“main” — 2016/5/6 — 12:57 — page i — #1

==ROMA

N

IVERSFFA DEGLI STUDI

Roma Tre University
Ph.D. in Computer Science and Engineering

Improving flexibility,
provisioning, and
manageability in intra-domain
networks

Gabriele Lospoto
Cycle XXVIII



“main” — 2016/5/6 — 12:57 — page ii — #2



“main” — 2016/5/6 — 12:57 — page iii — #3

Improving flexibility, provisioning, and manageability in
intra-domain networks

A thesis presented by
Gabriele Lospoto
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Computer Science and Engineering

Roma Tre University
Department of Engineering

Spring 2016



“main” — 2016/5/6 — 12:57 — page iv — #4

COMMITTEE:
Prof. Giuseppe Di Battista

REVIEWERS:
Prof. Olivier Bonaventure, Université Catholique de Louvain
Prof. Stefano Giordano, Universita di Pisa



“main” — 2016/5/6 — 12:57 — page v — #5

To my family

Allora Gesui disse loro: “Gettate la rete dalla parte destra della barca e troverete”. La
gettarono e non potevano piit tivarla su per la gran quantita di pesci. Allora Simon
Pietro sali nella barca e trasse a terra la rete piena di centocinquantatré grossi pesci.
E benché fossero tanti, la rete non si spezzo.

(Gv 21, 6,11)

So Jesus said to them, “Cast the net over the right side of the boat and you will find
something.” So they cast it, and were not able to pull it in because of the number of
fish. So Simon Peter went over and dragged the net ashore full of one hundred
fifty-three large fish. Even though there were so many, the net was not torn.

(John 21, 6;11)
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Introduction

Internet has a hierarchical structure, in which network devices (e.g., routers)
are grouped into logical areas. Each area is called Autonomous System (AS)
and it is typically under the control of a single organization, also called In-
ternet Service Provider (ISP). An ISP takes decisions in terms of routing pro-
tocols to use for forwarding traffic. The focus of this thesis is on problems
inside the network of an ISP, a context that is commonly referred to as intra-
domain network. Routing inside intra-domain networks is typically realized
combining several protocols, which collaborate in order to provide services,
even basic like connectivity. This makes protocols specialized on a specific
task (e.g., guarantee certain levels of quality of service) giving to network ad-
ministrators the possibility to choose among different protocols in order to
accomplish a specific activity (e.g., computing paths in the network). Such
coexistence surely aims at improving flexibility, but it also leads to several
problems in terms of manageability of the network, making the provisioning
of services more difficult. The main goal for an ISP consists in having a fine-
grade control over the routing paths in the network, which gives to the ISP
itself the opportunity of exploiting its network efficiently; at the same time,
making the management of the network simpler, for example reducing both
the configuration and troubleshooting effort, is also a desirable target.

In this thesis, four different contributions are presented, aimed at: 1) mak-
ing routing flexible; 2) simplifying the provisioning of the services; 3) mak-
ing the manageability of the network sustainable for network administrators.
The emphasis is on how flexibility and manageability can be improved using
both distributed and centralized approaches. On the other hand, provisioning
can be significantly improved by using a centralized paradigm, like Software-
Defined Networking (SDN): having a single logic place in which to locate the
entire control for a service allows network administrators to also decrease the
configuration effort in the setup of that service, as well as to have very high

1
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levels of flexibility.

Adopting the novel approaches proposed by SDN raises new challenges:
after showing the benefits brought by it, interoperability issues are addressed,
as well as a review of the most relevant state of the art contributions on SDN,
checking whether they are applicable on real OpenFlow-enabled switches.

The rest of the thesis is organized as follows. The chapters from 2 to 4 de-
scribe respectively three contributions aimed at making the routing as flexible
as possible, as well as reducing configuration and troubleshooting problems;
chapter 5 describes contribution in terms of how the most relevant SDN state
of the art is not applicable on current OpenFlow-enabled switches.

The first contribution is referred to a distributed control plane aiming to
improve flexibility and manageability. This control plane relies on approaches
like multipath and source routing in order to provide to network adminis-
trators tools that make the manageability of the network simpler; moreover,
exploiting multipath and source routing, the control plane also improves flex-
ibility in the network.

The second contribution is a solution aiming at improving provisioning,
as well as flexibility and manageability. The idea behind this contribution is
the following: can OpenFlow, the most used protocol enabling SDN, replace
many protocols in order to provide a service? Starting from a well known
and widely used service in production networks, Virtual Private Networks,
a rethinking activity has been performed, in order to make its provisioning
and manageability faster and simpler, by reducing the number of protocols
involved in setting up this service and, consequently, the configuration effort.
Indeed, setting up a Virtual Private Network is not trivial: many protocols
are typically involved, each of which has a specific task; being flexible is not
simple as well, because the interaction among protocols is realized by tun-
ing some configuration parameters; also the management of the service itself
is hard, because the configuration of a Virtual Private Network is scattered
among many devices; this makes troubleshooting hard as well. As a conse-
quence of using just one protocol based on a centralized approach like Open-
Flow, and observing that it typically has a complete view of the network, a
new centralized specification language for setting up Virtual Private Network
is also defined.

The third contribution addresses an interoperability problem. Indeed, to-
day’s networks strongly rely on the Address Resolution Protocol (ARP), a pro-
tocol for building the association between IP and MAC addresses; this proto-
col is also executed by end-systems, that do not play any active role in the
operation of an SDN, like computers; hence an interoperability mechanism is
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needed, allowing OpenFlow-enabled switches to correctly handle ARP pack-
ets. This protocol generates broadcast traffic that typically traverses local net-
works: the simpler and most adopted solution for handling this kind of traffic
using OpenFlow is to re-implement the ARP protocol behavior. However, this
choice does not take into account the power of SDN. Exploiting the SDN ap-
proach, a solution that prevents broadcast ARP packets from passing through
the local SDN-enabled networks has been proposed; in particular, these pack-
ets can be bounded at the edge of the network, making the handling of ARP
traffic more efficient.

The fourth contribution is an investigation on the readiness of real de-
vices to run centralized protocols like OpenFlow. The idea is very simple:
OpenFlow 1.0.0 is the first standard, and it was released in 2009; the most re-
cent, OpenFlow 1.5.1, has been released around the half of 2015; is the SDN
state of the art applicable using real devices? Moreover, which is the level
of compliance of the real network devices with the OpenFlow standard after
six years? The former question arises because many evaluations and experi-
ments of SDN papers have been conducted in a simulated environment. We
reviewed the most relevant state of the art talking about SDN, aiming at un-
derstanding if they are applicable. We also investigated features in terms of
functions and performance of those devices.

In the last chapter conclusions and research directions will be reported.
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Chapter 1

Routing in Intra-Domain Networks

In this chapter we introduce some basic concepts, aiming to provide prelimi-
nary building blocks, useful to have a more complete view over the addressed
problems and the proposed solutions. First of all, we propose a brief overview
about different approaches which routing protocols rely on; after that, an in-
troduction on Software-Defined Networking (SDN) and OpenFlow specifica-
tion [1] is proposed.

1.1 Routing Protocol Approaches

Routing protocols may rely on two different and complementary approaches:
distributed and centralized. A routing protocol based on a distributed ap-
proach typically works as follows. Each network device cooperates with the
other ones in order to produce, accordingly with a certain algorithm, a set of
rules, allowing traffic to be forwarded in the network. A network device (e.g.,
a router) with a distributed routing protocol on board has two logical levels:
control plane and data plane. The first one implements algorithm used to com-
pute paths in the network; it can be thought as the brain of the network itself.
The data plane has in charge the task of forwarding traffic relying on the rules
computed by the control plane. All today’s routing protocols are based on the
distributed approach: an example is OSPF [2], the most used protocol in intra-
domain networks. These protocols are massively used because they are fast to
recover from network changes, guaranteeing very high levels of robustness in
the network. A network administrator interacts with these protocols through
configuration files, that allows him/her to tune several parameters in order

5
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to affect the behavior of the control plane. Unfortunately, this interaction sys-
tem, joint to the coexistence of many protocols in today’s network, amplifies
problems like flexibility, provisioning and manageability.

Flexibility problems are referred to the complexity in taking the control of
how traffic is forwarded. Indeed, paths used to carry traffic in the network
are computed by algorithms that are typically built-in inside the firmware
of devices, making difficult to implement custom forwarding policies. The
interactions with routing protocols are always realized interacting with con-
figuration files: exploiting them, a network administrator can influence the
behavior of the protocols; nevertheless he/she will not be able to exactly de-
termine how traffic will be forwarded, leaving to the protocol itself the task of
computing paths accordingly to the strategies implemented in the algorithms.

Provisioning problems arise when a network administrator wants to set up
a service. Provisioning is referred to the ability of configuring services in a
simple and fast way. In a tradtional network a network administrator must
interact with different protocols, potentially replicating the configuration on
many devices. This task is time consuming and the configuration effort is not
negligible. For the same reasons, also manageability becomes a relevant prob-
lem: in presence of a misbehavior in the network, investigating the possible
causes could not be a trivial activity. Moreover, modifying the configuration
for a service may result hard to perform.

An alternative approach to the distributed one is the centralized. This ap-
proach relies on a single entity having in charge the task of controlling the
whole network, and instructing each device about the forwarding. This ap-
proach has been set aside for a long time, but in the past years it is back under
the name of Software-Defined Networking (SDN).

1.2 Software-Defined Networking

Software-Defined Networking (SDN) is routing architecture [3] based on a
centralized routing paradigm that is collecting the attention of the entire net-
work research community, as well as many vendors. In this approach, soft-
ware implementing the control plane, called controller, is moved into a dedi-
cate hardware (e.g., a computer), leaving on board of the network devices the
data plane level. A controller interacts with devices through an ad-hoc proto-
col: OpenFlow [1] is the most used protocol enabling SDN in the networks. A
controller has in charge many tasks; it must: i) receive topology and state
information from all network devices and reconstruct the entire topology;
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ii) compute routing tables for each network device in the network in order
to forward traffic; iii) distribute them to each network device.

Centralized approach offered by SDN potentially has several advantages:
first of all, it allows network administrators to precisely determine how for-
warding is realized: in fact, SDN gives the opportunity to write software in
order to model the behavior of the network, instead of interacting with many
configuration files. Moreover, exploiting the centralized network’s view at
the controller, the configuration is not replicated on many devices, for exam-
ple reducing the effort of troubleshooting activities. Unfortunately, SDN also
brings some disadvantages, especially in terms of robustness. Indeed a new
relevant research field is arising: Hybrid SDN [4, 5, 6], namely the possibility
to let traditional distributed routing protocols and SDN coexist in the same
network. For example in [4] authors aim to take advantage from both the flex-
ibility offered by SDN and the robustness abilities of the distributed protocols,
pointing out how a centralized decision point is a profitable choice for having
a flexible control over the network; in this thesis it is also argued that a central
decision point improves the provisioning of the services and the manageabil-
ity of them, and — consequently — of the network.

The OpenFlow Protocol

OpenFlow is a specification of a logical architecture for an SDN-enabled switch
(datapath) and of a protocol for the communication between such a switch and
a controller platform. It is by far the most widely adopted specification, to the
point that even vendors that developed alternative implementations of SDN
customized to support proprietary functions (e.g., Cisco’s onePK [7]) also of-
fer OpenFlow support as a compatibility plug-in.

In this section we summarize the fundamental elements of the OpenFlow
specification that are useful to understand our device testing methodology.
Several versions of the specification have been published since its appearance
in 2009, confirming that it has now reached a considerable level of maturity: in
this summary we refer to the most recent version, 1.5.1 [8]. The specification
describes three key concepts: datapath ports, various kinds of tables, and the
datapath-controller communication protocol.

The configuration of a datapath often includes a declaration of the physi-
cal ports that operate in OpenFlow mode, namely that are part of an instance
of (virtual) OpenFlow datapath. According to the specification, at least two
kinds of ports are exposed to an OpenFlow datapath instance: an abstraction
of each physical port where the port number, its features, and its status can
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be accessed via OpenFlow data structures and messages; and a set of reserved
ports, that are used to accomplish special actions or invoke OpenFlow-specific
functionalities. Support for some of the reserved ports is mandatory: for ex-
ample, this is the case for ports ALL (used to forward a copy of a packet on all
the interfaces but the one through which it was received) and CONTROLLER
(used to send a packet to the controller). Support for other reserved ports is
optional: for example, this applies to the NORMAL port.

According to the specification, an OpenFlow datapath must implement
different kinds of tables: the standard flow tables, a group table, and a meter
table. First of all, it is possible to apply an arbitrary bitmask to certain packet
headers to match only a subset of the bits of a field value. This is particu-
larly useful, for example, when matching IP subnets. Moreover, among the
actions declared as mandatory by the specification, there is a “group action”,
which allows to perform several actions on multiple copies of the same packet.
Match conditions and actions can also operate on registers, called “metadata”,
that are used to pass information between flow tables. Flow entries have
a priority, and every flow table also has a lowest-priority special table-miss
flow entry, which determines the action that the datapath should undertake
on packets that were not matched by any of the entries in the flow table (in the
absence of a table-miss flow entry, packets should just be dropped). Each en-
try in the flow table may have counters that determine how many packets and
bytes matched that entry: note that the support of these counters is declared
as optional. Besides the flow tables, an OpenFlow datapath also maintains a
group table, whose implementation is mandatory. This table is used to store
groups of actions that can be referenced in the action part of a flow entry. De-
pending on the type of the group, all or only one the involved actions are
executed on matching packets. Groups are therefore used during our tests to
check the ability of a datapath to forward copies of a packet out of multiple
ports. Finally, an OpenFlow datapath also maintains a mandatory meter table,
that defines per-flow meters usable for classifying, rate limiting, or dropping
different types of traffic.

Concerning datapath-controller communication, the forwarding is accom-
plished according to match-action rules that the controller installs in flow ta-
bles on the datapaths using FlowMod messages, either proactively (before any
traffic is exchanged) or reactively (after a Packetln message is received from a
datapath that has no flow entries to handle a specific packet). If required, the
controller may also ask a datapath to originate a packet, using a PacketOut
message.
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Chapter 2

Intra-Domain Routing with
Pathlets *

Internal routing inside the network of an Internet Service Provider (ISP) af-
fects the performance of lots of services that the ISP offers to its customers
and is therefore critical to adhere to Service Level Agreements (SLAs), achieve
a top-quality offer, and earn revenue. Existing technologies (most notably,
MPLS) offer limited (e.g., with RSVP-TE), tricky (e.g., with OSPF metrics), or
no control on internal routing paths. Recent research results address these
shortcomings, but miss a few elements that would enable their application in
an ISP’s network.

We introduce a new hierarchical control plane, based on pathlet routing [9],
designed to operate in the network of an ISP and offering several nice features:
it enables steering of network paths at different levels of granularity, allowing
the ISP to have a flexible handling of those paths, since our control plane re-
lies on a multi-path approach; it is scalable and robust; it supports indepen-
dent configuration of specific network regions and differentiation of Quality
of Service (QoS) levels; it can nicely coexist with other control planes and is
independent of the data plane used in the ISP’s network. Besides formally
introducing the messages and algorithms of our control plane, we propose an
experimental scalability assessment and comparison with OSPF, conducted in
the simulation framework OMNeT++.

*Part of the material presented in this chapter is based on the following publication: M.
Chiesa, G. Lospoto, M. Rimondini, G. Di Battista. Intra-Domain Routing with Pathlets. In Com-
puter Communications, 46:76-86. 2014.
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2.1 Introduction

In a never-ending effort to offer top-quality services, Internet Service Providers
(ISPs) strive to distribute traffic loads in their networks with clever strate-
gies that not only ensure satisfaction of Service Level Agreements (SLAs), but
also realize competitive performance levels that earn them market shares and,
therefore, revenue. Fine-grained control of internal routing paths is essential
to achieve these goals, and several technologies (e.g., OSPF, RSVP) have been
introduced and widely deployed to gain this control. However, their complex-
ity of setup, scarce predictability of dynamic behavior, and limited degree of
control of routing paths pushed the research community to seek for alterna-
tive solutions along approaches like source routing, multipath routing, and
hierarchical routing. To the extent of our knowledge, none of these solutions
yet succeeded in combining these approaches to obtain routing control while
supporting other features that ISPs yearn for, like configuration simplicity, ro-
bustness, compatibility with deployed routing mechanisms, and Quality of
Service (QoS) differentiation, to mention a few.

In this chapter we propose the design of a new control plane for internal
routing in an ISP’s network which aims at achieving these goals. Our con-
trol plane supports control of routing paths at different levels of granularity,
envisions several kinds of routing policies, and allows computation of multi-
ple paths for resilience and, possibly, QoS differentiation. It reacts efficiently
to topological changes and administrative reconfigurations, enables adminis-
trators to independently configure different network portions, and it can be
incrementally deployed. We build our control plane on top of pathlet rout-
ing [9], one of the most convenient approaches introduced so far to tackle an
ISP’s requirements. By integrating this contribution and combining it with
other suitably adapted approaches from the literature, we define a complete
pathlet-based routing solution that is applicable to intra-domain routing, fill-
ing a gap that, as far as we know, is still open.

In the control plane we propose, routers exchange path fragments called
pathlets and are grouped into areas: within a single area routers exchange all
information about the available links, in a much similar way to what a link-
state routing protocol does; when announced outside the area, such informa-
tion is summarized in a single pathlet that goes from an entry router for the
area directly to an exit router, without revealing routing choices performed by
routers that are internal to the area. This special pathlet, which we call cross-
ing pathlet, is considered outside the area as if it were a single link. An area
can enclose other areas, thus forming a hierarchical structure with an arbitrary
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number of levels.

The rest of the chapter is organized as follows. In Section 2.2 we review
the state of the art on routing mechanisms that could match the requirements
of ISPs. In Section 2.3 we introduce a model for a network where nodes are
grouped in a hierarchy of areas. Based on this model, in Section 2.4 we define
the mechanisms for the creation and dissemination of pathlets in the network.
We then describe in Section 2.5 how network dynamics are handled, including
the specification of the messages of our control plane and of the algorithms
executed by network nodes to update routing information. In Section 3.3 we
elaborate on the practical applicability of our control plane in an ISP’s network
in terms of possible deployment technologies and illustrate an incremental
deployment scenario. In Section 2.7 we present an experimental assessment
of the scalability of our approach and compare its performance with those of
OSPF, using the OMNeT++ simulation framework. Conclusions and plan for
future work are presented in Section 2.8.

2.2 Related Work

Many contributions in the literature propose methodologies, algorithms, and
protocols that address the scalability, robustness, and controllability require-
ments faced by an ISP in managing its network. Commonly adopted ap-
proaches to satisfy these requirements include source routing, hierarchical
routing, and multipath routing. For example, hierarchical routing has for long
been known to be provably effective in reducing the size of routing tables [10].
On the other hand, multipath routing is widely used in sensor networks [11],
where reachability of the various nodes must be guaranteed even under fre-
quent connectivity variations.

However, none of the contributions we are aware of succeeds in proposing
a complete routing solution that fits the requirements of an ISP in an intra-
domain scenario: either they apply to inter-domain routing, where the degree
of control offered by the available technologies, as well as the goals that ISPs
are interested in pursuing, are different than those already proposed in the
literature, or they fail to address some basic requirements, most notably sim-
plicity of setup or compatibility with already deployed configurations and
technologies. We now review the state of the art on the most relevant control
plane mechanisms, using Table 2.1 as a reading key to classify the contribu-
tions we mention.

In terms of technologies, OSPF [2] is the state of the art for interior routing
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Source Hierarchical Multipath

routing routing routing
MIRO [13] Limited No Yes
Path Splicing [14] Limited No Yes
NIRA [15] Yes No No
Landmark [16] No Yes Yes
Slick Packets [17] Yes Limited Yes
BGP Add-Paths [18] No No Yes
YAMR [19] No Limited Yes
HLP [20] No Limited No
ALVA [21] No Yes Limited
MACRO [22] No Yes No
HDP [23] Limited Yes No

Table 2.1: A classification of the state of the art according to the adoption of
some relevant routing techniques.

and has a wide deployment base. However, it offers limited control of rout-
ing paths, because they can only be affected by assigning costs and it is very
hard to influence a single path without affecting others; it imposes restrictions
on the configuration of areas, because they must adhere to a precise structure
with a single backbone and multiple stubs/transits; it is not designed to sup-
port source routing; and it has limited options to handle multiple alternative
paths, typically consisting in a set of possible load balancing policies. Al-
though not a true routing protocol, RSVP [12] has been conceived with traffic
engineering in mind, and yet it shares many of the shortcomings mentioned
for OSPE.

MIRO [13] is a routing solution that supports the negotiation of multiple
routing paths to satisfy the diverse requirements of end users, but no complete
control can be enforced on these paths. A similar drawback is shared by path
splicing [14], a mechanism designed to realize fault tolerance (see also [24]):
it exploits multipath routing to ensure connectivity between network nodes
as long as the network is not partitioned, but actual routing paths are not ex-
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posed and cannot therefore be controlled. The route discovery mechanism
envisioned in NIRA [15] makes routing paths more controllable, but this so-
lution is designed only for an inter-domain routing architecture, like MIRO,
and it relies on a constrained address space allocation, a hardly feasible choice
for an ISP that is taken also by Landmark [16]. Slick packets [17] achieves a
combination of fault tolerance and source routing, obtained by encoding in
the forwarded packets a directed acyclic graph of different alternative paths
to reach the destination. Besides the intrinsic difficulty of this encoding, this
solution inherits the limits of the dissemination mechanisms it relies on: NIRA
or pathlet routing (discussed below). BGP Add-Paths [18] and YAMR [19] also
address resiliency by announcing multiple routing paths selected according to
different criteria, but they only adopt multipath routing, they offer very lim-
ited or no support for hierarchical routing, and they have some dependencies
on the BGP technology. A completely different approach is taken by HLP [20],
which proposes a hybrid routing mechanism based on a combination of link-
state and path-vector protocols. In this paper the authors present an in-depth
discussion of the routing policies that can be implemented in such a scenario.
Although HLP matches more closely our approach, it is not conceived for
internal routing in an ISP’s network, it constrains the hierarchical network
structure to reflect inter-ISP agreements, and it has limits on the configurable
routing policies. A similar hybrid routing mechanism called ALVA [21] offers
more flexibility but, like Macro-routing [22], it does not explicitly envision
source routing and multipath routing. HDP [23] is a variant of this approach
that, although natively supporting Quality of Service and traffic engineering
objectives, is closely bound to MPLS and accommodates source routing and
multipath routing only in the limited extent allowed by this technology.
Some contributions, like LIPSIN [25], adopt a completely different routing
approach based on Bloom filters to gain efficiency. However, these solutions
are more oriented to multicast forwarding and do not offer a complete con-
trol on routing paths because they are based on a probabilistic model. Pathlet
routing [9] is definitely the contribution that is closest to our control plane
approach, because it introduces a data plane that supports a very flexible han-
dling of routing paths. Its most evident drawback is the lack of a completely
defined mechanism for the dissemination of pathlets, which the authors only
hint at. Our control plane approach, which is based on pathlet routing, shares
some routing principles with those adopted in wireless sensor and mobile net-
works: among the others, the existence of clusters (which we call areas) and
the selection of routing paths based on some quality metrics. However, there
are some differences. For example, while energy constraints, handover mech-
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anisms, and evolution of network clusters are not a concern in the scenario
we consider, we provide any vertex in the network with enough information
to perform source routing, removing the need for central nodes that hold for-
warding information (e.g., Cluster Heads).

As a general remark, previous contributions highlight how path-vector
protocols typically support complex information hiding and path manipu-
lation policies, whereas link-state protocols typically offer fast convergence
with a low overhead. Therefore, a suitable combination of the two mecha-
nisms, which is considered in our approach, should be pursued to inherit the
advantages of both.

