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1. INTRODUCTION

1 Introduction

General Relativity and Quantum Mechanics are the two revolutionary theories that have changed
physics in the last century; they had enlarged our knowledge and had permitted to explain most
of the phenomena that we observe. In particular the microscopic observations of nuclear and
subnuclear physics have been explained with Quantum Mechanics (QM) evolved in Quantum
Fields Theory (QFT) and, on the other side, the large scale phenomena of the Universe have
been explained with General Relativity (GR). QM and GR are the two conceptual pillars on
which modern physics is built. However they have destroyed the coherent picture of the world
provided by prerelativistic classical physics: GR has modified the notion of space and time;
QM the notion of causality , matter and measurements, but these modified notions do not fit
together easily. On the one hand QM requires a static spatial background and an external time
variable, while GR describes spacetime as a single dynamical entity; moreover GR is a classical
deterministic theory while Quantum Mechanics is probabilistic and teaches us that any dynam-
ical field is quantized. Both theories work extremely well at opposite scales but this picture is
clearly incomplete (1) unless we want to accept that Nature has opposite foundations in the
quantum and in the cosmological realm.
The search for a theory which merges GR and QM in a whole coherent picture is the search for a
theory of Quantum Gravity (QG). At the present stage we have not such a theory. The essential
difficulty is that the theoretical framework is not at all helped by experimental measurement,
because the regimes where we expect the prediction of quantum gravity to become relevant
(Planck scale) is outside our experimental or observational ranch, at least so far. Recently, one
possibility to test some features of quantum spacetime came from the study of ultra high energy
cosmic rays (2; 3; 4) and Gamma Ray Bursts (5; 6; 6): since these cosmic rays propagate along
cosmological distance, also an effect of the order of Planck scale could be detectable.
The problem for theoretical physicists is: how to describe quantum spacetime? There were var-
ious attempts to construct a theory: the conventional methods of quantization, leading to per-
turbative Quantum Gravity (i.e. the quantum theory of gravitons propagating over Minkowski
spacetime) fails, because they bring to a non-renormalizable theory. Nowadays there are essen-
tially two research programs that can be considered a candidate theory of QG: String Theory
and Loop Quantum Gravity (LQG). The first is an attempt to unify all interactions, based
on the physical assumption that elementary object are extended, rather then point-like, but
still it is not clear if it is background independent. LQG has the main objective to combine
General Relativity and Quantum Mechanics (but it is possible to include also matter) and it
is a “canonical” quantization of Hamiltonian General Relativity. In brief, the Loop Quantum
Gravity main features are:

• It implements the teaching of General Relativity. First, the world is relational; only events
independent from coordinates are meaningful; physics must be described by generally
covariant theories. Second, the gravitational field is the geometry of spacetime. The
spacetime geometry is fully dynamical: the gravitational field defines the geometry on top
of which its own degrees of freedom and those of matter fields propagate. GR is not a
theory of fields moving on a curved background geometry; GR is a theory of fields moving
on top of each other (7), namely it is background independent.
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1. INTRODUCTION

• It assumes QM, suitably formulated to be compatible with general covariance, to be
correct; also the Einstein equations, though they can be modified at high energy, are
assumed correct.

• It is non perturbative: the metric is not split in a Minkowskian background plus a per-
turbation.

• There are not extra-dimensions: it is formulated in four spacetime dimensions.

• It predicts a discrete combinatorial structure for quantum spacetime: the spectrum of
quantum geometrical observables, such as the length, the area and the volume operator, is
discrete (8) and the quantum states of geometry are defined in relationals terms. Moreover
it is UV finite.

• Its application in cosmology gave rise to Loop Quantum Cosmology (9). Some of the main
results achieved by this theory are the explanation of the Bekenstein-Hawking formula for
black-hole entropy (10; 11; 12; 13) and the absence of the initial big bang singularity (14).

At the moment, while the kinematics of the theory it is pretty clear, there are ambiguities in
the definition of the dynamics. The Spinfoam formalism is an attempt to define the Lagrangian
covariant version of LQG. In this context it is easier to implement the dynamics; in fact there
are many spinfoam models and the hope is to find some of them equivalent to Loop Quantum
Gravity (the kinematical equivalence has been already proven ((15)), and the full equivalence
is proven in 3-dimensions (16)), in analogy with ordinary Quantum Mechanics which admits
both the Hamiltonian canonical formulation and the path integral representation.
As we said above, we do not have the support of experiments, but one strong indication of
the viability of the theory would be the recovering of the semiclassical limit, together with the
internal consistency. The two main directions in studying the semiclassical limit are the com-
parison of n-point functions computed in LQG with the ones of perturbative quantum gravity
, and the propagation of semiclassical wave packets, introduced by myself in a joint work with
C. Perini and C. Rovelli (17).
The main problem in the first approach is to define n-point functions which are background
independent; the dependence on the n points seems indeed to disappear if we implement dif-
feomorphism invariance. We can get over this difficulty in the context of general boundary
formulation of Quantum Field Theory (18). In (19) is presented a surprising result: the calcu-
lation of some components of graviton propagator gives the Newton law 1/L2.
One technical point in the calculation of graviton propagator is the gauge choice; in fact Loop
Quantum Gravity calculations involve gauge choices that can be interpreted as putting the
linearized gravitational field in radial gauge (i.e. the graviton field has vanishing radial compo-
nents); but perturbative quantum gravity Feynman rules are mostly known in harmonic gauge,
so a direct comparison seems to be not viable. The first original result presented in this thesis is
the proof of compatibility between radial and harmonic gauge in linearized General Relativity
and of radial and Lorenz gauge in electromagnetism (20). Thanks to this result, it is possible
in principle to compare the full tensorial structure of the LQG propagator with the one of the
standard propagator. Moreover it is an interesting result in classical field theory by itself.
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1. INTRODUCTION

The full propagator is calculated in (21) using the Barrett-Crane spinfoam model, and the cal-
culation shows that some components are constant; from this analysis follows that the spinfoam
model used to implement dynamics is inadequate, because it freezes some degrees of freedom.
The result in (21) was followed by a big effort to find spinfoam models able to correct this
problem, and some new spinfoam models were born (15; 22; 23; 24). At this point, to verify
the viability of these models, it is necessary to calculate the corrected graviton propagator, but
to do that we must know the large distance asymptotic of the vertex of these new spinfoam
models. Essentially, spinfoam vertices correspond to combinatorial symbols: for example, in
three dimensions the vertex is proportional to the Wigner 6j-symbol.
The second original result presented in this thesis is the analytical asymptotic formula for the
fusion coefficients (25), which are a building block of the EPRL vertex (22) (that is the general-
ization of EPR for arbitrary values of the Immirzi parameter). A consequence of our asymptotic
analysis is the following remarkable semiclassical property of the fusion coefficient: they map
semiclassical SO(3) tetrahedra into semiclassical SO(4) tetrahedra; this is an highly non trivial
property which sheds light on the classical limit of the EPRL model. The missing piece is the
asymptotic formula for the 15j-symbol, and we are still working on it.
Now we come to the second technique, complementary to the calculation of n-point functions,
in the study of the semiclassical limit: the semiclassical wave packet propagation. The intro-
duction of this approach (17) and its improvement (26) are one of the most important original
contribute.
The idea is as old as quantum physics: in ordinary Quantum Mechanics, a theory has the cor-
rect semiclassical limit, if semiclassical wavepackets follow the trajectory predicted by classical
equations of motion. The equations of motion of any dynamical system can be expressed as
constraints on the set formed by the initial, final and (if it is the case) boundary variables.
For instance, in the case of the evolution of a free particle in the time interval t, the equations
of motion can be expressed as constraints on the set (xi, pi;xf , pf ). These constraints are of
course m(xf − xi)/t = pi = pf (for the general logic of this approach to dynamics, see (7)). In
General Relativity, Einstein equations can be seen as constraints on boundary variables; we can
construct in Loop Quantum Gravity semiclassical wave packets centered on the classical value
of geometrical conjugate quantities (intrinsic and extrinsic curvature, analogous to x and p). It
follows immediately from these considerations that a boundary wave packet centered on these
values must be correctly propagated by the propagation kernel, if the vertex amplitude is to
give the Einstein equations in the classical limit.
We studied numerically the propagation of some degrees of freedom of LQG, finding a sur-
prisingly good semiclassical behavior. The propagation of semiclassical equilateral tetrahedra
in the boundary of a 4-simplex is perfectly “rigid”, i.e. four Gaussian wavepackets evolve into
one Gaussian wavepacket with the same parameters, except for a flip in the phase. This is
in agreement with the classical flat solution of Einstein equations. We showed this result in
two independent ways: the first is semi-analytical and is based on a numerical result on the
15j-symbol viewed as a propagation kernel, and on the the asymptotic properties of the fusion
coefficients studied in (25); the second is purely numerical. We regard our results as a strong
indication that the EPR model has the good semiclassical limit; in (26) we present also the nu-
merical calculation of other physical interesting observables. We believe that this new approach
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1. INTRODUCTION

is very promising and there are still unexplored possibilities.
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2. HAMILTONIAN GENERAL RELATIVITY

2 Hamiltonian General Relativity

In this section we briefly summarize the Hamiltonian formulation of General Relativity. The
Hamiltonian is a linear combination of constraints; these constraints define the dynamics of
General Relativity. In order to quantize the theory, we perform a suitable change of variables:
we introduce the Ashtekar-Barbero variables. We express the constraints in these new variables
and write their algebra. We conclude introducing the concept of holonomy which will play a
major role in the quantum theory.

2.1 Canonical formulation of General Relativity in ADM variables

Hamiltonian formulation of a field theory requires the splitting of the spacetime in space and
time (27; 28; 29; 30; 31). The first step consists in choosing a time function t and a vector field
tµ on the spacetime such that the hypersurfaces Σt at constant t are Cauchy spacelike surfaces
and tµ∇µt = 1.
The second step consists in defining a configuration space of fields q on Σt and conjugate
momenta Π.
The last step consists in defining a Hamiltonian: a functional H[q,Π] of the form

H =

∫

Σt

H(q,Π) , (1)

where H is the Hamiltonian density; the Hamilton equations q̇ = δH
δΠ and Π̇ = − δH

δq are equiva-
lent to the field equations of Lagrangian theory.
Given the Lagrangian formulation there is a standard prescription to obtain the Hamiltonian
one defining

H(q,Π) = Π q̇ − L , (2)

where q̇ = q̇(q,Π) and Π = ∂L
∂q̇ .

Now come to General Relativity (32). Consider a globally hyperbolic spacetime (M,gµν); this
can be foliated in Cauchy surfaces, Σt, parametrized by a global time function t(x0, x1, x2, x3).
Take nµ the unitary vector field normal to Σt. The spacetime metric induces a spatial metric
hµν on every Σt given by the formula

hµν = gµν + nµnν . (3)

The metric hµν is spatial in the sense that hµνn
µ = 0. Take tµ a vector field on M satisfying

tµ∇µt = 1; we decompose it in its tangent and normal components to Σt

tµ = Nµ +Nnµ , (4)

where

N = −tµnµ = (nµ∇µt)
−1 , (5)

Nµ = hµνt
ν . (6)

10



2. HAMILTONIAN GENERAL RELATIVITY

Figure 1: ADM foliation

We can interpret the vector field tµ as the “flux of time” across spacetime, in fact we “move
forward in time” with the parameter t starting from the surface Σ0 and reaching the surface
Σt. If we identify the hypersurfaces Σ0 and Σt through diffeomorphism obtained following the
integral curves of tµ, we can reinterpret the effect of moving through the time as the changing
of the spatial metric on a fixed 3-dimensional manifold Σ from hab(0) to hab(t). Hence we can
view a globally hyperbolic spacetime as the representation of a time evolution of a Riemannian
metric on a fixed 3-dimensional manifold.
The quantity N is called lapse function and measures the flow of proper time with respect to
the time coordinate t when we move in a direction normal to Σt. N

µ is called shift vector and it
measures the shift of tµ in direction tangent to Σt. N and Nµ are not considered as dynamical
because they describe only the way of moving through time. Suitable initial data of the Cauchy
problem for General Relativity are the spatial metric hµν on Σ0 and its “time derivative”. The
notion of time derivative of a spatial metric on Σt is provided by the extrinsic curvature

Kµν ≡ ∇µξν , (7)

where ξν is the unitary timelike vector field tangent to the timelike geodesics normal to Σt (ξµ

is equal to nµ on Σt). Kµν is purely spatial; it can be expressed as a Lie derivative

Kµν =
1

2
Lξgµν =

1

2
Lξhµν ; (8)

If we choose Nµ = 0,

Kµν =
1

2

∂hµν

∂t
. (9)

In terms of N , Nµ and tµ, the metric is

gµν = hµν − nµnν = hµν −N−2(tµ −Nµ)(tν −Nν) , (10)

where we have used that nµ = N−1(tµ −Nµ).

11



2. HAMILTONIAN GENERAL RELATIVITY

2.2 Lagrangian analysis

The Lagrangian density for General Relativity in empty space is LGR = (2κ)−1√−gR where
R is the Ricci scalar and κ = 8πG/c3. The action of General Relativity is then

SGR =
1

2κ

∫
d4x

√−gR . (11)

It is convenient to use the variables N , Nµ and hµν instead of gµν ; in terms of these variables
we obtain

LGR =
1

2κ

√
hN [(3)R+KµνK

µν −K2] , (12)

where Kµν can be written as

Kµν =
1

2N
[ḣµν −DµNν −DνNµ] , (13)

Dµ is the covariant derivative with respect to hµν , (3)R is the Ricci scalar calculated with respect
to hµν , and ḣµν = h ρ

µ h σ
ν Lthρσ .

The momentum conjugate to hµν is

Πµν =
δL

δḣµν

=
1

2κ

√
h(Kµν −Khµν) . (14)

The Lagrangian does not contain any temporal derivative of N and Na, so their conjugate
momenta are zero. N and Na are not dynamical variables as noticed before, so they must be
considered as Lagrange multipliers in the Lagrangian.
Variation of the action (11) w.r.t. shift and lapse produces the following constraints:

V ν [h,Π] ≡ −2Dµ(h−1/2Πµν) = 0 , (15)

S[h,Π] ≡ −(h1/2[(3)R− h−1ΠρσΠρσ +
1

2
h−1Π2]) = 0 . (16)

The first is called vector constraint, and the second scalar constraint. These constraints, together
with the Hamilton equations

ḣµν =
δH

δΠµν
, (17)

Π̇µν = − δH

δhµν
, (18)

define the dynamics of General Relativity; i.e. they are equivalent to vacuum Einstein’s equa-
tions. Finally, the Hamiltonian density is

HGR =
1

2κ
h1/2{N [−(3)R+ h−1ΠµνΠµν − 1

2
h−1Π2] − 2Nν [Dµ(h−1/2Πµν)]} . (19)

12



2. HAMILTONIAN GENERAL RELATIVITY

We deduce that the Hamiltonian is a linear combination of (first class) constraints, i.e. it
vanishes identically on the solutions of equations of motion. This is a general property of
generally covariant systems.
The variables chosen in this formulation are called ADM (Arnowitt, Deser and Misner) (33)
variables. We note that ADM variables are tangent to the surface Σt, so we can use equivalently
the genuine 3-dimensional quantities hab,Π

ab, Na, N (a, b = 1, 2, 3); these are the pull back on
Σt of the 4-dimensional ones. Since the 4-dimensional variables that we have used are equivalent
to 3-dimensional variables, the 20 equations (17) and (18) reduces to 12.

2.3 Triad formalism

The spatial metric hab can be written as (34)

hab = eiae
j
bδij i, j = 1, 2, 3 ; (20)

eia(x) is one possible transformation which permits to write the metric in the point x in flat
diagonal form. The index i of eia is called internal and eia is called a triad, because it defines a
set of three 1-forms. We can introduce the densitized inverse triad

Ei
a ≡ 1

2
ǫabcǫ

ijkejbe
k
c ; (21)

using this definition, the inverse metric hab can be related to the densitized triad as follows:

hhab = Ea
i E

b
j δ

ij . (22)

We also define

Ki
a ≡ 1√

det(E)
KabE

b
jδ

ij . (23)

It is not difficult to see that Ea
i and Ki

a are conjugate variables, so the symplectic structure is

{Ea
j (x),Ki

b(y)} = κ δa
b δ

i
jδ(x, y) , (24)

{Ea
j (x), Eb

i (y)} = {Kj
a(x),Ki

b(y)} = 0 . (25)

We can write the vector and the scalar constraint (15-16) in terms of the new conjugate variables
Ea

i and Ki
a. However these variables are redundant; in fact we are using the nine Ea

i to describe
the six independent components of hab. This is clear also from a geometrical point of view: we
can choose different triads eia by local SO(3) rotations acting on the internal index i without
changing the metric:

Ri
m(x)Rj

n(x)ema (x)enb (x)δij = eiae
j
bδij . (26)

Hence if we want to formulate General Relativity in terms of these redundant variables we have
to impose an additional constraint that makes the redundancy manifest. The missing constraint
is:

Gi(E
a
j ,K

j
a) ≡ ǫijkE

ajKk
a = 0. (27)

13



2. HAMILTONIAN GENERAL RELATIVITY

2.4 Ashtekar-Barbero variables

In the LQG approach the action that is quantized is the Holst action (35), obtained adding to
the action of General Relativity a term that does not change the equations of motion

SHolst = − 1

2κ

∫

M

[
∗(e ∧ e) ∧R+

1

γ
(e ∧ e) ∧R

]
− 1

2κ

∫

∂M

[
∗(e ∧ e) ∧R+

1

γ
(e ∧ e) ∧R

]
, (28)

where γ is any non vanishing real number, called Immirzi parameter; e is a tetrad, the four
dimensional extension to the triad; R is the curvature of the connection defined as R = dA +
A ∧ A. The introduction of the Holst term is required for the canonical formailsm in order
to have a dynamical theory of connections: without it, as shown by Ashtekar, the connection
variable does not survive the Legendre transform (36). If we consider this action, the variable
conjugate to Ea

i is, instead of Ki
a, the Ashtekar-Barbero connection (37; 38; 39; 40)

Aa
i = Γi

a + γKi
a , (29)

where Γa
i is the spin connection, giving the rule of triad parallel transport

Γi
a = −1

2
ǫijke

b
j(∂[ae

k
b] + δklδmse

c
l e

m
a ∂be

s
c) , (30)

Ai
a is a connection that transforms in the standard inhomogeneous way under local SO(3)

transformations. The Poisson bracket of the new variables are

{Ea
j (x), Ai

b(y)} = κγ δa
b δ

i
jδ(x, y) , (31)

{Ea
j (x), Eb

i (y)} = {Aj
a(x), A

i
b(y)} = 0 . (32)

2.5 Constraint algebra

As we have seen in the previous section, General Relativity can be formulated in terms of a
real SO(3) (or SU(2)) connection Ai

a(x)
1 and a 3d real momentum field Ea

i (x), defined on a
three-dimensional space Σ. On physical solutions the connection Ai

a is given by (29) The theory
is defined by the Hamiltonian system constituted by three constraints (27), (15), (16). In terms
of the variables (Ea

i , A
i
a) they read

Gi ≡ DaE
a
i = 0 , Gauss law

Vb ≡ Ea
i F

i
ab − (1 + γ2)Ki

bGi = 0 ,

S ≡ Ea
i Eb

j√
det(E)

(ǫijkF
k
ab − 2(1 + γ2)Ki

[aK
j
b]) = 0 ,

(33)

where Da and F i
ab are respectively the covariant derivative and the curvature of Ai

a defined by

Davi = ∂avi − ǫijkA
j
av

k , (34)

F i
ab = ∂aA

i
b − ∂bA

i
a + ǫijkA

j
aA

k
b . (35)

1
SO(3) and SU(2) have the same algebra, so we can choose both a connection with values in su(2) and so(3) .

In the literature is more common the second choice but recent results seems to indicate that the first one is more
natural.
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2. HAMILTONIAN GENERAL RELATIVITY

We can rewrite the constraints using the following equation

Ea
i (x) =

δS[A]

δAi
a(x)

, (36)

where S[A] is the Hamilton functional, a solution of Hamilton-Jacobi equation. It is defined
as the value of the action concerning a region R with boundary ∂R = Σ, calculated on the
solution of field equations determined by the configuration of A on the boundary (actually,
the argument of S is the value of A on the boundary). Indeed one configuration of A on the
boundary Σ determines a solution (eIµ, A

I
µ) of Einstein equations in the region R; this solution

induces on Σ a 3-dimensional field Ei
a[A] .

Substituting the equation (36) into the system (33) it can be shown that the first two equa-
tions require the invariance of S[A] under both local SO(3) transformations and 3-dimensional
diffeomorphism, and the last is the Hamilton-Jacobi equation for General Relativity defining
dynamics. To verify this invariance it suffices to write the constraints in a regularized form
integrating them against suitable “test” functions:

G(α) ≡
∫

Σ
d3xαiGi(E

a
j , A

j
a) =

∫

Σ
d3xαiDaE

a
i = 0, (37)

where α is a vector field in the internal space (a section of the vector bundle). A direct
calculation implies

δαA
i
a =

{
Ai

a, G(α)
}

= −Daα
i and δαE

a
i = {Ea

i , G(α)} = [Ea, α]i .

If we write Aa = Ai
aτi ∈ so(3) and Ea = Ea

i τ
i ∈ so(3) where τ i are SO(3) generators, we can

write the finite version of the previous transformations

A′
a = gAag

−1 + g∂ag
−1 and E′a = gEag−1 ,

that is the standard transformation of the connection and of the electric field under gauge
transformations in Yang-Mills theory. Recall that the gauge group of General Relativity written
in triad formalism is SO(3) . The vector constraint Vb generates 3-dimensional diffeomorphisms
on Σ; this is clear from the action of the smeard constraint

V (f) ≡
∫

σ
d3x faVa =

∫

σ
d3x faEb

iF
i
ba = 0 (38)

on canonical variables, where f is a vector field on Σ:

δfA
i
a =

{
Ai

a, V (f)
}

= LfA
i
a = f bF i

ab and δfE
a
i = {Ea

i , V (f)} = LfE
a
i ,

the exponentiation of these infinitesimal transformations brings to the action of finite diffeo-
morphisms of Σ on the fundamental variables. So V (f) acts as the infinitesimal diffeomorphism
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2. HAMILTONIAN GENERAL RELATIVITY

associated to the vector field f . Finally, one can show that the scalar constraint S generates
the time evolution of the surface Σt, up to spatial diffeomorphisms and local SO(3) gauge
transformations. In fact the Hamiltonian of General Relativity H[α,Na, N ] can be written as

H[α,Na, N ] = G(α) + V (Na) + S(N) , (39)

where

S(N) =

∫

Σ
d3xNS(Ea

i A
i
a) . (40)

The Hamilton equations of motion are therefore

Ȧi
a = {Ai

a,H[α,Na, N ]} = {Ai
a, G(α)} + {Ai

a, V (Na)} + {Ai
a, S(N)} , (41)

Ėa
i = {Ea

i ,H[α,Na, N ]} = {Ea
i , G(α)} + {Ea

i , V (Na)} + {Ea
i , S(N)} . (42)

These equations define the action of S(N) on observables (functions on the phase space), that
is their time evolution up to diffeomorphism and gauge transformations. In General Relativity
coordinate time evolution has no physical meaning; it is analogous to a U(1) gauge transforma-
tion in QED.

The constraint algebra is:

{G(α), G(β)} = G([α, β]) , (43)

{G(α), V (f)} = G(Lfα) , (44)

{G(α), S(N)} = 0 , (45)

{V (f), V (g)} = V ([f, g]) , (46)

{S(N), V (f)} = −S(LfN) , (47)

{S(N), S(M)} = V (f) + terms proportional to Gauss law , (48)

where f
a

= hab(N∂bM − ∂bN) .
Now we introduce a the concept of holonomy which has a major role in the quantization of
General Relativity.

