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1. Introduction

The scope and usefulness of a flight simulator goes well beyond its pilot
training capabilities; indeed, simulators play an important role during
the design process of vehicles and control systems. The ability of a sim-
ulator to accurately predict the behavior of a helicopter using as infor-
mation only its physical characteristics would be highly desirable as it
would allow manufacturers to get an early feedback from pilots on any
design decision (concerning, for instance, handling qualities, rotorcraft-
pilot coupling proneness, etc.). However, despite the complexity and the
use of state-of-the-art components in modern simulators, they are not
yet able to provide a fully coherent representation of reality [PWP+13].
Moreover, with the aim of correcting some sub-optimal behavior in spe-
cific flight conditions and to respect the tolerances needed for the val-
idation of a flight model, a certain amount of artificial tuning is often
applied on top of the physical model. These modifications are often not
justified from an engineering standpoint and, while improving simula-
tions for particular operating conditions, they may have an adverse effect
on other parts of the flight envelope [PWP+13].

The need to tune the model can often be related to the deficiencies of the
mathematical model describing the helicopter dynamics. The physics in-
volved is indeed the result of the coupling of complex phenomena like
the nonlinear structural dynamics of the slender main rotor blades, the
complex rotor aerodynamic environment resulting from the combination
of blade motion and inflow induced by wake vorticity remaining in close
proximity of the rotor disk, the interaction of the air flow with the fuse-
lage, the main and tail rotors and mutual interactions, the interaction
with the ground, the dynamics of engine and actuators, the effects of con-
trol systems. Real-time simulation of these phenomena requires a suit-
able trade-off between modeling accuracy and computational efficiency.
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1. Introduction

Modeling and simulation of the complete aerodynamic/aeroelastic re-
sponse of a helicopter rotor during arbitrary manoeuvring flight condi-
tions is yet far from being predicted with suitable accuracy. Research
in the 1990’s and 2000’s in the USA [BLP99, QKWB99, TC00, BL00a,
BL00b, BL01, BL03] pointed out the deficiencies in current rotor wake
modeling for simulator applications and suggested that inaccurate and
incomplete modeling of transient dynamics of the rotor wake results in
deficiencies in simulator behavior to pilot control inputs. In addition,
concerning rotorcraft pilot couplings (RPC), recent research [GSMQ13,
SGM+08, MQM+15] highlighted the effects that aeroelastic and wake
modeling may have on pilots biodynamic response. For these reasons
the ability to include wake and aeroelastic effect in simulator models is
fundamental.

In this work, the focus is on the mathematical modeling of a main rotor
aeroelastic operator suitable for simulators, and, more in general, on the
development of a complete tool chain allowing to derive computationally
efficient, reduced-order models, from complex aeroelastic solvers to be
used for flight simulation tasks.

This work is structured as follows:

• in section 2 the finite-state rotor aeroelastic models employed in
the remainder of this work will be introduced;

• in section 3 the methodologies developed to extract linear time in-
variant state-space models from an arbitrary high fidelity solvers
will be described;

• in section 4 the extension of these methodologies to linear time pe-
riodic state-space models will be presented;

• in section 5 the model stitching technique will be introduced to ex-
tend the validity of the aeroelastic model in the entire helicopter
flight envelope;

• in section 6 the results obtained in two simulation sessions carried
out in the TU Delft’s SIMONA flight simulator will be illustrated;

• finally in section 7 a series of concluding remarks and possible fu-
ture developments will be presented.
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2. State-space main rotor
aeroelastic models

2.1. State of the art

Reduced-order (finite-state) representations of aeroelastic operators de-
veloped in the last decades, both for fixed-wing and rotary-wing prob-
lems, typically rely on the introduction of reduced-order (finite-state)
models for the unsteady aerodynamic operator (see, for instance, [HTD99,
HP93, KNB04, GCM00, GG08]) and are suited for aeroelastic stability
analysis.

Conversely, the proposed methodology provides a finite-state model re-
lating inputs and outputs of an arbitrary-fidelity rotor aeroelastic oper-
ator, without requiring simplifications of the aerodynamic contribution:
as such, it cannot be applied for rotor stability analysis (blade degrees
of freedom do not appear explicitly, as detailed below), but it is applica-
ble for rotorcraft aeromechanic analysis. Indeed, this novel state-space
aeroelastic modeling is suited for simulating helicopter flight dynamics,
and may be conveniently used for stability analysis and control synthe-
sis purposes, as well as for real-time simulations [GPPG14, GGP+15] as
it will be detailed in section 5 of this work.

Currently, computational tools devoted to helicopter flight dynamics and
control usually determine forces and moments transmitted by the main
rotor to the airframe by coupling its dynamics with aerodynamic loads
evaluated through sectional formulations combined with wake inflow
models. In that framework, wake inflow provides the important three-
dimensional wake vorticity effects on rotor aerodynamics, significantly
affecting the accuracy of the prediction tools. For stability and con-
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2. State-space main rotor aeroelastic models

trol synthesis purposes, as well as for real-time simulations, state-space
wake inflow modeling is employed. Several models have been devel-
oped in the last decades: among them, the Pitt-Peters dynamic inflow
model [Pit80, PP81] is widely used by rotorcraft researchers and de-
signers. It relates rotor loads (thrust, roll moment, and pitch moment)
to the coefficients of a linear distribution of wake inflow over the ro-
tor disc, as derived from an unsteady, actuator-disc theory. More re-
cently, further extensions taking into account wake distortion effects
have been proposed [KPP99, ZPP04], along with methodologies for ex-
tracting finite-state inflow dynamics models from simulations provided
by high-fidelity aerodynamic solvers (thus, capable of including effects
of complex aerodynamic phenomena, like interactions with bodies and
wakes) [RKH+15, GGS+15].

For stability, control and real-time simulation purposes, the proposed
aeroelastic model could replace the set of rotor blades dynamics equa-
tions with the associated dynamic wake inflow model, and the following
evaluation of loads transmitted to the airframe.

2.2. Finite-state models description

The main rotor aeroelastic model used in throughout this work is a black
box model yielding the components of hub forces and moments generated
by the rotor, f , as a functions of of both hub motion variables xMR, namely
three velocities U , V and W , and three angular velocities P , Q, and R,
and the blade controls variables uctrl. Note that, xMR collects hub dis-
placements and rotations given by combination of airframe rigid-body
motion and deformation, whereas uctrl collects blade pitch controls (θ0,
θ1c, θ1s) and, if present, it may also contains non-conventional controls
like trailing-edge or gurney flaps. Furthermore, note that the output
force vector, f , might contain, separately, the loads transmitted through
the mast (first load path) and the control loads transmitted to the swash-
plate through the control chain (second load path).

Three different models are studied in this work:

• a linear time invariant model describing the behavior of an heli-
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2. State-space main rotor aeroelastic models

copter rotor in the neighborhood of a given flight condition;

• a linear time periodic model describing the behavior of an heli-
copter rotor in the neighborhood of a given flight condition;

• a model, linear with respect to the internal states, valid in the en-
tire helicopter flight envelope obtained by applying a model stitch-
ing technique.

All these models are obtained by applying system identification tech-
niques to high fidelity aeroelastic solvers which may include periodic
and nonlinear terms, as well as time-delayed unsteady aerodynamics
contributions due to wake vorticity (and, if considered, flow compress-
ibility) effects. First, the transfer function matrices relating hub loads to
hub motion and controls are sampled through the evaluation of a suited
set of time-marching aeroelastic responses predicted by the high-fidelity
aeroelastic solver (model extraction). Then a state-space representation
of the loads transmitted to the airframe (model reduction) is obtained.
The details of how these two steps are carried out are given in section 3
while a general description of them is given below.

2.2.1. Linear time invariant aeroelastic model

The first embodiment of the aeroelastic model under analysis is repre-
sented by a linear time invariant (LTI) system. It describes the lin-
earized behavior of an helicopter rotor in the neighborhood of a given
flight condition. It yields the perturbation components of hub forces and
moments generated by the rotor, δf , as functions of perturbation of the
input vector δu introduced in the previous section. All the time periodic
effects are neglected. Indeed, LTI rotor representations are computation-
ally efficient approximations of the rotor dynamics effects when relating
fixed-frame variables, for which the time-constant assumption usually
acceptable.

This particular model has been effectively applied by the research team
of the Department of Engineering of Roma Tre University within the
European project ARISTOTEL (2010-2013), aimed at defining appropri-
ate tools for prediction of proneness of modern aircraft and rotorcraft to
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2. State-space main rotor aeroelastic models

adverse pilot coupling (A/RPC), and identifying guidelines to designers
of next generation aircraft to avoid it [PMD+11, PJDV+13, GCS+13].

Due to its LTI nature it is possible to represent the system using a trans-
fer function matrix E (s) relating the outputs δf with the inputs δu:

δf̃ (s) = E (s) δũ (s) (2.1)

where s is the Laplace domain variable and the δf̃ and δũ represent the
Laplace transformed output and input signals respectively. In turn it
is possible to represent this transfer function using the following non-
proper realization [SCG14]:

E (s) = s2D2 + sD1 + D0 + C (sI−A)−1 B (2.2)

or, alternatively, with the following state space system:{
δf =D2 δü + D1 δu̇ + D0 δu + Cr

ṙ =Ar + B δu
(2.3)

Matrices D2, D1, D0, C, A and B are real valued and are parametrized
as detailed in section 3.2.1. The vector r collects the additional states
associated to poles of the realization. A subset of these additional states
represents the blades degrees of freedom included in the high-fidelity
aeroelastic solver whose dynamics falls within the considered frequency
range of interest, thus affecting the extracted aeroelastic transfer ma-
trices (see appendix A). The remaining additional states take into ac-
count flow-memory (delay) effects due to unsteady wake vorticity (and
flow compressibility, if included in the analysis), that are responsible for
the transcendental nature of the aerodynamics transfer functions (thus,
in principle, giving rise to an infinite-dimension, state-space problem)
[The49]. These observations suggest that the proposed model can be
also considered as a reduced-order representation of main rotor effects
on helicopter dynamics.
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2. State-space main rotor aeroelastic models

2.2.2. Linear time periodic aeroelastic model

The linear time invariant model introduced in 2.2.1 is based on the hy-
pothesis that the periodicity of the aeroelastic operator can be neglected.
While this hypothesis is valid for most flight mechanics applications,
there are some cases where being able to model the higher order effects
caused by the time periodic behavior of the rotor is required.

A linear time periodic (LTP) model is therefore introduced. Whether
for time invariant systems the concept of transfer function matrix was
employed to describe the multiple input/multiple output dynamics of the
aeroelastic operator, to model the time periodic effects the concept of
harmonic transfer function (HTF) matrix [WH90] has to be introduced.
The HTF matrix G (s) employed in this work, explained more in detail in
section 4, relates the input δu with an arbitrary number nh of harmonic
components of the output δf , defined as:

δf (t) = δf0 (t) +

2nh∑
k=1

[δfkc (t) cos (kΩpt) + δfks (t) sin (kΩpt)] (2.4)

Matrix G (s) is formed by m = 2nh + 1 blocks with dimension M × N ,
where M is the number of outputs and N the number of inputs:

G (s) =



G0,0 (s)

G1c,0 (s)

G1s,0 (s)
...

Gnhc,0 (s)

Gnhs,0 (s)


(2.5)

These blocks can be seen as linear time invariant transfer function ma-
trices, each one relating the input δu with a specific component of δf :

δf̃0 = G0,0δũ, f̃kc = Gkc,0δũ, δf̃ks = Gks,0δũ, for k = 1 . . . nh.

(2.6)
By grouping the harmonic components of the forces in a vector δf̃h:

δf̃h =
{
δf̃0 δf̃1c δf̃1s · · · δf̃nhc δf̃nhs

}T
(2.7)
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2. State-space main rotor aeroelastic models

it is possible to express the time periodic system dynamics as a linear
time invariant system:

δf̃h (s) = G (s) δũ (s) (2.8)

It is worth noting that this system has more outputs than the LTI aeroe-
lastic model defined in 2.2.1, in particular it has m ·M outputs instead
of M ; the number of inputs is the same. Moreover the transfer function
matrix defined by the block is represents the LTI behavior of the system
and it is indeed equal to E [LPL14]:

G0,0 (s) = E (s) . (2.9)

Given that G is assimilable to a transfer function a finite-state represen-
tation can be identified to obtain a time domain model:{

δfh =D2 δü + D1 δu̇ + D0 δu + Cr

ṙ =Ar + B δu
(2.10)

The time periodic output is then rebuilt by using equation 2.4.

2.2.3. Full flight envelope model

The LTI and LTP models introduced In 2.2.1 and 2.2.2, being linear,
are valid in a limited neighborhood of the selected flight condition. As
such they are not adequate for predicting rotor aeroelastic responses
within the whole flight envelope of interest for flight simulation pur-
poses, namely, when pilot controls and helicopter motion cannot be con-
sidered as small perturbations with respect to a reference flight condi-
tion.

In order to overcome such limit of applicability, a rotor state-space model,
in which the output forces f and the input controls u are not perturbation
values but the actual values, is proposed here. Starting from the LTI
model of equation 2.3 it is possible to obtain the full values of the hub
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2. State-space main rotor aeroelastic models

forces by adding the equilibrium force vector f0 to the output:

f = f0 + δf . (2.11)

A set of flight parameters that suitably characterize the rotor behavior
is then identified, and a parameter vector ζ containing these parameters
is defined. For example, for the simulations presented in section 6 of this
work these parameters were related strictly related to some of the input
variables u (namely the hub velocities U and W ); however any external
parameter of interest may be used, for example the distance from the
ground (to take into account the ground effects), the rotor angular veloc-
ity (if the rotor model is coupled with an engine model), or the air density
ρ0. This parameter vector is then used to build a database of LTI models
identified in the parameter space spanned by ζ and, by using the model
stitching technique presented in section 5, an expression continuously
defining the LTI transfer functions for all the conditions spanned by ζ is
obtained:

E (s, ζ) = s2D2 (ζ) + sD1 (ζ) + D0 (ζ) + C (ζ) [sI−A (ζ)]−1 B (ζ) (2.12)

where the matrices D2, D1, D0, C, A and B are now a function of the
ζ. The use of this model in the time domain is explained in the details
in section 5.1; to summarize, the resulting dynamical system can be ex-
pressed with the following equation:{

f =f0 (ζ) + D2 (ζ) δu (ζ) + D1 (ζ) δu̇ (ζ) + D0 (ζ) δu (ζ) + Ĉ (ζ) ṙ

ṙ =A (ζ) r + B (ζ) u
(2.13)

As mentioned before, if the parameter vector depends on the input vec-
tor, and usually such is the case, the model becomes nonlinear with re-
spect to u. For this reason it can be used to perform seamless real-time
simulations for a wide range of flight conditions. The main limit of this
model is its linearity with respect to the internal state vector r. Indeed
the additional state dynamics, albeit dependent on the flight condition
through ζ and in turn u, it is in any case linear inr. This limitation is
mitigated by using a wide parameter space for the definition of A (ζ).
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2. State-space main rotor aeroelastic models

2.3. High fidelity models description

This section contains a brief description of the high fidelity solvers used
for the finite-state model extraction throughout this work. Note that the
term “high fidelity” is used here to indicate any numerical solver capable
of describing the nonlinear and periodic nature of the helicopter physics,
but incapable of being run in real-time due to its computational costs.

