
UNIVERSITÀ DEGLI STUDI

ROMA

TRE

UNIVERSITÀ DEGLI STUDI DI ROMA TRE

DIPARTIMENTO DI MATEMATICA E FISICA

SCUOLA DOTTORALE IN SCIENZE MATEMATICHE E FISICHE

XXVIII CICLO

PH.D. THESIS

Space-Time Efficient and Secure
Algorithms for Data Processing and

Transmission

CANDIDATE:
GIULIO ALIBERTI

ADVISOR:
Prof. ROBERTO DI PIETRO

ANNO ACCADEMICO 2015/2016

“Data is the new science.

Big Data holds the answers.”

PAT GELSINGER

Abstract

Over the past twenty years, the generation of digital data has been increasing due

to the widespread use of computers for capturing, analysing, and transmitting

different kinds of information. The benefits deriving from the capability of being

able to efficiently process large amount of data are countless, ranging from in-

creasing revenues of business companies to accumulating knowledge for research

purposes. The main purpose of this thesis is to present original and efficient so-

lutions for the secure processing and transmission of data. More generally, in

this manuscript my aim is to discuss relevant topics for this area, including data

compression, frequent pattern discovery and retrieving “human-understandable”

information from datasets, and secure “light-weighted” protocols for transmitting

data ensuring integrity and confidentiality of the message. For each one of these

topics, a thorough discussion of the relevant state of the art is provided and at

least an original solution is presented and evaluated through both theoretical and

experimental analysis.

General Terms: Theory, Algorithms, Experiments.

Additional Key Words and Phrases: Data Science, Bitmap Compression, Data

Mining and Knowledge Discovery, Physical Layer Security.

iii

iv

Acknowledgements

Behind every PhD thesis there is a student, and behind every student there is

a supervisor. I am grateful to my supervisor, Professor Roberto Di Pietro, who

managed to find such a good balance between the seemingly contradicting re-

quirements of a supervisor: he guided me firmly through the process while still

providing me with the liberty to make my own decisions and mistakes. The re-

search in this thesis was done at the Department of Mathematics and Physics,

University of Roma Tre and at the Bell Labs (Paris, France). I gratefully acknowl-

edge the financial support from them. However, a place by itself means nothing

without the people populating it. And I have been lucky to have such great people

around me. I thank all my co-authors for letting me work with you and learning

from you. Especially I shall never forget the deep influence Alessandro Colanto-

nio and Stefano Guarino had on me when I was starting my PhD studies. I am

grateful to many friends and colleagues of mine for their readiness to exchange

ideas and dwell upon random topics: Stefano Marini, Flavio Lombardi and the

other colleagues with whom I have shared an office all these years; Leonardo Lin-

guaglossa and Giuseppe Scavo, with whom I have had many pleasant discussions

during my visit in Paris; and, fellow summer school, I thank you all. I owe much

to my parents who taught me the importance of education and who have always

supported me. But above all I must thank my beloved girlfriend Paula.

v

vi

Contents

Abstract iii

Acknowledgements v

1 Introduction 1
1.1 Contributions . 2
1.2 Organization of the Content . 4

2 Storing Data with Bitmaps 7
2.1 The Bitmap Compression Problem 8

2.1.1 The Bitmap Data Structure 8
2.1.2 Case Example: Storing Data with Bitmaps 9
2.1.3 Bitmap Compression . 9

2.2 State-of-the-Art . 11
2.3 Bitmap Compression with CUTSIZE 12

2.3.1 Description of the Algorithm 13
2.3.2 Theoretical Analysis . 16
2.3.3 Experimental Results . 20

2.4 Future Directions . 22

3 Frequent Pattern Discovery 25
3.1 Frequent Itemset Mining . 26

3.1.1 The Frequent Itemset Mining Problem 26
3.1.2 Basic Definitions and Notation 27
3.1.3 Case Example: Market Basket Analysis 28

3.2 State-of-the-Art . 30
3.3 Frequent Closed Itemset Mining with EXPEDITE 32

3.3.1 Description of the Algorithm 32
3.3.2 Proof of Correctness . 34
3.3.3 EXPEDITE vs. DCI-CLOSED . 38
3.3.4 Case Example . 41

vii

viii CONTENTS

3.4 Improving the Performances of EXPEDITE 43
3.4.1 Using Hashcodes for Checking Duplicates 43
3.4.2 Diffset Representation . 45

3.5 Experimental Results . 46
3.6 Future Directions . 49

4 Secure and Light-Weighted Data Transmission 53
4.1 Physical Layer Security . 54

4.1.1 Introduction to Physical Layer Security 54
4.1.2 The Communication Channel Model 55

4.2 State-of-the-Art . 57
4.3 Security of Linear Codes . 58

4.3.1 Linear ECCs and Uncertainty Rate 59
4.3.2 Measuring Security Through the Uncertainty Rate 61
4.3.3 Discussion . 64
4.3.4 Comparison with Similar Results in the Literature 64

4.4 Secure Communication with CRYPTOLESS 66
4.4.1 Secret Sharing . 66
4.4.2 CRYPTOLESS:Combining Secret Sharing and ECC 67
4.4.3 A Toy Example . 68

4.5 Future Directions . 71

5 Conclusion 73

Bibliography 74

List of Figures

2.1 Case example of bitmap compression with CUTSIZE. 13
2.2 Performance evaluation of several data structures for storing

integers. 24

3.1 Case example of EXPEDITE and DCI-CLOSED. 44
3.2 Runtime comparison between EXPEDITE and DCI-CLOSED using

different values of threshold. 48
3.3 Generated clusters by EXPEDITE and DCI-CLOSED. 49
3.4 Performance evaluation of different implementation of EXPEDITE. 50

4.1 A graphical representation of the wire-tap channel. 56
4.2 Values for the uncertainty rate achievable by an ECC code with

length n= 20. 65
4.3 Values for the uncertainty achievable by an ECC code for differ-

ent values of l = 5, 10, 15 and for different ranks of the parity-
check matrix. 65

ix

x LIST OF FIGURES

List of Tables

2.1 Gender attribute of four individuals. 9
2.2 Bitmap based representation of the gender attribute. 10

3.1 A dataset of transactions. 29
3.2 Bitmap based representation of the dataset of transactions. . . . 29
3.3 List of frequent itemsets with δ = 2. 29
3.4 List of frequent closed itemsets with δ = 2. 30
3.5 Values of maps C and S after the first round. 41
3.6 Values of maps C and S after the second round. 42
3.7 Datasets used to evaluate the performance of EXPEDITE. 47

xi

xii LIST OF TABLES

List of Algorithms

2.1 Procedure COMPRESS of CUTSIZE. 14
2.2 Procedure DECOMPRESS of CUTSIZE. 15
2.3 Procedure AND of CUTSIZE . 18
3.1 Main procedure of EXPEDITE . 35
3.2 Procedure ISDUPLICATE of EXPEDITE 36
3.3 The algorithm DCI-CLOSED . 40
3.4 Hash-based procedure ISDUPLICATE 45
4.1 The main procedure of CRYPTOLESS. 67
4.2 The main procedure of CRYPTOLESS applied to a repetition code. 70

xiii

xiv LIST OF ALGORITHMS

CHAPTER 1

Introduction

Over the past years, plethora of data have been collected with the help of dif-
ferent instruments including web applications, mobile devices, sensors, and
loyalty cards to mention a few. The trend is not going to stop in the years to
come since, accordingly to recent estimations, ninety percent of the data in the
world was just created in the last five years [31] and it is growing at a rate of
forty to sixty percent per year [11]. We are witnesses of the data explosion phe-
nomenon, where the volume and the variety of data have already exceeded the
storage capacity of conventional databases and far outstripped the potentiality
of manual analysis. At the same time, innovative technologies are emerging to
organize this avalanche of data. From the hardware standpoint, computers
became far more powerful, hard drives much more capacious, and network-
ing is ubiquitous; while from a software standpoint, algorithms and platforms
have been designed and developed to enable broader and deeper analysis than
previously possible increasing the efficiency of the available computational re-
sources.

The convergence of these phenomena is providing to business companies
the opportunity to exploit data for competitive advantages. For instance, an
online retailer can track what customers are buying, what they are looking
at, how they are navigating through the site, how much they are influenced
by promotions, reviews, and page layouts. In a short time, with the appro-
priate analysis tools, the retailer can predict what items individual customers
are likely to purchase next and can better estimates the returns of investments
in advertising campaigns. In conclusion, the online retailer can profit from
data by taking smarter decisions with the long term effect of putting com-
petitors out of business. The previous example describes a typical scenario
where exploiting data matters, but there is much more. For instance, it is
common practice to leverage data in machine learning applications, such as
artificial intelligence in games, image and speech recognition, and even self-

1

2 CHAPTER 1. INTRODUCTION

driving cars. Miscellaneous applications can also be found in finance, human

resources, health care, government policies and every possible industry where
data gets generated [83].

Fostered by economic and social perspectives, the new data science field is
emerging from the intersection of the different fields of social science, statis-
tics, information, computer science, and design. At a high level, data science
is a set of fundamental principles that support and guide the extraction of in-
formation and knowledge from data [79]. The most closely related concept to
data science is data mining, that is the actual process of extracting knowledge
from data via algorithms and technologies that implement these principles.
However, data mining represents just a sub-field of data science since the lat-
ter involves much more than information retrieval algorithms. Indeed, data
science is more about dealing with a business problem from a data perspec-
tive, while data mining is just a suite of tools for the analysis. In this picture,
statistical and social science are necessary knowledges to provide a better un-
derstanding of the problem and to drive smarter business decisions.

The common intersection between all the fields that compose data sci-
ence is, precisely, the increasing volume of data available. In turn, this key
point is strictly related with practical and economic issues arising from stor-

age, processing, and transmission of this large quantity data. Indeed, increases
in available data means more storage, increased expenditure on overall power
consumption, floor space and cooling, while also threatening the feasibility
of processing and transmitting the collected data. In order to better sustain
high-level activities of data science, new technologies and algorithms to deal
efficiently with big volumes of data must be developed.

1.1 Contributions

The contributions provided in this thesis are manifold. Several algorithms for
storage, analysis and transmission of data are introduced with the common
goal of illustrating how to optimize the available computational resources.
Necessary discussions are made to ensure that their connections are clear.
From a less general perspective, the thesis also contributes to the scientific
literature by bringing in three innovative and top performing algorithms for
storage, analysis and secure transmission of data, respectively. A more de-
tailed description of these contributions is provided in the following while the
relation to the prior work of the author is discussed in Section 1.2.

Bitmap Compression. The first main contribution is the bitmap compression
algorithm CUTSIZE. Bitmaps are data structures widely adopted for imple-

1.1. CONTRIBUTIONS 3

menting databases and, thanks to the compression performed, the presented
algorithm is capable of reducing storage requirements for preserving data in
several application contexts. The compression is lossless, namely without any
loss of information, and the memory performance is comparable with that
achieved by the best available bitmap compression algorithms in the literature.
However, where CUTSIZE really excels is in the management of the compressed
data structure. Since decompression is not necessary to perform bitwise oper-
ations between bitmaps, the data stored are ready to be processed even after
compression. As a result, the data structure obtained with the application
of CUTSIZE can be processed with a time save of up to ten times compared to
the other data structures obtained with currently adopted bitmap compression
solutions.

Frequent Pattern Discovery. The second main contribution is the algorithm
for frequent pattern discovery EXPEDITE. One of the main objectives of data
analysis is to discover meaningful information within the data and EXPEDITE

serves to accomplish this task. Accordingly to a pre-set threshold value that
formalizes the idea of frequency, the algorithm retrieves all the frequent pat-
terns within the data — more precisely, frequent closed itemsets — behind the
rationale that recurring patterns are the most interesting from a human per-
spective. The literature is plenty of algorithms that perform, in different man-
ners, the same task of extracting frequent patterns. However, compared to the
best performing available options, EXPEDITE offers a huge time saving of up to
two orders of magnitude which makes it the ideal candidate for processing big
amount of data.

Light-Weighted Secure Data Transmission. The third main contribution is
the algorithm for light-weighted secure data transmission CRYPTOLESS. Usu-
ally, establishing a secure communication between two authenticated parties
involves the employment of cryptographic primitives to preserve integrity and
confidentiality of transmitted data, although these solutions add substantial
delays to the communication due to the cost of cryptographic operations. Less
known are the light-weighted solutions — i.e. solutions not based on cryp-
tography — for achieving secure data transmission on resource constrained
devices. CRYPTOLESS is one of the few available in the literature and it has
the additional benefit of providing correcting capabilities to strengthen the re-
liability of the communication. Despite its promises, CRYPTOLESS cannot be
applied regardless to the communication channel and this poses severe lim-
its to applications. Indeed, its security is based on certain physical properties
of the channel — i.e. the algorithm is designed for the generalized Ozarow-

4 CHAPTER 1. INTRODUCTION

Wyner’s wire-tap channel — which must be satisfied in order to provide secu-
rity. Interestingly, these conditions are satisfiable in a local wireless network
and different machines can be securely connected with CRYPTOLESS.

1.2 Organization of the Content

The thesis deals with three relevant topics of data science: storage, analy-
sis and secure transmission of data. To ease exposition, these topics are dis-
cussed into three separated chapters. First, Chapter 2 studies the problem of
storing data with bitmaps, data structures widely adopted for implementing
databases; and, it introduces the innovative bitmap compression algorithm
CUTSIZE to improve the storage efficiency. Second, Chapter 3 addresses the
problem of analysing data focusing on the extraction of frequent patterns;
and, it introduces the innovative algorithm EXPEDITE, the faster solution avail-
able in the literature. Third, Chapter 4 deals with the secure data transmission
topic focusing on light-weighted solutions; and, it introduces the innovative al-
gorithm CRYPTOLESS, a solution applicable in the generalized Ozarow-Wyner’s
wire-tap channel. The last chapter, Chapter 5, contains concluding remarks.

Reading this Thesis. The three main chapters of the thesis have a similar
structure. In particular, they start with an introductory section that describes
and motivates the main problem addressed in the chapter; then, to illustrate
currently adopted techniques, a survey on the state of the art follows; they
continue with the presentation of the innovative technique proposed by the
author; and, finally, possible future directions are highlighted. Due to the
adopted structure, the reader interested only in one specific topic can read
just the related chapter, although connections with the other chapters could
be lost. The reader interested only in innovative algorithms can go directly
to Section 2.3, Section 3.3, and Section 4.4 skipping most on non-technical
discussions. Moreover, the most technical parts like proofs are highlighted
within the text and the reader can easily skip them on a first reading in order
to capture a better global picture.

Relation to Prior Work of the Author. This thesis is mainly based on the
main three scientific contributions provided by the author listed below. The
notation and terminology have been unified, the connections between the arti-
cles have been made more clear, and some missing details have been supplied.
The three scientific articles on which this thesis is based are:

[5] Giulio Aliberti, Alessandro Colantonio, and Roberto Di Pietro. “CUTSIZE:

1.2. ORGANIZATION OF THE CONTENT 5

a Bitmap Compression Scheme for Fast Bitwise Operations”. Technical
report.

[6] Giulio Aliberti, Alessandro Colantonio, Roberto Di Pietro, and Riccardo
Mariani. “EXPEDITE: EXPress closED ITemset Enumeration”. In Expert

Syst. Appl., 42, no. 8 (2015): 3933-3944.

[7] Giulio Aliberti, Stefano Guarino, and Roberto Di Pietro. “CRYPTOLESS:
Reliable and Perfectly Secret Communication over the Generalized
Ozarow-Wyner’s Wire-Tap Channel.” Submitted to Computer Networks.

In particular, innovative results in Chapter 2 arise from the technical report
“CUTSIZE: a Bitmap Compression Scheme for Fast Bitwise Operations” [5]; those
in Chapter 3 from the publication “EXPEDITE: EXPress closED ITemset Enumer-

ation” [6]; and those in Chapter 4 from the submission “CRYPTOLESS: Reliable

and Perfectly Secret Communication over the Generalized Ozarow-Wyner’s Wire-

Tap Channel” [7]. The algorithm solvers presented in each one of the three
main chapters are new additions in their respective fields of research. Al-
though the problems of storing, analysing and transmitting are being discussed
in the literature since the very beginning of the computer science foundation,
discursive parts of the thesis on processing and transmitting data are also new
and aim to highlight connections between the different articles.

6 CHAPTER 1. INTRODUCTION

CHAPTER 2

Storing Data with Bitmaps

With the data deluge under way, many business companies and several orga-
nizations are facing issues with an infrastructure that is bursting at the seams
in an attempt to store the collected data. Solving this storage problem might
seem straightforward at a first glance: organizations could just acquire more
storage capacity. However, businesses work with budgets and do not have
unlimited resources. Thus, the answer is not that simple. A recent solution
for reducing costs lies in turning to storage virtualization to make better use
of the existing physical infrastructure. This kind of solution offers centralized
management of storage without adding more complexity [26]. It means that
business companies have to invest less on the hardware, and on the power, the
cooling, and the management of the storage. Further, virtualization is just a
part of a larger trend that will make storage much more efficient. In particular,
it is of key importance for deploying compression technologies which are at the
heart of making hardware better [31]. Indeed, compression increases storage
efficiency by shrinking the data so that a greater volume of information can
be stored in the physical disk. Some compression technologies go one step
further by operating on data as they are written into disk. This improves also
the efficiency of processing the stored data since decompression is no longer
required to their elaboration.

There is a big variety of data types in circulation to whom correspond dif-
ferent compression techniques. In the data science context, bitmaps are very
important type of data. In fact, they are among the most widely adopted data
structures for database management due to the very powerful method that
they provide for rapidly answering to difficult queries [30]. Over other data
structures, bitmaps have the advantage of working with aligned bits which is
a property exploitable by a Central Processing Unit (CPU). However, the re-
ward of adopting bitmaps is proportional to the density of the data: if used
for storing sparse information, bitmaps are indeed a wasteful data structure in

7

8 CHAPTER 2. STORING DATA WITH BITMAPS

both memory and time. Recent research effort focused on developing bitmap

compression schemes mainly aiming at reducing wastes of memory. However,
most of the adopted solutions are not optimized for improving the CPU per-
formance.

The final goal of this chapter is to present Compressed Ultra Tiny Sets of

Integers by Zeroes Erasure (CUTSIZE), an innovative bitmap compression al-
gorithm that is optimized for allowing fast bitwise operations between com-
pressed bitmaps. In comparison with Word Aligned Hybrid (WAH) [107], that
represents the milestone in bitmap compression, the proposed algorithm offers
similar compression capabilities but it has the advantage of allowing to per-
form bitwise operations between compressed bitmaps up to ten times faster.
All findings are supported by both theoretical and experimental analyses.

Roadmap of the Chapter. Section 2.1 provides a detailed description of
bitmaps and it better introduces the problem of their compression. Section 2.2
describes solutions available in the literature and Section 2.3 provides a de-
tailed presentation of the innovative solution CUTSIZE. Finally, Section 2.4
concludes the chapter discussing possible future directions.

2.1 The Bitmap Compression Problem

This section is divided as follows. First, Section 2.1.1 provides a formal intro-
duction to bitmaps; then, Section 2.1.2 shows a toy example of application;
and, finally, Section 2.1.3 introduces the problem of bitmap compression.

2.1.1 The Bitmap Data Structure

Bitmaps [90, 103], also known as bit arrays or bit vectors, are array data struc-
tures that store individual bits and whose length n is a multiple of the word
size w of the Central Processor Unit (CPU), namely the amount of information
per cycle that the processor can manipulate — typically, w = 32 or w = 64
in modern architectures. Due to their inherent data alignment, bitmaps are
ideal for exploiting bit-level parallelism and, consequently, bitwise operations
between bitmaps are well supported by computer hardware. Besides being
useful to store data, bitmaps allow to interpret queries in database as a com-
position of bitwise operations. For this reason, bitmaps find natural applica-
tions in data warehouse and, more generally, where performing fast queries is
necessary [104, 46].

A bitmap of length n = k × w bits, with w word size of the processor
and k length in words of the bitmap, can be associated to a subset of integers

2.1. THE BITMAP COMPRESSION PROBLEM 9

A ⊆ [n] = {1, . . . , n} by mapping the i-th bit of the bitmap to the integer i

— in the following example of Section 2.1.2, the integer i corresponds to the
row identifier. Hence, a logical “1” in the position i of the bitmap means that
the integer i belongs to A while a logical “0” means that i does not belong
to A. Through this mapping, bitwise operations between two bitmaps, such
as logical AND and logical OR, correspond to set operations, intersection and
union respectively. Since the CPU handles w bits per cycle, the computational
cost of a bitwise operation between two bitmaps is just k cycles.

2.1.2 Case Example: Storing Data with Bitmaps

To make reading more clear, a toy example is here provided to explain how
information is stored within bitmaps. Table 2.1 shows the gender attributes of
four individuals and a row identifier associated to their names. Both values of

Name Gender RowID

Alice F R1
Bob M R2
Eve F R3

Daniel M R4

Table 2.1: Gender attribute of four individuals.

the gender attribute, i.e. Male and Female, can be associated to a separated
bitmap as shown in Table 2.2. Two different bitmaps of length n = 4 are so
obtained. Each one has set the entry “1” in column “Rx” if and only if the
individual associated to the identifier Rx matches with that attribute value.
This structure is very handy for defining queries. For instance, to recover all
male individuals it is only needed to find all the row identifiers where the bit
was set to 1, and recovering both male and female individuals is simply possi-
ble by performing a logical OR between matches positive to male and female
attributes. The same identical procedure can be used to store data from at-
tributes having any integer number of possible values or to store data from
multiple attributes. However, it must be notice that, despite this representa-
tion is usually very efficient in the context database management, both time
and memory performances could drop off rapidly if the attributes can assume
more than few hundreds of different values [30].

2.1.3 Bitmap Compression

In Section 2.1.1 it has been explained that performing set operations with
bitmaps, namely logical bitwise operations, takes k CPU cycles. This method

10 CHAPTER 2. STORING DATA WITH BITMAPS

Gender R1 R2 R3 R4

Male 0 1 0 1
Female 1 0 1 0

Table 2.2: Bitmap based representation of the gender attribute.

is usually convenient compared with other data structures, such as inter arrays
or linked lists. However, this is true only if the two processed bitmaps contain,
in average, more than one logical “1” per word. Indeed, this condition means
that an average of multiple integers per cycle would be processed. Conversely,
if the two bitmaps comprises long sequences of logical “0”, several CPU cycles
would be wasted without computing any useful information. In addition, us-
ing a bitmap to store the value of an attribute that could be also a waste of
memory if that attribute is “almost always” unmatched.