2.3 A Hierarchical Network Model

We now describe the hierarchical model we use to represent the network. In
addition, we describe how vertices in the network are assigned label stacks,
used to realize a hierarchical network structure, and define on these stacks a
few operators that are used to construct and propagate routing data; we then
introduce the concept of area and of border vertices, which are in charge of
summarizing internal routing information for an area.

We model a network topology as an undirected graph G = (V, E), with
vertices in V representing routers and edges in E = {(u,v)|u,v € V} repre-
senting links between routers. An example of network is in Figure 2.1. We
assume that any vertex in the graph is interested in establishing a path to a set
of destination vertices D C V that represent routers that announce network des-
tinations. Note that, although suitable to capture the physical topology of an
ISP’s network, this representation can also be adopted for overlay networks.

In order to limit the propagation of routing information that is only rele-
vant in certain portions of the network and to improve scalability, we group
vertices into structures called areas. Each vertex v € V' is assigned a stack of
labels S(v)=(lp l1 ... l,) that are taken from a set L, describing the area that
v belongs to. We assume that [; is the same for every S(v). An example of
assignment of label stacks to vertices, and the corresponding assignment of
vertices to areas, is shown in Figure 2.1.

We now define some operations on label stacks that allow us to formally
introduce the notion of area and that will be useful in the rest of the chapter.
Given two stacks o1 = (I3 Iy ... l;) and o9 = (l;41 liy2 ... 1), we define their
concatenation as 1 0o 02 = (l1 lo ... I; lix1 Live ... I,). Assuming that ()
denotes the empty stack, we have that o o ()=() o 0 =0. We say that a stack o



“main” — 2016/5/6 — 12:57 — page 15 — #25

2.3. A HIERARCHICAL NETWORK MODEL 15

A 2)

-
S

S(v1) = S(v2) = S(vs) =(013)
S(v4) = S(vs) = (01)

S(vs) = (0)

S(or) = (02 1)

Figure 2.1: A sample network where vertices have been assigned to areas,
represented by rounded boxes. The corresponding assignment of label stacks
to vertices is shown below the network.

strictly extends a stack o1, denoted by o1 C o9, if there exists a non-empty stack
& such that o3 = 01 o &, namely o3 is longer than o; and o, starts with the
same sequence of labels as o1. We say that o9 extends o1, denoted by o1 C o9,
if & can be empty. Referring to Figure 2.1, we have that S(vs) C S(v3), because
there exists a stack & =(3) such that S(v3)=S(vs)oa.

We call area A, CV a set of vertices whose stack extends ¢, namely such
that Vv € A, : 0 C S(v). In particular, A(,) =V. Considering Figure 2.1, the
assignment of label stacks to vertices defines areas Aoy, Ao 1), A0 1 3), A0 2),
and A 2 1) (note that Ay 2y =Ag 2 1)). From the definition of area follows this

property:
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Property 1. A vertex v € V with stack S(v) belongs to all the areas in {Ay|oc C

S(v)}-

We now consider a few interesting consequences of the definition of area.
First, an area cannot be empty, because it is defined by the stack of at least
one vertex. Moreover, by Property 1, specifying the stack S(v) for a vertex
v implicitly assigns v to all areas A, such that ¢ C S(v). Thus, areas can be
conveniently defined by simply specifying the label stacks for all vertices. In
addition, areas can contain other areas, forming a hierarchical structure like
the one in Figure 2.1. However, areas cannot overlap partially, i.e., if a vertex
v € V belongs to both A,, and A,,, then either oy C o or o3 Coy.

In order to limit the propagation of routing information, in our control
plane the portion of network topology that falls within an area A, is sum-
marized when disseminated outside A,. To support this summarization we
introduce two additional operators on label stacks.

Given two stacks o, =(ag ... a; ... ap)and op=(by ... b; ... by,) such
that ag = by, a1 = b1, ..., a; = b; for some i < min(m,n) and a; 1 # b1 if
i < min(m,n), we define o, X op = (ag ... a;) and o, — op = (ag ... ax),

where k =min(i + 1,n). For example, (02 1) x (01)=(01) x (02 1) = (0),
(021)—(01)=(02),and (01)—(021)=(01). Note that x is commutative,
whereas — is not. We also assume that () X o, = 0, X () = () and o, —
() = () — o, = (). As an intuitive interpretation, A,,x., is the most nested
area that contains both A,, and A,,, namely the area within which routing
information that is relevant only for vertices in A,, UA,, is supposed to be
confined. For example, in Figure 2.1 information exchanged by v5 and v7 will
be confined within area Ag(y;)ms(v,) = A(p). Similarly, A, ..o, is the least
nested area that includes all vertices in A, but not those in A,,, which is the
area that vertices in A, declare to be member of, and which they summarize
information for, when sending messages to neighboring vertices in A,,. In
Figure 2.1, v7 summarizes and sends routing information to vs as a member
of area Ag(y;)—s(vs) = A0 2)-

A vertex u € A, incident on an edge (u,v) such that v ¢ A, is called a
border vertex for A,, and is in charge of propagating outside A, a summary
of the internal routing information of A,. For example, in Figure 2.1 v; is a
border vertex for A 3). A vertex can be a border vertex for more than one
area (Property 1), while a neighbor of a border vertex needs not be a border
vertex itself. In Figure 2.1, v, is also a border vertex for A 1y, while vg is not
a border vertex. Derived from the definition of border vertex, we can state the
following property:
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Property 2. Area A, does not have border vertices.

2.4 Dissemination of Routing Information

We now illustrate how routing information is disseminated over the network.
In order to do so, we first define pathlets and describe how they are created
and propagated. We then introduce conditions on label stacks and routing
policies that further regulate this propagation.

Pathlet

Vertices in graph G exchange path fragments called pathlets [9] in order to
learn paths towards the destination vertices. We present an enhanced defi-
nition of a pathlet that is slightly different from [9]. A pathlet 7 is a t-uple
(FID,v1,v2,0,6) where all fields are assigned by vertex vy: FID is an inte-
ger number, unique at v;, that identifies the pathlet, and is called forwarding
identifier; v1 € V is the start vertex; vo € V such that vy # vy is the end vertex;
o is a stack of labels from LU{L} called scope stack, used to restrict the ar-
eas where 7 should be propagated (L is a special label used to mark pathlets
representing network links); and ¢ is a (possibly empty) set of network desti-
nations (e.g., network prefixes) available at vo. A pathlet 7 describes a way to
reach vy from vy, without revealing the sequence of traversed vertices. By con-
catenating learned pathlets, a vertex can therefore construct a path towards a
destination vertex. A concatenated pathlet can, in turn, constitute a new path
fragment that can be propagated to other vertices as a single pathlet. Pathlets
can also be labeled with Quality of Service indicators, that characterize the
performance of the network portion they traverse. For the sake of readability,
in the descriptions of Sections 2.4 and 2.5 we omit specifying these indica-
tors. The relationship between pathlets and QoS will be further discussed in
Section 3.3.

Packet forwarding

We now provide hints about the pathlet-based forwarding mechanism pre-
sented in [9]. Understanding this mechanism is required to determine the
forwarding state information that each vertex has to maintain to support the
operation of the data plane.

In pathlet routing, each data packet carries in a dedicated header a se-
quence of FIDs: each FID in this sequence indicates a pathlet that the packet
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should be routed along to reach the destination. When a vertex u receives a
packet, it considers the first FID in the sequence contained in its header: this
FID, referenced as f in the following, identifies a pathlet 7 that is known at u
and that has u as start vertex.

Observe that, in the general case, pathlet 7 may lead to an end vertex that
is not adjacent to u. Also, a pathlet does not contain the detailed specification
of the routing path to be taken to reach the end vertex. Hence, before forward-
ing the packet, vertex u has to replace f with another sequence of FIDs that
indicates the pathlets to be used to reach the end vertex of 7. We assume that
the forwarding state of u contains a mapping fids, (FID) between each FID
with start vertex v and a (possibly empty) sequence of FIDs. At this point, u
has to pick a neighboring vertex to forward the packet to. Since also this in-
formation is missing in pathlet , it must be kept locally at u. We assume that
the forwarding state of u also contains the next-hop vertex nh,(FID), namely
the vertex that immediately comes after u along 7. Both fids, and nh, are
computed by the control plane, as explained in the following.

Atomic, crossing, and final pathlets

We distinguish among three types of pathlets: atomic, crossing, and final. An
atomic pathlet w= (FID, Uggart, Vend, 0, 0) corresponds to a single edge between
two neighboring vertices vstart and venq in G and is such that o ends with
the special label L. § contains the network destinations possibly available at
Vend. Atomic pathlets are used to disseminate information about the network
topology and are propagated only inside area Ag(,...)xS(venq)- BeSides serv-
ing as a distinguishing mark for atomic pathlets, the special label L simplifies
the description of pathlet dissemination mechanisms, by homogenizing sev-
eral special cases. Bidirectional network links are represented by two opposite
atomic pathlets. For example, an atomic pathlet in the network in Figure 2.1
is ma5, 1 = (3,v4,v5,(01 L),0), used by v4 to reach vs.

A crossing pathlet w for area A, is a pathlet between a start and an end ver-
tex that are border vertices for area A,. Crossing pathlets always have § = ()
and do not contain label L at the end of scope stack. Crossing pathlets are one
of the fundamental building blocks of our control plane, because they offer to
vertices outside A, the possibility to traverse A, without knowing its internal
topology. Referring to Figure 2.1, two examples of crossing pathlets that v,
may know are w5 = (1,v2,vs, (0 1),0), which allows to traverse A 1), and
T3 = (12,v2,v3, (01 3),0), which allows to traverse A 1 3). A set of propa-
gation conditions, described later in this section, constrains the propagation
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of crossing pathlets outside the area of the vertex that composed them. Since
a vertex can be a border vertex for several areas, different pathlets with the
same start and end vertices (but with different scope stacks and FIDs) can act
as crossing pathlets for different areas.

Last, a final pathlet 7 is a pathlet between a start vertex that is the bor-
der vertex of an area A, and an end vertex that is a destination vertex in
A,. A final pathlet has ¢ # () and does not contain L in the scope stack.
An example of final pathlet that may be known by v5 in Figure 2.1 is 751 =
(11, v5,v1, (0 1),{d}), where d is a destination available at v;.

Notice that it is possible to create an atomic, a crossing, and a final pathlet
between the same pair of neighboring vertices: each of these pathlets will
have a different role and scope of propagation. For example, since vs and vs
are border vertices for A 1), besides the atomic pathlet my5 1 there can be
a crossing pathlet 745 = (2, v4,v5, (0 1),0) between the two vertices. Even if
they both correspond to a single link, 745 ;| and 745 are two different pathlets:
in fact they have different F/Ds and, unlike 745 |, the scope stack of 745 does
not end with L.

Pathlet creation

We now describe how atomic and crossing pathlets are created (similar mech-
anisms are applied for final pathlets). By create we mean that a vertex defines
a pathlet where it appears as the start vertex, assigns a locally unique FID to
it, and keeps it in a local data structure (see Section 2.5). We also use the term
composition to refer to the creation of crossing and final pathlets.

First of all, each vertex u € V for each (u,v) € E creates an atomic pathlet
(FID,u,v,00(L),d) such that o = S(u) x S(v), and § contains the network
destinations at v. The scope stack ¢ is chosen to restrict propagation of each
atomic pathlet up to the most nested area that contains both u and v. For each
atomic pathlet, vertex u also updates its forwarding state by setting nh,, (FID)=
v and fids, (FID)=().

By concatenating atomic pathlets, a border vertex u can create pathlets be-
tween non-neighboring vertices that can be used to traverse the areas that
u belongs to as if they consisted of a single link. In order to support sum-
marization of routing information, u appears to each neighbor = ¢ Ag(, as
a member of area A = Ag(y)5(x). Therefore, u creates crossing (and final)
pathlets for each such A. In Figure 2.1, v, creates crossing and final path-
lets for A 1) = As(vs)—5(vs) t0 be offered to vg and crossing and final path-
lets for A 13) = Ag(vy)—s5(vs) to be offered to vs. To describe the creation
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of crossing pathlets, we introduce a set chains(II, u, v, o) that contains all the
possible concatenations of pathlets from a set II, where each concatenation
starts at v and ends at v, and where the scope stack of each pathlet extends
o. Formally, chains(Il,u,v,0) is the set of all the finite and cycle-free se-

quences (m w2 ... m,) of pathlets in II, where each sequence is such that
7y = (FID;, w;, Wit1,04,0;), 0 © 04, Tig1 = (FIDjj11, Wit1, Wit2, Oit1,0i41),
and ¢ C 041, with i € {1,...,n — 1}, w1 = u, w41 = v. For each neigh-

bor z, a border vertex u € A, populates a set crossing, (II, o), with ¢ =
S(u) — S(x). Set crossing,(Il,o) contains a pathlet 7 = (FID, u,w, o,¢) for
each border vertex w # u for A, and for each sequence (7; w2 ... m,) in set
chains(Il, u, w, o). FID is chosen to be unique at u and 4 is set to (). Assuming
that m; = (FID,, u;,v;, 0, 0;), the forwarding state of u is updated by setting
fids,,(FID) = (FIDy FIDs ... FID,) and nhy(FID) = nhy(FID,) = vi. Be-
cause of the way in which chains(II, u, w, o) will be used in the following, we
assume without loss of generality that 7, is always an atomic pathlet. As an
example from Figure 2.1, let II={m, w2}, where m1 = (2, v3,v4, (01 L), 0) and
Ty = (3, 4,05, (01 L), 0): v2 may compose and put inits set crossing,,, (II, (0 1))
a pathlet (1, va,vs, (0 1), @) corresponding to the sequence of atomic pathlets
(my m2) taken from set chains(II, vz, vs, (0 1)). v will set fids,, (1) = (3) and
nhy, (1) =v4.

Final pathlets, put in a set final,(II, o), are created in a much similar way,
except that they are composed towards vertices in A,ND and ¢ is set to the set
0p, of network destinations of the last component pathlet in the sequence.

Discovery of border vertices

In order to compose crossing pathlets for an area, a border vertex v must iden-
tify other border vertices for the same area. Thanks to the following property,
u can achieve this by just considering the pathlets it receives.

Property 3. A vertex u € A, that receives two pathlets m, = (FID1,v1,w1,371, 01)
and wo = (FID3y, va, wa, T2, 62) that have a (start or end) vertex v in common and that
satisfy the following features can conclude that v is a border vertex for A,. (I) 62 = 0;
(ID 01 :alo(l), 092 :UQO(J_), ZGL, g1 7é (), (o) # (), (IID ooCo=o0y, (IV) V1 7é’U2
or wy #we; and (V) v € {v1, w1}, v € {va, wa} (that is, both my and o start or end at

v).

Proof. The fact that v € {v1, w; } implies that ve A,,: in fact, if {=_1, then 7 is
an atomic pathlet whose scope stack is o1 =5 (v1) ® .S(w1 ); since we know that
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S(v1) ) S(w1) CS(v), by Property 1 we can conclude that v € A,,. Otherwise,
if [ # 1, then 7 is either a crossing pathlet for some area A, . or a final
pathlet; in both cases, being an endpoint of 71, v must belong to A, (), hence
to A,, (by Property 1 again). Since 01 = 0, we can conclude that v € 4,. On
the other hand, from the scope stack o2 C o of the atomic pathlet 2 we know
that v has some neighbor that is not in A,: this allows u to conclude that v is
a border vertex for A,. O

According to this property, a vertex u € A, can use Algorithm 1, called
DI1SCOVERBORDERVERTICES(u, o, IT), to discover other border vertices for A,
based only on known pathlets in II.

Algorithm 1 Algorithm that a vertex u € A, can use to discover remote border
vertices for A, based only on the known pathlets in II.

1: function DISCOVERBORDERVERTICES(u, o, IT)

2:  Bis the set of remote border vertices for A, discovered so far

3: B«

4. for each pair (m, ;) of pathlets with 7y = (FIDq,v1,w1,61,61) and
my = (FID2,v9,wsq, 2, 02), such that v; # ve or wy # wsy, and Jv such that
v € {v,wr}and v € {ve, w2} do

5: if 301 # () such that 51 = 010 (1), ! € L, and Joy # () such that
g2 =030 (Ll)and 0y = 0 and 05 C o then

6: B+ BU {1}}

7: end if

8:  end for

9: return B

10: end function

Routing policies

We allow two kinds of policies: filters, which restrict the propagation of path-
lets, and pathlet composition rules, which affect the creation of crossing and final
pathlets. A filter at a vertex u may specify a neighboring vertex v and a triple
(w1, ws,0): this would prevent u from propagating to v those pathlets whose
start vertex, end vertex, and scope stack match the triple. A pathlet composi-
tion rule may induce a border vertex v to compose only the best ranked among
all the possible crossing (and final) pathlets, according to some optimality
metric. For example, v could compose a single crossing pathlet corresponding
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to a shortest sequence of concatenated pathlets. Even better, pathlets can be
ranked according to performance levels of the network portion they traverse,
which results in favoring best performing paths. Alternatively, pathlets can
be ranked according to their nature of atomic or crossing pathlet, and transit
through areas could be discouraged. We argue that such policies can simplify
network configuration tasks and improve scalability in a pathlet-enabled net-
work. In fact, policies can be implemented completely independently for each
area and, in case a best ranked pathlet becomes unavailable, a vertex could
switch to an alternative sequence of pathlets transparently (without sending
any messages).

Pathlet dissemination

In this section, we now explain how all created pathlets are disseminated to
other vertices in G based on their scope stacks. Consider any pathlet 7 =
(FID,u,v,0,d) and let 0 = g o (I) (because of the way in which pathlets are
created, such 5# () and € L U {1} must exist). A vertex w can propagate 7 to
a neighboring vertex x either if x =wu or if 7’s scope stack does not satisfy any
of the following propagation conditions:

1. S(w) w S(x) C &: prevents propagation of pathlets outside the area in
which they have been created. As a consequence, atomic pathlets with
scope stack ¢ o (L) are only propagated inside area A,;

2. 0 C S(w) x S(z): prevents propagation of crossing and final pathlets
inside the area of the vertex that created them;

3. 0 =85(n) — S(x): prevents w ¢ A from propagating crossing and final
pathlets for A inside A;

4. x = v: prevents sending to x a pathlet that is useless for «.

For convenience, given a vertex w that is assigned label stack S(w) = oy,
we define N(w,o,,n) as the set of neighbors to which w can propagate a
pathlet 7 according to the propagation conditions and to the routing policies.

Complete example

To show a complete example of creation and dissemination of pathlets, con-
sider again the network in Figure 2.1 and let vs host network destination d.
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In the following we assume that there are no filters applied, that the path-
let composition rule allows composition of all possible sequences of pathlets
(although we only show some of them), and that FIDs are randomly (yet
uniquely) assigned integer numbers. The atomic pathlet oy | = (2,v2,v4, (01 L), 0),
created by vertex vy, is propagated by vs to vs because S(v2) x S(v3)=(013) 7
(01), (01 L)Z(013), (01 L)+#S(vs) — S(ve2) =(013), and vg # vy; it is
also propagated to v; for the same reasons. Instead, 724, is not propagated
by vy to vs because S(v2) M S(vs) = (0) C (0 1) (the first propagation condi-
tion applies), and it is not propagated by v, to v4 because the end vertex of
T4, 1 1S vy itself. For similar reasons, ma4, | is further propagated by vs to vs,
but in turn vs does not propagate it to v;. Therefore, the visibility of ma4, |
is restricted to vertices inside A 1). In a similar way, v5 creates the atomic
pathlets 53,1 = <2, Vs, V3, (0 1 J_), ®> and T54,1 = <3, Vs, V4, (0 1 J_), @>, while V4
creates the atomic pathlet w46 1 = (3, v4,v6, (0 L), {d}). The reader can easily
find how these atomic pathlets are propagated. As a border vertex of A ; 3),
vs will also propagate to v; at least a crossing pathlet w52 = (1, v3, v2, (0 1 3),0)
for area Ag(y,)—s(vs)=(0 13)- Once pathlets have been disseminated, vs has
learned about a set of pathlets II and can create a crossing pathlet for area
A5 (vs)—S(vr)=(0 1) that can be offered to v7. For example, v5 can pick sequence
(753,10 Ta2 moa, 1) from chains(Il, vs, vy, S(vs) — S(v7)) and create in its set
crossing,, (I, S(vs) ~— S(vr)) the crossing pathlet w54 = (1,vs,v4,(01),0).
Propagation of this pathlet by vs to v4 is forbidden by the second propaga-
tion condition, because (0 1) C S(vs) X S(v4) = (0 1), and also by the fourth
propagation condition, because v, is also the end vertex of ms4; 754 Will how-
ever be propagated by v to v7 because S(vs) x S(v7) = (0) iZ (0), (0 1) Z (0),
(0 1) # S(v7) — S(vs) = (0 2), and v7 # vy4. To provide an alternative path,
vs can create another crossing pathlet 7}, = (9,vs5,v4,(01),0), correspond-
ing to the sequence consisting of the single atomic pathlet (54,1 ), and prop-
agated in the same way as 7s4. Last, vy will also create an atomic pathlet
75,1 = (8,v7,vs5, (0 L),0). At this point, v7 has two ways to construct a path
from itself to vertex vg, which contains destination d: it can concatenate path-
lets 75,1, 54, and mye, 1 Or pathlets w75 1, 75y, and w6, 1. The availability
of multiple choices supports quick recovery in case of fault and allows v to
select the pathlet supporting the most appropriate Quality of Service.
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2.5 A Control Plane for Pathlet Routing: Messages

We now describe how the dissemination mechanisms illustrated in Section 2.4
are implemented in terms of messages exchanged among vertices and al-
gorithms executed to update routing information. Details about algorithms
to handle network dynamics and actions undertaken by each vertex in con-
seguence of the reception of a message can be found in Appendix A.

Message Types

Each message in our control plane can carry the following fields: s: a stack of
labels; d: a set of network destinations; p: a pathlet; £: a FID; a: a boolean
flag (which tells whether a vertex has “just been activated”); o: the vertex that
first originated the message (we implicitly assume that this field is present in
every message). Messages can be of the following types, with fields in square
brackets:

Hello (s, d, a) periodically sent for neighbor greetings and never forwarded
to other vertices; it carries the label stack s and the set of destinations d
of the sender vertex. a is set to true when this is the first message sent
since the sender vertex was activated (powered on or rebooted), and
is used to allow neighbors to synchronize with complete information
about the current network status.

Pathlet (p) disseminates a pathlet p.

Withdrawlet (£, s) withdraws the availability of a pathlet with FID £, scope
stack s, and start vertex o. This message can only be originated by the
vertex that had previously created and disseminated the pathlet.

Withdraw (s) withdraws the availability of all pathlets with scope stack s,
and start vertex o.

With the exception of Hello, messages also have a src field specifying the
vertex that has sent the message and used to avoid forwarding the message
back to the sender (a technique known as split horizon). All message types but
Hello also have a timestamp field t that is set by the message originator to
the current clock when sending a newly created message. Unless there are
exceptions to their natural assignment, in the following we omit specifying
how the origin, source, and timestamp fields are set.
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Upon the reception of those messages at each vertex, it undertakes differ-
ent actions; algorithms describing in detail those actions are reported in Ap-
pendix A.2. In the following section, we report the details of all routing infor-
mation which our algorithms rely on.

Routing Information Stored at each Vertex

Each vertex u € V keeps the following control plane information locally (note
that this is not a complete view of all the routing paths): for each neighbor
v, the label stack S, (v) and the set of network destinations D, (v) currently
known for v; a set II,, of known pathlets, consisting of atomic pathlets created
by u and pathlets that « has received from its neighbors; for every area A,
for which u is a border vertex, a set B, (o) of vertices v € A,, v # u, that are
also border vertices for A,, and sets C, () and F, (o) of the crossing and final
pathlets for A, composed by u; a set H,,, called history, that tracks the most re-
cent piece of information known by v about every pathlet, being it positive or
negative (withdrawal): u sends information in H,, to newly appeared neigh-
bors, to immediately synchronize them with the current network status. Each
item of H, is a t-uple (FID, v, 0,t, type) where: the FID and the start vertex v
identify a pathlet = with scope stack o; t is the timestamp of the most recent
information that u knows about 7 (it may be the time instant of when 7 has
been composed or deleted by w, or the timestamp contained in the most recent
message received by u about 7); and type € {+, —} determines whether the
last known information about 7 is positive (7 has been composed by u or a
Pathlet message has been received about 7) or negative (7 has been deleted
by u or a Withdrawlet message has been received about ).