2.6 The holonomy

The holonomy is the matrix of parallel transport along a curve, i.e. the matrix that applied
to a vector has the same effect of parallel transport the vector along the curve. Consider a
connection A on a vector bundle with base M and structure group G, and a curve γ on the
base manifold M parametrized as

γ : [0, 1] →M (49)

s 7→ xµ(s). (50)
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

The holonomy H[A, γ] of the connection A along the curve γ is the element of G defined as
follows: consider the differential equation

d

ds
h[A, γ](s) + ẋµ(s)Aµ(γ(s))h[A, γ](s) = 0, (51)

with initial data
h[A, γ](0) = 1 , (52)

where h[A, γ](s) is a G-valued function of the parameter s. The solution to this Cauchy problem
is

h[A, γ](s) = P exp

∫ s

0
ds̃ γ̇µ(s̃)Ai

µ(γ(s̃))τi , (53)

where τi is a basis of the Lie algebra of the group G and the path order exponential P is defined
by the series

P exp

∫ s

0
ds̃ A(γ(s̃)) ≡

∞∑

n=0

∫ s

0
ds1

∫ s1

0
ds2...

∫ sn−1

0
dsnA(γ(sn))...A(γ(s1)) . (54)

The holonomy is

H[A, γ] ≡ P exp

∫ 1

0
dsAi(s)τi = P exp

∫

γ
A . (55)

The connection A is the rule that defines the meaning of parallel transport of an internal vector
from a point of M to another near point: the vector v in x is defined parallel to the vector
v +Aµdxµv in x+ dx. The holonomy gives the parallel transport for points at finite distance.
A vector is parallel transported along γ into the vector H[A, γ]v. Even if there is a finite set of
points where γ is not smooth and A is not defined, the holonomy of a curve γ is well defined.
The reason is that we can break γ in pieces, where everything is smooth, and we can define the
holonomy of γ as the product of the holonomies of the single pieces.

3 The structure of Loop Quantum Gravity

In this section we perform the quantization and get into Loop Quantum Gravity; we search
for states that satisfy the constraints, and construct some geometrical operators. We discover
that area and volume operators have discrete spectrum: this discreteness is one on the most
important results of Loop Quantum Gravity.

3.1 Kinematical state space K
We can quantize Hamiltonian General Relativity in the Ashtekar-Barbero variables defining the
theory in terms of Schrödinger wave functionals Ψ[A] on G (the space of smooth connections A
defined on a 3-dimensional surface Σ) and interpreting the action S[A] as ~ times the phase of
Ψ[A], i.e. interpreting the classical Hamilton-Jacobi theory as the iconal approximation of the
quantum wave equation; this can be obtained substituting the derivative of Hamilton functional
(the electric field) with derivative operators. The first two constraints require the invariance of
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

Ψ[A] both under SO(3) gauge transformations, and 3-dimensional diffeomorphism. Imposing
the Hamiltonian constraint leads to the Wheeler-DeWitt equation that governs the quantum
dynamics of space-time.

Cylindrical functions Let G be the set of smooth 3-dimensional real connections A defined
everywhere (except, possibly isolated points) on a 3-dimensional surface Σ with the 3-sphere
topology. Consider an ordered collection Γ (graph) of smooth oriented paths γl where l = 1, ...L
and a smooth complex valued function f(U1, ...UL) of L group elements. A couple (Γ, f) defines
the complex functional of A

ΨΓ,f [A] ≡ f(H[A, γ1], ...,H[A, γL]) ; (56)

we call these functionals “cylindrical functions”; their linear span is denoted with S . In an
suitable topology S is dense in the space of continuous functionals of A.

Scalar product on S If two functionals ΨΓ,f [A] and ΨΓ,g[A] are supported on the same
oriented graph Γ, define

< ΨΓ,f ,ΨΓ,g >≡
∫

dU1, ...dULf(U1, ...UL)g(U1, ...UL), (57)

where dU is the Haar measure over SO(3) (invariant measure over the group with respect to
the group itself). It is possible to extend this definition also to functionals defined on different
graphs. If Γ and Γ′ are two disjointed graphs constituted respectively by n and n′ curves, define
Γ′′ = Γ

⋂
Γ′ constituted by n+ n′ curves,

f̃(U1, . . . , Un, Un+1, . . . Un+n′) ≡ f(U1 . . . , Un) , (58)

g̃(U1, . . . , Un, Un+1, . . . Un+n′) ≡ g(Un+1 . . . , Un+n′) ; (59)

then define the scalar product as

< ΨΓ,f ,ΨΓ′,g′ >≡< ΨΓ̃,f̃ ,ΨΓ̃,g̃ > . (60)

If Γ and Γ′ are not disjoint, we can break Γ
⋂

Γ′ into the two disjoint pieces Γ and Γ′− (Γ
⋂

Γ′),
so we are in the previous case.
Notice that here the states do not live on a single lattice Γ, but rather on all possible lattices
in Σ, so that there is not a cut-off on short scale degrees of freedom.

Loop states and loop transform An interesting example of states with finite norm is when
(Γ, f) = (α,Tr), i.e. when Γ is constituted by a single closed curve α (a loop) and f is the trace
on the group2:

Ψα,Tr[A] ≡ Ψα[A] = TrH[A,α] = TrPe
H

α
A . (61)

2Here the trace is taken in the fundamental representation.
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3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

The norm of this state, induced by the scalar product (57), is given by

|| Ψα ||2=
∫

dU | TrU |2= 1. (62)

A “multiloop” is a collection [α] = (α1, ...αn) of a finite number of loops, and a multiloop state
is defined as

Ψ[α][A] = Ψα1 [A]...Ψαn [A] = TrH[A,α1] . . .TrH[A,αn] . (63)

The functional on the loop space

ΩΨ[α] =< Ψα,Ψ >= ΩΨ[α] =

∫
dµ0[A]TrPe

H

α AΨ[A] , (64)

is called loop transform of the state Ψ[A]. Intuitively it is a sort of infinite dimensional Fourier
transform from the A space to the α space. The measure µ0 is the Ashtekar-Lewandowski
measure (41).

Kinematical Hilbert space Define the kinematical Hilbert space K of quantum gravity as
the completion of S in the norm defined by the scalar product (57), and S ′ the topological dual
of S; the Gelfand triple S ⊂ K ⊂ S ′ constitutes the kinematical rigged Hilbert space.

The key to construct a basis in K is the Peter-Weyl theorem: a basis on the Hilbert space of
square integrable functions over SO(3) w.r.t. the Haar measure is given by the matrix elements
of irreducible representations. The SO(3) irreducible representations are labeled by integer
spins j (if we use SU(2) as gauge group we have to consider also semi-integer spins). Call

Hj ≃ C2j+1 the Hilbert space on which is defined the representation j. {
j

Rα
β}j,α,β is a basis for

L2(SO(3)), where
j

Rα
β are the matrix elements of the j-th irreducible representation. For every

graph Γ choose an ordering and an orientation; then a basis in the subspace KΓ = L2[SO(3)L]
of cylindrical functions with support on a fixed graph Γ with L paths, is

ΨΓ,jl,αl,βl
[A] ≡

√
dim(j1) . . . dim(jL)

j

Rα1
β1

(H[A, γ1]) . . .
jL

RαL
βL

(H[A, γL]) , (65)

where dim(j) ≡ (2j + 1) is the dimension of the representation j. The states ΨΓ,jl,αl,βl
[A]

are an orthonormal basis in K . We mention that the Hilbert space K can be viewed as (i.e.
is isomorphic to) an L2 Hilbert space; it is the space of square integrable functions of the
connection w.r.t. the measure µ0, where the connection is allowed to be distributional.

3.2 Invariant states under gauge transformations and diffeomorphisms

The classical Gauss and vector constraint can be implemented in the quantum theory. Functions
of connection are quantized as multiplicative operators while the electric field is quantized as a
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functional derivative:

Âi
a(x)Ψ[A] = Ai

a(x)Ψ[A] , (66)

Êa
i (x)Ψ[A] = −i~κγ δ

δAi
a(x)

Ψ[A] . (67)

The quantum Gauss and vector constraints impose the invariance of Ψ under local SO(3)
transformations and diffeomorphisms. Call KSO(3) the space of SO(3) invariant states, KDiff

the space of states invariant both under SO(3) and diffeomorphisms; call H the space of solutions
of the scalar constraint in KDiff; we have the sequence of Hilbert spaces:

K SO(3)−→ KSO(3)
Diff−→ KDiff

H−→ H . (68)

Action of quantum constraints on K Under local gauge SO(3) transformations

g : Σ → SO(3)

the connection transforms as

A→ Ag = gAg−1 + gdg−1 , (69)

while the holonomy transforms as

U [A, γ] → U [Ag, γ] = g(xf )U [A, γ]g(xi)
−1 , (70)

where xi,xf ∈ Σ are the initial and final points of the path γ.
Now we can read the action of Gauss constraint on a cylindrical function ΨΓ,f . For a given
couple (Γ, f) define

fg(U1..., UL) ≡ f(g(xγ1

f )U1g(x
γ1

i )−1, ...g(xγL

f )ULg(x
γL
i )−1) ; (71)

it is easy to see that quantum states transforms in the following way:

ΨΓ,f [A] 7→ UgΨΓ,f [A] ≡ ΨΓ,f [Ag−1 ] = ΨΓ,fg−1 [A] . (72)

Since the Haar measure is invariant under the left and right group action, it follows that the
scalar product (57) is invariant under gauge transformations.
Consider now an invertible function φ : Σ → Σ such that the function and its inverse are
smooth everywhere, except, possibly, for a finite number of isolated points where they are
continuous. Call these functions (indicated with Diff∗) extended diffeomorphisms. Under an
extended diffeomorphism the connection transforms as a 1-form

A→ φ∗A, (73)

and the holonomy transforms as

U [A, γ] → U [φ∗A, γ] = U [A,φ−1γ] ; (74)
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i.e. applying a diffeomorphism φ to A is equivalent to applying the diffeomorphism to the curve
γ. So a cylindrical function ΨΓ,f transforms under Diff∗ as:

ΨΓ,f [A] 7→ ΨΓ,f [φ∗A] = Ψφ−1Γ,f [A] . (75)

It is immediate to verify the invariance under diffeomorphisms of the scalar product: the right
hand side of (57) does not depend explicitly on the graph.

Intertwiners Before exhibiting the states which are solutions to the Gauss constraint, it is
useful to introduce the intertwiners. Consider N irreducible representations j1, . . . , jN and their
tensor product

Hj1...jN
= Hj1 ⊗ . . . ⊗HjN

. (76)

The tensor product can be decomposed into a sum of irreducible representations. In particular
H0

j1...jN
⊂ Hj1...jN

is the subspace formed by invariant vectors, called intertwiners between
the irreducible representations j1, . . . , jN ; this k-dimensional space decomposes in k trivial
irreducible representations. The basis elements of H0

j1...jN
are the basis intertwiners.

More explicitly, the elements of Hj1...jN
are tensors vα1...αN with an index in every represen-

tation; the elements of H0
j1,...jN

are invariant tensors vα1...αN under the joint action of SO(3)
on all their index, i.e. they satisfy

j1

Rα1
β1

(U) . . .
jN

RαN
βN

(U) vβ1...βN = vα1...αN ∀U ∈ SO(3) . (77)

The intertwiners vα1...αN
i with i = 1, . . . , k are a collection of k such invariant tensors, orthonor-

mal w.r.t. the scalar product of Hj1...jN
, i.e. they satisfy

vα1...αN
i vi′α1...αN

= δii′ . (78)

Solution to the Gauss constraint: spin-network states Spin-network (42; 43) states
are particular cylindrical functions. Given an oriented graph Γ embedded in Σ, be jl with
l = 1, . . . , L irreducible representations associated to the L links of the graph and in intertwiners
associated to each node. The triple S = (Γ, jl, in) is called embedded spin-network; now we can
construct the following state associated to a spin-network:

ΨΓ, jl in [A] ≡ (79)

≡
∑

αlβl

v
β1...βn1
i1 α1...αn1

v
βn1+1...βn2
i2 αn1+1...αn2

...v
βnN−1+1...βL

iN αnN−1+1...αL
ΨΓ, jl αl, βl

[A] .

The pattern of contraction of the indices is dictated by the topology of the graph itself: the
index αl (βl) of the link l is contracted with the corresponding index of the intertwiner vin of
the node n where the link l begins (ends).

Spin-network states and their (possibly infinite) linear combinations are invariant under
SO(3) . Most importantly, they are all the invariant states in K . The gauge invariance follows
immediately from the invariance of the intertwiners and from the transformation properties
(72). Spin-network states are an orthonormal basis for KSO(3); this basis is not unique as it
depends on the choice of an intertwiner basis at each node.
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Figure 2: A spin-network with two trivalent nodes

An example Consider for simplicity the SU(2) (instead of SO(3)) spin-network in figure (2);
we have to associate to each of the two nodes the tensor product of two fundamental and one
adjoint SU(2) irreducible representations. Since the tensor product of these representations
contains a single trivial representation

1

2
⊗ 1

2
⊗ 1 = (0 ⊕ 1) ⊗ 1 = 1 ⊕ 0 ⊕ 1 ⊕ 2,

there is only one possible normalized intertwiner, given by the triple of Pauli matrices: vi,AB =
1√
3
σi,AB . Hence the associated spin-network state is

ΨS[A] =
1/2

R (H[A, γ2])
A
Bσ

B
i A

1
R (H[A, γ1])

i
jσ

j,D
C

1/2

R (H[A, γ3])
C
D . (80)

Four-valent intertwiners: virtual links In the case of 3-valent nodes there is only one
possible (normalized) intertwiner; if the node is instead 4-valent, the intertwiner is not unique.
A possible basis is obtained by decomposition in virtual links, namely writing the intertwiner
as two 3-valent intertwiners with a couple of indices contracted.
Concretely, a basis {vabcd

i } for the vector space Inv[Hj1 ⊗Hj2 ⊗Hj3 ⊗Hj4] is

vabcd
i = vdaev bc

e =
√

2i+ 1 (81)

where a dashed line has been used to denote the virtual link associated to the coupling channel;
the index e is in the representation i and the two nodes in the graph represent Wigner 3j-
symbols. The link labeled by i is called virtual link, and the open links labeled by j1, j4 are
said to be paired. Two other choices of pairing are possible, giving two other bases:

ṽabcd
i =

√
2i+ 1 , ˜̃vabcd

i =
√

2i+ 1 . (82)
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The formula for the change of pairing, called recoupling theorem, is

=
∑

m

dim(m)(−1)b+c+f+m

{
a c m
d b f

}
, (83)

where {
j1 j2 j3
j4 j5 j6

}
(84)

is the Wigner 6j-symbol. The 6j-symbol is defined as the contraction of four 3j-symbols,
according to the tetrahedral pattern in figure (3).

Figure 3: 6j-symbol

Diffeomorphism invariance Spin-network states ΨS[A] are not invariant under diffeomor-
phisms, because a diffeomorphism can change the graph, hence the state; moreover it can modify
the ordering and the orientation of the links. In fact the diffeomorphism invariant states live
in S ′

SO(3), not in KSO(3).
3 The action of the diffeomorphism group is defined in S ′

SO(3) by the
duality

(UφΦ)(Ψ) ≡ Φ(Uφ−1Ψ) , (85)

so a diffeomorphism invariant element Φ of S ′
SO(3) is a linear functional such that

Φ(UφΨ) ≡ Φ(Ψ) . (86)

We can define a map PDiff : SSO(3) → S ′
SO(3) as (44; 45):

(PDiffΨ)(Ψ′) ≡
∑

Ψ′′=UφΨ

< Ψ′′,Ψ′ >SO(3) (87)

3
S

′
SO(3) is formed by the functionals Φ such that (UgΦ)(Ψ) ≡ Φ(Ug−1Ψ) = Φ(Ψ) .

23



3. THE STRUCTURE OF LOOP QUANTUM GRAVITY

The sum is over all the states Ψ′′ in SSO(3) for which there exist a diffeomorphism φ ∈ Diff∗

such that Ψ′′ = UφΨ; the main point is that this sum is finite, since a diffeomorphism that acts
on a spin-network state can either transform it in an orthogonal state, or leave it unchanged,
or change the link ordering and orientation, but these latter operations are discrete and con-
tribute only with a multiplicity factor. Clearly PDiffΨ is invariant under diffeomorphisms and
functionals of the form (87) cover all the diffeomorphism invariant state space, i.e. the image
of PDiff is KDiff . States linked by a diffeomorphism are projected by PDiff in the same element
of KDiff . The scalar product on KDiff is naturally defined as

< Φ,Φ′ >Diff=< PDiffΨ, PDiffΨ′ >Diff≡ (PDiffΨ)(Ψ′) . (88)

Knots and s-knot states Denote gkΨS the state obtained from a spin-network ΨS by a
diffeomorphism gk, where the maps gk form the discrete subgroup of diffeomorphisms which
change only ordering and orientation of the links of the spin-network. It is clear that

< PDiffΨS , PDiffΨ′
S >=

{
0 Γ 6= φΓ′
∑

k < ΨS, gkΨ′
S > Γ = φΓ′ for some Φ ∈ Diff∗ .

(89)

An equivalence class under diffeomorphisms of non oriented graphs is called a knot ; two spin-
networks ΨS and ΨS′ define orthogonal states in KDiff unless they are in the same equivalence
class. So states in KDiff are labeled by a knot and they are distinguished only by the coloring of
links and nodes. The orthonormal states obtained coloring links and nodes are called spin-knot
states, or s-knots (or abstract spin-networks, and, very often, simply spin-networks).

∼ (90)

3.3 Electric flux operator

The operators (66) and (67) are not well defined in K . The holonomy operator Ĥ[A, γ] is a
function of A, so it is a multiplicative operator well defined on S:

ĤA
B [A, γ]Ψ[A] = HA

B[A, γ]Ψ[A] . (91)

In order to know the action of the electric field operator Ê on spin-networks, we calculate its
action on the holonomy:

δ

δAi
a(y)

H[A, γ] =

∫
ds ẋa(s)δ3(x(s), y)(H[A, γ1]τiH[A, γ2]), (92)

where s is an arbitrary parametrization of the curve γ, xa(s) are the coordinates along the
curve, γ1 and γ2 are the two parts in which γ is divided by the point x(s). Note that the right
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side of (92) is a two-dimensional distribution ( δ3 is integrated on ds ), hence it is natural to
look for an operator well defined in K regularizing Ê in two dimensions. In fact this operator
is the quantization of the electric flux. Consider a two-dimensional surface S embedded in the
three-dimensional manifold Σ; be σ = (σ1, σ2) coordinates on S. The surface is defined by
S : (σ1, σ2) 7→ xa(σ1, σ2). The quantum electric flux is

Êi(S) ≡ −i~κγ
∫

S

dσ1dσ2 na(σ)
δ

δAi
a(σ)

, (93)

where

na(σ) = ǫabc
∂xb(σ)

∂σ1

∂xc(σ)

∂σ2
(94)

is the 1-form normal to S. If we now calculate the action of Êi(S) on the holonomy, we obtain

Êi(S)H[A, γ] = (95)

− i~κγ

∫

S

∫

γ
dσ1dσ2ds ǫabc

∂xa

∂σ1

∂xb

∂σ2

∂xc

∂s
δ3(x(σ), x(s))H(A, γ1)τiH(A, γ2) .

This integral vanishes unless the curve γ and the surface S intersect. Suppose they have a single
intersection; then the result is

Êi(S)H(A, γ) = ±i~H(A, γ1)τiH(A, γ2) , (96)

where the sign is dictated by the relative orientation of γ w.r.t. S; the action of the operator
Êi(S) consists in inserting the matrix (±i~τi) at the intersection point; an operation called
“grasping”. When many intersections p are present (figure 4) the result is

Figure 4: A partition of S

Êi(S)H(A, γ) =
∑

p

±i~H(A, γp
1 )τiH(A, γp

2 ) . (97)
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The action on an arbitrary representation of the holonomy is

Êi(S)
j

R (H[A, γ]) =
∑

p

±~κγ
j

R (H[A, γp
1 ])

j
τ i

j

R (H[A, γp
2 ]) . (98)

3.4 Area and volume operators

Area operator The electric field flux Ei(S) is not gauge invariant because it has one SO(3)
index; but its modulus is gauge invariant. Now consider the operator Ê2 and suppose that
the graph of a spin-network ΨS has a single intersection with S. Let j be the spin of the link

intersecting S. Each Êi inserts a matrix
j
τi ; since − j

τi
j
τi= j(j + 1)1 is the Casimir of SO(3) in

the j representation, the action of the operator Ê2 on the spin-network ΨS when there is an
intersection between the graph and the surface S is

Ê2(S)ΨS = (~κγ)2j(j + 1)ΨS . (99)

Now we are ready to quantize the area (8; 46; 47; 48): in General Relativity the physical area
of a surface S is

A(S) =

∫

S

d2σ
√
naE

a
i nbE

b
i = lim

n→∞

∑

n

√
E2(Sn) , (100)

where Sn are N smaller surfaces in which S is partitioned. For N enough large the operator
associated to A(S), acting on a spin-network , is such that every Sn is intersected at most once
by the links of the spin-network. So we have immediately

Â(S)ΨS = ~κγ
∑

p

√
jp(jp + 1) ΨS . (101)

This beautiful result tells us that Â is well defined on K and spin-networks are eigenfunctions
of this operator. Here we have supposed that the spin-network has no nodes on S . We show
the result of the complete calculation in the general case:

Â(S)ΨS = ~κγ
∑

u,d,t

√
1

2
ju(ju + 1) +

1

2
jd(jd + 1) +

1

2
jt(jt + 1) ΨS , (102)

where u labels the outcoming parts of the links, d the incoming and t the tangent links with
respect to the surface. We must stress that the classical quantity A(S) is precisely the physical
area of the surface S, hence we have also a precise physical prediction: every area measure can
give only a result in the spectrum of the operator Â(S): the area is quantized. The quantum
of area carried by a link in the fundamental representation j = 1 (j = 1/2 for SU(2)) is the
smaller eigenvalue; its value is of order of the Plank area:

A0 ≈ 10−66cm2 (γ = 1) . (103)
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Volume operator We now construct an operator V̂(R) corresponding to the volume of a
region R. The volume of a 3-dimensional region R is given by the expression (8; 49; 50; 51; 52;
53)

V(R) =

∫

R
d3x

√
1

3!
| ǫabcE

a
i E

b
jE

c
kǫ

ijk | = lim
n→∞

∑

n

√
ǫabcEi(Sa)Ej(Sb)Ek(Sc)ǫijk , (104)

where the sum is over the N cubes in which the region R is partitioned, and S are three sections
of the n-th coordinate cube. Now consider the quantization of the right hand side of (104) and
consider its action on a spin-network; when N is enough large, then each coordinate cube will
contain at most one node. It turns out that spin-networks are eigenstates and the eigenvalues
receive one contribution from each node, but the node must be at least 4-valent to give a non
zero contribution. The spectrum of the volume is discrete.

3.5 Physical interpretation of quantum geometry

Since only the nodes of the spin-network ΨS contribute to the volume operator action, the
volume of the region R is a sum of terms, one for every node contained in R , hence every node
represents a quantum of volume; these quanta are separated by surfaces whose area is measured
by the operator A(S) . All links of ΨS that intersect the surface S contribute to the area
spectrum. Two space elements are contiguous if the corresponding nodes are connected by a
link l; in this case they are separated by a surface of area Al = ~κγG

√
jl(jl + 1) where jl is the

spin associated to the link l. The intertwiners associated to the nodes are the quantum numbers
of volume and the spins associated to the links are quantum numbers of area. The graph Γ
determines the contiguity relations between the chunks of space, and can be interpreted as the
dual graph of a decomposition of the physical space; hence a spin-network state represents the
discrete quantized metric.

