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Abstract

The aim of this paper is to present the results obtained on the class of Least
Orthogonal Distance Estimator - full and limited infomation - of structural
parameters for SEM. The LODE method of estimation has been derived un-
der the consideration that the over-identifying restriction are nothing else but
linear relations between variables affected by error (Naccarato and Pieraccini,
2008; Naccarato, 2007).

The original form of LODE was based on characteristic roots and vec-
tors, the simulation experiments conducted show that full information and
limited information LODE works better than the other classics limited and
full information estimators but in terms of variability the results wasn’t so
good. In this work are presented some solution adopted to reduce the esti-
mation variability, the first solution was based on a computational procedure
links to the minimization of the trace of structural errors’ matrix Variance-
Covariance and this procedure together with the result of the simulation
experiment are in the chapter 2.

Then - always to improve the LODE performance in terms of mean square
error - it was developed a new version of LODE based on Singular Value
Decomposition (chapter 4 and 5) instead of Spectral Decomposition, this
because an algorithm based on SVD is numerically more robust respect to
algorithm based on SD, where robustness means the greatest algorithm’s
probability to converge (Markovsky and Van Huffel, 2007). The results of
the new simulation adopting the LODE based on SVD better perfomances
than the classical estimators both in terms of bias and variability.

vi



Chapter 1

Introduction

In this thesis is introduced some innovation made to the class of LODE
estimator of structural parameters in a SEM.

The principal characteristic of the Simultaneous Equation Model is that in
this kind of models some of the explanatory variable (endogenous variables)
present in the so called structural form of this model are correlated with the
error component, so the OLS estimate applied on this multivariate regression
model are unbiased and inconsistent.

There is two form to synthesize a Simultaneous Equation Model one is
the aforementioned structural form that specifies the simultaneous quantita-
tive relation that exist between the endogenous each other and between the
endogenous variables and the pre-determinate variables presented in the sys-
tem, the second one is the reduced form that define the vector of endogenous
variables only respect to the pre-determinate variables (exogenous variables)
so this reduced form can be see like a closed form of structural form respect
to endogenous variables.

While the reduced form is an identified system we can not say the same
things for structural form, so what we need is to impose some conditions
on structural form parameters. This conditions have the form of exclusion
constraints, the definition of this condition comes from the so called identifi-
cation’s system that links the parameters of structural form with the one of
reduced form.

1



CHAPTER 1. INTRODUCTION 2

The Least Orthogonal Distance Estimator method of estimation has been
derived under the consideration that this system are nothing else but linear
relations between variables affected by error, where this variables is the pa-
rameters of reduced form and the unknowns is the structural form parameters
(Naccarato and Pieraccini, 2008; Naccarato, 2007). The starting idea, whose
development has given rise to Least Orthogonal Distance Estimator(LODE),
can be tracked back to the work of (Pieraccini, 1969), in which 2SLS were
obtained as generalized least square estimator applied to the system of identi-
fication; the result was afterwards extended to 3SLS (Pieraccini,1978). With
this in mind and making reference to the work of K. Pearson "Lines and
planes of closest fit"(Pearson 1901) was developed this estimator which find
the estimates of structural parameters minimizing the orthogonal distance,
under the consideration that the system of identification is nothing else but
linear relations between variables affected by error, to do this it works with
characteristic roots and vector of a matrix deriving from identification’s sys-
tem of SEM.

In the first formalization, LODE structural parameters’ estimation of en-
dogenous and exogenous variables was not treated symmetrically: parameters
of endogenous variable was derived working only with the second equation of
identification’s system and so applying spectral decomposition on the matrix
deriving from this equation, that doesn’t involve the parameters fo exogenous
variables, this one were obtained in the same way as LIML (Pieraccini 1983,
1988, 1992).

Then taking into account the results of many simulation experiment was
introduced a modified version of limited Information LODE in which struc-
tural parameters are estimate both for endogenous and exogenous variables
(Sbrana 2001).

Furthermore a recent contribution have increased the interest about this
method: its extension to the case of Full Information (Naccarato, 2007; Nac-
carato and Pieraccini, 2008) which has shown the versatility of the method
to cope with simultaneous estimation of the whole system’s structural pa-
rameters.
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1.1 Purpose and Objectives

The simulation experiment on LODE LI (Perna, 1989; Cau, 1990; Sbrana,
2001; Zurlo, 2006) showed that usually in terms of bias the LODE LI works
better than the other classics limited information estimators but in terms of
variability the results wasn’t so good.

The first simulations applied on FI LODE which were been the start
of the thesis’ project showed that the passage from LI LODE to FI LODE
seemed to have increased this problem as matter of the fact every structural
parameters estimation was affected by the presence of few far outliers which
weighed heavily on the general estimation results, for this reason i looking
for finding some solution to improve the stability of FI LODE, the results of
this studies are became the core of my Ph.D. Thesis.

Hence the principal aim of this work is to present some solution adopted to
reduce the FI LODE’s estimation variability, the first solution was based on a
computational procedure links to the minimization of the trace of structural
errors’ matrix Variance-Covariance but it was just an empirical solution.

The subsequent developments point out that the modified version of
LODE, which works with the whole system and estimate together the struc-
tural parameters of endogenous and exogenous variables, could bring some
problem, because the matrix that derive from the system of identification
isn’t compose only from ”variables affected by error” so the orthogonal min-
imization could yield biased estimate. For this reason the idea is to come
back to the primal version of LODE and estimating before the parameters of
endogenous variables with LODE and then the ones of exogenous variables.

Coming back to the primal version the last solution involve led to use Sin-
gular Value Decomposition instead of Spectral Decomposition, this because
an algorithm based on SVD is numerically more robust respect to algorithm
based on SD, where robustness means the greatest algorithm’s probability to
converge (Markovsky and Van Huffel, 2007).
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1.2 Outline of the chapters

This thesis is organized into seven chapters. In chapter 2 there is a briefly
introduction on Simultaneous equation models to establish notation then the
two estimator based on orthogonal distance Limited and Full Information
Least Orthogonal Distance are presented .

The chapter 3 is dedicated to the computational procedure to minimize
the Variance-Covariance matrix of errors component and to the result of
simulation experiment conduct by comparing the results of LODE with the
other two classical estimator for SEM Three Stage Least Square (3SLS) and
Full Information Maximum Likelihood (FIML).

The problem caused by the simultaneous estimate of all endogenous and
exogenous parameters is explained in chapter 4.

Chapter 5 is devoted to the LODE based on Singular Value Decomposi-
tion and in the subsequent chapter the result of new simulation experiment
on FI LODE with empirical correction FI LODE SVD before and FI LODE
SVD 3SLS FIML later are illustrated.

Finally (Chapter 8) conclusion and and future developments, while in
the appendix A is reported the program script of the simulation experiment
conduct with the software E-Views 7



Chapter 2

LODE for SEM

2.1 Introduction

In this chapter we will introduced the LODE full and limited information
estimator of structural parameters in simultaneous equation model. So in the
first section (1.2) is presented the context where this estimator works hence
there will be a short introduction to simultaneous equation model notation
and to conditions of identification show in a new context (Naccarato, 2007),
in the other two section (1.3) and (1.4) are presented respectively the last
version of limited information and the full information LODE estimator.

2.2 The simultaneous equations model

The simultaneous equation model are multivariate regession model and are
characterized by the fact that some of the explanatory variable , called en-
dogenous, are correlated with the error component, so the OLS estimate for
the coefficients of this variable are unbiased and inconsistent, for this reason
are been development other kind of estimator: limited information estimator
where the coefficients of system’s equations are estimate equation to equa-
tion singularly (Two stage least square and limited information maximum
likehood) and full information estimator where are estimate the coefficients
of the whole system at the same time (Three stage least square and full

5



CHAPTER 2. LODE FOR SEM 6

information maximum likehood).
Making use of standard notations, the structural form of a simultaneous

equations model can be defined as follows:

Y
n,m

Γ
m,m

+ X
n,k
B
k,m

+ U
n,m

= 0
n,m

(2.1)

where Y is the n×m matrix of endogenous variables and Γ is the corre-
sponding m ×m matrix of structural parameters, X is the n × k matrix of
exogenous variables and B is the k×m matrix of their structural parameters.
Finally U is the n×m matrix of disturbances for which standard hypotheses
are supposed to hold:

E(vecU) = 0

E(vecU(vecU)T = Ω⊗ I
(2.2)

where

Ω =


σ2

1 · · · σ1m

... . . . ...
σm1 · · · σ2

m


is the variance-covariance matrix of the disturbances U , constant for all

the observations. Furthermore it is generally assumed that:

plim
n→∞

1
n
UTU = Ω

plim
n→∞

1
n
XTU = 0

k,m

plim
n→∞

1
n
XTX = Σx

k,m

(2.3)

Under non singularity condition for Γ, if not one or more structural equa-
tion would be only a linear combination of the others, we can rewrite the
system highlighting the endogenous variable Y , this is the reduced form of
the equations and it is derived as:

Y
n,m

= X
n,k

Π
k,m

+ V
n,m

(2.4)
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where:

Π
k,m

= −B
k,m

Γ−1

m,m

V
k,m

= − U
k,m

Γ−1

m,m

(2.5)

considering 2.4 and 2.5 it is clear the link between endogenous variable
Y and accidental component of structural equation U

The last equation in 2.5 represents the matrix of reduced form distur-
bances, for which it is possible to write:

E(V ) = 0

E
(
V TV

)
= n (Γ−1)

T
ΩΓ−1

(2.6)

Post-multiplying by Γ the first equation in (5) we obtain:

Π
k,m

Γ
m,m

= −B
k,m

(2.7)

which represents the relation between reduced and structural form pa-
rameters.

Even if we consider known the parameter Π of reduced form the system
does not admit a unique solution because 2.7 is a system of k equations with
m× (m + k) unknowns. In order to find the solution with respect to Γ and
B in terms of Π, we need to impose others conditions on structural form
parameters. This conditions have the form of exclusion constraints, in the
sense that each equation does not include all the endogenous and exogenous
variables and not all the elements of Γ and B are different from zero.

Then it is possible to consider the following partition of the overall matrix
of endogenous variables with respect to i− th structural form equation:

Yi
n,m

=

[
Yi1
n,m1

... Yi2
n,m2

]
where the first columns m1i refer to the endogenous variables included in

i− th equation and the last m2i columns refer to those excluded. In the same
way the vectors of Γ’s in i− th equation can be reordered as:
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Γi
m,1

=


Γ1i
m1i,1

...
0

m2i,1


where the first m1i elements of Γi refer to Yi1 endogenous variables in-

cluded in the i− th equation. Notice that defining the vector Γi no normal-
ization rule has yet been introduced.

Similarly, let us consider the partition:

Xi
n,k

=

[
X1i
n,k1i

... X2i
n,k2i

]
where X1i and X2i are the sub-matrices corresponding to the exogenous

variables included in and excluded from the i− th equation respectively.
Accordingly let us define

Bi
k,1

=


B1i
k1i,1

...
0

k2i,1


where the first k1i parameters are related to the exogenous variables in-

cluded in the i− th equation.
Therefore the i− th structural equation can be expressed as:

Y1iΓ1i +X1iB1i = Ui.

notice that different orderings of variables correspond to each equation of
the system.

The i− th reduced form will beY1i = X1iΠ
i
11 +X2iΠ

i
12 + V1i

Y2i = X1iΠ
i
21 +X2iΠ

i
22 + V2i

where Πi
11 refers to the i − th equation RF parameters of endogenous
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and exogenous variables included, Πi
12 refers to the endogenous included and

exogenous excluded ones, while Πi
21 refers to parameters of endogenous ex-

cluded and exogenous variables included and Πi
22 refers to the i− th equation

RF parameters of endogenous and exogenous variables excluded.
Respect to the i− th structural equation of the system, relation (2.4) can

be written as and it takes the of identification system:
Πi

11
k1i,m1i

Γ1i
m1i,1

= B1i
k1i,1

Πi
12

k2i,m1i

Γ1i
m1i,1

= 0
k2i,1

(2.8)

or equivalently  Πi
11

k1i,m1i

Ik1i

Πi
12

k2i,m1i

0
k2i,k1i


 Γ1i

m1i,1

B1i
k1i,1

 = 0 (2.9)

Let Πi
∗ denote the matrix of the parameters of reduced form in which the

elements are ordered with respect to the endogenous and exogenous variables
included and excluded from i− th equation:

Πi
∗ =

 Πi
11

k1i,m1i

Ik1i

Πi
12

k2i,m1i

0
k2i,k1i

 ,
now the condition for solving the system (2.8) depends on the rank of

Πi
∗and this conditions determinate the number of costraints applied on en-

dogenous and esogenous variables in the system.
Usually rank conditions for the identification of a simultaneous equation

system, as well as order conditions, are obtained after applying the normal-
ization rules: in this case this doesn’t happen.

We will present the identifiably condition without normalization rules
(Naccarato, 2007) because one peculiarity of LODE estimator is that it does
not impose a prior choice of dependent variable, because it works directly
with identification system, so the normalization rules can be apply after the
parameter estimation.
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Condition 1– system (2.8) admits a unique solution – up to a proportion-
ality constant – if the rank:

r
(
Πi
∗
)

= m1i + k1i − 1 (2.10)

the proof follows directly from the Rouchè-Capelli theorem.
Condition 2– r (Πi

∗) = m1i + k1i − 1 if and only if

r
(
Πi

12

)
= m1i − 1 (2.11)

proof Naccarato(2007).
Substituting the reduced form parameters their with OLS estimates, we

know that the OLS estimate of Π that are

Π̂ =
(
XTX

)−1
XTY = Π +

(
XTX

)−1
XTU

and under the hypothesis (2.3) is BLUE estimator and

plim
n→∞

Π̂ = Π.

But after the substitution, the system (2.8) becomes:
Π̂i

11
k1,m1

Γ1i
m1,m

+ B1i
k1,m

= ε1i

Π̂i
12

k2,m1

Γ1i
m1,m

= ε2i

(2.12)

so that in both equations an error component occurs because of the use
of the estimates Π̂ instead of the true values Π: then rank conditions cannot
be verified. The rank of Πi

12 cannot therefore be used as an identification
criterion and we need to define the so-called “order conditions” which are
related to the number of the equations and unknowns in the system (2.12)
and are a direct consequence of rank conditions.

Condition 3– If rank condition (2.10) is satisfied, the matrix Π̂i
∗ is of order

greater or equal to m1i + k1i. Then, it has to be:

k ≥ k1i +m1i
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i.e:

k2i ≥ m1i − 1

and the number of excluded exogenous variables has to be greater than
or equal to the number of included endogenous ones. This is the formulation
generally used for order conditions.

Exact identification will occur when:

k2i = m1i − 1,

while under identification will occur if:

k2i ≤ m1i − 1.

In the first case there is a unique solution while in the second one there
is no solution.

2.3 Limited information LODE

The Least Orthogonal Distance Estimator (LODE) is based on characteristic
roots and vector of a matrix deriving from 2.12. The starting idea of this
method can be tracked back to the work of Pieraccini(1969), in which 2SLS
were obtained as generalized least square estimator applied to a system 2.12.
With this in mind and making reference to the work of K. Pearson ”Lines
and planes of closet fit” (1901), the LODE method of estimation has been
derived under the consideration that the over-identifying system are nothing
else but linear relations between variables affected by error (Pieraccini, 1988),
the LI LODE presented here is a more recent development (Sbrana, 2001;
Naccarato and Pieraccini, 2008) of its original version .

Defining :
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Π̂i
∗

k,m1i+k1i

=

 Πi
11

k1i,m1i

Ik1i

Πi
12

k2i,m1i

0
k2i,k1i

 , δi
m1i+k1i,1

=

 Γ1i
m1i,1

B1i
k1i,1

 , εi
k,1

=

 ε1i
k1i,1

ε2i
k21,1

 (2.13)

we have

Π̂i
∗δi = εi (2.14)

where

εi
k,1

=
(
XT

i Xi

) −1XT
i V1iΓ1i =

(
XT

i Xi

) −1XT
i Ui

the variance-covariance matrix of εi comes out to be

E
(
εiε

T
i

)
=
(
XT

i Xi

) −1XT
i E
(
UiU

T
i

)
Xi

(
XT

i Xi

) −1 = σ2
i

(
XTXi

) −1 (2.15)

remembering that σ2
i is the variance of accidental component if i − th

equation.
From 2.15 is clear that the error of 2.14 are correlated each other, but it

is possible to apply a transformation to eliminate this correlation.
Let us now set

(
XT

i Xi

) −1 = TΛT T

the matrix Λ being the diagonal matrix of characterstic roots of XT
i Xi

and the matrix Ti the one of characteristic vectors. Defining

Q = TΛ
1
2T T

so that it is

QQ = TΛT T = XT
i Xi

and applying to the error component can the following transformation
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ωi = Qεi

it will be

E
(
ωT

i ωi

)
= E

(
εT

i X
TXεi

)
= kσ2

i

so that the sample estimate of σ2
i will be, using 2.14,

σ̂2
i =

1

k
ωT

i ωi =
1

k
δT
i ΠiT

∗ X
TXΠi

∗δ (2.16)

The LODE method is based on the minimization (2.16) i.e. on finding the
vector which minimizes the sample residual variance for the i− th structural
equation. Since it can be easily shown that

Π̂iT
∗

m1i+k1i,k

(
XTX

k,k

)
Π̂i
∗

m1i+k1i,k

=

 Π̂T
i X

TXΠ̂i
m1i,m1i

Π̂T
i X

TX
m1i,k1i

XTXΠ̂i
k1i,m1i

XTX
k1i,k1i

 =

 Y T
1iX(XTX)−1XTY1i

m1i,m1i

Y T
1iX1i

m1i,k1i

XTY1i
k1i,m1i

XTX
k1i,k1i

 = Aii
m1i+k1i,m1i+k1i

(2.17)

then, disregarding the constant 1
k
, the quadratic form to be minimized

becomes

δT
i Aiiδi (2.18)

where the reasons for using the symbol Aii will become clear when treating
the full information version of LODE method.

