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CHAPTER 1 
 
General introduction 
 
1) Multidisciplinary is the key for conservation 
 
During the last century, threatening processes such as invasive species 
and pathogenic diseases have been working synergistically to 
biodiversity loss (Brook et al. 2008). Free-living animals must 
struggle against a variety of challenges and man-mediated alterations 
that can cause high stress conditions. Disruption of behaviour and 
reproductive physiology and the alteration of population fitness are 
among the most hostile consequences of prolonged stress. Thus, 
understanding if and how threatened free-living populations reproduce 
and respond to external changes is necessary to determine 
vulnerability and set conservation priorities. In that respect, the use of 
an integrative and functional approach, direct also to the 
comprehension of physiological and endocrine individual dynamics, 
can help to characterize and alleviate problems that could threaten a 
species, population, community.  
Conservation physiology is an evolving important field of 
conservation science that takes advantage from this integrative 
approach (Wikelski and Cooke 2006). Conservation biologists are 
progressively using different techniques that range from 
endocrinology to stress physiology, to develop and choose solutions. 
This combination of conservation tools, with supplementary 
knowledge of the basic biology of organisms, is fundamental for the 
safety of both captive and wild populations. Multidisciplinary is the 
key to more efficient problem solving in conservation. For this reason, 
in this occasion, I quote Wildt et al. (2003) who stated: “conservation 
can be likened to a complex jigsaw puzzle where the puzzle pieces are 
issues, stakeholders or scientific disciplines themselves”.  
 
2) Reproductive endocrinology and aims 
 
Reproduction is the foundation on which a species survives. 
Understanding the complexities of when and how individuals 
reproduce is basal for the perpetuation of natural populations and their 
future management. Therefore, knowledge about the reproductive 
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endocrinology of a species can fill an important gap in our 
understanding of timing and modalities of reproduction. Reproductive 
endocrinology offers the possibility to better realize factors impairing 
species vitality, and it may even offer early-warning signals of a risk 
before survivorship or reproductive rates plummet.  
Much of our knowledge of vertebrate reproductive endocrinology has 
been collected from studies of mammals. Anyhow, there are sufficient 
structural and functional similarities between mammals and non-
mammals to indicate that many of mechanisms regulating 
reproduction are probably common to all vertebrates (Crews and 
Silver 1985). 
Reproductive activity is associated with an essential variation in 
circulating concentrations of the primary sex steroid hormones: 
progesterone (P4) and 17β-estradiol (E2) (Jones and Guillette 1982; 
Crews and Silver 1985; Norris and Lopez 2010). Measuring the 
plasma levels of these sexual steroid hormones can be useful to track 
the reproductive hormone profiles of free-living animals and this 
could be crucial for species conservation especially when direct 
observations on field are strongly limited by logistic constraints and 
ex-situ captive breeding programs may become necessary. This is the 
case of two Galápagos land iguanas species that occur in Volcán Wolf 
(Isabela Island): Conolophus marthae and C. subcristatus, among the 
most representative species of the Galápagos Islands.  
Conolophus marthae, the Galápagos Pink Land Iguana (also simply 
known as pink iguana), was only recently described (Gentile and Snell 
2009; Gentile et al. 2009) and listed as Critically Endangered in the 
IUCN Red List (Gentile 2012). Current data suggests that this species 
lives, with an extremely small population, exclusively on the top and 
along the northwest slopes of Wolf volcano, the highest peak 
(1,707m) in the archipelago. Just because only recently discovered, 
information about its ecology is limited to circumstantial observations 
and reproductive biology is completely unknown. Newly hatched 
individuals and juveniles of the species were never observed.  
Contrary to the pink iguana, the Galápagos common iguana 
Conolophus subcristatus (for convenience here also referred to as 
yellow iguana) currently inhabits six islands in the archipelago, 
including Isabela Island and the Wolf volcano where occupies an area 
larger than C. marthae. The yellow iguana is listed as vulnerable in 
the IUCN Red List and experienced various disturbances by direct and 
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indirect human activity so that several populations became 
dramatically reduced in size or were extirpated (Snell et al. 1984). 
About this species, some studies were produced sustaining that clutch 
size and mating season vary across islands (Werner 1983; Snell et al. 
1984). However, little is known about the reproductive biology of this 
species on Wolf volcano.  
To pinpoint species-specific times of reproduction in the volcano and 
possible interspecific interactions, I examined and explained baseline 
steroid levels of progesterone (P4) and 17β-estradiol (E2) in both 
iguana species. The existence of previous studies on sex steroid 
hormones of the Galápagos marine iguana Amblyrhynchus cristatus, 
the sister taxon of Conolophus spp. (Rassmann 1997), offered a 
unique opportunity to use an appropriate reference model for the much 
less investigated land iguanas. 
 
3) Stress physiology and aims 
 
Free-living animals periodically experience a multiplicity of 
internal/external environmental challenges and man-mediated 
alterations that can produce stress condition. 
The term “stress” has become popular thanks to the pioneering work 
of Hans Selye (1946), who described the stress condition as “a general 
adaptation syndrome (GAS)” in which a rapid initial reaction 
("alarm") was followed by sustained glucocorticoid secretion ("phase 
of resistance") and eventually by a dangerous debility when corticoid 
output could not be sustained ("phase of exhaustion"). 
Stress is a term used across a broad spectrum of scientific researches; 
however, its definition is often ambiguous and sometimes not defined 
at all. Nowadays, biologists distinguish between “stressor” and “stress 
response”. Stressor is any noxious stimulus (Romero 2004) or 
exceptional event that disturbs an animal’s homeostasis generating the 
so-called emergency life-history stage (ELHS) (Wingfield et al. 1998; 
McEwen and Wingfield 2003). Free-living animals experience many 
stressors during their life including physical factors (i.e., change in 
temperature, oxygen, and salinity), climatic stressors (drought and 
storms) and biotic stressors (predation, competition and social 
dynamics, parasitism) that challenge their homeostasis (Romero 2004; 
Jessop et al. 2013). These disturbance phenomena may have effects on 
the ecology and evolution of organisms (Hoffmann and Hercus 2000; 
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Badyaev 2005; Jessop et al. 2013) and, depending on their 
pervasiveness, magnitude and frequency, can influence the individual 
fitness (Bonier et al. 2009; Busch and Haiward 2009). Thus, in 
response to a stressor, animals mount stress responses, which work for 
neutralizing the effects of the stressor to regenerate homeostasis. The 
stress response is constituted by all physiological, endocrinological, 
immunological and behavioural adaptations, which can be 
concurrently used to cope with the stress condition limiting the 
negative consequences on fitness (Wingfield et al. 1998; Wikelski and 
Cooke 2006).  
One main feature of stress response in vertebrates is the release of 
glucocorticoids (i.e. cortisol and corticosterone), steroid hormones 
whose synthesis is regulated by hypothalamic–pituitary–adrenal axis 
(HPA). Fish and most mammals generally release cortisol, whereas 
most birds, reptiles, amphibians, and many rodents release 
corticosterone (Johnson et al. 1992; Sapolsky 1992; Romero 2004; 
Romero and Butler 2007; Crespi et al. 2013). Glucocorticoids (GCs) 
are the final product of the HPA axis; these stress hormones 
participate in the control of homeostasis activating immediate life-
saving processes (Romero et al. 2009). Upon perception of stress, the 
hypothalamus is activated to secrete arginine vasotocin (AVT, 
homologous of the mammalian arginine vasopressin) and 
corticotropin-releasing factor (CRF), which stimulate the pituitary 
gland to release adrenocorticotropin (ACTH). This in turn, causes the 
release of glucocorticoids from the adrenal glands (Rich and Romero 
2005). The cessation of the pathway leading to GCs production occurs 
through a negative feedback under the control of the GCs themselves. 
Stress-induced concentrations of GCs interact with glucocorticoid 
receptors in the hippocampus, hypothalamus and pituitary gland to 
suppress the initial steps of the HPA axis (De Kloet et al. 1998). The 
level at which GCs are elevated depend on the severity of the stressor; 
therefore, under acute stress conditions, the feedback mechanism 
operates efficiently and the system rapidly returns to normal; under 
chronic stress conditions, feedback signals are weak and the system 
remains activated for longer periods (Sapolsky 1992).  
Generally, short-term glucocorticoid releases are helpful for 
organisms because stimulate emergency mechanisms such as 
mobilizing glucose (gluconeogenesis) and protein catabolism to 
immediately increase energetics availability to overcome the 
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perturbation (Wingfield and Ramenofsky 1999; Wingfield and 
Romero 2001; Wingfield 2013). However, chronic activation of the 
HPA axis and prolonged elevated GC concentrations may have large 
deleterious effects on fitness (Romero 2004; Blas et al. 2007) resulting 
in stress-related disease (Sapolsky 1992; Romero et al. 2009). Indeed, 
long-term activation of the stress response can expose the individual 
to a long-term overstimulation of survive mechanisms with 
consecutive inhibition of many fundamental functions including 
immunocompetence and reproduction (Sapolsky 1987; Wingfield et al. 
1997; Dhabhar 2000; Sapolsky et al. 2000; Dallman and Bhatnagar 
2001; Wingfield and Romero 2001).  
Overall, GCs concentrations are being used increasingly in ecological 
and conservation studies as indices of animal well-being (Wikelski 
and Cooke 2006; Busch and Hayward 2009; Sheriff et al. 2011). 
Measuring these hormones can help to understand how specific 
stressors affect the survival and reproductive success of free-living 
animals. However, although these hormones can be measured directly 
from many biological matrices as blood, saliva, faeces and urine 
(Wasser et al. 1997; Sapolsky et al. 2000; Narayan et al. 2010; Sheriff 
et al. 2011), measuring them under field conditions is very difficult 
and may require caution. 
Historically, blood is the traditional biological matrix used to assess 
GCs concentration. Blood collection allows the measurement of 
instantaneous and direct product of the adrenal cortex. Moreover, this 
method permits a simultaneous collection of blood components with a 
comprehensive assessment of the state of the animal, including indices 
of condition (haematocrit), immune function (leukocyte profiles), and 
reproductive status (reproductive hormones). The most appropriate 
method for blood collection varies across species. However, despite 
the method used, the collection of blood sample is itself invasive. 
Thus, when planning researches on basal-levels of stress, the effects of 
sample collection must be considered as they may bias the hormonal 
response of the examined animals. To avoid this problem blood 
samples are generally taken before the adrenal cortex has been 
activated, that is within few minutes from capture (Wingfield and 
Romero 2001; Romero and Reed 2005). Other, less sensitive, 
indicators of stress may also be used, such as leukocytes profiles or 
more in detail the heterophils (or neutrophils in mammals) and 
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lymphocytes ratio. In fact, the immune response is another part of the 
adaptive responses to stressful situations. 
The immune system is the primary defence mechanism through which 
the organism protects itself from stressors represented by pathogens. 
Leukocytes or white blood cells (WBC) are fundamental mediators of 
the immune response (Lobato et al. 2005; Davis et al. 2011); they 
circulate continuously in the blood stream and various organs, actively 
destroying invading microorganisms. This circulation is essential for 
maintaining an effective immune defence network. 
Most vertebrates have five types of WBCs: lymphocytes, neutrophils, 
eosinophils, basophils and monocytes, each one with specific 
morphology and function. The morphology of each cell type appears 
to be conserved across taxa, except in the case of neutrophils; indeed, 
in birds and reptiles neutrophils are replaced with heterophils, which 
perform the same immunological function (Hawkey and Dennett 
1989; Jain 1993). 
Neutrophils/heterophils and lymphocytes make up the highest 
percentage (i.e. nearly 80% combined) in WBCs of many vertebrates 
including reptiles (Eliman 1997; Fisse et al. 2004; Davis et al. 2008). 
Specifically, neutrophils/heterophils are the primary immune 
phagocytosing cells; they enter the tissues during the inflammatory 
response (Jain 1993; Campbell 1995; Davis et al. 2008) participating 
actively to the phagocytosis of organisms and other foreign material 
(Thrall et al. 2012). Lymphocytes are involved in a variety of 
immunological functions such as immunoglobulin production and 
modulation of immune defence (Campbell 1996). Generally, the 
numbers and proportions of leukocytes in blood provide an important 
representation of leukocyte distribution in the body and of the 
activation state of the immune system. Leukocyte profiles have a 
recognized predictive power for interpreting individuals’ health status; 
indeed, the observations of variations in leukocytes numbers are 
particularly useful in the field of conservation biology to describe an 
altered health status (Wakelin 1996; Davis et al. 2004; Davis et al. 
2008). Usually, during a stress condition, an increase in neutrophyls 
(N)/heterophils (H) and a decrease in lymphocytes (L) are observed 
(Maxwell and Robertson 1998; Ots et al. 1998; Davis et al. 2008). 
Since numbers of these types cells are affected by stress in opposite 
directions, the relative proportion of neutrophils/heterophils to 
lymphocyte (N-H/L) is commonly used as a composite measure of the 
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stress response (Gross and Siegel 1983; Maxwell 1993; Maxwell and 
Robinson 1998; Lobato et al. 2005; Davis et al. 2008; Xuereb et al. 
2012; Lentfer et al. 2015). Differently from the glucocorticoids 
measurements, the WBC approach offers the advantage that it does 
not require prohibitively rapid sampling and is relatively inexpensive. 
Moreover, leukocyte profiles are particularly useful in the field of 
stress physiology because they can be directly related to stress 
hormone levels (Davis et al. 2008). Many studies have described the 
stress-induced change in leukocyte distribution mediated by hormones 
released by the adrenal gland (Dhabhar et al. 1996; Dhabhar and 
McEwen 1999). Chronically elevated glucocorticoid levels may cause 
long-term elevations in N-H/L ratio as they simultaneously induce a 
reduction in the number of circulating lymphocyte, with a 
redistribution from circulatory to bone marrow. At the same, they 
cause increase in the number of neutrophils/heterophils, by 
stimulating their influx into the blood and attenuating their egress 
from the blood to other compartments (Sapolsky et al. 2000). 
Therefore, trafficking and function of blood cells are altered 
transiently by GCs.  
Because stress in animal populations is an important factor to consider 
when evaluating their welfare in both captive and wild condition, 
using different stress markers is fundamental to obtain a reliable 
assessment of the stress condition. For this, in this part of the PhD 
project, using both haematologic and hormonal profiles, I specifically 
explored how parasites affect iguanas’ life traits as leukocyte profiles 
and glucocorticoids levels. In fact, the two populations of C. marthae 
and C. subcristatus have to overcome the strong impact of ticks, 
which seem to be more abundant in Volcán Wolf than elsewhere in 
the archipelago. The site is characterized by a massive occurrence of 
ticks Amblyomma spp., ectoparasites already described infecting 
marine iguanas (Wikelski 1999). Probably, ticks are the major vectors 
of Hepatozoon (Apicomplexa: Adeleorina) in Galápagos reptiles 
(Bataille et al. 2012). Hepatozoon, with over 300 species described, is 
the most common among intracellular blood parasites in reptiles 
(Telford 1984; Smith 1996). They infect host erythrocytes and their 
effects on host fitness are still debated.  
In general, ecto and endoparasites are considered potential sources of 
biotic stress for all organisms (Lozano 1998). They can coexist with 
their hosts without causing any measurable deleterious effects, but 
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they can also increase in numbers and overwhelm a host already 
weakened by other forms of stress such as malnutrition or 
reproduction (Walzer and Genta 1989). Finally, they can directly 
provoke inflammatory responses and disease affecting individual 
health and fitness-related traits (Schwanz 2008). Moreover, parasites 
and glucocorticoid hormones interact and affect a multiplicity of 
processes, such as immune response and reproduction (Wingfield et al. 
1997; Sapolsky et al. 2000). However, the nature of the relationship 
between parasitic infection and levels of glucocorticoids and their 
possible covariation with haematological profiles has received 
relatively little attention in wild animals, and with equivocal results. 
For this, aware of the poor knowledge about patterns of natural 
variation of haematological parameters and glucocorticoid levels and 
their relationship with parasites in reptile wild populations, in the 
second part of the project I analysed the relation between ecto- and 
endoparasites and the stress physiology of these two Galápagos land 
iguanas. For this purposes I used: (i) leukocyte profiles and 
specifically the heterophils/lymphocytes ratio (H/L), commonly used 
as diagnostic tool for assessing long-term stress in vertebrates (Davis 
et al. 2008), (ii) endocrinological markers as baseline corticosterone 
plasma levels, the primary adrenal glucocorticoid hormone produced 
in response to stressful events in reptiles (Greenberg and Wingfield, 
1987).  
I used a separate population of C. subcristatus, occurring in a coastal 
area where notoriously ecto-parasites and haemoparasites are 
marginally present (Bahia Urbina), as “blank” condition for 
haematologic and hormonal comparisons.  
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1) Introduction 
 
