
Design and Implementation of

Multilevel Security Architectures

PhD Candidate:

Angelo Liguori

First PhD Supervisor: Second PhD Supervisor:

Prof. Dr. Gaetano Giunta Prof. Dr. Francesco Benedetto

A thesis submitted in partial fulfillment for the

degree of Doctor of Philosophy in the

DOCTORAL SCHOOL IN ENGINEERING

”Biomedical, electronics, electromagnetics and telecommunications”

UNIVERSITY OF ROMA TRE

Engineering Department

May 2016

angelo.liguori@gmail.com
http://www.ingegneria.uniroma3.it/?page_id=17101&lang=en
http://www.ingegneria.uniroma3.it/?page_id=17101&lang=en
http://www.uniroma3.it)
http://www.dea.uniroma3.it/)

Declaration of Authorship

I, AnGe
Lo LigUO

RI, declare that the thesis titled, ‘DESIGN AND IMPLEMENTA-

TION OF MULTILEVEL SECURITY ARCHITECTURES’ and the work presented in

it are my own.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree

at this University.

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

3. Where I have consulted the published work of others, this is always clearly at-

tributed.

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

5. I have acknowledged all main sources of help.

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

7. Parts of this work have been published before submission as the papers listed

below:

• A. Liguori. A novel Multiple Independent Levels of Security/Safety Cross

Domain Solution. In IEEE Military Communications Conference, MILCOM

2015, pages 1578-1583, October 2015

• F. Benedetto, G. Giunta, A. Liguori, and A. Wacker. A novel method for se-

curing critical infrastructures by detecting hidden flows of data. In IEEE

Communications and Network Security (CNS), pages 648-654, September

2015

i

ii

• A. Liguori, F. Benedetto, G. Giunta, N. Kopal, and A. Wacker. Analysis

and monitoring of hidden TCP traffic based on an open-source covert timing

channel. In IEEE Communications and Network Security (CNS), pages 667-

674, September 2015

• A. Liguori, F. Benedetto, G. Giunta, N. Kopal, and A. Wacker. SoftGap:

A Multi Independent Levels of Security Cross-Domain Solution. In IEEE

Future Internet of Things and Cloud (FiCloud), pages 754-759, August 2015

• A. Liguori. From Multilevel Security to MILS: the Evolution illustrated

through a Novel Cross-Domain Architecture. In International Journal of

Mobile Network Design and Innovation, Inderscience Publishers, FORTH-

COMING

Date: Signature:

“Numquam autem invenietur, si contenti fuerimus inventis. Praeterea qui alium se-

quitur invenit, immo nec quaerit. Quid ergo? Non ibo per priorum vestigia? Ego vero

utar via vetere, sed si propiorem planioremque invenero, hanc muniam. Qui ante nos

ista moverunt non domini nostri sed duces sunt. Patet omnibus veritas; nondum est

occupata; multum ex illa etiam futuris relictum est1”

Lucio Anneo Seneca, ‘Epistulae morales ad Lucilium’ 33.10-11

1Nothing will be discovered if we rest contented with discoveries already made. Besides, he who
follows another not only discovers nothing but is not even investigating. What then? Shall I not follow
in the footsteps of my predecessors? I will indeed use the old path, but if I will find one that makes a
shorter cut and is smoother to travel, I will open the new path. Those who have raised these problems
before us are not our masters, but our guides. Truth shows itself to everybody; it has not yet been laid
claim. And there is plenty of it left even for posterity to discover.

UNIVERSITY OF ROMA TRE

Engineering Department

DOCTORAL SCHOOL IN ENGINEERING

”Biomedical, electronics, electromagnetics and telecommunications”

Design and Implementation of Multilevel Security Architectures

Abstract

The problem of securely storing and processing sensitive data is paramount in many sec-

tors. But ICT Security is not a Defense prerogative. Events like Vatileaks and Panama

Papers, after Snowden’s disclosures, brought to prominence the information security

problem. We live in a world that requires from us to be always-on, always-connected.

Technological progress and the need to process and share always bigger amount of data

led to the inception of distributed systems, smart sensors/networks, cloud computing

etc. and transformed the Internet in a high bandwidth medium. We are surrounded

by devices and use applications that track and collect our personal information that

should be properly protected. Sensitive data should be accessed only by people with

valid authorizations and with a specific need-to-know that could affect only a specific

subset of data necessary to perform some operations. The requirement to protect infor-

mation characterized by a hierarchy of sensitivity levels led to the definition of Multilevel

Security. In the last years a new paradigm called Multiple Independent Levels of Secu-

rity/Safety (MILS) seems to be able to effectively address the problem.

This thesis illustrates the design and the implementation of Multilevel Security Archi-

tectures. We pinpointed the drawbacks of the currently proposed solutions and analyzed

the problem from different perspectives: high-assurance security requirements, certifica-

tion according to international schemes, and performance. We proposed an innovative

MILS Distributed Architecture and implemented a specific MILS component that en-

forces the security policy of connecting domains characterized by different classification

level information. We also faced the multilevel-related covert channel problem proposing

a novel detection algorithm and building an open source covert timing channel in order

to evaluate its performance.

http://www.uniroma3.it)
http://www.dea.uniroma3.it/)
http://www.ingegneria.uniroma3.it/?page_id=17101&lang=en
http://www.ingegneria.uniroma3.it/?page_id=17101&lang=en

Acknowledgements

I would like to thank the Signal Processing for Telecommunications and Eco-

nomics (SP4TE) group of the University Roma Tre and the Applied Information

Security (AIS) group of University of Kassel for their insightful advice and their un-

failing support.

I would also thank the German Academic Exchange Service (DAAD) for the

six-months grant provided.

Last but not least I would like to sincerely thank SIRA s.r.l. without which I could

have never attended the doctoral school I was enrolled in without scholarship.

v

Contents

Declaration of Authorship i

Abstract iv

Acknowledgements v

List of Figures x

List of Tables xi

Acronyms & Abbreviations xii

1 INTRODUCTION 1

1.1 The Multilevel Security Problem . 1

1.2 MLS Applications . 3

1.3 Security Certification Schemes . 4

1.4 Covert Channel Problem . 5

1.5 Drawbacks of Current Solutions . 6

1.6 Outline of the Thesis . 6

2 FROM MULTILEVEL SECURITY TO MILS 8

2.1 Security Models . 10

2.1.1 Bell-La Padula . 10

2.1.2 Biba . 11

2.1.3 RBAC . 12

2.1.4 Clark-Wilson . 12

2.1.5 Chinese Wall . 13

2.2 Related Work . 13

2.3 State of the Art of Classic MLS . 14

2.3.1 Operating Systems . 14

2.3.2 Databases . 16

2.3.3 Virtualization . 16

2.4 Cross-Domain Solutions . 16

2.4.0.1 MLS Guards . 17

2.4.0.2 Air-Gap . 18

vi

Contents vii

2.4.0.3 Data-Diode . 18

2.5 Drawbacks of the classical approach . 19

2.6 Multiple Independent Levels of Security/Safety 21

2.6.1 NEAT Paradigm . 23

2.7 State of the Art of MILS Solutions . 23

2.7.0.1 Separation Kernel Hypervisors 24

2.7.0.2 Separation Kernel Operating Systems 25

2.8 Security Evaluation Criteria . 26

2.8.1 ISO/IEC 15408 . 28

2.8.1.1 Security Evaluation Phases 28

2.8.1.2 Evaluation Assurance Levels 29

2.8.1.3 Compositional Approach 31

2.9 MILS Projects . 32

3 NOVEL MILS ARCHITECTURES 33

3.1 Proposed MILS Distributed Architecture 34

3.1.1 MILS Architecture Components 36

3.1.1.1 Trusted Front End . 36

3.1.1.2 Policy Server . 37

3.1.1.3 Transitional Secure Server 37

3.1.1.4 MILS Yarn Trusted Host 37

3.1.1.5 SoftGap . 38

3.1.1.6 Application Servers . 38

3.1.2 Security Requirements . 38

3.1.3 MILS Architecture Use Cases . 41

3.1.3.1 Unidirectional Secure Import from Unreliable Network . 42

3.1.3.2 Secure Download from Internal File Server 44

3.1.3.3 Hybrid Security Requirements Correlation 46

3.1.4 Cipher Suites . 47

3.2 Evaluation . 49

3.2.1 Security . 50

3.2.1.1 System Model . 50

3.2.1.2 Attack Model . 51

3.2.1.3 Security Analysis . 51

3.2.2 Performance . 53

3.2.2.1 Message Overhead . 53

3.2.2.2 IKE and TLS Message Overhead 55

3.2.2.3 Further Overhead Elements 57

3.2.2.4 Message Size Overhead 62

3.3 SOFTGAP: a novel MILS Cross-Domain solution 66

3.3.1 SoftGap Architecture . 67

3.3.2 System Model . 68

3.3.3 Attack Model . 69

3.3.4 Security Enforcing Functions Details 70

3.3.5 Sequence of Operations . 70

3.3.6 Design Approach Rationale . 73

3.3.7 Security Analysis . 73

Contents viii

3.3.8 Security Evaluation Considerations 75

4 COVERT CHANNEL DETECTION 80

4.1 The Prisoners’ Problem . 80

4.2 Covert Channel Definition and Taxonomy 82

4.2.1 Covert Storage Channels . 83

4.2.2 Covert Timing Channels . 86

4.3 Detection Algorithms . 88

4.3.1 Covert Storage Channel Detection Techniques 89

4.3.2 Covert Timing Channel Detection Techniques 90

4.4 Novel Covert Timing Channel Detection Algorithm 93

4.4.1 System Model . 93

4.4.2 The Weibull-ness Test . 94

4.4.3 Performance Analysis and Numerical Results 96

4.5 Open Source Covert Timing Channel . 99

4.5.1 Manchester Coding . 103

4.5.2 Hamming Code (12,8) . 103

4.5.3 Development and Target environment 104

4.5.3.1 Sender . 105

4.5.3.2 Receivers . 106

4.5.3.3 Data test . 106

4.5.4 Empirical results . 106

4.5.4.1 Network conditions . 107

4.5.4.2 Covert bit interval time 109

5 CONCLUSIONS 110

5.1 Summary of Contributions . 110

5.2 Lessons Learned . 112

5.3 Open Challenges . 113

5.4 List of Publications . 114

5.4.1 International Journals . 114

5.4.2 International Conferences . 114

5.4.3 Books . 115

A Covert Timing Channel Source Code 116

A.1 Simple OSCTC . 116

A.1.1 Simple OSCTC Client . 116

A.1.2 Simple OSCTC Server . 120

A.2 OSCTC with Manchester Coding . 125

A.2.1 OSCTC with Manchester Client 125

A.2.2 OSCTC with Manchester Server 129

A.3 OSCTC Manchester + Hamming . 134

A.3.1 OSCTC Manchester + Hamming Client 134

A.3.2 OSCTC Manchester + Hamming Server 134

A.4 Passive OSCTC . 135

A.4.1 Passive OSCTC Client . 135

Contents ix

A.4.2 Passive OSCTC Server . 135

B NSA Cipher Suites 140

C Weibull Probability Density Function 142

C.1 Weibull Distribution . 142

Bibliography 145

List of Figures

1.1 Range of costs for Common Criteria evaluation at EAL2, EAL3, and
EAL4 [1] . 5

2.1 Security Certification Report for Integrity-178B Operating System 29

3.1 Novel Distributed MILS Architecture . 35

3.2 Functional Class Structure . 38

3.3 Functional Family Structure . 39

3.4 Security Functional Components Structure 39

3.5 Performance in Mbps for an IPsec Tunnel with AES-NI 58

3.6 Minimum bits of security comparison . 59

3.7 Connection latency with communication within a domain 60

3.8 Throughput with and without IPsec with a single TCP connection 61

3.9 Performance of IPsec tunnel at different packet size 62

3.10 Performance of IPsec hardware accelerated implementations 62

3.11 TLS Packet Structure . 63

3.12 SoftGap Architecture . 68

3.13 SoftGap Sequence of Operations . 78

3.14 LSS sequence diagram . 79

3.15 HSS sequence diagram . 79

4.1 Prisoners’ Problem: Alice and Bob represent hosts that exchange data
through a channel that is hidden inside licit communications. Warden
can read, drop and manipulate the licit communication. 81

4.2 System Model: Alice and Bob could be for example a client requesting
services and an internal Web Server replying to these requests. 81

4.3 Weibull Probability Density Function . 94

4.4 PD of Weibull-ness and chi-square tests 99

4.5 Web Browser downloading the picture used by our passive OSCTC 105

4.6 Covert message error rate percentage at different TIME SLOT in Kassel
network . 108

4.7 Covert message error rate percentage at different TIME SLOT in path
Kassel - Duisburg . 108

4.8 Covert message error rate percentage at different TIME SLOT in path
Kassel - Rome . 108

4.9 Characters-rate in different scenarios . 109

C.1 Exponential Probability Density Function 143

C.2 Rayleigh Probability Density Function . 143

x

List of Tables

2.1 Classic MLS technology overview . 19

2.2 Shortcomings of classic MLS approach . 20

2.3 MILS features and solutions overcoming the classic MLS drawbacks . . . 23

2.4 MILS technology overview . 26

2.5 Correspondence of Certification Levels . 27

3.1 Hybrid Security Requirements Correlation Matrix 47

3.2 Comparison between ECDSA and RSA signature 59

3.3 Sequence of operations . 71

4.1 PD of the analyzed methods for a fixed PFA = 10−2 and small case 98

4.2 PD of the analyzed methods for a fixed PFA = 10−2 and medium case . . 98

4.3 PD of the analyzed methods for a fixed PFA = 10−2 and large case 98

4.4 Distance (hops) and RTT value (ms) from the sender 106

B.1 NSA Cipher Suite A . 141

B.2 NSA Cipher Suite B . 141

xi

Acronyms & Abbreviations

ABI Application Binary Interface

ACPII Advanced Configuration and Power Interface

AEAD Authenticated Encryption with Associated Data

AES Advanced Encryption Standard

AES-NI Advanced Encryption Standard - New Instructions

AKA Also Known As

CA Certification Authority

CAP Composed Assurance Package

CCE Corrected Conditional Entropy

CCRA Common Criteria Recognition Agreement

CDS Cross-Domain Solution

CIA Confidentiality Integrity Availability

COTS Commercial Off-The-Shelf

cPP collaborative Protection Profile

CPU Central Processing Unit

CS Cipher Suite

CSC Covert Storage Channel

CSMA/CD Carrier Sense Multiple Access/Collision Detection

CSRC Computer Security Resource Center

CTC Covert Timing Channel

CTPEC Canadian Trusted Product Evaluation Criteria

CTS Clear To Send

DAC Discretionary Access Control

DB Data Base

DH Diffie Hellman

xii

Acronyms and Abbreviations xiii

DBMS Data Base Management System

DMA Direct Memory Access

DNS Domain Name System

DoD Department of Defense

DSA Digital Signature Algorithm

EAL Evaluation Assurance Level

ECC Elliptic Curve Cryptography

ECDHE Elliptic Curve Diffie Hellman Ephemeral

ECDSA Elliptic Curve Digital Signature Algorithm

ESP Encapsulation Security Payload

FLASK FLux Advanced Security Kernel

FO Fragment Offset

FPGA Field Programmable Gate Array

GCM Galois Counter Mode

GOTS Government Off-The-Shelf

HSM Hardware Security Module

HSS High Side Subject

HTTP HyperText Transfer Protocol

K-S Kolmogorov-Smirnov

IAR Impact & Analysis Report

ICMP Internet Control Message Protocol

ICT Information & Telecommunications Technology

ID IDentification

I&A Information & Authentication

IEC International Electrotechnical Commission

IEEE Institute of Electrical and Electronics Engineers

IEG Information Exchange Gateway

IKE Internet Key Exchange

IP Internet Protocol

IPD Inter Packet Delay

ISN Initial Sequence Number

ISO International Organization for Standardization

ITA Internet Technologies and Applications

Acronyms and Abbreviations xiv

ITSEC Information Technology Security Evaluation Criteria

LAN Local Area Network

LSS Low Side Subject

MAC Mandatory Access Control

MIC Mandatory Integrity Control

MILS Multiple Independent Levels of Security/Safety

MCDS Miniaturized Cross Domain Solution

MYTH MILS Yarn Trusted Host

MLS Multi Level Security

MR Median Rank

MSL Multiple Single Levels

MTU Maximum Transmission Unit

NATO North Atlantic Treaty of Organization

NBS National Bureau of Standards

NEAT Not-bypssable Evaluatable Always-invoked Tamperproof

NICTA National Information Communications Technology Australia

NIST National Institute of Standards and Technology

NOOP NO OPeration

NSA National Security Agency

NSS National Security System

OS Operating System

OSCTC Open Source Covert Timing Channel

PDA Personal Digital Assistant

PDF Probability Density Function

PKI Public Key Infrastructure

PP Protection Profile

PS Policy Server

RFC Request For Comment

RM Reference Monitor

RTCP Real Time Control Protocol

RTOS Real Time Operating System

RTP Real-time Transport Protocol

RTS Request To Send

Acronyms and Abbreviations xv

SCOMP Secure COMmunications Processor

SA Security Association

SE Security Enhanced

SEF Security Enforcing Function

SFC Security Functional Component

SFR Security Functional Requirement

SKH Separation Kernel Hypervisor

SKPP Separation Kernel Protection Profile

SLS Single Level Secure

ST Security Target

SWaP Size Weight and Power

TCB Trusted Computing Base

TCP Transmission Control Protocol

TCSEC Trusted Computer Security Evaluation Criteria

TFE Trusted Front End

TLS Transport Layer Security

TOS Type Of Service

TSS Transitional Secure Server

TTL Time To Live

UCDMO Unified Cross-Domain Management Office

UDP User Datagram Protocol

U.S. United States

VM Virtual Machine

VoIP Voice over IP

VPN Virtual Private Network

WLAN Wireless LAN

XML eXtensible Markup Language

XSM Xen Security Module

Dedicated to those who, despite of the age,
don’t give up staying hungry and foolish.

xvi

Chapter 1

INTRODUCTION

Historically, organizations categorize information according to its level of sensitivity,

its value, and the impact that its disclosure, alteration, and destruction without au-

thorization could cause. Data classification standards can be considered the starting

point for any security initiative. After information is created, modified or received, its

sensitivity level needs to be defined. Such classification is useful to determine the basic

security controls necessary for data protection and the enforcement of the established

Security Policies.

Moreover, the evolution of electronic devices and telecommunications infrastructures,

together with the widespread availability of the Internet, has deeply changed the way

information is created, exchanged and stored. Nowadays data are produced massively

and faster than previously and their value often resides in the speed they are shared and

made available to those requiring them. Such set of events changed the data protection

requirements, that evolved according to the new threats and attacks of the cyber-security

era.

1.1 The Multilevel Security Problem

The strength and competitiveness of commercial and governmental organizations, re-

gardless of their specific concern, is directly connected to the information they operate

with, and to the reliability they can place in security systems designed for data protec-

tion. More and more sectors require high-robustness, high-reliability and high-assurance

security systems. Defense is the paramount actor in the Information & Communications

Technology (ICT) security, particularly nowadays that its activities are moving from the

1

Chapter 1. Introduction 2

classical battlefield towards the cyber-defence concept. The main goal is to protect in-

formation that is relevant for the national security of a country.

In the military environment data are labeled according to a classification scheme that

changes from a Government to another and they are subject to well-defined security

models. Such models shoot for enforcing different security properties: Bell-La Padula is

involved in the protection of data confidentiality, whereas Biba’s goal is the protection

of data integrity. According to the former model, for example, given a software process

with clearance Secret1, it is granted to read files characterized by a classification label

equal or below Secret, whereas it cannot write any data on files with a lower classifica-

tion level to avoid disclosure of Secret information. For the very same reason the process

can write on a Top Secret file but cannot read it. Actually the situation is even more

complicated by the presence of compartments, the user need-to-know, the difficulty of

developing effective security solutions in which Bell-La Padula and Biba models can co-

exist and so on. Sometimes the military context shares resources with the civilian world

in specific applications. Cosmo-SkyMED2 [2] is an example of aerospace program co-

financed by military and civilian agencies (it belongs to the so-called dual-use systems).

In this case it is important to protect sensitive information on which users belonging to

these different contexts operate, and that is characterized by various levels of classifica-

tion. Often satellite programs are financed by a joint participation of countries (e.g. the

MUSIS3 program [3]) thus, it becomes mandatory to enforce the National Eyes Only

requirement stating that only personnel belonging to a specific country is granted access

to the data of interest for that given country.

Critical infrastructures like chemical, communications, dams, emergency services, en-

ergy, public health, transportation, water, waste-water and financial service systems

represent other sectors, often interconnected, demanding very high ICT security solu-

tions.

Defense, Aerospace, Critical Infrastructures, Banks are contexts that do not admit any

information leakage and cannot even easily recover from such events, compared with

other commercial and industrial realities. For this reason the defense community in

particular continually demands solutions whose security requirements are not met by

commercial standards.

The need to protect information with different level of sensitivity led to the definition

of a new design approach called Multilevel Security (MLS). The adjective“multilevel”

1For the sake of clarity and given the fact that military information classification scheme calls im-
mediately to mind the categorization concept, the military context is used as reference environment in
the thesis. The standard hierarchy usually involves the unclassified, confidential, secret and top secret
levels even if arbitrary lattices can be considered.

2The COnstellation of small Satellites for Mediterranean basin Observation (COSMO-SkyMed) is a
French-Italian satellite constellation for Earth observation for dual use operations (military and civilian
users).

3The MUltinational Space-based Imaging System (MUSIS) is a spatial imaging system for Defense
and Security financed by France, Italy, Belgium, Germany, Greece, and Spain.

Chapter 1. Introduction 3

has a double meaning: it refers to the levels information is classified with, and to the

level of trust (clearance) given to authorized users by an authority responsible for es-

tablishing their trustworthiness. The Multilevel Security problem itself is characterized

by different issues that overlap and intersect each other on different layers. An MLS

system must not only protect a hierarchy of data from access by users that do not have

sufficient clearances and need-to-know. It should deny any illicit data flow trying to sub-

vert the established security policies by direct or indirect information and/or resources

observation. It should guarantee that, in time-shared systems, no disclosure of informa-

tion can derive form data left on the computer memory between different security level

computations, and no interference between different security level operations can occur.

1.2 MLS Applications

There are many applications of MLS systems that can be profitably used in the aforemen-

tioned contexts. Such applications respond to the evolution of computers and telecom-

munications which, in turn, changed the security needs of their users. From small

networks composed by separate systems dedicated to specific applications and specific

types/levels of information, the ICT trend has moved towards the network of networks

concept. Such evolution, pushed by technology improvements and the increasing need

of information sharing, led to new security problems to be solved and a different ap-

proach to those faced theretofore with the use of stand-alone computers and duplication

of networks.

The MLS applications can be divided in the following main groups:

• Secure Consoles

• Secure Database Management Systems (DBMS)

• Cross-Domain Solutions (CDS)

A Secure Console is a specific machine that allows authorized users to share its resources

in unilevel and multilevel operations [4]. In unilevel applications a computer is time-

shared by users to process data belonging to different classification levels. This solution

increases the machine use and reduces hardware costs. In multilevel applications the

MLS console is used to process several classification levels at the same time. It normally

shows data in different windows, each containing only data of a specific classification

level.

An MLS DBMS, unlike classical database management systems, is designed to manage a

hierarchy of data enforcing a Mandatory Access Control (MAC) based upon the chosen

Chapter 1. Introduction 4

classification scheme. Moreover, the Security Policy can not be subverted or bypassed

in any manner. An MLS DBMS normally uses labels to discriminate data belonging

to different classification levels with a granularity than can go down to compartments,

sub-compartments and so on.

The Cross-Domain Solution group encompasses all those systems that “provide the abil-

ity to access or transfer data among security domains” [5]. This is an important research

field, whose significance increased over the last years together with the complexity of

networks and the need to share information across different operational boundaries. A

CDS, type-access, usually runs different operating system instances, each connected to

a different network, and it normally shows data in different windows, each containing

only data of a specific classification level (thick-client system). Currently, a different

solution foresees thin-clients connected with a server that provides the secure connec-

tion to different classification level networks [6]. Cross-Domain Solutions, type-transfer,

are instead used to move data between different classification level domains. They can

be designed to enforce unidirectional or bidirectional data flow control security policies.

Such devices in particular are a NATO target in the concept of Information Exchange

Gateway (IEG). An IEG will enable effective NATO information exchange within and

between NATO and National Consultation, Command and Control (C3) systems [7].

1.3 Security Certification Schemes

High-assurance systems used in the aforementioned applications require a formal certifi-

cation establishing the level of confidence a user can have on the security functionalities

claimed by such systems. Security certifications require a recognized trusted third-party

that operates in compliance with a security certification methodology and with the

assistance of an accredited laboratory to perform the evaluation activities. If the sys-

tem/product under evaluation fulfills the required evidences, than a security certificate

is released by the Certification Authority. Usually a system is evaluated according to

specific security components and classes of assurance, that set up the level of certifica-

tion the system is certified at. According to the specific security evaluation criteria, such

levels can differ in nomenclature and/or number and often it is difficult to determine a

precise correspondence between levels.

Traditionally the certification sponsor, normally the system vendor, provides the evi-

dences that the system behaves correctly and enforces the desired security properties.

To get such proofs the vendor or the system developer performs different activities, e.g.

independent functional testing, code inspection, semi-formal and formal modeling, but

also analysis and checking of processes and procedures, analysis of vulnerabilities and

penetration testing.

Chapter 1. Introduction 5

The laboratory in charge of the evaluation verifies such evidences performing their own

tests, verifying the adherence of the system properties, goals, functionalities to those

described in the required documentation, and verifying the compliance of the documen-

tation itself with the scheme. Duration and costs of a security evaluation are straight

connected to the certification level and to the complexity of the system/product. Con-

sidering for example the ISO/IEC 15408 standard (aka Common Criteria [8]) and three

of the 6 evaluation assurance levels foreseen by the scheme4, the relating effort in terms

of cost and time is depicted in Fig. 1.1.

Figure 1.1: Range of costs for Common Criteria evaluation at EAL2, EAL3, and
EAL4 [1]

A security certification is often a mandatory requirement for many National Programs,

normally belonging to military and government sectors, but it is also becoming a valued

requirement in the civilian world. For this reason it is important to consider this topic

as integral part of the multilevel problem.

1.4 Covert Channel Problem

One of the goals a multilevel security solution should meet is the capability to be certified

at very high levels according to security evaluation scheme like, for example, the ISO/IEC

15408 one.

Since an MLS system must perform a Mandatory Access Control on classified data and

enforce the information flow control policy, it should also provides evidences that it is

able to prevent illicit data flows that could subvert such policy. An information control

flow policy is focused on data flows that move between different levels but also among

4Common Criteria foresee 6 Evaluation Assurance Levels. Higher levels require more accurate veri-
fication on a higher number of security functionalities.

Chapter 1. Introduction 6

objects that can be located along the communications path.

According to the ISO/IEC 15408 standard a covert channel is an enforced, illicit signaling

channel that allows a user to surreptitiously contravene the multilevel separation policy

and unobservability requirements of a high-assurance system. To prevent such risk the

certification scheme requires a covert channel analysis and capacity estimation to be

performed in order to mitigate such vulnerabilities. A covert channel could for example

arise from a shared resource or from resource contention issues present in traditional

computer architectures. According to us, covert channels represent another topic that

a security engineer/architect should face when dealing with MLS systems.

1.5 Drawbacks of Current Solutions

Although an MLS system is a requirement for many high-assurance security contexts,

actually the goal has been achieved only partially, because the mechanisms used to en-

force the CIA5 properties present several aspects of weakness that will be discussed in

this thesis. The issues mainly concern the design approach that led to complex systems,

the difficulty to demonstrate the effectiveness and the assurance of the system security

mechanisms, and the impossibility to evaluate the proposed solutions at the high levels

required for multilevel systems.

A new approach has been proposed aiming at going beyond the limits of the classic MLS

approach: the Multiple Independent Levels of Security/Safety. The new paradigm, to-

gether with the development of formal languages, new architectural/platform modeling

frameworks, and the recent advances in commercial microprocessors made MILS a prac-

tical and feasible solution for real applications.

1.6 Outline of the Thesis

The remainder of this thesis is structured as follows: the next chapter (Chapter 2)

will present the classic multilevel security approach, the state of the art of the MLS

solutions and the drawbacks that restricted them for narrow military applications. The

limited success of MLS started a research path that resulted in a new paradigm, called

Multiple Independent Levels of Security/Safety (MILS) that currently represents the

effort shared by Industry and Academia. The main part of the thesis is focused on a

novel MILS architecture that was designed during the doctorate studies and that led to

the development of a specific Cross-Domain component (Chapter 3). In Chapter 4 the

covert channel problem is presented together with a taxonomy of such vulnerability class.

5Confidentiality, Integrity and Availability.

Chapter 1. Introduction 7

Because the design of a high-assurance solution cannot disregard the covert channel

problem, a novel detection algorithm has been specifically designed for a class of covert

channels called Covert Timing Channels (CTC). Additional details as the code of the

developed CTC are given in Appendix A, Appendix B and Appendix C.

From Multilevel Security to MILS. This chapter depicts in detail the Multilevel

Security approach, its peculiarities, innovations, drawbacks. After introducing the basic

definitions and concepts, the enforced security models and the drawbacks of the classical

multilevel approach, the new MILS paradigm is introduced.

Novel MILS Architectures. In this chapter a distributed novel MILS architecture

designed to fulfill the high assurance objectives required for multilevel security solutions

is presented. The design approach and a specific architectural component implementing

a Cross-Domain Solution are also described.

Covert Channel Detection. In this chapter the covert channel problem is presented

and a detailed taxonomy of such vulnerabilities is introduced. The state of the art of the

detection algorithms is also presented in order to give the reader some basic concepts

used in the proposed one. A novel detection algorithm is then presented for the Covert

Timing Channels class. To test its effectiveness, different CTCs have been implemented,

whose code is detailed in Appendix A.

Conclusions. Here the main contribution of the thesis is reviewed, learned lessons are

pinpointed, and some ideas for future research are presented.

Chapter 2

FROM MULTILEVEL

SECURITY TO MILS

The term Multilevel Security arises from the security standard known as Orange

Book [9], that defines a Multilevel Secure System as “a class of systems containing in-

formation with different sensitivities that simultaneously permits access by users with

different security clearances and needs-to-know, but prevents users from obtaining ac-

cess to information for which they lack authorization”. The idea behind MLS is that

a system must be able to enforce the mandatory security policies over classified data,

accessed simultaneously by users with different clearances and need-to-know, and to

preserve the fulfillment of the applied security models.

An MLS system is usually based on a hierarchical access control model that is founded

on a regular tiling called “lattice”1. In this model the system is required to assign secu-

rity labels to objects and processes, aiming at enforcing the policies established by the

Bell-La Padula model. The mechanism is known as Mandatory Access Control (MAC):

the user can not disable or bypass it. On the opposite there is the Discretionary Ac-

cess Control (DAC) that commits to file owners the responsibility to enforce the access

control policies. In the last case the owner of the file can accidentally or intentionally vi-

olate the policies by simply modifying the access permissions. By default Bell-La Padula

protects information from its leakage toward lower sensitivity levels and maintains the

confidentiality of the objects that cannot be accessed by lower clearance subjects. It

ensures data confidentiality with the MAC policy “no read-up” and “no write-down”.

Its dual model, called Biba, enforces data integrity according to the MAC policy “no

write-up” and “no read-down”. When these two models coexist in one single environ-

ment, it means that both the policies must be enforced simultaneously and no flows are

1An information flow model consists of objects, state transitions, and lattice (flow policy) states.

8

Chapter 2. From Multilevel Security to MILS 9

allowed downwards and upwards. This is the case when communications among different

sensitivity levels is not allowed at all and each element of the MLS architecture becomes

a Single-Level Secure (SLS) component.

Enclaves can also use Multiple Single-Levels (MSL) components. In this case dedicated

machines are used for each specific level and data can be exchanged in compliance with

the Bell-La Padula model from a level to a higher one using portable storage media.

Usually, when a system must enforce a mandatory access control, it is referred according

to the security mode of operation it uses. Each security mode of operations is deter-

mined by the users’ clearance, their need-to-know, the levels of classification of data and

a formal access approval to access data. There are different modes of operations:

• Dedicated Security Mode

• System-High Security Mode

• Compartmented Security Mode

• Multilevel Security Mode

In the dedicated security mode of operations all users have a security clearance or au-

thorization and the necessary need-to-know for all information. In a domain operating

at system-high security mode all users have a security clearance or authorization but

not the necessary need-to-know for the processed information. In compartmented mode

users have the appropriate clearance but not the formal approval and the need-to-know

to access all the processed information. Finally, the multilevel mode of operations further

restricts the users access on processed data, because they do not have a valid clearance,

authorization and need-to-know for all data treated in the security domain.

Often military enclaves use the system-high security mode of operations to treat in-

formation that otherwise would be characterized by different classification levels. All

non-MLS modes let information blow up quickly in the sensitivity hierarchy and re-

quires a swift and robust declassification procedure to enable the flow in the opposite

direction (from up to low).

The MLS problem is not limited to the sectors introduced in the previous chapter in

fact, more generically, ICT systems need to exchange data and their software needs to

be patched/updated. Hence, they need a connection to the Internet. Attacks can be

launched by insiders or by remote attackers that use this link to reach their targets all

over the world. Through a compromised host, attackers can steal and exfiltrate infor-

mation or can launch further combined attacks. As underlined by an important security

professional [10], if two domains need to be interconnected, even if each of them works

at system-high security mode of operations, they need a multilevel device in their con-

nection path.

Chapter 2. From Multilevel Security to MILS 10

Designing and developing an MLS solution is anything but a trivial task, because it

requires the analysis of many aspects that belong, but are not limited, to the technolog-

ical, regulatory, and mutual international certification agreement sphere. Such aspects

are reflected in many requirements to be fulfilled, and in the intrinsic bigger complexity

of multilevel security systems.

The combination of system-high security mode of operations, Single-Level Secure and

Multiple Single-Levels components is quite far from an effective MLS system that must

store and forward simultaneously information at different classification levels and en-

force the MAC policies in combination with the Bell-La Padula security model. In the

light of this, the MLS problem has been faced for long by Academia and Industry.

2.1 Security Models

As already stated, Multilevel Security represents the capability of an ICT system to

store and process concurrently information with different characteristics of sensitivity

on which users operate with different clearances, permissions, and roles. An MLS system

must enforce the established security policies and specific security models, that is, Bell-

La Padula and Biba.

A security model describes a security policy in terms of rules that must be enforced to

achieve the desired security objectives. It is usually represented through mathematical

notation so that it results unambiguous or cannot lead to misinterpretations. Bell-La

Padula, Biba, Clark-Wilson represent formal security models and they are designed to

provide high assurance, unlike informal model that are not mathematically validated

(e.g. the Chinese Wall model).

If a system is modeled by a finite-state machine with a set of operations that modify the

system’s state, then a security rule defines the transitions that drive the system from

one authorized state to another authorized state. When the transitions lead always the

system to authorized states, then the system is considered secure.

2.1.1 Bell-La Padula

Bell-La Padula focuses on data confidentiality and access to classified information, unlike

the Biba model that concentrates on data integrity. A system is in a secure state if all

ways used by subjects to access objects are compliant to the established security policy.

The access scheme is expressed as a lattice. An operation is valid and allowed if and

only if the resulting state of the system is secure, that is, all the model properties are

satisfied. This model defines two mandatory access control rules and a discretionary

access control one, with three security properties:

Chapter 2. From Multilevel Security to MILS 11

1. simple security property, stating that a subject can access to an object only if

her clearance dominates or is equal to the object classification level (no read-up),

2. star (*) security property, stating that a subject can access to an object for

append-operations only if her clearance is dominated by the object classification

level, s/he2 can access it for write-operations only if her clearance and the object

classification level are equal, and s/he can access to an object for read-operations

only if her clearance dominates the object classification level (no write-down),

3. discretionary security policy, that uses an access matrix to specify a discre-

tionary access control. It states that a subject can employ only accesses on which

s/he has the required authorization.

The transfer of data from a higher level to a lower one can be performed only through

trusted subjects that are not limited by the previous properties.

2.1.2 Biba

Biba model is focused on the definition of a rule set for subjects operating on objects

that are characterized by different levels of integrity. In general preserving the integrity

of an object means:

• to avoid data modifications by non-authorized subjects,

• to avoid non-authorized data modifications by authorized subjects,

• to maintain the internal and external consistency of data.

Biba model implements this kind of protection through the definition of an ordered serie

of integrity levels for subjects and objects in respect of the following properties:

1. simple integrity property, stating that a subject is allowed to write to an object

only if her clearance dominates or is equal to the object classification level,

2. star (*) property, stating that a subject can access to an object for read-

operations only if her clearance is dominated or equal to the object classification

level.

It is not simple to make Bell-La Padula and Biba model coexist on the same machine.

As already underlined, when they are applied “as is” in a context, there can be no

2The term s/he could be read as “she or he” throughout the Thesis.

Chapter 2. From Multilevel Security to MILS 12

information flow between different classification levels and the system reduces itself to

a SLS domain. To use both models in an MLS domain it is necessary that the policies

applicable to confidentiality and integrity have independent classifications.

2.1.3 RBAC

The Role-Based Access Control is an approach based on the concept of role, used in

restricted access systems for authorized users. Specific roles are assigned to members

that gain in this way permission to perform specific functions. Since rights are not direct

assigned but only acquired through the role (or roles) assigned to users, the management

of user individual rights becomes a simple assignment of appropriate user roles. Three

basic rules are defined for RBAC model:

1. Role assignment, a subject can execute a transaction only if s/he has been

assigned to a role,

2. Authorization roles, an active role for a subject must have been authorized,

3. Transaction authorization, a subject can execute a transaction only if the trans-

action is authorized for the active role of the subject.

Additional constraints can be foreseen, and also roles can be combined in a hierarchy

where higher levels are made by the permissions of the lower level roles.

2.1.4 Clark-Wilson

Clark-Wilson model was developed in 1987 with the Biba’s goal of protecting the in-

tegrity of data, in particular against frauds and errors in the commercial sector. Such

context, unlike the defense one, is interested more in the integrity of processed data

(particularly in commercial transactions) than confidentiality and in the consistency of

the system state. The model identifies four main concerns related to the commercial

integrity goal:

• Authentication, each subject must be authenticated,

• Audit, any modification must be logged,

• Well-formed transactions, user can manipulate data only in constraint ways,

• Separation of duty, a critical task cannot be carried out by one entity and so

must be divided into different parts on which different subjects operate.

Chapter 2. From Multilevel Security to MILS 13

In contrast to Biba that protects information from being modified by unauthorized users,

the Clark-Wilson model prevents also unauthorized modifications by authorized users

and maintains the consistency of data.

2.1.5 Chinese Wall

Another security model focused on data integrity for the commercial world is the Chinese

Wall one developed by Brewer and Nash. The example in [11] explains in a simple way

the idea behind this model, defining the code of practice of a market analyst working for

a financial institution providing corporate business services:“such an analyst must up-

hold the confidentiality of information provided to him by his firm’s clients; this means

he cannot advise corporations where he has insider knowledge of the plans, status or

standing of a competitor. However, the analyst is free to advise corporations which are

not in competition with each other, and also to draw on general market information”.

The main goal of this model is to deny data access to users when a conflict of interest

can arise from this access. Unlike Bell-La Padula and Biba, where data access is con-

strained by attributes of data, in the Chinese Wall model the access is conditional to

the information already accessible by the subject.

2.2 Related Work

Since years the Multilevel Security is an important requirement for military and in-

telligence systems, essential to meet their automation needs in the perspective of the

information dominance. The origin of MLS dates back to the ’60s, when the defense

community identified the requirements for multilevel security [12, 13]. Many products

were deployed to solve the problem. Multics, an operating system derived from the

MIT’s Compatible Time Sharing System (CTSS) [14], was a mainframe operating sys-

tem used from 1970 until 2000. Started as a research project, it provided multiple users

with secure time-sharing computing resources. It was designed from the scratch in order

to meet security, despite of other OSes that added security as an afterthought. [15]

describes the design principles underlying Multics security, and the weaknesses of the

protection mechanisms.