For each pathlet 7 € II,, u keeps an expiry timer T?(7), that specifies
how long the pathlet is to be kept in IL, before being removed. When a new
pathlet is created by u, its expiry timer is set to the special value T?(7) =
©, meaning that the pathlet never expires. Timer T7Z () is used to prevent
indefinite growth of II,: in fact, there may be cases when u never receives a
Withdrawlet message for a no longer usable pathlet. For example, consider
the network in Figure 2.1 and suppose that v, composes and announces a
crossing pathlet o5 = (1, v, vs5, (0 1), 0) for area A ). If link (v2, ve) fails, vg
has no way to receive a Withdrawlet for 725, because only v, can originate
this message and the propagation conditions prevent it from being forwarded
inside area A(o 1)- However, vg can no longer use my5 for any concatenations
and therefore has no reason to keep this pathlet in its set II,,,: 725 can indeed
be automatically removed after timer 77 (25) has expired.
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Also the history H,, could grow indefinitely, because an entry is stored and
kept in H,, even for each deleted or withdrawn pathlet. Therefore, each vertex
must also keep a history timer, which determines how long negative entries
(i.e., with type = —) in the history H,, of u are kept before being automatically
purged from H,. Positive entries (with type = +), on the other hand, never
expire.

We now specify the strategy with which the history is updated when cre-
ating or deleting pathlets. Every time a pathlet 7 = (FID, u,v, 0,0) is created
by a vertex u, the history H, of u is automatically updated with a positive
entry (FID,u,o0,T,+), where T denotes the time instant of the creation. If an
entry for the same FID and start vertex u already existed in H,, that entry is
replaced by this updated version. When pathlet 7 is no longer available, H,,
is updated with a negative entry (FID,u,0,T, —), where T' denotes the time
instant at which 7 has become unavailable. This entry replaces any previously
existing entry referring to the same pathlet 7. Observe that, in order to cor-
rectly forward data packets that still contain the FIDs of withdrawn pathlets
in their headers, u waits for a timeout to happen before clearing the forward-
ing state corresponding to 7, which means that FID cannot immediately be
reassigned to a new pathlet. Here we have only described history updates
due to locally created or deleted pathlets: updates triggered by received mes-
sages will be presented in more detail in Appendix A.2.

We point out that algorithms in Appendix A.2 strongly rely on these rout-
ing information.

2.6 Applicability Considerations

Setup of our control plane just involves specifying areas and filters and pick-
ing pathlet composition rules in a set of ready-to-use alternatives. We believe
this makes it easy for a network administrator to adopt it in an ISP’s network.
We now discuss possible application scenarios and further requirements that
can be accommodated in our model.

Our control plane is completely independent of the data plane that carries
its messages. However, the disseminated routing information can only be
exploited if a data plane that can handle pathlets is available. Such a data
plane should be able to carry sequences of FIDs, specified in packet headers to
route them along pathlets (see Section 2.4), and to apply push/pop operations
on these sequences. Given that we are considering the internal network of an
ISP, we argue that implementing the data plane, as well as our control plane,
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on top of Multi Protocol Label Switching (MPLS) is a quite natural choice.

It is unrealistic for an ISP to change the internal routing protocol in the
whole network in a single step. We therefore envision an incremental scenario
where a pathlet-enabled zone and a legacy (e.g., IP) zone coexist in the same
network. In this scenario, routers at the boundary of the two zones can dis-
seminate IP destinations in the pathlet zone in the form of final pathlets, and
announce pathlet destinations in the IP zone in the form of IP prefixes. More-
over, these routers can compose crossing pathlets to allow pathlet routers to
traverse an IP zone as if it were a single area, and forwarding of pathlet-based
packets in the IP zone can be achieved by tunneling such packets in IP: with a
suitable encoding of pathlets in AS paths, the Border Gateway Protocol (BGP)
could be used as the signaling protocol to establish these tunnels.

Our control plane can compute multiple paths between the same pair of
routers. Besides improving robustness, this feature can be exploited to sup-
port different Quality of Service levels: pathlets can in fact be labeled with
performance indicators (delay, packet loss, jitter, etc.) characterizing the qual-
ity of the paths they exploit. When composing pathlets, a router can update
these performance indicators to reflect those of the component pathlets: for
example, the delay of a composed pathlet can be set to the sum of the delays
of the component pathlets. In this way, routers can select pathlets (for compo-
sition, or to reach some network destination) based on the QoS requirements
for a specific traffic flow.

A relatively recent trend in computer networks consists in separating the
logic of the control plane of a device from the components that take care of
the actual traffic forwarding: this approach is known as Software Defined
Networking. The specification of OpenFlow [26], the most widely adopted
standard realizing this approach, includes support for matching, pushing, and
popping MPLS labels in data packets. Thus, our control plane can be imple-
mented as an OpenFlow controller that manages MPLS labels as required by
the pathlet forwarding mechanism (see Section 2.4). On the other hand, in
terms of network architecture, the authors of [27] suggest that a set of devices
managed by a single controller can be seen as a single logical device, in turn
having its own controller: we argue that we can inherit this approach, and its
scalability and manageability advantages, by assigning a separate OpenFlow
controller to each area.
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2.7 Experimental Evaluation

In order to verify the effectiveness and scalability of our approach, we per-
formed several simulations, trying to answer the following questions: (i) how
does our control plane perform when the network grows in size? and (ii) how does
the performance of our control plane compare with those of OSPF? As an answer
to question (i), we show that the number of exchanged messages and created
pathlets at a vertex grows linearly with the network size, while as an answer
to question (ii) we show that our control plane has competitive performance in
various different network scenarios involving a single area or multiple areas.

For the simulations we used OMNeT++ [28], a component-based C++ sim-
ulation framework based on a discrete event model. We built a prototype im-
plementation of our control plane based on the IP implementation available in
the INET framework OMNeT++ package [29]: messages of our control plane
are exchanged encapsulated in IP packets with a dedicated protocol number
in the IP header. Our implementation comprises 3 rules for the composition of
pathlets between every pair of border vertices for a certain area: A11, that al-
lows composition of all possible pathlets; Avoid, that prevents usage of cross-
ing pathlets in the composition (i.e., prevents traversing internal areas); and
One, that allows composition of a (randomly chosen) single pathlet. Due to
the huge amount of generated pathlets, indeed hardly useful for any real ap-
plication, we used A1l only in preliminary experiments. We then performed
more significant experiments on topologies generated by an ad-hoc piece of
software that creates a hierarchy of areas and adds routers and links randomly
to the areas. The topology generation was driven by the following parame-
ters: length NV of the label stacks (we assigned to all the routers a stack of the
same length); number R of routers having the same stack; number A of ar-
eas contained in each area; fraction B of the routers within an area that act as
border routers for that area; probability P of adding an edge between two bor-
der vertices or, as a special case, between vertices with the same label stack.
The topology generator proceeds by recursively creating areas, starting from
a single area that comprises all vertices. The complete procedure is described
in Algorithm 13 in Appendix A.3.

To perform experiments with topologies of increasing size, we set N =4,
R =10, and B = 0.2, and varied A between 3 and 4 (correspondingly hav-
ing 3*71 x 10 = 270 and 47! x 10 = 640 routers, respectively) and P in the
range [0.1,1] (thus randomly varying the number of links). We settled on
these values after several test runs used to assess the scalability limits of OM-
NeT++. Link delays were uniformly chosen in the range [10ms, 50ms| and
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Figure 2.2: Maximum number of messages (Hello, Pathlet) sent by a router
for pathlet composition rule One.

fixed throughout each simulation. We ran each simulation on 10 randomly
generated topologies for each combination of parameters and collected the
number of messages sent by each router, the number of crossing pathlets
composed by each router, and the time required by our protocol to converge,
namely to reach a state when no further information needs to be updated and
propagated. We measured the convergence time in terms of OMNeT++ simu-
lation time.

Scalability

The plots in Figg. 2.2 and 2.3 show some results of our scalability tests, per-
formed with the pathlet composition rule One. Data points in these plots
tend to be clustered in small groups: each group corresponds to the 10 runs
launched on as many randomly generated topologies with a fixed set of pa-
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Figure 2.3: Convergence time of our control plane for pathlet composition rule
One.

rameters. In Figure 2.2 it can be seen that the maximum number of messages
sent by a router grows linearly with the number of edges in the network, re-
gardless of the number of routers determined by parameter A. In Figure 2.3
we show that convergence times decrease as the complexity of the network
grows. We ascribe this behavior to the fact that a denser network allows
messages to be disseminated more quickly: in fact, they can reach relevant
routers along shorter paths. We consider this as an evidence of the scala-
bility of our protocol. We experienced very similar convergence times even
with the Avoid pathlet composition rule: however, we are not reporting here
the results of these simulations because they impacted the scalability limits of
OMNeT++ and therefore showed much less clear trends.

We also performed another class of experiments to assess the impact of the
appearance of a new router in the network. For this purpose, we focused on
one of the topologies generated with N =3, R=10, B=0.2, A=3,and P=0.1:
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Number of Convergence Involved

messages time (ms) routers
Internal vertex (1) 62 300 10
Internal vertex (2) 233 330 29
Border vertex for 1 area 221 310 30
Border vertex for 2 areas 486 370 90
Border vertex for 3 areas 1101 480 270

Table 2.2: Impact of the appearance of a new vertex on the network.

this topology had 270 routers and 332 links. We then selected a sample of
internal (non-border) and border vertices in this topology and, for each vertex,
ran a simulation with the pathlet composition rule One where the selected
vertex was activated only after the network had converged. In Table 2.2 we
show the effect of the appearance of the new router in terms of total number
of exchanged messages, convergence time, and number of routers that sent at
least one message. As a term of comparison, consider that between 15 190 and
17 423 messages were exchanged in total during each simulation. The impact
of newly appeared internal vertices depends of course on their position within
the area but, since they do not compose pathlets, it is in general less evident
than that of border vertices. Instead, the impact of newly appeared border
vertices increases with the number of areas for which they are border vertices.
Note that, since R = 10 and B = 0.2, we had exactly two border vertices per
area. Therefore, in our experiments there were areas for which pathlets could
only be composed after the late activation of the selected border vertex.

Comparison with OSPF

We also compared the performance of our control plane with those of OSPEF,
the state-of-the-art protocol for intra-domain routing. We ran both our path-
let routing prototype and the OSPF implementation included in the INET
framework on a common sample of topologies, with suitable configuration
adaptations to make them compatible with the two protocols. In a topology
consisting of a backbone area, with 15 routers and 16 links, and 4 stub areas,
each with 1115 routers and 12— 16 links, we observed that our control plane
exchanged many more messages (which is natural because several crossing
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pathlets are composed for each area), yet convergence times were compara-
ble: 439ms for OSPF and 517ms for our control plane. We then checked the
scalability in a single-area scenario: we generated 10 random topologies with
N=1, R=80, A=1, and P = 0.2, having 80 vertices each and between 580
and 680 edges. Especially in this scenario, our control plane exhibited very
competitive convergence times, in the range [259ms, 273ms], when compared
to the OSPF times, in the range [664ms, 699ms]. We recall that in this scenario
pathlet composition rules have no influence (see Property 2).

Our prototype implementation, including the topology generator, is avail-
able at [30].

2.8 Open Problems

The challenge of defining a new control plane at ISP-scale leaves several prob-
lems open. For example, in terms of control plane operation, at present sev-
eral pathlets must be (re)announced if a destination (dis)appears on the net-
work, but this could be avoided or at least contained with approaches like the
locator-ID separation pursued by [31]. The handling of stack change events
could be improved to further limit the network portion affected by the event.
Routing policies could be enriched to accommodate further requirements that
we have not considered yet. And it is still unclear what is the best option to
deal with dynamic changes in QoS levels without refreshing existing pathlets.
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Chapter 3

Rethinking Virtual Private
Networks in the Software-Defined
Era *

Multi Protocol Label Switching (MPLS) Virtual Private Networks (VPNs) have
seen an unparalleled increasing adoption in the last decade. Although their
flexibility as transport technology and their effectiveness for traffic engineer-
ing are well recognized, VPNs are difficult to set up and manage, due to
the complexity of configurations, to the number of involved protocols, and
to the limited control and predictability of network behaviors. On the other
hand, Software-Defined Networking (SDN) is a consolidated, yet still emerg-
ing paradigm by which the control plane logic of a network device is im-
plemented by an arbitrarily programmed software that runs outside the de-
vice itself. We conjugate the effectiveness of traditional VPNs with the pro-
grammability of SDN, proposing a novel and improved realization of MPLS
VPNs based on SDN. With our approach, provisioning and setup of VPNs are
accomplished by using a simple and flexible configuration language. Man-
agement and troubleshooting are facilitated because only a minimal set of
technologies (notably, just MPLS) is retained. Control and predictability of
network behaviors are enhanced by the centralized coordination enforced by

*Part of the material presented in this chapter is based on the following publications: G.
Lospoto, M. Rimondini, B. G. Vignoli, G. Di Battista. Rethinking Virtual Private Networks in the
Software-Defined Era. In Proc. IM, IFIP/IEEE, 2015, and G. Lospoto, M. Rimondini, B. G. Vignoli,
G. Di Battista. Making MPLS VPNs Manageable through the Adoption of SDN. In Proc. IM,
IFIP /IEEE, 2015.
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the SDN controller. Besides illustrating our proposed approach and specify-
ing the configuration language, we describe a prototype implementation of
a controller and the outcome of tests we conducted in several configuration
scenarios.

3.1 Introduction

Virtual Private Network (VPN) services based on Multi Protocol Label Switch-
ing (MPLS) play a key role in the business of Internet Service Providers (ISPs).
They are offered to a wide population of customers to interconnect their geo-
graphically distributed sites and continue to have an increasing market share
since the late 90s [32, 33]. Despite their maturity, they still have several critical
aspects, implied by the plethora of networking technologies and protocols in-
volved in their operation (MP-BGP, OSPF, LDP, etc.). First, this makes VPNs
difficult to provision, configure, manage, and troubleshoot. Second, it is hard
to cast a predictable behavior from the complex interactions of these tech-
nologies, especially considering that configurations are distributed on several
devices. Third, they offer limited or inconvenient methods to control routing
and traffic engineering decisions. In contrast, ISPs seek for simplicity of pro-
visioning and configuration, trouble-free management, flexibility in accom-
modating increasingly complex customer requirements, controllability, and
predictability.

This chapter shows that SDN can give a fundamental contribution to tackle
the mentioned shortcomings of MPLS VPNs. In principle, VPNs can be re-
alized with SDN by implementing a controller that replicates the configura-
tion interface and operation of the technologies involved in traditional VPNs.
However, this approach has very limited advantages (perhaps only the cen-
tralized configuration), and inherits the drawbacks of the involved technolo-
gies. An alternative approach offering improved flexibility is to specify the
configuration in the form of code fragments within the controller, for exam-
ple by exploiting an API designed for the setup of VPNs: virtually arbitrary
network behaviors and routing policies could be enforced in this way, but the
highly increased configuration complexity may be barely tolerable by network
administrators.

We leverage SDN to propose a completely different approach that pre-
serves the current features of MPLS VPNs while bringing about a smooth
provisioning, setup, and management experience for ISPs. We achieve this
by introducing a simple and flexible language for a convenient centralized
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specification of VPN configurations. This specification is then directly trans-
lated into flow entries to be installed on datapaths. To the benefit of manage-
ability, we drop most of the technologies currently involved in MPLS VPN,
retaining only those that are strictly required and reducing their usage to a
bare minimum (we even abandon label switching). Controllability and pre-
dictability are also enhanced by the datapath coordination action enforced by
the SDN controller. We have implemented a prototype of an OpenFlow SDN
controller based on our approach and used it to perform extensive experi-
ments in combination with Open vSwitch, one of the leading implementations
of OpenFlow-compliant datapaths that is also used on commercial hardware
such as Corsa Technology Inc. and Quanta Computer Inc. devices, as well as
some Intel-based platforms.

The rest of the chapter is organized as follows. In Section 3.2 we review
contributions related with MPLS VPNs and SDN. In Section 3.3 we describe
our approach compared with traditional MPLS VPNs, and argue on its prac-
tical applicability. In Section 3.4 we describe our VPN configuration language
and how a VPN specification is translated into flow entries. In Section 3.5 we
present the outcome of our experiments. Last, concluding remarks and lines
for future research are in Section 3.6.

3.2 Related Work

MPLS VPN are a long-established and extensively documented technology
(for a comprehensive introduction, see [34]). However, their complexity of
setup is a matter of fact (see, e.g., [35]) and is also confirmed by the existence
of several ad-hoc management and monitoring tools such as [36, 37, 38, 39].
Configuration automation solutions like, e.g., [40], can substantially cut the
probability of errors but do not solve the underlying configuration complexity.
In addition, current technologies for MPLS VPNs may exhibit inconsistent
behaviors: for example, certain visibility constraints between VPNs may be
difficult or even impossible to enforce (see [41]).

On the other hand, SDN is an approach supported by many vendors as
well as by technical and research communities, including the Open Network-
ing Foundation, the Open Networking Research Center (ONRC), the IETE
and the IEEE. Its most widely adopted realization is OpenFlow [1], whose
most complete specification is 1.5.0 [8].

Despite the converging interest on SDN, there are really few attempts to
import its flexibility in the implementation of VPN services. The most ac-
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tive research line is led by the ONRC [42]: in [43] they share our concerns
on the inconveniences of the technologies currently used for VPNs and they
implement an SDN-based MPLS traffic engineering solution that eliminates
the need for intra-domain routing protocols. In [44] they demonstrate the
feasibility of reimplementing several features of MPLS VPNs using an SDN
controller. Similar results are presented in [45]. However, these contributions
tend to focus more on traffic engineering aspects, are rather tied to the exist-
ing way of realizing VPNs, do not tackle the configuration difficulty problem,
and lack a rigorous specification of SDN-related technical aspects. Although
this research line is still alive, we are not aware of any progress on these con-
tributions or deployments in operational networks.

We exceed existing contributions by rethinking VPNs with manageability
as a driving principle: our approach simplifies the configuration by introduc-
ing a language that addresses only domain-specific concepts (e.g., customer
sites, routing policies), and takes advantage of SDN to reduce the involved
technologies to a very small set, thus abating or even eliminating the need
for a complex VPN management system. While we do not pretend to replace
sophisticated management suites, we believe the simplicity and clear specifi-
cation of our solution can make it appealing for an ISP that is transitioning to
SDN.

3.3 A Novel Approach to Realize VPNs with SDN

In this section we briefly review the current implementation of MPLS VPN,
discuss its inconveniences, and describe how we leverage SDN to address
them and offer additional features.

Architecture and Technologies of VPNs Today

An MPLS VPN is a service that an ISP can offer to support the communica-
tion between geographically distributed sites of a customer network. Each
site accesses the service by an interconnection between a Customer Edge (CE)
router deployed in the customer’s network and one or more Provider Edge
(PE) routers which act as entry points to the ISP’s network. Internal routers
within the ISP are called Provider (P) routers and support exchange of MPLS-
encapsulated traffic between different sites of the same customer. Traffic be-
tween different customers is kept separate by tagging packets with different
MPLS labels, each identifying a VPN.
The setup of MPLS VPN involves the following steps:
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1. Setup of IP addresses for loopback interfaces of PE routers.

2. Setup of an internal routing protocol (e.g., Open Shortest Path First (OSPF) [2])
to ensure reachability between the loopback interfaces of different PE
routers. This may involve basic traffic engineering parameters like link
weights.

3. Setup of the Border Gateway Protocol (BGP) [46] to distribute routing
information about customer networks among PE routers. The IP pre-
fixes of each customer site are propagated on a full mesh of iBGP peer-
ings established between PE routers (route reflectors can be used to im-
prove scalability). Prefixes belonging to different customers are differ-
entiated using the Route Distinguisher (RD) address qualifier offered by
the MultiProtocol BGP (MP-BGP) [47] extensions, thus allowing address
space overlaps between different customers. Optionally, prefixes can
be tagged with a Route Target (RT) extended community to implement
customized VPN topologies or allow communication between different
VPNs. Optional NAT translation rules can be set up on some PE routers
to grant customers with overlapping address spaces access to shared
services or to the Internet.

4. Setup of the Label Distribution Protocol (LDP) [48] to assign MPLS la-
bels. These labels identify paths between PE routers computed by the
internal routing protocol.

5. Setup of MPLS forwarding. Packets going from a customer site to an-
other travel in the ISP’s network encapsulated in MPLS with two la-
bels: one (inner) identifying the VPN and another (outer) identifying the
label-switched path towards the PE router to which the target customer
site is attached. Optionally, additional traffic engineering mechanisms
(e.g., based on RSVP-TE) can also be deployed.

It is evident that even a simple VPN setup involves several technologies,
exposing to the risk of configuration errors and complicating management
and troubleshooting significantly. This is exacerbated by the fact that config-
urations are scattered on tens or even hundreds of devices, making their in-
terplay extremely difficult to determine, especially in the presence of dynamic
events (e.g., link failures). In addition, current technologies offer limited flex-
ibility and control: for example, influencing routing paths by tuning OSPF
weights is a hard task, sometimes accomplished by trial and error, and some
integrity constraints just cannot be enforced (see, e.g., [41]).
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Our Approach

We propose an SDN-based approach to realize VPNs that offers an extremely
simplified configuration interface and preserves only the building blocks of
a VPN that are strictly required to achieve the desired functionalities, thus
gaining flexibility, controllability, and predictability.

In our approach CE routers are still standard IP routers set up with a de-
fault route pointing to the PE router they are connected to. On the other hand,
we assume that all nodes in the ISP’s network are SDN-enabled devices (dat-
apaths) coordinated by an OpenFlow controller. Flexibility of management is
improved in this scenario because the role of a network node (PE or P router)
can be changed by just intervening on the SDN controller, without the need
for costly firmware or hardware replacements. Because of its adequacy and
widespread availability, we keep MPLS as the encapsulation technology for
packets traversing the ISP’s network.

We designed an SDN controller that orchestrates all datapaths in the ISP’s
network to set up VPNs without the need for additional technologies. Sev-
eral configuration elements, as well as signaling and routing protocols, are no
longer required, thus ruling out many subtle interactions and making the out-
come of configurations more predictable. Referring to the steps in Section 3.3,
we make the following simplifications:

1. PE routers still need an IP address, but it is only used to contact the
SDN controller over IP: their forwarding behavior is instead completely
managed by the SDN controller.

2. Internal routing protocols are no longer required, because the SDN con-
troller knows the network topology and can compute routing paths be-
tween PE routers as needed.

3. MP-BGP is also dropped, because address space overlaps between VPNs
are handled by distinct flow entries installed on the datapaths. Any spe-
cial routing policies (including, e.g., balancing on multiple uplinks) can
be part of the controller’s operational logic, therefore RDs and RTs are
not needed either. NAT address translation rules are translated into flow
entries as well.

4. LDP is also abandoned, because the assignment of MPLS labels is com-
pletely managed by the SDN controller.
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Figure 3.1: Architecture of our SDN controller for MPLS VPN.

5. We retain MPLS to forward packets from a PE router to another, but
labels are pushed and popped by flow entries installed by the SDN con-
troller based on VPN configurations and, possibly, on traffic engineering
mechanisms.

In our approach, the setup of all VPNs is described in a single configura-
tion specification, thus making it readily accessible. This specification contains
information about each customer site, including the IP subnets it hosts (possi-
bly learned by means of a routing protocol), the PE router it is attached to, and
an optional specification of a PE router that is the egress point to the Internet.
It also contains associations between customer sites and VPNs and a selection
of the routing policy to be adopted for each VPN. Optionally, it contains NAT
address translation rules and further policies for the communication between
customer sites. We describe these information in detail in Section 3.4.