Also s-knot states have a precise physical interpretation; indeed passing from a spin-network
state to an s-knot state we preserve all the information, except for its localization in the 3-
dimensional manifold; this is precisely the implementation of the diffeomorphism invariance
also in the classical theory, where the physical geometry is an equivalence class of metrics under
diffeomorphisms. An s-knot state represents a discrete quantized geometry, it is formed by
abstract quanta of space not living on a three-dimensional manifold, they are only localized one
respect to another.
One of the most impressive results of LQG is that the theory predicts Plank scale discreteness,
on the basis of a standard quantization procedure, in the same manner in which the quantization
of the energy levels of an atom is predicted by nonrelativistic Quantum Mechanics.

3.6 Dynamics

The quantization of the scalar constraint S is a difficult task mainly for two reason: first of
all it is highly non linear, not even polynomial in the fundamental fields A and E. This gives
origin to ambiguities and possible ultraviolet divergences; moreover there is no clear geometrical
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interpretation of the transformation generated by S. Nevertheless the quantization is possible,
and we review the procedure found by Thiemann (54; 55).
The scalar constraint is the sum of two terms:

S(N) = SE(N) − 2(1 + γ2)T (N) , (105)

where E stands for Euclidean. The procedure consists in rewriting S in such a way that the
complicated non polynomial structure gets hidden in the volume observable. For example the
first term can be rewritten as

SE(N) =
κγ

4

∫

Σ
d3xNǫabcδij F

j
ab{Ai

c,V} . (106)

In the last expression we know how to quantize the volume and regularize the connection. Given
an infinitesimal loop αab in the ab-plane in the coordinate space, with coordinate area ǫ2, the
curvature tensor Fab can be regularized observing that

hαab
[A] − h−1

αab
[A] = ǫ2F i

abτi + O(ǫ4) . (107)

Similarly the Poisson bracket {Ai
a,V} is regularized as

h−1
ea

[A]{hea [A],V} = ǫ{Aa,V} + O(ǫ2) , (108)

where ea is a path along the a−coordinate of coordinate length ǫ. Using this we can write

SE(N) = lim
ǫ→0

∑

I

NIǫ
3ǫabc Tr[Fab[A]{Ac,V}] = (109)

= lim
ǫ→0

∑

I

NIǫ
abc Tr[(hαI

ab
[A] − hαI

ab
[A]−1)h−1

eI
c

[A]{heI
c
,V}] .

where in the first equality we have replaced the integral in (106) by a sum over cells, labeled with
the index I, of coordinate volume ǫ3. The loop αI

ab is an infinitesimal closed loop of coordinate
area ǫ2 in the ab−plane associated to the I-th cell, while the edge eIa is the corresponding edge
of coordinate length ǫ, dual to the ab−plane. If we quantize the last expression in (109) we
obtain the quantum scalar constraint

ŜE(N) =
∑

I

NIǫ
abc Tr[(ĥαI

ab
[A] − ĥαI

ab
[A]−1)ĥ−1

eI
c

[A][ĥeI
c
, V̂]] . (110)

The regulated quantum scalar constraint acts only at spin-network nodes; this is a consequence
of the very same property of the volume operator. In fact it acts only at nodes of valence
n > 3. Due to the action of infinitesimal loop operators representing the regularized curvature,
the scalar constraint modify spin-networks by creating new links around nodes, so creating a
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triangle in which one vertex is the node:

Ŝn
ǫ j

k

l

m

=
∑

op Sjklm,opq

o

p
l

qj

m

k

+

+
∑

op Sjlmk,opq

l

j

m

k

p

o

q +
∑

op Sjmkl,opq

l

j

m

k

p
q

o .

(111)

A similar procedure can be done for the second term in the scalar constraint (105). Now to
remove the regulator ǫ we note that the only dependence on ǫ is in the position of the extra link
in the resulting spin-network, but in the diffeomorphism invariant context, i.e. when acting on
KDiff, the position of the new link is irrelevant. Hence the limit

〈Φ, Ŝ(N)Ψ〉 = lim
ǫ→0

〈Φ, Ŝǫ(N)Ψ〉

exists trivially for any Ψ,Φ ∈ KDiff.
An important property of the quantum scalar constraint is that the new nodes carry zero volume
and they are invisible to a second action of the quantum scalar constraint. There is a non trivial
consistency condition on the quantum scalar constraint: it must satisfy the identity (48). The
correct commutator algebra is recovered, in the sense that

〈Φ | [Ŝ(N), Ŝ(M)] | Ψ〉 = 0 (112)

for any Φ, Ψ in KDiff. We say that the quantization of GR does not give rise to anomalies.
Two open issues are the quantization ambiguities (in regularizing the connection we chose the
fundamental representation for holonomies but we could choose any; moreover there are opera-
tor ordering ambiguities) and L. Smolin’s objection of ultra-locality (56). This objection consist
in the fact that in the classical theory, given the value of the gravitational field on a closed three
dimensional boundary, the scalar constraint induces a constraint on the metric inside, namely
it is equivalent to Einstein equations; now, because the quantum scalar constraint acts only in
the immediate vicinity of nodes and does not change the value of the spins of the links that
connect different nodes, it is not clear how, in the semi-classical context, quantizations of scalar
constraint that are ultra-local can impose conditions restricting unphysical degrees of freedom
in the interior of a region, once boundary conditions are given.
We should point out that exact solutions of the scalar constraint are known for specific quan-
tizations (57; 58; 59). In the following we deal with the dynamics through another approach:
the Spinfoam covariant formulation.
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4 Covariant formulation: spinfoam

Spinfoams are a covariant Lagrangian formulation of quantum gravity, which is expected to be
equivalent to the Hamiltonian one, that is Loop Quantum Gravity. The equivalence between
Lagrangian and Hamiltonian formulation has been proven in three dimensions by Perez and
Noui (16); in the four dimensional case the new models (15; 22; 23; 24) show the equivalence
at kinematical level. The spinfoam formulation is based on a path integral “à la Feynmann”
that implements the sum over geometries; actually the sum is over 2-complexes (spin foams,
fig 4.1), i.e. collections of faces, edges and vertices combined together and labeled with the
representations of the gauge group. We can think to this formalism as a way to represent the
time evolution of spin-networks: we can interpret a spinfoam as an history of spin-networks.
The two formulations have different properties: Lagrangian formalism is simpler, more transpar-
ent and keeps symmetries and covariance manifest. The Hamiltonian formalism is more general
and rigorous. The Spinfoam formalism allows to calculate explicitly transition amplitudes in
quantum gravity between two states with fixed geometry (spin-networks). Recently the spin-
foam formalism has been largely developed, mostly because of the difficulties in understanding
the LQG dynamics.
In this section we give the definition of spinfoam models and motivate intuitively the reason and
the sense in which they are the path integral representation of the action of the scalar constraint.
It is easier to start in three dimensions, introducing the Ponzano Regge spinfoam model; this is
based on the Regge-triangulation of a 3-dimensional manifold. Then we extend this model to
four dimensions obtaining the BF theory. BF theory is not still General Relativity; it becomes
General Relativity under the imposition of some constraints. In the quantum theory, imposing
strongly these constraints leads to the Barrett-Crane model.

4.1 Path integral representation

A spin foam σ is a 2-complex Γ with a representation jf associated to each face and an in-
tertwiner ie associated to each edge (60). A spinfoam model (61) is defined by the partition
function

Z =
∑

Γ

w(Γ)Z[Γ] (113)

where
Z[Γ] =

∑

jf ,ie

∏

f

Af (jf )
∏

e

Ae(jf , ie)
∏

v

Av(jf , ie) ; (114)

w(Γ) is a weight associated to the 2-complex, Af , Ae and Av are the amplitudes associated to
faces, edges and vertices. For most models Af (jf ) is simply the dimension of the representation
dim(jf ) = 2jf + 1. So a spinfoam model is defined by:
1) a set of 2-complexes, and associated weights;
2) a set of representations and intertwiners;
3) a vertex and an edge amplitude.
Let us motivate intuitively the close relation between LQG dynamics and spin foams (62; 63; 64).
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Figure 5: A spin foam seen as evolution of spin-networks

The solutions to the scalar constraint can be characterized by the definition of a generalized
projection operator P from the kinematical Hilbert space H onto the kernel Hphys of the scalar
constraint. Formally we can write P as

P =

∫
D[N ] exp i

∫

Σ
N(x)Ŝ(x) . (115)

For any state Ψ ∈ K, PΨ is a formal solution of the scalar constraint S. Moreover P naturally
defines the physical scalar product

< Ψ,Ψ′ >phys≡< PΨ,Ψ′ >K . (116)

The matrix elements between spin-networks states can be expressed as a sum over spin-network
histories (65; 66), or spin foams (figure 5):

< ΨS ,ΨS′ >Phys≡ Z =
∑

Γ

w(Γ)Z[Γ] . (117)

Imagine that the graph moves upward along a “time coordinate” of spacetime, sweeping a
worldsheet, changing at each step under the action of S; this worldsheet defines a possible
history. An history ΨS → ΨS′ is a 2-complex with boundary given by the graphs of the spin-
networks ΨS and ΨS′ respectively, whose faces (the worldsurfaces of the links of the graphs),
are denoted with f , and whose edges (the worldlines of the nodes) are denoted as e. Since the
scalar constraint acts on nodes, the individual steps in the history can be represented as the
branching off of the edges. We call vertices the points where edges branch, and denote them as
v. We obtain in this manner a collection of faces, meeting at edges, in turn meeting at vertices;
the set of those elements and their adjacency relations defines a 2-complex Γ.
The underlying discreteness discovered in LQG is crucial: in the spinfoam representation, the
functional integral for gravity is replaced by a sum over amplitudes of combinatorial objects
given by foam-like configurations. A spin foam represents a possible history of the gravitational
field and can be interpreted as a set of transitions trough different quantum states of space.
Boundary data in the path integral are given by quantum states of 3-geometry.
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We present also another important feature of the spinfoam models: most of spinfoam amplitudes
can be obtained, for a given triangulation, by a particular field theory called group field theory

Z[Γ] = ZGFT[Γ] . (118)

A group field theory is defined in terms of a Feynman expansion

ZGFT =
∑

Γ

λv[Γ]

sym[Γ]
ZGFT[Γ] , (119)

where the sum is over the triangulations and v[Γ] is the number of vertices in the triangulation.
Very roughly, the physical meaning of group field theory is the following (67; 68; 69; 70): in a
realistic quantum gravity model, the sum over 2-complexes must be present in order to capture
the infinite number of degrees of freedom. But the difference with lattice QFT is that the lattice
spacing cannot be sent to zero because there is not a cut off scale. In the covariant approach
to quantization one usually considers the discretized classical theory defined over a fixed tri-
angulation; then some prescription is needed to recover the sum over all quantum geometries.
This sum is usually done by means of group field theory. The parameter λ is equivalent to the
number of cells in Regge calculus, and the discussion in (4.2) clarifies also the physical meaning
of the group field theory λ expansion.

4.2 Regge discretization

The starting point of spin foams is the triangulation of space time, introduced by Regge in the
early 1960’s, called Regge calculus (71); it is a natural way to approximate General Relativity by
means of a discrete lattice theory. We now illustrate the basic principles of Regge calculus, in the
Euclidean General Relativity. A Riemannian manifold (M,g), where M is a smooth manifold
and g its metric, can be approximated by means of a piecewise flat manifold (∆, g∆), formed by
flat simplices (triangles in 2d, tetrahedra in 3d, 4-simplices in 4d...) glued together in such a way
that the geometry of their shared boundaries matches. Here ∆ is the abstract triangulation, and
the discretized metric g∆ assumes a constant value on the edges of simplices and is determined
by the size of simplices. For instance, a curved 2d surface can be approximated by a surface
obtained by gluing together flat triangles along their sides: curvature is then concentrated
on the points where triangles meet, possibly forming “the top of a hill". With a sufficient
number N of simplices, we can (fixing the abstract triangulation and varying the size of the
individual n-simplices) approximate sufficiently well any given (compact) Riemannian manifold
with a Regge triangulation. Thus, over a fixed ∆ we can define an approximation of GR, in
a manner analogous to the way a given Wilson lattice defines an approximation to Yang-Mills
field theory, or the approximation of a partial differential equation with finite–differences defines
a discretization of the equation. Therefore the Regge theory over a fixed ∆ defines a cut-off
version of GR.
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The meaning of Regge cut-off There is a main difference between this kind of discretization
and lattice QCD: the Regge cut-off is neither ultraviolet nor infrared. In lattice QCD, the
number N of elementary cells of the lattice defines an infrared cut-off: long wavelength degrees
of freedom are recovered by increasing N . On the other hand, the physical size a of the
individual cells enters the action of the theory, and short wavelength degrees of freedom are
recovered in lattice QCD by decreasing a. Hence a is an ultraviolet cut-off. In Regge GR,
on the contrary, there is no fixed background size of the cells that enters the action. A fixed
∆ can carry both a very large or a very small geometry. The cut-off implemented by ∆ is
therefore of a different nature than the one of lattice QFT. It is not difficult to see that it
is a cut-off in the ratio between the smallest allowed wavelength and the overall size of the
spacetime region considered. Thus, fixing ∆ is equivalent to cutting-off the degrees of freedom
of GR that have much smaller wavelength than the arbitrary size L of the region one considers.
Since the quantum theory has no degrees of freedom below the Planck scale, it follows that a
Regge approximation is good for L small, and it is a low-energy approximation for L large.

Geometrical construction Consider a 4d triangulation. This is formed by oriented 4-
simplices (v), tetrahedra (e), triangles (f), segments and points. The notation refers to the
pictures dual to the triangulation (v for vertices, e for edges and f for faces) that will be
useful in the spinfoam context. The metric is flat within each 4-simplex v. All the tetrahe-
dra, triangles and segments are flat and, respectively, straight. The geometry induced on a
given tetrahedron from the geometry of the two adjacent 4-simplices is the same. In d dimen-
sions, a (d − 2)−simplex is surrounded by a cyclic sequence of d-simplices, separated by the
(d − 1)-simplices that meet at the (d − 2)-simplex. This cyclic sequence is called the link of
the (d− 2)-simplex. For instance, in dimension 2, a point is surrounded by a link of triangles,
separated by the segments that meet at the point; in dimension 3, it is a segment which is
surrounded by a link of tetrahedra, separated by the triangles that meet at the segment; in
dimension 4, which is the case that concerns our world, a triangle f is surrounded by a link of
4-simplices v1, . . . , vn, separated by the tetrahedra that meet at the triangle f . In Regge calcu-
lus, curvature is concentrated on the (d − 2)-simplices. In dimension 4, curvature is therefore
concentrated on the triangles f . It is generated by the fact that the sum of the dihedral angles of
the 4-simplices in the link around the triangle may be different from 2π. We can always choose
Cartesian coordinates covering one 4-simplex, or two adjacent 4-simplices; but in general there
are no continuous Cartesian coordinates covering the region formed by all the 4-simplices in
the link around a triangle. The variables used by Regge to describe the geometry g∆ of the
triangulation ∆ are given by the set of the lengths of all the segments of the triangulation.
Regge has also written the Einstein action in this discretized context: in three dimensions the
discretized Einstein-Hilbert action for a tetrahedron v is

Sv =
∑

f

lfθf (lf ) , (120)
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where θf is the dihedral angle associated to the segment f , that is the angle between the outward
normals of the triangles incident to the segment. One can show that the action

SRegge =
∑

v

Sv , (121)

called the Regge action, is an approximation to the integral of the Ricci scalar curvature, namely
to the Einstein-Hilbert action.

4.3 Quantum Regge calculus and spinfoam models

Quantum Regge calculus is a quantization of discretized General Relativity (72). Consider the
3d case, which is easier and is the one studied by Ponzano and Regge. The idea is to define a
partition function as a sum over Regge geometries:

Z =

∫
dl1 . . . dlN eiSRegge ; (122)

this is a sum over the N segment lengths of a fixed triangulation. Regge discovered a surprising
property of the Wigner 6j-symbol: in the large j limit the following asymptotic formula holds,
linking the {6j} to the Regge action (120):

{6j} ∼ 1√
12πV

cos
(
Sv(jn) +

π

4

)
. (123)

The two exponential terms coming from the cosine correspond to forward and backward prop-
agation in coordinate time, and π/4 does not affect classical dynamics. Under the assumption
that the lengths are quantized, Ponzano and Regge proposed the following formula for 3d quan-
tum gravity:

ZPR =
∑

j1...jN

∏

f

dim(jf )
∏

v

{6j}v . (124)

This formula has the general form (114) where the set of two complexes summed over is formed
by a single 2-complex; the representations summed over are the unitary irreducible of SU(2),
the intertwiners are trivial and the vertex amplitude is Av = {6j}. It defines a spinfoam model
called the Ponzano Regge model. The formula (124) can be obtained by direct evaluation of
a path integral when we introduce appropriate variables. To this aim, consider the 2-skeleton
∆∗ dual of a fixed triangulation ∆ of the spacetime 3-manifold. ∆∗ is defined as follows: place
a vertex v inside each tetrahedron of ∆; if two tetrahedra share a triangle e, we connect the
two corresponding vertices by an edge e, dual to the triangle e; for each segment f of the
triangulation we have a face f of ∆∗. Finally for each point of ∆ we have a 3d region of ∆∗,
bounded by the faces dual to the segments sharing the point (Table 1).
Let he = P exp (

∫
e ω

iτi) be the holonomy of the SU(2) spin connection along each edge of ∆∗;
let lif be the line integral of the triad (gravitational field) ei along the segment f of ∆. he and

lif are the basic variables. The discretized Einstein-Hilbert action in these variables reads

S[lf , he] =
∑

f

lifTr[hf τi] =
∑

f

Tr[hf lf ] , (125)
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∆3 ∆∗
3

tetrahedron vertex (4 edge, 6 faces)

triangle edge (3 faces)

segment face

point 3d region

∆4 ∆∗
4

4-simplex vertex (5 edge,10 faces)

tetrahedron edge (4 faces)

triangle face

segment 3d region

point 4d region

Table 1: Relation between a triangulation and its dual, in three and four dimensions. In
parenthesis: adjacent elements.

where hf = h
ef
1
. . . h

ef
n

is the product of group elements associated to the edges ef1 , . . . , e
f
n

bounding the face f . In the last expression lf are elements in the lie algebra su(2) (lf ≡ lif τi).

If we vary this action w.r.t. the lengths lif we obtain the equations of motion hf = 1namely
the lattice connection is flat. Using this fact, and varying w.r.t. he, we obtain the equations of
motion lif1

+ lif2
+ lif3

= 0 for the three sides f1, f2, f3 of each triangle. This is the discretized
version of the Cartan equation De = 0.
Now we can define the path integral as

Z =

∫
dlifdhe exp iS[lf , he] , (126)

where dhe is the Haar measure over SU(2) . Up to an overall normalization factor,

Z =

∫
dhe

∏

f

δ(h
ef
1
. . . h

ef
n
) =

∑

j1...jN

∏

f

dim(jf )

∫
dhe

∏

f

Tr
jf

R (h
ef
1
. . . h

ef
n
) , (127)

where we have expanded the δ over the group using the formula

δ(h) =
∑

j

dim(j)Tr
j

R (h) (128)

in which the sum is over all unitary irreducible representations of SU(2) . Since every edge is
shared by three faces, the integrals over a single holonomy he are of the form

∫

SU(2)
dU

j1
R (U)aa′

j2
R (U)b b′

j3
R (U)c c′ = vabcva′b′c′ , (129)

where vabc is the normalized intertwiner (vabcvabc = 1) between the representations of spin
j1, j2, j3. Each of the two invariant tensors in the r.h.s. is associated to one of the two vertices
that bounds the edge. In all we have four intertwiners for each vertex; these intertwiners get
fully contracted among each other following a tetrahedral pattern.
This contraction is precisely the Wigner 6j-symbol. Bringing all together we obtain the
Ponzano-Regge partition function (124).
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4.4 BF theory

Here we extend the above construction to four dimensions. As a first step we do not consider
GR, but a much simpler 4d theory, called BF theory, which is topological and is a simple
extension to 4d of the topological 3d GR. BF theory for the group SO(4) is defined by two
fields: a 2-form BIJ with values in the Lie algebra of SO(4), and an SO(4) spin connection
ΓIJ . The action is a direct generalization of the 3d one:

S[B,Γ] =

∫
BIJ ∧RIJ [Γ] . (130)

We can obtain the action of General Relativity from the one of BF theory substituting the
field BIJ with ǫIJ

KLe
K ∧ eL, and this is the reason for which we describe BF theory as an

intermediate step.
We discretize BF theory on a fixed triangulation; the discrete configuration variables are BIJ

f ,
which are the integrals of the continuous 2-form over the triangles f (f stands for face which
is dual to triangles). The construction of the dual 2-skeleton in 4d is in Table 1. Following the
same procedure of the 3d case, we obtain an equation analog to (127) where the sum is over
SO(4) irreducible representations. Now we are in four dimensions, and every edge bounds four
faces; so we have to compute integrals of the form

∫

SO(4)
dU

j1
R (U)aa′

j2
R (U)b b′

j3
R (U)c c′

j4
R (U)dd′ =

∑

i

vabcd
i vi

a′b′c′d′ . (131)

Here i labels an orthonormal basis vabcd
i (vabcd

i vj abcd = δij) in the space of the intertwiners
between the representations of spin j1, j2, j3, j4. Now each vertex bounds ten faces and so for
each vertex we have ten representations. Analogously to the three dimensional case, where the
vertex amplitude was given by a {6j}, we find that here the vertex amplitude is the 15j-symbol
(the Wigner 15j up to dimensionals factors):

A(j1, . . . j10, i1, . . . , i5) (132)

≡
∑

a1...a10

va1a6a9a5
i1

va2a7a10a1
i2

va3a7a8a2
i3

va4a9a7a3
i4

va5a10a8a4
i5

= {15j}SO(4) ,

where the indices an are in the SO(4) representation jn. The pattern of the contraction of the
indices reproduces the structure of a four simplex (figure 6). We can then write the partition
function

Z =
∑

jf ,ie

∏

f

dim(jf )
∏

v

{15j}v . (133)

In conclusion, the spinfoam model of BF theory is defined by the following choices:
1) the set of two complexes summed over is formed by a single 2-complex (2-skeleton dual to a
4-dimensional triangulation);
2) the representations summed over are the unitary irreducibles of SO(4);
4) the vertex amplitude is Av = {15j}.
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Figure 6: A 15j-symbol

4.5 Barret-Crane model

Now we are ready to look for a spinfoam model for GR. As we have anticipated, to obtain GR
from BF we must replace BIJ with

BIJ = ǫIJ
KLe

K ∧ eL . (134)

How to implement this constraint in the quantum theory? First, we replace it with the equivalent
constraint Equation (134) can be substituted by

BIJ ∧BKL = V ǫIJKL , (135)

where V is proportional to the volume element. To discretize the theory we integrate the B
field over triangles f , obtaining the bivector BIJ

f (its modulus is the area of the triangle), and
for each tetrahedron t the equation (135) can be split in

B∗
f · Bf = 0 , (136)

B∗
f · Bf ′ = 0 , f and f ′ share an edge, (137)

B∗
f · Bf ′ = ±2V (v) f and f ′ are opposite faces of t, (138)

where V (v) is the volume of the 4-simplex v. In the quantum theory BIJ
f can be identified with

the generators of an SO(4) representation (in analogy with the 3d case in which the continuous
variables lif could be identified with the generators of the representation jf ). Moreover it is

immediate to see that the four bivectors BIJ
f1

(t), . . . , BIJ
f4

(t), associated to the four triangles of
a single tetrahedron satisfy the closure relation

BIJ
f1

(t) +BIJ
f2

(t) +BIJ
f3

(t) +BIJ
f4

(t) = 0 ; (139)

this is the discrete analog of Gauss constraint. Equation (136) is called diagonal simplicity
constraint, and it becomes, in the quantum theory, a restriction on the representations summed
over. Recall indeed that, since the Lie algebra of SO(4) is su(2) ⊕ su(2), the irreducible repre-
sentations of Spin(4), the universal covering of SO(4), are labeled by couples of spins (j+, j−) .
So the diagonal simplicity constraint in the generic (j+, j−) irrep reads

ǫIJKLB̂
IJ
f B̂KL

f = B̂i
+B̂+i − B̂i

−B̂−i = [j+(j+ + 1) − j−(j− + 1)]1 = 0 ; (140)
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from which j+ = j−, namely the irreps are constrained to be simple (or balanced). Bi
+ and Bi

−
are the self-dual and antiself-dual part of BIJ w.r.t. the ”timelike" unit vector n = (1, 0, 0, 0):
Bi

± = −1
4ǫ

i
jkB

jk ± 1
2B

i0 This suggests that quantum GR can be obtained by restricting the
sum over representations in (133) to the sole simple representations.
The other two constraints (137) and (138) are called off-diagonal and dynamical simplicity
constraints respectively; the off-diagonal restricts the intertwiners between four (simple) SO(4)
irreps to have components only in the simple irreps in the Clabsh-Gordan decomposition. In
particular the intertwiners are constrained to be the Barret-Crane ones:

i
(aa′)(bb′)(cc′)(dd′)
BC =

∑

i

(2i+ 1) vabgvgcdva′b′g′vg′c′d′ , (141)

where the SO(4) indices are couple of SU(2) indices, and the indices g and g′ are in the
representation i. The BC intertwiner has the property of being formed by a simple virtual link
in any decomposition

iBC =
∑

ix

(2ix+1) = =
∑

iy

(2iy+1) . (142)

Note that the scalar Casimir B̂f · B̂f is the quantization of the area of the triangle f and its
eigenvalues jf (jf + 1) are the area quantum numbers. The BC vertex amplitude is then the
SO(4) 15j-symbol where the spins are simple and the intertwiners are the BC ones:

=
∑

i1...i5

(143)

This symbol is called 10j-symbol in quantum gravity literature. The Barret-Crane spinfoam
model (73; 74) is defined by the partition function

ZBC =
∑

simple jf

∏

f

dim(jf )
∏

v

Av(j1, . . . , j10) . (144)

Asymptotics of 10j-symbol At this point, a natural question arise: whether also the 10j-
symbol has the same property of 6j-symbol of reproducing the Regge action in large spin limit;
the answer is remarkably positive. A computation of the asymptotic expression of the Barrett-
Crane vertex amplitude for non-degenerate configurations was obtained by Barrett and Williams
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in (75). The large spin behavior of the vertex amplitude given by Crane and Yetter in (76) is

{10j} ∼
∑

σ

P (σ) cos SRegge(σ) + k
π

4
+D , (145)

where the sum is over 4-simplices σ, whose faces have area determined by the spins; P (σ) is a
non oscillating factor, D is the contribution of the so-called degenerate configurations and k is
an integer depending on σ . In (77) Baez, Christensen and Egan showed that the term D is
in fact dominant in the asymptotics of the 10j, i.e. the leading order terms are contained in
the set of degenered configurations! This has later been confirmed by the results of Freidel and
Louapre (78) and Barrett and Steele (79). However, we anticipate that such degenerete terms
do not seem to contribute to physical quantities such as the n-point functions.

