bending and torsional moments, and

quadratic variation of axial force within each element. Geometrical and structural properties are assumed to

be constant within each element, with the exception of blade pre-twist. Such elemental DOFs comply with

Hermite polynomials for lag/�ap bendings and Lagrange polynomials for axial and torsional de�ections. Thus,

de�ections distribution over a beam element may be expressed in terms of the elemental DOFs vector qTi ={
u1, u3, u4, u2, v1, v

′
1, v2, v

′
2, w1, w

′
1, w2, w

′
2, φ̂1, φ̂3, φ̂2

}
, de�ned accordingly to the nodal topology shown in Figure

2.3. For the i− th beam element, the elastic displacements is

ui (ξ, t) =


u (ξ)

v (ξ)

w (ξ)

φ̂ (ξ)

 =


Hu (ξ) 0 0 0

0 H (ξ) 0 0

0 0 H (ξ) 0

0 0 0 Hφ̂ (ξ)

qi (t) (2.42)

where the interpolating polynomials for the shape functions are:

HT
u =


Hu1

Hu2

Hu3

Hu4

 =


−4.5ξ3 + 9ξ2 − 5.5ξ + 1

13.5ξ3 − 22.5ξ2 + 9ξ

−13.5ξ3 + 18ξ2 − 4.5ξ

4.5ξ3 − 4.5ξ2 + ξ


HT =


H1

H2

H3

H4

 =


2ξ3 − 3ξ2 + 1

li
(
ξ3 − 2ξ2 + ξ

)
−2ξ3 + 3ξ2

li
(
ξ3 − ξ2

)


HT
φ̂

=


Hφ̂1

Hφ̂2

Hφ̂3

 =


2ξ2 − 3ξ + 1

−4ξ2 + 4ξ

2ξ2 − ξ



(2.43)

in which ξ is the nondimensional local element position on the i− th beam element.

In order to integrate equations (2.19), (2.33) and (2.41) along the span, let consider the following discretization

procedure applied to a generic function f (x) de�ned throughout the blade. Starting from the de�nition of a

nondimensional radial position x̄ = x/R (see Figure 2.4) in the undeformed frame of reference ranging from the

hub to the blade tip (0 ≤ x̄ ≤ 1), introducing FEM discretization and de�ning a local nondimensional variable

ξ̂ on each element (0 ≤ ξ̂ ≤ li/R, where li is the dimensional length of the i− th element), one obtains

ˆ R

0

f (x) dx =

ˆ 1

0

f (x̄) dx̄ =

N∑
i=1

ˆ (xLi+li)/R

xLi/R

f (x̄) dx̄ =

N∑
i=1

ˆ li/R

0

f
(
ξ̂
)
dξ̂ (2.44)

where xLi represents the dimensional position on the blade of the left node of the i− th element.

Finally, denoting with ξ = ξ̂R/li a new local nondimensional variable such that 0 ≤ ξ ≤ 1, the �nal expression

is obtained:
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ˆ R

0

f (x) dx =

N∑
i=1

eli

ˆ 1

0

f (ξ) dξ (2.45)

where eli is the nondimensional length of the i− th element. The last integral is solved by the Gauss quadrature

procedure that will be discussed later in this section.

Figure 2.4: De�nition of nondimensional coordinates along the blade

Applying FEM discretization to equation (2.12) and focusing the analysis on a single blade, the Hamilton

Principle recasts

δΠ =

ˆ ψ2

ψ1

[
N∑
i=1

(δUi − δTi − δWi)

]
dψ =

ˆ ψ2

ψ1

[
N∑
i=1

∆i

]
dψ = 0 (2.46)

where subscript i indicates the i− th element and N is the number of the spatial �nite elements on the blade.

By substituting relation ui (ξ, t) = H (ξ) qi (t) in equations (2.19), (2.33) and (2.41), the elemental variation ∆i

can be written in the following form:

∆i = δqTi

(
M̂q̈ + Ĉq̇ + K̂q− F̂

)
i

(2.47)

where M̂i, Ĉi and K̂i are elemental mass, gyroscopic and sti�ness matrices, respectively, and F̂i is the elemental

load vector which collects structural and aerodynamic contributions. Mass matrix is a function of the radial

position, whereas gyroscopic and sti�ness matrices and the load vector can also be functions of the azimuthal

location (elemental expressions are reported in Section 2.4.1.1).

Matrices in equation (2.47) are obtained from structural linear terms only, whilst the force vector on the right-

hand side of the energy equation of the i− th element can be written as

F̂i = (F0)i + (Fnl)i + (Faer)i (2.48)

where F0 and Fnl represent constant and nonlinear contributions structural dynamics and Faer denotes the
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aerodynamic force vector. Throughout the thesis, both the aerodynamic and structural nonlinear loads are kept

as fully nonlinear or linearized about a steady-state con�guration (q0) to avoid numerical issues (see Section

4.3.1) during the time-integration of the aeroelastic system. For instance, making reference to the nonlinear

structural force Fnl, the �rst-order Taylor expansion about the reference state yields:

(Fnl)i = (Fnl)i |(q0)i
+
∂ (Fnl)i
∂qi

qi (2.49)

The �rst term on the right hand side of equation (2.49) is constant and therefore it is combined with (F0)i. The

linearized part of nonlinear force is derived analytically by di�erentiating the nonlinear force vector elements

with respect to each term in the element displacement vector qi. This results in a displacement Jacobian matrix

(Jf )ij = ∂fi(q)
∂qj

.

Calculation of elemental matrices and load vector requires integration over the nondimensional local length

(0 ≤ ξ ≤ 1); these integrals are evaluated numerically using a Gauss quadrature procedure

ˆ 1

0

f (ξ) dξ =

NG∑
j=1

f (sj)wj (2.50)

where sj is the local element position, wj is the weighting factor of the j − th quadrature point and NG is the

total number of quadrature points used in the interval 0 ≤ ξ ≤ 1.

Finally, assembling elemental matrices and load vector over N spatial beam elements, yields the global nonlinear

equations of motion in terms of nodal displacements. Assembly must assure compatibility between degrees of

freedom at adjoining elemental nodes. The �nal expression for the total energy virtual variation is

δΠ =

ˆ ψ2

ψ1

δqT (Mq̈ + Cq̇ + Kq− F) dψ = 0 (2.51)

where global nodal displacement vector, global matrices and global load vector are obtained with the summation

over the N spatial beam elements of the elemental quantities.

Then, noting that the virtual displacements, δq, are arbitrary, the following �nal form of blade equation of

motion is derived

Mq̈ + Cq̇ + Kq = F (2.52)

Equation (2.52) is a set of nonlinear, ordinary di�erential equations (ODEs) for the global elastic DOFs, forced

by inertial terms which are solved through a time-marching numerical scheme (details are provided in Appendix

B).

2.4.1.1 Elemental expressions of structural matrices and load vector

The elemental mass, gyroscopic and sti�ness matrices can be partitionated to indicated contributions from axial

de�ection, lag bending, �ap bending and elastic torsion. Thus, the linear contribution of these matrices can be

written as:
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Mi =


Muu Muv Muw Muφ̂

Mvu Mvv Mvw Mvφ̂

Mwu Mwv Mww Mwφ̂

Mφ̂u Mφ̂v Mφ̂w Mφ̂φ̂

 (2.53)

Ci =


Cuu Cuv Cuw Cuφ̂

Cvu Cvv Cvw Cvφ̂

Cwu Cwv Cww Cwφ̂

Cφ̂u Cφ̂v Cφ̂w Cφ̂φ̂

 (2.54)

Ki =


Kuu Kuv Kuw Kuφ̂

Kvu Kvv Kvw Kvφ̂

Kwu Kwv Kww Kwφ̂

Kφ̂u Kφ̂v Kφ̂w Kφ̂φ̂

 (2.55)

Note that the elemental structural mass and sti�ness matrices are symmetric, whilst the gyroscopic one is

antisymmetric. The linear mass matrix nondimensional terms are de�ned as:

Muu =
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)
HT
uHudξ

Mvv =
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)
HTHdξ

Mww =
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)
HTHdξ

Mφ̂φ̂ =
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)
k2
mHT

φ̂
Hφ̂dξ

Mvφ̂ = −
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)
eg sin θ0H

THφ̂dξ

Mwφ̂ =
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)
eg cos θ0H

THφ̂dξ

Muv = Muw = Mvw = Muφ̂ = 0

(2.56)

The linear gyroscopic matrix nondimensional terms are de�ned as:

Cvv =
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)(
2eg cos θ0H

′TH− 2eg cos θ0H
TH

′
)
dξ

Cuv = −
(

Ω
Ω0

)2

eli
´ 1

0
2
(
m
m0

)
HT
uHdξ

Cvw = −
(

Ω
Ω0

)2

eli
´ 1

0

(
m
m0

)(
2βpcH

TH + 2eg sin θ0H
TH

′
)
dξ

Cuu = Cww = Cφ̂φ̂ = Cuw = Cuφ̂ = Cvφ̂ = Cwφ̂ = 0

(2.57)

The linear sti�ness matrix nondimensional terms are de�ned as:
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Kuu = eli
´ 1

0

(
m
m0

)
EAH

′T
u H

′

udξ

Kvv = eli
´ 1

0

[
−
(

Ω
Ω0

)2 (
m
m0

)
HTH +

(
Ω
Ω0

)2

FAH
′TH

′
+
(
EIy sin2 θ0 + EIz cos2 θ0

)
H
′′TH

′′
]
dξ

Kww = eli
´ 1

0

[(
Ω
Ω0

)2

FAH
′TH

′
+
(
EIz sin2 θ0 + EIy cos2 θ0

)
H
′′TH

′′
]
dξ

Kφ̂φ̂ = eli
´ 1

0

[(
Ω
Ω0

)2 (
m
m0

) (
k2
m2 − k2

m1

)
cos 2θ0H

T
φ̂
Hφ̂ +

(
GJ + EB1θ

′2
0

)
H
′T
φ̂

H
′

φ̂
+ EC1H

′′T
φ̂

H
′′

φ̂

]
dξ

Kuv = −eli
´ 1

0
EAea cos θ0H

′T
u H

′′
dξ

Kuw = −eli
´ 1

0
EAea sin θ0H

′T
u H

′′
dξ

Kuφ̂ = eli
´ 1

0
EAk2

Aθ
′

0H
′T
u H

′

φ̂
dξ

Kvw = eli
´ 1

0
(EIz − EIy) sin θ0 cos θ0H

′′TH
′′
dξ

Kvφ̂ = eli
´ 1

0

[(
Ω
Ω0

)2 (
m
m0

)(
HTHφ̂ − xH

′THφ̂

)
eg sin θ0 −

(
EB2θ

′

0 cos θ0H
′′TH

′

φ̂
+ EC2 sin θ0H

′′TH
′′

φ̂

)]
dξ

Kwφ̂ = eli
´ 1

0

[(
Ω
Ω0

)2 (
m
m0

)
H
′THφ̂xeg cos θ0 − EB2θ

′

0 sin θ0H
′′TH

′

φ̂
+ EC2 cos θ0H

′′TH
′′

φ̂

]
dξ

(2.58)

If the axial displacements are not allowed, the following equivalent term must be added in the matrix Kφ̂φ̂ to

those already presented, to take into account the axial force contribution to the sti�ness of the blade:

Kφ̂φ̂ =

(
Ω

Ω0

)2

eli

ˆ 1

0

[
1

2

(
m

m0

)
k2
m

(
1− x2

)
H
′T
φ̂

H
′

φ̂

]
dξ (2.59)

As already seen for the structural matrices, the elemental force vector can be partitionated as follows:

Fi =


Fu

Fv

Fw

Fφ̂

 (2.60)

and can be written as

Fi = F0i + FNLi (2.61)

The constant force vector terms are given below as

Fu0 =

(
Ω

Ω0

)2

eli

ˆ 1

0

[(
m

m0

)
xHT

u

]
dξ (2.62)

Fv0 =

(
Ω

Ω0

)2

eli

ˆ 1

0

[(
m

m0

)((
eg cos θ0 + θ̈0eg sin θ0

)
HT − eg cos θ0xH

′T
)]
dξ (2.63)

Fw0 =

(
Ω

Ω0

)2

eli

ˆ 1

0

[(
m

m0

)(
−
(
βpcx+ θ̈0eg cos θ0

)
HT − eg sin θ0xH

′T
)]
dξ (2.64)

Fφ̂0 =
(

Ω
Ω0

)2

eli
´ 1

0

[(
m
m0

)(
−k2

mθ̈0 +
(
k2
m2 − k2

m1

)
sin θ0 cos θ0 − βpceg cos θ0x

)
HT
φ̂

]
dξ (2.65)

The nonlinear contributions to the force vector are
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FuNL = −eli
ˆ 1

0

EA

[
ea

(
v′′φ̂ sin θ0 − w′′φ̂ cos θ0

)
+ k2

A

φ̂′2

2
+ k2

Aθ
′

0w
′v′′

]
H
′T
u dξ (2.66)

FvNL = eli
´ 1

0

[(
(EIz − EIy) v′′φ̂ sin 2θ0 − (EIz − EIy)w′′φ̂ cos 2θ0

)
H
′′T
]
dξ+

−eli
´ 1

0

[(
EAeau

′

eφ̂ sin θ0 +
(
GJ + EB1θ

′2
0

)
φ̂′w′ + EAk2

Aθ
′

0w
′u
′

e

)
H
′′T
]
dξ+

−eli
´ 1

0

[
2
(

Ω
Ω0

)2 (
−
(
m
m0

) ´ x
0

(v′v̇′ + w′ẇ′) dsHT + v′
´ 1

x

(
m
m0

)
v̇dsH

′T
)]
dξ

(2.67)

FwNL = −eli
´ 1

0

[(
(EIz − EIy) v′′φ̂ cos 2θ0 + (EIz − EIy)w′′φ̂ sin 2θ0 − EAeau

′

eφ̂ cos θ0

)
H
′′T
]
dξ+

−eli
´ 1

0

[((
GJ + EB1θ

′2
0

)
φ̂′v′′ + EAk2

Aθ
′

0v
′′u
′

e

)
H
′T + 2

(
Ω
Ω0

)2

w′
´ 1

x

(
m
m0

)
v̇dsH

′T

]
dξ

(2.68)

Fφ̂NL = −eli
´ 1

0

[
(EIz − EIy)

(
w′′2 sin θ0 cos θ0 + v′′w′′ cos 2θ0 − v′′2 sin θ0 cos θ0

)
HT
φ̂

]
dξ+

−eli
´ 1

0

((
GJ + EB1θ

′2
0

)
w′v′′ + EAk2

Aφ̂
′
u
′

e

)
H
′T
φ̂
dξ

(2.69)

2.4.2 Finite element discretization of blade aerodynamic loads

The procedure to express the virtual work done by aerodynamic loads acting on each rotor blade is similar to

what has been discussed for the other energy terms in the Hamiltonian for the b− th blade. In particular, all the

rotor aerodynamic formulations that will be used in the present work yield a nonlinear dependence of sectional

airloads on blade elastic de�ections. Thus the determination of the generalized aerodynamic loads is strongly

coupled with blade structural dynamics.

Starting from equation (2.41), the nondimensional variation of the virtual work done by the aerodynamic loads

on the b− th blade is

δWb =

ˆ 1

0

δuTLAdξ (2.70)

By applying FEM discretization, equation (2.70) is recast in the following form

δWb =

N∑
i=1

δqTi

ˆ li/R

0

HTLAidξ (2.71)

where LAi is the vector of sectional loads evaluated within the i− th �nite element and it is a nonlinear function

of global DOFs and of the azimuth.

Finally, making reference to NG quadrature points on the i − th �nite element, denoting with ξk the radial

position of each point (see Figure 2.5), equation (2.71) becomes

δWb =

N∑
i=1

δqTi

NG∑
k=1

(
HTLAi

)
k
wk (2.72)

where
(
HTLAi

)
k
indicates aerodynamic force contribution evaluated at ξk and wk is the weighting factor.
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Figure 2.5: Finite element nodes (circles) and Gauss points (squares)

2.5 Hub loads calculation

Hub loads are given by the integration from the tip to the blade root, of both inertial and aerodynamic loads

along the blade. In magnitude, they are equal to the champ reaction forces; in the rotating frame, they are given

by the reaction forces and moments to those occurring outboard.

Fx =
´ R

0
Ltotu dx

Fy =
´ R

0
Ltotv dx

Fz =
´ R

0
Ltotw dx

Mx =
´ R

0
(−Ltotv w + Ltotw v +M tot

u ) dx

My =
´ R

0
(Ltotu w − Ltotw (x+ u) +M tot

v ) dx

Mz =
´ R

0
(−Ltotu v + Ltotv (x+ u) +M tot

w ) dx

(2.73)

where the total load come from the sum of aerodynamic and inertial contributions:

Ltotu = Lu + LIu

Ltotv = Lv + LIv

Ltotw = Lw + LIw

M tot
u = Mφ̂ +M I

u

M tot
v = v′Mφ̂ +M I

v

M tot
w = w′Mφ̂ +M I

w

(2.74)

Aerodynamic loads derive from the formulations presented in Sections 3.1.1.1 and 3.1, whilst inertial contri-

butions are here introduced. Both are written in the deformed con�guration and projected in the undeformed

blade of reference.