The Secure Communications Processor (SCOMP) [16] was a processor derived from

Multics with formally verified software and hardware components [17]. It was based on

a kernel with 4 different rings of protection. Two rings were considered trusted and com-

prised the SCOMP Trusted Operating System, whereas the other two, called untrusted,

provided an environment for the Kernel Interface Packages. SCOMP was applied to

control data flows between areas characterized by different classification levels and was

Chapter 2. From Multilevel Security to MILS 14

also used as a military mail guard. An important contribution of such system was its

usage as a model for the development of the Orange Book [9]. Its descendants, the

XTS-200 and XTS-300 systems, were later used to move military plans from Command

& Control Systems towards troops lower classification levels.

Later on, many other MLS solutions appeared on the market, described for example

in [18, 19, 20, 21]. In 1993, Kand and Moskowitz developed the U.S. Naval Research

Laboratory (NRL) Network Pump to enforce data flow control from a low security level

network to a higher one [22].

A general but detailed overview of the development of MLS systems can be found in

[23].

2.3 State of the Art of Classic MLS

In the ’70s, the U.S. Air Force commissioned a study pointed to analyze and develop

strategies for building and verifying the assurance and the effectiveness of MLS systems.

The results of this study was summarized in the Anderson Panel Report [24]. In order

to make a design verification feasible, this report suggested that an MLS system should

enforce the established security polices through a reference validation mechanism, also

called Reference Monitor (RM). An RM is a software element that enforces the MAC

through mediation of the access control decisions. It should be small in terms of lines

of code in order to make verifiable the completeness and the effectiveness of the oper-

ations it claims to perform. Modern Operating Systems (OS) include a portion of the

software architecture that incorporates an RM and has unrestricted access to the com-

puter resources. It represents the Security Kernel. On the top of it some programs and

processes, that support users, run with privileged access to system resources without

bypassing the Security Kernel. The set of computer hardware, Security Kernel, and

its privileged components constitutes the Trusted Computing Base (TCB), that is the

system component responsible for enforcing the MLS security policies. The assurance

and verification that the TCB performs the operations properly ensures that the MLS

restrictions are effectively enforced.

2.3.1 Operating Systems

By the early ’70s, it was already clear that the commercial OSes did not offer enough

data protection in terms of confidentiality, integrity and availability. Starting from

this awareness, designers developed systems like Multics and SCOMP. Later on, many

OSes were designed in order to enforce the MAC security policy and limit the effects

of a security breach. Such OSes are commonly referred as Trusted Operating Systems.

Chapter 2. From Multilevel Security to MILS 15

Often software houses maintained a separate developing line for such OSes in order

to offer commercial versions without MAC enforcement options, but this trend was

later abandoned in the perspective of security certifications required by customers. The

current marketplace offers many Common Criteria certified OSes.

Oracle Solaris 11, for example, is EAL4+3 certified and has some features that extend

its security capabilities by enforcing a label-based MAC policy.

The TrustedBSD project was originally targeted to meet the security functionalities

required by the Common Criteria. Nowadays the TrustedBSD effort is focused on the

research and the development of security extensions to meet specific security goals. The

TrustedBSD MAC Framework augments the system security mechanisms in order to

implement the mandatory access control. Its features are now integrated in the FreeBSD

operating system [25].

Solaris and FreeBSD use a strong mandatory access control architecture called FLux

Advanced Security Kernel (FLASK) [26]. FLASK provides a flexible support for security

policies that was initially integrated into the NSA’s Security Enhanced Linux (SE Linux).

It progressively became the core framework of security-focused operating systems like,

for example, Solaris, FreeBSD, Red Hat Enterprise Linux4, CentOS, Fedora, Darwin

Kernel etc.

Other OSes like Suse Enterprise Linux, OpenSUSE, Debian, Gentoo etc. use a different

kernel security model called AppArmor [27] that supplements the classical DAC model

with the mandatory access control one. In contrast to SE Linux that utilizes labels for

files, it works with file paths and uses a combination of static-analysis and learning-based

tools to proactively protect the OS and the applications.

IBM z/OS V2R1 and BAE Systems STOP OS v.75 are other security-oriented operating

systems evaluated at EAL4+ according to the Common Criteria scheme.

Microsoft introduced in Windows Vista a security feature called Mandatory Integrity

Control (MIC) for the enforcement of a security model that resembles the Biba one. It

restricts the access permissions of applications in a way that a lower-level subject cannot

modify a higher-level object. Unlike the strict integrity policy of Biba, Windows does

not inhibit higher-integrity subjects from reading or executing lower-integrity objects

[28].

3The concept of Evaluation Assurance Levels (EAL) in the Common Criteria scheme is described
later in the Thesis.

4Currently the version 7 is under certification at EAL4+ according to the Common Criteria scheme.
5STOP OS has a strong history of evaluated products, including SCOMP and the XTS systems.

Chapter 2. From Multilevel Security to MILS 16

2.3.2 Databases

Together with the implementation of OSes, the Database Management System (DBMS)

technology has been provided with multilevel security features. As well as SLS com-

ponents, the maintenance of separate databases for different levels of classified data is

costly in terms of money and administrative effort. Oracle, for example, introduced a

“label security” tool to access hierarchical data by comparing their labels with the user’s

clearance.

There are many Commercial Off-The-Shelf (COTS) certified products for database: Or-

acle Database 11g Release 2 Enterprise Edition (EAL4+), Microsoft SQL Server 2012

Database Engine Enterprise Edition x64 (EAL4+), IBM DB2 Version 9.1 for z/OS Ver-

sion 1 Release 10 (EAL4+) to name but a few.

2.3.3 Virtualization

In the panorama of MLS products, virtualization represents an interesting solution par-

ticularly in terms of Size, Weight and Power (SWaP) savings. Virtualization introduces

an abstraction class that decouples adjacent layers to deliver flexibility and better re-

source utilization. It is a mature technology whose effectiveness is increased over the

years thanks to the improvements of commercial microprocessors. Virtualization allows

different operating systems and standard applications from multiple security domains to

run on a single machine. Xen Security Modules (XSM) and Xen Flask Security Module

are for example software elements that allow the implementation of a MAC through the

FLASK architecture introduced before. XSM enables an administrator or developer to

manage fine-grained control over a Xen domain.

Also VMware released different products to encapsulate OSes, applications and data

into isolated layers. VMware View is a component built on the EAL4 certified VMware

vSphere for Desktop platform that allows an organization to manage different levels

from a single administrative console. Different instances of OSes reside in the cloud and

authorized users can access their sessions from different networks.

Many other solutions are actually provided by IBM, Citrix, Microsoft, Nimboxx etc.,

highlighting the successful adoption of such technology in high-critical security environ-

ments.

2.4 Cross-Domain Solutions

The need to rapidly collect, elaborate, and share information is the paramount require-

ment for the armed forces. Often data are moved among domains that are not under the

Chapter 2. From Multilevel Security to MILS 17

same security policies, for example in federated or coalition networks. Through the in-

tegration of different domains it is possible to increase the overall capability of the joint

system. This is called Cross-Domain Synergy. The need to share information across

different operational and coalition boundaries is not an exclusive military prerogative,

in fact all the sectors introduced in paragraph 1.1 require this kind of solution.

A cross-domain system is “a form of controlled interface that provides the ability to man-

ually and/or automatically access and/or transfer information between different security

domains” [5]. The U.S. Unified Cross-Domain Management Office (UCDMO) indexed

the cross-domain mechanisms as transfer, access, and multilevel. “A transfer device

permits the movement of data from one domain to another. An access device allows a

user to sit on one workstation and access multiple domains but not move data between

them. A multilevel device stores and processes information of different security levels in

a common repository, but only allows a user to view appropriate information based on

his/her credentials” [29].

A dual-use system requires a cross-domain solution. The same solution is necessary

to connect two or more system-high military networks. Extending the concept, all the

systems belonging to the aforementioned contexts need to be regularly updated and

patched, in other words need a connection to the Internet (at least by a cross-domain

type-transfer device). In multilevel systems it is important to control the information

flows and prevent those that could illicitly disclose data as in the presence of covert

channels [30].

In particular there are applications that require unidirectional data flows, for example

when a classified domain needs a connection to an unclassified one or to the Internet.

Actually, different cross-domain solutions are used in order to enforce the Bell-La Padula

model and the unidirectional data flow control, as introduced in the next paragraph.

2.4.0.1 MLS Guards

A Cross-Domain Solution (CDS) is often referred as “guard” or “secure gateway”, be-

cause it positions itself as the unique interface among different security classification

level domains.

A guard is an important requirement for NATO in the concept of Information Exchange

Gateway (IEG): a security architecture with standardized interfaces conceived to enable

secure communications among NATO and non-NATO nations, organizations and agen-

cies.

Currently many companies offer their products based on the multilevel technologies men-

tioned in the previous paragraphs, enriched with encryption mechanisms and supporting

different security protocols. BAE Systems, for example, proposes its XTS Guard 5 to

Chapter 2. From Multilevel Security to MILS 18

enable secure sharing across different classification, operational, and coalition bound-

aries. It allows users to share data like chat, XML, imagery from a single computer

system in conjunction with the secure STOP operating system.

General Dynamics [31], Forcepoint [32], Lockheed Martin [33], Thales [34], and Advat-

ech Pacific [35] are other examples of companies that offer a plethora of MLS solutions

based on COTS processors, SE Linux, AppArmor, Virtualization platforms and so on.

The need of secure guards to connect mobile devices such as laptops and Personal Digital

Assistants (PDA) in tactical environments, drove Owl Computing Technologies to design

a Miniaturized Cross Domain Solution (MCDS) suitable for Android GOTS platforms

[36].

2.4.0.2 Air-Gap

The Network Working Group defines the Air-Gap as “an interface between two systems

at which (a) they are not connected physically and (b) any logical connection is not auto-

mated” [37]. Air-Gap represents a security system that physically detaches a protected

network from an unreliable one and it is often used in highly secure environments to

protect data from illicit disclosure. It is sometimes referred as “manual” guard.

The air-gap is composed by two elements, the first one (called also Bastion) is connected

to a network on which specific security policies are enforced, e.g. a Local Area Network

(LAN). The second one is physically isolated from the protected LAN and is connected

to a network that is not subordinated to the domain security policies (thus, non-reliable

from the LAN perspective). An authorized user can make use of the Bastion, for exam-

ple, to save data on a portable storage media and export them to the unreliable network

(after proper declassification) connecting the same storage device to the second host.

On the opposite, the second host could be used to download data from the Internet and

import them to the internal LAN through the Bastion.

2.4.0.3 Data-Diode

The Data-Diode is used as well as the Air-Gap to enforce the Bell-La Padula security

model, establishing one-way communications when data are required to flow from a

network with specific classification level to a higher classification level one. It usually

consists of two operative interfaces. At the low security level host, the electrical signal

is converted into light and sent to the high security level host via an optical fiber. The

high security level host does not have input connections and also lacks the ability of con-

verting electrical signal into light. Since the unidirectional flow is realized in hardware

and supported by a light firmware, these solutions can get very high levels of assurance

Chapter 2. From Multilevel Security to MILS 19

in security certifications like the ISO/IEC 15408.

The marketplace provides a wide range of high-assurance data-diode solutions for civil-

ian and military applications.

Table 2.1 summarizes the state of the art of classic MLS solutions.

Table 2.1: Classic MLS technology overview

Category Name Producer

Operating
System

Solaris 11 Oracle

FreeBSD The TrustedBSD Project

Suse Enterprise Linux Novell

OpenSUSE The openSUSE Project

Debian The Debian Project

Gentoo Gentoo Foundation

z/OS IBM

STOP v.7 BAE System

XTS-400 BAE System

HP-UX HP

RHEL 7 Red Hat

DBMS

Oracle DB 11g EE Oracle

SQL Server Microsoft

DB2 v.9.1 for z/OS rel.10 IBM

Virtualization

Xen The Xen Project

VMware vSphere VMware

KVM Open Virtualization Alliance

others IBM, Citrix, Microsoft,

Nimboxx, etc.

Cross-Domain
Solution

Air-Gap general purpose computers

Data-Diode Owl computing Technologies,

BAE Systems, Advenica,

Nexor, Fox-IT, etc.

2.5 Drawbacks of the classical approach

Although a MLS system is a requirement for many high-security systems, actually the

goal has been achieved only partially, because the involved mechanisms present several

aspects of weakness. Table 2.2 summarizes the shortcomings of the classic approach

described in this paragraph.

Chapter 2. From Multilevel Security to MILS 20

In the past, secure systems have been designed with the concept of Security Kernel and

TCB. It means that the security decisions and the security mechanisms were integral

part of the TCB. Following this approach, designers and developers started adding more

and more of their system functionality into the TCB. This approach led to the following

drawbacks:

• the security functions are difficult to separate from other system features (mono-

lithic applications),

• the size of the system is inclined to be very large,

• it becomes impossible to formally verify the correctness of a system with thousands

of lines of code.

Table 2.2: Shortcomings of classic MLS approach

ID PITFALL

MONO monolithic applications

TCB complexity of TCB

SIZE size of TCB

EVA1 unfeasible formal/semi-formal evaluation

EVA2 difficult and costly high-level evaluation

CC difficult covert channel analysis

AG1 non automatic data transfer (Air-Gap)

AG2 management of additional sw/hw (Air- Gap)

DD1 high costs (Data-Diode)

DD2 non suitable for C-O protocols (Data-Diode)

GOV1 weak government policies for MLS

GOV2 government advocacy for weak MLS solutions

MLS systems are usually associated to multiple levels of security with Mandatory Access

Control enforcing the Bell-La Padula rules. But many multilevel systems that are cur-

rently used in the defense environment implement simply the system-high security mode

of operations with some form of communications between them, through for example

Air-Gaps and Data-Diodes.

Another problem is represented by covert channels, a class of vulnerability that can lead

to disclosure of sensitive information and that benefits from the speed improvements of

the current communications networks [38]. Covert channel analysis becomes very diffi-

cult with large and monolithic TCB.

Air-Gap effectively ensures total isolation and separation of networks and is not very

Chapter 2. From Multilevel Security to MILS 21

expensive compared to other classic multilevel solutions, but it presents some disadvan-

tages. For example, it requires manual intervention of an operator to import (low to

high) or downgrade-and-export (high to low) data. It also requires the management of

the Air-Gap hosts (software and hardware) and the CD/DVD/usb-sticks used to move

data, in all their life-cycle.

The advantage of Data-Diodes is the high level of assurance got in security certifica-

tion schemes like Common Criteria. The drawbacks are different, for example the high

costs and the capability to allow only connectionless protocol communications. Modern

Data-Diodes support also connection-oriented (C-O) protocols like TCP by adding soft-

ware proxies that automatically simulate the connection establishment and termination

handshakes but with no possibility of packet re-transmission if some errors occur [39].

Bell underlined in his paper [23] the fact that the marketplace has never produced high

security products spontaneously and government versions of MLS products have never

been viable over the long term. Because of the shortage of MLS products, most or-

ganizations chose to deploy multiple computer networks, each dedicated to the specific

security level they needed. When specific critical applications required an MLS system,

often such requirement was fulfilled by low-assurance commodity technology.

According to Bell, even if the U.S.A. context defined a road-map to address the high-

assurance security needs of the cyber-era, it enforced weakly the policy to use validated

products. Also, when the use of certified products has been fostered in the last years,

the National Security Agency (NSA) advocated weak6 NSA products, often preferring

them to stronger commercial ones.

Furthermore, the high costs of an MLS solution, owing to the certification process and

combined with the limited number of customers, made the success of classic MLS only

partially feasible.

2.6 Multiple Independent Levels of Security/Safety

In the last years a new multilevel security paradigm has been pursued by security engi-

neers: the Multiple Independent Levels of Security/Safety (MILS).

The MILS paradigm has been developed to solve the difficulty of certification through a

“divide et impera”7 approach, that is the creation of small high-secure and high-reliable

software elements. The separation of security mechanisms and issues into independent

and manageable components simplifies the process of the specification, design and anal-

ysis of high-assurance computer systems. Together with the concept of “compositional

6According to Bell, here the term “weak” stands for a certification level less or equal to EAL4.
7Latin expression from which the english “divide and conquer” comes from.

Chapter 2. From Multilevel Security to MILS 22

approach” of Common Criteria certification, MILS can enable a real, fast, and cost-

effective approach to security certifications required by the existent market [40].

The concept of MILS arose from the need of “robust partitioning” required for Inte-

grated Modular Avionics (IMA) by standard like ARINC 653 [41] and DO-178B [42].

Such partitioning is required to avoid that a fault within a computer system could prop-

agate and affect the operations of other safety critical functions in avionic architectures.

The origin from the airborne systems is clearly quoted in the word Safety in the MILS

acronym. Traditionally the aircraft control functions were implemented separately on

different fault-tolerant machines that needed to exchange simple sensor and control data.

Later the avionic architecture started collecting these functions on a single fault-tolerant

computer where fault containment was more difficult to achieve. Robust partitioning

comprises the protection of each partition’s memory addressing space, the restriction of

the processing time assigned to each partition and the restriction to the execution of

privileged instructions.

Rushby examines the principles and the mechanisms to provide assured partitioning in

[43]. In particular he states: “because partitioning shares some concerns with computer

security, security models are reviewed and compared with the concerns of partitioning”.

The concept of robust partitioning is very close to the Secure Isolation Formal Model,

that later was used into a security verification technique called “Proof of Separabil-

ity”, presented in [44]. In his approach Rushby proposed to decouple the verification of

components implementing trusted functions from the verification of the Security Kernel.

This result can be achieved by dividing memory into partitions and allowing only strictly

controlled communications across them. In this way a single partition is required to offer

services to another one with minimal action from the Security Kernel.

These concepts led to the introduction of the Separation Kernel (SK) whose features

were collected in the Separation Kernel Protection Profile (SKPP) [45], an effort by

the U.S. Government that was later abandoned in 2011 [46]. In spite of the sunset of

the SKPP, the Separation Kernel approach represents the cornerstone of current MILS

solutions. The Separation Kernel and its network-homologous, the Partitioning Com-

munication System (PCS), constitute the core of MILS architectures. They implement

and enforce the separation and isolation policies on a single machine and over an entire

computer network, respectively.

The following table presents the subset of MILS features that overcome the drawbacks

of the classic MLS.

Chapter 2. From Multilevel Security to MILS 23

Table 2.3: MILS features and solutions overcoming the classic MLS drawbacks

MILS feature MLS drawback MILS solution

Robust Partitioning MONO, EVA1, CC SK Hypervisor, SK OS

Divide & Conquer Approach TCB,SIZE,EVA1,CC,EVA2 SK Hypervisor and SK OS

Compositional Approach AG1, EVA1 SoftGap, MILS Guards

Virtualization AG2, DD1, DD2, EVA2 SK Hypervisor

CCRA GOV1, GOV2, EVA2 Common Criteria standard,

certified crypthographic and

hashing algorithms

The specific MILS solutions are detailed in the next paragraphs.

2.6.1 NEAT Paradigm

A MILS system must be designed according to essential requirements that were specified

initially for the Reference Validation System in the Anderson Panel Report [24]. These

requirements are today referred as NEAT properties, where the acronym stands for:

• Not-Bypassable, the safety functions must not be subverted;

• Evaluatable, the safety functions must be small enough to be mathematically

verified and evaluated;

• Always-Invoked;

• Tamperproof, the security functions must not be altered by malicious code.

The enforcing of formally-demonstrated security policies guarantees information flow

control, data isolation, predictive control over their processing operations, limitation

of damages in case of a security breach, availability of resources and the possibility of

certification at high levels of assurance.

2.7 State of the Art of MILS Solutions

In the last few years the need of multilevel systems that went beyond the limits of the

classic approach encouraged the appearance of new MILS solutions. In the next para-

graphs the Separation Kernel Hypervisors and MILS Operating Systems are presented.

The MILS Guards are instead detailed in the next section.

Chapter 2. From Multilevel Security to MILS 24

2.7.0.1 Separation Kernel Hypervisors

A Separation Kernel Hypervisor is a virtualization platform that allows to simultane-

ously run multiple OSes on a single hardware platform, guaranteeing that the OS guests

are separated in a secure way and cannot affect each others’ functionalities. The physical

device access and the information flows among the Virtual Machines (VM) are strictly

controlled. The goal of an SKH is to host high-assurance systems on general purpose

devices in order to support affordable security evaluations. A Separation Kernel Hyper-

visor is usually very small in terms of lines of code because it is stripped of functions on

which it could not provide adequate protection, whereas it concerns only about those

that enforce the MILS policy. Such features make an SKH suitable for high perfor-

mance/real time applications and make practical a high assurance security evaluation

that requires semi-formal and formal analysis of the claimed security mechanisms.

Lynx Software Technology offers its LynxSecure Separation Kernel Hypervisor [47], a

type-0 hypervisor designed in the principle of least privilege. It means that an entity is

not granted more privileges than necessary for it to perform its functions, limiting the

damages that the entity could do in case of failure [48].

Wind River provides a type-1 hypervisor called VxWorks MILS [49] that, as well as

LynxSecure, meets the requirements in the “U.S. Government Protection Profile for

Separation Kernels in Environments Requiring High Robustness”, version 1.03.

Other companies offer their own SKHs like Green Hills Software with its Integrity Mul-

tivisor or Sysgo with PikeOS. The former is a real-time platform for safely and securely

combining OSes such as Linux, QNX, Android or Windows with safety and security-

critical software on 64-bit multicore processors. It is based on Green Hills Software old

Integrity 178-B OS. PikeOS was chosen in the EURO-MILS project [50] in the effort of

establishing it as the European security platform for embedded systems certified up to

level EAL5+.

An open source solution specifically developed for embedded devices by General Dy-

namics Mission Systems is the OKL4 Microvisor. It can be used as a hypervisor as well

as a simple real-time operating system with memory protection.

SeL4 Microkernel is an open-source variant of OKL4 owned by General Dynamics Mis-

sion Systems and it has been formally verified by the Australian Information and Com-

munications Technology Research Center (NICTA).

All the aforementioned solutions support a wide variety of specifications and standards

and have been certified according to specific schemes, but none of them has been yet

certified according to the Common Criteria one. This represents the major problem of

their usage in European projects that require ISO/IEC 15408 certified GOTS/COTS.

Chapter 2. From Multilevel Security to MILS 25

2.7.0.2 Separation Kernel Operating Systems

In the field of Operating Systems, Green Hills Software Integrity 178-B RTOS is the only

one that has been certified at a very high assurance level. It gained the Common Crite-

ria EAL 6+ certification by the National Information Assurance Partnership (NIAP) in

2008 [51] on a Power PC platform. The relatively simple hardware of the platform does

not meet the features of the current workstations [52].

Wind River VxWorks 365 is an ARINC 653-compliant operating system that uses mul-

ticore separation and partitioning to allow the reuse of legacy software. It is used in

many different aerospace and medical programs, for example Selex ES company chose

it for its MILS gateway solution [53].

The Micrium C/TimeSpaceOS is a real-time kernel that allows several independent ap-

plications to be executed simultaneously on the same hardware platform, guaranteeing

that the applications do not interfere with each other. Each application is independent

from other partitions.

Quest is an operating system designed to be dependable and predictable. It is an open

source software available under the terms of the GNU General Public License v3. It can

be used as guest OS on the Quest-V separation kernel that isolates guest domains in

separate sandboxes. Quest-V supports also OSes such as Linux.

The Muen8 Separation Kernel is an open source microkernel developed by the Institute

for Internet Technologies and Applications (ITA) at the University of Applied Sciences

Rapperswil (HSR). It is formally proven to contain no runtime errors at the source code

level [54].

Qubes OS is another operating system that utilizes virtualization technology to isolate

applications from each other and also to sandbox components like networking and stor-

age subsystems. It is based on Xen hypervisor. The OS designers decided to choose this

solution because Xen isolation is based on virtualization enforced by a thin hypervisor.

On the contrary, solutions like KVM rely on the Linux kernel to provide isolation that,

according to the designers, is not as secure as Xen. Qubes OS provides integration of

the applications hosted in different VMs through a common user desktop, whose GUI

is hosted in an administrative VM, called Dom0, that is the only one that has direct

access to graphics and input devices.

PolyXene is a MILS solution that ensures the secure cohabitation of data and appli-

cations of different classification levels on a single workstation [55]. It is the result of

the collaboration between Bertin Technologies and the French Department of Defense,

certified in 2009 according to the Common Criteria standard at EAL5 assurance level.

PolyXene version 2 is currently being assessed for Common Criteria EAL5+ certification

8Muen comes from Japanese and can be translated into “without relation” and refers to the compo-
nents that are isolated by the separation kernel.

Chapter 2. From Multilevel Security to MILS 26

[56]. The solution foresees a trusted zone and one or more standard zones, that can be

considered just like separation kernel partitions. Like Qubes OS, it provides virtualiza-

tion through an external component, here the VirtualLogix VLX virtualization software,

owned today by Harman International Industries and used specifically for mobile and

automotive solutions [57].

Table 2.4: MILS technology overview

Category Name Producer

Separation
Kernel
Hypervisor

LynxSecure Lynx Technologies

VxWorks MILS Wind River

Integrity Multivisor Green Hills Software

PikeOS Sysgo

OKL4 Microvisor General Dynamics Mission Systems

SeL4 Microvisor General Dynamics Mission Systems

SK Op-
erating
System

Integrity 178-B RTOS Green Hills Software

VxWorks 356 Wind River

µC/OS Micrium

Quest Boston University

Muen Rapperswil University

Qubes The Qubes Project

Polyxene Bertin Technologies

Cross-Domain
Solution

SoftGap Sira

SecureOne KOV-7 Rockwell Collins

MicroTurnstile Rockwell Collins

Themis Thales

Table 2.4 summarizes the state of the art of MILS solutions.

2.8 Security Evaluation Criteria

One of the goal a multilevel security solution should meet is the capability to be certified

at very high levels according to security evaluation standard like the ISO/IEC 15408.

Though a security evaluation it can provide certified evidences that it addresses appro-

priately critical properties like security and safety.

The avionic sector first developed standards and guidelines to design, analyze and eval-

uate safety systems, nevertheless such effort was not able to meet the security issues of

high assurance systems.

In the ’70s, under the auspices of the Department of Defense (DoD), different works

Chapter 2. From Multilevel Security to MILS 27

were published to address computer security problems and to establish uniform DoD

policy, requirements, administrative and technical countermeasures [9].

Concurrently with the DoD’s efforts, the National Bureau of Standards (NBS) focused

its attention on the definition of problems and solutions for building, evaluating, and au-

diting secure computer systems. Its work provided criteria for the evaluation of computer

security functionalities effectiveness. Such criteria were used by the MITRE Corpora-

tion [58] to establish a set of security evaluation criteria and a metric useful to measure

the security of a system. The effort was later employed by the DoD Computer Secu-

rity Center that in 1985 introduced a systematic set of standards, and published a set

of criteria for developing and evaluating systems. It was called the Trusted Computer

System Evaluation Criteria (TCSEC) or “Orange Book”. In Europe a different scheme

was used for the evaluation of a security product, the Information Technology Security

Evaluation Criteria (ITSEC) standard [59].

In order to combine together these two approaches, in 1996 the Common Criteria stan-

dard was published. Since 2005 Common Criteria or ISO/IEC 15408 constitutes the

international standard to design, analyze, and evaluate security critical systems claim-

ing very high levels of assurance.

The Orange Book contemplated evaluations at a number of classes with A1 being the

highest, and moving downwards through B3, B2, B1, C2 and C1. The early MLS prod-

ucts, like Multics, SCOMP, XTS-300/400 etc. were evaluated according to the Orange

Book standard at high certification classes (between A1 and B2 levels), and currently

the same assurance levels are the target for multilevel systems aiming at the Common

Criteria certification. Translating to the Common Criteria, B1 is approximately EAL4,

B2 is roughly EAL5, and B3 and higher are EAL6/EAL79.

The equivalence of the security evaluation levels is reported in the following table:

Table 2.5: Correspondence of Certification Levels

Common Criteria ITSEC TCSEC

EAL1 E0 D

EAL2 E1 C1

EAL3 E2 C2

EAL4 E3 B1

EAL5 E4 B2

EAL6 E5 B3

EAL7 E6 A1

9Often a system/products is evaluated according to an EAL “augmented”. This expression is stated
by a “+” after the assurance level (for example EAL4+). It denotes an augmentation to the EAL, that
is the realization of security objectives not required by the corresponding EAL.

Chapter 2. From Multilevel Security to MILS 28

2.8.1 ISO/IEC 15408

Since more than 10 years the ISO/IEC 15408 (Common Criteria) became the reference

certification methodology for the military and the civilian community. This standard

was born as the attempt to unify and harmonize the pre-existing security evaluation

criteria like TCSEC, ITSEC, and the Canadian Trusted Product Evaluation Criteria

(CTPEC). The first version of Common Criteria was published in 1994 by the Common

Criteria Management Board. In 1999 Common Criteria, in the version 2.1, became

an IS0/IEC standard: the ISO/IEC 15408. The main added value of such standard,

that is the mutual recognition of international evaluations, led the participants to sign

an Arrangement on the Recognition of Common Criteria Certificates in the filed of IT

Security. The other objectives were [60]:

• to ensure that evaluations of Information Technology (IT) products and Protection

Profiles10 are performed to high and consistent standards and are seen to contribute

significantly to confidence in the security of those products and profiles;

• to improve the availability of evaluated, security-enhanced IT products and pro-

tection profiles;

• to eliminate the burden of duplicating evaluations of IT products and protection

profiles;

• to continuously improve the efficiency and cost-effectiveness of the evaluation and

certification/validation process for IT products and protection profiles.

Later on, other versions of the scheme followed and the current one is the 3.1 Release

4 that reflects the progress of Common Criteria and the interpretations deriving from

past certifications experience.

2.8.1.1 Security Evaluation Phases

An evaluation process involves different subjects: a Certification Authority (CA), an

accredited laboratory the involves accredited professionals and performs the evaluation

activities, the customer that is s/he who requires the evaluation, and the system provider.

The process is characterized by the following steps:

• Preparation,

10A Protection Profile (PP) is a document that describes an implementation-independent set of secu-
rity requirements of a class of ICT products.

Chapter 2. From Multilevel Security to MILS 29

• Realization,

• Conclusion.

The preparation phase involves the customer, providing the documentation required by

the scheme, and a laboratory that evaluates the Security Target (ST) document. A

Security Target is the most important document provided by the customer that con-

tains all the assumptions, the requirements and the security objectives the system must

fulfill. Through the ST the designated laboratory can issue a detailed plan for the evalu-

ation. Once defined the agreement between the laboratory and the customer, the latter

presents the formal request to the Certification Authority delivering also the ST and the

evaluation plan produced by the chosen laboratory.

The realization phase starts when the CA, evaluated the received documentation, rati-

fies the plan and formally accepts the certification in the scheme.

In the conclusion phase the laboratory delivers the Evaluation Final Report that summa-

rizes the results and that is used as reference point by the CA that issues the Certification

Report like the example depicted in Fig. 2.1.

Figure 2.1: Security Certification Report for Integrity-178B Operating System

2.8.1.2 Evaluation Assurance Levels

“Assurance is grounds for confidence that an IT product meets its security objectives”

[61].

The Common Criteria standard provides assurance by an evaluation that aims at de-

termining the security properties of an IT product referred in the scheme as Target

Chapter 2. From Multilevel Security to MILS 30

of Evaluation (TOE). In the scheme it is also possible to obtain other combinations of

assurance thorough the notion of “augmentation”. Augmentation means that it is possi-

ble to add and substitute specific assurance components to those present in the required

EAL. Augmentation is represented by a “+” following the obtained certification level.

EAL1 (Functionally Tested) is applicable for systems that must provide evidences

of correct operations in environments that encompass low level threats. EAL1 requires

a limited Security Target that lists the intended Security Functional Requirements11

(SFR) rather than deriving them from threats, assumptions, and security goals. EAL1

provides the evaluation of the TOE, some independent tests, and the analysis of the

provided guidance documents. Main objective of this EAL is the provision of evidences

that the system works in a way that is consistent with its documentation.

EAL2 (Structurally Tested) is applicable when the system must face low and mid-

level threats. It requires the cooperation of the customer that must provide information

about design and test results. EAL2 provides an increased level of assurance by requiring

developer testing, a vulnerability analysis, and independent testing based upon more

detailed TOE specifications.

EAL3 (Methodically Tested and Checked) is applicable when the customer and/or

users require a moderate level of security. This EAL represents a meaningful increase

in assurance from EAL2, given that it requires more complete tests of the Security

Enforcing Functions (SEF) and procedures providing evidences that the TOE is not

tampered during the development phase.

EAL4 (Methodically Designed, Tested, and Reviewed) is the highest level at

which retrofitting to an existing product line is cost-effective. EAL4 is applicable when

customer or users require a moderate to high-level assured security. This EAL requires

deeper design description and improved mechanisms/procedures that provide confidence

that the TOE is not be tampered during the development phase.

EAL5 (Semi-Formally Designed and Tested) is the first level that requires to the

customer rigorous commercial development practices supported by moderate application

of specialist security engineering techniques. It means that the TOE is designed with

the intent of achieving EAL5 assurance. EAL5 is therefore applicable when a high

level of independently-assured security is required together with a rigorous development

approach and security engineering techniques. The significant difference in comparison

with the previous levels is that it requires semi-formal design descriptions. In addition,

it requires a structured architecture and improved mechanisms/procedures that provide

confidence that the TOE is not tampered during the development phase.

11The concepts relating to Security Functional Requirements (SFR) is explained in the next Chapter.

Chapter 2. From Multilevel Security to MILS 31

EAL6 (Semi-Formally Verified Design and Tested) is used for high-assurance

systems where high value assets are threatened. It requires a deeper description of

SFRs, objectives, and security mechanisms. It also requires architectural structure and

vulnerability analyses together with a semi-formal design description. Another set of

controls is required on the configuration management and development environment.

EAL7 (Formally Verified Design and Tested) is suitable for developing systems to

be used in extremely high risk situations and where the high value of the assets justifies

higher effort in terms of cost and time. This level requires extensive formal analysis,

though the use of formal representations, formal correspondence, and comprehensive

testing.

Even if seven EALs are contemplated, another classification can be considered: the first

meta-group, comprising the EAL5, EAL6 and EAL7, for which a design semi-formal or

formal analysis design is required, and the second one that has not this certification re-

quirement. Such difference plays an important role in the customer choice of the desired

certification level. The requirement of system design semi-formal or formal analysis rep-

resents a major complication that until now, with the only exception of the Green Hill

Integrity 178-B OS, led to the successful certification at high levels of assurance only

few solutions. Such solutions are mostly characterized by light firmware or small soft-

ware components, typical for example in devices like smart-card or Hardware Security

Modules (HSM). It becomes very difficult to perform such kind of analysis for complex

solutions like Operating Systems. The need of formal verification for high-assurance sys-

tems arises from the need, in the evaluation process, to anticipate all possible events that

pose risks of adverse consequences. Methods of such analysis can be considered as ap-

proximate means to search for a broader class of circumstances violating the established

security policy [62].

2.8.1.3 Compositional Approach

A relevant innovation has been introduced by the version 3 of Common Criteria doc-

umentation. The latest version of the standard describes the possibility to consider

systems previously certified in the scheme to build a certifiable Composed TOE.

The concept of using the results of previous certifications belongs to Common Criteria

Assurance Continuity paradigm for the maintenance of certification, necessary when the

TOE is subjected to changes after a completed evaluation. Following an Impact Anal-

ysis Report (IAR), a decision is made whether the TOE must be re-evaluated or not,

depending on the level of criticality of the implemented changes.

Starting from this approach, the scheme foresees two different modes:

Chapter 2. From Multilevel Security to MILS 32

1. Composite Evaluation,

2. Composed Evaluation.

A Composite Evaluation can be performed when an independently evaluated product is

part of a final composite product to be evaluated. In such composite system, composed

by at least two products, the underlying platform must be part of the previously certi-

fied component. The EAL of the certified component limits the EAL of the composite

system.

A Composed Evaluation can be performed when two or more previously certified prod-

ucts are assembled to build a new system to be certified. For this category, the scheme

introduced an Assurance Class called Composition (ACO) characterized by three Com-

position Assurance Packages (CAP), that is CAP-A, CAP-B, and CAP-C. Each CAP

consists of a combination of assurance components and CAP-C represents the maximum

achievable assurance level, approximately comparable with EAL412. The Composed

Evaluation was introduced for those cases when the evaluator possesses only high-level

information about the TOE and its evaluated components.

The introduction of ACO class and the potential usage of composite evaluation rep-

resents an important evolution of the methodology that fits perfectly the assumptions

underlying the new MILS paradigm.

2.9 MILS Projects

Different European Projects have been set up in the last few years. The main goals are

the development of solutions for virtualization that could provide strong separation of

resources, and the establishment of a common framework for critical system develop-

ment and certification by means of Common Criteria scheme and formal methods.

The EURO-MILS project (FP7-ICT-2011-8) has been financed by the Seventh Frame-

work Programme and ended at the end of March 2016 [50]. White papers and interesting

deliverables are public available on the EURO-MILS website.

The D-MILS is another project of the Seventh Framework Programme (project number

318772) for research and technological development (FP7) that ended in 2013 and whose

results are freely available at [63].

12CAPs only consider resistance against attackers with an attack potential up to Enhanced-Basic. This
is due to the level of design information that can be provided and that affects the rigor of vulnerability
analysis performed by the evaluator [61].

Chapter 3

NOVEL MILS

ARCHITECTURES

Different elements contributed to the adoption of the MILS paradigm by Academia

and Industry. The triggering event can be attributed to diverse elements: the evolution

of processors architectures and separation kernel hypervisors, a deeper comprehension of

security certification methodologies, new interpretations of the Common Criteria scheme

and the multilevel security problem.

MILS is a mature technology that today more than ever can meet a scheme, the Com-

mon Criteria one, that has equally matured thanks to the successes and failures of past

certification experiences.

Notwithstanding, currently the marketplace presents only few MILS solutions for mili-

tary applications and still lacks offering such systems for customer applications.

Many requirements characterized our design approach. Our solution should have been in-

novative, designed from the scratch in the defense-in-depth concept, security certification-

oriented, that made use of the world wide recognized security standards and algorithms,

that were characterized by an agile design modeling, and that could have been applied

in a transparent way to many legacy architectures.

In order to meet these ambitious goals, we decided to face the problem from different

perspectives. For example, concerning the security certification-oriented objective, we

decided to use the ISO/IEC 15408 standard as a reference since the starting phase of

the project, in order to define punctually the security requirements for a high-assurance

system.

The use of the Common Criteria standard, together with an agile design modeling, gave

us the opportunity to benefit from the Common Criteria rigorous approach and the

rapidly progression of incremental system improvements derived by the agile modeling.

33

Chapter 3. A novel MILS architecture 34

In order to provide functionalities evaluatable according to international standards, we

also decided to use security algorithms (e.g. encryption, hashing etc.) validated by the

National Institute of Standard and Technology (NIST1) [64].

A general presentation of our design approach and our novel MILS Distributed Archi-

tecture is introduced in this chapter. We will illustrate the essential concepts through

use cases and the punctual specification of some representative security requirements

fulfilled by our solution. Such requirements do not exhaust the totality of the security

requirements pinpointed during the design phase and should be considered as examples

used to clarify our method. The architecture of a specific component of our MILS dis-

tributed solution, that has been fully developed during the PhD studies, is also deeply

described in this chapter.

3.1 Proposed MILS Distributed Architecture

In the design of a new architectural solution is important to consider the possibility to

use legacy systems and software. The objective is to provide seamlessly at least the

core functionalities of the application environment. Nowadays the interconnection of

networks implies also that a single operating system together with a set of software ap-

plications is no more sufficient to meet the needs of modern agencies and organizations.

Modern systems become more and more complex and distributed, and such tendency

broadens the possibility of fallibility of computer software. In order to face these issues

we designed a new MILS architecture aiming at allowing a soft transition form a preex-

isting network model to an effective multilevel one.

Our solution places itself as a guard within the security domain to protect the commu-

nications among hosts, whose users are characterized by different clearance and need-to-

know, and the application servers involved in the provision of the required services. In

the engineering phase a generic network architecture has been considered, upon which

our MILS solution components have been integrated.