The structural solver used to model the blades dynamics, and common
to all the aeroelastic models, is based on the work of Hodges and Dow-
ell [HD74]. The aeroelastic integro-differential system of equations ob-
tained by coupling it with aerodynamic loads is spatially integrated through
the Galerkin approach, with elastic axis deformation and cross-section
torsion represented as linear combinations of shape functions satisfying
homogeneous boundary conditions. This yields a set of nonlinear, ordi-
nary differential equations of the type

M(t) q̈ + C(t) q̇ + K(t) q = fnl
str(q, t) + faer(q, t) (2.14)

where q denotes the vector of the Lagrangian coordinates, M, C, and K

are time-periodic, mass, damping, and stiffness structural matrices rep-
resenting the linear structural terms, fnl

str (q, t) is the vector of the nonlin-
ear structural contributions, and finally faer (q, t) collects the generalized
aerodynamic forces.

A time-marching Newmark-β integration scheme is employed to obtain
the response of the aeroelastic system to arbitrary inputs.

Two different aerodynamic solvers are employed alternatively for the
computation of the aerodynamic loads faer:

• a blade element theory model based on sectional Greenberg the-
ory, under quasi-steady (QS) approximation, coupled with an inflow
model (either static, Pitt-Peters or a BEM derived dynamic inflow
model [GGS+15]);

• a boundary element method (BEM) for the solution of a boundary
integral equation, suited for the analysis of potential flows around
helicopter rotors in arbitrary flight conditions, included those where
strong blade-vortex interactions occur [GB07].
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2. State-space main rotor aeroelastic models

All the results presented in this work are representative of a hingeless
rotor, closely related to the Bo-105 main rotor, having four blades with
radius R = 4.94 m, constant chord c = 0.395 m, linear twist of -8° and
nominal rotational speed Ω = 44.4 rad/s. More details will be given on the
relevant sections.
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3. Linear time invariant model
extraction from high-fidelity
solvers

System identification methods for the characterization of high fidelity
computational aeroelastic solvers are the backbone of this work. In the
present section the methods that has been developed and employed in
the remainder of this work will be presented. Three main topics will be
covered:

• Linear time invariant (LTI) systems and their non-parametric iden-
tification

• Linear time periodic (LTP) systems and their non-parametric iden-
tification

• Parametric identification of LTI and LTP systems

Two non-parametric linear time invariant system identification tech-
niques will be presented, one based on single harmonic response and a
second based on response of a chirp input signal. These two techniques
are employed to obtain an accurate estimation of the linear time invari-
ant behavior of a generic nonlinear time periodic dynamical system, such
as the aeroelastic operator of an helicopter in forward flight.

An extension of these two methodologies for the identification of linear
time periodic systems will be then introduced, to be applied when the
time periodic behavior can not be neglected.

Finally a parametric identification methodology for the rational matrix
approximation of the sampled transfer functions, valid for both LTI and
LTP models, will be presented.

18



3. Linear time invariant model extraction from high-fidelity solvers

3.1. Linear time invariant transfer function

extraction

In this section two approaches for the transfer function extraction, or
in other terms the non-parametric identification of the aeroelastic rotor
operator are presented. Both the described approaches are applicable
under the fundamental condition that the system for which the extrac-
tion is performed is stable. In particular, regarding the isolated rotor
system presented in this work the condition is its aeroelastic stability at
the steady flight condition for which the transfer function matrices are
identified.

As already stated, the proposed model is introduced for helicopter flight
dynamics stability analysis, and is unsuited for the stability analysis of
rotor blades: actually, the rotor blades degrees of freedom appear as in-
ternal -stable- states of the resulting rotor aeroelastic operator (see App.
A). The approach presented thus far for the determination of main rotor
aeroelastic transfer functions has been recently applied in [QTM+14] for
the robust, pilot-in-the-loop, stability analysis of a helicopter in steady
flight.

3.1.1. Single frequency excitation method

The first method used in this work to perform the transfer function ex-
traction consists in the following steps:

1. the high-fidelity aeroelastic solver is applied to evaluate the hub
loads generated by small, single-harmonic perturbations of each
variable in u;

2. the harmonic components of the resulting loads having the same
frequency of the input are evaluated and then, the correspond-
ing complex values of the frequency-response functions are deter-
mined;

3. the process is repeated for a discrete number of frequencies within
a defined range, so as to get adequate sampling of the frequency-
response matrix, E (ω) for the specific case examined.
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3. Linear time invariant model extraction from high-fidelity solvers

Indeed, operators with periodic coefficients yield multi-harmonic out-
puts even when forced with single-harmonic inputs. The same is usu-
ally true for nonlinear operators. By extracting from the output only
the components at the same frequency of the perturbation input implies
that a constant-coefficient approximation of the operators relating f to
u is obtained. Moreover, by using a sufficiently small input a lineariza-
tion of the operator is performed. This capability of isolating and elim-
inating the effects of the time periodicity of operators is the main ad-
vantage of this identification approach. Some care is however needed
if particular frequencies are analyzed, namely frequencies in the set
{1/2Ωp,Ωp, 3/2Ωp, 2Ωp, . . . } where Ωp is the periodicity of the system. More
detail on this issue are given in section 4 where the theory of linear time
periodic systems will be presented.

It is worth mentioning that the second step of the process, namely the
determination of the harmonic components of the output, are obtained
through a discrete Fourier transform of the signal. The following issues
have to be taken care of to perform an accurate identification [GM12]:

• to isolate the harmonic response the period of the aeroelastic re-
sponse examined starts after that the transient is vanished.

• To avoid leakage effects the period examined is chosen to be an
integer multiple of the input harmonic period.

• A sufficiently long period is recorded to reduce the effects of leak-
age. This is particularly important for inputs whose frequency ω is
comparable to, or larger than Ωp. Indeed if a single period of per-
turbation is recorded the multi-harmonic output components with
a frequency smaller than ω would in part leak to the DFT peak cor-
responding to ω thus negatively affecting the identification quality.

• If a substantial random noise is present in the output signal an ul-
terior increase of the length of the recording period is performed.
Then a noise reduction can be performed by mediating various pe-
riodograms.

The effect of the output sampling window size is illustrated in figure
3.1, for the transfer function relating hub longitudinal displacement per-
turbations to pitching moment. In forward flight conditions, the output
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Figure 3.1.: Effect of parameter nleak on extracted pitching moment vs
longitudinal displacement transfer function, QS model with
static inflow.

harmonic content is affected by the intrinsic periodicity of the aeroelastic
operator, and this makes the size of the output sampling window a crit-
ical parameter in terms of leakage occurrence: this figure shows that,
for the examined case, a five-period duration of the pulsating input is an
adequate sampling window. The parameter nleak represent indeed the
number of sampled periods; it is worth observing that nleak = 1 would
be adequate for a hovering rotor condition.

This method, if correctly implemented, offers a very robust approach for
the non-parametric identification of the LTI transfer functions of a time-
periodic system: it automatically deals with time-periodicities and most
nonlinearities, and it can deal with a noisy output as well. However
these features may comes at a price; the need for the extinction of the
transient and the length of the recorded periods may rapidly increase
the computational cost of the identification when applied to system with
a large time constant (thus a long transient) and/or with particularly
noisy output. Furthermore it is worth noting that the computational
cost increase as O (Nf ) where Nf represents the number of analyzed fre-
quencies. For this reason in the next section a method with a smaller
computational cost, yet more brittle, will be presented.
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3.1.2. Chirp excitation method

In the previous section the advantages of an identification technique
based of single frequency excitation were discussed. However this ap-
proach has an important drawback: it usually requires long simulations
to be able to sample a wide spectrum of frequencies. In fact to get a
single sample of a column of the transfer function matrix (the effect of
an input on all the outputs) for a certain frequency ω, a simulation time
larger than the slowest time constant is needed for the transient effects
to become negligible. As the value of ω increases the useful part of sim-
ulation time (proportional to 1/ω) becomes comparable or even smaller
than the the time spent on waiting for the transient to vanish.

To overcome this efficiency issue an approach often used in system iden-
tification is perturbing the system with more than one frequency at a
time. The approach presented in this section uses a so called “chirp”
signal as an input. This methodology is widely used in [TR06] for the
identification of rotorcraft and aircraft systems, and in this section the
same approach will be presented. However, it will be shown that this
approach is not suitable for the identification of the rotor aeroelastic op-
erator under analysis due its inability to cope with time periodic effects.
An extension for the robust application to LTP systems will be presented
in section 4.2.1.

The main characteristic of a chirp signal is the full band spectrum. This
characteristic is shared with impulse inputs with the advantage of hav-
ing a much smaller maximum amplitude of the signal for the same fre-
quency spectrum module; a small amplitude of the signal is fundamental
when a linear behavior of the system is sought as in the present case.

A simple chirp signal can be defined as an harmonic signal whose fre-
quency varies in time. For example:

u (t) = sin (g (t) t+ φ) (3.1)

where the function g (t) defines how the frequency is swept along the
chirp. In particular the frequency ω (t) can be defined taking the first
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Figure 3.2.: A quadratic chirp with a frequency band from 0 to 44 rad/s:
time history on the left, discrete Fourier transform module
on the right.

derivative of g (t) t:

ω (t) =
d

dt
[g (t) t] = t

d

dt
g (t) + g (t) . (3.2)

In real applications the chirp spectrum is limited in a band between a
minimum and a maximum frequency and it depends on the choice of the
frequency function g (t). Moreover a good practice when creating an in-
put chirp is having a decreasing amplitude at the end of the signal and to
zero-pad it further for at least a duration equal to the slowest dynamics
of the excited system. In this way both the input and the output will be
less affected by the windowing effects introduced by the discrete Fourier
Transform. In figure 3.2 a quadratic chirp with this characteristics and
its frequency spectrum are depicted. The dashed vertical line in the
right part of that figure indicates the maximum frequency at which the
system is adequately excited, while the decreasing nature of the signal
band is caused by the quadratic nature of g (t).

Similarly to the previous method the high-fidelity aeroelastic solver is
applied to evaluate the hub loads generated by the small chirp input, for
each variable in u. To proceed with the identification of the transfer func-
tions (see [Lju98] for a complete theoretical overview) two approaches
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can be employed. The simplest, yet more brittle approach relies on the
discrete Fourier transform. The ratio between the DFTs of the output
and of the input gives a good estimation of the transfer functions E (Ω)

when the output signal is not affected by noise and when the windowing
artifacts are negligible for both signals:

E (ωi) =
ỹ (ωi)

ũ (ωi)
(3.3)

While it is possible to reduce the artifacts introduced by the windowing
of the signal, it is often impossible to eliminate all the noise sources from
the output. Even for signals that are the outcome of a presumably deter-
ministic computer simulation (such are all the output signals considered
in this work) a certain noise component with characteristic similar to
random noise is often present.

To reduce the influence of the random noise on the quality of the esti-
mation a second approach for the analysis of the chirp output can be
employed: the power spectral densities of the signals are considered in-
stead of their DFTs [Lju98]. In particular the transfer function between
an input u and an output y is defined as:

E (ωi) =
Pyu (ωi)

Puu (ωi)
(3.4)

where Pyu and Puu are the input-output cross spectral density (CSD) and
the power spectral density (PSD) of the input respectively. Recalling
the definition of the cross and power spectral densities it can be shown
that the zero mean random noise is filtered by the application of the
cross spectral density operator. On an implementation level in this work
the estimation of the spectral densities is carried out using the Welch
periodograms technique [Wel67]. It is worth noting that, similarly to the
single frequency-response method presented previously, a noisy signal
imposes a longer duration of the simulation to be able to maintain a
sufficient frequency resolution due to the application of the periodogram
method.

Even if longer simulation times may be able to effectively mitigate the
negative effect of the noise on the identification accuracy, this method, as
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presented, does not offer an effective way to filter out the multi-harmonic
effects caused by nonlinearities time periodic behavior of the operator. In
particular this second issue is of fundamental importance for the objec-
tives of this work and a solution will be presented in section 4.2.1.

To obtain an indication of the quality of the identification in terms of
impact of output noise and effects of certain nonlinearities the coherence
between the input and the output can be used [TR06]. The coherence
between two signals u (t) and y (t) is defined as:

Cyu (ωi) =
|Pyu (ωi)|2

Puu (ωi)Pyy (ωi)
C (ω) ∈ {0, 1} (3.5)

and it varies between zero and one. An unitary, or almost unitary, coher-
ence is an indication of a linear correlation between the two signals and
hence it may indicate that the transfer function was correctly identified.
A low coherence may indicate a high noise-to-signal ratio, the presence
of certain kinds of nonlinearities, an insufficient excitation of a particu-
lar range of frequencies, or simply a zero of the system. However useful,
the coherence is unable to point out the presence of time-periodic effects.

3.2. Rational matrix approximation

In modern control theory parametric system identification usually tries
to find the value of the matrices1 A, B, C and D0 defining a proper trans-
fer function:

Ep (s) = D0 + C (sI−A)−1 B (3.6)

from the knowledge of Ep (ωk) for a discrete number of frequencies ωk.

