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SUMMARY 

Dendritic cells (DC) are professional antigen presenting cells that 

continuously sample the environment; capture and process antigens; and 

transmit gathered information to T cells (Steinman & Banchereau 2007; 

Geissmann et al. 2010; Steinman & Cohn 1973). In presence of danger 

signals, DC become activated and trigger an inflammatory response against 

processed antigens, otherwise they remain in an immature state that lead to 

immune tolerance (Steinman 2003). Similarly, DC can interact and activate 

both B cells and NK (Batista & Harwood 2009; Steinman & Banchereau 

2007). Given their pivotal role in shaping the immune system, DC are 

considered among the most promising cell-based immunotherapeutic 

approach in cancer setting aiming at activating an immune response against 

tumor associated antigens (TAA) (Steinman & Banchereau 2007). Several 

strategies have been developed to directly target DC in vivo by conjugating  

TAA with antibodies specific for DC receptor. Similarly more recently initial 

results have been collected on the administration of ex vivo activated 

circulating DC loaded with TAA (Wimmers et al. 2014). However, by far the 

most explored approach is vaccination with ex vivo generated monocyte-

derived DC (Palucka & Banchereau 2013). Over twenty years ago, in fact, it 

was discovered that monocytes cultured with GM-CSF and IL-4 differentiate 

into DC and that upon maturation these cells were capable of activating T 

cells against specific  antigens (Sallusto & Lanzavecchia 1994). Since then 

many other strategies to differentiate monocyte into DC have been 

developed, each one generating DC with a different phenotype, but none has 

conquest a general consensus on which one is endowed with ideal phenotype 

and should be used clinically (Kalinski et al. 2009). 

Despite the large number of studies and clinical trials on ex vivo-generated 

DC vaccines, clinical results so far obtained were disappointing. Even though 

these vaccines proved to be safe and capable of inducing immune and clinical 

response in patient with melanoma, prostate carcinoma, glioma, and renal 

cell carcinoma, the overall response rate was usually below 15% (Datta et al. 

2014). Many reasons have been hypothesized for such low response rates, 

among which the generation of DC with suboptimal potency is considered 

the most relevant. It’s not known yet how to generate the most potent DC; 

furthermore, differences in clinical setting, study design, sources of antigens, 

and route of administration make it almost impossible to compare results 

from previously conducted trials in order to clearly delineate the shared 

determinants of in vivo efficacy of DC-based vaccines.  

Differently from previous attempts to optimize DC by modifying 

differentiation and/or maturation procedures, this project explores the 

possibility to identify factors affecting DC potency/efficacy in vivo in order 

to gain knowledge of molecular determinants essential for specific DC types 



II 
 

and that can thus be used for quality assessment of manufactured DC. 

Therefore, this project aimed at identifying factors affecting DC consistency 

and candidate molecular biomarkers of consistency, potency and efficacy of 

GMP manufactured DC. 

In the first part of this project, we therefore analyzed factors affecting DC 

consistency as well as genes and proteins mostly affected by these factors. 

We analyzed a specific type of DC that is being tested clinically that are DC 

differentiated by GM-CSF and IL-4 and matured with LPS and IFN-gamma 

(LIg-DC). We showed that even when highly standardized procedures are 

used to generate LIg-DC, manufacturing, intra-donor and inter-donor related 

factors may affect DC phenotype with the last one being the most relevant 

(Castiello et al. 2013). Interestingly, these three factors mainly affected 

expression level of different genes and, while intra-donor variability 

diminished during differentiation (probably because of strong differentiation 

signals), inter-donor variability increased upon differentiation/maturation. 

Additionally, we observed that, while most of the well-known and usually 

tested DC markers (e.g., CD80, CD86, CD83, HLA-DR) did not show any 

differences in expression among LIg-DC generated at different times from 

different donors, the expression of several genes and the levels of several key 

secreted cytokines and chemokines showed significant variability among 

LIg-DC products. In particular, among top variable genes, many are likely to 

be functional important for LIg-DC and their expression correlated with the 

levels of inflammatory IL-12 as well as other key chemokines, such as MDC, 

MIG and CXCL10. 

Then, in order to analyze whether such variability can be responsible of 

functional differences in vivo, we characterized from a molecular as well as 

immunophenotypic point of view LIg-DC vaccines administered to stage D0 

prostate cancer patients. We observed a strong correlation between DC 

phenotype and development of clinical and immunological response  in 

patient after vaccination. In particular, we identified a 303-gene signature 

made up of several well-known tolerogenic DC factors, such as CD14 and 

IL-10, that was capable to discriminate DC of patients that later showed 

clinical/immunological response from the ones of non-responders. The 

differential expression of CD14 and IL-10 was confirmed at the proteomic 

level and we also observed that MCP-1 and MDC protein levels correlated 

with the expression of the tolerogenic gene signature. Even though IL-10 

secretion levels were able to predict strong immunological responses, it was 

only by combining CD14, IL-10, MCP-1 and MDC protein measures that it 

was possible to obtain an index able to replace the tolerogenic gene 

expression signature in its ability to discriminate both clinical and strong 

immunological responses.  
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In the final part of the project, we explored whether monocyte-derived DC 

differentiated in presence of GM-CSF and interferon-alpha (IFNa-DC) show 

patterns of variability similar to LIg-DC and whether biomarkers of efficacy 

are shared with LIg-DC. The DC used in this study were also manufactured 

to sustain a phase I clinical study aiming at activating an immune response in 

advanced melanoma patients. Even IFNa-DC were showing pretty invariable 

expression levels of major histocompatibility complex class I and class II 

molecules, as well as co-stimulatory receptors CD80 and CD11c marker. 

However, we did observe high variation in the level of expression of CD86, 

CD40, CD83 and CD1a among IFNa-DC made from different patients. At 

gene expression level, instead, we did not observe the existence of the 

tolerogenic signature we detected in LIg-DC, but even in these cells immune 

response genes showed high level of variability, therefore pointing to 

functional differences in DC vaccines. Also proteomic analysis suggested 

that lot-to-lot variability shown by IFNa-DC affects different cytokines and 

chemokines compared to LIg-DC. 

Altogether, this project developed a methodological framework for the 

identification of biologically-relevant quality control markers of DC by 

combining genomic and proteomic analysis. When applied to clinical DC, 

such approach was able to identify genes and proteins that correlated with 

clinical and immunological response and that can therefore be used as 

efficacy biomarkers of LIg-DC. However, as highlighted from the analysis of 

IFNa-DC, such newer markers are specific for DC used. On a broader range, 

these results strongly support the need for in-depth analysis of DC for the 

identification of newer quality assessment markers and factors essential for 

DC activity in vivo. Once identified, these markers can be used for the 

advancement of DC immunotherapies and to foster their implementation in 

clinic. 
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RIASSUNTO 

Le cellule dendritiche (DC) sono cellule specializzate nella presentazione 

degli antigeni che analizzano costantemente  il microambiente in cui si 

trovano, catturano e processano antigeni, e in base a questi ultimi regolano 

l’attività dei linfociti T (Steinman & Banchereau 2007; Geissmann et al. 