Our SDN controller consists of the components depicted in Figure 3.1,
which realize the following functionalities.

Configuration parsing and basic setup

The controller fetches two kinds of configuration information. Global set-
tings consist of a mapping between datapath IDs and symbolic names, used
to build a datapath inventory and to conveniently reference devices in the rest
of the configuration. VPN configurations, specified using the language in Sec-
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tion 3.4, instruct the controller about the VPN scenario to be realized. The
controller continuously watches these configurations for possible changes.

Topology reconstruction

The controller builds a complete representation of the network topology and
keeps it up to date as network events (datapath/link failures or additions)
occur. This activity is accomplished by exploiting the Link Layer Discovery
Protocol (LLDP) [49] in the standard way envisioned by OpenFlow. When a
link change event is triggered, the following functionality is activated.

Computation of routing paths

The controller (re)computes routing paths between PE routers as needed when-
ever a topology change is detected. If multiple paths are available between
two PE routers, it selects a best path for each VPN, based on the routing pol-
icy specified in the configuration (e.g., shortest path). Although not within the
focus of this paper, this policy may realize traffic engineering by taking into
account the dynamic state of the network (e.g., link utilization).

Flow entries installation

The above components concur to maintain an internal representation of the
VPN scenario that is used by another component to appropriately deploy
OpenFlow rules. In particular, VPN configurations are translated into flow
entries to be installed on datapaths, as described in Section 3.4. Flow entries
are always installed proactively, namely before any traffic is exchanged (we
briefly discuss in Section 3.4 how to improve scalability by installing some
entries in reaction to observed network traffic). If a configuration change oc-
curs, we assume that the controller clears all flow tables of all datapaths and
immediately installs new flow entries according to the new configuration.
Unlike current MPLS VPNs, where a different MPLS label is used for each
link and forwarding between PE routers happens by label switching, we use a
fixed label along all the path. This is very beneficial for manageability, because
the same label has the same semantic at any point in the ISP’s network, and
performance, because packet headers need not be rewritten. Similarly to some
existing implementations, forwarding decisions on P routers are not affected
by a packet’s input port. Complex routing policies such as distinct routing
paths per VPN or per service class, multipath routing, or destination-based
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load balancing can still be achieved by a suitably structured partitioning of
the label space.

Applicability Considerations

Our approach can be readily implemented in existing networks provided that
datapaths support release 1.1 of the OpenFlow specification, (i.e., the earli-
est one that introduced support for handling MPLS labels). At the time of
writing, several major vendors including Corsa Technology [50] Brocade [51],
Huawei [52], Arista Networks [53], and NEC [54] already introduced Open-
Flow 1.3 support in their product offering. Other vendors, as well as renowned
silicon producers like Broadcom and Marvell, have OpenFlow 1.3 support in
their roadmap (see, e.g., [55, 56]) or will do in the foreseeable future. Big
market players such as Cisco and Juniper propose customized SDN imple-
mentations that offer similar functionalities under a different interface, but
they also support open standards by means of OpenFlow compatibility mod-
ules (see, e.g., [57]). Recent releases of the OpenFlow specification are usually
quickly adopted in leading software switch implementations such as Open
vSwitch [58], Lagopus [59], and Switch Light [60], which are also designed to
run on bare metal and can leverage packet processing libraries such as Intel’s
DPDK [61] in order to achieve production-level performance.

Due to hardware constraints, the size of flow tables is often very limited.
While this is a realistic concern, in our opinion several arguments can mitigate
it. First of all, even the most limited devices, which can accommodate few
thousands of flow entries (see, e.g., [62]), can support the typical amount of
MPLS VPNs operated by a small-sized ISP. Moreover, vendors move towards
adopting more powerful silicon capable of handling tens of thousands of flow
entries [63], and a suitable combination of optimization methods, like e.g. [64],
and smart hardware solutions (see, e.g., [65, 66]) can push this limit up to
millions of flow entries, practically ruling out scalability problems. Finally,
such problems are insignificant for software switches, whose scalability limits
can be overcome by affordable hardware upgrades, and whose performance
are continuously pushed towards production level (see, e.g., [67]).

The transition from an existing operational network offering MPLS VPN
services to an OpenFlow-enabled network should not be a concern either:
there exist solutions, like RouteFlow [68], conceived to support the coexis-
tence of OpenFlow and standard routing protocols. On the other hand, a
project within the Open Networking Foundation is releasing use cases and
guidelines to accomplish such transition (see, e.g., [69]). In addition, our ap-
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proach can be applied regardless of whether controller-switch communication
is realized out of band or in band. Finally, existing techniques to realize the
SDN controller with a distributed architecture can be adopted to improve fault
tolerance (see, e.g., [70], which also addresses network partitioning).

3.4 A Configuration Language for VPNs

In this section we describe our VPN specification language. Although well-
established configuration languages (e.g., YANG [71]) already exist, as far as
we know this the first one specially designed for VPNs: as such it addresses
domain-specific concepts (e.g., customer sites) as opposed to technical aspects
(e.g., modules, namespaces, etc.), making the configuration much simpler. In
this section we also explain how a configuration is turned into flow entries.

Configuration Primitives

First of all, a preamble in the configuration specifies, for each datapath, an
association between its ID and a symbolic name.

Listing 3.1: Datapath’s specification.

<datapath name="datapath_name" dpid="DPID" />

For example <datapath name="pe4" dpid="4" /> is an instance of
the above statement. Following that, VPN configurations are specified by the
following elements.

Specification of the customer sites

It defines the IP subnets owned by each site (which may be automatically
learned by means of a routing protocol like BGP), the PE router and port it is
connected to, and, optionally, a PE router that acts as an egress point towards
the Internet for that site.

Listing 3.2: Customer site’s specification.

<customer-site name="customer_site_name">
<network subnet="IP_subnet" />
<connection pe="PE_name" port="PE_port" />
<default pe=egressPE_name" />
</customer-site>
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In the following, an example of this statement.

<customer-site name="BigCompany_Rome">
<network subnet="10.0.0.0/16" />
<network subnet="10.172.0.0/16" />
<connection pe="pe_rm" port="3" />
<default pe="default_pe" />
</customer-site>

Specification of the VPNs to be set up in the network

For each VPN, it consists of a set of participating customer sites and of the pol-
icy to be applied to compute routing paths between PE routers (at present we
envision only the shortest path policy, but more elaborate traffic engineering
policies along the lines of [44] are of course possible).

Listing 3.3: VPNs’ specification.

<vpn name="VPN_name">
<site id="site_name" />
<routing type="policy" />
</vpn>

A possible instance of this statement is reported in the following.

<vpn name="BigCompany">
<site id="BigCompany_Rome" />
<site id="BigCompany_Tokyo" />
<routing type="shortest-path" />
</vpn>

Specification of NAT address translation mechanisms

They are required when multiple VPNs with overlapping address space need
to access the Internet or any shared services. Each customer site can use a
different mechanism, and each mechanism comprises one or more translation
rules that apply to single IP addresses or IP subnets.

Listing 3.4: Address translation mechanisms’ specification.

<nat egresspe="PE_name" egressport="PE_port">
<mapping vpn="VPN_name" site="site_name">
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<rule private="private_IP" public="global_IP">
</mapping>
</nat>

In this specification egresspe and egressport indicate the PE router and
port that are connected to the Internet. Each mapping statement determines
that the following IP address translation rules apply to traffic coming from a
specific site of a specific vpn and directed towards the Internet. Each rule
specifies that a packet originated from a private IP address must have its
source address translated to a public IP address when sent to the Internet
(packets received in response must have their destination address translated
accordingly). private and public can be single IP addresses (static NAT).
Alternatively, they can be two IP subnets of equal size, in which case IP ad-
dresses in the private subnet are mapped to IP addresses in the public
subnet (dynamic NAT). Finally, private can be a wildcard * and public
can be an IP subnet, in which case any IP address belonging to the consid-
ered vpn and site is dynamically mapped to an available IP address in the
public subnet (full NAT) when traffic is sent to the Internet.

A complete example of NAT specification is reported in the following.

<nat egresspe="default_pe" egressport="1">
<mapping vpn="BigCompany" site="BigCompany_Rome">
<rule private="10.0.100.8" global="211.10.20.4" />
<rule private="10.0.200.0/24" global="211.10.40.0/24" />
</mapping>
<mapping vpn="BigCompany" site="BigCompany_Tokyo">
<rule private="x*" global="190.25.0.0/16" />
</mapping>
</nat>

In this example an IP address of site BigCompany_Rome in VPN BigCompany
is statically mapped to another IP address when traffic from that site is sent to
the Internet. Moreover, for the same site the controller will establish a map-
ping between addresses in subnet 10.0.200.0/24 and addresses in subnet
211.10.40.0/24. Last, the controller will dynamically remap any IP ad-
dresses belonging to site BigCompany_Tokyo of VPN BigCompany to an
available address in subnet 190.25.0.0/16.

NAT translation rules are optional: a PE router can be the Internet egress
router for a VPN even if no NAT rules are configured. Of course, if multiple
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VPNs with an address space clash need Internet access, response traffic from
the Internet may be handled unpredictably in the absence of NAT rules.

Specification of policies

With our language it is also possible to express complex routing policies. For
example, allowing communication between customer sites in different VPNs
is as simple as adding both sites to a new VPN created ad hoc. In a traditional
MPLS VPN, this would require a selective tagging of IP prefixes with RTs and
a leakage of tagged routes from one VPN to the other. Forbidding commu-
nication between customer sites is also possible, but a bit more difficult: to
prevent traffic between customer sites S; and Sy belonging to the same VPN
V1, one of the two sites, say S, can be moved to a separate VPN V5. In ad-
dition, all the sites of V; except S» must then be added to VPN V5, to permit
communication with S;. In order to make such configurations easier to spec-
ify and to support more flexible routing policies, we introduce an additional
primitive.

Listing 3.5: Policies’ specification

<policy vpn="VPN_name">
<deny from="from_subnet" to="to_subnet" />
<allow from="from_ subnet" to="to_subnet" />
</policy>

This specification blocks or allows traffic originated by IP addresses in sub-
net from_subnet and directed to IP addresses in subnet t o_subnet within
VPN VPN_name. With this primitive it is possible to selectively control com-
munication between specific subnets of customer sites.

In the following, we report an example of policies’ specification.

<policy vpn="BigCompany">
<deny from="10.10.100.0/24" to="10.10.200.1/32" />
</policy>

General Considerations

Even if not explicitly stated, a configuration expressed with this language de-
termines the role played by each datapath (P router, PE router, NAT), which
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in turn determines what flow entries the controller will install on that data-
path. Actually, all the datapaths must at least be able to forward traffic be-
tween PE routers, namely must behave as P routers. The other roles are de-
termined by the configuration context: for example, a datapath mentioned in
a connection statement is to be considered a PE router. Another relevant
aspect is that every packet coming from a customer site and entering the ISP’s
network must be assigned to the correct VPN. This is not difficult in general
because, even if the customer site participates in multiple VPNs, the packet’s
destination IP address may belong to only one of these VPNs. An ambigu-
ity arises if the source customer site and the destination IP address belong to
more than one common VPN. We solve this ambiguity by assuming that the
packet is sent to the IP address in the first VPN specified in the configuration.

From Configurations to Flow Entries

We now describe how the SDN controller translates VPN configurations into
flow entries to be installed on datapaths. Unless differently specified, all flow
entries are installed proactively. We divide flow entries into classes according
to their role and structure. Also, we call ingress PE the router through which
packets from a customer site enter the ISP’s network and egress PE the router
through which these packets leave the ISP’s network and reach their destina-
tion. Table 3.1 can be used as a reference to follow the description of the flow
entries.

We first consider flow entries installed on P routers: these flow entries
support delivery of MPLS-encapsulated packets between PE routers, therefore
we call them tunnel flow entries. Each entry matches only on the outer MPLS
label of a packet, which determines a path towards a PE router, and sends
the packet out of the port that leads to that PE router along that path. If the P
router under consideration is the penultimate hop along the path to the PE, the
flow entry also pops the outer label before forwarding the packet. In principle,
on a P router there is one tunnel flow entry for each PE router. However, since
the same MPLS label is used along all the path and the union of all the paths
to a PE router forms a tree, in most practical cases the number of installed flow
entries is lower. On the other hand, the controller may also compute multiple
paths (for example, one for each VPN) towards the same PE router to support
traffic engineering: correspondingly, there can be multiple tunnel flow entries
for the same PE router.

We now describe flow entries installed on PE routers, which belong to
3 different classes. These entries depend on VPN configurations and on a
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proper identification of the destination VPN and customer site of each packet,
as specified in Section 3.4. The first class of flow entries supports connectiv-
ity between customer sites attached to the same PE router: we call them local
delivery flow entries. Such a flow entry matches on the input port as well as
on the source and destination IP subnet, and sends the packet out of the port
connected to the target customer site. In the absence of configured policies,
the controller only installs entries that support communication between sites
(and prefixes) in the same VPN. On a PE router there is at most one local de-
livery flow entry for every pair of IP subnets in directly connected customer
sites belonging to the same VPN. In practice, there can be fewer flow entries
because two customer sites may share more than one VPN (a single entry for
each pair of IP subnets is then enough to support communication for all these
VPNEs).

The second class of flow entries at PE routers supports delivery of packets
between sites connected to different PE routers: we call them remote delivery
flow entries and describe them separately for ingress and egress PE routers.
A remote delivery flow entry at an ingress PE router matches on the input
port as well as on the source and destination IP subnets. Upon successful
match, it pushes two MPLS labels on the packet (one identifying the VPN and
the other identifying the path to the egress PE) and sends the packet out of
the port that is along the path to the egress PE. The SDN controller assigns a
distinct label to each VPN and to each routing path: when installing remote
delivery flow entries, the controller selects the VPN label to be applied as
specified in Section 3.4, and selects the path label according to the computed
routing paths (which, in turn, depend on the configured routing policies). For
the count of remote delivery flow entries, the same considerations made for
local delivery flow entries apply. A remote delivery flow entry at an egress PE
router matches on the VPN label of a packet and on its destination IP subnet,
it pops the label, and it sends the packet out of the port to which the target
customer site is connected, which is determined based on the destination IP
and the VPN. At a given PE router there will be one such flow entry for each
IP subnet of each VPN of the customer sites that are connected to that router.

The third class of flow entries supports routing of network traffic from a
customer site of a VPN to the Internet through the PE router that has been
configured as default for that site. We call such entries default-out flow entries,
and those supporting response traffic from the Internet default-in flow entries.
We first describe the basic structure of these flow entries in the absence of NAT
address translation rules. A default-out flow entry at an ingress PE matches
on the input port (required because every customer site can use a distinct PE
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router as an egress to the Internet) and on the source IP subnet, it pushes
one MPLS label indicating the path to the egress PE router (one label suffices
because packets are not directed to a specific VPN but to the Internet), and
sends the packet out of the port that is along the path to the egress PE router.
Flow entries of this type are installed with a lower priority value so that they
are matched only after any other flow entries, thus implementing a “default
route”. There is one such flow entry for every subnet of every customer site
that has been configured for Internet access. A default-out flow entry at an
egress PE just sends the packet out of the Internet-connected port, specified
in the configuration. On a specific PE router there is just one such flow entry,
and it is also installed with a low priority value. A default-in flow entry at
an ingress PE router matches on the input port (the Internet-connected port)
and on the destination IP subnet, pushes two labels on the packet (one for
the VPN and one for the path to the egress PE), and sends the packet out of
the port that leads towards the PE router that is connected to the destination
customer site. If the destination IP address belongs to more than one VPN,
the actual target VPN can be determined as assumed in Section 3.4, or proper
NAT translation rules need to be set up to prevent any ambiguity. There is
one default-in flow entry at an ingress PE router for every IP subnet of every
customer site that uses that PE router as an exit point to the Internet. There
is no need for specific default-in flow entries at an egress PE router, because
their function is accomplished by remote delivery entries. If a customer site
uses the PE router it is connected to as the default PE router, ingress and egress
flow entries are condensed into a single entry: in this scenario a default-out
flow entry matches on the input port and on the source IP subnet and sends
the packet out of the Internet-connected port; a default-in flow entry matches
on the Internet-connected port and on the destination IP address, and sends
the packet out of the port connected to the relevant customer site.

Depending on their structure, the SDN controller can install flow entries
at different moments: entries that are independent of the ISP network’s topol-
ogy, including local delivery flow entries and entries that are deployed on
egress PE routers, can be installed immediately after the controller has fetched
VPN configurations, and are never altered unless configuration changes oc-
cur. Any other entries, including tunnel flow entries and entries deployed on
ingress PE routers, involve an output port in their actions and therefore de-
pend on the network topology: as such, they can only be installed once the
controller has computed paths between PE routers. If the controller recom-
putes these paths, for example because better ones become available, existing
ones are disrupted (e.g., due to link failures), or because of traffic engineering
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policies, such entries need to be updated accordingly.

Our approach requires the installation of a number of flow entries that
is comparable with the number of forwarding table entries of routers imple-
menting traditional MPLS VPNs, and in general can be lower. Tunnel flow
entries are at most as numerous as forwarding entries because, since we aban-
don label switching, there is no need for a distinct entry for each input port.
Default-out flow entries at the egress PE are less numerous because one entry
suffices for all VPNs. On the other hand, for some classes (local delivery and
entries installed at ingress PE routers except default-in entries) we use a higher
number of flow entries, because they also match on the source IP subnet. We
made this choice to prevent forwarding traffic from unintended VPNs, thus
ruling out the integrity and isolation problems documented in [41]. If this is
not a concern, the number of flow entries can be largely reduced.

We now describe NAT-related flow entries, which are implemented as a
variation of other classes of entries at PE routers. The specification of NAT
rules in the configuration is independent of whether NAT is implemented on
ingress or egress routers (see [72] for a discussion of the two alternatives), but
different flow entries are installed in the two cases. Implementing NAT at the
egress requires the following changes. Default-out flow entries at any ingress
PE router must also push the VPN label, and default-out flow entries at any
egress PE router must also match on this label and on the source IP subnet:
this is required to recognize the source customer site and apply the correct
address translation rules. Before forwarding a packet, default-out flow entries
at the egress PE must also replace its source IP address with a public address
according to the configured rules. Similarly, when a default-in flow entry at
an ingress PE router matches a response packet from the Internet directed
to a mapped IP address, it must replace its destination IP with the original
private address before forwarding the packet. On the other hand, NAT can be
equivalently implemented at the ingress in the following way: each default-
out flow entry at the ingress PE router of a customer site that is configured
for NAT must also replace the source IP address of each packet with a public
address before forwarding it. Similarly, default-in flow entries at the same
router, which are implemented by remote delivery flow entries, must replace
the destination IP address of a packet directed to a mapped IP address with
the original private address. Regardless of where NAT is implemented, if a
customer site uses the PE router it is attached to as the default PE router, then
the entire address mapping takes place on that router.

In order to implement NAT, existing default-out and default-in flow en-
tries must be replicated for each IP address that is subject to translation. In
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accordance with [72], implementing NAT on ingress routers can improve scal-
ability in this scenario, because flow entries can be distributed across several
devices. These considerations apply as long as flow entries are installed proac-
tively. An alternative approach (the most viable one for full NAT) is to in-
stall NAT-related flow entries on-demand when traffic from new source IP
addresses is observed, and to set them up with a timeout so that public IP ad-
dresses can be reused when this traffic is interrupted. With this solution, the
number of NAT-related flow entries equals the number of entries in a tradi-
tional NAT translation table.

The last class of flow entries implements forwarding policies specified
with the <policy> primitive defined in Section 3.4. We call such entries policy
flow entries and assume they are deployed at ingress PE routers to which cus-
tomer sites hosting the specified subnets are attached. For each <deny> pol-
icy, a flow entry is installed that drops any packets within the specified VPN
(determined by the input port) that match the specified source and destination
IP subnets. These entries are installed with a high priority, so that they over-
ride any other matching flow entries. For each <allow> policy, additional
local or remote delivery flow entries are installed to support communication
between the specified subnets.

In order to translate VPN configurations into flow entries, our controller
reconstructs an internal representation of the network topology, as well as of
the VPNs and the participating customer sites, and sends to the datapaths the
appropriate flow entries for each class, as described above and summarized
in Table 3.1. Although conceived with OpenFlow primitives in mind, our
language is independent of the specific technologies used to deploy VPN con-
figurations: in principle, a specification expressed in our language could be
implemented on network devices using other protocols like, e.g., NETCONE.

3.5 Experimental Evaluation

In order to validate the effectiveness of our approach, we implemented a pro-
totype SDN controller (available at [73]) and performed several experiments.

Scenario and Technologies

We developed the controller using Ryu' [74], a Python-based framework which
extensively supports OpenFlow specifications 1.0 through 1.4, enabling us to

TRyu 3.8, latest Git snapshot as of April 2nd, 2014.
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handle MPLS labels. We tested our controller with Open vSwitch? [58], one of
the most feature-rich implementations of an OpenFlow-compliant software
switch that is also used on a range of commercial hardware devices (e.g.,
Corsa Technology switches). We ran our tests inside Mininet} [75], a state-
of-the-art emulator that is commonly adopted for experimenting with SDN.

Our prototype implements all the components described in Sections 3.3
and 3.4. At present configuration parsing, topology discovery (by means of
an API offered by Ryu), routing path computation between PE routers, and
all NAT types (static, dynamic, full) are supported. In addition, the controller
reacts to topology changes: when a new link is detected, the Topology Recon-
structor is notified (see Figure 3.1) and the Routing component recomputes
paths between each pair of PE routers for which a path is not yet available.
If a new path is found, the Rule Installer deploys flow entries on the relevant
datapaths. When an existing link disappears, the Routing component deter-
mines whether there are currently used paths in which the disappeared link
occurs. For every such path, the Rule Installer removes from the relevant dat-
apaths all the flow entries that support that path and that are not used by any
other paths (we use a reference counter to determine when an entry can be re-
moved). Other features are unsupported or only partially implemented: our
prototype controller understands a slightly simplified version of our configu-
ration language, it does not detect on-the-fly configuration changes, it selects
a random shortest path between PE routers, and it only allows the specifica-
tion of a single IP subnet for each VPN of each customer site. We argue that
none of these features affects the significance of our experiments.

In implementing the controller we had to face some technical issues. Due
to the lack of a feature called “recirculation”, in the official implementation of
Open vSwitch it is currently impossible to look past MPLS labels in a match
condition. We overcame this problem by using VLAN tags as VPN identifiers
in place of MPLS labels. Accordingly, we split each flow entry matching both
the VPN identifier and the IP subnet into two entries placed in separate flow
tables: one entry that matches the VLAN tag, stores its value in a standard
Metadata registry, removes the VLAN header, and points to the other flow ta-
ble; another entry that matches the Metadata and the IP subnet and performs
the required actions. We also experienced problems with the MAC address
learning module of Ryu, which we worked around by populating the ARP
caches of host machines in advance. Finally, due to a Mininet bug [76], for

iOpen vSwitch version 2.3.90, latest Git snapshot as of May 19th, 2014.
§Mininet version 2.1.0+, latest Git snapshot as of May 7th, 2014.
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Table 3.2: Results of our test runs with different topologies (from [77]) and
VPN configurations.

Topology Nodes Links Max flow Convergence Recovery

entries time (s) time (s)

Att 25 56 98 0,8 0,03
Bell Canada 48 64 47 1,2 0,03
BT Europe 24 37 106 0,5 0,05
Evolink 37 45 63 0,7 0,1

NTT 47 63 67 0,8 0,04
Oxford 20 26 100 0,6 0,24
Renater2006 33 43 72 0,6 0,11
York 23 24 91 0,7 0,17

each test we had to update the association between Open vSwitch port num-
bers and virtual network interfaces. None of these problems is due to flaws
in our approach or even OpenFlow itself: they are implementation-specific is-
sues that do not impair the usage of our controller with hardware datapaths.