In aeroelasticity non-proper transfer functions are common in the de-
scription of the aerodynamic forces with respect to generalized modes
[Kar82]. Let us consider for instance the transfer function relating the
forces produced by a two dimensional airfoil with its angle of attack and
vertical velocity. In that case the output of the system will depend di-
rectly on the first and on the second derivatives of some inputs. To de-

1In the control literature the constant matrix D0 is usually referred as D.
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scribe this relation a non-proper transfer function has to be used:

E (s) = D2s
2 + D1s+ D0 + C (sI−A)−1 B (3.7)

where matrices D1, D2 deals with the linear dependency of the output
on the first and on the second time derivative of the input respectively.
In fact if we consider the canonical input-output relation defined by the
transfer function matrix E (s) in the Laplace domain:

ỹ (s) = E (s) ũ (s) (3.8)

when it is transformed back in the time domain it becomes the following
dynamical system:

ṙ =Ar + Bu

y =Cr + D0u + D1u̇ + D2ü
(3.9)

When matrix D2 and D1 are null the transfer function is proper again.
Matrices D2, D1 and D0 define the polynomial part of the transfer func-
tion E (s) while matrices C, A and B form the rational part of the trans-
fer function. As discussed in detail in the following paragraphs, the es-
timation of the matrices forming the rational part represents the main
challenge of the parametric identification. For this reason the procedure
is also called rational matrix approximation or RMA.

In the previous sections a methodology to sample transfer function ma-
trices E (ω) (or alternatively G (ω) for HTF matrices) from numerical
solvers was introduced. In this section this information will be used to
obtain the values of the matrices D2, D1, D0, C, A and B. Before pre-
senting the rational matrix approximation approach developed for this
work it is worth highlighting the challenges posed by the parametric
identification.

3.2.1. Parametrization of the state-space matrices

The first step in the parametric identification is the definition of the
parameters defining the matrices D2, D1, D0, C, A and B. If some char-
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acteristics of the system under analysis are known it may be possible to
reduce the number of parameters defining these matrices. For the cases
analyzed in this work scarce or no prior information are available to de-
fine a specific parametric model. Moreover a general parametric model
was sought to be able to describe any aerodynamic and aeroelastic ef-
fects.

A parametrization of a state space model is a mapping from the parame-
ter space to the rational transfer function space. Two important features
of a parametrization are its injectivity and its surjectivity. Recalling
some basic properties of mappings, we define a parametrization as injec-
tive if any rational transfer function in the parametrization range can be
described by only one parameter vector. Similarly a parametrization is
surjective if the entire rational transfer function space is spanned by the
map, that is any function can be represented by at least one parameter
vector. If a mapping is both injective and surjective it is called bijective;
however, while for SISO systems bijective parametrizations are often
used, for MIMO systems it was shown [Gui75, Lue67] that there are no
such parametrizations.

Considering the state space form of Eq. 3.7, following [Cla76] the theo-
retical minimum number of parameters necessary to define all the pos-
sible rational transfer function for a dynamical system with McMillian
degree p is:

dmin = p (m+ n) + 3mn (3.10)

while the total number of matrix coefficients is p2 + p (m+ n) + 3mn.

A further fundamental characteristic of a parametrization is the possi-
bility to impose the asymptotic stability of the model.

On the topic of the choice of parametrization there is an extensive liter-
ature and the review of the various options is outside the scope of this
work. Only the two parametrizations employed in this work will be de-
scribed in detail: the tridiagonal parametrization and the block-diagonal
parametrization.

The tridiagonal parametrization is a well known surjective parametriza-
tion. It is based on the notion (see e.g. [GVL12]) that any real square A

matrix can be transformed to a tridiagonal matrix Â using a similarity
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transformation:
Â = T−1AT (3.11)

In fact, considering the rational part of equation 3.7, it is possible to
define two matrices B̂ = T−1B and Ĉ = CT such that matrix A can be
substituted by any matrix Â similar to it:

C (sI−A)−1 B = CT
(
sI− Â

)−1

T−1B = Ĉ
(
sI− Â

)−1

B̂ (3.12)

The standard tridiagonal parametrization has:

dtri = p (3 +m+ n)− 2 + 3mn (3.13)

parameters, with the matrix A defined as:

A (θ) =



θ1 θ2 0 0 0

θ3 θ4 θ5 0 0

0 θ6 θ7 θ8 0

0 0 θ9 θ10

. . .

0 0 0
. . .

. . .


(3.14)

In [MH96] a compact tridiagonal parametrization was proposed to fur-
ther reduce the number of parameters to:

dc−tri = p (2 +m+ n)− 1 + 3mn (3.15)

by using the following parametrization for matrix A

A (θ) =



θ1 θ2 0 0 0 0

θ3 θ1 θ4 0 0 0

0 0 θ5 θ6 0 0

0 0 θ7 θ5 θ8 0

0 0 0 0 θ9

. . .

0 0 0 0
. . .

. . .


(3.16)

while keeping the full parametrization for both B and C.

By sacrificing the surjectivity of the parametrization it is possible to drop
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the even superdiagonal elements θ4, θ8, . . . θ4i of A. In fact these elements
are necessary only to represent non-diagonalizable matrices, while any
real matrix with unitary geometric multiplicity of eigenvalues can be
represented by a block diagonal matrix with 2x2 blocks.

In [MF05] a parametrization based on a block diagonal representation
of A was presented. In particular matrix A was defined as:

A (θ) =


θ1 −θ2 0 0

θ2 θ1 0 0

0 0 θ3 −θ4

0 0 θ4 θ3

 (3.17)

with its eigenvalues readily identified as:

λi = θi ± jθi+1. (3.18)

With this parametrization it is very easy to impose the asymptotic stabil-
ity of the model, but on the other hand it is neither injective nor surjec-
tive. The total number of parameters of the block-diagonal parametriza-
tion is the following:

db−diag = p (m+ n+ 1) + 3mn. (3.19)

One of the problems of this parametrization is that distinct real eigen-
values can not be easily represented. For the applications for which it
was developed this limitation was not significant as usually all the eigen-
values were complex conjugate. However, for the sake of completeness a
modification of it is hereby proposed to be able to work with real eigen-
values.

The same spanned range of the previous parametrization is shared by
this one, but the behavior regarding real poles is improved. The matrix
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A is defined as:

A (θ) =


θ1 −θ2 0 0 0

|θ2| θ1 0 0 0

0 0 θ3 −θ4 0

0 0 |θ4| θ3 0

0 0 0 0 θ5

 . (3.20)

and its eigenvalues are:

λi = θi ±
√
θi+1

√
|θ|i+1. (3.21)

Imposing the asymptotic stability in this case is not as straightforward
as the previous parametrization but neither is particularly difficult. On
the other hand, distinct real poles can be represented easily.

All the parametrizations above introduced focused on reducing the num-
ber of parameters defining the matrix A by using similar transforma-
tions. So far matrices C and B are considered fully parametrized. In
the following a procedure to reduce the number of parameters defining
matrix C is presented.

For every square matrix A it is possible to define a set of transformation
matrices R, having the same eigenvectors of A, such that:

R−1AR = A. (3.22)

To show this property let us consider the diagonalized form of both ma-
trices:

A = ZΛAZ−1 R = ZΛRZ−1. (3.23)

Substituting Eqs. 3.23 in Eq. 3.22 and exploiting the commutativity of
diagonal matrices it is trivial to prove the equivalence of Eq. 3.22:

R−1AR = ZΛ−1
R Z−1ZΛAZ−1ZΛRZ−1 = ZΛ−1

R ΛAΛRZ−1 = A. (3.24)

Matrices A and R are said to be simultaneously diagonalizable matri-
ces; however it is worth noting that this property is valid also for non-
diagonalizable matrices using generalized eigenvectors, as Jordan blocks
satisfy the commutative property as well as diagonal matrices.
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Considering the rational part of Eq. 3.7 it is possible to obtain the same
rational transfer function using different C and B matrices but keeping
the same A by simply pre- and post-multiplying A by any simultane-
ously diagonalizable matrix R:

C (sI−A)−1 B = CR−1 (sI−A)−1 RB = C̃ (sI−A)−1 B̃ (3.25)

This non uniqueness of definition of C and B leads to a bad numeri-
cal conditioning of the least square optimization problem as the Hessian
matrix becomes singular [VV07] due to the local non injectivity of the
map. To solve this issue the number of parameters defining one of the
two matrices can be reduced by using the following procedure exploiting
the aforementioned properties of the simultaneously diagonalizable ma-
trices in the following way. Considering the separable nonlinear least
square procedure used for the optimization of the parameters (see sec-
tion 3.2.2) a reduced parametrization of matrix C is sought. This matrix
can be rewritten as:

C̃
(
θ̃
)

= C (θ) R (3.26)

where C is fully parametrized while C̃ depends on a parameter vector θ̃
that is at most p elements smaller than the full parameter vector θ. In
general the parametrization of C̃ has to be chosen to be reachable for
every C and for every obtainable A (θ). In fact it must be kept in mind
that R depends on A, as they must share the same eigenvectors, and on
p parameters, namely its eigenvalues2.

Matrix R can be seen as obtained by summing p matrices of unitary
rank:

R =

p∑
i

λiqiz
T
i (3.27)

where the vectors qi and zi represent the i-th column of matrices Z−1

and ZT respectively. Considering that R has full rank it follows that for
every eigenvalue λi of R there exist at least a row and a column of that
matrix having at least a coefficient depending linearly on λi. For this
reason, under certain conditions regarding C stated below, it is possible

2These eigenvalues are arbitrarily chosen so it is possible to assume that they are real
valued.
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to define a generic reduced parametrization of C̃ that can be used for
any parametrization of A having a fixed coefficient for every column, for
instance:

C̃ (θ) =

 1 1 1 1

θ1 θ3 θ5 θ7

θ2 θ4 θ6 θ8

 (3.28)

However this parametrization of C is not surjective. To proof this it
is sufficient to consider, for example, the first coefficient of C̃, obtained
from the dot product of the first row c1 of C and the first column r1 of R.
This coefficient was imposed to be equal to one, but in this way it is not
possible to describe a matrix C having a first column orthogonal to the
first row of R, thus proving the non-surjectivity of the parametrization.

One of the nice features of the block diagonal parametrization, albeit
not exploited in [MF05], is that the form of matrix R is well defined,
thus making it easy to define a reduced parametrization of C not suf-
fering from its non-surjectivity. In particular R has the same form as
A, that is block diagonal with 2x2 blocks depending on two indipendent
parameters x and y:

R2×2
b−diag =

[
x −y
|y| x

]
(3.29)

By employing this property the total number of parameters for the block-
diagonal parametrization becomes:

d = p (m+ n) + 3mn, (3.30)

equal to the theoretical minimum number of parameters of Eq. 3.10.

3.2.2. Nonlinear separable least square

In this section, the numerical approach applied for the rational matrix
approximation of the transfer matrix, E(s), is outlined.

Once the parametrization of the matrices D2, D1, D0, C, A and B is
chosen, as described in the section 3.2.1, the value of the parameters
θ defining said matrices is sought as to minimize the following least-
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square problem:

min
A2,A1,A0,A,B,C

 Nf∑
n=1

‖Q(ωn)‖2
F

 (3.31)

where
∥∥·∥∥

F
represents Frobenius norm of a matrix, ωn is the discrete set

of Nf frequencies at which E(s) is known (samples), whereas Q is the
error matrix defined as:

Q(ω) = −ω2D2 + ωD1 + D0 + C (ωI−A)−1 B− E (ω) (3.32)

To solve this minimization problem several methods have been proposed
in the literature [Kar82, MMDT+95, MF05]. The method presented
in [MMDT+95], consisting in a single linear least-square solution ap-
proach, has been successfully applied for finite-state modelling of rotary-
wing aerodynamic operators [GM12, GCM00, GG82], but numerical tests
have shown that it is unsuited for the approximation of the non-smooth,
irregular transfer functions characterizing helicopter main rotor aeroe-
lastic operators. Better results have been obtained by the method pre-
sented in [MF05], which solves the minimization problem of 3.31 through
an optimizer based on the conjugate gradient method. Nonetheless, it
yields suboptimal solutions and is not robust enough in terms of con-
vergence to the minimum. The minimization problem solution proposed
here is an extension of the approach of [MF05], that uses the separable
variables approach.

Considering equation 3.32 it can be observed that, for a given frequency
ωi, matrix Q depends linearly on the polynomial contribution matrices
(namely, Dk for k = 0, 1, 2) and that, for given C and A matrices, it is
linearly dependent also on matrix B. This feature of the approximation
rational form applied is exploited to separate the minimization variables
into two sets, a linear least-square problem and a nonlinear one.

First, the linear set of unknown variables is defined as the solution of
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the following algebraic problem derived from equation 3.32:
−ω2

1I ω1I I C (ω1I−A)−1

−ω2
2I ω2I I C (ω2I−A)−1

...
...

...
...

−ω2
Nf

I ωNf
I I C

(
ωNf

I−A
)−1




D2

D1

D0

B

 =


Q (ω1)

Q (ω2)
...

Q
(
ωNf

)

+


E (ω1)

E (ω2)
...

E
(
ωNf

)


(3.33)

where equation coefficients explicitly depend on the set of nonlinear vari-
ables, the unknowns are real valued (entries of matrices D2,D1,D0 and
B), whereas right hand side contributions have complex values.

Then, the set of nonlinear variables is defined as the solution of a sepa-
rate reformulated nonlinear minimization problem, thus dealing with a
drastically reduced size of solution domain. Indeed, rewriting 3.33 in a
more compact notation as:

M Xlin = Q̂ + Ĥ (3.34)

where M is the coefficient matrix, Xlin collects the matrices of the un-
known linear variables, while Ĥ and Q̂ denote, respectively, transfer
function and residual matrices evaluated at the sampling frequencies,
the optimal value of Xlin (linear least-square solution of 3.34) is formally
given by

Xlin = M∗Ĥ. (3.35)

with M∗ = (MTM)−1MT denoting the Moore-Penrose pseudoinverse of
matrix M, and the minimization problem concerning the nonlinear vari-
ables is formulated as follows

min
C,A

(∥∥∥Q̂∥∥∥2

F

)
(3.36)

with Q̂ not depending on Xlin, as demonstrated by the combination of
equations 3.34 and 3.35, that yields

Q̂ = (MM∗ − I) Ĥ (3.37)

The nonlinear minimization problem of equation 3.36 is solved by a local
minimization method based on the Broyden-Fletcher-Goldfarb-Shanno
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(BFGS) algorithm [Sha70], with matrix-fraction approach of [MMDT+95]
applied to define the initial guess solution. The gradient of the objective
function required by the BFGS algorithm (namely, the partial deriva-
tives of fobj =

∥∥Q̂∥∥2

F
with respect to the parameters defining A and C)

is evaluated through the method developed in [GP73]. Once the optimal
solution of 3.36 is determined, 3.35 directly yields the optimal values of
the linear variables.