We assume the following system environment for the preexisting scenario:

• existence of a Public Key Infrastructure (PKI) that uses Elliptic Curve Digital

Signature Algorithm (ECDSA) certificates and the relating servers,

• presence of a directory service server,

• presence of a computer network protocol that provides centralized user Authenti-

cation, Authorization, and Accounting (AAA) service,

1NIST is the federal technology agency that works with industry to promote and maintain measure-
ment standards. Through the Computer Security Resource Center (CSRC) it provides resources for
information security standards, guidelines, and security-related publications.

Chapter 3. A novel MILS architecture 35

• PKI and AAA servers take responsibility for the establishment of application level

session-key between the involved actors.

Within such architecture we inserted five distinct components, designed ad-hoc to enforce

the established security policy. Information is characterized by a sensitivity hierarchy.

The architectural overview of the proposed solution in depicted in Fig. 3.1.

The five novel components are:

1. Trusted Front End (TFE),

2. Policy Server (PS),

3. Transitional Secure Server (TSS),

4. MILS Yarn Trusted Host (MYTH),

5. SoftGap.

Figure 3.1: Novel Distributed MILS Architecture

In Fig. 3.1 two different domains originally working at system-high mode of operations

are considered: a high level Domain A and a low level Domain B. Domain A has a

Chapter 3. A novel MILS architecture 36

network architecture that foresees a system-high network branch (System-high HIGH

Side) on which legacy hosts and servers are connected, and a MILS network branch

(MILS HIGH Side) on which our new MYTH and SoftGap components are connected.

These two network branches are detached by our main component: the TFE. The PS and

the TSS are other new components sited on the System-high HIGH Side network. The

SoftGap is the only MILS host that has a connection to the Internet. It is important

to underline that the legacy hosts can communicate only with systems connected to

the System-high HIGH Side. On the opposite the MYTH hosts are characterized by

two operating ways that are mutually exclusive: high-level and low-level duty. In the

former mode they can communicate to the System-high HIGH Side through the TFE’s

mediation, whereas in the latter mode they can exchange data with the low-level domain

(Domain B) hosts.

Domain B has a single system-high network (System-high LOW Side) on which legacy

hosts are usually connected, even if nonetheless MILS hosts like MYTH and SoftGap

can be used in the domain.

3.1.1 MILS Architecture Components

The MILS architecture is composed by distributed components that cooperate together

to perform a secure communication among users with different clearances that operate

on a hierarchy of information.

The operational role of each component is described in the following paragraphs.

3.1.1.1 Trusted Front End

The Trusted Front End is a high-performance network device that sections the high level

domain network acting as a guard of the information flow directed to the application

servers. Such flow is composed by the requests that hosts attached to the MILS HIGH

Side send to the TFE. This component:

• receives a host request,

• verifies the legitimacy of the request querying the Policy Server,

• forwards the request to the specific server, and

• returns the required data to the host.

TFE is characterized by a software layer that implements the Separation Kernel and

Virtualization functionality and enforces a strict control over the operations permitted

Chapter 3. A novel MILS architecture 37

to the higher level Operating Systems. Each software layer adds security mechanisms

that jointly cooperate to enforce the established security policy.

3.1.1.2 Policy Server

The Policy Server manages the MAC security policy that is set up by the Domain

Security Responsible. It provides the TFE all the information concerning the legitimacy

of an operation required by a MILS host user. The PS is equipped with a Security

Enhanced Linux kernel in order to implement a rigid control over the configuration and

the security policy files. In order to speed up the operations, a caching mechanism can

be considered relatively to already served requests.

3.1.1.3 Transitional Secure Server

The Transitional Secure Server (TSS) is a specific MILS host that temporally stores the

data provided by the application servers following up a host request. It is characterized

by different secure partitions, each of them characterized by the classification level de-

fined for the Domain. Such secure partitions are built upon a type-0 Separation Kernel

on which ad-hoc security mechanisms operate. Once data are sent in an encrypted form

by the application servers to the TSS, it stores them in the appropriate partition for

that level. TSS is equipped with two network cards. One of them is connected to the

System-high HIGH Side through a hardware firewall that enables only communications

towards the TSS. The other network interface is directly connected to the MILS HIGH

Side network in order to allow a direct communication path among TSS and the MILS

hosts.

3.1.1.4 MILS Yarn Trusted Host

The MILS Yarn Trusted Host (MYTH) are specific machines that provide users with a

secure environment to exchange data between two different classification Domains. A

MYTH has a Separation Kernel Hypervisor that provides two different classification level

partitions and has two different network cards. A user can send/receive data to/from

the lower Domain only through the low level Operating System and a low level network

card. The usage of the Operating Systems is scheduled in a way that operations are

allowed only on the component with the control focus. A third partition is used as

temporary repository for the exchanged data. Ad-hoc security mechanisms verify on

temporal basis and/or events the integrity of the secure partitions and automatically

activate the recovery of the system secure configuration.

Chapter 3. A novel MILS architecture 38

3.1.1.5 SoftGap

SoftGap is a MYTH device specifically designed to enforce the unidirectional data flow

control security policy. Such component is suitable for every security environment where

a connection to an unreliable network is necessary and when data from a low classification

level network must be imported in a higher level one enforcing the Bell-La Padula model.

As well as TSS and MYTH hosts, the SoftGap machine is equipped with two different

network cards. SoftGap can be used as stand-alone component in any legacy network

and its architecture is deeply illustrated in paragraph 3.12.

3.1.1.6 Application Servers

An application server in a multilevel environment has to deal with data characterized

by different classification levels. In our architecture all servers are sited in the system-

high side of the network and so they have the appropriate clearance to deal with all the

classified information. Even if the application servers (mail server, file server etc.) are

not new elements in the architecture, they need to incorporate software modules that

realize the functionalities required to interface the TFE and the TSS. The servers also

handle the dispatch of acknowledgments about served requests and the directory path

necessary to retrieve the requested data.

3.1.2 Security Requirements

In order to define in a correct and exhaustive way the requirements for our MILS ar-

chitecture and its components, we used a hybrid approach deriving from the usage of

Common Criteria as reference, and from the use of an agile design modeling.

Figure 3.2: Functional Class Structure

The Common Criteria standard defines in [65] a complete list of Security Functional

Components (SFC) that represent the basis for security requirements and describe the

desired behavior of the system that must meet all the claimed security objectives. The

Chapter 3. A novel MILS architecture 39

standard use the concept of Functional Classes characterized by a Class Name, a Class

Introduction, and Functional Families as depicted in Fig. 3.2.

Figure 3.3: Functional Family Structure

A Functional Family subclass has the structure detailed in Fig. 3.3 and describes, inter

alia, the security objectives the Family is addressed to solve and the description of its

functional requirements.

Figure 3.4: Security Functional Components Structure

Functional Families also contain one or more Security Functional Components (SFC)

which describe security functional requirements that “if further divided would not yield

a meaningful evaluation result” [65]. The smallest security functional requirement is

also referred as Functional Element. The structure of Security Functional Components

is depicted in Fig. 3.4.

An example of Functional Class used for our architecture is the FCS (Cryptogtaphic

Support). One of its families is Cryptographic operation (FCS COP) that requires a

Chapter 3. A novel MILS architecture 40

cryptographic procedure to be performed according to specific algorithms and keys of

specified length.

The usage of the Security Functional Component FCS COP.1 in the formal documen-

tation required by a Common Criteria certification would be for example:

The TSF2 shall perform [assignment: list of cryptographic operations] in

accordance with a specified cryptographic algorithm [assignment: crypto-

graphic algorithm] and cryptographic key sizes [assignment: cryptographic

key sizes] that meet the following: [assignment: list of standards].

The same requirement refined for our MYTH and SoftGap component becomes:

MYTH-FCS COP.1: The TSF shall perform [data encryption and decryption] in

accordance with a specified cryptographic algorithm [AES Galois/Counter Mode] and

cryptographic key sizes [256 bit] that meet the following: [RFC4106 and FIPS PUB

197].

Instead, the cryptographic requirement for a security function developed on the File

Server in our architecture has the following notation:

FS-FCS COP.1: The TSF shall perform [data encryption and decryption] in accor-

dance with a specified cryptographic algorithm [ECDSA] with [Curve P-384] and cryp-

tographic key sizes [384 bit] that meet the following: [FIPS PUB 186-3].

We used this kind of notation for all the identified security requirements that our ar-

chitecture should meet and we used the complete list of Common Criteria SFCs also as

reference to identify further requirements.

Some SFCs refined according to our MILS architecture are given as example in the

following.

Class FDP (User Data Protection):

• SG-FDP ITC.1.1: The TSF shall enforce the [unidirectional information flow

control Security Function Policy (SFP)] when importing user data, controlled un-

der the SFP, from outside of the TOE.

• SG-FDP ITC.1.2: The TSF shall ignore any security attribute associated with

the user data when imported from outside the TOE.

• SG-FDP ITC.1.3: The TSF shall enforce the following rules when importing

user data controlled under the SFP from outside the TOE: [antivirus control rule,

imported data integrity rule, security import encryption key rule].

2TOE Security Functionality, where TOE means Target of Evaluation and represents the sys-
tem/product under certification.

Chapter 3. A novel MILS architecture 41

• TSS-FDP RIP.2.1: The TSF shall ensure that any previous information content

of a resource is made unavailable upon the [deallocation of the resource from] all

objects.

Class FTP (Trusted Path/Channels):

• TFE-FTP TRP.1.1: The TSF shall use [TLS protocol] to provide a trusted

communication path between itself and the MYTH host that is logically distinct

from other communication paths and provides assured identification of its end

points and protection of the communicated data from disclosure and detection of

modification of the communicated data.

• TFE-FTP TRP.1.2: The TSF shall permit MYTH hosts to initiate communi-

cation via the trusted path.

• TFE-FTP TRP.1.3: The TSF shall require the use of the trusted path for initial

MYTH host’s user authentication.

In conjunction, we joined the Common Criteria requirement definition methodology

together with an agile design modeling that foresees the specification of use cases in

order to identify and formulate security requirements. The used model, called Unified

Process, has been used also for the developing phase of the SoftGap component.

3.1.3 MILS Architecture Use Cases

We defined two main use cases that illustrate the main functionalities of the novel Dis-

tributed MILS Architecture. The first one is related to the security objectives fulfilled by

the SoftGap component, whereas the second one illustrates the joint cooperation of the

other MILS components in order to allow an authenticated user to download a resource

from an internal file server. During the design process we defined other use cases that

illustrate for example the uploading of a classified file to the network and the exchange

of files between users. Since the first two use case are sufficient to explain the functional

aspects of our MILS Distributed solution, we will describe them in the following of the

thesis.

Use cases represent design artifacts that dynamically change and acquire details accord-

ing to the evolution of the design phases in the agile developing process. To show the

evolution of the architecture that is reflected in different refinements of the use cases,

we show in this paragraph a first development of the SoftGap component’s sequence of

operations. The refined version of the same use case will be detailed in the session of

the thesis that deepens the SoftGap architectural solution.

Chapter 3. A novel MILS architecture 42

3.1.3.1 Unidirectional Secure Import from Unreliable Network

Name: Unidirectional secure import

Identifier: UC1

Description: this use case specifies the actions performed by the system in order to

allow an authorized user to import files from a low level classification network to a high

level classification network.

Components: SoftGap

Actors: Authenticated user.

Pre-conditions:

• the subject (i.e. an operating system or a software environment) connected to the

low level network foresees an internal user authentication mechanism,

• the high level domain foresees a centralized user authentication mechanism,

• the authenticated user has least privileges on controlled resources,

• the antivirus software components are constantly updated.

Post-conditions: The user imports files from the low level network to the high level

network. The information flow is controlled in a way that the security policy of the

domain is always enforced. Data are controlled and processed for further dissemination

avoiding any flow from the high level network to the low level one.

Basic flow of events:

1. The user logs on to the workstation low level operating system and authenticates

himself in order to import a set of files.

2. The system enables the network card connected to the low classified domain.

3. The system provides the minimum functionality required for the retrieval of files

on the low level network and implements actions to carry out thorough cleaning

(“sanitization”) of the secure local partition (also called local support partition).

4. The user imports a file using a strictly controlled environment (e.g. using an

Internet browser).

5. The system saves the file in the local support partition.

6. The “low level” antivirus software checks the imported files.

(The user repeats steps 4-6 until s/he signals the end of operation to the system.)

Chapter 3. A novel MILS architecture 43

7. The system performs security activities in order to encrypt and sign the imported

files. (MYTH-FCS COP.1)

8. The system generates an encryption key K and sends it securely to both the

Operating Systems.

9. The system encrypts the whole set of files with a symmetric encryption algorithm

using the generated key K.

10. The user logs off from the operating system.

11. The system disconnects the network interface card attested to the low classified

domain. (SG-FDP ITC.1.1, SG-FDP ITC.1.2, SG-FDP ITC.1.3)

12. The system sends the encrypted and signed set of files to the high level operating

system.

13. The user activates the high level operating system and authenticates himself in

order to import the downloaded files.

14. The system enables the network card connected to the high classified domain.

15. The system sanitizes the memory used to store files and encryption key.

16. The system performs security activities in order to decrypt and verify the signature

of the imported files.

17. The “high level” antivirus software checks the imported files.

18. The user accesses the internal services for the dissemination of the imported files.

Extensions (alternate streams):

* a. At any time the system fails. To ensure the security of data the user administrator

performs Managing Security Subsystems3 in order to check the integrity of the

operating system and its components.

1a, 13a The user fails to authenticate.

1. The user requires the assistance of the user administrator.

6a, 17a The antivirus detects virus/malware.

1. The host deletes the infected file.

3Managing Security Subsystems is another use case not detailed in the thesis.

Chapter 3. A novel MILS architecture 44

4a, 5a The user decides to import no files or only some file.

1. The user deletes/deselects files from the application interface.

2. The host logs the event.

5b The user decides to add more files.

1. The user adds the file to the folder.

2. The host runs the antivirus.

3. The host recalculates the digest of the new set of files.

4. The host logs the event.

3.1.3.2 Secure Download from Internal File Server

Name: Secure download

Identifier: UC2

Description: this use case specifies the actions performed by the system components in

order to allow an authorized user to download a classified file from the Domain internal

file server.

Components: MYTH, TFE, PS, TSS, File Server, and PKI Server.

Actors: Authenticated user.

Pre-conditions:

• the domain foresees a centralized user authentication mechanism,

• a Public Key Infrastructure is already set up in the domain.

Post-conditions: The user downloads the requested file. The information flow is con-

trolled in a way that the security policy of the domain is always enforced. Data are

controlled and processed in order to avoid any flow that could subvert the applied secu-

rity models and protecting data confidentiality and integrity.

Basic flow of events:

1. The user logs on to the specific MYTH host (referred as host in the following) and

authenticates himself.

2. The user navigates the local File Server directory list and selects the file to down-

load.

3. The host and the TFE exchange a session key (KH−TFE). (TFE-FTP TRP.1.1,

TFE-FTP TRP.1.2, TFE-FTP TRP.1.3)

Chapter 3. A novel MILS architecture 45

4. The host sends the encrypted request to the TFE (with session key KH−TFE).

5. The TFE sends a confirmation message to the host (about the taking in charge of

the operation).

6. TFE and Policy Server exchange a session key (KTFE−PS)

7. The TFE checks the eligibility of the request by querying the Policy Server (mes-

sage encrypted with the session key KTFE−PS).

8. The TFE generates an encryption key K used later by the user to decrypt the

downloaded file.

9. TFE and File Server exchange a session key (KTFE−FS).

10. The TFE questions the File Server about the file (required by the MYTH user)

by sending a message containing the encryption key K encrypted with the public

key of the File Server. Before sending the message the TFE calculates the message

digest, signs it, concatenates it to the message and sends the concatenation within

an encrypted message (with the session key KTFE−FS).

11. TSS and File Server exchange a session key (KTS−FS).

12. The File Server encrypts the required file with the encryption key K and sends it

to the TSS in a message that is encrypted with the key KTS−FS , hashes it and

signs the digest. (FS-FCS COP.1)

13. The TSS checks the message hash and signature.

14. The TSS sends to the File Server an acknowledgement (encrypted with KTS−FS).

15. The File Server sends a message to the TFE in which it confirms the processing

of the request (encrypted with KTFE−FS).

16. The TSS saves the file in a secure partition that is appropriate to the classification

level of the specific data.

17. The TFE sends a message to the MYTH user containing the result of the request

processing (provided by TSS). The message is encrypted with KH−TFE .

18. The TFE sends the encryption key K to the host (encrypted with the public key

of the MYTH user) in a message encrypted with KH−TFE).

19. The MYTH receives the requested resource in encrypted form.

20. The MYTH decrypts K with the private key of the MYTH user.

21. The MYTH user decrypts the file with K.

Chapter 3. A novel MILS architecture 46

22. The TSS safely removes the file after a predefined interval of time. (TSS-FDP RIP.2.1)

Extensions (alternate streams):

* a. At any time the system fails. To ensure the security of data the user administrator

performs Managing Security Subsystems in order to check the integrity of the

operating system and its components.

1a The user fails to authenticate.

1. The user requires the assistance of the user administrator.

3a. The host receives no response from the TFE.

1. The host forwards the request again after a predetermined period of time:

1a. The host does not receive any message.

2a. The host notifies the user the impossibility of the action.

7a. The request is not allowed.

1. The TFE sends a notification message to the host.

10a. The requested file is not available.

1. The TFE sends a notification message to the host.

15a. The File Server does not receive a confirmation message from the TSS.

1. The File Server submits again the file after a predetermined period of time:

1a. The File Server does not receive a confirmation message from the TSS.

2a. The File Server send a notification message to the TFE about the im-

possibility of providing the service.

3a. The File Server removes safely the encrypted copy of the file.

3.1.3.3 Hybrid Security Requirements Correlation

With our hybrid approach, we tied together the formalism required by the ISO/IEC

15408 standard with the agile development modeling (Unified Process) that provides us

a rapidly progression of incremental system improvements. In this way, we immediately

Chapter 3. A novel MILS architecture 47

insert the certification process from the beginning in the architectural design instead of

postponing at the end of it. The solution is not only designed from the scratch in the

defense-in-depth paradigm, but also in the Common Criteria certification perspective.

The security evaluation “thinking” is pushed in the design process from the beginning.

This approach, undoubtedly, will decrease the time and the effort of a security certifica-

tion, increasing the certification success factor.

In addition, the “divide et impera” approach of MILS paradigm, based on the separa-

tion of security mechanisms and issues into independent and manageable components,

perfectly adheres to the agile process and simplifies the specification, design and analysis

of a multilevel solution.

Table 3.1: Hybrid Security Requirements Correlation Matrix

Security Functional Component Use Case UC1 Use Case UC2

MYTH-FCS COP.1 X

FS-FCS COP.1 X

SG-FDP ITC.1.1 X

SG-FDP ITC.1.2 X

SG-FDP ITC.1.3 X

TSS-FDP RIP.2.1 X

TFE-FTP TRP.1.1 X

TFE-FTP TRP.1.2 X

TFE-FTP TRP.1.3 X

We could, for example, extend the security requirement correlation matrices required by

the Common Criteria standard using some elements created in the artifacts of the agile

development process. This “joint perspective” can improve the check of the completeness

of the fulfilled requirements. Table 3.1 shows an example of requirement correlation

matrix limited to the use cases and the security functional components introduced in

the previous paragraphs.

3.1.4 Cipher Suites

In order to address all the security functionalities needed by our multilevel solution and

fulfill the security requirements, simultaneously with the use case definition we chose

the Cipher Suites (CS) to be used. A CS comprises a set of protocols and cryptographic

algorithms on which agree the participants of a communication in order to:

• share a secret key,

• encrypt messages,

Chapter 3. A novel MILS architecture 48

• generate hashes of messages, protect the integrity of messages and provide source/des-

tination authentication.

A CS defines the algorithms used to realize the aforementioned tasks and it is usually

defined in a form like the following: RSA WITH AES 256 CBC SHA. This example

shows that the communication is protected by using RSA for key sharing, AES 256-

bit key with CBC mode for encryption, and SHA for message authentication. Many

combinations can be chosen according to specific needs and requirements. Our intention

was to create different security layers in our Distributed MILS Architecture, in order to

protect the classified data in the defense-in-depth paradigm. In particular we decided

to use IPsec and IKEv2 protocols at ISO/OSI level 3 and TLS protocol at a higher

level of the ISO/OSI model. For each of these layers we proposed a specific cipher suite

according to the following considerations:

1. compliance with international rules established for the treatment of classified in-

formation,

2. differentiation of security mechanisms and algorithms.

According the first point we decided to adhere to the NSA-approved Cipher Suite B.

It has been defined to protect foreign releasable information, US-Only Information and

Sensitive Compartmented Information (SCI). In [66] the NSA Committee on National

Security Systems establishes which standards may be used for cryptographic protocol

and algorithm interoperability to protect National Security Systems (NSS). In particular,

in Appendix B, are detailed the cryptographic algorithms approved by NSA with the

level of classifications they are supposed to operate with.

We also decided to use different CSes for IPsec and TLS protocols, in order to avoid that,

in case of zero-day protocol security vulnerabilities, a security breach could invalidate

our security chain. After Snowden’s revelations about the NSA and its international

partners’ Global Surveillance, we also decided to modify the Cipher Suite suggested by

the United States Natonal Security Agency with new algorithms. The new algorithms are

ChaCha20, a new high-speed stream cipher and Poly1305 that is a high-speed message

authentication code. ChaCha20 has naturally very good performance and with some

optimization, as presented in [67], it became a fast and secure alternative to AES in the

TLS protocol. It is proposed in RFC7539 [68] together with the use of Poly1305, both as

stand-alone algorithms and as a “combined mode”, or Authenticated Encryption with

Associated Data (AEAD) algorithm. Such algorithms have been recently adopted by

Google.

Chapter 3. A novel MILS architecture 49

For the aforementioned reasons we chose TLS v. 1.2 together with the cipher suite:

TLS ECDHE ECDSA WITH CHACHA20 POLY1305 SHA384

where Elliptic Curve Diffie-Hellman Ephemeral (ECDHE) and Elliptic Curve Digital

Signature Algorithm (ECDSA) use Curve P-384 to protect up to TOP SECRET infor-

mation, and the ChaCha20 algorithm uses 256-bit keys.

In relation to IPsec and IKE protocols we opted for different algorithms as listed below.

• IPsec v.3:

– Transport Mode,

– Encapsulating Security Payload (ESP),

– AES-NI-256-GCM with 128 bit Integrity Check Value (ICV).

• IKEv2:

– AES-NI-256-CBC4 (encryption),

– HMAC-SHA-384 (pseudo-random function),

– HMAC-SHA-384-192 (integrity),

– 384 bit Random ECP Group (Diffie-Hellman group).

where ECDSA is used for signature.

An interesting resource is [73], that shows the status of recommended elliptic curve

domain parameters conformant with standard protocols.

3.2 Evaluation

After introduced our novel Distributed MILS Architecture, our design approach and the

chosen cipher suites, we now present a performance evaluation of the solution. Our goal

is to show how the architecture enforces the Bell-La Padula model and to determine the

latency costs due to the application of different multiple security layers.

4Some specific attacks have been presented for AES 256-bit key in [69, 70, 71]. A famous security
professional suggests people do not use it. According to him, AES-128 provides more than enough se-
curity margin for the foreseeable future [72]. Also, AES-128 is faster than its 256-bit key homologous.
Even if the speed usually is desirable for such algorithms, a slower one could be considered more secure
against a brute-force attack. Even if the aforementioned attacks are better than brute force, they are
still far beyond our capabilities of computation. When we consider Quantum Computation, that theo-
retically can perform several computations simultaneously, an attack to n-bit symmetric cryptography
(e.g. symmetric encryption with a n-bit key) can be completed in 2n/2 elementary quantum operations.
To account for quantum computers it would be a reasonable choice to double the key length. Hence,
AES with a 256-bit key.

Chapter 3. A novel MILS architecture 50

In order to evaluate our solution, that is quite complex because of its distributed nature

and the presence of multiple levels of encryption built upon a Separation Kernel Hy-

pervisor, we decided to operate in two different ways. We first performed a theoretical

evaluation of the overall MILS architecture considered as a proof-of-concept, in order to

analyze the security goals and its general performance. Thereafter, we built a prototype

of a specific component of the architecture, the SoftGap, that we further tested with

security protocol model checkers and vulnerability assessment and penetration tests.

3.2.1 Security

In this section, we first define the considered attack model then, we perform a security

analysis of our solution. We refer to the use case UC2. Later on, in the SoftGap proto-

type description, we will perform a security evaluation specifically for that component.

3.2.1.1 System Model

According to the system user we assume that:

• administrators are non-hostile and appropriately trained,

• each user has public/private key pair (provided by smartcard/token),

• no more than one user can work concurrently on a computer machine.

According to the system environment we make the following assumptions:

• MILS components with two network cards can connect to different subnetworks

only in an exclusive-or way (only one card can be connected at any time),

• the Separation Kernel Hypervisor (SKH) used to virtualize the computer environ-

ment is secure5,

• the algorithms for digest, signature, symmetric and asymmetric encryption are

secure.

The assumptions for the preexisting scenario defined in Par. 3.1 are still valid in our

system model.

5 It is designed to satisfy the Common Criteria SKPP v1.03 [45] and is based on a security enhanced
version of a Separation Kernel [48]

Chapter 3. A novel MILS architecture 51

3.2.1.2 Attack Model

Different kind of attackers are considered in our scenario:

• external attacker,

• insider that wiretaps the network,

• insider with a certain access to the network,

• insider that gains access to an authorized user smartcard/token,

• authorized user trying to access data on which s/he does not have the proper

clearance and need-to-know.

We also consider network attacks combined with the introduction of malware compo-

nents to the targeted systems.

The main threats are the disclosure of information outside the protected domain (data

exfiltration), the unauthorized access to data by personnel that has not the proper

clearance and need-to-know, the accidental disclosure of data due to computer machine

maintenance.

3.2.1.3 Security Analysis

Our distributed architecture foresees the exchange of different application layer messages

in order to achieve the goal described in the use case UC2. These messages are used

to define and perform the service required by the user, i.e. the download of a specific

resource stored on a file server.

The first actor involved in our use case is MYTH that is in charge of authenticating

the user through a preexisting Authentication, Authorization and Accounting Server,

a smartcard/token, and credentials like username-password. This multi-factor authen-

tication is necessary to avoid that an insider, even gaining access to one of the user’s

authentication components, could not gain access to the system resources.

The confidentiality of data is provided by different layers of encryption. In relation to

the use case UC2, the resource required by a MYTH user is encrypted in the application

layer before being sent from the file server to the Transitional Secure Server. On TSS

the resource remains encrypted so that, even if an attacker could gain access or com-

promise that host, the confidentiality of data is still safeguarded. The same resource is

encrypted on the MYTH and can be read only by the user that required it. In fact the

encryption key K, used to encrypt the resource, is encrypted with the user public key.

If a system crash occurs during the resource transmission, no clear data is present on

Chapter 3. A novel MILS architecture 52

that machine. All the MILS hosts are characterized by a sanitization mechanism that

deletes in a secure way sensitive data on the machine memory. It guarantees that the

downloaded resource is securely deleted after being read and only the original encrypted

one can be locally stored.

Also the confidentiality of messages exchanged by all the MILS components is protected

by the combined use of TLS and IPsec protocols. The IPsec protocol is used in Trans-

port Mode ESP that provides a secure end-to-end communication with protection of

confidentiality, authentication, and integrity. In our solution the IP payload is protected

by the TLS protocol, that adds another layer for identification, authentication, confi-

dentiality, and integrity of the upper layer data. The use of these protocols reduces the

ability of an insider to wiretap the network, modify data payloads, impersonate a host,

and exploit man-in-the-middle techniques in order to access information illicitly. The

use of ECDHE provides also the relevant feature called Perfect Forward Secrecy.

In our application layer protocol, the TFE sends the filepath necessary to download the

requested resource from the TSS to the MYTH. In order to avoid the possibility of guess-

ing a correct path by an insider, we applied two different countermeasures. The TFE

sends the filepath and the digest of the required resource calculated by the file server to

the MYTH. Only the originator of the request can have the proper path and file digest

in order to retrieve the resource. We also included in the message an expiration time

(exp time) that defines a time window for the download of data. After this period of

time, the resource becomes no more available.

All the MILS hosts that are based on a Separation Kernel Hypervisor and different guest

operating systems foresee a security feature that, in case of system failure, reboots the

VMs, checks their integrity, and restores a secure configuration state.

All the events are recorded by an Audit & Log mechanism.

The Separation Kernel Hypervisor performs a robust partitioning through isolation of

memory, I/O interfaces, CPU runtime, etc. and preventing that low-clearance compo-

nents could access resources of high-clearance ones. Different classification level data

flows are processed in a separate way and cannot interfere with each other. The SKH

also provides an independent runtime environment on which high-assurance security

mechanisms are built. These mechanisms run directly on the CPU cores without relying

on the assistance of the guest operating systems.

Our architecture foresees a hardware firewall used to enable a one-way communication

from the System-high HIGH Side network towards the TSS. Together with the exclusive-

or mechanisms used to enable the network cards present on the TSS machine, the firewall

avoids the possibility of direct communications between the MILS HIGH Side and the

System-high HIGH Side subnetwork.

The SoftGap is the single point of access from the Internet for attackers. The security

evaluation for this component will be presented in the SoftGap paragraph.

Chapter 3. A novel MILS architecture 53

3.2.2 Performance

The performed security analysis showed that the confidentiality of exchanged data is

guaranteed by different security mechanisms that overlap and intersect each other. The

distributed nature of the solution requires the exchange of messages between components

that affects the architecture performance. The multiple encryption layers contribute

increasing the latency of the overall solution. We developed a theoretical model in order

to determine such latency as described in the following paragraphs.

3.2.2.1 Message Overhead

In order to calculate the message overhead introduced by our novel architecture in the

path between host and file server we refer to the use case UC2, where all the MILS devices

are necessary to perform the required operations. In addition to the assumptions made

in paragraph 3.2.1.1 we consider the following:

• no switch/router is considered in the proof-of-concept,

• there are two kind of application layer messages: the ones related to the protocol

operations (operational message) and the one used to transmit the requested file

(file message),

• no retries, packet losses or other events occur,

• TCP and IP packet headers of 40 Bytes (no TCP options),

• use of a full-duplex communications medium, i.e. the full bandwidth is available

both upstream and downstream, at the same time.

We also assume that in the scenario where no MILS architecture is implemented (referred

as scenario A), the resource is encrypted by the file server before being sent to the

user’s machine and the user’s clearance is verified querying a Policy Database. Also the

application layer messages are encrypted using the provided session-keys. Because such

operations are also performed in our novel architecture, the latency introduced by them

is not considered in both scenarios.

In scenario A, the download operation foresees two high level messages.

host - file server:

host → file server: send(download resource)

file server → host: reply(encrypted file)

host → file server: send(ack)

Chapter 3. A novel MILS architecture 54

Hence, we have:

• number (#) of operational messages: 2

• number (#) of file messages: 1

When our MILS Distributed Architecture is implemented (scenario B), we have an

increased number of exchanged messages between MYTH host (referred to as host in

the following) and TFE, TFE and PS, TFE and file server, file server and TSS, and

between host and TSS, respectively.

host - TFE:

host → TFE: send(service request)

TFE → host: send(ack)

TFE → host: send(filepath)

host → TFE: send(ack)

with:

• # of operational messages: 4

• # of file messages: 0

TFE - PS:

TFE → PS: send(verification request)

PS → TFE: send(verification result)

TFE → PS: send(ack)

with:

• # of operational messages: 3

• # of file messages: 0

TFE - file server:

TFE → file server: send(service request)

file server → TFE: send(ack)

with:

• # of operational messages: 2

• # of file messages: 0

Chapter 3. A novel MILS architecture 55

file server - TSS:

file server → TSS: send(file)

TSS → file server: send(filepath)

file server → TSS: send(ack)

with:

• # of operational messages: 2

• # of file messages: 1

host - TSS:

host → TSS: send(file request)

TSS → host: send(file)

with:

• # of operational messages: 1

• # of file messages: 1

The total message overhead is:

• # of operational messages: 12 (+500%)

• # of file messages: 2 (+100%)

Actually, to compute the message overhead between host and file server we have to

consider that in our novel architecture the network and its relating traffic is split by

the presence of the TSS and TFE machines. Because of the TSS double network cards,

the total traffic generated on the MILS HIGH Side subnetwork (host-file server path)

is composed by five operational messages (+150%) and one (+0%) file message. The

remaining part of the generated traffic affects the System-high HIGH Side subnetwork

and does not limit the bandwidth of other MYTH hosts’ users. Also, it could be possible

to decrease the System-high HIGH Side subnetwork overhead by caching already-made

security policy checks and/or inserting the PS directly as a virtualized subject within

the TFE.

3.2.2.2 IKE and TLS Message Overhead

In addition of the aforementioned overhead, IKEv2 (in the following referred as IKE)

and TLS protocols add their own message overhead. It is caused primarily by the hand-

shake messages exchanged to negotiate and agree upon the cipher suites to be used [74].

Chapter 3. A novel MILS architecture 56

IKE performs mutual authentication between two parties and establishes a Security

Association (SA) that includes shared secret information used in the IPsec Encapsulat-

ing Security Payload (ESP). The traffic overhead from IKE handshake comprises two

types of message exchange. In the so-called ISA SA INIT Exchange the peers negotiate

cryptographic algorithms, nonces, and do a Diffie-Hellman exchange. It usually foresees

4 messages. IKE AUTH Exchange performs mutual authentication of the peers that

establish a child-SA through the exchange of digital signed certificates (e.g. RSA or

ECDSA authentication). After this initial handshake, additional requests can be initi-

ated and consist of either informational messages or requests to establish another child

Security Association. All the messages exchanged in ISA SA INIT and ISA SA AUTH

are encrypted according to the negotiated security parameters and algorithms [75]. The

overhead generated by the TLS protocol pertains to the handshake necessary for the

host’s authentication (at least the server must authenticate itself) and the agreement of

a specific cipher suite. The TLS foresees two protocol layers: the TLS Handshake and

the TLS Record. The former is used to negotiate the cipher suite and to authenticate

the peers, whereas the latter is used to encapsulate various other higher protocols and

to provide all the mechanisms for connection security.

The TLS Handshake Protocol involves the following steps [76]:

• exchange hello messages to agree on algorithms, exchange random values, and

check for session resumption;

• exchange the cryptographic parameters to allow the hosts to agree on a pre-master

secret;

• exchange certificates and cryptographic information to allow hosts mutual authen-

tication;

• generate a master secret from the pre-master secret and exchanged random values;

• provide security parameters to the record layer;

• allow the hosts to verify the correct security parameters calculation and that the

handshake occurred without tampering by an attacker.

The set of messages of the TLS handshake protocol represents the TLS message overhead

present in our solution. In particular, using Elliptic Curve Diffie-Hellman to exchange

ephemeral keys, the handshake is slightly different and consists of the following steps.

Client and server share basic protocol information via the ClientHello and ServerHello

messages, then the server sends its certificate to the client. A ServerKeyExchange mes-

sage, containing either the parameters of a DH group or of an elliptic curve, paired with

Chapter 3. A novel MILS architecture 57

an ephemeral public key calculated by the server, is also sent to the client, followed

by a ServerHelloDone message that signals that no further messages will be sent until

the client responds. The client computes an ephemeral public key compatible with the

negotiated parameters and sends it to the server. Knowing their private keys and the

public key of other machine, both sides share the same pre-master secret and can derive

a shared master secret. The mutual, or at least the server authentication is realized

by certificates signed by a Certification Authority. To authenticate the connection the

server signs the parameters contained in ServerKeyExchange with the its private key.

The client verifies the signature and only then proceeds with the handshake.

3.2.2.3 Further Overhead Elements

Other elements contribute to the overhead of our solution. They can be led back to

several different groups:

Latency and processing overhead from IKE handshake

Processing overhead from IKE

Traffic overhead from IPsec ESP Transport Mode

Latency overhead from IPsec ESP Transport Mode

Processing overhead from from IPsec ESP Transport Mode

Latency overhead from TLS handshake

Traffic overhead from TLS record layer

Processing overhead from TLS handshake

Processing overhead from TLS record layer

The significance of these elements is directly connected to the choices made during the

IKE and TLS handshakes, through which the cipher suites are negotiated and agreed

between hosts for securing the communications. In such negotiations it is very impor-

tant to choose the most robust security algorithms, and above all, the length of the

cryptographic keys that plays a very important role as security parameter. In [77] it

is possible to see a comparison of international organizations’ recommendations of the

minimum key size requirements.

Looking at the certificates used in the authentication phases of our IKE and TLS pro-

tocols, currently most of the involved organizations suggest an RSA key length of 2048

bits. It represents an important factor of traffic and processing overhead. According to

the German Federal Office for Information Security (BSI) [78] and [79], a 2048-bit RSA

key gives is equivalent to a 112-bit symmetric encryption key and to 224-bit elliptic curve

algorithm key. Such considerations, their related performance issues, and our security

Chapter 3. A novel MILS architecture 58

goals drove our decision of inserting very specific cipher suites in our MILS Distributed

Architecture. In particular, in order to provide very high security algorithms without

deteriorating the performances of the hosts and the entire network, we decided to opt

for a fast encryption algorithm (i.e. AES-NI) and for Elliptic Curve Cryptography for

both IKE/IPsec and TLS.

AES-NI is a new instruction set extension developed by Intel to optimize AES imple-

mentations. The new six instructions allowed Intel to significantly improve IPsec per-

formances of a new AES-NI driver in Linux (about 400%) compared to a non-AES-NI

enabled software solution implemented on the same platform [80]. In the same document

the boost of performance of an IPsec tunnel is presented (see Fig. 3.5).

Figure 3.5: Performance in Mbps for an IPsec Tunnel with AES-NI

They show a substantial improvement of the overall performances due to the fact that

with AES-NI, both the original Linux AES-NI crypto driver and the new AES-NI de-

veloped by Intel, the majority of hosts CPU core cycles are spent in the non-crypto

portion of the workload. The latency due to AES-NI operations can be then considered

negligible in our evaluation.

Elliptic Curve Cryptography (ECC) is a new approach of asymmetric cryptography that

is based on elliptic curves over finite fields. It can be used for Diffie-Hellman key ex-

change and also for digital signature. We used the Elliptic Curve Digital Signature

Chapter 3. A novel MILS architecture 59

Algorithm (ECDSA) both in the IKE and on the TLS protocols in order to take advan-

tage of their peculiarities.

One of the advantages of such cryptography is that it allows smaller keys compared to

traditional public-key cryptography (i.e. RSA) in order to provide an equivalent level

of security. Fig. 3.6 provides comparable minimum bits of security for ECDSA key size

and message digest algorithms [81]. Ceteris paribus, considering a 2048 bit RSA key,

an ECC key is only the 11% of an RSA key length. In [82] the authors show that TLS

server throughput can be increased by 11% to 31% using ECDSA over RSA. In [83] it

is shown that, for equivalent security levels, ECDHE-192 outperforms RSA-1776 key

exchange. [84] observes that ECDHE-ECDSA performs faster than RSA key exchange

and signature and that an ECDHE-based key exchange can be faster than basic RSA

2048-bit key exchange.

Figure 3.6: Minimum bits of security comparison

Table 3.2 shows a comparison between ECDSA and RSA signature [85].

Table 3.2: Comparison between ECDSA and RSA signature

ECDSA RSA

Keys require less bandwidth Keys require more bandwidth

Signatures are smaller Signatures are bigger

Verification is little slower Verification is little faster

Another extremely important feature deriving by our cipher suite choice is the so-called

Perfect Forward Secrecy (PFS). By the use of ephemeral Diffie-Hellman and elliptic curve

Diffie-Hellman key exchange, the hosts involved in our novel architecture will generate a

new set of Diffie-Hellman parameters for each communication session. It means that the

compromise of a single session key will not affect any data other than those exchanged

Chapter 3. A novel MILS architecture 60

in that specific session. No past encrypted communications can be read even if the

private key of the server is stolen. This use of ephemeral Diffie-Hellman and elliptic

curve Diffie-Hellman leads to compute new keys for each new session, but this limiting

factor is balanced from the reduced key size and from the enhanced level of security

provided by our solution.

In order to define an order of magnitude of latency and processing overheads, we decided

to perform a theoretical evaluation supported by measurements of the delay introduced

by these security protocols present in the Literature. In particular, since TLS and

IPsec/IKE work on different layers, we can assume in our evaluation that the delay of

both protocols is additive.