Experiments

We exploited our prototype to verify the functionality, scalability, robustness,
and performance of our approach. For these purposes we used 3 groups of
topologies and VPN configurations (the realism of these configurations was
confirmed in a discussion with a medium-size ISP):

e A simple topology with 2 hosts in the same VPN, each attached to a PE
router; the two PE routers were connected by 3 independent paths made
up of 10 P routers each. We used this topology for functional tests.

e A more complex topology consisting of 12 P routers and 7 PE routers,
each with one host attached and 2 of which performing NAT, totaling 25
links. We used variations of this topology to consider increasingly com-
plex scenarios: at first just 2 customer sites in the same VPN, then more
VPNs with overlapping IP address space, and finally VPNs with default
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PE routers and NAT translation rules (we modeled “the Internet” as a
host connected to each default PE router).

e A range of real-world topologies from the Topology Zoo [77] project.
For each of them we considered 100 VPN, each consisting of 2 hosts in
2 different IP subnets. The hosts in each pair were attached to 2 distinct
randomly picked network nodes which therefore acted as PE routers (at
most 33 VPNs were set up on every PE); all the other routers were just
plain P routers. We used these topologies for scalability tests.

Functionality

For the functionality tests, we successfully verified connectivity between hosts
in the same VPN and isolation between hosts in different VPNs, using a stan-
dard ping. We also verified that packets were encapsulated as expected.

Scalability

For the scalability tests, we assessed the number of installed flow entries and
checked that it did not exceed the expected count stated in Section 3.4. In the
most complex topology of group b) that we considered (9 VPNs, 2 customer
sites for each VPN with one IP subnet each, and 9 static NAT rules) we had
at most 36 flow entries on PE routers and at most 3 on P routers. Table 3.2
shows the maximum number of flow entries on any datapath for the topolo-
gies of group c). We believe these numbers show that our approach is pretty
conservative in terms of consumed flow table space.

Robustness

To verify robustness to topology changes, we simulated several link failures,
carefully selected to disrupt a high number of paths taken by network traffic.
In the presence of such faults, packet loss may occur for at least two reasons.
One is that packets may get trapped in a disconnected network region. The
other reason is related with the behavior of datapaths: if an incoming packet
does not match any flow entries, a datapath sends a request to the controller
and only buffers the packet until a response is received. We ascertained that,
if a matching flow entry is installed independently of this request-response
transaction (like our controller does), the packet is lost. We verified the impact
of link failures during a flood ping (i.e., a ping at the maximum rate made
possible by the network) and during a TCP file transfer between two hosts:
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no more than 4 ICMP packets were lost in all our tests, and the transfer was
never disrupted nor significantly slowed down. Our implementation can be
further improved because it needlessly clears and reinstalls some flow entries
involved in the changed paths.

Performance

To evaluate performance, we started the controller in advance and estimated
the time since the network was brought up to the moment in which all flow
entries were installed: it never took more than 0.8s to install flow entries on
all datapaths in group b) topologies; results for group c) topologies are in col-
umn “Convergence time” of Table 3.2. We then estimated the time required
to recompute paths and install new flow entries after link failures, which was
always below 0.3s both for group b) topologies and for group c) topologies
(column “Recovery time” in Table 3.2). Considering the limits imposed by the
emulation, we deem these figures rather promising for a production deploy-
ment.

3.6 Open Problems

Although our language and approach are readily applicable, our research di-
rections envision several improvements. Support for traffic engineering, albeit
envisioned, is currently very limited: more elaborate routing policies could
be introduced, and traffic could be dynamically re-routed depending on tar-
get QoS levels. Moreover, an incremental handling of installed flow entries
is desirable, to support configuration changes as well as addition, removal,
and migration of customer sites with minimal disruptions. A mechanism to
learn customer IP prefixes, possibly by integration with existing protocols like
BGP, should also be introduced. In addition, the language could be extended
to support services such as Virtual Private LAN Service (VPLS). Finally, im-
provements to our prototype implementation and experiments on hardware
testbeds or operational networks as well as performing further experiments
aimed at better evaluating scalability are likewise part of our work plan.
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Chapter 4

Taking Care of ARP in a Software
Defined Network *

The Address Resolution Protocol (ARP) enables communication between IP
network nodes by reconstructing the association between the IP address of
an interface and its MAC address. In a Software Defined Network (SDN)
this mechanism is not needed, because the controller knows the topology and
each datapath forwards packets based on their contents, without requiring
additional addressing information.

We tackle the interoperability problem that arises between legacy network
devices, that rely on ARP (end systems, as well as non-SDN routers), and SDN
datapaths, where network protocols are replaced by the controller’s logic. In
particular, we propose the design of a controller that supports ARP traffic
exchange with legacy devices, thus enabling end-to-end communication be-
tween IP network portions separated by a SDN. Our controller installs a mini-
mal set of flow entries in datapaths and confines ARP traffic to the edge of the
SDN, thus reducing its overhead. We also discuss a possible way to support
the neighbor discovery functions of ICMPv6 and argument about the applica-
bility of our approach, which is confirmed by experiments performed on SDN
switches from a range of different vendors.

*Part of the material presented in this chapter is based on the following publication: R. di
Lallo, G. Lospoto, M. Rimondini, G. Di Battista. How to Handle ARP in a Software-Defined
Network. In Proc. NetSoft, IEEE, 2016

57
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41 Introduction

Software Defined Networking (SDN) is the new standard approach to the de-
sign and implementation of network functionalities. At an intermediate de-
ployment stage, interoperability between SDN and legacy network devices is
essential (it is a concern for about 35% of the companies surveyed in [78]). This
especially applies to basic mechanisms such as associating the IP address of a
host with its MAC address: the Address Resolution Protocol (ARP), which im-
plements this function and is fundamental for the operation of IP networks,
becomes useless in a pure SDN because the controller knows the complete
topology, and datapaths forward packets based on their contents, without the
need for additional addressing information.

We consider the problem of supporting ARP in a network where legacy
and SDN-enabled devices coexist. Arguably, this is a very practical problem:
in fact, the vast majority of end systems will continue to use IP for a reason-
ably long time, and their reciprocal connectivity must be ensured even if their
provider network is fully migrated to SDN. We propose the design of a con-
troller that addresses this problem and has the following features: it requires
very few message exchanges with the datapaths and it installs a minimal num-
ber of flow entries; it confines ARP traffic to the edge of the SDN, avoiding the
overhead of transporting it through a potentially large infrastructure; and it
supports ARP resolution in the presence of multiple IP subnets. We rigorously
specify the controller’s logic using pseudocode and illustrate an extension of
our approach to support ICMPv6 neighbor discovery functions.

The rest of the paper is organized as follows. In Section 4.2 we review the
relevant state of the art. In Section 4.3 we describe how ARP is usually han-
dled by existing SDN controller frameworks. In Section 4.4 we introduce our
proposed design for an ARP-aware SDN controller. The practical applicabil-
ity of our approach is discussed in Section 4.5, and confirmed by experimental
tests described in Section 4.6. In Section 4.7 we draw conclusions and propose
lines for future work.

4.2 Related Work

The problem of handling ARP traffic in a SDN is of course well recognized
and widely discussed. A recently published patent [79] claims a method for
implementing an OpenFlow controller that can handle ARP requests. How-
ever, this method has limited scalability, because the controller floods ARP
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requests throughout the SDN when the target MAC address is not known; it
only supports a single IP subnet; and it offloads any other tasks (e.g., neigh-
bor unreachability detection) to the hosts, without taking full advantage of
the potential of SDN. A more detailed and technical description of how to
deal with ARP traffic is in [80]. However, since the paper focuses on an In-
ternet Exchange Point network, it still considers a single IP subnet. More-
over, some choices in the controller’s logic are tailored to the context-specific
problem of preventing storms of ARP broadcasts towards dead routers. Last,
ICMPv6 neighbor discovery mechanisms are intentionally left out. In [81] the
authors advocate the organization of SDN controllers into composable func-
tional modules, and briefly discuss possible ways to handle ARP traffic. While
we share the architectural vision, we improve the proposed ARP handling
mechanisms by reducing the impact of flooding and by limiting the process-
ing of ARP packets to the edge of the SDN. A related paper [82] describes
a data flow that comprises exchange of ARP packets: compared to this, our
approach is more general and adopts a more structured splitting of the con-
troller’s functional modules. ARP traffic handling is also discussed by [83] in
the context of multi-tenant data centers. However, since the proposed solu-
tion aims at attaining isolation among tenants, it focuses on techniques (e.g.,
MAC addresses rewriting) which are not useful for our goals.

A working group within the Open Networking Foundation (ONF) is propos-
ing guidelines to migrate existing network services to SDN. However, the
technical documents produced so far (see, e.g., [69, 84]) describe general meth-
ods and omit most technological details.

From a technological point of view, several frameworks for developing
SDN controllers (e.g., Ryu [74], Floodlight [85], POX [86]) include basic ARP
traffic management capabilities, which we analyze in Section 4.3.

We are not aware of any contributions discussing the operation of ICMPv6
neighbor discovery functions in the presence of an SDN.

4.3 ARP Traffic Handling in Current Controllers

Several possible approaches can be pursued to handle ARP traffic in a SDN. A
simple solution consists in proactively installing a flow entry on all the datap-
aths that instructs them to process ARP packets using the standard network-
ing stack. However, this choice has several drawbacks: it requires support for
the NORMAL [8] reserved output port, a feature that all versions of the Open-
Flow specification declare as optional; it increases the overhead of ARP traffic,
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which needs to be broadcast over a potentially large SDN; and it introduces a
dependence on legacy technologies, which pure OpenFlow datapaths cannot
satisfy.

In order to illustrate more advanced approaches, we refer to the scenar-
ios in Figure 4.1. In this figure squares represent switches (S1, S2, ...) and
routers (R1, R2), circles represent end systems (hosts H1, H2, ...), lines repre-
sent physical connections (possibly involving standard 802.1D switches), and
labels net; represent IP subnets. Nodes enclosed in gray clouds are SDN-
enabled datapaths, while the other nodes represent IP devices.

Most SDN-based approaches and technologies to support ARP traffic con-
sider scenario (a), where every SDN independently handles ARP traffic for a
single IP subnet. In particular, this involves the following tasks.

A backward learning mechanism in the controller implements the stan-
dard IEEE 802.3 learning process: it looks at the source MAC address src_mac
of every packet received by a datapath dpid and keeps a correspondence be-
tween src_mac and the port from which dpid received the packet. In this way,
the controller learns the position of src_mac and can instruct each datapath to
forward packets directed to that host out of the most appropriate port. Usu-
ally, this mechanism is only triggered for the first packet of a flow, for which
datapaths have no matching flow entries. Most existing SDN controller frame-
works [74, 85, 86] include a backward learning mechanism as a readily usable
function.

An additional ARP forwarding mechanism, often integrated with back-
ward learning, is specifically responsible for handling ARP packets. We de-
scribe the implementation of this mechanism that is natively available in POX
[86] (other controller frameworks adopt a similar approach). Consider Fig-
ure 4.1a, assume that the flow tables of all datapaths are empty, and suppose
datapath S2 receives an ARP request from host H1 asking for the MAC ad-
dress of target host H5. S2 then sends the packet to the controller, which:

e learns the association between the MAC address of H1 and the port of
S2 to which it is attached;

e instructs S2 to flood the packet (i.e., send it out of all the ports except
the ingress one), without installing flow entries.

The packet reaches the neighboring datapaths S1 and S3, which again send
it to the controller. Similarly, the controller instructs S1 and S3 to flood the
packet. The process continues until the packet reaches H5, which sends an
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(b) Scenario where a SDN handles all ARP traffic regardless of the IP
addressing plan.

Figure 4.1: Our reference network scenarios, consisting of switches (S1, S2,
...), routers (R1, R2), and hosts (H1, H2, ...). Devices enclosed in gray clouds
are SDN-enabled.

ARP reply to S3. Since S3 has no flow entries that match the packet, it sends
it to the controller, which accomplishes the following tasks:

e it learns the association between the MAC address of H5 and the port of
S3 to which it is attached;

e by reconstructing the sequence of datapaths traversed by the ARP re-
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quest, it determines a forward and reverse path between H1 and H5;

e it installs flow entries on each datapath along these two paths, which
specify how to deliver the ARP reply sent by H5 to H1 and how to
forward any future unicast ARP packets (e.g. gratuitous ARP packets)
without flooding them. The match condition of these flow entries checks
the Ethernet type (it must be 0x806 — ARP) as well as the destination
MAC address and IP address in the ARP payload, while the action for-
wards packets using a port consistent with the path computed by the
controller.

This mechanism has several shortcomings. First of all, ARP packets are
transported all the way to the target host: this limits the extent of the SDN to
a single LAN, because the source and the target of ARP packets must be on
the same subnet. Figure 4.1a depicts exactly this scenario, where each SDN
only handles ARP traffic within a specific subnet net;. A data packet directed
to a different LAN must either go through an IP router and then enter another
SDN (like in Figure 4.1a), or reach an SDN datapath that accomplishes the
tasks of a router (e.g., it must reply to an ARP request for the default gateway),
whose implementation involves a number of different functions (see also [81]).

On the other hand, ARP requests need to be broadcast over a potentially
large topology, introducing a forwarding overhead. To mitigate this, some
controller frameworks [86] natively offer a layer 3 learning mechanism that
acts as an ARP cache: it maintains associations between the IP address and
the MAC address of each host. When a datapath S1 receives an ARP request
for a target host H2, the controller checks whether the MAC address of H2
is already known and, if so, instructs S1 to immediately send an ARP reply
without further propagating the request. However, this mechanism is still
able to operate on a single subnet only.

Moreover, the above illustrated ARP forwarding approach does not work
in the presence of loops, because broadcast ARP requests would cycle forever.
Some controller frameworks [86] address this problem by running a Spanning
Tree Algorithm in advance, but this may prevent blocked ports from sending
any types of traffic. Our solution is completely free from this issue because it
keeps ARP traffic confined to the edge of the SDN.
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Figure 4.2: Architecture of our SDN controller to handle ARP.

4.4 A Novel Design of an ARP-aware Controller

We now illustrate the architecture and operation of an SDN controller that
is able to support ARP traffic exchange with legacy end systems (or routers)
in a scalable and flexible way. The description in Section 4.3 demonstrates
that even simple approaches can involve several little tasks. Therefore, also
inspired by [81], we organize our controller into functional modules, as shown
in Figure 4.2.

Those modules cooperate as follows. When a packet reach the controller
inside a Packetln, it is processed by the Backward Learning module; after that,
this module invokes the Dispatcher module which triggers ARP Processing
module or Discovery module based on the content of the processed packet’s
header. If PacketIn carries an ARP packet, then the ARP Processing module,
which holds an arp cache containing all associations between IP and MAC
addresses, is triggered (as depicted by green arrows in Figure 4.2); otherwise
in presence of a data packet (e.g. IP packet) the Discovery module is invoked
(red arrows in Figure 4.2). In the former case, if no entries are found in the
arp cache, ARP Processing module cooperates with the Discovery module in
order to correctly locate the destination, whose IP address will be retreived
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exploting the information contained in the data packet’s header; this task is
accomplished by invoking the SendPacket module. After determining the lo-
cation of the destination, the Discovery module cooperates with Routing mod-
ule in order to compute paths, and send to each datapath in the network a set
of flow entries, allowing data packets to reach the desired destination. Note
that just the information contained in the header of the packets are used by
modules, in order to correctly handle specific task (e.g. handling ARP packets
sent by hosts).

In order to clearly illustrate our controller, we will refer to several algo-
rithms, which specify its ARP-specific operational logic using pseudocode.
Procedure PACKETRECEIVED (Alg. 2) is the entry point, and is executed when
datapath dpid sends to the controller a Packetln message containing a packet
pkt that dpid has received through port inport.

Algorithm 2 Algorithm to identify the type of packet.

1: procedure PACKETRECEIVED(dpid, inport, pkt)

2:  BACKWARDLEARN(dpid, inport, pkt.src_mac)

3. if pkt.eth_type==0x806 then PROCESSARP(dpid, pkt)

4:  elseif pkt.eth_type==0x800 then > IP packet
5: destdpid < DISCOVERHOST(pkt.ip_header.dst _ip)

6 FINDPATH(pkt.ip_header.src_ip, pkt.ip_header.dst _ip, dpid, destdpid)
7. end if
8: end procedure

Our controller consists of different modules, each having in charge a spe-
cific task. In the following, we report a detailed description of each module,
jointly to the algorithms used by those components.

Backward Learning Module

The backward learning module is described in procedure BACKWARDLEARN
(Alg. 3). As also said in Section 4.3, it is triggered for every packet pkt received
by a datapath dpid from a host with MAC address macaddr. For each datapath,
it maintains an association between the MAC address of each host and the
datapath port it is connected to (map outport at line 2). For convenience, we
also maintain an association between each MAC address and the datapath it
is attached to (map datapath at line 3).
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Algorithm 3 Backward learning algorithm.

1: procedure BACKWARDLEARN(dpid, port, macaddr)
2:  outport[dpid|[macaddr] < port

3. datapath|macaddr] < dpid

4: end procedure

ARP Processing Module

ARP processing module is described in procedure PROCESSARP (Alg. 4). It
handles every ARP packet pkt received by a datapath dpid at the edge of the
SDN, namely a datapath connected to IP-speaking node (e.g. a host). To
support this module, a flow entry must be installed on edge datapaths, in-
structing them to forward all ARP packets to the controller. Exploiting the
information in these packets it keeps an association between every IP address
and the corresponding MAC address (map arpcache at lines 2 and 4). In ad-
dition, it immediately replies to ARP requests coming from hosts by sending
a forged ARP reply with a fixed fake MAC address M (lines 6-13). This is
enough to make a host start sending data packets. This choice is motivated
by the following considerations: i) we want to quickly reply to the host that
performed the ARP request, without waiting for delay introduced by further
communications (e.g. the time spent to the controller in retrieving the actual
MAC address of the destination); ii) we want to obtain the IP address of the
destination as soon as possible, in order to correctly compute a routing. This
is only possible looking at data packets.

It is important to observe that address M can be chosen arbitrarily, and will
never be seen by any hosts but the one that sent the ARP request. Possible
conflict-free choices for M are the controller’s MAC address or a reserved
MAC address such as ff: ff:ff: ff:ff:fe. By applying this mechanism,
ARP traffic is confined to the edge of the SDN and never reaches any internal
datapaths.

IP-speakers Discovery Module

It tracks the location of IP addresses, namely the datapath and port to which
each IP-speaking node is connected. Such information is partially gathered
by the ARP processing module, and partially derived from: 1) passive traf-
fic monitoring (e.g., by looking at the first packet of each flow, which is al-
ways delivered to the controller), 2) static configuration, indicating which IP
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Algorithm 4 Algoritm to process ARP packet at the controller.

1: procedure PROCESSARP (dpid, pkt)

2. arpcache[pkt.data.src_ip| < pkt.data.src_mac

3:  if pkt.data.arp_opcode==2 then > ARP reply
4 arpcache[pkt.data.dst _ip] < pkt.data.dst_mac

5. else if pkt.data.arp_opcode==1 then > ARP request
6: arpreply < new ARP reply packet

7 arpreply.data.src_ip « pkt.data.dst_ip

8 arpreply.data.src_mac < M

9: arpreply.data.dst_ip < pkt.data.src_ip
10: arpreply.data.dst _mac < pkt.data.src_mac
11: arpreply.eth_header.src_mac < arpreply.data.src_mac
12: arpreply.eth_header.dst mac < arpreply.data.dst _mac
13: SENDPACKET(dpid, arpreply)
14:  endif

15: end procedure

subnets are connected to each datapath, and 3) probing mechanisms such as
ICMPv6 Neighbor Unreachability Detection (NUD), which refresh the visi-
bility status of each host. If this piece of information is available from maps
arpcache and datapath, it is immediately returned (line 14). This module also
takes care of reconstructing the MAC address of a destination IP node (re-
quired to make the node accept the received packets), by issuing ARP requests
either from a single datapath, if the recipient’s location is known, or from the
datapaths that are attached to the recipient’s IP subnet (known by configura-
tion). Note that also this ARP exchange is confined to edge datapaths. ARP
requests can use M as the source MAC address and an arbitrary IP (e.g., the
controller’s IP to avoid collisions) as the source IP address. We verified that,
despite these manipulations, hosts successfully reply to such ARP requests.
Although not explicitly described, this module may also be responsible for
reconstructing the network topology using LLDP packets, in the usual way
envisioned with OpenFlow (see also [87]).

Routing Module

Routing module is described in procedure FINDPATH (Alg. 6). Once the ARP
request-ARP reply exchange has been completed and a host with IP address



“main” — 2016/5/6 — 12:57 — page 67 — #77

4.4. A NOVEL DESIGN OF AN ARP-AWARE CONTROLLER 67

Algorithm 5 Algoritm to discovery hosts in the network.

1: function DISCOVERHOST(ipaddr)

2:  if arpcache does not have key ipaddr then

3: for each datapath dpid that is attached to a subnet containing ipaddr
do > Known by configuration

4 arpreq <— new ARP request packet

5 arpreq.data.src_ip < controller’s IP address

6: arpreq.data.src_mac < M

7: arpreq.data.dst_ip < ipaddr

8 arpreq.eth_header.src_mac < arpreq.data.src_mac

9 arpreq.eth_header.dst mac <— ff:ff:ff:ff:ff:£ff

10: SENDPACKET(dpid, arpreq)

11: end for

12: Wait until the association arpcache[ipaddr] is learned
13:  end if

14:  return datapathlarpcache|ipaddr||
15: end function

src_ip starts sending data packets directed to another host dst_ip, this module
computes a path P from datapath origin_dpid, (entry point to the SDN) to dat-
apath dest_dpid (to which host dst_ip is attached), based on an arbitrary routing
policy and exploiting the knowledge of the network topology acquired from
the discovery module. The routing module then installs flow entries on all
datapaths along P, instructing them about how to route packets directed to
dst_ip (any data packets that have been buffered at origin_dpid are automati-
cally forwarded at this point). For convenience, the module also installs flow
entries to route packets from dst_ip to src_ip along the reverse path. In addi-
tion, it also installs on dest_dpid, the last datapath along P, a flow entry that
overwrites the MAC address of every packet directed to dst_ip with the actual
MAC address corresponding to dst_ip (line 6). This is required because packets
travel in the SDN with the fake MAC M as the destination address, and end
systems would therefore not accept them. The same rewriting rule is installed
at origin_dpid for packets going to src_ip.

SendPacket Module

Send packet module is described in procedure SENDPACKET (Alg. 7). It is
a utility procedure to ask datapath dpid to send a packet pkt to its intended
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Algorithm 6 Algoritm to compute a path in the network.

1: procedure FINDPATH(src_ip, dst_ip, origin_dpid, dest_dpid)

2. Compute a path P from origin_dpid to dest_dpid

3:  for each datapath dpid along P do

4: Use a FlowMod to tell dpid how to handle traffic from src_ip to dst_ip
and from dst_ip to src_ip

5. end for

6:  Use a FlowMod to tell dest_dpid to write arpcache[dst_ip] in the destina-
tion MAC of packets directed to dst_ip. Do the same with dest_dpid, dst_ip
replaced by origin_dpid, src_ip

7. end procedure

destination, choosing the most appropriate output port.

Algorithm 7 Algorithm to produce a PacketOut sending to the datapath.