From Newton's second law, sectional inertial forces are

FI = −
¨

ρ~adηdζ (2.75)

MI = −
¨

~s× ~adηdζ (2.76)

where ρ is the blade density, ~s the moment arm with respect to the blade root and ~a the acceleration of a blade

section written in the undeformed frame of reference, given by
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~a = ~̈r + Ω× (Ω× ~r) + 2
(

Ω× ~̇r
)

(2.77)

in which ~r is de�ned in Section 2.3.2. Inertial loads components in nondimensional form can be expressed as

LIu = −
(
m

m0

)[
üe − x− ue − 2v̇ + βpcw + eg (v′ − v̈′) cos θ1 + eg

(
w′ + βpc − ẅ′ + 2θ̇1

)
sin θ1

]
(2.78)

LIv = −
(
m
m0

) [
v̈ − v + 2u̇e − 2βpcẇ − eg (1 + 2v̇′) cos θ1 − 2v′v̇ − eg

(
θ̈1 − φ̂+ 2ẇ′

)
sin θ1

]
+

−2v′′
´ 1

x

(
m
m0

)
v̇dξ

(2.79)

LIw = −
(
m

m0

)[
ẅ + βpcx+ 2βpcv̇ + eg θ̈1 cos θ1 − 2w′v̇

]
− 2w′′

ˆ 1

x

(
m

m0

)
v̇dξ (2.80)

M I
u = −

(
m
m0

) [
k2
mθ̈1 +

(
1 + 2v̇′ − 2θ̇1

) (
k2
m2 − k2

m1

)
cos θ1 sin θ1 + 2ẇ′

(
k2
m2 sin2 θ1 + k2

m1 cos2 θ1

)]
+

−
(
m
m0

)
[(xβpc + 2v̇ + ẅ) eg cos θ1 + (v − v̈) eg sin θ1]

(2.81)

M I
v = −

(
m
m0

) [
(v′ + βpc − v̈′)

(
k2
m2 − k2

m1

)
cos θ1 sin θ1

]
+

−
(
m
m0

) [(
w′ − ẅ′ + 2θ̇1

) (
k2
m2 sin2 θ1 + k2

m1 cos2 θ1

)
− (x+ 2v̇) eg sin θ1

] (2.82)

M I
w = −

(
m
m0

) [(
ẅ′ − w′ − 2θ̇1 − βpc

) (
k2
m2 − k2

m1

)
cos θ1 sin θ1

]
+

−
(
m
m0

) [
(v̈ − v′)

(
k2
m2 sin2 θ1 + k2

m1 cos2 θ1

)
+ (x+ 2v̇) eg cos θ1

] (2.83)

Finally, rotor hub loads are obtained by summing load contributions from each individual blade. In the �xed

frame, they are expressed as

FHX (ψ) =

N∑
m=1

(
Fmx cosψm − Fmy sinψm − Fmz cosψmβpc

)
(2.84)

FHY (ψ) =

N∑
m=1

(
Fmx sinψm + Fmy cosψm − Fmz sinψmβpc

)
(2.85)

FHZ (ψ) =

N∑
m=1

(Fmz + Fmx βpc) (2.86)

MH
X (ψ) =

N∑
m=1

(
Mm
x cosψm −Mm

y sinψm −Mm
z cosψmβpc

)
(2.87)

MH
Y (ψ) =

N∑
m=1

(
Mm
x sinψm +Mm

y cosψm −Mm
z sinψmβpc

)
(2.88)
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MH
Z (ψ) =

N∑
m=1

(Mm
z +Mm

x βpc) (2.89)

where the index m refers to the m− th blade.

Hub loads harmonic content is characterized only by those frequencies that are integral multiple of rotor fre-

quency. These harmonics are generated by harmonics of rotating frame blade loads which are one higher and

one lower than the rotor frequency. For example, for an Nb bladed rotor, the harmonics in the �xed frame

hub loads are kNb/rev, where k is an integer. These harmonics are generated by kNb ± 1/rev in plane shear

forces (Fx, Fy), kNb/rev vertical shear force (Fz) , kNb ± 1/rev �ap and torsion bending moments (Mx, My)

and kNb/rev chord bending moment (Mz) [18].

2.6 Aeroelastic formulation based on a spectral approach

A pre-existent numerical tool based on a modal approach [20] and developed at University Roma Tre, Dept. of

Engineering is herein brie�y introduced. Blade structural model is the same discussed in Section (2.3) and is

based on the work of Hodges and Dowell ([14], [19]) whereas the Beddoes-Leishman model (discussed in detail

in Section 3.1.3) is introduced to describe sectional aerodynamic loads. Blade motion equation is coupled to the

unsteady aerodynamic model to yield the aeroelastic integro-partial di�erential equations to be integrated for

rotor performance, response and stability analyses. This aeroelastic formulation has been successfully applied

to helicopter and tiltrotor con�gurations [20, 21]. Space (blade spanwise) integration of the aeroelastic system

is performed through the Galerkin approach (see Section 2.6.1). Steady-periodic rotor response to arbitrary

wind conditions (like, for instance, axial wind, yawed wind and vertical shear layer conditions) is evaluated

by a harmonic-balance technique [20, 22] at reduced computational costs. Concerning the aeroelastic stability

analysis, an extensively technique applied in rotorcraft [23] and wind turbine aeroelasticity is based on the

eigenanalysis of the aeroelastic system linearized about a steady-periodic equilibrium condition [24]; in order to

de�ne the eigenproblem to be solved a state-space representation of blade loads is required.

2.6.1 The Galerkin method

The equation governing the dynamic of the blade, can be written in a general form as

ρü (x, t) + Lu (x, t) = f (x, t) (2.90)

where u is the vector which collects blade degrees of freedom, ρ the mass for unit length, L the di�erential

aeroelastic operator and f the forcing vector. A technique for the solution of partial di�erential equations

is provided by the Galerkin method which consists in expressing the solution through the following linear

combination:

u (x, t) =
∑
m

um (t) Ψm (x) (2.91)

denoting with um (t) the time dependent coe�cients and with Ψm (x) suitable sets of linearly independent shape

functions that satisfy the homogeneous boundary conditions. Then, substituting equation (2.91) into equation
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(2.90) and supposing, for simplicity, a constant distribution of the mass for unit length in the domain yields:

ρ
∑
m

üm (t) Ψm (x) +
∑
m

Lum (t) Ψm (x) = f (x, t) (2.92)

and projecting equations on the shape functions one obtains

ρ
∑
m

üm (t) mmn +
∑
m

um (t) kmn = fn (2.93)

where

mmn =
´
D

Ψm (x) Ψn (x) dD

kmn =
´
D

Ψm (x)LΨn (x) dD

fn =
´
D

fΨn (x) dD

(2.94)

The �nal expression in a matricial form is

Mü + Ku = f (2.95)

where the unknowns of the problem are the time dependent coe�cients. Following this method, the original

partial di�erential problem has been transformed into a system of ordinary di�erential equations.



Chapter 3

Rotor aerodynamic modelling

Application of Hamilton's principle analyzed in the previous chapter requires the de�nition of the external vir-

tual work on the system which is a function of the external forces, i.e. the aerodynamic loads acting on the

blade. Distributed sectional loads are provided by aerodynamic formulations based on the de�nition of the angle

of attack at a certain point (η = ηr and ξ = 0) along the chord of each cross section. Then, sectional theories

describing the airfoil aerodynamic behavior are presented. Unsteady, incompressible aerodynamic loads gener-

ated on translating airfoils undergoing plunge motion, h, and pitch motion, α are predicted by the Theodorsen

theory [25]. The extension of this theory by Greenberg [19] to deal with pulsating free stream is presented.

Finally, the Beddoes-Leishman formulation to simulate �ow separation e�ects due to dynamic stall is presented.

The in�uence of three-dimensional e�ects due to wake induced in�ow and their inclusion in the present model

will be discussed in Section 3.2, where the simple momentum theory approach, the Drees model, and a more

advanced description obtained through an unsteady, three dimensional, free wake panel method are presented;

then, four coupling strategies between sectional aerodynamic models and the 3D BEM wake in�ow are proposed.

Deep stall regimes are analyzed through the Viterna-Corrigan approach by extension of airfoil static coe�cients

to high angles of attack based on �at plate theory, whilst Snel model is used to take into account centrifugal

e�ects. The last section deals with the de�nition of the airfoil velocity components at a certain point along the

chord of each cross section.

3.1 Unsteady aerodynamic models

Three di�erent sectional unsteady aerodynamic models are presented in this section. The fundamental as-

sumption of these models is that each blade section can be modeled, from an aerodynamics standpoint, as an

independent airfoil moving in an unsteady potential �ow. The �rst aerodynamic formulation is based on the

Theodorsen theory [25] to predict unsteady, incompressible aerodynamic loads generated on translating airfoils

undergoing plunge motion, h, and pitch motion, ε; a quasi-steady approximation of this theory is also presented.

Then the extension of this theory by Greenberg [19] to deal with a pulsating free stream is introduced. Finally,

the Beddoes-Leishman formulation to simulate �ow separation e�ects and the inclusion of three-dimensional

e�ects due to wake induced in�ow, are presented.

33
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3.1.1 Theodorsen Theory

The Theodorsen theory describes unsteady aerodynamic forces and moment acting on a thin airfoil under the

assumption of incompressible and inviscid �ow. The airfoil has two degrees of freedom: a vertical translation h

(plunge) positive downward and a rotation ε (pitch) positive nose up, about an axis located at a distance ahb from

the mid-chord point, ah being positive towards the trailing edge. The �ow is assumed to be two-dimensional, h

and ε are considered in�nitesimal, and the free stream velocity V is constant (see Figure 3.1).

Figure 3.1: Airfoil pitching and plunge motion

Sectional lift is modeled as the sum of a circulatory and a noncirculatory contribution. The �rst one arises from

circulation and depends on the normal velocity component of airfoil at the 3/4 chord point (v
3/4
n ). Shed vorticity

is modeled through the Theodorsen Lift De�ciency Function C (k) and the expression of Lc is

Lc = 2πρbV C (k) v3/4
n (3.1)

where ρ is the air density and b = c/2 being c the airfoil chord.

The downwash at the three quarter chord point is due to a chordwise uniform contribution corresponding to a

pitching angle ε and a vertical translation ḣ, and a nonuniform term due to the angular velocity ε̇:

v3/4
n = ḣ+ εV + bε̇

(
1

2
− ah

)
(3.2)

The Theodorsen Lift De�ciency Function C (k) is a transcendental function of the reduced frequency k = ωb/V ,

being ω the pitching frequency. In order to derive a �nite-state formulation, a second-degree Padè approximation

based on the Wagner function is assumed [26]

C (k) = 0.5
(ik + 0.135) (ik + 0.651)

(ik + 0.0965) (ik + 0.4555)
(3.3)

where i indicates the imaginary unit.

Non circulatory lift (also indicated as apparent mass force) depends on airfoil acceleration at mid-chord point

(Lnc1) and at the three-quarter point (Lnc2) and can be expressed as following
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Lnc = Lnc1 + Lnc2 = ρπb2
(
ḧ− ahbε̈

)
+ ρπb2 (V ε̇) (3.4)

Finally, the total lift per unit span is

L = Lc + Lnc1 + Lnc2 (3.5)

whilst the expression of the total moment per unit span about the elastic axis is

M =

(
1

2
+ ah

)
bLc + ahbLnc1 −

(
1

2
− ah

)
bLnc2 +Ma (3.6)

where Ma = −ρπb
4

8 ε̈ is a nose-down moment. An aerodynamic pro�le drag force for unit length, acting parallel

to the resultant blade velocity, is included based on a constant pro�le drag coe�cient cD0

D =
ρcLαc

2

cD0

cLα

(
U2
T + U2

P

)
(3.7)

Normal (T ) and parallel (S) to the airfoil chord line force components (see Figure 3.2) are obtained as follows

T = LC cosα+ LNC +D sinα

S = LC sinα−D cosα
(3.8)

Finally, loads expression in the undeformed frame of reference required in equation (2.41) are obtained as
(
LAu
)
C(

LAv
)
C(

LAw
)
C

 = TT
DU


0

S

T

 (3.9)

MA
φ̂

= M (3.10)

Figure 3.2: Directions of aerodynamic loading
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3.1.1.1 Quasi-steady aerodynamics

This section presents a quasi-steady approximation sectional aerodynamic model in which circulatory terms

are assumed to be steady whilst the non circulatory ones are retained as in the Theodorsen formulation. The

quasi-steady approximation is judged to be adequate for low frequency analyses, thus C (k) can be set equal

to 1. This type of quasi-steady aerodynamics is herein introduced on the basis of Ref.[27] and will be used to

validate the proposed aeroelastic model with available numerical data.

Circulatory nondimensional blade airloads in the deformed frame of reference can be directly written as:(
L̄
)
C

= 1
m0Ω2R

(
1
2ρV

2cCl
)(

D̄
)
C

= 1
m0Ω2R

(
1
2ρV

2cCd
)(

M̄
)
C

= 1
m0Ω2R2

(
1
2ρV

2c2Cm
) (3.11)

where ρ is the air density, V is the total incident velocity, c is the section chord and Cl, Cd, Cm are the section

lift, drag, and pitching moment coe�cients, respectively. The aerodynamic coe�cients are expressed as

Cl = c0 + c1α

Cd = d0 + d1|α|+ d2α
2

Cm = f0 + f1α

(3.12)

where α is the angle of attack at the three-quarter chord point, c0 the zero angle lift coe�cient, c1 the lift curve

slope, d0 the viscous drag coe�cient, f0 the zero angle pitching moment coe�cient about the aerodynamic center,

and d1, d2, f1 the additional drag and moment coe�cients due to the camber of the airfoil. These relations are

valid for incompressible attached �ow conditions. Compressibility e�ects are accounted for by modifying the lift

curve slope as

c1 =
c1M=0

β
=

c1M=0√
1−M2

(3.13)

where c1M=0
represents the lift curve slope for incompressible �ows, β is the Prandtl-Glauert factor and M is

the Mach number [28].

External loads along the deformed axes that appear in the principle of virtual work are normal, chord, axial

forces and moment about the elastic axis (see Figure 3.3):(
L̄Aw
)
C

=
(
L̄
)
C

cosα+
(
D̄
)
C

sinα(
L̄Av
)
C

=
(
L̄
)
C

sinα−
(
D̄
)
C

cosα(
L̄Au
)
C

= −
(
D̄
)
C

sin Λ(
M̄A
φ̂

)
C

=
(
M̄ac

)
C
− ed

(
L̄w
)
C

(3.14)

where Λ is the axial skew angle due to the radial velocity component acting on the blade, and ed is the chordwise

o�set between the elastic axis and the aerodynamic center, positive towards the trailing edge. In order to be

coupled to blade equation of motion (see equation (2.52)) the forces are nondimensionalized by dividing by

m0Ω2R, whilst moment is divided by m0Ω2R2.



CHAPTER 3. ROTOR AERODYNAMIC MODELLING 37

Figure 3.3: Circulatory aerodynamic loads in the deformed frame of reference

Substituting expressions (3.12) into (3.11) and into (3.14), and using the approximations

sinα ≈ α
cosα ≈ 1

V ≈ UT
α ≈ −UPUT

sin Λ ≈ UR
UT

(3.15)

yields the following expressions for the nondimensional forces and moments in the deformed frame of reference:(
L̄Aw
)
C

= γ
6cLα

[
c0U

2
T − (c1 + d0)UTUP + d1U

2
P

](
L̄Av
)
C

= γ
6cLα

[
−d0U

2
T − (c0 − d1)UTUP + (c1 − d2)U2

P

](
L̄u
)
C

= γ
6cLα

[−d0UTUR](
M̄A
φ̂

)
C

= γ
6cLα

[
c
R

(
f0

(
U2
T + U2

P

)
− f1UTUP

)]
− ed

(
L̄w
)
C

(3.16)

Circulatory aerodynamic forces in the undeformed frame are obtained using the transformation matrix TDU in

equation (2.8) 
(
LAu
)
C(

LAv
)
C(

LAw
)
C

 = TT
DU


(
L̄Au
)
C(

L̄Av
)
C(

L̄Aw
)
C

 (3.17)

whilst the following approximation for the moment about the elastic axis is used

(
MA
φ̂

)
C
≈
(
M̄A
φ̂

)
C

(3.18)

For an airfoil section undergoing plunge motion h and pitch motion θ1 (it is a cinematic angle), non circulatory

lift and pitching moment are given by

(
LAw
)
NC

= 1
m0Ω2R

[
ρπb2

(
ḧ− ahbθ̈1

)
+ ρπb2Uθ̇1

]
= 1

m0Ω2R [Lnc1 + Lnc2](
MA
φ

)
NC

= 1
m0Ω2R2

[
ahbLnc1 −

(
1
2 − ah

)
bLnc2 − ρπb4

8 θ̈1

] (3.19)

where
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U = ΩR (x+ µ sinψ)

ahb = −
(
ed + c

4

)
ḧ = −ẅ

θ̈1 = θ̈0 +
¨̂
φ

θ̇1 = θ̇0 +
˙̂
φ

b = c
2

(3.20)

Note that U is the free stream tangential velocity (see Figure 3.4), ahb is the distance from mid-chord to the

elastic axis (positive aft), ḧ is the plunge acceleration (positive down), θ̈1 is the pitch acceleration (positive nose

up), θ̇1 is the pitch angular velocity and b is the airfoil semi-chord. Lnc1 component of the non circulatory lift

acts at the mid-chord and Lnc2 component acts at the third-quarter chord point. Also note that non circulatory

airloads are assumed to act directly on the blade undeformed section. Substituting (3.20) in equations (3.19),

yield the following nondimensional loads

(
LAw
)
NC

=
γπ cR
12cLα

(
− ẅR +

c
4 +ed
R θ̈1 + (x+ µ sinψ) θ̇1

)
(
MA
φ̂

)
NC

=
γπ cR
12cLα

(
c
4 +ed
R

ẅ
R −

(
c
4 +ed
R

)2

θ̈1 −
c
2 +ed
R (x+ µ sinψ) θ̇1 − c2

R2
1
32 θ̈1

)
(3.21)

Non circulatory airloads are added to the circulatory ones to obtain the total aerodynamic loads acting on the

blade section.