Figure 3.7: Connection latency with communication within a domain

Many research works provide data on latency and overhead of IPsec. Such latency and

the protocol processing overhead depend on the chosen cipher suite, and obviously on

the performance of the machine hardware resources (CPU, RAM, switches, kernel and

configuration). For example in [86] the speed performance of a file transfer operation

within a single domain with and without IPsec implementation is presented. It is based

on [87] that used IPsec ESP tunnel mode with AES-128 bit key in CBC mode, HMAC-

SHA1, and public key authentication with IKE. In Fig. 3.7 are depicted these values,

that are approximately 0.33 ms for the latency, whereas the throughput is 321 Mbit/s

with single connection and 304 Mbit/s for multiple connections (see Fig. 3.8).

Another paper ([88]) shows the average delay for IKE/IPsec Security Association setup in

ESP mode that, depending on the specific used cipher suite, is in the range between 896

ms and 1461 ms. Authors in [89] present analogous results that are comprised between

615 ms and 719 ms (IKE + IPsec). The order of magnitude of IPsec throughput is

confirmed by [90] that shows the results for a specific IPsec implementation (AES-CBC

mode) running on an IBM System x3550 with quad cores. The paper underlies the big

improvement of IPsec performances when AES-NI hardware is used. The throughput

with AES-NI is about 865 Mbit/s against the 480 Mbit/s without AES-NI kernel.

Chapter 3. A novel MILS architecture 61

The throughput is also dependent on packets size. In [91] the results about IPsec VPN

connections using ESP with CBC-AES-192 bit key with HMAC-SHA1 authentication

on a Gigabit network are presented. The throughput value is aligned with data shown in

the aforementioned works and the best performance is obtained with packet size greater

than 500 bytes (see Fig. 3.9). White paper [92] shows the performance of different

hardware accelerated IPsec implementations (see Fig. 3.10). Another interesting data

source is [93] that confirms the previous data and gives a comparison of performance of

IPsec implemented using different cipher suites.

Figure 3.8: Throughput with and without IPsec with a single TCP connection

The main overhead of TLS is the handshake. Here the expensive asymmetric cryp-

tography plays a big role. After negotiation, relatively efficient symmetric ciphers are

used. In [84] the authors show that the latency due to the setup phase of a TLS

connection using ECDHE-ECDSA (with 256-bit key and SHA-256) over the Internet

is comprised between 3300 ms and 7600 ms. In [94] the computational overhead us-

ing TLS ECDHE ECDSA WITH AES 128 CCM 8 in or low-rate wireless personal area

networks is about 2020 ms. Authors of [95] show that the latency of TLS handshake

using ECDH-ECDSA with 224-bit key in a heterogeneous wireless sensor network is

about 5530 ms and 12000 ms without and with client authentication, respectively. The

portion of time used in the TLS handshake process for ECDHE and ECDSA computa-

tions is illustrated by [96]. The authors performed different tests using various ARM

Cortex-M processors and various elliptic curves. For example the calculation performed

on a Cortex-M3 processor using the curve secp224r1 (security level equivalent to a 2048-

key RSA) with NIST optimization takes about 717 ms. Such value becomes 1194 ms

using the curve secp384r1 necessary to operate in our architecture on TOP SECRET

information.

Chapter 3. A novel MILS architecture 62

Figure 3.9: Performance of IPsec tunnel at different packet size

Figure 3.10: Performance of IPsec hardware accelerated implementations

3.2.2.4 Message Size Overhead

As shown in [97] many measurement studies before 2004 describe the Internet packet size

distribution is trimodal. More recently works [98, 99, 100] found that the distribution

of packet size became bimodal with 44% of high number of small packets (less than

100 bytes) and 37% of very large packets (1300 bytes). The large packet size of the

distribution is connected to the fact that this value is the MTU recommended one by

VPN vendors in order to stay within ethernet MTU after VPN encapsulation (see [101]).

Chapter 3. A novel MILS architecture 63

The application protocol defined for our architecture foresees the following data to be

exchanged by the MILS components:

• user: 30 bytes

• id: 16 bytes

• service: 2 bytes

• filename: 255 bytes

• nonce: 16 bytes

• timestamp: 8 bytes

• reply: 1 byte

• exp time: 8 bytes

• digest: 48 bytes

• filepath: 4096 bytes

• file encryption key: 64 bytes

• level: 1 byte

• compartment: 1 byte

• file: n bytes

In our architecture the maximum message size at the application layer is comprised

between 25 bytes and 16 · n bytes, where n is the size of the downloaded file. In the

MILS HIGH Side subnetwork the message sizes are instead comprised between 41 and

16 · n bytes.

Because of the presence of the TLS protocol, we have to consider its overhead. In

Fig. 3.11 is shown the TLS Record that foresees TLS header, followed by an Initialization

Vector/Nonce, the encrypted content, a message authentication code and a padding.

Figure 3.11: TLS Packet Structure

For our Cipher Suite that use ChaCha20 Poly1305 the per-packet overhead consists of

5 bytes TLS header, 8 bytes explicit nonce and 16 bytes for the Poly1305, that means

29 bytes introduced by the use of TLS protocol [102].

Chapter 3. A novel MILS architecture 64

To Transmit the original 25 bytes of data, we have first to add the 29 bytes due to

TLS overhead and than add the overhead relating to the IPsec protocol. It means that

transmitting 25 + 29 = 54 bytes using IPsec, we have to add (see [103, 104, 105]):

4 Bytes for the Security Perimeter Index (SPI)

4 Bytes for the Sequence Number Field

12 Bytes for the Initialization Vector6

0 Byte for AES-GCM padding

1 Byte for the Pad Length

1 Byte for the Next Header

16 Bytes for the ICV

Total packet size (minus TCP/IP headers) is now: 92 Bytes → an increase of about

268% respect to the original payload.

Transmitting 1300 bytes of data using TLS together with IPsec implies the addition of:

4 Bytes for the Security Perimeter Index (SPI)

4 Bytes for the Sequence Number Field

12 Bytes for the Initialization Vector

1 Bytes for AES padding to reach the 16 Byte AES block size

1 Byte for the Pad Length

1 Byte for the Next Header

16 Bytes for the ICV

Total packet size (minus TCP/IP headers) is now: 1368 bytes → an increase of about

5% respect to the original payload.

In our architecture all application level messages, except the one considered in the pre-

vious paragraph and the acknowledgment ones, are bigger than 300 bytes. Hence, we

can estimate that the bimodal packet distribution is shifted to the bigger percentage of

large packets described in [98, 99, 100].

Following the aforementioned theoretical evaluation, we can speculate some results that

we could expect from our MILS Architecture for a generic use case UC2. We can notice

that most of data provided by the Literature that we used for our evaluation, are referred

to specific networks with low performances and often the devices used for computations

and testing are not so well-performing because, for example, the specific paper topics

were Wireless Sensor Networks, Internet of Things, and so on. In a real scenario of usage,

where is important to protect classified information providing fast dissemination of data,

networks and devices would be highly performing. It means that we can assume that

the values provided by the aforementioned Literature constitute an upper bound that

6NIST Special Publication 800-38D [106] suggests to use 12 bytes for the Initialization Vector

Chapter 3. A novel MILS architecture 65

we can use as reference to infer some performance. Such statement is also supported

by the fact that none of those papers using AES algorithm implemented AES-NI for

crypto-operation, that is much more faster than the implementations without hardware

optimization.

According to the latency introduced by the IKE/IPsec and TLS protocols, we can than

suppose for a single user session:

• max IKE handshake latency: ∼ 1000 ms,

• max TLS handshake latency: ∼ 5000 ms.

These values are calculated considering the average latency measured in the papers

introduced in the previous paragraph for each protocol (IKE/IPsec/TLS), and choosing

the biggest ones as upper limits. The upper bound of the delay due to TLS, IKE and

IPsec is about 6000 ms in case the architecture is in an operating state, that is, all the

secure connections among the MILS devices have been already setup with the exception

of the MYTH-TFE one. We do not consider the delay due to the application layer key

exchange performed in conjunction with PKI and AS servers, because in our assumptions

it is present also in the scenario without MILS architecture (scenario A). We have also to

consider the time necessary for the exchange of the application level messages foreseen

by our solutions, that can roughly amount to some hundreds of ms.

An extra delay has to be considered if the architecture is in an operating state but the

MYTH performs its operation after, for example, a start up. Such delay is due to the

IKE and TLS handshakes necessary to set up the secure connection with the TSS. Its

upper bound is the same one taken into consideration for the MYTH-TFE path.

The worst scenario is in the setup phase of our MILS Architecture, where all the devices

need to perform the operations necessary to the working of the IKE/IPsec and TLS

protocols. Such operations, however, can be made in parallel for some elements.

Our novel architecture introduces overhead elements that decrease the performance of

the network particularly in the communication setup process. But for the specific use

case UC2, that does not require real-time or near real-time services, such overhead is

still acceptable for the user. As seen in the previous paragraphs the overhead introduced

by TLS and IPsec for big packet size is around the 5% more than the original scenario.

The download operation does not introduce big delay in the file transmission component

respect to the scenario A. It has impact on the time necessary to start the download

operation that, in an ordinary network, occurs no later than after 6-7 seconds.

Chapter 3. A novel MILS architecture 66

3.3 SOFTGAP: a novel MILS Cross-Domain solution

Once defined our MILS Distributed Architecture, we decided to start the detail design

of the SoftGap component that fulfill the requirements stated in use case UC1. As al-

ready explained in the previous Chapters, such component is very important for many

contexts that currently enforce the unidirectional information flow control policy though

systems like Air-Gap and/or Data-Diode.

In distributed multilevel systems the cross-domain solutions (CDS) offer the security

mechanisms to allow controlled information flows among different security levels do-

mains. A CDS can allow two different modes of data transfer:

• unidirectional, and

• bidirectional.

In the first mode, information is transferred from a low level domain towards a higher

level one in order to be compliant with the Bell-La Padula model. The reverse path is

normally prohibited because could lead to an exfiltration of information. In the second

mode data can move in both directions, but in the high-to-low direction further security

mechanisms must be applied in order to sanitize the flow from data that can not be

read by the lower level domain. It means that the cross-domain solution must have the

capability to inspect data and filter them according to the established security policy. It

would be also desirable that a CDS could dynamically change its configuration and its

filtering decisions in order to meet the needs of fast-changing cooperative networks. In

the panorama of COTS cross-domain solutions, few companies started offering products

based specifically on the Separation Kernel concept and than we can assume adherent

to the MILS paradigm.

Rockwell Collins developed a suite of software components called SecureOne Domain

Technologies running on the Wind River VxWorks platform [107]. The main purpose

is to equip aircrafts so that they can securely process, communicate and display hi-

erarchical data using a single MILS architecture machine instead of physically sepa-

rated devices. For example the SecureOne Guard component can be combined with

a high-assurance programmable cryptographic product called Rockwell Collins KOV-7

providing a MILS distributed architecture capable of protecting Unclassified through

Top Secret data simultaneously. Other solutions owned by Rockwell Collins, called

Turnstile High Assurance Guard and MicroTurnstile Cross Domain Solution are built

on the AAMP7 microprocessor [108], that provides a partitioning mechanism to enforce

an explicit communication policy among applications.

Thales offers a system called Themis to enable access and communications on multi-

ple domains that is based on the PolyXene solution. It is not simple to get detailed

Chapter 3. A novel MILS architecture 67

information about these solutions, because vendors make only generic and high level

descriptions available on their websites. To find more detailed information it is often

necessary to infer data from the poor illustration given by datasheets, if they exist, and

from information provided by academic and open-source communities.

Besides the awareness that there is a lack of MILS CDSs in the international marketplace,

we decided to start developing the SoftGap components for further motivations. Our

MILS Distributed Architecture is quite complex due to the presence of many specific-

purpose components that use different technologies. The most interesting and new one

was the Separation Kernel Hypervisor that represents the basic element upon which we

built our security functionalities. It was important to verify the effectiveness of the of-

fered security mechanisms and also to become acquainted with the SKH itself. Another

reason was represented by the actual need of such solution in important contexts like,

e.g., the NATO IEG.

3.3.1 SoftGap Architecture

In order to contribute in filling up the lack of MILS cross-domain solutions, we pro-

posed in the framework of our distributed MILS architecture an innovative component

called SoftGap [109, 110]. This component was designed from the scratch in the MILS

and defense-in-depth paradigm for a specific security application. Our objective was to

build a high-assurance system that allowed controlled unidirectional data flow from a

low classification level domain (e.g. the Internet) to a high classification level one (e.g.

a protected LAN). Actually we designed our solution in order to provide in the future

a bidirectional data flow control, and also extend its capability within a single domain

where further security functionalities are required to allow data exchange among actors

with different clearance and need-to-know. The proposed MILS architecture is depicted

in Fig. 3.12.

SoftGap enforces information flow control and separation of networks through the use

of a Separation Kernel Hypervisor (SKH) and different Security Enforcing Functions

(SEF). In the specific configuration depicted in Fig. 3.12 running on a Quad Core CPU,

one core is assigned to each Subject (guest OS) whereas two CPU cores are assigned to

the Separation Kernel Hypervisor to perform its specific SEFs. As already explained,

a Separation Kernel Hypervisor is the virtualization platform that performs hardware

resource protection from unauthorized access using different mechanisms. It gives to se-

curity engineers a refined control over CPU scheduling, memory and hardware resources

to enforce the separation of processed information. There are two virtualized subjects,

one connected to the low classification level network, in the following referred as Low-

Side Subject (LSS), the other connected to the high classification level network, known

Chapter 3. A novel MILS architecture 68

Figure 3.12: SoftGap Architecture

as High-Side Subject (HSS). Our SoftGap foresees two different network cards for that

purpose.

3.3.2 System Model

According to the system, we make different assumptions for our solution. According to

the system user, we assume that:

• administrators are non-hostile and appropriately trained;

• each user has public/private key pair (provided by smartcard/token);

• there is only one user at the same time on the machine;

• no more than one user can work concurrently on the machine.

According to the software/hardware environment, we assume that:

• we use a single computing machine;

• there are two different classification levels: high and low;

• the machine has two network cards;

Chapter 3. A novel MILS architecture 69

• the network connection is made in an exclusive-or way: only one network card can

be connected either to the low-side or the high-side at any time;

• the Separation Kernel Hypervisor (SKH) used to virtualize the computer environ-

ment is secure (it is designed to satisfy the Common Criteria Separation Kernel

in High Robustness v1.03 functional and information assurance requirements [45]

and it is based on a security enhanced version of Separation Kernel [48]);

• the Separation Kernel Hypervisor has public/private keypair;

• the algorithms for digest, signature, symmetric and asymmetric encryption are

secure;

• there are two antivirus software regularly updated, that are different on the two

sides;

• files downloaded from the Internet are saved on a specific location on the low-side

partition (Low-Side Subject) and, they will be copied on a specific place on the

high-side partition (High-Side Subject) by the SKH. Both locations are shared

among users, because the SKH does not know the users of the Subjects.

3.3.3 Attack Model

The expected attacks can originate on the low-side network and the high-side network.

Three attack scenarios are considered where attackers can control:

• only the Low-Side Subject (outside attacker);

• only the High-Side Subject (inside attacker);

• both subjects (a hybrid attacker).

The main threat is represented by the exfiltration of data from the high classification

level network to the low classification level network that subvert the Bell-La Padula

security model. Attackers could try to import malware/viruses inside the High-Side

Subject. An attacker could also try to subvert the security policies, e.g. appending

malicious code to a downloaded file on the Low-Side Subject. Such code could be later

used in the High-Side Subject to open a backdoor towards the low classification level

network. Another attack vector could make the Low-Side Subject or the High-Side

Subject crash in order to steal information from resources not properly managed.

Chapter 3. A novel MILS architecture 70

3.3.4 Security Enforcing Functions Details

We defined the following Security Enforcing Functions and their respective security

mechanisms in the defense-in-depth paradigm:

SEF 1 checks the presence of virus/malware on the downloaded files

SEF 2 ensures the file archive integrity

SEF 3 ensures the source integrity

SEF 4 generates a symmetric encryption key

SEF 5 ensures the integrity of the symmetric encryption key originator

SEF 6 protects the confidentiality of the symmetric encryption key

SEF 7 declassifies the signed symmetric encryption key

SEF 8 imports the (signed and encrypted) symmetric encryption key

SEF 9 protects the confidentiality of the message containing the file archive

SEF 10 deletes in a secure way the data on the subject (key, files and/or archive)

We realized the security mechanisms implementing our SEFs both on the subjects and

on the software environment directly provided by the Separation Kernel Hypervisor. A

security function can be realized by one or more security mechanisms, e.g. the SEF 2

uses a mechanism that calculates the digest of the file archive on both Subjects and

another mechanism that verifies the digest on the High-Side Subject. Likewise, SEF 6

and SEF 9 are composed by two mechanisms that perform the encryption and decryption

operations, respectively.

3.3.5 Sequence of Operations

The sequence of operations is detailed in Table 3.3. The related UML sequence diagram

is also depicted in Fig. 3.13. The sequence of operations on the HSS and the LSS are

also depicted in Fig. 3.14 and Fig. 3.15. Here, we describe all the steps foreseen in

the protocol. The SoftGap enforces the identification and authentication (I&A) policies

on both subjects (low-side and high-side) by two-way I&A mechanisms (password and

smartcard/token).

The user must log on the Low-Side Subject in order to use the system. Initially the Soft-

Gap is an isolated environment with two disconnected network cards. After a successful

log-in the SKH connects the Low-Side Subject network card to the low classification

level network. The user can now download files from the low-side network through a

strictly controlled environment that saves them in a secure folder. In this phase, an

attacker could load malware in the Low-Side Subject but Low-Side Subject antivirus

checks this likelihood. Even if the antivirus is not able to detect it, or if an attacker

Chapter 3. A novel MILS architecture 71

introduces malicious software after this security check, the High-Side Subject (HSS) can

later detect it through a different antivirus software. An archive is created for perfor-

Table 3.3: Sequence of operations

Op From Action Msg To

00 user log on(pwd1) pwd1 LSS

01 SKH connect LSS network card - LSS

02 user F := files to import - LSS

03 antivirus 1 check files(F) - -

04 LSS A := create archive(F) - -

05 SKH disconnect LSS net card - -

06 LSS D := calculate digest(A) - -

07 user SD := encrypt(D,KPriusr) - -

08 SKH Krnd := generate random key - -

09 SKH SKrnd := encrypt(Krnd, kPriskh) - -

10 SKH ESKrnd := encrypt(SKrnd,KPubusr) - -

11 SKH downgrade(ESKrnd) - -

12 SKH send(ESKrnd) - LSS

13 LSS SKrnd := decrypt(ESKrnd,KPriusr) - -

14 LSS Krnd := decrypt(SKrnd,KPubskh) - -

15 user log off() - LSS

16 user switch() - HSS

17 user log on(pwd2) pwd2 HSS

18 LSS M := encrypt(A|SD,Krnd) - -

19 SKH secure delete(F,A) - LSS

20 SKH secure delete(Krnd) - LSS

21 LSS send(M) M HSS

22 SKH secure delete(Krnd) - SKH

23 HSS SKrnd := decrypt(SKrnd,KPriusr) - -

24 HSS Krnd := decrypt(SKrnd,KPubskh) - -

25 HSS A|SD := decrypt(M,Krnd) - -

26 HSS D′ := calculate digest(A) - -

27 HSS check D == D′ - -

28 HSS F := unzip archive(A) - -

29 antivirus 2 check files(F) - HSS

30 HSS send(OK) OK user

31 SKH connect HSS net card - HSS

mance reasons, in order to apply the cryptographic operations on a single file container.

Chapter 3. A novel MILS architecture 72

The SKH disconnects the Low-Side Subject network card. The Low-Side Subject is now

a closed environment on which operations can be securely performed.

The Low-Side Subject calculates then the hash value for the archive using e.g. SHA-3.

Such value and its signature allow the High-Side Subject to detect any unauthorized

change in the archive. The Separation Kernel Hypervisor generates a random key neces-

sary to encrypt the message composed by the archive and its signed hash value. To allow

the Low-Side Subject to read the symmetric key, such information must be declassified

by the SKH that represents the originator of the key. In order to declassify the key,

SKH signs the symmetric encryption key with its own private key, encrypts the signed

key with the public key of the user provided by the token/smartcard and stores it in

a strictly controlled memory location. Now the Low-Side Subject can read, verify the

signature, and decrypt the symmetric encryption key. The user logs off the Low-Side

Subject, switches to the High-Side Subject and logs on it. Specfic SEFs on the LSS

securely perform the encryption of the archive and the signed digest with a symmetric

encryption algorithm (e.g. AES with Galois Mode or AES-XTS Mode).

The encryption is necessary to enforce the rule that, once the archive is encrypted and

the original files/archive are securely deleted, the formerly Low-Side Subject data now

become High-Side Subject data. Being High-Side Subject data now it is not allowed to

be in cleartext on Low-Side Subject any more. On the Low-Side Subject the symmet-

ric encryption key is securely deleted. The SKH sends now the signed and encrypted

symmetric encryption key to the High-Side Subject and is securely deletes it from the

SKH. The High-Side Subject performs the cryptographic operations in the reverse or-

der to obtain the symmetric encryption key, and then the archive with its original

hash value. Furthermore, it calculates the digest of the received data and compares it

with the original one. If the check is valid, the High-Side Subject antivirus performs a

malware/viruses scan. The High-Side Subject antivirus is different form the Low-Side

Subject one to increase the potential detection of viruses. The SKH connects the High-

Side Subject network card to the high classification level network.

At this point, the downloaded files can be used on the High-Side Subject and/or dissem-

inated on the high classification level network. In a different use case, instead of per-

forming the decryption operations on the High-Side Subject, the symmetric encryption

key and the imported message could be sent in consecutive phases to a host connected

to the high classification level network. In this scenario if a system crash occurs, it is

impossible to find cleartext on the SKH and the High-Side Subject because data are

stored in encrypted form.

Chapter 3. A novel MILS architecture 73

3.3.6 Design Approach Rationale

Being an applied research project, we thought that it could not be led according to the

procedures used in the engineering of classic ICT systems. In particular, the waterfall

design process is not the best applicable choice for this context, where the research

character requires the formulation of hypotheses, the creation of a theoretical model in

order to verify their correctness, and subsequently the field test of the effectiveness of the

model in the real use case. In this perspective a classic approach is counter-productive

because scarcely ever the initial developing stages of a project of this nature will remain

the same over time. On the contrary, they will follow the natural evolution guided by

experimentation.

For the aforementioned reasons we decided to adopt an iterative software development

process through an agile approach. Such process is known as Unified Process. It is

iterative, incremental (or evolutionary), risk-driven and architecture-centered. In the

waterfall model, classic phases of definition of the requirements, architecture design,

development and testing follow one another in a single cycle which should lead to a

complete system deliverable in the final stage. Unified Process uses an incremental

and iterative approach based on short, fixed-length time-boxed projects. Each project

or cycle includes partial progresses of the architecture that represent production-grade

subsets of the final system. Regardless of the nature of a research project, various

studies evaluating the correspondence between software system development processes

and quality of the final product show that the waterfall model leads to the creation of

systems where 40% of the functionalities is never used,and where 19% is rarely used [111].

Also a value between 25% and 35% of the requirements that were considered initially

frozen inexorably varies during the evolution of the project [112]. In the agile perspective

the document production itself follows a different development process, driven by the

inability to freeze a priori the set of requirements. The documentation, following a

development corresponding to the design and implementation of the system gains an

added value in the agile time-boxed iterations. It means that it can neither be produced

nor even used to describe in advance, in a fully detailed way, what the product of the

research project will be eventually able to realize.

3.3.7 Security Analysis

To verify the validity of our solution, we used two different tools specifically designed

for the analysis of security protocols:

• Automated Validation of Internet Security Protocols and Applications (AVISPA)

tool;

Chapter 3. A novel MILS architecture 74

• Scyther.

We modeled our protocol according to the language used by these tools. Avispa tool

[113] uses the High Level Protocol Specification Language (HLPSL) defined in [114],

whereas Scyther [115] uses the a Security Protocol Definition Language (SPDL), a formal

semantics of security protocol based on [116]. Considering the HLPSL language, the

Low-Side subject is modeled as:

role subject_low (A,H,B: agent,

Kap: public_key,

Hash: hash_func,

RCV_HA, SND_AH: channel (dy))

played_by A def=

local

State : nat,

M: message,

Hash: hash_func,

Digest: hash(message),

Network_card_ON : bool,

K: symmetric_key

const

false : bool,

h_a_key, h_a_m_digest: protocol_id

init

State := 0

transition

0. State = 0 /\ RCV_HA(start) =|>

State’:= 2 /\ K’ := new()

/\ SND_AH({A.K’}_inv(Kap))

/\ M’ := new()

/\ Digest’ := Hash(M’)

/\ SND_AH({A.M’.Digest’}_K’)

...

Avispa and Scyther then analyzed our protocol giving evidences that the claimed secu-

rity properties were satisfied. In the near future we will extend the formal proofs using

Chapter 3. A novel MILS architecture 75

the Isabelle system with higher-order logic (Isabelle/HOL) as reported in [117].

A set of vulnerability and penetration tests have been also performed on the Softgap.

Nessus [118] and tool from the Kali Linux Distribution [119] were used to detect the

presence of known vulnerabilities or protocol design errors that could be exploited to

subvert the security policies. The preliminary results showed that no disclosure of infor-

mation occurred on the low classification level network even by using trojans/backdoors

in the High-Side Subject.

3.3.8 Security Evaluation Considerations

High-assurance systems need to be evaluated by an accredited evaluation body in the

framework of a certification scheme in order to assure the completeness and effectiveness

of the security functionalities they claim to fulfill. The problem becomes more complex

because ICT security tendency is moving from the single system perspective towards

the system of systems one. The MILS paradigm tends to simplify the achievement of

a security certification by treasuring the evaluation experiences of the previous classical

multilevel solutions. The combined use of a “divide et impera” strategy and a compo-

sitional approach should make feasible to reach high levels of assurance and the related

security certifications [40].

The Common Criteria standard introduced in version 3.1 a new assurance class and a

package that address the requirements necessary to ensure that two or more previously

certified components can be integrated in a secure manner [61]. The introduced Com-

position Class (ACO) and the Composed Assurance Package (CAP) allow to reuse the

evidences and the results of previous certifications, instead of performing a new evalua-

tion of the integrated system but is not trivial. Such approach raises new problems to

be solved, for example how to combine previously certified products in a scientific-based

framework, or how to determine the dependability attributes of the composite system

starting from the components properties. These challenges constitute some topics of the

MILS programs introduced in the next paragraph. Even if the possibility to achieve

very high assurance certification levels is the milestone of the MILS effort and even

if it meets the receptiveness of the Common Criteria standard, its realization has not

been reached so far. The participants of the Common Criteria Recognition Agreement

(CCRA) are required, “inter alia” to define a National Scheme and precise guidelines

for the specific country they represent. Until now no national organization in charge of

promoting the compositional approach in the Common Criteria Scheme made efforts in

this direction, even if there is some evaluations have been already conducted according

the new approach [120].

Chapter 3. A novel MILS architecture 76

Also the CCRA participants mutually recognize only Common Criteria Certificates that

refer to the following groups:

• “a collaborative Protection Profile (cPP), developed and maintained in accordance

with Annex K, with assurance activities selected from Evaluation Assurance Levels

up to and including level 4 and ALC FLR, developed through an International

Technical Community endorsed by the Management Committee; ” or

• “Evaluation Assurance Levels 1 through 2 and ALC FLR” [121].

As compared with the previous version of CCRA that foresaw a mutual agreement on

product certification until the EAL4, this choice seems to go in the MILS opposite

direction. There is another mutual agreement among European countries (the SOG-IS

European Mutual Recognition Agreement [122]) that still provides the higher levels of

mutual recognition (until EAL7) for defined areas if schemes have been approved by the

management committee.

We think that higher levels of evaluation can still be reached by a MILS solution through:

• a NEAT compliant minimized Separation Kernel Hypervisor (100-200 KB) pro-

viding data isolation, information flow control and damage limitations;

• simple and independent bare-metal Security Enforcing Functions running directly

on the CPU core without the assistance of a guest operating system;

• use of Common Criteria compositional approach for interfaces between the SKH

and the SEFs

• use of certified crypthographic and hashing algorithms;

• formalization of the security key-components [123];

• formalization of interactions between the security system and the attacker

• use of security properties proof verifiers.

Finally we think that the current approaches to security certification should be reexam-

ined in order to meet the real needs and levels of assurance required to protect sensitive

information. Apart from the certification goal, the usage of a MILS architecture fosters:

• the reduction of physical devices. It is no more necessary to have separate machines

to guarantee the security and the separation of classified and unclassified domains

(through a classic Air-Gap). That means a big saving in terms of Size, Weight and

Power (SWaP) but also improves the effectiveness and the reduction of message

delivery time.

Chapter 3. A novel MILS architecture 77

• simplified information control and management among different domains,

• lower costs to develop high secure and reliable systems and quicker deployment,

• increasing of the overall system security through the stricter controls required by

a high level of assurance certification,

• lower need to design again systems in case of new security requirements set up to

counter new threats,

• integration of legacy applications in a secure environment with the assurance that

the overall security features are satisfied.

Chapter 3. A novel MILS architecture 78

F
ig
u
r
e
3
.1
3
:

S
o
ft

G
a
p

S
eq

u
en

ce
o
f

O
p

er
a
ti

o
n

s

Chapter 3. A novel MILS architecture 79

Figure 3.14: LSS sequence diagram

Figure 3.15: HSS sequence diagram

Chapter 4

COVERT CHANNEL

DETECTION

It is commonly known that even the best engineered software can contain vulnera-

bilities that can be exploited by attackers. In case of distributed multilevel systems

is extremely important to enforce a controlled sharing of information across networks.

Often such data sharing requires a guaranteed one-way flow of information. The unidi-

rectional nature of these communication channels is challenging in the design of MLS

systems. Most communication mechanisms, even those enforcing a unidirectional data

flow, usually foresee an acknowledgment mechanism to communicate back to the sender.

Without this back-channel most existing software and network protocols do not work

unmodified. The overt channels are arbitrary communication paths that are intention-

ally enabled in a system or network. They can represent a risk for the controlled sharing

of information in distributed environments. Even when overt information flows are con-

trolled and properly managed in a communication channel, unintentional flows can still

be there. These flows are called covert channels and are typically present when the

sender can influence in some way the data provided to the receiver. Such operational

ways can be summarized by the Prisoners’ Problem.

4.1 The Prisoners’ Problem

The prisoners’ problem (not to be confused with the counterpart “dilemma” proposed

by Albert Tucker as a problem of game theory in the ’50s) was submitted by Simmons

in 1983 and represents the de facto model for communications through covert channels

[124]. The actors, Alice and Bob, are two prisoners intending to escape that need to

80

Chapter 4. Covert Channel Detection 81

communicate with each other to reach their goal. The problem is the presence of a guard

(Walter) who can read the exchanged messages and decide either to forward directly or

to modify them (Fig. 4.1). For that reason Alice and Bob have to hide their actual

communication in a manner that keeps Walter unaware about the very existence of the

hidden message.

���������	�
��

Figure 4.1: Prisoners’ Problem: Alice and Bob represent hosts that exchange data
through a channel that is hidden inside licit communications. Warden can read, drop

and manipulate the licit communication.

By extending the concept to computer systems, Alice and Bob represent processes or

hosts that exchange data through a channel that is hidden inside licit communications

and therefore must share a secret to encode and decode the information. Walter instead

is the one who manages and checks the system or the network trying to detect, control

and eventually eliminate all forms of covert channels.

A scenario could be the following: Alice, a user with specific clearances logged on a host is

exchanging information with Bob, another host characterized by the same classification

level (Fig. 4.2).

����� ������	
���
�������

���

��������������	

������

��������������	

�����

Figure 4.2: System Model: Alice and Bob could be for example a client requesting
services and an internal Web Server replying to these requests.

The hosts could be for example a client requesting services and an internal web server

replying to these requests. In such scenario a covert channel could be used by a third

user, Mallory, to send arbitrary secret data to a lower clearance user (Eve in the pic-

ture), contravening surreptitiously the security policies. Through a malware that could

operate as a covert channel proxy, Mallory could send secret data to Eve without any

Chapter 4. Covert Channel Detection 82

modification of the original packets but just delaying them and, more important, without

leaving any kind of evidence about the occurred information disclosure.

4.2 Covert Channel Definition and Taxonomy

According to the Common Criteria standard, a covert channel is an an enforced, illicit

signaling channel that allows a user to surreptitiously contravene the multilevel separa-

tion policy and unobservability requirements of the system under evaluation. In presence

of security objectives established to prevent users from observing the activity associated

to other users, a covert channel analysis is foreseen to estimate its capacity and, in case,

to reduce it. A covert channel, if present, could be used in high secure environments to

disclose sensitive data towards unauthorized users even if such data flows are prohibited

by security policies. The problem, known initially in the context of monolithic systems

such as mainframes, has increased its popularity thanks to the spread of distributed

systems and the growing number of protocols created in order to meet the requirements

imposed by computer networks. The large amount of data has transformed the Internet

in a high bandwidth medium for this type of channels that usually, to remain secret,

can use only few bits within protocols where they are hidden. In addition, the increased

attention payed by companies to protect their “open” channels (e. g. e-mail, USB mem-

ory sticks, etc.) made attackers more interested in this type of channels to pursue their

fraudulent activities (industrial espionage, cyberattacks and so on).

Scientific literature offers varied records of covert channels, where authors focus on the

correct nomenclature and precise definition of covert channels and propose detection

methods they have test on their own covert channel implementations. In the following

we try to clarify the main concepts and present a covert channel taxonomy that collects

and reflects the most accepted view of the scientific world.

The term covert channel was introduced by Lampson [125] in 1973, and subsequently

treated by several authors including [126] and [127] that over time identified it as:

• a transmission channel that has not been designed to directly transfer information,

• a channel in which the transmission of information takes place by storing the state

of resources in variables,

• a channel originated from applying and administering the resource policies alloca-

tion,

• a channel using entities, that normally are not considered data objects, to transfer

information between different subjects.

Chapter 4. Covert Channel Detection 83

Usually, in the covert channel characterization, the basic distinction is between Covert

Storage Channels (CSC) and Covert Timing Channels (CTC), although the definitions

given often make them overlap and can lead readers to misunderstanding or confusion

[128].

A covert channel is called “storage” if its scenario of use requires the presence of a subject

that has the power to read/write memory locations or communication protocol header

fields that may be accessed by another subject. A covert channel is called “timing” if

a subject signals information by modulating the use of system/network resources and

hence by manipulating the response time observed by a second subject.

A covert channel could also be active or passive. An active covert channel generates

its own traffic in order to convey the hidden message whereas a passive one uses pre-

existing communication traffic for its operations, improving in this way its stealthiness

to the detriment of speed [129]. The former property, called also covertness, pinpoints

the ability of the covert channel to keep hidden the very existence of the communication

and represents the most important feature an effective covert channel should have. The

latter property is related to the covert channel capacity that, in turn, is bonded to the

channel noisiness.

4.2.1 Covert Storage Channels

Most of covert channels fall into the direct noiseless storage category, it means that for

example information flows directly between the involved parties without intermediate

actors through an error-free path. Sender and receiver have access to the same portion

of memory. These channels encode information in fields of protocols/operations that

are not specified for example in RFCs or by exploiting semantic ambiguities. Hidden

messages can be encoded in unused or reserved bits in frame headers of specific pro-

tocols. There is a great potential for such channels in all those protocols that do not

dictate specific values for header fields, or in case intermediate devices or recipients do

not check standard values. Authors of [130] for instance, proposed a covert channel that

exploits unused IP header “Type Of Service” bit (TOS) or certain fields of TCP. In [131]

is instead proposed to use the “Do not Fragment” IP header bit to convey information.

Authors in [132] have proposed the use of covert channel inside VoIP streams. Data

transmission is normally based on Real-time Transport Protocol (RTP) and control in-

formation is exchanged separately through the Real Time Control Protocol (RTCP).

Instead of using different RTCP flows, Mazurczyk et al. [132] proposed to encapsulate

the control information within RTP streams: the unused bits in IP, UDP and RTP

headers identify the type of parameters whereas the corresponding values are inserted

as watermark in voice data.

Chapter 4. Covert Channel Detection 84

Normally protocols define header extensions to transport on request not mandatory in-

formation. In [133] potential covert channels are identified in IPv6 header extensions for

routing, fragmentation and authentication.

Hidden information can be inserted as padding in frames or packets. Since the Ethernet

frame must be at least 60 bytes long, if the protocol does not specify standard values

for padding, and if a frame does not meet the minimum allowed length, it can be used

to convey any type of data. Authors of [134] developed a method for exchanging covert

messages through TCP “Timestamp” headers. Information is hidden in the timestamp

least significant bit of the sender side, since it is assumed that they are random for slow

TCP connections. Instead of modifying directly the timestamp, the algorithm slows

the TCP stream so that the timestamp of the packet is still valid when they are sent.

The algorithm checks if the least significant bit is equal to the covert bit to be sent

and if the condition is true, the packet is immediately sent, otherwise it is slowed down

with a predefined delay. Authors of two different works, [135] and [136], proposed to

encode information either directly in the IP address fields or by modulating the order of

valid addresses in subsequent transmissions. The capacity of this channel depends on the

number of valid IP the sender can use but in general the technique works effectively even

using the “Protocol” or “Port number” field. In [137] is proposed a framework, called

Infranet, which uses an HTTP tunnel to provide a channel for secret communication

between client and server. Upstream, Infranet clients send secret messages to servers by

associating a meaning to the sequence of exchanged HTTP requests. Downstream, the

Infranet servers reply hiding data with steganographic techniques within pictures.

Many other covert channels were discovered in the analysis of ad-hoc networks and in

general in IEEE 802.2, 802.3, 802.4 and 802.5 communication standards [138]. Since

wireless networks have variable error rates, such feature provides opportunities to in-

sert corrupted frames. In [139] is showed a covert channel exploited by sending frames

created intentionally with incorrect checksum. Authors of [140] proposed to send hid-

den information in IEEE 802.11 networks within not required ACK messages or invalid

frames with deliberately incorrect checksums. The sender encodes data in the payload

along with a magic number contained in the receiver address field. The receiver decodes

data from the frame containing the magic number. In [141] is proposed a covert channel

in IEEE 802.11 networks that uses corrupted frames: the sender encodes bits by dupli-

cating some of the frames of specific connections and the recipient decrypts the covert

bits according to such duplication.

Payload tunnels are covert channels that insert contents within the payload of another

protocol in order to bypass firewall/routers policy. Many of these channels do not aspire

to be undetectable, they rather aim at maximizing the transmission capacity. Nowa-

days there are a multitude of tools that use these mechanisms on protocols that are

not normally blocked as ICMP and HTTP. It is also possible to use a fake DNS where

Chapter 4. Covert Channel Detection 85

covert information is encoded in legitimate requests and the same type of covert data

can be received by the following replies [142]. Some other covert channels are hidden in

the pseudo-random data (even encrypted data). For example, the IP packet “Identifi-

cation” (ID) header, used to reassemble fragmented IP packets, belongs to this group.

The “Fragment Offset” (FO) header is used instead to determine the correct order of

message packets. In [143] it is shown that, using a man-in-the-middle technique, it

becomes feasible for an attacker placed in the middle of a transmission to convey infor-

mation using the ID and the FO fields and setting a bit in the “Flag” one. The recipient

can reconstruct the fragmented information distinguishing licit fragments having “More

Fragment” bit set to zero, compared to those used for the covert communication.

There is a type of covert channels called noisy that exploits fields not accurately specified

in protocol specifications or semantic ambiguities where these fields are changed on the

path between sender and receiver. These changes can cause errors on the covert chan-

nel, and this is the reason why they can show some noise. Noise reduces their capacity,

but potentially improves covertness. Compared to the noiseless channels there are few

implementation of them and they are much less known. [144] proposed to use the IP

Time To Live (TTL) header field to track flows without using the source addresses. The

router changes the packet TTL field so that the downstream receivers can unambigu-

ously identify their upstream router. Whereas the channel in [144] is used exclusively

to mark packets, authors in [145] proposed a covert channel in the TTL field used for

general communications. Since the TTL field, like the IPv6 Hop Limit Field counter-

part, is modified by network nodes in the transition from the sender to the recipient,

and because of packets can follow different paths, this channel is kind of noisy. A kind of

covert direct noisy channel is also the one proposed in [146] that implemented a covert

channel with high capacity in the physical layer protocols of wireless communications.