LODE estimator has then to be proportional to the vector, say P , such
that

P TAiiP = min (2.19)

where, to make the solution univocally determined, the condition
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P TP = 1 (2.20)

(2.20) has to be added. As it is well known, to find the minimum of (2.19)
under condition (2.20) one has to minimize the function

G = P TAiiP − λ
(
P TP − 1

)
with respect to pi (i = 1, ...,m1i + k1i) and to the Lagrange multiplier λ.
The system obtained equating to zero the partial derivatives with respect

to P and λ will then be∂G
∂P

= 2AiiP − 2λP = 0

∂G
∂λ

= P TP − 1 = 0
(2.21)

whose solutions will be obtained solving the system

(Aii − λI)P = 0 (2.22)

under condition given by the second of (2.21). Let us remember that
to obtain a solution for (2.22), has to be the solution of the determinantal
equation

|Aii − λI| = 0 (2.23)

which, being a polynomial of degree s ≤ m1i + k1i − 1 in λ, give raise to
s roots such that

λ1 ≥ λ2 ≥ ... ≥ λs ≥ 0,

The vector associated to the smallest root of equation (2.23) is then the
solution of the problem. As a consequence the equation

XΠ̂i
∗Ps = 0 (2.24)

is the expression of the (s− 1) dimensional subspace spanned by the first
(s−1) principal axis, i. e. the one which minimizes the sum of squares of the
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orthogonal distances between the observed points and the subspace itself. In
other words (2.24) will be the last principal component.

Introducing at this point the normalization rule for i−th structural equa-
tion, least orthogonal distance estimator of δ are defined as

δ̂i =

[
Γ̂1i

B̂1i

]
= − 1

p0i

Ps

where p0i is the element of the characteristic vector associated with the
right hand side endogenous variable in the i− th structural equation.

The estimate of i − th structural equation variance of disturbances will
be as a consequence

σ̂2
i =

1

kp2
0i

λs

Notice that when the i− th equation is exactly identified equation (2.23)
will have (m1i+k1i−1) roots the last one being λm1i+k1i−1 = 0 so that equation
(2.18) will have a unique solution that coincides with ILS estimator.

On the contrary when i−th equation is under identified (k2i < m1i−1) the
characteristic root equal to zero will have multiplicity equal to r = m1i−1−k2i

and the system (2.22) will have infinite to the r solutions.

2.4 Full information LODE

Knowing that the result on Pieraccini(1969) was afterwards extended to 3SLS
(Pieraccini, 1978) and since it is well known that Full Information estima-
tors are asymptotically more efficient than Limited Information ones, (Gold-
berger, 1964, pp. 346-356, Judge et al., 1985) it is worthwhile to generalize
LODE method to a full information context (Naccarato, 2007; Naccarato
and Pieraccini, 2008).

Defining
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Π̂∗
mk,s

=



Π̂1
∗

k,m11+k11

0
k,m12+k12

· · · 0
k,m1m+k1m

0
k,m11+k11

Π̂2
∗

k,m11+k11

· · · 0
k,m1m+k1m

...
... . . . ...

0
k,m11+k11

0
k,m12+k12

· · · Π̂m
∗

k,m11+k11


, (2.25)

δ
s,1

=



δ1
m11+k11,1

δ1
m12+k12,1

...
δ1

m1m+k1m,1


and

ε
mk,1

=


ε1

ε2

...
εm

 (2.26)

Relation (2.14) between reduced and structural form parameters for the
whole system of equation can be written as

Π̂∗
mk,s

δ
s,1

= ε
mk,1

(2.27)

where it is .

s =
m∑

i=1

(m1i + k1i)

and

ε
km,1

=

[
Im ⊗ (XTX)−1XT

k,n

]
vec(V Γ)

nm,1

=

[
Im ⊗ (XTX)−1XT

k,n

]
vec(U)

nm,1
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Because of (2.15) applied to the vector defined in (2.26) the variance-
covariance matrix of the error component can be written in the following
way

E(εεT ) = Σ
mk,mk

= Ω
m,m

⊗
(
XTX

k,k

)−1

(2.28)

And taking into account that it is

E
(
εT ε
)

= tr{Ω}tr
{(
XTX

)−1
}

=
m∑

i=1

σ2
i

k∑
j=1

djj
i (2.29)

where djj are the diagonal elements of
(
XTX

)−1, to obtain full informa-
tion LODE, considering the correlation of the error (2.28), it is necessary to
minimize the quadratic form

εT

(
Ω

m,m
⊗
(
XTX

k,k

)−1
)−1

ε

that means

δT

1,s
Π̂T
∗

s,mk

(
Ω

m,m
⊗
(
XTX

k,k

)−1
)−1

Π̂∗
s,mk

δ
1,s

= δT Π̂T
∗Ω−1 ⊗

(
XTX

)
Π̂∗δ (2.30)

i.e. to consider the characteristic vector associated with the smallest
characteristic root of the matrix

A
s,s

= Π̂T
∗
(
Ω−1 ⊗

(
XTX

))
Π̂∗ (2.31)

where its explicit form is the following
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A =



Π̂1T
∗ σ

11
(
XTX

)
Π̂1
∗ · · · Π̂1T

∗ σ
1i
(
XTX

)
Π̂i
∗ · · · Π̂1T

∗ σ
1m
(
XTX

)
Π̂m
∗

... . . . ...
...

...
Π̂iT
∗ σ

i1
(
XTX

)
Π̂1
∗ · · · Π̂iT

∗ σ
ii
(
XTX

)
Π̂i
∗ · · · Π̂mT

∗ σim
(
XTX

)
Π̂m
∗

...
...

... . . . ...
Π̂mT
∗ σm1

(
XTX

)
Π̂1
∗ · · · Π̂mT

∗ σmi
(
XTX

)
Π̂i
∗ · · · Π̂mT

∗ σmm
(
XTX

)
Π̂m
∗


with σij being the element of the matrix Ω−1.
While the block diagonal elements of A are of the form (2.17) – now it is

clear the reason for using the proposed notation – the extra diagonal block
elements are

Aij = σij

 Π̂T
i

m1i,k

XTX
k,k

Π̂T
j

k,m1j

Π̂T
i

m1i,k

XT

k,n
X1j
n,k1j

X1i
m1i,k

X
n,k

Π̂j
k,m1j

XT
1i

m1i,k

X1j
n,k1j


that come out to be

Aij = σij

 Y T
1iX(XTX)−1XTY1j

m1i,m1j

Y T
1iX1j

m1i,k1j

XT
1iY1i

k1i,m1i

XT
1iX1j

k1i,k1j


The characteristic vector associated with the smallest characteristic root

of matrix A
s,s

minimizes the quadratic form (2.30).

Let a be the smallest characteristic root of A
s,s

and Pa be the associated

characteristic vector. The characteristic vector Pamultiplied by m suitable
constants gives FI LODE.

Defining C as the block diagonal matrix

C =


c1Im1i+k1i

. . .

c1Im1i+k1i


in which ciare defined as follows
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ci = − 1

p0i

with p0i being the characteristic vector’s element corresponding to the
endogenous variable y0i chosen to be at left hand side in i − th structural
equation.

The FI estimator is then

δ̂ = CPa (2.32)

the last step of this LODE FI presentation regards the estimate of dis-
turbances variance-covariance matrix Ω, like we can see the Matrix Equation
(2.30) which defines explicitly the quadratic form to be minimized is a func-
tion of Ω which is unknown. It is then necessary to estimate it. As usual it
is possible to go through a two stage procedure: in the first stage estimates
of the SF parameters are obtained using LI LODE which are then used to
calculate the matrix of SF disturbances

Û = −V̂ Γ̂

V̂ been the matrix of RF equations’ OLS residuals.
The matrix Ω̂ is then computed in the following way

Ω̂ = G−
1
2 ÛT ÛG−

1
2

where

G−
1
2 =



1√
g1

0 · · · · · · 0

0
. . . · · · · · · ...

0 · · · 1√
gi

· · · 0
... · · · · · · . . . 0

0 · · · · · · 0 1√
gm


with
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gi = n−m1i − k1i

It has to be notice that consistency of limited information SF param-
eters estimators implies the consistency of the variance covariance matrix
estimators.

The second stage structural parameters estimates are then obtained in-
troducing Ω̂ in equation (2.30). Full Information LODE is then proportional
to the characteristic vector associated to the smallest characteristic root of

Â = Π̂T
∗

(
Ω̂−1 ⊗

(
XTX

))
Π̂∗ (2.33)

it is important notice that minimizes the quadratic form (2.33) means
(like it’s easy to see in 2.29) to minimize the trace of the sample estimate of

the matrix Ω i.e.
m∑

i=1

σ̂2
i . In other words vector δ̂ gives rise to a matrix Ω̂ such

that

tr
(
Ω̂
)

=
m∑

i=1

σ̂2
i = min

from which follows according to (5.9), the consistent of this estimator is
proved on Naccarato(2007)



Chapter 3

Simulation Experiment

3.1 Introduction

In this chapter is presented the first simulation experiment conduct to eval-
uate the features of the LODE FI.

Such evalutation has been conducted by comparing the results of LODE
with Three Stage Least Square (3SLS) and Full Information Maximum Like-
lihood (FIML). In literature there are two main approaches to this kind
of comparison: analytical ( that focuses on searching the theoretical distri-
bution of parameter estimators), or computational (based on Monte Carlo
simulations).

As is well known, the difficulty in simultaneous equations estimation is
the nonlinear relationship between Reduced Form (RF) and Structural Form
(SF) coefficients. 3SLS, as well as FIML derives estimators under the hy-
pothesis of identification restrictions. Thus the analytical approach refers to
models that satisfy some sort of identification restrictions. This makes the
analytical results unsuitable for more general applications.

The computational approach it is suited to handle more general mod-
els. It consists in choosing a model and assuming one or more structures by
assigning specific numerical values to the parameters and to the variance-
covariance matrix of the SF errors. Subsequently, samples of different sizes
are extracted from the assumed error distribution and from each of the pre-

21
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determined structures. After describing the experimental design (§ 1.2), a
new computational procedure for FI LODE is briefly outlined and from all
the next section and chapters we will refer to the FI LODE that use this
computational procedure as FI LODE with empirical correction (§ 1.3). The
results of the experiment when the distribution of the error component is
Normal and when it is Uniform are presented (§ 1.4). Small sample results
are then shown (§ 1.5).

3.2 The design of the experiment

Remembering the structural form

Y
n,m

Γ
m,m

+ X
n,k
B
k,m

+ U
n,m

= 0
n,m

The simulation has been conducted using the three equation model pro-
posed by Cragg in 1967:

y1 = −0.89y2 − 0.16y3 + 44 + 0.74x2 + 0.13x5

y2 = −0.74y1 + 62 + 0.7x3 + 0.96x5 + 0.06x7

y3 = −0.29y2 + 40 + 0.53x3 + 0.11x4 + 0.56x6

In our experiment it is then n = 20, 30, 100 and m = 3. Accordingly the
structural form parameters matrices are

Γ =

 1 −0.89 −0.16

−0.74 1 0

0 −0.29 1

 B =



44 62 40

0.74 0 0

0 0.7 0.53

0 0 0.11

0.13 0.96 0

0 0 0.56

0 0.06 0


which have to be used to compute the reduced form of the system
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Y
n,m

= X
n,k

Π
k,m

+ V
n,m

where:

Π
k,m

= −B
k,m

Γ−1

m,m
=



353.2 323.37 133.78

2.41 1.78 0.52

2.41 2.48 0.52

0.06 0.04 0.12

3.35 3.44 0.99

0.29 0.21 0.62

0.18 0.19 0.06


from this point the generation procedures starts going trough the follow-

ing three steps.

1. Exogenous variables generation. For each sample size exogenous vari-
ables are generated from uniform distribution in the following intervals:

X2 = [10− 20] , X3 = [15− 27] , X4 = [3− 7] ,

X5 = [3− 7] , X6 = [20− 50] , X7 = [7− 13]

Exogenous values are kept constant for each sample size during the
simulation experiment.

2. Computation of endogenous variables unaffected by error. Endoge-
nous variables are generated through reduced form equation. Using the
following notation for the endogenous variables not affected by error

Y ∗ = XΠ (3.1)

where X is the matrix of generated exogenous variables.

3. V ariance covariance matrix of error component generation. Taking
in mind that

V
n,m

= − U
n,m

Γ−1

m,m
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and that RF variance-covariance matrix

Σ = (Γ−1)ΩΓ−1 (3.2)

where Ω is the variance-covariance matrix of the SF error components.
The matrix Ω has been chosen in the following way:
a) its diagonal elements (i.e the variances of the SF error component)
are obtained as a proportion of the variance of i.e.

ωii = σ2
ZSi (3.3)

where is a proportionality coefficient chosen randomly from a uniform
distribution in three intervals :

[0.2− 0.25] , [0.4− 0.5] , [0.75− 0.8] .

b) its extra diagonal elements (i.e. the covariances between error com-
ponents in SF equations) are obtained generating randomly m(m−1)/2

correlation coefficients ρij in the following intervals:

[0.1− 0.2] , [0.4− 0.5] , [0.8− 0.9]

To each one of them is assigned a random sign. The covariance between
error components in equation i and in equation j is computed as

ωij = ρij(ωiiωjj)
1
2

Then the matrix Σ is obtained according to (3.2).

4. Genarating error components according to Normal and Uniform

distributions. For each sample of n observations, m series of random
numbers are generated independently from a standardized Normal dis-
tribution and from a Uniform distribution in the interval

[
−
√

3,
√

3
]

to have zero mean and variance one. According to the spectral decom-
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position theorem the symmetric matrix Σ can be expressed as

Σ = PΛP T

Where P and Λ are respectively the matrix of characteristic vectors
and the diagonal one of characteristic roots. Let

Q = PΛ
1
2P T

Σ = QTQ

and let the matrix C n ×m, compose by the m series generated from
Normal or Uniform distribution, then the set of contemporaneous de-
pendent error components are obtained multiplying C with Q so

V = CQ (3.4)

is a (multivariate) normally or uniformally distributed matrix with
variance-covariance matrix Σ.

5. Observed endogenous variables adding V to the right side hand of
(3.1), the matrix of observed endogenous variable is obtained.

The design of the experiment can be synthesized in the following table
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Table 3.1: Simulation Scenarios

Si

ρij 0.2-0.25 0.4-0.5 0.75-0.8

0.1-0.2
N=20 N=20 N=20
N=30 N=30 N=30
N=100 N=100 N=100

0.4-0.5
N=20 N=20 N=20
N=30 N=30 N=30
N=100 N=100 N=100

0.8-0.9
N=20 N=20 N=20
N=30 N=30 N=30
N=100 N=100 N=100

The 27 scenarios listed are repeated for Normal and Uniform error com-
ponents and for each scenario 500 samples have been considered.

To analyze the results of the simulation experiment we have taken into
consideration two indicators which represent two relative measures of bias
and variability around the parameter value:

• for bias, the following indicator has been considered

ϕ =

(
θ̂ − θ

)
θ

(i.e. the bias divided by the fixed initial parameter value) where θ̂ is
the average of estimated parameter over the 500 samples and θ is one
of the γ or β parameters;

• for variability

ψ =
RMSE

θ

where RMSE is the Root Mean Square Error of θ̂ which is divided by
the initial parameter value.

The use of relative measures has been made to facilitate comparison among
estimates of different parameters.
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3.3 Computational procedure

First results of the simulations showed some problem with the estimation
variability, this problem is not new for LODE estimator.

Precedent simulation experiment on LODE LI (Perna, 1989; Cau, 1990;
Sbrana, 2001; Zurlo, 2006) had shown that usually in terms of bias the LODE
LI works better than the other classics limited information estimators but it
had some problem with the stability of the estimate, now the passage from
LI LODE to FI LODE seems to have increased this problem, notice that the
LODE LI enter in the estimation procedure of LODE FI.

Looking to results of this simulation can be notice that this variability
comes from the fact that in the 500 estimation conducted for all 27 scenarios,
every structural parameters estimation was affected by about 10 far outliers,
where far outliers mean the value up to

θ̂ + 3σθ̂

or down to
θ̂ − 3σθ̂

where θ̂ is the average of estimated parameter over the 500 samples and
σθ̂is the standard deviation of the same estimated parameter, this outliers
doesn’t give problem to the bias that was good compare with the 3SLS and
FIML, but clearly the result in term of ψ was strongly influenced by this
outliers.

In chapter’s rest is illustrated the empirical computational procedure
adopted to limited this problem.