To overcame issues related with the density of the integers in the sets
to represent, several bitmap compression schemes have been proposed over
the past years. These algorithms, or schemes, mainly aim to reduce memory
wastes when storing integers with bitmaps, but some of them also focus on
improving the efficiency of the CPU usage when performing queries. These
goals are achieved through compression of long sequences of logical “0”, that
is indeed an effective method for reducing the waste of memory. However, if
not correctly tuned, a compression method could also be detrimental for time
performance in data processing applications. This mainly happens when com-
pressed bitmaps must be decompressed before performing set operations with
the integers that they are storing.

Due to the importance in practical applications of preserving the time per-
formance of the bitmap data structure, the development and the diffusion
of schemes that allow to work directly on the compressed bitmaps has hap-
pened. Thus, modern algorithms allow to perform bitwise operations with-
out the need of decompressing the data structure. This feature drastically
reduces the execution time of performing bitwise operations with compressed
bitmaps, although there is still an unavoidable loss in terms of time in compar-
ison with simple uncompressed bitmaps. In practical applications where both
time and memory dimensions matter, such as data warehouse, working with
compressed bitmaps is a well accepted compromise. In fact, these schemes
offer both the benefits of allowing relatively fast queries and the possibility of
storing large datasets in a compressed way.

2.2. STATE-OF-THE-ART 11

2.2 State-of-the-Art

The first proposed method for compress bitmaps is the Run-Length Encoding

(RLE) [43], a simple algorithm that consists in counting and encoding the
number of consecutive occurrences of the same logical value — i.e. “0” or “1”
— within the data. This solution is not very efficient for arbitrary data since
short “runs” of the same logical value lead to an increase of size in stored data.
Further, runs must be decompressed in order to query the data. Nevertheless,
the run-length encoding is still currently used in few applications mainly due
to its simplicity. Over the past years, better solutions have been studied and
they are reviewed in the following.

Byte-aligned Bitmap Code (BBC) [9, 8] is the first proposed bitmap com-
pression scheme that aims to preserve the alignment with the data. With BBC,
bitmaps are initially aligned in byte blocks. Then, aligned bytes are classified
as “gap bytes” if all the bits in that byte store the same logical value, and
as “map bytes” otherwise. Adjacent bytes of same class are grouped together
and, finally, groups of bytes are losslessly compressed into atomic sequences of
bytes. The BBC method achieves remarkable compression ratios but, despite
the block alignment, bitwise operations between compress bitmaps are still
time consuming to perform.

The Word-Aligned Hybrid (WAH) [107, 108, 105, 106] bitmap compression
scheme differs from BBC mostly for using words instead of bytes for matching
the architecture of the processor. The compression ratio achieved by WAH is
a little bit worse compared with BBC. However, the alignment with the CPU
word size better supports bitwise operations between compressed bitmaps.
This feature significantly improves the runtime of performing bitwise oper-
ations and contributed to the widespread use of this scheme. Despite many
years have passed, WAH is today the most adopted bitmap compression scheme
in applications, and it is still mentioned in the literature as one of the best so-
lutions developed so far.

A more recent method is given by Position List Word-Aligned Hybrid PLWAH

[35, 76]. This scheme is an extension of WAH whose difference lies in being
able to compress also long runs that are exceptionally interrupted by a single
bit. This feature is mainly relevant when the data stored are sparse; in this
case, the compression ratio achieved by PLWAH is up to two times better com-
pared with WAH. As for the complexity of performing bitwise operations, the
runtime achieved by PLWAH and WAH are comparable in both dense and sparse
data.

The literature also includes other relevant bitmap compression scheme
which are briefly discussed hereafter (see [23] for a recent survey). They

12 CHAPTER 2. STORING DATA WITH BITMAPS

are: Compressed ’n’ Composable Integer Set (CONCISE) [28], COMPressed Adap-

tive indeX format (COMPAX) [42], Enhanced Word Aligned Hybrid (EWAH) [60],
and Variable Length Compression (VLC) [32]. The CONCISE method is compa-
rable with PLWAH. In fact, both CONCISE and PLWAH are designed to improve
the compression ratio when a single bit interrupts a long run. Experimental
results show that they achieve similar performances in both time and space
[28, 35]. The COMPAX method is also comparable with PLWAH. Similarly, it
is designed to compress efficiently long runs interrupted by few “dirty” bytes.
In theory, the approach proposed with COMPAX for addressing the compression
of dirty data is more general than those implemented in PLWAH and CONCISE.
However, in practice, the compression ratios achieved by COMPAX are compa-
rable to those achieved by PLWAH and CONCISE [42]. Another bitmap com-
pression method is EWAH that, differently from others, focuses on improving
the runtime of bitwise operations between compressed bitmaps. This feature
is obtained by employing more storage resources for preserving information
useful to execute bitwise operations. Despite EWAH succeeds in its goal of
reducing the runtime when querying the data, long runs of the same logical
value are not well compressed with it. Thus, EWAH noticeably wastes memory
resources in comparison with WAH [46, 56] and, overall, it is not worth to
choose EWAH over WAH unless it is priorly known that the data have no long
runs. Another method for compressing bitmaps is VLC. It uses arbitrary seg-
ment lengths for improving compression ratios. However, due to decoding cost
overheads, querying data becomes an operation significantly more expensive
when compared to the previously described solutions [32]. Finally, Variable

Aligned Length (VLA) [46] deserves a mention for being a general framework
for optimizing the compression of bitmaps by using variable encoding lengths.
It has the advantage of maintaining alignment to avoid explicit decompression
when performing bitwise operations and it is theoretically adaptable to most
of the reviewed bitmap compression methods. So far, it has been applied only
to WAH and the achieved results show an improvement in the memory foot-
print without significant changes in performances when trying to query the
compressed data.

2.3 Bitmap Compression with CUTSIZE

This section presents CUTSIZE, an innovative, simple, and efficient bitmap com-
pression scheme. The content is divided as follows. Section 2.3.1 provides a
description of CUTSIZE; Section 2.3.2 studies the theoretical behaviour of the
proposed scheme; and, Section 2.3.3 illustrates experimental results.

2.3. BITMAP COMPRESSION WITH CUTSIZE 13

2.3.1 Description of the Algorithm

To easy exposition, we start the presentation of CUTSIZE by discussing the
case example of Figure 2.1 which provides a first intuitive explanation of the
algorithm. After that, the description of the pseudo-code of CUTSIZE, reported
in Algorithm 2.1 and Algorithm 2.2, follows.

Figure 2.1: Case example of bitmap compression with CUTSIZE. First, the
bitmap is subdivided into four aligned and indexed words. Then, the words
that contain no integers are deleted.

Case Example Referring to Figure 2.1, it is explained in the following how to
compress and decompress with CUTSIZE the bitmap that represents the set of
integers S = {0, 17, 26, 96, 112, 114, 118, 120, 122, 125} using w = 32 as word
size. The set S can be naturally associated with the uncompressed bitmap of
128 bits that has a logical value “1” in the i-th position, if and only if the
integer i belongs to the set. The resulting bitmap, that consists of four words,
is illustrated at the top of the picture — the least significant bit is the rightmost
one. It is possible to notice from the picture that two words of the bitmap have
all bits set to “0”, this corresponds to the fact that the intervals 32–63 and 64–
95 do not contain any integer. The term empty will be used to distinguish
this kind of words made by all zeros; thus, the second and the third word are
empty with this terminology.

The scheme CUTSIZE is based on the idea that, since empty words do not
represent any integer, they can be completely deleted, or “cut”, to reduce
wastes of both memory and computational resources. Indeed, removing words
from bitmaps is effective at compressing the data. In addition, performing bit-
wise operations becomes faster due to smaller sizes of the bitmaps. However,
to remove words from the bitmap without losing information, it is necessary to

14 CHAPTER 2. STORING DATA WITH BITMAPS

index and preserve the positions of the words. To realize this, to each word of
the bitmap CUTSIZE attaches a header that contains the position of that word in
the bitmap. After that empties words are deleted, the headers of the remaining
words provide enough information to rebuild the initial bitmap. At the bottom
of Figure 2.1 it is shown the final result that coincides with the compressed
bitmap generated with CUTSIZE. Just two of the initial words are remaining,
namely the first and the fourth, each one with its own header which represents
their position in binary notation.

When required by applications, decompressing a bitmap stored using the
CUTSIZE compression is a straightforward operation. Indeed, the procedure
consists in copying non-empty words in the right position — which is known
due to the headers — in the uncompressed bitmap and padding with “0s”
the gaps. The number of bits used to represent each of the two words is
h+ w = 2+ 32 = 34 where w = 32 is the word size and h = 2 is the chosen
length in bits of the header. In particular, h corresponds to the logarithm of
the word length of the bitmap — i.e. h= log2(4) in this example.

Algorithm Description The pseudo-code that describes how to compress
and decompress using CUTSIZE is reported in Algorithm 2.1 and Algorithm 2.2,
respectively. Both procedures, commented in detail hereafter, have a computa-
tional complexity that is linear in the bit length n of the uncompressed bitmap.
Indeed, the most costly operation of the compressing procedure is a scan of
the input bitmap, which happens only once; and, the most costly operation of
the decompressing procedure is a copy of the bits in the compressed bitmap
(less than n) while filling gaps with zero (the remaining bits up to n).

Algorithm 2.1 Procedure COMPRESS of CUTSIZE.
1: procedure COMPRESS(Bitmap B)
2: int l ← n/w

3: Bitmap C ← new Bitmap()
4: for i = 1, . . . , l do
5: Bitmap word ← B.nextWord()
6: if word.isNotEmpty() then
7: C .append(i)
8: C .append(word)
9: end if

10: end for
11: return Bitmap C

12: end procedure

The procedure COMPRESS takes in input the initial bitmap B to be com-

2.3. BITMAP COMPRESSION WITH CUTSIZE 15

pressed, whose length n is a multiple of the word size w of the CPU (Line 1),
and it returns in output the compressed bitmap (Line 11). The length in bits
of the bitmap n is converted into its length in words l performing the division
l = n/w (Line 2), and a new bitmap C for storing the compressed bitmap is
created (Line 3). After this initialization step, the words of the uncompressed
bitmap B are processed one by one into a logical cycle (Lines 4–10). At each
iteration, the i-th word of the bitmap B (Line 5) is temporarily stored into a
new bitmap word. Note that this iteration can be efficiently implemented by
shifting w bits in B. If the current word word is not empty (Line 6), then the
header i is appended to the bitmap C (Line 7) — after a binary conversion into
h digits — and also the bits in word are appended to C (Line 8). Otherwise,
if the current word is empty the cycle continues with the following iteration.
After that, all words in B have been processed, the compressed bitmap C is
finally returned in output (Line 11).

Algorithm 2.2 Procedure DECOMPRESS of CUTSIZE.
1: procedure DECOMPRESS(Bitmap C)
2: int l ← n/(w + h)

3: Bitmap B← new Bitmap()
4: int header ← 0
5: for i = 1, . . . , l do
6: int tempHeader ← C.nextHeader()
7: Bitmap word ← C.nextWord()
8: if tempHeader = header then
9: B.append(word)

10: header ← header + 1
11: else
12: for j = 1, . . . , tempHeader do
13: B.appendEmptyWord()
14: end for
15: header ← tempHeader

16: end if
17: end for
18: return B

19: end procedure

The procedure DECOMPRESS takes in input the compressed bitmap C (Line 1)
and returns in output the initial uncompressed bitmap B (Line 18). In the ini-
tialization step, the word length of the compressed bitmap C is retrieved by
dividing the bit length n of C by the sum of the word size w and the header
size h (Line 2); then, the bitmap B for storing the uncompressed bitmap is

16 CHAPTER 2. STORING DATA WITH BITMAPS

created (Line 3); and, finally, the auxiliary variable header is initialized to
zero (Line 4). After that, the words stored into the compressed bitmap C are
processed one by one in logical cycle (Lines 5–17). At the i-th iteration, first
a number of h bits from C are shifted and moved into a temporary variable
tempHeader (Line 6), and then w are shifted and moved into a temporary
variable word (Line 7). Thus, these two variable contain the header and the
word of the i-word stored into the compressed bitmap C . When the vari-
ables header and tempHeader coincide (Line 8), it means that there are no
gaps of empty words between two consecutive words stored into C . Thus,
the bits in the variable word are appended to the uncompressed bitmap B

(Line 9) and the header is increased by one (Line 10). Otherwise, when
header and tempHeader differ, it means that there is a gap of empty words
that must be covered. The number of empty words is precisely given by the
variable tempHeader and a logical cycle is performed to append these empty
words to B (Lines 12–14), and the variable header is updated to tempHeader

(Line 15). After that, all words in C have been processed, the uncompressed
bitmap B is correctly recovered and returned in output (Line 18).

2.3.2 Theoretical Analysis

In this section, we provide a theoretical analysis of two fundamental aspects
of CUTSIZE: memory footprint and runtime needed to perform bitwise opera-
tions.

Memory Footprint The memory footprint of both compressed and uncom-
pressed bitmaps is strongly dependent on the density of the data. To better
understand this behaviour, it is possible to consider the case that a bitmap B

of length n is used to represent a set S ∈ {1, . . . , n} of m = n/w integers. On
average, each word of the bitmap B would contain only one integer and, thus,
approximately m words would be required to store the n/w elements of S.
Increasing the number of elements of S to m > n/w, the bitmap B begins to
be advantageous. Indeed, on average, more than one integer would be stored
into the same word. Thus, a number m> n/w of integers could be stored with
less than m words. Conversely, when the number m decreases to m < n/w,
the bitmap B begins to waste memory due to a low average of stored integers
per word. The cardinality of the set S, that is the number of integers m to
be stored into the bitmap B, is a measure of density of the data. It can be
normalized as follows:

δ = m/n ∈ [0, 1]. (2.1)

2.3. BITMAP COMPRESSION WITH CUTSIZE 17

Thus, the density in the critical value m= n/w becomes

δc = 1/w. (2.2)

To be more precise, previous discussions are only valid when data are uni-
formly at random distributed — namely, when the set S is uniformly at ran-
dom generated. Otherwise, the average number of integers per words changes
accordingly to the chosen distribution. However, in absence of specific as-
sumptions on the nature data, the uniform distribution seems to be the more
neutral for performance evaluation purposes.

When adopting CUTSIZE as data structure, and more generally with any
bitmap based compression scheme, the critical value of density δc in which
the data structure changes its behaviour is still δc = 1/w (for uniformly dis-
tributed datasets). In fact, considerations identical to the above case of un-
compressed bitmaps can be made. Thus, in low density datasets, formally
those that satisfy the condition δ < δc, each word of the compressed bitmap
contains, on average, less than one integer. In these datasets, the integer ar-
ray data structure would uses w bits per integer; hence, the CUTSIZE scheme
wastes h bits for any integer to store, also the header of the word representing
that integer must be preserved with CUTSIZE. Better said, CUTSIZE achieves
the compression ratio of

R1 =
w + h

w
> 1 (2.3)

words per integer in low density datasets that is inefficient since the better
compression ratio equal to 1 could be easily achieved using the integer array
data structure. However, in high density datasets, namely those satisfying
the condition δ > δc, several integers belong to the same word and CUTSIZE

effectively compresses the data. In detail, in the limit of δ→ 1, CUTSIZE would
use a total of w + h bits to store w integers, achieving a compression ratio of
(w + h)/w bits per integer or, equivalently, a compression ratio of

R2 =
w + h

w2
< 1 (2.4)

words per integer. The integer array data structure performance is not affected
by the density of the data and, thus, the compression ratio is still 1 that is
significantly worse compared to CUTSIZE. Experimental results in Section 2.3.3
confirm that the evaluation of the compressed ratio R1 and R2 are correct, and
further comparisons with other scheme in the literature are provided.

Runtime of Bitwise Operations The runtime for performing bitwise opera-
tions between bitmaps also depends on the density of the data. In fact, during

18 CHAPTER 2. STORING DATA WITH BITMAPS

Algorithm 2.3 Procedure AND of CUTSIZE

1: procedure AND(Bitmap C1, Bitmap C2)
2: int l ← n1/(w+ h1)

3: Bitmap C ← new Bitmap()
4: for i = 1, . . . , l do
5: int header1← C1.nextHeader()
6: Bitmap word1← C1.nextWord()
7: int header2←−1
8: while header2 < header1 do
9: if C2.hasNext() then

10: int header2← C2.nextHeader()
11: Bitmap word2← C2.nextWord()
12: else
13: return C

14: end if
15: if header1 = header2 then
16: Bitmap word ← word1 AND word2

17: if word.isNotEmpty() then
18: C .append(header1)
19: C .append(word)
20: end if
21: end if
22: end while
23: end for
24: return C

25: end procedure

each clock cycle, the CPU processes a word that could contain from 0 to w in-
tegers. In sparse datasets, the CPU cannot exploit the typical alignment found
in bitmap based data structures, since most of the words are storing none or
one integer. Conversely, in very dense datasets, up to w integers are likely
to be processed during each clock cycle. The critical value of density where
this behaviour changes is still δc = 1/w. In fact, for theoretical evaluations,
the average number of integers stored in a single word is the core property of
the dataset that only matters. To provide more detailed analysis, the pseudo-
code in Algorithm 2.3 for performing the bitwise operation AND between two
compressed bitmaps is reported and commented in the following. Note that
there is no significant difference when using a different logical operator, such
as OR or XOR. Later in Section 2.3.3, experimental results using uniformly
distributed data are reported to better compare time performance with the

2.3. BITMAP COMPRESSION WITH CUTSIZE 19

currently adopted compression schemes.
The procedure described in Algorithm 2.3 performs a logical AND between

two bitmaps C1, C2 compressed with CUTSIZE whose lengths after compres-
sion are n1 and n2, and whose header sizes are h1 and h2, respectively. The
word size w is equally set for both bitmaps. The two bitmaps C1 and C2 are
provided in input of the procedure (Line 1) that will return the compressed
bitmap C (Line 24) consisting in the intersection of the integers stored in C1

and C2. During the initialization step, the minimal word length of C1 is com-
puted1 (Line 2) and the bitmap C is created (Line 3). The main operations
are performed inside two nested loops. The outer loop processes the words
of the bitmap C1 (Lines 4–23), while the inner loop those of the bitmap C2

(Lines 8–22). In detail, at each outer iteration reads and temporarily stores
the next header (Line 5) and the next word (Line 6) of the compressed bitmap
C1 inside the two variables header1 and word1, respectively. This can be ef-
ficiently implemented using shift operations. Then, the temporarily variable
header2 is initialized (Line 7) to −1 before entering in the inner loop. Inside
this loop, if C2 has at least more one word to process (Line 9) also the next
header (Line 10) and the next word (Line 11) of C2 are stored inside the two
temporarily variables header2 and word2, respectively. Otherwise, if C2 has no
more words to process the procedure ends (Line 13). This step is repeated un-
til the variables header1 and header2 either coincide or happens that header2

crosses header1. In case that, the variables header1 and header2 coincide
(Line 15), it means that the compressed bitmaps C1 and C2 have a non trivial
— i.e. not all bits are set to zero — intersection of integers and, thus, the
logical AND between words word1 and word2 must be performed (Line 16).
If the resulting word is not empty, then it is appended with the header to the
compressed bitmap (Lines 17–20). In case that header2 crosses header1, the
procure continue with the following iteration of the outer loop. At the end of
the procedure the compressed bitmap C representing the intersection between
integers stored in C1 and C2 is obtained and returned in output (Line 24).

This procedures applies the operator AND between two words at most
mini=1,2{ni/(w + hi)} times and it reads at most n1/(w + h1) + n2/(w + h2)

words. Compared to the runtime for performing bitwise operations using un-
compressed bitmaps, CUTSIZE achieves better CPU performance in low density
datasets. In fact, in these datasets, CUTSIZE performs less AND operations be-
tween words because empty words are not processed at all. Instead, for high
density datasets both schemes achieve approximately the same performance
since the number of AND operations between words is comparable. However,

1To optimize the procedure, the word length of C2 can be also computed with the purpose
of eventually swapping C1 C2 if the length of C2 is smaller.

20 CHAPTER 2. STORING DATA WITH BITMAPS

compared to uncompressed, there is a little and unavoidable worsening in
time performance in dense datasets due to logical operations required to han-
dle the headers. Experimental results in Section 2.3.3 confirm the previous
analysis.

2.3.3 Experimental Results

In the following, experiments are performed to confirm the theoretical analysis
of CUTSIZE provided in Section 2.3.2. In particular, the main goal is to evaluate
both memory footprint and execution time for computing bitwise operations
CUTSIZE. The results are compared with some of the most important bitmap
compression schemes available in the literature, namely CONCISE and WAH,
and they are also compared with some classical data structures commonly
used to store integers: Bitmap, Array, Linked List, Hashtable, Balanced Tree.
Experiments are performed on a notebook equipped with an Intel CoreTM 2
Duo CPU P8600 at 2.40 GHz and 3GB of RAM with word size w = 32 bits.
First, the data used to perform the experiments are described, and then the
results are provided.

Data Description The data used to perform experiments consist of synthetic
integers sets generated with a uniform distribution. In detail, using the den-
sity parameter δ ∈ (0, 1], a maximum integer number nδ = ⌊105/δ⌋ is fixed
obtaining the range of integers [1, nδ]. For different values of δ, several sets
of integers of cardinality 105 each one are generated by uniformly at random
selecting integers from the range [1, nδ]. For instance, when δ = 1 this pro-
cedure leads to 105 integers in the range [1, 105]; this corresponds to all the
integers in the range, well representing the meaning of the density parame-
ter δ. Conversely, for δ << 1 the 105 integers are selected in a wide range
obtaining, thus, a sparse dataset. To improve clearness in the results, the ex-
periments with bitmap-based data structures — i.e. Bitmap,CUTSIZE, WAH,
CONCISE — are made with bitmaps of length nδ using w = 32 as word size;
and, other data structures — i.e. Array, Linked List, Hashtable and Balanced
Tree — allocate w = 32 bits for integer to store independently on the density
of the data.