The authors shown that using a constellation of symbols of the modulation system used

by a Software Defined Radio realized with FPGA technology, it is possible for two de-

vices to send hidden data that are confused as noise by legitimate devices.

Storage indirect channels belong to a different type that uses an intermediate unaware

node to exchange illegal information. This type of channels shows a higher robustness to

detection but it is more difficult to implement and has lower capacity. In [147] Rowland

described an indirect channel, called “bounce” channel, which acts as follows: instead

of sending a TCP SYN packet directly to the receiver with a particular Initial Sequence

Number (ISN) and with hidden data, the sender sends the packet to a drop host with a

spoofed source IP address set with the address of the desired destination. The drop host

then sends a SYN/ACK or SYN/RST packet to the receiver with the sequence number

equal to (ISN + 1). The receiver decreases the ACK number to decode the hidden infor-

mation. In [148] Zelenchuk implemented an indirect IP tunnel using the ICMP protocol.

The sender forwards echo request packets to a drop host with spoofed source address

Chapter 4. Covert Channel Detection 86

set to the recipient address and hides data encoding them in the payload. The drop

host then sends the echo reply answers to the recipient with the same payload. In [149]

Danezis proposed an indirect channel using the ID field of the IP protocol. This channel

requires an unaware host equipped with an operating system that globally increases the

counter ID field for outgoing packets. Furthermore, sender and recipient must be able

to force the intermediary to receive packets and forward them back (for example, using

the ping command). In each interval time, the sender forwards n packets to the inter-

mediate node, in which n represents the length of the hidden information, forcing it to

send back them again. The recipient can build the hidden information by calculating

the difference between the values of two consecutive ID packets. In [150] Bauer proposed

the use of web traffic channels to enable covert communications. Information is hidden

inside JavaScript/HTML code and transported through the use of redirect JavaScript.

An observer that is not able to examine the HTTP payload can not distinguish between

web harmless users and malicious actors.

4.2.2 Covert Timing Channels

These type of channels are always noisy because of timing inaccuracies between sender/re-

cipient and network jitter. Their capacity is typically lower than the noiseless storage

one, but they are more difficult to detect. Channels disclose information by changing the

rate of packets sent over the network. The recipient can reconstruct the covert message

by measuring the rate in each interval time. In this type of channels the synchronization

between subjects is therefore extremely important. In [151] Padlipsky et al. described a

channel in which the sender encodes a bit of information simply transmitting or remain-

ing silent in a predetermined time interval. This ON-OFF channel is a particular case of

binary channel in which a given bit rate corresponds to the binary value 0 (OFF), while

any other rate assumes the binary value 1 (ON). In [152] Cabuk et al. implemented an

ON-OFF covert channel in which sender and receiver agree a priori on a time interval,

using also the first packets bit to maintain synchronization. Later on the authors de-

veloped a more advanced CTC that uses pre-recorded sequence that are stored in two

different partitions by a cut-off value. The sender replays using a randomly chosen value

of one partition to transmit a 0 covert bit, or a value of the second partition to transmit

a 1 covert bit.

In [153] Berk et al. described a timing covert channel that does not require synchroniza-

tion because information is encoded within the interval between two consecutive packets.

They were able to show that, by analyzing the values of channels characterized by only

two gap values rather than multiple gap values, it is possible to choose the optimal

symbol distribution once the peculiarities of the channel to be used are known. In [154]

Chapter 4. Covert Channel Detection 87

Shah et al. developed a device that clips to the hardware connection between keyboard

and computer and filters each keystroke modulating the time in which packets are sent

over the wire (Jitterbug covert channel). In [155] Liu et al. presented a work in which

the covert channel encodes data in a way that the inter-packet gap normal distribution

is very close to the dispersal techniques used to increase the channel robustness. This

feature makes the channel extremely difficult to detect with specific tests. Wolf [138]

mentioned the possibility of building covert channels just modulating the use of the

operations relating to a specific protocol. For example the recipient may acknowledge

each frame separately or wait until the arrival of more frame before sending the ACK.

Handel et al.[130] proposed a solution based on the modulation of Clear To Send (CTS)

and Ready To Send (RTS) signals in serial communications. This technique can also

be used in other protocols that use CTS/RTS, for example in WLAN. Eer et al. [156]

implemented a timing channel through a web server and analyzed its capacity. In their

scheme a web server carries hidden information delaying or not the answers, and associ-

ating to these events the logical values 1 and 0. Zou et al.9 [157] described a technique

to insert a covert channel in the File Transfer Protocol (FTP). This solution transmits

data by varying the number of commands “No Operation” (NOOP) sent during idle

periods: the number of NOOP is equal the size of hidden information.

Servetto et al. [158] demonstrated that structured deletions of packets within a commu-

nication may be used as covert channel. The technique requires to number the packet

sequence in a way that allows the recipient to detect the loss. Such deletions can be

made artificially by the sender. Mazurczyk et al. [159] instead proposed a technique

that uses packet losses and re-transmission. In their scheme the recipient does not send

the ACK for a regularly received packet and waits until the sender re-transmits one in

which, instead of the original data, covert information are sent using steganography.

El-Atawy et al. [160] proposed a timing channel based on packet reordering in fake

network traffic. The fake packets are used to encapsulate a sequence number within the

IP packet payload.

Handel et al. [130] proposed to exploit the known mechanism of Ethernet Carrier Sense

Multiple Access/Collision Detection (CSMA/CD). The covert sender begins to jam the

communication of another user and waits for a time equal to zero or the maximum al-

lowed value, so the packets sent by the user will be complete or segmented, thus providing

the recipient a covert bit of information for each transmitted frame. The recipient can

indeed reconstruct the hidden message detecting collisions and analyzing the order of

arrival of the frame. Bhadra et al. [161] proposed a similar channel for ALOHA protocol

while Dogu et al. [162] proposed a channel that uses splitting First Come First Serve

(FCFS) algorithm used after the collision among user packets. Information is conveyed

by observing the number of collisions detected in a predetermined time slot. The sender

generates data just causing collisions whereas the recipient reconstructs them passively

Chapter 4. Covert Channel Detection 88

controlling the channel and keeping track of the implemented collision resolution pro-

cedure. The timing indirect channels, like their storage channels counterpart, use an

unaware intermediary to disclose data. This type of communication is very difficult to

detect, and is also characterized by a relatively low capacity. Hintz [163] described a

covert channel that uses a public server as an intermediary: the sender forwards a large

number of requests or remains silent within a time slot, encoding information through

this behavior (ON-OFF coding). The receiver sends periodic probes to the server by

analyzing the response time of the sender.

Murdoch [164] instead developed a channel that combines the technique of packet rate

and timestamp to modulate the covert channel. This technique requires an intermedi-

ary that receives and sends packets to the hidden communication subjects. The channel

exploits the fact that the temperature of the CPU depends on the number of requests

processed per time unit and the alteration of the host system clock depends on the

temperature. The sender then forwards requests to the intermediary or remains silent,

changing in this way the temperature of the clock and hence the system clock response.

The recipient estimates the alteration of the clock according to the timestamp of the

packets sent by the intermediary and decodes the hidden message. Gianvecchio et al.

[165] proposed their Model-Based Covert Timing Channel (MBCTC) that selects a traf-

fic model, like for example Exponential or Weibull, that fits with a legitimate traffic

and chooses the one with the smallest Root Mean Square Error. The distribution of

the generated pseudo-random inter-packet delays can then imitate that of the legitimate

traffic.

4.3 Detection Algorithms

It is now clear that the employment of multilevel security countermeasures that prevent

information flows from high-security domains to low-security domains are effective for

traditional means like email, file transfer and so on. But all of them are still vulnerable

and ineffective in presence of covert channels, that require specific countermeasures.

The problem is well-known by Certification schemes like the ISO/IEC 15408 standard

or TCSEC, in fact they require evidences, through methodical analysis and testing, that

the ICT solution under evaluation would not be affected by vulnerabilities that could be

exploited by attackers to convey illicit data flows that contravene the security policies,

i. e. through covert channels.

Covert channels opened new research directions focused on the identification, detection

and mitigation of such vulnerabilities. Identification is performed in order to find the

shared resources that can potentially lead to covert channel exploitation. It can be for

Chapter 4. Covert Channel Detection 89

example done in the designing phase of an ICT solution. Detection is performed to detect

covert channels that are already running and it usually falls in two main categories:

• misuse detection,

• anomaly detection.

Misuse of protocols and anomaly detection are normally performed by firewalls, intrusion

detection and prevention systems. Both categories foresee a deep knowledge of protocols

and system/network architectures, and the usage of different detection techniques.

4.3.1 Covert Storage Channel Detection Techniques

Misuse detection is particularly suited for CSCs that apply the mechanisms presented

in the previous paragraphs. Some Covert Storage Channel can be directly eliminated

through traffic normalizer devices. For example a firewall could zeroise option header

fields of protocols that provide features not used in a specific environment (i.e. TOS

field in IP headers). In cases where a CSC exploits header fields that are effectively

used for the protocol operations, it is necessary to change strategy and focus on covert

channel detection. For example ID filed in IP packet is used to identify the packet and

help re-assembling the original message. It could be manipulated in a way that uses

the first byte as ID packet and the second byte as covert bits carrier. Observing the

sequence of packets and the IP header fields can detect this kind of CSC. With the

same approach it is possible to detect CSCs that use the flags Do-not Fragment (DF)

and More Fragment(MF) to convey covert bits. If such mechanism is used then the

presence of a covert communication can be suggested by the MF set to 1 even if the last

fragment of the original message is less than the packet size and it should be set to zero

[166]. Other more sophisticated techniques can be used. Joanna Rutkowska for example

proposed an ISN generation model that predicts ISN values in TCP sessions based on

previous ISNs generated by an operating system. Through the use of a neural network

that is appropriately trained, it is possible to compare the predicted ISN value with the

generated one and verify the difference. Large difference suggests that the value is not

generated by the original stack and presumably a covert channel is set up [167]. Another

technique takes advantage of Markov models for TCP protocol to check if the protocol

rules are actually followed or not [168]. The paper shows that if the state transition

of TCP protocol does not follow the rules, it could indicate the presence of a covert

communication. The allowed TCP states are defined and they constitute the states of

the Markov model. Depending on the specific application used (e.g. telnet, ftp, smtp

etc.), different models are generated and used together with the Kullback-Leiblei method

Chapter 4. Covert Channel Detection 90

in order to check if the data sets present differences in relation to valid transitions.

CSCs take place in IP and TCP protocol, but also in the application layer of the ISO/OSI

stack. Application protocols offer many ways for covert channels that are difficult to

detect and the detection methods are based on behavior analysis.

4.3.2 Covert Timing Channel Detection Techniques

Researches on Covert Timing Channels led to different solutions developed to detect,

disrupt and also eliminate such channels. For example it is possible to add random

delays on traffic or to buffer packets before sending them to the network. The problem

with these type of solutions is that they affect also the licit traffic, reducing the over-

all performance of a system. The interest of Academia and Industry has then moved

towards detection methods that evolved greatly in the last decade, like to underlying

the general increasing of the perceived danger about these vulnerabilities. As already

introduced, the popularity of covert channels increased together with the spread of dis-

tributed systems and the evolution of telecommunications networks that made such

channels a medium with interesting bandwidth. Covert Timing Channels in particular

represent vulnerabilities that are very difficult to detect, also respect to their storage

homologous. This awareness lay the foundations for opening new research fronts that

nowadays converge to use statistical tests that help in differentiating covert traffic from

legitimate one.

Two are the main classes of detection tests:

• shape tests,

• regularity tests.

The shape of traffic refers to the shape of an histogram of a specific observed variable, e.g.

the inter-packet delay1 (IPD). It can be described for example by first-order statistics

like mean, variance and distribution. Shape tests compare a distribution created from

a sample to some known fingerprint of the legitimate overt distribution. Each shape

test produces a metric that measures the difference between these two distributions.

Generally speaking, a passive CTC is more prone to shape tests because it adds delay

to legitimate traffic and then they change the shape of the original IPD distribution. A

good quality active CTC can mimic the original stream distribution, hence the shape

test is not suited for it. The effective test in this case is the regularity one, that is based

on the observation of recurrences of specific patterns in the traffic distribution. This

1Inter-packet delay, called also inter-arrival time, represents the time between transmission of con-
secutive packets.

Chapter 4. Covert Channel Detection 91

type of tests assume that the covert data communication is more regular than the legit-

imate traffic. One example of such a test is the heuristic regularity test of [152], which

examines whether the variance in the inter-arrival times remains small. Because CTCs

are produced by computer programs, it is very difficult that they can produce the ir-

regularity patterns present in legitimate traffic and the regularity test works starting by

such assumption to perform their analysis. Mainly the regularity of traffic is described

using second-order or higher-order statistics, like correlations in data sets.

According to the shape tests we find in the literature different solutions: the Kolmogorov-

Smirnov test, the entropy test, the chi-square test, and the ε-similarity test, just

to name but a few.

The Kolmogorov-Smirnov test (K-S test) described in [169] allows to measure the max-

imum distance between two empirical distribution functions:

K-S test = max|S1(x)− S2(x)|

where S1 and S2 represent the empirical distribution of the samples. Normally they are

a training sample obtained by a legitimate traffic distribution and a test sample taken

from the investigated distribution. S-K test is distribution independent, that means, it

is applicable to any traffic distribution (e.g. Exponential, Weibull etc.). Once defined a

threshold ζ, if the S-K test difference is less than ζ it means that the test sample belongs

to a legitimate traffic distribution, otherwise it belongs to a different one, indicating the

presence of a covert communication.

In [129] the authors present a detection method based on the Shannon entropy. The

method organizes a sample of IPDs in bins with equal probability for legitimate traffic.

Each bin should contain the same number of IPDs. If the calculated entropy of a

sample of IPDs is less than the legitimate set, it is a sign that a covert communication

occurred. Since in the building of the histogram of bins, most of them are empty, the

authors improved the detection method using the Corrected Entropy (CE) that takes

into account also such bins.

The chi-square test of [170] exploits IPDs to find out if they either conform to the

Weibull distribution or not. The authors first estimate the Weibull parameters from the

series X. Then, they apply the chi-square test to measure the degree of affinity. Finally,

they verify the conformity of the sample data against a Weibull distribution fitted over

the previously estimated parameters calculating the chi-square value according to the

following formula:

chi-square =
∑b

i=1
(FOi −FEi)2

FEi

Chapter 4. Covert Channel Detection 92

where FOi and FEi are the observed and expected frequencies in the i− th bin, respec-

tively, and b is the number of bins. If the result is less than a predefined threshold, than

it shows the presence of a hidden communication.

In [152] two different methods are presented. The first one is a shape test, called ε-

similarity, that is based on determining the proportion of similar inter-packet delays.

Because an ON-OFF CTC creates groups of similar IPDs that are multiple of the cho-

sen timing interval, many IPDs will be nearly the same and it indicates the presence of

a covert communication. On the contrary, the second method belongs to the regularity

tests group. It is based on the characteristic of most network traffic whose IPD variance

changes over time whereas it is relatively constant in presence of covert channels. The

sequence X of inter-arrival times is first separated in w different bins. Then, for each

i− th bin, the standard deviation (STD) s i is evaluated. Finally, the testing variable is

the STD of the pairwise differences between each σi and σj for all the blocks i < j, and

defined in the following formula:

regularity = STDEV (
|σi−σj |
σi

, i < j,∀i, j)

where | · | is the absolute value (or modulus). The distribution with low variance prob-

ably hides a covert channel. The regularity measure is ineffective against covert timing

channels where the model is changed more often than the size of the window or where

the overt application is regular [171].

Among the aforementioned detection algorithms, Leo et al. proposed in their work [172]

another method that target a specific CTC called Cloak. This method, together with

the ε-similarity test are effective at detecting the specific CTCs they are designed for,

and their scopes of detection are very limited.

Besides Cabuk’s heuristic regularity test, another interesting test belongs to the same

category: the Corrected Conditional Entropy test. CCE uses the Shannon entropy

with corrected conditional entropy. the latter is able to detect CTCs with abnormal

regularity, whereas the former can detect CTCs with abnormal shape. The combination

of the two approaches can then be useful to detect a variety of covert channels whereas

is not suited for CTCs with a distribution close to the legitimate traffic one.

Shape and similarity tests use the same procedure on different variables: first they cal-

culate a metric, that is then compared with a proper preselected threshold. If the test

metric is less than the specific threshold, this states that the test sample belongs to

the set of legitimate traffic. Conversely, if the metric is above the threshold, the two

samples belong to different distributions, thus suggesting the presence of a CTC in the

test sample.

Chapter 4. Covert Channel Detection 93

4.4 Novel Covert Timing Channel Detection Algorithm

In the panorama of CTC detection algorithms we devised a new testing procedure that

measures the distance of a sample set of IPDs from the Weibull model. We called our

procedure Weibull-ness test.

Our method discriminates between the presence or absence of a CTC, by measuring how

much the series under investigation, i.e. the IPD, fits the Weibull distribution model.

4.4.1 System Model

Let X be the observed sequence of N IPDs (x1, x2, , xN) of a data communication. If

the sequence X consists of samples of legitimate traffic, its probability density function

(PDF) can be modeled as Weibull-distributed as shown in [129, 170, 171, 173]. A Weibull

Distribution is defined as:

PXi =

{
k
λ · (

x
λ)k−1 · e(−

x
λ
)k ,∀x > 0

0, ∀x < 0

where k > 0 is the shape parameter and λ > 0 is the scale parameter of the distribu-

tion, respectively. Fig. 4.32 depiscts the Weibull Probability Density Function with the

change of shape and scale parameters.

Finding a distribution that fits the TCP flow inter-arrival times is an important issue

in network-related applications and researchers tried to understand how much the IDP

distribution in TCP communications is Weibull distributed. According to [174] and [175]

TCP connection IPDs are statistically well modeled by distributions with heavy tails,

such as the Weibull distribution.

According to some empirical studies, the paper [176] states that the TCP flow IPD

distribution follows the Weibull distribution with a shape parameter close to 1.0 as the

scale of network becomes larger, so the Weibull distribution degrades to the Exponential

distribution. Moreover, the authors in [177] show that the marginal distribution of the

inter-arrival times is piecewise Weibull distributed for wireless TCP/IP traffic.

We can state that the assumption of modeling the IPD distribution as Weibull is hence

now widely accepted in the literature. Paper [171] chooses for example a Weibull distri-

bution with a mean scale parameter λ = 0.1279 and a mean shape parameter k = 0.4401

to mimic legitimate traffic, whereas in [173], the authors select the same distribution

with parameters λ = 0.0020 and k = 0.4742 for the legitimate traffic model.

In Appendix C details about the Weibull Probability Density Function are given.

2Di Calimo, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=9671814.

Chapter 4. Covert Channel Detection 94

Figure 4.3: Weibull Probability Density Function

4.4.2 The Weibull-ness Test

Our detection method is able to detect the presence of a CTC by measuring how much

the series under investigation (i.e. the packets inter-arrival times) fits the Weibull dis-

tribution model.

The two parameters of the Weibull distribution are first estimated, as done in [178],

from the observed sequence of IPDs X. After that, a new sequence Y of N samples

(y1, y2, , yN) is obtained from the sequence X, according to the following change of vari-

able:

Y = (
X

λ̂
)k̂ (4.1)

where λ̂ and k̂ are the estimated scale and shape Weibull parameters, respectively.

As underlined in [179], the non-linear change of the variable expressed by 4.1 leads to a

new sequence Y whose samples are distributed according to an exponential PDF PYi(y)

of intensity 1 (for any λ̂ and k̂). This exponential PDF of intensity 1 is mathematically

defined as follows:

PYi =

{
e−y, ∀y > 0

0, ∀y < 0
(4.2)

The moments (of order n) of the PDF in 4.2 are all theoretically known according to

the following:

Mn = E[Y n] = n! (4.3)

Chapter 4. Covert Channel Detection 95

where Mn is the n− th order moment, while E[] represents the expectation operator.

Now, let us evaluate the testing variable needed by our Weibull-ness test.

If the sequence X represents the inter-arrival times of a legitimate communication, the

sequence Y is exponentially distributed with known moments. In particular, since we

estimated the two Weibull parameters exploiting the first two moments of X, we have

now to focus on the first moment of Y different from the mean and variance. Hence, we

decided to exploit the third order moment M3, whose value is theoretically evaluated as

follows:

M3 = E[Y 3] = 3! = 6 (4.4)

Finally, we introduce a new variable Z defined as follows:

Z = M3 − 6 (4.5)

Now, its estimation Ẑ is used as the testing variable for discriminating about the presence

and absence of the covert channel. Hence, the new testing variable is estimated according

to the following:

Ẑ = M̂3 − 6 (4.6)

where the estimate of the third order moment is obtained as:

M̂3 =
1

N

N∑
i=1

y3i (4.7)

and yi is the i−th sample of the transformed sequence Y . Then, considering a threshold

h, the test is finally expressed as follows:

H0 : Ẑ < η, presence of CTC

H1 : Ẑ > η, absence of CTC
(4.8)

This means that, if the testing variable is greater than the threshold value η, the al-

gorithm decides for the hypothesis H1 (i.e. presence of covert traffic). Otherwise, the

choice is for H0 (i.e. absence of covert traffic). Finally, we can use any higher order

moment instead of the third one, in the evaluation of the Weibull-ness testing variable.

However, exploiting higher order moments results in a greater variance of the testing

variable (corresponding to very poor detection performance), as theoretically shown in

the following section.

Chapter 4. Covert Channel Detection 96

4.4.3 Performance Analysis and Numerical Results

In this section, we evaluate the performance of the proposed method, theoretically eval-

uating the bias and the variance of the testing variable in 4.6. In particular, for the bias

we obtain:

bias(Ẑ) = E[Ẑ] = E[M̂3 − 6] = E[
1

N

N∑
i=1

y3i − 6] = 3!− 6 = 0 (4.9)

Then, the variance is evaluated as follows:

var(Ẑ) = E[Ẑ2] = E[(M̂3 − 6)2] =

= E[1
N

∑N
i=1 y

3
i] · E[1

N

∑N
i=1 y

3
i]− 12 · E[1

N

∑N
i=1 y

3
i] + 36 =

=
1

N2
E[

N∑
i=1

N∑
j=1

y3i · y3j]− 36 = · · · = 1

N
M6 −

1

N
(M3)

2 (4.10)

where M6 is the sixth order moment expressed by:

M6 = E[Y 6] = 6! (4.11)

Finally, the variance of the testing variable is as follows:

var(Ẑ) =
6!− 36

N
=

684

N
(4.12)

The variance of the testing variable expressed in 4.12 tends to zero, increasing the

number N of observed samples. In addition, if in evaluating the testing variable, see 4.5,

we exploit higher order moments (higher than M3), this will result in a variance of the

testing variable that is greater than the one expressed by 4.12. This finally results in a

performance worsening of the method. Then, the CFAR procedure (usually used to solve

detection issues in radar and telecommunications fields) is here employed to perform the

test: first, a threshold is determined to limit the false-alarm probability (PFA), at a

given chosen value under the H0 hypothesis (i.e. absence of the hidden communication).

Then, the detection probability (PD) is evaluated under the hypothesis H1 (i.e. presence

of the CTC) for the previously determined threshold. In addition, the testing variable

in 4.6 is asymptotically (N →∞) Gaussian as a direct consequence of the central limit

theorem. Hence, the test threshold can be asymptotically tuned from a straightforward

evaluation of the Gaussian integral for a fixed PFA, under the null-hypothesis [180]:

η = bias(Ẑ) +
1

√
2 · var(Ẑ)

· erfc−1(2 · PFA) (4.13)

Chapter 4. Covert Channel Detection 97

where erfc − 1(·) is the inverse of the complementary error function. Then, the PD is

determined in the H1 hypothesis as:

PD =
1

2
erfc[

η − bias(Ẑ)√
2var(Ẑ)

] (4.14)

with bias(Ẑ) and var(ẑ) expressed by 4.9 and 4.12, respectively. To verify the detectabil-

ity of CTCs in data communications we compared legitimate traffic to traffic containing

a covert channel. To test the performance of all the considered detection methods, we

exploit two types of simulated traffic:

• legitimate traffic, generated using the Weibull distribution model, and

• covert traffic, simulated by embedding covert communications in the legitimate

traffic exploiting a passive CTC, called JitterBug [154].

JitterBug inserts an additional delay into the traffic generated by the transmitter. The

delays imposed by the transmitter are limited to at most w milliseconds (ms). A covert

bit 0 is encoded by increasing the IPD of the packet to a value modulo dw/2e ms, where

de represents the ceiling operation. Conversely, a covert bit 1 is transmitted by increas-

ing the inter-arrival time of the packet to a value modulo w ms. To avoid creating a

pattern of inter-arrival times at multiples of w and dw/2e, an additional random delay

is considered.

In our results, we set the parameter w = 20ms, as determined in the hardware implemen-

tation of JitterBug in [154]. First, we evaluated the PD of the innovative Weibull-ness

test both in an analytic way, i.e. using equation 4.10, and by means of simulations. In

Fig. 4.4 we report the theoretical and simulated results for the PD of the Weibull-ness,

versus the number of transmitted packets and varying the number of covert bits. In all

the considered cases, the simulation results (dotted lines) well match the theoretical ones

(solid lines), thus validating the correctness of the mathematical analysis performed. We

also evaluated the detection performance of our method versus other conventional ap-

proaches. In particular, inter-arrival times from the legitimate and covert traffic were

used as inputs to the three considered CTC detection methods: regularity, chi-square

and Weibull-ness tests.

In Tab. 4.1, Tab. 4.2 and Tab. 4.3 we show the results for all the analyzed procedures

when a covert message was inserted in flows consisting of 10000 packets. As in [178],

we randomly injected in each of these flows an external trigger activating covert trans-

mission consisting of 20 (small), 40 (medium), or 80 (large) packets in every interval

over 250, 500, 1000 or 2000 packets. Differently from [178], we inserted the covert bits

in non-consecutive packets in order to enhance the stealthiness of the CTC. The CFAR

Chapter 4. Covert Channel Detection 98

procedure was exploited with a fixed PFA = 10−2, and the results are averaged over

10000 trials. In all cases, the Weibull-ness test provides the best detection performance,

even improving the detection of about 24% versus the chi-square approach in the worst

case of 20 covert bits over 250 packets, while the regularity test fails.

Table 4.1: PD of the analyzed methods for a fixed PFA = 10−2 and small case

PD small case (20 covert bit)

n. of packets weibull-ness test chi-square test regularity test

250 90.5% 73.1% 67%

500 35.8% 11.4% 32%

1000 4.8% 3% 11%

2000 3% 2.9% 1%

Table 4.2: PD of the analyzed methods for a fixed PFA = 10−2 and medium case

PD medium case (40 covert bit)

n. of packets weibull-ness test chi-square test regularity test

250 100% 99.5% 98.2%

500 90% 62.9% 5.5%

1000 40.5% 9.8% 3.8%

2000 8.2% 3.6% 2.4%

Table 4.3: PD of the analyzed methods for a fixed PFA = 10−2 and large case

PD large case (80 covert bit)

n. of packets weibull-ness test chi-square test regularity test

250 100% 99.4% 99%

500 100% 99.2% 98.2%

1000 97.3% 91.8% 96.7%

2000 57.5% 18.3% 3%

This behavior is a consequence of the fact that the JitterBug timing channel shifts the

traffic IPDs distribution by increasing the delays to embed the covert message. The

regularity tests will not detect statistical regularities in JitterBug traffic because the

traffic is not produced by a statistical model [181]. Hence. in order to detect a shift

of the distribution, the best detection method is represented by shape tests, and in

particular, by the Weibull-ness test here devised.

Finally, in order to stress the detection performance of our test, we have analyzed what

happens in the presence of a shortlived CTC, namely a Needle channel [182]. This

is a more realistic scenario in which a small secret (e.g. a password or private key)

is hidden in the data communication. To minimize the risk of detection, the attacker

Chapter 4. Covert Channel Detection 99

toggles its use of the covert channel, transmitting a single bit once every M packets.

In Fig. 4.4, we illustrate the detection performance of the Weibull-ness and chi-square

tests, embedding the data every M = 50 and 100 packets. The results of the regularity

test are not reported since this test again completely fails in detecting the covert traffic.

This is because this type of CTC does not change high-level traffic statistics very much,

making it very difficult to detect. However, Fig. 4.4 shows that the curves referring

to the proposed approach are always higher than the ones of the conventional method,

thus proving the efficiency and effectiveness of the Weibull-ness test in detecting CTCs.

Our test is able to reach reliable detection (of about 90%) observing 400 packets, while

the conventional solution needs at least 800 packets to declare correct detection of the

covert traffic.

Figure 4.4: PD of Weibull-ness and chi-square tests

4.5 Open Source Covert Timing Channel

A specific taxonomy of covert channels is present in many scientific papers and surveys,

and many implementations are available on the Internet. But, according to the best

of our experience, there is no public realization of a specific covert channel family, the

Timing Covert Channel type. In our opinion a CTC is more difficult to detect than

CSC and for this reason it could be used profitably as a starting reference model by

manufacturers aiming at testing their security solutions against such vulnerabilities. In

our case we needed an effective implementation to test our detection algorithm in a real

scenario3. After a long research on the Internet, we found many implementations of

Storage Covert Channels (an exhaustive list is present in [183]) hence, we decided to

implement our own CTC. In the following section we will explain the features of our

3At the time this Thesis is being written, we started collecting real data with our covert channel in
order to conduct preliminary tests on our detection algorithm.

Chapter 4. Covert Channel Detection 100

channel and the implemented technological solutions through small code snippets. The

source code is further detailed in the Appendix A and is also available at [184] under

the license described in [185] (Apache Licence 2.0).

A covert channel is used to transfer information in a manner that conceals the very ex-

istence of the communication (unlike the encrypted channels whose purpose is to make

the content of the transmission unintelligible). A CTC could create its own traffic,

e.g. sending random messages and hiding a covert message by just manipulating their

inter-arrival packet time. In case of a passive CTC, it uses some pre-existing traffic

as a carrier of the covert message. In both cases, the packets payload is meaningless

from the covert message receiver perspective, and the carrier itself could be even en-

crypted without compromising the effectiveness of the covert channel. Because of the

asynchronous nature of this kind of communication, the main issue of CTCs is related

to the synchronization between sender and receiver. In order to solve this non-trivial

problem, we set up different mechanisms necessary to keep synchronization or, in the

worst case, to re-establish it as soon as possible.

Our Open-Source Covert Timing Channel (OSCTC) implementation takes the

cue from a paper written by S. Gianvecchio et al. [186], that introduces an entropy-

based approach for detecting CTCs. Gianvecchio’s paper introduces four different CTCs

and we designed three different implementations of the first one, described formerly by

Cabuk et al. [128], modifying the original one and adding further functional mecha-

nisms.

In all our implementations the OSCTC uses a binary modulation of the inter-arrival

packet delay in a TCP connection (ON-OFF coding). When the covert message source

wants to send the bit 1 (ON), it transmits packets on the TCP connection, otherwise it

remains silent signaling in this way the covert bit 0 (OFF).

We also developed two different operation modes: active and passive. In active mode,

the OSCTC uses an own predefined message to forward the covert one. In contrast,

in passive mode, it uses data exchanged in a different communication as carrier for the

covert message. All the implementations resemble a client-server architecture. The

covert bit period, called TIME SLOT in our code, specifies the time within which a

packet is transmitted or not. It’s expressed in milliseconds (ms). Sender and receiver

define the same function calc_time that is used to determine the local time on each

machine and represents the starting synchronization point for both the hosts. On the

receiver this function is called by two threads, one taking responsibility of reading the

covert bits, that are organized in bytes, the other managing the TIME SLOT sampling.

Chapter 4. Covert Channel Detection 101

Function calc time

1 double c a l c t i m e () {
2 double time ;

3 char usec [7] ;

4 double microsec ;

5 s t r u c t t imeva l tv ;

6 t ime t curt ime ;

7 gett imeofday(&tv , NULL) ;

8 curt ime=tv . t v s e c ;

9 s p r i n t f (usec , ”%i ” , tv . tv u s e c) ;

10 microsec = a t o i (usec) ;

11 time = curt ime ∗ 1000 + microsec ∗ 0 . 0 0 1 ;

12 re turn time ;

13 }

We implemented a first simple way to keep synchronization by the function read_message,

that sets the packet received time at the center of the TIME SLOT after each received

packet, moving in that way the time window forward or backward with respect to the

expected value.

Function read message

1 void ∗ read message (void ∗ socke t) {
2 char b u f f e r [4 3] ;

3 do{
4 i n t bytesRece ived=recv (∗ (i n t ∗) socket , bu f f e r , s i z e o f (b u f f e r) , 0) ;

5 i f (bytesRece ived > 0) {
6 l a s t t i m e = c a l c t i m e () ;

7 s t a r t t i m e = l a s t t i m e − t i m e s l o t / 2 ;

8 }
9 e l s e i f (bytesRece ived < 0) {

10 per ro r (” cannot read from socket ”) ;

11 break ;

12 }
13 e l s e {
14 running = f a l s e ;

15 }
16 } whi le (running) ;

17 re turn NULL;

18 }

The three implementations of active OSCTC present different features. The first one,

called Simple OSCTC, uses a predefined pattern to keep synchronization between sender

and receiver. The second version implements a Manchester Code to add a further

synchronization layer and the last one adds an Hamming Code for error correction

Chapter 4. Covert Channel Detection 102

goals.

On the sender side we used the function send_message to send the covert message that

is passed by a text file. With respect to the implementation explained in Cabuk et al.

[128], we use the complete covert byte to carry information and we don’t need the first

Start Of Frame (SOF) bit to keep synchronization.

Our carrier is a TCP message saved in the variable message.

Function send message

1 void send message (char ∗ covert message , i n t c l i e n t) {
2 unsigned i n t coded c = 0 ;

3 unsigned char c ;

4 char ∗ message ;

5 us l e ep (t i m e s l o t ∗500) ;

6 message = ” a l l work and no play makes jack a d u l l boy\0” ;

7 i n t l ength = s t r l e n (message) ;

8 double s t a r t t i m e ;

9 i n t waitsyncsymbol = 0 ;

10 f o r (i n t i =0; i < s t r l e n (covert message) ; i++){
11 c = covert message [i] ;

12 coded c = HammingTableEncode (c) ;

13

14 // send encoded message with Manchester code

15 f o r (i n t b i tno = 0 ; b i tno < CODE BITS ; b i tno++){
16 s t a r t t i m e=c a l c t i m e () ;

17 i f ((coded c & 0x800) == 0x800) {
18 send xbytes (c l i e n t , length , message) ;

19 do{
20 ;

21 } whi le (c a l c t i m e ()<=(s t a r t t i m e+t i m e s l o t)) ;

22 s t a r t t i m e=c a l c t i m e () ;

23 }
24 e l s e {
25 do{
26 ;

27 } whi le (c a l c t i m e ()<=(s t a r t t i m e+t i m e s l o t)) ;

28 s t a r t t i m e=c a l c t i m e () ;

29 send xbytes (c l i e n t , length , message) ;

30 }
31 coded c = coded c << 1 ;

32 do{
33 ;

34 } whi le (c a l c t i m e ()<(s t a r t t i m e+t i m e s l o t)) ;

35 }
36 waitsyncsymbol=(waitsyncsymbol+1) % 3 ;

37 i f (waitsyncsymbol == 0) {
38

Chapter 4. Covert Channel Detection 103

39 // each 3 bytes we send synchron i za t i on symbol

40 f o r (i n t b i tno = 0 ; b i tno < 4 ; b i tno++){
41 s t a r t t i m e=c a l c t i m e () ;

42 do{
43 ;

44 } whi le (c a l c t i m e ()<(s t a r t t i m e+t i m e s l o t)) ;

45 send xbytes (c l i e n t , length , message) ;

46 }
47 }
48 }

This choice allows us to use the extended ASCII code and to perform an efficient er-

ror correction code in the third OSCTC implementation, as explained in the following

sections.

4.5.1 Manchester Coding

In order to keep synchronization and, in case of loss, to restore it as soon as possible

we implemented two mechanisms: synchronization pattern and Manchester coding. The

OSCTC uses a synchronization pattern composed by 4 additional covert bits, repeated

every 3 covert bytes. Such a solution allows the covert channel to track rapidly back

the correct synchronization after loss. Manchester coding is a line code used in TLC

that allows subjects involved in a communication to recover the synchronization from

the encoded data. Each data element is encoded using at least one transition, e.g. bit

0 is expressed by a low-high transition and bit 1 by a high-low transition. That means

that in our implementation each covert bit is represented by a couple 01 or 10 whereas

the other two combinations (00 and 11) are not valid in our scheme. Such a mechanism

allows the OSCTC to avoid synchronization losses due to long sequences of 0s and 1s

that could be present in the covert message, even if it doubles the bits necessary to send

the covert communication. Sender and receiver implement this code in the functions

sample and send_message, respectively (see [184]).

4.5.2 Hamming Code (12,8)

Hamming code is an error correction technique invented by R. Hamming in 1950 [187].

An Hamming Code (m,n) uses n bits to check the m bits of information and consequently

detect all double-bit errors and detect and correct correct all single-bit errors. In our

OSCTC we implemented the Hamming Code (12, 8). Such a scheme encodes 8 covert

bits in in 12 bits, adding 4 redundant bits. In this way, with a 50% of increase of the

word length, we are able to detect 2 covert bit errors and correct 1 covert bit error.

Chapter 4. Covert Channel Detection 104

Cabuk et al. [152] used an Hamming Code (7, 4) that represented a pondered choice for

their covert byte that used 1 bit as Start Of Frame, 4 information bits and 3 correction

bits. But it increases the 75% of the word length.

We pre-calculated the matrices necessary to the Hamming coding. Those matrices are

quickly accessed by the functions hamming_table_encode and

hamming_table_decode present on the sender and the receiver side, respectively.

Function hamming table encode

1 unsigned i n t hamming table encode (unsigned char data) {
2 re turn hammingCodes [data] ;

3 }

Function hamming table decode

1 unsigned char hamming table decode (unsigned i n t code) {
2 re turn hammingDecodeValues [code] ;

3 }

4.5.3 Development and Target environment

We provided two different ways of operation for our OSCTC: active and passive mode.

The former uses a predefined message in a TCP connection to convey the illicit one,

whereas the latter uses a picture that is downloaded by an unaware user that is browsing,

for instance, an intranet portal. In the passive CTC, as a start, we decided to emulate a

web server inside the OSCTC sender, that builds the HTTP message to be sent to the

user browser. The source code for the passive OSCTC is also in Appendix A.

According to the passive mode, we used an image, Lena.jpeg, that provides the overt

data used by our covert channel to convey the illicit message. In this case the system

model could be the following: Alice downloads a picture (e.g. a Common Operational

Picture or a Consistent Tactical Picture4 from a compromised web server (Bob) within

a classified domain. Alice receives the image from Bob whereas Eve, a lower clearance

user wiretaps the communication and reconstructs the covert message. It’s important

to underline that for passive mode, according to the scenarios depicted in the previous

paragraphs, it’s not necessary to have the receiver part of our implementation. Eve

could simply record through a sniffer the communication between Alice and Bob, and

re-build the covert messages decoding the information of the inter-packet delays.

In Fig. 4.5 is shown the picture used for the overt communication. In the presence

4Common Operational Pictures (COP) and Consistent Tactical Pictures (CTP) represent data sent
to war-fighters and operators necessary to accomplish their missions.

Chapter 4. Covert Channel Detection 105

of our OSCTC, the download is affected by a slowing down due to the inter-packet

delays inserted by our covert channel. If the picture is part of a web page composed

by different frames and containing images and writings, we can state that the user will

difficulty become suspicious because of the delay of our image.

Figure 4.5: Web Browser downloading the picture used by our passive OSCTC

After deploying the OSCTC implementations, we tested their performances in terms of

speed and correctness of the received message.

The OSCTC was implemented in C, using the Berkeley socket library offered by this

language.