Figure 3.4: Airfoil de�nitions used in the quasi-steady aerodynamic formulation

3.1.2 Greenberg theory

A two-dimensional airfoil is assumed to be pivoted about an axis which may be distinct, in general, from the

aerodynamic center axis. The airfoil is pitched at an angle ε(t) with respect to the free stream �owing at

pulsating velocity V (t). The airfoil is vertically displaced with velocity ḣ(t) positive downward as shown in

Figure 3.5.
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Figure 3.5: Rotor blade airfoil section in general unsteady motion

The relations for lift and pitching moment for unit length may be expressed in terms of the circulatory and non

circulatory components

L = LC + LNC

M = MC +MNC

(3.22)

With the airfoil pivot axis (which, in the present work is assumed coincident with the rotor blade elastic axis)

at the airfoil quarter chord (the airfoil aerodynamic center) these components are:

LNC = ρcLαc
2

c
4

(
ḧ+ V ε̇+ V̇ ε+ c

4 ε̈
)

LC = ρcLαc
2 V

(
ḣ+ V ε+ c

2 ε̇
)
C (k)

MNC = − c
4LNC −

ρcLαc
2

(
c
4

)3 ε̈
2

MC = −ρcLαc2

(
c
4

)2
V ε̇

(3.23)

where C (k) is the Theodorsen Lift De�ciency function already discussed in Section 3.1.1; a quasi-steady ap-

proximation of this model is obtained by setting C (k) = 1.

It should be noted that ε is the angular position of the airfoil with respect to space; ε̇ and ε̈ are the angular velocity

and the angular acceleration of the airfoil. The instantaneous angle of attack of the airfoil α = −tan−1(Up/UT )

is the angle between the airfoil chord line and the resultant �uid velocity U of the airfoil. The airfoil velocity

components in the section principal axis system (η, ζ) are shown in Figure 3.5. Section airloads must then be

expressed in terms of UP and UT . Assuming that the angles ε and α are small yields

UP ∼= −ḣ− V ε
U =

√
U2
T + U2

P
∼= V

(3.24)

Substitution of equations (3.24) into (3.23) yields
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LNC = ρcLαc
2

c
4

(
−U̇P + c

4 ε̈
)

LC = ρcLαc
2 U

(
−UP + c

2 ε̇
)
C (k)

MNC = −ρcLαc2

(
c
4

)2 (−U̇P + 3c
8 ε̈
)

MC = −ρcLαc2

(
c
4

)2
Uε̇

(3.25)

The non circulatory lift is taken to act normal to the chord line, and the circulatory lift is taken to act normal

to the resultant blade velocity V . An aerodynamic sectional drag force is also considered, see equation (3.7).

The force components and positive directions are shown in Figure 3.6. The total aerodynamic force components

T , normal to the airfoil chord line, and S, parallel to the airfoil chord line, are therefore

T = LC cosα+ LNC +D sinα

S = LC sinα−D cosα
(3.26)

From Figure 3.5,

cosα = UT
U = UT√

U2
T+U2

P

sinα = −UP
U = −UP√

U2
T+U2

P

(3.27)

Figure 3.6: Directions of aerodynamic loading

Substitution of equations (3.25), (3.7) and (3.27) into equations (3.26), with cD0/cLα neglected with respect to

unity, yields

T = ρcLαc
2

[
−UPUTC (k) + c

2UT ε̇C (k)− c
4 U̇P +

(
c
4

)2
ε̈
]

S = ρcLαc
2

[
U2
PC (k)− c

2UP ε̇C (k)− cD0

cLα
U2
T

] (3.28)
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The total pitching moment, in which U has been approximated by UT , is given by

Mφ = MNC +MC = −ρcLαc
2

( c
4

)2
(
−U̇P +

3c

8
ε̈+ UT ε̇

)
(3.29)

Finally, loads expression in the undeformed frame of reference required in equation (2.41) are obtained as
(
LAu
)
C(

LAv
)
C(

LAw
)
C

 = TT
DU


0

S

T

 (3.30)

MA
φ̂

= Mφ (3.31)

3.1.2.1 Hover condition

In hover condition, the expressions of blade velocity components and angular velocity in terms of the blade

bending and torsion de�ections (see equations (3.87), (3.88) and (3.89)) are

UP = −Ωx
(
θ + φ+

´ x
0
v′w′′dx

)
− (θ + φ) v̇ + vi + ẇ + Ωv (βpc + w′)

UT = Ωx+ v̇

ε̇ = φ̇+ Ω (βpc + w′)

(3.32)

in which all terms of O
(
ε2
)
are neglected with respect to unity, and for θ = O (ε) the approximation sin θ ∼= θ

and cos θ ∼= 1 has been used. The induced in�ow vi is taken to be steady and uniform along the blade radius

equal to the value of nonuniform in�ow given by blade element momentum theory at the radial station x = 0.75R

(see Section 3.2.1).

The matrix transformation TDU in equation (2.8) may be used to project blade forces S and T in the deformed

frame of reference, into Lv and Lw parallel to the y and z axes of the undeformed blade coordinate system. For

small deformations this transformation yields:

Lv = S − T (θ + φ)

Lw = T + S (θ + φ)
(3.33)

Finally, substituting equations (3.32) into equations (3.28), then in (3.33) yield the following expressions for

forces and moment in the undeformed frame of reference:

Lv = ρcLαc
2 {v2

i − Ω2x2 cD0

cLα
− Ωxvi (θ + φ)−

[
2Ωx cD0

cLα
+ vi (θ + φ)

]
v̇ + [2vi − Ωx (θ + φ)] ẇ}

Lw = ρcLαc
2 {−Ωxvi + Ω2x2

(
θ + φ+

´ x
0
v′w′′dx

)
− Ω2xv (βpc + w′) + Ω2 xc

2 (βpc + w′) + ...

...+ [2Ωx (θ + φ)− vi] v̇ − Ωxẇ + 3c
4 Ωxφ̇− c

4 ẅ}
Mφ = −ρcLαc2

(
c2

8 Ωxφ̇
) (3.34)

note that they are written assuming the quasi-steady approximation, thus C (k) = 1.

Nonlinear contributions and all O
(
ε3
)
terms, except those that contribute to lead-lag or torsion damping, are

neglected (including ε̈ terms).
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3.1.3 Beddoes-Leishman theory

Dynamic stall phenomenon is characterized by a delay in the onset of �ow separation to a higher angle of

attack than would occur under static conditions. This delay represents an advantage for performance of the

airfoil because lift generated can be higher than the maximum attainable under static conditions. However,

when dynamic separation eventually occurs, a leading edge vortex is released over the airfoil and is convected

downstream. During the short time in which the vortex travels over the airfoil upper surface, it generates extra

lift forces. Once the vortex has been convected beyond the trailing edge, the absence of contribution from

the vortex results in large nose-down pitching moments on the airfoil which can result very dangerous for the

stability of the wind turbine. Figure 3.7 shows airfoil aerodynamic loadings during a dynamic stall cycle and

compares dynamic behavior with the static one.

Figure 3.7: Pitching moment and lift coe�cients of an airfoil in pure pitching moment

The various stages of the dynamic stall process can be brie�y summarized in four main stages (�gures 3.7 and

3.8). Stage 1 coincides with the static stall, then, due to the delay in the onset of �ow separation, airfoil exceeds

static stall angle but �ow reversals begin to take place in the boundary layer. Stage 2 is characterized by �ow

separation at the leading edge and by the formation of a vortex disturbance that provides additional lift on the

airfoil as long as it is convected on the upper surface, whilst the pitching moment stall; then, signi�cant increase

in nose-down pitching moment generated by the aft moving of the center of pressure is visible. Stage 3 coincides

with the lift stall and the maximum value of the nose-down pitching moment; vortex reaches airfoil trailing edge

and �ow progresses to a state of full separation which corresponds to a sudden loss of lift. Finally, full �ow

reattachment may not be obtained until the airfoil is well below its normal static stall angle and represents Stage

4 of this dynamic process.
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Figure 3.8: Flow morphology during the dynamic stall process on an oscillating 2-D airfoil

State-space formulation proposed by Beddoes and Leishman (B-L model in the following) ([29], [30], [31],

[32]) is herein presented. Combined with the airfoil motion, a set of aerodynamic states, x, governed by or-

dinary di�erential equations (ODEs) describes, at an engineering level of approximation, airloads arising in

two-dimensional unsteady aerodynamics. This model predicts aerodynamic loads generated on translating air-

foils undergoing plunge motion, h, and pitch motion, α, in the presence of dynamic stall, leading and trailing

edge separation conditions. Speci�cally, airfoil forces and pitching moment coe�cients (see Figure 3.9) will be

obtained in terms of a set of di�erential forms, g, as formally indicated by
CN

CM

CC

 = g (x, α, q, h) (3.35)
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with aerodynamic states derived from a set of forced �rst order ODEs

x′ = f (x, α, q, h) (3.36)

where x′ represents the derivative with respect to nondimensional time s = t 2V
c and q = α̇ 2V

c is the pitch rate.

Di�erent formulations to simulate incompressible and compressible attached �ow conditions are presented in the

following.

In a incompressible �ow, a time domain unsteady aerodynamic formulation has been developed by Wagner

[33] who obtained the solution for the indicial lift on a thin airfoil undergoing a transient step change in angle of

attack. If the indicial response φ is known, then the unsteady loads due to arbitrary changes in angle of attack

can be obtained through the superposition of indicial aerodynamic responses using the Duhamel integral [26]

in equation (3.37); thus, the circulatory part of the lift coe�cient, CCL , in response to an arbitrary variation in

angle of attack is

CCL = 2π

(
α (0)φCα (s) +

ˆ s

0

dα (τ)

dt
φCα (s− τ) dτ

)
(3.37)

where τ is the time integration variable. In addition, noncirculatory lift contribution and pitching moment can

be predicted by the Theodorsen theory (see Section 3.1.1) without inclusion of additional states, thus only two

aerodynamic states are su�cient to fully describe attached-�ow, unsteady loads. In details, these two states

arise in the solution of the Duhamel integral in equation (3.37). This integral can be solved analytically or

numerically. Analytical solutions are mostly restricted to simple forcing functions, thus numerical approach are

employed in the general case. Equation (3.37) in frequency domain s̃ is

C̃CL = 2π
[
α (0) φ̃Cα (s̃) + s̃φ̃Cα (s̃) α̃− α (0) φ̃Cα (s̃)

]
= 2πs̃φ̃Cα (s̃) α̃ (3.38)

Two term exponential approximation by Leishman [34] of the Wagner function is herein considered:

φCα (t) = 1−A1e
−b1 2V

c t −A2e
−b2 2V

c t (3.39)

where A1, A2, b1 and b2 are empirical parameters which depend on the airfoil [32]. Then the corresponding

impulse response, hCα (t), is given by

hCα (t) =
d

dt

(
φCα (t)

)
= A1b1

2V

c
e−b1

2V
c t +A2b2

2V

c
e−b2

2V
c t (3.40)

and its Laplace transform is

L
[
hCα (t)

]
=

A1b1
2V
c

s̃+ b1
2V
c

+
A2b2

2V
c

s̃+ b2
2V
c

= s̃φ̃Cα (s̃) (3.41)

Substituting equation (3.41) into equation (3.38) yields

C̃CL = 2π

[
A1b1

2V
c

s̃+ b1
2V
c

+
A2b2

2V
c

s̃+ b2
2V
c

]
α̃ (3.42)

and denoting with x̃1 = α̃
s̃+b1

2V
c

and x̃2 = α̃
s̃+b2

2V
c

the �nal expression of the circulatory lift coe�cient, in

frequency domain, due to an arbitrary change in angle of attack is obtained:
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C̃CL = 2π

(
A1b1

2V

c
x̃1 +A2b2

2V

c
x̃2

)
(3.43)

Time domain state-space form for the �rst two additional aerodynamic states is ẋ1 = − 2V
c b1x1 + α (t)

ẋ2 = − 2V
c b2x2 + α (t)

(3.44)

and, �nally, from equation (3.43), the expression for the lift coe�cient in time domain is

CCL = 2π
2V

c
(A1b1x1 +A2b2x2) (3.45)

For compressible �ows, circulatory terms are modeled in the same way analyzed for incompressible �ows,

with the only modi�cation to take into account comprimibility e�ects; impulsive terms are derived applying

the piston theory[35]. To this aim, the indicial response is assumed to be idealized into two parts [36]: the

�rst one is due to noncirculatory loading and plays the same role of the apparent mass terms presented in the

incompressible formulation, whilst the second one is due to the circulatory loading. The indicial normal force

and quarter chord pitching moment response to a step change in angle of attack α and a step change in pitch

rate q can be written in general form as a function of nondimensional time s and Mach number M [34]

CNα(s)
α = 4

M φIα (s, M) + 2π
β φ

C
α (s, M)

CMα(s)
α = − 1

M φIαM (s, M) + 2π
β φ

C
α (s, M)

(
1
4 − xac (M)

)
CNq(s)

q = 1
M φIq (s, M) + π

βφ
C
q (s, M)

CMq(s)
q = − 7

12M φIqM (s, M)− π
8βφ

C
qM (s, M)

(3.46)

where the indicial response functions are de�ned as

φCα (t) = 1−A1e
−b1β2 2V

c t −A2e
−b2β2 2V

c t

φIα = e
− t
KαTI

φIq = e
− t
KqTI

φCq = φCα

φIαM = A3e
− t
b3KαMTI +A4e

− t
b4KαMTI

φIqM = e
− t
KqMTI

φCqM = 1−A5e
−b5β2 2V

c t

(3.47)

in which A3, A4, A5, b3, b4 and b5 are empirical coe�cients [32], whilst, denoting with a the speed of sound in

air, following de�nitions are used:

Kα = 0.75
(1−M)+πβ2M2(A1b1+A2b2)

TI = c
a

Kq = 0.75
(1−M)+2πβ2M2(A1b1+A2b2)

KαM =
[
A3b4+A4b3
b3b4(1−M)

]
KqM = 7

15(1−M)+3πβM2b5

β =
√

1−M2

(3.48)
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Assuming a linear aerodynamic behavior of the airfoil, lift and moment response to a general input is achieved

through the superposition of indicial responses. Following the procedure outlined for an arbitrary change in

angle of attack (see equations (3.37) to (3.45)) [34], sectional forces and moment can be expressed as the sum

of three contributions: attached �ow impulsive terms (superscript I), taking into account noncirculatory e�ects

under compressible �ow assumption; circulatory terms (superscript f) corrected for trailing edge separation (if

present); and vortex induced loads (superscript v):

CN = CIN + CfN + CvN
CM = CIM + CfM + CvM

CC = +CfC

(3.49)

where CN = 2N
ρV 2c and CC = 2C

ρV 2c are airfoil normal and chord force coe�cients, whilst CM = 2M
ρV 2c2 is the

pitching moment coe�cient (see Figure 3.9). In the above de�nitions ρ is the �uid density. Finally, loads

expression in the undeformed frame of reference to be introduced in equation (2.41) is:
LAu

LAv

LAw

 = TT
DU


0

C

N

 (3.50)

MA
φ̂

= M (3.51)

Lift and drag coe�cients in the deformed frame of reference are obtained as

CL = CN cosα− CC sinα

CD = CN sinα+ CC cosα
(3.52)

Figure 3.9: Directions of aerodynamic force and moment coe�cients in the deformed frame of reference

Using expressions of indicial functions in equation (3.47) and following the same procedure illustrated for the

derivation of the circulatory lift coe�cient due to a step change in the angle of attack (written for incompressible

�ows), total aerodynamic normal force and pitching moment under unsteady attached �ow are obtained and the
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B-L state-space model is derived with the introduction of eight aerodynamic states x = (x1, ..., x8)
T
:

x′ = c
2V

(
Ax + B

{
α (s)

q (s)

})
{

CPN (s)

CPM (s)

}
= Cx + D

{
α (s)

q (s)

} (3.53)

where the time derivative is written in a nondimensional form and the superscript P indicates inviscid �ow

contributions. Expressions of state-space constant matrices in equation (3.53) are reported in AppendixC.

Dealing with attached �ow conditions, x1 and x2 take into account the e�ects of shed vorticity from trailing

edge, thus being fully equivalent to the circulatory terms of the Theodorsen theory [25], as shown in Figure 3.10

where the hysteresis loop of normal force coe�cient is presented. The �rst order ODEs governing these states

are forced by the e�ective angle of attack at airfoil three-quarter chord point (α3/4) which can be expressed

as a function of downwash, w3/4, i.e. the component of the total airfoil velocity orthogonal to the chord and

calculated at the rear neutral point

α3/4 =
w3/4

V
(3.54)

where V is the free-stream velocity.

Figure 3.10: Normal force coe�cient of a NACA0012 airfoil undergoing pitch motion (k = 0.099): comparison
of B-L and Theodorsen formulations for unsteady attached �ow

The next six states reproduce non circulatory loads accounting for �ow compressibility. This aspect is crucial:

at very low values of free stream velocity this formulation tends to provide singular values for aerodynamic loads,

due to Mach number appearing at denominator of some terms of equation (3.35) [31]. Under these conditions, the
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present formulation may be substituted by that for incompressible �ows. The analysis of normal force coe�cient

hysteresis loop for a NACA0012 airfoil undergoing purely harmonic pitch motion between 0° and 20° (Figure

3.11) shows that for M > 0.0015 the original B-L model converges, whereas for lower Mach it is unstable.
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Figure 3.11: Comparison between B-L model for compressible and incompressible �ow

Separated �ow conditions are considered through the remaining four aerodynamic states of the B-L model

which can be added to both formulations for incompressible and compressible �ows. Three aerodynamic states

are introduced to simulate the e�ects of trailing edge separation. Speci�cally, for an airfoil undergoing unsteady

motion such that the angle of attack is close to or greater than the static stall angle, �ow separation onset is

modeled through a time lag between separated and fully attached force coe�cients (state x9):

x′9 =
CPN − x9

Tp
(3.55)

where Tp is a time constant dependent on Mach number [32].