1: procedure SENDPACKET(dpid, pkt)
2. if pkteth_header.dst mac== ff:ff:ff:££:££:££ or outport|dpid]
does not have key pkt.eth_header.dst _mac then

3 Use a PacketOut to tell dpid to send pkt out of all ports

4:  else

5: Use a PacketOut to tell dpid to send pkt out of port
outport|dpid][pkt.eth_header.dst mac]

6: end if

7. end procedure

ARP Processing Example

We now run through a complete example of how ARP packets would be han-
dled by the above described modules, using Figure 4.1b as a reference. In
the figure, R1 and R2 are SDN switches: they are still identified as routers
only because we assume that they may still run an IP stack in order to sup-
port in-band communication between switches and controller, but they do
not accomplish any particular function in SDN apart from forwarding pack-
ets. Suppose datapath flow tables are empty and host H1 in subnet net; wants
to send traffic to host H7 in subnet net,. At first H1 broadcasts an ARP request
asking for the MAC address of its default gateway, for example R1. S2 imme-
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diately sends back an ARP reply specifying the fake MAC M, so that H1 can
start sending traffic. Once the first IP packet from H1 is received by S2, the
controller can determine that the ultimate destination of this packet is H7. The
packet is therefore held in a buffer at S2 while a broadcast ARP request asking
for H7’s MAC address is sent out of S4 (which, by configuration, is known to
be connected to the target subnet nets). After H7 sends an ARP reply to S4, the
controller computes a path from S2 to S4 (for example, (S2,S1, R1,R2, R4))
and installs on all the datapaths along this path flow entries that instruct them
about how to forward IP traffic from H1 to H7 and back. Other flow entries
instruct S4 to write H7’s MAC address in packets directed to H7 and S2 to
write H1’s MAC address in packets directed to H1. At this point the packet(s)
buffered at S2 are sent and the communication between H1 and H7 can pro-
ceed.

With respect to the example just described, we want to remark that ARP
traffic is bounded at the edge of the network. In fact, using our method, dat-
apaths S1 and S3 will never be reached by any ARP traffic unlike other SDN
controller implementations discussed in Section 4.3 or traditional ARP imple-
mentations.

4.5 Applicability Considerations

In this section we discuss the scalability and practical applicability of our ap-
proach, and present possible alternatives for the realization of specific mod-
ules.

Scalability

We argue that our approach is very scalable, for several reasons. First of all,
our controller installs a minimal set of flow entries: all datapaths only have
a pair of rules for handling forward and reverse traffic between every pair
of end systems. Datapaths at the edge of the SDN have just one extra flow
entry for each attached IP speaking interface, used to rewrite the fake MAC
address with the actual one of that interface. Capacity constraints of flow
tables should therefore not be an issue. For the case of very large networks,
flow entries can be suitably distributed in order to meet such constraints: for
example, MAC rewriting rules could be moved from edge datapaths to any
other datapaths along the path between two hosts, and different traffic flows
that share a common subpath could be aggregated to reduce the number of
flow entries used to route them.
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In addition, controller and datapaths only communicate during the ARP
request-ARP reply exchanges and when the first packet of a flow is sent by
an IP host: any subsequent packets are handled by the flow entries installed
on datapaths, without further communication. Indeed, the controller never
receives Packetln messages from internal datapaths (i.e., those that are not
connected to any IP nodes), because they already know how to forward traffic
thanks to the flow entries that are proactively installed by the routing module.

The discovery module floods ARP requests from every datapath that is
connected to the target subnet, and this could have an impact on network per-
formance and utilization. As a simple alternative solution, such packets could
be selectively sent out of the datapath ports that are known to be attached
to hosts (in principle, these ports could be detected because they do not re-
ceive any LLDP packets during the topology discovery process). The impact
of broadcast ARP traffic can also be reduced with more advanced approaches
like SEATTLE [88], which takes advantage of a DHT-based directory service,
or Enhanced Lookup (ELK) [89], a technique which involves reassigning MAC
addresses to organize them hierarchically, for which an OpenFlow-based im-
plementation has already been proposed in [90].

Traffic Engineering and Network Dynamics

Our approach can be improved in order to accommodate basic traffic engi-
neering requirements. As a preliminary consideration, it is possible to dif-
ferentiate the forward and reverse paths computed by the routing module
between a pair of hosts.

Furthermore, our controller always replies to ARP requests with a fixed
fake MAC address M. As a consequence, this address appears as the desti-
nation MAC in all traffic packets sent by the hosts, and it could be exploited
as a label to drive traffic engineering decisions. For example, packets that a
datapath receives from a host through a specific input port could be assigned
a different fake MAC M* to reflect the fact that they must be routed along a
different path in the SDN. Collisions with existing MAC addresses must of
course be avoided, and this can be achieved by using reserved MAC ranges
or by querying for the availability of a MAC address using, e.g., Reverse ARP
packets.

In order to support network dynamics (e.g., host connections or discon-
nections), learned MAC addresses as well as the association between IP ad-
dresses and MAC addresses must be kept up to date. Our controller is already
designed to refresh the applicable data structures when new information are
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received. However, the discovery module can be improved to trigger such re-
fresh by periodically sending ARP requests to each known host, a mechanism
that is similar to the ICMPv6 NUD function. A change in the reachability of
a host may require the routing module to compute a new path (if available)
and to update the installed flow entries accordingly. A change in the MAC
address of a host requires an update of the sole flow entry that rewrites the
fake MAC with the actual MAC address of that host.

Processing of ICMPv6 Neighbor Discovery Packets

With the introduction of IPv6, many network diagnostic and support func-
tions have been delegated to ICMPv6. This includes the association of an IPv6
address with a MAC address, which is realized by the ICMPv6 neighbor dis-
covery mechanism. This mechanism uses ICMPv6 neighbor solicitation and
neighbor advertisement packets in a much similar fashion as ARP requests
and replies. There are only two main differences with respect to ARP (be-
sides the packet format, of course), which require adaptations in our discov-
ery module. The first is that neighbor solicitations use multicast destination
addresses, which the source host (in our case, the controller) must suitably
compute. The second one is that ICMPv6 has Neighbor Unreachability Detec-
tion (NUD) mechanisms, which involve periodically sending neighbor solic-
itations to the host of interest and monitoring traffic coming from that host.
In Section 4.5 we discuss how our controller can support similar mechanisms
even for IPv4, for tracking the reachability of a host (including, e.g., the case
in which its position has changed) or changes in its MAC address.

4.6 Experiments

In order to verify the applicability of our approach on real-world devices, we
used the Ryu framework [74] to implement a prototype SDN controller ac-
cording to the design described in Section 4.4. We then ran experiments using
OpenFlow 1.3 compliant switches from 3 different vendors, which in the fol-
lowing we call A, B, and C because of NDA constraints.

Testbed Description

Our experiments were mainly targeted at assessing the compatibility of our
controller design with existing devices and at performing interoperability tests.
We therefore considered the following simple linear topology with two hosts
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and two real OpenFlow-enabled switches: ’ host1 — dp1 — dp2 — host2 ‘ We
instantiated dp1 and dp2 with all the possible combinations of the available
switches, namely (dp1 = A,dp2 = B), (dp1 = A,dp2 = C), and (dp1 =
B,dp2 = C). host1 and host2 were Ubuntu 14.10 machines with IP addresses
in different subnets (respectively, 10.0.0.0/24 and 20.0.0.0/24). Each
host had a default gateway set, pointing to an arbitrary IP address. Controller-
switch communication was realized out of band. Weused ff: ff: ff:ff:fc:ac
as the fake MAC address M.

We verified the correct handling of ARP traffic by the controller using a
simple ping. In particular, we checked that the following steps were success-
fully accomplished:

o ARP caches of the hosts were populated with the fake MAC;
o ARP packets were kept on the edge of the SDN; and
e hosts exchanged ICMP packets.

Experimental Results

All the pings in our tests successfully worked. We put special attention in
verifying the interoperability among different vendors and the transparency
of our approach for end systems, by verifying that:

1. ARP requests generated by the source host were correctly sent to the
controller via Packetln messages;

2. datapaths correctly delivered forged ARP replies containing the fake
MAC address M to the requesting host, when instructed to do so via
PacketOut messages;

3. hosts accepted and cached the contents of the forged ARP replies;

4. datapaths correctly installed flow entries for the forwarding of ICMP
traffic, and these entries were correctly matched;

5. datapaths correctly installed MAC address rewriting flow entries, and
the MAC address of ICMP packets was actually rewritten as expected.

Based on the above described observations we conclude that, even in the
presence of devices from multiple vendors and in a scenario involving differ-
ent IP subnets, our approach for handling ARP traffic is effective.
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4.7 Open Problems

Consolidating our proposed design requires further investigation on several
aspects. As discussed in Section 4.5, fake MAC addresses could be exploited to
distinguish traffic classes and route them distinctly throughout the SDN. Im-
proving support for IPv6 and, in particular, ICMPv6 mechanisms (e.g., router
solicitation, router renumbering, authentication and encryption) poses inter-
esting challenges: for example, path MTU discovery is difficult to implement
with plain OpenFlow. Some information about the network configuration
(e.g., IP subnets attached to each datapath) could be derived by legacy routing
protocols (e.g., OSPF) that may be running to support in-band communication
between the switches and the controller. Our prototype controller implemen-
tation can be improved and further tests on more complex topologies could
be performed.
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Chapter 5

Experimental Evaluation of SDN
Devices *

Software-Defined Networking (SDN) is a de-facto established approach that
separates the packet switching functions of a device from its operational logic,
which is controlled by a piece of software. Due to its potential for realizing
new network architectures and services, a whole thread of scientific literature
is devoted to SDN and its most adopted incarnation, OpenFlow. However,
limited attention has been put in verifying the viability of the proposed ap-
proaches on currently available hardware.

We address this deficiency through the following contributions: 1i) a crit-
ical review of the literature about SDN in terms of applicability issues stem-
ming from publicly documented limitations of OpenFlow implementations;
ii) a methodology for verifying the support of SDN-related functionalities in a
network device, comprising an OpenFlow compliance test as well as custom
targeted tests; iii) an application of the methodology to devices from 7 dif-
ferent vendors, unveiling extensive anomalous behaviors affecting even the
most basic features; iv) a discussion of this outcome in terms of relevance
of the discovered anomalies and of their implications on the applicability of
state-of-the-art contributions on SDN. Besides taking a snapshot of the viabil-
ity of research results, with this chapter we intend to highlight aspects that
operators should consider when picking SDN devices.

*Part of the material presented in this chapter is based on the following publication: R. di
Lallo, M. Gradillo, G. Lospoto, C. Pisa, M. Rimondini. On the Practical Applicability of SDN
Research. In Proc. NOMS, IFIP /IEEE, 2016.

75
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5.1 Introduction

Software-Defined Networking (SDN) has been the future of network archi-
tectures for a few years, feeding multiple research areas with unprecedented
challenges and being increasingly adopted by device vendors. Even now that
it is the present, activities on the scientific as well as the technological side
of SDN are still fervent, due to the unmatched infrastructure scalability, im-
proved flexibility of management, and vendor independence it brought about.

Despite being a hot topic in the research community, most research con-
tributions on SDN validate the novel network architectures and services they
propose on ad-hoc testbeds, with little attention to their practical viability us-
ing currently available devices. On the other hand, even if OpenFlow is now
somewhat mature, vendors seem to lag behind in terms of supported func-
tionalities. Preserving this dual (scientific and technological) perspective, the
main goal of this paper is to take a snapshot of the applicability of state-of-
the-art contributions that leverage SDN on network devices that are currently
available on the market. We first accomplish this based on publicly docu-
mented vendor-specific limitations of OpenFlow implementations. After that,
we introduce a testing methodology to assess the level of support of Open-
Flow functionalities on a device, comprising custom targeted tests besides a
standard compliance test. We use this methodology to assess the OpenFlow
implementation progress on a range of commercially available devices’ man-
ufactured by 7 major vendors, revealing many unexpected anomalies that af-
fect even basic functionalities. Finally, we discuss the outcome of our tests in
terms of relevance of these anomalies (e.g., whether they are due to hardware
or software flaws) and of their impact on the applicability of SDN research
contributions. In addition, we compile a catalog with some of the issues we
experienced during our tests, which can help network administrators in mak-
ing more informed decisions on what aspects to care about when choosing the
devices for a network infrastructure. To our knowledge, this is the first work
that relates results from the research community with OpenFlow functionality
tests, and that analyzes in detail the outcome of such tests.

The rest of the chapter is organized as follows. In Section 5.2 we review
a selection of the state of the art on SDN and assess how its applicability is
impacted by vendor-declared limitations. In Section 5.3 we introduce our
methodology to check the support of SDN-related functionalities in a device.
In Section 5.4 we document the outcome of applying the methodology on

TNone of the devices we analyzed appears in the lists of certified devices available at [91, 92].
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a range of commercially available devices, while in Section 5.5 we illustrate
some of the observed abnormal behaviors. In Section 5.6 we discuss the im-
plications of our test results on the literature on SDN. In Section 5.7 we draw
conclusions and directions for future work.

5.2 A Review of SDN Literature

SDN has been attracting the interest of the research community for at least a
decade, resulting in a very rich body of contributions. In this section we focus
on a selection of the most recent ones that we consider most directly impacted
by the accuracy of OpenFlow implementations.

First of all, there is a class of papers that address the scalability issues in-
duced by the limited capacity of TCAM memories, where flow entries are
typically stored [93, 94, 95, 96, 97, 98]. These papers aim at saving space in the
flow tables by replacing existing flow entries with more compact, equivalent
entries. In particular, [93] proposes an algorithm for implementing forward-
ing policies by distributing the associated flow entries on multiple datapaths
along selected routing paths. In [98] a slightly less strict approach is adopted,
since constraints on traffic paths are relaxed when flow table capacities are
exceeded. In [95, 96, 97, 99] the authors propose methods for massively com-
pressing flow tables using wildcards, whereas the flow table decomposition
approach in [94] pursues the opposite strategy, because match conditions are
manipulated to reduce the number of wildcard bits.

Another relevant class of papers [100, 101, 102, 103] addresses the prac-
tical problems involved in deploying SDN in specific application scenarios.
In [100] the authors propose a solution for deploying SDN inside an Internet
eXchange Point (IXP). They define a fully SDN-based architecture where each
network connected to the IXP can independently specify high-level routing
policies, which are combined together and translated to flow entries to be in-
stalled on the switches. In [101] the authors propose a pure SDN approach
for realizing Virtual Private Networks (VPNs) based on Multi-Protocol La-
bel Switching (MPLS). They describe how VPN configurations, expressed in
a centralized high-level specification, are translated into flow entries which
make use of MPLS-specific operations for traffic forwarding. SDN is also used
in [102] to realize an inbound traffic engineering solution, which is based on
altering the source address of outbound IP packets. Last, in [103] the authors
propose an OpenFlow-based architecture for a wireless mesh network capable
of reacting to failures.
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Moreover, there is a thread of contributions aimed at introducing languages
for an abstract specification of packet forwarding policies (e.g., [104, 105, 106]),
which also constitute a building block for novel network architectures (e.g., [100]):
these contributions include run-time systems that translate policy specifica-
tions to flow entries installed on datapaths. A plenty of additional research re-
sults on SDN-related topics appeared in the last years, but it is out of the scope
of this chapter to review all of them (for a survey on SDN, please see [107]).
Moreover, they mostly focus on fault tolerance, live migration, and network
architectures: as such, they usually consider a higher level of abstraction and
do not directly deal with the installation of flow entries on the switches.

At the time of writing, all the major vendors have been including SDN-
enabled switches in their device offer for quite a long time and have adopted
the OpenFlow specification (possibly side-by-side with a proprietary SDN im-
plementation), thus enabling the deployment of many approaches proposed
in the literature. However, despite the fact that OpenFlow has been around for
at least 6 years, limitations still exist in vendor implementations that restrict
the applicability of these approaches. We identified a selection of top Open-
Flow switch vendors for which these limitations are documented in publicly
available user manuals. In random order, they are: HP [108], Dell [109], Bro-
cade [110], Arista Networks [111], and Extreme Networks [112]. Please note
that these vendors are not necessarily related with those considered in the
tests described in Sections 5.4 and 5.5. We isolated the most relevant and fre-
quently occurring limitations and associated them with the vendors declaring
them: the results are in Table 5.1.

The capacity of flow tables obviously depends on hardware constraints,
but may be further restricted due to fixed partitioning schemes of the internal
memory used to implement them (see, e.g., [110]). Match conditions are often
restricted to comply with predefined patterns (see, e.g., [112]): for example,
matching on MAC addresses may not be permitted when considering ICMP
packets. Moreover, their structure influences memory consumption, affect-
ing flow table capacities (see, e.g., [109]): for example, efficiently representing
wildcards in match conditions requires dedicate TCAM memory slots [113],
which are often available in very limited quantities, and some datapaths (see,
e.g., [110]) enforce limits on the number of flow entries that do not match the
input port. Some vendors support a single flow table, thus limiting scalabil-
ity and making it difficult to implement certain use cases [114]. Support for
MPLS is often minimal or absent, limiting the possibility to implement related
network services. The coexistence of OpenFlow and traditional layer-2/layer-
3 protocols on the same ports (hybrid-port mode) may be prohibited, and the
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Table 5.1: Common limitations in OpenFlow implementations and vendors
declaring them.

Arista Extreme

Limitati HP Dell B d
1mitation € rocade Networks Networks

Flow table size con-

straints * ¢

Restricted structure of . . R
match conditions

Single flow table o .
Lack of MPLS support e . o

Hybrid-port mode un- . .

supported

NORMAL  reserved . .
port unsupported

NORMAL reserved port number (used to process a packet using the tradi-
tional non-OpenFlow networking stack) may be unsupported: the lack of the
latter two features poses significant limits on realizing in-band communica-
tion between the datapaths and the controller.

To the extent of our knowledge, the level of awareness of such limitations
in the literature about SDN is still modest, thus potentially affecting the appli-
cability of some promising approaches on real devices. In particular, papers
aimed at reducing flow table sizes [93, 94, 95, 96, 97, 98] ignore the restrictions
imposed on match conditions, thus generating potentially unusable flow en-
tries. From another point of view, honoring vendor-imposed restrictions on
match conditions may invalidate flow table compression strategies. Usage of
wildcards in flow entries can reduce the capacity of flow tables by one or two
orders of magnitude (see, e.g., [109]), a problem that affects [95, 96, 97] but
not [94] (which still is not immune from potential violations of other vendor
restrictions). The memory requirements of using wildcards are also discussed
in [115] where, unlike the aforementioned works, the authors evaluate their
approach using hardware switches: not surprisingly, they suggest usage of
exact match conditions whenever possible. Application of SDN to IXPs is also
impacted: according to [100], flow entries that support control traffic should
match layer-4 packet header fields, implying a drastic reduction in the number
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of installable flow entries. The proposed architecture may still be considered
deployable under the realistic assumption that an average-sized IXP does not
have more than ~ 500 participants, in terms of Autonomous Systems. The
VPN architecture in [101] requires support for handling MPLS labels, mak-
ing the approach inapplicable with devices from certain manufacturers (see,
e.g., [108]). Both [100] and [101] do not address how in-band communication
between the controller and the datapaths can take place. At least, this requires
support for the NORMAL reserved port and for hybrid-port mode, two fea-
tures that are assumed to be available even in the wireless mesh network sce-
nario in [103] and that influence the applicability of these approaches. Finally,
limits on the number of flow entries that match IP addresses (see, e.g., [109])
may affect the traffic engineering approach in [102].

5.3 Device Testing Methodology

Vendor-declared limitations in OpenFlow implementations cause evident is-
sues in deploying certain approaches proposed in the literature about SDN.
However, there may be further undocumented constraints that also impair the
viability of these approaches, which even vendors may not be aware of. With
the goal of revealing such constraints, in this section we define a methodology
to assess the level of support of SDN-related functionalities in a datapath. The
methodology consists of two main phases: a deep test of compliance with the
OpenFlow specification, and a verification of the availability and correct oper-
ation of several additional features that enable the deployment of SDN-based
network architectures.

OpenFlow Compliance Test

OpenFlow is a continuously evolving specification: since its introduction in
2009 up to the time of this paper, at least 13 different revisions have been pub-
lished by the Open Networking Foundation. OpenFlow 1.1 is a milestone in
this landscape, considering that it improved handling of VLAN tags and it
introduced support for multiple flow tables, MPLS labels, and bitmasks on
MAC and IP addresses (used, e.g., to match IP subnets). Despite the impor-
tance of these features for most practical applications, many devices and con-
trollers are declared to comply with the earliest OpenFlow 1.0 specification,
while more recent versions are being incrementally adopted. Since revisions
of the specification are released at a rather rapid pace, most implementations
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Table 5.2: Features of OpenFlow compliance test suites.

Test suite OpenFlow version(s) Test cases
Ryu [117] 13,14 991 (OF 1.3)
oftest [118] 1.2,1.3, 1.4 in the works ~ 200
ONF OpenFlow confor- 101,134 208 (OF 1.0.1)

mance tests [119, 120] 334 (OF 1.3.4)

Open SDN network virtual-
ization test [121]

Ixia IXANVL OpenFlow test

N/A <100

1.0.1,1.32 >194 (OF 1.0)

suite [122] 528 (OF 1.3)
OFLOPS [123] 1.0 <50
Veryx ATTEST OpenFlow 4 137 135 133 400
conformance test [124]

Spirent TestCenter Open- 101.13. 14 >950 (OF 1.3)
Flow compliance test [125] e >100 (OF 1.4)

skipped from OpenFlow 1.0 directly to OpenFlow 1.3, whereas the most re-
cent OpenFlow 1.5 [8] is supported in a negligible number of cases. Therefore,
we refer our compliance test to OpenFlow 1.3 [116].

Testing the level of compliance with OpenFlow is a rather cumbersome
task, given the extension of the specification. Fortunately, there exist software
tools that automate this job. Table 5.2 describes the main OpenFlow compli-
ance test suites in terms of the OpenFlow version they can test and of the
count of applied test cases. For our tests we chose the OpenFlow switch test
tool included in the Ryu controller framework [117] (we used version 3.18),
which is publicly available, offers a very rich set of test cases, is maintained
by an active community of researchers and developers, and is also used by
some vendors for compliance tests (as confirmed during internal communi-
cations). Although this test suite is readily usable, we argue that drawing
conclusions from its reports is not immediate, and we give a contribution also
in this direction.

Running the Ryu test suite required 2 additional devices besides the target
datapath, as specified in Figure 5.1:

A tester datapath, used to submit different kinds of packets to the target
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target datapath

OQ ety rget_send_port_2
SRR I target_send_port_l
target_recv_port

tester_send_port
JE—— tester_recv_port_1
tester_recv_port_2

.........

7
server 1:
(controller) tester datapath

Figure 5.1: Network topology required in order to run the Ryu test suite.

and to collect response packets from the latter, and a server, acting as a con-
troller for both the target (where different flow entries are installed for each
test case) and the tester (which is instructed to emit packets and send the
received responses back to the controller). Different test cases may require
different sets of ports, therefore the target datapath and the tester datapath
are connected as in the figure. Since different datapaths assign OpenFlow
port numbers in different ways, before running the Ryu test suite we had to
slightly adapt its test cases to consider parametric port numbers.
The Ryu test suite considers four classes of test cases:

Action Verify packet forwarding and manipulation functions (e.g., TTL alter-
ation, push/pop of VLAN/MPLS headers).

Group Verify support for group actions, namely actions that are performed on
multiple copies of the same packet (e.g., forwarding on multiple ports).

Match Verify an extensive assortment of match conditions, considering var-
ious packet header fields, applying bitmasks on those fields, exploit-
ing multiple flow tables, and using reserved port numbers (e.g., CON-
TROLLER to send a packet to the controller, ALL to send it out of all the
ports).
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Meter Verify support for the meter table, which is used for rate-based traffic
classification. For these tests, the tester datapath is instructed to emit
packets at configured rates.

In order to check the ability of a datapath to hit or miss certain match
conditions, every test case is repeated multiple times (typically between 3 and
4) with test packets that have a different set of headers (for example, MPLS or
VLAN) or transport different protocols (for example, ARP, IPv4, or IPv6).

Custom Tests

We also defined a set of additional custom tests, which we used to cover as-
pects not considered by the Ryu test suite and to investigate deeper in the
cause of failed Ryu test cases. Some of these tests are listed in Table 5.3.