2010; Steinman & Cohn 1973). Solo in presenza di segnali di pericolo, 

infatti, le DC si attivano e innescano una risposta infiammatoria contro gli 

antigeni che hanno processato; alternativamente queste cellule rimangono in 

uno stato immaturo di solito legato al sostenimento della tolleranza 

immunologica (Steinman 2003). Inoltre, le DC possono interagire e attivare 

anche i linfociti B e le cellule NK (Batista & Harwood 2009; Steinman & 

Banchereau 2007). Proprio alla luce del loro ruolo centrale nel dirigere il 

sistema immunitario, le DC sono considerate la base di uno degli approcci 

più promettenti tra le immunoterapie cellulari in campo oncologico, il cui 

obiettivo è di attivare una risposta immunitaria contro antigeni tumorali 

(TAA) (Steinman & Banchereau 2007). Diverse strategie sono state 

sviluppate per dirigere TAA sulle DC direttamente in vivo, coniugando gli 

antigeni con anticorpi specifici per recettori delle DC. Altri gruppi invece 

stanno analizzando l’uso di DC circolanti che possono essere isolate dal 

sangue e che vengono brevemente attivate e caricate di antigeni ex vivo prima 

di essere somministrate al paziente. Tuttavia, l’approccio di gran lunga più 

studiato è la vaccinazione con DC ottenute ex vivo dal differenziamento di 

monociti circolanti (Palucka & Banchereau 2013). Da oltre vent’anni, infatti, 

è noto che i monociti differenziano in DC se messi in coltura con GM-CSF e 

IL-4 e che queste DC - previa maturazione - sono in grado di attivare i 

linfociti T contro specifici antigeni (Sallusto & Lanzavecchia 1994). Da 

allora molte altre strategie per il differenziamento e la maturazione delle DC 

sono state sviluppate, ognuno capace di generare DC con un peculiare 

fenotipo.  Ciò nonostante nessuna di queste strategie ha conquistato il 

consenso generale per essere la più indicata per un uso clinico (Kalinski et al. 

2009). 

Nonostante il gran numero di studi e trial clinici con DC, i risultati clinici 

finora ottenuti con questo approccio sono stati insoddisfacenti. Infatti pur 

mostrando di essere in grado, in alcuni pazienti, di attivare una risposta 

immunitaria e clinica contro diversi tumori, la percentuale di risposta 

osservata è stata mediamente inferiore al 15% (Datta et al. 2014). Diverse 

cause sono state ipotizzate per spiegare questi insuccessi, e tra queste la 

generazione di DC con funzionalità subottimali è considerata la più 

importante. È ancora in discussione, infatti, come generare DC che inducano 

una spiccata attività infiammatoria una volta inoculate nei pazienti, e 

l’eterogeneità degli studi finora condotti non permette di comparare i diversi 
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risultati e determinare esaustivamente le caratteristiche necessarie per 

l’efficacia di queste cellule in vivo. 

Diversamente dai precedenti tentativi di ottimizzare le DC modificando le 

strategie di differenziamento/maturazione, questo progetto esplora la 

possibilità di identificare i fattori che condizionano la funzionalità in vivo  

delle DC con l’obiettivo di identificare gli elementi molecolari essenziali per 

l’attività delle DC e che quindi possono essere usati per i controlli di qualità 

delle DC prodotte. Quindi, questo progetto mira a identificare i fattori che 

influiscono sul fenotipo finale delle DC e i biomarcatori molecolari candidati 

per valutare la consistenza, la potenza e predire l’efficacia di DC prodotte per 

studi clinici.  

Nella prima parte del progetto, abbiamo analizzato quali fattori influenzano 

la consistenza delle DC, e i geni e le proteine che ne sono principalmente 

condizionati. Per questo studio abbiamo utilizzato un tipo specifico di DC 

che è attualmente in fase di sperimentazione clinica, ovvero di DC 

differenziate in presenza di GM-CSF e IL-4 e maturate con LPS e Interferon-

gamma (LIg-DC). I risultati ottenuti mostrano come anche quando protocolli 

altamente standardizzati vengono utilizzati per generare le LIg-DC, 

differenze intra-donatore, inter-donatore, e di processamento delle cellule 

condizionano il fenotipo delle DC generate e, tra questi, le differenze inter-

donatore sono le più rilevanti (Castiello et al. 2013). Questi tre fattori, inoltre, 

condizionano i livelli di espressione di geni differenti e mentre la variabilità 

intra-donatore diminuisce durante il differenziamento dei monociti in DC 

quella inter-donatore risulta più elevata nelle DC rispetto ai monociti di 

partenza. In aggiunta, abbiamo osservato che sebbene i livelli di espressione 

dei principali marcatori delle DC si mantengano costanti in modo 

indipendente dal donatore(es. CD80, CD86, CD83, HLA-DR), l’espressione 

di numerosi geni così come i livelli di secrezione di citochine e chemochine 

importanti per la funzionalità delle DC mostrino un’elevata variabilità tra le 

LIg-DC prodotte da diversi donatori. In particolare, molti dei geni tra i più 

variabili sono stati descritti come importanti per la funzionalità delle DC e la 

loro espressione correla con i livelli di secrezioni della citochina 

infiammatoria IL-12 e delle chemochine MDC, MIG e IP10, tutte essenziali 

per l’interazione con le altre cellule del sistema immunitario. 

Poi, al fine di comprendere se tale variabilità potesse essere responsabile di 

una diversa funzionalità in vivo, abbiamo analizzato LIg-DC usate per 

vaccinare pazienti con carcinoma prostatico in stadio D0. Dai risultati è 

emersa una forte correlazione tra il fenotipo delle DC e lo sviluppo di una 

risposta clinica e immunologica nei pazienti dopo vaccinazione. In 

particolare, abbiamo identificato 303 geni – in gran parte già descritti come 

tipici di DC tollerogeniche come CD14 e IL-10– capaci di discriminare le DC 

somministrate ai pazienti che successivamente avrebbero risposto alla 
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vaccinazione da quelle di pazienti  “non responders”.  La diversa espressione 

di CD14 e IL-10 è stata anche confermata a livello proteico, insieme a quella 

di MDC e MCP-1. Tuttavia sebbene i livelli di espressione di IL-10 fossero 

sufficienti a discriminare DC capaci di indurre forti risposte immunologiche, 

è stato solo combinando le quattro proteine (CD14, IL-10, MDC, MCP-1) 

che siamo stati in grado di ottenere una capacità predittiva paragonabile a 

quella dei 303 geni.  

Al fine di stabilire l’applicabilità di questi marcatori di efficacia in vivo  

anche per altre DC, nella parte finale del progetto abbiamo poi cercato di 

comprendere se anche nelle DC differenziate in presenza di GM-CSF e 

interferon-alpha (IFNa-DC) fosse possibile osservare gli stessi schemi di 

variabilità osservati nelle LIg-DC. Anche in questo studio abbiamo analizzato 

DC che erano state prodotte per uno studio clinico di fase I, stavolta mirato a 

vaccinare pazienti con melanoma metastatico avanzato. Anche le IFNa-DC 

hanno mostrato un pressoché invariabile livello di espressione di alcuni 

marcatori ben noti delle DC, quali CD90, CD11c e i complessi maggiori di 

istocompatibilità di classe 1 e 2, anche se livelli di variabilità elevati sono 

stati registrati nell’espressione di CD86, CD40, CD83 e CD1a. A livello 

genico, invece, pur non osservando la presenza dell’impronta tollerogenica 

osservata nelle LIg-DC, anche nelle IFNa-DC è stata rilevata un’elevata 

variabilità in molti geni della risposta immunitaria, suggerendo anche qui 

l’esistenza di potenziali differenze funzionali tra le diverse DC analizzate. 

Anche a livello proteico, poi, l’analisi dei livelli di secrezione di citochine e 

chemochine ha messo in luce come le IFNa-DC siano caratterizzato da una 

diversa variabilità rispetto alle LIg-DC. 