We know from chapter 1 that the FI LODE estimator is obtained choosing
the vector that minimize this quadratic form

δT Π̂T
∗
(
Ω−1 ⊗

(
XTX

))
Π̂∗δ (3.5)

this minimization is obtained trough those eigenvectors which are associated
with the m smaller characteristic roots of the matrix
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A
s,s

= Π̂T
∗
(
Ω−1 ⊗

(
XTX

))
Π̂∗ =

=



Π̂1T
∗ σ

11
(
XTX

)
Π̂1
∗ · · · Π̂iT

∗ σ
1i
(
XTX

)
Π̂i
∗ · · · Π̂mT

∗ σ1m
(
XTX

)
Π̂m
∗

... . . . ...
...

...
Π̂1T
∗ σ

i1
(
XTX

)
Π̂1
∗ · · · Π̂iT

∗ σ
ii
(
XTX

)
Π̂i
∗ · · · Π̂mT

∗ σim
(
XTX

)
Π̂m
∗

...
...

... . . . ...
Π̂1T
∗ σ

m1
(
XTX

)
Π̂1
∗ · · · Π̂iT

∗ σ
mi
(
XTX

)
Π̂i
∗ · · · Π̂mT

∗ σmm
(
XTX

)
Π̂m
∗


Remembering that to minimize the quadratic form (3.5) means find the

minimum of the trace of the sample estimate of the variance-covariance ma-

trix of error component in structural form Ω i.e.
m∑

i=1

σ̂2
i .

It has to be stressed that the minimization of tr
(
Ω̂
)

does not imply the
minimization of each term of the sum, i.e. of every residual variance σ̂2 of
the m equations.

With this in mind, the computational procedure for FI LODE that has
been developed goes along the following lines of reasoning.

Let us assume – for the moment – that the error components are uncor-
related between equations (in this case the A matrix is block-diagonal)

A =



A11
s1,s1

0
s1,s2

· · · 0
s1,sm

0
s1,s2

A22
s2,s2

. . . 0
s2,sm

... . . . . . . ...
0

sm,s1

0
sm,s2

· · · Amm
sm,sm


and let λAmin be its smallest characteristic root. Let λA11min...λAmmmin be
the set of the smallest characteristic root of the m block diagonal matrices .
It has to be

λAmin = min{λA11min, ..., λAmmmin}

and it has to be noticed that it is not known “a priori” to which one of the
smallest characteristic roots (i.e. to which one of the block diagonal matrix)
it corresponds. Furthermore in this situation the characteristic vectors have
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non zero elements only in correspondence to the block diagonal matrix to
which they refer so if the characteristic vectors refer to the eigenvalue of
A11we will have

PλA11
=


P

s1,1

0
s2,1
...
0

sm,1


where

si = m1i + k1i

is the sum of endogenous and esogenous variable presented in i − th

equation.
The FI LODE then reduces to the LI one if all the m smallest charac-

teristic roots of the block diagonal matrices and their associated vectors are
taken into account simultaneously.

In the usual case of correlated disturbances the matrix A is no more block
diagonal. In analogy to the preceding case, the first m smaller characteristic
roots and their associated vectors have been taken into account in the com-
putational procedure. The characteristic vectors associated to the m smaller
characteristic roots of matrix A are partitioned according to each equation

PλAii
=



[
P

s1i,1

]
[
P

s2i,1

]
...[
P

smi,1

]


with

i = 1, ...m
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The sub-vector, among them, which minimizes the estimate residual vari-
ance of his equation gives, after normalization, the FI LODE of each equa-
tion’s structural parameters. The reordered set of minimizing sub-vectors
gives the vector of estimates.

In the from the next chapter until the endo of this thesis we will refere
to this method as the LODE FI with empirical correction.

3.4 Results of the experiment

To synthesize results of the simulation experiment, the percentage of times
in which parameters’ estimators present the lowest bias or RMSE among the
three estimation method has been considered both for Normal and Uniform
distribution.

3.4.1 Normal error component

First let us consider the case in which the error component is distributed ac-
cording to a Multivariate Normal (0,Σ), where Σ is the variance-covariance
matrix of reduced form and the error component with that variance is ob-
tained through (3.4) starting from the generation of normally standardized
independent random numbers. For small sample sizes most of time LODE
estimator outperforms the other two estimator precisely 5 times on 9 in terms
of bias, while FIML estimator display the best results considering the whole
simulation scenarios (Tab.3.2).
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Table 3.2: Tab. 1 Relative frequency distribution of FI LODE, 3SLS and FIML presenting a lower
bias gruoped by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si Sample Size LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
53.33 0.00 46.67 26.67 13.33 60.00 33.33 13.33 53.33

0.4-0.5 73.33 6.67 20.00 46.67 13.33 40.00 73.33 0.00 26.67
0.75-0.8 66.67 13.33 20.00 33.33 13.33 53.33 46.67 0.00 53.33
0.2-0.25

30
26.67 0.00 73.33 20.00 0.00 80.00 13.33 0.00 86.67

0.4-0.5 26.67 0.00 73.33 20.00 0.00 80.00 53.33 20.00 26.67
0.75-0.8 26.67 0.00 73.33 46.67 0.00 53.33 46.67 0.00 53.33
0.2-0.25

100
6.67 0.00 93.33 6.67 6.67 86.67 26.67 0.00 73.33

0.4-0.5 0.00 0.00 100.00 13.33 0.00 86.67 6.67 6.67 86.67
0.75-0.8 6.67 0.00 93.33 0.00 6.67 93.33 13.33 0.00 86.67

Note that when the correlation coefficient between the disturbances dis-
plays small values (0, 1−0, 2) and for all the variance values (Si) considered in
the experiment, LODE estimator shows similar performances of FIML. For
increasing values of the correlation coefficient this result becomes weaker,
that is the frequency of better results of LODE estimator decrease when the
correlation between the error components increases.

In terms of RMSE, the estimates obtained with FIML and 3SLS estima-
tors show more frequently lower values than LODE method (Tab.3.3).

Notice that when LODE is compared only to 3SLS estimators LODE
estimators display lower bias than 3SLS almost for all simulation conditions
and for all sample sizes considered, confirming in this way the results already
obtained.
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Table 3.3: Relative frequency distribution of FI LODE, 3SLS and FIML presenting a lower RMSE
gruoped by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si Sample Size LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
6.67 33.33 60.00 0.00 26.67 73.33 20.00 20.00 60.00

0.4-0.5 20.00 40.00 40.00 13.33 26.67 60.00 40.00 20.00 40.00
0.75-0.8 26.67 46.67 26.67 13.33 20.00 66.67 6.67 26.67 66.67
0.2-0.25

30
6.67 13.33 80.00 0.00 6.67 93.33 13.33 6.67 80.00

0.4-0.5 6.67 53.33 40.00 0.00 33.33 66.67 26.67 20.00 53.33
0.75-0.8 40.00 33.33 26.67 46.67 40.00 13.33 20.00 33.33 46.67
0.2-0.25

100
13.33 6.67 80.00 6.67 20.00 73.33 6.67 6.67 86.67

0.4-0.5 6.67 13.33 80.00 0.00 13.33 86.67 0.00 13.33 86.67
0.75-0.8 20.00 6.67 73.33 13.33 26.67 60.00 6.67 20.00 73.33

Since 3SLS estimation is generally preferred to FIML, because the lat-
ter has sometimes computational problems, it is worthwhile to stress the
point. Furthermore normality assumption for the error component is often
not practical.

3.4.2 Uniform error component

In order to obtain results comparable with normally distributed error compo-
nents, a second simulation experiment has been carried out using the Uniform
distribution in (−

√
3,
√

3).
About the bias of the estimators it has to be notice that LODE estimator

shows lower bias than 3SLS and FIML more frequently than the results ob-
tained under Normality condition (Tab.3.4). This is particularly true for the
scenarios related to small sample sizes. Similarly to what has been seen pre-
viously, when the correlation coefficient between the disturbances increases
FIML estimator presents more frequently estimates affected by lower bias.
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Table 3.4: Tab. 3 Relative frequency distribution of FI LODE, 3SLS and FIML presenting a lower
bias gruoped by Si, ρij and sample size - Uniform error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si Sample Size LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
53.33 6.67 40.00 33.33 20.00 46.67 73.33 13.33 13.33

0.4-0.5 66.67 0.00 33.33 80.00 6.67 13.33 6.67 33.33 60.00
0.75-0.8 93.33 0.00 6.67 40.00 33.33 26.67 60.00 0.00 40.00
0.2-0.25

30
53.33 0.00 46.67 53.33 0.00 46.67 0.00 0.00 100.00

0.4-0.5 53.33 0.00 46.67 73.33 0.00 26.67 0.00 0.00 100.00
0.75-0.8 53.33 6.67 40.00 20.00 0.00 80.00 20.00 0.00 80.00
0.2-0.25

100
20.00 0.00 80.00 40.00 26.67 33.33 13.33 13.33 73.33

0.4-0.5 26.67 0.00 73.33 6.67 0.00 93.33 6.67 0.00 93.33
0.75-0.8 60.00 6.67 33.33 13.33 0.00 86.67 13.33 0.00 86.67

The comparison in terms of RMSE (Tab.3.5) shows that FIML estimators
are still to be preferred since the number of times they produce estimates with
lower RMSE is very high for all the scenarios considered.

Table 3.5: Tab. 4 Relative frequency distribution of FI LODE, 3SLS and FIML presenting a lower
RMSE gruoped by Si, ρij and sample size - Uniform error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si Sample Size LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
20.00 33.33 46.67 26.67 13.33 60.00 6.67 13.33 86.67

0.4-0.5 6.67 80.00 13.33 6.67 20.00 73.33 0.00 13.33 86.67
0.75-0.8 6.67 60.00 33.33 13.33 46.67 40.00 26.67 26.67 46.67
0.2-0.25

30
40.00 13.33 46.67 13.33 26.67 60.00 0.00 13.33 86.67

0.4-0.5 6.67 20.00 73.33 20.00 13.33 66.67 0.00 26.67 73.33
0.75-0.8 6.67 60.00 33.33 0.00 26.67 73.33 13.33 20.00 66.67
0.2-0.25

100
40.00 13.33 46.67 26.67 20.00 53.33 6.67 26.67 66.67

0.4-0.5 0.00 13.33 86.67 6.67 20.00 73.33 6.67 13.33 80.00
0.75-0.8 0.00 6.67 93.33 0.00 26.67 73.33 6.67 6.67 86.67

Considering that standardized Uniform distribution has a very short range
of variation, in order to evaluate more deeply the effect of more scattered er-
rors components a second Uniform distribution has been considered in the
interval (−10, 10). In point of fact in this situation, LODE estimator per-
forms better than FIML in terms of both bias and RMSE.

These results represent an improvements with respect to the previous
uniform distribution; the bias of LODE estimators are largely better than
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FIML estimators (Tab.3.6). In point of fact LODE estimators perform better
than the others in terms of bias, in most of the scenarios. This happens more
frequently when dealing with small sample. Moreover, it has to be noticed
that – differently from the previous two cases considered – the results related
to LODE estimators do not seem to be affected by the correlation between
the error components as on the contrary it is for the other two methods.

Table 3.6: Tab. 5 Relative frequency distribution of FI LODE, 3SLS and FIML presenting a lower
bias gruoped by Si, ρij and sample size - Unif(-10, 10) error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si Sample Size LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
60.00 13.33 26.67 40.00 13.33 46.67 40.00 6.67 53.33

0.4-0.5 40.00 13.33 46.67 60.00 6.67 33.33 60.00 13.33 26.67
0.75-0.8 40.00 40.00 20.00 33.33 20.00 46.67 46.67 13.33 40.00
0.2-0.25

30
86.67 13.33 0.00 73.33 13.33 13.33 53.33 13.33 33.33

0.4-0.5 46.67 33.33 20.00 60.00 13.33 26.67 66.67 13.33 20.00
0.75-0.8 66.67 33.33 0.00 46.67 20.00 33.33 60.00 26.67 13.33
0.2-0.25

100
80.00 13.33 6.67 73.33 20.00 6.67 46.67 6.67 46.67

0.4-0.5 80.00 20.00 0.00 13.33 86.67 0.00 66.67 6.67 26.67
0.75-0.8 80.00 20.00 0.00 26.67 0.00 73.33 86.67 13.33 0.00

As far as RMSE of estimators are concerned (Tab.3.7), when the dis-
turbances are uniformly distributed in the comparison has to be made only
between LODE and 3SLS, since every time FIML estimators produce higher
RMSE than the other two methods. 3SLS estimation mostly presents a lower
RMSE, with the exception of some cases in which LODE outperforms it.

Table 3.7: Tab. 6 Relative frequency distribution of FI LODE, 3SLS and FIML presenting a lower
RMSE gruoped by Si, ρij and sample size - Unif(-10,10) error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si Sample Size LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
40.00 60.00 0.00 26.67 66.67 6.67 53.33 46.67 6.67

0.4-0.5 53.33 46.67 0.00 20.00 73.33 6.67 20.00 80.00 0.00
0.75-0.8 53.33 46.67 0.00 46.67 53.33 0.00 46.67 53.33 0.00
0.2-0.25

30
46.67 53.33 0.00 13.33 86.67 0.00 40.00 60.00 0.00

0.4-0.5 60.00 40.00 0.00 6.67 93.33 0.00 40.00 60.00 0.00
0.75-0.8 53.33 40.00 6.67 53.33 46.67 0.00 20.00 80.00 0.00
0.2-0.25

100
40.00 60.00 0.00 20.00 80.00 0.00 40.00 40.00 20.00

0.4-0.5 6.67 93.33 0.00 33.33 66.67 0.00 53.33 46.67 0.00
0.75-0.8 26.67 73.33 0.00 13.33 86.67 0.00 46.67 53.33 0.00
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The results of this experiment seem to have solve the problem of far out-
liers, none of 27 scenarios there is a far outliers, and show a good performance
of LODE FI and as it was pointed out in the previous paragraph, LODE
method seems to work particularly well when dealing with small samples. A
recently article (Zurlo, Naccarato 2009) go in greater details about this point
dedicated a section to the case of sample size equal to 20, highlighting the
good features of LODE estimator with empirical correction in this situation,
but like it was said at the beginning section 1.4 it is just an empirical solution
in the next two chapter i will present a more formal solution for LODE FI.



Chapter 4

GLODE AND LODE

4.1 Introduction

As Said in the previous chapter the first simulation experiment’s result on
FI LODE showed some problem about the estimation variability, in that
chapter at section 3.3 shows an empirical solution to this problem, the next
two chapter that are the core of this Phd’s thesis try to find a more analytic
solution to this problem.

One cause can come from the fact that full and limited information LODE
estimates at the same time the parameters of exogenous variables and those
of endogenous variables, this practice type can lead to a biased estimation of
exogenous variable.

Notice that in this chapter we will see two different version of LODE
LI to understand we will call the last version of limited information lode,
presented in chapter 1, generalized LODE LI(GLODE LI) from the name
give to its from Sbrana (2001) while the primal version (Pieraccini, 1988),
briefly illustrated in section 4.3, will be simply LODE LI

36
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4.2 Intuitive Least Orthogonal Distance Esti-

mator interpretation

As shown in the chapter 1 the GLODE estimators estimate together both
parameters of exogenous variable and endogenous using Π̂i

∗(2.13) for limited
information (and Π̂∗(2.25) for full information), this technique can bring some
problem. The problem will be explain for i− th equation.

First of all, to better understand, we have to introduce the normalization
rule for Γi parameters of endogenous variables, so if we consider the i − th

equation of a simultaneous equations model we will have

Γi
m,1

=



−1

· · ·
Γ1i

m1i−1,1

· · ·
0

m2i,1


where the first element −1 is the coefficient of dependent variable in the

i− th equation, now the matrix Yi will be

Yi
n,m

=

[
Y0i
n,1

... Y1ie
n,m1i−1

... Y2i
n,m2i

]
where Y0i is the dependent variable vector of i− th equation and Y1ie are

the other endogenous variable included in equation, if we recall the partition
of variable exogenous Xi and their coefficient Bi

Xi
n,k

=

[
X1i
n,k1i

... X2i
n,k2i

]
, B1i

k,1
=


B1i
k1i,1

· · ·
0

k2i,1


the i− th equation can be written as

Y0i = Y ∗1iΓ1i +X1iB1i + Ui
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and the matrix Πi is :

Πi

ki,mi

=

 πi
01

k1i,1

Πi
11e

k1i,m1i−1

Πi
21

k1i,m2i−1

πi
02

k2i,1

Πi
12e

k2i,m1i−1

Πi
22

k2i,m2i−1


where πi

01 and πi
02 are the coefficient vector of reduced form related to

endogenous dependent variable and to exogenous variable respectively in-
cluded and excluded from i− th equation , Πi

11e and Πi
12e are the coefficient

matrix of reduced form related to the other endogenous variable included
and to exogenous variable respectively included and excluded (notice that
this matrices it’s equal to Πi

11and Πi
12 less the first columns), while Πi

21 refers
to parameters of endogenous excluded and exogenous variables included and
Πi

22 refers to the i−th equation RF parameters of endogenous and exogenous
variables excluded.