Reproductive endocrinology is a fundamental resource for scientists 
interested in comprehending different aspects of reproductive biology 
in vertebrates. Endocrinological mechanisms controlling the 
reproductive biology have been studied more widely in mammalian 
organisms than in reptiles (Bronson 1989) and birds (Tsutsui et al. 
2000; Wikelski et al. 2000). Despite this, although differences that 
reflect the evolutionary processes among classes exist, several studies 
on vertebrate reproduction and endocrinological processes indicate a 
notable homogeneity throughout the subphylum (Nandi 1967; Bentley 
1998).  
Reproductive activity in reptiles is associated with an essential 
variation in circulating concentrations of the primary sex steroid 
hormones: progesterone (P4) and 17β-estradiol (E2) (Jones and 
Guillette 1982; Crews and Silver 1985; Wibbels et al. 1992; Edwards 
and Jones 2001; Taylor et al. 2004; Norris and Lopez 2010). 
Reproductive rhythms, sexual behaviours, physiological processes 
correlated to reproduction such as mating, gestation and oviposition 
are under a complex endocrine control which involves the activity and 
regulation of hypothalamic-pituitary-gonadal axis (HPG) on sex 
steroids hormones production (Licht 1979; Crews and Silver 1985).  
In reptiles, surveys on sex steroid hormones openly declare the 
importance of progesterone in regulating the oocyte maturation and in 
maintaining gestation (Callard et al. 1992; Custodia-Lora and Callard 
2002). Progesterone has a role in determining the timing of 
oviposition (Norris 2007), inhibits oviductal contractility (Guillette 
and Jones 1985; Edwards and Jones 2001), and delays parturition 
(Guillette et al. 1991). The pattern of progesterone production during 
the reproductive cycle differs between viviparous and oviparous 
reptiles (Callard et al. 1992). While in live-bearing reptiles the highest 
concentration is reached during mid-pregnancy, in those laying eggs  
progesterone shows a pre-ovulatory and early-pregnancy rise with a 
strong decrease before oviposition (Crews and Silver 1985; Taylor et 
al. 2004). The role of P4 in pregnancy maintenance has been well-
studied especially in viviparous reptiles where its function in 
inhibiting follicular development and maintaining oviductal 
vascularity is deeply described (Guillette et al. 1981; Mead et al. 
1981). 
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The 17β-estradiol (E2) is the primary estrogenic steroid hormone in 
reptiles (Norris 2007). Ovarian development and vitellogenesis 
process (yolk production) are usually associated with elevated plasma 
concentrations of estradiol in squamates (Bonnet et al. 1994), turtles 
(Ho et al. 1981), and alligators (Guillette et al. 1997). Vitellogenesis is 
clearly an estrogen-dependent process; estradiol regulates the 
synthesis of vitellogenin by the liver and the yolk protein 
accumulation in blood and oocytes (Licht 1979; Ho 1987). Moreover, 
estradiol plays an important role in inducing sexual behaviours during 
mating period (Whittier and Tokarz, 1992; Rhen and Crews 2000); 
indeed, exogenous administrations of estrogen are known to have a 
stimulatory effect on female sexual receptivity in some species of 
lizards (Crews 1975a; Valenstein and Crews 1977).  
Thus, investigating circulatory levels of sexual hormones can be very 
informative of the reproductive status of wild reptiles and may prove 
very useful when conservation is also an issue, especially when the 
duration of field investigations, that allow direct observations, is 
strongly limited by logistic constraints. This is the case of the pink 
iguana from the Galápagos (Conolophus marthae), a species recently 
discovered (Gentile and Snell 2009; Gentile et al. 2009) and listed as 
Critically Endangered in the IUCN Red List (Gentile 2012). The 
species occurs only on the top and along the northwest slopes of 
Volcán Wolf (Isabela Island), the highest peak (1,707m) and one of 
the most remote and difficult field sites in the Galápagos archipelago 
(Fig. 1). Threatens include small population size, extremely limited 
distribution, possible competition with a syntopic population of C. 
subcristatus, and introduced predators (Gentile et al. 2016). 
Contrary to the pink iguana, C. subcristatus is widely distributed 
across the archipelago, including Isabela Island and Wolf volcano. A 
third Galápagos land iguana species, C. pallidus, occurs only in the 
island Santa Fe. Little is known about the reproductive biology of 
these species. The available information is incomplete and regards 
only C. subcristatus and C. pallidus for which previous studies 
indicated that clutch size and mating season vary across islands 
(Werner 1983; Snell et al. 1984). Information on the reproductive 
biology and ecology of C. marthae is limited to circumstantial 
observations.  
As the two syntopic species on Wolf volcano may compete for nesting 
sites, comprehending times and modes of reproduction is crucial to 
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understand whether the two populations have complete overlapping 
reproductive seasons. Additional needed sensible data are also the 
densities of reproducing females, particularly important in the light of 
the fact that clutch size are very different in the two species (Gentile et 
al. 2016). Clearly, information gained from hormonal surveys may 
potentially allow addressing these issues. 
Unfortunately, no previous studies of sexual hormones of Conolophus 
species exist. Sexual steroids were instead investigated in the marine 
iguana Amblyrhynchus cristatus (Rubenstein and Wikelski 2005; 
Vitousek et al. 2010; Vitousek and Romero 2013), the sister taxon of 
Conolophus (Rassmann 1997). Such studies focused precisely on how 
baseline patterns of sex steroids vary during the breeding season in 
relation to female aggression (Rubenstein and Wikelski 2005), 
receptivity (Vitousek et al. 2010), and mate selection (Vitousek and 
Romero 2013). In A. cristatus physiological changes in circulating 
hormones affect reproductive biology. Progesterone and estradiol 
were reported to be associated to different reproductive processes and 
work independently showing distinctive patterns during mating and 
nesting periods. Progesterone was elevated at the beginning of mating 
period but decreased towards the end, increased again at the beginning 
of nesting period, related to pregnancy maintenance, and then 
incessantly decreased throughout nesting phases (Rubenstein and 
Wikelski 2005). Moreover, in A. cristatus progesterone seemed to be a 
potential inhibitor of vitellogenesis as its plasma levels increased 
during follicular atresia (Vitousek et al. 2010). On the contrary, 
estradiol apparently stimulated attractivity and receptivity of female 
marine iguanas; plasma concentration of estradiol was extremely low 
during all nesting phases but peaked during the mating period when it 
stimulated the vitellogenesis process and modulated the aggressive 
behaviour (Rubenstein and Wikelski 2005).  
Considering the evidences obtained in marine iguanas and the sister 
taxon relationship between Amblyrhynchus and Conolophus, in this 
study we used A. cristatus as a reference biological system and used a 
combined approach of biometric, endocrinological and ultrasound 
analyses to examine and explain baseline steroid plasma levels of P4 
and E2 in the two syntopic populations of terrestrial Galápagos 
iguanas C. marthae and C. subcristatus. 
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Figure 1. Galápagos Islands. The triangle indicates the volcano where 
C. marthae and C. subcristatus were studied. 
 
 
2) Materials and methods 
 
2.1) Ethic statement 
 
Animal manipulation and blood sampling were performed according 
to a protocol that minimized animal stress, in accordance with the 
European Community guidelines and with the approval of the 
Galápagos National Park. Samples were exported and imported under 
the CITES permits 101/BG and IT/IM/2015/MCE/01711, respectively. 
 
2.2) Samples 
  
Samples of C. marthae and C. subcristatus females were collected in 
three different years: July 2010, June 2012 and 2014. Sample sizes 
and reproductive status considered in the present investigation are 
summarized in Table 1.  
During all field sessions, approximately 2ml of blood were drawn 
from each iguana within 5 minutes from capture, using a 5 ml 
heparinized syringe. Blood was collected from the caudal vein and 
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kept on ice. A few hours later blood was centrifuged and plasma was 
separated. Plasma was stored at -10°C while in the field and at -40°C 
once back in the laboratory.  
All captured iguanas were weighed and measured. The body condition 
index (BCI) was then estimated as the ratio of body mass/snout-vent 
length (SVL)3 x 106 (the ratio was multiplied by 106 to reduce the 
number of decimals). Although simple, this index has been already 
used to describe the physical condition of marine (Laurie 1989; 
Wikelski and Trillmich 1997, Romero and Wikelski 2001) and land 
iguanas (Costantini et al. 2009). 
 
2.3) Ultrasound analysis  
 
For each female we determined the number of eggs, egg size, and the 
stage of development of follicles using a Sonosite portable ultrasound 
machine (FUJIFILM SonoSite, Inc.). Technical characteristic of the 
device and probe used, as well as the protocol applied, can be found in 
Gentile et al. (2016). Although abdomen palpation can be a possible 
method for diagnosing pregnancy, the use of ultrasound machine 
offers clear advantages. In fact, several studies identified it as the most 
reliable method to realize an accurate evaluation of reproductive 
conditions in reptiles (lizard: Gartrell et al. 2002; Gilman and Wolf 
2007; tortoise: Robeck et al. 1990). The analysis allowed us to 
determine the reproductive status of each female, differentiating 
between development stages of eggs (Fig. 2): stage “a”, females 
showing follicles with eggs of homogenous, spherical and small 
dimensions; stage “b”, females with larger, yet not fully formed, 
unshelled eggs; stage “c”, females with large, fully formed, shelled 
eggs; stage “d”, non-reproductive females carrying no visible eggs 
inside follicles. An examination of the corpus luteum would prove 
useful to assess whether a female has laid a clutch of eggs in the 
recent past. However, while the corpora lutea persist in ovoviparous 
reptiles after egg-laying (Glasser and Bullock 2012), in oviparous 
reptiles as Conolophus they regress shortly after deposition (Yadav 
2008). Additionally, along with its advantages, the ultrasound 
approach has the disadvantage that it does not allow the visualization 
of the corpus luteum (Norris and Lopez 2010).  
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Pregnancy status a b c d 

2010 (July) 
    

C. marthae 0 0 4 14 

C. subcristatus 0 0 0 9 

2012 (June) 
    

C. marthae 0 0 2 16 

C. subcristatus 0 0 9 5 

2014 (June) 
    

C. marthae 2 1 0 17 

C. subcristatus 1 1 8 10 

 
Table 1. Pregnancy status of each species during three sampling 
seasons. (stage a) Females with only follicular eggs; (stage b) females 
with not fully-formed eggs with only shell membrane; (stage c) 
females with fully-formed eggs; (stage d) non-reproductive females 
when no follicles or eggs were visualised. 
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Figure 2. Original ultrasound images. 
Stages: “a” follicles with eggs of homogenous, spherical and small 
dimensions; “b” large, yet not fully-formed, unshelled eggs; “c” large, 
fully-formed, shelled eggs; “d” no visible eggs. 
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2.4) Hormone assays 
 
Plasma levels of sexual steroids hormones progesterone (P4) and 17β-
estradiol (E2) were determined by using competitive enzyme-linked 
immunosorbent assays (ELISA).  
Indeed, several studies have analysed steroid hormones in reptiles 
using radioimmunoassay (RIA) (turtles: Mahmoud et al. 1989; snakes: 
Highfill and Mead 1975; Taylor et al. 2004; lizards: Judd et al. 1976; 
Arslan et al. 1978; Amey and Whittier 2000; Husak et al. 2007). The 
only works on iguanine lizards regard A. cristatus and use RIA 
(Rubenstein and Wikelski 2005; Vitousek et al. 2010; Vitousek and 
Romero 2013).  
Radioimmunoassay is a common method for quantifying the steroids 
hormones in vertebrates, however some problems associated to this 
method exist. The need of special facilities for handling radioactivity, 
the short stability time of the radiolabeled ligands and potential health 
risks are commonly associated to this methodology (Andoh 2006; 
Sink et al. 2008). On the contrary ELISA is generally faster and safer 
than RIA, it is less expensive and shows a greater stability of reagents. 
Overall, there is still lack of data on how these two methods are 
comparable. The little information available suggests that differences 
may be observed when comparing results from RIA and ELISA. 
Problems may especially reside in differences in protocols of analysis 
(Sink et al. 2008). 
All ELISA immunoassays were performed at the Laboratory of 
Clinical Biochemistry (Tor Vergata University Hospital). Plasma 
samples were preserved at -40°C until assayed. 
We used 50 µl of plasma for the determination of each hormone. Only 
for E2, plasma was diluted 1:2 with assay buffer (containing proteins 
and sodium azide) to remove matrix interference. All samples were 
assayed in duplicate and randomly distributed between plates. 
We used the enzyme-linked immunosorbent assay kit (CEA459Ge) 
pre-coated with a monoclonal antibody for P4. The detection range of 
progesterone ELISA kits (CEA459Ge) was 1.23-100 ng/mL. The 
intra-assay variation was < 10%, the inter-assay variation < 12%. 
We could not use ELISA kits of the same lot throughout the whole 
study, despite it was recommended (Sink et al. 2008). In fact, we used 
ELISA kits belonging to two different lots. To evaluate inter-lot 
variation, 5 individuals were analysed by using both lots. The power 
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curve y = axb, where a = 0.059006 and b = 1.4786, fitted data with a 
proportion of variance explained (R2) equal to 0.995. We used such a 
curve to adjust readings from the second lot. In order to account for 
experimental error, a randomly generated number comprised within 
the minimum and maximum residual values of the regression was 
added to each predicted value.  
For the 17β-estradiol (E2) we used the immunoassay KA2535 pre-
coated with a polyclonal antibody. The detection limit of all estradiol 
ELISA kits was 14 pg/mL. The intra-assay variation was around 3%, 
the inter-assay variation 9%. Also for this hormone we used kits 
belonging to two different lots. As full correspondence in 
concentrations of retested animals was found, no adjustment 
procedure was applied in this case.  
Both progesterone and 17β-estradiol assays were performed according 
to the instructions of manufacturers.  
 