This leads to the de�nition of a quasi-steady separation point characterized by a time lag with respect to the

instantaneous angle of incidence. Progressive �ow separation at trailing edge is governed by the dynamics of the

boundary layer which leads to a time lag of the unsteady separation point (states x10 and x12):

x′10 =
f
(

x9
CNα

,α1

)
−x10

Tf

x′12 = f(α,α1)−x12

0.5Tf

(3.56)

where f is the separation point function that is equal to 1 for fully attached and 0 for fully separated �ows,

respectively. The parameter Tf is a time constant dependent on Mach number [32].

A widely used expression of the separation point function is

f (α, α1) =

 1− 0.3e
|α|−α1
S1 if 0 ≤ |α| ≤ α1

0.04 + 0.66e
α1−|α|
S2 if α1 < |α|

(3.57)

The angle α1 is de�ned as the point where f = 0.70, whilst S1 and S2 are empirical parameters functions of the

Mach number [32].

Under separated �ow conditions, unsteady sectional airloads coe�cients are
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CfN = CCN

(
1+
√
x10

2

)2

CfM =
[
K0 +K1 (1− x̂) +K2sin

(
πx̂2

)]
CCN

(
1+
√
x̂

2

)2

CfC = ηCSNα

(
CCN
CSNα

)2√
x10

(3.58)

where

x̂ =

 x10 if x10 > x12

x12 if x10 ≤ x12

(3.59)

and K0, K1 and K2 are parameters that depend on Mach number [32].

The last aerodynamic state represents leading edge separation (state x11) and models the dynamic stall e�ect on

airfoil unsteady loads ([29], [31]); this phenomenon occurs when the leading edge pressure reaches a critical value

causing the shedding of a vortex traveling over the airfoil. The normal force and pitching moment generated

under this condition are

CvN = x11 (3.60)

CvM =

 −0.25
(

1− cos
(
πτv
Tvl

))
x11 if τv ≤ 2Tvl

0 if τv > 2Tvl
(3.61)

where τv is a nondimensional vortex time parameter (in semi-chords) such that τv = 0 at the onset of separation

and τv = Tvl when the vortex reaches the trailing edge. The parameter Tvl is determined empirically [30] from

unsteady test data and depends on Mach number, whilst being relatively insensitive to the airfoil shape.

The contribution from CvN and CvM must be added to the loads in equation (3.58).

The state x11 is the solution of the ordinary di�erential equation

x′11 =

 c′v − x11

Tv
if 0 < τv < 2Tvl

−x11

Tv
otherwise

(3.62)

The vortex feed, cv, determines the strength of vortex induced normal force and it is de�ned as the instantaneous

excess in normal force, cv = CCN−C
f
N . The parameter Tv is determined as Tvl and depends only on Mach number.

The lift increase e�ect of the traveling vortex on airfoil loads is shown in Figure 3.12 where the normal force

coe�cient for a NACA0012 airfoil undergoing harmonic pitch motion with amplitude 10° around a mean value

of 10° is predicted by B-L model with and without the activation of the state x11.
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Figure 3.12: Comparison between B-L model and experimental data (k = 0.099)

3.1.3.1 Spectral approach for aerodynamics states integration

In this section a novel, and computationally e�cient, technique for the spatial integration of additional states

appearing in the sectional aerodynamic formulations is proposed; to this aim, a state-space representation of

blade aerodynamics is required. The methodology is herein outlined coupling a pre-existent numerical tool based

on a modal approach (see Section 2.6) to the state-space B-L aerodynamic model; the comparison with a strip

theory approach (also used in the FEM formulation, see Section 2.4.2), consisting in solving the equations of the

aerodynamic state variables at a discrete number of blade sections and then extending their values along the

blade through interpolation, is performed in Section (4.2.2.1).

The novel approach has been speci�cally developed for Galerkin discretization; following Galerkin approach,

blade elastic axis bending and cross-section torsion are described as linear combinations of suitable shape func-

tions with time-dependent coe�cients representing the system degrees of freedom governed by a set of ordinary

di�erential equations. In order to introduce a number of aerodynamic states strictly related to the number of

system degrees of freedom, �rst, sectional B-L model states x1−9 = {x1, ..., x9} are decomposed into contribu-

tions that are independent, xrig1−9, and dependent on blade deformation. In turn, the latter are decomposed into

contributions due to plunge and pitch motion, xbend1−9 and torsion xtors1−9 , respectively forced by in-plane, v, and

out-of-plane, w, blade bending deformation and torsion, φ. Speci�cally, starting from B-L model state equations

ẋ1−9 + Ax1−9 = f (h, α) (3.63)

the corresponding subset written at any radial blade cross-section becomes
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ẋrig1−9 + Axrig1−9 = f

(
αrig

)
ẋbend1−9 + Axbend1−9 = f

(
hbend, αbend

)
ẋtors1−9 + Axtors1−9 = f (htors, αtors)

(3.64)

where 
αrig = α (v = 0, w = 0, φ = 0)

αbend = α (v 6= 0, w 6= 0, φ = 0)− α (v = 0, w = 0, φ = 0)

αtors = α (v 6= 0, w 6= 0, φ 6= 0)− α (v 6= 0, w 6= 0, φ = 0)

(3.65)

with α (v = 0, w = 0, φ = 0) denoting the freestream rigid-blade local angle of attack, which depends on local

blade pitch angle and wake in�ow. Expressions similar to those in equation (3.65) may be written for hbend and

htors.

Then, the spanwise distribution of xbend1−9 and xtors1−9 is described through the same linear combination of shape

functions used for blade bending deformation and torsion, respectively, followed by the application of the Galerkin

approach to the ODEs governing x1 − x9 states (see Appendix D for details). It is worth noting that, in the

present work the spanwise distribution of αrig is described through a polynomial function of order n. Equations

for the remaining states x10 − x12 are piecewise continuous due to the presence of the separation point function

[31] in functions f10−12 of equation (3.36), which is equal to 1 for attached �ow, and 0 for fully separated �ow.

Thus, a strip theory approach is applied for their integration: blade span is divided into a �nite number of

segments where ODEs for x10 − x12 are integrated independently.

Comparison between these two methodologies will be discussed in Section 4.2.2.1, in order to assess the numerical

e�ciency of the novel approach in terms of number of degrees of freedom and computational time.

3.2 Wake induced in�ow models

In the framework of rotor aeroelasticity, an accurate estimate of the induced velocity �eld is mandatory. This

is not known a priori because it depends on wake shape which, under rotor unsteady operating conditions, is

quite complex and induces a highly nonuniform in�ow over the rotor disk. Moreover, wake shape in�uences

rotor airloads and trim conditions and, in turn, rotor aeroelasticity is in�uenced by wake in�ow induced by

the three-dimensional vortex system. In order to provide fast induced velocity predictions and achieve accurate

sectional airloads computations, several wake in�ow models are herein considered.

3.2.1 Hover condition: Blade Element Momentum Theory

The Blade Element Momentum Theory (BEMT) is a widely used method that combines the basic principle from

the Blade Element and the Momentum Theory.

It is essentially a strip-theory based method and is inherently steady. It allows a quite reliable prediction of

induced velocity along blade span for moderately loaded rotors working near their design condition (see [26]).

Considering a rotor in hover condition, for the present work the induced in�ow is assumed to be steady and

uniform along the blade radius and equal to the value of the in�ow predicted by the blade element momentum
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theory at the radial station x = 0.75R. At this station, the blade angle is set to be equal to blade collective

pitch plus the equilibrium elastic twist φ75. Thus, the expression of the nondimensional induced velocity is

λi = sgn [θ0 + φ75]
πσ

8

(√
1 +

16

πσ
|θ0 + φ75 0.75| − 1

)
(3.66)

where σ = Nbc
πR is blade solidity, Nb is the number of rotor blades and sgn indicates the sign function.

3.2.2 Forward �ight condition: Drees linear in�ow

For a rotor in forward �ight, the Momentum Theory provides a simple expression of induced in�ow as a function

of rotor thrust coe�cient (CT ), advance ratio (µ) and rotor shaft angle (αs). Using this approach the in�ow is

considered uniform over the rotor disk. In details, the total in�ow ratio λ is expressed as

λ = µ tanαs + λi = µ tanαs +
CT /2√
λ2
i + µ2

(3.67)

In order to take into account a more realistic nonuniform distribution of wake in�ow, a linear variation of induced

velocity across the rotor disk can be assumed as follows

λi =
CT /2√
λ2
i + µ2

(1 + κx cosψ + κy sinψ) (3.68)

where ψ is the azimuth angle.

The parameters κx and κy are weighting factors representing the deviation of the in�ow from the uniform value

predicted by the Momentum Theory. Several attempts to directly calculate κx and κy are found in literature

([37, 23]). A widely used model by Drees is based on the vortex theory (see [23]) and provide the following

expressions:

κx = 4
3

[(
1− 1.8µ2

)√
1 +

(
λ
µ

)2

− λ
µ

]
κy = −2µ

(3.69)

Substituting equations (3.69) into (3.68) and applying Newton-Raphson iterative method, the numerical evalu-

ation of the nonuniform in�ow distribution over the rotor disk is straightforward.

3.2.3 Three-dimensional Boundary Element Method

An accurate three-dimensional wake in�ow is herein predicted by a Boundary Element Method (BEM) for

attached, incompressible �ows [38, 39]. This solver is based on a boundary integral formulation for potential

�ows around lifting bodies, which is suitable for describing three-dimensional, unsteady �ow e�ects through a

free-wake solution scheme. Following [39] and [20], once the solution of velocity potential is provided by BEM

formulation, wake in�ow is determined as follows

~vi (~x, t) = ∇xϕ (~x) = −
ˆ
Sw

∆ϕTE (~yTE , t− τ)∇x
(
∂G

∂n

)
ds (~y) (3.70)
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where ~x denoting a �eld point, Sw the convected wake (i.e. a zero-thickness layer departing from the trailing

edge of lifting bodies where generated vorticity is released downstream) and ~y a point on the boundary surfaces.

Furthermore, G and ∂G
∂n are the unit source and (normal) dipole, respectively, whereas ∇x denotes gradient

operating on ~x. In addition, ∆ϕTE (~yTE , t− τ) indicates the potential jump at trailing edge position ~yTE where

the wake material point currently in ~y emanated at time t− τ . The evaluation of ~vi near the blade tip is critical

due to the presence of concentrated wake singularities: in order to assure a stable and regular numerical solution,

a �nite-thickness vortex model yielding a �nite distribution of velocity within the vortex core is introduced.

In order to reduce computational e�ort, blade deformation e�ects are neglected in the BEM �ow solution. This

approximation is acceptable as long as turbine blades are subject to small deformations. Moreover, for the

present applications the wake in�ow considered is that evaluated by the BEM solver for the steady reference

(equilibrium) condition.

3.3 Enhancement of 2D sectional loads modelling

In the framework of dynamic stall modeling, CFD computations would give more accurate predictions of the

unsteady loads because of their attitude in describing massive recirculating, turbulent, separated �ow regimes.

However, in many problems of industrial interest, CFD requires a computational e�ort that is prohibitive,

especially in view of preliminary design and multidisciplinary optimization applications. Thus, the hybrid

formulation herein proposed represents a trade-o� between accuracy of simulation and computational e�ort.

Indeed, in this section focus is posed on the modi�cation to the B-L sectional aerodynamic formulation to take

into account 3D rotor wake in�ow e�ects on sectional airloads as well as on the inclusion of semi-empirical

corrections to improve aerodynamic predictions at high angles of attack. The latter corrections are widely used

to provide realistic overall performance predictions at reduced computational costs.

3.3.1 Wake in�ow correction by a 3D Boundary Element Method

The B-L model is two-dimensional. For the evaluation of rotating blades cross-section airloads, a satisfactory

level of prediction accuracy is obtained by including three-dimensional rotor wake in�ow e�ects. This consists in

determining the e�ective downwash at the 3/4 chord point of each blade section (namely, the kinematic variable

including sectional circulation) [25] as the result of combination of local plunge and pitch motion due to blade

deformation with �ow velocity induced by wake vorticity. Here, wake in�ow is predicted by a BEM formulation.

Four di�erent methods for including rotor wake e�ects into the B-L model are proposed and described in the

following.

Method 1 This approach consists in evaluating blade section airloads through the B-L model (Section

3.1.3) with downwash corrected by the 3D wake in�ow provided by the aerodynamic BEM solver (see Section

3.2.3). In details, for the B-L model applied to a discrete number of blade sections distributed spanwise, the

perturbation velocity induced by the rotor wake is evaluated at the rear neutral point of each section and is used

to modify/enhance the downwash forcing the ODEs governing the aerodynamic states x1 and x2 in equation

(3.44). Note that the shed vorticity generated by blade sections is already taken into account by the attached-

�ow contribution to the B-L theory, thus its contribution to wake in�ow is neglected. Finally, downwash induced



CHAPTER 3. ROTOR AERODYNAMIC MODELLING 54

by the wake combined with blade motion yields the e�ective angle of attack α
3/4
eff at each blade section to be

included in the B-L aerodynamic model:

α
3/4
eff (r) = −

U
3/4
P

U
3/4
T

(3.71)

Method 2 Section airloads associated to attached �ow are evaluated by the BEM solver, therefore replacing

loads given by the �rst eight aerodynamic states of the B-L model. Speci�cally, from the velocity potential

solution over blade surface, the Bernoulli theorem provides pressure, and then sectional airloads are determined

by integration. Thus, three-dimensional e�ects due to shed and trailing wake vorticity, as well as mutual

interaction e�ects amongst blades are fully taken into account. The remaining B-L aerodynamic states are

retained to predict airloads correction due to �ow separation (speci�cally, the ordinary di�erential equation

describing the onset of leading edge separation is forced by section normal force coe�cient provided by BEM).

Method 3 The complete 12-states B-L model provides both sectional airloads (akin to Method 1) and

wake vorticity released at trailing edge. Speci�cally, �rst the section lift coe�cient, CL, determined by the

B-L model is used to evaluate the corresponding bound circulation, ΓBL, as given by the Kutta-Joukowski

theorem, ΓBL = 1
2cVwCL; then, observing that in velocity potential formulations bound circulation coincides

with potential jump at trailing edge, equation (3.70) is applied to evaluate wake in�ow at the three-quarter

chord point of each section (as in Method 1), with ∆ϕTE = ΓBL.

Method 4 Methods 2 and 3 are combined: attached-�ow sectional load contributions are evaluated through

the aerodynamic BEM solver, whilst separated-�ow corrections are determined by the B-L model. Akin to

Method 3, the resulting sectional lift coe�cients provide the spanwise distribution of ∆ϕTE to be used in

equation (3.70) for wake in�ow evaluation.

3.3.2 Semi empirical corrections for high angle of attack conditions

The capability of the proposed methodologies to predict local and global airloads of wind turbines in the presence

of �ow separation is limited to light stall. At high angles of attack, deep stall and post-stall regimes are

characterized by massive �ow separation, and a strip theory approach combining three-dimensional potential

�ow and airfoil viscous �ow aerodynamics fails. These complex �ow conditions are very hard to be simulated even

through advanced CFD solvers. In theses cases, in the framework of aerodynamic formulations applied within

aeroelastic tools for preliminary design of wind turbines, semi-empirical corrections are typically introduced

to provide realistic overall performance predictions at reduced computational costs. To this aim, following

the Viterna-Corrigan approach (see Section 3.3.2.1), static aerodynamic coe�cients can be extended by �at

plate theory approximation to high angle-of-attack operation range, where experimental lift and drag airfoil

characteristics are not easily available [40].

Due to the centrifugal pumping e�ect that reduces blade surface adverse pressure gradient, stall regime for

rotating blades starts at higher angles of attack with respect to airfoils statically tested in wind tunnels [40]. A

widely used empirical description of this e�ect, based on the laminar boundary layer theory, is used (see Section

3.3.2.2).
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3.3.2.1 Viterna-Corrigan approach

Dealing with rotating blades aerodynamics, it is necessary to extend 2D static aerodynamic coe�cients between

the range−180° < α < +180° for operations at high angles of attack of the section that occur in deep stall regimes,

where no experimental data are available [40]; thus, Viterna-Corrigan model, that predicts force coe�cients

beyond 2D static lift and drag characteristics using a �at-plate approximation, is introduced. In details, sectional

force coe�cients can be expressed as

CL = 1
2CD,max sin 2α+KL

(cosα)2

sinα

CD = CD,max (sinα)
2

+KD cosα
(3.72)

where

KL =
(CL,S−CD,max sinαs cosαs) sinαs

(cosαs)
2

KD =
(CD,S−CD,max(sinαs)

2)
cosαs

(3.73)

in which αs is the angle of attack where the maximum of lift coe�cient is observed, CL,S and CD,S denote lift

and drag coe�cients at stall angle αs, respectively, and CD,max is the maximum drag coe�cient. Within the

framework of Viterna-Corrigan stall model, CD,max depends on the aspect ratio δ (de�ned as the ratio between

blade span and mean chord) as follows:  1.11 + 0.018δ δ ≤ 50

2.01 δ > 50
(3.74)

The case δ > 50 may be interpreted as an in�nite blade whose aerodynamic properties are fully described by 2D

aerodynamic coe�cients, whereas the case δ ≤ 50 also considers 3D (�nite span) e�ects.