Then the identification system(2.12), after the substitution of parameters
Π with their OLS estimates Π̂, will be

π̂i
01

k1i,1

= Π̂i
11e

k1i,m1i−1

Γ1i
m1i−1,1

+ B1i
k1i,1

+ ε1i
k1i,1

π̂i
02

k2i,1

= Π̂i
12e

k2i,m1i−1

Γ1i
m1i−1,1

+ ε2i
k2i,1

(4.1)

looking at the second equation of model (4.1),it is known from Pierac-
cini(1969) that

ε2i = R2iX
T
i U1i

where R2i comes from

(XT
i Xi)
k,k

−1
=

 R1i
k1i,k

R2i
k2i,k

 =

 R11ii
k1i,k1i

R12ii
k1i,k2i

R21ii
k2i,k1i

R22ii
k2i,k21


with

E(ε2i) = 0
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and

E(ε2iε
T
2i) = σ2

iR22ii (4.2)

the errors result correlated each other, so we need to apply a transforma-
tion to eliminate this correlation, according to the Spectral Decomposition
Theorem the symmetric matrix R22ii can be expressed as:

R−1
22ii = CΛCT

where C and Λ are respectively the matrix of eigenvectors and the diag-
onal matrix of eigenvalues of R−1

22ii.
Let:

Q22i = CΛ
1
2CT

and pre-multiplying the element of the second equation of (4.1) for Q22i

it will become

Q22iπ̂
i
02 = Q22iΠ̂

i
12eΓ1i +Q22iε2i (4.3)

with

E(Q22iε2iε
T
2iQ

T
22i) = σ2

i I (4.4)

Anderson(1976) proved that the equation (4.3) is mathematically identi-
cal with the problem to estimate a coefficient that links two variables affected
by error, and denote with y0

k,1
and X0

k,m
the true value of y and X k > m, so we

have

y
k,1

= y0

k,1
+ εy

k,1

X
k,m

= X0

k,m
+ εX

k,m

and the link between the two variables is
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y0

k,1
= X0

k,m
β

m,1

but to estimate β we work with the equation

y
k,1

= X
k,m

β
k,1

+ ε
k,1

(4.5)

with

ε = εy + εXβ

and

ε
k,1
∼ i.i.d (0, σ2I)

a strongly consistent estimator of this model use the least orthogonal dis-
tance Adcock (1878) Pearson (1901) Koopmans (1937) and Madasky (1959),
what is it the difference between estimator based on least square distance or
least orthogonal distance?

The LS solution is obtained by projecting y orthogonally into the column
space of X and solving y′ = Xβ, this estimator works when X = X0 ,
so when it is error free. An illustration of the geometry of LS solution is
depicted in Fig.4.1 for m=2, the LS estimator minimizes the square norm of
the vector y − y′then

min
y
‖y − y′‖2

2

it means that it tries to minimize projecting vector’s lenght of y in X to
estimate β.
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Figure 4.1: LS estimates

Indeed the LO solution is obtained by approximating the columns xi of
X and y by x′i and y′ until y′ is in the column space of X ′ and y′ = X

′
β,

illustrated in Fig.4.2, is tantamount to finding a closest subspace create by
the column of

[
y′;X

′] to the column space of [y;X] it means minimize the
Frobenius norm of the matrix [y;X]−

[
y′;X

′] this because both y and X are
subject to error then

min
[y;X]

∥∥∥[y;X]−
[
y′;X

′
]∥∥∥2

F

LO estimates minimizes, simultaneously, vector’s lenght of the projecting
matrix [y;X]−

[
y′;X

′]to estimate β.
Notice that the Frobenius norm of a matrix M of dimension m × n is

defined by

||M ||F =

√√√√ m∑
i=1

n∑
j=1

m2
ij =

√
tr(MTM)
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Figure 4.2: LO estimates

4.3 LODE and GLODE

In this section we will apply this interpretation of the least orthogonal solu-
tion on our case, in the first part we briefly recall the first version of LODE
Pieraccini (1988), then we will compare this version with the actual GLODE
with the aim of illustrating the main difference and the problem of this last
version.

Replacing the elements y andX of equation (4.3) respectively withQ22iπ̂
i
02

and Q22iΠ̂
i
12e is reasonable using LO solution to estimate Γ1i, because π̂i

02 and
Π̂12i come from the OLS estimates of reduced form so they are both affected
by error.

Calling

ωi2 = Q22iε2i

We know from (4.4) that

E
(
ωi2ω

T
i2

)
= σ2

i I

remembering that if you have a vector V and a matrix H, this relation is
true V THV = tr{V TV H}and using the trace properties, obtained

E
(
ωT

i2ωi2

)
= E

(
εT
2iR

−1
22iiε2i

)
= k2iσ

2
i

and because of
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ε2i = Π̂i
12iΓ1i

we have

E
(
ωT

i2ωi2

)
= E

(
ΓT

1iΠ̂
iT
12R

−1
22iiΠ̂

i
12Γ1i

)
= k2iσ

2
i

with

Π̂i
12

k2i,m1i

=

[
πi

02
k2i,1

Πi
12e

k2i,m1i−1

]
is now reasonable, to estimate Γ1i, choosing the vector P2i that minimize

P T
2iΠ̂

iT
12R

−1
22iiΠ̂

i
12P2i = σ̂2

i

i.e. the eigenvector that correspond to the smallest eigenvalue of

Π̂Ti
12R

−1
22iiΠ̂

i
12

the proof is equal to the one give in section 1.2 for LODE LI generalized
and comes from Pieraccini (1988), hence

Γ̂1i = − 1

p02i

P2i

where p02i is the element of the eigenvector associated with the right hand
side endogenous variable in the i− th structural equation.

To estimate B1i we have just to apply the OLS on this equation

Y0i − Y1ieΓ̂1i = X1iB1i + Ei

where Eiis the new error component of i− th equation, so

B̂1i = (XT
1iX1i)

−1XT
1i(Y0i − Y ∗1iΓ̂1i) (4.6)

consistency of this method is proved in Perna (1988)
As mentioned early this is the first version of LODE limited information,
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afterwards this practice was replaced by another one introduced by Sbrana
(2001) and introduce in section 2.3, in this case it used Π̂i

∗, to estimate
simultaneously B1i and Γ1i from the system(4.1).

Π̂i
∗ can be rewrite as

Π̂i
∗

k,m1+k1

=

 π̂i
01

k1i,1

Π̂i
11e

k1i,m1i−1

I
k1i

π̂i
02i

k2i,1

Π̂i
12e

k2i,m1i−1

0
k1i,k2i


where π̂01i and π̂02i are the OLS estimates of coefficient vector of reduced
form, related to endogenous dependent variable and to exogenous variable
respectively included and excluded from i − th equation , Π̂11i and Π̂12i are
the OLS estimates of coefficient matrix of reduced form related to the other
endogenous variable included and to exogenous variable respectively included
and excluded, while the error component of all the system (4.1) is

εi
k,1

=

 ε1i
k1i,1

ε2i
k2i,1


and it is know from Pieraccini(1978) that

E(εi) = 0

and

E(εiε
T
i ) = σ2

i (X
T
i Xi)

−1

as it was shown with the second equation of system (4.1) according to
the Spectral Decomposition Theorem the symmetric matrix (XT

i Xi)
−1 can

be expressed as:

(XT
i Xi)

−1 = TΞT T

where T and Ξ are respectively the matrix of eigenvectors and the diag-
onal matrix of eigenvalues of (XT

i Xi)
−1.

Let:
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Q = TΞ
1
2T T

pre-multiplying the element of (4.1) for Q it will become

Qπ̂i = QΠ̂i
eδi +Qεi (4.7)

with

π̂i

k,1
=

 π̂i
01

k1i,1

π̂i
02

k2i,1

 Π̂i
e∗

k, m1i−1+k1i

=

 Π̂i
11e

k1i,m1i−1

I
k1i

Π̂i
12e

k2i,m1i−1

0
k2i,k1i

 δi
m1i+k1i−1,1

=

 Γ1i
m1i−1,1

B1i
k1i,1


and the variance of accidental component will be

E(Qεiε
T
i Q

T ) = σ2
i I

in the GLODE is applied the LO solution on equation (4.7) estimating
Γ1i and B1i, but while in equation (4.3) all columns of matrix dependent
variables Π̂12i are subject to error, in equation (4.7) only the first m1i−1

columns of the matrix dependent variables Π̂i are subject to error, because
comes from OLS estimates, the other k1i columns (that were introduced to
work with whole system and to be able to estimate B1i) can be seen like error
free variable, then in this case the best solution for B1i is the LS.

4.4 biased estimates of GLODE

The aim of this section is to explain and better understand, where problem
GLODE come.

If we take the matrix

A2ii = Π̂iT
12R

−1
22iiΠ̂

i
12

we can say that
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Ê(A2ii)(k2i) =
1

k2i

{Π̂iT
12R

−1
22iiΠ̂

i
12(k2i)}

and we can easily assume

Ê(A2ii)(k2i) → E(A2ii)

as

k2i →∞

where

E(A2ii) = E{Π̂iT
12R

−1
22iiΠ̂

i
12(k2i)}

if we assume that noise corrupt all the elements of Q22iΠ̂
i
12 and that this

error have variance equal to σ2
i I (4.4) then, as we know from Dunne and

Goffrey (2003), E(A2ii) can be written as

E(A2ii) = E{ΠiT
12R

−1
22iiΠ

i
12(k2i)}+ σ2

i I (4.8)

the LODE solution is the eigenvector that correspond to the smallest
eigenvalue of E(A2ii) therefore as can be seen from (4.8), the error modifies
the eigenvalues, but not the direction of eigenvector.

If we have a symmetric matrix A with eigenvector v and correspondent
eigenvalues a we know that (A − aI)v = 0, in the same way a matrix B =

A + cI with c that it’s a scalar will have eigenvalue equal to c + a and
eigenvector equal to v this because

(B − (a+ c)I)v = (A+ cI − (a+ c)I)v = (A− aI)v = 0.

Furthermore, since the noise changes all of the eigenvalues equally, the
eigenvectors for error E(A2ii) or error free E{ΠiT

12R
−1
22iiΠ

i
12(k2i)} case must be

the same with k2i →∞ and in this circumstances the LODE estimator works
and is unbiased.

Conversely in the case of GLODE where we work with a matrix Π̂∗i where
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not of the element are affected by error. Here, the noise does not modify all
of the eigenvalues of E(Aii) equally where

E(Aii) = E{Π̂∗Ti

(
XTX

)
Π̂∗i (ki)}

because the last k1i columns are not affected by error and so the eigen-
vectors for error E(Aii) or error free E{Π∗Ti

(
XTX

)
Π∗i (ki)} will not be the

same. Thus, we can conclude that GLODE will yield a biased estimator for
B1i in this case.

For this reason the idea is to come back to the primal version of LODE
and estimating before the Γ1i from (4.3) and then B1i using OLS (4.6).

4.5 FI LODE not generalized

Taking into account the result of section 3.4 and notice that if the error
components are uncorrelated between equations (in this case the A matrix
is block-diagonal) the full information estimator equal limited information,
the full information LODE can be rewrite according to the primal version of
LODE LI, it means that the estimation procedure is divided in two parts,
like in LODE LI, before we provide the estimation of Γ structural parameters
using orthogonal distance minimization and then, through OLS, we will have
our B̂.

Notice that the second equation of system of identification( 2.8) for the
whole system of equation can be written as

Π̂∗
r,z

=



Π̂1
12

k21,m11

0
k21,m12

· · · 0
k21,m1m

0
k22,m11

Π̂2
12

k22,m12

· · · 0
k22,m1m

...
... . . . ...

0
k2m,m11

0
k2m,m12

· · · Π̂m
∗

k2m,m1m


with
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z =
m∑

i=1

m1i

r =
m∑

i=1

k2i

Γ1
z,1

=



Γ11
m11,1

Γ12
m12,1

...
Γ1m
m1m,1


and

ε2
r,1

=


ε21

ε22

...
ε2m

 (4.9)

with

ε2
r,1

=

[
Im ⊗R2X

T
2

k2,n

]
vec(V Γ)

nm1,1

=

[
Im ⊗R2X

T
2

k2,n

]
vec(U)

nm1,1

where R2 comes from

(XTX)
k,k

−1
=

 R1
k1,k

R2
k2,k

 =

 R11
k1,k1

R12
k1,k2

R21
k2,k1

R22
k2,k2


where the matrix X n× k represents all the k X included and excluded

in each m equation of the system.
Because of (4.2) applied to the vector defined in 4.9 the variance-covariance

matrix of the accidental component will be

E(ε2ε
T
2 ) = Σ

r,r
= Ω

m,m
⊗ R22

k2,k2
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and matrix, from which we calculate the characteristic vector and the
characteristic root, to minimize the trace of this variance-covariance matrix,
is

A2
z,z

= Π̂T
12

(
Ω−1 ⊗R−1

22

)
Π̂12

where its explicit form is the following

A2 =



Π̂1T
12 σ

11R−1
2211Π̂

1
12 · · · Π̂1T

12 σ
1iR−1

221iΠ̂
i
12 · · · Π̂1T

12 σ
1mR−1

221mΠ̂m
12

... . . . ...
...

...
Π̂iT

12σ
i1R−1

22i1Π̂
1
12 · · · Π̂iT

12σ
iiR−1

22iiΠ̂
i
12 · · · Π̂iT

12σ
imR−1

22imΠ̂m
12

...
...

... . . . ...
Π̂mT

12 σ
m1R−1

22m1Π̂
1
12 · · · Π̂mT

12 σ
miR−1

22miΠ̂
i
12 · · · Π̂mT

12 σ
mmR−1

22mmΠ̂m
12


where R−1

22ijcomes from

(XT
i Xj)
k,k

−1
=

 R11ij
k1i,k1j

R12ij
k1i,k2j

R12ij
k2i,k1j

R22ij
k2i,k2j


remembering that the column of Xi and Xj it’s the same the only differ-

ence between this two matrix it’s the ordered of this column, that depends
on what it is the exogenous variables included in and excluded from the i−th
and j − th equations.

In the next chapter we will see the estimation’s procedure of structural
parameters but, before to do this, it will be introduced the singular value
decomposition, to have a complete vision of the new FI LODE.



Chapter 5

LODE based on SVD

5.1 Introduction

As it has been showed in the simulation experiment FI LODE, after the
computational procedure of estimates’ correction, gave good result respect
to classical estimator in term of both bias and RMSE, but as we said this
procedure is just an estimator’s empirical correction.

The aim was to find a more formal solution to the problem of far outliers
in FI LODE estimator.

It was found out that instability came from the algorithm used to cal-
culate eigenvectors and eigenvalues, principally the problem came from the
difficulty of traditional algorithm to calculate characteristic polynomial in
high-dimension matrix.

After the results presented in the previus chapter, we are looking for find-
ing characteristics vectors and characteristics roots of square matrix Π̂iT

12R
−1
22iiΠ̂

i
12

for limited information and Π̂T
12R

−1
22 Π̂12 for full information, to do this it has

been used an algorithm based on Singular Value Decomposition that is nu-
merically more robust respect to spectral decomposition where robustness
means the greatest algorithm’s probability to converge (Markovsky and Van
Huffel, 2004).

50
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5.2 Singolar Value Decomposition

Theorem 5.1 if CεRk×m then exist orthonormal matrices U = [U1, ..., Uk]εRk×k

and V = [V1, ..., Vm]εRm×m such that

UTCV = Λ = diag(λ1, ..., λp) (5.1)

with

p = min{k,m}

Proof . for the proof see (Golub and Van Loan, 1981)
The λi are the singular values of C and their set is called the singular

value spectrum. The vector Ui and Vi are the i−th left singular vector and
the i− th right singular vector, respectively. The triplet (Ui, λi, Vi) is called
a singular triplet. Futhermore comparing the columns in the equations
CV = UΛ and CTU = ΛTV we have

CVi = λiUi, CTUi = λiVi i = 1, ..., p (5.2)

The SVD reveals a great deal about the structure of a matrix. If the SVD
of C is given by Theorem 5.1 and we define r by

λ1 ≥ · · · ≥ λr > λr+1 = · · · = λp = 0

then
rank(C) = r

R(C) = R([U1, ..., Ur])

N(C) = R([Vr+1, ..., Vn])

where R(C)represented the column space of C and N(C)is the null space
of C

Moreover, if UR = [U1, ..., Ur], ΛR = diag(λ1, ..., λr) and VR = [V1, ..., Vr]

then we have the SVD exspansion
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C = URΛRV
T
R =

r∑
i=1

λiUiVi (5.3)

this equation called dyadic decomposition decomposes the matrix C of
rank r in a sum of r matrix of rank 1. Also the Frobenius norm is neatly
characterized in terms of SVD:

||C||2 =
m∑

i=1

k∑
j=1

c2ij = λ2
1 + ...+ λ2

p.

with p = min{m, k}
Finally from (5.1) it follows that

CTC = V ΛT ΛV T (5.4)

and

CCT = V ΛΛTV T

Thus λ2
i , i = 1, ..., p are the eigenvalues of the symmetric and nonnegative

definite matrices CTC
m,m

and CCT

k,k
with p equal respectively to m or k and Vi

and Ui are the corrisponding eigenvectors.
The SVD plays an important role in matrix approximation problems. In

the theorem below we consider the approximation of one matrix by another
of lower rank.

Theorem 5.2 Let the SVD of CεRk×m be given by C =
r∑

i=1

σiUiV
T
i with

r = rank(C).

If k < r and Ck =
k∑

i=1

σiUiV
T
i then

min||C − Ck||F =

√√√√ p∑
i=k+1

σ2
i

with

p = min{m,n}
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Proof Eckart and Young (1936).