Memory Footprint Figure 2.2a depicts the memory footprint of analysed
data structures as a function of the dataset density. On the x-axis (log-scale)
is represented the density δ ∈ [0, 1] and on the y-axis the ratio words per
integers average, that is the number of words of allocated memory divided by
the number of integers in the dataset. The figure shows that the behaviours

2.3. BITMAP COMPRESSION WITH CUTSIZE 21

of Array, Linked List, Hashtable and Balanced Tree are independent on the
density of the dataset. The reason is that these data structure allocate a fixed
amount of memory for every stored integer. For instance, Array uses always
one word for each stored integer and, consequently, it achieves a compression
ratio of words of allocated memory per integer constantly equal to one. Simi-
larly, for every stored integer, Linked List allocates w = 32 bits for the integer
and five additional words for storing references to previous and next elements
(see [99] for more details). Thus, also the compression ratio of Linked List is
a constant that do not depends on the density of the dataset. Among this kind
of data structures, Array is the more convenient in terms of allocated mem-
ory. Differently, the performance of bitmap based data structures is strongly
affected by the density of the dataset. In Section 2.3.2, the critical value for
the density, namely δc = 1/w ≈ 0.031, was derived. The experiments confirm
that all these data structure change their behaviour in this point. Indeed, Fig-
ure 2.2a shows that the compression ratio of Bitmap crosses the line relative to
Array, as predicted by theory, in the critical value. It is worth noticing that the
bitmap based compressed data structures begin to outperform Array even for
lower values density; for instance, CUTSIZE begins to be more memory efficient
than Array for δ ≈ 0.02. The reason is that the probability that two integers
are stored into the same word for δ < δc is not zero in uniformly distributed
data. Thus, there is a positive probability that CUTSIZE (and other bitmap com-
pression schemes) compresses two or more integers into the same word even
for density δ < δc. It is also possible to notice that, for δ→ 1, the limit of the
compression ratio of CUTSIZE derived in Eq. (2.4), namely R ≈ 0.044 words
per integer (this value is computed using the header size equal to the binary
logarithm of n), is confirmed by the experiments (the last point of the picture
corresponds to 0.04722). Bitmap, WAH, CONCISE achieve slightly better ra-
tios; precisely, the last point is 0.039 word per integer for density δ = 0.8272.
In fact, in the limit for δ → 1, they tend to store w integers in each word,
achieving a ratio of 1/w ≈ 0.031 < R. Thus, CUTSIZE scheme is (slightly) less
efficient in compressing the data. However, the difference is very small and,
indeed, CUTSIZE outperformed WAH in low density datasets, i.e. for δ < δc.
In conclusion, despite not representing the optimum, the compression ratio
achieved by CUTSIZE is comparable with those of the best ones available in the
literature, for both dense and sparse datasets.

Execution Time Figure 2.2a reports, for each analysed data structure, the
execution time for computing the intersection operation between two sets of
integers. For bitmap based representations, the intersection corresponds to
the bitwise AND operation. On the x-axis (log-scale) is represented the den-

22 CHAPTER 2. STORING DATA WITH BITMAPS

sity δ ∈ [0, 1] and on the y-axis (log-scale) is represented the time spent to
perform the operation. The figure shows, again, that the behaviours of Array,
Linked List, Hashtable and Balanced Tree are independent on the density of
the dataset. This is intuitive since the intersection operation is not affected by
how longs are the gaps between integers when adopting these data structures.
Differently, these gaps becomes relevant when adopting a bitmap based data
structure. For instance, in low density datasets Bitmap performs very badly
due to the presence of a large number of empty words. In fact, these words are
processed even if they do not store any integer with the consequence of wast-
ing computational resources. Despite this disadvantageous, Bitmap becomes
the fastest data structure when the data become dense. Indeed, compared to
other bitmap based data structures Bitmap do not suffer from the overhead
costs of managing the headers of the compressed words. Currently adopted
methods, such as WAH, CONCISE, mitigate the drawbacks of Bitmap by improv-
ing the time efficiency in low density datasets. However, this only happens
for a limited range of δ. In fact, the figure shows that Bitmap starts to out-
perform WAH, CONCISE nearly at δ > 10−3. In comparison,CUTSIZE achieves a
much better performance. In fact, CUTSIZE is more time efficient than Bitmap
up to a value of density δ ≈ 10−2 providing a CPU time saving for a much
wider range of density. Furthermore, CUTSIZE outperforms currently adopted
schemes in both sparse and dense datasets with consistence. In particular,
in low density datasets, CUTSIZE behaves like the Array data structure and
provides an improvement of one order of magnitude compared to WAH and
CONCISE; and, in high density datasets, it is still twice faster.

2.4 Future Directions

Being able to exploit the bit level parallelism, computations over bitmaps of-
ten outperform those over other data structures such as binary search trees,
hash tables and simple arrays. In this chapter, we introduced an innovative
bitmap compression algorithm scheme, called CUTSIZE, that provides a sig-
nificant CPU time saving when performing bitwise operations between com-
pressed bitmaps. Indeed, accordingly to theoretical and experimental analy-
ses, CUTSIZE is up to ten times faster in comparison with some of the most
adopted bitmap compression schemes available in the literature, such as WAH

and CONCISE. Due to its inherent properties, CUTSIZE is well suited for paral-
lelization over different processors. The reason is that all the procedures used
by CUTSIZE, such as compression, decompression, and the bitwise operations,
could be naturally subdivided into smaller instances due to presence of the
headers in the stored words. Thus, realizing a parallelizable version of CUT-

2.4. FUTURE DIRECTIONS 23

SIZE is possible in principle and its realization would mainly consist in finding
a clean and efficient procedure for distributing the workload accordingly to
these headers. This promising direction of research could lead to another sig-
nificant improvement in time performance with strong consequences for data
storage applications.

24 CHAPTER 2. STORING DATA WITH BITMAPS

 0.01

 0.1

 1

 10

 100

 1000

 0.0001 0.001 0.01 0.1 1

M
em

o
ry

 F
o

o
tp

ri
n

t
(W

o
rd

/I
n

te
g

er
)

Density

Array
Linked List
Hashtable

Balanced Tree
Bitmap

WAH
Concise
Cutsize

(a) Memory Footprint

 0.001

 0.01

 0.1

 1

 10

 100

 0.0001 0.001 0.01 0.1 1

T
im

e
(m

s)

Density

Array
Linked List
Hashtable

Balanced Tree
Bitmap

WAH
Concise
Cutsize

(b) Runtime

Figure 2.2: Performance evaluation of several data structures for storing inte-
gers. Fig. 2.2a compares the memory footprint by reporting the ratio of words
used per integer stored. Fig. 2.2b compares the runtime of the intersection
between two sets of integers.

CHAPTER 3

Frequent Pattern Discovery

Due to the upward trend in collecting data for business and social purposes
over the past years, nowadays vast amounts of data are available to analysts
who are responsible for discovering meaningful information hidden inside all
the stored data. This work requires to sift through an immense amount of
material and to intelligently probe it to find exactly where the value resides.
Due to the large size of the datasets to process, these activities are often in-
feasible by human means and powerful computers are a basic need perform
analysis. This motivates the development of algorithms explicitly designed to
support data analysis activities fuelling an active area of research with plen-
tiful applications, often referred to as data mining and knowledge discovery in
datasets [40].

The field of data mining includes at least four different topics correspond-
ing to clustering, classification, outlier analysis, and frequent itemset mining [2].
Just to provide a rough idea, clustering is the process of making a group of
abstract objects into classes of similar objects; classification is the process of
predicting categorical class labels; outlier analysis is the process of identifying
abstract objects that do not comply with the general behaviour of the data;
and, frequent itemset mining, is the process of discovering those patterns that
occur frequently within the data. Compared to the other three problems, fre-
quent itemset mining is relatively recent but, in spite of its shorter history, it
is considered the marquee problem of data mining and it has now a special
place in the data mining research community.

The field of frequent pattern mining is considered a mature one and the
development of innovative algorithms has slowed down due to the increasing
difficulties in outperforming the performance achieved by existing solutions.
Nevertheless, there is a high demand for more efficient frequent itemset min-
ing algorithms. This is proven by the fact that recent research effort focused
on developing parallelizable versions of the best available solutions [17, 72].

25

26 CHAPTER 3. FREQUENT PATTERN DISCOVERY

Improving existing frequent mining algorithms is still possible even with-
out resorting to parallel computations. As a proof of concept, this chapter
presents EXPress closED ITemset Enumeration (EXPEDITE), that is an innovative
frequent itemset miner algorithm designed to speed up the process of extract-
ing frequent patterns from the stored data. Compared to the state of the art,
EXPEDITE provides a CPU time saving of up to two orders of magnitude without
compromising other dimensions of performance (e.g. memory). The findings
are analytically motivated first, and then experimentally supported by exten-
sive tests on real datasets.

Roadmap of the Chapter. Section 3.1 introduces the frequent itemset min-
ing problem. Section 3.2 describes solutions available in the literature and
Section 3.3 provides a detailed presentation of the innovative solution EXPE-
DITE. Section 3.4 complements the description of EXPEDITE discussing possible
variations of the algorithm and Section 3.5 extensively discusses experimental
results. Finally, Section 3.6 concludes the chapter discussing possible future
directions.

3.1 Frequent Itemset Mining

This section is dived as follows. First, Section 3.1.1 introduces the frequent
itemset mining problem; then, Section 3.1.2 provides the formal notation re-
quired for the reminder of the chapter; and, finally, Section 3.1.3 shows a toy
example of application.

3.1.1 The Frequent Itemset Mining Problem

Since its introduction, the Frequent Itemset Mining (FIM) problem [3] has been
one of the most studied problems in data mining and there have been hun-
dreds of follow-up publications due to its importance in applications. To name
a few, pattern matching is used to analyse the behaviour of individuals in web-
shops, the proteins interactions in bioinformatics, and the frequent symptoms
of a disease in the health-care domain [47, 57].

FIM instantiates over a dataset of transactions, where each transaction is
made up of items. The goal is to find frequent itemsets (FIs), namely sets of
items occurring in at least a user-specified percentage of transactions. The
formal terminology comes from the original dataset used to introduce FIM,
which contains purchases of customers in a supermarket: each transaction
corresponds to a set of products (i.e. items) purchased by a customer and the

3.1. FREQUENT ITEMSET MINING 27

goal is to understand the behaviour of buyers by discovering which products
are often bought together, namely finding the FIs. The described scenario
is known in the literature as market basket analysis [3] and toy example of
dataset is discussed later in Section 3.1.3. However, as already mentioned,
there are many other real scenarios of application since the only requirement
is dataset of binary attributes which is very common to find.

In the early days of FIM, most approaches were focused on enumerating all
FIs as efficiently as possible. However, the number of FIs that can be extracted
from real-world data is often so huge that their storage and post-processing
operations require unrealistic resources. As a consequence, several condensed
representations for FIs have been proposed to drastically reduce the number
of patterns to extract [22]. The most relevant representations were based
on closed sets [75], on disjunction-free sets [21] and on δ-free sets [19].
The one based on closed sets, commonly known as frequent closed itemsets

(FCIs), or also as closed frequent itemsets (CFIs), grasped particular attention
within the data mining community. This representation is a lossless, sound and
informative compression of the larger set of all the FIs [59]. This means that
the set of FCIs allows to derive any FI, does not include redundant elements
and provides information on the data even without the need of decompressing
the representation. These appealing features led the researchers to further
develop FCIs miners rather than FIs miners.

3.1.2 Basic Definitions and Notation

This section formally defines the idea of frequent and closed itemsets while also
providing required notation for explaining the algorithm EXPEDITE.

Definition 3.1 (FIM). FIM can be modelled with a triplet 〈T,I,D〉, where T

denotes the set of transactions, I the set of items and D ⊆ T × I the set of

binary relations between transactions and items. In particular, 〈t, i〉 ∈ D means

that the transaction t ∈ T contains the item i ∈ I . To each transaction, is

associated a unique identifier, commonly known as tid, and a set of transactions

T ⊆ T is often called tidset. Instead, a set of items I ⊆ I is called itemset and a

k-itemset is an itemset I ⊆ I made up of k items, that is |I |= k.

The goal of FIM is to detect the subset of all possible itemsets such that
they occur frequently within the data. The idea is that it is more interesting to
know which are the items occurring in a large number of transactions rather
than those occurring occasionally together. The following definition formalizes
the meaning of frequent itemset.

28 CHAPTER 3. FREQUENT PATTERN DISCOVERY

Definition 3.2 (Frequent Itemset). The support of an itemset I ⊆ I is the

number of transactions that contain I. Formally, it is defined as the function

support: ℘(I) → N, I 7→ |{t ∈ T : 〈i, t〉 ∈ D,∀i ∈ I}| where ℘() denotes the

power set and | | the cardinality function. An itemset I is said to be frequent
(FI for short) when its support is greater or equal than a user-specified minimum

support threshold δ ≥ 0, namely when support(I)≥ δ.

When increasing the threshold, the number of itemset to mine drastically
decreases. At the same time, enumerated itemsets are less descriptive of
the given dataset. The main benefit of introducing the minimum support is
the speed improvement of mining algorithms. However, when facing a big
dataset, for acceptable values of δ the number of itemset to mine is still so
large that their storage and their post-processing operations require unrealis-
tic resources. To overcome this issue, closed itemsets have been proposed.

Definition 3.3 (Closed Itemset). The function tidset: I → ℘(T) identifies the

set of all the transactions that contain a given item, formally tidset(i) = {t ∈
T | 〈i, t〉 ∈ D}. Given an itemset I ⊆ I , with abuse of notation, we refer to

tidset(I) as the transactions that contain the given itemset I , namely tidset(I) =
⋂

i∈I
tidset(i) = |{t ∈ T : 〈i, t〉 ∈ D,∀i ∈ I}|. Analogously, itemset: T → ℘(I)

identifies all items contained within a transaction, formally itemset(t) = {i ∈
I | 〈i, t〉 ∈ D}, and the largest itemset shared between a given set of transac-

tion is indicated with itemset(T) =
⋂

t∈T
itemset(t). The composite function

closure: ℘(I) → ℘(I), I 7→ itemset(tidset(I)) is called closure operator. An

itemset I ⊆ I is said to be closed (CI for short) when closure(I) = I or frequent
closed (FCI) if it is also frequent. Finally, a cluster denotes a pair 〈I , T 〉, where

T ⊆ T is a tidset and I ⊆ I an itemset such that T = tidset(I).

FCIs can be thought as a compressed representation of FIs. In fact, it is
easy to derive the set of FIs once that FCIs are known. However, the number
of FCIs can be exponentially smaller than that of FIs [111] and, thus, there is
a noticeable advantage in mining FCIs rather than FIs.

3.1.3 Case Example: Market Basket Analysis

To facilitate reading, a toy example is here provided to illustrate in practice
what are frequent itemset and frequent closed itemsets. Table 3.1 shows a
toy dataset of transactions that is typical of the market basket analysis. Each
transaction is associated with a tid identifier and it consists in a list of differ-
ent items. This kind of data can be conveniently represented using the bitmap
data structure, as shown in Table 3.2 — and possibly after the application
of a bitmap compression scheme, such as CUTSIZE, for optimizing memory

3.1. FREQUENT ITEMSET MINING 29

Tid Item1 Item2 Item3 Item4

T1 Bread Milk - -
T2 Bread Diaper Beer Eggs
T3 Milk Diaper Beer Coke
T4 Bread Milk Diaper Beer
T5 Bread Milk Diaper Coke

Table 3.1: A dataset of transactions.

Tid Beer Bread Milk Diaper Eggs Coke

T1 0 1 1 0 0 0
T2 1 1 0 1 1 0
T3 1 0 1 1 0 1
T4 1 1 1 1 0 0
T5 0 1 1 1 0 1

Table 3.2: Bitmap based representation of the dataset of transactions.

resources. The definition of frequent itemset (Definition 3.2) is based on a
user-defined threshold value δ ≥ 0. In the following, this value is fixed to
δ = 2 so that an itemset I (i.e. a set of items) is said to be frequent if there
are at least δ = 2 transactions that contain all the items belonging to I (i.e.

support(I) ≥ 2). Intuitively, by choosing δ = 2, the frequent pattern analy-
sis aims at understanding which sets of items are bought together in at least
twice. Formally, the goal of frequent itemset mining is to discover all the FIs
and, accordingly to the dataset, the solution consists in 17 FIs. All of them are
grouped by cardinality and listed in Table 3.3. The number of discovered FIs

Cardinality Itemsets Total

1 {beer},{bread},{milk},{diaper},{coke} 5
2 {beer,bread},{beer,milk},{beer,diaper},{bread,milk},

{bread,diaper},{milk,diaper},{milk,coke},{diaper,coke} 8
3 {beer,bread,diaper},{beer,milk,diaper},{bread,milk,diaper},

{milk,diaper,coke} 4

Table 3.3: List of frequent itemsets with δ = 2.

is relatively large compared to the size of the dataset and, in practical applica-
tions, this becomes a relevant issue due to the big size of datasets. Although
the number of FIs can be reduced by increasing the threshold value δ (i.e.

focusing on items bought together at least three times), this is not a practica-
ble solution since it costs the loss of much information contained in the set of

30 CHAPTER 3. FREQUENT PATTERN DISCOVERY

discovered FIs. The best solution for addressing this problem is given by the
frequent closed itemset representation. Reminding that a FCI is an FI that it
not a subset of any other FI with the same support, the list of FCIs (for δ = 2)
is reported in Table 3.4 grouping the itemsets by their cardinality. The solution

Cardinality Itemsets Total

1 {bread},{milk},{diaper} 3
2 {beer,diaper},{bread,milk},{bread,diaper},{milk,diaper} 4
3 {beer,bread,diaper},{beer,milk,diaper},{bread,milk,diaper},

{milk,diaper,coke} 4

Table 3.4: List of frequent closed itemsets with δ = 2.

consists in just 11 FCIs and there is no loss of information since the FIs but not
FCIs, for instance {beer} and {beer,bread}, can be retrieved by computing the
subsets of the FCI, respectively {beer,bread,diaper}. In addition, the supports
of the two FIs (i.e. 3 and 2, respectively) can be also retrieved by computing
the minimum supports of the FCIs that contain {bread} (i.e. the support of
{beer,diaper}) and {beer,bread} (i.e. the support of {beer,bread,diaper}), re-
spectively. In conclusion, the FCI representation contains all the information
that the FI representation provides.

3.2 State-of-the-Art

Simultaneously with the development of algorithms for extracting FCIs, con-
siderable effort on comparing the performances of these algorithms has been
made and several surveys on this topic have been published [53, 1, 110, 47,
88, 18, 78]. Using the classification criteria adopted by [110], the main FCI
miners in the current literature can be classified into three categories:

1. “Test-and-generate”: This category contains the algorithms based on
the downward closure property that characterizes APRIORI [4]: an item-
set is frequent only if all of its sub-itemsets are also frequent. Exploiting
this property, FIs can be mined by first scanning the dataset to find FIs
of cardinality one and then using the found FIs to generate other FIs of
bigger cardinality. Other representative algorithms of this category are
ECLAT [114], CLOSE [75] and TITANIC [91].

2. “Divide-and-conquer”: This category contains the algorithms based on
methods similar to the FP-growth [48], that is the core engine of CLOSET

[77]. The FP-growth method consists in organizing the original data into

3.2. STATE-OF-THE-ART 31

a compacted data structure, called Frequent Pattern tree, that is then
used for splitting the instance of the problem into smaller ones. Other
representative algorithms of this category are CLOSET+ [100], AFOPT

[63] and FP-CLOSE [44].

3. “Hybrid”: This category contains the algorithms based on both the two
previously mentioned strategies and the most representative of them is
CHARM [113] which relies on a particular data structure, called Item-
setTidset tree. This algorithm explores the search space in a depth-first
manner, like algorithms of the divide-and-conquer category, but without
splitting the main instance into several ones. Instead, it iteratively oper-
ates on the data structure using a test-and-generate approach to gener-
ate FCIs at each step. Other representative algorithm of this category are
CLOSEMINER [89], PGMINER [70], DCI-CLOSED [65], LCM [94, 95, 96],
DBV-MINER [97] and FCP-MINER [57].

The third proposed version of LCM [96] won the best implementation
award of Frequent Itemset Mining Implementations workshop (FIMI) [41]
and, nowadays, it is still the reference algorithm for efficiency of mining
[73]. However, it must be pointed out that the performances of all these
FCI mining algorithms are highly dependent on the nature of the data and,
consequently, empirical comparisons do not reveal a unique best algorithm
for all the datasets used for the evaluation. In particular, other experimental
work [110, 88, 78] showed that DCI-CLOSED [65] outperforms LCM in several
datasets confirming that DCI-CLOSED can be considered at least as good as the
top performing FCI miner in the literature.

In the last decade, research efforts in the field of FCI mining have shifted
towards different topics, such as parallel computing, distributed system and
top-k FI mining. As far the parallel FCI mining, the state of the art is repre-
sented by MT-CLOSED [17] and PLCM [72] that are parallel implementations
of two of the fastest algorithms according to the FIMI workshop, namely DCI-
CLOSED and LCM. A different approach is also the one provided by PARAMINER

[73] that is less performing but with the advantage of being applicable for
more generic data mining tasks. The research line addressing implementa-
tion on distributed systems, is more recent and less investigated but, even in
this field, one main goal is to achieve distributed versions of the algorithms
that competed in the FIMI workshop. For instance, DIST-ECLAT and BIGFIM
[69] are implementations based on ECLAT and APRIORI that are both deployed
for the MapReduce [34] platform. Finally, as far the problem of mining only
the k most representative FI [49, 39], efficient solutions have been recently
proposed [36, 54].

32 CHAPTER 3. FREQUENT PATTERN DISCOVERY

3.3 Frequent Closed Itemset Mining with EXPEDITE

This section presents EXPEDITE, an innovative and very time efficient FCI miner
algorithm. The content is divided as follows. Section 3.3.1 provides a descrip-
tion of the algorithm; Section 3.3.2 proves its correctness; then, Section 3.3.3
compares EXPEDITE with DCI-CLOSED; and, finally, Section 3.3.4 discusses a toy
example.

3.3.1 Description of the Algorithm

The algorithm EXPEDITE consists in a recursive procedure, precisely named
EXPEDITE, whose pseudo-code is reported in Algorithm 3.1. Its operating prin-
ciples can be organized into four main steps:

1. Initial Data Preparation (Line 1). Four input parameters must be pro-
vided to call the procedureEXPEDITE():

δ: A threshold value δ ≥ 0 that specifies the minimum accepted sup-
port. Itemsets with support lesser than δ are ignored by the algo-
rithm and their closure is not computed.

P : A prefix P that is a set of clusters. When explicitly declared, the
clusters of a prefix are sorted according to the lexicographical or-
der denoted by the ≺ symbol. The first time we call the procedure
EXPEDITE, P is the set of clusters such that their itemsets are fre-
quent 1-itemsets. Formally, P = Pinit =

�

〈I , T 〉 ∈ ℘(I)×℘(T) :
|I |= 1 ∧ T = tidset(I) ∧ |T | ≥ δ

	

.

L : A stack of pending prefixes L which is helpful for keeping track of
the recursion path. The first time we call the procedure EXPEDITE,
the stack L is empty.

S : A map S : T 7→ S [T] containing the supersets of each tidsets
belonging to a cluster of P discovered during the algorithm’s exe-
cution. We refer to these supersets as super-tidsets. For each cluster
〈I , T 〉 ∈ P thus, S [T] stores the known tidsets existing in P that
are proper supersets of T . Formally, S [T] ⊆ {T ′⊆ T : ∃〈I ′, T ′〉 ∈

P , T (T ′ ∧ I ′⊆ I }. This map is helpful to avoid several com-
putations of the same closed itemsets. The first time we call the
procedure EXPEDITE, S [T] is empty for all the tidsets T found in
Pinit.