Relation with LQG Consider the case in which the triangulated manifold has a boundary,
and the triangle f belongs to the boundary. The face f cuts the boundary along a link, labeled
with jf . This is assumed to be one of the links of the boundary spin-network. This link
intersects once and only once the triangle f , hence jf is the quantum number determining the
area of the triangle f ; this is precisely the result that we found in Loop Quantum Gravity.
The interpretation of the intertwiners at the boundary is more delicate. Consider an edge e
of the spin foam σ that cuts the boundary at a node n of the boundary spin-network. The
node n, or the edge e, is dual to a tetrahedron sitting on the a boundary. Let f and f ′ be
two adjacent triangles of this tetrahedron. Consider the action of the SO(4) generators on
the tensor product of the representation spaces associated to the two (faces dual to the two)
triangles. This is given by the operators B̂IJ

ff ′ = B̂IJ
f + B̂IJ

f ′ (we omit the tensor with the

identity operator in the notation); be B̂ff ′ · B̂ff ′ the scalar Casimir on the tensor product of
the representation spaces of the two triangles. Straightforward algebra shows that

Bff ′ ·Bff ′ = |Bf | + |Bf ′ | + 2 n̂f · n̂f ′ , (146)

where n̂I
f = ǫIJKLB

JK
f tL and tL is the normalized vector normal to f and f ′. Finally, n̂f ·

n̂f ′ = AfAf ′ cosαff ′ , where αff ′ is the dihedral angle between f and f ′. This provides the
interpretation of the color of a virtual link in the intertwiner associated to the node: if the
virtual link that couples f and f ′ is simple, with spin jff ′ , we have

jff ′(jff ′ + 1) = A2
f +A2

f ′ + 2AfAf ′ cosαff ′ . (147)

That is, the color of the virtual link is a quantum number determining the dihedral angle αff ′

between the triangles f and f ′; or, in the dual picture, the angle between the two corresponding
links that join at the node. Once more, this result is exactly the same in LQG.
Nevertheless there is a serious problem in matching Loop Quantum Gravity states with the
boundary states of Barret-Crane model. From equation (142), we have

〈iBC|i, i〉 = (2i+ 1) , (148)

whatever is the pairing of the virtual link i. Since the simple SO(4) intertwiner |i, i〉 diagonalizes
the same geometrical quantity as the SO(3) intertwiner |i〉, it is tempting to physically identify
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the two and write
〈iBC|i〉 = (2i + 1) . (149)

But there is not any state | iBC〉 in the the SO(3) intertwiner space having this property. This
is now considered a major problem of the BC model, which, together with the bad behavior of
some components of n-point functions, started the search for new models.
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5 Graviton propagator in Loop Quantum Gravity

One important line of research in Loop Quantum Gravity is the study of its semiclassical limit.
Though nowadays there are not experiments that permit to test directly a candidate theory
of quantum gravity, one possibility is to compute the n-point functions from Loop Quantum
Gravity and compare them with the corresponding expressions obtained in the conventional
perturbative expansion of quantum General Relativity. Agreement at large distance could then
be taken as evidence that the nonperturbative quantum theory has the correct low energy limit;
while the differences at short distance reflect the improved ultraviolet behavior of the nonper-
turbative theory. The difficulty is that general covariance makes conventional n-point functions
ill–defined in the absence of a background. A strategy for addressing this problem has been
suggested in (80); the idea is to study the boundary amplitude, namely the functional integral
over a finite spacetime region, seen as a function of the boundary value of the gravitational
field (18). In conventional quantum field theory, this boundary amplitude is well–defined (see
(81; 82)) and codes the physical information of the theory; so does in quantum gravity, but in
a fully background–independent manner (83).
A generally covariant definition of n-point functions can be based on the idea that the distance
between physical points –arguments of the n-point function– is determined by the state of the
gravitational field on the boundary of the spacetime region considered. This strategy was first
implemented in the letter (84), where some components of the graviton propagator were com-
puted to the first order in the expansion parameter λ, then the full calculation is performed in
(84) to second order in λ (for an implementation of these ideas in 3d, see (85; 86)). Only a few
components of the boundary state contribute to low order in λ. This reduces the calculation
to a 4d generalization of the “nutshell” 3d model studied in (87). The boundary amplitude
defining n-point functions can be read as the creation, interaction and annihilation of “atoms
of space”, in the sense in which Feynman diagrams in conventional quantum field theory can
be viewed as creation, interaction and annihilation of particles. Using a natural gaussian form
of the background boundary state, peaked on the intrinsic as well as the extrinsic geometry of
a Euclidean 3-sphere, an expression for the graviton propagator can be derived, and at large
distance this agrees with the conventional graviton propagator.
In the first part of this section we show how to define n-point functions for general covariant
field theories in the context of general boundary formulation. In order to explain the concept
of boundary amplitude, we first illustrate a very simple example of a single degree of freedom
system: the harmonic oscillator; then we introduce the general boundary formulation for field
theories, in particular for quantum gravity. We conclude showing a formal expression for quan-
tum gravity n-point functions.
In the second part we present the main ingredients for the graviton propagator definition and
the results skipping the calculations. In the last part we stress the problem of the gauge choice
for the comparison with the linearized theory and how it is solved by the compatibility between
radial and harmonic gauge. In fact perturbative quantum gravity Feynman rules are mostly
known in harmonic gauge, but Loop Quantum Gravity calculations involve gauge choices that
can be interpreted as putting the linearized gravitational field in radial gauge (i.e. with vanish-
ing radial components): a direct comparison seems to be not viable. However we demonstrate
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(20) that radial and harmonic gauges are compatible. Thanks to this result, it is possible to com-
pare the full tensorial structure of the LQG propagator with the one of the standard propagator.

5.1 n-point functions in general covariant field theories

In perturbative quantum gravity the metric is split in a flat background metric η plus a perturba-
tion4: gµν(x) = ηµν +hµν(x); the background is treated classically, and only the perturbation is
quantized. The 2-point function is defined as in a conventional QFT as the vacuum expectation
value

Gµνρσ(x, y) = 〈0|hµν(x)hρσ(x)|0〉 . (150)

If we consider the full non-perturbative theory, diffeomorphism invariance seems to imply that
the propagator G does not depend on the two arguments x and y, so it is a constant. This
problem is only apparent, and it is beautifully solved by a change of perspective, namely defining
n-point functions for general finite 3d boundaries; to understand how the general boundary
formulation works we first illustrate a simple example in ordinary Quantum Mechanics, i.e. the
2-point function of harmonic oscillator. The harmonic oscillator propagator is defined as the
vacuum expectation value of two position operators:

G0(t1, t2) = 〈0|x̂(t1)x̂(t2)|0〉 = 〈0|x̂e−iH(t1−t2)x̂|0〉 . (151)

Passing to the Schrödinger representation we can write the 2-point function as an integral in
position space

G0(t1, t2) =

∫
dx1dx2 ψ0(x1)x1W (x1, x2; t1, t2)x2ψ0(x2) , (152)

where ψ0 = 〈x|0〉 is the wave function of ground state.
W (x1, x2; t1, t2) = 〈x1|x̂(t1)x̂(t2)|x2〉 is called propagation kernel and it codes the dynamics of
the system.
In the functional representation, instead, the 2-point function reads

G0(t1, t2) =

∫
Dxx(t1)x(t2)e

i
R

Ldt . (153)

The Schrödinger representation is recovered by breaking the functional integral into five regions:
the two regions external to the initial and final time, the two regions at initial and final time and
the region in between. The external integration gives the ground state, the internal integration
gives the propagation kernel W and the integration at t1 and t2 is just the integration appearing
in the Schrödinger representation.
Now we introduce the relativistic form of the propagator; by relativistic here we mean “general
relativistic” in the sense illustrated in (7). So we put together the initial and final background
configuration ψ0 and ψ0 and we call them “boundary state” Ψ0, where Ψ0 lives in H∗ ⊗H, H
being the Hilbert space of square integrable functions on 3d space; H∗ and H are viewed as the

4From now on we change notation for h; it is no more the induced metric.
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spaces of initial data and final data, respectively, so we use the notation H∗
t1 and Ht2 .

Then we can define the relativistic position operators x̂1 and x̂2, as acting separately on the
two Hilbert spaces as the ordinary position operators. W can be interpreted as a bra on the
tensor product H∗

t1 ⊗Ht2 . The 2-point function assumes the compact form

G0(t1, t2) = 〈Wt1t2 |x̂1x̂2Ψ0〉 . (154)

The physical interpretation is the following: Ψ0 represents the joint configuration at initial and
final time with no excitations present; W codes the dynamics and x̂1, x̂2 create two excitations
at initial and final time. The state |x̂1x̂2Ψ0〉 is the excited boundary configuration detected in
the experiment (7).
It is worth to note that the following normalization condition holds:

〈0|eiH(t1−t2)|0〉 = 〈Wt1t2 |Ψ0〉 = 1 . (155)

Its physical meaning is that the final background state is the time evolution of the initial
background state; in other words, the boundary state satisfies the dynamics. In our case the
condition holds because the ground state does not evolve in time. In quantum gravity jargon,
the normalization (155) is called Wheeler-deWitt condition.
Instead of the ground state, we can consider a more general coherent boundary state with
arbitrary positions q1 and q2, and momenta p1 and p2

Ψq1,p1,q2,p2(x1, x2) ≡ ψq1,p1
(x1)ψq2,p2(x2) . (156)

The 2-point function constructed this way reads

Gq1,p1,q2,p2(t1, t2) = 〈Wt1,t2 |Ψq1,p1,q2,p2〉 , (157)

and the Weeler-deWitt condition is

〈Wt1t2 |Ψq1,p1,q2,p2〉 = 1 . (158)

We choose q1 and p1 to be the classical evolution of the initial condition (q2, p2); in that case
the Wheeler-deWitt condition holds, because of the well-known properties of the harmonic
oscillator dynamics. We call the quadruplet (q1, q2, p1, p2) a physical boundary configuration,
denoted with q . The 2-point function for a physical boundary configuration is the quantum
amplitude for a quantum excitation to propagate over a classical trajectory starting with the
classical initial condition (q2, p2).
Now we turn our attention to quantum field theory. As before we can define a 2-point function
for the scalar field φ:

Gq(~x, ~y) =

∫
Dφ1Dφ2 ψq1,p1

(φ1)φ1(~x)W (φ1, φ2; t1, t2)ψq2,p2(φ2)φ2(~y) . (159)

In a free theory the boundary vacuum state can be written as a physical semiclassical state
peaked on some configuration fields and momenta. W is the functional integral restricted to
the region between two time slices

W (φ1, φ2; t1, t2) =

∫ ϕ|t2=φ2

ϕ|t1=φ1

Dϕ ei
R t2
t1

dt
R

d3~xL [ϕ] . (160)

43



5. GRAVITON PROPAGATOR IN LOOP QUANTUM GRAVITY

Now it is the time for the crucial step: instead of time slices, we define the 2-point function for
a general 3d boundary in the following way:

Gq =

∫
Dφ φ(x)φ(y)W (φ,Σ)Ψ(φ) . (161)

Here x and y live on the 3d hypersurface Σ, which is the 3d boundary of a finite 4d region R;
W is the result of the integration over the interior of the boundary:

W (φ; Σ) =

∫

∂ϕ=φ
Dϕ ei

R

R
d4x L [ϕ] . (162)

This definition is sensible also for quantum gravity. Perturbative quantum gravity is an ordinary
QFT, so we can use the previous expression for the 2-point function, where instead of φ there
is the perturbation h:

Gabcd
q (x,y) =

∫
Dγ hab(x)hcd(y)W (γ)Ψq(γ) ; (163)

here γ is the 3-metric of the boundary. Measure and action are Poincaré invariant; x and y

are points on the 3d boundary. We demand the vanishing of the fields at infinity, or some
other condition at infinity (this condition determines the boundary state since the latter results
from the functional integration outside the boundary). Now, if we want to construct 2-point
functions in nonperturbative quantum gravity we may assume measure and action to be in-
variant under diffeomorphisms, and W does not depend on Σ; now what is the meaning of the
points x and y? Furthermore, we do not have a background to put conditions on the fields at
infinity, so the boundary state Ψ is ill defined. The solution is simple: we cannot define the
boundary state by the external functional integration, but this is not a problem, since we can
use the expression (163) as the very definition of 2-point function. The boundary state can
be chosen arbitrarily (it is a semiclassical state peaked on a physical boundary configuration)
and the dependence on the boundary state determines the non-trivial behavior of the 2-point
function under diffeomorphisms: Gq(x,y) = Gq′(x′,y′) . Now G is a well defined quantity in
Riemannian geometry. The physical meaning of this formalism is the following: G defines an
amplitude associated to a joint set of measurements performed on the 3d boundary: we detect
the mean geometry q with two excitations (gravitons) in x and y. In nonrelativistic physics we
have to know the spacetime location of detectors and then we measure fields (except for the
gravitational field). On the other hand, in relativistic physics we measure the gravitational field
and it is sufficient to determine also the geometry of the apparatus (or conversely, the measure-
ment of the apparatus geometry is a measurement of the gravitational field on the boundary).
We stress that the geometry in the interior is free to quantum-mechanically fluctuate; in fact
W can be interpreted as a sum over geometries.

5.2 Graviton propagator in Loop Quantum Gravity

The general boundary framework can be concretely implemented in LQG (88; 59; 8; 61). Quan-
tum geometries of the boundary correspond to spin-networks; the linearized gravitational field
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operator corresponds to the well known LQG operator Êi
a; the boundary state is a functional

of spin-networks peaked on the geometry q; the boundary amplitude is provided by a spinfoam
model. So the concrete formula for the 2-point function is

Gabcd
q (x,y) =

∑

s

W [s]ĥab(x)ĥcd(y)Ψq[s] . (164)

In the following we examine the ingredients of the graviton propagator (164).

The boundary state We choose a boundary state peaked on the intrinsic and the extrinsic
geometry q of a Euclidean 3-sphere with radius much larger than Planck length. Below we shall
only need the value of Ψq[s] for the spin-networks s = (Γ, jl, in) defined on graphs Γ which are
dual to 3d triangulations ∆. We identify each such ∆ with a fixed triangulation of Σq. The
area Al of the triangle tl of ∆, dual to the link l, determines the background values jl

(0) of the
spins jl, via

Al = κ~

√
jl

(0)(jl
(0) + 1) . (165)

Since s represents a 3d triangulation, we choose the spins (areas) centered around the spins
(areas) of a regular triangulation; we take these background values large with respect to the
Planck length, and we will later consider only the dominant terms in 1/jl

(0).
We want a state Ψq[s] = Ψq(Γ, j), where j = {jl}, to be peaked on these background values
with vanishing relative uncertaties. The simplest possibility is to choose a Gaussian peaked on
these values, for every graph Γ

Ψq[s] = CΓ exp

{
−1

2

∑

ll′

αll′
jl − jl

(0)

√
jl

(0)

jl′ − jl′
(0)

√
jl′

(0)
+ i

∑

l

Φ
(0)
l jl

}
. (166)

where l runs on links of s, αll′ is a given numerical matrix and CΓ is a graph–dependent
normalization factor for the Gaussian.

The phase factors in (166) play an important role (84). As we know from elementary
Quantum Mechanics, the phase of a semiclassical state determines where the state is peaked in
the conjugate variables, here the variables conjugate to the spins jl.
In the large j0 limit, only the graph corresponding to the boundary of a 4-simplex enters the
calculation, so the 4-dimensional Regge action reduces to, SRegge =

∑
l Φl(jl)jl, where Φl(jl)

are the dihedral angles at the triangles5, which are function of the areas themselves and recall
that ∂SRegge/∂jl = Φl. It is then easy to see that these dihedral angles are precisely the
variables conjugate to the spins and they code the extrinsic geometry of the boundary, while
the spins code the intrinsic curvature, and in GR the extrinsic curvature is indeed the variable

conjugate to the 3-metric. Thus Φ
(0)
l in (166) are the dihedral angles of the background regular

triangulation.

5These are angles between the normals to the tetrahedra, and should not be confused with the angles between
the normals to the triangles.
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Field operator Now we want to define the graviton field operator, so let us define the metric
deviation from flatness as hab = gab − δab; in order to rewrite the metric deviation in terms of
triads, notice that, up to higher order corrections, det g ≃ 1+tr h, so in traceless gauge we have
finally hab = EaiEb

i − δab . We know the action of the area operator on a spin-network (99), so
identifying x with a spin-network node (or equivalently with the center of a tetrahedron), the
projection of Eab(x) along the normals6 to the triangles surrounding the node acts diagonally
on the spin-network, giving as eigenvalues the areas of triangles

Êi
t(x)Êti(x)|s〉 = (~κ)2jt(jt + 1)|s〉 . (167)

Here we put γ = 1 and the subscript t means that we have projected the triad along the normal
to the triangle t (here the normals are defined as the vector product of the two sides of the
triangles, so they live in the three dimensional space defined by the tetrahedron). This is the
action of the so-called “diagonal components” where for diagonals we mean t− t components.

Boundary amplitude The Barret-Crane spinfoam model provides an amplitude (144) for
general boundary spin-networks; if we sum over all 4-geometries bounded by the given spin-
network s we obtain

W [s] =
∑

∂σ=s

∏

f∈σ

dim(jf )
∏

v∈σ

λ{10j}v . (168)

The next step is considering a large scale limit of the theory; we have seen that the boundary
amplitude W is a sum over spin foams, but at order λ and large j’s (selected by the boundary
state) only one geometry survives, namely the spin foam corresponding to a 4-simplex; its dual
boundary is a pentagonal spin-network, representing five tetrahedra glued together to form a
triangulated 3-sphere. The resulting boundary amplitude is

Figure 7: Boundary spin-network of a spin foam dual to a single 4-simplex

W [s] =
λ

5!

∏

f

dimjf{10j}v . (169)

The value of Ψq[s] on the spin-networks s = (Γ5, jnm) (here n,m = 1, ..., 5) can be determined
by triangulating Σq with the 3d triangulation formed by the boundary of a regular four–simplex

6The normal is normalized to the area of the triangle.
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of side L. The area of the triangles is AL =
√

3L2/4. Then (165) implies that j
(0)
nm = jL where

κ~
√
jL(jL + 1) = AL. In the large L limit we take jL = κ~AL. The dihedral angles Φ

(0)
nm = Φ

of a regular tetrahedron are given by cos(Φ) = −1/4. Therefore (166) becomes

Ψq[s] = C5 exp




− 1

2jL

∑

(nm)(p q)

α(nm)(p q) (jnm − jL)(jp q − jL) + iΦ
∑

(n,m)

jnm




 . (170)

To respect the symmetry of the sphere, the covariance matrix α(nm)(p q) of the gaussian can
depend only on three numbers

α(nm)(p q) = α1 a(nm)(p q) + α2 δ(nm)(p q) + α3 b(nm)(p q) (171)

where δ(nm)(p q) = 1 if (nm) = (p q), a(nm)(p q) = 1 if just two indices are the same, and
b(nm)(p q) = 1 if all four indices are different, and in all other cases these quantities vanish.

The component of the state (166) that matters at first order in λ is thus completely de-
termined up to the three numbers α1, α2, α3, and the constant C5. This amounts to select a
vacuum state which is a coherent state peaked both on the background values of the spins (the
extrinsic geometry of the boundary surface), and on the background values of the angles (the
intrinsic geometry of the boundary surface). See (87) for a similar construction in 3d. For
clarity, let us stress that we are not assuming that the boundary state has components only
on the five-valent graph considered. What we are saying is that only this component of the
boundary state enters the expansion to first order in λ that we are considering.
Now we can use the asymptotic formula for the 10j-symbol (145) without the degenerete term,
in fact it can be seen that expanding (145) around a background selected by the boundary
state, the degenerate term D disappear (89). We can substitute the asymptotic formula for the
10j-symbol with the simpler expression

∑

σ

eiS[σ] + e−iS[σ] , (172)

where S[σ] =
∑

t jtΦt(jσ) and Φt is the dihedral angle between the two tetrahedra sharing the
triangle t.
Now we have all the ingredients to compute the diagonal components

G(L)tt′ = Gabcd
q (x,y)nt

an
t
bn

t′
c n

t′

d , (173)

where nt
a is the normal to the triangle t living in the 3-dimensional space defined by the tetra-

hedron.
We do not perform the full calculation of the first order of the graviton propagator in (19) and
report only the surprising final result:

G(L) =
32~G

πL2
M , (174)

where M is a numerical matrix that can be fixed to be as in the linearized theory. This result is
the manifestation of Newton law at large distance. The non diagonal terms have been calculated
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in (21) and the result is that to obtain the Newton law we have to modify the dynamics, as we
explain in the next section.
Now there is a technical point: the full structure of the propagator depends on which gauge
has been chosen. Which gauge shall we use in order to compare LQG and perturbative quan-
tum gravity propagators? LQG propagator is defined in a generalized temporal gauge (hµν has
vanishing components along the normals to the 3d boundary sphere); this is called radial (or
Fock-Schwinger) gauge (90; 91; 92). In addition we put the traceless condition hµ

µ = 0. Pertur-
bative quantum gravity is mostly known in harmonic gauge and one is tempted to take the radial
(and traceless) components of the linearized quantum gravity propagator in harmonic gauge,
then to take the harmonic (traverse) components of the Loop Quantum Gravity propagator,
and finally to compare the two expressions. Fortunately it exists a radial-harmonic-traceless
gauge in linearized General Relativity (20) and in the following we present this result in detail
first illustrating an analogous result in Electromagnetism.