In generale, questo progetto ha sviluppato un approccio metodologico per 

l’identificazione di nuovi controlli di qualità delle DC, basato sulla 

combinazione di analisi genomiche e proteomiche. Quando tale approccio è 

stato utilizzato su DC usate in clinica, esso ha permesso di identificare geni e 

proteine che correlavano con lo sviluppo di una risposta clinica e 

immunologica e che quindi possono essere usati come biomarcatori di 

efficacia delle LIg-DC. Tuttavia, come evidenziato dall’analisi delle IFNa-

DC, questi biomarcatori non sono condivisi universalmente da tutte le DC. 

Aldilà dell’aver identificato nuovi biomarcatori delle LIg-DC, questi risultati 

evidenziano la necessità di analisi approfondite delle DC per l’identificazione 

di nuovi marcatori e fattori essenziali per l’attività delle DC in vivo. Una 

volta identificati, questi nuovi marcatori possono essere utilizzati per 

controlli di qualità più affidabili e quindi facilitare l’implementazione clinica 

di queste cellule. 
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1. BACKGROUND 

1.1 Dendritic Cells and their role in shaping immune response 

Dendritic cells (DC) are bone marrow-derived cells that are present in all 

tissues in order to sample the environment and transmit gathered information 

to the adaptive immune system (Steinman & Banchereau 2007; Geissmann et 

al. 2010; Steinman & Cohn 1973). To initiate an immune response DC 

present the captured antigen, which is in the form of peptide–major 

histocompatibility complex (MHC) molecule complexes, to naive T cells in 

lymphoid tissues (Steinman & Banchereau 2007).  

Normally, DC in peripheral tissues are immature. These immature DC have 

the ability to efficiently capture antigens; they can express low levels of co-

stimulatory molecules; and have a limited capacity for secreting cytokines. 

Non-activated (immature) DC can present self-antigens to T cells (Steinman 

2003), which leads to immune tolerance either through T cell deletion or 

through the differentiation of regulatory or suppressor T cells. However, DC 

promptly respond to environmental signals and differentiate into mature DC 

that can efficiently launch immune responses. Maturation is associated with 

the down-regulation of antigen-capture activity, the increased expression of 

surface MHC class II molecules and co-stimulatory molecules, the ability to 

secrete cytokines, as well as the acquisition of CCR7, which allows migration 

of the DC into the draining lymph node (Trombetta & Mellman 2005). 

However, DC maturation alone does not result in a unique DC phenotype. In 

fact, depending on the type of maturation signal, DC acquire distinct 

phenotypes that are distinct in both expression of co-stimulatory/co-

inhibitory molecules as well as type and amount of secreted cytokines and 

chemokines. 

Depending on the interaction with DC, naive CD4+ T cells and CD8+ T cells 

can differentiate into antigen-specific effector T cells with different 

functions. In fact, CD4+ T cells can become T helper 1 (TH1) cells, TH2 

cells, TH17 cells or T follicular helper (TFH) cells that help B cells to 

differentiate into antibody-secreting cells, as well as regulatory T (TReg) 

cells that down-regulate the functions of other lymphocytes. Naive CD8+ T 

cells can give rise to effector cytotoxic T lymphocytes (CTLs). The type of T 

cell response — for example, CD4+ helper T cells or CD8+ CTLs — is at 

least partly linked to the subset of DC that presents the antigen (Banchereau 

& Steinman 1998). DC can also interact with cells of the innate immune 

system, including natural killer (NK) cells, phagocytes and mast cells 

(Steinman & Banchereau 2007; Banchereau & Steinman 1998). 

DC also have an important role in controlling humoral immunity. They do so 

both directly by interacting with B cells and indirectly by inducing the 
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expansion and differentiation of CD4+ helper T cells (Batista & Harwood 

2009). These key properties of DC, which allow the activation of both arms 

of the adaptive immune system (that is, cellular and humoral) and which 

launch the immune response, render DC the central candidates for antigen 

delivery and therapeutic vaccination against cancer. 

 

1.2 Dendritic Cells subsets: localization and function 

Both mice and humans have two major subsets of DC: myeloid DC (mDC; 

also known as conventional DC and classical DC) and plasmacytoid DC 

(pDC). Different subsets of human DC in the blood can be distinguished by 

the differential expression of three cell-surface molecules: CD303 (also 

known as BDCA2 and CLEC4C), CD1C (also known as BDCA1) and 

CD141 (also known as BDCA3 and thrombomodulin) (Dzionek et al. 2000). 

CD303+ pDCs represent a front line of anti-viral immunity owing to their 

ability to secrete large amounts of IFNα in response to virus encounters 

(Siegal et al. 1999). Their presynthesized stores of MHC class I molecules  

may allow a rapid initial CD8+ T cell response to viral infections. pDC-

derived IFNα may also promote the immunogenic maturation of other subsets 

of DCs, thus helping to activate novel T cell clones. Human CD141+ DCs 

share with mouse CD8+ DCs the high capacity to capture exogenous antigens 

for presentation on MHC class I molecules (known as cross-presentation). 

CD141+ DCs express XCR1, which is the receptor for the chemokine XCL1 

(also known as lymphotactin) that is produced by NK cells and activated 

CD8+ T cells (Bachem et al. 2010). Thus, mouse CD8+ DCs and human 

CD141+ DCs are equipped for the generation of CD8+ T cell-mediated 

immune responses. The unique functions of CD1C+ DCs also continue to be 

analyzed. 

The human skin hosts two main subsets of mDC: epidermal Langerhans cells 

and dermal interstitial DC (dermal DC) (Valladeau & Saeland 2005). The 

dermal DC can be further subdivided into CD1a+ DC and CD14+ DC. 

Human CD14+ DC can directly help activated B cells, as well as induce 

naive T cells to differentiate into cells with the properties of TFH cells. 

CD14+ DC may thus be specialized for the development of humoral 

responses (Ueno et al. 2010). Langerhans cells are more efficient in cross-

presenting peptides from protein antigens to CD8+ T cells and can prime the 

differentiation of CD8+ T cells into effector CTLs. 

The development and homeostasis of tissue-resident DC subsets in steady 

state conditions (that is, when there is no infection or activation of the 

immune system) is dependent on the activation of the receptor tyrosine 

kinase FLT3 and of the macrophage colony-stimulating factor 1 receptor (M-

CSFR; also known as CSF1R). However, inflammatory processes, such as 

those initiated by microbial invasion, substantially alter the populations of 
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DC subsets. The origin of DC that are recruited to sites of inflammation is 

still under investigation, although it is clear that monocytes can give rise to 

inflammatory DC in vivo (Cheong et al. 2010).  

 

1.3 Monocyte-derived Dendritic Cells: pathways of differentiation and 

maturation 

Over twenty years ago, Sallusto and Lanzavecchia described for the first time 

that immature DC can be generated culturing monocytes in vitro in presence 

of granulocyte macrophage colony stimulating factor (GM-CSF) and 

interleukin-4 (IL-4) (Sallusto & Lanzavecchia 1994). These cells (IL4-DC) 

showed typical dendritic morphology, expressing high levels of major 

histocompatibility complex (MHC) class I and class II molecules, CD1 

family, and other co-stimulatory molecules. Even functionally, these cells 

proved to be highly stimulatory in mixed leukocyte reaction (MLR) and were 

also capable of triggering naive T cells. Since then, many different protocols 

have been developed to differentiate monocytes into DC, each one leading to 

DC with a unique phenotype. 

Given their functional similarity, both IL-13 and IL-7 can substitute IL-4, 

even though signaling in different ways. In fact, IL-13DC are similar to IL-

4DC both phenotypically and functionally, whereas IL-7DC express CD21, 

the complement receptor type 2. Even functionally, these cells proved to be 

more effective than IL-4DCs in eliciting proliferative responses of CD4 and 

CD8 T cells, and stronger T cell cytotoxicity (Takahashi et al. 1997).  

