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INTRODUCTION

The aim of this dissertation is to study a boundary value problem for a second order operator
in divergence form with Venttsel’s boundary conditions, which we can state formally :

(P )


ut(t, P )− Lu(t, P ) = f(t, P ) in [0, T ]×Q(ξ)

ut(t, P )−∆Su(t, P ) + b(P )u(t, P ) = − ∂u
∂nA

+ f(t, P ) on [0, T ]× S(ξ)

u(0, P ) = 0 in Q(ξ).

Here L is an operator in divergence form, Lu = div(ADu), [A]ij = aij(P ), i, j = 1, 2, 3; aij
are symmetric, uniformly bounded functions in Q(ξ) satisfying suitable ellipticity conditions
(see condition (H) in Section 3.2.2), Q(ξ) is the three-dimensional domain with lateral
boundary S(ξ) = F (ξ) × [0, 1], where F (ξ) is the Koch mixture snowflake; ∆S is the fractal
Laplacian on S(ξ) (see Theorem 3.2.6 in Section 3.2.2), b is a continuous strictly positive
function on Q

(ξ)
, ∂u
∂nA

is the co-normal derivative across S(ξ) to be defined in a suitable sense

(see Theorem 4.3.1), f(t, P ) is a given function in Cθ([0, T ];L2(Q
(ξ)
,m)), θ ∈ (0, 1) and m

is the sum of the three-dimensional Lebesgue measure and of a suitable measure g supported
on S(ξ) (see Section 3.2.2).

From the point of view of numerical analysis it is also crucial to study the corresponding
approximating (prefractal) problems (Ph). To this aim the asymptotic behavior, as h → ∞,
of the approximating solutions is studied. More precisely, we consider for each h ∈ N, the
prefractal problems, here formally stated:

(Ph)


(uh)t(t, P )− Lhuh(t, P ) = fh(t, P ) in [0, T ]×Q(ξ)

h

δh(uh)t(t, P )−∆Shuh(t, P ) + δhb(P )uh(t, P ) = − ∂u
∂nAh

+ δhfh(t, P ) on [0, T ]× S(ξ)
h

uh(0, P ) = 0 in Q(ξ)
h .

We denote by Lhu = div(AhDu), [Ah]ij = ahij(P ), i, j = 1, 2, 3; ahij are uniformly
bounded functions in Q(ξ), satisfying suitable ellipticity conditions (see condition (Hh) in
Section 3.2.1), Q(ξ)

h are a sequence of increasing (invading) domains approximating Q(ξ),
S

(ξ)
h = F

(ξ)
h × [0, 1] are the corresponding approximating polyhedral surfaces, where F (ξ)

h

is a prefractal curve approximating F (see Section 1.4); ∆Sh is the piecewise tangential
Laplacian defined on Sh, ∂u

∂nAh

is the co-normal derivative across Sh to be defined in a
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suitable sense (see Theorem 4.3.2), fh(t, P ) is a given function in Cθ([0, T ];L2(Q,mh)),
θ ∈ (0, 1); mh is the sum of the three-dimensional Lebesgue measure and of the surface
measure δhσ of Sh, where δh is a positive constant (see Section 3.2.1).

Venttsel’ conditions are the most feasible boundary conditions for an elliptic or parabolic
problem, they include Dirichlet, Neumann and general oblique boundary conditions as spe-
cial cases.
They appeared for the first time in ([60]) in the framework of probability theory. From
the point of view of applications they occur in different contexts such as three-dimensional
water wave theory, models of heat transfer and hydraulic fracturing (see [28], [57], [8]).

In the framework of heat transfer, Venttsel’ boundary conditions appear when considering
the asymptotic behavior of heat flow problems for highly conductive coated structures, see
[13] for details. The interest in studying the heat flow across irregular domains with fractal
boundaries arises from the fact that a lot of industrial and natural processes lead to the for-
mation of rough surfaces or take place across them.
For example the current flow across rough electrodes in chemistry (see [56]) and the dif-
fusion processes in physiological membranes are transport phenomena taking place across
irregular layers/boundaries.
The literature on Venttsel’ problems in regular domains is huge, we refer to [14] and the
references listed in, as to Venttsel problems in fractal domains the first results, to our knowl-
edge, can be found in [38] where the two-dimensional case is considered.
In Venttsel’ problems, the fractal set has both a static and a dynamical role, that is on one side
it is the boundary of an Euclidean domain and on the other side it supports the notion of a
Laplacian, (as e.g. in transmission problems [32]-[38]), from the point of view of PDEs this
fact has a counterpart, since the associated energy functional is the sum of the bulk energy
and of the boundary (fractal) energy.
We define the form E[·]

E[u] =

∫
Q(ξ)

ADu ·DudL3 + ES(ξ) [u|S(ξ) ] +

∫
S(ξ)

b|u|S(ξ)|2dg,

defined on the space

V (Q(ξ), S(ξ)) = {u ∈ H1(Q(ξ)), u|S(ξ) ∈ D(S(ξ))},

where dL3 is the three-dimensional Lebesgue measure, [A]ij = aij(P ), i, j = 1, 2, 3, ES(ξ)

is the energy defined on the fractal boundary S(ξ) with domain D(S(ξ)) (see Section 3.2.2
for its definitions and properties), b is a continuous and strictly positive function defined on
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Q
(ξ)

, g is the Hausdorff measure supported on S(ξ) (see Section 1.4) and u|S(ξ) is the trace to
S(ξ) to be properly defined (see Section 2.2).
We also define the form E(h)[·]

E(h)[u] =

∫
Q(ξ)

χ
Q

(ξ)
h
AhDuDudL3 + E

S
(ξ)
h

[u|
S
(ξ)
h

] + δh

∫
S
(ξ)
h

b|u|
S
(ξ)
h
|2dσ

defined on the space

V (Q(ξ), S
(ξ)
h ) = {u ∈ H1(Q(ξ)), u|

S
(ξ)
h
∈ H1(S

(ξ)
h )},

where δh is a positive constant, dσ the surface measure on S(ξ)
h .

For classical fractal curves such as the Sierpiński gasket, the Koch curve, the snowflake and
so on, which are nice self similar sets, energy forms can be obtained as limits of suitable
approximating energies by exploiting the self-similarity of the underlying set (see e.g [17]).
We remark that also on scale irregular (non self-similar) sets, known as fractal mixture sets,
energy forms can be defined too (see [4] and [51]).

The extension to three-dimensional fractal case is not straightforward, in fact since fractal
surfaces are typically non self-similar sets, to define energy forms on them is a difficult task.
To our knowledge the first examples of energies on fractal surfaces can be found in [32],[34],
[36], [37] and [53], where the fractal surface is obtained by the Cartesian product of a fractal
set and a one dimensional interval, the corresponding energy forms are built taking into
account the underlying geometry. Indeed this is the type of surfaces we consider.
We study these Venttsel’ problems by a semigroup approach. In order to do this we consider
suitable abstract Cauchy problems (P h) and (P ). To this aim we consider the Venttsel’
energy formsE(h)[·] andE[·], proving that they are symmetric, closed, densely defined forms
in suitable Hilbert spaces (see Section 3.2.1 and 3.2.2) and that they admit non positive, self-
adjoint operators A(h)and A respectively such that

E(h)(u, v) = −(A(h)u, v), u ∈ D(A(h)), v ∈ V (Q(ξ), S
(ξ)
h ),

E(u, v) = −(Au, v), u ∈ D(A), v ∈ V (Q(ξ), S(ξ))

which are the infinitesimal generators of strongly continuous contraction semigroups T (h)(t)

and T (t) respectively (see Section 3.2.3). We prove existence and uniqueness result for the
solutions of the abstract Cauchy problems (P h) and (P ) respectively (see Section 4.2).
We also give the corresponding strong interpretations by proving that the solutions of (P h)

and (P ) satisfy the formally stated problems (Ph) and (P ) (see Theorems 4.3.1 and 4.3.2).
As to the asymptotic behavior of the solutions, it is to be pointed out that the presence of
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the time derivative in the boundary conditions has required, as a natural functional setting
for these problems, the spaces L2(Q,m) and L2(Q,mh), respectively; thus leading us to the
framework of varying Hilbert spaces, this is why we use the Mosco convergence (see [49]
and [50]) adapted to this setting, studied by Kuwae and Shioya in [29] and in the following
named as M-K-S convergence.
When studying the M-K-S convergence in our approach, a crucial role is played by the
existence of a core of smooth functions dense in the domain V (Q(ξ), S(ξ)).
In the two-dimensional case one can prove a complete characterization of the energy space
on the fractal curve in terms of "fractal" Lipschitz spaces, which in turn are subsets of Hölder
continuous functions on the fractal set (see Theorem 4.6 in [16], Theorem 3.1 in [39] for the
case of Koch curve and Theorem 1 in [24] for the case of Sierpiński gasket). In the three-
dimensional case, as far as we know, this characterization does not hold. Therefore it is of
the utmost importance to approximate the functions in the energy form domains by "smooth"
functions.
We prove density results for the energy spaces D(S(ξ)) and V (Q(ξ), S(ξ)). In Theorem
3.3.3 we prove that the space D(S(ξ)) has a core, that is a subset dense in D(S(ξ)), with
respect to the D(S(ξ)) norm; this in turn it is a crucial tool together with Proposition 3.3.5,
where we prove a delicate extension result for functions in D(S(ξ)), by using the Whitney
decomposition. In Theorem 3.3.4 we prove that there exists a subset of smooth functions
dense in V (Q(ξ), S(ξ)). These results are contained in [33].

When S is the equilateral surface, that is S = F × I , with F the equilateral snowflake, we
prove the Mosco-Kuwae-Shioya convergence of the energy formsE(h), which in turn implies
the convergence of the associated semigroups (see Theorem 3.4.5). This property is crucial
in proving the convergence of the solutions of problems (P h) to the solution of problem (P )

(see Theorems 4.2.2 and 4.2.3).
This is the plan of the thesis. In Chapter 1 we recall some generalities on fractal sets; in
particular we describe the construction of the Koch snowflake, of the fractal mixtures, and
we describe the geometry of the three-dimensional domains Q(ξ), Q(ξ)

h and the geometry of
their fractal boundaries. In Chapter 2 we introduce the functional spaces and trace theorems:
we give the definition of d-sets and d-measures and we state trace theorems on d-sets and on
piecewise regular sets. We introduce the Besov spaces B2,2

d
2

(S(ξ)). In Chapter 3 we introduce

the approximating energy forms E(h)[·], the fractal energy form E[·], the related semigroups
T (h)(t), T (t), their generators A(h), A with their main properties. We state and prove the
above mentioned density theorems on the domain of the fractal energy form. In order to
prove the M-K-S convergence of the energy formsE(h) toE, one has also to take into account
that there is a jump of dimension when passing from the prefractal surface to the limit fractal
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one. This is achieved by choosing suitably the factor δh and the constants σih, i = 1, 2 in the
definition of the forms ESh [·] (see (3.2.1)). In Chapter 4 we prove existence and uniqueness
results for the problems (P h) and (P ) respectively. The convergence of the solutions of
problems (P h) to the solution of problem (P ), follows from the M-K-S convergence of the
forms, which in turn implies the convergence of semigroups (see Theorem 3.4.5). At last we
give the strong interpretation of the solutions of the abstract problem (P h) and (P ). Namely
we prove that the solutions of the abstract Cauchy problems solve problems (P ) and (Ph)

in a suitable weak sense (see Theorems 4.3.1 and 4.3.2). In the Appendix we recall some
definitions and properties of forms, semigroups. For the sake of completeness we introduce
the Whitney decomposition and the diagonalization lemma and we recall the construction of
the energy form on the equilateral snowflake.



1. GENERALITIES ON FRACTAL SETS

Definition 1.0.1. Let Λ be an open subset of Rn. Its boundary Γ is continuous (Lipschitz
continuous, Ck,1) if for every p ∈ Γ there exists an open neighborhood V of p in Rn and new
orthogonal coordinates {y1, ..., yn} such that

1. V is a hypercube in the new coordinates:

V = {(y1, ..., yn)| − aj < yi < aj , 1 ≤ j ≤ n};

2. there exists a continuous function ϕ(respectively Lipschitz continuous, Ck,1, continu-
ously differentiable) , defined in

V ′ = {(y1, ..., yn)| − aj < yi < aj , 1 ≤ j ≤ n− 1}

and such that

|ϕ(P ′)| ≤ an/2, for every P ′ = (y1, ..., yn−1) ∈ V ′,
Λ ∩ V = {P = (P ′, yn) ∈ V |yn < ϕ(p′)},
Γ ∩ V = {p = (p′, yn) ∈ V |yn = ϕ(P ′)}.

Remark 1.0.2. In other words it is requested that in a neighborhood of p, Γ is the graph of
ϕ. The most important example of this definition is that of a subset of R2, whose boundary Γ

is polygonal: this open set will have Lipschitz boundary, not continuously differentiable.

Definition 1.0.3. Let Λ be an open subset Rn. Let’s say that Λ is a continuous sub-manifold
(respectively Lipschitz continuous, Ck,1, continuously differentiable) if for every p ∈ Γ there
exists a neighborhood V of p in Rn and an application ψ from V to Rn such that

1. ψ is injective

2. ψ together with ψ−1 (defined on ψ(V )) is continuous

3. Λ ∩ V = {p ∈ Λ|ψn(p) < 0}, where ψn(p) denotes the n-th component of ψ(p)

Definition 1.0.4. Let Λ be an open subset of Rn. Let’s say that Λ has the uniform property of
segment (respectively cone property), if for every P ∈ Γ,there exists an open neighborhood
V of P in Rn and new coordinates {y1, ..., yn} such that
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1. V is a hypercube in the new coordinates:

V = {(y1, ..., yn)| −aj < yi < aj , 1 ≤ j ≤ n}

2. p− z ∈ Λ when p ∈ Λ ∩ V and z ∈ C, where C is the open segment {0, ..., 0, zn|0 <
zn < h} (respectively C is the open cone {z = (z′, zn)|(cotθ)|z′| < zn < h} for some
θ ∈ (0, π/2] ) for some h > 0.

Theorem 1.0.5. A bounded and open subset of Rn has the uniform cone property if and only
if its boundary is Lipschitz continuous.

1.1 Self-similar sets

Definition 1.1.1. Let (X, dX) and (Y, dY ) be metric spaces. A map f : X → Y is said to be
Lipschitz continuous on X if

L = sup
x,y∈X,x6=y

dY (f(x), f(y))

dX(x, y)
<∞

The constant L is called the Lipschitz constant of f .

Definition 1.1.2. (Contraction). Let (X, d) be a metric space. If f : X → X is Lipschitz
continuous on X and its Lipschitz constant L < 1, then f is called contraction with respect
to the metric d with contraction factor L; L is denoted also by L = L(f). In particular, a
contraction f with contraction factor r is called similitude if d(f(x), f(y)) = rd(x, y) for
every x, y ∈ X . We denote by B(P0, r) = {x ∈ X : d(x, P0) < r}

Theorem 1.1.3. (Contraction principle). Let X be a complete metric space and let f : X →
X be a contraction with respect to the metric d. Then there exists a unique fixed point of f ,
that is, there exists a unique solution to the equation f(x) = x. Moreover if x∗ is the fixed
point of f , then {fn(a)}n≥0 converges to x∗ for every a ∈ X where fn is the n-th iteration
of f .

Theorem 1.1.4. Let (X, d) be a complete metric space. If fi : X → X is a contraction
with respect to the metric d for i = 1, 2, ..., N then there exists a unique non empty compact
subset K of X such that

K = f1(K) ∪ ... ∪ fN(K).

K is called self-similar set with respect to {f1, f2, ..., fN}.

Remark 1.1.5. The contraction principle is a special case of Theorem 1.1.4 when N = 1.
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We define

F (A)=∪1≤j≤Nfj(A)

for A ⊂ X . The main idea is to show the existence of a fixed point of F . In order to do so,
first a good domain for F has to be chosen:

C(X) = {A : A is a non empty compact subset of X}.

Obviously F is a mapping from C(X) to itself. We introduce now a metric δ on C(X),
which is called the Hausdorff metric on C(X).

Proposition 1.1.6. For A,B ∈ C(X) we define

δ(A,B) = inf{r > 0 : Ur(A) ⊇ B and Ur(B) ⊇ A},

where Ur(A) = {x ∈ X : d(x, P ) ≤ r for some P ∈ A}= ∪P∈AB(P, y). Then δ is a metric
on C(X). Moreover if (X, d) is complete, then (C(X), δ)is complete.

Proof. It is obvious that δ(A,B) = δ(B,A) ≥ 0 and δ(A,A) = 0.
δ(A,B) = 0 ⇒ A = B: for any n, U1/n(B) ⊇ A. Then for any x ∈ A, we can choose
xn ∈ B such that d(x, xn) ≤ 1/n. Since B is closed, x ∈ B. Then A ⊆ B. B ⊆ A is
obtained in the same way.
Triangular inequality: if r > δ(A,B) and s > δ(B,C), then Ur+s(A) ⊇ C and Ur+s(C) ⊇
A. Thus r + s ≥ δ(A,C). This implies that δ(A,B) + δ(B,C) ≥ δ(A,C).
It remains to prove that (C(X), δ) is complete if (X, d) is complete. We consider a Cauchy
sequence {An}n≥1 in (C(X), δ), and we define Bn = ∪k≥nAk.
First we show that Bn is compact. Since Bn is a decreasing sequence of closed sets, it
is enough to show that B1 is compact. For every r > 0, it can be chosen m such that
Ur/2(Am) ⊇ Ak such that k ≥ m. Since Am is compact, there exists a finite recover of Am
with sphere with ray r/2. We callQ this recover. It is immediate to verify that ∪x∈PBr(x) ⊇
Ur/2(Am) ⊇ ∪k≥mAk. Since ∪P∈QB(P, r) is closed, Q is a finite recover of sphere with ray
r for Bm. Adding to Q recovers with ray r A1, A2, ..., Am−1, we obtain a recovering with
sphere with ray r for B1. Then B1 is totally bounded. Moreover B1 is complete because it is
a closed subset of the complete metric space X . Then Bn is compact.
Since {Bn} is a decreasing sequence of non-empty compact sets, A = ∩n≥1Bn is non empty
and compact. For any r > 0, we can choose m so that Ur(Am) ⊇ Ak for all k ≥ m. Then
Ur(Am) ⊇ Bm ⊇ A. On the other hand Ur(A) ⊇ Bm ⊇ Am for sufficiently large m.
Then we have δ(A,Am) ≤ r for sufficiently large m. Hence Am → A for m → ∞ in the
Hausdorff metric. Then (C(X), δ) is complete.
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Theorem 1.1.4 can be proved in the following way using the Hausdorff metric:

Theorem 1.1.7. Let (X, d) be a complete metric space and let fj : X → X be a contraction
for j = 1, 2, ..., n. We define F : C(X)→ C(X) in this way

F (A) = ∪1≤j≤Nfj(A).