3.3.2.2 Snel model for centrifugal pumping e�ects

For rotating blades, it has been observed that stall regime starts at higher angles of attack as compared with wind

tunnel measurements on static airfoils [40]. This has been attributed to centrifugal pumping e�ects, reducing

the adverse pressure gradient that leads to airfoil stall. A widely used empirical description of this e�ects based

on the laminar boundary layer theory is given by Snel [41].

The increase of the aerodynamic lift coe�cient due to the e�ect of rotation is formulated through comparison

with experimental measurements [42]. In details, the lift coe�cient for a rotating blade airfoil (CL,rot) is provided

by

CL,rot = CL,nrot + 3.1

(
Ωr

Veff

)2

·
( c
r

)2

·
(
CPL − CL,nrot

)
(3.75)

where CL,nrot is the lift coe�cient for non rotating blade airfoil, CPL is the lift coe�cient associated to attached

�ow (see equation (3.53)), c is the section chord, r de�nes the radial position on the blade, Ω is the angular

rotor speed and Veff is the e�ective wind velocity on a blade section.

The maximum value of the rotating lift coe�cient in equation (3.75) is obtained in a full laminar �ow, due to

the strongest e�ects of centrifugal and Coriolis loads.
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3.4 Derivation of airfoil velocity components

Due to aeroelastic similarities between helicopter and wind turbine rotor the formulation is derived for a heli-

copter rotor blade; however, at the end of this section, the modi�cations for a wind turbine rotor are discussed.

A crucial issue for the determination of the sectional aerodynamic loads is the de�nition of the angle of attack

that is de�ned as

tanα = −UP /UT (3.76)

where UP and UT are the normal and parallel velocity components to the airfoil chord) at a certain point of the

blade section chord (see Figure 3.13). It depends on the incident velocity which can be expressed as the sum of

the contribution due to blade rigid motion, rotor induced velocity and blade deformation as

~V = −~Vw + ~Vb (3.77)

where ~Vw is the wind velocity with contributions from the rotor forward speed and wake and ~Vb is the velocity

of a blade point relative to the hub �xed frame resulting from blade rotation and deformation. To have a

direct coupling between the aerodynamic loads and the dynamics of the blade, the velocity components must be

expressed in terms of blade degrees of freedom. This procedure is explained in the following.

Figure 3.13: De�nition of the angle of attack

Wind velocity The expression for the wind velocity is (see Figure 3.14)

~Vw = (µΩR) ÎH − (λΩR) K̂H (3.78)

where µ = V cosαs
ΩR is the rotor advance ratio (being V its forward speed), αs is the rotor shaft tilt, positive

forward, λ is the rotor non-dimensional in�ow and ΩR is the rotor tip speed. The rotor in�ow is expressed as

λ = µ tanαs + λi (3.79)

where µ tanαs is the component of the forward �ight velocity perpendicular to the rotor tip path plane and

λi = vi/ΩR is the non dimensional rotor induced in�ow due to the vorticity released by the wake.
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Figure 3.14: Wind velocity components

The velocity components in equation (3.78) are expressed in the non rotating system; to express them in

the rotating undeformed frame two transformations (de�ned in Section 2.1) are required, the �rst from the non

rotating to the rotating frame: 
Î

Ĵ

K̂

 = TRH


ÎH

ĴH

K̂H

 (3.80)

and the second from the rotating to the undeformed reference system:
î

ĵ

k̂

 = TUR


Î

Ĵ

K̂

 (3.81)

Assuming a small precone angle βpc, wind velocity components in the blade undeformed coordinate system are
Vwx = µΩR cosψ − λΩRβpc

Vwy = −µΩR sinψ

Vwz = −µΩR cosψβpc − λΩR

(3.82)

Blade motion velocity The general expression for the velocity of a blade point with respect to the rotating

undeformed frame is

~Vb = ~̇r + ~Ω× ~r (3.83)
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where

~r = x1î+ y1ĵ + z1k̂

~̇r = ẋ1î+ ẏ1ĵ + ż1k̂
~Ω = ΩK̂

(3.84)

Vector ~r denotes the position vector of a point P (ξ, η, ζ) of a given cross section of the deformed rotating

blade with respect to the hub. The contributions to ~r, that depend on blade deformation and rigid rotation, are

calculated at an arbitrary position (η, ζ) for each cross section identi�ed by ξ in the deformed blade frame of

reference. Vector ~̇r represents the relative velocity of point P , expressed in the undeformed frame of reference.

Finally, ~Ω is the angular velocity of the rotating coordinate system. The �nal expressions of blade velocity

contribution are
Vbx = u̇−

(
v̇′ + w′θ̇1

)
ηr cos θ1 −

(
ẇ′ + v′θ̇1

)
ηr sin θ1 − Ω (v + ηr cos θ1)

Vby = v̇ − θ̇1ηr sin θ1 + Ω [x+ u− v′ηr cos θ1 − w′ηr sin θ1 − (w + ηr sin θ1)βpc]

Vbz = ẇ + θ̇1ηr cos θ1 + Ωβpc (v + ηr cos θ1)

(3.85)

Airfoil velocity components Blade section loads are calculated using the section resultant velocity ~V of

equation (3.77) expressed in the deformed blade frame to provide blade section angle of attack. Therefore, the

velocity components in the undeformed frame need to be transformed to the deformed one:
UR

UT

UP

 = TDU


Vwx + Vbx

Vwy + Vby

Vwz + Vbz

 (3.86)

where TDU is de�ned in Section 2.1. Expanding cos θ1 and sin θ1 appearing in equation (2.8), assuming that φ̂ is a

small angle and using the ordering scheme introduced in Section 2.2, the �nal expressions for the nondimensional

airfoil velocity components in the rotating deformed frame are:

UR
ΩR = u̇− v + v′ (x+ µ sinψ)− µ cosψ (1− βpcw′) + λ (βpc + w′)− ηr cos θ0 (1 + v̇′) +

+ηr sin θ0

(
φ̂− ẇ′

)
+ v′v̇ + w′ẇ + 1

2µ cosψ
(
v′2 + w′2

) (3.87)

UT
ΩR = cos θ0

[
v̇ + u− wβpc + φ̂ (λ+ ẇ) + v′v + (x+ µ sinψ)

(
1− v′2

2

)
+ µ cosψ

(
v′ + φ̂ (βpc + w′)

)]
+

+ sin θ0

[
ẇ + λ+ v (βpc + w′)− φ̂v̇ − (x+ µ sinψ)

(
v′w′ + φ̂

)
+ µ cosψ

(
w′ + βpc − φ̂v′

)]
(3.88)

UP
ΩR = cos θ0

[
ẇ + λ+ βpcv + vw′ + µ cosψ

(
βpc + w′ − φ̂v′

)
− (x+ µ sinψ)

(
v′w′ + φ̂

)]
+

+ sin θ0

[
−v̇ − u− vv′ + wβpc − φ̂ (λ+ ẇ)− (x+ µ sinψ)

(
1− v′2

2

)
− µ cosψ

(
v′ + φ̂ (βpc + w′)

)]
+

+ηr

(
θ̇0 +

˙̂
φ+ w′ + βpc

) (3.89)
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3.4.1 Equivalence for wind turbine rotor blade section

Analyzing the blade section angle of attack, the only di�erence between helicopter and wind turbine rotor relies

in the de�nition of the airfoil velocity component perpendicular to the chord (see Figure 3.15). In this case, in

order to have a positive lift for positive angles of attack, the airfoil incidence is computed as

tanα = UP /UT (3.90)

where UT and UP are de�ned in equations (3.88) and (3.89).

Figure 3.15: De�nition of the angle of attack for a wind turbine rotor blade section



Chapter 4

Numerical results

In this chapter numerical results obtained by the developed numerical tools are presented and discussed. In order

to correctly predict the performance of wind turbine rotors with a well assessed aeroelastic code, validation is

carried out starting from the simplest components and adding complexity step by step. Thus, the �rst application

is performed on 2D airfoils in pitch motion with sectional aerodynamic loads provided by the B-L model. Then,

enhancements of this model for three dimensional analyses are developed and applications on translating wings

and on wind turbine rotor blades are carried out using pre-existent tools in which the aerodynamic sectional

B-L model is included (semi-empirical models are also considered to characterize high angle of attack regimes).

Finally, structural and aeroelastic validation of the FEM-based aeroelastic tool is proposed: due to similarities

between helicopter and wind turbine rotors, applications on helicopter rotors are �rstly discussed, then the

analysis of wind turbine rotor performance is presented.

4.1 Validation of Beddoes-Leishman model for 2D airfoils

The B-L model is herein validated through the analysis of 2D airfoils undergoing harmonic pitch motion about the

quarter-chord point. Numerical results are compared to experimental data. Figure 4.1 presents the aerodynamic

normal force and moment coe�cients hysteresis loops for the NACA0012 airfoil [31] for the motion law α(s) =

10 + 10sin(ks) where k = 0.099 whereas Figure 4.2 shows similar results for the S809 airfoil [43] (Figure 4.3)

oscillating about a mean angle of 7°, with amplitude of 10° and reduced frequency of 0.077. For both test

cases, numerical predictions show that the proposed implementation of the B-L model reproduces CN and CM

magnitude with reasonable accuracy in the considered range of α. Slight overestimation on CN is observed in

the reattachment phase during the downstroke for the normal force coe�cient, whereas major discrepancies

appear on CM , even if the general quality of the numerical data is still reasonable. The reduced accuracy

of the B-L model for the reattachment phase is con�rmed in the work of Leishman and Crouse [31]. Indeed,

during this phase, the inherent randomness of the �ow induces signi�cant variations of the airloads over the

airfoil, and thus, its behavior during the downstroke phase is more di�cult to be simulated. Nevertheless, the

overall quality of predictions remains satisfactory. Greater di�erences in the hysteresis loop of the moment

coe�cient are evidenced on the S809 airfoil. A devoted tailoring of the semi-empirical coe�cients appearing in

the aerodynamic formulation should improve the numerical predictions: the present analysis has been performed

60
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by using the same set of parameters provided by [31] for the NACA airfoil.
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Figure 4.1: Normal force (left) and moment (right) coe�cients for the NACA0012 airfoil
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Figure 4.2: Normal force (left) and moment (right) coe�cients for the S809 airfoil

Figure 4.3: S809 airfoil
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4.2 3D applications of Beddoes-Leishman model

4.2.1 Oscillating �nite wing

Validation of the enhanced B-L aerodynamic model herein proposed is accomplished through application to

oscillating �nite-span wings and comparison with experimental results. Indeed, in this context, a wide experi-

mental activity has been performed in 2013 at the CNR-INSEAN towing-tank on 3D translating-pitching wings

with di�erent sectional shapes. These tests have demonstrated to be a valid tool for the assessment of dynamic

stall models [44].

The experimental activity has been focused on the measurement of unsteady hydrodynamic loads acting on

translating and harmonically pitching wings, in order to characterize dynamic stall onset. With this aim, the

wind is mounted below the water surface on a carriage translating at selected advance speeds, whilst a combined

mechanical/electronical device denoted as Planar Motion Mechanism (PMM) allows the wing motion control by

combining sinusoidal and non-sinusoidal signals. The main drive system's features are reported in Table 4.1.

Device Manufacturer Model Features

Motor Kollmorgen AKM83T
Power: 16100 W

Max torque: 130 Nm with resolver or encoder
Servo amplier Kollmorgen ServoStar 772 70A .3*480V 50/60 Hz

Table 4.1: PMM's drive system components and their main features

The instantaneous angular position of the wing, with respect to the water-�ow direction, is measured by

transducers placed on the rotational axis whereas an appropriately designed dynamometric balance, located

above the free-surface and instrumented by LVDT (Linear Variable Displacement Transducers) sensors, yields

transversal and longitudinal hydroloads measurements. A �ange connects the submerged wing both to the

balance and the rotating part of the PMM device. Since free surface e�ects are largely unavoidable with this

setup, the presence of a canoe completes the experimental set-up (Figure 4.4) .

Figure 4.4: Experimental setup

The wing examined in the following is straight, rectangular, with S809 airfoil non-twisted cross sections

(Figure 4.3), span b = 1.12m, chord c = 0.225m, translating at constant speed, V , and oscillating about the
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quarter-chord axis. Test conditions, summarized in Table 4.2, are such that no cavitation occurs, with the angle

of attack range that is large enough to induce leading edge separation. These data represent only a small part of

the experimental campaign designed with the speci�c aim of fully validating the proposed aerodynamic models

at di�erent operating conditions (Reynolds number, pitching motion reduced frequency, advance speed).

Reynolds number 1160000
Advance speed 5.173m/s
Mean pitch angle 8°

Pitching amplitude 10°

Pitching frequency 0.6Hz

Table 4.2: S809 wing test conditions

Numerical results are obtained using a BEM solver in which B-L model is used to predict lift and drag

coe�cients through the four aerodynamic coupling methods described in Section 3.3.1. Numerical airloads

predictions are compared with those measured experimentally in Figure 4.5. They are de�ned as

CL = 2L
ρV 2bc

CD = 2D
ρV 2bc

(4.1)

with L and D denoting wing lift and drag, whereas ρ is the �uid medium density. Dynamic stall onset is char-

acterized by increase of lift with respect to static values and by considerable loads hysteresis. These correlations

demonstrate that the proposed aerodynamic models are able to capture the main features of unsteady wing

aerodynamics and of dynamic stall phenomena. Indeed, all aerodynamic models show a satisfactory capability

to predict lift coe�cient in the pitch oscillation range examined. However, the correlation of Methods 1 and

3 with experimental data is of excellent accuracy, whilst Methods 2 and 4 tend to underestimate lift increase

induced by the leading edge vortex traveling along the upper part of the wing. All methods applied present

good accuracy of drag coe�cient predictions in the upstroke phase of wing motion, but these are overestimated

during the downstroke phase. This reduced accuracy of the B-L model is con�rmed in [31]. As for the case of

the 2D airfoil (see Section 4.1), the B-L model shows a reduced accuracy in the �ow reattachment phase. The

consequence on drag prediction is evident. Nevertheless, the overall quality of predictions remains satisfactory.
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Figure 4.5: Lift and drag coe�cients on pitching wing: measured data vs numerical predictions by Methods 1-4
(from top to bottom)
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4.2.2 Horizontal axis wind turbine

This section addresses the aeroelastic analysis of a wind turbine rotor. For this application, the proposed

Beddoes-Leishman aerodynamic model is coupled with the nonlinear, integro-di�erential formulation governing

structural dynamics of bending-torsional blades subject to moderate deformations described in Section 3.1.3.1.

The resulting aeroelastic di�erential system is integrated through the Galerkin approach and the computational

e�ciency technique (described in Section 3.1.3.1) for spatial integration of additional aerodynamic states related

to wake vorticity and dynamic stall is adopted. Time-marching solution algorithm is applied fro evaluating

responses to arbitrary inputs. The aeroelastic analysis is carried out on the NREL Phase VI wind turbine rotor

in axial �ow conditions [45]. It is a 10.58m diameter, two-bladed rotor with cross sections having the shape

of S809 airfoils starting from radial position at one quarter of the blade, and circular shape at the root region

(transition from circular to non-circular sections is achieved through a conical surface, as shown in Figure 4.6).

In the three-quarter radius outer region, the blades are linearly tapered, with a nonlinear distribution of twist

(Figure 4.7). Further details on rotor mechanical and geometrical characteristics can be found in the works of

Hand et al [45] and Giguère and Selig [46]. The following numerical simulations have been obtained considering

a constant blade pitch of 3° at the tip section and null pre-cone angle.

Figure 4.6: CAD rendering of NREL wind turbine blade
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Figure 4.7: Distribution of the geometric twist along the blade

4.2.2.1 Assessment of the spectral method approach

In order to assess the numerical e�ciency of the novel methodology proposed for integration of B-L model

within the aeroelastic solver (Section 3.1.3.1), it is compared with a strip theory approach consisting in solving



CHAPTER 4. NUMERICAL RESULTS 66

the equations of the aerodynamic state variables at a discrete number of blade sections and then extending

their values along the blade through interpolation. With this aim, �rstly a convergence analysis on the order of

the interpolating polynomial function used to describe the spanwise distribution of the rigid motion boundary

condition is performed. Corresponding predictions of turbine performance computed by Method 1 (see Section

3.3.1) at wind speed Vw equals to 7 and 10m/s are presented in Table 4.3, which shows negligible sensitivity

(∆%) to increase of the polynomial order n = 5. Similarly, for the strip theory approach, Table 4.4 presents

the analysis of the discrete number of blade sections on which the aerodynamic state equations are solved.

Convergence values of turbine thrust and torque are obtained using 25 sections uniformly distributed along

blade span.