Originally described for its anti-viral activity, type I interferon (IFN) exerts 

important effects on the immune system, including promotion of cellular and 

humoral responses, by virtue of its adjuvant effects on antigen-presenting 

cells (Belardelli 1995). As high amounts of IFN-α can be physiologically 

produced in response to infectious agents and inflammatory stimuli, this 

cytokine may be among the factors signaling danger to circulating 

monocytes, thus enabling them to rapidly differentiate into DC. In line with 

this hypothesis, it has been previously demonstrated that highly active 

partially mature DC can be generated from monocytes after a single step of 

3-day culture with IFN-α and GM-CSF (IFNa-DC) (Santini et al. 2000). 

IFNa-DC proved to be more effective than immature DC generated in the 

presence of GM-CSF and IL-4 in inducing a Th-1 type of immune response 

and CD8+ T cell responses against defined antigens in different models 

(Lapenta et al. 2006; Santodonato et al. 2003). Although antigen uptake and 

endosomal-processing capabilities were similar for IFNa-DC and IL-4DC, 

and both DC types efficiently cross-presented soluble antigens to the specific 

CD8+ T cell clone, IFNa-DC were superior in cross-presenting low amounts 

of viral antigens. This property correlated with enhanced potential to express 

the specific subunits of the IL-23 and IL-27 cytokines. 



4 
 

Depending on the specific cytokine combination, blood monocytes can also 

give rise to Langerhans cells. In this respect, it has been reported that blood 

monocytes differentiated into LCs by replacing IL-4 with IL-15 

(Mohamadzadeh et al. 2001). This cytokine cocktail gives rise to CD1a+, 

HLA-DR+, CD14− DCs, a proportion of which express LC markers, such as 

E-cadherin, Langerin and CCR6. Accordingly, IL-15DC, but not IL-4DC, 

migrated in response to CCL20. However, IL-15DCs cannot be qualified as 

genuine LCs because, despite Langerin expression, they do not express 

Birbeck granules (Mohamadzadeh et al. 2001). 

Independently of the differentiation protocol used, DC can be matured by 

different stimuli. Mimicking signal microenvironment sensed by DC in vivo, 

DC have been matured in vitro using either inflammatory or tolerogenic 

compounds. Tolerogenic DC can be generated by maturing DC with IL-10 

alone or in combination with IL-6, dexamethasone, or TGF-beta1 (Torres-

Aguilar et al. 2010). Alternatively, tolerogenic DC have been generated by 

co-culturing DC with immunosuppressive cells, such as T regulatory cells 

and mesenchymal stromal cells (Pulendran et al. 2010). However, many more 

signals can be used to generate DC with inflammatory phenotype. Maturation 

of DC can be achieved by triggering Toll-like receptors (TLR) or through 

inflammatory cytokines. Triggering of TLRs on DC is thought to be critical 

for their functional maturation to immunogenic DC and the priming of naïve 

T cells in response to infection, and therefore coupling innate and adaptive 

immunity. Because of its bacterial origin and its predominant role as a 

pathogen associated pattern (PAP), LPS is recognized by TLR4 and 

represents a prototypical model of DC maturation. LPS-DC are endowed 

with strong chemotactic and immune activating properties (Castiello et al. 

2011). Polyinosinic:polycytidylic acid (Poly I:C) is another of the most 

studied maturation signals in DC. Poly I:C is structurally similar to double-

stranded RNA, which is present in some viruses, and is recognized by TLR3.  

Similarly to LPS, also Poly I:C induces maturation of DC with a strong 

immunogenic phenotype (Möller et al. 2008).  Type I and II IFN, Tumor 

Necrosis Factor alpha (TNFa), IL-6 and IL-1b are all inflammatory cytokines 

that are capable to induce DC maturation either alone or in combination 

(Castiello et al. 2011). Differently from PAP, these cytokine do not trigger 

TLR, but activate different downstream signaling pathways, therefore leading 

to DC with different phenotypes. 

 

1.4 Dendritic Cell Based Immunotherapies 

Given their pivotal role in activating an antigen specific immune response, 

DC have been considered among the ideal cell-based immunotherapies. Over 

the last twenty years, many studies focused on three different DC-based 
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immunotherapies: in vivo targeting of DC, ex vivo activation of circulating 

DC and ex vivo generation of monocyte-derived DC.  

Pioneering studies from Steinman and Nussenzweig demonstrated the 

feasibility of targeting antigens to DC in vivo by coupling the desired antigen 

to an antibody recognizing a DC receptor (Bonifaz et al., 2002; Hawiger et 

al., 2001; Soares et al., 2007a). Importantly, in the absence of adjuvants, 

(e.g., targeting antigens to DEC205+ DC) in vivo induces antigen-specific 

tolerance, which can be used as treatment against autoimmune diseases such 

as type I diabetes (Steinman, 2012). Administration of these complex 

vaccines with DC-activators such as TLR3, TLR7-8, or CD40 agonists 

enables the maturation of DC and thus the establishment of immunity rather 

than tolerance (Steinman, 2012). The induced immunity was shown to be 

protective in a number of diseases including various infections (malaria, 

HIV) and cancer (Steinman, 2012; Tacken and Figdor, 2011), but moving in 

vivo DC-targeting to human trials requires considerable work yet because  

activator to use, DC subset to target, and specificity of targeting in vivo have 

still to be optimized (Datta et al. 2014). 

Due to the low occurrence of naturally circulating DC in blood, conclusive 

clinical evidence on their usability for immunotherapy is lacking. Only 

recently, thanks to technological advancement in cell separation techniques, 

some encouraging results have been achieved using either pDC and mDC. In 

both cases, circulating DC subsets are selected by magnetic separation kits 

and cultured with activating cytokines for short period of time (i.e., 

overnight). Then, cells are loaded with tumor associated antigens and injected 

back to patient. Interestingly, one clinical trial selecting/activating pDC in 

melanoma patients showed  induction of cancer-specific immune response in  

7 of 15 treated patients and similar encouraging results were obtained 

selecting CD1c+ mDC (Wimmers et al. 2014).  

Thanks to the accessibility to high amount of monocytes, injection of ex vivo 

generated monocyte-derived DC has been under the spotlight as the most 

promising and ready to implementation immunotherapy. Since the discovery 

of monocyte differentiation into DC over 300 clinical trials have been 

performed, but the heterogeneity of cells used, sources of antigen, dose and 

site of injection makes impossible to clearly summarize results so far 

obtained. By far the majority of the studies involved conventional IL-4DC 

used immature or matured by different maturing compound or cocktails 

loaded with tumor associated antigens (either single peptides, whole proteins 

or tumor lysates). To date, none of these study showed conclusive results of 

efficacy of such approach, even though both clinical and immunological 

responses have been observed (Engell-Noerregaard 2009). Furthermore, 

more recently some studies were published utilizing DC injected intra-

tumorally after chemotherapy or radiotherapy, therefore aiming at an in situ 
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loading of antigens released by therapy induced cell death (Yu et al. 2003; 

Kolstad et al. 2014; Tanaka et al. 2005). These studies showed preliminary 

promising results, but larger studies have to be performed to assess efficacy 

of this other approach. Altogether, even though a large body of research and 

clinical experimentation has been performed, monocyte-derived DC 

immunotherapies have still to be optimized and many parameters to be more 

deeply analyzed.  