2.5) Statistical analysis 
 
We used parametric and nonparametric test in order to analyse 
differences in hormonal plasma levels among years, between the two 
species, and between egg-carrying females (stages a, b, and c) and 
non-egg-carrying females (stage d), and to test the difference in clutch 
size between species. When data presented normal distribution we 
used Student’s unpaired t-test and ANOVA, and when normality 
assumption was not achieved Mann-Whitney U-test and Kruskal-
Wallis ANOVA were applied. Pearson correlation analyses were 
performed to test the relationship between clutch size and body 
metrics (BCI, SVL, and weight).  
Statistical analyses were performed by using software Past (version 
3.07 for MAC) with two tails and alpha set to 0.05.  
 
 
3) Results 
 
3.1) Reproductive status 
 
Of the 18 C. marthae females sampled in 2010, 4 (22%) showed fully 
formed eggs (stage c). No eggs were present in any of the other 14 
females (78%) (stage d). Two females (11%) sampled in 2012 carried 
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not fully formed eggs (stage c); the other 16 (89%) carried no eggs 
(stage d). Two females (10%) sampled in 2014 showed follicles with 
small, spherical eggs (stage a), one female (5%) carried not fully 
formed eggs (stage b) while the remaining 17 (85%) carried no eggs 
(stage d).  
In 2010 all C. subcristatus females sampled carried no eggs (stage d). 
In 2012 we observed nine females (64%) with fully formed eggs 
(stage c), and five (36%) without eggs (stage d). In 2014, one female 
(5%) showed follicles with small, spherical eggs (stage a), one female 
(5%) carried not fully formed eggs (stage b), eight females carried 
fully formed eggs (stage c) (40%), and 10 females (50%) were found 
without eggs (stage d).  
Considering both fully and not fully formed eggs, we estimated clutch 
sizes equal to 8.4 ± 3.4 and 5.4 ± 1.5 for C. subcristatus and C. 
marthae, respectively. The difference between sizes was statistically 
significant (U = 20.5, P = 0.01). For both species, we did not observe 
a significant linear relationship between clutch size and body 
measures (BCI, SVL, and Weigh) (for all tests P > 0.05). 
 
3.2) Progesterone (P4) 
  
Progesterone plasma levels in C. marthae and C. subcristatus are 
shown in Fig. 3. Overall, considering all sampled females, the C. 
subcristatus presented higher P4 concentration than C. marthae (U = 
764, P = 0.01).  
When sampling years were treated separately, C. subcristatus showed 
significantly higher levels than C. marthae in June 2014 (U = 110, P = 
0.042).  
In C. marthae, P4 plasma levels were higher in July 2010 than in June 
2012 and 2014 (although not statistically supported), when instead C. 
subcristatus showed low values. 
When analysing the difference between egg-carrying females 
(cumulating females at stages a, b, and c) and non-egg-carrying 
females (stage d), C. marthae presented higher concentration of P4 
plasma levels in egg-carrying females (U = 109, P = 0.042). Moreover, 
we observed a significant difference in P4 concentration among 
females with eggs at three different stages (a, b, and c) (H = 6.533; P 
= 0.036, Tab. 2). Mann-Whitney post-hoc tests, after Bonferroni 
correction, showed a significant difference between females at stages 
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a and c (H = 2. 252; P = 0.035). The remaining pairwise tests resulted 
not significant, (Pa vs b = 0.136 and Pb vs c = 0.081). However, when we 
pooled females at stages a and b to increase the statistical power due 
to the small sample used, P4 levels resulted higher in females at stage 
c than in the pooled sample (U = 0, P = 0.019).  
In C. subcristatus we did not observe a significant difference between 
egg-carrying and non-egg-carrying females (U = 157, P = 0.18), but 
we found different variances (F = 3.11, P = 0.02). Considering the 
June (2012+2014) and July (2010) sampling sessions separately, F test 
indicated a larger variance in June than in July (F = 13.38, P = 0.001). 
We also observed a statistically significant difference between 
variances when comparing females without eggs sampled in June 
(2012+2014) with females without eggs sampled in July (2010) (F = 
25.99, P = 0.0002; Fig. 4). We observed a statistically significant 
difference between total egg-carrying females and non-egg-carrying 
females of 2010 (U = 27, P = 0.018), with egg-carrying females 
showing higher P4 levels. However, this significance disappeared 
when total egg-carrying females were compared with non-egg-
carrying females of June (2012+2014) (U = 88; P = 0.36). 
 
 

 
 
Figure 3. Progesterone patterns in Conolophus marthae and C. 
subcristatus during three sampling seasons. Concentrations are 
reported as median. 
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Figure 4. Progesterone plasma levels in non-pregnant females of July 
(2010) and June (2012+2014) in C. subcristatus (median ± SD). 
 
 

Progesterone concentration 

 
Follicular 
eggs (a) 

Not fully-formed 
eggs (b) 

Fully-formed 
eggs (c) 

N 2 2 5 
Min 0.479 1.025 3.061 
Max 0.503 2.358 19.045 
Variance 0.0003 0.888 45.134 
Stand. dev. 0.017 0.942 6.718 
Median 0.491 1.691 5.059 
    

Table 2. Variability in progesterone concentrations between three 
active reproductive states in C. marthae.  
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3.3) 17β-estradiol (E2) 
 
In C. subcristatus we found significant differences in 17β-estradiol 
plasma levels among years (H = 12.44, P = 0.002) (Fig. 5). Bonferroni 
post-hoc test indicated that estradiol plasma levels in 2010 were 
significantly lower than either 2012 (P = 0.004) or 2014 (P = 0.02). 
Instead, C. marthae did not show significant difference in estradiol 
levels among years (H = 2.21, P = 0.3).  
Overall, we observed a higher concentration of estradiol in pink than 
in yellow iguanas (U = 273.5, P = 0.03).  
In both species we did not observe a significant difference in estradiol 
plasma concentrations between females at reproductive stages a-c and 
stage d (C. subcristatus P = 0.4; C. marthae P = 0.5). However, in C. 
marthae, a statistically significant difference emerged when 
comparing females at stages b+c with females at stage a, these latter 
exhibiting higher estradiol concentration (t = - 2.9817, P = 0.02). 
In C. subcristatus, females carrying no eggs showed estradiol levels 
and variances higher in June (2012+2014) than in July (2010) (U = 6, 
P = 0.001; F = 15.193, P = 0.001; Fig. 6).  
 
 

 
 
Figure 5. 17β-estradiol patterns in Conolophus marthae and C. 
subcristatus during three sampling seasons. Concentrations are 
reported as median. 
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Figure 6. 17β-estradiol plasma levels in non-pregnant females of July 
(2010) and June (2012+2014) in C. subcristatus (median ± SD). 
 
 
4) Discussion 
 
One of the main findings of our study is represented by the 
observation of a contrasted pattern of progesterone plasma levels in 
the congeneric land iguanas C. subcristatus and C. marthae. As for C. 
subcristatus, despite difference in the analytical tools, the observed 
patterns and order of magnitude of hormone concentration levels are 
consistent with those found by Rubenstein and Wikelski (2005) in A. 
cristatus, predictably changing during the mating and nesting periods. 
In fact, in A. cristatus progesterone increases during the mating period 
as related to oviduct vascularity and pregnancy maintenance. Indeed, a 
role of progesterone in pregnancy maintenance has been documented 
in many reptiles (Highfill and Mead 1975; Arslan et al. 1978; 
Naulleau and Fleury 1990; Bonnet et al. 2001; Taylor et al. 2004). 
Colonophus subcristatus showed significant changes of progesterone 
and estradiol levels throughout the three reproductive seasons 
considered in our study. High plasma progesterone levels in June 2012 
and 2014 contrasted the low progesterone levels observed in July 2010. 
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The ultrasound analyses indicated that in July 2010 no sampled 
females carried eggs, whereas those sampled in June 2012 and 2014 
were at different reproductive stages, with many females carrying 
eggs at various stages of development (64% in 2012, 50% in 2014). 
The high number of females carrying eggs in 2012 and 2014 
associated with high progesterone plasma levels, and the 
correspondent absence of egg-carrying females in July 2010, when we 
observed low progesterone levels, could be sufficient to assert that 
reproduction of C. subcristatus from V. Wolf is still ongoing in June 
and has ended by July. The difference in the variance of progesterone 
levels of females at stage d (2012+2014 versus 2010) is consistent 
with such a scenario. In fact, while the ultrasound analysis did not 
allow to discriminate if the lack of eggs would indicate mating phase 
or occurred deposition, hormonal profiles were informative especially 
when we pooled June 2012 and 2014 together and compared the 
pooled sample with July 2010. The higher variance in progesterone 
plasma levels exhibited by non-carrying-egg females in June could 
testify for the presence of females in different reproductive conditions: 
(i) females in which progesterone could have dropped after deposition 
(Taylor et al. 2004); (ii) females that did not reproduce, suffering the 
low hormonal levels typical of non-receptive females (Vitousek et al. 
2010); (iii) females still in a mating phase, when hormone 
concentration is lower than in early nesting period but higher than in a 
post deposition condition (Rubenstein and Wikelski 2005). The 
presence in June of females still in a mating phase is also suggested by 
the lack of a difference in plasma P4 levels between total egg-carrying 
females and non-egg-carrying females of June. Such a difference 
emerged instead when total egg-carrying females and non-egg-
carrying females of July were compared.  
Further support to the described scenario is also provided by the 
analysis of estradiol. In fact, we know that in A. cristatus estradiol 
peaks during the mating period and strongly declines during all 
nesting phases (Rubenstein and Wikelski 2005). In C. subcristatus 
sampled in July, we did not observe egg-carrying females and both 
progesterone and estradiol levels were very low. Furthermore, 
estradiol concentration in non-egg-carrying females was lower in July 
than in June, when also higher variance was observed. This strongly 
suggests that in June many females had high levels of estradiol 
because still in a mating phase (probably in last copulation stage), 
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when E2 influences the vitellogenesis process (Edwards and Jones 
2001; Guillette et al. 1997; Ott et al. 2000; Rubenstein and Wikelski 
2005), receptivity, attractivity (Mason and Adkins 1976; Rhen and 
Crews 2000; Winkler and Wade 1998), and aggressive behaviours 
against males attempting to copulate again (Rhen et al. 1999; 
Woodley et al. 2000a; Woodley and Moore 1999b; Rubenstein and 
Wikelski 2005). In July, all females had concluded the breeding 
season and abandoned the nest sites, showing very low levels of 
estradiol. Other studies on reptiles showed that extremely low 
estradiol levels emerge especially in post-parturition phase (Jones and 
Guillette 1982; Taylor et al. 2004).  
Of course, reproduction in Conolophus may vary between years and 
locations as influenced by environmental conditions and resource 
availability (Snell et al. 1984), as in many reptiles (Laurie 1990; 
Vitousek et al. 2010). Our data indicate that the laying season in C. 
subcristatus from V. Wolf may occur in June-July, as in Fernandina 
Island. Interestingly, these are the only two known sites where C. 
subcristatus reproduces in those months. Fernandina and V. Wolf are 
also among the westernmost volcanos in Galápagos. If this correlates 
with particular climatological and environmental conditions that may 
affect reproduction remains to be uncovered.  
The pattern of progesterone plasma levels in C. marthae, opposed to 
that of C. subcristatus, and the presence of egg-carrying females in 
2010 could suggest a slightly delayed reproduction in the pink species 
compared to the congeneric syntopic population.  
Overall, in C. marthae we observed a significant increase of 
progesterone levels in egg-carrying females. Also in this case the role 
of P4 in pregnancy maintenance was clear. Furthermore, plasma 
progesterone concentration significantly varied with stage of 
gravidity; in fact, it increased when eggs reaching complete 
maturation (shell and yolk formation). This observation suggests a 
role of the corpus luteum and its primary product (progesterone) in the 
shell secretion as occur in many reptiles during pregnancy (Ferguson 
1985; Guillette and Jones 1985; Guilette et al. 1989). Anyway, 
although in C. marthae we found a positive relationship between egg-
development stages and hormone levels, we observed constantly low 
comparable levels of progesterone through the three sampled years 
(2010-2012-2014), limited number of egg-carrying females and 
reduced number of eggs, compared to C. subcristatus. The 
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concentration of estradiol was higher in C. marthae than in C. 
subcristatus, but no difference across years was observed in C. 
marthae. The association of progesterone with the pregnancy status 
was a signal of the ovarian system functioning. In oviparous reptiles, 
the corpora lutea persist during pregnancy producing progesterone 
(Norris and Lopez 2001) and, in C. marthae a higher production of 
progesterone during pregnancy appeared. Furthermore, in the pink 
species, estradiol level seemed higher at early stage of egg maturation; 
this is in agreement with the evidence that in reptiles estrogens are 
secreted by vitellogenic ovarian follicles to then decline as eggs 
remain in the uterus (McNicol and Crews 1979; Etches and Petitte 
1990; Norris and Lopez 2010). However, although in C. marthae, 
hormonal profiles of progesterone and estradiol provide physiological 
evidence of a hormonal change at different reproductive stages, they 
did not allow the identification of a specific reproductive period. 
Based on our data, for C. marthae, we could hypothesize the absence 
of a specific breeding season. The pink iguana could employ 
opportunistic reproductive strategies dependent on environmental 
conditions or interspecific interactions with C. subcristatus. Generally, 
reptiles tend to time egg incubation when a favourable season with 
minimum physiological stresses and maximum food resources is 
present. In pink iguana, we could hypothesize an individual 
opportunism as commonly occurs in other vertebrates (Milton et al. 
2004) with females respond to stressful conditions varying 
reproductive period and clutch size. We could hypothesize that the 
lack of observed recruitment for this species (Gentile 2012) may be 
due to a limiting factor as for example predation on hatchlings and 
juveniles by hawks (Buteo galapagoensis) or feral cats (Felis catus). 
Indeed hawks and feral cats are constantly present on volcano and 
they are already described as cause of mortality in the marine iguana 
(Laurie and Brown 1990).  
However, no C. marthae female resulted in reproductive conditions 
after a recent ultrasound surveys performed in November 2015 on a 
small number of healthy pink iguanas, or indirect evidence of 
reproduction activity (homospecific pairs, sperm at the cloaca of 
males and females) was found. This is in contrast with observation of 
such evidence in June/July (Gentile et al. 2016). Thus, for this reason, 
it is most likely that at present C. marthae may suffer from lack of 
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effective reproduction and the population results in attrition (Gentile 
2012). 
To conclude, our results suggest that hormonal profiles are 
fundamental to improve the knowledge on the reproductive biology of 
wild populations, especially when long-term observations are 
impossible. Our data indicate that C. subcristatus presents a specific 
and recognizable breeding season on Volcán Wolf. This season 
reaches its peak in June and concludes in July. In the same period, C. 
marthae shows reproductive activity, but the combination of hormonal 
profiles and ultrasound analysis demonstrated that such activity does 
not result in high numbers of reproductive females. Although 
opportunistic reproductive strategy cannot be completely ruled out for 
C. marthae, effective reproduction in this species seems hampered, 
determining attrition. In this regard, it is clear that further 
investigations are needed, especially aimed at uncovering the 
relationship between area of distribution, habitat characteristics and its 
usage, by tracking movements of individuals over time. This will help 
to locate nesting sites, currently unknown, and guide future 
conservation action for this critically endangered species. 
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CHAPTER 3 
 