Order of interpolating function
Thrust [N] Torque [Nm]

7m/s ∆% 10m/s ∆% 7m/s ∆% 10m/s ∆%
0 1481 − 1912 − 1672 − 2916 −
1 1130 23.7 1667 12.8 828 50.4 1625 44.3
3 1115 1.32 1595 4.32 804 2.89 1465 9.85
4 1122 0.62 1566 1.82 806 0.25 1398 4.57
5 1120 0.18 1546 1.28 807 0.12 1367 2.21
6 1121 0.09 1544 0.13 808 0.12 1365 0.14

Table 4.3: Convergence analysis on the order of the interpolating function

Number of sections
Thrust [N] Torque [Nm]

7m/s ∆% 10m/s ∆% 7m/s ∆% 10m/s ∆%
5 1236 − 1579 − 926 − 1598 −
10 1155 6.55 1488 5.76 819 11.5 1399 9.04
20 1133 1.90 1466 1.48 790 3.54 1339 4.29
25 1128 0.44 1461 0.34 785 0.63 1327 0.89
30 1128 0.00 1459 0.13 784 0.13 1324 0.23

Table 4.4: Convergence analysis for the strip theory approach

In the frame of preliminary design tools, computational costs are a crucial issue. The proposed aeroelastic

formulation is implemented in research codes that are only partially optimized in terms of computation per-

formance. The most expensive part of each simulation is related to BEM calculations of wake in�ow and/or

attached �ow sectional airloads by a code that is not parallel. A free-wake computation at a single turbine op-

erating point using blade/wake grids ensuring numerically converged results can take up to 5h on a single-CPU

Intel Xeon© 2.93 GHz PC, whereas a prescribed-wake computation requires about 10 s. Once the input data

from BEM are provided, computational time for the aeroelastic analysis is 11 s on a 24-CPU Intel Xeon© 2.93

GHz PC. The comparison between the numerical performance of the novel and of the strip theory approach is

summarized in Table 4.5, which highlights the greater e�ciency of the novel approach both in terms of number

of degrees of freedom and computational time. Regarding number of degrees of freedom reported in Table 4.5,

strip theory approach involves 12 unknowns (as the number of the additional aerodynamic states of the B-L

model, see Section 3.1.3) for each aerodynamic section. On the contrary, the novel technique requires, for the

�rst nine B-L aerodynamic states, 6 DOFs to characterize the rigid motion and 1 to describe bending and torsion

displacements; the last three aerodynamic states of the B-L model are analyzed with the strip theory approach



CHAPTER 4. NUMERICAL RESULTS 67

since their governing equations are piecewise continuous (see Section 3.1.3.1). Note that, as a consequence of the

high values of blade sti�ness characteristic provided in [45], 1 shape function is su�cient to reproduce bending

and torsion displacements.

Strip theory Novel approach Percentage gain
Number of DOFs 25 · 12 = 300 6 · 9 + 1 · 9 + 1 · 9 + 25 · 3 = 147 51 %

Computational time 42 s 11 s 74 %

Table 4.5: Numerical e�ciency

Next, the in�uence of blade elasticity on rotor performance is investigated. Turbine thrust and torque

computed by Method 1, considering blade deformation e�ects, are compared with those evaluated under rigid-

blade rotor assumption in Figure 4.8. These demonstrate that, for the case examined, blade deformations barely

a�ect predicted rotor performance. Indeed, this is a consequence of blade sti�ness characteristics provided in

the work of Hand et al [45] that yield very small blade elastic de�ections, as proven in Figure 4.9, where blade

tip bending and torsion displacements evaluated for 5m/s ≤ Vw ≤ 25m/s are depicted.
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4.2.2.2 Rotor stability analysis

Concerning the aeroelastic stability analysis, widely used techniques are based on the evaluation of the time-

marching aeroelastic response to perturbations [47], or on the eigenanalysis of the aeroelastic system linearized

about a steady-periodic equilibrium condition [24]. The latter is extensively applied in rotorcraft and wind

turbines aeroelasticity [23], and is adopted here, as well. In order to de�ne the eigenproblem to be solved,

the contributions given by the unsteady aerodynamic BEM solver to Methods 1-4 have to be approximated

in a �nite-state form: this implies the determination of either a state-space representation of the (dynamic)

wake in�ow [48] or a state-space representation of blade loads [49]. In addition, observing that in non-axial

�ow con�gurations, the aeroelastic operator is of periodic coe�cient type, once mass, damping and sti�ness

matrices of the linearized small-perturbation aeroelastic equations system are derived, the multiblade-variables

transformation is performed, followed by constant coe�cient approximation [23].

The results of the turbine stability analysis (see Section 3.1.3.1) are presented in Figures 4.10-4.12. These

have been obtained by application of Method 1 (Section 3.3.1), which consists in linearizing the aeroelastic

equations whilst considering a frozen wake in�ow (i.e. a static wake in�ow that is assumed to be independent

on blade aeroelastic perturbations). Figure 4.10 presents the turbine aeroelastic eigenvalues predicted in the

most critical condition, namely, that corresponding to the maximum wind speed examined, Vw = 25m/s. Stable

response to perturbations is assured, as detailed by the zoom of the low-damping region illustrated in Figure 4.11.

For lower wind velocities, the aeroelastic behavior of the turbine is con�rmed to be stable, as shown in Figure

4.12 that concerns the eigenvalues evaluated considering Vw = 10m/s. In Figures 4.10-4.12, the zero-frequency

eigenvalues are related to the additional aerodynamic states introduced by the B-L aerodynamic model, whereas

the remaining ones concern the �rst �ap, lag and torsion modes (from lower to higher frequency).
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Figure 4.10: Rotor aeroelastic eigenvalues, Vw = 25m/s
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Figure 4.11: Low-damping aeroelastic eigenvalues, Vw = 25m/s
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Figure 4.12: Rotor aeroelastic eigenvalues, Vw = 10m/s

4.2.2.3 Rotor response analysis

Time marching response of the complete, nonlinear aeroelastic system to perturbations is addressed in this

section. This mode of solution, in addition to the harmonic balance one, is of fundamental interest in that

capable of investigating operating conditions di�erent from periodic rotor response (like, for instance, those

occurring in the presence of arbitrary gust or non-uniform wind distribution). Akin to the previous section,

these computations have been performed by application of Method 1, under the assumption of static-in�ow.

For wind speed equal to 10m/s, Figure 4.13 presents the turbine response to a perturbation of blade �ap

bending degree of freedom in terms of the �rst additional aerodynamic state, which is governed by a �rst-order
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dynamics. Its rigid component, uncoupled with structural dynamics and forced by rigid-blade local angle of

attack, shows, as expected, a �rst-order behavior, whereas the bending component, because of blade sti�ness,

has a free dynamics with a damped oscillatory response.
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Figure 4.13: Bending and rigid components time marching solution for additional aerodynamic state x1

The application of the logarithmic decrement rule to these time signals allows the identi�cation of the

damping coe�cient that can be compared with the one determined through the eigenvalue analysis of the

linearized system. Table 4.6 compares the perturbed response dynamics of rigid and bending components of

state x1 as determined from the eigenanalysis (Figure 4.12) and from the time marching solution. Although

not coincident, these appears to be in good agreement. Increasing discrepancies amongst the two methodologies

arise when blade sti�ness is reduced to 40% of the design value. In fact, under this condition, the use of a time

marching approach is mandatory to describe occurring relevant structural and aerodynamic nonlinearities.

x1 Blade Eigenvalues analysis Logarithmic decrement rule Perc. errors
component sti�ness Freq (rad/s) Damp (rad/s) Freq (rad/s) Damp (rad/s) εω% εα%

Bending
NREL ω = 89.12 α = 3.09 ω = 87.8 α = 3.16 −1.48 +2.26

40% NREL ω = 63.3 α = 3.24 ω = 54.6 α = 3.96 −13.7 +22.2

Rigid
NREL ω = 0.0 α = 7.01 ω = 0.0 α = 7.23 / +3.13

40% NREL ω = 0.0 α = 3.81 ω = 0.0 α = 4.14 / +8.66

Table 4.6: Frequency and damping associated to x1 aeroelastic response to �ap bending perturbation

4.2.2.4 Rotor performance prediction

The four proposed methods for rotor aerodynamic simulation are �nally used to predict wind turbine blade

airloads at the steady equilibrium condition. A crucial issue when the BEM solver is introduced to adapt airfoil

theories to wind turbine aerodynamics applications is the de�nition of the range of wind speed in which it can be

conveniently used to provide accurate corrections of 2D predictions. Indeed, as the wind speed increases, larger

portions of the blade start experiencing massive �ow separations, with BEM predictions providing overestimated

airloads and non-physical high values of induced velocity. Literature CFD analyses of this test case [50] show that

at low wind speed (Vw = 5− 7m/s) the �ow over the blade is attached except for the region closer to the root,

whilst at the stall onset condition (Vw = 10m/s) separation occurs close to mid span at leading edge, and at mid
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chord up to 90% of the blade span. Thus, massive �ow separation is not present yet ([50], [51]). At Vw = 13m/s

(stall condition), the separation starting at r/R = 0.47, gradually extends over 60% of blade span, progressively

leading to deep stall conditions (Vw = 20− 25m/s). In the present analysis, BEM correction is applied at those

sections where an angle of attack not higher than 20° occurs (this is considered as the threshold bounding fully

separated �ow region). This value corresponds to the mean distribution of estimated e�ective sectional angle

of attack at Vw = 13m/s [52]. Both Viterna-Corrigan and centrifugal pumping global corrections are turned

o�. Figure 4.14 shows spanwise distribution of normal (CN ) and tangential (CT ) blade section force coe�cients

for Vw = 7m/s (top) and Vw = 10m/s (bottom). The following de�nitions are used: CN = 2N/ρV 2c and

CT = 2T/ρV 2c, where N and T are normal and tangential section forces, whilst ρ denotes air density. Results

obtained by Methods 1�4 are compared with experimental data provided by pressure transducers placed along

the chord of �ve representative blade sections [51]. Predictions by the BEM solver are included as baseline data.

Figure 4.14 (top) shows that Method 2 provides results that have a good level of accuracy. In particular, it

improves BEM results at inner sections, where �ow separation starts arising (0.3 < r/R < 0.47). Methods 1

and 3 tend to slightly underestimate section airloads over a wide blade portion, whereas Method 4 yields an

overall underprediction of loads. Note that, only when CN and CT associated to attached �ow are provided

directly by the BEM solver (Methods 2 and 4), they tend towards zero at blade tip, whilst, for Methods 1

and 3, the inclusion of rotor wake in�ow is not su�cient to correctly predict this behavior (Section 3.3.1).

Di�erently, at blade root, the presence of the hub and of the cylindrical region yields non-zero values of local

airloads. At Vw = 10m/s, Figure 4.14 (bottom) shows increasing discrepancies between numerical predictions

and experimental data (particularly those concerning CN ). As reported in [51], at this wind speed, blade �ow is

extremely unstable, right at the onset of stall. Nevertheless, satisfactory airloads predictions at blade sections

characterized by null or limited �ow separation (r/R ≥ 0.63) are provided by Method 2, whilst the BEM solver

tends to overestimate loads.
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Figure 4.14: Section force coe�cients for Vw = 7m/s (top) and Vw = 10m/s (bottom)

Further, the accuracy of wind turbine global loads predictions is examined in Figure 4.15 (top), which

compares turbine thrust and power evaluated by the four methods proposed (still without centrifugal pumping

and Viterna-Corrigan corrections) with experimental measurements. Fully potential-�ow simulations by the

BEM solver are included as well. For Vw = 10m/s, Methods 1, 2 and 3 provide results of satisfactory quality

whilst, above this critical wind speed, increasing underestimation of thrust and overestimation of power are

observed. The worst results are from Method 4, which yields underestimation of loads throughout the considered

wind speed range. As expected, BEM results are of good accuracy up to wind speed for which �ow separation

region is of very limited extent (Vw = 7m/s). In order to improve the quality of simulations at high wind speeds,

aerodynamic Methods 1�4 are applied at those sections where the angle of attack is lower than 20°, whereas

airloads are determined through �at-plate formulas modi�ed with Snel centrifugal pumping correction elsewhere

(note that for Vw = 17m/s, all blade sections experience angle of attack greater than 20°). Figure 4.15 (bottom)

shows that predictions based on the combination of Methods 1, 2 and 3 with high-angle-of-attack formulations

are in good agreement with measurements, with the best power predictions given by Method 2. Still, results

based on Method 4 provide underestimated values of thrust and power.
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Figure 4.15: Turbine thrust (left) and power (right) predictions without (top) and with (bottom) high-angle-of-
attack corrections

In order to assess the accuracy of the proposed approach with respect to state-of-art BEMT codes, the widely-

used FAST© numerical tool is used here as a benchmark. An overview of FAST© aeroelastic modelling is

provided in the work of Jonkman [53]. It is worth noting that rotor aerodynamics modelling is based on the same

formulation used in Method 1 of the present work, with the only di�erence that wake induced in�ow is provided

here by a BEM solver, whilst FAST© uses a standard BEMT approach. Figure 4.16 shows that Method 2

(which has been demonstrated to be the most accurate amongst those proposed) provides power predictions

that are comparable with FAST© outcomes up to Vw = 17m/s, whilst above this condition, Method 2 is better

correlated to experimental data.
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Figure 4.16: Turbine power: predictions by Method 2 compared with FAST© results

4.3 FEM solver validation

The developed FEM aeroelastic tool is herein validated through comparison with analytical, numerical and

experimental data. Due to similarities between helicopter and wind turbine rotor blades, applications �rstly

concern structural and aeroelastic analyses of helicopter rotors in hovering and forward �ight, then blade response

and performance of a wind turbine rotor are addressed. The numerical time-marching solution of the large set of

di�erential equations obtained by the FEM discretization of the present nonlinear aeroelastic problem is a very

complex task. In the present section, �rst these numerical issues and the proposed solutions are analyzed. Then

the application of the present FEM model to the analysis of helicopter and wind turbine rotors is discussed.

4.3.1 Numerical issues of time integration algorithms

A widely used technique for solving systems of Ordinary Di�erential Equations is the time marching approach.

Nevertheless, numerical instabilities in the computed solution have been found in the analysis of scattering

problems [54, 55] or analyzing sti� systems [?, 56]. In the framework of FEM-based problems, a well known

numerical issue that arises in the solution of a set of ODEs to be solved through a time marching algorithm is

due to the forcing terms that appear in the equations and are nonlinear function of the system unknowns. These

terms should be, in principle, computed at the actual step of the integration. Using the implicit Newmark-

β or Crank-Nicolson scheme, a widely used technique relies on the evaluation of these terms at the previous

step of the iteration. Nevertheless, if the nonlinear forcing terms are relevant, through this kind of approach

numerical errors can propagate from step to step and accumulate as the number of steps increases. This causes

exponentially growing high frequency oscillations of the solution that yields to numerical instability (see Figure
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4.17, in which the aeroelastic solution has been obtained through the Crank-Nicolson scheme). The approach

used in the present work to overcome these issues is to use a higher order time integration scheme (Runge-Kutta)

and to minimize the nonlinear content of the forcing terms by linearizing the di�erential system of equations as

much as possible.

-0.5

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0

F
la

p
 t
ip

 d
e
fl
e
c
ti
o
n

Time

-0.06

-0.04

-0.02

 0

 0.02

40.0 44.0 48.0 52.0

F
la

p
 t
ip

 d
e
fl
e
c
ti
o
n

Time

Figure 4.17: Typical numerical instability of a time marching solution, zoom is highlighted on the right)

Di�erent time marching algorithm have been used in this work. Among the proposed methods, the Runge-

Kutta algorithm is the most accurate one and doesn't present numerical instabilities. Furthermore, due to its

higher order accuracy, the number of time steps per revolution (and, consequently, the computational costs) can

be signi�cantly reduced with respect to other integration methods.

The Newmark-β algorithm (see Appendix B.2) provides the solution of the aeroelastic system without the

necessity of transforming it into the normal form. However, this kind of time integration algorithm shows

numerical problems when the set of ODEs to be solved consists of second order and �rst order ones. In particular,

for the present aeroelastic formulation, this happens when blade aerodynamics is modeled through the Beddoes-

Leishman theory. In fact, the additional aerodynamic states introduced by this approach are governed by �rst

order ODEs. The solution of this mixed set of ODEs through the Newmark-β algorithm shows an unphysical

high frequency oscillation that can be avoided by introducing a combined solution scheme (see Appendix B.4)

in which the second order ODEs are solved through the Newmark-β algorithm whereas the �rst order ones are

solved by Crank-Nicolson (see Figure 4.18).
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To avoid numerical instabilities due to nonlinearities of the aeroelastic problem, integration of the linearized

system in equation (B.1) can be performed. First the global force vector is decomposed into structural and

aerodynamic contributions as follows:

F = Fstrc + FstrNl (q) + FstrNli (q̇) + Faerc + Faerl (q, q̇, q̈) + FaerNl (q, q̇) (4.2)

where Fstrc and FstrNl are vectors retaining constant (i.e. independent on system degrees of freedom) and nonlinear

structural forcing terms, respectively, whilst FstrNli contains nonlinear double integral structural terms [19]. If the

analytical expressions of aerodynamic terms as a function of system unknowns are available, the aerodynamic

force vector can also be decomposed into a constant part (Faerc ), a linear (Faerl ) and nonlinear (FaerNl ) contribution.