 

1.5 Open questions in immunotherapy based on monocyte-derived 

Dendritic Cells 

Even though a large number of clinical trials has be conducted utilizing ex 

vivo-generated DC vaccines, several controversies linger. First, the optimal 

DC phenotype, and the differentiation/maturation protocol utilized therein 

remains contentious. In particular, given the complexity of DC biology and 

the wide array of molecular players essential for T cell activation, a 

consensus on optimal DC phenotype and the procedure to obtain it is still 

lacking (Castiello et al. 2011). Among molecular markers of ideal DC, it is 

increasingly recognized that abundant production of IL-12p70 during DC 

maturation ex vivo, as well as “burst” secretion during DC-activated Th 

interaction in vivo (via CD40-CD40L in lymphoid organs), are critical for the 

induction of CTL responses  and Th1-polarized immunity (Strioga et al. 

2013). In addition to IL-12p70 elaboration, other desirable functions of 

immunogenic DC include non-exhaustive capacity, expression of chemokines 

enhancing tumor microenvironment infiltration of T effector cells (e.g., 

CXCL9/10), low IL-10 secretion following restimulation with CD40L, and 

enhanced migratory ability to lymph nodes. Several cytokine cocktails have 

been proposed to achieve optimal DC characteristics, but other factors have 

also to be finely tuned, such as time of stimulation and cytokine 

concentrations. Also, most of the studies focused only on how to optimize 

DC in order to have the best activation of T cells; however there is increasing 

evidence that also DC interaction with B cells and NK is important for 

effective activation of immune system, but the ideal DC phenotypes for these 

interactions are mostly unexplored (Bray et al. 2011; Qi et al. 2006). 

Additionally, it has to be considered that the ideal DC phenotype may differ 

depending on tumor setting, type of antigen used, site of injection, and 

patient immune status, thus opening the door to multiple “ideal DC 

phenotypes”, each one for a specific setting/use. 

Second, the ideal strategy for DC antigen-loading is not universally agreed 

upon. The most common approach has been loading with tumor-associated 

peptides or whole recombinant tumor proteins (Palucka & Banchereau 2012). 

Other modalities of DC loading (engineered fusion proteins, 

autologous/allogeneic tumor cells, tumor cell-lysate, DC-tumor hybrids, and 
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DNA- or mRNA-transfected) have also emerged (Strioga et al. 2013). Even 

though clinical studies are still evaluating all of these strategies, the use of 

tumor lysate is thought to be the most promising one given the wide antigenic 

repertoire the DC can process and thus present. As already mentioned, 

another strategy is also emerging pointing to in situ loading of intra-

tumorally injected DC, usually following chemo/radiotherapy (Kolstad et al. 

2014; Tong et al. 2001; Akutsu et al. 2007; Finkelstein et al. 2012). Similarly 

to tumor lysate, this approach allows a wide antigenic repertoire, and 

compared to tumor lysate has the advantage of being more simple (given that 

tumor lysate has not to be processed ex vivo), but has the drawback that DC 

have to overcome tolerogenic tumor microenvironment in order to activate 

immune system. 

Third, the optimal route for DC administration remains controversial. 

Historically, with intradermal/subcutaneous injection techniques, DC 

trafficking to regional lymph nodes was considered critically important to 

their function. Indeed, maturation cocktails (e.g., PGE2-containing) were 

designed to optimize trafficking ability (Strioga et al. 2013). However, 

depending on differentiation/maturation strategy and DC maturation status at 

time of injection, alternative routes might be more effective. Ultrasound-

guided intranodal injection, which co-localizes DC1-derived IL-12p70 

“burst” with the anatomic site of T-cell sensitization, has emerged as a 

feasible solution (Bedrosian et al. 2003) ideal in case of DC impaired 

migration ability or advanced maturation. 

Fourth, ex vivo-generated DC vaccines, like all other cell therapies, is 

challenging because of their considerable lot-to-lot and patient-specific 

variability that in most cases has yet to be sufficiently quantified and 

characterized (Stroncek et al. 2010). In fact, while each cell therapy lot has to 

be tested for identity, purity and potency among other tests, feasibility issues 

dictate these tests to be focused on a handful of factors and, therefore, they 

cannot assure an exhaustive characterization of each lot. Identity testing aims 

to ensure the manufactured cells show a defined phenotype, purity testing 

evaluates the absence/low level of cell contaminants. Potency testing, instead, 

assesses one biologically-relevant activity of the product and therefore is 

more controversial because can be tested with relatively-easy and low-

informative assays (such as the secretion of IL-12 or phagocytosis ability) or 

lengthy and complex high-informative ones (such as the ability to activate 

tumor specific immune response in animal models). An accurate 

characterization of DC should ideally assay all the factors affecting their in 

vivo biological functions: antigen processing and presentation, expression of 

co-stimulatory signals, absence or reduced expression of co-inhibitory 

signals, lymph node migration, and secretion of activating cytokines and 

chemokines. These are all essential features of potent DC and should be 
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thoroughly tested. Since it is impossible to routinely evaluate each product 

for every cell function using cellular assays, the identification of reliable 

biomarkers of identity, consistency and potency of cell therapies is highly 

encouraged by regulatory agencies beginning in the earliest phases of clinical 

development of the cellular product (Hinz et al. 2006; Vatsan et al. 2013). 

 

1.6 Novel strategies for generation of monocyte-derived Dendritic Cells  

As previously stated, a wide array of strategies to generate monocyte-derived 

DC has been developed and tested, but no general consensus exists on which 

one leads to ideal DC. In the next two sections, two novel strategies that 

represent promising candidates and that were used and analyzed for the PhD 

research project are discussed more in details. 

 

1.6.1 LPS/IFN-gamma mature Dendritic Cells 

Maturation of conventional IL-4DC with clinical grade LPS and IFN-gamma 

generated DC with strong immunostimulatory activity (LIg-DC) (Dohnal et 

al. 2009; Felzmann et al. 2005; Hüttner et al. 2005; Vopenkova et al. 2012). 

In fact, it has been shown that LIg-DC exhibit fully mature phenotype, the 

highest IL-12p70 production and stimulate T cell proliferation as well as their 

specific cytotoxic activity (Vopenkova et al. 2012). However, it has been 

observed that IFN-gamma and high-IL-12p70 production reduced migratory 

ability of DC, and thus LIg-DC do not migrate well. In particular, donor-

dependent differences were observed in DC migratory capacity, suggesting 

that DC migration does not depend only on the maturation strategy used, but 

also on individual characteristics of the donor. Also, it was noted that timing 

of maturation play a critical role for this  kind of cells. In fact, while only two 

hours were sufficient to induce maturation and potent immunostimulatory 

ability, cultivation of DC in the presence of both maturing agent for longer 

than 24 hours generated DC that were unable to release IL-12p70 and were 

less effective in triggering anti-tumor immunity(Hüttner et al. 2005). 

Two clinical studies using LIg-DC have been published. In the first one, 22 

pediatric cancer patients were vaccinated with LIg-DC pulsed with tumor cell 

lysate and keyhole limphet hemocyanin (KLH, as positive control). 

Following immunization, the majority of patients responded positively to 

KLH in a delayed-type hypersensitivity (DTH) test. In addition, three of six 

intra-nodally treated patients responded to the tumor Ag in the DTH 

test(Dohnal et al. 2007). In the second study, twenty-seven subjects with 

HER-2/neu over-expressing ductal carcinoma in situ of the breast were 

enrolled in a neoadjuvant immunization trial of  LIg-DC pulsed with six 

HER-2/neu promiscuous MHC class II-binding peptides, plus two additional 

HLA-A2.1 class I-binding peptides. Interestingly, sensitization of Th cells to 

at least 1 class II peptide was observed in 22 of 25 evaluable subjects, while 
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eleven of 13 HLA-A2.1 subjects were successfully sensitized to class I 

peptides (Koski et al. 2012).  