For example, we exploited test ct_normal to determine the ability of a
datapath to communicate in-band with the controller (we recall that support
for the NORMAL port is declared as optional in the OpenFlow specification).
Test ct multi_ctrl is meant to assess robustness and manageability: it ver-
ifies whether a datapath sends a copy of the received packets to all the con-
figured controllers (implying consistence problems in the controller design) or
just to a single one, considering the others as backups. Finally, test ct _hidden
verifies whether a datapath maintains default flow entries that are not nor-
mally visible in any flow tables and yet influence its behavior.

We also defined targeted versions of selected Ryu test cases, which we
used to investigate the cause of reported failures. These tests consist in re-
peating the applicable test case in a controlled environment, namely using
a simplified flow entry on the target datapath that is enough to trigger the
problem and using a network sniffer for monitoring the test packets entering
and exiting that datapath. In this way we discovered that certain Ryu test
cases failed because the corresponding flow entries mix unsupported features
with features that would be supported if used alone, or because the value of
a header field in a manipulated packet was off by one unit, which we do not
consider to be detrimental for deploying an SDN-based architecture.

Finally, we carried out performance tests, to assess the presence of bottle-
necks in OpenFlow implementations. For the ct_perf_switch test we con-
nected 10GbE ports on the target datapath to create two loop topologies, as
shown in Figure 5.2. We also installed simple flow entries matching on the

fMetadata are user-defined registers, mainly used to pass information between flow tables.
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Table 5.3: A sample of the custom tests that we defined, with the functionali-
ties they verify.

Functional tests

ct_normal Support for the NORMAL reserved port

ctomulti_ctrl  Behavior in the presence of multiple configured
controllers

ct_hidden Existence of hidden flow tables with default entries

Targeted versions of selected Ryu test cases

ct_group Operation of group actions

ct_mask Operation of bitmasks applied on matched header
fields

ct_vlan Support for pushing/popping single or multiple
VLAN tags

ct_mpls Support for pushing/popping single or multiple
MPLS labels; assessment of label stack size limits

ctmetadata Support for metadatatin match conditions and ac-
tions

Performance tests

ct_perf_switch Switching performance as a function of flow table
size

ct_cpu CPU usage for flow entry matching and packet
switching

ct_flow_insert Time required to install entries in the flow table

input port and forwarding packets along the loops. Then, we first saturated
the bandwidth of the involved ports by injecting enough test packets in every
loop (we sent PacketOut messages to the datapath for this purpose). In or-
der to increase the frequency of lookups in the flow table, we used small IPv4
packets with a payload of 46 bytes as test packets. Once 100% port usage was
steadily reached, we started adding a progressively increasing number of en-
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Figure 5.2: Network topologies used during the performance tests.

tries to the flow table: each entry simply matched a different non-existent IP
address, and its action was to forward packets out of a random port. Finally,
as entries were installed, we checked whether switching performance was af-
fected, which we consider an evidence of the overhead of matching flow table
entries. We are aware that one or two loops are extremely far from saturat-
ing the capacity of a switch, but even with this simple experiment we could
experience performance drops beyond a certain flow table size.

Once the datapath reached 100% port usage we also monitored the amount
of consumed CPU, to determine whether packet forwarding was hardware
accelerated (test ct_cpu). Moreover, for the ct _flow_insert test we mea-
sured the time required to install an increasingly high number of flow entries
starting from an empty flow table. Each flow entry matched IP packets with
randomly chosen IP addresses (duplicates were avoided) and had a single ac-
tion, CONTROLLER. After installing each flow entry using a FlowMod mes-
sage, we sent to the datapath an OFPT_BARRIER_.REQUEST message, asking
it to acknowledge the installation with an OFPT_BARRIER_REPLY message.
We considered the time elapsed between adding the first flow entry and re-
ceiving the last OFPT_BARRIER_REPLY as the overall insertion time. We recall
that the controller can issue an OFPT_BARRIER_REQUEST message to wait for
completion of certain operations (e.g., the installation of flow entries), which
is notified by the datapath in the form of an OFPT_BARRIER_REPLY message.

5.4 Outcome of Device Tests
In this section we describe the results of extensive tests we performed us-

ing the methodology in Section 5.3 on a range of hardware datapaths, which
largely confirm the limitations discussed in Section 5.2 and unveil additional
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Table 5.4: Main features of the tested datapaths.

10GbE Switching OpenFlow OVS

1D Ports  Fabric Capacity CAM version _ based
S1 8 about 2 Tbps CAM 1.3 No
S2 128 about 2 Tbps TCAM 1.3 No
S3 64 about 1 Tbps n/a 13,14 Yes
S4 4 about 500 Gbps TCAM 1.3 No
S5 4 about 500 Gbps TCAM 1.3 No
S6 72 about 1 Tbps n/a 1.3 No
S7 40 about 500 Gbps n/a 1.3 Yes
ovS n/a n/a (software switch) No 1.x Yes
ones.
Test Setup

We analyzed 7 hardware datapaths manufactured by 7 major vendors, con-
sidering it a valuable opportunity to have so many devices simultaneously
available for examination. Due to NDA constraints, we are unable to declare
the model of the tested switches and the name of the involved vendors, there-
fore in the following we address them as S1, S2, ..., S7. All the datapaths
were equipped with a forwarding ASIC. Some of them ran a customized ver-
sion of Open vSwitch (OVS) [58] under the hood, associated with drivers for
hardware-accelerated forwarding, whereas others had a proprietary Open-
Flow implementation. The main features of the datapaths we considered are
in Table 5.4. As a term of comparison, we also executed our tests (except
performance tests) on OVS, which is known to have a very good level of com-
pliance with the OpenFlow specification (see also [91]).

We used OVS version 2.3.90 as tester datapath, running on top of a server
equipped with an Intel i7 3.50GHz CPU, 32GB of RAM, and 4 10GbE SFP+
network interfaces (we only used 3 of them). Since OVS is one of the most
stable, feature-rich, and standards-compliant software datapath implementa-
tions, this choice ensured that our tests were not biased by implementation
bugs in the tester datapath. We ran the Ryu test on a virtual machine with
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2 Intel Xeon Sandy Bridge processors allocated from the hosting server and
2GB of RAM. Both servers executed Ubuntu Server Linux 14.04.2 LTS as oper-
ating system. The control channel between Ryu, the tester datapath, and the
target datapath was realized by a dedicated 100Mbps management network.
We performed the OpenFlow compliance tests as described in Section 5.3. As
the sole exception, we could not connect the target_send_port_2 of S2 (see
Figure 5.1), which prevented us from running the group and meter test cases
on this datapath. Moreover, we could not execute any performance tests on it
either.

Before executing the Ryu test suite on each datapath, we had to recon-
struct the OpenFlow port numbers associated with its physical interfaces, an
important task considering that OpenFlow port numbers are assigned based
on arbitrary conventions (see, e.g., [112]). We then passed these port numbers
to Ryu to assign them the roles in Figure 5.1. We executed every run of the Ryu
test multiple times, in order to make sure that the obtained results were repro-
ducible (due to a firmware bug, we experienced non-deterministic outcomes
on at least one of the datapaths). For those cases in which a suspiciously low
count of passed tests was reported, we performed the following actions: we
launched a reduced set of test cases, to verify the operation of at least basic
functionalities, we installed simple flow entries in the target datapath to sup-
port a simple ping test, and we executed the custom tests in Section 5.3 to
delve further into the problem. In this way we could at least rule out funda-
mental flaws in the various OpenFlow implementations.

Test Results

In Figure 5.3 we show the count of test cases that Ryu reported as passed for
each considered datapath, distinguishing between tests that verify manda-
tory features in the OpenFlow specification (e.g., support for matched packet
header fields, actions, etc.) and those that verify optional features. The dashed
horizontal line is a threshold that corresponds to the total count of test cases
(276) for mandatory features comprised in the Ryu test suite. The plot evi-
dently shows that, besides OVS, only datapaths S3 and S7 passed more than
300 tests. Interestingly, these two datapaths are OVS-based. Other propri-
etary OpenFlow implementations typically barely reached 100 passed tests.
A bit surprisingly, the count of passed tests for mandatory features never ap-
proached the threshold, not even for OVS, which however passed the highest
number of tests. The gap for S6 in this plot as well as the following ones is
due to a subtle bug in the OpenFlow implementation: in fact, this datapath
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Figure 5.3: Count of passed Ryu tests.

assigned flow table IDs starting from 1 (instead of 0 as per the specification),
causing mismatches in the outcome of all the applied test cases.

In order to have a more clear view of the functionalities supported by each
datapath, we broke down the total number of passed tests according to the
test classes defined in Section 5.3. Figure 5.4 shows, for each class, the per-
centage of tests passed by each datapath with respect to the total number of
tests in that class. In accordance with the format of Ryu test reports, we moved
to a separate class set-field those test cases that apply modifications to existing
packet headers (e.g., rewrite L2/L3 addresses). It can be immediately noticed
that test cases on the meter table were not passed by any datapaths: in all
cases, the request to add meters was simply rejected by the datapath. Test
cases concerning the group table and group actions were only passed by 3
datapaths (excluding OVS), despite the fact that this is a mandatory feature
in the specification. Moreover, restricting to the action and group classes, dat-
apath S3 performed better than any other datapaths, including OVS, even
though it ranked second in terms of the total count of passed test cases (see
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Figure 5.4: Percentage of passed OF 1.3 Ryu tests per test class.

Figure 5.3). Overall, no datapaths reached 60% of passed test cases per class.
To gain an even better understanding of the supported functionalities, we
also classified the test cases according to the protocol headers used in the test
packets sent to the target datapath, generating the plot in Figure 5.5. In partic-
ular, Ryu repeats each test case multiple times: tests focusing on function-
alities that deal with layer 2, meters, and action groups are repeated with
test packets carrying an IPv4, IPv6, or ARP header, whereas tests focusing
on functionalities that concern layers 3 and 4 as well as ARP are repeated with
test packets carrying a plain Ethernet (Eth), VLAN, MPLS, or PBB header?.
For example, the MPLS class in Figure 5.5 represents test cases that verify the
ability of the target datapath to process layer 3/4 headers in test packets that
carry an MPLS header (this is different from saying that MPLS is the class of
tests that verify support for MPLS-related functionalities: such tests are scat-

$PBB (Provider Backbone Bridge) is a standard acronym for indicating IEEE 802.1ah, a varia-
tion of QinQ.



“main” — 2016/5/6 — 12:57 — page 90 — #100

90 CHAPTER 5. EXPERIMENTAL EVALUATION OF SDN DEVICES

100%

80% i
S5
S6 wzzzA
. . S7 SO

60% OVS mmm |

40%

20%

% of passed tests in each test class

0%

IPv6 ARP Eth VLAN MPLS PBB

Figure 5.5: Percentage of passed OF 1.3 Ryu tests for test packets carrying a
specific protocol.

tered among the IPv4, IPv6, and ARP classes). From the figure it is pretty
evident that basically all datapaths were unable to accomplish any operations
on packets carrying MPLS or PBB headers, thus impairing their usage in the
related fields of application. As a confirmation of the results in Figure 5.4, dat-
apath S3 always performed better than any others (excluding OVS), with the
sole exception of the Eth class, where S7 remarkably exceeded 90% of passed
tests.

Referring to the Figure 5.6, we now describe the results obtained during
the performance tests, excluding S2 as already specified in Section 5.4. Dat-
apaths S3 and S5 are those that exhibited the best performance during the
ct_perf_switch test: even after saturating link capacities on the loops, the
datapaths continued forwarding packets at a steady rate even with 200 ad-
ditional entries installed in the flow table. For S1 and S4 the test could not
be completed because installing additional flow entries unexpectedly caused
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the looping packets to be dropped (see Section 5.5 for the details). S6 was
so flawed that we could not reliably exploit the installed flow entries to re-
alize the loops in Figure 5.2. Finally, S7 exhibited a very low throughput
(around 18Mbps) since the beginning of the test, due to the fact that firmware
limitations forced us to disable hardware accelerated packet forwarding. For
the ct_cpu test we used the CLI of each target datapath to collect statistics
about CPU usage while the ct_perf_switch was running. For the afore-
mentioned reasons we do not have CPU load results for S2 and S6, but for all
the other datapaths the CPU was not involved in the packet switching (there-
fore, the flow table matching) process at all. Figure 5.6 shows the outcome
of test ct_flow_insert, namely the time it took to install increasingly large
sets of flow entries on the target datapath starting from an empty flow table.
This time highly depends on the internal processing operations accomplished
by the datapath to store flow entries into high-performance memory areas: to
limit this bias, we used flow entries with a very simple regular structure (see
Section 5.3). The plot, whose axes are in logarithmic scale, shows outstand-
ing differences between the datapaths, especially beyond 500 installed flow
entries. S1, S3, and S7 handled the installation process very efficiently (even
though they may be subject to the OFPT_BARRIER_REPLY reliability problems
discussed in [126]). S4 was slightly slower, but its insertion time was still pro-
portional to the number of flow entries. On the other hand, S5 started to satu-
rate beyond a certain flow table size, and did not even install all the requested
flow entries due to hardware limitations. Even worse, S6 just dropped the
connection with the controller beyond 50 installed flow entries.

As final remark, we want to point out that since the support for counters
is declared as optional, as reported in Section 1.2, the outcome of the tests we
executed on the datapaths never depended on their values. Instead, we often
exploited the counters (if available) during troubleshooting sessions to inspect
whether the expected flow entries were being matched.

5.5 A Catalog of Experienced Issues

While running the tests described in Section 5.4, we observed unexpectedly
failed test cases as well as a number of anomalous behaviors. We debugged
these issues with the help of the targeted tests described in Section 5.3, which
we executed using a set of custom minimal controllers that performed basic
operations (e.g., clearing the flow table, installing a single flow entry, sending
an PacketOut message). In this section we describe the main anomalies we
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Figure 5.6: Flow entry insertion performance (axes are in logarithmic scale).

experienced, hoping that they can highlight aspects that network operators
should care about when selecting devices for production use.

Functional Bugs

Some of the unexpected behaviors were evidently due to improperly imple-
mented features. For example, on one datapath every flow entry was removed
immediately after being installed, and on another datapath setting the table-
miss flow entry to send packets to the controller had no effect (whereas an
entry in a standard flow table did). Firmware upgrades (or even downgrades)
sometimes solved such issues, but in other cases we were just stuck with un-
usable features.

By watching per-flow counters of matched packets, which most vendors
implement, we observed several inconsistent conditions: for example, some
installed entries did not match any packets unless their match conditions in-
cluded an explicit Ethernet type; other entries matching on the VLAN ID
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only worked if their action was set to CONTROLLER; in one case, matched
flow entries did not push a VLAN tag as requested; in another case, a flow
entry whose match conditions contained additional fields besides the input
port matched the expected packets but did not forward them unless the ad-
ditional fields were removed from the match condition. While these behav-
iors might be due to improperly handled TCAM entries, we argue that such
confusing conditions should be prevented by prohibiting flow entry installa-
tion altogether. In extreme cases, we saw the same set of flow entries non-
deterministically matching or missing the same test packets (causing the Ryu
tests to succeed only on a fraction of the runs), and we witnessed a packet
matched by multiple flow entries (instead of a single one) pre-installed in a
hidden flow table and missed by a custom flow entry that was supposed to
match.

By monitoring the packets exchanged between datapaths and controller
during our custom targeted tests, we could reveal a couple of very subtle bugs:
on S1, Packetln messages¥ generated by a flow entry with an explicit action
CONTROLLER always had the reason field incorrectly set to OFPR_NO_MATCH,
meaning that all the entries in the flow table were missed. On S6, the 1ength
value of the match field carried by Packetln messages (which contains the
datapath port through which a data packet was received) was always incor-
rectly computed, causing Packetln messages to be malformed. As a side note,
on one datapath the counters of packets and bytes matched by each flow entry
were available but only correctly updated for those rules that had at least one
match condition (i.e., different from all-wildcard).

Violations of the Specification

Some Ryu test cases failed because of other misbehaviors caused by mistakes
in the implementation of the OpenFlow specification. However, their severity
was indeed much more moderate, because they did not impair the datapath
operation.

For a couple of datapaths we observed that flow table IDs were not as-
signed starting from 0: for S2 this was due to the fact that lower IDs were
reserved for flow entries with a specific structure, while S6 just adopted the
convention of assigning IDs starting from 1. While affected datapaths can still

YPacketln is the OpenFlow message used by a datapath to forward a received data packet to
the controller.
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function correctly, this is likely to cause mismatches for example when watch-
ing counters associated with flow entries.

According to the OpenFlow specification, when pushing a new header
(e.g., VLAN, MPLS) on a packet, the values of some fields in the pushed
header should be inherited from existing headers, or initialized to 0 if no
matching headers exist. For one datapath we observed that the value of the IP
TTL was unexpectedly decremented by 1 unit when copying it to a freshly
pushed MPLS header. Even more, an MPLS header pushed on top of an
ARP packet (which misses the TTL) had its TTL set to 64. Interestingly, these
issues did not occur when pushing an MPLS header on top of an existing
MPLS header. Last, an MPLS header pushed on top of an IPv6 packet had
its label erroneously initialized to 0x02, and popping the MPLS header off an
IPv6 packet improperly changed the Ethernet type to 0x0800 (IPv4) instead of
0x86dd (IPv6). While the latter anomalies may lead to malformed packets, the
others are less harmful and can be easily worked around.

In the presence of VLAN tags, the OpenFlow specification states that a
match condition on the Ethernet type should consider the type of the first non-
VLAN (i.e., innermost) header. All the datapaths we considered followed this
rule except S4, which always picked the type carried in the Ethernet header.

Issues Revealed Under Stress

There is a variety of additional anomalies that we could discover only while
carrying out performance tests. PacketOut messages were processed at a sur-
prisingly low rate by S6 and, even though test packets were matched by the
flow entries supporting the loop, no incoming packets were observed on any
interfaces, invalidating the experiment. For other datapaths, after reaching
100% usage of network interfaces during ct_perf_switch, we saw that in-
stalling new flow entries that were not supposed to match any packets caused
the test packets to be unexpectedly drained from the loop. On S4 this hap-
pened even without reaching 100% interface usage. On S1, we observed a
consistently reproducible behavior: installing even a single additional flow
entry while packets were looping caused any existing flow entries with higher
priority to have their match counters reset and to temporarily stop matching
any packets (the table-miss flow entry was applied instead). We believe such
a condition is at least as dangerous as the inconsistent forwarding states ob-
served in [126].

During test ct_flow_insert, not all the datapaths could keep the pace
with FlowMod messages: one of them only installed a randomly selected sub-
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set of the requested flow entries, and from time to time it lost connection with
the controller, causing new random subsets of flow entries to be cyclically in-
stalled every time a connection retry succeeded.

5.6 Takeaway

Combining publicly documented OpenFlow implementation limitations with
the outcome of our tests results in a rather disappointing scenario, considering
the maturity of the OpenFlow specification. In this section we summarize the
implications of our study on the main research results on SDN.

General Considerations

First of all, some devices (e.g., S6) are still affected by hardware design issues
(causing, e.g., flow entries to match packets non-deterministically) and soft-
ware bugs (causing, e.g., malformed OpenFlow messages) that make them
completely unusable for any practical applications of SDN. While software
problems can be overcome with upgrades, hardware problems require a re-
vision of the involved components and a replacement of any affected de-
vices that are already deployed, making them harder to fix in the short term.
In terms of functionalities and compliance with the OpenFlow specification,
OVS-based datapaths (e.g., S3 and S7) proved to be the best choice and, since
packet matching and forwarding tasks are offloaded to hardware, they also
have very good performance. This makes them best suited for SDN applica-
tion scenarios such as [100, 102, 103]. Open vSwitch can also be easily adapted
to the underlying hardware: for example, it can explode flow entries with
wildcards into exact match flow entries when there are no TCAMs available.
However, due to the consequent memory load, this mode of operation is usu-
ally more suited for software-based switching, making some flow table com-
pression strategies [95, 96, 97, 99] ineffective in such a scenario. Interestingly,
our results on flow insertion times confirm those in [127] and show the ab-
sence of any correlation with switching fabric capacity.

Some functionalities are still widely unsupported. Only 3 out of the 7 dat-
apaths we tested support match conditions and actions on IPv6 headers, im-
pairing SDN deployment in modern networks. Rate-limiting traffic, a useful
operation in scenarios such as [100, 101], can be very difficult with OpenFlow
because the meter table is not supported by any devices. Load sharing may
be impaired as well due to the limited support for group actions (see also [8]).
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The missing support for processing PBB packets can make SDN-based inter-
connections between provider networks quite difficult but, admittedly, re-
search in this direction is still preliminary (see, e.g., [128]). Moreover, the
lack of functions for handling MPLS packets affects a class of approaches such
as [101]. At least, all the tested datapaths are able to correctly process packets
with standard Ethernet headers (see Figure 5.5), obviously except datapath S6
that fails due to hardware design issues, as mentioned at the beginning of this
section.

Memory Constraints

Several vendors enforce partitions on the amount of available TCAM mem-
ory: this requires a careful planning of the estimated amount and type of in-
stalled flow entries. Choosing the optimal setup may be very difficult, consid-
ering that partitioning schemes are often constrained to predefined profiles,
the count of TCAM entries consumed by a flow entry is rarely documented,
TCAM memory blocks may be allocated to specific types of flow entries (e.g.,
matching on layer-2 or layer-3 fields), and some network modules may not
support mixing these types. Moreover, the number of flow entries may be
difficult to estimate in scenarios such as [102].

It is worth mentioning that the flow table compaction problem has also
been tackled with general approaches that are independent from the structure
of match conditions: in [113] this is accomplished by replacing match condi-
tions with flow identifiers that are looked up in a separate table, while [129]
proposes a method to optimize flow entry timeouts in order to minimize the
number of stale entries. CacheFlow [130] introduces a clever caching mech-
anism to support the installation of more flow entries than allowed by flow
table capacities. The applicability of all these approaches is unaffected by any
of the discussed vendor limitations, especially considering that [129] and [130]
do not manipulate existing flow entries in any ways.

As a side note, the presence of switch memory constraints makes finding
a schedule for consistently updating flow entries on a set of datapaths an NP-
complete problem [127]. It would be interesting, although out of the scope of
this chapter, to analyze whether the computational complexity of other NP-
hard theoretical problems analyzed in the literature about SDN is reduced by
the introduction of vendor constraints.
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Robustness Issues

Once a datapath with a suitable set of features has been singled out, several
adjustments may need to be applied to ensure its robust operation. The de-
fault action undertaken by the table-miss flow entry (drop or send to con-
troller) varies across vendors, therefore it is advised to explicitly set it in ad-
vance. Robustness of the datapath-controller communication channel is cru-
cial, especially because losing connection with the controller may result in the
flow table being cleared and no “emergency” flow entries being installed. No-
tably, only 2 or 3 controllers can often be configured for a single datapath, and
a secure communication channel (e.g., SSL-based) may only be supported for
a subset of them.

The behavior of a datapath should be carefully verified before putting it
in production: as generic as this recommendation may seem, flow entries that
do not produce the desired effect and interruptions of the matching process
after entries with certain priorities have been installed (see Section 5.5) are
very difficult issues to debug if not known in advance.

Policy Specification Languages

Several contributions rely on abstract policy specification languages such as [105,
106] to implement complex network architectures and services (e.g., [100, 131,
132]). While this constructive approach is very effective, high-level policies
must ultimately be translated into flow entries: depending on the policy com-
piler logic, the resulting flow entries may violate vendor-imposed constraints,
affecting the applicability of a whole class of scientific contributions that de-
pend on the chosen policy language. Fortunately, some compilers [104] are
designed considering that certain features (such as wildcards) should not be
used on certain datapaths, and their behavior can be tuned accordingly (see
the “reactive specialization” in [104]). Even P4 [133], a recently introduced
language that supports a more flexible specification of the packet processing
logic than in OpenFlow, risks to be affected by similar issues.