Relationships between leukocyte profiles and Hepatozoon infection 
in Galápagos land iguanas, Conolophus marthae and Conolophus 
subcristatus 
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1) Introduction 
 
Parasites can directly impact the host physiology and behaviour by 
exerting important pressures on several aspects of host population 
dynamics as growth (Holmes 1982; Hudson et al. 1998) spatial 
distribution (Price 1980; van Riper et al. 1986) and reproductive 
success (Schall 1996; Pacejka et al. 1998; Amo et al. 2004). 
Haemoparasites frequently occur in ectothermic vertebrates and 
include protists, prokaryotes and viruses that inhabit the bloodstream 
with both intra-erythrocytic and extracellular forms. Blood parasites 
are very common in reptile species, with intracellular sporozoan 
haemogregarines being among the commonest (Telford 1984; Smith 
1996). The genus Hepatozoon (Apicomplexa: Adeleorina), with more 
than 300 species reported infecting animals, represents the widest 
distributed haemoparasite group (Telford 1984; Smith 1996; Baneth et 
al. 2003; Vilcins et al. 2009; Tomé et al. 2012). The transmission of 
these intra-erythrocytic parasites typically occurs via the ingestion of 
an infected invertebrate containing sporocystis/sporozoites, followed 
by merogonic development in host internal organs (Telford 1984; 
Smith 1996). Very little data are available on the effects of 
haemogregarines on reptile hosts (Schall 1986; Manwell 1977; Sorci 
1995), but they seem capable of provoking significant inflammatory 
responses (Wozniak and Telford 1991; Stacy et al. 2011) and diseases 
as hemolytic anemia (Telford 1984).  
Commonly, culicine and anopheline mosquitoes, mites and ixodid 
ticks have all been shown to be potential vectors of transmission 
(Telford 1984). Ectoparasites as mites and ticks not only affect the 
host by transmitting blood parasites (Wozniak et al. 1996; Oppliger 
and Clobert 1997; Main and Bull 2000), but they may also directly 
affect both body condition and survivorship by causing lesions, blood 
loss, and anemia (Hair et al. 1992; Bull and Burzacott 1993; Goldberg 
and Holshuh 1993; Wikelski 1999; Fitze et al. 2004). 
The immune system is the primary defence mechanism through which 
the organism protects itself from pathogen attacks, and leukocytes or 
white blood cells (WBC) are the crucial mediators of the immune 
response (Lobato et al. 2005; Davis et al. 2011). For the maintenance 
of an effective immune defence network, WBCs move continuously 
within tissues, through the bloodstream, destroying or neutralizing 
actively invading microorganisms (Dhabhar 2000).  
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Reptilian leukocytes can be classified as granulocytes (heterophils, 
eosinophils, basophils), and mononuclear cells (lymphocytes, 
monocytes, azurophils) (Stacy et al. 2011; Nardini et al. 2013). 
Azurophils are cell type unique to reptiles; however, most researchers 
group them with monocytes (Hawkey and Dennett 1989; LeBlanc et al. 
2000; Davis et al. 2008).  
Lymphocytes compose up to 80% of leukocyte types in many reptile 
species (Sypek et al. 1988; Stacy et al. 2011). They are highly specific 
immune cells involved in a variety of immunological functions such 
as synthesis and secretion of immunoglobulins and antigen 
elimination (Campbell 1996; Davis et al. 2008; Stacy et al. 2011). 
Heterophils (30% to 45% of leukocytes) are the primary immune 
phagocytosing cells entering the tissues during the inflammatory 
response (Jain 1993; Campbell 1995; Strik et al. 2007; Davis et al. 
2008) by participating in destroying microorganisms with oxygen 
dependent or independent mechanisms (Thrall et al. 2012). The 
remaining WBCs are represented by: (i) eosinophils, associated with 
allergic inflammation (Thrall et al. 2012) and parasitism (Jain 1993; 
Strick et al. 2007); (ii) monocytes which are phagocytic cells 
associated with chronic infection often caused by parasites or bacteria 
(Gregory et al. 2004; Davis et al. 2008 Stacy et al. 2011); (iii) 
basophils, whose function is not well understood but seem to be 
involved in viral infections (Sypek et al. 1988; Strick et al. 2007; 
Stacy et al. 2011). 
Overall, alterations in leukocytes number have been commonly 
described as a result of infections and diseases, and the 
characterization of leucocyte profiles (i.e. the relative numbers of 
different leukocyte types in the peripheral blood) is particularly useful 
in the field of conservation biology to describe an altered health status 
(Wakelin 1996; Davis et al. 2004; Davis et al. 2008). Although the 
response of leukocytes appears to be species- or genus-specific 
(Johnstone et al. 2012), general increase in heterophils and decrease in 
lymphocytes are observed in response to various stressors including 
parasitic infections (Maxwell and Robertson 1998; Ots et al. 1998; 
Davis et al. 2008; Müller et al. 2011). The magnitude of alteration of 
these WBC profiles depends on the intensity and persistence of the 
stressor (Averbeck 1992; Vleck et al. 2000). Since numbers of 
heterophils (H) and lymphocytes (L) are affected by the same stressors 
with opposite trends, the measurement of H/L ratio is commonly used 
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as diagnostic tool for assessing long-term stress in vertebrates (Gross 
and Siegel 1983; Maxwell 1993; Maxwell and Robinson 1998; Lobato 
et al. 2005; Davis et al. 2008; Xuereb et al. 2012; Lentfer et al. 2015). 
Leukocyte H/L ratio have been not frequently used to demonstrate 
links between stress and parasites in reptilian wild populations. More 
often, haemoparasitic infections in reptiles were put in relationship 
with individual growth rate and body condition (Madsen et al. 2005; 
Ujivari and Madsen 2006; Curtis and Baird 2008). Some studies have 
clearly identified ecto-parasites as cause of mortality and in these 
cases, body mass and survivorship reduction have been observed 
(Sorci and Clobert 1995; Klukowski 2004). However, often the 
detrimental effects of ecto/endo-parasitic infections are not reported 
(Christian and Bedford 1995; Brown et al. 2006; Schlaepfer 2006; 
Sperry et al. 2009).  
In the present study we analyse the impact of potential stressors of 
ecto- (Amblystoma spp.) and endo-parasites (Hepatozoon spp.) on 
health and haematologic parameters of two synthopic populations of 
Galápagos land iguanas present on Volcán Wolf (Isabela Island): 
Conolophus marthae (the pink iguana) (Critically Endangered, IUCN 
Red List), and Conolophus subcristatus (the yellow iguana) 
(Vulnerable, IUCN Red List). We are aware of the poor knowledge 
about patterns of natural variation of haematological parameters in 
reptile wild populations and their relationship with parasites. 
Specifically, we aim to test the impact of Hepatozoon spp. present in 
Galápagos Islands with more than one species (Bataille et al. 2012) 
and on Volcán Wolf with unique haplotypes (Gentile et al. in prep.) 
with respect to leukocyte profiles, haematocrit and body condition 
index. Moreover, we used a population of C. subcristatus occurring in 
a coastal area where ecto-parasites and haemoparasites are marginally 
present (Bahia Urbina), as “blank” condition for haematologic 
comparisons.  
To our knowledge, this is the first time that such a diverse array of 
haematologic measures, during a study period of five years, have been 
used to estimate the impact of parasites on the heath of free-living 
iguanas species. 
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2) Materials and methods 
 
2.1) Study area and species 
 
The study was conducted in two different areas of Isabela Island: the 
Volcán Wolf (1.707 m.), the highest peak (1,707m) in the Galápagos 
archipelago located on north side of the island, and Bahia Urbina, a 
touristic costal area situated on the west side (Fig. 1).  
Land iguanas were sampled from both areas. Instead, samples of C. 
marthae were obtained exclusively from the volcano, where it 
endemically occurs on the top and along the northwest slopes. The 
results of this study are based on samples collected on Volcán Wolf in 
five years, May 2006, 2009, July 2010, June 2012, 2014, and samples 
collected in Bahia Urbina only during June 2014.  
 
 

 
 
Figure 1. Galápagos Islands. The triangle indicates the volcano Wolf, 
the circle the coastal area Bahia Urbina where samples were collected. 
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2.2) Sampling and blood collection 
 
We collected 2 mL from the caudal vein of each iguana using a 
heparinized syringe. We placed approximately 10 microliters of blood 
on the top of a slide and created a smear. Blood smears were air-dried, 
stored, and then stained following a modified Romanowky method 
(Work et al. 1998).  
A portion of collected blood was placed in a microhaematocrit 
capillary tube and centrifuged for 2 minutes at 2000 rpm, to determine 
the proportion of red blood cells (haematocrit or PCV). The remaining 
blood was stored for additional studies.  
After bleeding, each iguana was weighed and measured from the 
snout to the vent (snout-vent length, SVL). In order to explore the 
effects of parasites on nutritional state, we estimated an index of body 
condition (BCI) as body mass/ SVL3 x 106 (Laurie 1989; Wikelski and 
Trillmich 1997, Romero and Wikelski 2001; Costantini et al. 2009). 
Only in 2012 and 2014 we counted the number of ticks by scanning 
the armpits of each individual. 
After all measurements and before they were released, iguanas were 
branded and PIT tags with a unique alphanumeric codes were 
implanted subcutaneously in each individual. Such marking allowed 
us to recognize individuals from year to year. 
 
2.3) Leukocyte formula and detection of parasites  
 
Each slide were returned to the laboratory and examined under oil 
immersion objective (x100). Data were collected from area of the 
smear where a uniform erythrocyte distribution and no cellular 
overlapping occurred. We described the leukocyte formula (proportion 
of different types of leucocytes) of each individual by examining a 
total of 100 leucocytes, as assessing the proportion of heterophils (H), 
eosinophils (E), basophils (B), lymphocytes (L), and monocytes (M). 
Azurophils were not considered. After the cell count, the H/L ratio 
was calculated for each iguana. 
We analysed the parasitemia by recording the number of 
haemogregarine-infected erythrocytes observed in 20 minutes, time 
during which approximately 100 fields and 5 x 105 red blood cells 
were encountered (Valkiūnas et al. 2008). If no haemoparasites were 
detected after 20 minutes, the individual was classified as uninfected. 
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Such a method proved sufficiently efficient after testing parasitemia 
by a PCR-based approach (Fulvo 2010). 
When the analysis of parasite load of each individual was completed, 
we estimated epidemiologic parameters as: (i) the intensity of 
infection as the percentage of infected red blood cells found in 
approximately 10000 cells (Godfrey et al. 1987); (ii) the prevalence as 
the percentage of individuals with infection; (iii) the incidence as the 
proportion of new infection cases within the study period, that is the 
percentage of individuals not infected in the past, but found infected 
after recapture. 
 
2.4) Statistical analysis 
 
We used the Shapiro-Wilks method to test normality. Where 
normality was not met, data were log-transformed. 
Chi-squared contingency tests were used to compare parasite 
prevalence among years and species.  
To determine whether endo-parasites affected leukocyte profile of C. 
marthae (CM) and C. subcristatus (CS) populations in Volcán Wolf, 
we performed general linear model (GLM) analises. Haematological 
parameters (H, L, E, M, H/L, parasitemia) were the response variables. 
We considered the following predictor variables (and their 
interaction): species, sex, and season (May: 2006+2009; June: 
2012+2014; July: 2010). When a single white blood cell type was 
considered as a response variable the model included also parasitemia 
as covariate. GLMs were used to determine differences in 
haematological parameters (H, L, E, M, H/L, parasitemia) between the 
Volcán Wolf and Baia Urbina populations of CS by including the site 
as a further predictor factor. Since Bahia Urbina was sampled only in 
June 2014, the variable season was set as random factor nested within 
variable site. Least-Significant-Difference (LSD) post hoc pairwise 
comparisons were performed to test for between-group differences.  
As information about ticks were collected only in two years, we used 
Pearson’s correlation to evaluate possible relationship between ecto-
parasitic and endo-parasitic loads, as well as to evaluate a possible 
relationship with leucocyte profile variations. 
All analyses were performed by using Past (version 3.07 for MAC) 
and STATISTICA (StatSoft, version 8 for Windows) software with 
two tails and alpha set to 0.05. 
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3) Results 
 
3.1) Interspecific comparisons (Volcán Wolf) 
 
All sampled iguanas presented ticks on armpits, either at 
larval/nymphal or adult stages. We did not observe differences in the 
number of ticks between the study species (t = - 0.45, P = 0.6). No 
correlation between ticks and hemoparasites abundance was found or 
between tick load and haematological markers (for both species, P > 
0.05). 
On Volcán Wolf, the prevalence of infection by Hepatozoon was very 
high in both species, ranging between 69.4% - 87.5% (Tab. 1; Fig. 2).  
 
 

Year n % infected
Mean SE Mean SE

C. marthae
2006 16 87.5 9.7 3.1 - -
2009 79 87.3 16.2 3.6 - -
2010 56 83.9 20.3 3.5 - -
2012 82 76.8 29.3 6.4 40.9 2.3
2014 62 77.4 17.1 5.3 53.1 4.4

2006 25 72 160.4 133.5 - -
2009 77 79.2 45.8 8.9 - -
2010 20 85 168.4 97 - -
2012 72 69.4 97.4 24.1 41.6 2.5
2014 53 75.4 30.6 8.5 53 2.9

2014 31 9.7 8.6 7.6 0.19 0.08

C. subcristatus  (W)

C. subcristatus  (BU)

Parasitemia Ectoparasites

 
 
Table 1. Prevalence, parasitemia and ticks load for Conolophus 
marthae and Conolophus subcristatus during the entire study period. 
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Figure 2. Percentage of individuals with infection by Hepatozoon 
(prevalence) during the study period. 
  