 

1.6.2 IFN-alpha Dendritic Cells 

As already mentioned culture of monocyte with GM-CSF and IFN-alpha 

generate DC showing a semi-mature phenotype and endowed with potent 

functional activities (IFNa-DC) (Santini et al. 2000; Farkas et al. 2008; 

Paquette et al. 1998; Santini et al. 2009). In fact, these cells produce mostly 

T-helper-1 (Th-1) cytokines and chemokines, express toll-like receptors 

(TLRs) 1 to 8, show migratory response to chemokines, and are capable of 

stimulating Th-1 polarized immune responses after injection into severe 

combined immunodeficient mice reconstituted with human peripheral blood 

leukocytes(Santini et al. 2009; Farkas et al. 2008). Of interest, in a variety of 

in vitro and in vivo preclinical models, IFNa-DC proved to be superior with 

respect to IL-4DC in inducing potentially protective immune responses . 

Notably, IFNa-DC exert a direct cytotoxic effect on tumor cells (Santini et al. 

2000), are capable to take up apoptotic cells through the scavenger receptor 

Lectin-like oxidized-LDL receptor-1 (LOX-1) (Parlato et al. 2010) and cross-

present their antigens to CD8+ T cells, thus leading to an efficient cross-

priming of these cells(Santodonato et al. 2003; Tosi et al. 2004; Lapenta et al. 

2006). In addition, IFNa-DC are capable of expanding both Th1 and Th17 

responses as a result of the production of cytokines such as IL-23 and IL-

12(Santini et al. 2011). Remarkably, IFNa-DC do not require TLR triggering 

to induce antigen specific cytotoxic T lymphocytes and to stimulate 

allogeneic CD4+ T cells (Bracci et al. 2008). Interestingly, it was also shown 

that IFNa-DC can mediate TRAIL-dependent cytotoxicity of tumor cells and 

that even human CD11c(+) blood DCs express TRAIL after stimulation with 

IFN-alpha, thus  acquiring  the ability to kill TRAIL-sensitive tumor cell 

targets (Fanger et al. 1999; Santini et al. 2000; Servet et al. 2002). Of special 

note,  a cell population resembling IFNa-DC was identified in immune cell 

infiltrates in Molluscum contagiosum virus-induced cutaneous lesions 

undergoing spontaneous regression (Vermi et al. 2011). Accordingly, a type I 

IFN signature associated with pDC infiltration was demonstrated in both 

keratinocytes and inflammatory cells. All these features make IFNa-DC 

highly promising new candidates for the development of more effective DC-

based strategies of cancer immunotherapy (Farkas & Kemény 2011; Bracci et 

al. 2013).  
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2. AIM 
 

Dendritic cells (DC) play a key role in the activation of immune system by 

presenting antigens to T cells and, by so, generating an antigen-specific 

immune response (Ueno et al. 2010). For this reason, several attempts have 

been done so far in order to develop effective immunotherapeutic approaches 

that consist of ex vivo generated fully-functional DC to be infused in patients 

in order to induce an antigen specific T cell expansion (Palucka & 

Banchereau 2012). DC can be generated ex vivo by culturing monocytes in 

presence of differentiating cytokines (such as GM-CSF, IL4, IL15 and IFNa) 

to obtain immature DC and maturing them with single agents or cocktails of 

agents (such as TNFa, LPS, IFNg, CD40L, IL6, IL1) (Kalinski et al. 2009). 

Once generated, DC are usually pulsed with tumor antigens and injected into 

patients (usually intranodally or intradermally) or directly injected 

intratumorally aiming at in situ antigen loadings usually after 

chemo/radiotherapy. Clinical results, mainly from studies in cancer patients, 

clearly showed the feasibility and efficacy of this approach even if the overall 

response rate is below the 15% (Engell-Noerregaard 2009). Several possible 

reasons have been hypothesized to justify such low response rate, among 

which the suboptimal generation of DC able to activate an anti-inflammatory 

Th1-polarized T cell response is considered the main bottleneck, even if there 

is no general consensus on how to improve DC function and which factors 

are responsible for the discrepancies between preclinical and clinical results 

(Castiello et al. 2011). Furthermore, cell based immunotherapies would 

strongly benefit of new markers for quality control assessment. Since many 

more factors are responsible for the function and effectiveness of cellular 

therapies than those of drugs and other biological products, an in depth 

evaluation of the characteristics of all newly developed cellular therapies is  

needed (Stroncek et al. 2010). 

Differently from previous attempts to optimize DC by modifying 

differentiation and/or maturation procedures, this project explores the 

possibility to identify factors affecting DC potency/efficacy in vivo in order 

to gain knowledge of molecular determinants essential for DC function and 

that can thus be used for quality assessment of manufactured DC. Therefore, 

this project aimed at identifying factors affecting DC consistency and 

candidate molecular biomarkers of consistency, potency and efficacy of GMP 

manufactured DC. The project initially focused on a preclinical setting in 

order to evaluate feasibility of this approach by analyzing factors affecting 

DC consistency by combining genomic and proteomic approaches. 

Successively, given that the only reliable indicators of DC potency/efficacy 

derive from results in humans, the project focused on analyzing DC from two 
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clinical trials. The two trials utilized two different DC (in one case DC were  

differentiated with GM-CSF and IL-4 and matured with LPS and IFN-g; in 

the other one DC were only differentiated in presence of GM-CSF and IFN-

a), therefore allowing the analyze whether factors affecting DC 

potency/efficacy are shared among different DC or are unique to each type of 

DC. 
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3. IDENTIFICATION OF FACTORS AFFECTING 

REPRODUCIBILITY OF LIg-DC AND CANDIDATE 

BIOMARKERS OF LIg-DC CONSISTENCY AND 

VARIABILITY 
 

3.1 Introduction 

Monocyte-derived dendritic cells (DC) have been used in vaccine trials and 

represent one of the most promising approaches in inducing a targeted 

immune response(Palucka & Banchereau 2012). However, despite of twenty 

years of research and clinical experimentation in different settings, response 

rate are still pretty low, ranging from 5% to 15%(Engell-Noerregaard 2009). 

Reasons behind these results have to be identified in the complexity of DC 

biology as well as the lack of knowledge on best antigens, adjuvants and 

route of administration(Kalinski et al. 2009). In particular, DC function 

depends strongly on several factors, such as the differentiation process, 

maturation stimulus  and duration of the manufacturing processing. In facts, 

monocytes can be differentiated using different cytokines leading to DC 

showing differences both on phenotype and functional activity. Since the 

initial discovery that monocyte can differentiate into DC when cultured in 

presence of GM-CSF and IL-4 (Sallusto & Lanzavecchia 1994), it has been 

shown that simple culture in presence of only GM-CSF leads to tolerogenic 

DC(Conti & Gessani 2008), whereas differentiation in presence of GM-CSF 

and IL-15 leads to DC more similar to Langherans cells(Dubsky et al. 2007) 

and that replacing IL-4 with IFN-alpha leads to DC with a semi-mature 

phenotype and potent co-stimulatory activity (Santini et al. 2000; 

Santodonato et al. 2003; Santini et al. 2009). Also the length of 

differentiation has a role in DC activity: several groups have shown that 

reducing the length of DC differentiation from the classical 7 days to 3-4 

days leads to more potent DC(Dauer et al. 2003). Lastly, even maturation 

stimulus has a central role in shaping DC function, but even if there are over 

a dozen of different maturation cocktails no consensus exists on which signal 

leads to more potent DC(Castiello et al. 2011). Therefore, all of these factors 

drive DCs to develop a specific qualitative and quantitative immune 

activation, ranging from strong pro-inflammatory Th1 response to regulatory 

T cell induction. Even though several elements are known to affect the 

function of monocyte-derived DCs, the best methods for manufacturing DCs 

and for characterizing key DC functions are yet to be defined.  