Then F has a unique fixed point K. Moreover, for every A ∈ C(X), F n(A) converges to K
for n→∞ with respect to the Hausdorff metric. We first prove two preliminary lemma

Lemma 1.1.8. Let A1, A2, B1, B2 ∈ C(X), then

δ(A1 ∪ A2, B1 ∪B2) ≤ max{δ(A1, B1), δ(A2, B2)}

Proof. If r > max{δ(A1, B1), δ(A2, B2)}, then Ur(A2) ⊇ B2 e Ur(A1) ⊇ B1. Hence
Ur(A1 ∪ A2) ⊇ B1 ∪ B2. In a similar way it holds Ur(B1 ∪ B2) ⊇ A1 ∪ A2. Then r ≥
δ(A1 ∪ A2, B1 ∪B2). This completes the proof.

Lemma 1.1.9. If f is a contraction with contraction factor r, then for every A,B ∈ C(X),
δ(f(A), f(B)) ≤ rδ(A,B).

Proof. If Us(A) ⊇ B and Us(B) ⊇ A, Usr(f(A)) ⊇ f(Us(A)) ⊇ f(B). The same argument
implies that Usr(f(B)) ⊇ f(A). Then, δ(f(A), f(B)) ≤ rs and this complete the proof.

Proof. Theorem 1.1.7.
Using Lemma 1.1.8, we get

δ(F (A), F (B)) = δ(∪1≤j≤Nfj(A),∪1≤j≤Nfj(B)) ≤ max
1≤j≤N

δ(fj(A), fj(B)).

From Lemma 1.1.9 δ(fj(A), fj(B)) ≤ rjδ(A,B) where rj is the contraction factor of fj . If
r = max1≤j≤N rj , then δ(F (A), F (B)) ≤ rδ(A,B). Then F is a contraction with respect
to the Hausdorff metric. From the Proposition 1.1.6 we deduce that (C(X), δ) is complete.
From the contraction principle it follows that F has a unique fixed point.

1.2 The Koch curve and the snowflake

Let K0 be a unit segment, having the endpoints A = (0, 0) and B = (1, 0). Let K1 the curve
obtained dividing K0 in three segment of equal length, removing the central segment and
replacing it by two sides of the equilateral triangle with base the segment removed. Then
applying the same procedure to every side of the curve K1, we get K2. Iterating this con-
struction, we obtain a sequence of polygonal prefractal curves Kh, one for every n in N0.
Let us consider a set of four contractive similitudes Ψ = {ψ1, ..., ψ4}, with the same con-

traction factor l−1 =
1

3
, defined in the following way
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ψ1(z) =
z

3
,

ψ2(z) =
z

3
ei
π
3 +

1

3
,

ψ3(z) =
z

3
e−i

π
3 +

1

2
+ i

√
3

6
,

ψ4(z) =
z

3
+

2

3

where ψi : C→ C, i = 1, ..., 4. Given a set E ⊂ Rd, we define

Ψ(E) = ∪4
i=1ψi(E)

and, for every integer h, let us denote by Ψh(E) = Ψ ◦ ... ◦Ψ(E) the h-th composition of Ψ.
Let K0 be the segment above defined, then for every h ∈ N we set

K1 = Ψ(K0) = ∪4
i=1ψi(K0),

.

.

.
Kh+1 = Ψ(Kh) = ∪M∈Fh ∪4

i=1 ψi(M)

where Fh = {M : M is a segment of Kh} is the set of the segments of the h-th prefractal
curveKh. The Koch curve is the unique compact setK invariant for Ψ, that isK = Ψ(K) =

∪4
i=1ψi(K). On the Koch curve K there exists an invariant measure µ that is∫

K
φdµ =

∑4
i=1

1
4

∫
K

(φ ◦ ψi)dµ, φ ∈ C0(K)

which is given by the normalized Hausdorff measure on K (see [21]). By the snowflake
F we denote the union of three complanar Koch curves (see [12]). We assume that the
junction points A1, A2, A3 are the vertices of a regular triangle with unit side length, that is
|A1 − A3| = |A1 − A2| = |A2 − A3| = 1. One can define, in a natural way, a finite Borel
measure µF supported on F by

µF := µ1 + µ2 + µ3 (1.2.1)

where µi denotes the normalized df -dimensional Hausdorff measure, restricted to Ki,
i = 1, 2, 3.

The measure µF is a d-measure (see Definition 2.1.1), that is there exist two positive con-
stants c1, c2

c1r
d ≤ µF (B(P, r) ∩ F ) ≤ c2r

d, ∀P ∈ F
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Fig. 1.1: Koch snowflake

where
d = df =

log4

log3
(1.2.2)

and where B(P, r) denotes the Euclidean ball in R2. K1 is the uniquely determined self-
similar set with respect to four suitable contractions ψ(1), ..., ψ(4), with respect to the same
ratio 1

3
(see [16]). Let V (1)

0 := {A1, A3}, V (1)
j1...jh

:= ψ
(1)
j1
◦ ... ◦ ψ(1)

jh
(V

(1)
0 ) and

V
(1)
h :=

4⋃
j1...jh=1

V
(1)
j1...jh

.

On every V i
h , i = 1, 2, 3, it can be defined a discrete measure µhi , for any h ≥ 1, by

µhi =
1

4h

∑
P∈V ih

δP (1.2.3)

where δP denotes the Dirac measure at the point P . Note that µhi (V
i
h) = 1 + 1

4h
. It can be

proved (see [39]) that the sequence (µhi )h≥1 weakly converge in C(Ki)
′ to the measure µi.

We set V (1)
? := ∪h≥0V

(1)
h . It holds that K1 = V

(1)
? . Let K(0)

1 denote the unit segment whose
endpoints are A1 and A3 and K(1)

j1...jh
:= ψ

(1)
j1
◦ ... ◦ ψ(1)

jh
(K

(0)
1 ). For h > 0 we denote

F h
(1) = {ψ(1)

j1
◦ ... ◦ ψ(1)

jh
(K

(0)
1 ), j1, ..., jh = 1, ..., 4}.

We set K(1)
1 =

4⋃
j=1

ψ
(1)
j (K

(0)
1 ), K(h+1)

1 =
⋃

M∈Fh
(1)

4⋃
j=1

ψ
(1)
j (M), where M denotes a segment of

the h+ 1-th generation; K(h+1)
1 the polygonal curve and V (1)

h+1 the set of its vertices.
In a similar way, it is possible to approximate K2, K3 by the sequences (V

(2)
h )h≥0,

(V
(3)
h )h≥0, and denote their limits by V

(2)
? , V

(3)
? , and the corresponding polygonal curves
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K
(h+1)
2 , K

(h+1)
3 .

In order to approximate F , we define the increasing sequence of finite sets of points
Vh := ∪3

i=1V
(i)
h , h ≥ 1 and V? := ∪h≥1Vh. It holds that V? = ∪3

i=1V
(i)
? and F = V?.

In the following we denote by

Fh+1 =
3⋃
i=1

K
(h+1)
i

the closed polygonal curve approximating F at the (h+ 1)−th step.

1.3 Fractal mixtures

In this section we recall the definition of scale irregular Koch curves (Koch mixtures), fol-
lowing the construction described in [51] and in [4].
Let A = {1, 2}: for a ∈ A, we consider 2 < la < 4, and for each a ∈ A we set

Ψ(a) = {ψ(a)
1 , ..., ψ

(a)
4 }

the family of contractive similitudes ψ(a)
i : C→ C, i = 1, ..., 4, with contraction factor l−1

a

ψ
(a)
1 (z) = z

la
, ψ(a)

2 (z) = z
la
eiθ(la) + 1

la
,

ψ
(a)
3 (z) = z

la
eiθ(la) + 1

2
+ i
√

1
la
− 1

4
, ψ(a)

4 (z) = z−1
la

+ 1

where

θ(la) = arcsin(

√
la(4−la)

2
).

Let Ξ = AN; we call ξ ∈ Ξ an environment. We define a left shift S on Ξ such that if
ξ = (ξ1, ξ2, ...), then Sξ = (ξ2, ξ3, ...). For O ⊂ R2, we set

Φ(a)(O) =
4⋃
i=1

ψ
(a)
i (O)

and

Φ
(ξ)
h (O) = Φ(ξ1)(O) ◦ ... ◦ Φ(ξh)(O).

We consider the line segment of unit length K with endpoints B = (0, 0) and C = (1, 0).
We set, for each h ∈ N, K(ξ),h = Φ

(ξ)
h (K): K(ξ),h is the h-th prefractal curve.

The fractal K(ξ) associated with the environment sequence ξ is defined by

K(ξ) =
∞⋃
h=1

Φ
(ξ)
h (Γ)
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Fig. 1.2: Koch type snowflake

where Γ = {B,C}.

These fractals don’t have any exact self-similarity, but K(ξ), ξ ∈ Ξ satisfies

K(ξ) = Φ(ξ1)(K(Sξ)).

For ξ ∈ Ξ, we set i|h = (i1, i2, ..., ih) and ψi|h = ψ
(ξ1)
i1
◦ ... ◦ ψ(ξh)

ih
and for any O ⊂ R2,

ψi|h(O) = Oi|h. There exists a unique Radon measure µ(ξ) on K(ξ) such that

µ(ξ)(ψi|h(K
(Shξ))) = 1

4h

(see Section 2 in [4]).
The fractal set K(ξ) and the measure µ(ξ) depend on the structural constants of the families
and the asymptotic frequency of the occurrence of each family. We denote by c(ξ)

a (h) the
frequency of the occurrence of a in the finite sequence ξ|h, h ≥ 1:

c
(ξ)
a (h) = 1

h

h∑
i=1

1ξi=a, a = 1, 2

Let pa be a probability distribution on A and suppose that ξ satisfies

c
(ξ)
a (h)→ pa, h→∞,

where 0 ≤ pa ≤ 1, p1 + p2 = 1; it also holds
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|c(ξ)
a (h)− pa| ≤

f(h)

h
,

a = 1, 2 (h ≥ 1), where f is an increasing function on the real line, f(0) = 1, f(h) ≤ f0h
β0 ,

f0 > 1, 0 ≤ β0 < 1.
If β0 = 0, the measure µ(ξ) is a d(ξ)-measure in the sense of the Definition 3.1, that is there
exist two positive constants C1, C2, such that

C1r
d(ξ) ≤ µ(ξ)(B(P, r)

⋂
K(ξ)) ≤ C2r

d(ξ) , ∀P ∈ K(ξ)

with
d(ξ) =

ln4

p1lnl1 + p2lnl2
(1.3.4)

where B(P, r) denotes the Euclidean ball with center in P and radius 0 < r ≤ 1 and pa is
the probability distribution on A.
If β0 > 0 instead

C1r
d(ξ)−i ≤ µ(ξ)(B(P, r)

⋂
K(ξ)) ≤ C2r

d(ξ)−i, ∀P ∈ K(ξ)

We will confine ourselves to the case β0 = 0.
Following [16], we introduce the snowflake-type set F (ξ), obtained by the union of three
Koch mixtures K(ξ) with the same structural constants, that is

F (ξ) =
3⋃
i=1

K
(ξ)
i

and we define a finite Radon measure supported on F (ξ)

µ
(ξ)
F := µ

(ξ)
1 + µ

(ξ)
2 + µ

(ξ)
3 ,

where µ(ξ)
i denotes the d(ξ)-dimensional normalized Hausdorff measure restricted to K(ξ)

i ,
i = 1, 2, 3.
The dimension of F (ξ) is

d(ξ) = d
(ξ)
f . (1.3.5)

We denote by Ω(ξ) the open bounded two-dimensional domain with boundary F (ξ).

1.4 Geometry of Q, Q(ξ), Qh, S, S(ξ), S(ξ)
h and Sh

By Sh we denote

Fh × I, (1.4.6)
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Fig. 1.3: Surface S

where Fh is the prefractal approximation of F at the step h, I = [0, 1]. Sh is a surface of
polyhedral type. We give a point P ∈ Sh the Cartesian coordinates P = (x, x3), where
x = (x1, x2) are the coordinates of the orthogonal projection of P on the plane containing
Fh and x3 is the coordinate of the orthogonal projection of P on the x3-line containing the
interval I .
By Ωh we denote the open bounded two-dimensional domain with boundary Fh. By Qh we
denote the domain with Sh as lateral surface and Ωh × {0} , Ωh × {1} as bases of Qh. The
measure on Sh is

dσ = dl × dx3,

where dl is arc-length measure on Fh and dx3 is the one-dimensional Lebesgue measure on
I . We introduce S = F × I the fractal surface given by the Cartesian product between F
and I; S is a polyhedral surface. It can be defined on S the finite Borel measure

dg = dµF × dx3

supported on S. The measure g is a d-measure (see Definition 2.1.1), that is there exist two
positive constants c1, c2

c1r
d ≤ g(B(P, r) ∩ S) ≤ c2r

d, ∀P ∈ S

where d = df + 1 = log12
log3

and where B(P, r) denotes the Euclidean ball in R3. By Ω

we denote the two-dimensional domain whose boundary is F . By Q we denote the open
cylindrical domain where S = F × I is the “lateral surface” and where the sets Ω × {0},
Ω × {1} are the bases. By R we denote the open equilateral triangle whose midpoints are
the vertices A1, A2, A3 and by T the open prism R× [0, 1] with bases R× {0} and R× {1}
By S(ξ) we denote the cylindrical-type fractal surface
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S(ξ) = F (ξ) × I ,

where I = [0, 1].

Fig. 1.4: Fractal mixture surface

We define on S(ξ) the following measure

dg(ξ) = dµ
(ξ)
F × dL1 (1.4.7)

supported on S(ξ), where L1 is the one dimensional Lebesgue measure on I , g(ξ) is a
d−measure with d = d

(ξ)
f + 1.

By Q(ξ) we denote the open cylindrical domain where S(ξ) = F (ξ)×I is the “lateral surface”
and where the sets Ω(ξ) × {0}, Ω(ξ) × {1} are the bases.
We denote by P ∈ S(ξ), the couple (x, y), where x = (x1, x2) are the coordinates of the
orthogonal projection of P on the plain containing F (ξ) and y is the coordinate of the orthog-
onal projection of P on the interval [0, 1]: (x1, x2) ∈ F (ξ), y ∈ I .
Similarly we denote by S(ξ)

h the Cartesian product F (ξ)
h × I , where F (ξ)

h is the prefractal ap-
proximation of F (ξ) at the step h, I = [0, 1]. S(ξ)

h is a surface of polyhedral type.
Finally, by Q(ξ)

h we denote the open cylindrical domain where S(ξ)
h = F

(ξ)
h × I is the “lateral

surface” and where the sets Ω
(ξ)
h × {0}, Ω

(ξ)
h × {1} are the bases.



2. FUNCTIONAL SPACES

By L2(·) we denote the Lebesgue space with respect to the Lebesgue measure L3 on measur-
able subsets of R3, which will be left to the context whenever that does not create ambiguity.
Let T be a closed set of R3, by C(T ) we denote the space of continuous functions on T and
C0,β(T ) is the space of Hölder continuous functions on T , 0 < β < 1. Let G be an open
set of R3, by Hs(G), s ∈ R+ we denote the Sobolev spaces, possibly fractional (see [54]).
D(G) is the space of infinitely differentiable functions with compact support on G.
From now on we will refer to the setsQ, S, Sh,Qh, S(ξ)

h ,Q(ξ)
h ,Q(ξ), S(ξ) as defined in Section

1.4.

2.1 Trace theorems on prefractal sets

Definition 2.1.1. A closed set M is a d-set in Rn, (0 < d ≤ n), if there exist a Borel measure
µ with suppµ = M and two positive constants c1, c2

c1r
d ≤ µF (B(P, r) ∩M) ≤ c2r

d, ∀P ∈M

Remark 2.1.2. F is a df -set. The measure µF is a df -measure. S is a df + 1-set. The
measure g is a df + 1-measure.

Definition 2.1.3. Let G be an open subset in R3. If f ∈ Hs(G), we call trace of f

γ0f(P ) = limr→0
1

|B(P,r)
⋂

G|

∫
B(P,r)

⋂
G
f(Q)dL3

Remark 2.1.4. It is known that the limit exists at quasi every P ∈ G with respect to the
(s, 2)−capacity (see [1]).

The following result is the Theorem 3.1 in [22], specialized in the case of interest. We refer
to [19] and [10] for a more general discussion.

Proposition 2.1.5. Let G denoteQh orQ(ξ)
h respectively and let Γ denote Sh and S(ξ)

h respec-
tively.
Let 1

2
< s < 3

2
. Then Hs− 1

2 (Γ) is the trace space to Γ of Hs(G) in the following sense:

1. γ0 is a continuous and linear operator from Hs(G) to Hs− 1
2 (Γ),
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2. there is a continuous linear operator Ext from Hs− 1
2 (Γ) to Hs(G), such that γ0 ◦Ext

is the identity operator in Hs− 1
2 (Γ).

From now on we denote by u|Γ the trace operator, that is u|Γ = γ0u.
The following Theorem characterizes the trace on the polyhedral set Sh of a function be-
longing to the Sobolev space Hβ(R3).