We tested our OSCTC in different scenarios. The first scenario is represented by sender

and receiver sited on the internal network, that is a Virtual Private Network (VPN),

of the Department of Applied Information Security (AIS) of Kassel University. The

second scenario is a path between the same Department and the Department of Dis-

tributed Systems of University Duisburg-Essen. The third scenario is characterized by

the path between AIS and the laboratory of Signal Processing for Telecommunications

and Economics sited in the Engineering Department of the University Roma Tre.

4.5.3.1 Sender

The sender is a host sited in the network of University of Kassel (Germany), Department

of Applied Information Security, equipped with Debian 7.6 operating system in all the

scenarios.

Chapter 4. Covert Channel Detection 106

Table 4.4: Distance (hops) and RTT value (ms) from the sender

Receiver Hop RTT (min. - max.)

Kassel 1 0.005 - 0.009
Duisburg 11 8.8 - 11
Rome 18 39 - 70

4.5.3.2 Receivers

Receivers are three hosts sited in different networks and equipped with the following

operating systems:

• Kassel - Debian 6.0.10

• Duisburg - Debian 7.8

• Rome - Ubuntu 14.04.1

4.5.3.3 Data test

We used a 795 characters covert channel message that we sent 100 times between sender

(Kassel) and receiver (Kassel and Duisburg) and 30 times between sender (Kassel) and

receiver (Rome) for each TIME SLOT in a range between 1 and 40 milliseconds. This

choice allowed us to perform the test during all the network conditions.

For example in the case Kassel-Duisburg with a TIME SLOT range between 2 and 12

milliseconds, a single test run lasted more than 25 hours, whereas in the case Kassel-

Rome with a TIME SLOT range between 25 and 40 milliseconds, a single test run lasted

more than 87 hours.

4.5.4 Empirical results

The distances between sender and receiver with their minimum and maximum average

Round Trip Time (RTT) values are listed in the Table 4.4.

As shown in [164], the performances of a CTC vary according to the traffic network

conditions and the length of the covert bit time interval (TIME SLOT). According to

the passive mode of operation, in which the user perception of the OSCTC is related to

the image visualization that is slowed down by the covert channel mechanism, another

important factor is the buffer size used in the HTTP response.

Chapter 4. Covert Channel Detection 107

Our OSCTC sends actually 76 bits each 3 covert message bytes, according to the fol-

lowing formula:

3 · {[8(bits) + 4(hamming)] · 2(Manchester)}+ 4(synchro) = 76 (4.15)

4.5.4.1 Network conditions

The figures below show the correctness of the received covert message using our three

OSCTCs in all the different network scenarios. We show in Fig. 4.6, Fig. 4.7 and Fig. 4.8

respectively the three different OSCTC behaviors when sender and receiver are in:

1. Kassel network (Fig. 4.6)

2. Kassel - Duisburg (Fig. 4.7)

3. Kassel - Rome (Fig. 4.8)

The lines represent the following OSCTC implementations:

1. Sync, only the synchronization pattern is used

2. Manch+Sync, Manchester Code is added

3. Manch+Sync+Hamm, Hamming Code is added

We use the Levenshtein distance [188] as the metric for the correctness of the received

message. The Levenshtein distance measures the difference between two different se-

quences. It is defined as the minimum number of edits necessary to transform one string

into the other, with insertion, deletion, or substitution of a single character.

On the x-axis there are the TIME SLOTs expressed in ms whereas on the y-axis there’s

the covert message error rate in terms of percentage. Results show that the OSCTC

implementation with Hamming Code has the best performances in terms of errors both

in the path Kassel-Duisburg and the path Kassel-Rome. Different behavior is shown in

Fig. 4.6, we think because of the VPN that manipulates our TCP packets in a way that

disturbs the covert channel.

Chapter 4. Covert Channel Detection 108

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0

10

20

30

40

50

60

70

80

90

100

TIME_SLOT / ms

E
rr

o
r

R
a

te
 /

 %

Manch+Sync+Hamm Manch+ Sync Sync

Figure 4.6: Covert message error rate percentage at different TIME SLOT in Kassel
network

1 2 3 4 5 6 7 8 9

0

10

20

30

40

50

60

70

80

90

100

TIME_SLOT / ms

E
rr

o
r

R
a

te
 /

 %

Manch+Sync+Hamm Manch+Sync Sync

Figure 4.7: Covert message error rate percentage at different TIME SLOT in path
Kassel - Duisburg

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0

10

20

30

40

50

60

70

80

90

100

TIME_SLOT / ms

E
rr

o
r

R
a

te
 /

 %

Manch+Sync+Hamm Manch+ Sync Sync

Figure 4.8: Covert message error rate percentage at different TIME SLOT in path
Kassel - Rome

Chapter 4. Covert Channel Detection 109

4.5.4.2 Covert bit interval time

0

2

4

6

8

10

12

14

16

18

Kassel Intranet Kassel-Duisburg Kassel-Rome

C
h
a
ra
ct
e
rs
/s
e
co
n
d

Sync Sync+Manch Sync+Manch+Hamm

Figure 4.9: Characters-rate in different scenarios

Fig. 4.9 depicts the speed of our OSCTC implementations in all the scenarios at different

TIME SLOTs when the error rate is below the 3%. It is interesting to notice that,

concerning only the data rate, the Simple OSCTC has the best performances. In fact,

even if the implementation with Hamming Code reaches an error free message earlier

than the others, the amount of covert bits necessary to encode data is much higher.

NOTE: At the time this Thesis is being written, we started collecting real data with

our covert channel implementations in order to conduct further tests on the proposed

detection algorithm.

Chapter 5

CONCLUSIONS

The Thesis presented novel architectures specifically designed to face the multilevel se-

curity problem. The study was set out to explore new paradigms that overcame the

limitations of the solution proposed nowadays, designed typically for the Defense sector.

The research underlined the multilevel nature of many non-military communications

that are used in different contexts requiring a strong protection of sensitive data.

Why the multilevel security problem remained for a long time a topic circumscribed to

the military community? Could it bring benefits to other sectors that usually deal with

sensitive information on which different type of users, with different authorizations and

need-to-know operate? Does multilevel security offer an adequate trade-off between the

provided security and its costs in terms of investment, effort and performance?

The study was set out to answer these and other important questions, that recent

security-related events like Panama Papers, Vatileaks and Snowden’s disclosures on the

NSA global surveillance brought to prominence in the global panorama of data privacy

and security.

5.1 Summary of Contributions

Even though the MLS problem represents a topic faced since years by the military com-

munity, it is not yet properly solved due to the multiple facets it requires to be taken

into consideration.

The study has identified such aspects and analyzed the motivations that made the actual

multilevel solutions unsatisfactory in meeting the multilevel requirements.

The study also sought to understand whether the inability of finding a multilevel “sil-

ver bullet” would owe to either technological or other kind of problem. Definitely the

110

Chapter 5. Conclusions 111

combination of different factors limited the success of the Industry, Academia and De-

fense multilevel answer. The research tried to dissect each identified factor in order to

understand the underlying problems and the cross-correlated implications.

The first important element that affects the MLS is the capability of a multilevel system

to be certified according to worldwide recognized security certification schemes like the

ISO/IEC 15408. A new hybrid design methodology has been proposed in this Thesis

that bonds the systematic process of a security certification together with the lightweight

and the capability of an agile development modeling to rapid delivery business value.

The proposed methodology pushes, from the scratch, the certification process into the

system design. Such approach from one side decreases the time and the effort of a

security evaluation, from the other side it increases the certification success factor and

eases a more correct and security-oriented design.

The way the MLS problem has been faced in the past is another element that had a big

role in the partial failure of the multilevel solutions. The classic approach demonstrated

that the multilevel problem should not be handled in a monolithic way, through com-

ponents like Security Kernel and Trusted Computing Base that expanded incorporating

even more system functionalities. The Thesis showed that a new approach, the Mul-

tiple Independent Levels of Security/Safety (MILS), is more suitable for such complex

systems. In particular, the study drew attention to the synergy between the “divide et

impera” approach of MILS paradigm, based on the separation of security mechanisms

and issues into independent and manageable components, and the iterative nature of

agile development. A novel MILS Distributed Architecture proof-of-concept

has been proposed in this doctoral research, designed according to the aforementioned

hybrid methodology in the defense-in-depth concept. The idea beyond this architecture

has been the possibility to extend MILS features to contexts that require high-assurance

systems, but do not have the economical resources of defense sector. The use case ex-

ample chosen to illustrate the working principles of the MILS architecture has shown

the potentiality and the feasibility of the proposed solution that hugely increases the

security of exchanged sensitive data.

Technology is another factor that affected the effectiveness of standard multilevel solu-

tions. Even though the MILS paradigm has been proposed years ago for the avionic

sector, it was long limited to the hardware architectures designed specifically for such

environment. The technological improvement of hardware components, in particular

CPUs, made possible the implementation of MILS features that were only theorized

short time ago. The realization of a prototype of a specific architectural compo-

nent, the SoftGap, has demonstrated in this study the maturity and the effectiveness

of the MILS paradigm in real scenarios.

Chapter 5. Conclusions 112

The certification-related aspect and the multilevel nature of the problem analyzed in

the Thesis do not allow to disregard an important issue of multilevel solutions: covert

channels. The study deeply analyzed such class of vulnerabilities, and categorized the

adequate countermeasures for different types of covert channel. A novel higher order

moments based test, the Weibull-ness test, has been developed to detect a specific

class of channels called Covert Timing Channels. The performance of the detection

algorithm has been evaluated theoretically versus the conventional solutions. In order

to test the algorithm with real data, a set of three Covert Timing Channels has been

developed and released under the Apache License 2.0. It is freely available to researchers

and developers that want to study the covert channel problem and test their security

solutions against such vulnerabilities.

5.2 Lessons Learned

The study highlighted the main facets characterizing the multilevel problem, and the

main empirical findings have been summarized in the previous paragraph. Many teach-

ings have been assimilated.

According to the certification factor, it is necessary that the choice of the desired level

of assurance must be performed after a risk analysis phase rather than the pure consid-

eration of the classification level of data to be protected. A good risk analysis takes into

consideration the assets that must be protected together with the specific environment

and specific attacker types. Lessons learned: a top secret information should not be

necessarily protected by systems evaluated at EAL6 or EAL7 of the Common Criteria

scheme. When the asset is used in specific contexts, for example military enclaves with

very restricted access control, a lower evaluation assurance level could be enough.

The proof-of-concept and the prototype realized in this study showed that the current

lack of MILS solutions, particularly outside the military sector, is not a technological

problem but mainly depends on the certification scheme and its application. The Com-

mon Criteria Recognition Arrangement members still do not fully share scheme interpre-

tations and do not incorporate scheme modifications necessary to boost the evaluation

of MILS solutions.

The MILS paradigm, as demonstrated by the theoretical evaluation of the performance

of the MILS distributed architecture, showed that it is applicable in general purpose

networks at the cost of increasing the overall network latency. Nevertheless, such latency

can still be considered acceptable for the user in relation to the hugely increased level

of security provided.

Chapter 5. Conclusions 113

Another important teaching is related to the security protocols and algorithms used to

protect sensitive data in daily life applications. A plethora of solutions exists and their

effectiveness depends on a delicate balance among key size, performance, and modes of

operation. It is not possible to become a security engineer overnight. Standards and

recommendations like those provided by organizations as NIST, ANSSI, etc. are good

reference points. But experience, good practice, and deep knowledge of security proto-

cols, algorithms, and patterns should go along with a continuous study and attention to

new attacks and vulnerabilities.

5.3 Open Challenges

The study has offered an evaluative perspective on an important topic that affects much

more than military security. Since most programs concerning the multilevel security

problem belong to the Defense world, it has been very difficult to enter in such closed

subject. The discussion with some Italian Common Criteria Evaluation Centers and the

German Federal Office for Information Security (BSI - Bundesamt fr Sicherheit in der

Informationstechnik) helped in such direction, but only partially.

As a direct consequence of this restricted access to military information, the study

encountered a number of limitations, which need to be considered. The research is

based on assumptions that arose in the military context. Such assumptions, provided

by the contact with the aforementioned entities, could not be supported by evidences in

a real military scenario.

Another limitation due mainly to the intrinsic complexity of the proposed MILS Dis-

tributed Architecture and to time constraints refers to the evaluation of the solution that

has been performed in a theoretical way and could be supported also by difficult, but

realizable, simulations. In order to fill such a gap and demonstrate the effectiveness of

the MILS and the defense-in-depth paradigms, the study presented a working prototype

of the SoftGap component that includes all the main ideas and technologies foreseen for

the distributed architecture.

The study lays the foundations for the extendability and improvements. It would be

interesting to analyze the possibility to extend the MILS architecture to mobile devices

like smartphones. Mobile technology become always more invasive in the daily life oper-

ations and its use for applications that process and exchange sensitive data is increased

over the time. The Separation Kernel Hypervisor chosen for the SoftGap prototype has

already the ability to run fully virtualized Android requiring no changes to the guest

Chapter 5. Conclusions 114

OS. The problem is the underlying hardware that has to meet very strict features in

order to run the SKH and it is yet not fulfilled by any commercial device.

The presented MILS Distributed Architecture foresees the presence of two subnetworks,

one working at system-high security mode of operations and one enabling effectively a

multilevel communication. The extension of this capability also to the former subnetwork

would be desirable to simplify the management of the domain security policy. For such

goal the application servers, like for example the file servers, should enforce robust

partitioning and resources separation through the use of an SKH.

Another important element for future research could be the use of the multi-homing

features provided by a relatively new transport protocol called Stream Control Trans-

mission Protocol (SCTP). Multi-homing SCTP is the ability for a single SCTP endpoint

to support multiple IP addresses. It could improve the survivability of sessions in the

presence of network failures and provide redundant paths to increase network resilience

and reliability.

5.4 List of Publications

5.4.1 International Journals

• A. Tedeschi, A. Liguori, and F. Benedetto. Information Security and Threats in

Mobile Appliances. Recent Patents on Computer Science, 7(1):3–11, June 2014

• A. Liguori. From Multilevel Security to MILS: the Evolution illustrated through

a Novel Cross-Domain Architecture. International Journal of Mobile Network

Design and Innovation, FORTHCOMING

5.4.2 International Conferences

• A. Liguori. A novel Multiple Independent Levels of Security/Safety Cross Domain

Solution. In IEEE, editor, Military Communications Conference (MILCOM), 2015

IEEE Conference on, pages 1578–1583, October 2015. doi: 10.1109/MILCOM.

2015.7357670

• F. Benedetto, G. Giunta, A. Liguori, and A. Wacker. A novel method for secur-

ing critical infrastructures by detecting hidden flows of data. In IEEE, editor,

Communications and Network Security (CNS), 2015 IEEE Conference on, pages

648–654, September 2015. doi: 10.1109/CNS.2015.7346881

Chapter 5. Conclusions 115

• A. Liguori, F. Benedetto, G. Giunta, N. Kopal, and A. Wacker. Analysis and

monitoring of hidden TCP traffic based on an open-source covert timing chan-

nel. In IEEE, editor, Communications and Network Security (CNS), 2015 IEEE

Conference on, pages 667–674, September 2015. doi: 10.1109/CNS.2015.7346885

• A. Liguori, F. Benedetto, G. Giunta, N. Kopal, and A. Wacker. SoftGap: A Multi

Independent Levels of Security Cross-Domain Solution. In IEEE, editor, Future

Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on,

pages 754–759, August 2015. doi: 10.1109/FiCloud.2015.84

5.4.3 Books

• A. Simonetta, M. C. Paoletti, and A. Liguori. Testing di oggetti matematici in java.

Introduzione a JUnit. UNIVERSITALIA, 1 edition, 9 2013. ISBN 978-8865075531

Appendix A

Covert Timing Channel Source

Code

In this Appendix the C source code of our OSCTCs for active and passive mode is

presented.

A.1 Simple OSCTC

The Simple OSCTC is an active Covert Timing Channel that sends a covert message

modulating the inter-packet delay of a TCP communication. It uses a predefined pattern

to keep synchronization between sender and receiver. The covert message is ASCII-7

bit encoded.

A.1.1 Simple OSCTC Client

1 #inc lude <sys / types . h>

2 #inc lude <sys / socket . h>

3 #inc lude <n e t i n e t / in . h>

4 #inc lude <n e t i n e t / tcp . h>

5 #inc lude <arpa / i n e t . h>

6 #inc lude <netdb . h>

7 #inc lude <s t d i o . h>

8 #inc lude <uni s td . h> /∗ c l o s e ∗/
9 #inc lude <s t r i n g . h>

10 #inc lude <s t d l i b . h>

11 #inc lude <time . h>

12 #inc lude <math . h>

116

Appendix A. Covert Timing Channel Source Code 117

13

14 #d e f i n e SERVER PORT 20001

15 #d e f i n e MAX MSG 256

16 #d e f i n e TIME SLOT 20

17

18 #i f n d e f NULL

19 #d e f i n e NULL ((void ∗) 0)

20 #e n d i f

21

22 typede f i n t bool ;

23 #d e f i n e t rue 1

24 #d e f i n e f a l s e 0

25

26 FILE ∗ input ;

27 i n t t i m e s l o t = TIME SLOT;

28

29 // send over t message

30 void send xbytes (i n t socket , unsigned i n t x , void ∗ b u f f e r)

31 {
32 i n t nSent = 0 , nIndex = 0 ;

33 i n t nLeft = x ;

34 whi le (nLeft > 0) {
35 nSent = send (socket , bu f f e r , nLeft , 0) ;

36 i f (nSent < 0) {
37 per ro r (” cannot send message”) ;

38 c l o s e (socke t) ;

39 e x i t (−1) ;

40 }
41 nLeft −= nSent ;

42 nIndex += nSent ;

43 }
44 }
45

46 double c a l c t i m e () {
47 double time ;

48 char usec [7] ;

49 double microsec ;

50 s t r u c t t imeva l tv ;

51 t ime t curt ime ;

52 gett imeofday(&tv , NULL) ;

53 curt ime=tv . t v s e c ;

54 s p r i n t f (usec , ”%i ” , tv . tv u s e c) ;

55 microsec = a t o i (usec) ;

56 time = curt ime ∗ 1000 + microsec ∗0 . 0 0 1 ;

57 re turn time ;

58

59 }
60

Appendix A. Covert Timing Channel Source Code 118

61 // send cover t message in ON−OFF mode

62 void send message (char ∗ covert message , i n t c l i e n t) {
63 char c ;

64 char ∗ message ;

65 us l e ep (t i m e s l o t ∗500) ;

66 message = ” a l l work and no play makes jack a d u l l boy\0” ;

67 i n t l ength = s t r l e n (message) ;

68 double s t a r t t i m e ;

69 i n t waitsyncsymbol = 0 ;

70 f o r (i n t i = 0 ; i < s t r l e n (covert message) ; i++)

71 {
72 c = covert message [i] ;

73 c = c << 1 ;

74 f o r (i n t b i tno = 0 ; b i tno < 7 ; b i tno++)

75 {
76 s t a r t t i m e=c a l c t i m e () ;

77 i f ((c & 0x80) == 0x80) {
78 // p r i n t f (”10 , %f \n” , c a l c t i m e ()) ;

79 // p r i n t f (”1\n”) ;

80 send xbytes (c l i e n t , length , message) ;

81 }
82 c = c << 1 ;

83 do{
84 ;

85 }whi le (c a l c t i m e ()<(s t a r t t i m e+t i m e s l o t)) ;

86 }// end f o r (i n t b i tno = 0 ; b i tno < 7 ; b i tno++)

87 s t a r t t i m e=c a l c t i m e () ;

88 do{
89 ;

90 }whi le (c a l c t i m e ()<(s t a r t t i m e+t i m e s l o t)) ;

91 waitsyncsymbol=(waitsyncsymbol+1) % 3 ;

92 i f (waitsyncsymbol == 0) {
93 // a f t e r sending 3 complete bytes we send our sync symbol

94 f o r (i n t b i tno = 0 ; b i tno < 8 ; b i tno++)

95 {
96 s t a r t t i m e=c a l c t i m e () ;

97 send xbytes (c l i e n t , length , message) ;

98 do{
99 ;

100 }whi le (c a l c t i m e ()<(s t a r t t i m e+t i m e s l o t)) ;

101

102 }// end f o r (i n t b i tno = 0 ; b i tno < 8 ; b i tno++)

103 }
104 }// end f o r (i n t i =0; i < s t r l e n (covert message) ; i++)

105 }
106

107 /∗ main () ∗/
108 i n t main (i n t argc , char ∗argv []) {

Appendix A. Covert Timing Channel Source Code 119

109

110 i n t c l i e n t ; /∗ c l i e n t socke t ∗/
111 i n t rc ;

112 s t r u c t sockaddr in l o ca l addr , s e rv addr ;

113 s t r u c t hostent ∗host ;

114

115 i f (argc < 3 | | argc > 4) {
116 p r i n t f (” usage : %s <se rver> | [<\”> i n p u t f i l e n a m e . txt <\”>] | [

time s l o t]\n” , argv [0]) ;

117 e x i t (−1) ;

118 }
119 i f (argv [3]) {
120 t i m e s l o t = a t o i (argv [3]) ;

121 p r i n t f (” t i m e s l o t : %i \n\n” , t i m e s l o t) ;

122 }
123 /∗ get host address from s p e c i f i e d s e r v e r name ∗/
124 host = gethostbyname (argv [1]) ;

125 i f (host == NULL)

126 {
127 p r i n t f (”%s : unknown host ’%s ’\n” , argv [0] , argv [1]) ;

128 e x i t (−1) ;

129 }
130 /∗ now f i l l in sockaddr in f o r remote address ∗/
131 s e rv addr . s i n f a m i l y = host−>h addrtype ;

132 /∗ get f i r s t address in host , copy to se rv addr ∗/
133 memcpy((char ∗) &serv addr . s i n addr . s addr , host−>h a d d r l i s t [0] , host−>

h l ength) ;

134 s e rv addr . s i n p o r t = htons (SERVER PORT) ;

135 memset (se rv addr . s i n z e r o , 0 , 8) ;

136 /∗ c r e a t e l o c a l stream socket ∗/
137 c l i e n t = socket (AF INET , SOCK STREAM, 0) ;

138 i f (c l i e n t < 0) {
139 per ro r (” cannot open socket ”) ;

140 e x i t (−1) ;

141 }
142 /∗ bind l o c a l socke t to any port number ∗/
143 l o c a l a d d r . s i n f a m i l y = AF INET ;

144 l o c a l a d d r . s i n addr . s addr = htonl (INADDR ANY) ;

145 l o c a l a d d r . s i n p o r t = htons (0) ;

146 memset (l o c a l a d d r . s i n z e r o , 0 , 8) ;

147 rc = bind (c l i e n t , (s t r u c t sockaddr ∗) &loca l addr , s i z e o f (l o c a l a d d r)) ;

148 i n t on = 1 ;

149 s e t sockopt (rc , IPPROTO TCP, TCP NODELAY, &on , s i z e o f (on)) ;

150 i f (r c < 0)

151 {
152 p r i n t f (”%s : cannot bind port TCP %u\n” , argv [0] ,SERVER PORT) ;

153 per ro r (” e r r o r ”) ;

154 e x i t (−1) ;

Appendix A. Covert Timing Channel Source Code 120

155 }
156 /∗ connect to s e r v e r ∗/
157 rc = connect (c l i e n t , (s t r u c t sockaddr ∗) &serv addr , s i z e o f (s e rv addr)) ;

158 i f (r c < 0)

159 {
160 per ro r (” cannot connect to s e r v e r ”) ;

161 e x i t (−1) ;

162 }
163 long f s i z e ;

164 char ∗ covert message , ∗ code ;

165 s i z e t code s , r e s u l t ;

166 input = fopen (argv [2] , ” r ”) ;

167 i f (input == NULL)

168 {
169 per ro r (” Error whi l e opening the f i l e .\n”) ;

170 e x i t (EXIT FAILURE) ;

171 }
172 f s e e k (input , 0 , SEEK END) ;

173 f s i z e = f t e l l (input) ;

174 f s e e k (input , 0 , SEEK SET) ;

175 code s = s i z e o f (char) ∗ (f s i z e +1) ;

176 covert message = mal loc (code s) ;

177 f g e t s (covert message , code s , input) ;

178 p r i n t f (” covert message = %s \n” , covert message) ;

179 f c l o s e (input) ;

180 send message (covert message , c l i e n t) ;

181 c l o s e (c l i e n t) ;

182 re turn 0 ;

183 }

A.1.2 Simple OSCTC Server

1 #inc lude <sys / types . h>

2 #inc lude <sys / socket . h>

3 #inc lude <sys / wait . h>

4 #inc lude <n e t i n e t / in . h>

5 #inc lude <n e t i n e t / tcp . h>

6 #inc lude <arpa / i n e t . h>

7 #inc lude <ctype . h>

8 #inc lude <netdb . h>

9 #inc lude <s t d i o . h>

10 #inc lude <uni s td . h>

11 #inc lude <time . h>

12 #inc lude <pthread . h>

13 #inc lude <s t r i n g . h>

14 #inc lude <s i g n a l . h>

Appendix A. Covert Timing Channel Source Code 121

15 #inc lude <s t d l i b . h>

16 #inc lude <s t r i n g . h>

17

18 #d e f i n e SUCCESS 0

19 #d e f i n e ERROR 1

20

21 typede f i n t bool ;

22 #d e f i n e t rue 1

23 #d e f i n e f a l s e 0

24

25 #i f n d e f NULL

26 #d e f i n e NULL ((void ∗) 0)

27 #e n d i f

28

29 #d e f i n e SERVER PORT 20001

30 #d e f i n e MAX MSG 256

31 #d e f i n e TIME SLOT 20

32

33 unsigned i n t s e q t i m e s l o t ;

34 bool running = true ;

35 unsigned char prev ious = 0 ;

36 unsigned char cur rent = 0 ;

37 unsigned char count = 0 ;

38 i n t s l o t = TIME SLOT; //msec

39 unsigned i n t current symbol = 0 ;

40 unsigned char c o u n t b i t s =0;

41 FILE ∗ o u t p u t f i l e ;

42 double s t a r t t i m e =0;

43 i n t r e c e i v e d o n e s =0;

44 double l a s t t i m e ;

45

46 i n t t i m e s l o t = TIME SLOT;

47

48 void e r r o r (const char ∗msg)

49 {
50 per ro r (msg) ;

51 e x i t (1) ;

52 }
53

54 double c a l c t i m e () {
55 double time ;

56 char usec [7] ;

57 double microsec ;

58 s t r u c t t imeva l tv ;

59 t ime t curt ime ;

60 gett imeofday(&tv , NULL) ;

61 curt ime=tv . t v s e c ;

62 s p r i n t f (usec , ”%i ” , tv . tv u s e c) ;

Appendix A. Covert Timing Channel Source Code 122

63 microsec = a t o i (usec) ;

64 time = curt ime ∗ 1000 + microsec ∗0 . 0 0 1 ;

65 re turn time ;

66 }
67

68 // pthread 1 send one t i c k every ON−OFF time s l o t

69 void ∗ sample (void ∗ r a t e) {
70 unsigned char output = 0 ;

71 s e q t i m e s l o t = 0 ;

72 do{
73 s t a r t t i m e = c a l c t i m e () ;

74 do{
75 i f (l a s t t i m e > s t a r t t i m e & l a s t t i m e <= s t a r t t i m e + t i m e s l o t) {
76 cur rent = 1 ;

77 }
78 }
79 whi le (c a l c t i m e ()<=(s t a r t t i m e +∗(i n t ∗) r a t e)) ;

80 // increment our time

81 s e q t i m e s l o t ++;

82

83 i f (cur rent == 1) {
84 r e c e i v e d o n e s++;

85 } e l s e {
86 r e c e i v e d o n e s = 0 ;

87 }
88 i f (s e q t i m e s l o t < 8) {
89 current symbol = current symbol << 1 ;

90 current symbol = current symbol | cur rent ;

91 }
92 cur rent = 0 ;

93 //we r e c e i v e d 8 ones , so we r e c e i v e d our sync symbol

94 // => r e s e t everyth ing to s t a r t

95 i f (r e c e i v e d o n e s == 8) {
96 r e c e i v e d o n e s =0;

97 s e q t i m e s l o t = 0 ;

98 // p r i n t f (” Received 8 ones \n”) ;

99 current symbol = 0 ;

100 }
101 // check i f we r e c e i v e d 8 b i t s

102 i f (s e q t i m e s l o t ==8){
103 output = (char) current symbol ;

104 p r i n t f (”We r e c e i v e d a complete symbol : %c\n” , output) ;

105 i f (output <32 | output >127){
106 f p r i n t f (o u t p u t f i l e , ” ”) ;

107 }
108 e l s e {
109 f p r i n t f (o u t p u t f i l e , ”%c” , output) ;

110 }

Appendix A. Covert Timing Channel Source Code 123

111 s e q t i m e s l o t = 0 ;

112 current symbol = 0 ;

113 }
114 } whi le (running) ;

115 re turn NULL;

116 }
117

118 // pthread 2 reads cover t message in ON−OFF mode

119 void ∗ read message (void ∗ socke t) {
120 char b u f f e r [4 3] ;

121 do{
122 i n t bytesRece ived = recv (∗ (i n t ∗) socket , bu f f e r , s i z e o f (b u f f e r) , 0) ;

123 i f (bytesRece ived > 0) {
124 l a s t t i m e = c a l c t i m e () ;

125 s t a r t t i m e = l a s t t i m e − t i m e s l o t / 2 ;

126 }
127 e l s e i f (bytesRece ived < 0) {
128 per ro r (” cannot read from socket ”) ;

129 break ;

130 }
131 e l s e

132 {
133 running = f a l s e ;

134 }
135 } whi le (running) ;

136 re turn NULL;

137 }
138

139 i n t main (i n t argc , char ∗argv [])

140 {
141 i n t sockfd , newsockfd ;

142 s o c k l e n t c l i l e n ;

143 char b u f f e r [MAX MSG] ;

144 s t r u c t sockaddr in serv addr , c l i a d d r ;

145 i n t n ;

146 pthread t p1 , p2 ;

147 i f (argc > 2) {
148 p r i n t f (” usage : %s [time s l o t]\n” , argv [0]) ;

149 e x i t (−1) ;

150 }
151 i f (argv [1]) {
152 t i m e s l o t = a t o i (argv [1]) ;

153 s l o t = t i m e s l o t ;

154 }
155 sock fd = socke t (AF INET , SOCK STREAM, 0) ;

156 i f (sock fd < 0) {
157 per ro r (” cannot open socket ”) ;

158 re turn ERROR;

Appendix A. Covert Timing Channel Source Code 124

159 }
160 bzero(&serv addr , s i z e o f (s e rv addr)) ;

161 s e rv addr . s i n f a m i l y = AF INET ;

162 s e rv addr . s i n addr . s addr = INADDR ANY;

163 s e rv addr . s i n p o r t = htons (SERVER PORT) ;

164 i f (bind (sockfd , (s t r u c t sockaddr ∗) &serv addr , s i z e o f (s e rv addr)) <

0) {
165 per ro r (” cannot bind port ”) ;

166 re turn ERROR;

167 }
168 l i s t e n (sockfd , 5) ;

169 whi le (1) { // i n f i n i t e loop

170 i n t pid ;

171 c l i l e n = s i z e o f (c l i a d d r) ;

172 newsockfd = accept (sockfd , (s t r u c t sockaddr ∗) &c l i a d d r , &c l i l e n) ;

173 p r i n t f (”%s : accepted new connect ion with socket id : %i \n” , argv [0] ,

newsockfd) ;

174 p r i n t f (”%s : wa i t ing f o r data on port TCP %u\n” , argv [0] , SERVER PORT) ;

175 // c r e a t e c h i l d p ro c e s s t o manage the c l i e n t

176 pid = fo rk () ;

177 i f (pid == 0) {
178 o u t p u t f i l e = fopen (”output ham . txt ” , ”w”) ;

179 // pthread p1

180 i f (p th r ead c r ea t e (&p1 , NULL, sample , &s l o t)) {
181 f p r i n t f (s tde r r , ” Error c r e a t i n g thread p1\n”) ;

182 re turn 1 ;

183 }
184

185 // pthread p2

186 i f (p th r ead c r ea t e (&p2 , NULL, read message , &newsockfd)) {
187 f p r i n t f (s tde r r , ” Error c r e a t i n g thread p2\n”) ;

188 re turn 1 ;

189 }
190 i f (p t h r e a d j o i n (p1 , NULL) && p t h r e a d j o i n (p2 , NULL)) {
191 f p r i n t f (s tde r r , ” Error j o i n i n g thread p1 or p2\n”) ;

192 re turn 2 ;

193 }
194 p r i n t f (”%s : wa i t ing f o r data on port TCP %u\n” , argv [0] , SERVER PORT)

;

195 f p r i n t f (o u t p u t f i l e , ”\n”) ;

196 f c l o s e (o u t p u t f i l e) ;

197 }
198 }
199 c l o s e (newsockfd) ;

200 c l o s e (sock fd) ;

201 re turn 0 ;

202 }

Appendix A. Covert Timing Channel Source Code 125

A.2 OSCTC with Manchester Coding

In the enhanced version of our OSCTC we added a further synchronization layer through

the use of the Manchester Coding. Since each data element is encoded using at least

one transition, i.e. bit 0 is expressed by a low-high transition and bit 1 by a high-low

transition we decide to use the couple 01 to denote a covert bit 0 and the couple 10 for

the covert bit 1. The other two combinations (00 and 11) are not valid in our scheme.

A.2.1 OSCTC with Manchester Client

1 #inc lude <sys / types . h>

2 #inc lude <sys / socket . h>

3 #inc lude <n e t i n e t / in . h>

4 #inc lude <n e t i n e t / tcp . h>

5 #inc lude <arpa / i n e t . h>

6 #inc lude <netdb . h>

7 #inc lude <s t d i o . h>

8 #inc lude <uni s td . h> /∗ c l o s e ∗/
9 #inc lude <s t r i n g . h>

10 #inc lude <s t d l i b . h>

11 #inc lude <time . h>

12 #inc lude <math . h>

13

14 #d e f i n e SERVER PORT 20001

15 #d e f i n e MAX MSG 256

16 #d e f i n e TIME SLOT 20

17 #i f n d e f NULL

18 #d e f i n e NULL ((void ∗) 0)

19 #e n d i f

20 typede f i n t bool ;

21 #d e f i n e t rue 1

22 #d e f i n e f a l s e 0

23

24 FILE ∗ input ;

25 i n t t i m e s l o t = TIME SLOT;

26

27 // i n v i a messaggio

28 void send xbytes (i n t socket , unsigned i n t x , void ∗ b u f f e r)

29 {
30 i n t nSent = 0 , nIndex = 0 ;

31 i n t nLeft = x ;

32 whi le (nLeft > 0) {
33 nSent = send (socket , bu f f e r , nLeft , 0) ;

34 i f (nSent < 0) {
35 per ro r (” cannot send message”) ;

Appendix A. Covert Timing Channel Source Code 126

36 c l o s e (socke t) ;

37 e x i t (−1) ;

38 }
39 nLeft −= nSent ;

40 nIndex += nSent ;

41 }
42 }
43

44 double c a l c t i m e () {
45 double time ;

46 char usec [7] ;

47 double microsec ;

48 s t r u c t t imeva l tv ;

49 t ime t curt ime ;

50 gett imeofday(&tv , NULL) ;

51 curt ime=tv . t v s e c ;

52 s p r i n t f (usec , ”%i ” , tv . tv u s e c) ;

53 microsec = a t o i (usec) ;

54 time = curt ime ∗ 1000 + microsec ∗0 . 0 0 1 ;

55 re turn time ;

56 }
57

58 // send cover t message ON−OFF mode

59 void send message (char ∗ covert message , i n t c l i e n t) {
60 char c ;

61 char ∗ message ;

62 us l e ep (t i m e s l o t ∗500) ;

63 message = ” a l l work and no play makes jack a d u l l boy\0” ;

64 i n t l ength = s t r l e n (message) ;

65 double s t a r t t i m e ;

66 i n t waitsyncsymbol = 0 ;

67 f o r (i n t i =0; i < s t r l e n (covert message) ; i++)

68 {
69 c = covert message [i] ;

70 f o r (i n t b i tno = 0 ; b i tno < 8 ; b i tno++)

71 {
72 s t a r t t i m e=c a l c t i m e () ;

73 i f ((c & 0x80) == 0x80) {
74 send xbytes (c l i e n t , length , message) ;

75 do{
76 ;

77 }whi le (c a l c t i m e ()<=(s t a r t t i m e+t i m e s l o t)) ;

78 s t a r t t i m e=c a l c t i m e () ;

79 }
80 e l s e {
81 do{
82 ;

83 }whi le (c a l c t i m e ()<=(s t a r t t i m e+t i m e s l o t)) ;

Appendix A. Covert Timing Channel Source Code 127

84 s t a r t t i m e=c a l c t i m e () ;

85 send xbytes (c l i e n t , length , message) ;

86 }
87 c = c << 1 ;

88 do{
89 ;

90 }whi le (c a l c t i m e ()<(s t a r t t i m e+t i m e s l o t)) ;

91 }// end f o r (i n t b i tno = 0 ; b i tno < 8 ; b i tno++)

92 waitsyncsymbol=(waitsyncsymbol+1) % 3 ;

93 i f (waitsyncsymbol == 0) {
94 // a f t e r sending 3 complete bytes we send our sync symbol

95 f o r (i n t b i tno = 0 ; b i tno < 4 ; b i tno++)

96 {
97 s t a r t t i m e=c a l c t i m e () ;

98 do{
99 ;

100 }whi le (c a l c t i m e ()<(s t a r t t i m e+t i m e s l o t)) ;

101 send xbytes (c l i e n t , length , message) ;

102 }// end f o r (i n t b i tno = 0 ; b i tno < 6 ; b i tno++)

103 }
104 }// end f o r (i n t i =0; i < s t r l e n (covert message) ; i++)

105 }
106

107 /∗ main () ∗/
108 i n t main (i n t argc , char ∗argv []) {
109 i n t c l i e n t ; /∗ c l i e n t socke t ∗/
110 i n t rc ;

111 s t r u c t sockaddr in l o ca l addr , s e rv addr ;

112 s t r u c t hostent ∗host ;

113 i f (argc < 3 | | argc > 4) {
114 p r i n t f (” usage : %s <se rver> | [<\”> i n p u t f i l e n a m e . txt <\”>] | [

time s l o t]\n” , argv [0]) ;

115 e x i t (−1) ;

116 }
117 i f (argv [3]) {
118 t i m e s l o t = a t o i (argv [3]) ;

119 p r i n t f (” t i m e s l o t : %i \n\n” , t i m e s l o t) ;

120 }
121 /∗ get host address from s p e c i f i e d s e r v e r name ∗/
122 host = gethostbyname (argv [1]) ;

123 i f (host == NULL)

124 {
125 p r i n t f (”%s : unknown host ’%s ’\n” , argv [0] , argv [1]) ;

126 e x i t (−1) ;

127 }
128 /∗ now f i l l in sockaddr in f o r remote address ∗/
129 s e rv addr . s i n f a m i l y = host−>h addrtype ;

130 /∗ get f i r s t address in host , copy to se rv addr ∗/

Appendix A. Covert Timing Channel Source Code 128

131 memcpy((char ∗) &serv addr . s i n addr . s addr , host−>h a d d r l i s t [0] , host−>
h l ength) ;

132 s e rv addr . s i n p o r t = htons (SERVER PORT) ;

133 memset (se rv addr . s i n z e r o , 0 , 8) ;

134 /∗ c r e a t e l o c a l stream socket ∗/
135 c l i e n t = socket (AF INET , SOCK STREAM, 0) ;

136 i f (c l i e n t < 0) {
137 per ro r (” cannot open socket ”) ;

138 e x i t (−1) ;

139 }
140 /∗ bind l o c a l socke t to any port number ∗/
141 l o c a l a d d r . s i n f a m i l y = AF INET ;

142 l o c a l a d d r . s i n addr . s addr = htonl (INADDR ANY) ;

143 l o c a l a d d r . s i n p o r t = htons (0) ;

144 memset (l o c a l a d d r . s i n z e r o , 0 , 8) ;

145 rc = bind (c l i e n t , (s t r u c t sockaddr ∗) &loca l addr , s i z e o f (l o c a l a d d r)) ;

146 i n t on = 1 ;