On the other hand, quality control is becoming a critical part of cellular 

therapy(Stroncek et al. 2010). Major aspects of ensuring product consistency 

and quality involve process control, adhering to standardized procedures, 

using GMP grade reagents, training staff and validating instruments and 
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equipment. However, the final product characterization is the main critical 

aspect of ensuring product consistency, especially for assuring that every 

production lot exceeds determined minimum standards. DC product 

characterization is performed at each step of the manufacturing process and 

at lot-release. Final products are evaluated for identity, sterility, purity, 

consistency, stability and potency; the latter being a quantitative measure of a 

product-specific biological activity that is linked to a relevant biological 

property. Feasibility issues dictate that actual product characterization must 

be a balance of what should and what can be tested (e.g., time needed for 

functional assays, lack of animal models). However, since many more factors 

are responsible for the function and effectiveness of DC-based therapies than 

those of other drugs, an in depth evaluation of the characteristics of newly 

developed cellular therapies is extremely desirable and needed for the 

identification of markers that are able to easily reveal characteristics relevant 

to important biological functions. 

Additionally, even if high level of variation in DC phenotype has been 

observed even when using the same procedure of differentiation, factors 

behind such variability have never been analyzed(Stroncek et al. 2010).The 

understanding of these factor may thus play an essential role in the 

implementation of DC immunotherapies in clinical practice by defining 

molecular biomarkers of DC with increased potency, thus driving the 

development of newer protocols and procedure for DC-based 

immunotherapies. In fact, a prerequisite for the implementation of DC 

immunotherapies, as well as other cell based therapies, is the ability to 

consistently produce high quality products. Therefore, the project started 

analyzing what are the main factors affecting consistency of DC generated 

under GMP and whether such variability may hinder functional differences 

relevant to DC biology. 

To dissect factors affecting DC consistency, the project focused on 

understanding how much manufacturing, intra-donor and inter-donor related 

causes have a role in DC variability. To test these factors we evaluated DC 

generated at different times from aliquots of the same monocyte collection 

(manufacturing related variability), DC generated from monocytes deriving 

from leukapheresis collected at different times from the same donors (intra-

donor related variability), and DC generated from monocytes of different 

donors (inter-donor related variability). In addition, starting monocytes and 

intermediate DC products (i.e., immature DC) were included in the study to 

make possible the selection of candidate molecular markers of DC 

consistency and variability. In order to have a wide DC characterization we 

combined standard flow cytometry of known DC surface markers with gene 

expression profiling and protein secretion profiling of a broad panel of 

cytokines and chemokines. 
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Regarding the type of DC to analyze in this study, DC differentiated in 

presence of IL-4 and GM-CSF for 3 days and matured with LPS and IFN-g 

(LIg-DC) were selected because of their promising Th1-polarization 

phenotype and their use in multiple clinical trials at National Institute of 

Health(Shin et al. 2008; Jin et al. 2010). 

 

 

3.2 Results 

3.2.1 Role of manufacturing, intra-donor and inter-donor variability in 

consistency of LIg-DC 

 

3.2.1.1 Study design and LIg-DC production. When reviewing the overall 

manufacturing process, we realized that many factors could affect LIg-DC. 

Among these factors we decided to evaluate the effects of manufacturing 

variability, inter-donor variability and within-donor time-dependent 

fluctuations in the starting material (intra-donor variation) on the features of 

the final DC product. Manufacturing-related variability was tested by 

generating 5 DC preparations on different days using 5 aliquots from the 

same starting material. Inter-donor variation was assessed by studying DC 

derived from 9 different healthy donors. Intra-donor variation was assessed 

by preparing DC starting from 5 monocytes preparations derived from as 

many apheresis products from the same donor.  Although it could be argued 

that the evaluation of a larger number of samples should lead to a more 

robust model for the description of manufactured products’ characteristics, 

the conditions that we defined are sufficient for the early-stage progressive 

assay implementation. 

LIg-DC were manufactured according to standard GMP procedures 

established to support phase I/II vaccine trials at the NCI, NIH Bethesda, 

Maryland (NCI-09-C-0139, NCI-08-C-0051 and NCI-07-C-0206) and the 

clinical DC product release criteria were used to evaluate the quality of each 

experimentally manufactured product. All LIg-DC passed release criteria by 

showing cell viability >70%, CD83 expression >80%. Sterility tests were not 

performed given that cells were not use as clinical products. 

 

3.2.1.2 Variability of LIg-DC expression of surface markers. More than 95% 

of the cells in the final product were CD80+, CD86+, CD83+, CD209+, 

HLA-DR+, CD40+, CD54+, CD123+, CD11c+ as individually assessed by 

flow cytometry (see Table 3.1). Other markers were showing more variable 

levels of expression 

When assessed for variability among the three tested conditions (i.e., 

manufacturing, intra-donor and inter-donor related variability), the majority 

of surface markers did not show any appreciable variation among different 
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DC. Levels of variations were only observed for CD14, CCR7 and CD54 

expressionlevels. While CD14 and CCR7 were expressed only by a 

proportion of DC, CD54 was expressed by all DC but at a very different 

intensity. In particular, manufacturing- and inter-donor-related variability did 

affect both CD14 and CCR7 expression levels (Figure 3.1), while intra-donor 

showed lower level of variation. Instead, even though >90% of the LIg-DC 

were CD54+, we observed high variability in all three conditions tested when 

the signal intensity was evaluated (Figure 3.2). 

 

3.2.1.3 Variability of LIg-DC at gene expression level. Next, instead f 

focusing on few markers, gene expression profiles were examined by using 

Agilent Microarray technology. However, in order to appraise the 

confounding effect due to the variability of gene arrays, replicate samples 

were tested to estimate the within assay variability (shown by replicate 

samples of RNA amplified, labeled and hybridized on the same day) and the 

between assay variability (replicate samples of RNA prepared and hybridized 

on different days). The Coefficient of Variation (CV) was calculated for the 

samples used for assessing assay variability. The within assay and between 

assay samples showed CV median values of 6.1% and 14.4%, respectively 

(data not shown). These values are consistent with those obtained by the 

MicroArray Quality Control project for intra-site repeatability and 

reproducibility and indicated sufficient reliability for clinical and regulatory 

purposes(Shi et al. 2006).  Then, we calculated the Intra-class Correlation 

Coefficient (ICC) for each possible source of variability that could impact the 

final product (assay, manufacturing, intra-donor and inter-donor). As 

expected, the within and between assay ICCs were much greater than 

manufacturing, intra-donor and inter-donor ICCs indicating that assay 

variability had a low confounding effect in our experimental approach 

(Figure 3.3), thus reconfirming the role of high-throughput gene expression 

analysis for the assessment of manufactured cell products. Interestingly, 

manufacturing, intra-donor and inter-donor factors all affected the final 

product.  Although inter-donor samples show the lowest ICC value (0.925), it 

should be noted that manufacturing (0.948) and intra-donor variation (0.947) 

also played a significant role in final product consistency. This was also 

demonstrated by unsupervised hierarchical clustering and similarity matrix 

analysis of the samples based on the entire dataset (Figure 3.4). However, to 

place results into context and correctly assess the biological value of the 

obtained ICCs we also evaluated the ICC of an artificial class made up of a 

mixed cell populations that are known to show functional and molecular 

differences (i.e., immature DC andLIg-DC). We selected immature DC and 

mDC from 5 donors, and obtained an ICC value of 0.867.  The ICC for the 

mixed immature and LIg-DC population was, as expected, less than the ICC 
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associated with LIg-DCs.  However, since the ICC for mixed cells was 

similar to the inter-donor ICCs, these results indicate that LIg-DCs from 

different donors show a degree of variability that likely reflects functional 

differences. 