5.3 LODE LI based on SVD

What we are interested in is the case where we have k > m, considering
k×m the dimesion of C, now if we take the square matrix CTC we will have

CTC = V ΛT ΛV T

where :

• V is the eigenvectors matrix of CTC and is equal to the matrix of right
singular vector of C

• the matrix ΛT Λ is the diagonal matrix of CTC’s eigenvalues and its
elements λ2

i are equal to the square of singular values of C

Recalling the square matrix, from where we have to calculate eigenvector and
eigenvalues to obtain the LI LODE estimates (section 3.3)

Π̂Ti
12R

−1
22iiΠ̂

i
12 (5.5)

now to obtain the LI LODE based on SVD let

C = Q22iΠ̂
i
12

k2i,m1i

(5.6)

with

k2i > m1i

rembering that
Q22iQ

T
22i = R−1

22ii

like was shown in section 3.2(), hence:

• the eigenvector Pm1i
that corresponds to the smallest eigenvalue λ2

m1i

of matrix CTC for which PCTCP T = min
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• is equal to the right singular vector Vm1i
that corresponds to the smallest

singular value λm1i
of matrix C.

Since Vm1i
= Pm1i

and the estimation of structural parameters of second
equation of identification system for i− th equation

Q22iΠ̂
i
12Γ1i = Q22iε2i (5.7)

is obtain applying the Singular value Decomposition on 5.6.
Indeed if λm1i

6= 0, the rank of 5.6 is m1i and this is a full rank matrix
and the equation 5.7 is upper identified. To obtain a solution, the rank of
5.6 must be reduced to m1i − 1.

We are looking for finding an approximation of Q22iΠ̂
i
12 and the connected

vector Vm1i
(the pedix of V will be clear soon) for which this equation is true

Q22iΠ̂
i
12Vm1i

= 0

Using the theorem 4.2 we know that the best rank m1i−1 approximation
(Q22iΠ̂

i
12i)

′of Q22iΠ̂
i
12i, is given by

(Q22iΠ̂12i)
′ = UΛ′V

with

Λ′ = diag(λ1, ..., λm1i−1, 0)

the minimal correction is then

min
Q22iΠ̂i

12i

∥∥∥Q22iΠ̂
i
12i − (Q22iΠ̂

i
12i)

′
∥∥∥2

F
= λm1i

and the solution is given by the only vector Vm1i
that belongs toN(Q22iΠ̂

i
12i)

′(the
null space of the approximation matrix) so the last right singular vector of
Q22iΠ̂

i
12i.

Using now the normalization rule for i− th structural equation, the esti-
mate of structural parameter Γ1i are defined as
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Γ̂1i = − 1

v0i

Vm1i

where v0i is the element of the characteristic vector associated with the
right hand side endogenous variable in the i− th structural equation.

So given that

(Q22iΠ̂
i
12i)

′Vm1i
= 0

(Q22iΠ̂
i
12i)

′ rappresents the (m1i − 1) dimensional subspace spanned by
the first (m1i − 1) principal axis that minimize the sum of squares of the
orthogonal distance between the obseved points and the subspace itself.

Observe that, like we have said at the end of section 1.3 for LODE LI in
the same way here, if the i − th equation is exaclty identified equation the
last singolar value λm1i = 0 and that equation will have a unique solution
that coincides with ILS estimator.

On the contrary when i−th equation is under identified the singular value
equal to zero will have multiplicity grater than one and the system will have
infinite solutions.

It is important noice that, after some simulation experiment, the result
of estimation given by LODE LI primal version (section 3.3) using spec-
tral decomposition or singular value decomposition is exactly the same, this
probably because the square matrix 5.5 it’s no so big to create problem in
calculating characteristic polynomial.

5.4 FI LODE based on SVD

As seen in the last section of previous chapter the LODE FI estimate of

Γ1
z,1

=



Γ11
m11,1

Γ12
m12,1

...
Γ1m
m1m,1


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comes from the minimization of this quadratic form

ΓT
1 Π̂T

12

(
Ω−1 ⊗R−1

22

)
Π̂12Γ1

indeed with LODE FI based on SVD we work with this matrix

Q2Π̂12
r,z

(5.8)

z =
m∑

i=1

m1i

r =
m∑

i=1

k2i

with

Q2Q
T
2 =

(
Ω−1 ⊗R−1

22

)
.

Given the second equation of identification system for the whole system

Q2Π̂12Γ1 = Q2ε2

what we have to do is to find the z− 1 subspace of 5.8 that minimize the
sum of squares of the orthogonal distance between the obseved points and
the subspace itself.

As with limited infromation LODE, with the theorem 4.2 we can prove
that the best rank z − 1 matrix approximation of Q2Π̂12, is the matrix that
is equal to

(Q2Π̂12)
′ = TΞ′V

where the matrix T and V are respectivelly the matrix of left and right
singular vector of Q2Π̂12 and the matrix Ξ′ is equal to the diagonal matrix
of singular value Ξ of Q2Π̂12except for the element z that is zero

Ξ = diag(ξ1, ..., ξz−1, ξz)
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Ξ′ = diag(ξ1, ..., ξz−1, 0)

the minimal corrections then is

min
Q2Π̂12

∥∥∥Q2Π̂12 − (Q2Π̂12)
′
∥∥∥2

F
= ξz

and this equation is true

(Q2Π̂12)
′Vz = 0

and so the solution is given by the right singular vector Vz of Q2Π̂12 that
corresponds to the last singular value ξz of Ξ and that is equal to the last
eigenvector Π̂T

12Q
T
2Q2Π̂12.

Now Defining W as the block diagonal matrix

W =


w1Im1i

. . .

w1Im1i


in which ciare defined as follows

wi = − 1

v0i

with v0i being the right singular vector’s element corresponding to the
endogenous variable y0i chosen to be at left hand side in i − th structural
equation.

The FI estimator is then

Γ̂1 = WVz (5.9)

equal
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Y0
mn,1

=



Y01
n,1
...
Y0i
n,1
...

Y0m
n,1


where Y0i is the dependent endogenous variable of i − th equation, and

let

Y1e
n,z

=


Y11e
n,m1

0

. . .

0 Y1me
n,mmi


that is the block diagonal matrix of endogenous explanatory variable of

each system equation, and finally let

X1
n,h

=


X11
n,k11

0

. . .

0 X1m
n,k1m


with

h =
m∑

i=1

k1i

that is the block diagonal matrix of exogenous variable of each system
equation, then to have the estimation of parameters B1 we have to apply the
OLS on this equation

Y0 − Y1eΓ̂1e = X1B1 + E

where E
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E =



E1

...
Ei

...
Em


is the vector of the new error component, hence the B̂1 will be

B̂1 = (XT
1 X1)

−1XT
1 (Y0 − Y1eΓ̂1e)

where the matrix Ω−1⊗
(
XTX

)
is the inverse of Variance-coraviance ma-

trix



Chapter 6

New Simulation Experiment

6.1 Introduction

In this chapter is presented the second simulation experiment conduct to
evaluate the LODE FI based on SVD respect to the FIML, 3SLS and what
we have called LODE FI with empirical correction.

The design experiment and the simulated data are the same of the sim-
ulation experiment, chapter 2, to have a more easy comparison with the
previous simulation experiment.

Hence the model is a three equation model and the parameters of endoge-
nous and esogenous variables to estimate are(), the errors are been generate
from a standardized Normal distribution and from a Uniform distribution in
the interval

[
−
√

3,
√

3
]

and so the simulatio scenarios repeted for the two
different error distribution is

60
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Table 6.1: Simulation Scenarios

Si

ρij 0.2-0.25 0.4-0.5 0.75-0.8

0.1-0.2
N=20 N=20 N=20
N=30 N=30 N=30
N=100 N=100 N=100

0.4-0.5
N=20 N=20 N=20
N=30 N=30 N=30
N=100 N=100 N=100

0.8-0.9
N=20 N=20 N=20
N=30 N=30 N=30
N=100 N=100 N=100

In section 1.2 the simulation result of LODE FI with empirical correction
is compared with LODE FI based on SVD with error component normally
and uniformally distributed. The performance of all the estimator divided
by results when the error component is Normal and when it is Uniform are
presented (§ 1.3).

6.2 LODE FI with empirical correction and LODE

FI based on SVD

Like in chapter 2 to synthesize results of the simulation experiment, the table
are based on the percentage of times in which parameters’ estimators present
the lowest bias or variability.

Remembering that with bias we mean

ϕ =

(
θ̂ − θ

)
θ

(i.e. the bias divided by the fixed initial parameter value) where θ̂ is the
average of estimated parameter over the 500 samples and θ is one of the γ
or β parameters.
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For variability

ψ =
RMSE

θ

where RMSE is the Root Mean Square Error of θ̂ which is divided by the
initial parameter value.

6.2.1 Normal error component

First let us consider the case in which the error component is distributed
according to a Multivariate Normal.

In terms of bias the LODE based on SVD mostly show the best results,
the only situation where LODE with empirical correction give a lower bias
than the other LODE is when the sample size is 20 and Si is between 0.75
and 0.8 and when sample size si 30 and Si is 0.2-0.25 (6.2) for all the other
combination LODE SVD gives the highest percentage as matter of the fact 19
times on 27 scenarios it works better than LODE with empirical correction.

Table 6.2: Relative frequency distribution of FI LODE SVD, FI LODE presenting a lower bias gruoped
by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD LODE LODE SVD LODE LODE SVD LODE
0.2-0.25

20
80 20 60 40 100 0

0.4-0.5 80 20 60 40 80 20
0.75-0.8 0 100 20 80 20 80
0.2-0.25

30
0 100 20 80 20 80

0.4-0.5 60 40 80 20 60 40
0.75-0.8 60 40 40 60 60 40
0.2-0.25

100
40 60 100 0 80 20

0.4-0.5 100 0 60 40 100 0
0.75-0.8 80 20 100 0 100 0

In terms of RMSE too LODE SVD generally seems to go better than the
other one, here too 19 times on 27 LODE SVD have the lowest variability,
but the LODE with empirical correction show more frequently lower values
with low sample size 20 and 30 and high correlation coefficent ρij 0.8-0.9(6.3).

It’s not a chance say that the LODE SVD works generally better than
LODE with empirical correction with normal error distribution even if we
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consider only small samples where generally LODE with correction works
better but not as LODE SVD.

Table 6.3: Relative frequency distribution of FI LODE SVD, FI LODE presenting a lower RMSE
gruoped by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD LODE LODE SVD LODE LODE SVD LODE
0.2-0.25

20
86.67 13.33 73.33 26.67 73.33 26.67

0.4-0.5 26.67 73.33 73.33 26.67 0.00 100.00
0.75-0.8 46.67 53.33 0.00 100.00 0.00 100.00
0.2-0.25

30
86.67 13.33 80.00 20.00 53.33 46.67

0.4-0.5 93.33 6.67 33.33 66.67 73.33 26.67
0.75-0.8 86.67 13.33 46.67 53.33 33.33 66.67
0.2-0.25

100
73.33 26.67 86.67 13.33 86.67 13.33

0.4-0.5 86.67 13.33 93.33 6.67 53.33 46.67
0.75-0.8 80.00 20.00 93.33 6.67 93.33 6.67

6.2.2 Uniform error component

Looking to the results of this simulation where the errors components are
uniformally distributed between (−

√
3,
√

3), the comparison between the two
LODE goes in the same way of simulation with normally distributed com-
ponent, this means that LODE FI SVD outperforms LODE with empirical
correction in terms of bias and RSME, with this error distribution LODE
with empirical correction works better only with low value of ρij 0.1-0.2 and
0.4-0.5 and sample size equal to 20.

In Terms of lowest bias LODE SVD presents the best result 21 times on
27 (6.6)
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Table 6.4: Relative frequency distribution of FI LODE SVD, FI LODE presenting a lower bias gruoped
by Si, ρij and sample size - Uniform error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD LODE LODE SVD LODE LODE SVD LODE
0.2-0.25

20
20 80 80 20 80 20

0.4-0.5 20 80 0 100 100 0
0.75-0.8 40 60 0 100 80 20
0.2-0.25

30
100 0 80 20 100 0

0.4-0.5 80 20 80 20 100 0
0.75-0.8 60 40 100 0 80 20
0.2-0.25

100
80 20 100 0 80 20

0.4-0.5 40 60 80 20 80 20
0.75-0.8 80 20 80 20 80 20

If we consider the variability of the estimate the things seems to go a
little bit better for LODE with correction which however have just 11 more
good results than LODE SVD so other 16 combination latter works better.

Hence we can conclude that this new formulation of LODE based on SVD
improved the performance of LODE estimator

Table 6.5: Relative frequency distribution of FI LODE SVD, FI LODE presenting a lower RMSE
gruoped by Si, ρij and sample size - Uniform error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD LODE LODE SVD LODE LODE SVD LODE
0.2-0.25

20
13.33 86.67 60.00 40.00 33.33 66.67

0.4-0.5 40.00 60.00 40.00 60.00 86.67 13.33
0.75-0.8 26.67 73.33 40.00 60.00 26.67 73.33
0.2-0.25

30
60.00 40.00 73.33 26.67 60.00 40.00

0.4-0.5 73.33 26.67 93.33 6.67 60.00 40.00
0.75-0.8 60.00 40.00 40.00 60.00 20.00 80.00
0.2-0.25

100
53.33 46.67 40.00 60.00 66.67 33.33

0.4-0.5 73.33 26.67 86.67 13.33 80.00 20.00
0.75-0.8 86.67 13.33 80.00 20.00 33.33 66.67

Only in the simulation experiment where the errors are generating from
Uniform (−10, 10) the LODE with empirical correction gives better results
than LODE SVD, expecially in terms of RMSE where in all the scenarios
the percentage attributed to LODE with empirical correction is higher than
the one of LODE SVD
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Table 6.6: Relative frequency distribution of FI LODE SVD, FI LODE presenting a lower bias gruoped
by Si, ρij and sample size - Unif(-10,10) error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD LODE LODE SVD LODE LODE SVD LODE
0.2-0.25

20
0 100 0 100 40 60

0.4-0.5 20 80 20 80 0 100
0.75-0.8 60 40 20 80 0 100
0.2-0.25

30
80 20 20 80 40 60

0.4-0.5 20 80 40 60 60 40
0.75-0.8 0 100 20 80 60 40
0.2-0.25

100
0 100 100 0 40 60

0.4-0.5 20 80 40 60 40 60
0.75-0.8 20 80 60 40 0 100

Table 6.7: Relative frequency distribution of FI LODE SVD, FI LODE presenting a lower RMSE
gruoped by Si, ρij and sample size - Unif(-10,10) error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD LODE LODE SVD LODE LODE SVD LODE
0.2-0.25

20
0 100 7 93 7 93

0.4-0.5 0 100 0 100 0 100
0.75-0.8 0 100 7 93 0 100
0.2-0.25

30
0 100 0 100 0 100

0.4-0.5 0 100 0 100 27 73
0.75-0.8 0 100 7 93 0 100
0.2-0.25

100
47 53 27 73 13 87

0.4-0.5 13 87 13 87 27 73
0.75-0.8 0 100 20 80 7 93

6.3 General results of the experiment

Given the best results of LODE based on SVD with the simulated model with
Normal and Uniform (−

√
3,
√

3) distribution of the errors, in this section we
will compare the features of this implemantation of LODE estimators with
the two classical estimators 3SLS and FIML of simultaneous equation model.

6.3.1 Normal error component

In the case of normal error component now, unlike to the first simulation
experiment, the best estimator in terms of bias it’s no more FIML but LODE
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based on SVD for more and less all the scenarios, it presents 20 times 27 the
high percentage, like it’s easy to see in (6.8), notice that LODE based on
SVD is indicated with LODE.

This good performances becomes more evident if we see only on small
samples, n=20, in this case 8 times on 9 the LODE SVD has a lowest bias
and LODE seems to works very well in terms of bias with equation with high
correlation coefficent, ρij between [0.8 − 0.9], here too 8 times on 9 LODE
have highest percentage values.

Table 6.8: Relative frequency distribution of FI LODE SVD, 3SLS and FIML presenting a lower bias
gruoped by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
80 0 20 100 0 0 60 20 20

0.4-0.5 100 0 0 80 20 0 100 0 0
0.75-0.8 80 0 20 20 80 0 80 20 0
0.2-0.25

30
80 0 20 40 0 60 60 0 40

0.4-0.5 60 0 40 40 0 60 80 20 0
0.75-0.8 20 0 80 100 0 0 100 0 0
0.2-0.25

100
20 0 80 60 0 40 60 0 40

0.4-0.5 80 0 20 60 0 40 20 0 80
0.75-0.8 20 0 80 80 0 20 80 0 20

While in terms of RMSE, FIML remain the estimator that show more
lower values than LODE SVD and 3SLS (6.9).

LODE SVD seems to work better with n=20 and n= 30 scenarios so
remain the features of LODE to have good performance when dealing with
low number of observation.
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Table 6.9: Relative frequency distribution of FI LODE SVD, 3SLS and FIML presenting a lower
RMSE gruoped by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
40 27 33 7 27 67 40 20 40

0.4-0.5 13 40 47 40 20 40 0 40 60
0.75-0.8 7 60 33 0 27 73 0 33 67
0.2-0.25

30
27 13 60 7 7 87 13 7 80

0.4-0.5 33 53 13 13 27 60 27 40 33
0.75-0.8 33 40 27 27 40 33 13 33 53
0.2-0.25

100
0 7 93 0 20 80 0 7 93

0.4-0.5 13 13 73 13 13 73 0 13 87
0.75-0.8 7 13 80 7 20 73 0 20 80

6.3.2 Uniform component

Using the uniform distribution for the error component in the simulation
experiment the good results just presented doesn’t change, the LODE based
on SVD is the best estimator in terms of bias together with FIML, it present
14 times the lower bias against the 13 times of FIML.(6.10).