Theorem 2.1.6. Let Sh be as defined in (1.4.6). Let u ∈ Hβ(R3) and δh = (31−df )h. Then
for 1

2
≤ β ≤ 1,

‖u|Sh‖2
L2(Sh) ≤

Cβ
δh
‖u‖2

Hβ(R3), (2.1.1)

where Cβ is independent from h. In order to prove it, we recall the following lemma, (see
[25] page 104):

Lemma 2.1.7. Let 0 < d ≤ n and let µ be a positive measure satisfying µ(B(P, r)) ≤ crd,
r ≤ r0, x ∈ Rn. Then ∫

|P−t|≤a

|P − t|−γdµ(t) ≤ cad−γ,

if d > γ, a ≤ r0, and ∫
a≤|P−t|≤b

|P − t|−γ ≤ cad−γ,

if d < γ, b ≤ r0.
Here c is a constant depending on c1, γ, r0, d. we also recall some estimates on Bessel
kernels (see [59]):

Proposition 2.1.8. Gβ is a positive, decreasing function of |x|, analytic on Rn \ 0, satisfying

• |DjGβ(x)| ≤ c|x|α−|j|−n, for β < n+ |j|

• |DjGβ(x)| ≤ clog 1
|x| , 0 < |x| < 1, for β = n+ |j|

• |DjGβ(x)| ≤ ce−c1|x|, for all j, |x| ≥ 1, for some c1 > 0

Proof. Theorem 2.1.6.
We adapt the proof from the two dimensional case treated in [25]. Any u ∈ Hβ(Rn) can be
written in terms of Bessel kernels Gβ , of order β, that is u = Gβ ∗ g, g ∈ L2(R3), (see [58]).
Then

‖u|Sh‖2
L2(Sh) =

∫
Sh
|
∫
R3 Gβ(x− y)g(y)dy|2dσ ≤

∫
Sh

(
∫
R3 |Gβ(x− y)|2a|g(y)|2dy)

(
∫
R3 |Gβ(x− y)|2(1−a)dy)dσ,
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where 0 < a < 1 will be chosen later. By using the estimates for the Bessel kernels and
Lemma 1 on page 104 in [25], we get∫

R3 |Gβ(x− y)|2(1−a)dy ≤ C1

if
3 > 2(3− β)(1− a), (2.1.2)

where C1 is independent of h.
Moreover, since Sh is a 2−set with C2 = C3δ

−1
h , we get again from Lemma 1 on page 104

in [25] ∫
Sh
|Gβ(x− y)|2adσ ≤ C4δ

−1
h ,

if
2 > 2a(3− β), (2.1.3)

where C4 is independent of h.
By choosing a in order to satisfy (2.1.2) and (2.1.3), we get

‖u|Sh‖2
L2(Sh) ≤ C1

∫
Sh

(
∫
R3 |Gβ(x− y)|2a|g(y)|2dy)dσ =

∫
R3(
∫
Sh
|Gβ(x− y)|2a)|g(y)|2dy ≤

C1C4δ
−1
h

∫
R3 |g(y)|2dy = C1C4δ

−1
h ‖g‖2

L2(R3) = Cβδ
−1
h ‖u‖Hβ(R3),

where Cβ = C1C4 is independent of h.

Remark 2.1.9. We note that the Theorem 2.1.6 holds also when the trace is taken on the
polyhedral set S(ξ)

h (on the Sobolev spaces of the functions belonging to Hβ(R3)) with δh =

δ
(ξ)
h = ((l1l2)1−d(ξ)f )h.

Let T denote the (d + 1)− sets S or S(ξ) equipped with their (d + 1)−measures η. The
following theorem that characterizes the trace on the set Γ of a function belonging to Sobolev
spacesHβ(R3) is a consequence of Theorem 1 in Chapter 5 of [25] as the fractal Γ is a d−set.

Theorem 2.1.10. Let u ∈ Hβ(R3). Then, for 1− d
2
< β,

‖u‖2
L2(T) ≤ C∗β‖u‖2

Hβ(R3). (2.1.4)

It is possible to prove that the domains Ωh are (ε, δ) domains with parameter indipendent of
the increasing number of sides Fh and, taking into account the underlying Cartesian structure
of Qh = Ωh × I , this result holds for Qh.
The following theorem, consequence of extension Theorem for (ε, δ) domains (see [23])
holds:
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Theorem 2.1.11. There exists a bounded linear extension operator ExtJ : H1(Qh) →
H1(R3), such that

‖ExtJv‖2
H1(R3) ≤ CJ‖v‖2

H1(Qh), (2.1.5)

with Cj independent of h.

Theorem 2.1.12. There exists a linear extension operator Ext : Hβ(Q) → Hβ(R3), such
that, for any β > 0,

‖Extv‖Hβ(R3) ≤ Cβ‖v‖Hβ(Q) (2.1.6)

with Cβ depending on β.

2.2 Besov spaces

We recall that F is a df -set, the measure µF is a df -measure, S is a df + 1-set and the
measure g is a df + 1-measure.

We define the Besov space on S: we recall here the definition which best fits our aims and
we restrict ourselves to the case p = q = 2 and β = d

2
; for a general treatment see [25].

Definition 2.2.1. We say that f ∈ B2,2
d
2

(T) if f ∈ L2(T, η) and it holds

‖f‖B2,2
d
2

(T) < +∞,

where

‖f‖B2,2
d
2

(T) = ‖f‖L2(T,g) +

∫ ∫
|P−P ′|<1

|f(P )− f(P ′)|2

|P − P ′|2d+1
dη(P )dη(P ′)


1
2

(2.2.7)

Theorem 2.2.2. Let G denote Q, Q(ξ) and let T denote S or S(ξ) respectively, then B2,2
d
2

(T)

is the trace space of H1(G) that is:

1. There exists a linear and continuous operator γ0 : H1(G)→ B2,2
d
2

(T).

2. There exists a linear and continuous operator Ext : B2,2
d
2

(T) → H1(G), such that

γ0 ◦ Ext is the identity operator on B2,2
d
2

(T), that is

γ0 ◦ Ext = IdB2,2
d
2

(T)

For the proof see Chapter V page 103 in [25].
In the following we denote by the symbol u|T the trace γ0u to T.
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2.3 Varying Hilbert spaces

We introduce the notion of convergence in varying Hilbert spaces; for more details, see [29].

Definition 2.3.1. A sequence of Hilbert spaces {Hh}h∈N converges to a Hilbert space H if
there exists a dense subspace C ⊂ H and a sequence {Φh}h∈N of linear operators Φh : C →
Hh such that

limh→∞ ‖Φhu‖Hh = ‖u‖H for any u ∈ C

We set H =
⋃
Hh

⋃
H .

We now provide the definitions of strong and weak convergence in H.

Definition 2.3.2. A sequence of vectors {uh}h∈N strongly converges to u in H if uh ∈ Hh,
u ∈ H and there exists a sequence {ũm}m∈N ∈ C tending to u in H such that

limm→∞ limh→∞‖Φhũm − uh‖Hh = 0

Definition 2.3.3. A sequence of vectors {uh}h∈N weakly converges to u in H, if uh ∈ Hh,
u ∈ H and

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N strongly tending to v in H.

Remark 2.3.4. Strong convergence implies weak convergence.

Lemma 2.3.5. Let {uh}h∈N be a sequence weakly convergent to u in H , then

• suph ‖uh‖Hh <∞.

• ‖u‖H ≤ limh→∞‖uh‖Hh .

• uh → u if and only if ‖u‖H = limh→∞ ‖uh‖Hh .

Now we state other characterizations of strong convergence in H.

Lemma 2.3.6. Let u ∈ H and let {uh}h∈N be a sequence of vectors uh ∈ Hh. Then {uh}h∈N
strongly converges to u in H, if and only if

(uh, vh)Hh → (u, v)H

for every sequence {vh}h∈N with vh ∈ Hh weakly converging to a vector v in H.

Lemma 2.3.7. A sequence of vectors {uh}h∈N with uh ∈ Hh strongly converges to u in H if
and only if
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• ‖uh‖Hh → ‖u‖H

• (uh,Φhϕ)Hh → (u, ϕ)H for every ϕ ∈ C.

Lemma 2.3.8. Let {uh}h∈N be a sequence with uh ∈ Hh. If ‖uh‖Hh is uniformly bounded,
there exists a subsequence of {uh}h∈N which weakly converges in H.

Lemma 2.3.9. For every u ∈ H there exists a sequence {uh}h∈N, uh ∈ Hh strongly con-
verging to u in H.

Definition 2.3.10. A sequence of bounded operators {Bh}h∈N, Bh ∈ L(Hh) strongly con-
verges to an operator B ∈ L(H), if for every sequence of vectors {uh}h∈N with uh ∈ Hh

strongly converging to u in H, the sequence {Bhuh}h∈N strongly converges to Bu in H.

2.3.1 Convergence of spaces

From now on we put H = L2(Q,m), where m is the measure defined in (3.2.13), and the
sequence {Hh}h∈N = {L2(Q,mh)}h∈N, dove mh is the measure defined in (3.2.6), with
norms

‖u‖2
H = ‖u‖2

L2(Q) + ‖u|S‖2
L2(S,g), ‖u‖2

Hh
= ‖u‖2

L2(Qh) + ‖u|Sh‖2
L2(Sh,δh)

Proposition 2.3.11. Let δh = (31−df )h. The sequence of Hilbert spaces {Hh}h∈N converges
to the Hilbert space H .

Proof. We put C = C(Q) and Φh the identical operator on C(Q). We have to prove that

limh→∞ ‖u‖Hh = ‖u‖H , for any u ∈ C.

So we have to prove that

lim
h→∞

∫
Q

χQh|u|2dL3 =

∫
Q

|u|2dL3 (2.3.8)

and
lim
h→∞

δh

∫
I

∫
Fh

|u|2dldx3 =

∫
I

∫
F

|u|2dg (2.3.9)

and hence
lim
h→∞

δh

∫
Fh

|u|2dl =

∫
F

|u|2dµ. (2.3.10)

δh
∫
Fh
|u|2 dl=

∑3·4h
j=1 δh

∫
Mj
|u|2 dl,

where Mj denotes a segment of h-generation.
Since u(·, x3) is continuous on Fh for each x3 ∈ [0, 1], by the mean value Theorem, there
exists ξj ∈Mj such that
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δh
∫
Fh
|u|2 dl=

∑3·4h
j=1 δh|u(ξj, x3)|23−h.

We can write |
∫
F
|u(x, x3)|2dµ− δh

∫
Fh
|u(x, x3)|2dl|

≤ |
∫
F

|u(x, x3)|2dµ−
3·4h∑
j=1

|u(Pj, x3)|2

4h
|+ |

3·4h∑
j=1

δh3
−h(|u(Pj, x3)|2−|u(ξj, x3)|2)|, (2.3.11)

where Pj is one of the endpoints of Mj . The first term of right-hand side of the inequality
tends to zero as h→∞ from the Corollary 3.4 in [40], while the second vanishes since |u|2

is uniformly continuous in every Mj . Since

supx3∈[0,1] δh
∫
Fh
|u|2 dl ≤ 3‖u2‖C(Q)

the thesis follows from dominated convergence theorem.

Remark 2.3.12. We note that the Theorem 2.3.11 holds also with δh = δ
(ξ)
h = ((l1l2)1−d(ξ)f )h.



3. VENTTSEL’ ENERGY FORMS

3.1 Introduction

The aim of this chapter is to introduce the approximating energy forms E(h)[·] and the fractal
energy form E[·] related to the Venttsel’ problems we will study in the following chapter; in
particular we are interested to asymptotic behavior for h tending to +∞ of E(h)[·]: we will
prove the Mosco-convergence of the approximating energy forms to the fractal one in the
framework of varying Hilbert spaces (see Theorem 3.4.4). This will allow us to deduce the
convergence of the related resolvents and semigroups and then the convergence in a suitable
sense of the solutions of the approximating problem to the limit one (see Chapter 4).
To this purpose we prove the existence of a core of smooth functions in the domains of ES[·],
E[·] respectively (see Theorems 3.3.3 and 3.3.4). In order to prove these results , the main
tool is Whitney type argument. These results are contained in [33].
We point out that we can prove the Mosco-convergence only when Q is the open cylindrical
domain with lateral surface S, it is still an open problem in the general case of Q(ξ). The
density results hold also for the case of Q(ξ) too.

3.2 Energy forms

In this chapter we consider Q(ξ), Q(ξ)
h , S(ξ)

h , S(ξ) defined as in Section 1.4 and we suppress
all the superscripts ξ.

3.2.1 Approximating energy forms

We introduce now the energy forms ESh [·] on Sh = Fh × I , h ∈ N. By l we denote the arc-
length coordinate on each edge Fh and we introduce the coordinate x1 = x1(l), x2 = x2(l),
x3 = x3 on every affine face S(j)

h of Sh. By dl we denote the 1-dimensional measure given
by the arc-length l, and by dσ the surface measure on S(j)

h , dσ = dldx3. ESh [·] is defined by

ESh [u] =
∑
j

∫
S
(j)
h

σ1
h|Dlu|2 + σ2

h|∂3u|2

 dσ, (3.2.1)
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where σ1
h, σ2

h are positive constants, Dl denotes the tangential derivative along the prefractal
Fh, and u ∈ H1(Sh). By the Fubini Theorem, ESh can be written in the form

ESh [u] = σ1
h

∫
I

∫
Fh

|Dlu|2dl

 dx3 + σ2
h

∫
Fh

∫
I

|∂3u|2dx3

 dl. (3.2.2)

We denote by ESh(u, v) the corresponding bilinear form defined by polarization.
Let us consider now the function space

V (Q,Sh) = {u ∈ H1(Q) : u|Sh ∈ H1(Sh)} (3.2.3)

and the energy form

E(h)[u] =

∫
Q

χQhA
hDuDudL3 + ESh [u|Sh ] + δh

∫
Sh

b|u|Sh|2dσ (3.2.4)

defined on V (Q,Sh), where b ∈ C(Q), b > 0, χQh denotes the characteristic function of
Qh, δh is a positive constant, where Ah = [ahij], i, j = 1, 2, 3; ahij are uniformly bounded
functions in Q,

(Hh)


ahij = ahji, ∀i, j = 1, 2, 3

∃λ > 0 :∑3
i,j=1 a

h
ijξiξj ≥ λ

∑3
i=1 |ξi|2 ∀(ξ1, ξ2, ξ3) ∈ R3

The corresponding bilinear form, obtained by polarization is

Eh(u, v) =

∫
Q

χQhA
hDu ·DvdL3 + ESh(u|Sh , v|Sh) + δh

∫
Sh

bu|Shv|Shdσ (3.2.5)

defined on V (Q,Sh)× V (Q,Sh).
We introduce now the space L2(Q,mh), where mh is the measure defined as

dmh = χQhdL3 + χShδhdσ, (3.2.6)

where χSh denotes the characteristic function of Sh and δh is a positive constant.

Theorem 3.2.1. The formE(h), defined in (3.2.4) with dense domain V (Q,Sh), is a Dirichlet
form in L2(Q,mh), and the space V (Q,Sh) is a Hilbert space equipped with the scalar
product

(u, v)V (Q,Sh) =
∫
Q
χQhDuDvdL3 + ESh(u|Sh , v|Sh) + (u, v)L2(Q,mh).
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3.2.2 Fractal energy form

By proceeding as in [16] we construct an energy form on F , by defining a Lagrangian mea-
sure LF on F , which has the role of the Euclidean Lagrangian dL(u, v) = DuDv dx. The
corresponding energy form on F is given by

EF (u, v) =
∫
F
dLF (u, v)

with domain D(F ) = {u ∈ L2(F, µF ) : EF [u] < +∞} dense in L2(F, µF ), (see Section 5.3
in the Appendix and the references therein).

Proposition 3.2.2. D(F ) is a Hilbert space equipped with the following norm

‖u‖D(F ) = (‖u‖2
L2(F ) + EF [u])

1
2 . (3.2.7)

As in [42], Lemma 6.2.2 page 43, it can be proved that

Proposition 3.2.3. D(F ) is embedded in C0,β(F ), with β = ln4
2ln(min(l1,l2))

.
We now define the energy form on S and the fractal Laplacian ∆S .

ES[u] =

∫
I

EF [u]dx3 +

∫
F

∫
I

|∂3u|2dx3dµF , (3.2.8)

where ∂3 denotes the derivative with respect the direction x3.
The form ES is defined for u ∈ D(S),

D(S) = C(S) ∩ L2(0, 1;D(F )) ∩H1(0, 1;L2(F ))
‖·‖D(S)

, (3.2.9)

where ‖ · ‖D(S) is the intrinsic norm

‖u‖|D(S) = (ES[u] + ‖u‖2
L2(S,g))

1
2 . (3.2.10)

Proposition 3.2.4. ES(u, v) with domain D(S)×D(S) is a Dirichlet form in L2(S, g) and
D(S) is a Hilbert space equipped with the intrinsic norm.

Proof. For the proof see [53].

We now give an embedding result for the domain D(S). Unlike the two dimensional case
where there is a characterization of the functions in D(F ) in terms of the so-called Lipschitz
spaces (see Theorem 3.1 in [39]), for D(S) we do not have a characterization , but the
following result holds:

Proposition 3.2.5. D(S) ⊂ B2,2
β (S), for any 0 < β < 1.

Proof. We follow the proof in [32], adapted to the present case.
We recall that
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D(S) := C(S)
⋂
L2([0, 1];D(F ))

⋂
H1([0, 1];L2(F ))

‖·‖D(S)

Following [43] we define B2,2
Df−ε,1(S) := L2([0, 1];B2,2

Df−ε(F ))
⋂
H1([0, 1];L2(F )) for ε >

0.
For any Banach space X and for any 0 < β < 1, H1([0, 1];X) ⊂ Hβ([0, 1];X), moreover
if p = q = 2 and β is not integer, it holds

Hβ([0, 1];X) ≡ B2,2
β ([0, 1];X).

Hence if 0 < β < 1

B2,2
Df−ε,1(S) ⊂ L2([0, 1];B2,2

Df−ε(F ))
⋂
B2,2
β ([0, 1];L2(F )) ⊂

L2([0, 1];B2,2
β (F ))

⋂
B2,2
β ([0, 1];L2(F )) = B2,2

β (S),

the last equivalence can be proved following [43].

From Proposition 3.2.4 and Theorem 5.2.10 in the Appendix, we have

Theorem 3.2.6. There exists a unique non positive self-adjoint operator ∆S on L2(S, g) with
domain D(∆S) := {u ∈ L2(S, g) : ∆Su ∈ L2(S, g)} ⊆ D(S) dense in L2(S, g) such that

ES(u, v) = −
∫
S

∆Su vdg, for each u ∈ D(∆S), v ∈ D(S).

Now we introduce the energy form on Q. Let us consider the space

V (Q,S) =
{
u ∈ H1(Q) : u|S ∈ D(S)

}
(3.2.11)

and the energy form

E[u] =

∫
Q

ADu ·DudL3 + ES[u|S] +

∫
S

b|u|S|2dg, (3.2.12)

defined on V (Q,S), where b ∈ C(Q), b > 0, [A]ij = aij , where aij are uniformly bounded
functions in Q,

(H)


aij = aji, ∀i, j = 1, 2, 3

∃λ > 0 :∑3
i,j=1 aijξiξj ≥ λ

∑3
i=1 |ξi|2 ∀(ξ1, ξ2, ξ3) ∈ R3

We denote by L2(Q,m) the Lebesgue space with respect to the measure

dm = dL3 + dg, (3.2.13)
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where dg is defined in (1.4.7).
By E(u, v) we denote the bilinear form, obtained by polarization

E(u, v) =

∫
Q

ADu ·DvdL3 + ES(u|S, v|S) +

∫
S

bu|Sv|Sdg, (3.2.14)

defined on V (Q,S)× V (Q,S).