2. Itemset Closure (Lines 2–21). For each cluster in P , EXPEDITE performs
itemset closure by replacing every cluster 〈I , T 〉 ∈ P with the cluster

3.3. FREQUENT CLOSED ITEMSET MINING WITH EXPEDITE 33

〈closure(I), T 〉. While doing so, it updates both the map of known super-
tidsets S and the map of clusters C : T 7→ C [T]. Both these maps are
useful to avoid redundant computations during the new prefixes gener-
ation in Step 3.

In the following, further details on the closure step are provided by com-
menting the related Lines 2–21. There are two nested cycles iterating
on the clusters 〈I , T 〉 of P and both use the lexicographical order on P .
The outer one (Line 2) follows a descending order (cluster with lower
|T | are chosen first), while the inner one (Line 4) an ascending order
(clusters with lower |T | are chosen last). Each time a pair of clusters
is found, say 〈I , T 〉 and 〈I ′, T ′〉, with the property that T ′ is a poten-
tial undiscovered superset of T (Line 5), the following operations are
performed to ensure the itemset closure. First, the sub-procedure PAR-
TIALINTERSECTION(T, T ′) is called to save the output in the variable Σ
(Line 6). This PARTIALINTERSECTION sub-procedure checks, one by one, if
elements in T are also in T ′. In positive cases, the elements are added to
Σ but at the first negative case the sub-procedure stops (the code is omit-
ted). If T has not been scanned till the end in this way, then T ′ is not a
superset of T and the procedure can skip to the next element because it
means that T and T ′ belong to two different closed itemsets. However,
the map C is updated (Line 17) since T ∩ T ′ could generate new CIs.
If T has been scanned until the end, instead, the following operations
are made (Lines 7–16). If T = T ′, then it means that itemsets I and
I ′ have the same closure and only one of them needs to be processed.
Thus, EXPEDITE deletes the cluster 〈I , T 〉, merges items of I and I ′ into
I ′ and goes back to the next iteration of the outer cycle (note that the
cluster 〈I ′, T ′〉 must follow the cluster 〈I , T 〉 in the lexicographical order,
otherwise 〈I , T 〉 would have been deleted before). Instead, if T 6= T ′

EXPEDITE simply merges items of I and I ′ into I and updates the map S
since T ⊂ T ′. It can be directly verified that due to the merging opera-
tions, at the end of both cycles, the prefix P will contain only distinct
clusters whose itemsets are closed.

3. Generation of New Prefixes (Lines 23–34). Step 2 produces a set of dis-
tinct closed itemsets but, generally, there are others to be discovered.
To continue the extraction of CIs, the algorithm generates new prefixes
which are provided as input to recursive calls of EXPEDITE. Doing this in
the right way, all the FCIs can be generated (see Section 3.3.2 for a proof
of correctness). The generation of new prefixes is based on the map C
that contains clusters with the potential of generating new FCIs.

34 CHAPTER 3. FREQUENT PATTERN DISCOVERY

Referring to the code, the generation step happens in Lines 23–34. Us-
ing the ascending lexicographical order, EXPEDITE first selects and pushes
an existing cluster 〈I , T 〉 ∈ P into the stack L , meanwhile initializing a
new prefixP〈I ,T 〉 with its map S〈I ,T 〉 (Lines 23–25). Then, a cycle on clus-
ters 〈I ′, T ′〉 of C[T] using the ascending order follows (Lines 26–34), to
perform the following operations. The sub-procedure COMPLETEINTER-
SECTION(T, T ′,Σ) is called to save into Λ the output intersection T ∩ T ′

(Line 27). Note that Σ is used to speed-up the computation by recov-
ering the final state of PARTIALINTERSECTION(T, T ′). A check is made to
verify if Λ is a potential support of a new closed itemset (Line 28), which
happens if the cardinality of Λ is above the threshold value δ and if Λ
is not contained into a tidset of another already generated prefix. This
last control is performed through the procedure ISDUPLICATE(Λ,L ,H)
whose pseudo-code is reported in Algorithm 3.2. Then, if Λ is a poten-
tial support for a new CI, the cluster 〈I ∪ I ′,Λ〉 is added to the new prefix
P〈I ,T 〉 updating the map S〈I ,T 〉 with all clusters containing a tidset super-
set of T ′; otherwise, the cluster 〈I ′, T ′〉 and all clusters whose tidset is
contained in T ′ are discarded.

4. Cluster Saving, Memory Deallocation, and Recursion (Lines 22–38). Once
a cluster 〈I , T 〉 ∈ P has generated its own prefix P〈I ,T 〉, it can be re-
moved from the memory space and saved into the device used to store
the wanted FCIs (Line 35). In fact, keeping track of it in memory is not
actually needed to carry on the execution of the algorithm and Step 2
ensures that it is already a FCI. It is worth noticing that, while storing
clusters, EXPEDITE keeps in memory also their tidsets. After the write
operation, previous steps are applied through recursion (Line 36) on the
new generated prefix P〈I ,T 〉. Finally, 〈I , T 〉 is popped out from the stack
L (Line 37). The algorithm ends after that it generates and recursively
analyses the last generated prefix of the last cluster of Pinit.

3.3.2 Proof of Correctness

The correctness of EXPEDITE can be proved by showing that the following two
claims are true:

1. If the output of ISDUPLICATE is always false, then EXPEDITE writes all and
only the frequent closed itemsets;

2. The output of ISDUPLICATE is true only if the current cluster cannot gen-
erate new frequent closed itemsets.

3.3. FREQUENT CLOSED ITEMSET MINING WITH EXPEDITE 35

Algorithm 3.1 Main procedure of EXPEDITE

1: procedure EXPEDITE(P ,L ,S ,δ)
2: for each 〈I , T 〉 ∈ (P ,≺), descending do
3: C [T]← ;

4: for each 〈I ′, T ′〉 ∈ (P ,≺) : 〈I , T 〉 ≺ 〈I ′, T ′〉, ascending do
5: if T ′ 6∈ S [T] then
6: Σ← PARTIALINTERSECTION(T, T ′)
7: if Σ is s.t. T has been scanned till the end then
8: if |T |= |T ′| then
9: P ←P \ {〈I , T 〉}

10: I ′← I ′ ∪ I

11: break loop
12: else
13: I ← I ∪ I ′

14: S [T]←S [T]∪ {T ′} ∪S [T ′]

15: end if
16: else
17: C [T]←C [T]∪ {〈I ′, T ′,Σ〉}
18: end if
19: end if
20: end for
21: end for
22: for each 〈I , T 〉 ∈ (P ,≺), ascending do
23: P〈I ,T 〉← ;

24: S〈I ,T 〉← ;

25: L ←L ∪ 〈P , I , T 〉

26: for each 〈I ′, T ′,Σ〉 ∈ C [T], ascending on (C [T],≺) do
27: Λ← COMPLETEINTERSECTION(T, T ′,Σ)
28: if |Λ| ≥ δ ∧ ¬ ISDUPLICATE(Λ,L ,H) then
29: P〈I ,T 〉←P〈I ,T 〉∪ {〈I ∪ I ′,Λ〉}
30: S〈I ,T 〉[Λ]←

�

〈 Î , T̂ 〉 ∈ P〈I ,T 〉 | ∃T ′′ ∈ S [T ′], T̂ = T ∩ T ′′
	

31: else
32: C [T]← {〈 Î , T̂ 〉 ∈ C [T] | T ′ 6∈ S [T̂]}

33: end if
34: end for
35: WRITE(I , T)
36: EXPEDITEP〈I ,T 〉,L ,S〈I ,T 〉,δ
37: L ←L \ 〈P , I , T 〉

38: end for
39: end procedure

36 CHAPTER 3. FREQUENT PATTERN DISCOVERY

Algorithm 3.2 Procedure ISDUPLICATE of EXPEDITE

1: procedure ISDUPLICATE(Λ,L)
2: for each 〈P , I , T 〉 ∈ L do
3: for each 〈I ′, T ′〉 ∈ (P ,≺) : 〈I ′, T ′〉 ≺ 〈I , T 〉, ascending do
4: if Λ ⊆ T ′ then
5: return true
6: end if
7: end for
8: end for
9: return false

10: end procedure

In fact, by combining these two claims can be deduced that EXPEDITE writes
each frequent closed itemset at least once. The proof starts with the following
lemma.

Lemma 3.1. The computation of all the intersections between two or more tid-

sets of the clusters belonging to the initial prefix Pinit provides the tidset of each

frequent closed itemset.

Proof. First, can be we notice that Pinit contains by definition all and only
clusters 〈Ii, Ti〉 whose itemsets Ii are frequent 1-itemsets. Then, assume that
I = {i1, i2} is any frequent 2-itemset (not necessarily closed). Both items in I

must have support greater or equal than δ (otherwise it would not be a FI)
and, consequently, both its items must be 1-itemsets belonging to two clus-
ters of Pinit that are denoted with 〈{i1}, T1〉, 〈{i1}, T2〉. Then, the tidset of the
2-frequent itemset I = {i1, i2} can be obtained by intersecting their tidsets,
namely T1 ∩ T2 = tidset(I). Thus, for each frequent 2-itemset it is possible to
generate its tidset by computing pairwise intersections of the tidsets of clus-
ters belonging to Pinit. Generalizing to more than two items, it is possible to
generate the tidset of all the frequent k-itemsets, for each k ≥ 1, by consid-
ering the intersections of k tidsets of clusters belonging to Pinit. To conclude,
is sufficient to note that FCIs are a subset of FIs and, thus, the tidset of each
frequent closed itemset is obtained.

Lemma 3.1 states that for each FCIs I , through the computation of these
intersections, it is possible to obtain a cluster 〈I , T 〉 such that tidset(I) =
tidset(I) = T . In particular, by computing also the closure operator of I ,
namely closure(I) = I , a procedure for computing all the FCIs is obtained.
Once proved that EXPEDITE correctly perform this, its correctness will be achieved.

3.3. FREQUENT CLOSED ITEMSET MINING WITH EXPEDITE 37

Theorem 3.1. Assume that the output of ISDUPLICATE is always false, then EX-
PEDITE writes all and only the frequent closed itemsets.

Proof. EXPEDITE writes only FCIs. The writing operation of any cluster 〈I , T 〉

occurs at Line 35 after the closure step at Lines 2–21. This means that EXPEDITE

writes only CIs. Then, the initial prefix contains only frequent itemsets, the
closure step does not decrease their cardinality and new generated prefixes
contain only frequent itemsets due to the control at Line 28. Thus, the CIs
wrote by EXPEDITE must be also frequent.

EXPEDITE writes all the FCIs. It is enough to show that EXPEDITE computes all
the intersections of tidsets contained in clusters of Pinit thanks to Lemma 3.1.
To each prefix can be associated a level number that counts the nested re-
cursive calls of EXPEDITE: Pinit has level zero, for each 〈I , T 〉 ∈ Pinit P〈I ,T 〉
has level one and so forth. At the first call EXPEDITE(Pinit, . . .), the cycle at
Line 22 generates a new prefix P〈I ,T 〉 of level one for each cluster 〈I , T 〉 ∈ Pinit.
Then, for each cluster 〈I ′, T ′〉 ∈ Pinit such that 〈I , T 〉 ≺ 〈I ′, T ′〉, the intersection
Λ = T∩T ′ between their two tidsets is computed. This means that all pairwise
intersections between tidsets of clusters in Pinit are computed during the first
level of recursion. Since ISDUPLICATE is always false by hypothesis, each new
generated cluster (e.g. 〈I ∪ I ′,Λ〉) is added to the prefix of level one (respec-
tively, P〈I ,T 〉) if and only if its itemset is frequent (Λ≥ δ). For each of the new
prefixes, a recursive call (Line 36) is made and the cycle at Line 22 generates
again new prefixes of level two made by only clusters obtained as pairwise
intersections (such as 〈I ∪ I ′,Λ〉). Better said, at level two, EXPEDITE gener-
ates all the pairwise intersections between pairwise intersections of tidsets in
Pinit. Consequently, this means that, at level two, EXPEDITE generates all the
intersections of three or four tidsets of Pinit. In general at level k of recursion
EXPEDITE generates all the intersections of up to 2k tidsets of Pinit. Eventu-
ally, all the intersections of tidsets contained in clusters of Pinit are computed,
concluding the proof.

Theorem 3.1 provides the correctness of EXPEDITE when there is no use
of the sub-procedure ISDUPLICATE for checking duplicate tidsets. This sub-
procedure significantly improves the time efficiency by reducing the number
of intersections to perform but its correctness must be also proved. This is
done in the following final theorem.

Theorem 3.2. The output of ISDUPLICATE is true only if the current cluster can-

not generate a frequent closed itemset that would not be generated otherwise.

Proof. The goal is to show that if EXPEDITE does not insert a cluster into
a prefix, which happens when ISDUPLICATE(Λ,L) is true, then EXPEDITE is

38 CHAPTER 3. FREQUENT PATTERN DISCOVERY

still generating all the frequent closed itemsets according to Theorem 3.1.
This statement is proved by induction. The assumption is that the prefixes
Pinit = P0,P1, . . . ,Pt−1 have been already generated by EXPEDITE and that IS-
DUPLICATE did not compromise the correctness for these prefixes. The goal
is to prove that the procedure ISDUPLICATE do not compromise the correct-
ness of the algorithm during the generation of the subsequent prefix Pt . The
base case of the induction Pinit = P0 is trivial since ISDUPLICATE is not ap-
plied during the generation of Pinit. Hence, the induction hypothesis is that
Pt = P〈I ,T 〉 is generated by a cluster 〈I , T 〉 ∈ Pt ′<t and that, for some dif-
ferent cluster 〈I ′, T ′〉 ∈ Pt ′ , ISDUPLICATE(T ∩ T ′,L) is true. This means that
T ∩ T ′ ⊆ T ∗, where T ∗ belongs to a cluster 〈I∗, T ∗〉 ∈ Pt∗≤t ′ . All the FCIs that
would derive from P〈J ,T∩T ′〉, for any itemset J , have been already generated
from P〈I∗,T ∗〉 whose index is strictly lesser than t. In fact, the inductive hypoth-
esis guarantees that P〈I∗,T ∗〉 correctly generates FCIs even using ISDUPLICATE,
and T∩T ′ ⊆ T ∗ ensures that all the FCIs deriving from T∩T ′ are also derivable
from T ∗. Thus, the procedure ISDUPLICATE returns positive values only when
the FCIs that can be derived from the input tidset were already considered in
previous iterations of the algorithm. In particular, ISDUPLICATE preserves the
correctness for the prefix Pt and this concludes the proof.

3.3.3 EXPEDITE vs. DCI-CLOSED

The presented algorithm EXPEDITE is a FCI miner that has not yet been opti-
mized neither for parallel computations nor for distributed systems. For this
reason, in the following the algorithm is compared with DCI-CLOSED discussing
in detail their differences. In fact, beside being one of the top performing algo-
rithms available in the literature, DCI-CLOSED is also the FCI mining algorithm
more similar to EXPEDITE. Other details are in Section 3.3.4 that shows a case
example for illustrating both EXPEDITE and DCI-CLOSED and in Section 3.5)
that includes their experimental comparison.

The pseudo-code of DCI-CLOSED is reported in Algorithm 3.3. Its working
principles are similar to those of EXPEDITE. In fact, the adopted strategy is
based on performing all the intersections among frequent closed 1-itemsets
according to Lemma 3.1. To easily compare the codes, also DCI-CLOSED de-
scription is separated into the same four steps used to describe EXPEDITE:

1. Initial Data Preparation (Line 1). Five parameters must be provided to
call the procedure DCI-CLOSED:

δ: A threshold value δ that specifies the minimum accepted support,
as in EXPEDITE.

3.3. FREQUENT CLOSED ITEMSET MINING WITH EXPEDITE 39

P : A prefix P whose clusters, differently from EXPEDITE, are pairs of
the form 〈i,Σ〉 where i is an item and Σ is the inner state of the
sub-procedure PARTIALINTERSECTION(T,L). The first time that the
procedure DCI-CLOSED is called, P is initialized as P = Pinit =
�

〈i,;〉
�

� i ∈ ℘(I)
	

.

L : A stack of pending prefixesL with functionalities analogous to that
of EXPEDITE.

I : An itemset I that is a parameter needed for the recursion. The first
time that the procedure DCI-CLOSED is called, I is an empty set.

T : A set of transaction T that is a parameter needed for the recur-
sion. The first that the procedure DCI-CLOSED is called, T is the set
containing all the transactions.

2. Itemset Closure (Line 10). Closure of itemsets is performed through the
cycle at Lines 7–14 that is similar to that of EXPEDITE (the cycle at Line 4
of Algorithm 3.1). The main difference is that DCI-CLOSED computes the
closure by adding single items rather entire itemsets: this is a conse-
quence of using clusters made by single items. Another difference is that
EXPEDITE updates the maps S and C to avoid redundant computations.
Indeed, differently from DCI-CLOSED, EXPEDITE generates new prefixes
into a different cycle and, thus, it needs to store these map to resume
the computations of the former cycle.

3. Generation of New Prefixes (Line 12). The generation of new prefixes is
also very similar to that of EXPEDITE although the order of operations is a
bit different. The main differences are in the sub-procedure ISDUPLICATE.
In particular, the version used by DCI-CLOSED is more time-efficient since
it only checks whether or not the questioned tidset is contained into the
tidset of any frequent closed 1-itemset (which can be pre-calculated).

4. Cluster Saving, Memory Deallocation, and Recursion (Lines 15,16). Exactly
like EXPEDITE, DCI-CLOSED makes use of recursive calls (Line 16) and
allows to store apart the extracted frequent closed itemsets (Line 15).
However, what is really different is how DCI-CLOSED makes use of the re-
cursion: DCI-CLOSED recursively computes all the possible intersections
among the tidset of frequent closed 1-itemsets. It must do so because its
prefixes contain single items. Instead EXPEDITE, whose prefixes contain
entire itemsets, computes the intersections among the tidsets of these
itemsets. The result is that requires to compute a smaller number of
intersections to be in range of Lemma 3.1.

40 CHAPTER 3. FREQUENT PATTERN DISCOVERY

Summing up, the fundamental difference between EXPEDITE and DCI-CLOSED

is that the clusters belonging to the prefixes of EXPEDITE contain entire item-
sets, while those of DCI-CLOSED only single items. Thus, EXPEDITE needs to
compute a smaller number of intersections than DCI-CLOSED, consequently re-
ducing the number of duplicate and infrequent itemsets extracted.

Algorithm 3.3 The algorithm DCI-CLOSED

1: procedure DCI-CLOSED(P ,L , I , T,δ)
2: for each 〈i,Σ〉 ∈ P , sorted by ascending i do
3: Λ← COMPLETEINTERSECTION(T, tidset(i),Σ)
4: if |Λ| ≥ δ ∧ ¬ ISDUPLICATE(Λ,L) then
5: IΛ← I ∪ {i}

6: PΛ← ;

7: for each 〈i′,Σ′〉 ∈ P : i ≺ i′, sorted by ascending i′ do
8: Σ← PARTIALINTERSECTION(Λ, tidset(i′))
9: if Σ is s.t. Λ has been scanned till the end then

10: IΛ← IΛ ∪ {i
′}

11: else
12: PΛ←PΛ ∪ {〈i

′,Σ〉}
13: end if
14: end for
15: WRITE(IΛ,Λ)
16: DCI-CLOSED(PΛ,L , IΛ,Λ,δ)
17: L ←L ∪ {i}

18: end if
19: end for
20: end procedure

21: procedure ISDUPLICATE(Λ,L)
22: for each i ∈ L do
23: if Λ⊆ tidset(i) then
24: return true
25: end if
26: end for
27: return false
28: end procedure

3.3. FREQUENT CLOSED ITEMSET MINING WITH EXPEDITE 41

3.3.4 Case Example

In the following, a case example is described in detail to show the operations
performed by EXPEDITE and DCI-CLOSED. The toy dataset used for this exam-
ple is depicted in Figure 3.1d (crosses represent the binary relations between
items and transactions). The value of threshold is set to zero for both algo-
rithms.

EXPEDITE. Figure 3.1a depicts the operations performed by EXPEDITE. The
first row of the topmost rectangle is the initial prefix Pinit. Each of its clus-
ter 〈Ii, Ti〉 has the itemset Ii, which contains only the single i-th item, and
the transactions set Ti equals to tidset(Ii). In practice, each column of the
dataset is converted into a cluster. Below, always in the first rectangle, is
shown Pinit after the closure step: it contains five FCIs. Note that the clusters
〈{C}, {a, e, f }〉 and 〈{D}, {a, e, f }〉 share the same tidset and are thus merged
together, according to the control at Line 8. Further, the cluster 〈{F}, {b, g, h}〉

is expanded with the item E due to the closure operation made according
to Line 13. The tidsets of the remaining five clusters are then intersected to
generate new prefixes recursively (the arrows in the figure represent the in-
tersections computed by the algorithm). To provide all the details, the values
of maps C and S are computed, in order, and up to this step (some punc-
tuations and the inner state Σ of PARTIALINTERSECTION are omitted for higher
readability). The results are reported in Table 3.5.

Map entry Value

C [bcgh] ;

S [bcgh] ;

C [bgh] ;

S [bgh] {bcgh}

C [ae f] {〈F E, bgh〉, 〈E, bcgh〉}

S [ae f] ;

C [abd] {〈C D, ae f 〉, 〈F E, bgh〉, 〈E, bcgh〉}

S [abd] ;

C [abc] {〈B, abd〉, 〈C D, ae f 〉, 〈F E, bgh〉, 〈E, bcgh〉}

S [abc] ;

Table 3.5: Values of maps C and S after the first round.

The first new generated prefix is P〈{A},{a,b,c}〉 and it is shown in the rect-
angle number two (rectangles are enumerated to display the recursion path).
Since C [abc] has four elements and none of them is a duplicate, namely IS-
DUPLICATE is false, P〈{A},{a,b,c}〉 has four clusters obtained through intersections
of the tidset {a, b, c} with those of the clusters in Pinit. The prefix P〈{B},{a,b,d}〉,

42 CHAPTER 3. FREQUENT PATTERN DISCOVERY

instead, could have three clusters (C [abd] has three elements) but all the
intersections fail the check for duplicates. In fact, abd ∩ bcgh = b is a tidset
already generated by P〈{A},{a,b,c}〉, abd ∩ bgh is not computed since it is use-
less to intersect abd with a subset of bcgh (here the map S helps to avoid
computations) and abd ∩ ae f = a is also already generated by P〈{A},{a,b,c}〉.
Thus, P〈{B},{a,b,d}〉 = ;. Then, P〈{C D},{a,e, f }〉 is empty since it could have two
new clusters, but ae f ∩ bcgh= ; and so are the remaining two prefixes since
the corresponding entries of the map C are also empty. Hence, 〈{A}, {a, b, c}〉

is the only cluster in Pinit that generates not empty prefixes. The four obtained
new FCIs are shown at the bottom of the rectangle number two of the picture,
after the closure step. The computations of the maps C and S are reported in
Table 3.6 Finally, it can be verified that the FCIs in the rectangle number two

Map entry Value

C [bc] ;

S [bc] ;

C [ab] {〈AE, bc〉}

S [bc] ;

C [b] ;

S [b] {ab, bc}

C [a] {〈AF E, b〉, 〈AE, bc〉}

S [a] {ab}

Table 3.6: Values of maps C and S after the second round.

generate only empty prefixes and, consequently, the algorithm ends.
DCI-CLOSED. Figure 3.1b depicts the operations performed by DCI-CLOSED.