Particularly the LODE SVD results go better with the increased of cor-
relation coefficent.

Table 6.10: Relative frequency distribution of FI LODE SVD, 3SLS and FIML presenting a lower
bias gruoped by Si, ρij and sample size - Uniform error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
0 0 100 40 0 60 80 0 20

0.4-0.5 20 20 60 0 20 80 100 0 0
0.75-0.8 20 0 80 0 20 80 40 20 40
0.2-0.25

30
60 0 40 40 0 60 60 0 40

0.4-0.5 20 0 80 80 0 20 20 20 60
0.75-0.8 80 0 20 80 20 0 60 0 40
0.2-0.25

100
40 0 60 40 0 60 80 0 20

0.4-0.5 0 0 100 60 0 40 0 0 100
0.75-0.8 80 0 20 60 0 40 60 0 40

even considering the RMSE the conclusions are the same done with nor-
mal distribution FIML have the lowest RMSE with respect to the other
estimator (6.11)
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Table 6.11: Relative frequency distribution of FI LODE SVD, 3SLS and FIML presenting a lower
RMSE gruoped by Si, ρij and sample size - Uniform error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE 3SLS FIML LODE 3SLS FIML LODE 3SLS FIML
0.2-0.25

20
0 33 67 30 20 50 7 20 73

0.4-0.5 13 80 7 0 27 73 0 13 87
0.75-0.8 0 67 33 0 53 47 0 27 73
0.2-0.25

30
26 13 60 7 27 67 20 13 67

0.4-0.5 20 27 53 20 20 60 0 27 73
0.75-0.8 13 60 27 0 33 67 20 13 67
0.2-0.25

100
40 13 47 0 27 73 7 20 73

0.4-0.5 7 13 80 7 20 73 0 13 87
0.75-0.8 0 13 87 0 20 80 7 7 87

6.3.3 Variability in LODE based on SVD and 3SLS

Given the fact that the best estmator in terms of variability results the
FIML and given too that sometimes this estimator could have computational
problem, this sub-secton is dedicated to compare 3SLS and LODE SVD in
terms of RMSE.

As it is easy to see in the next table LODE estimator presents greater
frequencies of estimates with lower RMSE than 3SLS in most of analyzed
scenarios, in 6.12 there is the comparison in terms of RMSE for the simulation
with normal error components

Table 6.12: Relative frequency distribution of FI LODE SVD, 3SLS presenting a lower RMSE gruoped
by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD 3SLS LODE SVD 3SLS LODE SVD 3SLS
0.2-0.25

20
67 33 60 40 80 20

0.4-0.5 20 80 60 40 0 100
0.75-0.8 27 73 7 93 0 100
0.2-0.25

30
80 20 67 33 80 20

0.4-0.5 47 53 33 67 47 53
0.75-0.8 60 40 33 67 13 87
0.2-0.25

100
80 20 67 33 80 20

0.4-0.5 87 13 87 13 67 33
0.75-0.8 87 13 73 27 80 20

The simulation with error uniformally distributed gives the same results
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15 times on 27 the percentage link to LODE SVD is higher than the percent-
age of 3SLS

Hence in terms of variability too the LODE SVD works better of 3SLS

Table 6.13: Relative frequency distribution of FI LODE SVD, 3SLS presenting a lower RMSE gruoped
by Si, ρij and sample size - Normal error component

ρij

0.1-0.2 0.4-0.5 0.8-0.9
Si n LODE SVD 3SLS LODE SVD 3SLS LODE SVD 3SLS
0.2-0.25

20
13 87 60 40 73 27

0.4-0.5 13 87 40 60 73 27
0.75-0.8 13 87 20 80 27 73
0.2-0.25

30
80 20 60 40 40 60

0.4-0.5 67 33 60 40 53 47
0.75-0.8 27 73 27 73 27 73
0.2-0.25

100
87 13 47 53 67 33

0.4-0.5 80 20 73 27 60 40
0.75-0.8 80 20 67 33 33 67



Chapter 7

Conclusion

The aim of this work was to find a solution to reduced the high variabil-
ity shows from FI LODE, previously was introduced a computational, to
overcome this problem, based on the choice of the first m sub-eigenvectors
that minimize the trace of the residual errors’ variance-covariance matrix
with this LODE FI implementation was conducted first simulation experi-
ment considering different scenarios according to error components’ variance
and correlation and for each scenario three sample sizes (20, 30 and 100)
have been considered, furthermore two distributional hypotheses about dis-
turbances, Normal and Uniform, have been introduced.

The results of the experiment have not highlighted strong differences be-
tween the performances of the three methods as far as the distribution of
error component is concerned. Both N(1, 0) and U(−

√
3,
√

3) give almost
the same results.

A hypothesis of a greater variance Uniform distribution has been then
introduced for the generation of error components, namely a Uniform dis-
tribution in the interval (−10, 10). With respect to this last situation a
very strong difference among estimation methods has been observed: LODE
presents always bias very much lower than FIML; also in comparison of 3SLS
the LODE bias is lower.

The most interesting result of the study is the very good performance of
LODE in small samples.

70
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This outcomes plus the fact that LODE estimator does not impose a prior
choice of dependent variable in system’s equation, furthermore one of the
principal characteristic of this method is that the estimator does not depend
on the distribution of the error component, gave the impetus to continue the
work with this estimator and to look for finding a more formal solution for
LODE FI variability. The result of this research is illustrated in chapter 5
and, as we said, it comes from two different changes applied on FI LODE.

The first one was to come back to the primal version of LODE LI and
this version was readapted on the full information case, the second one is to
replace the spectral decomposition, used to calculate eigenvalues and eigen-
vectors of matrix Π̂T

12Q
T
2Q2Π̂12 , with the Singular Value Decomposition apply

on Q2Π̂12 , knowing that the right singular vectors of this matrix accordig to
the theory match the eigenvectors of the previous matrix, but the algorithm
based on this decomposition is numerically more robust.

After this the Montecarlo experiment was replaced with the new FI LODE
based on SVD, in the first part comparing this one with the FI LODE with
empirical correction and LODE FI based on SVD presents for all simulation
scenarios and with error distributed as N(0, 1)and U(−

√
3,
√

3) lower bias
and RMSE respect to other LODE FI, while the LODE FI with empirical
correction works better if the distribution of accidental component is a Uni-
form between (−10, 10) in term bias and RMSE, in the second part of the
simulation was evaluated the LODE FI based on SVD respect to the FIML
and 3SLS for N(0, 1) and U(−

√
3,
√

3) here too for mostly of simulation
scenarios and both the error distribution LODE SVD have the lowest bias,
while in terms of RMSE the best results come from FIML estimation but
the LODE perfoms better than 3SLS in terms of variability, knowing that
usually for computational problem the 3SLS is favorited to FIML are evident
the very good results of this simulation.

What Have to be done, the first thing is to find the distribution of LODE
FI estimate to be able to create a test, some analytical solution can come
from Gleser(1981), Gleser proof that a similar estimator based on orthogonal
distance estimator applied on multivariate errors in variables model have a
multinormal distribution of its estimates.
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Need to create a package on R and so leave E-Views for an open source
software, furthermore class of LODE estimator have to be tested with a real
data application.
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Appendix

’CREATION OF SIMULATION DATA

series X1 = 1

series X2 = @runif(10, 20)

series X3 = @runif(15, 27)

series X4 = @runif(3, 12)

series X5 = @runif(3, 7)

series X6 = @runif(20, 50)

series X7 = @runif(7, 13)

group groupx X1 X2 X3 X4 X5 X6 X7

matrix x = @convert(groupx)

matrix (7, 3) b

b.fill 44, 0.74, 0, 0, 0.13, 0, 0, 62, 0, 0.7, 0, 0.96, 0, 0.06, 40, 0, 0.53, 0.11, 0, 0.56, 0

vector (3, 1) b1

b1.fill 44, 0.74, 0.13

vector (4, 1) b2

b2.fill 62, 0.7, 0.96, 0.06

vector (4, 1) b3

b3.fill 40, 0.53, 0.11, 0.56

matrix (3, 3) g

g.fill -1, 0.89, 0.16, 0.74, -1, 0, 0, 0.29, -1

vector (3, 1) g1

g1.fill 1, 0.89, 0.16

73
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vector (2, 1) g2

g2.fill 1, 0.74

vector (2, 1) g3

g3.fill 1, 0.29

matrix invg = @inverse(g)

matrix p = - b*invg

matrix y = x *p

vector Y1 = @columnextract (y,1)

vector Y2 = @columnextract (y,2)

vector Y3 = @columnextract (y,3)

series serY1

series serYb

series serYc

mtos(Y1, serY1)

mtos(Y2, serY2)

mtos(Y3, serY3)

matrix ygamma = Y*g

vector ygamma1 = @columnextract (ygamma,1)

vector ygamma2 = @columnextract (ygamma,2)

vector ygamma3 = @columnextract (ygamma,3)

for !i = 1 to 3

scalar S{!i} = @runif(0.4, 0.5)

scalar ro{!i} = @runif(0.4, 0.5)

scalar vary{!i} = @var(ygamma{!i})*z{!i}

next

scalar covy1y2 = (vary1*vary2)^0.5

scalar covy1y3 = (vary1*varyc)^0.5

scalar covy3y2 = (vary3*vary2)^0.5

scalar covy1y2div = ro1*covy1y2

scalar covy1y3div = ro2*covy1y3

scalar covy3y2div = ro3*covy3y2

for !m = 1 to 3

scalar cas{!m} = @runif(0, 1)

if cas{!m}>0.5 then

cas{!m} = - 1



APPENDIX A. APPENDIX 75

else

cas{!m} = 1

endif

next

scalar covy1y2cas = covy1y2div*cas1

scalar covy1y3cas = covy1y3div*cas2

scalar covy3y2cas = covy3y3div*cas3

sym (3, 3) vary

vary.fill vary1, covy1y2cas, covy1y3cas, vary2, covy3y2cas, vary3

sym varv =@transpose(invg)*vary*invg

vector t = @eigenvalues(varv)

matrix p2 = @eigenvectors(varv)

scalar t1 = t(1)^0.5

scalar t2 = t(2)^0.5

scalar t3 = t(3)^0.5

sym (3, 3) tdiag

tdiag.fill t1, 0, 0, t2, 0, t3

matrix o2 = p2*tdiag*@transpose(p2)

for !z = 1 to 500

series vser{!z} = nrnd

series dser{!z} =nrnd

series gser{!z} = nrnd

group groupe{!z} vser{!z} dser{!z} gser{!z}

matrix e{!z} = @convert(groupe{!z})

matrix ea{!z} = e{!z}*o2

matrix yfin{!z} = y + ea{!z}

vector ya{!z} = @columnextract (yfin{!z},1)

vector yb{!z} = @columnextract (yfin{!z},2)

vector yc{!z} = @columnextract (yfin{!z},3)

series serya{!z}

series seryb{!z}

series seryc{!z}

mtos(ya{!z}, serya{!z})

mtos(yb{!z}, seryb{!z})

mtos(yc{!z}, seryc{!z})
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’CREATION OF INCLUDED AND EXCLUDED VARIABLES GROUP

group groupinca{!z} serya{!z} seryb{!z} seryc{!z}

matrix yinca{!z} = @convert(groupinca{!z})

group groupdipa{!z} seryb{!z} seryc{!z}

matrix ydipa{!z} = @convert(groupdipa{!z})

group groupescxa X3 X4 X6 X7

matrix xesca = @convert(groupescxa)

group groupincxa X1 X2 X5

matrix xinca = @convert(groupincxa)

group groupincb{!z} seryb{!z} serya{!z}

matrix yincb{!z} = @convert(groupincb{!z})

group groupincxb X1 X3 X5 X7

matrix xincb = @convert(groupincxb)

group groupescxb X2 X4 X6

matrix xescb = @convert(groupescxb)

group groupincc{!z} seryc{!z} seryb{!z}

matrix yincc{!z} = @convert(groupincc{!z})

group groupincxc X1 X3 X4 X6

matrix xincc = @convert(groupincxc)

group groupescxc X2 X5 X7

matrix xescc = @convert(groupescxc)

sym xsec = @transpose(x)*x

matrix xsecsec =@inverse(xsec)

group groupsainca{!z} seryb{!z} seryc{!z}

matrix sayinca{!z} = @convert(groupsainca{!z})

matrix (20, 5) zuno{!z}

matplace(zuno{!z}, sayinca{!z}, 1, 1)

matplace(zuno{!z}, xinca, 1, 3)

matrix (20, 5) zdue{!z}

matplace(zdue{!z}, ya{!z}, 1, 1)

matplace(zdue{!z}, xincb, 1, 2)

matrix (20, 5) ztre{!z}

matplace(ztre{!z}, yb{!z}, 1, 1)

matplace(ztre{!z}, xincc, 1, 2)
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’GLODE LI

’ESTIMATE FIRST EQUATION

matrix auuu{!z} = @transpose(yinca{!z})*x*xsecsec*@transpose(x)*yinca{!z}

matrix aduu{!z} = @transpose(yinca{!z})*xinca

matrix atuu{!z} = @transpose(xinca)*yinca{!z}

matrix aquu = @transpose(xinca)*xinca

matrix (6, 6) auu{!z}

matplace(auu{!z}, auuu{!z}, 1, 1)

matplace(auu{!z}, aduu{!z}, 1, 4)

matplace(auu{!z}, atuu{!z}, 4, 1)

matplace(auu{!z}, aquu, 4, 4)

sym (6) symauu{!z} = auu{!z}

matrix auuvec{!z} = @eigenvectors(symauu{!z})

matrix vecauu{!z} = -auuvec{!z}/auuvec{!z}(1, 1)

vector vecauufin{!z} = @columnextract(vecauu{!z}, 1)

’ESTIMATE SECOND EQUATION

matrix budd{!z} = @transpose(yincb{!z})*x*xsecsec*@transpose(x)*yincb{!z}

matrix bddd{!z} = @transpose(yincb{!z})*xincb

matrix btdd{!z} = @transpose(xincb)*yincb{!z}

matrix bqdd = @transpose(xincb)*xincb

matrix (6, 6) bdd{!z}

matplace(bdd{!z}, budd{!z}, 1, 1)

matplace(bdd{!z}, bddd{!z}, 1, 3)

matplace(bdd{!z}, btdd{!z}, 3, 1)

matplace(bdd{!z}, bqdd, 3, 3)

sym (6) symbdd{!z} = bdd{!z}

matrix bddvec{!z} = @eigenvectors(symbdd{!z})

matrix vecbdd{!z} = -bddvec{!z}/bddvec{!z}(1, 1)

vector vecbddfin{!z} = @columnextract(vecbdd{!z}, 1)
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’ESTIMATE THIRD EQUATION

matrix cutt{!z} = @transpose(yincc{!z})*x*xsecsec*@transpose(x)*yincc{!z}

matrix cdtt{!z} = @transpose(yincc{!z})*xincc

matrix cttt{!z} = @transpose(xincc)*yincc{!z}

matrix cqtt = @transpose(xincc)*xincc

matrix (6, 6) ctt{!z}

matplace(ctt{!z}, cutt{!z}, 1, 1)

matplace(ctt{!z}, cdtt{!z}, 1, 3)

matplace(ctt{!z}, cttt{!z}, 3, 1)

matplace(ctt{!z}, cqtt, 3, 3)

sym (6) symctt{!z} = ctt{!z}

matrix cttvec{!z} = @eigenvectors(symctt{!z})

matrix vecctt{!z} = -cttvec{!z}/cttvec{!z}(1, 1)

vector veccttfin{!z} = @columnextract(vecctt{!z}, 1)

’RESULTS

matrix (6, 500) lodealim

colplace( lodealim, vecauufin{!z}, {!z})

matrix (6, 500) lodeblim

colplace( lodeblim, vecbddfin{!z}, {!z})

matrix (6, 500) lodeclim

colplace( lodeclim, veccttfin{!z}, {!z})