 
Prevalence did not change over the study period (C. marthae: X2 =3.9, 
df = 4, P = 0.4; C. subcristatus: X2 =3.5, df = 4, P = 0.4) and between 
species (X2 =3.44, df = 1, P = 0.080). In general, both species 
presented low values of infection intensity (CM 0.1%; CS 0.5%), with 
most iguanas showing low parasite loads (Fig. 3 - 4). For both species 
we observed high incidence of infection: 60% in CM (3 out of 5 
recaptured individuals), 66% in CS (2 out of 3 recaptured individuals). 
We never observed the disappearance of Hepatozoon from an infected 
individual.  
Parasitemia was higher in CS than CM (F1,527 = 9.029, P = 0.003). It 
varied along the study period (F2,527 = 4.553; P = 0.011), but no 
difference was found between species in the temporal pattern (F2,527 = 
1.925; P = 0.147). Both species presented a significant difference 
between the peak in July and the minimum in May (P = 0.044).  
Lymphocytes (L) were the most numerous cells in the leukocyte 
differential count followed by H, M, E and B in both species (Table 2). 
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Figure 3. Distribution histogram of parasitemia in individuals of 
Conolophus marthae. 
 

 
 
Figure 4. Distribution histogram of parasitemia in individuals of 
Conolophus subcristatus. 
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0 2006 2009 2010 2012 2014
n 2 10 9 19 14

Lymphocytes (%) 53 ± 6 53.7 ± 3.9 71.1 ± 4.8 62.4 ± 4.7 65.1 ± 3.9
Heterophils (%) 35.5 ± 4.5 34.9 ± 3.4 21.4 ± 4.4 29.9 ± 4.2 23.5 ± 3.2
Eosinophils (%) 4.5 ± 1.5 5.3 ± 0.9 0.5 ± 0.3 3.2 ± 0.6 3.1 ± 0.7
Monocytes (%) 6.5 ± 3.5  5.5 ± 1.2 6.7 ± 1.1 0 4.4 ± 1 7.5 ± 0.9
Basophils (%) 0.5 ± 0.5 0.6 ± 0.2 0 0 0.1 ± 0.1
H/L ratio 1.3 ± 0.4 0.6 ± 0.1 0.3 ± 0.09 0.9 ± 0.4 0.4 ± 0.1

1 n 14 69 47 63 48
Lymphocytes (%) 40.7 ± 5 53.3 ± 1.7 67.3 ± 2.2 51.8 ± 2.8 67.8 ± 2.2
Heterophils (%) 42.7 ± 3.9 34.2 ± 1.5 24.6 ± 1.8 37.4 ± 2.3 21.8 ± 1.7
Eosinophils (%) 12.4 ± 1.9 4.9 ± 0.4 2.1 ± 0.3 3.9 ± 0.5 3.1 ± 0.3
Monocytes (%) 3.7 ± 0.6 7 ± 0.4 5.9 ± 0.5 6.7 ± 0.7 6.8 ± 0.5
Basophils (%) 0.4 ± 0.2 0.5 ± 0.08 0.1 ± 0.04 0.03 ± 0.02 0.2 ± 0.05
H/L ratio 1.5 ± 0.3 0.8 ± 0.06 0.4 ± 0.05 1.9 ± 0.7 0.4 ± 0.05

0 2006 2009 2010 2012 2014
n 7 16 3 22 13

Lymphocytes (%) 40.3 ± 4.1 52.3 ± 3.4 86.3 ± 0.3 47.9 ± 4.3 68.6 ± 4.3
Heterophils (%) 43.3 ± 4 36.8 ± 2.9 9.6 ± 0.3 45.3 ± 4 21.8 ± 3.7
Eosinophils (%) 9.7 ± 2.3 5.1 ± 0.7 0 1.7 ± 0.3 2.3 ± 0.7
Monocytes (%) 6 ± 1.9 5.3 ± 0.9 4 5 ± 0.8 7.1 ± 1
Basophils (%) 0.7 ± 0.3 0.4 ± 0.1 0 0.04 ± 0.04 0.07 ± 0.07
H/L ratio 2.7 ± 1.1 0.8 ± 0.1 0.1 1.8 ± 0.6 0.4 ± 0.08

1 n 18 61 17 50 40
Lymphocytes (%) 34.6 ± 2.5 49.7 ± 2 60.1 ± 2.9 47.2 ± 2.7 54.6 ± 3
Heterophils (%) 47.5 ± 2.2 38.9 ± 1.5 30.6 ± 2.4 44.4 ± 2.3 32.1 ± 2.3
Eosinophils (%) 13.2 ± 1.5 5.1 ± 0.4 2.8 ± 0.5 2.9 ± 0.7 4.8 ± 0.8
Monocytes (%) 4.1 ± 0.7 5.9 ± 0.6 5 ± 1 5.4 ± 0.9 8 ± 0.6
Basophils (%) 0.4 ± 0.2 0.4 ± 0.09 0.6 ± 0.2 0.08 ± 0.05 0.3 ± 0.09
H/L ratio 1.5 ± 0.1 1 ± 0.1 0.5 ± 0.07 1.4 ± 0.2 0.9 ± 0.1

C. marthae
Infection 

status
Leukocyte 
parameters

C. subcristatus

 
 
Table 2. Leukocyte profiles in Conolophus marthae and Conolophus 
subcristatus according to different degrees of Hepatozoon infection 
(0: uninfected; 1: infected). (n: number of smears analysed). 
 
 
Conolophus subcristatus showed higher H (F1,525 = 10.820; P = 0.001) 
and H/L ratio (F1,525 = 3.713; P = 0.053) than CM. H, L and H/L ratio 
varied among seasons (H: F2,525 = 19.345; P ≃ 0; L: F2,525 = 13.173; P 
≃ 0; H/L: F2,525 = 12.697; P ≃ 0), with no difference between species 
(species*season: F1,525 = 0.467; P = 0.495). Specifically, H and H/L 
ratio were significantly lower in July, while L showed the opposite 
pattern (for all post hoc tests P ≃ 0). With the only exception of E, all 
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white blood cells were influenced by parasitema, with contrasting 
trends: positive for H (F2,525 = 4.160; P = 0.042) and H/L ratio (F2,525 = 
4.639; P = 0.032), and negative for L (F2,525 = 3.960; P = 0.047) and 
M (F2,525 = 4.035; P = 0.045).  
In both species we did not observe either significant correlations 
between PCV and parasitemia (CM: P = 0.2; CS: P = 0.4) or 
differences of PCV between infected and non-infected individuals 
(CM: P = 0.2; CS: P = 0.2). 
BCI did not differ between species but only between sexes, resulting 
higher in males of both species (F1,535 = 16.216; P = 0.0001). 
Moreover, BCI did not differ between infected and uninfected 
individuals in both species and not correlate with parasitemia or tick 
load (for all tests, P ≥ 0.05). 
 
3.2) Site comparisons (C. subcristatus) 
 
Overall, in Bahia Urbina we observed a lower number of ticks than in 
Wolf (t = 46, P < 0.00001) as well as a lower number of individuals 
infected by Hepatozoon (prevalence 9.7%; n = 31; Tab. 1).  
Parasitemia was significantly higher in volcano than in Bahia Urbina 
by site (F1,272 = 44.29, P ≃ 0) and season (F1,272 = 3.774, P = 0.024). 
H, L and H/L ratio did not differ between sites  (for all parameters 
F1,272 ≤ 1.138, P ≥ 0.372) but showed clear site-specific temporal 
patterns (season(site) - H: F2, 271 = 8.599, P ≃ 0; L: F2, 271  = 5.749, P 
= 0.017; H/L: F2, 271  = 10.028, P ≃ 0). Specifically, H and H/L ratio 
in Bahia Urbina (June) were lower than H and H/L ratio observed in V. 
Wolf in May (H: P ≃ 0; H/L: P = 0.00001) and June (H: P =0.0005; 
H/L: P = 0.0003), whereas no difference emerged between Bahia 
Urbina and V. Wolf (July) for both H and H/L ratio (H: P = 0.43; H/L: 
P = 0.97) (H/L: Fig. 5). L showed an opposite pattern with higher 
values being observed in V. Wolf in May (P = 0.00002) and June (P = 
0.0003), while no difference was observed between B. Urbina and the 
July sample from V. Wolf (P = 0.99). BCI significantly differed 
between sites resulting higher in Bahia Urbina (F2,272 = 66.153, P ≃ 0). 
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Figure 5. Pattern of H/L ratio in relation to season and site in C. 
subcristatus. 
 
 
4) Discussion 
 
Both populations of land iguanas displayed a high prevalence of 
infection by Hepatozoon with low levels of parasitemia during the 
whole study period. Hepatozoon never disappeared from infected 
individuals. On the contrary, many “new infection” cases occurred 
(incidence values were high for both species: CS 66%, CM 60%). 
Generally, once infected, free-living animals exhibit a relatively stable 
presence of haemoparasites over long periods (Smallridge and Bull 
2000). For haemogregarines, elimination or decrease of parasitemia in 
reptiles has been observed in few studies (Smallridge and Bull 2000; 
Salkeld and Schwarzkopf 2005). Indeed, these haemoparasites, as 
many long-live protozoa parasites, persist throughout the host’s life 
(De Biasi et al. 1989; De Vieira Santos et al. 2005). However, factors 
explaining long-term haemogregarine persistence in vertebrate hosts 
are poorly known. As already described for haemogregarine 
protozoans in snakes and turtles, we can hypothesize two scenarios: (i) 
cases of continuous re-infection with constant replenishment of 
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asexual multiplicative stages of parasite in host tissues, or (ii) 
liberation of dormant merozoites with consequential transformation 
into gametocytes (Jakes et al. 2003; Široký et al. 2004). 
Some expected positive relationships could not be confirmed by our 
study. For example, we could not provide evidence of a positive 
relationship between the number of ticks and the number of specific 
types of leucocytes or in particular with H/L ratio, as observed in 
Lobato et al. (2005). We also found no effect of body size on H/L 
ratio, consistently with what observed in Mole Salamanders by Davis 
and Maerz (2008). However, we observed that even low levels of 
parasitemia, although they did not impact body condition index and 
haematocrit, they did affect leukocyte profiles, with heterophilic white 
blood cells showing the prevalent role in the immune response in 
Conolophus. Specifically, we observed a tendency of two most 
abundant white blood cells (H, L) to inversely respond to Hepatozoon 
infection as expected when immune system is activated against 
haemogregarines (Xuereb et al. 2012). Generally, in reptiles and birds, 
the proportions of heterophils and therefore H/L ratio show the most 
extreme changes under different levels of infection (Aguirre et al. 
1995; Figuerola et al. 1999; Davis et al. 2004) and, in general, an 
increased proliferation and differentiation of these phagocytic 
leukocytes occur to enhance the response to infection (Thrall et al. 
2012; Davis et al. 2008). The fact that Conolophus iguanas respond to 
parasites by showing a higher number of circulating heterophils (with 
the more parasitized C. subcristatus showing higher heterophils 
proportion than the less parasitized C. marthae) may reflect a high 
degree of activation of the innate immune system and a dependence of 
H proliferation with the magnitude of infection. Coherently, the 
opposite trend of lymphocytes could be interpreted as a stress-induced 
redistribution of L from the blood to lymphatic tissues or other organs 
as commonly described in vertebrates during a stress condition 
(Dhanhar et al. 1996; Dhabhar 2002). Nevertheless, we observed the 
minimum peak of H and H/L ratio in July when the parasitemia 
reached its maximum value. Thus, we hypothesize that endoparasites 
are not the only factor affecting this stress marker. The comparison 
between two populations of C. subcristatus allowed us to further 
explore this unexpected result. 
On the volcano we observed a high H and H/L ratio in June when 
many females were reproductively active, and the minimum H/L ratio 
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during July, when CS apparently is completing the reproductive 
activity (Onorati et al. submitted). Our data could suggest that the 
stress experienced by iguanas during reproduction contribute together 
to parasites infection to the observed leukocytes’ patterns. In fact, 
when we analysed C. subcristatus populations in July, we observed no 
differences in leukocyte profile between that from Bahia Urbina, 
considered the “blank condition” (almost no Hepatozoon and outside 
the breeding season), and that heavily parasitized from Volcán Wolf. 
This result could indicate that, even though Hepatozoon causes an 
activation of the immune system especially by augmenting phagocytic 
heterophils, the substantial difference in H/L between June and July 
could be due to the stressful-perceived reproductive phase. This result 
is consistent with studies of reproduction-induced stress in other 
ectotherms, where reproductive status determined increase in H/L 
ratio (Kilgas et al. 2006; Davis and Maerz 2008). In fact, we suggest 
that iguanas can have the physiological capability to modulate the 
activation of their immune system to different stressors: reproduction 
and endo-parasitic infection, in our case. Iguanas showed a strong 
activation of the immune system when they entered an energetically 
costly phase such as reproduction. The increased work of the immune 
system during breeding could directly result in a consecutive strong 
infection as soon as reproduction terminated and the immune response 
toned down, as occurred in July. Certainly, this issue deserves further 
attention and an in-depth investigation is in order to clarify if different 
intensity of contemporary acting stressors may result in a finely tuned 
immune response. 
In conclusion, besides giving reference for future studies of iguanas in 
the wild, this study delivered background information important for 
the conservation of these iguana species and provided a substantial 
advancement in the knowledge of the impact of Hepatozoon in 
Conolophus species. The constancy of prevalence of infection across 
years suggests a stable host-parasite interaction which iguanas seem 
able to cope with. In fact, despite Hepatozoon has an impact in 
Conolophus, as indicated by WBC counts, the response of the immune 
system in relation to reproduction seems stronger. 
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Effects of parasitic infection and reproduction on corticosterone 
plasma levels in Galápagos land iguanas, Conolophus marthae and 
Conolophus subcristatus 
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1) Introduction 
 