5.3 Compatibility between of radial, Lorenz and harmonic gauges

The radial gauge, or Fock-Schwinger gauge (90; 91), is defined by

xµAµ = 0 (175)

in Maxwell theory, and by
xµhµν = 0 (176)

in linearized General Relativity. Here x=(xµ) are Lorentzian (or Euclidean) spacetime coordi-
nates in d+1 spacetime dimensions, where µ=0, 1, . . . , d ; Aµ(x) is the electromagnetic poten-
tial. The radial gauge has been considered with various motivations. For instance, radial–gauge
perturbation theory was studied in (93; 92; 94; 95), where an expression for the propagator and
Feynman rules in this gauge were derived. A number of papers implicitly use this gauge in the
context of nonperturbative Euclidean Loop Quantum Gravity (7; 84; 19; 86; 96). Here, indeed,
consider a spherical region in 4d Euclidean spacetime, and identify the degrees of freedom on
the 3d boundary Σ of this region with the degrees of freedom described by Hamiltonian Loop
Quantum Gravity. The last is defined in a “temporal” gauge where the field components in
the direction normal to the boundary surface Σ are gauge fixed. Since the direction normal
to a sphere is radial, this procedure is equivalent to imposing the radial gauge (176) in the
linearization around flat spacetime.

The radial gauge is usually viewed as an alternative to the commonly used Lorenz and
harmonic gauges, defined respectively by

∂µA
µ = 0 (177)

in Maxwell theory and by

∂µh
µ

ν − 1

2
∂νh

µ
µ = 0 (178)

in linearized General Relativity. Here we observe, instead, that the radial gauge is compatible
with the Lorenz and the harmonic gauges. That is, if Aµ and hµν solve the Maxwell and the
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linearized Einstein equations, then they can be gauge-transformed to fields A′
µ and h′µν satisfying

(175,176) and (177,178). This is analogous to the well known fact (see for instance (32)) that
the Lorenz and the harmonic gauges can be imposed simultaneously with the temporal gauge

A0 = 0 , (179a)

h0µ = 0 . (179b)

We find convenient, below, to utilize the language of general covariant tensor calculus. To
avoid confusion, let us point out that this does not mean that we work on a curved spacetime.
We are only concerned here with Maxwell theory on flat space and with linearized General
Relativity also on flat space. Tensor calculus is used below only as a tool for dealing in compact
form with expressions in the hyperspherical coordinates that simplify the analysis of the radial
gauge.

In the first paragraph is discussed Maxwell theory is discussed, in the second is discussed
gravity. We work in an arbitrary number of dimensions, and we cover the Euclidean and the
Lorentzian signatures at the same time. That is, we can take either (ηµν)=diag[1, 1, 1, 1, ...] or
(ηµν)=diag[1,−1,−1,−1, ...] . The analysis is local in spacetime and disregards singular points
such as the origin.

Maxwell theory In this paragraph we show the compatibility between Lorenz and radial
gauge in electromagnetism. Maxwell vacuum equations are

∂νF
νµ = 0 , (180)

where Fµν = ∂µAν − ∂νAµ . That is

�Aµ − ∂µ∂νA
ν = 0 , (181)

where � = ηµν∂µ∂ν . This equation is of course invariant under the gauge transformation

Aµ → A′
µ = Aµ + ∂µλ . (182)

• Temporal and Lorenz gauge

We begin by recalling how one can derive the well-know result that the Lorenz and tempo-
ral gauges are compatible. This is a demonstration that can be found in most elementary
books on electromagnetism; we recall it here in a form that we shall reproduce below for
the radial gauge.

Let us write (xµ) = (x0, xi) = (t, ~x ) , where i = 1, . . . , d . Let Aµ satisfy the Maxwell
equations (181). We now show that there is a gauge equivalent field A′

µ satisfying the
temporal as well as the Lorenz gauge conditions. That is, there exist a scalar function
λ such that A′

µ defined in (182) satisfies (179a) and (177). The equation (179a) for A′
µ

defined in (182) gives A0 + ∂0λ = 0 , with the general solution

λ(t, ~x ) = −
∫ t

t0

A0(τ, ~x )dτ + λ̃(~x ) , (183)
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where λ̃(~x ) is an integration “constant”, which is an arbitrary function on the surface Σ
defined by t = t0 . Can λ̃(~x ) (which is a function of d variables) be chosen in such a
way that the Lorenz gauge condition (which is a function of d+ 1 variables) is satisfied?
To show that this is the case, let us first fix λ̃(~x ) in such a way that the Lorenz gauge
condition is satisfied on Σ . Inserting A′

µ in (177) and using (179a) we have

∂µA
′µ = ∂iA

′i = ∂iA
i + ∆λ = 0 , (184)

where ∆ = ∂i∂
i is the Laplace operator7 on Σ . The restriction of this equation to Σ gives

the Poisson equation
∆λ̃(~x ) = −∂iA

i(t0, ~x ) , (185)

which determines λ̃(~x ) . With λ̃(~x ) satisfying this equation, A′
µ satisfies the temporal

gauge condition everywhere and the Lorenz gauge condition on Σ . However, this implies
immediately that A′

µ satisfies the Lorenz gauge condition everywhere as well, thanks to
the Maxwell equations. In fact, the time component of (181) reads

�A′
0 − ∂0∂νA

′ν = −∂0(∂νA
′ν) = 0 . (186)

That is: for a field in the temporal gauge, the Maxwell equations imply that if the Lorenz
gauge is satisfied on Σ then it is satisfied everywhere.

• Radial and Lorenz gauge

We now show that the radial and Lorenz gauge are compatible, following steps similar to
the ones above. We want to show that there exists a function λ such that A′

µ defined in
(182) satisfies (175) and (177), assuming that Aµ satisfies the Maxwell equations.

Due to the symmetry of the problem, it is convenient to use polar coordinates. We write
these as (xa)=(xr, xi)=(r, ~x ) , where r=

√
|ηµνxµxν | is the (d+ 1)-dimensional radius

and ~x = (xi) are three angular coordinates. In these coordinates the metric tensor ηµν

takes the simple form

ds2 = γab(r, ~x )dxa dxb = dr2 + r2ξij(~x )dxi dxj , (187)

where ξij(~x ) is independent from r and is the metric of a 3-sphere of unit radius in the
Euclidean case, and the metric of an hyperboloid of unit radius in the Lorentzian case. It
is easy to see that in these coordinates, the radial gauge condition (175) takes the simple
form

A′
r = 0 . (188)

Inserting the definition of A′
µ gives

∂rλ = −Ar , (189)

7Minus the Laplace operator in the Lorentzian case.
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with the general solution

λ(r, ~x ) = −
∫ r

r0

Ar(ρ, ~x )dρ+ λ̃(~x ) , (190)

where the integration constant λ̃ is now a function on the surface Σ defined by r= r0 .
The surface Σ is a d-sphere in the Euclidean case and a d-dimensional hyperboloid in the
Lorentzian case. As in the previous section, we fix λ̃(~x ) by requiring the Lorenz condition
to be satisfied on Σ . It is convenient to use general covariant tensor calculus in order
to simplify the expressions in polar coordinates. In arbitrary coordinates, the Lorenz
condition reads

∇aA
′a =

1√
γ
∂a

(√
γA′a) = 0 , (191)

where ∇a is the covariant derivative, Ab =Aagab , and γ is the determinant of γab . This
determinant has the form γ= r2dξ , where ξ is the determinant of ξij . When the radial
gauge is satisfied, (191) reduces to

∂i

(√
ξA′i) = 0 . (192)

Let us now require that A′
µ satisfies this equation on Σ . Using (182), this requirement

fixes λ̃ to be the solution of a Poisson equation on Σ , that is

∆λ̃ = − 1√
ξ
∂i

(√
ξAi
)
, (193)

where the Laplace operator is ∆ = ∇i ξ
ij∇j . In arbitrary coordinates, Maxwell equations

read

∇aF
ab =

1√
γ
∂a

(√
γ F ab

)
= 0 , (194)

where

F ab = ∇aAb −∇bAa . (195)

Consider the radial (b = r) component of (194); since A′
r =0 , using the form (187) of the

metric, we have

1√
γ
∂a(

√
γF ar) =

1√
γ
∂a(

√
γγabFbr) =

1√
γ
∂a(

√
γγab(∂bA

′
r − ∂rA

′
b)) =

= − 1√
ξ
∂i

(√
ξ
ξij

r2
∂rA

′
j

)
= − 1

r2
√
ξ
∂r∂i(

√
ξξijA′

j) = 0 , (196)

which shows that the Lorenz gauge condition (192) is satisfied everywhere if it satisfied
on Σ . This shows that we can find a function λ such that both the radial and the Lorenz
gauge are satisfied everywhere.
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Linearized General Relativity We now consider the compatibility between the radial gauge
and the harmonic traceless gauge (also known as transverse traceless gauge (32)) in linearized
General Relativity. Einstein equations in vacuum are given by the vanishing of the Ricci tensor.
If |hµν(x)| ≪ 1 , and we linearize these equations in hµν , we obtain the linearized Einstein
equations

∂µ∂νh
α
α + ∂α∂

αhµν − ∂µ∂
αhαν − ∂ν∂

αhαµ = 0 . (197)

Under infinitesimal coordinate transformations,

hµν → h′µν = hµν +
1

2
(∂µλν + ∂νλµ) , (198)

where the factor 1/2 is inserted for convenience. These are gauge transformations of the lin-
earized theory. The harmonic gauge is defined by the condition

∇ν∇νx
µ = 0 , (199)

where ∇ν is the covariant partial derivative8; in the linearized theory (199) reduces to

∂νh
νµ − 1

2
∂µhν

ν = 0 , (200)

and in this gauge the Einstein equations (197) read simply

�hµν = 0 . (201)

• Temporal and harmonic gauge

As we did for Maxwell theory, we begin by recalling how the compatibility between tem-
poral and harmonic gauge can be proved. Start by searching a gauge parameter λµ that
takes hµν to the temporal gauge h′0ν = 0 . Equation (179b) gives

h0µ +
1

2
(∂0λµ + ∂µλ0) = 0 (202)

with the general solution

λ0(t, ~x ) = −
∫ t

t0

h00(τ, ~x )dτ + λ̃0(~x ) , (203a)

λi(t, ~x ) = −
∫ t

t0

(
2h0i(τ, ~x ) + ∂iλ0(τ, ~x )

)
dτ + λ̃i(~x ) , (203b)

where the integration constants λ̃µ(~x ) are functions on the 3d surface Σ defined by t = t0 .
Next, we fix λ̃i by imposing the harmonic gauge condition (200) on Σ . Since we are in
temporal gauge, this gives

∆λ̃j = −2∂ih
i
j + ∂jh

i
i , (204)

8Notice that (199) means the covariant Laplacian of d+1 scalars (d+1 coordinates), not the covariant Laplacian
of a (d+1)-vector.
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which can be clearly solved on Σ . The time-time component of Einstein equations becomes

∂2
t h

′i
i = 0 , (205)

whose only well behaved solution is h′ii = 0 ; so in the temporal gauge the invariant trace
of h′µν vanishes:

h′µµ = ηµνh′µν = 0 , (206)

and the harmonic condition (200) takes the simpler form

∂νh
′νµ = 0 , (207)

similar to the Lorenz gauge. Now the (t, i) components of Einstein equations read

∂t∂jh
′j

i = 0 , (208)

which gives ∂jh
′j

i = 0 everywhere, once imposed on Σ .

• Radial and harmonic gauge

Let us finally come to the compatibility between the radial and harmonic gauges. We
return to the polar coordinates used in the Maxwell case. In these coordinates, the radial
gauge condition (176) reads

h′rr = h′ri = 0 . (209)

Inserting the gauge transformation (198) gives

∂rλr = −hrr , (210a)

∂rλi + ∂iλr −
2

r
λi = −2hri , (210b)

with the general solution

λr(r, ~x ) = −
∫ r

r0

hrr(ρ, ~x )dρ+ λ̃r(~x ) , (211a)

λi(r, ~x ) = −r2
∫ r

r0

2hri(ρ, ~x ) + ∂iλr(ρ, ~x )

ρ2
dρ+ r2 λ̃i(~x ) , (211b)

where λ̃r, λ̃i are functions on the surface Σ given by r = r0. We can then fix λ̃i by
imposing the harmonic condition on Σ precisely as before. In the polar coordinates (187),
we have easily the following rules for the Christoffel symbols:

Γa
rr = 0 , Γi

jr =
1

r
δi

j , Γr
ra = 0 . (212)
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We note also that Γi
jk is independent of r . Consider the (r, r) component of Einstein

equations:

∇r∇rh
′a

a + ∇a∇ah′rr −∇r∇ahar −∇r∇ah′ar = 0 . (213)

Taking into account (187) and (212), it is verified after a little algebra that the previous
equation becomes

∂2
rh

′a
a +

2

r
∂rh

′a
a = 0 , (214)

which is a differential equation for the trace h′aa . Its only solution well-behaved at the
origin and at infinity is h′aa = 0 . Using this, the (r, i) components of Einstein equations
read:

∇a∇ah′ri −∇r∇ah′ai −∇i∇ah′ar = −∂r∇ah
′a

i = 0 , (215)

and the harmonic condition is simply

∇ah
′ab = 0 . (216)

Equation (215) shows immediately that the b= i components of the gauge condition (216)
hold everywhere if they hold on Σ . The vanishing of the b=r component of (216) follows
immediately since, using (212), we have

∇ah
′a

r = −1

r
h′aa = 0 . (217)

Therefore the harmonic gauge condition, the radial gauge condition and the vanishing of
the trace are all consistent with one another.
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6 Non diagonal components

In (21) a technique to compute the non diagonal components of LQG graviton propagator was
developed; the construction of the non diagonal terms is very important because the graviton
operators Ê(i)

n · Ê(j)
n call into play the dependence of the spin-networks on the intertwiners

and, in turn, the dependence of the boundary state and the vertex from these variables. From
this analysis it follows that the BC dynamics used to compute the diagonal terms has a trivial
intertwiner dependence that jeopardize the correct behavior of the non diagonal terms. The key

ingredients for the calculation of non diagonal terms are: the action of the field operators Ê
(i)
n ·

Ê
(j)
n on spin-networks, the boundary state and the implementation of the pairing independence.

6.1 Action of field operators

The field operators associated to the node n acts on the intertwiner space at the node n; the
node is determined by five quantum numbers: the four spins jl, (l = 1 . . . 4) labeling the links
adjacent to the node, and the value of the intertwiner i associated to the virtual link. The

operator Ê
(k)
n is defined as the projection of Êa

i (xn) along the normal to the triangle cut by the

link k, and xn is the node n. The action of the field operators Ê(k) · Ê(j) is a “double grasping”
that inserts a virtual link “near” the node, connecting the links k and j. Once fixed the pairing
at the node, say (k, j)(p, q) like in figure (6.1), and the orientation (say clockwise for each of two
trivalent vertices) there are three possible configurations for the grasping: E(k) ·E(j), E(k) ·E(q),
E(k) ·E(p); we can compute the action in every configuration using the graphic notation of SU(2)
recoupling theory.

6.2 The boundary state

The boundary state is a generalization of (170) with a non trivial intertwiner dependence:

Φ(j, i) = C exp

{

− 1

2j0

∑

(ij)(mr)

α(ij)(mr) (jij − j0)(jmr − j0) + iΦ
∑

(ij)

jij

}

×

× exp




−
∑

n



(in − i0)
2

4σ
+
∑

p 6=n

φ(jnp − j0)(in − i0) + iχ(in − i0)








 .

(218)

Here the exponential in the first line has precisely the spin dependence of the state (166); the
second factor contains a Gaussian dependence on the intertwiner variables. More precisely, it in-
cludes a diagonal intetwiner-intertwiner Gaussian term, a nondiagonal Gaussian spin-intertwiner
term, and a phase factor. The constants appearing in (218) can be fixed by requiring the state

55



6. NON DIAGONAL COMPONENTS

to be peaked on the expected geometry. As in section 5.2 the constant j0 determines the
background area A0 of the triangles; the constant Φ determines the background value of the
angles between the normals to tetrahedra; we fix it to that of a regular four-simplex, namely
cos Φ = −1/4. The constant i0 is the background value of the intertwiner variables. As shown
before, the spin of the virtual link in is the quantum number of the angle between the normals
of two triangles. The five intertwiners in are the quantum numbers associated to the angles

θ
(nk,nj)
n between the links (nk) and (nj). More precisely, we have the following action (with
κ~γ = 1):

Â2
nk + Â2

nj + 2ÂnkÂnj ĉos θ
(nk,nj)

n = i(i+ 1) (219)

where k and j are the paired links at the node n and Ank is the area of the triangle dual to the
link (nk) . For each node, the state must therefore be peaked on a value i0 such that

i0(i0 + 1) = A2
0 +A2

0 + 2A0A0 cos θij . (220)

For the regular 4-simplex, in the large distance limit we have Akj ≃ j0, cos θkj = −1
3 , which

gives

i0 =
2√
3
j0 . (221)

Fixing i0 in this manner determines only the mean value of the angle θkj between the two
paired triangles. What about the mean value of the angles between triangles that are not
paired together, such as θkq in (219)? It is shown in (97) that a state of the form e−(i−i0)2/σ is
peaked on θkq = 0, which is not what we want; but the mean value of θkq, can be modified by
adding a phase to the state. This is the analog of the fact that a phase changes the mean value
of the momentum of the wave packet of a non relativistic particle, without affecting the mean
value of the position. In particular, it was shown in (97) that by choosing the phase and the
width of the Gaussian to be

χ =
π

2
, σ =

4j0
3
, (222)

we obtain a state whose mean value and variance for all angles is the same. Let us therefore
adopt here these values.
Furthermore, here the spins can take arbitrary values around the peak symmetric configuration
jnm = j0; as a consequence, one has to add a spin-intertwiner Gaussian terms. A detailed
calculation, shows that choosing

φ = −i
3

4j0
, (223)

in the large j0 limit, the state (218) transforms under change of pairing into a state with the
same intertwiner mean value and the same variance σ. We assume this value of φ from now
on. Now, introducing the perturbations δin = in − i0 and δjmr = jmr − j0, the wave functional
given in (218) reads

Φ(j, i) = C e
− 1

2j0

P

α(ij)(mr)δjijδjmr+iΦ
P

ij δjije
−P

n

„

3(δin)2

4j0
−i

“

P

a
3

4j0
δjan−π

2

”

δin

«

. (224)
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6.3 Symmetrization of the state

The state (224) presents a difficulty: it does not respect the symmetry of the four-simplex;
to avoid this difficulties the simplest possibility is to choose an arbitrary pairing, and then to
symmetrize only under the symmetries of the four-simplex.
Recall that there are three natural basis in each intertwiner space, determined by the three
possible pairings of these links. Denote them as follows:

ix = , iy = , iz = , (225)

where we conventionally denote ix ≡ i the basis in the pairing chosen as reference. These bases
diagonalize the three non commuting operators Ê(k) · Ê(j), Ê(k) · Ê(q) and Ê(k) · Ê(p), respectively.
The symmetries of a four-simplex are generated by the 5! permutations σ of the five vertices of
the four-simplex. A permutation σ : {1, 2, 3, 4, 5} → {σ(1), σ(2), σ(3), σ(4), σ(5)} acts naturally
on spin-networks:

σ|jnm, ixn〉 = |jσ(n)σ(m), iσ(xn)〉 , (226)

where the action σ(xn) of the permutation on a node is defined by

σ((ab)(cd)n) = (σ(a)σ(b))(σ(c)σ(d))σ(n) (227)

and can therefore change the original pairing at the node.
We define the boundary state by replacing (224) with

|Ψ〉 =
∑

σ

σ|Φ〉 =
∑

σ

∑

j,i

Φ(j, i) σ|j, i〉 . (228)

6.4 Calculation of complete propagator

The full calculation of the propagator is done in (21); we follow the main steps to give a sketch
of the calculation. First of all we change the basis in order to diagonalize the action of the
double grasping operators. The formula for a change of basis associated to a change of pairing
(83), i.e. from the basis iy to ix in the node n = 1, is for large j0’s the following:

Φ′
q(j, iy1, i2, ..., i5) ≃ Φ(j, ix1, i2, ..., i5)N1 e

−iS[j1a]e
−2i

“

P

a
3

4j0
δja1

”

δix1 , (229)

where N1 is a constant phase, and S[j1a] is the expansion of the Regge Action (120) for the
tetrahedron associated with the 6j-symbol, up to second order only in the link variables, that
is

S[j1a] =
∑

a6=1

(
∂SR

∂j1a

∣∣∣∣
j0,i0

δj1a +
∂2SR

∂j1a∂j1a′

∣∣∣∣
j0,i0

δj1aδj1a′ +
1

2

∂2SR

∂2j1a

∣∣∣∣
j0,i0

(δj1a)
2

)

. (230)
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The second step is to use the asymptotic formula of the Barret-Crane vertex (169) as in section
(5.2).
Finally, after a long calculation, inserting the explicit form of the state and the asymptotic
expression for the BC vertex we obtain for large j0’s

Gij,kl
qn,m ≃ N ′j20

∑

δj, δi

(
2√
3
δin − δjnj − δjnk

)(
2√
3
δim − δjmk − δjml

)
×

× e
− 1

2j0
(α+iGj0)(ij)(mn) δjijδjmne

−
P

n

„

3(δin)2

4j0
−i

“

P

a
3

4j0
δjan+ π

2

”

δin

«

;

(231)

here G is the matrix of the second derivatives of the Regge action (see (84; 19)). To evaluate
this expression we can approximate the sum with an integral and rearrange it introducing the
15 component vector δIα = (δjab, δin) and Θα = (0, χin) and the 15 × 15 correlation matrix

M =

(
A10×10 C10×5

CT
5×10 S5×5

)
, (232)

where Aab cd = 1
2(α+ iGj0)ab cd

is a 10 × 10 matrix and Snm = Inm
3
4 is a diagonal 5 × 5 matrix

and C is a 10 × 5 matrix. We have:

Gij,kl
qn,m = N ′j20

∫
dδIα

(
2√
3
δin − δjni − δjnj

)(
2√
3
δim − δjmk − δjml

)
e
−Mαβ

j0
δIαδIβ

eiΘαδIα
.

(233)

The matrix M is invertible and independent from j0. A direct calculation gives a sum of terms
of the kind

e−j0ΘM−1Θ

√
detM

(
j30M

−1
αβ − j40M

−1
αγ ΘγM−1

βδ Θδ
)
. (234)

These terms go to zero fast in the j0 → ∞ limit, and therefore do not match the expected large
distance behavior of the propagator. There is no way to avoid this problem even changing the
normalization factor.
This difficulty stresses the inadequacy of the Barret Crane model: the vertex freezes the inter-
twiners d.o.f. by projecting on the BC intertwiner. Now we explain the problem in more detail
(98).
The propagator depends only on the asymptotic behavior of the vertex. This has the structure
(75)

WBC(j) ∼ e
i
2
(δjGδj)eiΦ·δj + e−

i
2
(δjGδj)e−iΦ·δj, (235)

where G is the 10 × 10 matrix given by the second derivatives of the 4d Regge action around
the symmetric state, δj is the difference between the ten spins j and their background value
j0, and Φ is a 10d vector with all equal components, which were shown in (80; 19) to precisely
match those determined by the background extrinsic curvature.