In principle, the minimization problem should be subject to a set of con-
straints imposing real part of poles (namely, the eigenvalues of matrix
A) to be negative (in order to let the finite-state form represent a stable
system behavior, as required by initial assumptions of the proposed ap-
proach. However, it is observed that such constraints are often automati-
cally satisfied: this may be considered as an indication of the robustness
of the presented approach, which allows application of the convenient
unconstrained version of the BFGS algorithm.

3.2.3. Static derivatives imposition

To improve the accuracy of the identified model, especially when low fre-
quency inputs are analyzed, it may be convenient to exploit the knowl-
edge of the static derivatives matrix Xij = ∂fi

∂uj
. This matrix can be eas-

ily and accurately calculated by applying to the high fidelity aeroelastic
solver a small, constant valued perturbation and measuring the output
variation. In other words by applying a simple numerical differentiation.
It is easy to see that, as ω approaches zero, the transfer function matrix
E (ω) approaches the static derivatives matrix. Recalling equation 3.7
we have:

E (0) ≡ X = D0 −CA−1B (3.38)

This equation can be used to express matrix D0 as a function of C, A and
B, thus reducing the number of unknowns in the optimization problem.
Indeed if X is known the error matrix becomes:

Q(ω) = −ω2D2 + ωD1 + C
[
(ωI−A)−1 + A−1

]
B− E (ω) + X (3.39)

This reduction of the dimensions of the optimization problem has the
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twofold effect of improving reducing the computational cost needed for
the parametric identification, and of improving the accuracy of the re-
sulting model.

3.3. Numerical results

3.3.1. Transfer function identification

(a) (b)

Figure 3.3.: Rational matrix approximation of aeroelastic transfer func-
tions in hovering flight.

To give an indication of the accuracy of the parametrization method pre-
sented in this section, figures 3.3 and 3.4 present the rational approxi-
mations of transfer functions compared with sampled data, respectively
for hovering and forward flight conditions. In order to demonstrate that
it is possible to use the proposed method in combination with any aeroe-
lastic solver, predictions from both BEM and sectional, QS aerodynamic
solvers are considered. Specifically, for the hovering flight condition, fig-
ure 3.3a depicts the hub axial force vs collective pitch control perturba-
tions evaluated by quasi-steady aerodynamics, whereas figure 3.3b illus-
trates the hub pitch moment vs longitudinal cyclic pitch perturbations
evaluated by BEM aerodynamics. Transfer functions evaluated for ad-
vance ratio µ = 0.3 are presented in figures 3.4a and 3.4b. They concern,
respectively, hub roll moment vs roll angular velocity perturbations as
given by QS aerodynamics and hub roll moment vs lateral cyclic pitch
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perturbations as predicted by BEM aerodynamics. These figures demon-
strate the high quality of approximation of the aeroelastic transfer func-
tions achieved by the RMA method presented, which is an essential item
of the whole process to obtain a highly-accurate final finite-state, LTI
aeroelastic rotor model.

(a) (b)

Figure 3.4.: Rational matrix approximation of aeroelastic transfer func-
tions in forward flight.

Next, for µ = 0.3, the effects of the high-fidelity aeroelastic solver accu-
racy on the extracted linear model are examined. Figure 3.5 shows the
comparisons, in terms of amplitude and phase, between transfer func-
tions extracted from the aeroelastic solver based on BEM aerodynamics
and corresponding ones obtained by sectional aerodynamics. In particu-
lar, figure 3.5a depicts the transfer functions between the lateral force
and the lateral velocity perturbations, while figure 3.5b presents the
transfer functions between roll moment and roll angular velocity per-
turbations. In both cases, the two extracted models present poles that
have very close frequency locations: this is expected, in that rotor blades
structural dynamics strongly affects poles and zeros of the aeroelastic
response functions. However, large discrepancies may appear on aeroe-
lastic mode damping. This is particularly true when the dynamics is
dominated by the flapping modes, which are strongly affected by aero-
dynamic loads modeling, as it is evident in figure 3.5b. Differently, for
responses governed by the lag modes, like those depicted in figure 3.5a,
the two aeroelastic solvers provides closer prediction, also in terms of
mode damping. The comparisons of the rest of the transfer functions
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extracted from the two considered models, not shown here for the sake
of conciseness, present the same characteristics. It is worth noting that,
the small damping of the flapping modes is partially related to the fact
that a prescribed wake shape has been used by the BEM solver. In-
deed, it has been observed that a wake model of this type tends to pre-
dict less damped wake inflow dynamics compared to free-wake modeling
[GGS+15], thus correspondingly affecting flapping modes.

(a) (b)

Figure 3.5.: Aeroelastic transfer functions, BEM vs QS aerodynamics,
forward flight.

Furthermore, for the sake of completeness, some transfer functions ex-
tracted from the BEM-based aeroelastic solver that concern off-axis re-
sponses are presented in figure 3.6. Specifically, figure 3.6a depicts the
transfer function between the pitch moment and the roll angular velocity
perturbations, while figure 3.6b presents the transfer function between
yaw moment and blade collective pitch perturbations. Compared also
with the results in figure 3.5, they prove the capability of the proposed
aeroelastic modeling approach to capture the significant cross-coupling
effects between longitudinal and lateral dynamics that are a typical fea-
ture of rotorcraft.
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(a) (b)

Figure 3.6.: Aeroelastic transfer functions of longitudinal-lateral dynam-
ics coupling, forward flight.

3.3.2. Time-response analysis

The high level of accuracy of the reduced-order, aeroelastic rotor formu-
lation proposed is proven by comparing the predicted rotor-hub pertur-
bation forces and moments with those provided by the high-fidelity, non-
linear, time-marching solver (NLTM). These loads are obtained as re-
sponses to an arbitrary blade pitch command input, θcom.

Figure 3.7.: Thrust due to collective pitch perturbations, hovering flight.
LTI vs NLTM predictions.

39



3. Linear time invariant model extraction from high-fidelity solvers

For θcom defined as:

θcom = A sin(ωt) cos(2ωt) e(−α t) (3.40)

with A = 0.01 rad, ω = 0.3Ω and α = 0.04Ω, and considering θcom as
perturbation to collective pitch (namely, θcom ≡ θ0), figure 3.7 shows the
corresponding thrust perturbations predicted in hovering flight condi-
tion both by the high-fidelity NLTM solver and by the LTI model. The
comparison demonstrates that the simulations provided by the proposed
reduced-order formulation are very accurate. However, for hovering con-
dition, under the assumption of null cyclic pitch, predictions are not
affected by the time-constant approximation of the aeroelastic system,
thus limiting the assessment to the linearization process and reduction
to a finite number of state variables.

Unlike, in forward flight at µ = 0.3, the aeroelastic response is affected by
time-periodic effects. For this flight condition, figure 3.8a depicts the hub
forces generated by lateral cyclic pitch perturbations (namely, θcom ≡ θc)
as predicted by both the NLTM solver and by the finite-state, LTI model.
Similarly, in-plane hub moments due to collective pitch perturbations
given by the two aeroelastic solution approaches are shown in figure
3.8b. Although concerning an advancing rotor, NLTM and LTI model
responses are still in very good agreement.

It is worth reminding that, LTI-model and NLTM results presented in
figure 3.8 concern loads perturbations with respect to the steady refer-
ence flight. Therefore, stationary and 4/rev components of loads arising
in the unperturbed flight do not appear, in that they are cancelled-out in
the first step of the aeroelastic transfer matrices extraction (see section
3.1.1). According to equation 3.40, figure 3.9 shows that the main spec-
tral components of the perturbation responses in figure 3.8 are around
frequencies ω and 3ω, with smaller multi-harmonic components due to
the intrinsic periodicity of the aeroelastic operator (captured only by the
NLTM solution), around frequencies 4Ω − ω, 4Ω + ω, 4Ω − 3ω, 4Ω + 3ω

(see vertical solid lines). Further multi-harmonic components around 8Ω

could appear, but in this case these are absolutely negligible. Specifically,
figures 3.9a and 3.9a show, in addition to the input spectrum (bottom
pictures), the spectra of the corresponding LTI and NLTM predictions of
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longitudinal force, Fx and pitching moment, My, respectively. In these
figures, the effects of the slightly damped lag modes (with frequencies
identified by the vertical dashed lines) are also clearly observed both
in LTI and in NLTM spectra: in particular, a progressive mode peak
is present in figure 3.9a, whereas the response in figure 3.9b is signifi-
cantly affected by a regressive mode peak. Except for the multi-harmonic
components hidden to the LTI model (and not interesting for flight dy-
namics purposes), the comparisons between output spectra confirm the
very good quality of the simulation provided by the proposed approach.
In section 4 a methodology to capture also the multiharmonic effects ne-
glected by the LTI model will be presented.

(a) (b)

Figure 3.8.: Forward flight perturbed hub loads. LTI vs NLTM time re-
sponse predictions.

(a) (b)

Figure 3.9.: Forward flight perturbed hub loads. Spectra of LTI and
NLTM predictions.
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Furthermore, the response to a non-oscillatory type of θcom is examined.
It consists of a (smoothed) 5.7-deg collective pitch step input. For µ = 0.3,
corresponding hub loads given by the high-fidelity NLTM solver and the
LTI model are compared in figure 3.10. It shows that also in this case the
two solutions perfectly match in terms of both transitory and asymptotic
responses.

Thus, it is demonstrated that the finite-state, LTI model is a tool well
suited for accurate, real-time prediction of rotor hub loads produced by
airframe motion and blade pitch control perturbations.

(a) (b)

Figure 3.10.: Hub loads response to indicial collective pitch in advancing
flight. LTI vs NLTM predictions.

3.3.3. Influence of the additional states dynamics

As shown in sections 3.1.1 and 3.1.2, the identification of the aeroelastic
poles requires an usually non negligible computational effort. Moreover,
for real time applications there is an hard limit to the number of inter-
nal states that can be used3. For high frequency inputs, in particular
for input frequencies near to the system poles, a behavior dominated by
the additional states dynamics is expected. However, for flight dynamics
applications the range of frequencies of interest is limited, and usually
it does not exceed 10 Hz. Therefore it may not be obvious to evaluate the
importance of performing an accurate aeroelastic modeling for applica-
tions such as real time simulations.

3However true, as shown in section 6 this maximum number of poles is in the order
of the hundreds even for consumer hardware.
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Mode Real part [1/s] Imaginary part [rad/s]
I regressive flap -14.5 3.93
I regressive lag -0.97 9.46
actual lag mode -0.95 35.0
II regressive flap -17.3 42.1
actual flap mode -15.3 48.4
II regressive flap -0.96 53.8
I progressive lag -0.97 79.3
I progressive flap -13.9 92.5

Table 3.1.: Pole locus of the aeroelastic modes with a frequency less than
15 Hz

In this section an analysis of the importance of the additional states dy-
namics on the accuracy of the LTI rotor model for low frequency inputs
is presented. To perform this analysis a rotor having quasi-steady aero-
dynamics and Pitt-Peters inflow model and using one flapping mode and
one lag mode for the blade structural dynamics was considered. A LTI
finite-state model was obtained for a trimmed flight at µ = 0.25. In table
3.1 some of the eigenvalues of A, representing the poles of the aeroelas-
tic modes are detailed. In section 3.3.1 it was pointed out that of the
poles frequency is governed by the structural dynamics, while the aero-
dynamics has a greater influence on the poles damping. It is also worth
noting that due to the periodic nature of the aerodynamics and of the
input variables, the poles related to the structural modes are scattered
by ±nΩ, so they appear also for much lower frequencies than the actual
structural eigenfrequency. For example the actual flap and lag aeroelas-
tic modes have a frequency of 48 rad/s and 35 rad/s respectively, but their
regressive modes have a frequency of about 4 rad/s and 9 rad/s, well inside
the range of interest for flight simulation.

The resulting LTI was perturbed with nine quadratic chirp inputs of
unitary amplitude (1m/s for the velocities, 1rad/s for the angular velocities
and 1◦ for the blade pitch controls). Two different sets of outputs were
then considered: the full LTI system output δf (t), and the output δfs (t) of
an LTI system lacking the internal dynamics, or in other words a system
with an infinitely fast internal dynamics:

δfs (t) = Xδu (t) + D1δu̇ (t) + D2δü (t) (3.41)
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Figure 3.11.: Comparison of outputs δf and δfs. Pitching moment My vs a
horizontal velocity perturbation U (left), and vertical force
Fz vs collective pitch perturbation θ0 (right).

where X is the static derivatives matrix, defined in equation 3.38. In
figure 3.11 these outputs are depicted for two particular cases. In figure
3.11a the pitching moment My caused by an horizontal velocity pertur-
bation U is shown. In this case there is a substantial difference between
the two outputs. On the contrary, in figure 3.11b, depicting the vertical
force caused by a collective input, the dynamic of the additional states
has a small effect on the total accuracy. The reason for this difference re-
sides in the modes governing the two outputs and in their characteristic
frequency.

To summarize the importance of the additional states dynamics for all
the 54 input/output combinations the median of the following normalized
index was employed:

K (t) =
|δf (t)− δfs (t)|

δf (t)
(3.42)

and presented in figure 3.12. Of course when the influence of the addi-
tional states dynamics is negligible, a null, or small K̃ is obtained. On
the contrary, when the phenomenon is governed by the internal dynam-
ics, a K̃ with an order of magnitude of one is expected.

From figure 3.12 it is possible to see that most input/output dynamics
are heavily influenced by the additional states dynamics, even in the
limited frequency range considered here, confirming the importance of
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Figure 3.12.: Heatmap of the median relative error committed by ne-
glecting the additional states dynamics for a low frequency
input.

modeling the aeroelastic behavior of the rotor even for flight simulation
tasks.
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extraction from high-fidelity
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4.1. Introduction to harmonic transfer function

The ability of taking into account the intrinsic periodic nature of the
physics of helicopter rotors arises in many applications and is an es-
sential feature of an identification framework. In particular, even if for
some application the time-periodic behavior of a phenomenon can be ne-
glected, in others it represents an essential feature. For the aeroelastic
operator studied in this work the importance of the time-periodic be-
havior depends on the application. In section 6 it will be shown that
for general flight simulation tasks a time invariant approximation is
good enough. However for other applications, such as the analysis of
the helicopter with the rotor coupled with the fuselage structural modes
[BSCG13], it may be important having a state space model capable of de-
scribing the higher frequency output caused by an arbitrary input. More-
over, in the previous section the limits of the chirp excitation method for
non-parametric identification were highlighted: when applied to time
periodic systems this methodology suffers from a loss of accuracy.