’ESTIMATE OF Π WITH OLS

equation lsa{!z}.ls serya{!z} c X2 X3 X4 X5 X6 X7 @ c X2 X3 X4 X5 X6 X7

equation lsb{!z}.ls seryb{!z} c X2 X3 X4 X5 X6 X7 @ c X2 X3 X4 X5 X6 X7

equation lsc{!z}.ls seryc{!z} c X2 X3 X4 X5 X6 X7 @ c X2 X3 X4 X5 X6 X7

vector coefa{!z} = lsa{!z}.@coefs

vector coefb{!z} = lsb{!z}.@coefs

vector coefc{!z} = lsc{!z}.@coefs

system ls{!z}

ls{!z}.append serya{!z} = c(1) + c(2)*X2 + c(3)*X3 + c(4)*X4 + c(5)*X5 + c(6)*X6

+ c(7)*X7

ls{!z}.append seryb{!z} = c(8) + c(9)*X2 + c(10)*X3 + c(11)*X4 + c(12)*X5 +

c(13)*X6 + c(14)*X7
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ls{!z}.append seryc{!z} = c(15) + c(16)*X2 + c(17)*X3 + c(18)*X4 + c(19)*X5 +

c(20)*X6 + c(21)*X7

ls{!z}.ls

scalar coeflsaza{!z} = ls{!z}.@coefs(1)

scalar coeflsara{!z} = ls{!z}.@coefs(3)

scalar coeflsata{!z} = ls{!z}.@coefs(4)

scalar coeflsaea{!z} = ls{!z}.@coefs(2)

scalar coeflsaua{!z} = ls{!z}.@coefs(5)

scalar coeflsaia{!z} = ls{!z}.@coefs(6)

scalar coeflsaoa{!z} = ls{!z}.@coefs(7)

scalar coeflsbzb{!z} = ls{!z}.@coefs(8)

scalar coeflsbrb{!z} = ls{!z}.@coefs(10)

scalar coeflsbub{!z} = ls{!z}.@coefs(12)

scalar coeflsbob{!z} = ls{!z}.@coefs(14)

scalar coeflsbeb{!z} = ls{!z}.@coefs(9)

scalar coeflsbtb{!z} = ls{!z}.@coefs(11)

scalar coeflsbib{!z} = ls{!z}.@coefs(13)

scalar coeflsczc{!z} = ls{!z}.@coefs(15)

scalar coeflscrc{!z} = ls{!z}.@coefs(17)

scalar coeflscuc{!z} = ls{!z}.@coefs(19)

scalar coeflscoc{!z} = ls{!z}.@coefs(21)

scalar coeflscec{!z} = ls{!z}.@coefs(16)

scalar coeflsctc{!z} = ls{!z}.@coefs(18)

scalar coeflscic{!z} = ls{!z}.@coefs(20)

matrix (7, 3) plsa{!z}

matrix (7, 2) plsb{!z}

matrix (7, 2) plsc{!z}

plsa{!z}.fill coeflsaza{!z}, coeflsaea{!z}, coeflsaua{!z}, coeflsara{!z}, coeflsata{!z},

coeflsaia{!z}, coeflsaoa{!z}, coeflsbzb{!z}, coeflsbeb{!z}, coeflsbub{!z}, coeflsbrb{!z},

coeflsbtb{!z}, coeflsbib{!z}, coeflsbob{!z}, coeflsczc{!z}, coeflscec{!z}, coeflscuc{!z},

coeflscrc{!z}, coeflsctc{!z}, coeflscic{!z}, coeflscoc{!z}

plsb{!z}.fill coeflsbzb{!z}, coeflsbrb{!z}, coeflsbub{!z}, coeflsbob{!z}, coeflsbeb{!z},

coeflsbtb{!z}, coeflsbib{!z}, coeflsaza{!z}, coeflsara{!z}, coeflsaua{!z}, coeflsaoa{!z},

coeflsaea{!z}, coeflsata{!z}, coeflsaia{!z}
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plsc{!z}.fill coeflsczc{!z}, coeflscrc{!z}, coeflsctc{!z}, coeflscic{!z}, coeflscec{!z}, co-

eflscuc{!z}, coeflscoc{!z}, coeflsbzb{!z}, coeflsbrb{!z}, coeflsbtb{!z}, coeflsbib{!z},

coeflsbeb{!z}, coeflsbub{!z}, coeflsbob{!z}

matrix (4, 3) zero1

zero1 = 0

matrix (3, 4) zero2

zero2 = 0

matrix i1 = @identity(3)

matrix i2 = @identity(4)

’CREATION of Π̂

matrix (7, 6) plsatot{!z}

matplace(plsatot{!z}, plsa{!z}, 1, 1)

matplace(plsatot{!z}, i1, 1, 4)

matplace(plsatot{!z}, zero1, 4, 4)

matrix (7, 6) plsbtot{!z}

matplace(plsbtot{!z}, plsb{!z}, 1, 1)

matplace(plsbtot{!z}, i2, 1, 3)

matplace(plsbtot{!z}, zero2, 5, 3)

matrix (7, 6) plsctot{!z}

matplace(plsctot{!z}, plsc{!z}, 1, 1)

matplace(plsctot{!z}, i2, 1, 3)

matplace(plsctot{!z}, zero2, 5, 3)

’LODE LI BASED ON SVD

’CREATION OF Π̂i
12

matrix plsescbtot{!z} = @subextract(plsb{!z}, 5,1,7,2)

matrix plsincbtot{!z} = @subextract(plsb{!z}, 1,1,4,2)

matrix plsescatot{!z} = @subextract(plsa{!z}, 4,1,7,3)

matrix plsincatot{!z} = @subextract(plsa{!z}, 1,1,3,3)

matrix plsescctot{!z} = @subextract(plsc{!z}, 5,1,7,2)

matrix plsincctot{!z} = @subextract(plsc{!z}, 1,1,4,2)

matrix (20,7) xa

matplace(xa, xinca, 1, 1)
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matplace(xa, xesca, 1,4)

matrix (20,7) xb

matplace(xb, xincb, 1, 1)

matplace(xb, xescb, 1,5)

matrix (20,7) xc

matplace(xc, xincc, 1, 1)

matplace(xc, xescc, 1,5)

’ESTIMATE OF FIRST EQUATION

sym xesca2 = @transpose(xesca)*xesca

vector valxesca = @eigenvalues(xesca2)

matrix vecxesca = @eigenvectors(xesca2)

scalar valxesca1 = valxesca(1)^0.5

scalar valxesca2 = valxesca(2)^0.5

scalar valxesca3 = valxesca(3)^0.5

scalar valxesca4 = valxesca(4)^0.5

sym (4, 4) mvalxesca

mvalxesca.fill valxesca1, 0, 0,0,valxesca2, 0,0, valxesca3,0,valxesca4

matrix rxesca = vecxesca*mvalxesca*@transpose(vecxesca)

matrix dajeesca{!z} = (rxesca)*plsescatot{!z}

matrix vdajeesca{!z}

vector adajeesca{!z}

matrix udajeesca{!z} = @svd(dajeesca{!z}, adajeesca{!z}, vdajeesca{!z})

matrix svdauuesc{!z} = -vdajeesca{!z}/vdajeesca{!z}(1, 3)

vector gauufinesc{!z} = @columnextract(svdauuesc{!z}, 3)

vector gregafin{!z} = @subextract(gauufinesc{!z}, 2,1,3,1)

vector residua{!z} = ya{!z} - ydipa{!z}*gregafin{!z}

series serresa{!z}

mtos(residua{!z} , serresa{!z})

equation resa{!z}.ls serresa{!z} X1 X2 X5

vector bregafin{!z} = resa{!z}.@coefs

’ESTIMATE OF SECOND EQUATION

sym xescb2 = @transpose(xescb)*xescb

vector valxescb = @eigenvalues(xescb2)
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matrix vecxescb = @eigenvectors(xescb2)

scalar valxescb1 = valxescb(1)^0.5

scalar valxescb2 = valxescb(2)^0.5

scalar valxescb3 = valxescb(3)^0.5

sym (3, 3) mvalxescb

mvalxescb.fill valxescb1, 0, 0,valxescb2, 0, valxescb3

matrix rxescb = vecxescb*mvalxescb*@transpose(vecxescb)

matrix dajeescb{!z} = (rxescb)*plsescbtot{!z}

matrix vdajeescb{!z}

vector adajeescb{!z}

matrix udajeescb{!z} = @svd(dajeescb{!z}, adajeescb{!z}, vdajeescb{!z})

matrix svdbddesc{!z} = -vdajeescb{!z}/vdajeescb{!z}(1, 2)

vector gbddfinesc{!z} = @columnextract(svdbddesc{!z}, 2)

vector gregbfin{!z} = @subextract(gbddfinesc{!z}, 2,1,2,1)

vector residub{!z} = yb{!z} - ya{!z}*gregbfin{!z}

series serresb{!z}

mtos(residub{!z} , serresb{!z})

equation resb{!z}.ls serresb{!z} X1 X3 X5 X7

vector bregbfin{!z} = resb{!z}.@coefs

’ESTIMATE OF THIRD EQUATION

sym xescc2 = @transpose(xescc)*xescc

vector valxescc = @eigenvalues(xescc2)

matrix vecxescc = @eigenvectors(xescc2)

scalar valxescc1 = valxescc(1)^0.5

scalar valxescc2 = valxescc(2)^0.5

scalar valxescc3 = valxescc(3)^0.5

sym (3, 3) mvalxescc

mvalxescc.fill valxescc1, 0, 0,valxescc2, 0, valxescc3

matrix rxescc = vecxescc*mvalxescc*@transpose(vecxescc)

matrix dajeescc{!z} = (rxescc)*plsescctot{!z}

matrix vdajeescc{!z}

vector adajeescc{!z}

matrix udajeescc{!z} = @svd(dajeescc{!z}, adajeescc{!z}, vdajeescc{!z})

matrix svdcttesc{!z} = -vdajeescc{!z}/vdajeescc{!z}(1, 2)
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vector gcttfinesc{!z} = @columnextract(svdcttesc{!z}, 2)

vector gregcfin{!z} = @subextract(gcttfinesc{!z}, 2,1,2,1)

vector residuc{!z} = yc{!z} - yb{!z}*gregcfin{!z}

series serresc{!z}

mtos(residuc{!z} , serresc{!z})

equation resc{!z}.ls serresc{!z} X1 X3 X4 X6

vector bregcfin{!z} = resc{!z}.@coefs

’RESULTS

matrix (4, 500) betaclimsvd

colplace( betaclimsvd, bregcfin{!z}, {!z})

matrix (2, 500) gammaclimsvd

colplace( gammaclimsvd, gcttfinesc{!z}, {!z})

matrix (6,500) lodeclimsvd

matplace(lodeclimsvd, gammaclimsvd, 1, 1)

matplace(lodeclimsvd, betaclimsvd, 3, 1)

matrix (4, 500) betablimsvd

colplace( betablimsvd, bregbfin{!z}, {!z})

matrix (2, 500) gammablimsvd

colplace( gammablimsvd, gbddfinesc{!z}, {!z})

matrix (6,500) lodeblimsvd

matplace(lodeblimsvd, gammablimsvd, 1, 1)

matplace(lodeblimsvd, betablimsvd, 3, 1)

matrix (3, 500) betaalimsvd

colplace( betaalimsvd, bregafin{!z}, {!z})

matrix (3, 500) gammaalimsvd

colplace( gammaalimsvd, gauufinesc{!z}, {!z})

matrix (6,500) lodealimsvd

matplace(lodealimsvd, gammaalimsvd, 1, 1)

matplace(lodealimsvd, betaalimsvd, 4, 1)

’LODE FI with empirical correction
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’CREATION OF EXTRADIAGONAL ELEMENTS OF A22

matrix auud{!z} = @transpose(yinca{!z})*x*xsecsec*@transpose(x)*yincb{!z}

matrix adud{!z} = @transpose(yinca{!z})*xincb

matrix atud{!z} = @transpose(xinca)*yincb{!z}

matrix aqud = @transpose(xinca)*xincb

matrix (6, 6) aud{!z}

matplace(aud{!z}, auud{!z}, 1, 1)

matplace(aud{!z}, adud{!z}, 1, 3)

matplace(aud{!z}, atud{!z}, 4, 1)

matplace(aud{!z}, aqud, 4, 3)

matrix auut{!z} = @transpose(yinca{!z})*x*xsecsec*@transpose(x)*yincc{!z}

matrix adut{!z} = @transpose(yinca{!z})*xincc

matrix atut{!z} = @transpose(xinca)*yincc{!z}

matrix aqut = @transpose(xinca)*xincc

matrix (6, 6) aut{!z}

matplace(aut{!z}, auut{!z}, 1, 1)

matplace(aut{!z}, adut{!z}, 1, 3)

matplace(aut{!z}, atut{!z}, 4, 1)

matplace(aut{!z}, aqut, 4, 3)

matrix budu{!z} = @transpose(yincb{!z})*x*xsecsec*@transpose(x)*yinca{!z}

matrix bddu{!z} = @transpose(yincb{!z})*xinca

matrix btdu{!z} = @transpose(xincb)*yinca{!z}

matrix bqdu = @transpose(xincb)*xinca

matrix (6, 6) bdu{!z}

matplace(bdu{!z}, budu{!z}, 1, 1)

matplace(bdu{!z}, bddu{!z}, 1, 4)

matplace(bdu{!z}, btdu{!z}, 3, 1)

matplace(bdu{!z}, bqdu, 3, 4)

matrix budt{!z} = @transpose(yincb{!z})*x*xsecsec*@transpose(x)*yincc{!z}

matrix bddt{!z} = @transpose(yincb{!z})*xincc

matrix btdt{!z} = @transpose(xincb)*yincc{!z}

matrix bqdt = @transpose(xincb)*xincc

matrix (6, 6) bdt{!z}

matplace(bdt{!z}, budt{!z}, 1, 1)
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matplace(bdt{!z}, bddt{!z}, 1, 3)

matplace(bdt{!z}, btdt{!z}, 3, 1)

matplace(bdt{!z}, bqdt, 3, 3)

matrix cutu{!z} = @transpose(yincc{!z})*x*xsecsec*@transpose(x)*yinca{!z}

matrix cdtu{!z} = @transpose(yincc{!z})*xinca

matrix cttu{!z} = @transpose(xincc)*yinca{!z}

matrix cqtu = @transpose(xincc)*xinca

matrix (6, 6) ctu{!z}

matplace(ctu{!z}, cutu{!z}, 1, 1)

matplace(ctu{!z}, cdtu{!z}, 1, 4)

matplace(ctu{!z}, cttu{!z}, 3, 1)

matplace(ctu{!z}, cqtu, 3, 4)

matrix cutd{!z} = @transpose(yincc{!z})*x*xsecsec*@transpose(x)*yincb{!z}

matrix cdtd{!z} = @transpose(yincc{!z})*xincb

matrix cttd{!z} = @transpose(xincc)*yincb{!z}

matrix cqtd = @transpose(xincc)*xincb

matrix (6, 6) ctd{!z}

matplace(ctd{!z}, cutd{!z}, 1, 1)

matplace(ctd{!z}, cdtd{!z}, 1, 3)

matplace(ctd{!z}, cttd{!z}, 3, 1)

matplace(ctd{!z}, cqtd, 3, 3)

’CREATION OF A22

vector residuoa{!z} = ya{!z} - x*coefa{!z}

vector residuob{!z} = yb{!z} - x*coefb{!z}

vector residuoc{!z} = yc{!z} - x*coefc{!z}

matrix (20, 3) newres{!z}

matplace(newres{!z}, residuoa{!z}, 1, 1)

matplace(newres{!z}, residuob{!z}, 1, 2)

matplace(newres{!z}, residuoc{!z}, 1, 3)

matrix (3, 3) gammatot{!z}

gammatot{!z}.fill -1, vecauufin{!z}(2), vecauufin{!z}(3), vecbddfin{!z}(2), -1, 0, 0,

veccttfin{!z}(2), -1

matrix ulode{!z} = -newres{!z}*gammatot{!z}

sym sigma{!z} = (@transpose(ulode{!z})*ulode{!z})/14
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matrix ulode{!z} = -newres{!z}*gammatot{!z}

sym sigma{!z} = (@transpose(ulode{!z})*ulode{!z})/14

sym sigmainv{!z} = @inverse(sigma{!z})

matrix sauu{!z} = sigmainv{!z}(1, 1)*auu{!z}

matrix saud{!z} = sigmainv{!z}(1, 2)*aud{!z}

matrix saut{!z} = sigmainv{!z}(1, 3)*aut{!z}

matrix sbdu{!z} = sigmainv{!z}(2, 1)*bdu{!z}

matrix sbdd{!z} = sigmainv{!z}(2, 2)*bdd{!z}

matrix sbdt{!z} = sigmainv{!z}(2, 3)*bdt{!z}

matrix sctu{!z} = sigmainv{!z}(3, 1)*ctu{!z}

matrix sctd{!z} = sigmainv{!z}(3, 2)*ctd{!z}

matrix sctt{!z} = sigmainv{!z}(3, 3)*ctt{!z}

matrix (18, 18) a{!z}

matplace(a{!z}, sauu{!z}, 1, 1)

matplace(a{!z}, saud{!z}, 1, 7)

matplace(a{!z}, saut{!z}, 1, 13)

matplace(a{!z}, sbdu{!z}, 7, 1)

matplace(a{!z}, sbdd{!z}, 7, 7)

matplace(a{!z}, sbdt{!z}, 7, 13)

matplace(a{!z}, sctu{!z}, 13, 1)

matplace(a{!z}, sctd{!z}, 13, 7)

matplace(a{!z}, sctt{!z}, 13, 13)

sym sa{!z} = a{!z}

’CHOICE OF SUB-EIGENVECTORS WHICH MINIMIZE THE ESTIMATE

RESIDUAL VARIANCE

matrix kautovec{!z} = @eigenvectors(sa{!z})

matrix kautoval{!z} = @eigenvalues(sa{!z})

matrix kveca{!z} = -kautovec{!z}/kautovec{!z}(1, 1)

vector finafina{!z} = @subextract(kveca{!z}, 1, 1, 6, 1)

matrix kvecab{!z} = -kautovec{!z}/kautovec{!z}(1, 2)

vector finafinb{!z} = @subextract(kvecab{!z}, 1, 2, 6, 2)

matrix kvecac{!z} = -kautovec{!z}/kautovec{!z}(1, 3)

vector finafinc{!z} = @subextract(kvecac{!z}, 1, 3, 6, 3)