Proposition 3.2.7. The form E is a Dirichlet on L2(Q,m) and V (Q,S) is a Hilbert space
equipped with the scalar product

(u, v)V (Q,S) = (u, v)H1(Q) + ES(u|S, v|S) + (u|S, v|S)L2(S,g) (3.2.15)

with norm
‖u‖V (Q,S) = (‖u‖2

H1(Q) + ‖u|S‖2
D(S))

1
2 . (3.2.16)

Proof. We start proving that V (Q,S) is a Hilbert space: let {un} be a Cauchy sequence in
V (Q,S). Then {un} is a Cauchy sequence in H1(Q) and {un|S} is a Cauchy sequence in
D(S); hence there exists u ∈ H1(Q) and v ∈ D(S) such that

lim
n→∞

‖un − u‖H1(Q) = 0

lim
n→∞

‖un|S − v‖D(S) = 0

From the Theorem 2.2.2 it follows that u|S ∈ B2,2
df
2

(S). Moreover we have

‖u|S−v‖B2,2
df
2

(S) ≤ ‖u|S−un|S‖B2,2
df
2

(S)+‖un|S−v‖B2,2
df
2

(S) ≤ c1‖un−u‖H1(Q)+c2‖un|S−v‖D(S),

where the last inequality follows from Theorem 2.2.2 and 3.2.5. Then

‖u|S − v‖B2,2
df
2

(S) = 0

and thus u|S = v in B2,2
df
2

(S). By Theorem 3.2.5 and since v ∈ D(S), it follows that

u|S ∈ D(S) and then u ∈ V (Q,S).

Now we prove that the form E[u] is closed, that is, following the Definition 5.2.4, we want
to prove that if un ∈ V (Q,S), un → u in L2(Q,m) and E[un − um]→ 0 then u ∈ V (Q,S)

and E[un − u]→ 0: if un → u in L2(Q,m), then ‖un − um‖L2(Q,m) → 0, hence

‖un − um‖2
L2(Q,m)

+ E[un − um]→ 0
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The square root of ‖ · ‖2
L2(Q,m)

+ E[·] is a norm in V (Q,S) equivalent to (3.2.16), in fact∫
Q

|u|2dL3 +

∫
Q

ADu ·DudL3 + ES[u|S] +

∫
S

b|u|S|2dg +

∫
S

|u|S|2dg ≤

∫
Q

|u|2dL3 + |A|
∫
Q

Du ·DudL3 + ES[u|S] +

∫
S

b|u|S|2dg +

∫
S

|u|S|2dg ≤

C

∫
Q

|u|2dL3 +

∫
Q

Du ·DudL3 + ES[u|S] +

∫
S

|u|S|2dg


where |A| is the norm of the matrix A and C = max{|A|,maxS b + 1}. On the other hand,
by the ellipticity of A we have

λ

∫
Q

|Du|2dL3 +

∫
Q

|u|2dL3 + ES[u|S] + (min
S
b+ 1)

∫
S

|u|S|2dg ≤

∫
Q

|u|2dL3 +

∫
Q

ADu ·DudL3 + ES[u|S] +

∫
S

b|u|S|2dg +

∫
S

|u|S|2dg,

and choosing c = min{λ,minS(b+ 1)} we get

c

∫
Q

|u|2dL3 +

∫
Q

Du ·DudL3 + ES[u|S] +

∫
S

b|u|S|2dg +

∫
S

|u|S|2dg

 ≤
∫
Q

|u|2dL3 +

∫
Q

ADu ·DudL3 + ES[u|S] +

∫
S

b|u|S|2dg +

∫
S

|u|S|2dg

Then we proved that there exist two constants c and C such that c‖u‖2
V (Q,S) ≤

∫
Q
|u|2dL3 +∫

Q
ADu · DudL3 + ES[u|S] +

∫
S
b|u|S|2dg +

∫
S
|u|S|2dg ≤ C‖u‖2

V (Q,S). Then we have a
Cauchy sequence in V (Q,S), then u ∈ V (Q,S) and E[un − u]→ 0.
We now prove that the form E is Markovian following the Proposition 5.2.6: let u be a
function in V (Q,S) and let v = min(max(u, 0), 1): we have to prove that v ∈ V (Q,S) and
that E(v, v) ≤ E(u, u). The proof that ES[·] is a Dirichlet form follows from the Proposition
3.2.4.
We note that, from definition 0 ≤ v ≤ 1 a.e. in Q then v ∈ L2(Q,m); moreover∫

Q

|Dv|2dL3 =

∫
Q

χ{0≤u≤1}|Du|2dL3, (3.2.17)

in fact where u ≤ 0 then v = 0 (a.e) and where u ≥ 1 then v = 1 (a.e) and in these two
cases Dv = 0 a.e.; where 0 ≤ u ≤ 1 a.e., then v = u a.e and thus Dv = Du a.e. Then
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v ∈ H1(Q) and from
∫
Q
ADu · DudL3 ≤ |A|

∫
Q
|Du|2dL3, from 3.2.17 it follows that∫

Q
ADv ·DvdL3 < +∞. This proves that u ∈ V (Q,S).

We finally prove that∫
Q
ADv ·DvdL3 +

∫
S
b|v|S|2dg ≤

∫
Q
ADu ·DudL3 +

∫
S
b|u|S|2dg.

In fact ∫
Q
ADv ·DvdL3 =

∫
Q
Aχ{0≤u≤1}Du ·DudL3 ≤

∫
Q
ADu ·DudL3

and∫
S
b|v|S|2dg =

∫
S
χ{u≤0}0dg +

∫
S
bχ{0≤u≤1}|u|S|2dg +

∫
S
χ{u≥1}b · 1dg ≤

∫
S
b|u|S|2dg

and summing we get the thesis.
Thus this proves that E is a Dirichlet form.

3.2.3 Semigroups associated with E and E(h)

In this subsection we will mainly refer to Kato’s Theorem and Lumer-Phillips Theorem,
which we recall in the Appendix for sake of completeness.

Proposition 3.2.8. E(u, v) is a Dirichlet form in L2(Q,m) with domain V (Q,S) dense in
L2(Q,m), hence there exists a unique non positive, self-adjoint operator A on L2(Q,m)

with D(A) ⊆ V (Q,S) dense in L2(Q,m), such that

E(u, v) = −
∫
Q

Au · vdm, u ∈ D(A), v ∈ V (Q,S). (3.2.18)

Proof. From Proposition 3.2.7 it follows that E[·] is closed in L2(Q,m), hence from Theo-
rem 5.2.10 in the Appendix we get the thesis.

Since E[·] is a Dirichlet form, it follows that A is the infinitesimal generator of a strongly
continuous semigroup {T (t)}t≥0.
Moreover it holds

Proposition 3.2.9. {T (t)}t≥0 is a contraction analytic semigroup on L2(Q,m).

Proof. The contraction property follows from the Lumer-Phillips Theorem (see Theorem
5.4.16 in the Appendix). In order to prove the analyticity, it will be enough to prove that
there exists a positive α and λ0 such that

E[u] + λ0‖u‖2
L2(Q,m)

≥ α‖u‖V (Q,S)
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(see Proposition 3 Section 6 in Chapter 17 of [11]).

Proposition 3.2.10. E(h)(u, v) is a Dirichlet form in L2(Q,mh) with domain V (Q,Sh)

dense in L2(Q,mh), hence there exists a unique non positive, self-adjoint operator Ah on
L2(Q,mh) with D(Ah) ⊆ V (Q,Sh) dense in L2(Q,mh), such that

Eh(u, v) = −
∫
Q
Ahu · vdmh, u ∈ D(Ah), v ∈ V (Q,Sh).

Proof. From Proposition 3.2.1 it follows that E(h)[·] is closed in L2(Q,m), hence from The-
orem 5.2.10 in the Appendix we get the thesis.

Proposition 3.2.11. Let {Th(t)}t≥0 be the semigroup associated with Ah. Then
{
T h(t)

}
t≥0

is a contraction analytic semigroup on L2(Q,mh).

Proof. The contraction property follows from the Lumer-Phillips Theorem (see Theorem
5.4.16 in the Appendix). In order to prove the existence of strongly continuous semigroups
and its analyticity, it will be enough to prove that there exists a positive α and λ0 such that

E(h)[u] + λ0‖u‖2
L2(Q,mh) ≥ α‖u‖V (Q,Sh)

The proof follows from Chapter 17, Section 6 in [11].

3.3 Density theorems

In this section we prove two important density theorems for the energy spaces D(S) and
V (Q,S) respectively.

3.3.1 Density theorem for D(S)

Following the notations of [43] page 8, we denote by W (0, 1) the following space:

W (0, 1) := L2([0, 1];D(F ))
⋂

H1([0, 1];L2(F )). (3.3.1)

This is a Hilbert space equipped with the norm

‖u‖W (0,1) = (‖u‖2
L2([0,1];D(F )) + ‖∂3u‖2

L2([0,1];L2(F )))
1
2 . (3.3.2)

From [43] Theorem 2.1 page 11, the following result holds

Proposition 3.3.1. The space D([0, 1];D(F )) is densely embedded in W (0, 1), that is

D([0, 1];D(F ))
‖·‖W (0,1)

= W (0, 1) (3.3.3)

We now prove that
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Proposition 3.3.2. D(0, 1;D(F )) ⊂ C(S).

Proof. From Proposition 3.2.3 it holds that D(F ) ⊂ C0,β(F ), in particular D(F ) ⊂ C(F ),
then

D([0, 1];D(F )) ⊂ C([0, 1];D(F )) ⊂ C([0, 1];C(F )).

It remains to prove

C([0, 1];C(F )) ≡ C(S).

We follow the lines of the proof given in [5] pages 68-70. If u ∈ C(S), then for every
y ∈ [0, 1] u(·, y) ∈ C(F ), for every x ∈ F u(x, ·) ∈ C([0, 1]) and sup

y∈[0,1]

sup
x∈F
|u(x, y)| < ∞,

hence

C(S) ⊆ C([0, 1];C(F )).

If u ∈ C([0, 1];C(F )), then u(·, y) ∈ C(F ) for every fixed y in [0, 1] and from the continuity
of u in [0, 1] for every x in F it follows that

sup
x∈F
|u(x, y)− u(x, yn) | → 0

for every {yn} ⊂ I , yn → y when n→∞. Therefore C([0, 1];C(F )) ≡ C(S).

Theorem 3.3.3. The spaceD(0, 1;D(F )) is dense in D(S) with respect to the intrinsic norm
‖ · ‖D(S).

Proof. From Proposition 3.3.2 and (3.3.3), it holds that

D([0, 1];D(F )) ⊂ C(S)
⋂
L2([0, 1];D(F ))

⋂
H1([0, 1];L2(F ))

which amounts to say that D([0, 1];D(F )) ⊂ C(S)
⋂
W (0, 1); from the definition of D(S)

we have

C(S)
⋂
W (0, 1) ⊂ D(S).

It follows that
D([0, 1];D(F )) ⊂ D(S). (3.3.4)

Now let f be a function in D(S), then from the definition of D(S) it follows that there exists
{ϕn} ⊂ W (0, 1)

⋂
C(S) such that

‖ϕn − f‖D(S) → 0
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for n→∞.
On the other hand {ϕn} ⊂ W (0, 1), and from Proposition 3.3.1, there exists {ψm,n}m∈N ⊂
D([0, 1];D(F )) such that, for every fixed n

‖ψm,n − ϕn‖W (0,1) → 0 (3.3.5)

whenm→∞. From Fubini Theorem for measure valued functions it follows that ‖·‖D(S) =

‖ · ‖W (0,1) and hence for every fixed n

‖ψm,n − ϕn‖D(S) → 0 (3.3.6)

for m→∞.
We now use a diagonalization argument. From [2] Corollary 1.16 there exists an increasing
mapping

m→ n(m),

that tends to∞ for m→∞, such that

limm→∞‖ψm,n(m) − ϕn(m)‖D(S) ≤ limn→∞ lim
m→∞

‖ψm,n − ϕn‖D(S). (3.3.7)

The right hand of (3.3.7) tends to zero when m→∞ and from this it follows that
limm→∞‖ψm,n(m) − ϕn(m)‖D(S) = 0. Hence also

limm→∞‖ψm,n(m) − ϕn(m)‖D(S) = 0,

This proves that limm→∞ ‖ψm,n(m) − ϕn(m)‖D(S) = 0.
Finally ‖ψn(m),m−f‖D(S) ≤ ‖ψn(m),m−ϕn(m)‖D(S)+‖ϕn(m)−f‖D(S)→ 0 form→∞.

3.3.2 Density Theorem for V (Q,S)

We now state the main Theorem of the section, which allow us to approximate functions
in V (Q,S) by continuous functions, and this will be crucial in the proof of the Mosco-
convergence of the energy forms E(h)[·].

Theorem 3.3.4. For every u ∈ V (Q,S), there exists {ψn} ⊂ V (Q,S)
⋂
C(Q) such that:

1. ‖ψn − u‖H1(Q)→ 0, for n→∞

2. ‖ψn − u‖L2(Q,m)→ 0, for n→∞

3. ES[ψn − u]→ 0, for n→∞.

In order to prove this Theorem, we need a preliminary proposition on trace and extension
operators.
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Proposition 3.3.5. Let β =
Df
2

. Let γ0 and Ext be the trace and the extension operators
defined in Theorem 2.2.2 respectively. Then
(1) If u ∈ C(R3)

⋂
H1(R3) then γ0u ∈ C(S)

⋂
B2,2
β (S).

(2) If u ∈ C(S)
⋂
B2,2
β (S) then Ext(u) ∈ C(R3)

⋂
H1(R3).

Proof. We start proving (1). Since u ∈ H1(R3), then for P ∈ S, γ0u(P ) exists and from
Theorem 2.2.2 γ0u belongs to B2,2

β (S) with β =
Df
2

; since u is also in C(R3), in particular
u is in C(S).
By the mean value Theorem there exists ζ ∈ B(P, r)

⋂
S such that

1
m(B(P,r)

⋂
S)

∫
B(P,r)

⋂
S
u(P)dL3 = u(ζ).

Hence when r → 0

u(ζ)→ u(P ).

In order to prove (2) we make use of Whitney decomposition. We refer to the Appendix,
Section 5.1 and [25] page 23 for details. LetQi be the cubes in R3\S such that

⋃
i

Qi = R3\S,

with centers Pi, li =diamQi and {φi} the associated unity partition. From [25], page 109,
we define for P ∈ R3 \ S

Ext(u)(P ) =
∑
i∈I
φi(P )ci

∫
|t−Pi|≤6li

u(t)dg(t),

where ci = (g(|t− Pi| ≤ 6li))
−1.

In our assumptions u ∈ B2,2
β (S), then from Theorem 2.2.2 Ext(u) ∈ H1(R3) and

γ0(Ext(u)) = u on S. It results, by construction, that Ext(u) is in particular continuous
in R3 \ S (see Appendix). Since u ∈ C(S)

⋂
B2,2
β (S), it remains to prove that for every

P0 ∈ S

|Ext(u)(P )− u(P0)| → 0

when P → P0, that is for every ε > 0 ∃δε: |P − P0| < δε:|Ext(u)(P )− u(P0)| < ε.
We now estimate |Ext(u)(P )− u(P0)|.

|Ext(u)(P )− u(P0)| = |
∑
i∈I
φi(P )ci

∫
|t−Pi|≤6li

u(t)dg − u(P0)| =

|
∑
i∈I
φi(P )ci

∫
|t−Pi|≤6li

(u(t)− u(P0))dg| ≤ c(li)
−(df+1)

2 (
∫
|t−Pi|≤6li

|u(t)− u(P0)|2dg)
1
2 ,

where the last inequality is obtained from Hölder inequality. Since g is a (df + 1)−measure
supported on S and since |P − P0| ≤ δ, we obtain

c(li)
−(df+1)

2 (
∫
|t−Pi|≤6li

|u(t)− u(P0)|2dg)
1
2 =

c(li)
−(df+1)

2

∫
{|t−Pi|≤6li}

⋂
{|t−P0|≤δ} |u(t)− u(P0)|2dg)

1
2 .

As u ∈ C(S) we get
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c(li)
−(df+1)

2

∫
{|t−Pi|≤6li}

⋂
{|t−P0|≤δ} |u(t)− u(P0)|2dg)

1
2 ≤

c(li)
−(Df+1)

2 sup
{|(x,y)−Pi|≤6li}

⋂
{|(x,y)−P0|≤δ}

|u(x, y) − u(P0)|(
∫
{|t−Pi|≤6li}

⋂
{|t−P0|≤δ} dg)

1
2 ≤

cl
−(df+1)

2
i l

df+1

2
i ε = cε,

where the last inequality follows from the continuity of u on S.

We are now ready to prove Theorem 3.3.4.

Proof. We start proving (1).
Let us consider u ∈ V (Q,S), then u|S ∈ D(S). From Theorem 3.3.3 there exists {ϕn} ⊂
D(0, 1;D(F )) such that

‖ϕn − u|S‖D(S)→ 0, when n→∞.

We note that since ϕn ∈ D(0, 1;D(F )) ⊂ D(S) ⊂ B2,2
α (S) and D(0, 1;D(F )) ⊂ C(S), it

follows that ϕn ∈ B2,2
α (S)

⋂
C(S). Let ϕ̂n be the function defined as Ext(ϕn) and let û be

the function defined as Ext(u|S). Then from (2) of Proposition 3.3.5 ϕ̂n ∈ H1(Q)
⋂
C(Q)

and û ∈ H1(Q) (see [25]).
We prove that ‖ϕ̂n − û‖H1(Q) → 0; in fact from Theorem 2.2.2 and the inclusion of D(S) in
B2,2

Df
2

(S) (see Theorem 3.2.5),

‖ϕ̂n − û‖H1(Q) ≤ C1‖ϕn − u|S‖B2,2
df
2

(S) ≤ ‖ϕn − u|S‖D(S)

From the density Theorem 3.3.3 ‖ϕ̂n − û‖H1(Q) → 0.
Now let us consider u − û: this is a function in H1(Q) and (u − û)|S = 0, then u − û

∈ H1
0 (Q), (see Theorem 3 in [61] ); there exists {ηm}m∈N ⊂ C1

0(Q) such that

‖ηm − (u− û)‖H1(Q) → 0. (3.3.8)

Let {ψn,m} denote the doubly indexed sequence of functions {ϕ̂n − ηm}. The sequence
{ψn,m} ⊂ H1(Q)

⋂
C(Q). From Corollary 1.16 in [2] we deduce that {ψm,n} converges to

u in H1(Q) as n→∞. In fact there exists an increasing mapping n→ m(n), tending to∞
as n→∞, such that

limn→∞‖u− ψn,m(n)‖H1(Q) = limn→∞‖u− ϕ̂n − ηm(n)‖H1(Q) ≤
limn→∞(‖u− û− ηm(n)‖H1(Q) +‖ϕ̂n − û‖H1(Q)),

then by applying Corollary 1.16 in [2] to the right hand side of the above inequality it follows
that

limn→∞‖u− ψn,m(n)‖H1(Q) ≤ limm→∞ limn→∞ { ‖u− û− ηm‖H1(Q) +‖ϕ̂n − û‖H1(Q) }.
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The two terms in the sum tend to 0 when m,n→∞, then

limn→∞‖ψn,m(n) − u‖H1(Q) = 0, (3.3.9)

and also limn→∞‖ψn,m(n) − u‖H1(Q) = 0, hence we conclude that

‖ψn,m(n) − u‖H1(Q)→ 0, n→∞.