The first row contains the clusters in Pinit (the grey ones are FCIs), the sec-
ond represents those generated at the first level of the recursion. Similarly,
the third and the fourth lines represent those generated at the second and the
third level of the recursion. In detail, the algorithm starts to analyse the first el-
ement A of the initial prefix Pinit = {A, B, C , D, E, F} (we omit the inner state Σ
and some punctuations for more readability). It computes the closure of A ob-
taining the FCI 〈IΛ,Λ〉 = 〈A, abc〉. Then, a recursive call is made on the prefix
PΛ = Pabc = {B, C , D, E, F}. Again, the algorithm analyses B ∈ Pabc, computes
the FCI 〈IΛ,Λ〉= 〈AB, ab〉 and goes to the second level of recursion whose pre-
fix is Pab = {C , D, E, F}. In this level, DCI-CLOSED computes the intersection
ab ∩ t idset(C) = a and the closure of a finding the FCI 〈ABC D, a〉 and, then,
it goes to the next level of recursion whose prefix is Pa = {E, F}. However,
Pa does not generate new FCIs since a ∩ t idset(E) = a ∩ t idset(F) = ; and,
thus, the deeper recursive call ends going back of one level. In the figure, is

3.4. IMPROVING THE PERFORMANCES OF EXPEDITE 43

displayed the order of itemsets generation and all the performed intersections
(arrows represent intersections). In particular, comparing Figure 3.1b and Fig-
ure 3.1a, it is possible to notice that EXPEDITE requires less intersections than
DCI-CLOSED to complete the process of FCIs extraction.

3.4 Improving the Performances of EXPEDITE

In this section, two variants of EXPEDITE are proposed with the goal of further
improving both the time efficiency and the memory footprint. The first variant
uses hashcodes for checking the duplicate itemsets. When it is known that the
data to process contain many FCIs of large size, this variant highly reduces the
running time of EXPEDITE. In fact, the issue with sub-procedure ISDUPLICATE

described in Algorithm 3.1 is that is becomes very computational expensive
when the sizes of the FCIs increase; instead, just checking if the hashcode of
a FCI was already generated is way faster. However, when the FCIs within the
data are mostly of small sizes, duplicates are uncommon and to generate hash-
codes is a waste of computational resources. The second variant of EXPEDITE

here proposed adopts the diffset representation [112] to improve the memory
footprint. This representation performs well when there is high density of bi-
nary relations between items and transactions in the whole dataset The first
variant is described in Section 3.4.1 while the second in Section 3.4.2.

3.4.1 Using Hashcodes for Checking Duplicates

The sub-procedure ISDUPLICATE has a computational cost that, in the worst
case, is cubic in the size of the supports of FCIs. This means that the larger the
size of the FCIs within the data, the more the sub-procedure is inefficient. To
overcome this issue, it is possible to generate and store hashcodes of any found
FCI. This allows to check in constant time if a FCI has been already generated,
removing the dependence on the size of the FCIs in the computational cost of
the procedure.

The pseudo-code of the hash-based implementation of ISDUPLICATE is re-
ported in Algorithm 3.4. It differs from the original only by Line 2. As men-
tioned, the idea is to check if the hash of the tidset Λ has been already gen-
erated and stored into the map H ; if not, then Λ cannot be a duplicate and
the sub-procedure ends without scanning any tidset. The mapH , in turn, can
be implemented in two ways. The first one consists in mapping the known
hashcodes of the tidsets, namely H : h(T) 7→ {0, 1} where h is an arbitrarily
chosen hash function. Initially, all the values are set to zero and each time
that EXPEDITE generates a new tidset T , the hash code h(T) is computed and

44 CHAPTER 3. FREQUENT PATTERN DISCOVERY

A

abc

B

abd

D+C

aef

F+E

bgh

E

bcgh

ACD

a

2

AFE

b

3

ABCDE

5

BE

b

BCD

a

6

CDE

1

A

abc

B

abd

C

aef

D

aef

E

bcgh

F

bgh

C

aef

AB

ab

AE

bc

ACD+B

a

AFE+B

b

AB

ab

AE

bc

4

ABE

b

1 2 3 4 5 6

7 8 9 10

11 12

13 14 15

(a) EXPEDITE

AE

bc

AB

ab

ABCDE

2

4

ABCDF
5

141 19 22 23 25

ABD

a

6

ABE+F

b

7

ABC+D

a

3

ABF

b

8

AC

a

9

AD

a

10 11

AF

b

13

BC

a

BD

a

BE

b

BF

b

CDE CDF
15 16 17 18 20 21 24

A

abc

B

abd

C+D

aef

E

bcgh

AF

b

12

D

aef

EF

bgh

F

bgh

(b) DCI-CLOSE

Symbol Meaning

14

20

F+E

bgh

Generated cluster. Capital letters before the “+” sign (e.g.,
“F”) are items inherited from parent clusters; capital letters
after the “+” sign (e.g., “E”) are items added after closure
operation; small letters (e.g., “bgh”) are transactions; and,
the number (e.g., “5”) indicates the generation order.

14

20

F+E

bgh
Discarded cluster due to low support or duplication.

1

Indicates the pair of clusters which generate the new one

1 Prefix and generation order (EXPEDITE only).

() Legend

items

A B C D E F

a × × × ×

b × × × ×

 × ×

d ×

e × ×

tr
a
n
sa

ct
io

n
s

f × ×

g × ×

h × ×

(d) Dataset

Figure 3.1: Case example of EXPEDITE and DCI-CLOSED. Fig. 3.1a and Fig. 3.1b
illustrate the operation performed by the algorithms. Fig. 3.1c is the legend of
symbols and Fig. 3.1d is the dataset used.

3.4. IMPROVING THE PERFORMANCES OF EXPEDITE 45

H (h(T)) is set to one. The negative aspect of this method is that it is possi-
ble to lose some FCIs due to collisions of the hash function. Hence, requiring
Lines 5–10. Alternatively, it is possible to use hashtables to track also tidsets
with the same digest. Formally, using a map H : h(T) 7→ ℘(T). In this case,
Lines 5–10 would not be necessary.

It is important to choose a very fast hash function to improve the time-
efficiency of ISDUPLICATE. One possible option to do this is to compute digests
of tidsets [55], as described in the following. First, each transaction t i ∈ T

is assigned to a unique non negative integer identifier x i ∈ N. For instance,
to the transactions a, b, c, . . . of the example in Section 3.3.4 can be assigned
the numbers 1, 2, 3, Then, for each tidset T = {t1 . . . tn : t i ∈ T }, the
hash value is defined as hp(T) =

∑n

i=1 pn−i ∗ x i mod 232 where p is any fixed
prime and 32 represents the processor’s word length in bits. This is the hash
function adopted for our experiments later in Section 3.5. It is time efficient
and works well for the intended purposes; however, different functions could
be implemented as well.

Algorithm 3.4 Hash-based procedure ISDUPLICATE

1: procedure ISDIPLICATE(Λ,L)
2: if HASHCODE(Λ) 6∈ H then
3: return false
4: end if
5: for each 〈P , I , T 〉 ∈ L do
6: for each 〈I ′, T ′〉 ∈ (P ,≺) : 〈I ′, T ′〉 ≺ 〈I , T 〉, ascending do
7: if Λ ⊆ T ′ then
8: return true
9: end if

10: end for
11: return false
12: end for
13: end procedure

3.4.2 Diffset Representation

The diffset representation [112] of FCIs can drastically cut down the memory
footprint of FCIs miners by exploiting repetitions of transactions belonging to
itemsets of the same generation pattern. This representation is based on the
equivalence between storing a tidset and tracking, instead, differences in the
tidsets through its generation pattern.

46 CHAPTER 3. FREQUENT PATTERN DISCOVERY

To show in detail how this representation works, it is possible to consider
a cluster 〈I ′, T ′〉 of a given prefix P〈I ,T 〉. It shares common transactions with
the cluster 〈I , T 〉 since the tidset T ′ is obtained through the intersection of T

with another tidset. Thus, if storing T and the commons items between T and
T ′, namely T ∩ T ′, it is possible to recover T ′. In particular, only |T |+ |T ∩ T ′|

(instead of |T |+ |T ′|) memory cells are required to store the two tidsets. In
addition, the cluster 〈I ′, T ′〉, generates its own prefix P〈I ′,T ′〉 whose elements,
in turn, share transactions with the initial cluster 〈I , T 〉. Thus, all the clus-
ters that derive from a same prefix potentially share several transactions, and
the diffset representation allows to reduce memory resources by storing only
the elements in the intersections of their tidsets. The implementation into EX-
PEDITE can be obtained by replacing the sub-procedures PARTIALINTERSECTION

and COMPLETEINTERSECTION, respectively, with similar sub-procedure DIFFSET-
PARTIALINTERSECTION and DIFFESETCOMPLETEINTERSECTION that compute differ-
ent transactions between the two tidsets in input instead of the common ones.

3.5 Experimental Results

The goal of this section is to provide an empirical evidence that it is always
more advantageous to extract FCIs using EXPEDITE rather than DCI-CLOSED.
Both the algorithms are tested on the twelve datasets described in Table 3.7,
whereof eight of them derive from the FIMI repository1 [41] and the oth-
ers are access control systems datasets2 made available by the HP laboratory3

[38]. For each dataset, the table includes: the number of items, transactions
and binary relations; the density of the dataset, that is the ratio between ex-
isting binary relations, and the product of items and transactions; and, last,
the threshold value used for experiments (except those of Figure 3.2 where
threshold is used as a variable). Experiments are all performed using the C++
programming language on a PC with an Intel Core 2 Duo CPU 3GHz with 3GB
RAM.

Figure 3.2 depicts the running times of both EXPEDITE (the standard ver-
sion described in Algorithm 3.1) and DCI-CLOSED (Algorithm 3.3) to extract
all the FCIs from the datasets as a function of the threshold value. For both
algorithms, of course, the lower the threshold, the higher is the runtime. The
figure shows that, in every datasets, EXPEDITE outperforms DCI-CLOSED from
one to two orders of magnitude independently on the threshold. As discussed
in Section 3.3.3, the time improvement is mostly due to the reduced num-

1http://fimi.cs.helsinki.fi/data/
2Users are mapped into items and permissions are mapped into transactions.
3http://www.hpl.hp.com/personal/Robert_Schreiber/data/sacmat%20relations.zip

3.5. EXPERIMENTAL RESULTS 47

Table 3.7: Datasets used to evaluate the performance of EXPEDITE.
Dataset Threshold % Items Transactions Relations Density

FI
M

I

1. chess 30.000 50 3 196 110 593 0.69
2. connect 30.000 46 67 557 2 425 605 0.78
3. gaz 0.002 423 59 568 149 299 0.01
4. mushroom 0.000 119 8 124 186 852 0.19
5. pumsb 60.000 39 49 046 1 642 346 0.86
6. pumsb_star 20.000 86 49 046 1 827 509 0.43
7. T10I4D100K 0.004 844 100 000 1 009 645 0.01
8. T40I10D100K 0.080 783 100 000 3 896 458 0.05

H
P

9. americas_large 0.000 10 127 3 485 185 294 0.01
10. americas_small 0.000 1 587 3 477 105 205 0.02
11. apj 0.000 1 164 2 044 6 841 0.00
12. customer 0.000 277 10 021 45 427 0.01

ber of intersections computed by EXPEDITE. To support this latter statement,
in Figure 3.3 it is plotted an histogram that illustrates the number of the du-
plicate or infrequent itemsets generated by both algorithms. In each dataset,
EXPEDITE generates fewer unwanted itemsets, consequently reducing the op-
erations (intersections) and justifying the shortest runtime.

In Section 3.4 two variants of EXPEDITE were proposed to improve its per-
formance. In particular, Section 3.4.1 discussed the implementation of hash-
codes for checking duplicates. Figure 3.4a depicts the percentage variation of
the runtime with respect to the standard version: grey bars are associated to
the simple hashcodes method, while cross-hatched bars to the hashtables one.
Results are different for each dataset, varying from an improvement higher
than 80% to a worsening of 40% of total runtime of the standard implemen-
tation. Both the hash-based implementations, however, performs consistently
better when the data are “well-clustered”, namely when many itemsets within
the data have large support. The most relevant example of a cluster dataset
is Americas Large, as shown in a work [29] that provides a visual analysis of
this dataset and further confirmed by the minability index [27] that is a metric
for estimating how well the data are clustered. In particular, the minability
index could be computed to priorly estimate whether it is advantageous to use
hashmaps for checking duplicates. Finally, Section 3.4.2 introduced the diffset
representation with the goal of improving the memory footprint of EXPEDITE.
Figure 3.4b depicts the memory footprint of both DCI-CLOSED and EXPEDITE.
In average, DCI-CLOSED is slightly more efficient since the structure of cluster
used by EXPEDITE is a bit more complex than the one used by DCI-CLOSED.
The diffset implementation of EXPEDITE overcomes to this minor drawback. As
shown in Figure 3.4c, in ten cases out of twelve, the diffset representation
significantly improves the memory footprint of EXPEDITE. This improvement
is proportional to the density of the dataset. It is intuitive, indeed, that when
the density of the dataset is high the number of FIs comparable by inclusion

48 CHAPTER 3. FREQUENT PATTERN DISCOVERY

102

103

104

105

50 40 30 20

Expedite

DCI-Closed

Threshold %

m

s

e

(a) chess

103

104

105

50 40 30 20

Expedite

DCI-Closed

Threshold %

m

s

e

(b) connect

103

104

105

106

0,004 0,003 0,002 0,001

Expedite

DCI-Closed

Threshold %

m

s

e

() gaz

102

103

104

0.004 0.003 0.002 0.001

Expedite

DCI-Closed

Threshold %

m

s

e

(d) mushroom

103

104

105

80 70 60 50

Expedite

DCI-Closed

Threshold %

m

s

e

(e) pumsb

102

103

104

105

40 30 20 10

Expedite

DCI-Closed

Threshold %

m

s

e

(f) pumsb_star

103

104

105

106

0.006 0.005 0.004 0.003

Expedite

DCI-Closed

Threshold %

m

s

e

(g) T10I4D100K

103

104

105

106

0.10 0.09 0.08 0.07

Expedite

DCI-Closed

Threshold %

m

s

e

(h) T40I10D100K

103

104

105

0.12 0.09 0.06 0.03

Expedite

DCI-Closed

Threshold %

m

s

e

(i) americas_large

101

102

103

104

0.12 0.09 0.06 0.03

Expedite

DCI-Closed

Threshold %

m

s

e

(j) americas_small

101

102

103

0.20 0.15 0.10 0.05

Expedite

DCI-Closed

Threshold %

m

s

e

(k) apj

102

103

104

0.04 0.03 0.02 0.01

Expedite

DCI-Closed

Threshold %

m

s

e

(l) customer

Figure 3.2: Runtime comparison between EXPEDITE and DCI-CLOSED using dif-
ferent values of threshold.

3.6. FUTURE DIRECTIONS 49

100

101

102

103

104

105

106

107

108

109

chess

connect

gaz
m

ushroom

pum
sb

pum
sb_star

T10I4D100K

T40I10D100K

am
ericas_large

am
ericas_sm

all

apj
custom

er

C
lu

s
te

rs

5
M

4
6
0
k

4
2
2
k

2
3
8
k

1
M

1
2
2
k

5
4
k

4
7
7
k

3
5
k

2
k

2
1
8

4
7
k

1
6
4
k

1
2
k

6
0
2
k

2
6
k 5
1
k

6
k

1
M

8
1
9
k

3
7
1
k

1
8
k

1
2
5
k

6
3
k

2
4
9
k

1
5
k

4
M

8
5
6
k

8
7
k

2
0
2
k

4
M

2
0
M

1
6
M

5
4
2
k

2
3
8
k

3
4
6
k

1
5
5

2
5
4
k

2
5
k

3
k

3
k

6
4
1

9
0
k

8
k

1
k

3
1
k

1
2
k

1
M

2
2
8
k

7
5
k

3
8
k

1
k

4
M

7
1
k

2
k

8
2
k

Frequent items

Initial

Generated

Expedite infrequent

DCI-Closed infrequent

Expedite dupliates

DCI-Closed dupliates

Figure 3.3: Generated clusters by EXPEDITE and DCI-CLOSED. For each dataset
and from left to right, the figure depicts: FCIs generated (equal number for
both algorithms), generated infrequent itemsets by EXPEDITE, generated infre-
quent itemsets by DCI-CLOSED, duplicate FCIs by EXPEDITE and duplicate FCIs
by DCI-CLOSED.

increases and, thus, the diffset representation becomes advantageous.

3.6 Future Directions

This chapter presented EXPEDITE, a new algorithm for mining frequent closed
itemsets. It significantly reduces computation time by avoiding to mine in-
frequent and duplicate itemsets at intermediate steps of the algorithm. This
improvement can be used to speed up computations and to reduce compu-
tational requirements in several applications ranging from market analysis,
fraud detection, and customer retention, to production control and science
exploration. To further boost algorithm performance, also two variations were
proposed and analysed. The first one uses hash codes to check duplicate item-
sets. In specific circumstances, this technique can reduce the running time of
the algorithm by a huge. The second variation uses the diffset representation
of frequent closed itemsets to reduce the memory footprint. All the findings,
other than being corroborated by sound theory, were supported by extensive
experiments on the standard datasets used by FIMI workshops.

Compared with DCI-CLOSED, one of the best algorithms presented at FIMI

50 CHAPTER 3. FREQUENT PATTERN DISCOVERY

-40%

-20%

0%

20%

40%

60%

80%

100%

chess

connect

gaz
m

ushroom

pum
sb

pum
sb_star

T10I4D100K

T40I10D100K

am
ericas_large

am
ericas_sm

all

apj
custom

er

V

a

r

i

a

t

i

o

n

Hashodes

Hashtables

Di�set

Normal

(a) Percentage varation of Expedite runtime
when implementing hashcodes and hashta-
bles for checking duplicates.

100

101

102

103

104

105

106

chess

connect

gaz
m

ushroom

pum
sb

pum
sb_star

T10I4D100K

T40I10D100K

am
ericas_large

am
ericas_sm

all

apj
custom

er

M
e
m

o
ry

 (
K

B
)

Expedite
 DCI-CLOSED

Variation

Hashodes

Hashtables

Di�set

Normal

(b) Comparison of the memory resources re-
quired by EXPEDITE and DCI-CLOSED.

102

103

104

105

106

107

108

109

1010

1011

chess

connect

gaz
m

ushroom

pum
sb

pum
sb_star

T10I4D100K

T40I10D100K

am
ericas_large

am
ericas_sm

all

apj
custom

er

T
ra

n
s
a
c
ti
o
n
s

Variation

Hashodes

Hashtables

Di�set

Normal

() Comparison of the memory resources re-
quired by the basic implementation and the
diffset implementation of EXPEDITE.

Figure 3.4: Figure 3.4a shows the percentage variation of EXPEDITE’s runtime
with respect to that of Figure 3.2 after the introduction of hashcodes and
hashtables for checking duplicates; Figure 3.4b shows the memory required in
kilobytes for running EXPEDITE and DCI-CLOSED; Figure 3.4c shows the num-
ber of transactions required to store all the FCIs found by EXPEDITE with and
without the implementation of diffsets.

3.6. FUTURE DIRECTIONS 51

workshops, the basic version of EXPEDITE is up to hundred times faster. Despite
algorithms presented at FIMI workshop still are the references for efficiency
of mining, recently FCP-MINER [57] has been proposed. Similar to us, the au-
thors of FCP-MINER have chosen DCI-CLOSED for comparing and evaluating the
performances of their approach finding that also their algorithm is orders of
magnitude faster than DCI-CLOSED. However, it was proved theoretically and
experimentally that EXPEDITE is strictly more time efficient than DCI-CLOSED;
instead, FCP-MINER can be up to ten times slower than DCI-CLOSED according
to empirical results provided by [57]. Thus, a clear advantage of adopting
EXPEDITE over FCP-MINER lies in the consistency of results achieved by our
algorithm that always guarantees an improvement over DCI-CLOSED.

As for future directions, it is possible to develop new implementations of
EXPEDITE to address current big data challenges. Since other similar algorithm
have been already ported to multi-core processors [73] and to the MapReduce
platform [69], parallel and distributed implementations of EXPEDITE are main
future research lines. However, also adapting EXPEDITE to compute only the
k most representative frequent itemsets is a promising approach. Indeed, this
similar mining task consumes less resources [36] and in some practical appli-
cations, for instance in recommendation systems, velocity is a better quality
than precision for a mining algorithm.

52 CHAPTER 3. FREQUENT PATTERN DISCOVERY

CHAPTER 4

Secure and Light-Weighted Data Transmission

The advent of the Internet of Things (IoT) [10] is leading to a scenario where a
multitude of objects, with constrained computational capabilities, are equipped
with identification systems, such as RFID tags [98]. In this context, only light-

weighted protocols are practical for applications, that is to say only those pro-
tocols that do not rely on the computational capabilities of the devices where
they are running. Light-weighted protocols also have the advantageous of
minimizing time delay and energy consumption of devices, and they can be
potentially designed for secure data transmission purposes, allowing to protect
data carried by tagged objects, denying unauthorized and potentially harmful
readings.

In a typical secure communication system, messages undergo two different
encodings: an error-correcting code is applied at the physical layer to ensure
correct reception by the addressee (i.e. integrity), while at an upper protocol
layer cryptography is leveraged to enforce secrecy with respect to eavesdrop-
pers (i.e. confidentiality). However, over the past decades, the research effort
focused on developing techniques for implementing at the physical layer also
the encoding used to enforce secrecy, rather than using cryptography in the
higher layers. This shift makes theoretically possible to obtain light-weighted
protocols for secure data transmission, which is the main objective of physical

layer security.
All constructive solutions proposed so far, to concurrently achieve both in-

tegrity and confidentiality at the physical layer in a given channel model, aim
— with different degrees of success — at meeting the secrecy capacity, namely
at maximizing the rate of the code while guaranteeing an asymptotically small
information leakage. The main goal of this chapter is to propose CRYPTOLESS,
a viable encoding scheme that, for the first time, guarantees both perfect se-

crecy (i.e., no information leakage) and reliable communication over a channel
model where the eavesdropper can only leak a limited portion of the transmit-

53

54 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

ted message, precisely over the generalized Ozarow-Wyner’s wire-tap channel.
The provided solution, other than being supported by thorough analysis, is
practicable to secure communication systems where the involved devices are
resource constrained.