matrix kvecb{!z} = -kautovec{!z}/kautovec{!z}(7, 1)
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vector finbfina{!z} = @subextract(kvecb{!z}, 7, 1, 12, 1)

matrix kvecbb{!z} = -kautovec{!z}/kautovec{!z}(7, 2)

vector finbfinb{!z} = @subextract(kvecbb{!z}, 7, 2, 12, 2)

matrix kvecbc{!z} = -kautovec{!z}/kautovec{!z}(7, 3)

vector finbfinc{!z} = @subextract(kvecbc{!z}, 7, 3, 12, 3)

matrix kvecc{!z} = -kautovec{!z}/kautovec{!z}(13, 1)

vector fincfina{!z} = @subextract(kvecc{!z}, 13, 1, 18, 1)

matrix kveccb{!z} = -kautovec{!z}/kautovec{!z}(13, 2)

vector fincfinb{!z} = @subextract(kveccb{!z}, 13, 2, 18, 2)

matrix kveccc{!z} = -kautovec{!z}/kautovec{!z}(13, 3)

vector fincfinc{!z} = @subextract(kveccc{!z}, 13, 3, 18, 3)

vector provaaa{!z} = @subextract(kveca{!z}, 2, 1, 6, 1)

vector provaab{!z} = @subextract(kvecab{!z}, 2, 2, 6, 2)

vector provaac{!z} = @subextract(kvecac{!z}, 2, 3, 6, 3)

vector erroreaa{!z} = ya{!z} - zuno{!z}*provaaa{!z}

vector erroreab{!z} = ya{!z} - zuno{!z}*provaab{!z}

vector erroreac{!z} = ya{!z} - zuno{!z}*provaac{!z}

vector varianzaaa{!z} = @transpose(erroreaa{!z})*erroreaa{!z}

vector varianzaab{!z} = @transpose(erroreab{!z})*erroreab{!z}

vector varianzaac{!z} = @transpose(erroreac{!z})*erroreac{!z}

vector provaba{!z} = @subextract(kvecb{!z}, 8, 1, 12, 1)

vector provabb{!z} = @subextract(kvecbb{!z}, 8, 2, 12, 2)

vector provabc{!z} = @subextract(kvecbc{!z}, 8, 3, 12, 3)

vector erroreba{!z} = yb{!z} - zdue{!z}*provaba{!z}

vector errorebb{!z} = yb{!z} - zdue{!z}*provabb{!z}

vector errorebc{!z} = yb{!z} - zdue{!z}*provabc{!z}

vector varianzaba{!z} = @transpose(erroreba{!z})*erroreba{!z}

vector varianzabb{!z} = @transpose(errorebb{!z})*errorebb{!z}

vector varianzabc{!z} = @transpose(errorebc{!z})*errorebc{!z}

vector provaca{!z} = @subextract(kvecc{!z}, 14, 1, 18, 1)

vector provacb{!z} = @subextract(kveccb{!z}, 14, 2, 18, 2)

vector provacc{!z} = @subextract(kveccc{!z}, 14, 3, 18, 3)

vector erroreca{!z} = yc{!z} - ztre{!z}*provaca{!z}

vector errorecb{!z} = yc{!z} - ztre{!z}*provacb{!z}

vector errorecc{!z} = yc{!z} - ztre{!z}*provacc{!z}
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vector varianzaca{!z} = @transpose(erroreca{!z})*erroreca{!z}

vector varianzacb{!z} = @transpose(errorecb{!z})*errorecb{!z}

vector varianzacc{!z} = @transpose(errorecc{!z})*errorecc{!z}

vector (3, 1) minvara{!z}

minvara{!z}.fill varianzaaa{!z}(1), varianzaab{!z}(1), varianzaac{!z}(1)

scalar mina{!z} = @min(minvara{!z})

vector (3, 1) minvarb{!z}

minvarb{!z}.fill varianzaba{!z}(1), varianzabb{!z}(1), varianzabc{!z}(1)

scalar minb{!z} = @min(minvarb{!z})

vector (3, 1) minvarc{!z}

minvarc{!z}.fill varianzaca{!z}(1), varianzacb{!z}(1), varianzacc{!z}(1)

scalar minc{!z} = @min(minvarc{!z})

if mina{!z} - varianzaaa{!z}(1) = 0 then matrix kvecaa{!z} = -kautovec{!z}/kautovec{!z}(1,

1)

vector finafin{!z} = @subextract(kvecaa{!z}, 1, 1, 6, 1)

scalar auto_presoa{!z} = 1

else

if mina{!z} - varianzaab{!z}(1) = 0 then

matrix kvecaa{!z} = -kautovec{!z}/kautovec{!z}(1, 2)

vector finafin{!z} = @subextract(kvecaa{!z}, 1, 2, 6, 2)

scalar auto_presoa{!z} = 2

else

if mina{!z} - varianzaac{!z}(1) = 0 then matrix kvecaa{!z} = -kautovec{!z}/kautovec{!z}(1,

3)

vector finafin{!z} = @subextract(kvecaa{!z}, 1, 3, 6, 3)

scalar auto_presoa{!z} = 3

endif

endif

endif

if minb{!z} - varianzaba{!z}(1) = 0 then matrix kvecba{!z} = -kautovec{!z}/kautovec{!z}(7,

1)

vector finbfin{!z} = @subextract(kvecba{!z}, 7, 1, 12, 1)

scalar auto_presob{!z} = 1

else

if minb{!z} - varianzabb{!z}(1) = 0 then
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matrix kvecba{!z} = -kautovec{!z}/kautovec{!z}(7, 2)

vector finbfin{!z} = @subextract(kvecba{!z}, 7, 2, 12, 2)

scalar auto_presob{!z} = 2

else

if minb{!z} - varianzabc{!z}(1) = 0 then matrix kvecba{!z} = -kautovec{!z}/kautovec{!z}(7,

3)

vector finbfin{!z} = @subextract(kvecba{!z}, 7, 3, 12, 3)

scalar auto_presob{!z} = 3

endif

endif

endif

if minc{!z} - varianzaca{!z}(1) = 0 then matrix kvecca{!z} = -kautovec{!z}/kautovec{!z}(13,

1)

vector fincfin{!z} = @subextract(kvecca{!z}, 13, 1, 18, 1)

scalar auto_presoc{!z} = 1

else

if minc{!z} - varianzacb{!z}(1) = 0 then

matrix kvecca{!z} = -kautovec{!z}/kautovec{!z}(13, 2)

vector fincfin{!z} = @subextract(kvecca{!z}, 13, 2, 18, 2)

scalar auto_presoc{!z} = 2

else

if minc{!z} - varianzacc{!z}(1) = 0 then matrix kvecca{!z} = -kautovec{!z}/kautovec{!z}(13,

3)

vector fincfin{!z} = @subextract(kvecca{!z}, 13, 3, 18, 3)

scalar auto_presoc{!z} = 3

endif

endif

endif

matrix (6, 500) lodea

colplace( lodea, finafin{!z}, {!z})

matrix (6, 500) lodeb

colplace( lodeb, finbfin{!z}, {!z})

matrix (6, 500) lodec

colplace( lodec, fincfin{!z}, {!z})
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’3SLS AND FIML

system tresls{!z}

tresls{!z}.append serya{!z} = c(1) + c(2)*X2 + c(3)*X5 + c(4)*seryb{!z} + c(5)*seryc{!z}

@ X2 X5 seryb{!z} seryc{!z} c(1)

tresls{!z}.append seryb{!z} = c(6) + c(7)*X3 + c(8)*X5 + c(9)*X7 + c(10)*serya{!z}

@ X3 X5 X7 serya{!z} c(6)

tresls{!z}.append seryc{!z} = c(11) + c(12)*X3 + c(13)*X4 + c(14)*X6 + c(15)*seryb{!z}

@ X3 X4 X6 seryb{!z} c(11)

tresls{!z}.3sls

vector coeftresls{!z} = tresls{!z}.@coefs

matrix (15, 500) fintresls

colplace(fintresls, coeftresls{!z}, {!z})

system fumil{!z}

fumil{!z}.append serya{!z} = c(1) + c(2)*X2 + c(3)*X5 + c(4)*seryb{!z} + c(5)*seryc{!z}

@ X2 X5 seryb{!z} seryc{!z} c(1)

fumil{!z}.append seryb{!z} = c(6) + c(7)*X3 + c(8)*X5 + c(9)*X7 + c(10)*serya{!z}

@ X3 X5 X7 serya{!z} c(6)

fumil{!z}.append seryc{!z} = c(11) + c(12)*X3 + c(13)*X4 + c(14)*X6 + c(15)*seryb{!z}

@ X3 X4 X6 seryb{!z} c(11)

fumil{!z}.fiml

vector coeffumil{!z} = fumil{!z}.@coefs

matrix (15, 500) finfumil

colplace(finfumil, coeffumil{!z}, {!z})

’LODE FI BASED ON SVD

matrix (3, 3) gammatotnew{!z}

gammatotnew{!z}.fill -1, gauufinesc{!z}(2), gauufinesc{!z}(3), gbddfinesc{!z}(2), -1,

0, 0, gcttfinesc{!z}(2), -1

matrix ulodenew{!z} = -newres{!z}*gammatotnew{!z}

sym sigmanew{!z} = (@transpose(ulodenew{!z})*ulodenew{!z})/14

sym sigmainvnew{!z} = @inverse(sigmanew{!z})

matrix (4, 3) plsaesc{!z}

plsaesc{!z}.fill coeflsara{!z}, coeflsata{!z}, coeflsaia{!z}, coeflsaoa{!z}, coeflsbrb{!z},

coeflsbtb{!z}, coeflsbib{!z}, coeflsbob{!z}, coeflscrc{!z}, coeflsctc{!z}, coeflscic{!z},

coeflscoc{!z}
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matrix (3, 2) plsbesc{!z}

plsbesc{!z}.fill coeflsbeb{!z}, coeflsbtb{!z}, coeflsbib{!z}, coeflsaea{!z}, coeflsata{!z},

coeflsaia{!z}

matrix (3, 2) plscesc{!z}

plscesc{!z}.fill coeflscec{!z}, coeflscuc{!z}, coeflscoc{!z}, coeflsbeb{!z}, coeflsbub{!z},

coeflsbob{!z}

matrix xescab2 = @transpose(xesca)*xescb

matrix xescba2 = @transpose(xescb)*xesca

matrix xescac2 = @transpose(xesca)*xescc

matrix xescca2 = @transpose(xescc)*xesca

matrix xesccb2 = @transpose(xescc)*xescb

matrix xescbc2 = @transpose(xescb)*xescc

matrix suuesc{!z} = sigmainvnew{!z}(1, 1)*xesca2

matrix sudesc{!z} = sigmainvnew{!z}(1, 2)*xescab2

matrix sutesc{!z} = sigmainvnew{!z}(1, 3)*xescac2

matrix sduesc{!z} = sigmainvnew{!z}(2, 1)*xescba2

matrix sddesc{!z} = sigmainvnew{!z}(2, 2)*xescb2

matrix sdtesc{!z} = sigmainvnew{!z}(2, 3)*xescbc2

matrix stuesc{!z} = sigmainvnew{!z}(3, 1)*xescca2

matrix stdesc{!z} = sigmainvnew{!z}(3, 2)*xesccb2

matrix sttesc{!z} = sigmainvnew{!z}(3, 3)*xescc2

matrix (10, 10) preaesc{!z}

matplace(preaesc{!z}, suuesc{!z}, 1, 1)

matplace(preaesc{!z}, sudesc{!z}, 1, 5)

matplace(preaesc{!z}, sutesc{!z}, 1, 8)

matplace(preaesc{!z}, sduesc{!z}, 5, 1)

matplace(preaesc{!z}, sddesc{!z}, 5, 5)

matplace(preaesc{!z}, sdtesc{!z}, 5, 8)

matplace(preaesc{!z}, stuesc{!z}, 8, 1)

matplace(preaesc{!z}, stdesc{!z}, 8, 5)

matplace(preaesc{!z}, sttesc{!z}, 8, 8)

sym spreaesc{!z} = preaesc{!z}

matrix escvec{!z} = @eigenvectors(spreaesc{!z})

vector escval{!z} = @eigenvalues(spreaesc{!z})

for !v = 1 to @rows(escval{!z})
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vector radesc{!v} = escval{!z}({!v})^0.5

matrix (@rows(escval{!z}), 1) mradesc{!z}

rowplace(mradesc{!z}, radesc{!v},{!v})

vector vradesc{!z} = mradesc{!z}

matrix dradesc{!z} = @makediagonal(vradesc{!z})

matrix stanesc{!z} = escvec{!z}*dradesc{!z}*@transpose(escvec{!z})

next

matrix (10, 7) plsesctot{!z}

matplace(plsesctot{!z},plsaesc{!z},1,1)

matplace(plsesctot{!z},plsbesc{!z}, 5, 4)

matplace(plsesctot{!z},plscesc{!z},8,6)

’CREATION OF Π̂12

matrix plescsvd{!z} = stanesc{!z}*plsesctot{!z}

matrix plsvdaesc{!z} = @subextract(plescsvd{!z}, 1, 1,10,1)

matrix plsvdbesc{!z} = @subextract(plescsvd{!z}, 1, 4, 10, 4)

matrix plsvdcesc{!z} = @subextract(plescsvd{!z}, 1, 6, 10, 6)

matrix plsvdaaesc{!z} = @subextract(plescsvd{!z}, 1, 2, 10, 3)

matrix plsvdbbesc{!z} = @subextract(plescsvd{!z}, 1, 5, 10, 5)

matrix plsvdccesc{!z} = @subextract(plescsvd{!z}, 1, 7, 10, 7)

matrix (10, 7)plsescnew{!z}

matplace(plsescnew{!z},plsvdaesc{!z},1,1)

matplace(plsescnew{!z},plsvdbesc{!z}, 1, 2)

matplace(plsescnew{!z},plsvdcesc{!z}, 1, 3)

matplace(plsescnew{!z},plsvdaaesc{!z}, 1, 4)

matplace(plsescnew{!z},plsvdbbesc{!z}, 1 ,6)

matplace(plsescnew{!z},plsvdccesc{!z}, 1 ,7)

matrix vplsvdesc{!z}

vector aplsvdesc{!z}

matrix uplsvdesc{!z} = @svd(plsescnew{!z}, aplsvdesc{!z}, vplsvdesc{!z})

matrix escud{!z} = @subextract(vplsvdesc{!z}, 1, 5, 3, 7)

matrix esctot{!z} = @subextract(vplsvdesc{!z}, 1, 5, 7, 7)

matrix proesc{!z} = -esctot{!z}*@inverse(escud{!z})

scalar gapri{!z} = proesc{!z}(4,1)

scalar gasec{!z} = proesc{!z}(5,1)
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scalar gbpri{!z} = proesc{!z}(6,2)

scalar gcpri{!z} = proesc{!z}(7,3)

vector (3) gammaa{!z}

gammaa{!z}.fill -1, gapri{!z}, gasec{!z}

vector (2) gammab{!z}

gammab{!z}.fill -1, gbpri{!z}

vector (2) gammac{!z}

gammac{!z}.fill -1, gcpri{!z}

vector gregafinful{!z} = @subextract(gammaa{!z}, 2,1,3,1)

vector residuaful{!z} = ya{!z} - ydipa{!z}*gregafinful{!z}

series serresaful{!z}

mtos(residuaful{!z} , serresaful{!z})

equation resaful{!z}.ls serresaful{!z} X1 X2 X5

vector bregafinful{!z} = resaful{!z}.@coefs

vector gregbfinful{!z} = @subextract(gammab{!z}, 2,1,2,1)

vector residubful{!z} = yb{!z} - ya{!z}*gregbfinful{!z}

series serresbful{!z}

mtos(residubful{!z} , serresbful{!z})

equation resbful{!z}.ls serresbful{!z} X1 X3 X5 X7

vector bregbfinful{!z} = resbful{!z}.@coefs

vector gregcfinful{!z} = @subextract(gammac{!z}, 2,1,2,1)

vector residucful{!z} = yc{!z} - yb{!z}*gregcfinful{!z}

series serrescful{!z}

mtos(residucful{!z} , serrescful{!z})

equation rescful{!z}.ls serrescful{!z} X1 X3 X4 X6

vector bregcfinful{!z} = rescful{!z}.@coefs

matrix (3, 500) betaasvd2

colplace( betaasvd2, bregafinful{!z}, {!z})

matrix (4, 500) betabsvd2

colplace( betabsvd2, bregbfinful{!z}, {!z})

matrix (4, 500) betacsvd2

colplace( betacsvd2, bregcfinful{!z}, {!z})

matrix (3, 500) gammaasvd2

colplace( gammaasvd2, gammaa{!z}, {!z})

matrix (2, 500) gammabsvd2
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colplace( gammabsvd2, gammab{!z}, {!z})

matrix (2, 500) gammacsvd2

colplace( gammacsvd2, gammac{!z}, {!z})

’RESULTS

matrix (6, 500) lodeasvd

matplace(lodeasvd, gammaasvd2, 1, 1)

matplace(lodeasvd, betaasvd2, 4, 1)

matrix (6, 500) lodebsvd

matplace(lodebsvd, gammabsvd2, 1, 1)

matplace(lodebsvd, betabsvd2, 3, 1)

matrix (6, 500) lodecsvd

matplace(lodecsvd, gammacsvd2, 1, 1)

matplace(lodecsvd, betacsvd2, 3, 1)

next
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