In this section the extension of the non-parametric identification method-
ology to linear time periodic systems will be presented.

The general form of a linear time periodic (LTP) dynamical systems is
similar to the classical LTI system equation, with the notable difference
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of the time periodicity of the involved matrices:

f = C (ψ) r + D (ψ) u

ṙ = A (ψ) r + B (ψ) u
(4.1)

where ψ = Ωpt. The matrices defining the realization in 4.1 are defined
as a series of harmonic components with base frequency Ωp. For example
matrix A (t) can be defined as:

A (t) = A0 +
∞∑
k=1

(
Ake

kΩpt + A−ke
−kΩpt

)
(4.2)

and the same can be done for matrices B (t), C (t) and D (t).

The fundamental difference between a LTI system and a linear time pe-
riodic (LTP) system is that the transfer function of the former maps a
sinusoidal input signal at a given frequency into a sinusoidal output sig-
nal at the same frequency, possibly with different amplitude and phase.
In contrast, the latter maps a sinusoidal input signal to a periodic output
signal composed by an infinite number of harmonics, each with different
gains and phases1.

This one-to-many behavior of the harmonics can not be described by a
transfer function as defined for linear time invariant systems, but a dif-
ferent definition of transfer function is needed. This definition was intro-
duced in [WH90] and it is at the base of the harmonic balance technique.
The harmonic transfer function H (HTF) relates the harmonics of the
input signal u to the harmonics of the output signal y:

ỹ (s) = H (s) ũ (s)



...

ỹ−1 (s)

ỹ0 (s)

ỹ1 (s)
...


= H (s)



...

ũ−1 (s)

ũ0 (s)

ũ1 (s)
...


(4.3)

where the input and output vectors are defined in the time domain as a

1A good bibliography on this topic can be found in [LPL14].
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series of modulated signals:

y (t) =y0 (t) +
∞∑
k=1

(
yk (t) ekΩpt + y−k (t) e−kΩpt

)
,

u (t) =u0 (t) +
∞∑
k=1

(
uk (t) ekΩpt + u−k (t) e−kΩpt

)
,

(4.4)

where Ωp is again the base periodicity of the system. A similar decom-
position can be applied to the harmonic transfer function matrix H (s),
leading to a block matrix representation:

H (s) =



. . .
...

...
... . .

.

· · · H−1−1 (s) H−10 (s) H−11 (s) · · ·
· · · H0−1 (s) H00 (s) H01 (s) · · ·
· · · H1−1 (s) H10 (s) H11 (s) · · ·

. .
. ...

...
...

. . .


. (4.5)

Each block of H is a LTI transfer function matrix relating a component
of the output with a component of the input:

ỹk (s) = Hkj (s) ũj (s) (4.6)

The harmonic transfer function matrix H (s) is theoretically a doubly
infinite matrix. However, for obvious reasons, said matrix is truncated
and only the contribute of a finite number of harmonics nh is included.

It is worth noting that said components of y and u, as defined in equation
4.4, are actually time signals themselves. This means that there are infi-
nite possible decompositions of any signal. For example, an input signal
u (t) can be decomposed using a Fourier series, thus obtaining a possi-
bly infinite number of constant components uk; alternatively the same
signal can be decomposed using only a limited number of components,
or even only one component (e.g. u0 (t) = u (t)). Once the decomposition
of the input is defined the components of the output yk (t) are obtained
by the application of equation 4.6. Theoretically, if an infinite harmonic
transfer function matrix is considered the choice of the decomposition of
u and y does not influence the resulting input/output relation. However
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due to the finiteness of H, the input signal has to be decomposed using
only m = nh + 1 components.

Another important aspect of H (s), highlighted by the arbitrariness of the
input decomposition, is that it is possible to completely define any block-
diagonal of H (s) from a single block element Hkl (s) of said diagonal:

Hkl (ω + nΩp) = Hk+n,l+n (ω) . (4.7)

In other words it is possible to define the full matrix H (s) by defining
just one row or one column of blocks. Finally, when the HTF matrix
describes a real system the following property is also valid:

Hk,l (ω) = H∗k,−l (−ω) (4.8)

In this work all the systems analyzed are real, so it is convenient to in-
troduce a transformation of H (s) such that the input and output signals
are defined in terms of sinusoidal components instead of complex expo-
nential components:

y (t) =y0 (t) +
∞∑
k=1

[ykc (t) cos (kΩpt) + yks (t) sin (kΩpt)] ,

u (t) =u0 (t) +
∞∑
k=1

[ukc (t) cos (kΩpt) + uks (t) sin (kΩpt)] .

(4.9)

This can be achieved by employing the following equivalence, obtained
by applying Euler formula:

ykc = y−k + yk yks = i (yk − y−k) (4.10)

A transformation matrix T describing this change of coordinates can be
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defined accordingly:


y0

y1c

y1s

...

 = T



...

y−1

y0

y1

...




u0

u1c

u1s

...

 = T



...

u−1

u0

u1

...


(4.11)

and a HTF matrix G (s), similar to H (s) but relating sinusoidal compo-
nents of input/output instead of complex exponential components, can be
defined as:

G (s) = TH (s) T−1 (4.12)

The main advantage of using G (s) in place of H (s)is that the former is
a transfer function matrix describing a real LTI system, while the latter,
for the properties of equation 4.7, is a transfer function matrix describ-
ing a complex LTI system. As such, once the non-parametric identifica-
tion of G (s) is carried out, using one of the approaches described in the
next section, it is possible to treat the problem as a normal real valued
LTI system for the parametric identification, hence using the same tools
developed in section 3.2 for LTI systems to obtain a state space repre-
sentation.

4.2. Linear time periodic transfer function

extraction

In this section the theory regarding LTP systems and the harmonic trans-
fer function (HTF) matrix representation presented above will be used to
develop a method for the non-parametric identification of the HTF ma-
trix of the aeroelastic operator under consideration in this work. This is
an extension of that introduced in section 3.1.2 for the identification of
LTI systems.
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4.2.1. Extension of the chirp excitation method to LTP
systems

In section 3.1.2 a procedure for the identification of LTI systems using
an input signal having a band spectrum (chirp) was presented. Using
this procedure it is possible to extract the transfer functions for the fre-
quencies comprised inside this band by using a single perturbation for
each input. It was also highlighted that this methodology suffers from
an accuracy loss when applied to time-periodic systems. The reason for
this limitation is due to the fact that there is no way to distinguish if
an harmonic component of the output, having a frequency inside band
spectrum of the input signal, is the result of the response of a LTI sys-
tem excited at the same frequency or is the result of a time periodicity
of the system. Even the coherence, defined in equation 3.5, is not able to
give an indication of that. For this reason, more information than those
given by a single perturbation of the system are needed to carry out a
correct LTI identification, and to perform an harmonic transfer function
identification.

An important characteristic of LTP systems, highlighted in the previous
section, is that the output signal depends not only on the input signal,
but also on the phase of the input signal with respect to the internal
system phase ψ. In [Sid01, SCH05] an identification methodology ex-
ploiting this characteristic was presented: the idea is to apply the same
input to the LTP system multiple times, with different delays T with
respect to the beginning of a system period. By properly analyzing the
various outputs it becomes possible to differentiate between the effects
of the various harmonic transfer functions (HTF). Two approaches are
proposed in [Sid01] for the actual identification of the HTF: a first ap-
proach employing the discrete Fourier transformation, suffering from
all the noise related issues described in section 3.1.2, and a second ap-
proach using an ill defined power/cross spectral density along with an
heuristic assumption on smoothness of the transfer functions. These
two approaches, especially the second, were both found unable to prop-
erly identify the LTP aerodynamic and aeroelastic rotor operators under
analysis with a sufficient accuracy. For this reason an alternative ap-
proach is hereby presented.
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Recalling the definition of the HTF given in section 4, it is possible to
write the output of a LTP system excited by an input u (t) as:

y (t, T ) = y0 (t) +
∞∑
k=1

[ykc (t) cos (kΩp (t+ T )) + yks (t) sin (kΩ (t+ T ))] .

(4.13)
This equation is equivalent to equation 4.9, the only difference being the
explication of the dependency of the output on the delay T . The Laplace
transform of each of the output components ykc, yks is in turn given by
equation 4.6. If the input is considered as formed by only one component:

u (t) = u0 (t) (4.14)

it becomes possible to express the components of the output in the Laplace
domain as:

y0 (s) = G0,0u0 (s) , ykc (s) = Gkc,0 (s) u0 (s) , yks (s) = Gks,0 (s) u0 (s) .

(4.15)
or, in other words, by multiplying a block-column of the HTF matrix G (s)

by the Laplace transform of the input signal u0 (s). As described in sec-
tion 4, the blocks of G (s) can be considered as transfer functions of a real
valued LTI dynamical system. Then, if the signals y0 (t), ykc (t), yks (t)

can be isolated, it would be possible to apply the methodology developed
in 3.1.2 for identifying the HTF blocks G0,0 (ω), Gkc,0 (ω), Gks,0 (ω).

The decomposition of the output signal, described in equation 4.13, can
be carried out in the time domain or in the frequency domain. The former
approach is employed here.

The system is perturbed with the same chirp signal but using NT dif-
ferent delays Ti and the various outputs y (t, Ti) are recorded. Then, for
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every time step the following linear system is solved2:

R (t)



y0 (t)

y1c (t)

y1s (t)
...

ynhc (t)

ynhs (t)


=



y (t, T1)

y (t, T2)

y (t, T3)
...

y (t, TNT
)


(4.16)

and the output components are identified. The matrix R (t) is defined as:

R (t) =



1 cos (Ωp (t+ T1)) sin (Ωp (t+ T1)) · · · cos (nhΩp (t+ T1)) sin (nhΩp (t+ T1))

1 cos (Ωp (t+ T2)) sin (Ωp (t+ T2)) · · · cos (nhΩp (t+ T2)) sin (nhΩp (t+ T1))

1 cos (Ωp (t+ T3)) sin (Ωp (t+ T3)) · · · cos (nhΩp (t+ T3)) sin (nhΩp (t+ T1))
...

...
...

. . .
...

...

1 cos
(
Ωp
(
t+ TNT

))
sin
(
Ωp
(
t+ TNT

))
· · · cos

(
nhΩp

(
t+ TNT

))
sin
(
nhΩp

(
t+ TNT

))


.

The number of input perturbations NT should be greater or equal than
the number of components sought in the identification:

NT ≥ 2nh + 1 (4.17)

where nh are the number of harmonics considered.

4.3. Numerical results

4.3.1. Aerodynamic model

In this section some results regarding a purely aerodynamic model are
presented. In terms of input and outputs this model is analogous to the
aeroelastic model used throughout this work, but it lacks the internal
structural degrees of freedom: the rotor blades are in fact considered
rigid. In this case the additional states represent only the aerodynamic
poles. This aerodynamic model is similar to that introduced in [GM12]
and it is extended here to consider an arbitrary number of input/output
harmonics.

2The columns of the matrix R (t) are orthogonal to each other so an efficient solution
of the system is possible.
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Figure 4.1.: Harmonic transfer functions relating the rolling moment
with the collective pitch input.

The aerodynamic predictions used to extract the aerodynamic forces model
are obtained by an unsteady, potential-flow, boundary element method
(BEM) tool for rotorcraft, extensively validated in the past [GB07].

A Bo-105 type rotor with an advancing ratio µ = 0.2 was analyzed. The
LTP chirp methodology described in section 4.2.1 was employed to ex-
tract the harmonic transfer function (HTF) matrix of the aerodynamic
operator having periodicity equal to:

Ωp = 4Ω (4.18)

where Ω = 44.4rad/s is the rotor angular speed.

Five different delays were considered to extract five blocks of the HTF
matrix G (s) up to a frequency of 8Ω. This is a 30 × 9 matrix containing
five 6× 9 blocks. For sake of conciseness only a specific transfer function
is here analyzed, in particular the transfer function relating the rolling
moment Mx with the collective pitch control θ0. This function was chosen
as a good example where a time periodic model is able to improve the
accuracy considerably. The five harmonic transfer functions are depicted
in figure 4.1 as absolute value and phase.
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Figure 4.2.: Time-marching response of the aerodynamic rolling moment
to a collective pitch chirp input, spanning from 0 to 70 rad/s.
The complete signals (top) and a zoomed view (bottom)

A rational matrix approximation of these transfer functions, along with
the other 265 not shown here, was calculated using the methodology
explained in section 3.2, and a state space model analogous to that of
equation 2.10 was obtained. To validate this model it was perturbed
with a collective pitch chirp input with one degree of amplitude, span-
ning from 0 to 70 rad/s, and the measured obtained was compared to
the nonlinear time-marching (NLTM) solution given by the BEM solver
when perturbed with the same input. The output obtained by a LTI
model was also compared to show the differences of accuracy in the two
models. Figure 4.2 shows this comparison: the greater accuracy of the
LTP model with respect to the LTI model is noticeable, in particular for
a low frequency input the high frequency component of the output, re-
lated to the time-periodicity of the system, is not negligible. In figure
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Figure 4.3.: Power spectral density of the time-marching response of the
aerodynamic rolling moment to a collective pitch chirp input,
spanning from 0 to 70 rad/s..

4.3 the power spectral density of these signals is shown. The output of
the nonlinear, time-periodic solver is characterized by a series of bands,
about 140 rad/s wide, shifted by Ωp = 4Ω by the time periodicity of the
operator. While the LTI model is able to model just the first band, the
LTP model employed here, identified using nh = 2 harmonics is able to
correctly capture also the second and the third bands, centered around
4Ω and 8Ω.

The importance of being able to model the time periodicity of the aero-
dynamic operator resides in the following considerations: high-fidelity
aerodynamic solvers have usually very high computationally costs. Due
to the slightly damped dynamic of the blades, to perform an accurate
identification of the aeroelastic operator, long simulations are required
(see both 3.1.1 and 3.1.2). On the other hand aerodynamic poles are
more damped, and as such it may be computationally cheaper to obtain
an aerodynamic state-space mode„ even considering the LTP identifica-
tion overheads, and coupling it to the structural operator successively,
than obtaining the aeroelastic operator through a coupled solver (as it
was done in this work, see 3.3), especially if strong coupling is needed.
Moreover an alternative approach may be employed to efficiently obtain
aeroelastic operators: recently the author and others presented an aero-
dynamic state-space model describing the dynamic of the wake inflow for
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4. Linear time periodic model extraction from high-fidelity solvers

conventional [GGS+15, GGS+16] and unconventional rotors [CGB+15].
In particular in [GGS+16] it was observed that a time periodic modeling
is essential to correctly capture the inflow effects.