The problem with the BC vertex is that it does not cancel the phase in the intertwiner
variables of the boundary state and so this makes the non diagonal components vanish. In
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Quantum Mechanics there is an analogous mechanism through which the dynamical kernel
reproduces the semiclassical dynamics: there is a cancellation of the phases between the prop-
agation kernel and the boundary state. If this does not happen, the rapidly oscillating phases
suppress the amplitude. For instance, in non-relativistic Quantum Mechanics, the propagation
kernel K(x, y) of a free particle, has a phase dependence on small fluctuations δx = x− x0 and
δy = y − y0 of the form

K(x0 + δx, y0 + δy) = 〈x0 + δx|e− i

~

p2

2m
t|y0 + δy〉 ∼ C e−ip0δx eip0δy. (236)

where p0 = m(y0 − x0)/t. This phase cancels precisely the phase of the initial and final wave
packets ψi and ψf centered on x0 and y0, only if these have the correct momentum. That is

〈ψf |e−
i

~
Ht|ψi〉 =

∫
dx

∫
dy e−

(x−x0)2

2σ
− i

~
pfx K(x, y) e−

(y−y0)2

2σ
+ i

~
piy (237)

is suppressed by the oscillating phases unless pi = pf = p0. This is the standard mechanism
through which a quantum theory reproduces the classical behavior. In quantum gravity, it is
reasonable to expect the same to happen if we have to recover the Einstein equations in the
semiclassical limit. That is, the propagation kernel W , must have a phase dependence that
matches the one in the semiclassical boundary state. It is interesting, for future investigations,
to see if we can obtain the correct non diagonal terms putting by hands the missing phase into
the vertex: the answer is yes.
To this purpose we choose a vertex W with an asymptotic form that includes a Gaussian
intertwiner-intertwiner and spin-intertwiner dependence, and –most crucially– a phase depen-
dence on the intertwiner variables. To write this, introduce a 15d vector δI = (δj, δi), where
δIα = (δjnm, δin) = (jnm − j0, in − i0), and consider the vertex amplitude

W (j, i) = e
i
2
(δIGδI)eiφ·δI + e−

i

2
(δIGδI)e−iφ·δI . (238)

Here G is now a 15 × 15 matrix and φ = (φnm, φn) is a 15d vector. Its 10 spin components
φnm just reproduce the spin phase dependence of (235), while its five intertwiner components
are equal and we fix them to have value φn = π/2. This phase dependence is the crucial detail
that makes the calculation work and we obtain the correct behavior of the non diagonal terms
of graviton propagator.
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7 A new model: EPRL vertex

In (15) J. Engle, R. Pereira and C. Rovelli have introduced a new spinfoam model to correct
the BC model. The difficulties with the BC model are related to the fact that the intertwiner
quantum numbers are fully constrained; this is due to the mistake of imposing the simplicity
constraints as strong operator equations, even though they are second class constraints. In
fact it is well known that imposing second class constraints strongly may lead to the incorrect
elimination of physical degrees of freedom. The advantages of the new model are:

• Its boundary quantum state space matches exactly the one of SO(3) LQG: no degrees of
freedom are lost.

• As the degrees of freedom missing in BC are recovered, the vertex may yield the correct
low-energy n-point functions.

• The vertex can be seen as a vertex over SO(3) spin-networks or SO(4) spin-networks, and
it is both SO(3) and SO(4) covariant.

The generalization of this model to arbitrary values of γ is performed by J. Engle, E.R. Livine,
R. Pereira and C. Rovelli in (22). Here we describe this more general model (EPRL model).

7.1 The goal of the model: imposing weakly the simplicity constraints

The Barrett-Crane theory constrains entirely the intertwiner degrees of freedom. The reduction
of the intertwiner space to the sole iBC vector comes from the strong imposition of the off-
diagonal simplicity constraints, as we have seen in section 4.5. But these constraints do not
commute with one another, and are therefore second class. Imposing second class constraints
strongly is a well-known way of erroneously killing physical degrees of freedom in a theory.

In order to illustrate the problems that follow from imposing second class constraints
strongly, and a possible solutions to this problem, consider a simple system that describes
a single particle, but using twice as many variables as needed. The phase space is the doubled
phase space for one particle, i.e., ((q1, p1), (q2, p2)), and the symplectic structure is the one given
by the commutator {qa, pb} = δab . We set the constraints to be

q1 − q2 = 0 , (239)

p1 − p2 = 0 .

To simplify the constraints we perform a change of variables q± = (q1 ± q2)/2 and p± =
(p1±p2)/2, now the system (239) reads: q− = p− = 0. They are clearly second class constraints.
Suppose we quantize this system on the Schrödinger Hilbert space L2[R2] formed by wave
functions of the form ψ(q+, q−) . If we impose the two constraints strongly we obtain the set of
two equations

q− ψ(q+, q−) = 0,

i~
∂

∂q−
ψ(q+, q−) = 0 (240)
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which has no solutions. We have lost entirely the system.
There are several ways of dealing with second class systems. One possibility, which is

employed for instance in the Gupta-Bleuler formalism for electromagnetism and in string theory,
can be illustrated as follows in the context of the simple model above. Define the creation and
annihilation operators a†− = (p− + iq−)/

√
2 and a− = (p− − iq−)/

√
2 . The constraints now

read a− = a†− = 0. Impose only one of these strongly: a−|ψ〉 = 0 and call the space of states
solving this Hph . Notice that the other one holds weakly, in the sense that

〈φ|a†−|ψ〉 = 0 ∀ φ,ψ ∈ Hph . (241)

That is, a†− maps the physical Hilbert space Hph into a subspace orthogonal to Hph . Similarly,
in the Gupta-Bleuler formalism the Lorenz condition (which forms a second class system with
the Gauss constraint) holds in the form

〈φ|∂µAµ|ψ〉 = 0 ∀ φ,ψ ∈ Hph . (242)

A general strategy to deal with second class constraints is therefore to search for a de-
composition of the Hilbert space of the theory Hkin = Hphys ⊕ Hsp (sp. for spurious) such
that the constraints map Hphys → Hsp . We then say that the constraints vanish weakly on
Hphys . This is the strategy we employ below for the off-diagonal simplicity constraints. Since
the decomposition may not be unique, we will have to select the one which is best physically
motivated.

7.2 Description of the model

As in the BC model we discretize spacetime using as configuration variables the bivectors
Bf (t)IJ associated to faces f , and the holonomy Uf (t, t′) along the tetrahedra sharing f , starting
from the tetrahedron t and ending at t′; Uf (t) ≡ Uf (t, t) is the holonomy around the full loop
of tetrahedra. Discretized GR results from imposing constraints on the B variables as seen for
the BC model. They are:
1) simplicity constraints (diagonal (136), off-diagonal (137), dynamical (138));
2) closure constraint.
The dynamical simplicity constraint is automatically satisfied when the other constraints are
satisfied. The closure constraint will be automatically implemented in the quantum theory; its
effect, as known, is to restrict the states of the quantum theory to the gauge invariant ones.
Recall that in the LQG approach the action that is quantized is the Holst action (28), obtained
adding to the original action a term that does not change the equations of motion. The classical
discretized version of the Holst action is (99)

S = −1

κ

∑

f∈int∆

Tr

[
Bf (t)Uf (t) +

1

γ
∗Bf (t)Uf (t)

]

−1

κ

∑

f∈∂∆

Tr

[
Bf (t)Uf (t, t′) +

1

γ
∗Bf (t)Uf (t, t′)

]
. (243)
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The constraints (136) and (137) have two sectors of solutions, one in which B = ∗e ∧ e, and
one in which B = e ∧ e. For finite Immirzi parameter both sectors in fact yield GR, but
the value of the Newton constant and Immirzi parameter are different in each sector. In the
B = ∗e ∧ e sector, the discrete Holst action becomes the Holst formulation of GR (35) with
Newton constant G and Immirzi parameter γ. In the B = e ∧ e sector, one also obtains the
Holst formulation of GR, but this time with Newton constant Gγ, and Immirzi parameter s/γ,
where the signature s is +1 in the euclidean theory and -1 in the lorentzian theory. In order
to select a single sector, we reformulate the simplicity constraints in such a way that these two
sectors are distinguished. To this purpose, we replace the off-diagonal constraint (137) with the
following stronger constraint: for each tetrahedron t there exists a (timelike in the Lorentzian
case) vector nI such that

nIB
IJ
f (t) = 0 (244)

for every triangle f of the tetrahedron. This condition is stronger than (137) since it selects
only the desired B = e ∧ e sector.
The relevant classical variables are the ones canonically conjugate; the variable conjugate to
Uf (t, t′) is

Jf (t) =
1

k
(Bf (t) +

1

γ
∗Bf (t)) . (245)

We define also the spatial and temporal components of J as its contraction with nI ; choosing
coordinates such that (nI) = (1, 0, 0, 0)

Li ≡ 1

2
ǫijkJ

ik (246)

Ki ≡ J0i i, j, k = 1, 2, 3 . (247)

In terms of the new variable Jf , the diagonal and off-diagonal simplicity constraints (136)-(244)
read

Cff ≡
(
1 +

s

γ2

)∗Jf · Jf − 2s

γ
Jf · Jf ≈ 0 (248)

CJ
f ≡ nI

(∗JIJ
f − s

γ
JIJ

f

)
≈ 0 ⇔ Cj

f ≡ Lj
f − s

γ
Kj

f ≈ 0 . (249)

The first constraint (248) commutes with the others, while the system of off-diagonal constraints
(249) does not close a Poisson algebra. Thus we will impose strongly (248) and more weakly
(249).
As in lattice QFT we choose the unconstrained kinematical quantum state space to be H =
L2(GL), where L is the number of links in the boundary of the dual triangulation, and quantize
the quantities JIJ

f (tstart) as the right invariant vector fields, and the quantities JIJ
f (tend) as

the left invariant vector fields over the space L2(G) associated to the boundary face f . So the
quantum diagonal and off-diagonal constraints read

Ĉff ≡ (1 +
s

γ2
)∗Ĵf · Ĵf − 2s

γ
Ĵf · Ĵf ≈ 0 , (250)

Ĉj
f ≡ L̂j

f − s

γ
K̂j

f ≈ 0 . (251)
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Euclidean The SO(4) scalar Casimir J · J acts diagonally on the (j+, j−) component of
L2(SO(3)) in the Peter-Weyl decomposition, giving the eigenvalue j+(j+ + 1) + j−(j− + 1),
while the pseudo-scalar Casimir ∗J ·J gives j+(j+ +1)− j−(j− +1) . Hence from equation (248)
the quantum diagonal simplicity constraint restricts the self dual and anti-self dual quantum
numbers to be related by

j+ =
γ + 1

| γ − 1 |j− . (252)

Also in the BC model the diagonal constraint gives the relation between the two sectors, but
here the two sectors are not balanced because of the finite value of γ. The system of off-
diagonal constraints (251) must be imposed weakly. Alternatively it can be replaced by the
single “master” constraint

∑

i

(Ci)2 =
∑

i

(Li − s

γ
Ki)2 ≈ 0 . (253)

Using (250) the “master” off-diagonal constraint becomes

∗Ĵ · Ĵ − 4γL̂2 ≈ 0 . (254)

The (j+, j−) subspace of L2(SO(4)) decomposes into SO(3) irreducible subspaces

| j+ − j− | ⊕ . . .⊕ (j+ + j−)

. On those subspaces (254) acts diagonally giving the relation

k =
{ j+ + j− 0 < γ < 1
j+ − j− γ > 1 ,

(255)

where k labels the SO(3) irreducible representations in the decomposition.
For γ < 1 the constraint selects the highest SO(3) irreducible, for γ > 1 the lowest. The
set of closure, diagonal, and “master” off-diagonal constraints select our physical state space
Hphys, which is spanned by SO(4) spin-networks (viewed as functions of holonomies, not of
the connection) labeled by (j+, j−) satisfying (252) and intertwiners living in Inv[H|j1+±j1−| ⊗
. . .H|j4+±j4−|], where the sign depends on γ as we have seen. Remarkably, Hphys is isomorphic
to the boundary state space given by SO(3) spin-networks, which is exactly the LQG state
space! The isomorphism is realized sending a link in the k representation into a link labeled
by the couple (j+, j−), where j± = |γ±1|

2 k, and the SO(3) intertwiner i is mapped in an SO(4)
intertwiner as follows

| i〉 7−→
∑

i+i−

f i
i+i− | i+ i−〉 (256)

where

f i
i+i−(j1, j2, j3, j4) ≡ 〈i+ i− | f | i〉 = iabcd Ca+a−

a C
b+b−
b Cc+c−

c C
d+d−
d i+a+b+c+d+

i−a−b−c−d−
. (257)
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The tensors | i〉, | i+ i−〉 are SO(3) and SO(4) orthonormal intertwiners and

Ca+a−
a ≡ 〈j+1 j−2 , a+a−|j1 a〉 (258)

are Clebsh-Gordan coefficients. The coefficients (257), called fusion coefficients, define a map

f : Inv[Hj1 ⊗ . . .⊗Hj4] −→ Inv[H
(
|1−γ|j1

2
,
(1+γ)j1

2
)
⊗ . . .⊗H

(
|1−γ|j4

2
,
(1+γ)j4

2
)
] (259)

from SO(3) to SO(4) intertwiners. The vertex amplitude is the SO(4) 15j-symbol labeled
by representations satisfying (252) and intertwiners of the form (256). In terms of the LQG
boundary variables it is:

A({jab}, {ia}) =
∑

ia+ia−

15j

(
jab(1 + γ)

2
; ia+

)
15j

(
jab | 1 − γ |

2
; ia−

) ∏

a

f ia
ia+ia−

(jab) . (260)

Lorentzian The SL(2,C) Casimir operators for a representation of the Lorentz group in the
principal series (n, ρ) are given by

J · J = 2(L2 −K2) =
1

2
(n2 − ρ2 − 4) , (261)

∗J · J = −4L ·K = nρ . (262)

Solutions of (250) are given by either ρ = γn or ρ = −n/γ. The existence of these two solutions
reflects the two sectors mentioned previously with Immirzi parameter γ and −1/γ. BF theory
cannot a priori distinguish between these two sectors. However, in our framework, the master
constraint (253) breaks this symmetry and selects the first branch ρ = γn. It further imposes
that k = n/2, where k again labels the subspaces diagonalizing L2. Therefore the constraints
select the lowest SU(2) irreducible representation in the decomposition of H(n,ρ) =

⊕
k≥n/2 Hk.

Notice that there is no restriction on the value of γ as there was in the Euclidean case.
Notice also that the continuous label ρ becomes quantized, because n is discrete. It is

because of this fact that any continuous spectrum depending on ρ comes out effectively discrete
on the subspace satisfying the simplicity constraints.

As before, the embedding of intertwiners is given by:

f : Inv[Hj1⊗...⊗Hj4] −→ Inv[H(n1,ρ1) ⊗ ...⊗H(n4,ρ4)],

|i〉 7−→
∑

n

∫
dρ (n2 + ρ2)f i

n ρ|n ρ〉 (263)

where
f i

nρ ≡ iabcdv
(n,ρ)
j1m1,...,j4m4

. (264)

Here j1...j4 are the representations meeting at the node, (ja,ma) are indices in the representation
(na, ρa) of SL(2,C), and v(n,ρ) is an SL(2,C) 4-valent intertwiner labeled by the virtual link
(n, ρ).
The boundary space is once again just given by the SU(2) spin networks.
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We are now ready to define the vertex. As before, we obtain

A(jab, ia) =
∑

na

∫
dρa(n

2
a + ρ2

a)

(
∏

a

f ia
naρa

(jab)

)
15jSL(2,C) ((2jab, 2jabγ); (na, ρa)) . (265)

The final partition function, for an arbitrary triangulation, is given by gluing these amplitudes
together with suitable edge and face amplitudes:

Z =
∑

jf ,ie

∏

f

(2jf )2(1 + γ2)
∏

v

A(jf , ie) . (266)

One important result achived by the EPRL model is that the spectrum of the operator related
to the area of a triangle dual to the face f

Area2 ≡ 1

2
(⋆B)ij(⋆B)ij =

1

4
κ2γ2L2 (267)

is exactly the spectrum of LQG, for both Euclidean and Lorentzian signatures:

Area = 8π~Gγ
√
k(k + 1) . (268)

This spectrum can be compared with the continuous spectrum

Area ∼ 1

2

√
4k(k + 1) − n2 + ρ2 + 4 (269)

that was previously obtained in covariant LQG, before imposing the second class constraints (see
(100)). Remarkably, imposing the simplicity constraints (248) and (254) reduces the continuous
spectrum (269) to the exact discrete LQG spectrum (268).

7.3 Outlook and summary

E. Livine and S. Speziale have found an independent derivation of the vertex proposed here,
based on the use of the coherent intertwiners they have introduced in (23). There is a relation
between the SO(4) states of this model and the projected spin-network states studied by L.
Livine in (101). (A similar approach is developed by Alexandrov in (102).) The constrained
SO(4) states that form the physical Hilbert space of the EPRL model can be constructed
from (the Euclidean analog of) these projected spin-networks. The Euclidean analog of the
projected spin-networks defined in (101) are wavefunctions Ψ[Ul, χn] depending on an SO(4)
group element for each link, and a vector χn ∈ SO(4)/SO(3) at each node. The wavefunctions
are labeled by an SO(4) representation (j+l , j

−
l ) for each link, an SU(2) representation jnl

for each node and link based at that node, and an SU(2) intertwiner at each node. The
SO(4) spin-networks in the EPR model can be obtained from the projected spin-networks by
(i) setting j+l = j−l ≡ jl, (ii) setting jnl = j+l + j−l = 2jl, and (iii) averaging over χn at each
node (concretely this averaging can be done by acting on each χn with an SO(4) element Un,
and then averaging over the Un’s independently using the Haar measure). Each of these three
steps corresponds directly to solving (i) the diagonal simplicity constraints, (ii) the off-diagonal
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simplicity constraints, and (iii) the Gauss constraint.
In this section we have described only the EPRL model, but there is also another model for the
spin foam vertex proposed by L. Freidel and K. Krasnov (24).

In summary. The EPRL model extends the definition of the “flipped” loop-quantum-gravity
vertex in (15) to the case of finite Immirzi parameter γ. It covers both the Euclidean and
Lorentzian cases. The off-diagonal simplicity constraints are imposed weakly. This weakening
of the constraints is motivated by the observation that they do not form a closed algebra,
as well as by the realization that a richer boundary space is needed. The theory we have
obtained is characterized by the fact that its boundary state space exactly matches that of Loop
Quantum Gravity. This can be seen as an independent derivation of the LQG kinematics, and,
in particular, of the fact that geometry is quantized. A vertex amplitude has then been derived
from the discrete action, leading to a spinfoam model giving transition amplitudes for LQG
states. The spectrum of the area operator too is the same as in LQG, both for the Euclidean
and the Lorentzian sectors; the fact that the spectrum is discrete also in the Lorentzian case
is remarkable; in fact it is non trivial that a non-compact gauge group, such as the Lorentz
group, whose representations have continuous labels, may give rise to geometric observables
with discrete spectrum.

We expect that the model considered here will admit a group field theory formulation and
that its vertex can be used to generate the dynamics of Loop Quantum Gravity. The problem
of calculating n-point functions is to derive the asymptotic formula for the new vertex at large
spins. This is still missing, but in a recent work (25) we find the first ingredient: the asymptotics
of the fusion coefficients. This is illustrated in the next section. From now on to avoid confusion
we change notation and replace the label +,− with R,L.
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8 Asymptotics of LQG fusion coefficients

In the last section we have described the new spinfoam model Engle-Pereira-Rovelli-Livine
(EPRL), here we present a careful analysis of the asymptotics of fusion coefficients f ia

iaLiaR
in the

vertex amplitude (260); this is a step needed for the study of the semiclassical properties of the
model and expecially to check if the new vertex has the right dependence in the intertwiners
variables. The region of parameter space of interest is large spins jab and intertwiners ia of
the same order of magnitude of the spins. As a result, the fusion coefficients for the node
ā, f iā

iLā iRā
(jāb), can be seen as a function of the two bare variables iLā , iRā , of the fluctuation of

the intertwiner iā and of the fluctuation of the four spins jāb. For different approaches to the
semiclassical limit, see (103) and (104).

This section is organized as follows: in the first part 8.1 we show a simple analytic expression
for the EPRL fusion coefficients; in the second 8.2 we use this expression for the analysis of the
asymptotics of the coefficients in the region of parameter space of interest, and in third part 8.3
we show that the fusion coefficients map SO(3) semiclassical intertwiners into SU(2)L×SU(2)R
semiclassical intertwiners. We conclude discussing the relevance of this result for the analysis
of the semiclassical behavior of the model. In the appendix we collect some useful formula
involving Wigner coefficients.

8.1 Analytical expression for the fusion coefficients

The fusion coefficients provide a map from four-valent SO(3) intertwiners to four-valent SO(4)
intertwiners. They can be defined in terms of contractions of SU(2) 3j-symbols. In the following
we use a planar diagrammatic notation for SU(2) recoupling theory (105). We represent the
SU(2) Wigner metric and the SU(2) three-valent intertwiner respectively by an oriented line
and by a node with three links oriented counter-clockwise9. As we have seen before, a four-valent
SO(3) intertwiner |i〉 can be represented in terms of the recoupling basis as

|i 〉 =
√

2i+ 1
j2

j1

j3

j4

++
i

(270)

where a dashed line has been used to denote the virtual link associated to the coupling channel.
Similarly a four-valent SO(4) intertwiner can be represented in terms of an SU(2)L × SU(2)R
basis as |iL〉|iR〉.

Using this diagrammatic notation, the EPRL fusion coefficients for given Immirzi parameter

9A minus sign in place of the + will be used to indicate clockwise orientation of the links.
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γ are given by

f i
iLiR(j1, j2, j3, j4) =(−1)j1−j2+j3−j4

√
(2i+ 1)(2iL + 1)(2iR + 1)Π4

n=1(2jn + 1) × (271)

×

+ +

+

++

+

− −

iL i iR

j1 j2

j3j4

|1−γ|j1
2

|1−γ|j2
2

|1−γ|j3
2

|1−γ|j4
2

(1+γ)j1
2

(1+γ)j2
2

(1+γ)j3
2

(1+γ)j4
2

.

These coefficients define a map

f : Inv[Hj1 ⊗ . . . ⊗Hj4] −→ Inv[H
(
|1−γ|j1

2
,
(1+γ)j1

2
)
⊗ . . .⊗H

(
|1−γ|j4

2
,
(1+γ)j4

2
)
] (272)

from SO(3) to SO(4) intertwiners. Using the identity

= (273)

where the shaded rectangles represent arbitrary closed graphs, we have that the diagram in
(271) can be written as the product of two terms

f i
iLiR

(j1, j2, j3, j4) = (274)

= (−1)j1−j2+j3−j4
√

(2i+ 1)(2iL + 1)(2iR + 1)Πn(2jn + 1) qi
iLiR(j1, j2) q

i
iLiR(j3, j4) (275)

where qi
iLiR

is given by the following 9j-symbol

qi
iLiR(j1, j2) =

+

++

−−

+

iL iR

i

j1j2

|1−γ|j1
2

|1−γ|j2
2

(1+γ)j2
2

(1+γ)j1
2

=






|1−γ|
2 j1 iL

|1−γ|
2 j2

1+γ
2 j1 iR

1+γ
2 j2

j1 i j2





. (276)

From the form of qi
iLiR

we can read a number of properties of the fusion coefficients. First
of all, the diagram in expression (276) displays a node with three links labelled i, iL, iR. This

68



8. ASYMPTOTICS OF LQG FUSION COEFFICIENTS

corresponds to a triangular inequality between the intertwiners i, iL, iR which is not evident
from formula (271). As a result we have that the fusion coefficients vanish outside the domain

|iL − iR| ≤ i ≤ iL + iR . (277)

Moreover in the monochromatic case, j1 = j2 = j3 = j4, we have that the fusion coefficients are
non-negative (as follows from (275)) and, for iL + iR + i odd, they vanish (because the first and
the third column in the 9j-symbol are identical).