In recent years, glucocorticoid levels have been increasingly used as 
physiological indices of individual and population health (Wingfield 
et al. 1997; Romero 2004; Walker et al. 2005; Wikelski and Cooke 
2006; Bonier et al. 2009). Elevated baseline levels have been observed 
in animals facing both environmental (Foley et al. 2001) and 
anthropogenic disturbances (Creel 1997; Wingfield and Romero 2001). 
Generally, high levels of glucocorticoids are related to individuals or 
populations in worse health status (Bonier et al. 2009). 
Glucocorticoids (GCs) are steroid hormones secreted in response to a 
multiplicity of stressors (Sapolski et al. 2000). When an internal 
and/or external environmental change occurs, the hypothalamic–
pituitary–adrenal (HPA) axis stimulates the secretion of GCs by the 
adrenal glands to help organism in responding to stressful conditions 
(Wingfield et al. 1997; Wingfield and Ramenofsky 1999; Wingfield 
and Romero 2001; McEwen and Wingfield 2003; Wingfield and 
Sapolsky 2003; Wingfield 2013). Glucocorticoids are the final product 
of the HPA axis and participate in the control of homeostasis 
activating immediate life-saving processes (Romero et al. 2009). 
Normally, short-term glucocorticoid releases are helpful for individual 
survival because stimulate both physiological and behavioural 
emergency mechanisms exclusively oriented to overcome the 
perturbation (Wingfield and Romero 2001; Wingfield and Sapolsky 
2003). However, long term activation of the stress response with 
chronically elevated GCs concentrations could be prejudicial. 
Prolonged elevated concentrations could expose the individual to a 
long-term overstimulation of survive mechanisms with consecutive 
inhibition of many fundamental functions including reproduction, 
growth, and immunocompetence (Sapolsky 1987; Wingfield et al. 
1997; Dhabhar 2000; Sapolsky et al. 2000; Dallman and Bhatnagar 
2001). Therefore, persistent high levels are usually detrimental to 
health, increasing the stress-related disease and pathology (Romero et 
al. 2009). 
In reptiles, the corticosterone (CORT) is the primary adrenal 
glucocorticoid hormone produced to promote advantageous responses 
against stressful events (Greenberg and Wingfield 1987; Hanke and 
Kloas 1995). Many stressors have been observed to produce effects on 
CORT levels including physical factors (Lutterschmidt and Mason 
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2009; Telemeco and Addis 2014; Refsnider et al. 2015) and biotic 
stressors as predation (Thaker et al. 2009), social competition 
(Comendant et al. 2003) and parasitic infections (Dunlap and Schall 
1995; Hanley and Stamps 2002; Sperry et al. 2009). However, the 
interpretation of stress response throughout CORT requires always 
great attention as its plasma levels change according to not only 
stressor-dependent factors (duration and intensity) but also individual-
dependent factors (sex and reproductive status) that have to be 
considered when GCs are used as physiological indices of condition in 
wild populations (Breuner et al. 1999; Romero 2002; Moore and 
Jessop 2003). Because many factors play a role in defining the 
individual baseline corticosterone levels, to fully understand the 
consequences of specific stressors on endocrine activity, it is 
important to examine responses under different individual contexts 
(e.g. reproductive state), investigating concomitantly additional 
correlates as the immune system, whose connection with stress and 
glucocorticoids have been already well established (Dhabhar 2002; 
Martin 2009). 
In this study we examine the corticosterone levels alterations that 
accompany haemoparasitic infections in two syntopic populations of 
Galápagos land iguanas living on Volcán Wolf (Isabela Island): 
Conolophus marthae (here the pink iguana) (Critically Endangered, 
IUCN Red List) and Conolophus subcristatus (here the yellow iguana) 
(Vulnerable, IUCN Red List). A high-density population of ticks 
(Amblyomma spp.) occurs in the area (Schatz 1991). Ticks are known 
to be potential vectors of haemoparasitic transmission (Telford 1984). 
Specifically, intracellular sporozoan haemoparasites, as 
haemogregarines of the genus Hepatozoon, are the most common 
reptilian haemoparasites transmitted by ticks.   
The genus Hepatozoon (Apicomplexa: Adeleorina) is present in 
Galápagos Islands with different species (Bataille et al. 2012). Very 
little data are available on the effects of haemogregarines on reptile 
hosts (Schall 1986; Manwell 1977; Sorci 1995), but they seem able of 
provoking significant inflammatory responses (Wozniak and Telford 
1991; Stacy et al. 2011) and diseases as hemolytic anemia (Telford 
1984). 
We also used a population of C. subcristatus occurring in a coastal 
area where notoriously the presence of parasites is missing (Bahia 
Urbina), as “blank” condition for endocrinological comparisons. Thus, 
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if glucocorticoids secretion is a function of infection, we expect the 
highest baseline corticosterone plasma levels in most parasitized 
population on the volcano. Moreover, considering the complex 
scenario relating to activity of adrenal gland, to better interpret the 
observed glucocorticoids patterns, we simultaneously analysed: (a) 
heterophyls/lymphocytes ratio commonly used as haematological 
marker of stress in several reptile species (Duggan 1981; Moberg 
1985; Xuereb et al. 2012), (b) reproductive status of females through 
the sonographic identification of eggs, as CORT could increase during 
the egg-laying season (Wack et al. 2008), (c) testosterone plasma 
levels in males, which have been associated with increased parasite 
load because of its immunosuppressive activity (Folstad and Karter 
1992; Saino et al. 1995; Salvador et al. 1996). 
 
 
2) Materials and methods 
 
2.1) Ethic statement 
 
Animal manipulation and blood sampling were performed according 
to a protocol that minimized animal stress, in accordance with the 
European Community guidelines and with the approval of the 
Galápagos National Park. Samples were exported and imported under 
the CITES permits 101/BG and IT/IM/2015/MCE/01711, respectively. 
 
2.2) Field sites and sampling sessions 
 
The study was conducted in two different areas of Isabela Island: the 
Volcán Wolf, the highest peak (1,707m) in the Galápagos archipelago 
located on north side of the island, and Bahia Urbina, a touristic costal 
area situated on the west side (Fig. 1).  
Iguana’s blood samples were collected in Volcán Wolf (W) in July 
2010 and June 2012, 2014; and in Bahia Urbina (BU) in June 2014. 
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Figure 1. Galápagos Islands. The triangle indicates the volcano Wolf, 
the circle the coastal area Bahia Urbina where samples were collected. 
 
 
2.3) Field phase 
 
During all field sessions, 2 mL of blood was collected from the caudal 
vein of each individual using a 5 ml heparinized syringe. Blood 
samples were collected within 3-5 min from capture, under the 
assumption that this represent a sufficiently short time for 
corticosterone levels to represent baseline concentrations (Romero and 
Romero 2002). In fact, this time interval is sufficiently short to 
prevent that plasma levels of corticosterone be biased by capture stress 
(Wingfield et al. 1997; Sapolsky et al. 2000; Romero and Wikelski 
2001; Romero 2004; Cash et al. 1997; Tyrrell and Cree 1998).  
We placed approximately 10 microliters of blood on the top of a slide 
and created a smear. Blood smears were air-dried. Blood samples 
were placed on ice immediately after collection and later centrifuged 
for 2 minutes at 2000 rpm to separate the plasma. Each iguana was 
weighed and snout-vent length (SVL) was measured. The body 
condition index (BCI) was then estimated as the ratio of body 
mass/snout-vent length (SVL)3 x 106 (the ratio was multiplied by 106 
to reduce the number of decimals). This index has been already used 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

77 

for iguana species (Laurie 1989; Wikelski and Trillmich 1997, 
Romero and Wikelski 2001; Costantini et al. 2009). For each female 
we determined the number of eggs, egg size, and the stage of 
development of follicles using a Sonosite portable ultrasound machine 
(FUJIFILM SonoSite, Inc.) as in Onorati et al. (submitted). We 
determined the reproductive state of each female, differentiating 
between reproductive (egg-carrying) and non-reproductive (without 
eggs) females. We distinguished different reproductive stages: (stage 
a) females showing follicles with eggs of homogenous, spherical and 
small dimensions, (stage b) females showing larger, yet not fully-
formed, unshelled eggs, (stage c) females showing large, fully-formed, 
shelled eggs; non reproductive females when no eggs were visible 
(stage d).  
 
2.4) Laboratory phase: haematological analysis 
 
Blood smears were stained following the Romanowsky method, with 
modifications (Work et al. 1998) to later count white blood cells 
(WBCs). We counted a total of 100 leukocytes. Cells were classified 
as heterophils, monocytes, basophils, eosinophils or lymphocytes. We 
calculated specifically the heterophil to lymphocyte ratio (H/L). 
We determined the parasitemia recording the number of erythrocytes 
infected by Hepatozoon (so far the only known haemoparasite 
infesting Conolophus spp., Fulvo 2010) observed in 20 minutes. If no 
haemoparasites were observed after this time, the individual was 
classified as uninfected.  
 
2.5) Laboratory phase: hormonal analysis 
 
Despite radioimmunoassay (RIA) is a common method for 
quantifying the steroids hormones in vertebrates, we determined 
plasma levels of corticosterone and testosterone by competitive 
enzyme-linked immunosorbent assays (ELISA), for the reasons 
mentioned in Onorati et al. (submitted).  
All ELISA immunoassays were performed at the Laboratory of 
Clinical Biochemistry (Tor Vergata University Hospital). Plasma 
samples were preserved at -40°C until assayed. For corticosterone we 
used five kits ELISA (KA0468) pre-coated with a polyclonal antibody. 
We used 10 µl of plasma diluted with 90 µl of assay buffer. The 
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detection limit was established to be 0.28 ng/mL. The intra-assay 
variation was 4.1% and the inter-assay variation 10.1%.  
For testosterone we used four kits ELISA (KA0309) pre-coated with a 
monoclonal antibody. We used 50 µl of plasma for the detection of the 
hormone. The detection limit was established to be 5.67 pg/mL. The 
intra-assay variation was 10%, the inter-assay variation 11.3 %.  
All samples were assayed in duplicate and randomly distributed 
between plates. All assays were performed according to the 
instructions of the kit manufacturers.  
 
2.6) Statistical analysis 
 
The analyses were performed by the STATISTICA 8 package for 
Windows, and Past version 3.07 for MAC.  
Log-transformed values of all hormonal and haematological 
parameters were used to obtain normal distributions. We used one-
way ANOVA with Tukey’s HSD (Honest Significant Difference) post 
hoc pairwise comparisons in order to analyse differences in 
parasitemia and corticosterone plasma levels among years. 
We tested for statistical differences of parasitemia, body condition 
index and H/L ratio between infected and uninfected and among sexes 
with unpaired Student’s t test.  
Generalized linear models (GLZs) with an identity-link function were 
performed to evaluate which factors better explained the variation of 
corticosterone and testosterone plasma levels. Females and males 
were analysed separately in GLZ models, as in vertebrates sex 
differences in adrenocortical activity have been described 
(Kirschbaum et al. 1992; Kudielka and Kirschbaum 2005). For 
corticosterone, for both sexes we built two different models, one 
pooling C. marthae (CM) and C. subcristatus (CS) living on the 
volcano and one pooling both populations of CS (W+BU). 
Testosterone was analysed only on males. 
For males, all models included species (or site for model regarding 
only CS populations) as categorical factor and body condition index, 
parasitemia and H/L ratio as covariates. For females, all models 
included species (or site for model regarding only CS populations), 
reproductive state (yes or no) as categorical factor, and body condition 
index, parasitemia, H/L ratio as covariates. We tested also for the 
interaction between species and reproductive state. 
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3) Results 
 
3.1) Corticosterone and parasitemia 
 
Parasitemia of both species is shown for sex in Table 1.  
Overall, C. subcristatus showed a higher value of parasitemia than C. 
marthae (t = - 4.3; P = 0.00005).  
For both species, no difference in parasitemia was found among years, 
in males or females (for all P > 0.05). Not even a difference between 
sexes emerged (CM: t = 1.7, P = 0.08; CS: t = 0.9, P = 0.3). In both 
species we did not observe a significant difference in corticosterone 
plasma levels of infected and uninfected individuals when pooling 
together sexes and years (CM: t = 0.7, P = 0.5; CS: t = 1.2, P = 0.8). 
Parasitemia did not explain the variance of corticosterone plasma 
levels in both males (Wald = 0.005, df = 1, P = 0.94) and females 
(Wald = 0.74, df = 1, P = 0.39) on Wolf volcano and also considering 
only populations of CS (W+BU) (females: Wald = 0.02, df = 1, P = 
0.88; males: Wald = 2.74, df = 1, P = 0.09). Only in CS of the volcano 
a positive correlation between H/L ratio and parasitemia emerged (r = 
0.27; P = 0.04). In both species, BCI did not differ between infected 
and uninfected (CM: t = -0.7, P = 0.5; CS: t = 0.8, P = 0.4). 
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Sex 
Species 

N Parasitemia 
Year 

      Mean SE Median 

Females CM (W)         

  2010 9 30 10.8 15 

  2012 11 44.4 24.5 14 

  2014 18 27.7 13.3 9 

   CS (W)     

 

  

  2010 4 98.2 43.6 101.5 

  2012 11 59.4 34.5 11 

  2014 14 46.8 20.8 17 

Males CM (W)         

  2010 8 22.1 8.1 14 

  2012 11 17.1 6.6 11 

  2014 23 8.5 3.1 3 

   CS (W)     

 

  

  2010 4 48 65.8 19.6 

  2012 11 28 33.5 12 

  2014 12 41 25 3.5 

Females CS (BU)         

  2014 15 1.6 1.6 0 

Males CS (BU)     

 

  

  2014 12 0.08 0.08 0 

 1 
 

 
Table 1. Parasitemia of C. subcristatus (CS) and C. marthae (CM) 
from Volcán Wolf and C. subcristatus from Bahia Urbina. 
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3.2) Corticosterone plasma levels in females 
 
The reproductive state of females is reported in Table 2. 
In females of C. marthae corticosterone plasma levels ranged from 
0.16 to 74.11 ng/ml while in C. subcristatus from 0.22 to 158 ng/ml 
(mean and medians are shown in Table 3). 
For both species, we observed statistically significant differences 
among years (CM: F = 6.3; P = 0.004; CS: F = 5.9 P = 0.007). The 
pair-wise Tukey’s HSD tests indicated respectively: in CM the highest 
CORT levels in 2012 (P2012-2010 = 0.03, P2012-2014 = 0.007), in CS a 
higher concentration in 2012 than in 2010 (P2012-2010 = 0.009). On the 
volcano, the variance of corticosterone levels was explained only by 
reproductive state (Wald = 7.89, df = 1, P = 0.005, Fig. 2) and by its 
interactive effect with species (Wald = 4.55, df = 1, P = 0.03, Fig. 3). 
Corticosterone variance was not statistically explained by H/L, 
although P value was borderline (Wald = 3.54, df = 1, P = 0.059).  
No variable explained the variance of corticosterone levels in females 
of CS (W+BU) (all P > 0.09). 
We did not observe a significant effect of body condition index in 
corticosterone variations (all P > 0.2).  
 
 

Species Year Reproductive stage Tot 
a b c d 

CM 
2010 0 0 3 6 9 
2012 0 1 0 10 11 
2014 3 0 1 14 18 

CS 
2010 0 0 0 4 4 
2012 0 0 10 1 11 
2014 1 1 8 5 15 

 
Table 2. Reproductive states of females living on volcano. 
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Sex Species N 
Reproductive 

state 
Corticosterone ng/ml 

 
Year 

 
N Mean SE Median 

Females C. marthae 
     

 
2010 9 3 3.8 2.8 0.9 

 
2012 11 1 13.4 6.7 4 

 
2014 18 4 8.9 1.4 0.6 

 
C. subcristatus 

    

 
2010 4 0 2.2 0.8 1.9 

 
2012 11 9 75.1 19.5 105 

 
2014 15 10 16 7.7 5.1 

Males C. marthae 
     

 
2010 7 31.1 31.1 27.9 2.7 

 
2012 11 1.1 1.1 0.4 0.5 

 
2014 23 1.9 1.9 0.7 0.7 

 
C. subcristatus 

    

 
2010 4 5.4 5.4 3.9 2.1 

 
2012 11 20.5 20.5 9.7 10.6 

 
2014 16 13.7 13.7 9.4 0.8 

 1 
 

 
Table 3. Corticosterone plasma levels in C. marthae and C. 
subcristatus from Volcán Wolf. 
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Figure 2. Corticosterone and reproductive state. 