4.3.2. Aeroelastic model

Below some results regarding the application of the LTP extraction method-
ology to an aeroelastic solver are presented. A trimmed forward flight
condition with µ = 0.3, regarding the usual Bo-105 rotor, was consid-
ered.
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In this section the topic of model stitching for obtaining the helicopter
rotor model described in section 2.2.3 and valid in the entire flight enve-
lope will be addressed.

The term model stitching was introduced in [DPA+07, ZT10] and refers
to the process of combining discrete state-space perturbation models and
the associated trim data into a single continuous full-envelope flight-
dynamics simulation model. The model stitching technique employed in
[ZT10][TTBH15] is however different from that developed for this work,
both in terms of computational procedure and time domain application.
The approach presented here is in fact more general and can be applied
to black box solvers, while a certain knowledge of the dynamics of the
identified systems is required to apply the technique of [ZT10].

The base idea, as explained in 2.2.3, is to identify a set of parameters ζ
(for example the advancing ratio and the shaft angle of attack) affecting
the helicopter dynamic response and to apply the identification proce-
dures explained in section 3 to obtain a series of transfer functions of the
perturbation dynamics for several flight conditions described by ζ. While
in [ZT10] a gray box parametric identification is carried out for each one
of transfer functions and then the matrices A, B, C and D0 are interpo-
lated, it is not possible to do the same when a generic parametrization
is employed. In this case accurate and regular interpolation of differen-
tial models is not a straightforward task. As detailed in section 3.2.1,
when a non-injective parametrization of C, A and B is employed it is
not possible to interpolate the coefficients of these matrices, as they not
necessarily have the same meaning in the different identifications. On
the other hand even by employing a general injective parametrization,
as numerical tests have confirmed, there is no guarantee that the coeffi-
cients will have a regular variation.
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To obtain a regular interpolation of the state-space matrices, leading to
a valid description of the dynamic in the full flight envelope, matrices
D2, D1, D0, C, A, B are identified following a procedure specifically de-
veloped to guarantee a smooth variation of model matrices within the
range of operating condition considered. To obtain this the additional
degrees of freedom introduced by ζ are optimized in a procedure similar
to that described in section 3.2.2.

Akin to the previously described modeling procedures, the first step of
the procedure consists in extracting the frequency-response functions
E (s, ζ) by perturbing the high-fidelity time-marching aeroelastic solver
for a given set of operating conditions within the flight envelope of inter-
est. Then the the following optimization problem is formulated:

min

Nf ,Ns∑
i,j

‖Q (ωi, ζj)‖2 (5.1)

where the residual matrix Q, similarly to equation 3.32, is defined as:

Q(ω, ζ) = −ω2D2 (ζ)+ωD1 (ζ)+D0 (ζ)+C (ζ) [ωI−A (ζ)]−1 B (ζ)−E (ω, ζ) ,

(5.2)
while the summation is up to the number of sampled frequencies Nf

and the number Ns of flight conditions considered. The dependency of
all the state-space matrices on the vector ζ is analytically approximated
through linear combinations of b-spline functions [PT12]. The advantage
in using these interpolating functions lies in the possibility of adopt-
ing optimal sets of input data locations in the space of parameters, that
allow best fitting of matrix coefficients variation. For instance, in our
kind problems, input data are conveniently concentrated near hovering
flight condition, where the gradient of transfer functions is expected to
be relevant. The coefficients of b-splines combinations expressing matrix
entries are the variables to be identified by solving of the optimization
problem.

It is important to note that to guarantee the smoothness of the solution,
a fundamental condition to be satisfied to obtain accurate model interpo-
lations is that the number of variables of the unique problem is strictly
less than the sum of the number of variables of single approximations
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that would be introduced in the sequential interpolation problem. If this
condition were not met, then the optimal solution of the unique problem
would coincide with the solution given by the sequential solver. Reduc-
ing the variables space is a mean to impose a smooth variation of the
coefficients and solving the issues related to the not injectivity of the
single identifications.

Of course, the solution of an optimization problem comprising all inter-
polation variables at the same time poses a bigger numerical challenge,
with respect to solving a set of separate smaller interpolation problems.
For this reason the same approach of separating the linear and the non-
linear variables presented in section 3.2.2 is employed, along with a set
of gradient based optimizers as BFGS, SLSQP, CG [Joh14].

5.1. Application of the stitched model in the

time domain

With the procedure described in the previous sections the coefficients
defining the state-space matrices in the parameter space have been de-
fined. These matrices represent the linear approximation of the under-
lying model behavior, valid in the neighborhood of the conditions defined
by the parameter vector ζ. This approximation represents the dynamics
of the system when it is perturbed with an input δu = u− u0 (ζ) with re-
spect to a reference input value u0 that depends on the parameter vector
ζ. The reference input has to be chosen to minimize δu during the appli-
cation of the model, hence limiting the approximations introduced by its
linear nature. In this work, u0 (ζ) was chosen by trimming the helicopter
for a series of flight conditions depending on ζ, as detailed in section 6.

As previously shown, for a given ζ, the differential form of the LTI sys-
tem in the time domain is the following:

f = f0 (ζ) + D0 (ζ) δu (ζ) + D1 (ζ) δu̇ + D2 (ζ) δü + C (ζ) r

ṙ = A (ζ) r + B (ζ) δu (ζ)
(5.3)

where f0 (ζ) is the reference output, also depending on ζ, defined as the
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steady-state output of the system when a constant input u0 (ζ) is applied
to it. While equation 5.3 is valid for a fixed ζ, in general it can not be
used when the parameter vector depends on the time. To see why said
equation may fail to correctly approximate the dynamics, it is sufficient
to consider a maneuver in which the input vector u stays equal to u0 (ζ),
thus leading to a null δu (ζ) perturbation input along the maneuver. In
this case it is easy to see that the differential part of equation 5.3, the
additional states dynamics, is never forced and does not contribute to the
computed force. Indeed the only case where equation holds is when the
same reference input u0 (ζ) = ū0 is used in the entire parameter space
(hence the reference input vector does not depends on ζ). However, as
it will be also shown in the following sections, having a single reference
input vector is usually not convenient and sometime it is not possible.
Moreover if ζ depends on u, hence a model that is nonlinear with respect
to an input variable is sought, it means that u0 (ζ) depends in turn from
ζ, invalidating the aforementioned assumption.

To employ the stitched model another differential form has to be used.
In [GGP+15] the author, and others, proposed a solution based on the
definition of the asymptotic steady state solution of the additional states
dynamics; good results were obtained but later it was observed a loss of
accuracy caused by numerical cancellations error. In this work an im-
proved form, leading to a more stable numerical behavior is proposed.
This form is based on the notion that the canonical LTI state space sys-
tem equation:

y = Cr + D0u + D1u̇ + D2ü

ṙ = Ar + Bu
(5.4)

can be rewritten as:

y = Ĉṙ + D̂0u + D1u̇ + D2ü

ṙ = Ar + Bu
(5.5)

where Ĉ and D̂0 are defined as:

Ĉ = CA−1, D̂0 = D0 −CA−1B. (5.6)

61



5. Model stitching

In particular it is worth noting that D̂0 is the matrix of the static deriva-
tives of the system X introduced in 3.2.3 and, as such, it may be obtained
directly from the interpolation of the various derivatives matrices in-
stead. For a demonstration of the equivalence of the two differential
forms please refer to appendix A.

The advantage of using equation 5.5 instead of equation 5.4 lays in the
clear division of the output in two components: one depending alge-
braically on the input and one, the differential part, that is non-null
only during the additional states transient.

Equation 5.5 is then extended for the application to the stitched model
considering as:

f = f0 (ζ) + D̂0 (ζ) δu (ζ) + D1 (ζ) δu̇ + D2 (ζ) δü + Ĉ (ζ) ṙ

ṙ = A (ζ) r + B (ζ) u (ζ)
(5.7)

In this way the additional states dynamics is forced by the full input u

instead of being forced by δu.

5.2. Numerical results

The numerical investigation presented in this section has two main ob-
jectives: the validation of stitched rotor aeroelastic model proposed and
the examination of its capability to predict loads transmitted to the air-
frame by a helicopter main rotor during maneuvers.

5.2.1. Validation of the identification process

First, the accuracy of the presented methodology in identifying the LTI,
finite-state, main rotor representation for operational conditions included
in the considered flight parameters domain is examined. Figure 5.1
presents examples concerning the effect of flight parameters, the ad-
vancing speed V and the shaft angle of attack αsh, on aeroelastic transfer
functions amplitude. In particular, in figure 5.1a it is shown the ampli-
tude of the transfer function relating thrust force to pitching angular
velocity, for three different flight speeds, whereas figure 5.1b depicts the
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5. Model stitching

(a) thrust vs pitching rate (b) roll moment vs collective pitch

Figure 5.1.: Transfer functions variation with respect to forward veloc-
ity and shaft angle. Sampled vs interpolated amplitude fre-
quency distribution.

amplitude of the transfer function relating rolling moment to blade col-
lective pitch control, for three values of the rotor shaft angle of attack.
For all examined cases, the results obtained by ROM solutions are com-
pared with those directly identified through the aeroelastic numerical
tool. These results reveal that the considered transfer functions present
a remarkable sensitivity to flight velocity, whereas they are less affected
by shaft angle variations. The influence of both velocity and shaft angle
is non-uniformly dependent on frequency. Further, these figures demon-
strate the high level of accuracy of the interpolation process proposed.
In order to appreciate the sensitivity of identified model coefficients on
flight parameters variation, figure 5.2 shows the location on the com-
plex plane of the aeroelastic poles (eigenvalues of matrix A), for forward
flight ranging from 0 kn to 80 kn (figure 5.2a), and shaft angle changing
from -21° to 3° 5.2b. It is worth noting that, as expected, damping of
poles is particularly affected by flight parameters variation, while their
frequency remains almost unchanged.

Lastly, figure 5.3 shows the comparison between transfer function iden-
tified through the proposed ROM and those obtained with the complete,
full-state, nonlinear model, for a flight condition not included in the
database set. In particular, figure 5.3a depicts the transfer function be-
tween hub roll moment and lateral cyclic pitch control, for forward flight
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(a) flight velocity effect (b) shaft angle effect

Figure 5.2.: Influence of flight parameters on poles of identified aeroelas-
tic ROM.

velocity V = 30kn, whereas figure 5.3b presents the transfer function be-
tween thrust and collective pitch, for advancing velocity V = 50kn (in
both cases αsh = 7.5◦ ). The very good correlation shown in figure 5.3 be-
tween interpolated transfer functions and results directly given by the
aeroelastic solver is a prove of the capability of the presented ROM to
accurately estimate system aeroelastic response for arbitrary flight con-
ditions inside the flight envelope of interest, which is an essential factor
for the successful application of the proposed method in flight simula-
tions.

5.2.2. Application to maneuvering flight

Below, the performance of the proposed main rotor model in predicting
hub loads during maneuvering flights is assessed. First, it is applied to
provide hub loads response to a periodic cyclic lateral pitch input with
1 rad/s frequency and 1-degree amplitude for a steady rectilinear, uni-
form, level flight condition with V = 40kn. In figure 5.4 the stitched
model predictions (ROM) are compared with those given by the nonlin-
ear, time-marching solution (NLTM) provided by the rotor aeroelastic
tool also used to identify the model. Hub forces and moments from ROM
simulation appear to be in good agreement with those determined by
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(a) roll moment vs lat cyclic pitch, V=30kn (b) thrust vs collective pitch, V=50kn

Figure 5.3.: Comparison between interpolated and sampled transfer
functions for flight conditions not included in the database.

NLTM analysis.

Then, the state-space, ROM is applied to evaluate hub forces and mo-
ments generated by main rotor during a more complex unsteady Bo-105
maneuver. Starting from a steady level flight condition, the helicopter
model follows a descent trajectory, initially at constant velocity and then
operating a decelerated flight. Figure 5.5 depicts time histories of ad-
vance ratio µ, and shaft angle, αsh. Corresponding hub motion and blade
pitch controls, previously determined through a flight dynamics solver
with lower-order rotor aeroelastic modeling, are used as input in this
validation analysis. The capability of the proposed state-space ROM to
accurately predict hub loads arising in unsteady helicopter maneuvering
is assessed by comparison with loads given by NLTM solution. The cor-
responding results are presented in figure 5.6, which shows an very good
correlation of time histories of hub force and moment components. These
results demonstrate that the proposed model is able to yield aeroelastic
responses in good agreement with those provided by complex, full-state,
nonlinear aeroelastic tools.
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(a) hub forces (b) hub moments

Figure 5.4.: Response to periodic lateral cyclic pitch. ROM vs NLTM.

(a) advance ratio (b) shaft angle

Figure 5.5.: Time histories of flight parameters during maneuver

Figure 5.6.: Time histories of hub loads during maneuver flight. ROM vs
NLTM.
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The complete flight envelope model developed in this work was applied
for the description of the aeroelastic behavior of the Bo105 helicopter
main rotor. The Bo-105 is a light, twin-engine, multi-purpose helicopter
developed by Bölkow of West Germany. It pioneered the rigid/hingeless
rotorhead when it was introduced into service in 1970. Unless other-
wise stated, the blades are modelled including one lag, two flapping
and one torsional mode, and a complex wake inflow model derived by a
free–wake potential-flow solver [BSCG13] is employed. This model is in-
cluded and operated in SIMONA (SImulation, MOtion and NAvigation)
Research Simulator (SRS), which is a six-degree-of-freedom simulator
located at the Delft University of Technology (TU Delft), specifically de-
signed for human-machine interaction and handling qualities research
projects [SVPM03]. Among the available models included in SIMONA,
a simple helicopter fuselage flight dynamics model is selected to be cou-
pled with the introduced state–space main rotor model. It considers a
tail rotor model based on the blade element theory with a quasi-dynamic
inflow, a rigid-body model for the fuselage and includes the aerodynamic
forces produced by fuselage and empennages.