As discussed in (24; 23), the fact that the spins labeling the links in (271) have to be half-
integers imposes a quantization condition on the Immirzi parameter γ. In particular γ has to be
rational and a restriction on spins may be present. Such restrictions are absent in the Lorentzian
case. Now notice that for 0 ≤ γ < 1 we have that 1+γ

2 + |1−γ|
2 = 1, while for γ > 1 we have that

1+γ
2 − |1−γ|

2 = 1 (with the limiting case γ = 1 corresponding to a selfdual connection). As a
result, in the first and the third column of the 9j-symbol in (276), the third entry is either the
sum or the difference of the first two. In both cases the 9j-symbol admits a simple expression
in terms of a product of factorials and of a 3j-symbol (see appendix A). Using this result we
have that, for 0 ≤ γ < 1, the coefficient qi

iLiR
(j1, j2) can be written as

qi
iLiR(j1, j2) = (−1)iL−iR+(j1−j2)

(
iL iR i

|1−γ|(j1−j2)
2

(1+γ)(j1−j2)
2 −(j1 − j2)

)
Ai

iLiR(j1, j2) (278)

with Ai
iLiR

(j1, j2) given by

Ai
iLiR

(j1, j2) =

√
(j1 + j2 − i)! (j1 + j2 + i+ 1)!

(2j1 + 1)! (2j2 + 1)!
× (279)

×
√

(|1 − γ|j1)! (|1 − γ|j2)!( |1−γ|j1
2 + |1−γ|j2

2 − iL
)
!
( |1−γ|j1

2 + |1−γ|j2
2 + iL + 1

)
!

×

×
√

((1 + γ)j1)! ((1 + γ)j2)!( (1+γ)j1
2 + (1+γ)j2

2 − iR
)
!
( (1+γ)j1

2 + (1+γ)j2
2 + iR + 1

)
!
.

A similar result is available for γ > 1. The Wigner 3j-symbol in expression (278) displays
explicitly the triangle inequality (277) among the intertwiners. Notice that the expression
simplifies further in the monochromatic case as we have a 3j-symbol with vanishing magnetic
indices.

The fact that the fusion coefficients (271) admit an analytic expression which is so simple is
certainly remarkable. The algebraic expression (275),(278),(279) involves no sum over magnetic
indices. On the other hand, expression (271) involves ten 3j-symbols (one for each node in the
graph) and naively fifteen sums over magnetic indices (one for each link). In the following we
will use this expression as starting point for our asymptotic analysis.
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8.2 Asymptotic analysis

The new analytic formula (275),(278),(279) is well suited for studying the behavior of the EPRL
fusion coefficients in different asymptotic regions of parameter space. Here we focus on the
region of interest in the analysis of semiclassical correlations as discussed in the introduction.
This region is identified as follows: let us introduce a large spin j0 and a large intertwiner (i.e.
virtual spin in a coupling channel) i0; let us also fix the ratio between i0 and j0 to be of order
one – in particular we will take i0 = 2√

3
j0; then we assume that

• the spins j1, j2, j3, j4, are restricted to be of the form je = j0 + δje with the fluctuation
δje small with respect to the background value j0. More precisely we require that the
relative fluctuation δje

j0
is of order o(1/

√
j0);

• the SO(3) intertwiner i is restricted to be of the form i = i0 + δi with the relative
fluctuation δi

i0
of order o(1/

√
j0);

• the intertwiners for SU(2)L and SU(2)R are studied in the region close to the background

values i0L = |1−γ|
2 i0 and i0R = 1+γ

2 i0. We study the dependence of the fusion coefficients on
the fluctuations of these background values assuming that the relative fluctuations δiL/i0
and δiR/i0 are of order o(1/

√
j0).

A detailed motivation for these assumptions is provided in subsection 8.3. Here we notice that,
both for 0 ≤ γ < 1 and for γ > 1, the background value of the intertwiners iL, iR, i, saturate
one of the two triangular inequalities (277). As a result, we have that the fusion coefficients
vanish unless the perturbations on the background satisfy the following inequality

δi ≤ δiL + δiR 0 ≤ γ < 1 (280)

δiR ≤ δi + δiL γ > 1 . (281)

In order to derive the asymptotics of the EPRL fusion coefficients in this region of parameter
space we need to analyze both the asymptotics of the 3j-symbol in (278) and of the coefficients
Ai

iLiR
(j1, j2). This is done in the following two paragraphs

Asymptotics of 3j-symbols The behavior of the 3j-symbol appearing in equation (278)
in the asymptotic region described above is given by Ponzano-Regge asymptotic expression
(equation 2.6 in (72); see also appendix B):

(
iL iR i

|1−γ|(j1−j2)
2

(1+γ)(j1−j2)
2 −(j1 − j2)

)

∼ (−1)iL+iR−i+1

√
2πA

× (282)

× cos
(
(iL +

1

2
)θL + (iR +

1

2
)θR + (i+

1

2
)θ + |1−γ|(j1−j2)

2 φ− − (1+γ)(j1−j2)
2 φ+ +

π

4

)
.

The quantities A, θL, θR, θ, φ−, φ+ admit a simple geometrical representation: let us consider
a triangle with sides of length iL + 1

2 , iR + 1
2 , i+ 1

2 embedded in 3d Euclidean space as shown
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below

iL + 1

2

iR + 1

2

i+ 1

2

h + |1−γ|(j1−j2)
2

h + (1+γ)(j1−j2)
2

h − (j1 − j2) (283)

In the figure the height of the three vertices of the triangle with respect to a plane are given;
this fixes the orientation of the triangle and forms an orthogonal prism with triangular base.
The quantity A is the area of the base of the prism (shaded in picture). The quantities θL, θR,
θ are dihedral angles between the faces of the prism which intersect at the sides iL, iR, i of the
triangle. The quantities φ−, φ+ are dihedral angles between the faces of the prism which share
the side of length h+ |1−γ|(j1 − j2)/2 and the side of length h+(1+γ)(j1 − j2)/2, respectively.
For explicit expressions we refer to the appendix.

In the monochromatic case, j1 = j2, we have that the triangle is parallel to the plane and
the formula simplifies a lot; in particular we have that the area A of the base of the prism is
simply given by Heron formula in terms of iL, iR, i only, and the dihedral angles θL, θR, θ are
all equal to π/2. As a result the asymptotics is given by

(
iL iR i

0 0 0

)
∼ 1√

2πA

1 + (−1)iL+iR+i

2
(−1)

iL+iR+i

2 . (284)

Notice that the sum iL + iR + i is required to be integer and that the asymptotic expression
vanishes if the sum is odd and is real if the sum is even. Now, the background configuration of
iL, iR and i we are interested in corresponds to a triangle which is close to be degenerate to a
segment. This is due to the fact that (1−γ)

2 i0+
(1+γ)

2 i0 = i0 for 0 ≤ γ < 1, and (γ+1)
2 i0− (γ−1)

2 i0 =
i0 for γ > 1. In fact the triangle is not degenerate as an offset 1

2 is present in the length of its

edges. As a result the area of this almost-degenerate triangle is non-zero and scales as i
3/2
0 for

large i0. When we take into account allowed perturbations of the edge-lengths of the triangle
we find

A =






1
4

√
1 − γ2 i

3/2
0

(√
1 + 2(δiL + δiR − δi) + o(i

−3/4
0 )

)
0 ≤ γ < 1

1
4

√
γ2 − 1 i

3/2
0

(√
1 + 2(δi + δiL − δiR) + o(i

−3/4
0 )

)
γ > 1 .

(285)

This formula holds both when the respective sums δiL + δiR − δi and δi + δiL − δiR vanish
and when they are positive and at most of order O(

√
i0). As a result we have that, when
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δiL + δiR − δi, or δi+ δiL − δiR respectively, is even the perturbative asymptotics of the square
of the 3j-symbol is

( |1−γ|
2 i0 + δiL

(1+γ)
2 i0 + δiR i0 + δi

0 0 0

)2

∼ (286)

∼






2
π

1√
1−γ2

i
−3/2
0√

1+2(δiL+δiR−δi)
θ(δiL + δiR − δi) 0 ≤ γ < 1

2
π

1√
γ2−1

i
−3/2
0√

1+2(δi+δiL−δiR)
θ(δi+ δiL − δiR) γ > 1 .

The theta functions implement the triangular inequality on the fluctuations. In the more general
case when j1 − j2 is non-zero but small with respect to the size of the triangle, we have that the
fluctuation in δje can be treated perturbatively and, to leading order, the asymptotic expression
remains unchanged.

Gaussians from factorials In this paragraph we study the asymptotics of the function
Ai

iLiR
(j1, j2) which, for 0 ≤ γ < 1, is given by expression (279). The proof in the case γ > 1

goes the same way. In the asymptotic region of interest all the factorials in (279) have large
argument, therefore Stirling’s asymptotic expansion can be used:

j0! =
√

2πj0 e+j0(log j0 − 1) (1 +
N∑

n=1

anj
−n
0 + O(j

−(N+1)
0 )

)
for all N > 0, (287)

where an are coefficients which can be computed; for instance a1 = 1
12 . The formula we need is

a perturbative expansion of the factorial of (1+ξ)j0 when the parameter ξ is of order o(1/
√
j0).

We have that

(
(1 + ξ)j0

)
! =

√
2πj0 exp

(
+ j0(log j0 − 1) + ξj0 log j0 + j0

∞∑

k=1

ckξ
k
)
× (288)

×
(
1 +

N∑

n=1

M∑

m=1

anbmj
−n
0 ξm + O(j

−(N+ M
2

+1)

0 )
)

(289)

where the coefficients bm and ck can be computed explicitly. We find that the function
Ai

iLiR
(j1, j2) has the following asymptotic behavior

Ai0+δi
|1−γ|i0

2
+δiL ,

(1+γ)i0
2

+δiR
(j0 + δj1, j0 + δj2) ∼ A0(j0) e

−H(δiL,δiR,δi,δj1,δj2) (290)
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where A0(j0) is the function evaluated at the background values and H(δiL, δiR, δi, δj1, δj2) is
given by

H(δiL, δiR, δi, δj1, δj2) =
1

2
(arcsinh

√
3)
(
δiL + δiR − δi

)
+ (291)

+

√
3

2

(δiL)2

|1 − γ|i0
+

√
3

2

(δiR)2

(1 + γ)i0
−

√
3

4

(δi)2

i0
+

− 1

2

δiL + δiR − δi

i0
(δj1 + δj2) + O(

1√
j0

)

for 0 ≤ γ < 1, while for γ > 1 it is given by

H(δiL, δiR, δi, δj1, δj2) =
1

2
(arcsinh

√
3)
(
δi+ δiL − δiR

)
+ (292)

+

√
3

2

(δiL)2

|1 − γ|i0
+

√
3

2

(δiR)2

(1 + γ)i0
−

√
3

4

(δi)2

i0
+

− 1

2

δi + δiL − δiR
i0

(δj1 + δj2) + O(
1√
j0

) .

Perturbative asymptotics of the fusion coefficients Collecting the results of the previous
two subsections we find for the fusion coefficients the asymptotic formula

f i0+δi
|1−γ|i0

2
+δiL ,

(1+γ)i0
2

+δiR
(j0 + δje) ∼ f0(j0)

1√
1 + 2(δiL + δiR − δi)

θ(δiL + δiR − δi) × (293)

× exp
(
− arcsinh(

√
3) (δiL + δiR − δi)

)
×

× exp
(
−

√
3

(δiL)2

|1 − γ| i0
−

√
3

(δiR)2

(1 + γ) i0
+

√
3

2

(δi)2

i0

)
×

× exp
(1
2

δiL + δiR − δi

i0
(δj1 + δj2 + δj3 + δj4)

)

for 0 ≤ γ < 1, and

f i0+δi
|1−γ|i0

2
+δiL ,

(1+γ)i0
2

+δiR
(j0 + δje) ∼ f0(j0)

1√
1 + 2(δi + δiL − δiR)

θ(δi+ δiL − δiR) × (294)

× exp
(
− arcsinh(

√
3) (δi + δiL − δiR)

)
×

× exp
(
−

√
3

(δiL)2

|1 − γ| i0
−

√
3

(δiR)2

(1 + γ) i0
+

√
3

2

(δi)2

i0

)
×

× exp
(1
2

δi+ δiL − δiR
i0

(δj1 + δj2 + δj3 + δj4)
)
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for γ > 1, where f0(j0) is the value of the fusion coefficients at the background configuration.
As we will show in next section, this asymptotic expression has an appealing geometrical in-
terpretation and plays a key role in the connection between the semiclassical behavior of the
spinfoam vertex and simplicial geometries.

8.3 Semiclassical behavior

To illustrate some important features of the semiclassical behavior of the fusion coefficients, we
must first anticipate the principal idea of the next section: the propagation of boundary wave
packets as a way to test the semiclassical behavior of a spinfoam model. Consider an "initial”
state made by the product of four intertwiner wavepackets; this state has the geometrical
interpretation of four semiclassical regular tetrahedra in the boundary of a 4-simplex of linear
size of order

√
j0. Then we can evolve this state (numerically) by contraction with the flipped

vertex amplitude to give the "final” state, which in turn is an intertwiner wavepacket. While
in (17) we considered only very small j0’s, in (26) we make the same calculation for higher
spins both numerically and semi-analitically, and the results are clear: the "final” state is a
semiclassical regular tetrahedron with the same size as the incoming ones. This is exactly what
we expect from the classical equations of motion.

The evolution is defined by

∑

i1...i5

W (j0, i1, . . . , i5)ψ(i1, j0) . . . ψ(i5, j0) ≡ φ(i5, j0), (295)

where

ψ(i, j0) = C(j0) exp
(
−

√
3

2

(i− i0)
2

i0
+ i

π

2
(i− i0)

)
(296)

is a semiclassical SO(3) intertwiner (actually its components in the base |i〉), or a semiclas-
sical tetrahedron, in the equilateral configuration, with C(j0) a normalization constant, and
W (j0, i1, . . . , i5) is the vertex (260) with γ = 0 evaluated in the homogeneous spin configura-
tion (the ten spins equal to j0). In (295), if we want to make the sum over intertwiners, for
fixed j0, then we have to evaluate the function g defined as follows:

g(iL, iR, j0) =
∑

i

f i
iL iR

(j0)ψ(i, j0) . (297)

The values of g are the components of an SO(4) intertwiner in the basis |iL〉|iR〉, where |iL〉 is

an intertwiner between four SU(2) irreducible representations of spin jL0 ≡ |1−γ|
2 j0, and |iR〉 is

an intertwiner between representations of spin jR0 ≡ 1+γ
2 j0.

We show that EPRL fusion coefficients map SO(3) semiclassical intertwiners into SU(2)L ×
SU(2)R semiclassical intertwiners. The sum over the intertwiner i of the fusion coefficients
times the semiclassical state can be computed explicitly at leading order in a stationary phase
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(a) (b)

Figure 8: (a) Interpolated plot of the modulus of g(iL, iR, j0) for j0 = 20 and γ = 0 computed
using the exact formula of the fusion coefficients. (b) Top view of the imaginary part.

approximation, using the asymptotic formula (293)(294). The result is

∑

i

f i
iL iR(j0)ψ(i, j0) ≈ α0 f0(j0)C(j0) × exp

(
−

√
3
(iL − |1−γ|

2 i0)
2

|1 − γ| i0
± i

π

2
(iL − |1−γ|

2 i0)
)
×

(298)

× exp
(
−

√
3
(iR − (1+γ)

2 i0)
2

(1 + γ) i0
+ i

π

2
(iR − (1+γ)

2 i0)
)

where

α0 =
∑

k∈2N

e−arcsinh(
√

3)k

√
1 + 2k

e∓i
π
2
k ≃ 0.97 ; (299)

the plus-minus signs both in (298) and (299) refer to the two cases γ < 1 (upper sign) and γ > 1
(lower sign). The r.h.s. of (298), besides being a very simple formula for the asymptotical action
of the map f on a semiclassical intertwiner, is asymptotically invariant under change of pairing
of the virtual spins iL and iR (up to a normalization N). Recalling that the change of pairing
is made by means of 6j-symbols, we have

∑

iL

∑

iR

√
dim(iL)dim(iR)(−1)iL+kL+iR+kR

{ |1−γ|
2 j0

|1−γ|
2 j0 iL

|1−γ|
2 j0

|1−γ|
2 j0 kL

}

× (300)

×
{

1+γ
2 j0

1+γ
2 j0 iR

1+γ
2 j0

1+γ
2 j0 kR

}
g(iL, iR) ≈ N(j0) g(kL, kR, j0) .

This result holds because each of the two exponentials in (298) is of the form

exp
(
−

√
3

2

(k − k0)
2

k0
± i

π

2
(k − k0)

)
, (301)
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which is a semiclassical equilateral tetrahedron with area quantum numbers k0; it follows that
g is (asymptotically) an SO(4) semiclassical intertwiner. The formula (298) can be checked
against plots of the exact formula for large j0’s; a particular case is provided in fig.8.

In addition, we can ask whether the inverse map f−1 has the same semiclassical property.
Remarkably, the answer is positive: f−1 maps semiclassical SO(4) intertwiners into semiclassical
SO(3) intertwiners. The calculation, not reported here, involves error functions (because of the
presence of the theta function) which have to be expanded to leading order in 1/j0.

A final remark on our choice for the asymptotic region is needed. The goal we have in mind
is to apply the asymptotic formula for the fusion coefficients to the calculation of observables
like the semiclassical correlations for two local geometric operators Ô1, Ô2

〈Ô1 Ô2〉q =

∑
jabia

W (jab, ia) Ô1 Ô2 Ψq(jab, ia)∑
jabia

W (jab, ia)Ψq(jab, ia)
(302)

in the semiclassical regime (at the single-vertex level). If the classical (intrinsic and the extrinsic)
geometry q over which the boundary state is peaked is the geometry of the boundary of a
regular 4-simplex, then the sums in (302) are dominated by spins of the form jab = j0 + δjab

and intertwiners of the form ia = i0 + δia, with i0 = 2j0/
√

3, where the fluctuations must be
such that the relative fluctuations δj/j0, δi/j0 go to zero in the limit j0 → ∞. More precisely,
the fluctuations are usually chosen to be at most of order O(

√
j0). This is exactly the region

we study here. As to the region in the (iL, iR) parameter space, the choice of the background

values |1−γ|
2 i0,

1+γ
2 i0 and the order of their fluctuations is made a posteriori both by numerical

investigation and by the form of the asymptotic expansion. It is evident that the previous
considerations hold in particular for the function g analyzed in this section.

8.4 The case γ = 1

When γ = 1 we have that jL ≡ |1−γ|
2 j = 0 and we can read from the graph (271) that the

fusion coefficients vanish unless iL = 0. Furthermore it is easy to see that for γ = 1 the fusion
coefficients vanish also when iR is different from i. This can be seen, for instance, applying the
identity

=
1

dim i
δi,iR (303)

to the graph (271) with iL = 0. As a result, we have simply

f i
iL iR

(j1, j2, j3, j4) = δiL,0δiR,i (304)

and the asymptotic analysis is trivial. The previous equation can be also considered as a
normalization check; in fact, with the definition (271) for the fusion coefficients, the EPRL
vertex amplitude (260) reduces for γ = 1 to the usual SO(3) BF vertex amplitude.

76



9. NUMERICAL INVESTIGATIONS ON THE SEMICLASSICAL LIMIT

9 Numerical investigations on the semiclassical limit

In this section we introduce a new technique to test the spinfoam dynamics, which is comple-
mentary to the calculation of n-point functions. This technique, presented for the first time
in (17), and improved in (26), is the propagation of semiclassical wavepackets: as in ordi-
nary Quantum Mechanics, if the theory has the correct semiclassical limit, then semiclassical
wavepackets must follow the trajectory predicted by classical equations of motion. In (17),
the wavepacket propagation in the intertwiner sector, was studied numerically in the case of
EPR vertex (EPRL with γ = 0), finding a good semiclassical behavior. In brief, we considered
the solution of discretized Einstein equations given by a single flat 4-simplex with boundary
constituted by five regular tetrahedra. In the dual LQG picture this boundary is represented
by a pentagonal 4-valent spin-network, labeled by ten spins and five intertwiners; but in order
to have a semiclassical state one has to construct some (infinite) linear combination of spin-
networks of this kind. It is known from (97) that basis 4-valent intertwiners with some choice
of pairing can be superposed with Gaussian weight to be able to catch the classical geometry:
since in a quantum tetrahedron the angles do not commute, one has to consider semiclassical
superpositions to peak all angles on the same classical value. We chose an initial state formed
by four coherent intertwiners at four nodes, and made the drastic approximation of taking the
ten spins fixed to be equal to some j0. Then we calculated numerically its evolution, here called
4-to-1-evolution, that is its contraction with the propagation kernel of the EPR spinfoam model.
Classical Einstein equations impose the final state to be a coherent intertwiner with the same
geometrical properties (mean and phase). We found good indications but, due to the very low
j0’s, we couldn’t conclude much about the analytical properties of the evolved state.
In the second paper (26) we conjecture the general behavior of the evolution at high j0’s which is
very well supported numerically. In fact, as we shall argue, the propagation is perfectly "rigid”:
four gaussian wavepackets evolve into one gaussian wavepacket with the same parameters, ex-
cept for a flip in the phase. The phase of the evolved phase, and in particular its flipping, will
have a major role when considering physical expectation values. The support to our conjecture
is made in two independent ways: the first is semi-analytical and is based on a numerical result
on the 15j-symbol viewed as a propagation kernel, and the asymptotic properties of the fusion
coefficients already studied in the last section; the second is purely numerical. The first has
the advantage of giving a nice picture of the dynamics in terms of wavepackets evolving sepa-
rately in the left and right SO(4) sectors, and it also pave the way for the completely analytical
approach (to do this, one should have an asymptotic formula for the 15j-symbol). We also
explore the possibility of propagating three coherent intertwiners into two (we will refer to as
the 3-to-2-evolution), finding similar results. Then we present the results from another point of
view, namely as intertwiner physical expectation values, finding that these are asymptotically
the predicted ones. Though we use the drastic approximation of fixing all spins, we regard our
results as a strong indication that the EPRL model has the good semiclassical limit. In the end
we present the numerical calculation of the intertwiner correlation function, finding a scaling
law which is not the Newtonian one; we believe that this is due to the drastic approximation
of freezing the spin variables in the boundary state, and not to pathologies of the model.
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9.1 Wave packets propagation

Suppose you are explicitly given the propagation kernel Wt(x, y) of a one-dimensional nonrela-
tivistic quantum system defined by a Hamiltonian operator H

Wt(x, y) = 〈x|e− i

~
Ht|y〉 (305)

and you want to study whether the classical (~ → 0) limit of this quantum theory yields a
certain given classical evolution. One of the (many) ways of doing so is to propagate a wave
packet ψx,p(x) with Wt(x, y). Suppose that in the time interval t the classical theory evolves
the initial position and momentum xi, pi to the final values xf , pf . Then you can consider a
semiclassical wave packet ψxi,pi(y) centered on the initial values xi, pi, compute its evolution
under the kernel

φ(x) ≡
∫

dy Wt(x, y) ψxi,pi(y) (306)

and ask whether or not this state is a semiclassical wave packet centered on the correct final val-
ues xf , pf . Here, we consider the possibility of using this method for exploring the semiclassical
limit of the dynamics of nonperturbative quantum gravity.