 
 
Figure 3. Corticosterone variation in relation to the interactive effect 
between species and reproductive state. 
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3.3) Corticosterone and testosterone plasma levels in males 
 
In males of C. marthae, corticosterone plasma levels ranged from 0.21 
to 13.9 ng/ml while in C. subcristatus it ranged from 0.19 to 153 
ng/ml (mean and medians are shown in Table 3). For none of the two 
species we observed statistically significant differences among years 
(CM: F = 1.5, P = 0.2; CS: F = 2.3, P = 0.1). On Volcán Wolf, the 
variance of corticosterone levels was explained only by H/L ratio 
(Wald = 7.35, df = 1, P = 0.007). Site was the only explanatory 
variable of corticosterone variance for the model with pooled 
populations of C. subcristatus (Wald = 10.35, df = 1, P = 0.001). 
Males from Bahia Urbina showed higher corticosterone plasma levels 
than those from the volcano (Fig. 4). As for females, corticosterone 
variance in males was not statistically explained by H/L, although P 
value was borderline (Wald = 3.64, df = 1, P = 0.056). 
We did not observe a statistically significant correlation between 
plasma levels of corticosterone and testosterone (for both populations 
on the volcano P > 0.05). In the GLZ, species was the only 
explanatory variable of variance in testosterone levels on the volcano 
(Wald = 4.62, df = 1, P = 0.03); in particular males CM showed higher 
testosterone concentrations than males CS. Parasitemia and H/L ratio 
did not explain variation in testosterone plasma levels on the volcano 
(Parasitemia: Wald = 0.05, P = 0.82; H/L ratio: Wald = 0.03, P = 
0.86).  
We did not observe a significant effect of any of the considered 
factors on testosterone levels for the model with pooled populations of 
C. subcristatus (all P > 0.3). 
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Figure 4. Corticosterone variation in Conolophus subcristatus in 
relation to site. 
 

4) Discussion 
 
In this study we used corticosterone plasma levels to investigate 
possible impacts of Hepatozoon on the stress physiology of Galápagos 
land iguanas; however, we did not find any evidence in support of a 
relationship between the level of haemoparasite infection and 
glucocorticoid plasma concentration in C. marthae and C. subcristatus 
on Volcán Wolf. In fact, in both species, we did not observe 
significant differences in baseline corticosterone levels or body 
condition index between infected and uninfected individuals. Only in 
males we observed a difference between sites, but unexpectedly, the 
higher corticosterone concentration was found in the population of 
Bahia Urbina, almost not impacted by Hepatozoon. These results 
indicate that the intensity of haemoparasite infection is not reflected in 
the glucocorticoid levels of Galápagos land iguanas.  
However, the unexpected difference in stress hormone levels between 
V. Wolf and Bahia Urbina calls for attention. Bahia Urbina is a tourist 
coastal area regularly visited by humans; in contrast V. Wolf is a 
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restricted area where no tourism is allowed. Tourism could be a 
hypothetical factor that could explain the different corticosterone 
levels at the two sites. However, we are aware that the two sites may 
also differ for other characteristics. Thus, we cannot distinguish 
whether the differences that we observed are due to population-
dependent factors, such as different social status and/or habituation 
capacity (Romero 2004), site-dependent factors as tourism (Romero 
and Wikelski 2002), and environmental parameters (Smith et al. 1994; 
Romero and Wikelski 2001) that could differ between sites. For this 
reason, we need to further investigate this aspect. Anyway, this 
comparison between populations allows us to exclude a chronic stress 
condition due to haemoparasites. We could hypothesize that the level 
of haemoparasitism that we observed might not meet the required 
threshold to activate endocrine responses. We know that these 
parasites could be well adapted to their natural hosts and sometimes 
are considered not to cause stress and disease (Nardini et al. 2013). 
However, despite elevated corticosterone plasma concentration with 
parasitemia was not detected, in C. subcristatus an increase in H/L 
ratio was found. Thus, in the yellow iguana, an activation of immune 
system especially in phagocytic cells emerged, as reported for many 
parasitized vertebrates (Davis et al. 2004; Lobato et al. 2005).  
Most studies on stress physiology, including the present investigation, 
were based on correlative data. In reptiles, as in other vertebrates, a 
number of factors affect the adrenocortical activity (Wingfield et al. 
1992; Romero 2002; Moore and Jessop 2003). In this study, plasma 
level of corticosterone positively correlated with reproductive 
condition in females. Corticosterone levels appeared elevated in 
females carrying eggs (small, not fully-formed or fully-formed) in 
both land iguana species. Also in marine iguanas, CORT was mostly 
elevated during the gestation and nesting period before eggs were laid, 
to decline significantly immediately after egg-laying (Rubenstein and 
Wikelski 2005). However, the connection between reproductive 
condition and plasma glucocorticoid levels is not fully elucidated even 
for the better-studied groups as fish and birds (Lattin et al. 2016). In 
our study, the observed increase of CORT in reproductive females 
could reflect the energetic demands of reproduction (Wingfield 1988). 
This would be consistent with the energy mobilization hypothesis of 
Wingfield and Ramenofsky (1999), according to which corticosterone 
concentrations are highest during periods that require energy supply. 
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However, CORT does not appear as a simple mediator of energy 
reserve mobilization for reproduction. An increase of CORT seems to 
have a role in the eggs production process. This hypothesis is 
supported by the observation that, while all non-reproductive females 
showed similar corticosterone baseline levels without a difference 
between species, in reproductive females we observed a difference in 
favour of the yellow iguana, in which most reproductive females 
(90%) showed mature eggs. This CORT increase in reproductive 
females with fully-formed eggs could be the direct consequence of a 
metabolic change required for egg development, as already described 
in other reptiles (Wilson and Wingfield 1992). Indeed, generally, a 
positive association between reproductive state and glucocorticoids 
level has been observed for many egg-laying vertebrates (Silverin and 
Wingfield 1982; Wilson and Wingfield 1992; Wack et al. 2008). 
Many studies demonstrated glucocorticoid involvement in processes 
related directly to egg development (vitellogenesis, oocyte maturation, 
ovulation) (Grassman and Crews 1989; Moore and Jessop 2003; 
Taylor et al. 2004). This is the first study where a significant 
relationship between reproductive condition and baseline plasma 
corticosterone levels is described for Conolophus species. 
Another issue we investigated concerned the testosterone plasma 
levels in males as opposed to corticosterone levels. Several studies of 
non-mammalian vertebrates have shown that exogenous 
corticosterone can reduce plasma testosterone levels to varying 
degrees (Moore and Zoeller 1985; Wingfield and Silverin 1986; 
Tokarz 1987). However, plasma levels of testosterone and 
corticosterone can also rise simultaneously (Orchinik et al. 1988). 
These opposing results underline that the interpretation of relationship 
between adrenal and gonadal axis is not simple. In males of pink 
iguana we observed higher testosterone levels than yellow iguanas. 
However, a difference in corticosterone levels never emerged between 
two species. The lack of correlation between individual corticosterone 
and testosterone levels indicates that the highest testosterone levels we 
observed in C. marthae are partially independent from stress 
hormones. In most vertebrates, full expression of aggressive behaviour 
requires elevated basal levels of gonadal steroids (Book et al. 2001). 
Increases in testosterone are associated with more sexual and 
aggressive behaviour (Miles et al. 2007). In our study, the higher 
testosterone levels in C. marthae are in agreement with observations 
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in the field, where males appeared more aggressive and challenging 
after being released than the congeneric yellow males. Testosterone 
can be involved in aggression associated with establishment and 
maintenance of a breeding territory (Wingfield and Marler 1988; 
Wingfield et al. 1990). This is conceivable to occur in Conolophus as 
well, even though the lack of a relationship between parasitemia, H/L 
ratio and testosterone variation would not support the 
immunosuppressive action generally associated to high level of such a 
hormone. 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

89 

References 
 
Andoh T (2006). Non-radioisotopic immunoassay for fish insulin. 
Fish endocrinology 1: 49-86. 
 
Bataille A, Fournié G, Cruz M, Cedeño V, Parker PG, Cunningham 
AA, Goodman SJ (2012). Host selection and parasite infection in 
Aedes taeniorhynchus, endemic disease vector in the Galápagos 
Islands. Infection, Genetics and Evolution 12(8): 1831-1841. 
 
Bonier F, Martin PR, Moore IT, Wingfield JC (2009). Do baseline 
glucocorticoids predict fitness?. Trends in Ecology and Evolution, 
24(11): 634-642. 
 
Book AS, Starzyk KB, Quinsey VL (2001). The relationship between 
testosterone and aggression: A meta-analysis. Aggression and Violent 
Behavior 6(6): 579-599. 
 
Breuner CW, Wingfield JC, Romero LM (1999). Diel rhythms of 
basal and stress-induced corticosterone in a wild, seasonal vertebrate, 
Gambel's white-crowned sparrow. Journal of Experimental Zoology 
284(3): 334-342. 
 
Cash WB, Holberton RL, Knight SS (1997). Corticosterone secretion 
in response to capture and handling in free-living red-eared slider 
turtles. General and Comparative Endocrinology 108(3): 427–433. 
 
Comendant T, Sinervo B, Svensson EI, Wingfield J (2003). Social 
competition, corticosterone and survival in female lizard morphs. 
Journal of Evolutionary Biology 16(5): 948-955. 
 
Costantini D, Dell’Omo G, De Filippis SP, Marquez C, Snell HL, 
Snell HM, Gentile G (2009). Temporal and spatial covariation of 
gender and oxidative stress in the Galápagos land iguana Conolophus 
subcristatus. Physiological and Biochemical Zoology 82(5): 430-437. 
 
 
 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

90 

Creel S (1997). Handling of African wild dogs and chronic stress: 
Reply to East et al. Conservation Biology 11(6): 1454-1456. 
 
Dallman MF, Bhatnagar S (2001). Chronic Stress and Energy 
Balance: Role of the Hypothalamo-Pituitary-Adrenal Axis. In: 
Handbook of Physiology, pp. 179-210. Oxford University Press, New 
York.  
 
Davis AK, Cook KC, Altizer S (2004). Leukocyte profiles in wild 
House Finches with and without mycoplasmal conjunctivitis, a 
recently emerged bacterial disease. EcoHealth 1(4): 362-373. 
 
Dhabhar FS (2000). Acute stress enhances while chronic stress 
suppresses skin immunity: the role of stress hormones and leukocyte 
trafficking. Annals of the New York Academy of Sciences 917(1): 
876-893. 
 
Dhabhar FS (2002). Stress-induced augmentation of immune 
function—the role of stress hormones, leukocyte trafficking, and 
cytokines. Brain, behavior, and immunity 16(6): 785-798. 
 
Duggan RT (1981). Plasma corticosteroids in marine, terrestrial and 
freshwater snakes. Comparative Biochemistry and Physiology Part A: 
Physiology 68(1): 115-118. 
 
Dunlap KD, Schall JJ (1995). Hormonal alterations and reproductive 
inhibition in male fence lizards (Sceloporus occidentalis) infected 
with the malarial parasite Plasmodium mexicanum. Physiological 
Zoology 68(4): 608-621. 
 
Foley CAH, Papageorge S, Wasser SK (2001). Noninvasive stress and 
reproductive measures of social and ecological pressures in free-
ranging African elephants. Conservation Biology 15(4): 1134-1142. 
 
Folstad I, Karter AJ (1992). Parasites, bright males, and the 
immunocompetence handicap. American Naturalist 139(3): 603-622. 
 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

91 

Fulvo A (2010). Caratterizzazione genetica di emoparassiti 
(Hepatozoon) e valutazione dell’impatto sulle popolazioni di iguana 
terrestre delle Isole Galápagos (Conolophus). PhD Thesis. 
 
Grassman M, Crews D (1989). Ovarian and adrenal function in the 
parthenogenetic whiptail lizard Cnemidophorus uniparens in the field 
and laboratory. General and Comparative Endocrinology 76(3): 444-
450. 
 
Greenberg N, Wingfield JC (1987). Stress and reproduction: 
reciprocal relationships. In: Hormones and reproduction in fishes, 
amphibians, and reptiles, pp. 461-503. Springer, New York. 
 
Hanke W, Kloas W (1995). Comparative aspects of regulation and 
function of the adrenal complex in different groups of vertebrates. 
Hormone and Metabolic Research 27(9): 389. 
 
Hanley KA, Stamps JA (2002). Does corticosterone mediate 
bidirectional interactions between social behaviour and blood 
parasites in the juvenile black iguana, Ctenosaura similis?. Animal 
Behaviour 63(2): 311-322. 
 
Hontela A (1998) Interrenal dysfunction in fish from contaminated 
sites: in vivo and in vitro assessment. Environmental Toxicology and 
Chemistry 17(1), 44-48 
 
Kirschbaum C, Wüst S, Hellhammer D (1992). Consistent sex 
differences in cortisol responses to psychological stress. 
Psychosomatic Medicine 54(6): 648-657. 
 
Kudielka BM, Kirschbaum C (2005). Sex differences in HPA axis 
responses to stress: a review. Biological psychology 69(1): 113-132. 
 
Lattin CR, Breuner CW, Romero LM (2016). Does corticosterone 
regulate the onset of breeding in free-living birds?: The CORT-
Flexibility Hypothesis and six potential mechanisms for priming 
corticosteroid function. Hormones and Behavior 78: 107-120. 
 
 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

92 

Laurie WA (1989). Effects of the 1982–83 El Niño sea warming on 
marine iguana (Amblyrhynchus cristatus, Bell, 1825) populations in 
the Galápagos Islands. Global ecological consequences of the  
1982–83 El Niño southern oscillation. Elsevier, New York, pp 121-
141. 
 
Lobato E, Moreno J, Merino S, Sanz JJ, Arriero E (2005). 
Haematological variables are good predictors of recruitment in 
nestling pied flycatchers (Ficedula hypoleuca). Ecoscience 12(1): 27-
34. 
 
Lutterschmidt DI, Mason RT (2009). Endocrine mechanisms 
mediating temperature-induced reproductive behavior in red-sided 
garter snakes (Thamnophis sirtalis parietalis). Journal of 
Experimental Biology 212(19): 3108-3118. 
 
Manwell RD (1977). Gregarines and haemogregarines. Parasitic 
protozoa 3: 1-32. 
 
Manzo C, Zerani M, Gobbetti A, Di Fiore MM, Angelini F (1994). Is 
corticosterone involved in the reproductive processes of the male 
lizard, Podarcis sicula sicula?. Hormones and Behavior 28(2): 117-
129. 
 
Martin LB (2009). Stress and immunity in wild vertebrates: timing is 
everything. General and Comparative Endocrinology 163(1): 70-76. 
 
McEwen BS, Wingfield JC (2003). The concept of allostasis in 
biology and biomedicine. Hormones and Behavior 43(1): 2-15. 
 
Miles DB, Calsbeek R, Sinervo B (2007). Corticosterone, locomotor 
performance, and metabolism in side-blotched lizards (Uta 
stansburiana). Hormones and Behavior 51(4): 548-554. 
 