From now on we denote by

ψn = ψn,m(n).

Now we prove (2), that is

‖ψn − u‖L2(Q,m) = ‖ψn − u‖L2(Q) + ‖ψn − u‖L2(S) → 0. (3.3.10)

The first term in the right hand side of (3.3.10) tends to 0 when n→∞ since

‖ψn − u‖L2(Q) ≤ ‖ψn − u‖H1(Q).

We now prove that the second term in (3.3.10) tends to 0.

‖ψn − u‖L2(S) = ‖ϕ̂n|S − ηn|S − u|S‖L2(S)

≡ ‖ϕn − u|S‖L2(S) ≤ ‖ϕn − u|S‖D(S),

and the last term vanishes sinceD(0, 1;D(F )) is dense in D(S) (see Proposition 3.3.3). This
proves that ψn→ u in L2(Q,m).
Now we prove (3):

ES[(u− ψn)|S] = ES[u|S − ψn|S] ≡ ES[u|S − ϕn] ≤ ‖u|S − ϕn‖D(S) → 0.

3.4 M-convergence of the energy forms

In this section we study the convergence of the approximating energy forms E(h) to the
fractal energy E. More precisely we prove the Mosco-convergence of the energy forms in
the case of varying Hilbert spaces. The proof relies on the density results for the functions of
Section 3.3 . We will follow the notations of Section 2.3.1 and we will use the results therein.
We note that this result holds when Q is the cylindrical domain whose lateral boundary is the
surface S, with S = F × I , F is the equilateral snowflake.
In this asymptotic behavior the factors σ1

h and σ2
h have a key role and can be regarded as sort

of renormalization factors of the approximating energies. These factors take into account the
non rectifiability of the curve F and hence the irregularity of the surface S, and in particular
the effect of the d-dimensional length intrinsic to the curve; for details, see [40]. We now
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give the definition ofM -convergence of forms (see [50]) in the case of varying Hilbert space,
by using the definition of Kuwae and Shioya in [29].
We extend the forms E and E(h) on the whole spaces H and Hh respectively as follows:

E[u] = +∞, for every u ∈ H \ V (Q,S)

and

E(h)[u] = +∞, for every u ∈ Hh \ V (Q,Sh)

Definition 3.4.1. A sequence of forms {E(h)} M-converges to a form E if

1. for every vh ∈ Hh weakly converging to u ∈ H in H

limh→∞E
(h)[vh] ≥ E[u] (3.4.11)

2. for every u ∈ H there exists {wh}, with wh ∈ Hh strongly converging to u ∈ H such
that

limh→∞E
(h)[wh] ≤ E[u]. (3.4.12)

Proposition 3.4.2. Let {vh}h∈N be a sequence weakly converging to a vector u ∈ H in H,
then {vh}h∈N weakly converges to u in L2(Q) and limh δh

∫
Sh
ϕvhdσ =

∫
S
ϕudg, for every

ϕ ∈ C.

Proof. From Definition 2.3.3 it follows that for every ϕh ∈ Hh strongly converging to ϕ ∈ H

lim
h→∞

∫
Qh

vhϕhdL3 + δh

∫
Sh

vhϕhdσ

 =

∫
Q

uϕdL3 +

∫
S

uϕdg. (3.4.13)

For every w ∈ C we set ϕh = wχQh and ϕ = wχQ: ϕh ∈ Hh and ϕ ∈ H . We prove that ϕh
strongly converges to ϕ in H. This result follows from Lemma 2.3.7, in fact the first claim
holds since

‖ϕh‖2
Hh

=
∫
Qh
|w|2dL3, ‖ϕ‖2

H =
∫
Q
|w|2dL3

and Qh is a family of sets invading Q. By the same argument it follows that

(g, ϕh)Hh → (g, ϕ)H ∀g ∈ C.

From (3.4.13) and the choice of ϕh and ϕ

lim
h→∞

∫
Qh

vhwdL3 =

∫
Q

uwdL3,∀w ∈ C (3.4.14)

The constant sequence {w} strongly converges to w in H; choosing ϕh = w in (3.4.13) and
taking into account (3.4.14), by difference we obtain
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limh→∞ δh
∫
Sh
wvhdσ =

∫
S
wudg.

We now prove the weak convergence of vh to u in L2(Q). We first prove the convergence for
every φ ∈ C(Q), then the claim will follow by density.

limh→∞
∫
Q
vhφdL3 = limh→∞(

∫
Q
vhφχQhdL3 +

∫
Q
vhφχQ\QhdL3) =

∫
Q
uφdL3,

since φχQ\Qh strongly tends to zero in H and φχQh strongly converges to φχQ in H.

Proposition 3.4.3. If vh weakly converges to u in H1(Q) and b ∈ C(Q), then
δh
∫
Sh
b|vh|2dσ →

∫
S
b|u|2dg.

Proof. |δh
∫
Sh
b|vh|2dσ −

∫
S
b|u|2dg| ≤

|δh
∫
Sh
b|vh|2dσ − δh

∫
Sh
b|u|2dσ| +|δh

∫
Sh
b|u|2dσ −

∫
S
b|u|2dg|.

|δh
∫
Sh
b|vh|2dσ − δh

∫
Sh
b|u|2dσ| ≤ δh‖b‖C(Q)(‖vh − u‖L2(Sh))(‖vh + u‖L2(Sh)) ≤

δh‖b‖C(Q)(‖vh − u‖L2(Sh))(‖vh‖L2(Sh) + ‖u‖L2(Sh)).

Since vh weakly converges inH1(Q) to u, then vh strongly converges to u inHα(Q) for every
α ∈ (0, 1). Considering the extension of (vh−u) toHα(R3), it follows from Theorems 2.1.6
and 2.1.12

δh‖vh − u‖L2(Sh) ≤ Cα‖Ext(vh − u)‖Hα(R3) ≤ c‖vh − u‖Hα(Q).

From these inequalities it follows that

|δh
∫
Sh
b|vh|2dσ − δh

∫
Sh
b|u|2dσ| → 0.

Since u ∈ H1(Q) there exists a sequence {gn} ∈ H1(Q)
⋂
C(Q) such that ‖gn−u‖H1(Q) →

0 (see Proposition 4.4 in [23]).

|δh
∫
Sh
b|u|2dσ −

∫
S
b|u|2dg| ≤ |δh

∫
Sh
b|u|2dσ − δh

∫
Sh
b|gn|2dσ|

+|δh
∫
Sh
b|gn|2dσ −

∫
S
b|gn|2dg| +|

∫
S
b|gn|2dg −

∫
S
b|u|2dg|.

It is possible to estimate from above the first and the third term of the right hand side of this
inequality with ‖gn − u‖H1(Q), and hence we conclude that for every ε > 0, there exists
nε ∈ N such that these two terms are less than cε.
If we choose n > nε, the second term in the right-hand side goes to 0 for h tending to +∞,
since Hh converges to H .

Now we state and proof the main theorem of this Section.

Theorem 3.4.4. Let δh = (31−df )h, σ1
h = σ1c0(δh)

−1, σ2
h = σ2c0δh. Let us assume that there

exists M > 0 such that ‖ahij‖L∞(Q) ≤M , for every h ∈ N, i, j = 1, 2, 3 and that ahij converge
a.e. in Q to aij , then the sequence E(h) converges in the sense of Mosco, Kuwae, Shioya to
the form E.
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Proof. Condition 1.
We can assume that vh ∈ V (Q,Sh), otherwise the inequality (3.4.11) becomes trivial.
Let vh ∈ V (Q,Sh), there exists a c independent from h such that

‖vh‖H1(Qh) + ESh [vh|Sh ] + δh‖vh‖L2(Sh) ≤ C

and then ‖vh‖H1(Qh) < C. For every h ∈ N from Theorem 2.1.11 there exists a continuous
linear operator Ext : H1(Qh)→ H1(R3) such that

‖Extvh‖H1(R3) ≤ c‖vh‖H1(Qh) ≤ cC.

Let v̂h = Extvh|Q, v̂h ∈ H1(Q) and ‖v̂h‖H1(Q) ≤ cC, thus there exists a subsequence, still
denoted by v̂h weakly converging to v̂ inH1(Q) and hence strongly inL2(Q). By Proposition
3.4.2 it follows that vh weakly converges to u in L2(Q).
We want to prove that v̂ = u a.e. that is

∫
Q

(v̂ − u)ϕdL3 = 0 for each ϕ ∈ L2(Q).∫
Q

(v̂ − u)ϕdL3 =
∫
Q

(v̂ − v̂h + v̂h − u)ϕdL3 =∫
Q

(v̂ − v̂h)ϕdL3 +
∫
Qh

(vh − u)ϕdL3 +
∫
Q−Qh

(v̂h − u)ϕdL3.

Since v̂h → v̂ in L2(Q) and vh weakly converges to u in L2(Q), it follows that the first two
terms of right hand side vanish. Moreover, from Holder inequality and since |Q−Qh| → 0

for h→∞,
∫
Q−Qh

(v̂h − u)ϕdL3 ≤ ‖ϕ‖L2(Q−Qh)(‖v̂h‖L2(Q) + ‖u‖L2(Q))→ 0.
Now we prove that

limh→∞
∫
Q
χQhA

hDvh ·DvhdL3 ≥
∫
Q
ADu ·DudL3.

We set
√
A = [cij] and

√
Ah = [chij]. From the assumptions it follows that

|chij| ≤M1 for every i, j, chij → cij a.e.

From Severini-Egorov Theorem it follows that
∑3

i,j=1 c
h
ijχQh converges quasi-uniformly

to
∑3

i,j=1 cijχQ and from the weakly convergence of vh to u in H1(Q) we deduce that∑3
i,j=1 c

h
ijχQh∂jvh weakly converges in L2(Q) to

∑3
i,j=1 cijχQ∂ju. Then

limh→∞
∫
Q
χQhA

hDvh ·DvhdL3 = limh→∞
∫
Q
|χQh
√
AhDvh|2dL3 =

limh→∞
∑3

i=1 ‖
∑3

j=1 c
h
ijχQh∂jvh‖2

L2(Q) ≥
∑3

i=1 ‖
∑3

j=1 cijχQ∂ju‖2
L2(Q)

The proof that limh→∞ESh [vh] ≥ ES[u] follows from Remark 5.1 in [40].
Thesis follows from the liminf properties of the sum.
Condition 2.
We suppose that u ∈ V (Q,S), otherwise the inequality (3.4.12) becomes trivial.
Step 1.
We suppose that u ∈ C(Q), hence u ∈ H . We extend by continuity u to T and we denote by
û this extension.
Following the same approach of [35], we introduce a quasi uniform triangulation τh of T
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made by equilateral tetrahedrons T jh such that the vertices of the prefractal surface Sh are
nodes of the triangulation at the h − th level. Let Sh be the space of all the functions being
continuous on T and affine on the tetrahedrons of τh. We indicate by Mh the nodes of τh,
that is the set of the vertices of all T jh . For a given continuous function u, we denote by
Ihu the function which is affine on every T jh ∈ τh and which interpolates u in the nodes
Pj,i ∈ Mh

⋂
Qh. We put wh = Ihû, and we prove that {wh} strongly converges in H,

using the Lemma 2.3.6: we have to prove that (wh, vh)Hh → (u, v)H for every {vh} weakly
converging to v in H. It holds that

‖wh − u‖H1(T) → 0

for h tending to ∞ (see [20]) and hence ‖wh − u‖H1(Q) → 0. From Theorem 2.1.6, there
exists c indipendent from h such that ‖wh − u‖L2(Sh) ≤ c(δh)

−1/2‖wh − u‖H1(Q).

0 ≤ |(wh, vh)Hh − (u, v)H | = |
∫
Qh
whvhdL3 + δh

∫
Sh
whvhdσ −

∫
Q
uvdL3 −

∫
S
uvdg| =

|(wh − u, vh)L2(Qh) + δh
∫
Sh

(wh − u)vhdσ + (u, vh)Hh − (u, v)H | ≤
|(wh − u, vh)L2(Qh)|+ |((wh − u)

√
δh,
√
δhvh)L2(Sh)|+ |(u, vh)Hh − (u, v)H | ≤

‖wh − u‖L2(Q)‖vh‖L2(Q) +
√
δh‖wh − u‖L2(Sh)

√
δh‖vh‖L2(Sh) + |(u, vh)Hh − (u, v)H |.

Taking into account that vh weakly converges to v in H, wh strongly converges to u inH1(Q)

and from the fact that
√
δh‖wh − u‖L2(Sh) ≤ c‖wh − u‖H1(Q), it follows that right hand side

of the above inequality vanishes.
Now we show that the sequence {wh} satisfies the condition 2) of M-convergence. It holds

limh→∞ δh
∫
Sh
b|wh|2dσ =

∫
S
b|u|2dg.

From [34] we have limh→∞ESh [wh] ≤ ES[u].

We prove that

limh→∞
∫
Q
χQhA

hDwh ·DwhdL3 ≤
∫
Q
χQADu ·DudL3.

The thesis follows since

limh→∞
∫
Q
χQhA

hDwh ·DwhdL3 = limh→∞
∑3

i=1 ‖
∑3

j=1 c
h
ijχQh∂jwh‖2

L2(Q)

and, from the assumptions on chij and on wh, we deduce that
∑3

j=1 c
h
ijχQh∂jwh converges to∑3

j=1 cijχQ∂ju in L2(Q). Then we get

limh→∞
∫
Q
χQhA

hDwh ·DwhdL3 =
∫
Q
ADu ·DudL3.

Thesis follows from the limsup properties of the sum.
Step 2.
If u ∈ V (Q,S), but u is not continuous, from Theorem 3.3.4 there exists {ψn} ⊂
V (Q,S)

⋂
C(Q) such that ψn → u in H , ‖ψn − u‖V (Q,S) → 0. Let n ∈ N fixed such
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that ‖ψn − u‖V (Q,S) ≤ 1
n

and ‖ψn − u‖H ≤ 1
n

. By ψ̃n we denote a continuous extension in
T.
From Step 1 we have that for every fixed n ∈ N Ihψ̃n strongly converges to ψ̃n in H,Ihψ̃n
converges to ψ̃n in H1(T) when h→∞ and

limh→∞E
(h)[Ihψ̃n] ≤ E[ψ̃n].

Applying the upper limit for n→∞ to both sides of the above inequality we obtain

limn→∞(limh→∞E
(h)[Ihψ̃n]) ≤ limn→∞E[ψ̃n] = E[u]. (3.4.15)

Now we want to apply Corollary 1.16 in [2] for proving that there exists an increasing map-
ping h→ n(h), such that, denoting wh = Ihψ̃n(h), we have that wh converges to u in H and
limh→∞E

(h)[wh] ≤ E[u]. To this aim we have to prove that

limn→∞limh→∞|(wh,n, vh)Hh − (u, v)H | ≤ 0, (3.4.16)

for every {vh} weakly converging to v in H.
|(wh,n, vh)Hh − (u, v)H | ≤ |(wh,n, vh)Hh − (ψ̃n, v)H + (ψ̃n − u, v)H | ≤
|(wh,n, vh)Hh − (ψ̃n, v)H |+ ‖ψ̃n − u‖H‖v‖H ≤ |(wh,n, vh)Hh − (ψ̃n, v)H |+ c

n
.

Passing to the upper limit for h→∞, we obtain

limh→∞|(wh,n, vh)Hh − (u, v)H | → 0.

Then Corollary 1.16 in [2] provides the thesis.

Now we state a Theorem that follows from Theorem 3.4.4, which is a generalization of
Theorem 2.4.1 in [50].

Theorem 3.4.5. Let E(h) and E be the energy forms defined in 3.2.4 and in 3.2.12, respec-
tively; then the semigroups {Th(t)} associated with the form Eh converge, for every t > 0,
to the semigroup T (t) associated with the form E, in the sense of Definition 2.3.10.



4. EVOLUTION VENTTSEL’ PROBLEMS

In this chapter we will prove the existence and uniqueness, via a semigroup approach, of the
abstract Cauchy problems (P ) and (P h). Then we prove in Theorems 4.2.2 and 4.2.3, that
the solutions of (P h) converge in a suitable sense to the solution of (P ); finally we show that
the solutions of the abstract problems (P ) and (P h) solve the Venttsel’ problems (P ), (Ph)

formally stated in the Introduction, proved in the Theorems 4.3.1 and 4.3.2 respectively.

4.1 Existence results for the Cauchy problems

Let us consider

(P )

{
du(t)

dt
= Au(t) + f(t), 0 ≤ t ≤ T

u(0) = 0
(4.1.1)

and for every h ∈ N

(Ph)

{
duh(t)

dt
= Ahuh(t) + fh(t), 0 ≤ t ≤ T

uh(0) = 0
(4.1.2)

where A : D(A) ⊂ H → H and Ah : D(Ah) ⊂ Hh → Hh are the infinitesimal generators
associated with the energy form E and E(h) respectively. From Theorem 4.3.1 page 149 in
[46] we deduce the following existence results.