147 s e t sockopt (rc , IPPROTO TCP, TCP NODELAY, &on , s i z e o f (on)) ;

148 i f (r c < 0)

149 {
150 p r i n t f (”%s : cannot bind port TCP %u\n” , argv [0] ,SERVER PORT) ;

151 per ro r (” e r r o r ”) ;

152 e x i t (−1) ;

153 }
154 /∗ connect to s e r v e r ∗/
155 rc = connect (c l i e n t , (s t r u c t sockaddr ∗) &serv addr , s i z e o f (s e rv addr)) ;

156 i f (r c < 0)

157 {
158 per ro r (” cannot connect to s e r v e r ”) ;

159 e x i t (−1) ;

160 }
161 long f s i z e ;

162 char ∗ covert message , ∗ code ;

163 s i z e t code s , r e s u l t ;

164 input = fopen (argv [2] , ” r ”) ;

165 i f (input == NULL)

166 {
167 per ro r (” Error whi l e opening the f i l e .\n”) ;

168 e x i t (EXIT FAILURE) ;

169 }
170 f s e e k (input , 0 , SEEK END) ;

171 f s i z e = f t e l l (input) ;

172 f s e e k (input , 0 , SEEK SET) ;

173 code s = s i z e o f (char) ∗ (f s i z e +1) ;

174 covert message = mal loc (code s) ;

175 f g e t s (covert message , code s , input) ;

176 p r i n t f (” covert message = %s \n” , covert message) ;

177 f c l o s e (input) ;

Appendix A. Covert Timing Channel Source Code 129

178 c l o s e (c l i e n t) ;

179 re turn 0 ;

180 }

A.2.2 OSCTC with Manchester Server

1 #inc lude <sys / types . h>

2 #inc lude <sys / socket . h>

3 #inc lude <sys / wait . h>

4 #inc lude <n e t i n e t / in . h>

5 #inc lude <n e t i n e t / tcp . h>

6 #inc lude <arpa / i n e t . h>

7 #inc lude <ctype . h>

8 #inc lude <netdb . h>

9 #inc lude <s t d i o . h>

10 #inc lude <uni s td . h>

11 #inc lude <time . h>

12 #inc lude <pthread . h>

13 #inc lude <s t r i n g . h>

14 #inc lude <s i g n a l . h>

15 #inc lude <s t d l i b . h>

16 #inc lude <s t r i n g . h>

17

18 #d e f i n e SUCCESS 0

19 #d e f i n e ERROR 1

20

21 typede f i n t bool ;

22 #d e f i n e t rue 1

23 #d e f i n e f a l s e 0

24

25 #i f n d e f NULL

26 #d e f i n e NULL ((void ∗) 0)

27 #e n d i f

28

29 #i f n d e f MANCHESTER H

30 #d e f i n e MANCHESTER H

31 #e n d i f

32

33 #d e f i n e SERVER PORT 20001

34 #d e f i n e MAX MSG 256

35 #d e f i n e TIME SLOT 20

36

37 unsigned i n t s e q t i m e s l o t ;

38 bool running = true ;

39 unsigned char prev ious = 0 ;

40 unsigned char cur rent = 0 ;

Appendix A. Covert Timing Channel Source Code 130

41 unsigned char count = 0 ;

42 i n t s l o t = TIME SLOT; //msec

43 unsigned i n t current symbol = 0 ;

44 unsigned char c o u n t b i t s =0;

45 FILE ∗ o u t p u t f i l e ;

46 double s t a r t t i m e =0;

47 i n t r e c e i v e d o n e s =0;

48 double l a s t t i m e ;

49

50 i n t t i m e s l o t = TIME SLOT;

51

52 void e r r o r (const char ∗msg)

53 {
54 per ro r (msg) ;

55 e x i t (1) ;

56 }
57

58 double c a l c t i m e () {
59 double time ;

60 char usec [7] ;

61 double microsec ;

62 s t r u c t t imeva l tv ;

63 t ime t curt ime ;

64 gett imeofday(&tv , NULL) ;

65 curt ime=tv . t v s e c ;

66 s p r i n t f (usec , ”%i ” , tv . tv u s e c) ;

67 microsec = a t o i (usec) ;

68 time = curt ime ∗ 1000 + microsec ∗0 . 0 0 1 ;

69 re turn time ;

70 }
71

72 // send message

73 void send xbytes (i n t socket , unsigned i n t x , void ∗ b u f f e r)

74 {
75 i n t nSent = 0 , nIndex = 0 ;

76 i n t nLeft = x ;

77 whi le (nLeft > 0) {
78 nSent = send (socket , bu f f e r , nLeft , 0) ;

79 i f (nSent < 0) {
80 per ro r (” cannot send message”) ;

81 c l o s e (socke t) ;

82 e x i t (−1) ;

83 }
84 nLeft −= nSent ;

85 nIndex += nSent ;

86 }
87 }
88

Appendix A. Covert Timing Channel Source Code 131

89 // pthread 1 send one t i c k every ON−OFF time s l o t

90 void ∗ sample (void ∗ r a t e) {
91 unsigned char output = 0 ;

92 s e q t i m e s l o t = 0 ;

93 do{
94 s t a r t t i m e = c a l c t i m e () ;

95 do{
96 i f (l a s t t i m e > s t a r t t i m e & l a s t t i m e <= s t a r t t i m e + t i m e s l o t) {
97 cur rent = 1 ;

98 }
99 }

100 whi le (c a l c t i m e ()<=(s t a r t t i m e +∗(i n t ∗) r a t e)) ;

101 // check manchester code 10=1 01=0 11=e 00=e

102 i f (p rev ious == 1 & current == 0 & count == 1) {
103 current symbol = current symbol << 1 ;

104 current symbol = current symbol | 1 ;

105 } e l s e i f (p rev ious == 0 & current == 1 & count == 1) {
106 current symbol = current symbol << 1 ;

107 } e l s e i f (p rev ious == 1 & current == 1 & count == 1) {
108 current symbol = current symbol << 2 ;

109 s e q t i m e s l o t ++;

110 count = (count + 1) % 2 ;

111 } e l s e i f (p rev ious == 0 & current == 0 & count == 1) {
112 current symbol = current symbol >> 1 ;

113 count = (count − 1) % 2 ;

114 }
115 // increment our time

116 s e q t i m e s l o t ++;

117 count = (count + 1) % 2 ;

118 //go on in time with manchester d e t e c t i o n

119 i f (cur rent == 1) {
120 prev ious = 1 ;

121 r e c e i v e d o n e s++;

122 } e l s e {
123 prev ious = 0 ;

124 r e c e i v e d o n e s = 0 ;

125 }
126 cur rent = 0 ;

127 //we r e c e i v e d 4 ones , so we r e c e i v e d our sync symbol

128 // => r e s e t everyth ing to s t a r t

129 i f (r e c e i v e d o n e s == 4) {
130 r e c e i v e d o n e s =0;

131 prev ious = 0 ;

132 s e q t i m e s l o t = 0 ;

133 current symbol = 0 ;

134 }
135 // check i f we r e c e i v e d 16 b i t s (8 b i t data ∗ 2)

136 i f (s e q t i m e s l o t ==16){

Appendix A. Covert Timing Channel Source Code 132

137 output = (char) current symbol ;

138 p r i n t f (”We r e c e i v e d a complete symbol : %c\n” , output) ;

139 i f (output <32 | output >127){
140 f p r i n t f (o u t p u t f i l e , ” ”) ;

141 }
142 e l s e {
143 f p r i n t f (o u t p u t f i l e , ”%c” , output) ;

144 }
145 s e q t i m e s l o t = 0 ;

146 current symbol = 0 ;

147 }
148 } whi le (running) ;

149 re turn NULL;

150 }
151

152 // pthread 2 reads cover t message in ON−OFF mode

153 void ∗ read message (void ∗ socke t) {
154 char b u f f e r [4 3] ;

155 do{
156 i n t bytesRece ived = recv (∗ (i n t ∗) socket , bu f f e r , s i z e o f (b u f f e r) , 0) ;

157 i f (bytesRece ived > 0) {
158 l a s t t i m e = c a l c t i m e () ;

159 s t a r t t i m e = l a s t t i m e − t i m e s l o t / 2 ;

160 }
161 e l s e i f (bytesRece ived < 0) {
162 per ro r (” cannot read from socket ”) ;

163 break ;

164 }
165 e l s e

166 {
167 running = f a l s e ;

168 }
169 } whi le (running) ;

170 re turn NULL;

171 }
172

173 i n t main (i n t argc , char ∗argv [])

174 {
175 i n t sockfd , newsockfd ;

176 s o c k l e n t c l i l e n ;

177 char b u f f e r [MAX MSG] ;

178 s t r u c t sockaddr in serv addr , c l i a d d r ;

179 i n t n ;

180 pthread t p1 , p2 ;

181 i f (argc > 2) {
182 p r i n t f (” usage : %s [time s l o t]\n” , argv [0]) ;

183 e x i t (−1) ;

184 }

Appendix A. Covert Timing Channel Source Code 133

185 i f (argv [1]) {
186 t i m e s l o t = a t o i (argv [1]) ;

187 s l o t = t i m e s l o t ;

188 // p r i n t f (” t i m e s l o t : %i \n\n” , t i m e s l o t) ;

189 }
190 sock fd = socke t (AF INET , SOCK STREAM, 0) ;

191

192 i f (sock fd < 0) {
193 per ro r (” cannot open socket ”) ;

194 re turn ERROR;

195 }
196 bzero(&serv addr , s i z e o f (s e rv addr)) ;

197 s e rv addr . s i n f a m i l y = AF INET ;

198 s e rv addr . s i n addr . s addr = INADDR ANY;

199 s e rv addr . s i n p o r t = htons (SERVER PORT) ;

200 i f (bind (sockfd , (s t r u c t sockaddr ∗) &serv addr , s i z e o f (s e rv addr)) <

0) {
201 per ro r (” cannot bind port ”) ;

202 re turn ERROR;

203 }
204 l i s t e n (sockfd , 5) ;

205 whi le (1) { // i n f i n i t e loop

206 i n t pid ;

207 c l i l e n = s i z e o f (c l i a d d r) ;

208 newsockfd = accept (sockfd , (s t r u c t sockaddr ∗) &c l i a d d r , &c l i l e n) ;

209 p r i n t f (”%s : accepted new connect ion with socket id : %i \n” , argv [0] ,

newsockfd) ;

210 p r i n t f (”%s : wa i t ing f o r data on port TCP %u\n” , argv [0] , SERVER PORT) ;

211 // creo proce s so f i g l i o per g e s t i r e i l c l i e n t

212 pid = fo rk () ;

213 i f (pid == 0) {
214 o u t p u t f i l e = fopen (”output ham . txt ” , ”w”) ;

215 // pthread p1

216 i f (p th r ead c r ea t e (&p1 , NULL, sample , &s l o t)) {
217 f p r i n t f (s tde r r , ” Error c r e a t i n g thread p1\n”) ;

218 re turn 1 ;

219 }
220 // pthread p2

221 i f (p th r ead c r ea t e (&p2 , NULL, read message , &newsockfd)) {
222 f p r i n t f (s tde r r , ” Error c r e a t i n g thread p2\n”) ;

223 re turn 1 ;

224 }
225 i f (p t h r e a d j o i n (p1 , NULL) && p t h r e a d j o i n (p2 , NULL)) {
226 f p r i n t f (s tde r r , ” Error j o i n i n g thread p1 or p2\n”) ;

227 re turn 2 ;

228 }
229 p r i n t f (”%s : wa i t ing f o r data on port TCP %u\n” , argv [0] , SERVER PORT)

;

Appendix A. Covert Timing Channel Source Code 134

230 f p r i n t f (o u t p u t f i l e , ”\n”) ;

231 f c l o s e (o u t p u t f i l e) ;

232 }
233 }
234 c l o s e (newsockfd) ;

235 re turn 0 ;

236 c l o s e (sock fd) ;

237 re turn 0 ;

238 }

A.3 OSCTC Manchester + Hamming

In the last version of our OSCTC we added the Hamming Code (12, 8). Such a scheme

encodes 8 covert bits in 12 bits, adding 4 redundant bits. In this way, with a 50% of

increase of the word length, we are able to detect 2 covert bit errors and correct 1 covert

bit error. To implement such code we used two different matrices necessary to encode

(client side) and decode (server side) the covert message.

A.3.1 OSCTC Manchester + Hamming Client

The Hamming Code matrix necessary to encode the covert message is used on the client

in the HammingTableEncode function:

1 unsigned i n t HammingTableEncode (unsigned char data)

2 {
3 re turn hammingCodes [data] ;

4 }

Referring to the OSCTC Manchester Client source code, such function is called in

the send_message function through the command coded_c=HammingTableEncode(c);

where the variable c is defined as: int coded_c = 0;.

A.3.2 OSCTC Manchester + Hamming Server

The Hamming Code matrix necessary to decode the covert message is used on the client

in the HammingTableDecode function:

1 unsigned char HammingTableDecode (unsigned i n t code)

2 {
3 re turn hammingDecodeValues [code] ;

4 }

Appendix A. Covert Timing Channel Source Code 135

Referring to the OSCTC Manchester Server source code, such function is called in the

sample function through the command output=HammingTableDecode(current_symbol);.

Here is important to notice that a covert byte, after the Manchester coding, raises to 16

bits. When applying our Hamming coding, we have 8 bits of data + 4 parity bits that

become, after the Manchester coding, 24 bits. It means that in the sample function we

have to modify the lines:

1 // check i f we r e c e i v e d 16 b i t s (8 b i t data ∗ 2)

2 i f (s e q t i m e s l o t ==16){
3 output = (char) current symbol ;

with the following:

1 // check i f we r e c e i v e d 24 b i t s (8 b i t data + 4 par i t y b i t)

2 i f (s e q t i m e s l o t ==24){
3 output = HammingTableDecode (current symbol) ;

A.4 Passive OSCTC

A.4.1 Passive OSCTC Client

The Passive OSCTC Client exactly corresponds to our Active OSCTC that uses the

Manchester Coding and the Hamming Code.

A.4.2 Passive OSCTC Server

The Passive OSCTC Server has the same structure of our Active OSCTC that uses the

Manchester Coding and the Hamming Code, but with some differences. One difference

is the presence of the new function create_html_output_for_binary(), used in our

case to simplify our implementation. With this function we emulated a web server,

building a specific HTTP message that is sent to the user browser. After run the server

and the client, to visualize the picture is necessary to point the browser to the URL:

127.0.0.1:<port_number>. Function create html output for binary

1 //=============generate http response f o r binary data=============

2 char ∗ c r e a t e h t m l o u t p u t f o r b i n a r y () {
3

4 FILE ∗ f i l e ;

5 char ∗ f i l e b u f ; // image i s cop ied in t h i s b u f f e r

6

Appendix A. Covert Timing Channel Source Code 136

7 //open f i l e

8 f i l e = fopen (” image . jpeg ” , ” rb”) ;

9 i f (! f i l e)

10 {
11 p r i n t f (”FILE NOT FOUND! ”) ;

12 re turn NULL;

13 }
14 f s e e k (f i l e , 0 , SEEK END) ;

15 f i l e L e n = f t e l l (f i l e) ;

16 f s e e k (f i l e , 0 , SEEK SET) ;

17 f i l e b u f = (char ∗) mal loc (f i l e L e n +1) ;

18 i f (! f i l e b u f)

19 {
20 f p r i n t f (s tde r r , ”MEMORY ERROR”) ;

21 f c l o s e (f i l e) ;

22 re turn NULL;

23 }
24 f r ead (f i l e b u f , f i l e L e n , 1 , f i l e) ;

25 f c l o s e (f i l e) ;

26 char header [1 0 2 4] ;

27 s p r i n t f (header ,

28 ”HTTP/1 .1 200 OK\ r \n”

29 ”Accept−Ranges : bytes \ r \n”

30 ” Connection : Keep−Al ive \ r \n”

31 ”Keep−Al ive : t imeout =5, max=100\ r \n”

32 ”Content−Type : image/ jpeg \ r \n”

33 ”Content−Length : %i \ r \n”

34 ”\ r \n” , f i l e L e n) ;

35 l enght header = s t r l e n (header) ;

36 r ep ly = (char ∗) mal loc (s t r l e n (header)+f i l e L e n) ;

37 s t r cpy (reply , header) ;

38 memcpy(r ep ly + s t r l e n (header) , f i l e b u f , f i l e L e n) ;

39 re turn r ep ly ;

40 }

Also the main has been modified in order to use the traffic generated by the download

of the picture and insert the covert message. In the following the new modified main

section of the server side is reported. Function create html output for binary

1 //∗∗∗main s t a r t s ∗∗∗
2 i n t main (i n t argc , char ∗argv []) {
3 i n t c l i e n t s o c k f d , c l i e n t n e w f d ; // v a r i a b l e s f o r socke t

4 i n t portnum ; // v a r i a b l e f o r port numb i f

provided

5 s t r u c t sockaddr in s e rve r addr ; // s t r u c t u r e to hold s e r v e r ’ s

address

Appendix A. Covert Timing Channel Source Code 137

6 s t r u c t sockaddr in c l i e n t a d d r ; // s t r u c t u r e to hold c l i e n t

address

7 unsigned i n t c l i s i z e ; // l ength o f address

8 pthread t p1 ;

9 pthread t p2 ;

10 p r i n t f (”\n\ t∗−∗−∗−∗PROXY SERVER STARTED∗−∗−∗−∗\n”) ;

11 // check arguments

12 i f (argc == 2)

13 {
14 portnum = a t o i (argv [1]) ;

15 }
16 e l s e

17 {
18 p r i n t f (” usage : %s <s e r v e r p o r t >\n” , argv [0]) ;

19 }
20

21 c l i e n t s o c k f d = socket (AF INET , SOCK STREAM, 0) ;

22 i f (c l i e n t s o c k f d < 0) {
23 p r i n t f (” s e r v e r − socke t () e r r o r \n”) ; // debugging

24 e x i t (1) ;

25 }
26 e l s e

27 p r i n t f (” socke t \ t \ t c r ea t ed \n”) ;

28 // s e t i n f o o f s e r v e r

29 bzero(&server addr , s i z e o f (s e rv e r addr)) ;

30 memset (bu f f e r , 0 , MAXBUF) ;

31 memset (bu f f e r2 , 0 , MAXBUF) ;

32 f w r i t e (bu f f e r2 , 1 , s i z e o f (b u f f e r 2) , s tdout) ;

33 s e rv e r addr . s i n f a m i l y=AF INET ;

34 s e rv e r addr . s i n addr . s addr = INADDR ANY;

35 s e rv e r addr . s i n p o r t = htons (portnum) ;

36 c l i e n t s o c k f d = socket (AF INET , SOCK STREAM, 0) ;

37 i f (bind (c l i e n t s o c k f d , (s t r u c t sockaddr ∗)&server addr , s i z e o f (

s e rv e r addr)) < 0) {
38 p r i n t f (” binding f a i l e d \n”) ;

39 e x i t (1) ;

40 }
41 e l s e p r i n t f (” binding \ t \ t s u c c e s s \n\n”) ;

42 // socket on l i s t e n i n g mode

43 l i s t e n (c l i e n t s o c k f d , 5) ;

44 p r i n t f (” wai t ing f o r c l i e n t \n”) ;

45 whi le (1) // i n f i n i t e loop

46 {
47 i n t pid ;

48 c l i s i z e = s i z e o f (c l i e n t a d d r) ;

49 c l i e n t n e w f d = accept (c l i e n t s o c k f d , (s t r u c t sockaddr ∗)&c l i e n t a d d r ,

&c l i s i z e) ;

Appendix A. Covert Timing Channel Source Code 138

50 p r i n t f (” s e r v e r got connect ion from %s & %d\n\n” , i n e t n t o a (c l i e n t a d d r .

s i n addr) , c l i e n t n e w f d) ;

51 pid = fo rk () ;

52 i f (pid == 0) {
53 i n t byte s r ead ;

54 byte s r ead = recv (c l i e n t n e w f d , bu f f e r , MAXBUF, 0) ;

55 i f (byte s r ead == 0)

56 {
57 p r i n t f (”\nERROR READING SOCKET\n\n”) ;

58 e x i t (1) ;

59 }
60 i f (byte s r ead > 0)

61 {
62 // f w r i t e (bu f f e r , 1 , s i z e o f (b u f f e r) , s tdout) ;

63 }
64 http = c r e a t e h t m l o u t p u t f o r b i n a r y () ;

65 // s t a r t read ing cover t channel f i l e and sending i t through image

66 long f s i z e ;

67 char ∗ covert message ;

68 s i z e t code s ;

69 input = fopen (” i n p u t i t . txt ” , ” r ”) ;

70 i f (input == NULL)

71 {
72 per ro r (” Error whi l e opening the f i l e .\n”) ;

73 e x i t (EXIT FAILURE) ;

74 }
75 f s e e k (input , 0 , SEEK END) ;

76 f s i z e = f t e l l (input) ;

77 f s e e k (input , 0 , SEEK SET) ;

78 code s = s i z e o f (char) ∗ (f s i z e +1) ;

79 covert message = mal loc (code s) ;

80 f g e t s (covert message , code s , input) ;

81 p r i n t f (” covert message = %s \n” , covert message) ;

82 f c l o s e (input) ;

83 i n t c a r r i e r s i z e = lenght header+f i l e L e n ; // in

bytes

84 i n t remainder = c a r r i e r s i z e%s i z e ;

85 i n t num packet = ((l enght header+f i l e L e n)%s i z e) ==0?((l enght header+

f i l e L e n) / s i z e) :

86 ((l enght header+f i l e L e n) / s i z e +1) ; // c a r r i e r s i z e in number o f

packets o f l ength : s i z e+p o s s i b l e mod

87 double c o v e r t m e s s a g e b i t s = s t r l e n (covert message) ∗((8+4) ∗2+4/3) ;

88 i f (c o v e r t m e s s a g e b i t s /2 < num packet)

89 {
90 send message (covert message , c l i e n t n e w f d) ;

91 }
92 e l s e {
93 p r i n t f (”Reduce PACKET SIZE to send cover t message !\n”) ;

Appendix A. Covert Timing Channel Source Code 139

94 }
95 //end read ing cover t channel f i l e and sending i t through image

96 }
97 c l o s e (c l i e n t n e w f d) ;

98 }
99 c l o s e (c l i e n t s o c k f d) ;

100 }
101 /∗∗∗main ends ∗∗∗/

Appendix B

NSA Cipher Suites

In this Appendix the correlation between NSA-approved security algorithms and data

classification levels is reported. Table B.2 refers to the Cipher Suite B, whereas Table B.1

refers to the Cipher Suite A that uses NIST-approved legacy cryptographic algorithms

which may be used in place of Suite B cryptographic algorithms with identical functions.

The highest classification levels are SECRET (S) and TOP SECRET (TS).

In addition, NSA advises to begin implementing a layer of quantum resistant protection,

that is possible today through the use of large symmetric keys and specific secure proto-

col standards. For example it would be recommended, when using an IKE/IPsec layer,

to use RFC 2409-conformant implementations of the IKE standard (IKEv1) together

with large, high-entropy, pre-shared keys and the AES-256 encryption algorithm.

“RFC 2409 is the only version of the IKE standard that leverages symmetric pre-shared

keys in a manner that may achieve quantum resistant confidentiality. Additionally,

MACsec key agreement as specified in IEEE 802.1X-2010, and the RFC 4279 TLS spec-

ification provide further options for implementing quantum resistant security measures.

These options also involve key agreement schemes that leverage large symmetric pre-

shared keys” [192].

140

Appendix B. NSA Cipher Suites 141

Table B.1: NSA Cipher Suite A

Algorithm Function Specification Parameters

Diffie-Hellman
(DH) Key
Exchange

Asymmetric algorithm
used for key
establishment

NIST SP 800-56A 2048-bit modulus
to protect up to S.

Digital Signature
Algorithm (DSA)

Asymmetric algorithm
used for digital
signatures

FIPS PUB 186-3 2048-bit modulus
to protect up to S.

RSA Asymmetric algorithm
used for digital
signatures

FIPS PUB 186-3 2048-bit modulus
to protect up to S.

Table B.2: NSA Cipher Suite B

Algorithm Function Specification Parameters

Advanced
Encryption
Standard (AES)

Symmetric block
cipher used for
information
protection

FIPS PUB 197 128 bit keys to
protect up to S.
256 bit keys to
protect up to TS.

Elliptic Curve
Diffie-Hellman
(ECDH) Key
Exchange

Asymmetric
algorithm used
for key
establishment

NIST SP 800-56A Curve P-256 to
protect up to S.
Curve P-384 to
protect up to TS.

Elliptic Curve
Digital Signature
Algorithm
(ECDSA)

Asymmetric
algorithm used
for digital
signatures

FIPS PUB 186-3 Curve P-256 to
protect up to S.
Curve P-384 to
protect up to TS.

Secure Hash
Algorithm (SHA)

Algorithm used
for computing a
condensed
representation of
information

FIPS PUB 180-4 SHA-256 to
protect up to S.
SHA-384 to
protect up to TS.

Diffie-Hellman
(DH) Key
Exchange

Asymmetric
algorithm used
for key
establishment

IETF RFC 3526 3072-bit modulus
to protect up to
TS.

RSA Asymmetric
algorithm used
for key
establishment

NIST SP 800-56B rev 1 3072-bit modulus
to protect up to
TS.

RSA Asymmetric
algorithm used
for digital
signatures

FIPS PUB 186-4 3072-bit modulus
to protect up to
TS.

Appendix C

Weibull Probability Density

Function

In this Appendix we first give some details about the Weibull Probability Density Func-

tion (Weibull PDF). Then, we briefly describe how to estimate the parameters of a

Weibull distribution using the technique of [170].

C.1 Weibull Distribution

The Weibull distribution is related to a number of other probability distributions [193]. It

interpolates between the exponential distribution (k = 1) and the Rayleigh distribution

(k = 2 and λ =
√
2
k). The shapes of Exponential and Rayleigh distribution are depicted

in Fig. C.11 and Fig. C.22, respectively.

The shape of the Weibull PDF drastically changes with the value of k.

For 0 < D < 1 , the PDF tends to ∞ as x approaches zero from above and is strictly

decreasing.

For k = 1, the PDF tends to 1
B as x approaches zero from above and is strictly decreasing.

For k > 1, the PDF tends to zero as x approaches zero from above, increases until its

mode and decreases after it.

It is interesting to note that the PDF has infinite negative slope at x = 0 if 0 < k < 1,

infinite positive slope at x = 0 if 1 < k < 2 and null slope at x = 0 if k > 2. For k = 2

the PDF has a finite positive slope at x = 0.

As k goes to infinity, the Weibull distribution converges to a Dirac Delta Distribution

1CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=73793.
2CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?curid=140795.

142

Appendix C. Weibull Probability Density Function 143

centered at x = λ. Moreover, the skewness and coefficient of variation depend only on

the shape parameter. Hence, the knowledge about the values of the shape and scale

parameters is of mandatory importance to fully understand the statistics of the Weibull

PDF.

Figure C.1: Exponential Probability Density Function

Figure C.2: Rayleigh Probability Density Function

Methods for estimating Weibull parameters can be classified into two main categories,

graphical and analytic methods. In [170], a common graphical method, called the

median-rank method, has been used because of its simplicity and speed. In this method,

Appendix C. Weibull Probability Density Function 144

the data are first sorted and a Median Rank (MR) is assigned to each item, calculated

as follows:

MR = R−0.3
N+0.4

where R is the rank of each item in the sorted list, and N is the length of the data. Then,

α and β are computed respectively as the slope and y − intercept of the line consisting

of plotting ln ln 1
1−MR versus ln data, where ln stands for the natural logarithm.

Finally, the scale and shape parameters are derived from the equations:

k̂ = α

and

λ̂ = e
−α
β

Bibliography

[1] GAO. Information assurance, national partnership offers benefits, but faces con-

siderable challenges, 2006. URL www.gao.gov/new.items/d06392.pdf.

[2] Cosmo-SkyMED Program, 2015. URL www.cosmo-skymed.it/en/index.htm.

[3] MUSIS Program, 2015. URL www.defense.gouv.fr/dga/equipement/

information-communication-espace/musis.

[4] J. P. L. Woodward. Applications for multilevel secure operating sys-

tems, 1979. URL www.computer.org/csdl/proceedings/afips/1979/5087/00/

50870319.pdf.

[5] Committee on National Security Systems, 2010. URL www.cnss.gov/Assets/

pdf/cnssi_4009.pdf.

[6] Raytheon. Cross-domain access transfer, 2015. URL www.forcepoint.com/

product/cross-domain-access-transfer/trusted-thin-client.

[7] NATO, 2015. URL www.cso.nato.int/ACTIVITY_META.asp?ACT=2226.

[8] ver. 3.1 Common Criteria for Information Technology Security Evaluation, 2015.

URL www.commoncriteriaportal.org.

[9] Orange Book Preamble, 1985. URL www.kernel.org/pub/linux/libs/

security/Orange-Linux/refs/Orange/Orange0.html.

[10] D. E. Bell. Looking back: Addendum. Twenty-Second Annual Computer Security

Applications Conference (ACSAC), 2006.

[11] D. F. C. Brewer and M. J. Nash. The chinese wall security policy, 1989.

[12] C. Weissman. Security controls in the adept-50 time-sharing system. Proceedings

of the 1969 Fall Joint Computer Conference, pages 119–133, 1969.

[13] C. Weissman. Ibm’s resource security system (rss). Security and Privacy in Com-

puter Systems, pages 379–401, 1973.

145

www.gao.gov/new.items/d06392.pdf
www.cosmo-skymed.it/en/index.htm
www.defense.gouv.fr/dga/equipement/information-communication-espace/musis
www.defense.gouv.fr/dga/equipement/information-communication-espace/musis
www.computer.org/csdl/proceedings/afips/1979/5087/00/50870319.pdf
www.computer.org/csdl/proceedings/afips/1979/5087/00/50870319.pdf
www.cnss.gov/Assets/pdf/cnssi_4009.pdf
www.cnss.gov/Assets/pdf/cnssi_4009.pdf
www.forcepoint.com/product/cross-domain-access-transfer/trusted-thin-client
www.forcepoint.com/product/cross-domain-access-transfer/trusted-thin-client
www.cso.nato.int/ACTIVITY_META.asp?ACT=2226
www.commoncriteriaportal.org
www.kernel.org/pub/linux/libs/security/Orange-Linux/refs/Orange/Orange0.html
www.kernel.org/pub/linux/libs/security/Orange-Linux/refs/Orange/Orange0.html

Bibliography 146

[14] Compatible Time-Sharing System, 1965. URL www.multicians.org/thvv/7094.

html.

[15] J. H. Saltzer. Protection and the control of information sharing in multics.

Commun. ACM, 17(7):388–402, July 1974. doi: 10.1145/361011.361067. URL

http://doi.acm.org/10.1145/361011.361067.

[16] F. J. Corbato and V. A. Vyssotsky. Introduction and overview of the multics

system. In Proceedings of the November 30-December 1, 1965, Fall Joint Computer

Conference, Part I, pages 26–34, December 1965.

[17] L. J. Freim. Scomp: a solution to the multilevel security problem. Computer, 16

(7):26–34, 1983.

[18] C. Weissman. Blacker: security for the ddn examples of a1 security engineering

trades. In Proceedings 1992 IEEE Computer Society Symposium on Research in

Security and Privacy, pages 286–292, December 1992.

[19] C. W. Flink II and J. D. Weiss. System v/mls labeling and mandatory policy

alternatives. AT&T Technical Journal, 67(3):53–64, 1988.

[20] J. Cashin. Multilevel security controls access: Secureware product segments air

force system. Journal Software Magazine, 14(1):89, 1994.

[21] R. M. Wong. A comparison of secure unix operating systems. Proceedings of the

Sixth Annual, pages 322–333, 1990.

[22] M. H. Kang and I. S. Moskowitz. A pump for rapid, reliable, secure communica-

tion. Proceedings of the First ACM Conference on Computer and Communications

Security, pages 119–129, 1993.

[23] D. E. Bell. Looking back at the bell-la padula model. Proceedings of the First ACM

Conference on Computer and Communications Security, pages 119–129, 2005.

[24] J. P. Anderson. Computer security technology planning study. Technical Report

ESDTR-73-51, 1 and 2, 1972.

[25] FreeBSD, 2015. URL www.freebsd.org.

[26] R. Spencer, S. Smalley, P. Loscocco, M. Hibler, Anderson D., and J. Lepreau. The

flask security architecture: system support for diverse security policies, 1999.

[27] AppArmor application security for Linux, 2015. URL www.suse.com/

documentation/apparmor.

www.multicians.org/thvv/7094.html
www.multicians.org/thvv/7094.html
http://doi.acm.org/10.1145/361011.361067
www.freebsd.org
www.suse.com/documentation/apparmor
www.suse.com/documentation/apparmor

Bibliography 147

[28] Windows Integrity Mechanism, 2015. URL https://msdn.microsoft.com/

en-us/library/bb625957.aspx.

[29] M. Bailey. The unified cross domain management office: Bridging security domains

and cultures, 2008. URL www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA487191.

[30] F. Benedetto, G. Giunta, A. Liguori, and A. Wacker. A novel method for secur-

ing critical infrastructures by detecting hidden flows of data. In IEEE, editor,

Communications and Network Security (CNS), 2015 IEEE Conference on, pages

648–654, September 2015. doi: 10.1109/CNS.2015.7346881.

[31] General Dynamics Cross-Domain Guards, 2015. URL https://

gdmissionsystems.com/cyber/products/trusted-computing-cross-domain/

tactical-cross-domain-guards.

[32] Forcepoint Small Format Guard, 2015. URL www.forcepoint.com/resources/

datasheets/small-format-guard.

[33] Lockheed Martin Cross Domain Cyber Solutions, 2015. URL www.

lockheedmartin.com/us/products/tman.html.

[34] Thales Security Products, 2015. URL www.thalesgroup.com/en/norway/

security-products-and-services.

[35] Advatech Pacific Cross-Domain Solution, 2015. URL www.tacticalcds.com/

Technology/Technology_Overview.html.

[36] OWL MCDS, 2015. URL www.owlcti.com/government/defense/def_mcds_

datasheet.html.

[37] Network Working Group. Rfc4949: Internet security glossary, version 2, 2007.

URL http://tools.ietf.org/html/rfc4949.

[38] A. Liguori, F. Benedetto, G. Giunta, N. Kopal, and A. Wacker. Analysis and

monitoring of hidden TCP traffic based on an open-source covert timing chan-

nel. In IEEE, editor, Communications and Network Security (CNS), 2015 IEEE

Conference on, pages 667–674, September 2015. doi: 10.1109/CNS.2015.7346885.

[39] OWL Whitepaper, 2009. URL www.owlcti.com/pdfs/

crossBorderInfoSharing_ISGIG_r01n_coverIncl.pdf.

[40] C. Boettcher, R. DeLong, J. Rushby, and W. Sifre. The mils component integration

approach to secure information sharing, 2008.

[41] ARINC-653, 2015. URL http://store.aviation-ia.com/cf/store.

https://msdn.microsoft.com/en-us/library/bb625957.aspx
https://msdn.microsoft.com/en-us/library/bb625957.aspx
www.dtic.mil/cgi-bin/GetTRDoc?AD=ADA487191
https://gdmissionsystems.com/cyber/products/trusted-computing-cross-domain/tactical-cross-domain-guards
https://gdmissionsystems.com/cyber/products/trusted-computing-cross-domain/tactical-cross-domain-guards
https://gdmissionsystems.com/cyber/products/trusted-computing-cross-domain/tactical-cross-domain-guards
www.forcepoint.com/resources/datasheets/small-format-guard
www.forcepoint.com/resources/datasheets/small-format-guard
www.lockheedmartin.com/us/products/tman.html
www.lockheedmartin.com/us/products/tman.html
www.thalesgroup.com/en/norway/security-products-and-services
www.thalesgroup.com/en/norway/security-products-and-services
www.tacticalcds.com/Technology/Technology_Overview.html
www.tacticalcds.com/Technology/Technology_Overview.html
www.owlcti.com/government/defense/def_mcds_datasheet.html
www.owlcti.com/government/defense/def_mcds_datasheet.html
http://tools.ietf.org/html/rfc4949
www.owlcti.com/pdfs/crossBorderInfoSharing_ISGIG_r01n_coverIncl.pdf
www.owlcti.com/pdfs/crossBorderInfoSharing_ISGIG_r01n_coverIncl.pdf
http://store.aviation-ia.com/cf/store

Bibliography 148

[42] DO-178B, 2015. URL www.rtca.org/Files/ListofAvailableDocsMarch2013.

pdf.

[43] J. Rushby. Partitioning for safety and security:requirements, mechanisms, and

assurance, 1999.

[44] J. Rushby. Proof of separability: A verification technique for a class of security

kernels. Proceedings of the 5th International Symposium on Programming, 137:

352–367, 1982.

[45] Information Assurance Directorate. U.s. government protection profile for separa-

tion kernels in environments requiring high robustness version 1.03, 2007.

[46] NIAP. Skpp sunsetting, 2011. URL www.niap-ccevs.org/pp/archived/PP_

SKPP_HR_V1.03/.

[47] Lynx, 2015. URL www.lynx.com/products/secure-virtualization/

lynxsecure-separation-kernel-hypervisor.

[48] T. E. Levin, C. E. Irvine, and T.D. Nguyen. Least privilege in separation kernels,

2008.

[49] Wind River, 2015. URL http://windriver.com/products/vxworks/

certification-profiles/#vxworks_mils.

[50] EURO-MILS, 2015. URL www.euromils.eu.

[51] Green Hills, 2008. URL www.niap-ccevs.org/cc-scheme/st/st_vid10119-ci.

pdf.

[52] System and Network Analysis Center Information Assurance Directorate. Sep-

aration kernel on commodity workstations, 2010. URL www.niap-ccevs.org/

announcements/SeparationKernelsonCommodityWorkstations.pdf.

[53] Selex ES, 2013. URL www.aofs.org/wp-content/uploads/2013/10/131010.

06-Selex-ES-Raschell.pdf.

[54] R. Buerki and A. K. Rueegsegger. Muen-an x86/64 separation kernel for high

assurance, 2013. URL http://muen.codelabs.ch/muen-report.pdf.

[55] Bertin Technologies Polyxene, 2009. URL www.bertin-it.com/brochure/

PolyXene-high-security-hypervisor.pdf.

[56] Bertin Technologies Polyxene, 2014. URL http://bit.ly/1JhySqj.

www.rtca.org/Files/ListofAvailableDocsMarch2013.pdf
www.rtca.org/Files/ListofAvailableDocsMarch2013.pdf
www.niap-ccevs.org/pp/archived/PP_SKPP_HR_V1.03/
www.niap-ccevs.org/pp/archived/PP_SKPP_HR_V1.03/
www.lynx.com/products/secure-virtualization/lynxsecure-separation-kernel-hypervisor
www.lynx.com/products/secure-virtualization/lynxsecure-separation-kernel-hypervisor
http://windriver.com/products/vxworks/certification-profiles/#vxworks_mils
http://windriver.com/products/vxworks/certification-profiles/#vxworks_mils
www.euromils.eu
www.niap-ccevs.org/cc-scheme/st/st_vid10119-ci.pdf
www.niap-ccevs.org/cc-scheme/st/st_vid10119-ci.pdf
www.niap-ccevs.org/announcements/Separation Kernels on Commodity Workstations.pdf
www.niap-ccevs.org/announcements/Separation Kernels on Commodity Workstations.pdf
www.aofs.org/wp-content/uploads/2013/10/131010.06-Selex-ES-Raschellà.pdf
www.aofs.org/wp-content/uploads/2013/10/131010.06-Selex-ES-Raschellà.pdf
http://muen.codelabs.ch/muen-report.pdf
www.bertin-it.com/brochure/PolyXene-high-security-hypervisor.pdf
www.bertin-it.com/brochure/PolyXene-high-security-hypervisor.pdf
http://bit.ly/1JhySqj

Bibliography 149

[57] Business Wire Article, 2009. URL www.businesswire.com/

news/home/20091201006186/en/Bertin%E2%80%99s-polyXene%E2%84%

A2-Multi-Sensibilities-Secure-Operating-System-Integrating.

[58] MITRE Corporation, 2015. URL http://www.mitre.org.