In order to assess the suitability and level of fidelity of the proposed
helicopter modelling for real–time helicopter flight simulations, it has
been tested by two experienced test pilots who performed a wide range
of maneuvers in the SRS. Pilots’ feedback and data obtained from the
simulations carried out are presented and discussed below, along with
the identification of limits and required improvements of the simulation
approach examined.
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maneuver description Group
Longitudinal step input

Control step inputLateral step input
Collective step input

Pedal step input
Autorotation

High gain tasksFull collective
Acceleration, deceleration

Steady level flight
Steady maneuversSteady climb and descent

Steady level turn
Evolution from 20◦

Free evolutionEvolution from forward flight
Evolution from steady turn

Spiral mode check Modes checkFugoid mode check
Hover board High frequency tasksLongitudinal frequency sweep

Table 6.1.: Performed maneuvers

6.1. Simulations summary

This section presents the results of the piloting simulations performed
in the SIMONA Research Simulator at the Technical University of Delft,
as driven by the finite-state rotor load model described in section 5. The
scope of the test activity was twofold: (i) to assess the feasibility of appli-
cation of the proposed rotor model in a real-time simulation device, and
(ii) to collect pilot’s feedback on the general perceived quality of simu-
lation and on any issue raising during the tests. Two experienced test
pilots have been asked to perform several maneuvers on the SIMONA
Research Simulator driven by a Bo-105 helicopter model obtained by
coupling the finite-state main rotor model of section 5 with the helicopter
model already implemented in the SIMONA simulator.

Given the exploratory nature of this work and the type of the investi-
gated maneuvers, only the advancing ratio, µ, was used to update the
flight condition, y. However, it is worth noting that the computational
power of SIMONA is estimated capable of working with updating based
on more than three parameters.
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Figure 6.1.: Lateral step input at 50 kt.

All the simulations have been performed without any augmentation or
control system. This choice is motivated by the intention of letting the
pilot interact directly with the helicopter model, avoiding the implemen-
tation of tunable filters. For the same reason, the SIMONA motion sys-
tem has been disabled. It is worth noting that neither of the pilots actu-
ally piloted a Bo-105 helicopter. The list of the maneuvers simulated is
reported in Table 6.1.

In the overall, the pilots have asserted that the response to their com-
mands of the simulator driven by the main rotor modeling presented in
this work was realistic. However, they have provided specific comments
for each maneuver flown.

In the following, the outcomes of some of those maneuvers for which
pilots have observed an unusual or unexpected behavior of the simu-
lator are discussed in detail. In particular, assuming helicopter kine-
matics and rotor blade controls as those of the considered maneuvers,
the responses driven by the main rotor finite-state model (equal to the
real-time ones provided by SIMONA) are compared with the responses
evaluated off-line by the complete nonlinear rotor aeroelastic solver. The
objective of the comparisons is to assess whether unusual or unexpected
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Figure 6.2.: Longitudinal cyclic step input at 50 kt.

simulator responses are due to the intrinsic characteristics of the com-
plete nonlinear aeroelastic model applied or, rather, are produced by the
approximations introduced by the finite state modeling.

6.1.1. Lateral step input

For the helicopter flying at velocity U0 = 50 kt, the simulator response
to a lateral cyclic, θc, step input is depicted in figure 6.1. As shown in
figure 6.1(a), two θc step inputs are commanded by the pilot at the begin-
ning of the observation period and after about 26 s. The pilot feedback
on the simulated behavior has been positive, with a roll-pitch coupling of
acceptable magnitude observed. In figure 6.1(d) the pitch-roll coupling
is evidenced by the responses of the rolling, P , and pitching, Q, angu-
lar velocity components: the initial left blade cyclic pitch causes a left
roll and a comparatively smaller nose up pitching, while a right blade
cyclic pitch induces the opposite helicopter response. Soon after the ini-
tial cyclic step input, the helicopter starts turning and the pilot perceives
a nose-down response: this is confirmed by the combination of the neg-
ative rolling with the significant negative yaw angular velocity, R. This
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behavior has been deemed normal by both pilots.

Figures 6.1(b) and 6.1(c) depict the rolling and pitching moments as
computed by the complete nonlinear solver (NL) and by the finite-state
model used in the simulations (FS). The correlation between the two
models is very good during the whole maneuver, except for two time in-
tervals around 8 s and 30 s, where a considerable discrepancy between
rolling moments is observed. This difference can be explained by the re-
sults in figure 6.1(e), where the values of the lateral velocity, V and the
vertical velocity, W , are shown. Indeed, the load discrepancy is closely
correlated with significant perturbations of velocity, W , which were not
considered in the finite-state modelling adjournment (as mentioned ear-
lier, the finite-state model is updated only as function of perturbations of
the longitudinal helicopter velocity, U ).

6.1.2. Longitudinal step input

Figure 6.2 shows the simulations resulting from two longitudinal step
inputs, applied with the helicopter flying at velocity U0 = 50 kt. In this
case the pilot comments indicated a strong rolling acceleration follow-
ing the control input. This is confirmed by the results in figure 6.2(d),
where comparable variations of the angular velocities P and Q arise be-
cause of their remarkable coupling, after the step actuation of the lon-
gitudinal cyclic, θs. This coupling has been considered very strong by
both pilots. Figures 6.2(b) and 6.2(c) prove that the rolling and pitching
moments predicted by the two numerical models applied similar during
the step inputs, and hence it may be concluded that such a behavior is
directly related to the rotor aeroelastic model, rather than to the finite-
state approximation. Akin to the lateral step input response, higher dis-
crepancies between the predicted moments appear in combination with
remarkable perturbations of vertical velocity W , as depicted in figure
6.2(e).
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Figure 6.3.: Collective step input at 60 kt.

6.1.3. Collective step input

Next, flight simulation corresponding to a step input of the blade collec-
tive pitch is presented in figure 6.3. The pilot command has been actu-
ated with the helicopter traveling at a constant velocity U0 = 60 kt. Both
pilots noted strong coupling with pitch and roll motions, as shown in fig-
ure 6.3(e). The first pilot has deemed the coupling of the collective blade
pitch with the helicopter pitch significant but not necessarily unrealistic,
while considered the corresponding roll coupling excessively strong. The
second pilot noted a qualitative similarity of the overall cross coupling
behavior experienced with that of the helicopter Agusta A109.

In figure 6.3(b) the rotor thrust predicted by the finite-state model is
compared with that predicted by the nonlinear solver, while Figs. 6.3(c)
and 6.3(d) show rolling and pitching moments given by the simulation
approaches. The correlation between the two models is excellent, par-
ticularly for the vertical forces and the pitching moment. Small discrep-
ancies appear between the rolling moment predictions. This proves that
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Figure 6.4.: Deceleration with blade flap, lag and torsional modes.

the cross coupling behavior observed derives directly from the nonlinear
aeroelastic rotor model and is not due to approximations of the finite-
state modeling.

6.1.4. Deceleration maneuver

In this section the deceleration maneuver performed by the second pilot
using two different helicopter models is analyzed. The objective of this
maneuver has been the comparison between simulations based on the
model including flap, lag and torsional blade modes (see figure 6.4) and
simulations based on the model including only the blade flap mode (see
figure 6.5).

As shown in Figs. 6.4(a) and 6.5(a) the maneuver starts at U0 = 100 kt
and is composed of segments where the velocity decays of 20 kt followed
by helicopter re-trimming.

The pilot did not notice significant differences between the responses
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Figure 6.5.: Deceleration with one blade flapping mode.

from the two models, highlighting just a slightly decreased capability of
the helicopter to maintain the trimmed speed around U0 = 100 kt.

It is interesting to note that the rotor thrust predicted by both finite-
state models (see Figs. 6.4(f) and 6.5(f)) is in good agreement with that
computed by the corresponding nonlinear solver, while some differences
appear between the x−axis forces determined by the three-mode model
(see Figs. 6.4(e) and 6.5(e)). Indeed, figure 6.4(e) shows that the high
frequency characteristics of the forces are predicted with good accuracy,
but a relevant discrepancy is present on the low frequency load content
during the whole maneuver.

For both blade models, 4/rev oscillations are present in the x-axis forces
computed by the nonlinear solver, with a larger amplitude for the only-
flap-mode case. These oscillations are not present in the finite-state
model results, in that filtered out by the process of identification of the
coefficients of the differential form describing the hub loads as functions
of the hub motion [SCG14, GPPG14]. The spectral analysis reveals also
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the presence of 80 rad/s oscillations in the three-mode case x−axis forces,
corresponding to the frequency of the aeroelastic progressive lag mode.

6.2. Open loop simulations with an improved

model

As mentioned in section 5.1, after the simulation tests were carried out,
the full-flight envelope model was improved by removing a numerical
cancellation issue caused by the additional states dynamics. This is-
sue caused a less accurate prediction of the forces and moments when
the contribution of the additional states dynamic was prevalent in the
simulation. Even if the results obtained in the simulation tests, and
presented above, remains valid, it is worth pointing out they are not
completely indicative of the accuracy of the stitched model.

To show the accuracy obtainable with the improved model a lateral step
input maneuver similar to that presented in 6.1.1 is shown in figure 6.6,
while an acceleration maneuver is presented in figure 6.7. These maneu-
vers are simulated in open-loop by using the kinematics and control data
obtained from the simulations. The forces computed by the reduced or-
der model are compared with those predicted by the full order nonlinear
aeroelastic solver in a similar fashion to the previous sections.

Comparing the results of figure 6.1.1 with those presented in figure 6.1
it is clear that the improved model leads to a better correlation of the
results, especially in the description of the transient dynamics. The same
is true for figure 6.7, in which also the periodic component of the vertical
force is now well captured by the simulation model.
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Figure 6.6.: Lateral step input at 60 kt

Figure 6.7.: Acceleration from 0 to 100 kt.
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Development and accuracy assessment of a helicopter main rotor aeroe-
lastic state-space models aimed at real-time maneuvering flight simula-
tions have been presented. In particular three aeroelastic models con-
cerning the aeroelastic behavior of helicopter rotors describing the hub
loads generated by hub motion and pilot blade pitch controls have been
presented:

1. a linear time invariant perturbation model, suitable for aerome-
chanic stability analyses and control systems developments;

2. a linear time periodic perturbation model, to be used when the lin-
ear time invariant approximation is not valid;

3. a full flight envelope model, developed specifically for flight simu-
lation tasks.

These three models are extracted from arbitrary high-fidelity aeroelas-
tic solvers through a methodology specifically developed in this work.
In particular a novel model stitching technique was introduced for the
definition of the full flight envelope model. It uses a suited optimization
process that allows the identification of model matrices for any flight con-
dition within the flight envelope of interest, starting from a pre-defined
flight conditions database. The numerical investigation has demonstrated
the capability of the modeling process presented to identify with an ex-
cellent level of accuracy main rotor aeroelastic transfer functions, in any
operational condition within the flight envelope considered. Moreover,
the application of the proposed state-space ROM for evaluating main
rotor loads transmitted to the airframe during arbitrary unsteady ma-
neuvers has provided results in good agreement with those predicted
directly by the complex, full-state, nonlinear, time-marching aeroelastic
solver.
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This model has been then integrated inside the existing flight simulator
SIMONA at the Delft University of Technology. The resulting complete
helicopter model has been thoroughly tested by two experienced pilots,
who performed several maneuvers with the aim of assessing its limita-
tions and giving a feedback on the overall quality of the simulation. The
data obtained from the simulations have been analyzed finding out that
the models proposed is well suitable for real-time predictions to be used
within flight simulators, and that is capable to reproduce accurately the
aeroelastic forces generated by the rotor.

78



Bibliography

[BL00a] Mahendra J Bhagwat and J Gordon Leishman. On the
aerodynamic stability of helicopter rotor wakes. In Pro-
ceedings of 56th annual forum of the American Helicopter
Society, Virginia Beach, VA, pages 2–4. Citeseer, 2000.

[BL00b] Mahendra J Bhagwat and J Gordon Leishman. Time-
accurate free-vortex wake model for dynamic rotor re-
sponse. In Proceedings of the Specialist Meeting of the
American Helicopter Society, 2000.

[BL01] Mahendra J Bhagwat and J Gordon Leishman. Transient
rotor inflow using a time-accurate free-vortex wake model.
2001.

[BL03] Mahendra J Bhagwat and J Gordon Leishman. Rotor aero-
dynamics during maneuvering flight using a time-accurate
free-vortex wake. Journal of the American Helicopter Soci-
ety, 48(3):143–158, 2003.

[BLP99] Ashish Bagai, J Gordon Leishman, and Jacob Park. Aero-
dynamic analysis of a helicopter in steady maneuvering
flight using a free-vortex rotor wake model. Journal of the
American Helicopter Society, 44(2):109–120, 1999.

[BSCG13] G Bernardini, J Serafini, M Molica Colella, and
M Gennaretti. Analysis of a structural-aerodynamic fully-
coupled formulation for aeroelastic response of rotorcraft.
Aerospace Science and Technology, 29(1):175–184, 2013.

[CGB+15] Felice Cardito, Riccardo Gori, Giovanni Bernardini, Jacopo
Serafini, and Massimo Gennaretti. Finite-state dynamic
wake inflow modelling for coaxial rotors. In Proceedings

79



Bibliography

of the 41st European Rotorcraft Rorum 2015, Munich (Ger-
many), Sept. 1-4. DGLR and TU Munchen, 2015.

[Cla76] JMC Clark. The consistent selection of parameterizations
in system identification. In Joint Automatic Control Con-
ference, number 13, pages 576–580, 1976.

[DPA+07] James Downs, Ron Prentice, S Alzell, Adam Besachio,
CM Ivler, Mark B Tischler, and MH Mansur. Control sys-
tem development and flight test experience with the mq-8b
fire scout vertical take-off unmanned aerial vehicle (vtuav).
In Annual Forum Proceedings-American Helicopter Soci-
ety, volume 63, page 566. AMERICAN HELICOPTER SO-
CIETY, INC, 2007.

[GB07] Massimo Gennaretti and Giovanni Bernardini. Novel
boundary integral formulation for blade-vortex interac-
tion aerodynamics of helicopter rotors. AIAA journal,
45(6):1169–1176, 2007.

[GCM00] M Gennaretti, A Corbelli, and F Mastroddi. A comparison
among some aeroelastic models for the stability analysis of
a flap-lag-torsion helicopter rotor in hover. In EUROPEAN
ROTORCRAFT FORUM, volume 26, pages 68–68. AAAF;
1998, 2000.

[GCS+13] Massimo Gennaretti, MM Collela, Jacopo Serafini, B Dang
Vu, P Masarati, Giuseppe Quaranta, Vincenzo Muscarello,
Michael Jump, Michael Jones, Linghai Lu, et al. Anatomy,
modelling and prediction of aeroservoelastic rotorcraft-
pilot-coupling. In 39th European Rotorcraft Forum, 2013.