Roadmap of the Chapter. Section 4.1 better introduces physical layer se-
curity and provides a description of the channel model. Section 4.2 reviews
the state-of-the-art and Section 4.3 provides theoretical results concerning the
security of linear codes. Section 4.4 describes the innovative solution CRYPTO-
LESS that combines secret sharing and linear error-correcting codes for obtain-
ing the desired combination of reliable and perfectly secret communication.
Finally, Section 4.5 concludes the chapter discussing possible future directions.

4.1 Physical Layer Security

This section is divided as follows. Section 4.1.1 provides a brief introduction to
physical layer security underlying its main objectives and, then, Section 4.1.2
formally describes the communication channel model introducing the neces-
sary notation for the reminder of this chapter.

4.1.1 Introduction to Physical Layer Security

Secure communication requires two equally important conditions being con-
currently satisfied: integrity, i.e correct reception of the message by the in-
tended recipient; and, confidentiality, i.e. only authorized users should be able
to access the content of the message. The integrity of the message received
by the addressee may be voluntarily endangered by an adversary, through
jamming for instance, or disturbed by natural phenomena such as noise, dis-
tortion, and fading. Even if the adversary is not able (or not intending) to
modify the message, she can easily eavesdrop on the transmissions whenever
the communication channel is insecure, as often happens in wireless commu-
nications. Regardless of the origin of the noise, reliable communication over
noisy channels is made possible by adding redundancy to the data transmitted
through Error-Correcting Codes (ECC), whereas cryptography is the standard
mean to enforce data confidentiality and integrity under active attacks [52].

In many circumstances, the adversary can access or modify only a limited
amount of information with respect to the intended recipient. To describe a
similar scenario, Wyner introduced a model for physical layer security, called
wire-tap channel [109], in which the message travels over two different chan-
nels: the main channel, accessible to the addressee, and the eavesdropped

4.1. PHYSICAL LAYER SECURITY 55

channel, suffering from superior noise. The model was later simplified by
Ozarow and Wyner with the introduction of the wire-tap channel II [74], also
known as Ozarow-Wyner’s wire-tap channel. Here, the main channel is noise-
less and the concept of eavesdropped channel is substituted by the assumption
that the adversary can choose any subset of l ≤ n noiseless digits, where n is
the message length. The Generalized Ozarow-Wyner’s wire-tap (GOW) chan-
nel [71] combines the wide applicability of the original wire-tap channel with
the precisely defined eavesdropper of the wire-tap II, assuming that the main
channel is noisy, and that the adversary can eavesdrop on a subset of l code-
word digits at her choice.

For traditional channels, Shannon [85, 86, 87] proved that through ECCs it
is possible to reliably communicate at rates arbitrarily close to the capacity of
the channel, provided that codewords are sufficiently long. Similarly, Wyner
proved that it is possible to reliably and securely communicate — i.e. achiev-
ing perfect secrecy — over the wire-tap channel at rates arbitrarily close to
what he called the secrecy capacity of the channel. Wyner did not propose any
practical construction for a perfectly secret and reliable code, but recent work
showed how the secrecy capacity of the channel can be actually achieved with
advanced coding schemes [37, 25]. Unfortunately, all similar results consider
the asymptotic behaviour of the code and, thus, perfect secrecy is only guar-
anteed when the message becomes “infinitely long”. Traditional ECCs that
achieve some level of secrecy exist [15], and secret sharing [84] or similar
techniques can provide perfect secrecy over the wire-tap channel II, but none
of them alone can provide both security requirements over the GOW channel.

While trying to maximize the rate of secure communications is extremely
fascinating, it is likewise important to understand whether current protocols,
that do not require cryptography or unrealistically long codewords, can con-
currently guarantee perfect secrecy and resilience to transmission errors, and
what is the related overhead. Later in this chapter, it is shown how to combine
ECCs and secret sharing to achieve perfect secrecy while enforcing arbitrary
error correction capabilities in the GOW wire-tap channel model.

4.1.2 The Communication Channel Model

A description of both the wire-tap channel and the generalized wire-tap chan-
nel is provided in the following. Hereinafter, Fq will denote the finite field of
order q, where q = pv is a prime power.

Wire-Tap Channel. The wire-tap channel model, depicted in Figure 4.1, de-
scribes a scenario where two parties, Alice and Bob, want to communicate

56 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

Figure 4.1: A graphical representation of the wire-tap channel.

over a noisy channel, but an adversary Eve tries to eavesdrop the communica-
tions. Since the channel between Alice and Bob, referred to as main channel,
is noisy, Alice uses an encoder E to obtain from the original message m ∈ Fk

q
a

codeword c ∈ Fn
q
. Bob receives a noisy version cB of c and uses a decoder DB to

remove the noise and obtain a message mB. The communication is successful
if mB = m. To model Eve having limited eavesdropping capacity, in Wyner’s
model she is assumed to have physical access to a channel than noisier than
that of Bob, called eavesdropped channel, over which the same codeword c is
sent. Eve receives a different noisy version cE of c, and tries to decode it with
her own decoder DE, obtaining a message mE.

Generalized Ozarow-Wyner’s Channel. The wire-tap channel is a generic
model, whose performance is considerably dependent on the type of noise ex-
perienced by the recipient Bob and the adversary Eve. To simplify the analysis,
the Ozarow-Wyner’s model (OW) was proposed as a special case of the wire-
tap, where the main channel is noiseless, and Eve is capable to gain access to
a subset of l ≤ n noiseless digits of c of her choice, where n is the codeword
length. A middle ground between such two configurations is the Generalized
Ozarow-Wyner’s (GOW) model, in which the main channel is noisy, but the
eavesdropped channel is modelled as in the OW. From a security standpoint,
without specific assumptions on the type of noise affecting the main channel,
and by letting l vary from 0 to n, the GOW model covers all possible scenarios,
from the best to the worst case. Assuming that Eve is able to extract l noise-
less digits allows to neglect both the noise affecting the adversary and the
unknown quantity of information she intercepts, while only focusing on what
is ultimately relevant. Besides, application settings where a similar eavesdrop-
per is realistic do exist: if the codewords are split into several sub-codewords,

4.2. STATE-OF-THE-ART 57

each one transmitted over a different (noiseless) physical layer, the assump-
tion that the adversary cannot earn more than l digits can be replaced with
the assumption that the adversary cannot eavesdrop from more than l phys-
ical links. Other common settings could be find in wireless communications,
whereas the signal degrades with the distance and the assumption that the
adversary eavesdrop l noiseless digits can be used as a bound to evaluate the
communication security in worst case scenarios.

4.2 State-of-the-Art

Whenever communication occurs over an insecure channel, it is fundamental
to concurrently ensure integrity and confidentiality of the transmitted data.
In particular, the recent rise of wireless transmissions drew the attention to
physical layer security as a promising paradigm to protect communications
against eavesdropping attacks by exploiting the physical characteristics of the
channel [115]. The fundamentals for physical layer security [15] were laid
in the early seventies with the introduction and elaboration of Wyner’s wire-
tap channel [109]. Since then, several extensions of Wyner’s channel model
have been considered: for instance, the Broadcast Channel with Confidential
messages (BCC) [33] in which, similarly to the wire-tap channel, a message in-
tended for one of the receivers is confidential; the Gaussian channel [61], that
is the Wyner’s wire-tap channel when Additive White Gaussian Noise (AWGN)
is assumed as model for data transmission errors; and, channels that impose a
combinatorial constrain, rather than probabilistic, to the adversary [74, 25].

To discuss the security of the wire-tap channel, Wyner introduced the no-
tions of reliability condition and security condition [109]. The reliability con-
dition is verified if limk→+∞ Pr[m′ 6= m] = 0, namely if the error probability
approaches 0 as the size of the message grows. The security condition, in-
stead, is verified if limk→+∞ I(m, y)k−1 = 0, namely if the normalized mutual
information between the eavesdropped data and the message is 0. Based on
such two requirements, Wyner also introduced the concept of secrecy capac-

ity of the channel, that is the maximum rate at which information can be
transmitted over the channel with the reliability and security conditions hold-
ing. Wyner proved that, when the channel of the receiver is subject to less
noise than the channel of the wire-tapping opponent, the secrecy capacity is
positive and, thus, it is possible to communicate over that channel without
violating none of the two conditions. Several papers [68, 67] (even very re-
cently [51, 16, 13, 81, 50]) followed Wyner’s work, focusing on the concept of
secrecy capacity and the security properties of error-control coding techniques.

The work of Wyner had two main limitations. On the one hand, its security

58 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

condition was too weak, as highlighted by Maurer [68], who suggested to re-
place Wyner’s security condition with the requirement that the mutual entropy
approaches to zero as the size of the message grows; that is: limk→+∞ I(m, y) =

0. However, even this definition responds to an idea of asymptotic security,
while perfect secrecy actually means to leak no information at all. On the other
hand, Wyner did not provide any constructive indication for designing codes
approaching the secrecy capacity. Several researchers tried to fill in this gap,
but the best results were obtained under precise assumptions on the channel
model (e.g., Binary Erasure Channel [92], Binary Symmetric Channel [66],
combinatorial constrained model [25], Gaussian wire-tap channel [58, 64],
compound wire-tap channel [20], broadcast channel with confidential mes-
sages [45]). In general, what emerges is that LDPC codes [92, 58, 20] and
Polar Codes [66, 45, 64] seem the most promising solutions.

Wrapping up, past research concerning the wire-tap channel mostly fo-
cused on understanding how it is possible to communicate at rates approach-
ing the secrecy capacity of the channel by trying to guarantee (to some extent)
asymptotic secrecy. Conversely, this chapter aims at providing a constructive
solution, that is CRYPTOLESS, for obtaining perfect secrecy with practical en-
coding and decoding algorithms. This goal is achieved by applying secret
sharing to any generic error-correcting encoder. The joint use of ECCs and
some sort of secret sharing is not new in the literature. Solutions based on
Rivest’s All-Or-Nothing Transform (AONT) [82], a primitive assimilable to (i, j)

secret sharing1, have been suggested [37, 25], but AONTs frequently make
use of symmetric ciphers and do not offer resilience to data loss. Reliability
to transmission errors could in principle be obtained combining AONTs with
error-correction codes, as successfully proposed for data security in dispersed
storage systems [80]. However, analogous solutions for the wire-tap channel
have never been investigated and they would rely on a cryptographic construc-
tion.

4.3 Security of Linear Codes

This section provides fundamental results helpful to determine the level of se-
curity achieved by linear ECCs when adopted as encoders in the generalized
Ozarow-Wyner’s model. To this end, Section 4.3.1 reminds the definition of
linear ECCs and introduces the notion of uncertainty rate, a measure to cap-
ture in which extent a code leaks information; then, Section 4.3.2 provides

1A more typical notation is (k, n) secret sharing. However, k and n are reserved for denot-
ing dimension and length of a code, respectively.

4.3. SECURITY OF LINEAR CODES 59

two practical formulas binding the uncertainty rate of the code to its parame-
ters and to the code rate, respectively; and, finally, these results are discussed
in Section 4.3.3, and compared with the state-of-the-art in Section 4.3.4.

4.3.1 Linear ECCs and Uncertainty Rate

In the following, the definition of linear ECCs is reviewed.

Definition 4.1 (Linear Error-Correcting Code). A linear Error-Correcting Code
(ECC) is a map E from a set of messages M = Fk

q
into a set of codewords C ⊂ Fn

q
,

such that, for each m ∈ M, the digits of c = E(m) ∈ C are obtained as n linear

combinations of the digits of m. The set C is a linear subspace of Fn
q

of dimension

k, and it uniquely determines the code. The code is usually defined by either

means of its n × k matrix G, called generating matrix of the code, such that

c = G · m, or by its (n − k) × n parity-check matrix H, such that H · c = 0
if and only if c ∈ C. Each codeword of length n conveys k information digits

and the ratio r = k/n is called code rate.The parameters k and n are called the

dimension and the length of the code, respectively.

As better discussed in Section 4.2, Wyner [109] proposed a definition of
security for the wire-tap channel based on two desiderata, that he defined re-
liability and security conditions. Based on such requirements, he introduced
the notion of secrecy capacity of a channel that, intuitively, corresponds to
the maximum rate at which information can be securely transmitted over that
channel. However, this security measures relies on the intrinsic and asymptotic
properties of the channel without considering the code used for data transmis-
sion. Instead, a different approach consists in measuring the amount of leaked
information by as a function of both the specific threat model (i.e. the com-
munication channel) and coding scheme adopted (not necessarily ECCs). This
approach led to define the equivocation rate [62] as a secrecy metric that has
been recently validated [102, 12]. The main idea was to use the entropy of the
code as security metric. In the following, a new secrecy measure is introduced:
the uncertainty rate, which can be seen as the application of the equivocation
rate to the ECCs codes. The result is that a very practical secrecy metric that
directly uses the parameters of an ECC to quantify the information leakage.
This measure is introduced in the following.

The assumption is that Alice and Bob are communicating over a generic
wire-tap channel using a linear ECC of dimension k and length n, and that the
adversary Eve eavesdrops the transmission of a codeword c, obtaining a noisy
version cE of c.

60 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

Definition 4.2 (Dimension of Uncertainty). Based on cE and leveraging on the

linear equations binding the digits of c, Eve is capable of reducing the space

where c varies to a set of qs equally likely codewords. The parameter s ≤ k,

which depends on both the system and the threat model, is called the dimension
of uncertainty of the adversary.

Note that, since the total number of admitted codewords is qk, the ratio
between the two dimensions ε = s/k ∈ [0, 1] is a normalized measure of the
adversary uncertainty. Thus, the uncertainty rate can be defined as follows.

Definition 4.3 (Uncertainty Rate). Let s ≤ k be the dimension of uncertainty of

the adversary, and let ε = s/k ∈ [0, 1]. The parameter ε is called uncertainty
rate of the adversary.

To be equally uncertain among qs codewords means to be equally2 uncer-
tain among qs possible alternatives for the original message m, since messages
and codewords are in one-to-one correspondence. If the dimension of uncer-
tainty is s, it is possible therefore to assume that the adversary recovered

k− s = ⌈(1− ε)k⌉ (4.1)

digits of the original message m.
The dimension of uncertainty s coincides with the Shannon’s entropy of

the codeword c, conditioned to the intercepted word cE. In fact, if knowing cE

allows Eve to infer that the codeword c is uniformly distributed in a set of size
qs, then

H (c|cE) = −

qs
∑

i=1

1

qs
logq

�

1

qs

�

= s

whereH denotes the entropy function3.
The uncertainty rate is a normalized metric that depends on the dimension

k of the code, and the higher it is, the lesser is the information leakage of the
code. Ideally, the objective would be to determine a code with uncertainty rate
ε= 1 since this would guarantee zero leakage. Unfortunately (yet intuitively),
Section 4.3.2 proves that no code achieves ε = 1 under the GOW model with
positive parameter l > 0.

2The two statements are equivalent from a computational security standpoint.
3The uncertainty rate coincides with the equivocation rate of the message in the traditional

Wyner’s model (except for base q logarithm, as digits are in the set Fq), but it becomes a more
direct measure of the level of uncertainty of the adversary when focusing on the GOW channel.

4.3. SECURITY OF LINEAR CODES 61

4.3.2 Measuring Security Through the Uncertainty Rate

In the GOW model, the adversary Eve eavesdrops l noiseless digits of her
choice from the transmitted codeword c. The working assumption is that the
specifications of the code used are known to Eve and, thus, she knows the
linear parity-check equations that bind the digits of c. Based on the l digits
available to her and on such equations, Eve can infer information on the orig-
inal message m. Relying on the definition of uncertainty rate, Theorem 4.1
and Corollary 4.1 establish to which extent this happens. These two results
and represent the main contribution of this section and, to enhance readabil-
ity, their proofs are shown after their statement.

Theorem 4.1. Assume that a linear ECC code of dimension k and length n is

used as an encoder in the GOW wire-tap channel model, in which the adversary

has access to l noiseless digits of the transmitted codeword c. The dimension of

uncertainty of the code is 0, and so is the uncertainty rate, if and only if l ≥ k.

For all l < k, the dimension of uncertainty of the code is s = k − l, and the

uncertainty rate is ε= s

k
= 1− l

k
. In particular, ε= 1 if and only if l = 0. Hence,

a linear code alone cannot guarantee perfect secrecy for any l > 0.

Observe that Theorem 4.1 could be equivalently stated in terms of the rank
of the parity check matrix H of the code, recalling that such rank is n−k. This
may turn especially useful since some powerful families of linear codes (e.g.,
LDPC codes), are usually described and generated by means of the matrix H.

While Theorem 4.1 binds the uncertainty rate of the code to its param-
eters and to the number l of intercepted digits, the following Corollary 4.1
expresses the same results in terms of rates of information transmitted, and
eavesdropped.

Corollary 4.1. Assume that a linear ECC code of dimension k and length n is

used as an encoder in the GOW wire-tap channel model, in which the adversary

has access to l noiseless digits of the transmitted codeword c. Let ρ = k

n
denote

the code rate, and let λ = l

n
denote the eavesdropping rate of the adversary.

The uncertainty rate of the code is 0 if and only if ρ ≤ λ. For all ρ > λ, the

uncertainty rate is ε= 1− λ

ρ
. In particular, ε= 1 if and only if λ = 0.

When the code length n grows, the number l of digits accessible to the ad-
versary can be reasonably expected to grow proportionally, exactly as the code
dimension k. The eavesdropping rate λ is exactly the proportionality constant
between l and n, similarly to the code rate ρ for k and n. Corollary 4.1 shows
how ε depends on ρ and λ, capturing the idea that the uncertainty rate does
not really depend on the code dimension and length, but rather on the rates

62 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

to which information is transmitted and eavesdropped. The corollary shows
that there exists a critical value for the code rate under which the code be-
comes completely unreliable for security purposes under the GOW channel
model, and that such a critical value is exactly the eavesdropping rate of the
adversary.

Proof of Theorem 4.1 and Corollary 4.1. This paragraph focuses on pro-
viding the proof of the above statements and no additional results are here
presented. Since this part is laborious and requires few technical definitions
and preliminary results we make clear that, on a first reading, the reminder of
this section could be skipped without losing the thread.

Definition 4.4 (Row-Column Permutation). A row-column permutation of a

t×u matrix H is a map σ :Mt×u −→Mt×u defined by (hi j) 7→ (hσt (i)σu(j)
) where

σt and σu are permutations of the sets {1, . . . , t} and {1, . . . , u}, respectively.

A row-column permutation σ of a parity-check matrix H defines a new
matrix H̃ = σ(H) that shares the same size of H and whose codewords are a
permutation of those defined by H. In fact, σ(H)σu(c)

T = 0 is satisfied if and
only if HcT = 0 (note that, since c is a vector of dimension u, it can be though
as a matrix 1× u and, thus, σ(c) permutes its elements accordingly to σu(c)).

Lemma 4.1. Let H be the (n− k)× n parity-check matrix of a linear code used

as an encoder in the OW wire-tap channel model, and let c be the transmitted

codeword. The adversary can recover the whole codeword c if and only if there is

a row-column permutation σ : H 7→ σ(H) = H̃ such that H̃ = [H̃1 H̃2] is a two

blocks matrix where H̃1 is an (n− k)× l sub-matrix, and H̃2 an (n− k)× (n− l)

sub-matrix having rk(H̃2) = n− l. Further, the dimension of uncertainty of the

LDPC is

s =min
σ
{n− l − rk(H̃2)}. (4.2)

Proof. (⇐=) Let us assume that there is a row-column permutation σ : H 7→

σ(H) = H̃ = [H̃1 H̃2] such that H̃1 is an (n − k) × l sub-matrix and H̃2 is
an (n− k)× (n− l) sub-matrix with rk(H̃2) = n− l. We want to show that
the adversary can recover any codeword c transmitted over the channel. Let
us denote with c̃ = σn(c) the application of this permutation to a generic
codeword c, namely c̃ = [cσn(1)

. . . cσn(l)
cσn(l+1) . . . cσn(n)

]. To easy notation,
we write c̃ = [x̃ ỹ] where x̃ represents the first l elements of c̃ and ỹ the
remaining n− l. Accordingly to the OW model, the adversary can choose to
eavesdrop the l bits composing x̃ . Noticing that H̃ c̃T = 0 is equivalent to

H̃1 x̃ T = H̃2 ỹ T (4.3)

4.3. SECURITY OF LINEAR CODES 63

and that H̃1 x̃ T is a vector known to the adversary, she can retrieve the missing
n − l components of ỹ by solving the system defined in Eq. (4.3). In fact,
it is made of rk(H̃2) = n− l independent linear equations and it has, thus, a
single solution. Finally, she can retrieve the original codeword c by applying
the inverse of the row column permutation, namely c = σ−1

n
.

(=⇒) If the adversary can retrieve a codeword c by exploiting the linear
equations defined by HcT = 0 and using only l bits, then it means that she has
at least n− l independent linear equations to work with; namely, rk(H)≥ n− l.
Then, a row-column permutation σ(H) = H̃ = [H̃1 H̃2] with rk(H̃2) = n− l

must exists because rk(H) ≥ n − l implies that H has a sub-matrix M with
rank n− l (the elements of M can be arbitrarily moved to match H̃2 using an
appropriate permutation σ).

The goal is to show that the dimension of uncertainty is s = minσ{n −
l − rk(H̃2)}. As already noticed, the recovering of a codeword is bind to the
solution of the Eq.(4.3). Hence, the adversary must recover n− l bits using
rk(H̃2) independent linear equations. Taking the minimum of this value among
all the possible row-column permutations σ, the wanted equation is obtained.

The following statement is equivalent to Lemma 4.1 but easier to apply.

Theorem 4.2. Let H be the (n− k)×n parity-check matrix of a linear code used

as an encoder in the OW wire-tap channel model and let c be the transmitted

codeword. The adversary can recover the whole codeword c if and only if rk(H)≥
n− l. If the adversary cannot recover the whole codeword, then the dimension of

uncertainty is n− l − rk(H).