Theorem 4.1.1. Let 0 < θ < 1, f ∈ Cθ([0, T ];L2(Q,m)) and let

u(t) =

t∫
0

T (t− s)f(s)ds, (4.1.3)

where T (t) is the analytic semigroup generated from A. Then u is the unique strict solution
of (4.1.1) , that is

u ∈ C1([0, T ];L2(Q,m))
⋂
C([0, T ];D(A)),

du(t)
dt

= Au(t) + f(t), ∀t ∈ [0, T ] and u(0) = 0.

and there exists c such that the following inequality holds:

‖u‖C1([0,T ];L2(Q,m)) + ‖u‖C([0,T ];D(A)) ≤ c‖f‖Cθ([0,T ];L2(Q,m)). (4.1.4)
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Theorem 4.1.2. Let 0 < θ < 1, fh ∈ Cθ([0, T ];Hh) and let

uh(t) =

t∫
0

Th(t− s)fh(s)ds,∀h ∈ N (4.1.5)

where Th(t) is the analytic semigroup generated by Ah. Then uh is the unique strict solution
of (4.1.2), that is

uh ∈ C1([0, T ];L2(Q,mh))
⋂
C([0, T ];D(Ah)),

duh(t)
dt

= Ahuh(t) + fh(t), ∀t ∈ [0, T ] and uh(0) = 0,

and there exists C, independent from h, such that the following inequality holds:

‖uh‖C1([0,T ];L2(Q,mh)) + ‖uh‖C([0,T ];D(Ah)) ≤ C‖fh‖Cθ([0,T ];L2(Q,mh)). (4.1.6)

4.2 Convergence of the solutions

This section is devoted to the study of the behavior of uh when h → ∞. We denote Kh =

L2([0, T ];Hh) and K = L2([0, T ];H). It holds that Kh converges to K in the sense of
definition 2.3.1, where the set C = C([0, T ]×Q) and Φh is the identical operator on C. We
denote K =

⋃
Kh

⋃
K. Now we give a characterization of the strong convergence in K.

Proposition 4.2.1. A sequence {uh} strongly converges to u in K if one of the following
conditions holds:

1.

{ ∫ T
0
‖uh(t)‖2

Hh
dt→

∫ T
0
‖u(t)‖2

Hdt,∫ T
0

(uh(t), ϕ(t))Hhdt→
∫ T

0
(u(t), ϕ(t))Hdt

∀ϕ ∈ C([0, T ]×Q).

2.
∫ T

0
(uh(t), vh(t))Hhdt→

∫ T
0

(u(t), v(t))Hdt,

for all {vh} weakly converging to v in K.

Theorem 4.2.2. Let u and uh be the solutions of the problems (P ) and (Ph) respectively.
Let δh be as in Theorem 3.4.4. If for every t ∈ [0, T ], {fh(t)} strongly converges to f(t) in
H and there exists a costant c such that

‖fh‖Cθ([0,T ];Hh) < c,∀h ∈ N (4.2.7)

then

1. {uh(t)} converges to u(t) in H, for every fixed t ∈ [0, T ]
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2. {uh} converges to u in K.

Proof. In order to prove 1) we use Lemma 2.3.6, hence we have to see that for every t ∈
[0, T ]

(uh, vh)Hh → (u, v)H

for every sequence {vh}, with vh ∈ Hh weakly convergent in H to v ∈ H .
We have

(uh, vh)Hh =
∫
Qh

∫ t
0
Th(t− s)fh(s, P )dsvh(P )dL3+

δh
∫
Sh

∫ t
0
Th(t− s)fh(s, P )dsvh(P )dσ =

∫ t
0
(Th(t− s)fh(s), vh)Hhds.

From Theorem 3.4.5, since for every t ∈ [0, T ], fh(t)→ f(t) in H, then

Th(t)fh(t)→ T (t)f(t) in H;

Moreover, since vh weakly converges to v in H for every t ∈ [0, T ], it follows that

(Th(t− s)fh(s), vh)Hh → (T (t− s)f(s), v)H .

From Lemma 2.3.5, the contraction property of Th and the assumption (4.2.7)
‖fh‖Cθ([0,T ];Hh) < c, we have that there exists a constant c independent from h such
that

|(Th(t− s)fh(s), vh)Hh| ≤ c.

The claim follows from dominated convergence Theorem.
Now we prove 2). We note that

‖uh(t)‖Hh ≤ c1‖fh‖Cθ([0,T ];Hh) ≤ c, ∀t ∈ [0, T ]

where the last inequality follows from (4.1.6) and (4.2.7).
Thus the sequence {uh} is equibounded in [0, T ] and from 1)

‖uh‖Hh → ‖u(t)‖H .

By applying dominated convergence Theorem we obtain that

‖uh‖Kh → ‖u‖K .

From 1) it follows in particular that for every t ∈ [0, T ]

(uh(t), ψ(t))Hh → (u(t), ψ(t))H , ∀ψ ∈ C([0, T ]×Q).

Since

|(uh(t), ψ(t))Hh| ≤ c‖ψ‖C([0,T ]×Q).

From the dominated convergence Theorem we have

(uh, ψ)Kh → (u, ψ)K ∀ψ ∈ C([0, T ]×Q).
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From Proposition 4.2.1 we proved 2).

Theorem 4.2.3. With the same assumptions as in Theorem 4.2.2 we have

1. {duh
dt
} weakly converges to du

dt
in K,

2. {Ahuh} weakly converges to Au in K.

Proof. It holds

supt∈[0,T ] ‖duhdt ‖Hh ≤ c

in particular duh
dt
∈ L2([0, T ];Hh) and there exists c independent from h such that

‖duh
dt
‖L2([0,T ];Hh) ≤ c, ∀h ∈ N.

From Lemma 2.3.8 there exists a subsequence, still denoted by duh
dt

, which weakly converges
in K to a function v ∈ K.
We have to prove that v = du

dt
.

From definition of weak convergence we can write

(duh
dt
, wh)Kh → (v, w)K

for every sequence{wh} ∈ Kh, wh → w in K.
Choosing {wh} = {ϕ(t, P )}, where ϕ ∈ C1([0, T ];C(Q)), we have

limh→∞
∫
Q

∫ T
0

duh(t,P )
dt

ϕ(t, P )dtdmh =
∫
Q

∫ T
0
v(t, P )ϕ(t, P )dtdm.

We integrate by parts and we obtain∫
Q

∫ T
0

duh(t,P )
dt

ϕ(t, P )dtdmh =∫
Q

(uh(T, P )ϕ(T, P )− uh(0, P )ϕ(0, P ))dmh −
∫
Q

∫ T
0
uh(t, P )dϕ(t,P )

dt
dtdmh.

Passing to the limit in the first term in the right hand side of this equality for h → ∞, we
obtain, by 1) in Theorem 4.2.2∫
Q

(uh(T, P )ϕ(T, P )−uh(0, P )ϕ(0, P ))dmh →
∫
Q

(u(T, P )ϕ(T, P )−u(0, P )ϕ(0, P ))dm.

It remains to study

lim
h→∞

T∫
0

∫
Q

uh(t, P )
dϕ(t, P )

dt
dtdmh. (4.2.8)

It holds that ∫ T
0

∫
Q
uh(t, P )dϕ(t,P )

dt
dtdmh = (uh(t),

dϕ(t)
dt

)Kh

From 2) in Theorem 4.2.2

(uh(t),
dϕ(t)
dt

)Kh → (u(t), dϕ(t)
dt

)K ,

hence
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∫
Q

∫ T
0
v(t, P )ϕ(t, P )dtdm =∫

Q
(u(T, P )ϕ(T, P )− u(0, P )ϕ(0, P ))dm−

∫
Q

∫ T
0
u(t, P )dϕ(t,P )

dt
dtdm,

which implies v = du
dt

. It remains to prove 2): we recall that

Ahuh = duh
dt
− f .

Choosing as in 1) a test sequence {wh} = {ϕ}, with ϕ(t, P ) ∈ C1([0, T ];C(Q)) we get

(Ahuh, ϕ)Kh = (duh
dt
− f, ϕ)Kh .

Recalling that duh
dt

weakly converges to du
dt

in K, we get the thesis.

4.3 Strong interpretation

4.3.1 The fractal case

Theorem 4.3.1. Let u be the solution of the problem (4.1.1) Then for every fixed t ∈ [0, T ]
ut(t, P )− Lu(t, P ) = f(t, P ) fora.e.P ∈ Q
∂u
∂nA
∈ (B2,2

β (S))′, β =
df
2

u(0, P ) = 0 forP ∈ S

and for every z ∈ D(S)

〈ut, z〉(D(S))′,D(S) = −ES(u|S, z)−
〈
∂u

∂nA

, z

〉
(D(S))′,D(S)

+ 〈f, z〉(D(S))′,D(S) −
∫
S

bu|Szdg

(4.3.9)
where ∂u

∂nA
, is the co-normal derivative defined as an element of (B2,2

β (S))′. Moreover ∂u
∂nA
∈

C([0, T ]; (B2,2
β (S))′).

Proof. Let us consider L2(Q,m), dm = dL3 + dg, equipped with the norm ‖u‖L2(Q,m)

= ‖u‖L2(Q,dL3) + ‖u‖L2(S,g).
Given ϕ ∈ C∞0 (Q), multiplying both members of (4.1.1) and integrating over Q we obtain∫

Q

ut ϕdm =

∫
Q

Auϕdm+

∫
Q

f ϕdm. (4.3.10)

From (3.2.8) we have ∫
Q

ut ϕdm = −E(u, ϕ) +

∫
Q

f ϕdm. (4.3.11)

Since ϕ is compactly supported on Q, then∫
Q

ADu ·DϕdL3 =

∫
Q

f ϕdL3 −
∫
Q

ut ϕdL3. (4.3.12)
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Hence it follows that for every fixed t ∈ [0, T ]

3∑
i,j=1

∂i(aij(P ) ∂ju(t, P )) = ut(t, P )− f(t, P ), (4.3.13)

holds in D′(Q). From the density of D(Q) in L2(Q) and since the right hand side of (4.3.13)
belongs to L2(Q) for every fixed t in [0, T ], we obtain that (4.3.13) holds almost every-
where in Q. Taking into the right hand side belongs to C([0, T ];L2(Q)), we deduce that∑3

i=1,j ∂i(aij(P )∂ju(t, P )) ∈ C([0, T ];L2(Q)), hence u ∈ C([0, T ];V (Q)), where

V (Q) =
{
u ∈ H1(Q) :

∑3
i,j=1 ∂i(aij ∂ju) ∈ L2(Q)

}
.

Here the derivatives are intended in the distributional sense.
We can prove, proceeding as in [38], that ∂u

∂nA
∈ C([0, T ]; (B2,2

β (S))′). The Green formula
yields for every t ∈ [0, T ] and for every ϕ ∈ H1(Q)〈
∂u

∂nA

, ϕ|S
〉

(B2,2
β (S))′,B2,2

β (S)

=

∫
Q

ADu(t, P )·Dϕ(P )dL3+

∫
Q

3∑
i,j=1

∂i(aij(P ) ∂ju(t, P ))ϕdL3.

(4.3.14)
Fix t0 in [0, T ] and consider

‖∂u(t)
∂nA
− ∂u(t0)

∂A
‖(B2,2

β (S))′ = supθ∈B2,2
β (S):‖θ‖

(B
2,2
β

(S))′
≤1 |〈

∂u(t)
∂nA
− ∂u(t0)

∂nA
, θ〉(B2,2

β (S))′,B2,2
β (S)|.

From (4.3.14) and Schwartz inequality we obtain that

‖∂u(t)
∂nA
− ∂u(t0)

∂A
‖(B2,2

β (S))′ ≤ ‖w‖H1(Q)(|A|‖D(u(t)− u(t0))‖L2(Q) + ‖L(u(t)− u(t0))‖L2(Q))

where w ∈ H1(Q) and w|S = θ, m-a.e. The thesis follows since u ∈ C([0, T ];V (Q)).

Now let ψ be in V (Q,S) for every fixed t in [0, T ]. Multiplying (4.1.1) and integrating over
Q, we obtain∫
Q
ut ψdL3 +

∫
S
ut ψdg =

−
∫
Q
ADuDψdL3 − ES(u|S, ψ|S)−

∫
S
bu|S ψ|Sdg+∫

Q
f ψdL3 +

∫
S
f |S ψ|Sdg.

Taking into account (4.3.14), we get∫
Q
ut ψdL3 +

∫
S
ut ψdg =

−
〈

∂u
∂nA

, ψ|S
〉

(B2,2
β (S))′,B2,2

β (S)
+
∫
Q

∑3
i,j=1 ∂i(aij∂ju)ψdL3

−ES(u|S, ψ|S)−
∫
S
bu|S ψ|Sdg +

∫
Q
f ψdL3 +

∫
S
f |S ψ|Sdg.

(4.3.15)
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Since ut −
∑3

i,j=1 ∂i(aij∂ju)− f = 0 a.e. in Q, we have∫
S

ut ψdg = −
〈
∂u

∂nA

, ψ|S
〉

(B2,2
β (S))′,B2,2

β (S)

−ES(u|S, ψ|S)−
∫
S

bu|S ψ|Sdg+

∫
S

f |S ψ|Sdg

(4.3.16)
From Proposition 3.2.5, by proceeding as in Section 6 of [31], we have

ut −∆Su+ bu = − ∂u

∂nA

+ f (4.3.17)

in (D(S))′.

4.3.2 The prefractal case

Theorem 4.3.2. Let uh be the solution of problem (4.1.2) Then we have for every fixed
t ∈ [0, T ] 

(uh)t(t, P )− Lhuh(t, P ) = fh(t, P ) fora.e.P ∈ Q
∂u

∂nAh

∈ (H
1
2 (Sh))

′,

u(0, P ) = 0 inH
1
2 (Sh)

and
δh(uh)t −∆Shuh + δhbuh = − ∂uh

∂nAh

+ δhfh, (4.3.18)

in (H
1
2 (Sh))

′.
∂uh
∂nAh

is the inward co-normal derivative and ∆Sh is the piece-wise tangential Laplacian

associated to the Dirichlet form ESh . Moreover ∂uh
∂nAh

∈ C([0, T ]; (H
1
2 (Sh))

′).

Proof. The first equality follows by proceeding as in Theorem 4.3.1. From this it follows
that for every t ∈ [0, T ]

uh(t, ·) ∈ V (Qh) = {uh ∈ H1(Q) :
∑3

i,j=1 ∂i(a
h
ij∂juh) ∈ L2(Qh).}

Proceeding as in section 6.2 of [38] we prove that for every t ∈ [0, T ], ∂uh
∂nAh

∈ (H
1
2 (Sh))

′.
By proceeding as in Theorem 4.3.1 we can prove that for every t ∈ [0, T ] and for every
z ∈ V (Q,Sh)

δh((uh(t))t, z)L2(Sh) − 〈∆Shuh(t), z〉(H 1
2 (Sh))′,H

1
2 (Sh)

+ δh(buh(t), z)L2(Sh) =

−
〈
∂uh(t)
∂nAh

, z
〉

(H
1
2 (Sh))′,H

1
2 (Sh)

+ δh(fh(t), z)L2(Sh)

that is the boundary condition

δh(uh)t −∆Shuh + δhbuh = − ∂uh
∂nAh

+ δhfh

holds in the dual of H
1
2 (Sh) (see [32]).



4. Evolution Venttsel’ problems 54

4.4 Future works

A possible generalization of the present work could be to study the case of operators in non
divergence form, this is a natural extension of the present case, since in Venttsel’ problems,
appeared for the first time in [60], such operators are involved.
The presence of these operators change completely the framework, the corresponding associ-
ated energy forms associated are not symmetric, neither positive. We hope to use the theory
developed in [47] for non-symmetric forms and the Mosco-convergence for non symmetric
forms (see e.g. [48]) suitably extended to varying Hilbert spaces.



5. APPENDIX

5.1 Whitney decomposition

In this Section we recall the main properties of the Whitney decomposition and we refer to
[58] for more details.
In what follows, G will denote an arbitrary non-empty closed set in Rn, Ω = C(G) its
complement. By a cube we mean a closed cube in Rn, with sides parallel to the axes, and
two such cubes will be said to be disjoint if their interiors are disjoint. For such a cube Q,
diam(Q) denotes its diameter, and dist(Q,G) its distance from G.

Theorem 5.1.1. Let G be a closed set in Rn. Then there exists a collection of cubes G

= {Q1, Q2, ...Qk, ...} such that

1.
⋃
kQk = Ω

2. The Qk are mutually disjoint,

3. a1 diam(Qk) < dist(Qk, G) < a2 diam(Qk).

The constants a1 and a2 are independent of G, in fact we may take a1 = 1 and a2 = 4.

Proof. Consider the lattice of points in Rn whose coordinates are integer. This lattice de-
termines a mesh M0, which is a collection of cubes: namely all cubes of unit length, whose
vertices are points of the above lattice.
The mesh M0 leads to a two-way infinite chain of such meshes {Mk}∞−∞ with Mk = 2−kM0.
Thus each cube in the mesh Mk gives rise to 2n cubes in the mesh Mk+1 by bisecting the
sides. Each cube in the mesh Mk has sides of length 2−k and thus of diameter

√
n2−k.

In addition to the meshes Mk we consider the layers Ωk, defined by

Ωk = {x : c2−k ≤ dist(x,G) ≤ c2−k+1};

c is a positive constant to be fixed later. Obviously Ω =
⋃∞
k=−∞Ωk.

We now make an initial choice of cubes, and denote the resulting collection by G0. Our
choice is made as follows: we consider the cubes of the mesh Mk (each such cube is of size
2−k), and include a cube of this mesh in G0 if it intersects Ωk (the points of the latter are all
approximately at a distance 2−k from G). That is we take
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G0 =
⋃
k{Q ∈Mk : Q ∩ Ωk 6= ∅}.

We then have ⋃
Q∈G0

Q = Ω.

For appropriate choice of c

diam(Q) ≤ dist(Q,G) ≤ 4diam(Q), Q ∈ G0 (5.1.1)

Let us prove (5.1.1) first. Suppose Q ∈Mk; then the diameter of Q =
√
n2−k.

Since Q ∈ G0 there exists x ∈ Q ∩ Ωk. Thus

dist(Q,G) ≤ dist(x,G) ≤ c2−k+1,

and

dist(Q,G) ≥ dist(x,G) -diam(Q) > c2−k −
√
n2−k.

If we choose c = 2
√
n we get (5.1.1).