Aerodynamic linear terms are added to the structural ones on the left hand side of the equation. In details, they

can be written in the following matricial form:

Faerl = Maerq̈ + Caerq̇ + Kaerq (4.3)

Instead, a �rst order approximation of the Taylor series is applied to nonlinear contributions:

FstrNl = FstrNl |qe + Kstr
t |qe (q− qe)

FstrNli = FstrNli|qe + Cstr
t |qe (q̇− q̇e)

FaerNl = FaerNl |qe + Kaer
t |qe (q− qe) + Caer

t |qe (q̇− q̇e)

(4.4)

in which Kt and Ct represent Jacobian matrices that contribute to the sti�ness and damping matrix of the

aeroelastic system, whilst qe is the steady equilibrium solution. Note that, in equation (4.4) q̇e = 0. Finally,

substituting equations (4.3) and (4.4) into equation (B.1) yields the following aeroelastic system to be integrated:

Mtotq̈ + Ctotq̇ + Ktotq = Ftot (4.5)

where
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Mtot = M−Maer

Ctot = C−Caer −Cstr
t |qe −Caer

t |qe
Ktot = K−Kaer −Kstr

t |qe −Kaer
t |qe

Ftot = Fstrc + Faerc + FstrNl |qe + FstrNli|qe + FaerNl |qe −Kstr
t |qeqe −Kaer

t |qeqe

(4.6)

The steady equilibrium solution is obtained applying Newton-Raphson scheme to the following system

Ktotqe = Ftot (qe) (4.7)

The solution of large number of �nite element equations for blade response is a computationally expensive task

due to the number of degrees of freedom. In order to reduce computational costs and avoid numerical problems

related to undamped high frequency degrees of freedom, a suitable reduction of the number of unknowns of the

problem is achieved by transforming the aeroelastic equations (B.1) into the modal space using a set of modal

functions as follows:

[
ΦTMΦ

] [
ΦT q̈

]
+
[
ΦTCΦ

] [
ΦT q̇

]
+
[
ΦTKΦ

] [
ΦTq

]
=
[
ΦTF

]
(4.8)

where Φ is the matrix collecting natural modes. The �nal equations of motion in the modal space can be written

as

MΦq̈Φ + CΦq̇Φ + KΦqΦ = FΦ (4.9)

The actual nodal de�ections q can be obtained from normal mode coordinates qΦ using the transformation:

q = ΦqΦ (4.10)

Finally, to avoid numerical instabilities in undamped aeroelastic systems analyzed, dissipation of energy due

to material damping has been also considered assuming a material with a linear visco-elastic behavior, the

stresses in equation 2.13 must be modi�ed with a new contribution that is a linear function of the strain rates:

σxx = E∗ε̇xx

σxη = G∗ε̇xη

σxζ = G∗ε̇xζ

(4.11)

where E∗ and G∗ are coe�cients which take into account internal damping of the material in tension and shear,

respectively. Thus, the virtual work of the structural dissipative forces for the b− th blade is

δWDb =

ˆ R

0

¨
A

(E∗ε̇xxδεxx +G∗ε̇xηδεxη +G∗ε̇xζδεxζ) dηdζ dx (4.12)

in which only the direct linear damping terms associated with the dependent variables are retained. Substituting

equations (2.15), (2.16) and (2.17) into equation (4.12), integrating over the cross section, and retaining only

linear direct damping terms leads to:

δWDb =

ˆ R

0

(d1δu
′ + d2δφ

′′ + d3δφ
′ + d4δv

′′ + d5δw
′′ + d6δφ

′) dx (4.13)
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where

d1 = E∗Au̇′

d2 = E∗C1φ̇
′′

d3 = E∗B1θ
′2
ptφ̇
′

d4 = E∗
(
Iζζcos

2θ + Iηηsin
2θ
)
v̇′′

d5 = E∗
(
Iζζsin

2θ + Iηηcos
2θ
)
ẇ′′

d6 = G∗Jφ̇′

(4.14)

These contributions are added to the gyroscopic matrix of equation (2.47) to obtain the total damping matrix

of the aeroelastic system.

4.3.2 Helicopter rotor structural analysis

A non rotating Bernoulli-type linear beam clamped at root and undergoing uncoupled elastic twist, �ap and lag

deformation is considered �rst. Beam structural and geometric properties are summarized in Table 4.7 (left).

Beam eigenfrequencies are presented in Table 4.7 (right) showing good correlation of FEM predictions with

analytical results.

Geometric & Structural properties
Length 5.029m

Lag bending sti�ness 8 · 105Nm2

Flap bending sti�ness 6 · 105Nm2

Torsion sti�ness 1 · 106Nm2

Beam eigenfrequencies [rad/s]
Analytical FEM

I lag 87.91 87.92
II lag 551.01 551.02
III lag 1542.97 1542.96
I �ap 32.10 32.10
II �ap 201.19 201.20
III �ap 563.41 563.40
I torsion 321.56 321.56
II torsion 964.69 964.69
III torsion 1607.82 1607.90

Table 4.7: Non-rotating beam: geometric and structural properties (left), predicted eigenfrequencies compared
to analytical results (right)

The same level of accuracy of numerical results is shown in Table 4.8 for the two-bladed hingeless rotor

experimentally tested in [57]. The comparison is performed for a torsionally soft rotor with zero precone, droop

and collective pitch, considering both a soft and a sti� �exure.

Non-rotating blade natural frequencies [Hz]
Soft Flexure Sti� Flexure
Exp FEM Exp FEM

I lag 22.02 22.56 23.76 23.34
I �ap 5.19 5.18 5.25 5.19
II �ap 32.50 32.69 32.75 32.80
I torsion 38.38 36.50 44.73 43.59

Table 4.8: Two-bladed hingeless rotor: FEM predictions compared to experimental data
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Then, rotating frequencies and natural mode shapes of a four-bladed hingeless helicopter rotor in hovering

are addressed. Vehicle properties are described in [27]: rotor blades are uniform with a linear pre-twist of −8°.

A collective pitch angle of 9° is used to couple blade �ap, lag and torsion modes. Hinge o�set is modeled as a

rigid element without any degree of freedom. Blades natural frequencies predicted by the present FEM model

are listed in Table 4.9 showing a good level of accuracy with respect to results from the FEM approach proposed

in [27]. The same high quality of numerical prediction is achieved for the �rst three �ap and lag bending modes

as well as for the �rst two torsion modes (see Figure 4.19).

Rotating blade natural frequencies [Hz]
FEM [27] Present FEM model

I lag 4.71 4.63
II lag 27.95 28.00
III lag 70.67 70.44
I �ap 7.38 7.42
II �ap 21.71 21.59
III �ap 47.98 47.78
I torsion 22.69 22.51
II torsion 66.66 66.55

Table 4.9: Four-bladed hingeless rotor: present predictions compared to data in [27]
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Figure 4.19: FEM predictions of blade natural modes shapes for a four-bladed hingeless helicopter rotor: present
approach compared to data in [27]

4.3.3 Helicopter rotor aeroelastic analysis

4.3.3.1 Hover condition

FEM based numerical tool is then applied to the aeroelastic analysis of a two-bladed hingeless helicopter rotor in

hover. Detailed description of the test case can be found in [58]: rotor blades are untwisted, without structural

damping, root o�set and chordwise axis o�set. The blade has NACA0012 airfoil sections and a rectangular

planform shape, and the rotor is operating at an angular velocity of 1000 rpm. Structural properties of the blade

are found in [58]. Several values of collective pitch are considered along with two precone settings (β = 0° and

β = 5°). Figure 4.20 shows predicted thrust loading along blade span for θ = 8° and β = 0°. Nondimensional

loading coe�cient is herein de�ned as dcT /ds = (2dT/dr) /ρV 2c, where s = r/R, dT denotes section elemental
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thrust, ρ is the air density, V is the local total velocity and c is the section chord. First, the proposed blade

aerodynamics model is validated assuming a rigid bladed rotor. For the present assessment, blade aerodynamics

is based on the application of the Greenberg theory in hover condition (see Section 3.1.2.1) with the assumption

of C (k) = 1 (quasi-steady approximation). The aerodynamic model is enhanced by the rotor wake in�ow

provided by a 3D BEM solver to correct blade sections downwash. This approach can suitably enhance sectional

aerodynamics with respect to a simple momentum theory approach yielding numerical predictions that are in

excellent agreement with BEM outcomes up to 80% of blade span. Nevertheless, the inclusion of rotor wake

in�ow is not su�cient to correctly predict airloads near blade tip (see [62]).

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

0.0 0.2 0.4 0.6 0.8 1.0

T
h

ru
s
t 

L
o

a
d

in
g

 [
-]

x/R

BEM
Downwash from BEM

Momentum Theory

Figure 4.20: Thrust loading along span for a rigid blade (θ = 8° and β = 0°)

For the same rotor, blade deformations are then addressed. The present formulation is compared to the

modal approach proposed in [58] where the Theodorsen theory (see Section 3.1.1) is used to describe blade

sections airloads. FEM analysis is herein performed using 50 elements along blade span to ensures negligible

sensitivity to further re�nements. This yields an excellent agreement with numerical results in [58] in terms of

thrust loading acting on a deformable blade (see Figure 4.21). The same quality of predictions is achieved for

blade tip �ap, lag and torsion displacements at several collective pitch settings and for β = 0° and β = 5°, as

shown in Figure 4.22.
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Figure 4.21: Thrust loading along span for a deformable blade (θ = 8° and β = 0°)
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Figure 4.22: Predicted blade tip displacements for a two-bladed hingeless helicopter rotor in hover: present
approach compared to data in [58]

For the following numerical simulation, integration of the linearized system is performed (see Section 4.3.1).

Dealing with a rotor in hovering condition, the aeroelastic problem in equation (4.5) is characterized by constant
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coe�cients. The steady equilibrium solution qe is computed then, the blade is perturbed by an amount equal

to 10% of the equilibrium de�ections and released. The unsteady blade motion under the interaction of elastic

blade and applied aerodynamic loads is then computed through a time marching solution scheme based on the

Newmark-β algorithm (see Section B.2). Figures 4.23, 4.24 and 4.25 show nondimensional perturbations for

lag, �ap and torsion at the blade collective pitch angle of 8°. Numerical predictions of the present tool are in

excellent agreement with numerical data in [58].
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Figure 4.23: Nondimensional lag de�ection perturbation time history
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Figure 4.24: Nondimensional �ap de�ection perturbation time history
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Figure 4.25: Nondimensional torsion de�ection perturbation time history

An analysis of the e�ect of aerodynamic modelling on perturbation de�ections predictions is then presented.

In details predicted time evolutions of blade tip de�ections in term of lag, �ap and torsion are shown in Figures

4.26, 4.27 and 4.28. The quasi-steady approximation of the Greenberg theory (C (k) = 1) provides numerical

predictions which are, as expected, very di�erent from those provided by unsteady formulations. Results from

Theodorsen theory and Beddoes-Leishman model are in good agreement and this underlines that signi�cant �ow

separations don't occur for the analyzed test conditions.
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Figure 4.26: Nondimensional lag de�ection perturbation time history
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Figure 4.27: Nondimensional �ap de�ection perturbation time history
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Figure 4.28: Nondimensional torsion de�ection perturbation time history

4.3.3.2 Forward �ight condition

The same four-bladed hingeless helicopter rotor [27] already analyzed in hover condition is then considered at

di�erent forward �ight advance ratios. Quasi-steady blade element aerodynamic model (Section 3.1.1.1) with a

linear variation of in�ow (Drees model, Section 3.2.2) is applied. Two di�erent advance ratios are analyzed and

corresponding rotor trim controls are reported in Table 4.10.

µ = 0.15 µ = 0.30
θ0 6.83° 8.59°

θ1c 1.80° 1.80°

θ1s −2.44° −5.40°

αs 1.22° 3.91°

Table 4.10: Trim controls

The modal reduction method is herein applied (see Section 4.3.1). In order to achieve an accurate solution
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for the nodal de�ections, coupled rotating normal mode shapes are used to de�ne matrix Φ. Speci�cally, in the

present analysis three �ap, three lag and two torsion modes are considered. Figure 4.29 presents periodic time

histories of blade tip de�ections during a revolution for two di�erent advance ratios (µ = 0.15 and µ = 0.30). For

both conditions, FEM predictions are in excellent agreement with numerical data [27] in terms of lag and torsion

deformations. Slight overestimation of tip �ap de�ection is observed, even if the general quality of numerical

prediction is still good.
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(b) µ = 0.30

Figure 4.29: Blade tip deformations

For the same rotor, hub loads are also investigated. Figure 4.30 shows the 4/rev nondimensional vibratory hub

loads for advance ratio µ = 0.30. Predictions of the FEM solver are in good agreement with numerical data in

[27].
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Figure 4.30: 4/rev vibratory hub loads
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4.3.4 Horizontal axis wind turbine performance

The proposed FEM aeroelastic solver [59, 60] is then applied to the analysis of the NREL horizontal axis wind

turbine already analyzed in Section 4.2.2.

In the present analysis, steady aerodynamics based on the Glauert theory [61] is applied with 3D correction

provided by the Snel model (see Section 3.3.2.2). BEM wake in�ow correction to downwash at the 3/4-chord

point is considered only at those sections where an angle of attack not higher than 15° occurs (this is considered

as the threshold bounding fully separated �ow region). Corrections for high angles of attack regimes are not

included in the model. For this test case, rotor aeroelastic calculations in Figure 4.31 show that blade sti�ness

characteristics [45] are such that very small blade de�ections occur (see also the modal analysis in Section

4.2.2.1). In this �gure, blade tip bending displacements evaluated for wind speed 5m/s ≤ Vw ≤ 19m/s are

depicted (the corresponding blade tip torsion is almost zero). Results from present approach are compared to

those provided by the validated modal aeroelastic solver [62] presented in Section 4.2.2.
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Figure 4.31: Turbine �ap and lag bending blade tip displacements

Finally, the proposed aeroelastic tool is applied to evaluate wind turbine delivered thrust and power at the

steady equilibrium conditions. The accuracy of wind turbine performance predictions is examined in Figure 4.32,

showing that the present approach yields a satisfactory agreement with measurements in the range 5m/s ≤ Vw ≤
17m/s. In order to improve global loads predictions at high-angle-of-attack conditions, semi-empirical models,

discussed in Section 3.3.2 and already validated in the numerical tool based on a spectral approach (see Section

4.2.2.4) should be included in the model.
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Figure 4.32: Turbine performance predictions: thrust (left) and power (right)



Chapter 5

Conclusions

Due to the large dimensions of the rotor system currently used in wind turbines plants, aeroelasticity assumes a

crucial role in the design stage, where the availability of fast and accurate prediction tools is nowadays a need

for engineers and researchers to accurately evaluate performance of such devices during their operational life.

These considerations have inspired the present thesis aimed at assessing a FEM-based aeroelastic formulation

for the analysis of horizontal axis wind turbines in di�erent working conditions. A key-point of this work is the

choice of the more accurate aerodynamic model able to capture the main physical phenomena occurring on the

blades and in the �ow �eld surrounding them. In this context, di�erent sectional aerodynamic theories have

been analyzed and discussed; the most complete has been formulated by Beddoes-Leishman taking into account

unsteady e�ects due to both shed vorticity and dynamic stall onset. Focusing on 2D airfoils undergoing harmonic

pitch motion about the quarter chord point, the comparison with available numerical data highlights that the

Beddoes-Leishman aerodynamic model is fully adequate into predict the unsteady airloads.

The inclusion of three-dimensional e�ects has been accomplished by coupling a 3D solver based on a Boundary

Element Method for incompressible, potential �ows and the B-L model; this gives four aerodynamic formulations

including shed vorticity, dynamic stall, leading and trailing edge separations, as well as three dimensional

wake induced e�ects. Numerical results carried out from these models applied on a test-case concerning an

oscillating/translating 3D wing in water highlight the capability of the proposed formulations into capture

the hydroloads measured during a devoted experimental campaign performed at CNR-INSEAN towing-tank.

Speci�cally:

� The main features of unsteady wing aerodynamics and of dynamic stall phenomena, especially for lift

coe�cient, are well predicted.

� The inherent randomness of the �ow during the reattachment phase induces signi�cant variations of the

airloads over the wing and thus, numerical simulations of the downstroke phase do not match very well

experimental results. This is particularly evident in terms of drag hysteresis loop.

Next, the aeroelastic formulation based on a spectral approach has been validated through a comparison with

experimental results performed on the NREL horizontal axis wind turbine. The main results are:

� Predictions given by three of the four BEM/B-L coupling strategies are of good quality up to the onset of

massive stall. Results from Method 2 are the most accurate whereas those coming from Method 4 show

89
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the poorest agreement.

� The transition from attached to separated �ow conditions remains a critical issue to be modeled when

dealing with performance predictions.

� Semi empirical models have been successfully applied to extend to massively separated �ow (high wind

speed) conditions the accurate prediction of wind turbine thrust and power.

� Comparison with results provided by the well known FAST© code has shown that Method 2 yields

predictions that are in good agreement with those obtained by a state-of-art BEMT approach up to

Vw = 17m/s, whilst a better correlation with experimental data is observed above this threshold.

� Blade deformations scarcely a�ect turbine performance for this speci�c test case.

� A novel approach for the spatial integration of the additional aerodynamic states of the B-L model has

been proposed. The e�ectiveness of this technique has been veri�ed, showing its advantages with respect

to a strip theory approach, commonly used for application of two-dimensional models in three-dimensional

problems.

Finally, the aeroelastic formulation based on the FEM technique has been validated. Due to aeroelastic simi-

larities between helicopter and wind turbine rotor blades, di�erent types of helicopter main rotors in hovering

and forward �ight have been considered for validation purposes; then, blade response and performance of NREL

horizontal axis wind turbine have been evaluated. Conclusions and observations can be summarized as follows:

� Making reference to helicopter rotors, structural dynamics modeling has been successfully validated by

comparing mode shapes and nonrotating/rotating blade natural frequency with available experimental

and numerical results.

� The aeroelastic formulation has been validated in terms of section airloads and steady state aeroelastic

displacements for a hovering helicopter rotor. Furthermore, the time-history of the blade tip displacement

induced by small perturbations about the hovering equilibrium condition, has been compared successfully

with literature data.

� A comparison with literature data shows that the proposed tool is fully able to accurately predict time

histories of the blade tip de�ections and rotor hub loads.

� Application to a wind turbine test case has proven that the present solver well predicts blade deformation

and delivered rotor thrust and power over a wide range of operating conditions, as shown by comparison

with numerical and experimental data available in literature.



Appendix A

Derivations of terms appearing in blade

energy expressions

In this appendix, procedure with which terms appearing in equations (2.19) and (2.33) are obtained, is presented.