We are interested in investigating the intertwiner dependence of the EPR vertex. The
derivation of the vertex amplitude presented in (99) indicates that the process described by
one vertex can be seen as the dynamics of a single cell in a Regge triangulation of General
Relativity. This is a fortunate situation, because it allows us to give a simple and direct
geometrical interpretation to the dynamical variables entering the vertex amplitude, and a
simple formulation of the dynamical equations.

In section (5.2) we stressed that the areas and the angle between the normals to the tetra-
hedra code respectively the intrinsic and the extrinsic geometry of the boundary surface. Here
we consider the boundary of a Regge cell that is formed by five tetrahedra joined along all their
faces, thus forming a closed space with the topology of a 3-sphere. Recall that the ten spins
jnm (n,m = 1, . . . , 5) are the quantum numbers of the areas Anm that separates the tetrahedra

n and m, and the five intertwiners in are the quantum numbers associated to the angles θ
(mp,qr)
n

between the triangles (mp) and (qr) in the tetrahedron n. These quantities determine entirely

the intrinsic (Anm, θ
(mp,qr)
n ) and extrinsic (Θnm) classical geometry of the boundary surface.

Each tetrahedron has six such angles, of which only two are independent (at given values of
the areas); but the corresponding quantum operators do not commute (97) and a basis of the
Hilbert space on which they act can be obtained by diagonalizing just a single arbitrary one
among these angles. Therefore the intrinsic geometry of the boundary of a classical Regge cell
is determined by twenty numbers, but the the corresponding quantum numbers are only fifteen:
the fifteen quantities jnm, in. These are the fifteen arguments of the vertex. When using the

intertwiners in, we have of course to specify to which pairing i
(mp,qr)
n we are referring.

The equations of motion of any dynamical system can be expressed as constraints on the set
formed by the initial, final and (if it is the case) boundary variables. For instance, in the case of
the evolution of a free particle in the time interval t, the equations of motion can be expressed
as constraints on the set (xi, pi, xf , pf ). These constraints are of course m(xf −xi)/t = pi = pf .
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(For the general logic of this approach to dynamics, see (7)). In General Relativity, the Einstein

equations can be seen as constraints on boundary variables Anm, θ
(mp,qr)
n and Θnm. These,

in fact, can be viewed as the ensemble of the initial, boundary and final data for a process
happening inside the boundary 3-sphere. Such constraints are a bit difficult to write explicitly,
but one solution is easy: the one that corresponds to flat space and to the boundary of a regular
4-simplex. This is given by all equal areas Anm = j0, all equal angles in = i0, and Θnm = Θ,
where, as we have seen in section (6.2), elementary geometry gives

i0 =
2√
3
j0, cos Θ = −1

4
. (307)

It follows immediately from these considerations that a boundary wave packet centered on these
values must be correctly propagated by the vertex amplitude, if the vertex amplitude is to give
the Einstein equations in the classical limit.

The simplest wave packet we may consider is a simplified version of (224): a diagonal
Gaussian wave packet

Ψ(jnm, in) =
∏

nm

ψ̃(jnm)
∏

n

ψ(in) (308)

where
ψ̃(jnm) = e−

1
τ
(jnm−j0)2+iθjnm (309)

and
ψ(i) = N

√
dim(i) e

− 3
4j0

(i−i0)2+i
π
2
i
. (310)

In other words, the state considered is formed by a Gaussian state on the spins, with phase
θ given by the extrinsic curvature and by a “coherent tetrahedron" state (see (97)) for each
tetrahedron.

Let us write the wave packet (308) as an “initial state" times a “final state" by viewing the
process represented by the spacetime region described by the Regge cell as a process evolving
four tetrahedra into one. That is, let us write this state in the form

Ψ(jnm, in) = ψinit(jnm, i
′
n)ψ(i5) (311)

where i′n = (i1, ..., i4). Then we can test the classical limit of the vertex amplitude by computing
the evolution of the four “incoming" tetrahedra generated by the vertex amplitude

φ(i) =
∑

jnm,i′n

W (jnm, i
′
n, i)ψinit(jnm, i

′
n) (312)

where i is i5, and comparing φ(i) with ψ(i). If the vertex amplitude has general relativity as its
classical limit, then we expect that in the semiclassical limit, namely for large j0, the evolution
should evolve the “initial" boundary state ψi(jnm, i

′
n) into a final state φ(i) which is still a wave

packet centered on the same classical tetrahedron as the state ψ(i) given in (310). That is, φ(i)
must be a state “similar" to ψ(i), plus perhaps quantum corrections representing the quantum
spread of the wave packet.
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We have tested this hypothesis numerically, under a drastic approximation: replacing the
Gaussian dependence on the spins with a state concentrated on jnm = j0. That is, we have
tested the hypothesis in the τ → ∞ limit. Explicitly, we considered the boundary state

Ψ(jnm, in) ∝
10∏

n=1

δjn,j0

5∏

m=1

ψ(im) . (313)

Though the property we wanted to test should be true for the correct boundary state in which
the approximation of freezing the spins is not taken, one can study the evolution and see if a
positive result is obtained. If this is the case, we are strongly encouraged to believe that the
same property holds in the general case.

The hypothesis we want to test is thus the following. We want to compare the evolved state

φ(i) =
∑

i1...i4

W (i1, ..., i4, i)
4∏

n=1

ψ(in) (314)

with the coherent tetrahedron state (310), where

W (in) ≡W (jnm, in)|jnm=j0 . (315)

If the function φ(i) turns out to be sufficiently close to the coherent tetrahedron state ψ(i), we
can say that, under the hypotheses given, the flipped vertex amplitude appears to evolve four
coherent tetrahedra into one coherent tetrahedron, consistently with the flat solution of the
classical Einstein equations. In the first paper (17) we have compared the two functions ψ(i)
(coherent tetrahedron) and φ(i) (evolved state) for the cases j0 = 2 and j0 = 4. The numerical
results are shown in the figures below. The overall relative amplitude of ψ(i) and φ(i) is freely
adjusted by fixing the normalization constant N and therefore is not significant. The quantity
imean is the mean value of i. It gives the position of the wave packet. The quantity σ/2 is the
corresponding variance. It gives the (half) width of the wave packet. In Fig. 9 and Fig. 11 we
compare the modulus square of the wave function (for the two values of j0). In Fig. 10 and
Fig. 12 we compare the modulus square of the discrete Fourier transform of the wave function:
n stands for the nth multiple of the fundamental frequency 2π/j0.
Case j0 = 2 :

The agreement between the evolved state and the coherent tetrahedron state is quite good.
Besides the overall shape of the state, notice the concordance of the mean values and the widths
of the wave packet. Considering the small value of j0, which is far from the large scale limit,
and the τ → ∞ limit we have taken, we find this quite surprising.

The same pattern repeats in the j0 = 4 case:

9.2 Summary of semiclassical properties of fusion coefficients

In section 8 the fusion coefficients were studied and an analytic asymptotic formula was given;
thanks to this formula, we found the asymptotical action of the fusion coefficients on a semi-
classical intertwiner. We resume briefly some properties, focusing on the case γ = 0.
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Figure 9: j0 =2. Modulus square of the amplitude. Left: coherent tetrahedron (imean±σ/2 =
2.54±0.39). Right: Evolved state (imean±σ/2 = 2.54±0.46). CPU time with a 1.8 Ghz processor:
few seconds (old code), ∼ 10−1 s (new code)

Figure 10: j0 =2. Modulus square of the (discrete) Fourier transform of the amplitude. Left:
coherent tetrahedron (nmean±σ/2 = 1.25±0.27). Right: Evolved state (nmean±σ/2 = 1.15±0.31).

Figure 11: j0 =4. Modulus square of the amplitude. Left: coherent tetrahedron (imean±σ/2 =
4.88±0.56). Right: Evolved state (imean±σ/2 = 4.85±0.96).CPU time with a 1.8 Ghz processor:
6 h (old code), few seconds (new code)
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Figure 12: j0 = 4. Modulus square of the (discrete) Fourier transform of the amplitude. Left:
coherent tetrahedron (nmean±σ/2 = 2.25±0.32). Right: Evolved state (nmean±σ/2 = 2.08±0.59).

The action of f i
iL,iR

(viewed as a map between intertwiner spaces) on a semiclassical inter-
twiner is given by

g(iL, iR) ≡
∑

i

f i
iL,iR

ψ(i). (316)

We showed that, for large j0’s

g(iL, iR) ≃ C exp
(
− 3

2j0
(iL − i0

2 )2 − 3
2j0

(iR − i0
2 )2 + i

π
2 (iL + iR)

)
, (317)

where C is an irrelevant normalization factor not depending on iL and iR at leading order in 1/j0
powers. Hence, asymptotically, the function g factorizes into left and right parts; we indicate
them, with abuse of notation, g(iL) and g(iR). The values of g(iL, iR) are the components of
an SO(4) ≃ SU(2)× SU(2) intertwiner in the basis |iL, iR〉, which we call SO(4) semiclassical
intertwiner. Also the converse holds: the asymptotical action of the fusion coefficients on an
SO(4) semiclassical intertwiner is an SO(3) semiclassical intertwiner, i.e.

∑

iL,iR

f i
iL,iR g(iL, iR) ≃ ψ(i). (318)

9.3 The semi-analytic approach

The property (317) gives a new picture of the dynamics in the semiclassical regime. The EPR
vertex is given by

W (i1 . . . i5) ≡
∑

{inL}{inR}
15jN

(
i1L, . . . , i5L

)
15jN

(
i1R, . . . , i5R

) 5∏

n=1

f in
inL,nR

. (319)

The factor f i1
i1L,i1R

. . . f i4
i4L,i4R

of (319) is contracted in (314) with four initial packets (making
the sum over i1 . . . i4). By (317), for large j0’s this contraction gives four SO(4) semiclassical
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Figure 13: On the left: modulus of the evolved state for the 4-to-1 propagation performed by
one 15j (j0 = 30). On the right: its real and imaginary (dashed) part. CPU time with a 1.8
Ghz processor: few seconds

intertwiners, so the evolved state (314) becomes

φ(i5) ≃
∑

i5L,i5R




∑

i1L...i4L

15jN
(
i1L, . . . , i5L

)
g(i1L) . . . g(i4L)



×

×




∑

i1R...i4R

15jN
(
i1R, . . . , i5R

)
g(i1R) . . . g(i4R)



 f i
i5L,i5R

. (320)

We can see in the last expression the action of two 15j’s separately on the left and right
part (the expressions in square brackets). Those actions are interpreted as independent 4-to-
1-evolutions in the left and right sectors, namely the evolution of the left an right part of four
SO(4) semiclassical intertwiners, where the dynamical vertex is the 15j-symbol. By numerical
investigations (Fig. 13), it turns out that the final state of the right (left) partial evolution is
the right (left) part of an SO(4) semiclassical intertwiner, with the phase flipped as compared
to the incoming packets. For example, for the left part:

φL(i5L) ≡
∑

i1L...i4L

15jN
(
i1L . . . i5L

)
g(i1L) . . . gL(i4L) ≃ g(iL5). (321)

Then (320) becomes

φ(i5) ≃
∑

i5L,i5R

g(i5L) g(i5R) f i5
i5L,i5R

. (322)

The last expression is the contraction between the fusion coefficients and an SO(4) semiclassical
intertwiner. By (318), this gives an SO(3) semiclassical intertwiner:

φ(i5) ≃ ψ(i5). (323)

While in (17) we expected only a conservation of mean values, and possibly a spread of wave
packets, the precedent argument shows that the gaussian shape is conserved, together with its
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mean value and width, while the phase is flipped. The 3-to-2-evolution is defined similarly to
the 4-to-1 case, as the contraction between the flipped vertex and three initial semiclassical
intertwiners. Numerical results about this type of evolution are discussed in section 9.5.

9.4 Physical expectation values

Now we want to present the precedent results from another perspective, as results about expec-
tation values of observables. By construction, the boundary state (313) is peaked kinematically
on a semiclassical geometry. This should be also true in a dynamical sense, as it is peaked on a
solution of Einstein equations. So consider the physical expectation value of an intertwiner on
this boundary state:

〈i1〉 ≡
∑

jnmin
W (jnm, in) i1 Ψ(jnm, in)

∑
jnmin

W (jnm, in)Ψ(jnm, in)
. (324)

We expect this quantity to be equal to i0 for large j0’s, if the dynamics has the correct semi-
classical limit. Analogously, we can consider the expectation value of two intertwiners:

〈i1 i2〉 ≡
∑

jnmin
W (jnm, in) i1 i2 Ψ(jnm, in)

∑
jnmin

W (jnm, in)Ψ(jnm, in)
; (325)

the last expression should be asymptotically equal to i20. The results about wavepacket propa-
gation give full information about the previous physical expectation values. In fact, (324) can
be viewed as the contraction between the evolved state and a semiclassical boundary intertwiner
with one insertion, so

〈i1〉 =

∑
i1
φ(i1) i1 ψ(i1)∑

i1
φ(i1)ψ(i1)

≃
∑

i1
ψ(i1) i1 ψ(i1)

∑
i1
ψ(i1)ψ(i1)

= i0, (326)

where we used (323); what we have found is that dynamical and kinematical mean (asymptot-
ically) coincide. We stress that, not only the peakiness of the evolved state is required in order
to have the right expectation value, but also the phase of the evolved state must cancel exactly
the phase of the initial intertwiner. The same properties (peakiness and right phase) hold for
the 3-to-2-propagation (see numerical results in the next section), and the expectation value of
two intertwiners turns out to be the correct one, i.e. i20.

9.5 Improved numerical analysis

We wrote an improved numerical algorithm performing the 4-to-1 and 3-to-2 evolutions, and
calculating the physical expectation values (324)(325); the algorithm computes very big sums
serially with a method similar to the one in (106)(107). The results are shown in the figures. In
Fig. 14 the result of the 4-to-1 evolution for j0 = 30 is reported. From the plot on the left (the
modulus) we can see that the evolved state is a Gaussian peaked on i0 with the same width
of the “incoming" Gaussians. On the right the real and imaginary parts are plotted, and it is
clearly visible that the frequency of oscillation is −π/2, which is exactly the phase opposite to
the one of initial packets.
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Figure 14: On the left: modulus of the evolved state for the 4-to-1 propagation performed by
the flipped vertex (j0 = 30). On the right: its real and imaginary (dashed) part.CPU time with
a 1.8 Ghz processor: ∼ 10 minutes

In Fig. 18 are shown the results of the 3-to-2 propagation (moduli), from j0 = 10 to j0 = 32 for
even j0’s. Compared with the 4-to-1 case, here the Gaussian shape seems not to be conserved,
but the state is nevertheless peaked on i0 and presents a −π/2 phase in both variables; actually a
convergence to an elliptic Gaussian is taking place (we explored up to j0 = 56). Non-Gaussianity
has to be imputed to quantum effects. Small deviations from Gaussianity are present also in
the 4-to-1-evolution, though less pronounced. Both in the 4-to-1 and 3-to-2 evolution, non-
Gaussianity gives rise to deviations of physical expectation values from the classical behavior,
well visible in the plots in Fig. 15.
The physical expectation values (Fig. 15) are in complete agreement with the expected ones.
The small deviations from the semiclassical values gradually disappear as j0 increases.

Figure 15: On the left: physical expectation value of i1. On the right: physical expectation
value of i1i2. The solid line is the expected behavior.

9.6 Correlation function

Here we present some very preliminary results about the graviton propagator in the EPR
spinfoam model, in the rough approximation of fixed spins. In other words, we consider the
2-point function over the boundary state (313). With our approximation, the spin-spin and
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spin-intertwiner correlation functions vanish, but some components of the graviton propagator
are proportional to the intertwiner-intertwiner correlation function and we will study these ones.
The 2-point function, or propagator, over the boundary of a 4-simplex is defined by:

Gabcd
mn =

∑
jpqip

W (jpq, ip)(E
(a)
m ·E(b)

m − n
(a)
m · n(b)

m )(E
(c)
n · E(d)

n − n
(c)
n · n(d)

n )Ψ(jpq, ip)∑
jpqip

W (jpq, ip)Ψ(jpq, ip)
(327)

where m,n and a, b, c, d run over {1, . . . , 5}, Ea
m is the electric field (densitized triad) operator

at the node m, projected along the normal n
(a)
m in m to the face shared by the tetrahedra

m and a. In the diagonal-diagonal components (a = b, c = d) the electric fields act as area
operators, so that the 2-point function is essentially an expectation value of two spin insertions
“δjδj", which in our case of fixed spins vanishes. In the diagonal-nondiagonal components
(a = b, c 6= d) the first couple of electric fields gives a spin insertion “δj", while the second
couple acts nontrivially (in fact the nondiagonal action is the one that “reads" the intertwiner
quantum numbers at nodes) but also those components vanish because of the presence of the
spin insertion. The only surviving components are the nondiagonal-nondiagonal; they are quite
complicated but some of them are simpler, and we will consider only them. Consider in the
boundary state a node m labeled by the virtual spin im in a certain pairing, and concentrate
only on those (a, b) which are coupled to im. As an example, if we take the node m = 1 and
the surrounding spins are labeled as in Fig. 16, then we consider only a, b ∈ {2, 3} or {4, 5}

Figure 16: node

(a 6= b). Then consider another node n labeled by in and indices c 6= d coupled to in. For
those components the action of graviton operators is diagonal and gives insertions of the kind
“( 2√

3
δi− δj − δj)( 2√

3
δi− δj − δj)", so

Gabcd
mn ∝

∑
{j},{i}W ({j}, {i}) δimδinΨ({j}, {i})
j20
∑

{j},{i}W ({j}, {i})Ψ({j}, {i}) ≡ 〈δimδin〉
j20

. (328)

If the propagator has the Newtonian scaling in the semiclassical regime, it should scale asymp-
totically as the inverse of j0; equivalently, the quantity 〈δimδin〉 should scale linearly with j0.
The plot of 〈δimδin〉 from j0 = 2 to j0 = 50 (with step 2) is shown in Fig. 17. The scaling is
clearly not the Newtonian one, and this could be due to our choice of boundary state, which
freezes the spins, or maybe to some pathology of the model. The auspicious results about
the evolution of wave packets and the physical expectation values seem to exclude the latter
possibility.
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Figure 17: On the left: real part of the intertwiner correlation function, divided by j20 . On the
right: its imaginary part.
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Figure 18: Modulus of the evolved state for the 3-to-2 intertwiner propagation, from j0 = 10 to
j0 = 32 with step 2.
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10 Outlooks and conclusions

This thesis goes along the last years of the research in the semiclassical limit of Loop Quantum
Gravity. The original results presented are:

• We demonstrate (20) that the radial gauge can be consistently imposed together with the
Lorenz gauge in Maxwell theory, and with the harmonic traceless gauge in linearized Gen-
eral Relativity. This result has relevance for the comparison of LQG graviton propagator
with the one of the perturbative Quantum Gravity.

• We have shown a simple analytic formula for the LQG fusion coefficients, as defined in
the EPRL spinfoam model (25). We have given a large spin asymptotic formula for these
coefficients making a perturbative asymptotic expansion around a background configura-
tion dictated by the kind of boundary state considered. The picture coming out from our
analysis is promising: the fusion coefficients not only give nontrivial dynamics to inter-
twiners at the quantum level, but they seem to behave very well at semiclassical level, in
fact they map semiclassical SO(3) tetrahedra into semiclassical SO(4) tetrahedra. This
is to us a highly non-trivial property which, in turn, makes the semiclassical analysis of
dynamics less obscure. A first application of the asymptotic formula can be found in (26).
Our analysis is a step needed for the study of the full asymptotic expansion of the EPRL
vertex, which is part of our work in progress.

• We studied the propagation of semiclassical intertwiners over a 4-simplex, using the EPR
spinfoam model. This approach, introduced in (17) and developed in (26), is a way to
study the semiclassical limit of spinfoam models for quantum gravity. This study turned
out to be viable both analytically and numerically, and gave encouraging answers. In par-
ticular, certain coherent states turned out to evolve in accordance with classical General
Relativity. Then we read the results as physical expectation values of observables. In the
end, we showed a numerical calculation of the intertwiner correlation function, but the
scaling law w.r.t. distance is not the one giving rise to Newton law in the semiclassical
regime. This has to be expected, as the approximation of freezing the spins could also pre-
vent intertwiner fluctuations (remember that a classical 4-simplex is fully determined by
the ten edge lengths, so if those lengths are given then the dihedral angles between trian-
gles are automatically determined). Though positive, we regard our results as partial and
tentative: one should get rid of the “fixed spin” approximation and see if the wavepacket
propagation is still correct and then compute the 2-point function in the semiclassical
limit and see if the scaling with distance is the Newtonian one. Further numerical (107)
and analytical investigations have already started and we expect in the next future to be
able to give more precise answers.
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Appendix

A Properties of 9j-symbols

The 9j-symbol with two columns with third entry given by the sum of the first two can be
written as





a f c

b g d

a+ b h c+ d





= (−1)f−g+a+b−(c+d)

(
f g h

a− c b− d −(a+ b− (c+ d))

)
× (329)

×
√

(2a)!(2b)!(2c)!(2d)!(a + b+ c+ d− h)!(a+ b+ c+ d+ h+ 1)!

(2a+ 2b+ 1)!(2c + 2d+ 1)!(a + c− f)!(a+ c+ f + 1)!(b + d− g)!(b + d+ g + 1)!
.

An analogous formula for the 9j-symbol with two columns with third entry given by the differ-
ence of the first two can be obtained from the formula above noting that






a f c

b g d

b− a h d− c





=






b− a h d− c

a f c

b g d





, (330)

so we are in the previous case.
The 3j-symbol with vanishing magnetic numbers has the simple expression

(
a b c

0 0 0

)
= (−1)a−bπ1/4 2

a+b−c−1
2

( c−a−b−1
2 )!

√
(a+ b− c)!

√
( c+a−b−1

2 )!( c−a+b−1
2 )!(a+b+c

2 )!

( c+a−b
2 )!( c−a+b

2 )!(a+b+c+1
2 )!

. (331)

These formula can be derived from (105; 108).

B Regge asymptotic formula for 3j-symbols

The asymptotic formula of 3j-symbols for large spins a, b, c and admitted magnetic numbers,
i.e. ma +mb +mc = 0, given by G. Ponzano and T. Regge in (72) is

(
a b c

ma mb mc

)
∼ (−1)a+b−c+1

√
2πA

cos
(
(a+

1

2
)θa+(b+

1

2
)θb+(c+

1

2
)θc+maφa−mbφb+

π

4

)
(332)
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with

θa =
arccos

(
2(a+ 1

2)2mc +ma

(
(c+ 1

2 )2 + (a+ 1
2)2 − (b+ 1

2 )2
))

√(
(a+ 1

2)2 −m2
a

)(
4(c+ 1

2)2(a+ 1
2 )2 −

(
(c+ 1

2)2 + (a+ 1
2)2 − (b+ 1

2)2
)2)

(333)

φa = arccos



1

2

(a+ 1
2)2 − (b+ 1

2)2 − (c+ 1
2)2 − 2mbmc√(

(b+ 1
2)2 −m2

b

)(
(c+ 1

2)2 −m2
c

)



 (334)

A =

√√√√√√√√
− 1

16
det





0 (a+ 1
2)2 −m2

a (b+ 1
2)2 −m2

b 1

(a+ 1
2)2 −m2

a 0 (c+ 1
2)2 −m2

c 1

(b+ 1
2)2 −m2

b (c+ 1
2 )2 −m2

c 0 1

1 1 1 0




(335)

and θb, θc, φb are obtained by cyclic permutations of (a, b, c).
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