Proof. (⇐⇒) Due to Lemma 4.1, it is only necessary to prove that there is
a row-column permutation σ : H 7→ σ(H) = H̃ = [H̃1 H̃2] such that H̃1 is
an (n− k)× l sub-matrix and that H̃2 is an (n− k)× (n− l) sub-matrix with
rk(H̃2) = n − l if and only if rk(H) ≥ n − l. The condition rk(H) ≥ n − l

is equivalent to say that H has a (n − k) × (n − l) sub-matrix M with rank
rk(M) = n− l obtained by removing l columns from H. Thus, the corollary is
proved by picking σ as the rows column permutation that moves the elements
of M to the sub-matrix H̃2.

Theorem 4.2 directly proves Theorem 4.1 reminding that, for each linear
code, the rank of the parity-check matrix H is n− k. Instead, Corollary 4.1
immediately follows reminding that the code rate is defined as ρ = k

n
.

64 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

4.3.3 Discussion

The uncertainty rate is remarkably suitable to measure the level of security
guaranteed by a linear code under the GOW model. Corollary 4.1 is partic-
ularly interesting, relating the uncertainty rate with the code rate ρ and the
eavesdropping rate λ. The code rate, that is, the ratio between the dimen-
sion k of the code and its length n, measures how much information a code
conveys. The eavesdropping rate, that is, the ratio of code digits available to
the adversary, measures the amount of information leaked. The smaller is the
code rate, the larger is the redundancy introduced by the code, improving the
error correcting capabilities of the code, but concurrently facilitating the at-
tack. Secure communications when ρ ≤ λ are impossible, and, in general, the
security depends of the ratio λ

ρ
.

A graphical representation is provided in Figure 4.2 and Figure 4.3 that
show achievable values of uncertainty rate for linear codes with fixed code
length, by varying the rank of the parity-check matrix and the eavesdropping
ability of the adversary. In particular, Figure 4.2 shows achievable uncertainty
rates ε ∈ [0, 1] for a linear code with n = 20 as a function of both the rank of
the parity-check matrix rk(H) and the number l of digits eavesdropped by the
adversary. The larger is l, the lower must be the rank of the parity-check matrix
to ensure a positive value of uncertainty. The special cases l = 5, 10, 15 are
further depicted in Figure 4.3; for instance, the maximum value of uncertainty
rate achievable when the adversary gets l = 10 = n/2 digits of the codeword
is ε= 0.5.

4.3.4 Comparison with Similar Results in the Literature

Ozarow and Wyner [74] supported their OW model describing its mathemat-
ical properties. To achieve their main results they did not make any particular
assumption on the encoder of the wire-tap channel. Thus, they have found
general properties applicable to any kind of encoder proving non-constructive
existence theorems to show that encoders with given security parameters must
exist. In a similar way, the recent work of Cheng et al. [24] provides theo-
retical results for characterizing the achievable values of code rate in the OW
model. Instead, this work focused on linear codes to obtain more specific and
practical results concerning the secrecy of the less restrictive GOW model. In
particular, Theorem 4.1 and Corollary 4.1 provide precise formulae to com-
pute the uncertainty rate of the adversary, which allowed to exactly compute
— and plot in Figure 4.2 — the uncertainty rates achievable by a linear code
of a fixed length. In their work, Ozarow and Wyner also found interesting
properties related to the uncertainty achieved by linear codes that have been

4.3. SECURITY OF LINEAR CODES 65

Figure 4.2: Values for the uncertainty rate ε = s/k ∈ [0, 1] achievable by an
ECC code with length n= 20. The colour matches with the value of ε (darker
is lower) that is depicted as a function of both the rank of the parity-check
matrix rk(H) and the number of digits eavesdropped by the adversary l.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

s/
k

rg(H)

l=5
l=10
l=15

Figure 4.3: Values for the uncertainty ε = s/k ∈ [0, 1] achievable by an ECC
code with length n = 20 for different values of l = 5, 10, 15 and for different
ranks of the parity-check matrix.

66 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

further refined by Wei [101]. However, linear codes were not explicitly con-
sidered and there is not any result similar to the uncertainty rate formula here
provided. Applications of some families of linear codes (e.g., LDPC codes) to
the wire-tap channel model have been considered [93, 51] but their applica-
tion on the GOW model was not previously investigated.

4.4 Secure Communication with CRYPTOLESS

Section 4.3 shows that ECCs cannot offer perfect secrecy, and that the er-
ror correcting capability of a code is proportional to the information leakage
it causes. A possible approach to obtain perfect secrecy while allowing re-
liable communications is given by the adoption secret sharing techniques, as
described in this Section. Precisely, Section 4.4.1 reviews how secret sharing
works; then, Section 4.4.2 shows how to combine ECCs codes with secret shar-
ing to obtain a reliable and secure encoder, that is CRYPTOLESS; and, finally,
Section 4.4.3 discusses a toy example where a (j, j) secret sharing scheme is
combined with a (l + 1) repetition code (a special case of linear ECC).

4.4.1 Secret Sharing

Assuming that a user u knows a secret S, a (i, j)-threshold secret sharing

scheme allows u to choose two positive integers j and i ≤ j and to generate j

pieces of information, such that any i out of them are necessary and sufficient
to recover S. The parameter i is the threshold that determines the amount of
information needed to reconstruct S and, thus, perfect secrecy is guaranteed
provided that no more than i − 1 shares are leaked; further, correct recep-
tion is ensured when no more than j − i shares are lost during transmission.
Sharing schemes were formally introduced independently by Shamir [84] and
Blakley [14]. The two schemes are de facto equivalent, but Shamir’s defini-
tion, based on polynomial interpolation, is the most renowned. It relies on
polynomial interpolation, leveraging on the fact that any point of the curve
defined by a polynomial of degree i − 1 determines a linear equation satis-
fied by the i coefficients of the polynomial. Formally, if S ∈ Fq, a random
polynomial f (x) ∈ Fq[x] with free term S is chosen, and j pieces of informa-
tion d1, . . . , d j ∈ Fq, denoted shares, are generated as dt = f (t) mod Fq, for
t = 1, . . . , j. Anyone with access to i or more shares can recover f (x), and
thus S, but with less than i shares anyone of the possible q values for S is
exactly equally likely, and no information about S is leaked.

Notwithstanding their interesting properties, secret sharing schemes were
not designed to allow communication over a noisy channel. This is particu-

4.4. SECURE COMMUNICATION WITH CRYPTOLESS 67

larly evident when considering a channel model where transmissions may be
subject to a combination of erasures and errors. In fact, a secret sharing based
encoder would be resilient to data loss — since it would be tolerant to a loss of
up to j− i shares — but not to data corruption — since corrupted data would
be indistinguishable from the recipient perspective and secret sharing. In cod-
ing theory terminology, this means that secret sharing can be used to tackles
erasures, not errors. While potentially suitable for the OW channel model
(where the main channel is noiseless), the applicability of secret sharing alone
to the GOW model is severely limited.

4.4.2 CRYPTOLESS:Combining Secret Sharing and ECC

An ECC can guarantee reliable communication over a noisy channel, but it
cannot provide perfect secrecy in the GOW channel model, as it has uncer-
tainty rate ε= 1− l

k
< 1 for each l > 0. On the opposite side of the spectrum,

a (i, j) secret sharing based encoding scheme can guarantee perfect secrecy if
l < i, but cannot provide suitable error correcting capabilities on noisy chan-
nels. Therefore, in the following the two primitives are combined to obtain a
coding technique that concurrently achieves both requirements.

The proposed scheme, called CRYPTOLESS and described in Algorithm 4.4.2,
returns a codeword c ∈ Fn

q
from a single digit message m ∈ Fq. The encoding

consists of the following steps: (i) i − 1 coefficients are randomly picked in
Fq (Lines 2–4), and they are used together with m to define the polynomial
f (x) ∈ Fq[X] (Line 5); (ii) f (x) is used to implement a (i, j) secret sharing
scheme, obtaining the j shares d1, . . . , d j ∈ Fq (Lines 6–8); and, finally, (iii) the
word (d1, . . . , d j) ∈ F j

q
is encoded with a liner ECC E to obtain the codeword

c ∈ Fn
q

(Line 9).

Algorithm 4.1 The main procedure of CRYPTOLESS.

1: procedure CRYPTOLESS(Message m ∈ Fq, Linear ECC Encoder E : F j
q
→ Fn

q
)

2: for u= 1, . . . , i − 1 do

3: αu

R
←− Fq

4: end for
5: f (X) ∈ Fq[X]← m+α1X + · · ·+αi−1X i−1

6: for u= 1, . . . , j do
7: du = f (u) mod Fq

8: end for
9: return c← E(d1, . . . , d j) ∈ Fn

q

10: end procedure

68 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

Theorem 4.3 and Corollary 4.2 provide precise results concerning the se-
curity properties of the proposed scheme, assuming that the codeword c is
sent over a GOW channel and where the adversary Eve is able to eavesdrop l

noiseless digits.

Theorem 4.3. Under the GOW channel model, the proposed scheme guarantees

perfect secrecy if l < i, while it allows perfect recovery of the original message if

l ≥ i.

Proof. Theorem 4.1 establishes that the uncertainty rate of the considered
model is ε = 1− l

j
. As stated in Eq. (4.1), the number of digits of the word

(d1, . . . , d j) that the adversary can reconstruct is (1− ε) j. Putting things to-

gether, the adversary can reconstruct (1− ε) j = l

j
j = l shares of the secret m,

and the thesis follows from the properties of (i, j) secret sharing schemes.

Given Theorem 4.3, the following corollary is straightforward.

Corollary 4.2. Under the GOW channel model, the proposed scheme guarantees

perfect secrecy and reliable communication if the adversary can access a number

of noiseless digits l < i, while the recipient can recover a number of noiseless

digits l ≥ i.

The condition for reliable communication expressed by Corollary 4.2 is
only a sufficient one. More generally, according to the error correcting capa-
bilities of the linear ECC used, whenever the corresponding decoder allows
the recipient Bob to reconstruct at least i digits of the word (d1, . . . , d j), Bob
can recover f (X) by interpolation and obtain the constant term m.

4.4.3 A Toy Example

This section discusses a toy example of code obtained by combining a (j, j)

secret sharing scheme (i.e., all j shares are necessary to recover the secret S)
with a (l + 1) repetition code. Precisely, first a brief description of repetition
codes and their properties is provided and, then, it is shown that we show that
the defined code achieves both perfect secrecy and error correcting capabili-
ties.

Repetition Codes. Repetition codes are a special family of linear ECCs. As
the name suggests, in a r repetition code each digit of the original message
is simply repeated r times. That digit can be recovered by majority if at least
half of the r copies are correctly received, regardless of the fact that the other
copies are erased or corrupted. Formally, k message digits (x1, . . . , xk) ∈ Fk

q
are

4.4. SECURE COMMUNICATION WITH CRYPTOLESS 69

encoded into n = rk code digits (x1, . . . , x1, . . . , xk, . . . , xk) ∈ Fn
q
, where each

digit x i, i = 1, . . . , k is replicated r ∈ N times. The code rate is ρ = 1
r
. Thanks

to the results of Section 4.3, the following corollary holds.

Corollary 4.3. Under the GOW channel model, if the adversary eavesdrops l

digits, the uncertainty rate of a r repetition code is ε = 0 if l ≥ k, while it is

ε = 1− l

k
otherwise, regardless of r. Equivalently, if the eavesdropping rate of

the adversary is λ, the uncertainty rate is ε = 0 if λ ≥ 1
r
, while it is ε = 1− rλ

otherwise.

Corollary 4.3 proves that a repetition code guarantees positive uncertainty
provided that the adversary eavesdrops l < k digits since, in her best-case
scenario, Eve eavesdrops just one copy each of distinct digits of the original
message. However, the uncertainty rate is pretty low, especially if compared
to the level of reliability provided by the code: to be sure to correctly recover
all the original message, the intended recipient Bob needs at least r

2
copies of

all message digits.
As a special case, consider for instance a scenario where Alice wants to

transmit to Bob a single digit x ∈ Fq, i.e., k = 1. Alice applies a r repetition
code to get the codeword (x , . . . , x) composed of r copies of x . What Theo-
rem 4.3 says is that, no matter how large r is, if Eve intercepts l ≥ 1 digits
of the codeword the uncertainty rate is ε = 0. Indeed, all digits of the code-
word coincide with x , so to intercept any one of them means to get to know
x . Conversely, if l < k, i.e., if l = 0, the uncertainty is clearly ε= 1.

Analysis of the Proposed Toy Example To amplify the uncertainty rate pro-
vided by an r repetition code, it can be combined with a preliminary step
consisting of a (j, j) secret sharing scheme. To easy exposition, here is consid-
ered the special case where Alice wants to send to Bob a single digit m ∈ Fq. It
is, then, proved that such a composed scheme achieves perfect secrecy for up
to a suitable l, depending on the choice of r and j. The proposed toy example
is formally described in Algorithm 4.4.3.

From a single message digit m, the encoder of Algorithm 4.4.3 produces a
codeword of length n = j r as follows: (i) j − 1 digits x1, . . . , x j−1 are picked
uniformly at random in Fq (Lines 2–4); (ii) one further digit is computed as
x j = m+ x1+ · · ·+ x j−1 mod Fq (Line 5); and, finally, (iii) all j digits x1, . . . , x j

are replicated r times to produce the code digits c1,1, . . . , c j,r (Lines 6–10).
Steps (i) and (ii) implement a (j, j) secret sharing scheme. Step (iii) is a
simple r replication scheme, where each x i is replicated r times.

The threat model allows the adversary Eve to eavesdrop any l noiseless
digits. Eve can successfully recover m if and only if she gets access to all the

70 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

Algorithm 4.2 The main procedure of CRYPTOLESS applied to a repetition code.
1: procedure CRYPTOLESS-REPETITIONCODE(Message m ∈ Fq)
2: for i = 1, . . . , j − 1 do

3: x i

R
←− Fq

4: end for
5: x j ← m+ x1+ · · ·+ x j−1 mod Fq

6: for i = 1, . . . , j do
7: for t = 1, . . . , r do
8: ci,t ← x i

9: end for
10: end for
11: return c← (c1,1, . . . , c1,r , c2,1, . . . , c j,r) ∈ F j r

q

12: end procedure

shares x1, . . . , x j due to the secret sharing properties. Thus, if l ≥ j, Eve might
be able to pick such l digits so as to have at least one copy of all such digits.
However, if l < j, there is no way for Eve to get all the digits x1, . . . , x j, and
it is impossible for her to recover any information on m. Consequently, the
uncertainty is ε = 0 if l ≥ j, while it is ε = 1 if l < j. The same concepts
can be stated using the notion of uncertainty rate, together with the results
of Section 4.3. Focusing on the repetition code, it is used to encode the word
(x1, . . . , x j) of length j, so it produces an uncertainty rate ε = 1− l

j
over the

word (x1, . . . , x j). This means that Eve can recover (1− ε) j = l digits of the
set (x1, . . . , x j). Once again, this yields perfect secrecy if l < j thanks to the
properties of secret sharing, while zero uncertainty if l ≥ j.

For what concerns the impact of the proposed scheme on the reliability
of the transmission, it is easy to realize that using only the first step of the
example (i.e., secret sharing) it is possible to get even better secrecy: if Al-
ice directly transmits the word (x1, . . . , x j) without replication, perfect secrecy
is guaranteed as long as Eve eavesdrops l < j digits over a shorter message.
This means that it is possible to obtain the same level of secrecy for a much

larger eavesdropping rate
�

l

j
instead of l

j r

�

. However, directly transmitting

(x1, . . . , x j) provides no correction capabilities to Bob in the presence of errors
or erasures: if even a single digit x i is not correctly received, it is impossi-
ble to recover m. Conversely, the toy example allows perfect reception of m,
provided that at least r

2
of the r copies of each digit x i are correctly received.

Finally, it is worth noticing that both the general scheme and the toy example
can be easily extended to any message of length k > 1, and they still guarantee
perfect secrecy whenever it is true that the adversary can eavesdrop no more

4.5. FUTURE DIRECTIONS 71

than j − 1 noiseless digits for each codeword sent.

4.5 Future Directions

This chapter proposes, for the first time in the literature, a constructive solu-
tion that combine secret sharing and linear error-correcting codes to overcome
the presence of transmission errors, while guaranteeing perfect security on the
generalized Ozarow-Wyner’s wire-tap channel model. This work significantly
deviates from the research trend in the area. In fact, most of prior work was
focusing on the secrecy capacity, studying limiting behaviours of the model
when the size of the message approaches infinity. Taking a different approach,
it was possible to show that reliable and perfectly secret data transmission is
possible in practice, at the cost of a (slightly) lower communication rate.

While the proposed formalization and theoretical contributions stand on
their own, they have also a wealth of practical applications, for instance in
contexts where the amount of transmitted data is limited, or where key man-
agement and costly cryptographic algorithms are hard to implement — such as
in many distributed and unattended application settings — or, finally, where
perfect security is at premium. As for possible future directions, the most
promising is a thorough analysis of the performance of different type of ECCs.
Indeed, when adopting the proposed scheme the major constrain is the re-
duced communication rate and finding which are the codes better suited for
optimizing the performance would be of utmost importance in practical appli-
cations. Other possible research lines, include the study of different channel
models that might be more appropriate for specific practical applications or an
experimental study for evaluating the impact of light-weighted security solu-
tions in daily life applications.

72 CHAPTER 4. SECURE AND LIGHT-WEIGHTED DATA TRANSMISSION

CHAPTER 5

Conclusion

This thesis covered various topics of data science proposing innovative solu-
tions for common issues that arise from data management of large datasets:
storage, analytics, and secure transmission of data. For each one of these
macro-problems, an algorithm for helping at optimizing available computing
and memory resources is proposed, evaluated both theoretically and exper-
imentally, and compared with other methods currently adopted in practical
applications. In detail, these algorithms are: (i) CUTSIZE, a bitmap compres-
sion scheme for data storage that mainly serves to reduce space resources;
(ii) EXPEDITE, a very time efficient algorithm for data analysis that discovers
frequent patterns within data; and, (iii) CRYPTOLESS, an innovate solution for
transmitting data that guarantees integrity and confidentiality of the commu-
nication applicable on resource constrained devices. In their respective fields
of research, each one of the three proposed inventions is a relevant contri-
bution on its own. In fact, at the time of writing, they represent (some of)
the best solutions available in the literature in terms of space and time perfor-
mance.

As for further work, several research lines are practicable. In both fields
of data storage and data analysis, promising research directions lie in the de-
velopment of implementations of the proposed algorithms, namely CUTSIZE

and EXPEDITE, for supporting parallel and distributed computing. In fact, over
the last years, the most relevant improvements in there area were achieved by
parallel implementations of older algorithms or by adapting them to platforms
for distributed computing. The two algorithms proposed in this thesis are par-
allelizable with relatively little effort: EXPEDITE is in many ways similar to DCI-
CLOSED for which a version for parallel computing already exists, and CUTSIZE

works with aligned data making it ideal for parallel computing. Instead, in
the field of secure and light-weighted data transmission, promising research
directions lie in achieving results similar to those achieved in this thesis, but

73

74 CHAPTER 5. CONCLUSION

using different communication channel models. In fact, CRYPTOLESS guaran-
tees security in the GOW model, and being able to guarantee similar security
properties in different models could play a main role in the spread on physical
layer security applications. On a different note, a possible direction for future
work could also be the development of a suite of tools for data processing and
transmission that includes all the necessary instruments for storage, analysis
and transmission of big data. Despite the huge effort put in the development
of efficient solutions, these three topics are often treated independently, and
there is a lack of interdisciplinary tools. This thesis provided a global overview
of the several problems arising from big data, and it is a first attempt to gather
together the solutions of the singular aspects of the problem. However, much
more effort needs to be made in order to provide a comprehensive package of
tools designed to address all the conceivable requirements.

Bibliography

[1] Charu C. Aggarwal. Towards long pattern generation in dense
databases. SIGKDD Explorations, 3(1):20–26, 2001.

[2] Charu C. Aggarwal and Jiawei Han. Frequent Pattern Mining. Springer
International Publishing, 2014.

[3] Rakesh Agrawal, Tomasz Imielinski, and Arun Swami. Mining associ-
ation rules between sets of items in large databases. In SIGMOD ’93:

Proceedings of the 1993 ACM SIGMOD international conference on Man-

agement of data, pages 207–216. ACM Press, 1993.

[4] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for mining
association rules in large databases. In Proceedings of the 20th Interna-

tional Conference on Very Large Data Bases, VLDB ’94, pages 487–499,
San Francisco, CA, USA, 1994. Morgan Kaufmann Publishers Inc.

[5] Giulio Aliberti, Alessandro Colantonio, and Roberto Di Pietro. CUT-
SIZE: a Bitmap Compression Scheme for Fast Bitwise Operations. Tech-

nical Report, 2016.

[6] Giulio Aliberti, Alessandro Colantonio, Roberto Di Pietro, and Riccardo
Mariani. EXPEDITE: EXPress closED ITemset Enumeration. Expert Syst.

Appl., 42(8):3933–3944, 2015.

[7] Giulio Aliberti, Stefano Guarino, and Roberto Di Pietro. CRYPTO-
LESS: Reliable and Perfectly Secret Communication over the Gener-
alized Ozarow-Wyner’s Wire-Tap Channel. Submitted to Computer Net-

works, 2016.

[8] G. Antoshenkov. Byte aligned data compression, November 8 1994. US
Patent 5,363,098.

[9] G. Antoshenkov. Byte-aligned bitmap compression. In Proceedings of

the Conference on Data Compression, DCC ’95, page 476, Washington,
DC, USA, 1995. IEEE Computer Society.

75

76 BIBLIOGRAPHY

[10] Luigi Atzori, Antonio Iera, and Giacomo Morabito. The Internet of
Things: A survey. Computer Networks, 54(15):2787–2805, oct 2010.

[11] Ashar Baig. Rethinking the enterprise data archive for big data
analytics and regulatory compliance. http://rainstor.com/2013_
new/wp-content/uploads/2014/11/WP_Gigaom_Rethinking_the_
Enterprise_Data-Archive.pdf, 2014. [Online; accessed 24-February-
2016].

[12] Marco Baldi, Giacomo Ricciutelli, Nicola Maturo, and Franco Chiar-
aluce. Performance assessment and design of finite length LDPC codes
for the gaussian wiretap channel. In IEEE International Conference on

Communication, ICC 2015, London, United Kingdom, June 8-12, 2015,

Workshop Proceedings, pages 435–440, 2015.

[13] Meryem Benammar and Pablo Piantanida. Secrecy capacity region of
some classes of wiretap broadcast channels. IEEE Trans. Information

Theory, 61(10):5564–5582, 2015.

[14] G.R. Blakley. Safeguarding cryptographic keys. In Proceedings of the

1979 AFIPS National Computer Conference, pages 313–317, Monval, NJ,
USA, 1979. AFIPS Press.

[15] M. Bloch and J. Barros. Physical-Layer Security: From Information The-

ory to Security Engineering. Cambridge University Press, 2011.