Let us consider the �rst term of equation (2.14). Substituting equation (2.18) into (2.15) and analyzing just the

�rst contribution of (2.18) yields:

δUb =

ˆ R

0

¨
A

(Eεxxδεxx) dηdζ dx =

ˆ R

0

¨
A

(
Eu

′

eδu
′

e

)
dηdζ dx (A.1)

De�ections are only function of the position along the span, so it can be rewritten as

δUb =

ˆ R

0

(
u
′

eδu
′

e

¨
A

E dηdζ

)
dx (A.2)

where EA =
˜
A
E dηdζ represents the axial sti�ness of the section. Finally, in nondimensional form (reference

parameters are listed in Section 2.2):

¯δUb =
δUb

m0Ω2
0R

3
=

1

m0Ω2
0R

3

ˆ R/R

0

(
ĒAm0Ω2

0R
2 ū′e δū

′
e

)
dx̄R =

ˆ 1

0

(
ĒAū′eδū

′
e

)
dx̄ (A.3)

in which ¯ indicates nondimensional quantities. ĒAū′e is one term of Ū
ū′e

(equation 2.19) and it represents a

contribution of the elemental sti�ness matrix.

For gyroscopic and mass matrix terms let us consider kinetic energy expression. For example, the following

contributions for Vb and δVb are analyzed:

Vb = ẋ1

δVb = δẋ1 − Ωδy1

(A.4)

Equation (2.32) becomes

δTb =

ˆ R

0

¨
A

(ρsẋ1 · (δẋ1 − Ωδy1)) dηdζ dx (A.5)

Considering only the �rst term of δVb, remembering that equation (A.5) must to be integrated between two
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di�erent time step (see equation (2.11)), we can take time integration into the space one as follows

δΠ =

ˆ ψ2

ψ1

[ˆ R

0

¨
A

(ρsẋ1 · δẋ1) dηdζ dx

]
dψ =

˚
V

ˆ ψ2

ψ1

(ρsẋ1 · δẋ1) dψ dV (A.6)

then integrating by parts yields:

ˆ ψ2

ψ1

(ρsẋ1 · δẋ1) dψ = ρsẋ1 · δx1|ψ2

ψ1
−
ˆ ψ2

ψ1

(ρsẍ1 · δx1) dψ (A.7)

On the right hand side of equation (A.7), the �rst term is equal to zero for the homogeneous boundary conditions.

Now, replacing equation (A.7) into (A.5), and then into (2.11) yields

δΠ =

ˆ ψ2

ψ1

[ˆ R

0

¨
A

[ρs (−ẍ1δx1 − ẋ1Ωδy1)] dηdζ dx

]
dψ (A.8)

Finally, expression of these contributions of kinetic energy in nondimensional form is

¯δTb =
δTb

m0Ω2
0R

3
=

1

m0Ω2
0R

3

ˆ R/R

0

¨
A

ρs
(
−¯̈x1Ω2Rδx̄1R− ¯̇x1ΩRΩδȳ1R

)
dηdζ dx̄R (A.9)

denoting with µs =
˜
A
ρsdηdζ

m0
the nondimensional mass section yields

¯δTb =

ˆ 1

0

µs

[
−¯̈x1

(
Ω

Ω0

)2

δx̄1 − ¯̇x1
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Ω
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δȳ1
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dx̄ (A.10)

Dependence of section degrees of freedom is outlined substituting equations (2.29) and (2.18) into (A.10). For

example, just considering the �rst term of equations (2.29) and (2.18) yields

¯δTb =

ˆ 1

0

µs

[
−¯̈ue

(
Ω

Ω0

)2

δūe − ¯̇ue

(
Ω

Ω0

)2

δv̄

]
dx̄ (A.11)

The �rst term of the above expression represents a contribution of T̄ūe (equation 2.33) and it will contribute to

the elemental mass matrix, whilst the other one is a part of T̄v̄ and being a Coriolis force term it will compose

the gyroscopic matrix.

Centrifugal force contribution which derives from kinetic energy is here discussed. The following expressions

for Vb and δVb are analyzed:

Vb = Ωx1

δVb = Ωδx1

(A.12)

In this case, equation (2.32) is

δTb =

ˆ R

0

¨
A

(
ρsΩ

2x1 · δx1

)
dηdζ dx (A.13)

From equations (2.18) and (2.29), terms reported in the next expression are the only ones which are considered
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x1 = x

δx1 = δu =
´ x

0
v′δv′dx

(A.14)

So the argument of equation (A.13) in nondimensional form can be written as
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Splitting the last integral into two parts, yields[ˆ x̄

0
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where the addition of the �rst two terms gives a null contribution whilst the last one represents part of the

centrifugal force.



Appendix B

Numerical methods for aeroelastic system

integration

In this section, three �nite-di�erence schemes for the integration of the initial value problem governing rotor

aeroelasticity are presented.

B.1 Crank-Nicolson algorithm

The aeroelastic system to be integrated is

Mq̈ + Cq̇ + Kq = F (B.1)

The Crank-Nicolson algorithm is an implicit numerical scheme applicable on �rst order problems. To this aim,

by de�ning q̇ = x and substituting it into equation (B.1) one obtains

Mẋ + Cx + Kq = F (B.2)

Thus, the system of N ODEs is transformed into a new system with 2N equations q̇ = x

ẋ = −M−1Kq−M−1Cx + M−1F
(B.3)

which can be put in the following matricial (normal) form{
q̇

ẋ

}
=

[
O I

−M−1K −M−1C

]{
q

x

}
+

{
O

M−1F

}
(B.4)

Introducing the following notations

z =

{
q

x

}
A =

[
O I

−M−1K −M−1C

]
f =

{
O

M−1F

}
(B.5)
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yields

ż = Az + f (t, z) (B.6)

Backward di�erence approximation is used for the velocity, vector Az is replaced by its mean value, whilst at

each iteration step the force vector (depending on the unknown degrees of freedom) is assumed equal to that

evaluated at the previous one:

ż = 1
∆t (zn+1 − zn)

Az = 1
2 [(Az) n+1 + (Az) n]

f = fn

(B.7)

Substituting equations (B.7) into the second of equations (B.4) yields the solution for the n+ 1 step

zn+1 =

(
I− ∆t

2
An+1

)−1 [(
I +

∆t

2
An

)
zn + ∆t · fn

]
(B.8)

with the initial condition z (0) = z0. Numerical accuracy of this scheme is O
(
∆t2

)
.

B.2 Newmark-β algorithm

The Newmark-β algorithm is a second order numerical scheme and it is a one step implicit method for solving

ordinary di�erential equations. Second order systems can be directly integrated with this scheme without the

necessity to put them in a normal form.

The following approximation for the unknown vector is used

q = βqn+1 + (1− 2β) qn + βqn−1 (B.9)

whilst central di�erence approximations for velocity and acceleration are applied

q̇ = γ qn+1−qn−1

∆t

q̈ = qn+1−2qn+qn−1

∆t2

(B.10)

The variables β and γ are numerical parameters that control both the stability of the method and the amount

of numerical damping introduced into the system by the method. The 'average acceleration' is one of the most

used method in which β = 0.25 and γ = 0.5; this values assure that the scheme will be unconditionally stable

and numerical damping will not be introduced in the system.

Substituting equations (B.9) and (B.10) into (B.1) yields the following expression for the vector q at the step

n+ 1:

qn+1 = −A−1
[
Dqn−1 + Bqn − Fn∆t2

]
(B.11)

where

A = M + γ ·∆t ·C + β ·∆t2 ·K
D = M− γ ·∆t ·C + β ·∆t2 ·K
B = −2 ·M + (1− 2β) ·∆t2 ·K

(B.12)
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The problem initial conditions are q (0) = q0 and q̇ (0) = q̇0. Numerical accuracy of this scheme is O
(
∆t2

)
.

B.3 Runge-Kutta algorithm

The most commonly used explicit method for the solution of �rst order ordinary di�erential equations is the

fourth order Runge-Kutta algorithm. For the state space form of the aeroelastic system (B.4), already seen in

Section (B.1), the solution is obtained as

zn+1 = zn +
1

6
(k1 + 2 · k2 + 2 · k3 + k4) (B.13)

where

k1 = ∆t · f̂ (tn, zn)

k2 = ∆t · f̂
(
tn + ∆t

2 , zn + 1
2 · k1

)
k3 = ∆t · f̂

(
tn + ∆t

2 , zn + 1
2 · k2

)
k4 = ∆t · f̂

(
tn + ∆t

2 , zn + k3

) (B.14)

in which f̂ = Az+ f and the initial condition is z (0) = z0. Thus, the fourth-order Runge-Kutta method requires

four evaluations of the right-hand side for each step ∆t; truncation error is of order O
(
∆t5

)
.

B.4 Newmark-β and Crank-Nicolson combined solution scheme

This section proposes a combined solution scheme in which the second order ODEs are solved through the

Newmark-β algorithm whereas the �rst order ones are solved by Crank-Nicolson method. Speci�cally, in the

present thesis, �rst order ODEs are introduced to describe the dynamics of the additional states appearing in

the Beddoes-Leishman sectional aerodynamic formulation.

In details, the aeroelastic di�erential system to be solved is

Mq̈ + Cq̇ + Kq = f (x, ẋ,q, q̇, q̈) (B.15)

where the dynamics of the additional aerodynamic states x is governed by the following �rst order ODEs

ẋ = Ax + F (q, q̇) (B.16)

with initial conditions q (0) = qo, q̇ (0) = q̇o and x (0) = xo.

Following Newmark-β algorithm, the aeroelastic solution q can be computed at the step n + 1, then Fn+1 is

evaluated and Crank-Nicolson scheme provides the new additional aerodynamic states solution xn+1. Finally,

Newmark-β is applied to calculate the new aeroelastic solution and the process is iterated up to convergence.



Appendix C

De�nition of the state-space

Beddoes-Leishman model matrices

The state-space constant matrices in equations (3.53) are given by

A =



a11 0 0 0 0 0 0 0

0 a22 0 0 0 0 0 0

0 0 a33 0 0 0 0 0

0 0 0 a44 0 0 0 0

0 0 0 0 a55 0 0 0

0 0 0 0 0 a66 0 0

0 0 0 0 0 0 a77 0

0 0 0 0 0 0 0 a88


B =



1 0.5

1 0.5

1 0

0 1

1 0

1 0

0 1

0 1


(C.1)

C =

[
c11 c12 c13 c14 0 0 0 0

c21 c22 0 0 c25 c26 c27 c28

]
D =

[
4
M

1
M

− 1
M − 7

12M

]
(C.2)

where the elements in matrix A are given by

a11 = − 2V
c b1β

2 a22 = − 2V
c b2β

2

a33 = − 1
KαTI

a44 = − 1
KqTI

a55 = − 1
b3KαMTI

a66 = − 1
b4KαMTI

a77 = − 2V
c b5β

2 a88 = − 1
KqMTI

(C.3)

while elements in matrix C are

c11 = CSNα
2V
c β

2A1b1 c12 = CSNα
2V
c β

2A2b2

c13 = 4
M

(
−1
KαTI

)
c14 = 1

M

(
−1
KqTI

)
c21 = c11 (0.25− xac) c22 = c12 (0.25− xac)
c25 = −1

M

(
−A3

b3KαMTI

)
c26 = −1

M

(
−A4

b4KαMTI

)
c27 = −C

S
Nα

16
2V
c β

2b5 c28 = −7
12M

(
−1

KqMTI

)
(C.4)
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and xac is the nondimensional position of the airfoil aerodynamic centre.



Appendix D

Spatial integration technique for

additional aerodynamic states

The novel approach proposed for the spatial integration of the equations describing spanwise continuous B-L

aerodynamic states, x1−9, is here applied to a simple, illustrative case study. Let us consider a slender, unswept,

untapered, uniform wing in uniform, rectilinear �ight. For aeroelastic modelling purposes, it is suitably described

by a structural dynamics bending-torsion, linear, beam-like model, combined with aerodynamic loads. This

yields, for the elastic axis coinciding with the center-of-mass axis,

mẅ + EIyw
IV = L (w, φ, θ)

JEφ̈−GJφII = ME (w, φ, θ)
(D.1)

where w is the bending displacement, φ is the cross-section torsion angle, θ is the undeformed wing section pitch

angle with respect to freestream, m is the mass per unit length, JE is the sectional moment of inertia about

the elastic axis, whereas EIy and GJ denote bending and torsional sti�nesses, respectively. The aerodynamic

forcing terms in equation (D.1) are sectional lift, L, and moment about the elastic axis, ME . These, under the

assumption of inviscid, attached �ow, might be modeled through the two-dimensional Theodorsen theory, which

provides analytic expressions for aerodynamic loads on thin airfoils undergoing pitching and plunging motion

[25]. In the complex-frequency domain, for ŝ = s b/V representing the reduced Laplace variable, with b and

V denoting, respectively, semi-chord length and freestream velocity, when elastic axis and quarter-chord line

coincide it gives [25]

L̃ = π ρ b V ŝ ṽ1/2(ŝ) + 2π ρV bC(ŝ) ṽ3/4(ŝ)

M̃E = π ρ b2 V ŝ [ṽ1/2(ŝ)− 1/2ṽ3/8(ŝ)]
(D.2)

with vξ = vξ(w, φ, θ) denoting relative wind upwash at the ξ chordwise position, for 0 ≤ ξ ≤ 1 and ξ = 0 at the

leading edge. The generalized Lift De�ciency Function, C(ŝ), is a transcendental function of ŝ [63], originally

derived in the frequency domain for analysis of airfoil aerodynamic response to harmonic plunge and pitch

motion [25]. In order to derive a �nite-state aeroelastic wing formulation, the following second-degree Pade'

approximation for C(ŝ) is assumed

99



APPENDIX D. SPATIAL INTEGRATION TECHNIQUE FOR ADDITIONAL AERODYNAMIC STATES 100

C(ŝ) ≈ 1

2

(ŝ− z1)(ŝ− z2)

(ŝ− p1)(ŝ− p2)
(D.3)

that, once expanded in partial fractions, yields

C(ŝ) ≈ 1

2
+

a1

(ŝ− p1)
+

a2

(ŝ− p2)
(D.4)

with zeroes, z1, z2, and poles, p1, p2 given, for instance, in [64]. Then, combining equation (D.2) with equation

(D.4), transforming into dimensional time domain, and next coupling with equation (D.1) provides the following

wing aeroelastic formulation

mẅ + EIy w
IV = π ρ b2 v̇1/2 + 2π ρV b [0.5 v3/4 + (a1 V/b) r1 + (a2 V/b) r2]

JE φ̈−GJ φII = π ρ b3 [v̇1/2 − 1/2v̇3/8]

ṙ1 − (p1 V/b) r1 = v3/4

ṙ2 − (p2 V/b) r2 = v3/4

(D.5)

with r1, r2 denoting the additional aerodynamic states introduced by the Pade' approximation for C(ŝ), which

are fully equivalent to states x1, x2 of the B-L model applied for turbine aeroelasticity.

Observing that under small perturbation assumption, sectional downwash, vξ, may be expressed in terms of

a linear combination of wing bending, torsion and rigid pitch attitude and that, in particular,

v3/4 = ẇ + b φ̇+ V (φ+ θ)

the additional states, r1, r2, are decomposed into sub-states, each depending on a di�erent term contributing to

downwash: those forced by wing bending, r1w, r2w, those forced by wing torsion, r1φ, r2φ, and those independent

of wing deformation, r1θ, r2θ. Because of linearity of the aerodynamic model applied, this yields the following

aeroelastic formulation

mẅ + EIyw
IV = πρb2v̇1/2 + 2πρV b[0.5v3/4 + (a1V/b)(r1θ + r1w + r1φ) + (a2V/b)(r2θ + r2w + r2φ)]

JE φ̈−GJ φII = π ρ b3 [v̇1/2 − 1/2v̇3/8]

ṙ1θ − (p1 V/b) r1θ = V θ

ṙ1w − (p1 V/b) r1w = ẇ

ṙ1φ − (p1 V/b) r1φ = b φ̇+ V φ

ṙ2θ − (p2 V/b) r2θ = V θ

ṙ2w − (p2 V/b) r2w = ẇ

ṙ2φ − (p2 V/b) r2φ = b φ̇+ V φ

(D.6)

where the description of the additional aerodynamic states is fully equivalent to the model presented in equation

(3.64) for wind turbine aeroelasticity.

The relevant advantage of this approach appears when the Galerkin method (perfectly suitable for aeroelastic

applications) is applied for the spatial integration of the aeroelastic system. Indeed, observing that, in principle,

the spanwise distribution of the additional aerodynamic states, r1, r2, is unknown and is not subject to speci�c

constraints, their di�erential decomposition in equation (D.6) clearly suggests that the most appropriate spanwise
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distribution for each sub-state coincides with that used for the variable appearing in the corresponding forcing

term. Namely, for wing deformations described through the following linear combinations

w(x, t) =
∑
m

wm(t)Ψm(x), φ(x, t) =
∑
n

φn(t)Υn(x) (D.7)

with Ψm(x) and Υn(x) denoting suitable sets of linearly independent shape functions that satisfy the ho-

mogeneous boundary conditions, and for undeformed wing pitch angle distribution, θ = θ(x), the additional

aerodynamic states are conveniently described as

r1θ(x, t) = r1θ(t) θ(x), r1w(x, t) =
∑
m r1wm(t)Ψm(x), r1φ(x, t) =

∑
n r1φn(t)Υn(x)

r2θ(x, t) = r2θ(t) θ(x), r2w(x, t) =
∑
m r2wm(t)Ψm(x), r2φ(x, t) =

∑
n r2φn(t)Υn(x)

(D.8)

Finally, spatial integration is completed by projecting each equation in equation (D.6) onto shape functions used

for the description of the relevant variable.
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