Then by (5.1.1), the cubes Q ∈ G0 are disjoint from G and clearly cover Ω. Therefore (1) is
also proved.
Notice that the collection G0 has all our required properties, except that the cubes in it are not
necessarily disjoint. To finish the proof of the theorem we need to refine our choice leading to
G0, eliminating those cubes which were really unnecessary. We require the following simple
observation.
Suppose Q1 and Q2 are two cubes (taken respectively from the mesh Mk1 and Mk2 . Then
if Q1 and Q2 are not disjoint, one of the two must be contained in the other. (In particular
Q1 ⊂ Q2 if k1 > k2.)
Start now with any cube Q ∈ G0, and consider the maximal cube in G0 which contains it. In
view of the inequality (5.1.1) for any cube Q′ ∈ G0, which contains Q in G0 we have

diam(Q′) ≤ 4 diam(Q)

Moreover any two cubes Q′ and Q” which contain Q have obviously a non-trivial intersec-
tion. Thus by the observation made above each cube Q ∈ G0 has a unique maximal cube
in G0 which contains it. By the same token these maximal cubes are also disjoint. We let G
denote the collection of maximal cubes of G0. Then obviously

1.
⋃
Q∈GQ = Ω

2. The cubes of G are disjoint,

3. diam(Q) ≤ dist(Q,G) ≤ 4 diam(Qk).

The Theorem is therefore proved.
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We shall now make a few observations about the family G of cubes whose existence is guar-
anteed by Theorem 5.1.1.
Let us say that two distinct cubes of G, Q1 and Q2, touch if their boundaries have a common
point. (We remind the reader that two distinct cubes of G always have disjoint interiors.)

Proposition 5.1.2. Suppose Q1 and Q2 touch. Then

(1/4) diam(Q2) ≤ diam(Q1) ≤ 4 diam(Q2).

Proof. We know that dist(Q1, G) ≤ 4 diam(Q1). Then dist(Q2, G) ≤ 4 diam(Q1)+

diam(Q1) = 5 diam(Q1) >, since Q1 and Q2 touch. But diam(Q2) ≤ dist(Q2, G), therefore
diam(Q1) ≤ 5 diam(Q2).
However diam(Q2) = 2k diam(Q1) for some integer k, thus

diam(Q1) ≤ 4 diam(Q2),

and the symmetrical implication proves the proposition.

We now set N = (12)n. The exact size of N needed in what follows is of no importance;
what matters is that it can be chosen to depend only on the dimension N , and in particular to
be independent of the closed set G.

Proposition 5.1.3. Suppose Q ∈ G. Then there are at most N cubes in G which touch Q.

Proof. If the cube Q belongs to the mesh Mk then as is easily seen, there are 3n cubes
(including Q) which belong to the mesh Mk and touch Q. Next, each cube in the mesh Mk

can contain at most 4n cubes of G of diameter ≥ (1/4) diam(Q). If we combine this with
Proposition 5.1.2 we get the proof of Proposition 5.1.3.

Let now Qk denote any cube in G. Write xk as the center of this cube and lk the common
length of its sides. Then of course diam(Qk) =

√
nlk. For any ε, 0 < ε < 1/4, which is

arbitrary but will be kept fixed in what follows, denote by Q∗k the cube which has the same
center as Qk but is expanded by the factor 1 + ε, that is,

Q∗k = (1 + ε)[Qk − xk] + xk.

Clearly Qk ⊂ Q∗k and the cubes Q∗k no longer have disjoint interiors.
However the following holds:

Proposition 5.1.4. Each point of Ω is contained in at most N of the cubes Q∗k.
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Proof. LetQ andQk be two cubes of G. We claim thatQ∗k intersectsQ only ifQk touchesQ.
In fact consider the union of Qk with all the cubes in F which touch Qk; since the diameters
of these cubes are all ≥ (1/4) diam(Qk), it is clear that this union contains Q∗k. Therefore Q
intersects Q∗k only if Q touches Qk. However any point x ∈ Ω, belongs to some cube Q and
therefore by Proposition 5.1.3 there are at most N cubes Q∗k which contain x.
The proof also shows that every point of Ω is contained in a small neighborhood intersecting
at most N cubes Q∗k.

Now let Q0 denote the cube of unit length centered at the origin. Fix a C∞ function ϕ with
the following properties:

1. 0 ≤ ϕ ≤ 1;

2. ϕ(x) = 1, x ∈ Q0;

3. ϕ(x) = 0, x /∈ (1 + ε)Q0.

Let ϕk denote the function ϕ adjusted to the cube Qk, that is

ϕk(x) = ϕ(x−x
k

lk
).

Recall that xk is the center of Qk and lk is the common length of its sides. Notice that
therefore

1. ϕk(x) = 1 if x ∈ Qk,

2. ϕk(x) = 0 if x /∈ Q∗k.

It is to be observed that for every multi-index α = (α1, α2, ..., αn), αi ∈ N, with |α| =

α1 + α2 + ...+ αn, we have

|( ∂
∂x

)αϕk(x)| ≤ Aα(diam(Qk))
−|α|.

We now define ϕ∗k(x) for x ∈ Ω by

ϕ∗k(x) =
ϕ(x)

Φ(x)

where Φ(x) =
∑

k ϕk(x).
The obvious identity ∑

k

ϕ∗k(x) ≡ 1, x ∈ Ω

then defines our required partition of unity.
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5.2 Bilinear forms and representation of closed bilinear forms

In this section we follow [17], [26] and [55] to which we refer for more details.

Definition 5.2.1. Let H be a Hilbert space. E is called symmetric bilinear form in H if the
following properties hold:

E : D(E) × D(E)→ R, D(E) subspace of H
E(u+ v, w) = E(u,w) + E(v, w), E(u, v + w) = E(u, v) + E(u,w)

aE(u, v) = E(au, v)

E(u, v) = E(v, u)

(5.2.2)

a ∈ R, u, v ∈ D(E) := {u ∈ H : E[u] <∞}. D(E) is called domain of the form E.

Definition 5.2.2. A function F : H → [0,+∞] is called quadratic forms if there exists a
susbspace D of H and a bilinear form ε : D × D → [0,+∞] such that

F (u) = E(u, u) (5.2.3)

if u ∈ D e
F (u) = +∞ (5.2.4)

if u ∈ H \D(E) The form F it is said generated by ε.
From a quadratic form F it is possible to define a bilinear form E by polarization:

D(E) = {u ∈ H : F (u) <∞}

E(u, v) =
1

2
(F (u+ v)− F (u)− F (v)) ∀u, v ∈ D(E).

Following [26] Chapter 6, Section 1.3 we give the following definition:

Definition 5.2.3. Let E be a bilinear form in H . A sequence {un}, is said E-convergent to
u ∈ H(un →E u) if

un ∈ D(E) un → u in H and E[un − um]→ 0.

for n,m→∞
We note that u is not necessarily an element of D(E).

Definition 5.2.4. A form E in H is said closed if

un →E u⇒ u ∈ D(E) and E[un − u]→ 0.
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Definition 5.2.5. A symmetric form E is said Markovian if the following conditions hold:
For each ε > 0, there exists a real function φε(t), t ∈ R, such that

φε(t) = t,∀t ∈ [0, 1],−ε ≤ φε(t) ≤ 1 + ε,∀t ∈ R

0 ≤ φε(t
′
)− φε(t) ≤ t

′ − t,∀t < t
′

u ∈ D(E) =⇒ φε(u) ∈ D(E), E(φε(u), φε(u)) ≤ E(u, u).

We say that a symmetric form is a Dirichlet form if it is a bilinear, closed and Markovian
form.
We now state a stronger condition which implies the condition in Definition 5.2.5:

Proposition 5.2.6. If the following condition holds:

u ∈ D(E), v = inf(sup(u, 0), 1) =⇒ v ∈ D(E), E(v, v) ≤ E(u, u)

then E is a Markovian form.
We note that if E is a Dirichlet form, then D(E) is a pre-Hilbert space with the intrinsic
norm ||u||2D(E) = ||u||2H + E[u].

Remark 5.2.7. un ∈ D(E) is E-converging if and only if un is a Cauchy sequence in
(D(E), (.)E).

From this we have that the Definition 5.2.4 is equivalent to the following one:

Definition 5.2.8. A form E in H is said closed if

un ∈ D(E), (un − um, un − um)E → 0, when n,m→∞ implies ∃u ∈ D(E) such that
||un − u||E → 0 when n→∞.

Now we recall the representations of closed, symmetric, bilinear forms (see Theorem 2.1 in
Chapter 6 of [26]). We start recalling the representation Theorem for bounded closed forms
(see Chapter 5, Section 2.1 in [26]): Let H be a Hilbert space with scalar product (·, ·)H and
norm ||H

Theorem 5.2.9. Let E(u, v) be a bilinear symmetric bounded form in H . Then there exists
a unique, bounded linear, operator such that

E(u, v) = (Au, v)H

for u, v ∈ H

Proof. It is a straightforward consequence of Riesz-Frechet Theorem.

From this Theorem we deduce the representation Theorem for closed, bilinear forms.
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Theorem 5.2.10. Let E(u, v) be a densely defined, symmetric, closed, bilinear form in H.
There exists a positive, self-adjoint operator A such that

1. D(A) ⊂ D(E) and
E(u, v) = (Au, v)H (5.2.5)

for every u ∈ D(A) and v ∈ D(E);

2. D(A) is a core of D(E);

3. if u ∈ D(E), w ∈ H and
E(u, v) = (w, v)H (5.2.6)

holds for every v belonging to a core of D(E), then u ∈ D(A) and Au = w. The
operator A is uniquely determined by the condition 1.

Proof. Let HE be the associated Hilbert space into which D(E) is converted by introducing
the inner product

(u, v)E = E(u, v) + (u, v)H

Consider the form E1 = E + I , where I is the identity operator on H . E1 as well as E is a
bounded form on HE . There is a closed, bounded operator B: D(B) ⊂ HE such that

E1(u, v) = (Bu, v)E, (5.2.7)

u ∈ D(B), v ∈ HE = D(E). Since ‖u‖2
E = E1[u] = (Bu, u)E ≤ ‖Bu‖E‖u‖E , we have

‖u‖E ≤ ‖Bu‖E .

Hence B has a bounded inverse B(−1) with closed domain in HE . This domain is the whole
of HE so that B(−1) ∈ B(HE) with ‖B(−1)‖E ≤ 1. To prove this, it suffices to show that u ∈
HE orthogonal in HE to D(B(−1) = R(B) is zero. This is obvious from ‖u‖2

E = (Bu, u)E=
0.
For any fixed u ∈ H , consider the semilinear form v → lu(v) = (u, v) defined for v ∈ HE .
lu is a bounded form on HE with

|lu(v)| ≤ ‖u‖‖v‖ ≤ ‖u‖‖v‖E .

By the Riesz Theorem, there is a unique u′ ∈ HE such that (u, v) = lu(v) = (u′, v)E ,
‖u′‖E ≤ ‖u‖.
We now define an operator T by

Tu = B−1u′.
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T is a linear operator with domain H and range in HE . Regarded as an operator in H , T
belongs to B(H) with ‖T‖ ≤ 1, for ‖Tu‖ = ‖B−1u′‖ ≤ ‖B−1u′‖E ≤ ‖u′‖E ≤ ‖u‖.
It follows from the definition of T that

(u, v) = (u′, v)E = (BTu, v)E = E1(Tu, v) = (E + I)(Tu, v). (5.2.8)

Hence
E(Tu, v) = (u− Tu, v), (5.2.9)

u ∈ H, v ∈ HE = D(E).
T is invertible, for Tu = 0 implies by (5.2.8) that (u, v) = 0 for all v ∈ D(E) and D(E) is
dense in H . On writing w = Tu, u = T−1w in (5.2.9), we get

E(w, v) = ((T−1 − I)w, v) = (Aw, v),

where A = T−1 − 1, for every w ∈ D(A) = R(T ) ⊂ D(E) and v ∈ D(E). This proves 1)
of the Theorem.
A is a closed operator in H since T ∈ B(H).
To prove 2) of Theorem, it suffices to show that D(A) = R(T ) is dense in HE . Since B
maps HE onto itself bicontinuously, it suffices to show that BR(T ) = R(BT ) is dense in
HE . Let v ∈ HE be orthogonal in HE to R(BT ). Then (5.2.8) shows that (u, v) = 0 for all
u ∈ H and so v = 0. Hence R(BT ) is dense in HE . It is convenient at this point to consider
E∗, the adjoint form of E. Since E∗ is also densely defined and closed, we can construct a
linear operator A′, associated to E∗ in the same way as we constructed T from E.
For any u ∈ D(E∗) = D(E) and v ∈ D(A′), we have then

E∗(v, u) = (A
′
v, u)orE(u, v) = (u,A

′
v). (5.2.10)

In particular let u ∈ D(A) ⊂ D(E) and v ∈ D(A
′
) ⊂ D(E).

(5.2.5) and (5.2.10) give (Au, v) = (u,A
′
v). This implies thatA′ ⊂ A∗. But sinceA∗ andA′

are both m-sectorial (which implies that they are maximal accretive), we must have A′ = A∗

and hence A′∗ = A too. This leads to a simple proof of 3) of the Theorem. If (5.2.6) holds
for all v of a core of E, it can be extended to all v ∈ D(E) by continuity. Specializing v to
elements of D(A

′
), we have then (u,A′v) = E(u, v) = (w, v). Hence u ∈ D(A

′∗) = D(A)

and w = A
′∗u = Au by the definition of A′∗.

5.3 Energy form and Lagrangian on the equilateral snowflake

5.3.1 Energy form on the snowflake

In this section we recall the construction of the energy form on the snowflake; the main
reference for this construction is [16]. For the case of scale irregular sets, we mainly refer to
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[51] and the references therein.
In this section we use the notations of the section 1.2.
For any function u : V∗ → R we define

Eh[u] =
1

2
4h
∑
P∈Vh

∑
Q∼hP

(u(P )− u(Q))2 (5.3.11)

where P ∼h Q means that Q is a h-neighbor of P , that is there exists a h−tuple of indices
j1, ..., jh ∈ {1, ..., 4} such that P , Q ∈ Vj1,...,jh . It can be shown (see [30]) that the sequence
{En[u]}n≥0 is non-decreasing, the limit of the right-hand side of (5.3.11) exists and the limit
form

E[u] = lim
h→∞

Eh[u] (5.3.12)

is non trivial with domain

D∗(E) = {u : V∗ → R|E[u] <∞}

. Every function u ∈ D∗(E) can be uniquely extended to an element of C(K). We denote
this extension still by u and set

D = {u ∈ C(K) : E[u] <∞}

where E[u] = E[u|V∗ ]. Hence D ⊆ C(K) ⊆ L2(K,µ), where L2(K,µ) is the Hilbert space
of square summable functions on K with respect to the self-similar measure µ.
We define the space D(E) as completion of D in the norm

‖u‖E = (‖u‖2
L2(K,µ) + E[u])1/2. (5.3.13)

D(E) is injected in L2(K,µ) and is a Hilbert space with scalar product associated to norm
(5.3.13). Then we extend E as usual on the completed space D(E).
By E(·, ·) we denote the bilinear form defined on D(E)×D(E) by polarization

E(u, v) =
1

2
(E[u+ v]− E[u]− E[v])(u, v ∈ D(E))

. It is easy to see that, for any pair u, v ∈ D(E), E(u, v) is the limit of the sequence (En(u, v))

given by

Eh(u, v) =
1

2
4h
∑
P∈Vh

∑
Q∼hP

[u(P )− u(Q)][v(P )− v(Q)]. (5.3.14)

5.3.2 Lagrangian on Koch curve

We observe that the approximating energy forms Eh on Vh, defined in 5.3.14, can be written
as

Eh(u, v) =

∫
Vh

∇hu · ∇hvdµ
h (5.3.15)



5. Appendix 64

where µh is the discrete measure given in (1.2.3). For every h ≥ 0, µh is a measure on K
supported on Vh,and for any P ∈ Vh the discrete gradient is given by

∇hu · ∇hv(P ) = 1
2

∑
Q∼hP

u(P )−u(Q)
|P−Q|δ

v(P )−v(Q)
|P−Q|δ ,

u, v ∈ D(E), δ = ln 4
ln 3

(see [52]).

Proposition 5.3.1. Let A be any subset of K. For every u, v ∈ D(E) the sequence of
measures given by

L
(h)
K (u, v)(A) =

∫
A∩Vh

∇hu · ∇hvdµ
h, (5.3.16)

h ≥ 0, weakly converges in (C(K))′ to a signed finite Radon measure LK(u, v) on K as
h→∞, called the Lagrangian measure on K. Moreover

E(u, v) =
∫
K
dL(u, v), u, v ∈ D(E).

Proof. Let us restrict ourselves to the quadratic case. Fix u ∈ D(E), and set L(n)
K [u] =

L
(h)
K (u, u), n ≥ 0. From (5.3.15) and (5.3.12) it follows that (L

(h)
K [u](K))h≥0 is a uniformly

bounded sequence, in fact

L
(h)
K [u](K) =

∫
K

dL
(h)
K [u] = Eh[u] ≤ E[u] <∞,

h ≥ 0. Let h ∈ N be fixed. It can be easily proved that, for every u ∈ D(E) and for every
ϕ ∈ D(E)

⋂
C0(K), the following identity holds:∫

Vh

ϕdL
(h)
K [K] = Eh(ϕu, u)− 1

2
Eh(ϕ, u

2). (5.3.17)

As the energy form E[u] is a Dirichlet form of diffusion type, it admits an integral represen-
tation (see [41]): there exists a unique positive Radon measure, which we call L[u], such that
E[u] =

∫
K
dLK [u] and which is uniquely defined by∫

K

ϕdLK [K] = E(ϕu, u)− 1

2
E(ϕ, u2), (5.3.18)

ϕ ∈ D(E)
⋂
C0(K) (see [50]). Passing to the limit as n → ∞ in (5.3.17), from (5.3.12),

taking into account the regularity of the form, it follows that the right-hand of (5.3.17) tends
to the right-hand side of (5.3.18). Hence we have proved that

L
(h)
K [u] ⇀ LK [u], (5.3.19)

h→∞. The signed Radon measure L
(h)
K (u, v) is given by polarization:

L
(h)
K (u, v) =

1

2

{
L

(h)
K [u+ v]− L

(h)
K [u]− L

(h)
K [v]

}
.



5. Appendix 65

These are Radon measures on K uniquely associated with every u, v ∈ D(E). The weak
convergence of the sequence L

(h)
K (u, v)h≥0 to the signed Radon measure LK(u, v) for any

u, v ∈ D(E) follows from the polarization formula and (5.3.19) (see [50]).

Remark 5.3.2. The measure-valued map LK on D(E) × D(E) is bilinear, symmetric and
positive. This measure-valued Lagrangian takes on the fractal K the role of the Euclidean
Lagrangian dL(u, v) = Du · Dvdx. We note that in the case of the Koch curve the La-
grangian LK is absolutely continuous with respect to the volume measure µ (see [9]).