Moberg GP (1985). Biological response to stress: key to assessment of 
animal well-being?. In: Animal stress, pp. 27-49. Springer, New York. 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

93 

Moore FL, Zoeller RT (1985). Stress-induced inhibition of 
reproduction: evidence of suppressed secretion of LH-RH in an 
amphibian. General and Comparative Endocrinology 60(2): 252-258. 
 
Moore IT, Greene MJ, Mason RT (2001). Environmental and seasonal 
adaptations of the adrenocortical and gonadal responses to capture 
stress in two populations of the male garter snake, Thamnophis 
sirtalis. Journal of Experimental Zoology 289(2): 99-108. 
 
Moore IT, Jessop TS (2003). Stress, reproduction, and adrenocortical 
modulation in amphibians and reptiles. Hormones and Behavior 43(1): 
39-47. 
 
Nardini G, Leopardi S, Bielli M (2013). Clinical hematology in 
reptilian species. Veterinary Clinics of North America: Exotic Animal 
Practice 16(1): 1-30. 
 
Onorati M, Sancesario G, Carrion J, Bernardini S, Lauro D, Carosi M, 
Vignoli L, and Gentile G (2016). Hormones and Behavior (Submitted). 
 
Orchinik M, Licht P, Crews D (1988). Plasma steroid concentrations 
change in response to sexual behavior in Bufo marinus. Hormones and 
Behavior 22(3): 338-350. 
 
Rassmann K, Tautz D, Trillmich F, Gliddon C (1997). The 
microevolution of the Galápagos marine iguana Amblyrhynchus 
cristatus assessed by nuclear and mitochondrial genetic analyses. 
Molecular Ecology 6(5): 437-452. 
 
Refsnider JM, Palacios MG, Reding DM, Bronikowski AM (2015). 
Effects of a novel climate on stress response and immune function in 
painted turtles (Chrysemys picta). Journal of Experimental Zoology 
Part A: Ecological Genetics and Physiology 323(3): 160-168. 
 
Romero LM (2002). Seasonal changes in plasma glucocorticoid 
concentrations in free-living vertebrates. General and Comparative 
Endocrinology 128(1): 1-24. 
 
 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

94 

Romero LM (2004). Physiological stress in ecology: lessons from 
biomedical research. Trends in Ecology and Evolution 19(5): 249-255. 
 
Romero LM, Dickens MJ, Cyr NE (2009). The reactive scope 
model—a new model integrating homeostasis, allostasis, and stress. 
Hormones and Behavior 55(3): 375-389. 
 
Romero LM, Romero RC (2002). Corticosterone responses in wild 
birds: the importance of rapid initial sampling. The Condor 104(1): 
129-135. 
 
Romero LM, Wikelski M (2001). Corticosterone levels predict 
survival probabilities of Galápagos marine iguanas during El Niño 
events. Proceedings of the National Academy of Sciences 98(13): 
7366-7370. 
 
Romero LM, Wikelski M (2002). Exposure to tourism reduces stress-
induced corticosterone levels in Galápagos marine iguanas. Biological 
Conservation 108(3): 371-374. 
 
Romero LM, Wikelski M (2002). Severe effects of low-level oil 
contamination on wildlife predicted by the corticosterone-stress 
response: preliminary data and a research agenda. Spill Science and 
Technology Bulletin 7(5): 309-313. 
 
Romero LM, Wikelski M (2010). Stress physiology as a predictor of 
survival in Galápagos marine iguanas. Proceedings of the Royal 
Society of London B: Biological Sciences 277(1697): 3157-3162. 
 
Rubenstein DR, Wikelski M (2005). Steroid hormones and aggression 
in female Galápagos marine iguanas. Hormones and Behavior 48(3): 
329-341. 
 
Saino N, Møller AP, Bolzerna AM (1995). Testosterone effects on the 
immune system and parasite infestations in the barn swallow (Hirundo 
rustica): an experimental test of the immunocompetence hypothesis. 
Behavioral Ecology 6(4): 397-404. 
 
 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

95 

Salvador A, Veiga JP, Martin J, Lopez P, Abelenda M, Puertac M 
(1996). The cost of producing a sexual signal: testosterone increases 
the susceptibility of male lizards to ectoparasitic infestation. 
Behavioral Ecology 7(2): 145-150. 
 
Sapolsky RM (1987). Stress, social status, and reproductive 
physiology in free-living baboons. In D. Crews (ed.), Psychobiology 
of reproductive behavior: An evolutionary perspective. Prentice-Hall, 
Englewood Cliffs, New Jersey. 
 
Sapolsky RM, Romero LM, Munck AU (2000). How do 
glucocorticoids influence stress responses? Integrating permissive, 
suppressive, stimulatory, and preparative actions 1. Endocrine reviews 
21(1): 55-89. 
 
Schall JJ (1986). Prevalence and virulence of a haemogregarine 
parasite of the Aruban whiptail lizard, Cnemidophorus arubensis. 
Journal of Herpetology 20(3): 318-324. 
 
Schatz H (1991). Catalogue of known species of Acari from the 
Galápagos Islands (Ecuador, Pacific ocean). International Journal of 
Acarology 17(3): 213-225. 
 
Silverin B, Wingfield JC (1982). Patterns of breeding behaviour and 
plasma levels of hormones in a free-living population of pied 
flycatchers, Ficedula hypoleuca. Journal of Zoology 198(1): 117-129. 
 
Sink TD, Lochmann RT, Fecteau KA (2008). Validation, use, and 
disadvantages of enzyme-linked immunosorbent assay kits for 
detection of cortisol in channel catfish, largemouth bass, red pacu, and 
golden shiners. Fish Physiology and Biochemistry 34(1): 95-101. 
 
Smith GT, Wingfield JC, Veit RR (1994). Adrenocortical response to 
stress in the common diving petrel, Pelecanoides urinatrix. 
Physiological Zoology 67(2): 526–537. 
 
Sorci G (1995). Repeated measurements of blood parasite levels 
reveal limited ability for host recovery in the common lizard (Lacerta 
vivipara). The Journal of Parasitology 81(5): 825-827. 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

96 

Sperry JH, Butler LK, Romero LM, Weatherhead PJ (2009). Effects 
of parasitic infection and radio-transmitters on condition, 
hematological characteristics and corticosterone concentrations in 
Texas ratsnakes. Journal of Zoology 278(2): 100-107. 
 
Stacy NI, Alleman AR, Sayler KA (2011). Diagnostic hematology of 
reptiles. Clinics in Laboratory Medicine 31(1): 87-108. 
 
Taylor EN, DeNardo DF, Jennings DH (2004). Seasonal steroid 
hormone levels and their relation to reproduction in the western 
diamond-backed rattlesnake, Crotalus atrox (Serpentes: Viperidae). 
General and Comparative Endocrinology 136(3): 328-337. 
 
Telemeco RS, Addis EA (2014). Temperature has species-specific 
effects on corticosterone in alligator lizards. General and Comparative 
Endocrinology 206, 184-192. 
 
Telford JrSR. (1984). Haemoparasites of reptiles. In: Diseases of 
amphibians and reptiles, pp. 385-517. Plenum Press, New York. 
 
Thaker M, Lima SL, Hews DK (2009). Acute corticosterone elevation 
enhances antipredator behaviors in male tree lizard morphs. Hormones 
and Behavior 56(1): 51-57. 
 
Tokarz RR (1987). Effects of corticosterone treatment on male 
aggressive behavior in a lizard (Anolis sagrei). Hormones and 
Behavior 21(3): 358-370. 
 
Tyrrell CL, Cree A (1998). Relationships between corticosterone 
concentration and season, time of day and confinement in a wild 
reptile (Tuatara, Sphenodon punctatus). General and Comparative 
Endocrinology. 110(2): 97–108. 
 
Vitousek MN, Mitchell MA, Romero LM, Awerman J, Wikelski M 
(2010). To breed or not to breed: physiological correlates of 
reproductive status in a facultatively biennial iguanid. Hormones and 
Behavior 57(2): 140-146. 
 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

97 

Vitousek MN, Romero LM (2013). Stress responsiveness predicts 
individual variation in mate selectivity. General and Comparative 
Endocrinology 187: 32-38. 
 
Wack CL, Fox SF, Hellgren EC, Lovern MB (2008). Effects of sex, 
age, and season on plasma steroids in free-ranging Texas horned 
lizards (Phrynosoma cornutum). General and Comparative 
Endocrinology 155(3): 589-596. 
 
Walker BG, Boersma PD, Wingfield JC (2005). Field endocrinology 
and conservation biology. Integrative and Comparative Biology 45(1): 
12-18. 
 
Wikelski M (1999). Influences of parasites and thermoregulation on 
grouping tendencies in marine iguanas. Behavioral Ecology 10(1): 22-
29. 
 
Wikelski M, Cooke SJ (2006). Conservation physiology. Trends in 
Ecology and Evolution 21(1): 38-46. 
 
Wikelski M, Trillmich F (1997). Body size and sexual size 
dimorphism in marine iguanas fluctuate as a result of opposing natural 
and sexual selection: an island comparison. Evolution 51(3): 922-936. 
 
Wilson BS, Wingfield JC (1992). Correlation between female 
reproductive condition and plasma corticosterone in the lizard Uta 
stansburiana. Copeia 1992(3): 691-697. 
 
Wingfield JC (1988). Changes in reproductive function of free-living 
birds in direct response to environmental perturbations. In: Processing 
of environmental information in vertebrates, pp. 121-148. Springer, 
New York. 
 
Wingfield JC (2013). Ecological processes and the ecology of stress: 
the impacts of abiotic environmental factors. Functional Ecology 
27(1): 37-44. 
 
Wingfield JC, Hegner RE, Dufty JrAM, Ball GF (1990). The" 
challenge hypothesis": theoretical implications for patterns of 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

98 

testosterone secretion, mating systems, and breeding strategies. 
American Naturalist 136(6): 829-846. 
 
Wingfield JC, Hunt K, Breuner C, Dunlap K, Fowler GS, Freed L, 
Lepson J (1997). Environmental stress, field endocrinology, and 
conservation biology. Behavioral approaches to conservation in the 
wild, pp 95-131. Cambridge University Press, Cambridge. 
 
Wingfield JC, Marler P (1988). Endocrine basis of communication in 
reproduction and aggression. The Physiology of Reproduction 2: 
1647-1677. 
 
Wingfield JC, Ramenofsky M (1999). Hormones and the behavioral 
ecology of stress. In: Stress Physiology in Animals, pp. 1-51. 
Sheffield Academic Press, Sheffield. 
 
Wingfield JC, Romero LM (2001). Adrenocortical responses to stress 
and their modulation in free-living vertebrates. In: Handbook of 
Physiology; Section 7: The Endocrine System; Volume IV: Coping 
with the Environment: Neural and Endocrine Mechanisms, pp. 211-
234. Oxford University Press, New York.  
 
Wingfield JC, Sapolsky RM (2003). Reproduction and resistance to 
stress: when and how. Journal of Neuroendocrinology 15(8) 711-724. 
 
Wingfield JC, Silverin B (1986). Effects of corticosterone on 
territorial behavior of free-living male song sparrows Melospiza 
melodia. Hormones and Behavior 20(4): 405-417. 
 
Wingfield JC, Vleck CM, Moore MC (1992). Seasonal changes of the 
adrenocortical response to stress in birds of the Sonoran Desert. 
Journal of Experimental Zoology 264(4): 419-428. 
 
Work TM, Raskin RE, Balazs GH, Whittaker SD (1998). 
Morphologic and cytochemical characteristics of blood cells from 
Hawaiian green turtles. American Journal of Veterinary Research 
59(10): 1252-1257. 
 
 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

99 

Wozniak EJ, Telford SR (1991). The fate of Hepatozoon species 
naturally infecting Florida black racers and watersnakes in potential 
mosquito and soft tick vectors, and histological evidence of 
pathogenicity in unnatural host species. International Journal for 
Parasitology 21(5): 511-516. 
 
Xuereb A, Row JR, Brooks RJ, MacKinnon C, Lougheed SC (2012). 
Relation between parasitism, stress, and fitness correlates of the 
eastern foxsnake (Pantherophis gloydi) in Ontario. Journal of 
Herpetology 46(4): 555-561. 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

100 



Reproductive endocrinology and stress physiology in Galápagos land iguanas 

 

101 

CHAPTER 5 
 
Conclusions 
 
This study had an important place in field research since it was the 
first investigating the endocrine and physiologic aspects of Galápagos 
land threatened iguanas.  
Along the first part of PhD project, the analysis of sex steroid 
hormones progesterone (P4) and 17β-estradiol (E2) allowed the 
description of a specific breeding season on Volcán Wolf for 
Conolophus subcristatus, while for C. marthae, effective reproduction 
in this species seems hampered, determining attrition.  
The gain of knowledge in reproductive biology permitted also the 
interpretation of stress responses of both immune and endocrine 
system. In fact, the identification of breeding season permitted 
controlling a possible confounding factor, as reproduction, in the 
study of stress dynamics.  
The second step of the project regarded the stress physiology. This 
was the first study addressing this issue, with different stress markers, 
in Conolophus iguanas. Thanks to haematologic profiles, it was 
described how Hepatozoon caused an activation of immune system 
especially of phagocytic heterophils forms; nevertheless it was also 
clarified that both reproduction and parasites infection contributed to 
the observed leukocytes’ patterns. In this study, the physiological 
capability of iguanas to modulate the activity of the immune system in 
response to different stressors (reproduction and endo-parasitic 
infection) emerged explicitly for the first time in reptiles. Another 
aspect that emerged in these iguanas’ species during the stress 
physiology analysis was that H/L ratio appeared to be a more 
persistent indicator of stress by parasites than the more sensitive 
corticosterone levels. The stress hormone levels rose exclusively as a 
response to a natural and life-threatening situation as reproduction. 
These results confirmed that the role of glucocorticoids during 
reproduction is complex and that the interaction between adrenal and 
gonadal systems can be important for reproductive efficiency, 
dispelling the assumption that adrenal activation is necessarily 
deleterious. Overall, I proved that baseline corticosterone and H/L 
ratio cannot be used interchangeably as indicators of stress by 
parasites, but together can provide a comprehensive picture about the
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stress status of iguana species in in-situ studies.  
The final additional result of this study was of methodological 
implication. In fact, while the specific goals of the project varied 
between two different parts of thesis (reproduction and stress 
physiology), both had in common the methodological approach that 
was the use of ELISA (enzyme-linked immunosorbent assay) for 
analysing plasma steroid hormone levels. This study successfully 
validated ELISA method in land iguana species. This procedure 
appeared to be a good candidate for an alternative method of more 
expensive and dangerous RIA (radioimmunoassay), and this will be 
useful in future for endocrine studies concerning steroid hormones in 
other iguana species. 
In conclusion this study improved the knowledge of the reproductive 
biology of Conolophus species. The gained information will be the 
basis for further researches aimed to reveal possible reproductive 
difficulties especially for the new and threatened species C. marthae.  
Additionally, this study provided a comprehensive assessment of 
stress physiology related to parasites, providing sensible data for the 
implementation of future conservation actions.  
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