[59] ITSEC Provisional Harmonised Criteria. Information technology security evalua-

tion criteria v. 1.2, 1991. URL http://www.mitre.org.

[60] Common Criteria Portal. About the common criteria, 2015. URL www.

commoncriteriaportal.org/ccra/.

[61] Common Criteria Management Board. Common criteria for information tech-

nology security evaluation part 3: Security assurance requirements; version 3.1,

revision 4, 2012. URL www.commoncriteriaportal.org/.

[62] J. Rushby. 12th ieee international conference on the engineering of complex com-

puter systems (iceccs), 2007.

[63] D-MILS, 2015. URL www.d-mils.org/.

[64] National Institute of Standards and Technology, 2015. URL http://csrc.nist.

gov/groups/STM/cavp/validation.html.

[65] Common Criteria Management Board. Common criteria for information tech-

nology security evaluation part 2: Security functional components; version 3.1,

revision 4, 2012. URL www.commoncriteriaportal.org/.

[66] Committee on National Security Systems. National information assurance pol-

icy on the use of public standards for the secure sharing of information among

national security systems, 2012. URL www.cnss.gov/CNSS/openDoc.cfm?fGEj+

ExMnLgu5sxAutbbrw==.

[67] M. Goll and S. Gueron. Vectorization of chacha stream cipher. Information Tech-

nology: New Generations (ITNG), 2014 11th International Conference on, pages

612–615, April 2014. doi: 10.1109/ITNG.2014.33.

[68] A. Langley. Chacha20 and poly1305 for ietf protocols, 2015. URL https://tools.

ietf.org/html/rfc7539.

[69] A. Biryukov, D. Khovratovich, and I. Nikolić. Distinguisher and related-key at-

tack on the full aes-256 (extended version). Cryptology ePrint Archive, Report

2009/241, 2009. http://eprint.iacr.org/.

www.businesswire.com/news/home/20091201006186/en/Bertin%E2%80%99s-polyXene%E2%84%A2-Multi-Sensibilities-Secure-Operating-System-Integrating
www.businesswire.com/news/home/20091201006186/en/Bertin%E2%80%99s-polyXene%E2%84%A2-Multi-Sensibilities-Secure-Operating-System-Integrating
www.businesswire.com/news/home/20091201006186/en/Bertin%E2%80%99s-polyXene%E2%84%A2-Multi-Sensibilities-Secure-Operating-System-Integrating
http://www.mitre.org
http://www.mitre.org
www.commoncriteriaportal.org/ccra/
www.commoncriteriaportal.org/ccra/
www.commoncriteriaportal.org/
www.d-mils.org/
http://csrc.nist.gov/groups/STM/cavp/validation.html
http://csrc.nist.gov/groups/STM/cavp/validation.html
www.commoncriteriaportal.org/
www.cnss.gov/CNSS/openDoc.cfm?fGEj+ExMnLgu5sxAutbbrw==
www.cnss.gov/CNSS/openDoc.cfm?fGEj+ExMnLgu5sxAutbbrw==
https://tools.ietf.org/html/rfc7539
https://tools.ietf.org/html/rfc7539
http://eprint.iacr.org/

Bibliography 150

[70] A. Biryukov and D. Khovratovich. Related-key cryptanalysis of the full aes-192

and aes-256. Cryptology ePrint Archive, Report 2009/317, 2009. http://eprint.

iacr.org/.

[71] A. Bogdanov, D. Khovratovich, and C. Rechberger. Biclique cryptanalysis of the

full aes. In Advances in Cryptology–ASIACRYPT 2011, pages 344–371. Springer,

2011.

[72] B. Schneier. New attack on aes, 2011. URL www.schneier.com/blog/archives/

2011/08/new_attack_on_a_1.html.

[73] Certicom Research. Sec 2: Recommended elliptic curve domain parameters,

September 2000. URL www.secg.org/SEC2-Ver-1.0.pdf.

[74] J. M. Ericsson. Overview and analysis of overhead caused by

tls. draft, January 2014. URL https://tools.ietf.org/html/

draft-mattsson-uta-tls-overhead-00.

[75] C. Kaufman, P. Hoffman, Y. Nir, P. Eronen, and T. Kivinen. Internet key exchange

protocol version 2 (ikev2). RFC 7296 (Internet Standard), October 2014. URL

www.ietf.org/rfc/rfc7296.txt.

[76] T. Dierks and E. Rescorla. The transport layer security (tls) protocol version

1.2. RFC 5246 (Proposed Standard), August 2008. URL www.ietf.org/rfc/

rfc5246.txt. Updated by RFCs 5746, 5878, 6176, 7465, 7507, 7568, 7627, 7685.

[77] BlueKrypt. Cryptographic key length recommendation, 2016. URL www.

keylength.com/en/compare.

[78] BlueKrypt. Cryptographic key length recommendation, 2016. URL www.

keylength.com/en/8.

[79] ENISA. Algorithms, key sizes and parameters report - 2014, 2014.

URL www.enisa.europa.eu/activities/identity-and-trust/library/

deliverables/algorithms-key-size-and-parameters-report-2014/at_

download/fullReport.

[80] A. Hoban. Using intel aes new instructions and pclmulqdq to sig-

nificantly improve ipsec performance on linux. Intel White Paper,

2010. URL www.intel.com/content/dam/www/public/us/en/documents/

white-papers/aes-IPsec-performance-linux-paper.pdf.

[81] S. Turner, D. Brown, K. Yiu, R. Housley, and T. polk. Elliptic curve cryptography

subject public key information, March 2009. URL https://www.ietf.org/rfc/

rfc5480.txt.

http://eprint.iacr.org/
http://eprint.iacr.org/
www.schneier.com/blog/archives/2011/08/new_attack_on_a_1.html
www.schneier.com/blog/archives/2011/08/new_attack_on_a_1.html
www.secg.org/SEC2-Ver-1.0.pdf
https://tools.ietf.org/html/draft-mattsson-uta-tls-overhead-00
https://tools.ietf.org/html/draft-mattsson-uta-tls-overhead-00
www.ietf.org/rfc/rfc7296.txt
www.ietf.org/rfc/rfc5246.txt
www.ietf.org/rfc/rfc5246.txt
www.keylength.com/en/compare
www.keylength.com/en/compare
www.keylength.com/en/8
www.keylength.com/en/8
www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
www.enisa.europa.eu/activities/identity-and-trust/library/deliverables/algorithms-key-size-and-parameters-report-2014/at_download/fullReport
www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-IPsec-performance-linux-paper.pdf
www.intel.com/content/dam/www/public/us/en/documents/white-papers/aes-IPsec-performance-linux-paper.pdf
https://www.ietf.org/rfc/rfc5480.txt
https://www.ietf.org/rfc/rfc5480.txt

Bibliography 151

[82] V. Gupta, D. Stebila, F. Fung, S. C. Shantz, N. Gura, and Eberle H. Speeding up

secure web transactions using elliptic curve cryptography. Network and Distributed

System Security Symposium, 2004.

[83] N. Mavrogiannopoulos. The price to pay for perfect-forward secrecy, 2011. URL

http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.

html.

[84] L. S. Huang, S. Adhikarla, D. Boneh, and C. Jackson. An experimental study

of tls forward secrecy deployments. IEEE Internet Computing, 18(6):43–51, Nov

2014. ISSN 1089-7801. doi: 10.1109/MIC.2014.86.

[85] C. Souradeep. Exploring ikev2 with ecdsa certificate in ibm aix.

IBM developerWorks, 2014. URL www.ibm.com/developerworks/

aix/library/au-aix-exploring-ikev2-with-ecdsa-certificate/

au-aix-exploring-ikev2-with-ecdsa-certificate-pdf.pdf.

[86] J. Sundberg. Using end-to-end ipsec for secure inter- and intrasite network com-

munication. M.Sc. Thesis, 2011. doi: TRITA-CSC-E2011:088,ISRN-KTH/CSC/

E--11/088--SE,ISSN-1653-5715.

[87] S. Srivatsan, M. L. Johnson, and S. M. Bellovin. Simple-vpn: Simple ipsec con-

figuration. Technical Report, 2010. URL http://doi.acm.org/10.1145/361011.

361067.

[88] O. Kim and D. Montgomery. Behavioral and performance charac-

teristics of ipsec/ike. In in Large-Scale VPNs, [Available Online]

http://w3.antd.nist.gov/pubs/cnis-perf-vpnsikev1.pdf, 2009.

[89] C. Shue, Y. Shin, M. Gupta, and J. Y. Choi. Analysis of ipsec overheads for vpn

servers. In 1st IEEE ICNP Workshop on Secure Network Protocols (NPSec), pages

25–30, November 2005. doi: 10.1109/NPSEC.2005.1532049.

[90] BSD Router Project. Ipsec performance lab of an ibm system x3550 m3 with

intel 82580, 2015. URL http://bsdrp.net/documentation/examples/ipsec_

performance_lab_of_an_ibm_system_x3550_m3_with_intel_82580#method_

used.

[91] S. Klassert. Parallelizing ipsec: switching smp to ’on’ is noteven half the way,

2010. URL www.strongswan.org/docs/Steffen_Klassert_Parallelizing_

IPsec.pdf.

[92] Freescale Semiconductor. Understanding cryptographic performance. Freescale

Semiconductor White Paper, 2008. URL www.embeddeddeveloper.com/news_

letter/files/CRYPTOWP_Rev2.pdf.

http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
http://nmav.gnutls.org/2011/12/price-to-pay-for-perfect-forward.html
www.ibm.com/developerworks/aix/library/au-aix-exploring-ikev2-with-ecdsa-certificate/au-aix-exploring-ikev2-with-ecdsa-certificate-pdf.pdf
www.ibm.com/developerworks/aix/library/au-aix-exploring-ikev2-with-ecdsa-certificate/au-aix-exploring-ikev2-with-ecdsa-certificate-pdf.pdf
www.ibm.com/developerworks/aix/library/au-aix-exploring-ikev2-with-ecdsa-certificate/au-aix-exploring-ikev2-with-ecdsa-certificate-pdf.pdf
http://doi.acm.org/10.1145/361011.361067
http://doi.acm.org/10.1145/361011.361067
http://bsdrp.net/documentation/examples/ipsec_performance_lab_of_an_ibm_system_x3550_m3_with_intel_82580#method_used
http://bsdrp.net/documentation/examples/ipsec_performance_lab_of_an_ibm_system_x3550_m3_with_intel_82580#method_used
http://bsdrp.net/documentation/examples/ipsec_performance_lab_of_an_ibm_system_x3550_m3_with_intel_82580#method_used
www.strongswan.org/docs/Steffen_Klassert_Parallelizing_IPsec.pdf
www.strongswan.org/docs/Steffen_Klassert_Parallelizing_IPsec.pdf
www.embeddeddeveloper.com/news_letter/files/CRYPTOWP_Rev2.pdf
www.embeddeddeveloper.com/news_letter/files/CRYPTOWP_Rev2.pdf

Bibliography 152

[93] Libreswan. Benchmarking and performance testing, 2015. URL https://

libreswan.org/wiki/Benchmarking_and_Performance_testing.

[94] J. Granjal, E. Monteiro, and J. Sa Silva. On the feasibility of secure application-

layer communications on the web of things. In Local Computer Networks (LCN),

2012 IEEE 37th Conference on, pages 228–231. IEEE, 2012.

[95] R. Mzid, M. Boujelben, H. Youssef, and M. Abid. Adapting tls handshake protocol

for heterogenous ip-based wsn using identity based cryptography. In 2010 Inter-

national Conference on Wireless and Ubiquitous Systems, pages 1–8, Oct 2010.

doi: 10.1109/ICWUS.2010.5671367.

[96] H. Tschofenig and M. Pegourie-Gonnard. Performance of state-of-the-art cryp-

tography on arm-based microprocessors, 2015. URL http://csrc.nist.gov/

groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf.

[97] D. Murray and T. Koziniec. The state of enterprise network traffic in 2012. In

Communications (APCC), 2012 18th Asia-Pacific Conference on, pages 179–184,

Oct 2012. doi: 10.1109/APCC.2012.6388126.

[98] K. Pentikousis and H. Badr. Quantifying the deployment of tcp options - a com-

parative study. IEEE Communications Letters, 8(10):647–649, Oct 2004. ISSN

1089-7798. doi: 10.1109/LCOMM.2004.835308.

[99] W. John and S. Tafvelin. Analysis of internet backbone traffic and header

anomalies observed. In Proceedings of the 7th ACM SIGCOMM Conference on

Internet Measurement, IMC ’07, pages 111–116, New York, NY, USA, 2007.

ACM. ISBN 978-1-59593-908-1. doi: 10.1145/1298306.1298321. URL http:

//doi.acm.org/10.1145/1298306.1298321.

[100] P. Hurtig, W. John, and A. Brunstrm. International conference on networking

and services (icns ’11). IEEE Communications Letters, 2011.

[101] E. Garsva, N. Paulauskas, and G. Grazulevicius. Packet size distribution ten-

dencies in computer network flows. In Electrical, Electronic and Information

Sciences (eStream), 2015 Open Conference of, pages 1–6, April 2015. doi:

10.1109/eStream.2015.7119483.

[102] J. Mattsson. Ietf 90 uta overview and analysis of tls overhead, 2015. URL https:

//www.ietf.org/proceedings/90/slides/slides-90-uta-5.pdf.

[103] S. Kent. Ip encapsulating security payload (esp). RFC 4303 (Proposed Standard),

December 2005. URL http://www.ietf.org/rfc/rfc4303.txt.

https://libreswan.org/wiki/Benchmarking_and_Performance_testing
https://libreswan.org/wiki/Benchmarking_and_Performance_testing
http://csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf
http://csrc.nist.gov/groups/ST/lwc-workshop2015/presentations/session7-vincent.pdf
http://doi.acm.org/10.1145/1298306.1298321
http://doi.acm.org/10.1145/1298306.1298321
https://www.ietf.org/proceedings/90/slides/slides-90-uta-5.pdf
https://www.ietf.org/proceedings/90/slides/slides-90-uta-5.pdf
http://www.ietf.org/rfc/rfc4303.txt

Bibliography 153

[104] L. Law and J. Solinas. Suite b cryptographic suites for ipsec. RFC 6379 (Infor-

mational), October 2011. URL http://www.ietf.org/rfc/rfc6379.txt.

[105] Cisco. Ipsec overhead calculator, 2016. URL https://cway.cisco.com/tools/

ipsec-overhead-calc/ipsec-overhead-calc.html.

[106] M. Dworkin. Recommendation for block cipher modes of operation: Ga-

lois/counter mode (gcm) and gmac, 2007. URL http://csrc.nist.gov/

publications/nistpubs/800-38D/SP-800-38D.pdf.

[107] Military & Aerospace Electronics, 2011. URL www.militaryaerospace.com/

articles/2011/11/rockwell-collins-secureone.html.

[108] Rockwell Collins AAMP7G, 2015. URL www.rockwellcollins.com/~/

media/Files/Unsecure/Products/Product%20Brochures/Information%

20Assurance/Crypto/AAMP7G%20data%20sheet.aspx.

[109] A. Liguori. A novel Multiple Independent Levels of Security/Safety Cross Domain

Solution. In IEEE, editor, Military Communications Conference (MILCOM), 2015

IEEE Conference on, pages 1578–1583, October 2015. doi: 10.1109/MILCOM.

2015.7357670.

[110] A. Liguori, F. Benedetto, G. Giunta, N. Kopal, and A. Wacker. SoftGap: A Multi

Independent Levels of Security Cross-Domain Solution. In IEEE, editor, Future

Internet of Things and Cloud (FiCloud), 2015 3rd International Conference on,

pages 754–759, August 2015. doi: 10.1109/FiCloud.2015.84.

[111] J. Johnson. Roi: It’s your job. In Proceedings of the Third International Conference

on Extreme Programming and Flexible Processes in Software Engineering (XP

2002), 2002.

[112] Jones C. Applied software measurement. In NY: McGraw-Hill, 1997.

[113] A. Armando, D. Basin, Y. Boichut, Y. Chevalier, L. Compagna, J. Cullar, P. H.

Drielsma, P. Ham, O. Kouchnarenko, J. Mantovani, S. Mdersheim, D. V. Ohe-

imb, M. Rusinowitch, J. Santiago, L. Turuani, M. andVigano, and L. Vigneron.

The avispa tool for the automated validation of internet security protocols and

applications. Computer Aided Verification, pages 281–285, 2005.

[114] AVISPA. Deliverable 2.1: The high-level protocol specification language, 2015.

URL www.avispa-project.org/publications.html.

[115] C. J. F. Cremers, P. Lafourcade, and P. Nadeau. Comparing state spaces in

automatic security protocol analysis. Lecture Notes in Computer Science, 5458:

70–94, 2009.

http://www.ietf.org/rfc/rfc6379.txt
https://cway.cisco.com/tools/ipsec-overhead-calc/ipsec-overhead-calc.html
https://cway.cisco.com/tools/ipsec-overhead-calc/ipsec-overhead-calc.html
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
http://csrc.nist.gov/publications/nistpubs/800-38D/SP-800-38D.pdf
www.militaryaerospace.com/articles/2011/11/rockwell-collins-secureone.html
www.militaryaerospace.com/articles/2011/11/rockwell-collins-secureone.html
www.rockwellcollins.com/~/media/Files/Unsecure/ Products/Product%20Brochures/Information%20Assurance/Crypto/AAMP7G%20data%20sheet.aspx
www.rockwellcollins.com/~/media/Files/Unsecure/ Products/Product%20Brochures/Information%20Assurance/Crypto/AAMP7G%20data%20sheet.aspx
www.rockwellcollins.com/~/media/Files/Unsecure/ Products/Product%20Brochures/Information%20Assurance/Crypto/AAMP7G%20data%20sheet.aspx
www.avispa-project.org/publications.html

Bibliography 154

[116] C. J. F. Cremers and S. Mauw. Operational semantics of security protocols. Leue,

S. and Syst, T., Scenarios: Models, Transformations and Tools, Revised Selected

Papers, 3466, 2005.

[117] EURO-MILS. Used formal methods. Secure European Virtualization for Trustwor-

thy Applications in Critical Domains, 2015. URL www.euromils.eu/downloads/

Deliverables/Y2/2015-EM-UsedFormalMethods-WhitePaper-October2015.

pdf.

[118] Nessus Vulnerability Scanner, 2015. URL www.tenable.com/products/

nessus-vulnerability-scanner.

[119] Kali Linux, 2015. URL www.kali.org.

[120] CERTViT. Signaturerstellungseinheit tcos 3.0 signature card version 2.0 release

1/sle78clx1440p, 2012. URL www.src-gmbh.de/fileadmin/redaktion/pdf/

common_criteria/BST_SRC.00016.TE.11.2012__T-Systems_SigCard_auf_

Infineon__S1mU-1.pdf.

[121] CCRA. Arrangement on the recognition of common criteria certificates in the field

of information technology security, 2014. URL bit.ly/1UoNjeZ.

[122] SOG-IS Agreement, 2015. URL http://sogis.org.

[123] R. Koolen and J. Schmaltz. Formal methods for mils: Formalisations of the gwv

firewall. International Workshop on MILS: Architecture and Assurance for Se-

cure Systems, 2009. URL http://www.win.tue.nl/~jschmalt/publications/

mils15/12-mils15_submission_4.pdf.

[124] J. Simmons. The prisoners problem and the subliminal channel. Proceedings

Advances in Cryptology, pages 51–67, 1983.

[125] B.W. Lampson. A note on the confinement problem. Communications of the

ACM, pages 613–615, 1973.

[126] S.B. Lipner. A comment on the confinement problem. Operating Systems Review,

pages 192–196, 1975.

[127] M. Schaefer, B. Gold, R. Linde, and J. Scheid. Program confinement in kvm/370.

Proceedings of the 1977 Annual ACM Conference, pages 404–410, 1977.

[128] S. Cabuk. Network covert channels: Design, analysis, detection, and elimination.

CERIAS technical report, 2006.

www.euromils.eu/downloads/Deliverables/Y2/2015-EM-UsedFormalMethods-WhitePaper-October2015.pdf
www.euromils.eu/downloads/Deliverables/Y2/2015-EM-UsedFormalMethods-WhitePaper-October2015.pdf
www.euromils.eu/downloads/Deliverables/Y2/2015-EM-UsedFormalMethods-WhitePaper-October2015.pdf
www.tenable.com/products/nessus-vulnerability-scanner
www.tenable.com/products/nessus-vulnerability-scanner
www.kali.org
www.src-gmbh.de/fileadmin/redaktion/pdf/common_criteria/BST_SRC.00016.TE.11.2012__T-Systems_SigCard_auf_Infineon__S1mU-1.pdf
www.src-gmbh.de/fileadmin/redaktion/pdf/common_criteria/BST_SRC.00016.TE.11.2012__T-Systems_SigCard_auf_Infineon__S1mU-1.pdf
www.src-gmbh.de/fileadmin/redaktion/pdf/common_criteria/BST_SRC.00016.TE.11.2012__T-Systems_SigCard_auf_Infineon__S1mU-1.pdf
bit.ly/1UoNjeZ
http://sogis.org
http://www.win.tue.nl/~jschmalt/publications/mils15/12-mils15_submission_4.pdf
http://www.win.tue.nl/~jschmalt/publications/mils15/12-mils15_submission_4.pdf

Bibliography 155

[129] S. Gianvecchio and H. Wang. An entropy-based approach to detecting covert

timing channels. IEEE Transactions on Dependable and Secure Computing, pages

785–797, 2011.

[130] T. Handel and T.S. Maxwell. Hiding data in the osi network model. Proceedings

of the First International Workshop on Information Hiding, pages 23–38, 1996.

[131] D. Kundur and K. Ahsan. Practical internet steganography: Data hiding in ip.

Proceedings Texas Workshop Security of Information Systems, 2003.

[132] W. Mazurczyk and K. Szczypiorski. Steganography of voip streams. On the Move

to Meaningful Internet Systems: OTM 2008 - LNCS, 5332:1001–1018, 2008.

[133] N.B. Lucena, G. Lewandowski, and S.J. Chapin. Covert channels in ipv6. Privacy

Enhancing Technologies - LNCS, 3856:147–166, 2006.

[134] Giffin J., Greenstadt R., Litwack P., and Tibbetts R. Covert messaging through tcp

timestamps. Proceeding PET’02 Proceedings of the 2nd international conference

on Privacy enhancing technologies, pages 194–208, 2003.

[135] M.A. Padlipsky, D.V. Snow, and P.A. Karger. Limitations of end-to-end encryp-

tion in secure computer networks. Technical report, ESD-TR-78-158, 1978.

[136] C.G. Girling. Covert channels in lan’s. IEEE Transactions Software Engineering,

pages 292–296, 1987.

[137] N. Feamster, M. Balazinska, G. Harfst, H. Balakrishnan, and D. Karger. Infranet:

Circumventing web censorship and surveillance. Proceedings of the 11th USENIX

Security Symposium, 2002.

[138] M. Wolf. Covert channels in lan protocols. Lecture Notes in Computer Science,

396:89–101, 1989.

[139] K. Szczypiorski and W. Mazurczyk. Steganography in ieee 802.11 ofdm symbols.

Security Communications Networks, 2011.

[140] L. Butti. Raw covert, 2002. URL http://rfakeap.tuxfamily.org/#Raw_Covert.

[141] C. Kraetzer, J. Dittmann, A. Lang, and T. Kuehne. Wlan steganography: a first

practical review. 8th ACM Multimedia and Security Workshop, 2006.

[142] l. Nussbaum, P. Neyron, and O. Richard. On robust covert channels inside dns.

Emerging Challenges for Security, Privacy and Trust, IFIP Advances in Informa-

tion and Communication Technology, 297:51–62, 2009.

http://rfakeap.tuxfamily.org/#Raw_Covert

Bibliography 156

[143] E. Cauich, R. G. Gardenas, and R. Watanabe. Data hiding in identification and

offset ip fields. Proceeding of 5th International Symposium, 2005.

[144] E. Jones, O. LeMoigne, and Robert J. Ip traceback solutions based on time to live

covert channel. Proceedings of 12th IEEE International Conference on Networks

(ICON), pages 451–457, 2004.

[145] H. Qu, P. Su, and Feng D. A typical noisy covert channel in the ip protocol. 38th

Annual International Carnahan Conference on SecurityTechnology, pages 189–192,

2004.

[146] D. Saha, A. Dutta, D. Grunwald, and D. Sicker. Secret agent radio: Covert

communication through dirty constellations. Information Hiding - LNCS, 7692:

160–175, 2013.

[147] C. H. Rowland. Covert channels in the tcp/ip protocol suite. First Monday, Peer

Reviewed Journal on the Internet, 1997.

[148] I. Zelenchuk. Skeeve-icmp bounce tunnel, 2010. URL http://gray-world.net/

poc_skeeve.shtml.

[149] G. Danezis. Covert communications despite traffic data retention. Technical report

ESAT, 2005.

[150] M. Bauer. New covert channels in http: Adding unwitting web browsers to

anonymity sets. Proceedings of Workshop On Privacy Electronic Society, pages

72–78, 2003.

[151] M.A. Padlipsky, D.V. Snow, and P.A. Karger. Limitations of end-to-end encryp-

tion in secure computer networks. Technical report, 1978.

[152] S. Cabuk, C.E. Brodley, and C. Shields. Ip covert timing channels: Design and de-

tection. Proceedings of 11th ACM Conference on Computer and Communications

Security (CCS), pages 178–187, 2004.

[153] V. Berk, a. Giani, and G. Cybenko. Detection of covert channel encoding in

network packet delays. Technical Report TR2005-536, 2005.

[154] G. Shah, A. Molina, and M. Blaze. Keyboards and covert channels. Proceedings

of USENIX Security Symposium, 2006.

[155] Y. Liu, D. Ghosal, F. Armknecht, A. Sadeghi, S. Schulz, and S. Katzenbeisser.

Hide and seek in time robust covert timing channels. Proceedings of 14th European

Symposium on Research in Computer Security, 2009.

http://gray-world.net/poc_skeeve.shtml
http://gray-world.net/poc_skeeve.shtml

Bibliography 157

[156] H. Esser and Freiling. F. Kapazitaetsmessung eines verdeckten zeitkanals ber http.

Technical report, TR-2005-10, 2005.

[157] X. Zou, Q. Li, S. Sun, and X. Ni. The research on information hiding based on

command sequence of ftp protocol. Proceedings of 9th International Conference on

Knowledge-Based Intelligent Information and Engineering Systems, pages 1079–

1085, 2009.

[158] S. D. Servetto and M. Vetterl. Communication using phantoms: Covert channels

in the internet. Proceedings of IEEE International Symposium on Information

Theory (ISIT), 2001.

[159] W. Mazurczyk, M. Smolarczyk, and K. Szczypiorski. Hiding information in re-

transmissions. Cryptography and Security, 2009.

[160] A. El-Atawy and E. Al-Shaer. Building covert channels over the packet reordering

phenomenon. In INFOCOM 2009, IEEE, pages 2186–2194, April 2009. doi: 10.

1109/INFCOM.2009.5062143.

[161] S. Bhadra, S. Shakkottai, and S. Vishwanath. Covert communication over slotted

aloha systems. Proceedings of the 42nd Allerton Conference on Communication,

Control, and Computing, 2004.

[162] T. M. Dogu and A. Ephremides. Covert information transmission through the

use of standard collision resolution algorithms. Covert Information Transmission

through the Use of Standard Collision Resolution Algorithms, pages 419–433, 1999.

[163] A. Hintz. Covert channels in tcp and ip headers, 2003. URL www.defcon.org/

images/defcon-10/dc-10-presentations/dc10-hintz-covert.ppt.

[164] S. J. Murdoch. Hot or not: Revealing hidden services by their clock skew. Proceed-

ings of 13th ACM Conference on Computer and Communications Security (CCS),

pages 27–36, 2006.

[165] S. Gianvecchio, H. Wang, D. Wijesekera, and S. Jajodia. Recent Advances in

Intrusion Detection: 11th International Symposium, RAID 2008, Cambridge, MA,

USA, September 15-17, 2008. Proceedings, chapter Model-Based Covert Timing

Channels: Automated Modeling and Evasion, pages 211–230. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2008. ISBN 978-3-540-87403-4. doi: 10.1007/

978-3-540-87403-4 12.

[166] S. Z. Goher, B. Javed, and N. A. Saqib. Covert channel detection: A survey

based analysis. In High Capacity Optical Networks and Enabling Technologies

www.defcon.org/images/defcon-10/dc-10-presentations/dc10-hintz-covert.ppt
www.defcon.org/images/defcon-10/dc-10-presentations/dc10-hintz-covert.ppt

Bibliography 158

(HONET), 2012 9th International Conference on, pages 057–065, Dec 2012. doi:

10.1109/HONET.2012.6421435.

[167] E. Tumoian and M. Anikeev. Network based detection of passive covert chan-

nels in tcp/ip. In Local Computer Networks, 2005. 30th Anniversary. The IEEE

Conference on, pages 802–809, Nov 2005. doi: 10.1109/LCN.2005.92.

[168] J. Zhai, G. Liu, and Y. Dai. A covert channel detection algorithm based on tcp

markov model. In Multimedia Information Networking and Security (MINES),

2010 International Conference on, pages 893–897, Nov 2010. doi: 10.1109/MINES.

2010.190.

[169] P. Peng, P. Ning, and D. S. Reeves. On the secrecy of timing-based active water-

marking trace-back techniques. In Security and Privacy, 2006 IEEE Symposium

on, pages 349–364, May 2006. doi: 10.1109/SP.2006.28.

[170] L. Arshadi and A. H. Jahangir. On the tcp flow inter-arrival times dsitribution.

In Computer Modeling and Simulation (EMS), 2011 Fifth UKSim European Sym-

posium on, pages 360–365, Nov 2011. doi: 10.1109/EMS.2011.34.

[171] K. Kothari and M. Wright. Mimic: An active covert channel that evades regularity-

based detection. Computer Networks, 57(3):647 – 657, 2013. ISSN 1389-1286. doi:

http://dx.doi.org/10.1016/j.comnet.2012.10.008.

[172] X. Luo, W. W. E. Chan, and K. C. R. Chang. Cloak: A ten-fold way for re-

liable covert communications. In J. Biskup and J. Lpez, editors, 12th European

Symposium On Research In Computer Security, Dresden, Germany, September 24

26, 2007. Proceedings, pages 283–298, Berlin, Heidelberg, 2007. Springer Berlin

Heidelberg. ISBN 978-3-540-74834-2. doi: 10.1007/978-3-540-74835-9 19.

[173] S. Mou, Z. Zhao, S. Jiang, Z. Wu, and J. Zhu. Feature extraction and classi-

fication algorithm for detecting complex covert timing channel. Computers and

Security, 31(1):70 – 82, 2012. ISSN 0167-4048. doi: http://dx.doi.org/10.1016/

j.cose.2011.11.001. URL http://www.sciencedirect.com/science/article/

pii/S0167404811001349.

[174] A. Feldmann. Characteristics of tcp connection arrivals. In Self-Similar Network

Traffic and Performance Evaluation. Wiley, 1998.

[175] R. S. Prasad and C. Dovrolis. Beyond the model of persistent tcp flows: Open-loop

vs closed-loop arrivals of non-persistent flows. In Simulation Symposium, 2008.

ANSS 2008. 41st Annual, pages 121–130, April 2008. doi: 10.1109/ANSS-41.2008.

16.

http://www.sciencedirect.com/science/article/pii/S0167404811001349
http://www.sciencedirect.com/science/article/pii/S0167404811001349

Bibliography 159

[176] H. Wu, M. Zhou, and J. Gong. Investigation on the ip flow inter-arrival time in

large-scale network. In Wireless Communications, Networking and Mobile Com-

puting, 2007. WiCom 2007. International Conference on, pages 1925–1928, Sept

2007. doi: 10.1109/WICOM.2007.482.

[177] I. W. C. Lee and A. O. Fapojuwo. Analysis and modeling of a campus wireless

network tcp/ip traffic. Computer Networks, 53(15):2674–2687, 2009.

[178] N. Kiyavash, F. Koushanfar, Coleman T. P., and M. Rodrigues. A timing channel

spyware for the csma/ca protocol. IEEE Transactions on Information Forensics

and Security, 8(3):477–487, March 2013. ISSN 1556-6013. doi: 10.1109/TIFS.

2013.2238930.

[179] N.L. Johnson, S. Kotz, and N. Balakrishnan. Continuous univariate distributions.

Number v. 2 in Wiley series in probability and mathematical statistics: Applied

probability and statistics. Wiley & Sons, 1995. ISBN 9780471584940. URL https:

//books.google.de/books?id=0QzvAAAAMAAJ.

[180] F. Benedetto, G. Giunta, E. Guzzon, and M. Renfors. Effective monitoring of

freeloading user in the presence of active user in cognitive radio networks. IEEE

Transactions on Vehicular Technology, 63(5):2443–2450, Jun 2014. ISSN 0018-

9545. doi: 10.1109/TVT.2013.2290035.

[181] R. Archibald and D. Ghosal. A comparative analysis of detection metrics for

covert timing channels. Comput. Secur., 45:284–292, September 2014. ISSN 0167-

4048. doi: 10.1016/j.cose.2014.03.007. URL http://dx.doi.org/10.1016/j.

cose.2014.03.007.

[182] A. Chen, W. B. Moore, H. Xiao, A. Haeberlen, L. T. X. Phan, M. Sherr, and

W. Zhou. Detecting covert timing channels with time-deterministic replay. In 11th

USENIX Symposium on Operating Systems Design and Implementation (OSDI

14), pages 541–554, 2014.

[183] 42ne, 2015. URL www.42ne.it/content/covert-channels-implementations.

[184] A. Liguori. Open-source covert timing channel, 2015. URL https://code.

google.com/p/osctc.

[185] ASF. Apache license, version 2.0, 2004. URL www.apache.org/licenses/.

[186] S. Gianvecchio and H. Wang. Detecting covert timing channels: an entropy-based

approach. Proceedings of the 14th ACM conference on Computer and communica-

tions security, pages 307–316, 2007.

https://books.google.de/books?id=0QzvAAAAMAAJ
https://books.google.de/books?id=0QzvAAAAMAAJ
http://dx.doi.org/10.1016/j.cose.2014.03.007
http://dx.doi.org/10.1016/j.cose.2014.03.007
www.42ne.it/content/covert-channels-implementations
https://code.google.com/p/osctc
https://code.google.com/p/osctc
www.apache.org/licenses/

Bibliography 160

[187] R. W. Hamming. Error detecting and error correcting codes. Bell System Technical

Journal, pages 147–160, 1950.

[188] V.I. Levenshtein. Binary codes capable of correcting deletions, insertions, and

reversals. Soviet Physics Doklady, 1966.

[189] A. Tedeschi, A. Liguori, and F. Benedetto. Information Security and Threats in

Mobile Appliances. Recent Patents on Computer Science, 7(1):3–11, June 2014.

[190] A. Liguori. From Multilevel Security to MILS: the Evolution illustrated through

a Novel Cross-Domain Architecture. International Journal of Mobile Network

Design and Innovation, FORTHCOMING.

[191] A. Simonetta, M. C. Paoletti, and A. Liguori. Testing di oggetti matematici in java.

Introduzione a JUnit. UNIVERSITALIA, 1 edition, 9 2013. ISBN 978-8865075531.

[192] National Security Agency Central Security Service. Cryptography today, 2015.

URL www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml.

[193] A. Papoulis. Probability, random variables, and stochastic processes. McGraw-Hill

series in electrical engineering. McGraw-Hill, 1991. ISBN 0-07-100870-5.

www.nsa.gov/ia/programs/suiteb_cryptography/index.shtml

	Declaration of Authorship
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Acronyms & Abbreviations
	1 INTRODUCTION
	1.1 The Multilevel Security Problem
	1.2 MLS Applications
	1.3 Security Certification Schemes
	1.4 Covert Channel Problem
	1.5 Drawbacks of Current Solutions
	1.6 Outline of the Thesis

	2 FROM MULTILEVEL SECURITY TO MILS
	2.1 Security Models
	2.1.1 Bell-La Padula
	2.1.2 Biba
	2.1.3 RBAC
	2.1.4 Clark-Wilson
	2.1.5 Chinese Wall

	2.2 Related Work
	2.3 State of the Art of Classic MLS
	2.3.1 Operating Systems
	2.3.2 Databases
	2.3.3 Virtualization

	2.4 Cross-Domain Solutions
	2.4.0.1 MLS Guards
	2.4.0.2 Air-Gap
	2.4.0.3 Data-Diode

	2.5 Drawbacks of the classical approach
	2.6 Multiple Independent Levels of Security/Safety
	2.6.1 NEAT Paradigm

	2.7 State of the Art of MILS Solutions
	2.7.0.1 Separation Kernel Hypervisors
	2.7.0.2 Separation Kernel Operating Systems

	2.8 Security Evaluation Criteria
	2.8.1 ISO/IEC 15408
	2.8.1.1 Security Evaluation Phases
	2.8.1.2 Evaluation Assurance Levels
	2.8.1.3 Compositional Approach

	2.9 MILS Projects

	3 NOVEL MILS ARCHITECTURES
	3.1 Proposed MILS Distributed Architecture
	3.1.1 MILS Architecture Components
	3.1.1.1 Trusted Front End
	3.1.1.2 Policy Server
	3.1.1.3 Transitional Secure Server
	3.1.1.4 MILS Yarn Trusted Host
	3.1.1.5 SoftGap
	3.1.1.6 Application Servers

	3.1.2 Security Requirements
	3.1.3 MILS Architecture Use Cases
	3.1.3.1 Unidirectional Secure Import from Unreliable Network
	3.1.3.2 Secure Download from Internal File Server
	3.1.3.3 Hybrid Security Requirements Correlation

	3.1.4 Cipher Suites

	3.2 Evaluation
	3.2.1 Security
	3.2.1.1 System Model
	3.2.1.2 Attack Model
	3.2.1.3 Security Analysis

	3.2.2 Performance
	3.2.2.1 Message Overhead
	3.2.2.2 IKE and TLS Message Overhead
	3.2.2.3 Further Overhead Elements
	3.2.2.4 Message Size Overhead

	3.3 SOFTGAP: a novel MILS Cross-Domain solution
	3.3.1 SoftGap Architecture
	3.3.2 System Model
	3.3.3 Attack Model
	3.3.4 Security Enforcing Functions Details
	3.3.5 Sequence of Operations
	3.3.6 Design Approach Rationale
	3.3.7 Security Analysis
	3.3.8 Security Evaluation Considerations

	4 COVERT CHANNEL DETECTION
	4.1 The Prisoners' Problem
	4.2 Covert Channel Definition and Taxonomy
	4.2.1 Covert Storage Channels
	4.2.2 Covert Timing Channels

	4.3 Detection Algorithms
	4.3.1 Covert Storage Channel Detection Techniques
	4.3.2 Covert Timing Channel Detection Techniques

	4.4 Novel Covert Timing Channel Detection Algorithm
	4.4.1 System Model
	4.4.2 The Weibull-ness Test
	4.4.3 Performance Analysis and Numerical Results

	4.5 Open Source Covert Timing Channel
	4.5.1 Manchester Coding
	4.5.2 Hamming Code (12,8)
	4.5.3 Development and Target environment
	4.5.3.1 Sender
	4.5.3.2 Receivers
	4.5.3.3 Data test

	4.5.4 Empirical results
	4.5.4.1 Network conditions
	4.5.4.2 Covert bit interval time

	5 CONCLUSIONS
	5.1 Summary of Contributions
	5.2 Lessons Learned
	5.3 Open Challenges
	5.4 List of Publications
	5.4.1 International Journals
	5.4.2 International Conferences
	5.4.3 Books

	A Covert Timing Channel Source Code
	A.1 Simple OSCTC
	A.1.1 Simple OSCTC Client
	A.1.2 Simple OSCTC Server

	A.2 OSCTC with Manchester Coding
	A.2.1 OSCTC with Manchester Client
	A.2.2 OSCTC with Manchester Server

	A.3 OSCTC Manchester + Hamming
	A.3.1 OSCTC Manchester + Hamming Client
	A.3.2 OSCTC Manchester + Hamming Server

	A.4 Passive OSCTC
	A.4.1 Passive OSCTC Client
	A.4.2 Passive OSCTC Server

	B NSA Cipher Suites
	C Weibull Probability Density Function
	C.1 Weibull Distribution

	Bibliography