5.3.3 Lagrangian and energy form on the snowflake

We assume that we are given a Koch snowflake F as described in section 1.2 of the Chapter
1. We want to regard F as a “fractal manifold”. We cover the snowflake by sets Ui(i ≥ 1),
which are open subsets of the snowflake and which can be mapped by a corresponding set of
homeomorphism {φi}i≥1 to certain “fractal reference sets ”. Here “open in the snowflake”
means open with respect to the trace toplogy on F of the Euclidean one on R2. We choose
Ui =

◦
Ki, i = 1, ..., 6 and we define the mappings φi : R2 → R2 as uniquely determined

orientation preserving Euclidean motions such that every φi maps the set Ki to the reference
Koch curve K. A such map φi is given as a composition of a rotation and a translation
of the plane: φi(P ) = eiθi + bi i = 1, ..., 6, where θi is the rotational angle and bi ∈ R2

is a vector; we note φi(V0) = V0. By means of these functions we choose the maps ψ(i)
j ,

(j = 1, ..., 4; i = 1, ..., 6) as

ψ
(i)
j (·) = φ−1

i (ψj(φi(·))).

Lemma 5.3.3. For any h ≥ 1 and i = 1, ..., 6 the following holds: P and Q are h-neighbors
in V (i)

h if and only if φi(P ) and φi(Q) are h-neighbors in Vh. Moreover, for any h ≥ 1 and
i = 1, ..., 6, the map φ−1

i : K → Ki preserves the property on h-neighborhood in Vh. Let
LK be the Lagrangian on the Koch curve. We introduce the space

DF =
{
w : F → R|w ◦ φ−1

i ∈ D(E)∀i = 1, ..., 6
}

(5.3.20)

Letw, z be two given functions in D(F ) defined on F . We want to define a measure LF (w, z)

on F .

Definition 5.3.4. Let A be a Borel set of Ki. We introduce the measure valued Lagrangian
LF (u, v) of the setA as image measure (see [15]) of the measure LF (w◦ϕ−1

i , z◦ϕ−1
i ) under

the map ϕ−1
i , that is

LF (w, z)(A) = LK(w ◦ ϕ−1
i , z ◦ ϕ−1

i )(ϕi(A))
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Proposition 5.3.5. The above definition of the Lagrangian LF is independent of the choice
of the sets Ki, i.e. if A ⊂ Ki ∩Kj(i, j = 1, ..., 6; i 6= j), then

LK(w ◦ φi−1, z ◦ φi−1)(φi(A)) = LK(w ◦ φj−1, z ◦ φj−1)(φj(A)) (5.3.21)

for all w, z ∈ D(F )

Proof. Choose two functions w, z ∈ D(F ) and two indices i 6= j. From Proposition 5.3.1 it
follows that LK is the weak limit of LK

(h). In order to prove (5.3.21) it is sufficient to show
that, for any h ≥ 1 and for any P ∈ Ki ∩Kj ∩ Lh, the discrete gradient satisfies

∇h(w ◦ φi−1) · ∇h(z ◦ φi−1)(φi(P )) = ∇h(w ◦ φj−1) · ∇h(z ◦ φj−1)(φj(P )).

From (5.3.20) we have that the functions u = w ◦ φi−1 and v = z ◦ φi−1, acting from K to
R, are in D(E).Set R = φi(P ). Then R ∈ K ∩ Vh, and we have to show that, for any h ≥ 1,

∇h(u) · ∇h(v)(R) = ∇h(u ◦ (φi ◦ φj−1)) · ∇h(v ◦ (φi ◦ φj−1))((φj ◦ φi−1)(R)) (5.3.22)

holds. Setting k = φj ◦ φi−1, the right-hand side of (5.3.22) is given by∑
Q∼hk(R)

(u ◦ k−1)(k(R))− (u ◦ k−1)(Q)

|k(R)−Q|δ
(v ◦ k−1)(k(R))− (v ◦ k−1)(Q)

|k(R)−Q|δ

=
∑

Q′:k(Q′)∼hk(R)

u(R)− u(Q′)

|k(R)− k(Q′)|δ
v(R)− v(Q′)

|k(R)− k(Q′)|δ

=
∑
Q′∼hR

u(R)− u(Q′)

|R−Q′|δ
v(R)− v(Q′)

|R−Q′|δ

where the last two equalities follow from Lemma 5.3.3. The last sum equals to the left-hand
side of 5.3.22.

Definition 5.3.6. If B is an arbitrary Borel subset of F , it can be regarded as disjoint union
of sets B1, ..., B6 defined by Bi = B ∩ Ci,i+1(i = 1, ..., 5) and B6 = B ∩ C6,1, where Ci,i+1

denotes the set of all points of F located between xi and xi+1, including xi and excluding
xi+1 and C6,1 denotes the set of all points between x6 and x1, including x6 and excluding x1.
Then any of the sets Bi is contained in one of the sets K1, ..., K6, and we define

LF (w, z)(B) =
6∑
i=1

LF (w, z)(Bi).

LF is defined on D(F )×D(F ).
We define the energy form on the fractal snowflake F in terms of its local energy measure
LF .
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Definition 5.3.7. We introduce on D(F )×D(F ) the symmetric bilinear form

EF (u, v) =

∫
F

dLF (u, v)(u, v ∈ DF ). (5.3.23)

We note that

EF (u, v) =
3∑
i=1

∫
Ki

dLF (u, v) =
6∑
i=4

∫
Ki

dLF (u, v)

as follows from Remark 5.3.2 in this simpler situation.

5.3.4 A different definition of the energy form on F

Now we think the set F as the union of three Koch curves.
We recall that the energy form on one of these curves, for example K1, is the following: for
any function u: V∗ → R we set

E1
h[u] =

1

2
4h

∑
P∈V (1)

h

∑
Q∼hP

(u(P )− u(Q))2.

On
D∗(E

(1)) =
{
u : V (1)

∗ → R| lim
h→∞

E
(1)
h [u] <∞

}
,

we set
E(1)[u] = lim

h→∞
E1
h[u].

It can be proved that (E(1),D(E(1))) is a strongly local Dirichlet form on L2(K1, µ1) and
D(E(1)) is a Hilbert space equipped with the norm (‖ · ‖2

L2(K1,µ1) + E(1)[·]) 1
2 .

In a similar way, the energy forms E(2), ...,E(6) on K2, ..., K6 can be obtained as the limits
of (E

(2)
h )h≥1, ..., (E

(6)
h )h≥1. The domains of these strongly local Dirichlet energy forms are

denoted by D(E(2)), ...,D(E(6)) and the corresponding Lagrangian on Ki by LKi [·].
We define now the energy form on F : for any u : V∗ → R

Ẽh[u] =
1

2
4h
∑
P∈Vh

∑
Q∼hP

(u(P )− u(Q))2

h ≥ 1. (Ẽh[u])h≥1) is a sequence non-decreasing in h. We introduce the domain

D̃ =
{
u ∈ C(F )|ẼF [u] := lim

h→∞
Ẽh[u] <∞

}
.

Hence D̃ ⊆ C(F ) ⊆ L2(F, µF ). We define the space D(Ẽ) as the completion of D̃ in the
norm

‖u‖D(ẼF ) = ‖u‖2
L2(F,µF ) + ẼF [u])

1
2 . (5.3.24)
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D(ẼF ) is injected into L2(F, µF ) and is a Hilbert space with scalar product associated to the
norm (5.3.24).

Theorem 5.3.8. A function u is in D(ẼF ) if and only if u ∈ C(F ) and u|Ki ∈ D(E(i))

(i = 1, ..., 6). Moreover, it holds

ẼF [u] =
3∑
i=1

E(i)[u|Ki ] =
6∑
i=4

E(i)[u|Ki ] (5.3.25)

Proposition 5.3.9. (ẼF ,D(ẼF )) is a strongly local, closed, regular Dirichlet form on
L2(F, µF ).

Proof. The result follows from Theorem 5.3.8 and the corresponding properties of E(i) on
Ki.

Lemma 5.3.10. For any u ∈ DF we have u|Ki ∈ D(E(i)),∫
Ki

dLF [u] = E(i)[u|Ki ] (5.3.26)

and LKi [u] = LF [u]|Ki , i = 1, ..., 6.

Proof. We prove the Lemma only for the case i = 1.
We consider LF [u]|Ki which is given by LK [u ◦ φ−1

1 ]. We recall that, for u ◦ φ−1
1 D(E),

LK [u ◦ φ−1
1 ] is the weak limit of the sequence (L

(h)
K [u ◦ φ−1

1 ]) defined in (5.3.16). Hence it
can be written ∫

Ki

dLF [u] =

∫
K

dLK [u ◦ φ−1] = lim
h→∞

∫
Vh

dL
(h)
K [u ◦ φ−1]

=
1

2
lim
h→∞

∑
P∈Vh

∑
Q∈Vh:Q∼hP

(u(φ−1
1 (P ))− u(φ−1

1 (Q)))2

|P −Q|2δ
=

1

2
lim
h→∞

∑
P ′∈Vh

∑
Q′∈Vh:Q′∼hP ′

(u(P ′)− u(Q′))2

|P ′ −Q′|2δ

where the last equality follows from the fact that φ−1 : K → K1 preserves h-neighborhood.
The last limit is finite and from this it can be deduced that u|K1 ∈ E() and that

1

2
lim
h→∞

∑
P ′∈Vh

∑
Q′∈Vh:Q′∼hP ′

(u(P ′)− u(Q′))2

|P ′ −Q′|2δ
= E(1)[u|K1 ].
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Theorem 5.3.11. A function u : F → R belongs to D(F ) if and only if it belongs to D(ẼF ).
In this case,

EF [u] = ẼF [u]. (5.3.27)

Proof. Let u be in D(F ). Every u ∈ D(F ) is continuous on F : from Lemma 5.3.10 and
Theorem 5.3.8 it follows that u ∈ D(ẼF ). EF can be written, for u ∈ D(F ) as

EF [u] =
3∑
i=1

∫
Ki

dLF [u].

From Theorem 5.3.8 it follows, for u ∈ D(ẼF )

ẼF [u] =
3∑
i=1

E(i)[u|Ki ]

This with Lemma 5.3.10 implies 5.3.27.
Now, if u ∈ D(ẼF ), from Theorem 5.3.8 it follows that u|Ki ∈ D(E(i)).

Theorem 5.3.12. A function u : F → R belongs to D(F ) if and only if it belongs to D(ẼF ).
In this case

EF [u] = ẼF [u].

5.4 Essentials on semigroups and generators

In this Section we recall the main properties of the semigroups and related generators. For
more details we refer to [55].

Definition 5.4.1. Let X be a Banach space. A one parameter family T (t), 0 ≤ t ≤ +∞, of
bounded linear operators from X to X is a semigroup on X if

• T (0) = I , where I is the identity operator on X;

• T (t+ s) = T (t)T (s), for every t, s ≥ 0.

Definition 5.4.2. A semigroup T (t), is uniformly continuous if

lim
t→0
‖T (t)− I‖ = 0 (5.4.28)
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Definition 5.4.3. The linear operator A defined by

D(A) =

{
x ∈ X : lim

t→0

T (t)x− x
t

exists

}
(5.4.29)

and

Ax = lim
t→0

T (t)x− x
t

=
d+T (t)x

dt
|t=0, x ∈ D(A) (5.4.30)

is the infinitesimal generator of the semigroup T (t), D(A) is the domain of A

Theorem 5.4.4. A linear operator A is the infinitesimal generator of a uniformly continuous
semigroup if and only if A is a bounded linear operator.

Theorem 5.4.5. Let T (t) and S(t) be uniformly continuous semigroups of bounded linear
operators. If

lim
t→0

T (t)− I
t

= A = lim
t→0

S(t)− I
t

(5.4.31)

then T (t) = S(t) for t ≥ 0.

Definition 5.4.6. A semigroup T (t), 0 ≤ t < +∞, of bounded linear operators on X is a
strongly continuous semigroup of bounded linear operators if

lim
t→0

T (t)x = x,∀x ∈ X. (5.4.32)

Theorem 5.4.7. Let T (t) be a strongly continuous semigroup. There exist constants ω ≥ 0

and M ≥ 1, such that
‖T (t)‖ ≤Meωt, 0 ≤ t < +∞. (5.4.33)

As a consequence we have the following

Proposition 5.4.8. If T (t) is a strongly continuous semigroup then for every x ∈ X , the
mapping t→ T (t)x is a continuous function from R+ into X .

Theorem 5.4.9. Let T (t) be a strongly continuous semigroup and let A be its infinitesimal
generator. Then

1. For x ∈ X

lim
t→0

1

h

t+h∫
t

T (s)xds = T (t)x (5.4.34)

2. For x ∈ X ,
∫ t

0
T (s)xds ∈ D(A) and

A(

t∫
0

T (s)xds) = T (t)x− x. (5.4.35)
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3. For x ∈ D(A), T (t)x ∈ D(A) and

d

dt
T (t)x = AT (t)x = T (t)Ax (5.4.36)

4. For x ∈ D(A),

T (t)x− T (s)x =

t∫
s

T (τ)Axdτ =

t∫
s

AT (τ)dτ. (5.4.37)

Proposition 5.4.10. If A is the infinitesimal generator of a strongly continuous semigroups
T (t), then D(A) is dense in X and A is a closed linear operator.

Theorem 5.4.11. Let T (t) and S(t) be two strongly continuous semigroups whose infinites-
imal generators are A and B respectively. If A = B, then T (t) = S(t), for t ≥ 0.

Definition 5.4.12. A strongly continuous semigroup T (t) is called semigroup of contraction
if

‖T (t)‖X ≤ 1. (5.4.38)

Definition 5.4.13. If A is linear (unbounded) operator on X the resolvent set ρ(A) is the set
of the complex numbers λ for which λI − A is invertible, that is (λI − A)−1 is a bounded
linear operator. The family R(λ;A) = (λI − A)−1, λ ∈ ρ(A), of bounded linear operators
is called resolvent of A.

Theorem 5.4.14 (Hille-Yosida). A linear (unbounded) operator A is the infinitesimal gen-
erator of a strongly continuous semigroup of contractions T (t), t ≥ 0 if and only if

1. A is closed and D(A) = X .

2. The resolvent set ρ(A) contains R+ and for every λ > 0

‖R(λ;A)‖ ≤ 1

λ
. (5.4.39)

Definition 5.4.15. A linear operator A is dissipative if

‖(λI − A)x‖ ≥ λ‖x‖ (5.4.40)

∀x ∈ D(A) and λ > 0.

Theorem 5.4.16 (Lumer-Phillips). Let A be a linear operator with dense domain D(A) in
H .
If A is a dissipative operator and there exists λ0 such that the range of λ0I−A, R(λ0I−A),
is H , then A is the infinitesimal generator of a continuous semigroup of contractions on H .
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Proof. Since A is dissipative and R(λ0I − A) = H , it follows that (λ0I − A)−1 is a linear
and bounded operator, then (λ0I −A) is closed and also A is closed. If R(λI −A) = H for
every λ > 0, then ρ(A) ⊇ (0,∞) and ‖R(λ;A)‖ ≤ λ−1, from (5.4.40).Then from the Hille-
Yosida Theorem it follows that A is the infinitesimal generator of a continuous semigroup of
contraction on H .
To complete the proof it remains to show that R(λI − A) = H for every λ > 0.
Let

Λ = {λ > 0 : R(λI − A) = H}.

Let λ ∈ Λ. From the dissipativeness of A, it follows that λ ∈ ρ(A). Since ρ(A) is open, it
contains a neighborhood of λ. The intersection of this neighborhood with the real line is in
Λ and then Λ is open. Let λn ∈ Λ such that λn → λ > 0. For every y ∈ H there exists
xn ∈ D(A) such that

λnxn − Axn = y. (5.4.41)

From the dissipativeness it follows ‖xn‖ ≤ λ−1‖y‖ ≤ C, for some C > 0.

λm‖xn − xm‖ ≤ ‖λm(xn − xm)− A(xn − xm)‖ = |λn − λm|‖xn‖ ≤ C|λn − λm|.

Hence xn is a Cauchy sequence and thus it converges to an element x. Then from (5.4.41) it
follows Axn → λx − y. Since A is closed and x ∈ D(A) then Ax = λx − y. From this it
follows that R(λI − A) = H and λ ∈ Λ. Hence Λ is closed and open and is non empty by
assumption (λ0 ∈ Λ), then Λ = (0,∞).

5.5 Diagonalization lemmas

In this Section we recall two diagonalization lemmas for doubly indexed sequence. We refer
to [2], page 32-33 (Lemma 1.15 and Corollary 1.16 respectively).

Lemma 5.5.1. Let {an,m, n = 1, 2, ...,m = 1, 2, ...} be a doubly indexed family in R. Then,
there exists a mapping n→ m(n) increasing to +∞, such that:

lim inf
n→+∞

an,m(n) > lim inf
m→+∞

(lim inf
n→+∞

an,m). (5.5.42)

Proof. Let a = lim infn→+∞ an,m and a = lim infm→+∞ am. If a = −∞, there is nothing to
prove. Hence, let us assume a > −∞ and take (ap)p ∈ N a sequence of real numbers strictly
increasing to a.
If a < +∞, take ap = a− 2−p.
If a = +∞, take ap = p.
By definition of a, there exists an increasing sequence (mp)p∈N, mp → +∞, such that
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am > ap, for all m > mp

This can be condensed in:
am > inf

p
(a− 2−p) (5.5.43)

for all m > mp.
In the same way, there exists an increasing sequence (np)p∈N, np → +∞ such that

an,mp > inf
p

(amp − 2−p) (5.5.44)

for all n > np.
We set m(n) = mp if np < n < np+1 and prove that (5.5.42) is satisfied: when np < n <

np+1, from (5.5.43) and (5.5.44)

an,m(n) > infp(amp − 2−p) > infp[infp(a− 2−p)− 2−p]

If follows that

lim infn→+∞ an,m(n) > infp[infp(a− 2−p)− 2−p].

This being true for any p ∈ R, using the fact that for any a ∈ R, infp[infp(a − 2−p) − 2−p]

increases to a as p goes to +∞, we get:

lim infn→+∞ an,m(n) > lim infm→+∞(lim infn→+∞ an,m)

Lemma 5.5.2. Let {an,m, n = 1, 2...m,= 1, 2, ...} be a doubly indexed family in R. Then,
there exists a mapping n→ m(n), increasing to +∞, such that:

lim sup
n→+∞

an,m(n) > lim sup
m→+∞

(lim sup
n→+∞

an,m) (5.5.45)
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