[16] Holger Boche, Rafael F. Schaefer, and H. Vincent Poor. On the continuity
of the secrecy capacity of compound and arbitrarily varying wiretap
channels. IEEE Trans. Information Forensics and Security, 10(12):2531–
2546, 2015.

[17] Francesco Bonchi and Claudio Lucchese. Extending the state-of-the-art
of constraint-based pattern discovery. Data & Knowledge Engineering,
60(2):377–399, 2007.

[18] Christian Borgelt. Frequent item set mining. Wiley Interdisciplinary

Reviews: Data Mining and Knowledge Discovery, 2(6):437–456, 2012.

[19] Jean-François Boulicaut, Artur Bykowski, and Christophe Rigotti. Free-
sets: a condensed representation of boolean data for the approximation
of frequency queries. Data Mining and Knowledge Discovery, 7(1):5–22,
2003.

BIBLIOGRAPHY 77

[20] J.J. Boutros, V. Dedeoglu, and M. Bloch. The Anti-Diversity Concept for

Secure Communication on a Two-Link Compound Channel. ETH-Zürich,
2014.

[21] Artur Bykowski and Christophe Rigotti. A condensed representation to
find frequent patterns. In Proceedings of the Twentieth ACM SIGMOD-

SIGACT-SIGART Symposium on Principles of Database Systems, PODS
’01, pages 267–273, New York, NY, USA, 2001. ACM.

[22] Toon Calders, Christophe Rigotti, and Jean-François Boulicaut. A sur-
vey on condensed representations for frequent sets. In Constraint-Based

Mining and Inductive Databases, volume 3848 of Lecture Notes in Com-

puter Science, pages 64–80. Springer, 2006.

[23] Zhen Chen, Yuhao Wen, Junwei Cao, Wenxun Zheng, Jiahui Chang,
Yinjun Wu, Ge Ma, Mourad Hakmaoui, and Guodong Peng. A survey
of bitmap index compression algorithms for big data. Tsinghua Science

and Technology, 20(1):100–115, Feb 2015.

[24] Fan Cheng, Raymond W Yeung, and Kenneth W Shum. Imperfect se-
crecy in wiretap channel ii. Information Theory, IEEE Transactions on,
61(1):628–636, 2015.

[25] M. Cheraghchi, F. Didier, and A. Shokrollahi. Invertible extractors
and wiretap protocols. Information Theory, IEEE Transactions on,
58(2):1254–1274, Feb 2012.

[26] Tom Clark. Storage Virtualization: Technologies for Simplifying Data

Storage and Management. Addison-Wesley Professional, 2005.

[27] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and
Nino Vincenzo Verde. A new role mining framework to elicit busi-
ness roles and to mitigate enterprise risk. Decision Support Systems,
50(4):715–731, 2011.

[28] Alessandro Colantonio and Roberto Di Pietro. Concise: Compressed ’n’
composable integer set. Inf. Process. Lett., 110(16):644–650, 2010.

[29] Alessandro Colantonio, Roberto Di Pietro, Alberto Ocello, and
Nino Vincenzo Verde. Visual role mining: A picture is worth a thou-
sand roles. IEEE Transactions on Knowledge and Data Engineering,
24(6):1120–1133, 2012.

78 BIBLIOGRAPHY

[30] Burleson Consulting. Oracle bitmap index techniques. http://www.
dba-oracle.com/oracle_tips_bitmapped_indexes.htm/, 2014. [Online;
accessed 24-February-2016].

[31] IBM Corporation. Storage catches up to the data explo-
sion. http://www.ibm.com/midmarket/us/en/att/pdf/Feat_2_WOI.
pdf?ca=fv1306&me=feature2&re=usartpdf?, 2013. [Online; accessed
24-February-2016].

[32] Fabian Corrales, David Chiu, and Jason Sawin. Variable length com-
pression for bitmap indices. In Abdelkader Hameurlain, Stephen W.
Liddle, Klaus-Dieter Schewe, and Xiaofang Zhou, editors, DEXA (2),
volume 6861 of Lecture Notes in Computer Science, pages 381–395.
Springer, 2011.

[33] Imre Csiszár and János Körner. Broadcast channels with confidential
messages. IEEE Transactions on Information Theory, 24(3):339–348,
1978.

[34] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data pro-
cessing on large clusters. In OSDI, pages 137–150. google labs, 2004.

[35] François Deliège and Torben Bach Pedersen. Position list word aligned
hybrid: optimizing space and performance for compressed bitmaps.
In Ioana Manolescu, Stefano Spaccapietra, Jens Teubner, Masaru Kit-
suregawa, Alain Lèger, Felix Naumann, Anastasia Ailamaki, and Fatma
Özcan, editors, EDBT, volume 426 of ACM International Conference Pro-

ceeding Series, pages 228–239. ACM, 2010.

[36] Zhi-Hong Deng. Fast mining top-rank-k frequent patterns by using
node-lists. Expert Systems with Applications, 41(4, Part 2):1763 – 1768,
2014.

[37] Yevgeniy Dodis, Amit Sahai, and Adam Smith. On perfect and adaptive
security in exposure-resilient cryptography. In Birgit Pfitzmann, editor,
EUROCRYPT, volume 2045 of Lecture Notes in Computer Science, pages
301–324. Springer, 2001.

[38] Alina Ene, William Horne, Nikola Milosavljevic, Prasad Rao, Robert
Schreiber, and Robert E. Tarjan. Fast exact and heuristic methods for
role minimization problems. In Proceedings of the 13th ACM Symposium

on Access Control Models and Technologies, SACMAT ’08, pages 1–10,
New York, NY, USA, 2008. ACM.

BIBLIOGRAPHY 79

[39] Guo-Dong Fang and Zhi-Hong Deng. Vtk: Vertical mining of top-rank-k
frequent patterns. In FSKD (2), pages 620–624. IEEE Computer Society,
2008.

[40] U. Fayyad, G. Piatetsky-Shapiro, and P. Smyth. From data mining to
knowledge discovery in databases. Ai Magazine, 17:37–54, 1996.

[41] FIMI. FIMI ’04, proceedings of the ieee icdm workshop on frequent
itemset mining implementations, brighton, uk, november 1, 2004. In
Roberto J. Bayardo Jr., Bart Goethals, and Mohammed Javeed Zaki, ed-
itors, FIMI, volume 126 of CEUR Workshop Proceedings. CEUR-WS.org,
2004.

[42] Francesco Fusco, Marc Ph. Stoecklin, and Michail Vlachos. Net-fli: On-
the-fly compression, archiving and indexing of streaming network traf-
fic. Proc. VLDB Endow., 3(1-2):1382–1393, September 2010.

[43] Solomon W. Golomb. Run-length encodings. In IEEE Transactions on

Information Theory, pages 399–401, 1966.

[44] Gosta Grahne and Jianfei Zhu. Fast algorithms for frequent itemset
mining using FP-Trees. IEEE Transactions on Knowledge and Data Engi-

neering, 17(10):1347–1362, 2005.

[45] Talha Cihad Gulcu and Alexander Barg. Achieving secrecy capacity of
the wiretap channel and broadcast channel with a confidential compo-
nent. In 2015 IEEE Information Theory Workshop, ITW 2015, Jerusalem,

Israel, April 26 - May 1, 2015, pages 1–5, 2015.

[46] G. Guzun, G. Canahuate, D. Chiu, and J. Sawin. A tunable compression
framework for bitmap indices. In Proceedings of the IEEE International

Conference on Data Engineering, 2014.

[47] Jiawei Han, Hong Cheng, Dong Xin, and Xifeng Yan. Frequent pattern
mining: Current status and future directions. Data Mining and Knowl-

edge Discovery, 15(1):55–86, 2007.

[48] Jiawei Han, Jian Pei, and Yiwen Yin. Mining frequent patterns without
candidate generation. In Proceedings of the 2000 ACM SIGMOD Inter-

national Conference on Management of Data, SIGMOD ’00, pages 1–12,
New York, NY, USA, 2000. ACM.

[49] Jiawei Han, Jianyong Wang, Ying Lu, and Petre Tzvetkov. Mining top-k
frequent closed patterns without minimum support. In International

80 BIBLIOGRAPHY

Conference on Data Mining, pages 211–218. IEEE Computer Society,
2002.

[50] Te Sun Han, H. Endo, and M. Sasaki. Reliability and secrecy functions
of the wiretap channel under cost constraint. Information Theory, IEEE

Transactions on, 60(11):6819–6843, Nov 2014.

[51] Willie K. Harrison, Joāo Almeida, Matthieu R. Bloch, Steven W.
McLaughlin, and Joāo Barros. Coding for secrecy: An overview of
error-control coding techniques for physical-layer security. IEEE Signal

Process. Mag., 30(5):41–50, 2013.

[52] W.K. Harrison and S.W. McLaughlin. Physical-layer security: Combining
error control coding and cryptography. In Communications, 2009. ICC

’09. IEEE International Conference on, pages 1–5, June 2009.

[53] Jochen Hipp, Ulrich Güntzer, and Gholamreza Nakhaeizadeh. Algo-
rithms for association rule mining – general survey and comparison.
SIGKDD Explorations, 2(1):58–64, 2000.

[54] Quyen Huynh-Thi-Le, Tuong Le, Bay Vo, and Bac Le. An efficient and
effective algorithm for mining top-rank-k frequent patterns. Expert Sys-

tems with Applications, 42(1):156 – 164, 2015.

[55] Owen Kaser and Daniel Lemire. Strongly universal string hashing is
fast. CoRR, abs/1202.4961, 2012.

[56] Owen Kaser and Daniel Lemire. Compressed bitmap indexes: beyond
unions and intersections. CoRR, abs/1402.4466, 2014.

[57] András Király, Asta Laiho, János Abonyi, and Attila Gyenesei. Novel
techniques and an efficient algorithm for closed pattern mining. Expert

Systems with Applications, 41(11):5105 – 5114, 2014.

[58] Demijan Klinc, Jeongseok Ha, Steven W. McLaughlin, João Barros, and
Byung-Jae Kwak. LDPC codes for the gaussian wiretap channel. IEEE

Transactions on Information Forensics and Security, 6(3-1):532–540,
2011.

[59] Marzena Kryszkiewicz. Concise representations of association rules. In
Pattern Detection and Discovery, pages 92–109, 2002.

[60] Daniel Lemire, Owen Kaser, and Kamel Aouiche. Sorting improves
word-aligned bitmap indexes. CoRR, abs/0901.3751, 2009.

BIBLIOGRAPHY 81

[61] S. Leung-Yan-Cheong and M.E. Hellman. The gaussian wire-tap chan-
nel. Information Theory, IEEE Transactions on, 24(4):451–456, Jul
1978.

[62] Yingbin Liang and H. Vincent Poor. Generalized multiple access chan-
nels with confidential messages. CoRR, abs/cs/0605014, 2006.

[63] Guimei Liu, Hongjun Lu, Jeffrey Xu Yu, Wei Wang 0011, and Xi-
angye Xiao. AFOPT: An efficient implementation of pattern growth
approach. In FIMI, volume 90 of CEUR Workshop Proceedings. CEUR-
WS.org, 2003.

[64] Ling Liu, Yanfei Yan, and Cong Ling. Achieving secrecy capacity of the
gaussian wiretap channel with polar lattices. CoRR, abs/1503.02313,
2015.

[65] C. Lucchese, S. Orlando, and R. Perego. Fast and memory efficient
mining of frequent closed itemsets. IEEE Transactions on Knowledge

and Data Engineering, 18(1):21–36, 2006.

[66] H. Mahdavifar and A. Vardy. Achieving the secrecy capacity of wiretap
channels using polar codes. Information Theory, IEEE Transactions on,
57(10):6428–6443, Oct 2011.

[67] Ueli Maurer and Stefan Wolf. Information-theoretic key agreement:
From weak to strong secrecy for free. In Bart Preneel, editor, Advances

in Cryptology - EUROCRYPT 2000, volume 1807 of Lecture Notes in Com-

puter Science, pages 351–368. Springer Berlin Heidelberg, 2000.

[68] UeliM. Maurer. The strong secret key rate of discrete random triples.
In Richard E. Blahut, Jr. Costello, Daniel J., Ueli Maurer, and Thomas
Mittelholzer, editors, Communications and Cryptography, volume 276 of
The Springer International Series in Engineering and Computer Science,
pages 271–285. Springer US, 1994.

[69] Sandy Moens, Emin Aksehirli, and Bart Goethals. Frequent itemset
mining for big data. In BigData Conference, pages 111–118. IEEE Com-
puter Society, 2013.

[70] H. D. K. Moonesinghe, Samah Jamal Fodeh, and Pang-Ning Tan. Fre-
quent closed itemset mining using prefix graphs with an efficient flow-
based pruning strategy. In International Conference on Data Mining,
pages 426–435. IEEE Computer Society, 2006.

82 BIBLIOGRAPHY

[71] Mohamed Nafea and Aylin Yener. Wiretap channel ii with a noisy main
channel. In Information Theory (ISIT), 2015 IEEE International Sympo-

sium on, pages 1159–1163. IEEE, 2015.

[72] Benjamin Negrevergne, Alexandre Termier, Jean-François Méhaut, and
Takeaki Uno. Discovering closed frequent itemsets on multicore: Par-
allelizing computations and optimizing memory accesses. In Interna-

tional Symposium on High Performance Computing Systems, pages 521–
528. IEEE Computer Society, 2010.

[73] Benjamin Negrevergne, Alexandre Termier, Marie-Christine Rousset,
and Jean-François Méhaut. Para miner: a generic pattern mining al-
gorithm for multi-core architectures. Data Mining and Knowledge Dis-

covery, 28(3):593–633, 2014.

[74] L.H. Ozarow and A.D. Wyner. Wire-tap channel II. In Thomas Beth,
Norbert Cot, and Ingemar Ingemarsson, editors, Advances in Cryptol-

ogy, volume 209 of Lecture Notes in Computer Science, pages 33–50.
Springer Berlin Heidelberg, 1985.

[75] Nicolas Pasquier, Yves Bastide, Rafik Taouil, and Lotfi Lakhal. Efficient
mining of association rules using closed itemset lattices. Information

Systems, 24(1):25 – 46, 1999.

[76] T.B. Pedersen and F. Deliege. Compression of bitmaps and values, Jan-
uary 17 2013. US Patent App. 13/389,399.

[77] Jian Pei, Jiawei Han, and Runying Mao. CLOSET: An Efficient Algo-
rithm for Mining Frequent Closed Itemsets. In ACM SIGMOD Workshop

on Research Issues in Data Mining and Knowledge Discovery, pages 21–
30, 2000.

[78] Lenka Piskovà and Tomàs Horvàth. Comparing performance of formal
concept analysis and closed frequent itemset mining algorithms on real
data. In Concept Lattices and Their Applications, volume 1062 of CEUR

Workshop Proceedings, pages 299–304. CEUR-WS.org, 2013.

[79] Foster Provost and Tom Fawcett. Data Science and its Relationship
to Big Data and Data-Driven Decision Making. Big Data, 1(1):51–59,
March 2013.

[80] Jason K. Resch and James S. Plank. Aont-rs: Blending security and
performance in dispersed storage systems. In Proceedings of the 9th

BIBLIOGRAPHY 83

USENIX Conference on File and Stroage Technologies, FAST’11, pages 14–
14, Berkeley, CA, USA, 2011. USENIX Association.

[81] Z. Rezki, A. Khisti, and M.-S. Alouini. On the secrecy capacity of the
wiretap channel with imperfect main channel estimation. Communica-

tions, IEEE Transactions on, 62(10):3652–3664, Oct 2014.

[82] Ronald L. Rivest. All-or-nothing encryption and the package transform.
In Eli Biham, editor, FSE, volume 1267 of Lecture Notes in Computer

Science, pages 210–218. Springer, 1997.

[83] Manish Saraswat. 13 amazing applications / uses of data
science today. http://www.analyticsvidhya.com/blog/2015/09/
applications-data-science/, 2015. [Online; accessed 24-February-
2016].

[84] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
November 1979.

[85] C. Shannon. Communication theory of secrecy systems. Bell System

Technical Journal, 28:656–715, October 1949.

[86] C. E. Shannon. Communication in the presence of noise. In Proceedings

of the Institute of Radio Engineers (IRE), volume 37, pages 10–21, 1949.

[87] Claude E. Shannon and Warren Weaver. A Mathematical Theory of Com-

munication. University of Illinois Press, Champaign, IL, USA, 1963.

[88] Maryam Shekofteh. A survey of algorithms in fcim. In Data Storage and

Data Engineering, pages 29–33. IEEE Computer Society, 2010.

[89] Ningthoujam Gourakishwar Singh, Sanasam Ranbir Singh, and An-
jana K. Mahanta. Closeminer: Discovering frequent closed itemsets
using frequent closed tidsets. In International Conference on Data Min-

ing, pages 633–636. IEEE Computer Society, 2005.

[90] Israel Spiegler and Rafi Maayan. Storage and retrieval considerations
of binary data bases. Inf. Process. Manage., 21(3):233–254, 1985.

[91] Gerd Stumme, Rafik Taouil, Yves Bastide, Nicolas Pasquier, and Lotfi
Lakhal. Computing iceberg concept lattices with titanic. Data & Knowl-

edge Engineering, 42(2):189–222, 2002.

84 BIBLIOGRAPHY

[92] Arunkumar Subramanian, Andrew Thangaraj, Matthieu R. Bloch, and
Steven W. McLaughlin. Strong secrecy on the binary erasure wiretap
channel using large-girth LDPC codes. IEEE Transactions on Information

Forensics and Security, 6(3-1):585–594, 2011.

[93] Andrew Thangaraj, Souvik Dihidar, A. Robert Calderbank, Steven W.
McLaughlin, and Jean-Marc Merolla. Applications of LDPC codes to the
wiretap channel. IEEE Transactions on Information Theory, 53(8):2933–
2945, 2007.

[94] Takeaki Uno, Tatsuya Asai, Yuzo Uchida, and Hiroki Arimura. An
efficient algorithm for enumerating closed patterns in transaction
databases. In Discovery Science, volume 3245 of Lecture Notes in Com-

puter Science, pages 16–31. Springer, 2004.

[95] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver. 2: Efficient
mining algorithms for frequent/closed/maximal itemsets. In FIMI, vol-
ume 126 of CEUR Workshop Proceedings, 2004.

[96] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura. Lcm ver.3: Collab-
oration of array, bitmap and prefix tree for frequent itemset mining. In
Proceedings of the 1st International Workshop on Open Source Data Min-

ing: Frequent Pattern Mining Implementations, pages 77–86, New York,
NY, USA, 2005. ACM.

[97] Bay Vo, Tzung-Pei Hong, and Bac Le. Dbv-miner: A dynamic bit-vector
approach for fast mining frequent closed itemsets. Expert Systems with

Applications, 39(8):7196–7206, June 2012.

[98] Harald Vogt. Efficient object identification with passive RFID tags. In
Proceedings of the First International Conference on Pervasive Comput-

ing, volume 2414 of Lecture Notes in Computer Science, pages 98–113,
Zurich, August 2002. Springer-Verlag.

[99] Mikhail Vorontsov. Java Performance Tuning Guide. http://
java-performance.info/, 2015. [Online; accessed 24-February-2016].

[100] Jianyong Wang, Jiawei Han, and Jian Pei. Closet+: searching for the
best strategies for mining frequent closed itemsets. In Proceedings of the

ninth ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 236–245, New York, NY, USA, 2003. ACM Press.

[101] V.K. Wei. Generalized hamming weights for linear codes. Information

Theory, IEEE Transactions on, 37(5):1412–1418, Sep 1991.

BIBLIOGRAPHY 85

[102] Chan Wong Wong, Tan F. Wong, and John M. Shea. Secret-sharing
LDPC codes for the bpsk-constrained gaussian wiretap channel. IEEE

Trans. Information Forensics and Security, 6(3-1):551–564, 2011.

[103] Harry K. T. Wong, Hsiu-Fen Liu, Frank Olken, Doron Rotem, and Linda
Wong. Bit transposed files. In Proceedings of the 11th International

Conference on Very Large Data Bases - Volume 11, VLDB ’85, pages 448–
457. VLDB Endowment, 1985.

[104] R. Wrembel. Data Warehouses and OLAP: Concepts, Architectures and

Solutions: Concepts, Architectures and Solutions. Gale virtual reference
library. IRM Press, 2006.

[105] K. Wu, S. Ahern, E. W. Bethel, J. Chen, H. Childs, E. Cormier-Michel,
C. Geddes, J. Gu, H. Hagen, B. Hamann, W .Koegler, J. Lauret,
J. Meredith, P. Messmer, E. Otoo, V. Perevoztchikov, A. Poskanzer, Prab-
hat, O. Rübel, A. Shoshani, A. Sim, K. Stockinger, G. Weber, and W.-M.
Zhang. Fastbit: interactively searching massive data. Journal of Physics:

Conference Series, 180(1):012053, 2009.

[106] K. Wu, A. Shoshani, and E. Otoo. Word aligned bitmap compression
method, data structure, and apparatus, December 14 2004. US Patent
6,831,575.

[107] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Compressing bitmap
indexes for faster search operations. In SSDBM, pages 99–108. IEEE
Computer Society, 2002.

[108] Kesheng Wu, Ekow J. Otoo, and Arie Shoshani. Optimizing bitmap
indices with efficient compression. ACM Trans. Database Syst., 31(1):1–
38, March 2006.

[109] Aaron D. Wyner. The Wire-tap Channel. Bell Systems Technical Journal,
54(8):1355–1387, January 1975.

[110] S. Ben Yahia, T. Hamrouni, and E. Mephu Nguifo. Frequent closed
itemset based algorithms: A thorough structural and analytical survey.
SIGKDD Explorations, 8:93–104, 2006.

[111] Guizhen Yang. The complexity of mining maximal frequent item-
sets and maximal frequent patterns. In Proceedings of the tenth ACM

SIGKDD International Conference on Knowledge Discovery and Data min-

ing, pages 344–353. ACM Press, 2004.

86 BIBLIOGRAPHY

[112] Mohammed J. Zaki and Karam Gouda. Fast vertical mining using diff-
sets. In Proceedings of the ninth ACM SIGKDD international conference

on Knowledge discovery and data mining, pages 326–335, 2003.

[113] Mohammed J. Zaki and Ching-Jui Hsiao. Efficient algorithms for min-
ing closed itemsets and their lattice structure. IEEE Transactions on

Knowledge and Data Engineering, 17(4):462–478, 2005.

[114] Mohammed Javeed Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara,
and Wei Li. Parallel algorithms for discovery of association rules. Data

Mining and Knowledge Discovery, 1(4):343–373, 1997.

[115] Yulong Zou, Jia Zhu, Xianbin Wang, and V. Leung. Improving physical-
layer security in wireless communications using diversity techniques.
Network, IEEE, 29(1):42–48, Jan 2015.