We are aware that some of the anomalies we experienced could be due to
faulty devices. However, we consider this situation unlikely, because for some
switches we had multiple instances exhibiting consistent behaviors, and be-
cause certain issues were common to different switches. All the discussed
anomalies are exacerbated in a multi-vendor environment: besides the inter-
operability problems that may arise, an SDN controller may be restricted to
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consider only the intersection of the functionalities available on the controlled
devices.

5.7 Open Problems

As an obvious continuation of this work, the testing methodology can be ap-
plied to additional devices. However, we also plan to extend our set of cus-
tom tests to comprise additional functionalities. Also, considering that the
test specification format we used internally is very similar to the one adopted
in [119], we would like to publicly release this specification. On the method-
ological side, we will be considering how existing SDN-based architectures
such as [101] can be fit to comply with vendor-imposed restrictions.
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Concluion and Future Works

The coexistence of many protocols in order to provide services leads some
problems in the networks, in terms of flexibility, provisioning and manage-
ability. Interacting with configuration files does not give to network admin-
istrators the same flexibility levels of other alternatives, in particular those
relying on SDN. In this thesis, we study the problem of improving flexibility,
provisioning, and manageability, showing that is possible and it can be done
exploiting both distributed and centralized approaches. Of course, central-
ized approach is very promising in terms of simplifying many aspects in the
networks, as shown in Chapter 3. We also provide an efficient mechanism for
handling interoperability when SDN devices have to cooperate with legacy
ones.

In Chapther 2 we introduce a control plane for internal routing inside an
ISP’s network with several desirable properties, including fine-grained con-
trol of routing paths, scalability, robustness, and QoS support, thus improving
flexibility with an effort in simplifying the configuration effort and the num-
ber of protocols involved, since our control plane also provides QoS mechan-
ims. We provide a formal description about messages and algorithms in-
volved in our control plane. We validate our approach through extensive ex-
perimentation, revealing promising scalability and competitive convergence
times compared with OSPF.

In Chapter 3, we demonstrate how a complex and widely used service
can be simplified, from the configuration point of view and the number of
involved protocols in providing that service. Taking advantage of the pro-
grammability of SDN, we propose a novel approach to realize MPLS VPN,
which supports easy provisioning and setup based on a simple and flexible
configuration language, facilitates management and troubleshooting by drop-
ping unneeded technologies, and improves controllability and predictability
by enforcing a centralized coordination of the behaviors of network devices,
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also enhancing the manageability of the network itself.

In Chapter 4, addressing interoperability issues, we describe the design
of an SDN controller that handles exchange of ARP packets between SDN
switches and legacy IP devices, also in the presence of multiple IP subnets,
with low forwarding overhead for the SDN and low communication overhead
for the controller. Functional tests on a range of SDN switches from different
vendors confirm the viability of our approach, that is very important with
respect to what described in Chapter 5.

Finally, in Chapter 5 we point out how research in the field of SDN is
largely unaware of several restrictions encountered when it comes to deploy-
ing a proposed architecture on real devices. In this chapter we contrast a selec-
tion of recent research contributions with publicly documented limitations of
OpenFlow implementations, and we exploit a custom testing methodology to
carry out extensive tests on a range of commercial switches, unveiling several
additional limitations and anomalies. We consider this work as a milestone
assessing the gap between research results and their practical applicability on
currently available devices, which turned out to be more appreciable than ex-
pected.

Unfortunately, Chapter 5 also reveals as the adoption of SDN, using Open-
Flow, is still braked by some vendor implementations. This is not the only
consideration that can be drawn. Indeed, another relevant consideration is
referred to the applicability of some proposals at the state of the art. In par-
ticular, many papers addressing the problem of the flow tables” compression
cannot be applied. For example in [93] authors do not take care of constraints
that many vendor impose in the format of the flow entries. Other papers,
like [95, 96], propose a massively use of wildcard: unfortunately this choice
is not profitable, because wildcards drastically reduce (up to two orders of
magnitude) the size of the flow tables, as reported in [109]. Another proposal
affected by results observed in Chapter 5 is [100]. In fact, as also discussed
in Section 5.2, using rules that match on layer-4 packet header fields reduce
the number of installable flow entries. This chapter could also undermine the
approach about VPN services shown in Chapter 3, becuase we chose to use
MPLS labels for traffic forwarding and Figure 5.5 shows how current Open-
Flow implementations do not support MPLS protocol at all. Actually, that
lack does not affect our proposal, because we use MPLS labels just as a way
to forward traffic: in absence of MPLS support, another way to forward traffic
based on label is surely valid: an alternative is represented by VLAN header,
that are extensively supported in current OpenFlow implementations by ven-
dors.
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With respect to the future works, an interesting direction is to define some
objective criteria for establishing if SDN is better than traditional approaches.
Considering several metrics (e.g., number of exchanged control plane mes-
sages), different implementations of a given service can be compared, in order
to try to establish if an implementation performs better to another one, or if
there is some relationship with external factors, like topology. This is useful
both to help operators to understand whether, given a service, an implemen-
tation works better of another one, and to compare novel research proposals
with existing ones.
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Appendix A: Pathlet Intra-Domain
Routing Algorithms

In this chapter we extensively discuss algorithms used in our control plane.
In Appendix A.1 we report algorithms used to handle network dynamics,
such as a topological change whereas in Appendix A.2 we report algorithms
describing the actions undertaken by each vertex in conseguence of the recep-
tion of a message. Finally, in Appendix A.3 we report the algorithm which
our topology generator, discussed in Section 2.7, relies on.

A.1 Algorithms to Handle Network Dynamics

We now describe the operations undertaken by a vertex u when, in conse-
quence of a topological change or an administrative reconfiguration, its set
IL, of known pathlets is changed to a new set II,,.,,. These operations are
formalized as procedure UPDATEKNOWNPATHLETS(u, 11,,¢,) in Algorithm 8.
First of all, u disseminates pathlets that are newly appeared in II,,.,, (with re-
spect to II,,) and withdraws those that are no longer in this set. Note that, as
anticipated in Section 2.5, at line 22 the forwarding state for removed path-
lets is only cleared after a timeout T%/. Vertex u also disseminates pathlets
that had their scope stack or set of destinations updated, and withdraws them
from those neighbors that (according to propagation conditions and routing
policies) cannot receive the updated instance. Then, v updates its set II,, and
removes pathlets that can no longer be used in any composition because their
start vertex is not reachable. Last, v updates its crossing and final pathlets.
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Algorithm 8 Algorithm to update the set II,, of known pathlets at a ver-
tex u. Procedure UPDATEKNOWNPATHLETS only realizes the update of IL,,
while UPDATEKNOWNPATHLETSANDSTACK considers the case when the la-
bel stack of u is contextually changed from S, to Spew.

1: procedure UPDATEKNOWNPATHLETS(u, ITcw)
2:  UPDATEKNOWNPATHLETSANDSTACK(u, S(u), S(u), hew)
end procedure

@

4: procedure UPDATEKNOWNPATHLETSANDSTACK(t, Soid, Snew, lnew)

5:  foreach m = (FID,v,w,0,6) € Iew\Il, do

6:  is a new pathlet or an updated instance of a pathlet that is both in I1,, and in ey
7: if u = v then

8 Update u’s forwarding state according to the composition of =

9 M < new Pathlet message; M.p < 7

10: Send M to each neighbor € N (u, Snew, )

11: end if

12:  end for

13:  for each moq = (FID,v,w,00id, 001d) € Iy\pew do

14: if u = v then

15: M < new Withdrawlet message; M.t < FID; M.s < 004
16: if IMpew = (FID, v, W, Onew, Onew) € pew then

17: Toa 15 in I1,, and has an updated instance Trew in Mpew

18: Send M to each neighbor x € N (u, Soid, To1d)\IN (&, Snew, Tnew)
19: else

20: Toa 15 in L, but has been removed in ey

21: Send M to each neighbor x € N (u, Soid, Toid)

22: Clear fids,,(FID) and nh., (FID) after a timeout T}

23: end if

24: end if

25:  end for

26: Hu < Hnew
27.  foreach m = (FID,v,w,0o,d) € II,, do

28: if chains(Ily,u,v, Snew) = @ or any concatenation of a pathlet in
chains(Ily, u, v, Spew) With pathlet 7 has a cycle then

29: Initialize T'% (7) to a configured pathlet timeout

30: else

31: TP (m) + ©

32: end if

33:  end for

34:  UPDATECOMPOSEDPATHLETSANDSTACK(u, Soid, Snew, I14)
35: end procedure
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We now illustrate the operations undertaken by u to update its sets of
crossing and final pathlets C,, and F},, for each area for which u is a border
vertex. These operations are formalized as procedure UPDATECOMPOSED-
PATHLETS(u, I1,,¢y) in Algorithm 10. First of all, u composes any newly avail-
able crossing pathlets and removes those that can no longer be composed. The
latter operation uses function ISPATHLETCOMPOSABLE(u, 7, II, Veng) in Algo-
rithm 9, which determines whether 7 can (still) be composed by u based on
known pathlets in II and admissible end vertices in Vinq. Then, u updates its
forwarding state for newly composed pathlets and disseminates them. Sim-
ilarly to [19], before removing a pathlet, u checks whether it can be trans-
parently replaced with an alternative one and, if so, u just updates its for-
warding state without sending any messages. Otherwise, u sends withdrawal
messages to its neighbors, and clears the forwarding state after a timeout 7}
which is used to support correct forwarding of network traffic that still uses
the old pathlets.

Algorithm 9 Algorithm to check whether a pathlet 7 can (still) be composed
by a vertex u given a set II of known pathlets and a set V4 of admissible end
vertices for 7.

1: function ISPATHLETCOMPOSABLE(u, 7, I1, Vena)

2. Letw = (FID,u,v,0,9)

3 ifv € Veua and F(m w2 ... m) € chains(Il,u,v,0) such that m;, =
<F1Di, Ui, Viy 04y (5Z>, 7 = 1, Lo, n and ﬁdsu(FID) = (FIDQ FIDg . FIDn) and
nhy(FID) = uz and the pathlet composition rules allow composition of = then

4 return True

5 else

6: return False
7
8

end if
: end function

We remark that in our model most topological variations and administra-
tive reconfigurations can be represented as a change of label stacks: addition
of a link (u,v) is modeled by setting S,,(v) = S(v) and S, (u) = S(u); removal
of a link (u,v) is modeled by setting S, (v) = () and S, (u) = (); addition and
removal of a vertex are modeled as a simultaneous addition or removal of all
its incident edges; an administrative change of the label stack S(v) of a vertex
v is modeled as an update of stacks S,,(v) of the neighbors w of v.

As a consequence, we can assume that all relevant network dynamics in-
volve a change of the stack of some vertex. When a vertex u has its stack
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Algorithm 10 Algorithm to update the sets of crossing and final pathlets com-
posed by u. Procedure UPDATECOMPOSEDPATHLETS implements the refresh
of crossing and final pathlets, while procedure UPDATECOMPOSEDPATHLET-
SANDSTACK also considers the case when the label stack of u is contextually
changed from Sy to Spew.

1: procedure UPDATECOMPOSEDPATHLETS(u, ITpew)
2:  UPDATECOMPOSEDPATHLETSANDSTACK(u, S(u), S(u), new)
3: end procedure

4: procedure UPDATECOMPOSEDPATHLETSANDSTACK(u, Soid, Snew, Hnew)
5. for each area A, do
6: Chew @; Cog < Cu (U)
7: if u is a border vertex for A, then
8: By (o) <~ DISCOVERBORDERVERTICES(u, 0, Ilpnew)
9: if C\,(o) = 0 then w is border for A, but has not composed any pathlets
10: Chew < crossing,, (Il,ew, o) (end vertices are in By (c))
11: else w has to refresh crossing pathlets
12: Chrew < new crossing pathlets for A, not in C, (o), that u can compose
towards vertices in B, (o) using pathlets in I, and according to the pathlet com-
position rules
13: Cod < {m|m € Cy(c) and not ISPATHLETCOMPOSABLE (u, 7, [1,e0, By (0))}
14: end if
15: end if
16: Update u’s forwarding state for any pathlet in Cycw
17: for each 7,10 = (FID 414, v,w,0,8) € Coiq do
18: if ITnew = (FID pew, v, w, 0, 0) € Crew\Coiq then Transparently replace moiq by
T new
19: fids,, (FID 1) < fids, (FIDnew); nhu(FID o1q) < nhy(FID pew)
20: Chew — (Cnew\{ﬂ'"ew}) @] {ﬂ'old}
21: else Withdraw a no longer composed pathlet
22: M <+ anew Withdrawlet message; M.f < FID ,4; M.s < ¢
23: Send M to each neighbor x € N (u, Soid, Toid)
24: Clear fids,,(FID iq)and nh., (FID ,4) after a timeout T}/
25: end if
26: end for
27: for each ey = (FID pew, v, w, 0,0) € Chew\Coid do
28: Announce newly composed pathlets
29: M < anew Pathlet message; M.p < Tnew
30: Send M to eachneighbor z € N (u, Snew, Tnew)
31: end for
32: Cu(O') — (Cu (U)\Cold) U Chew
33:  end for

34:  Repeat the same steps replacing set C', (o) with F, (o), set By (o) with A,ND, set
crossing(Ilnew, o) with final(Ilyew, o), and “crossing pathlets” with “final pathlets”
35: end procedure
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changed from S, to Spey, it accomplishes several operations. First of all, u
sends to its neighbors a Hello message M with M.s = S;.,,, M.d set accord-
ing to the network destinations available at u, and M.a = False. Then, u
refreshes its knowledge of all the atomic pathlets towards its neighbors, by
re-constructing them as explained in Section 2.4, and prepares a refreshed set
IT,cy accordingly. At this point, u triggers a refresh of its set II,, containing
all known pathlets by executing procedure UPDATEKNOWNPATHLETSAND-
STACK(u, Soid, Snew, new) in Algorithm 8, which realizes the same steps
as UPDATEKNOWNPATHLETS while restricting the propagation of any mes-
sages in accordance with the stack change. Last, © updates its sets of cross-
ing and final pathlets by executing procedure UPDATECOMPOSEDPATHLET-
SANDSTACK(u, Soid, Snews lnew) in Algorithm 10, which only adds to UP-
DATECOMPOSEDPATHLETS the ability to propagate messages according to the
stack change.

To complete the picture of possible network dynamics, we assume that a
change in the routing policies at a vertex u causes a reboot of u. Additionally,
if u has its set § of available network destinations updated, it just needs to send
an updated Hello message to its neighbors. This message will, in turn, trigger
a refresh of the pathlets towards u stored by other vertices in the network.

A.2 Message Handling

We now describe the actions undertaken by a vertex u upon reception of a
message M.

Receipt of a Hello Message

When a vertex u receives a Hello message M from a neighbor M.o, it per-
forms several actions. First of all, v updates its knowledge about vertex M.o
by setting S,,(M.0)=M.s and D, (M.o) = M.d. Moreover, u updates its own
status of border vertex depending on whether S(u) £ M.s: if this is the case,
then u is a border vertex for any areas A, such that (S(u) — M.s)Co C S(u).
Then, if M.a = True, which means that this is the first Hello message sent by
M.o since its activation, u synchronizes M.o with the current network status
by sending to M.o Pathlet and Withdrawlet messages according to the con-
tent of the history H,,. In particular, for every pathlet 7 = (FID,v,w,0,d) in
any of the sets I, C, and F, kept by w such that M.o € N(u, S(u), 7), u sends
to M.o a Pathlet message Mp with Mp.p = 7, Mp.o = v, and Mp.t = t,
where t is taken from entry (FID,v,o,t,+) in history H, (note that such an
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entry must exist for every pathlet learned or created by w). Moreover, for
every entry (FID,v,0,t,—) in history H,, such that any pathlet with start ver-
tex v and scope stack o could have been sent by u to M.o, u sends to M.o a
Withdrawlet message My, with My .£f = FID, My .s = o, My.o = v, and
Myw .t = t. Observe that, in sending these messages, u preserves the origin
vertex and timestamp of the originally learned information, as specified in
the history.

Next, u constructs or updates an atomic pathlet towards M.o, as explained
in Section 2.4, and updates its set II,, of known pathlets consequently, by ex-
ecuting procedure UPDATEKNOWNPATHLETS in Algorithm 8. Based on its
status of border vertex, u also updates its crossing and final pathlets by exe-
cuting procedure UPDATECOMPOSEDPATHLETS in Algorithm 10.

Note that, even if vertex M.o has sent an updated label stack, for example
due to a stack change, it may be the case that no pathlets are updated by u and
no messages are sent by u. In fact, if S(u) x M.s is unchanged, v will not apply
any changes to atomic pathlets in consequence to the received Hello message,
thus leaving its set II,, unchanged: in these conditions none of the for cycles
at lines 5 and 13 of Algorithm 8 executes any iterations, and the operations
within the for cycle at line 27 have no effects. Likewise, sets Cyjq and Che, in
Algorithm 10 have no elements when the execution reaches line 16, resulting
in no actions being performed.

Finally, if the set of known destinations D,,(M.o) has been modified, u dis-
seminates the new information by re-sending Pathlet messages to its neigh-
bors with the updated destinations.

Receipt of a Pathlet Message

If M is a Pathlet message received from M.src, u first checks whether the
carried information is fresh, by evaluating procedure ISPATHLETMESSAGE-
FRESHER(u, M) in Algorithm 11: if this is not the case, u sends back to M.src
an updated message, as shown in the algorithm, and undertakes no further ac-
tions. Otherwise, u refreshes the history H,, and executes Algorithms 8 and 10
to update sets I, Cy, and F;, according to the newly learned information and
to disseminate any updated information to its neighbors.
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Algorithm 11 Algorithm to determine whether a Pathlet message M carries
updated information about a pathlet: the function returns True only in this
case. It also handles message forwarding and history update.

1: function ISPATHLETMESSAGEFRESHER(u, M)
2: Tmsg M.p
Let Tmsg = <FID7 V,W, O0Omsg, 6msg>
if u = v then
w is the originator of pathlet 7,54 and therefore has information about this pathlet
if there is no pathlet identified by FID and with start vertex u in IT,, or in any of the sets
Cy and F, then
7 My < new Withdrawlet message; My .£ <— FID; Myy.s < omsqg
8 Send Myy to neighbor M.src
9: else
0: Teur 4 a pathlet identified by FID and with start vertex u that is in IL,, or in any of
the sets C, and F,

11: if Tnsg # Teur then

12: Pathlet 7 cyr is always fresher because it has been created by u

13: Mp < new Pathlet message; Mp.p < Tcur

14: Send Mp to neighbor M.src

15: end if

16: end if

17: return False

18: else

19: if 3(FID,v,0,t, type) in H, then

20: Tmsg Was already known at u

21: if t < M.t then

22: The received pathlet is fresher

23: Replace (FID,v, o,t, type) in H, with (FID, v, 0msg, M.t,+)
24: Send M to each neighbor « € N (u, S(u), Tmsg)\{M.src}

25: return True

26: else

27: u's information about sy is fresher than the information carried in M
28: if type = + then

29: Teur < pathlet in I1,, identified by FID and with start vertex v
30: Mp < new Pathlet message; Mp.p < Tcur; Mp.t <t

31: Send Mp to neighbor M.src

32: else

33: My < new Withdrawlet message; My .f < FID; My .s < o;
34: My .t <t

35: Send My to neighbor M.src

36: end if

37: return False

38: end if

39: else

40: Tmsg 15 a newly learned pathlet

41: Add (FID,v,0msg, M.t,+) to Hy

42: Send M to each neighbor z € N (u, S(u), Tmsg)\{M.src}

43: return True

44: end if

45:  end if

46: end function




“main” — 2016/5/6 — 12:57 — page 112 — #122

112 APPENDIX A: PATHLET INTRA-DOMAIN ROUTING ALGORITHMS

Receipt of a Withdrawlet Message

Handling of a Withdrawlet message M received by a vertex u is much similar
to that of a Pathlet message. First of all, u checks the freshness of the in-
formation carried by M by evaluating function ISWITHDRAWLETMESSAGE-
FRESHER(u, M), which is defined in Algorithm 12: if this function returns
False, then u sends back to M.src a Pathlet or a Withdrawlet message with
the most up-to-date information for the corresponding pathlet, and process-
ing of M is finished. Otherwise, u refreshes the history H,, checks whether a
pathlet with FID M.f£, start vertex M.o, and scope stack M.s exists in II,, and,
if this is the case, removes it from II,, and executes Algorithm 8.

Receipt of a Withdraw Message

Receiving a Withdraw message M has the same effect of receiving several
Withdrawlet messages, all with the same timestamp M.t, one for each FID
of the pathlets in IL,, that have scope stack M.s and start vertex M.o. In order
to handle this type of message, function ISWITHDRAWLETMESSAGEFRESHER
needs to be slightly modified as follows: if M carries fresher information for
all the pathlets in II,, with scope stack M.s and start vertex M.o, then his-
tory H, is appropriately updated for all these pathlets and only the single
Withdraw message is further propagated by u; otherwise, if v has a more
recent history entry in H, for at least one of these pathlets, u treats the With-
draw message exactly as a sequence of Withdrawlet messages, sending back
to M.src single Pathlet and Withdrawlet messages with updated informa-
tion, and forwarding single Withdrawlet messages as appropriate. If M is
determined to carry fresh information, pathlets are then updated by « as al-
ready explained for the Withdrawlet message.
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Algorithm 12 Algorithm to determine whether a Withdrawlet message M
carries updated information about a pathlet: the function returns True only
in this case. It also handles message forwarding and history update.

1: function ISWITHDRAWLETMESSAGEFRESHER(u, M)
2. if3(M.£,M.o,o0,t, type) in H, then
3 if t < M.t then
4 Replace (M.£, M.o, o,t, type) in H,, with (M.£, M.o, M.s, M.t, —)
5: foreachn € N(u,S(u), M.s)\{M.src} do
6 Send M to neighbor n
7 end for
8 return True
9 else
10: if type = + then
11: Teur < pathlet in IT,, identified by M.f and with start vertex M.o
12: Mp < new Pathlet message
13: MP~p < Tcur
14: Mp.t 1t
15: Send Mp to neighbor M.src
16: else
17: Mw < new Withdrawlet message
18: Mw . < M.
19: Mw.s +— M.s
20: Mw .t <t
21: Send M to neighbor M.src
22: end if
23: return False
24: end if
25:  else
26: There is no history entry for the pathlet withdrawn by M, therefore u cannot know
anything about that pathlet. However, the Withdrawlet must still be forwarded
27: Add (M.£,M.o,M.s,M.t,—) to H,
28: foreachn € N(u, S(u), M.s)\{M.src} do
29: Send M to neighbor n
30: end for
31: return False
32:  end if

33: end function
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A.3 Algorithm to Generate Topologies

Algorithm 13 Algorithm used in our topology generator.

function POPULATEAREA(A, level, Ruin, Rmax, N, Amin, Amax, P, B)
if level = N then
r <— a random number in [Rpyin, Rmax]
Add r vertices to A
repeat
for each pair (u, v) of vertices in A do
Add an edge between v and v with probability P
end for
until A is connected
Randomly pick r x B routers in A and mark them as border routers for A
else
a 4+ a random number in [Ayin, Amax)
Create a areas inside A; let A be the set of these areas
R« 0
for each A in A do
POPULATEAREA(A, level + 1, Rimin, Rmax, N, Amin, Amax, P, B)
R + R U all border routers for A
end for
repeat
E+0
for each pair (u, v) of routers in R do
Flip a coin with probability P
if heads then
Add an edge between v and v
E + EU (u,v)
end if
end for
until the undirected graph formed by vertices in R and edges in E is connected
Randomly pick |R| x B routers in R and mark them as border routers for A
end if
return A
end function
function TOPOLOGYGENERATOR(Rin, Rmax, N, Amin, Amax, P, B)
Create an area A
level -1
return POPULATEAREA(A, level, Rmin, Rmax, N, Amin, Amax, P, B)
end function
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