[GG82] M. Gennaretti and L. Greco. A time-dependent coefficient
reduced-order model for unsteady aerodynamics of propro-
tors. Journal of Aircraft, 42(1):138–147, 1982.

[GG08] M Gennaretti and L Greco. Whirl flutter analysis of prop-
rotors using unsteady aerodynamics reduced-order models.
Aeronautical Journal, 112(1131):233–242, 2008.

[GGP+15] Riccardo Gori, Massimo Gennaretti, Marilena D Pavel,
Olaf Stroosma, and Ivan Miletovic. Prediction and sim-

80



Bibliography

ulator verification of state-space rotor modelling on heli-
copter manoeuvring flight. In Proceedings of the 41st Euro-
pean Rotorcraft Rorum 2015, Munich (Germany), Sept. 1-4.
DGLR and TU Munchen, 2015.

[GGS+15] M Gennaretti, R Gori, J Serafini, G Bernardini, and
F Cardito. Rotor dynamic wake inflow finite-state mod-
elling. In 33rd AIAA Applied Aerodynamics Conference,
Dallas, TX, 2015.

[GGS+16] M Gennaretti, R Gori, J Serafini, G Bernardini, and
F Cardito. A space-time accurate finite-state inflow model
for aeroelastic applications. In 72nd Annual Forum and
Technology Display, West Palm Beach, Florida USA, May
17-19,, 2016.

[GM12] M. Gennaretti and D. Muro. Multiblade reduced-order
aerodynamics for state-space aeroelastic modeling of ro-
tors. J. of Aircraft, 49(2):495–502, 2012.

[GP73] Gene H Golub and Victor Pereyra. The differentiation
of pseudo-inverses and nonlinear least squares problems
whose variables separate. SIAM Journal on numerical
analysis, 10(2):413–432, 1973.

[GPPG14] Riccardo Gori, Francesca Pausilli, Marilena D Pavel, and
Massimo Gennaretti. State-space rotor aeroelastic model-
ing for real-time helicopter flight simulation. In Advanced
Materials Research, volume 1016, pages 451–459. Trans
Tech Publ, 2014.

[GSMQ13] Massimo Gennaretti, Jacopo Serafini, Pierangelo
Masarati, and Giuseppe Quaranta. Effects of biody-
namic feedthrough in rotorcraft/pilot coupling: collective
bounce case. Journal of Guidance, Control, and Dynamics,
36(6):1709–1721, 2013.

[Gui75] Roberto Guidorzi. Canonical structures in the identifica-
tion of multivariable systems. Automatica, 11(4):361–374,
1975.

81



Bibliography

[GVL12] Gene H Golub and Charles F Van Loan. Matrix computa-
tions, volume 3. JHU Press, 2012.

[HD74] Dewey H Hodges and EH Dowell. Nonlinear equations
of motion for the elastic bending and torsion of twisted
nonuniform rotor blades. 1974.

[Hig02] Nicholas J Higham. Accuracy and stability of numerical
algorithms. Siam, 2002.

[HP93] Chengjian He and David A Peters. Finite state aeroelas-
tic model for use in rotor design optimization. Journal of
aircraft, 30(5):777–784, 1993.

[HTD99] K Hall, J Thomas, and E Dowell. Reduced-order model-
ing of unsteady small-disturbance flows using a frequency-
domain proper orthogonal decomposition technique. iden-
tity, 5(679):8, 1999.

[Joh14] Steven G Johnson. The nlopt nonlinear-optimization pack-
age, 2014.

[Kar82] Mordechay Karpel. Design for active flutter suppression
and gust alleviation using state-space aeroelastic model-
ing. Journal of Aircraft, 19(3):221–227, 1982.

[KNB04] Tanyoun Kim, Kanivenahalli S Nagaraja, and Kumar G
Bhatia. Order reduction of state-space aeroelastic mod-
els using optimal modal analysis. Journal of aircraft,
41(6):1440–1448, 2004.

[KPP99] Krishnamohan R Krothapalli, JVR Prasad, and David A
Peters. Study of a rotor flap-inflow model including wake
distortion terms. DTIC Document, 1999.

[Lju98] Lennart Ljung. System identification. Springer, 1998.

[LPL14] E Louarroudi, R Pintelon, and J Lataire. Accurate fre-
quency domain measurement of the best linear time-
invariant approximation of linear time-periodic systems in-
cluding the quantification of the time-periodic distortions.
Mechanical Systems and Signal Processing, 48(1):274–299,
2014.

82



Bibliography

[Lue67] David G Luenberger. Canonical forms for linear multivari-
able systems. Automatic Control, IEEE Transactions on,
12(3):290–293, 1967.

[MF05] Luigi Morino and Alessia Ferrante. A method for eval-
uating an aerodynamic-matrix reduced-order model. In
Atti del XVIII Congresso Nazionale AIDAA, Volterra, Italy,
September 19-22, 2005. AIDAA, 2005.

[MH96] Tomas McKelvey and Anders Helmersson. State-space
parametrizations of multivariable linear systems using
tridiagonal matrix forms. In Decision and Control, 1996.,
Proceedings of the 35th IEEE Conference on, volume 4,
pages 3654–3659. IEEE, 1996.

[MMDT+95] L Morino, F Mastroddi, R De Troia, GL Ghiringhelli,
and P Mantegazza. Matrix fraction approach for finite-
state aerodynamic modeling. AIAA journal, 33(4):703–711,
1995.

[MQM+15] Vincenzo Muscarello, Giuseppe Quaranta, Pierangelo
Masarati, Linghai Lu, Michael Jones, and Michael Jump.
Prediction and simulator verification of roll/lateral ad-
verse aeroservoelastic rotorcraft–pilot couplings. Journal
of Guidance, Control, and Dynamics, pages 1–19, 2015.

[Pit80] Dale M Pitt. Rotor dynamic inflow derivatives and time
constants from various inflow models. Technical report,
DTIC Document, 1980.

[PJDV+13] Marilena D Pavel, Michael Jump, Binh Dang-Vu,
Pierangelo Masarati, Massimo Gennaretti, Achim Ionita,
Larisa Zaichik, Hafid Smaili, Giuseppe Quaranta, Deniz
Yilmaz, et al. Adverse rotorcraft pilot couplings - past,
present and future challenges. Progress in Aerospace Sci-
ences, 62:1–51, 2013.

[PMD+11] MD Pavel, J Malecki, B DangVu, P Masarati,
M Gennaretti, M Jump, M Jones, H Smaili, A Ionita,
and L Zaicek. Present and future trends in rotorcraft pilot
couplings (rpcs) - a retrospective survey of recent research

83



Bibliography

activities within the european project aristotel. Gallarate,
Italy, pages 13–14, 2011.

[PP81] Dale M Pitt and David A Peters. Theoretical prediction of
dynamic-inflow derivatives. Vertica, 5(1):21–34, 1981.

[PT12] Les Piegl and Wayne Tiller. The NURBS book. Springer
Science & Business Media, 2012.

[PWP+13] MD Pavel, M White, GD Padfield, G Roth, M Hamers,
and A Taghizad. Validation of mathematical models for
helicopter flight simulators past, present and future chal-
lenges. Aeronautical Journal, 117(1190):343–388, 2013.

[QKWB99] TR Quackenbush, JD Keller, DA Wachspress, and
AH Boschitsch. Reduced order free wake modeling for
near real time simulation of rotorcraft flight mechanics.
In ANNUAL FORUM PROCEEDINGS-AMERICAN HE-
LICOPTER SOCIETY, volume 55, pages 481–497, 1999.

[QTM+14] Giuseppe Quaranta, Aykut Tamer, Vincenzo Muscarello,
Pierangelo Masarati, Massimo Gennaretti, Jacopo Ser-
afini, and Marco Molica Colella. Rotorcraft aeroelastic sta-
bility using robust analysis. CEAS Aeronautical Journal,
5(1):29–39, 2014.

[RKH+15] O Rand, V Khromov, S Hersey, R Celi, O Juhasz, and M Tis-
chler. Linear inflow model extraction from high-fidelity
aerodynamic models for flight dynamics applications. In
Proceedings of the 71st Annual Forum of the American He-
licopter Society, Virginia Beach, VA, 2015.

[SCG14] Jacopo Serafini, Marco Molica Colella, and Massimo
Gennaretti. A finite-state aeroelastic model for rotorcraft–
pilot coupling analysis. CEAS Aeronautical Journal,
5(1):1–11, 2014.

[SCH05] Sang Joon Shin, Carlos ES Cesnik, and Steven R Hall.
System identification technique for active helicopter ro-
tors. Journal of intelligent material systems and structures,
16(11-12):1025–1038, 2005.

84



Bibliography

[SGM+08] J Serafini, M Gennaretti, P Masarati, G Quaranta, O Di-
eterich, et al. Aeroelastic and biodynamic modeling for sta-
bility analysis of rotorcraft-pilot coupling phenomena. In
Proceedings of the 34th European Rotorcraft Forum, 2008.

[Sha70] David F Shanno. Conditioning of quasi-newton methods
for function minimization. Mathematics of computation,
24(111):647–656, 1970.

[Sid01] Afreen Siddiqi. Identification of the harmonic transfer func-
tions of a helicopter rotor. PhD thesis, Massachusetts In-
stitute of Technology, 2001.

[SVPM03] Olaf Stroosma, MM Van Paassen, and Max Mulder. Using
the simona research simulator for human-machine interac-
tion research. In AIAA modeling and simulation technolo-
gies conference, 2003.

[TC00] C Theodore and Roberto Celi. Flight dynamic simulation
with refined aerodynamics and flexible blade modeling.
In ANNUAL FORUM PROCEEDINGS-AMERICAN HE-
LICOPTER SOCIETY, volume 56, pages 857–872. AMER-
ICAN HELICOPTER SOCIETY, INC, 2000.

[The49] Theodore Theodorsen. General theory of aerodynamic in-
stability and the mechanism of flutter. 1949.

[TR06] Mark B Tischler and Robert K Remple. Aircraft and rotor-
craft system identification. AIAA education series, 2006.

[TTBH15] Eric L Tobias, Mark B Tischler, Tom Berger, and Steven G
Hagerott. Full flight-envelope simulation and piloted fi-
delity assessment of a business jet using a model stitching
architecture. In AIAA Modeling and Simulation Technolo-
gies Conference, page 1594, 2015.

[VV07] Michel Verhaegen and Vincent Verdult. Filtering and sys-
tem identification: a least squares approach. Cambridge
university press, 2007.

[Wel67] Peter D Welch. The use of fast fourier transform for the es-
timation of power spectra: A method based on time averag-

85



Bibliography

ing over short, modified periodograms. IEEE Transactions
on audio and electroacoustics, 15(2):70–73, 1967.

[WH90] Norman M Wereley and Steven R Hall. Frequency re-
sponse of linear time periodic systems. In Decision and
Control, 1990., Proceedings of the 29th IEEE Conference
on, pages 3650–3655. IEEE, 1990.

[ZPP04] Jinggen Zhao, JVR Prasad, and David A Peters. Rotor
dynamic wake distortion model for helicopter maneuver-
ing flight. Journal of the American Helicopter Society,
49(4):414–424, 2004.

[ZT10] Lior Zivan and Mark B Tischler. Development of a full
flight envelope helicopter simulation using system iden-
tification. Journal of the American Helicopter Society,
55(2):22003–22003, 2010.

86



A. Understanding the meaning
of the RMA poles

In order to show the meaning of poles of the state-space aeroelastic
models presented, let us consider the linearized, multiblade-variable,
constant-coefficient aeroelastic model of an isolated helicopter rotor.

For u denoting the vector of hub motion variables and blade controls (see
2.2.1), and z denoting the vector of rotor blade dynamics state-space vari-
ables, in frequency domain, hub loads resulting by the sum of aerody-
namic and inertial forces acting on the blades can be formally expressed
as:

f̃MR = (f0 + sf1) z̃ +
(
G0 + sG1 + s2G2

)
ũ (A.1)

where:

z =


qb

q̇b

raero

 (A.2)

with qb and raero denoting, respectively, vector of (rigid and/or elastic)
blade degrees of freedom and vector of additional aerodynamic states
(present when unsteady aerodynamics modeling is applied [GM12, GCM00,
GG82]).

On the other hand, rotor blade dynamics is governed by a set of differen-
tial equations in state-space form of the following type:

sz̃ = Dz̃ +
(
E0 + sE1 + s2E2

)
x̃ (A.3)

where D is the rotor aeroelastic state matrix. The external forcing terms
would disappear in fixed-hub, fixed-control analysis.

Thus, solving A.1 for z̃ and substituting in A.3, the following expression
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for the hub loads is obtained:

f̃MR =
[
(f0 + sf1) (sI−D)−1 (E0 + sE1 + s2E2

)
+
(
G0 + sG1 + s2G2

)]
x̃

= Ha (s) x̃

(A.4)

It yields the straightforward identification of the analytical transfer ma-
trix, Ha, relating hub loads to hub motion and blade controls.

The application to matrix Ha(s) of the RMA considered in this work pro-
vides the matrix A of the state-space model coinciding with the rotor
aeroelastic state matrix, D (namely, the poles of the RMA coincide with
the rotor aeroelastic eigenvalues). This is demonstrated by considering
the following Woodbury matrix identity [Hig02]

(z + U W V)−1 = z−1 − z−1U
(
W−1 + Vz−1U

)−1
Vz−1 (A.5)

where W and z are invertible square matrices and U and V denote ma-
trices of appropriate dimensions. Indeed, for z = s I and W = I, the
pre-multiplication with sN, the post-multiplication with M, followed by
the assumptions U = I,V = −K, or U = −K,V = I, yield the identities

sN(s I−K)−1M = N M + N(s I−K)−1K M = N M + N K(s I−K)−1M

(A.6)
that are applied to determine the matrices of the RMA of the matrix Ha

in A.4, thus providing

D2 = G2 + f1E2

D1 = G1 + f0E2 + f1E1 + f1DE2

D0 = G0 + f0E1 + f0DE2 + f1E0 + f1DE1 + f1D2E2

A = D

B = E0 + DE1 + D2E2

C = f0 + f1D

(A.7)

The conclusion is that, for an arbitrary high-fidelity solver based on an
unsteady aerodynamic formulation, the additional states introduced by
the RMA represent rotor blade dynamics, as well as the aerodynamics
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flow-memory effects due to unsteady wake vorticity and flow compress-
ibility (if present).
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