 
Table 3.1 Expression level of LIg-DC surface markers 

 
NA: Not available 

 

 

 
Figure 3.1 Variability of CD14 and CCR7 surface expression levels. On the left, 

percentages of CD14+ cells measured on LIg-DC evaluating manufacturing-related 

variability (n=5), intra-donor-related variability (n=5) and inter-donor-related 

variability (n=9).On the left, percentages of CCR7+ cells measured on LIg-DC as 

above. 
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Figure 3.2 Variability of CD54 surface expression levels. Histograms of CD54 

expression levels on LIg-DC evaluating manufacturing-related variability (n=5), intra-

donor-related variability (n=5) and inter-donor-related variability (n=9). Histogram of 

isotype labeled cells is shown with a grey surface 

 

 

3.2.1.4 Origin of LIg-DC variability. In order to determine if the observed 

LIg-DC variability was due to differences already present in the cellular 

starting material (i.e., the monocytes), or due to variability introduced during 

the manufacturing process, we evaluated the ICC values of the source 

material, monocytes, both for intra- and inter-donor variability.  We assessed 

the variability of monocytes at the very beginning of the manufacture process 

(i.e., thawing and washing of the monocytes). As shown in Figure 3.5, the 

early steps of monocyte manufacturing had a lower impact on variability 

(ICC=0.955). Interestingly, we observed a lower value for intra-donor 

variability in the starting monocytes (ICC=0.938) than in the final product, 

mDCs, suggesting that in vitro culture decreases initial differences; whereas 

the inter-donor variability increased in LIg-DCs (ICC of monocytes was 

0.939), indicating that differences due to genetic make-up increased during 

manufacturing.  

 

3.2.1.5Role of sources of variation on single-gene expression levels. After 

characterizing the degree of consistency of the final cell product related to 

intra-donor, inter-donor and manufacturing factors using the entire gene 

expression data set, we focused on single gene variability in order to 

understand whether these three factors affect variability in expression of the 

same specific genes (i.e., whether the three factors might affect the same or 

different pathways/functions of the final cell product). To address this point, 

we calculated the assay-adjusted manufacturing, intra-donor and inter-donor 

variances for each gene (see Methods). We then ranked the genes according 

to variability and selected the most variable genes for each factor (one 
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percent or 344 genes per factor for a total of 877 genes due to some overlap 

among the three sets). As depicted on Figure 3.6, the three factors mainly 

affected different genes. However, it is important to note that 138 genes were 

present among the most variable genes of more than one factor 

(hypergeometric p-value < 10
-10

). This result indicated that even if the three 

factors affect mostly different genes, a subset of genes showed a strong 

susceptibility to more than one factor. 

Next, we checked whether the variability shown by these genes was already 

present in the starting monocytes. Monocyte manufacturing, intra-donor and 

inter-donor variances were calculated for each of the 877 genes. The analysis 

did not show any pre-existing differences in the monocytes (Figure 3.6c, d). 

 

 
Figure 3.3 Intra-class Correlation Coefficient of gene expression profiles.Bar plot 

showing the 1-intra-class correlation coefficient calculated LIg-DC assessing the 

different sources of variability. “Within assay” and “Between assay” were included to 

evaluate the microarray-related confounding effect, whereas the “LIg-DC and 

immature DC” group was included to show the ICC value of a class showing high 

variability and well-known functional differences 
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Figure 3.4 Unsupervised hierarchical clustering of LIg-DC gene expression 

profiles. Whole dataset was used to cluster LIg-DC samples. Pearson correlation was 

used to calculate distances. 
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Figure 3.5 Comparison of Intra-class Correlation Coefficient of LIg-DC and 

monocytes.Bar plot showing the 1-intra-class correlation coefficient calculated 

onLIg-DC and starting monocytes assessing the different sources of variability 
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Figure 3.6 Genes with the greatest assay-adjusted manufacturing, intra-donor 

and inter-donor variability. (a) (b) Three-dimensional plots of the 877 genes whose 

expression was most variable in the DC gene expression data set in at least one factor. 

Each genes is represented according to its assay adjusted variances in the DC dataset: 

manufacturing related variability (x-axis), intra-donor related variability (z-axis) and 

inter-donor related variability (y-axis). Genes whose expression was most variable in 

more than one factor are represented in green. Genes most variable in LIg-DC 

manufacturing,intra-donor and inter-donor samples are shown in blue, purple, and 

orange, respectively. For each factor, ellipsoids are depicted to include 2 standard 

deviations from the mean value of each of the three factors. Each panel shows a 

different perspective.(c) (d)  Three-dimensional plots of the assay adjusted variances 

of the same 877 genes in monocytes.  
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Figure 3.7CVs of the 323 genes grouped in deciles according to assay 

variance. Dark and light grey dotted lines indicate the threshold of 2*median 

CV of Within assay and Between assay samples, respectively 
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3.2.2 Identification of candidate markers for quality assurance of LIg-DC  

 

 

3.2.2.1 Selection of quality assurance gene markers. After having defined 

global consistency/variability of LIg-DCs at both the whole transcriptome-

level and single-gene level, we focused on candidate markers for quality 

assurance and quality control assessment. Ideal markers of cellular therapies 

must be precise and reliable, while detecting essential and distinctive features 

of the final product. Since DC maturation stimuli have a strong impact on the 

function of these cells and their gene expression profile(Castiello et al. 2011), 

reliable maturation-related markers are ideal candidates for assessing the 

identity and consistency and possibly the stability and potency of DC 

products at lot release. For this reason, the most critical markers of 

manufactured monocyte-derived mature DCs are those that indicate that 

maturation has progressed beyond the starting and intermediate material and 

thus their expression ensures the completeness of the manufacturing process. 

Therefore, we applied highly stringent statistical filters to our dataset: only 

probes that were induced in LIg-DCs versus both the starting monocytes (9 

samples/class) and immature DCs (5 samples/class) with a p-value lower than 

0.001, a false discovery rate lower than 0.005 and a fold-change greater than 

5 were selected. A total of 323 probes passed the defined criteria. Then, even 

though as a whole the gene expression assay was found to be reliable, we 

evaluated whether for each gene the assay showed high repeatability. We 

estimated the median CV for each decile of these 323 genes according to 

assay variance and filtered out the tenth decile because both the within and 

between median CV exceeded by more than 2-fold the median CV of the 

whole gene list (Figure 3.7). The remaining 291 genes were studied further. 

A similarity matrix based on gene expression levels in mDCs clearly showed 

the existence of several gene correlation networks that might reflect different 

functional potentials of the manufactured product (Figure 3.8). To better 

define the characteristics of these genes, for each one we evaluated an index 

of variability (IV) calculated as the sum of the adjusted manufacturing, intra-

donor and inter-donor variances of the gene (see Method)(Figure. 3.9). 

 

3.2.2.2 Identification of candidate markers of consistency of LIg-DC. 

Considering the specificity of the 291 genes on the manufactured product, we 

hypothesized that those genes showing the least variability as assessed by the 

IV in our highly controlled manufacturing process would be the best 

consistency and identity markers. To select genes showing the lowest 

variability among all the products (i.e., having a similar level of expression 

independently of manufacturing, intra- and inter-donor variability), we 

selected the first decile of the 291 genes according to the IV index. 
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Figure 3.8 Existence of multiple gene networks among the 291 quality assurance 

candidate marker genes. Similarity matrix of the 291 genes induced reproducibly in 

LIg-DC compared to both monocytes and immature DC with p-value < 0.001, FDR < 

0.005 and fold change > 5. Pearson correlation values were calculated based upon 

mDCs gene expression levels. The genes are sorted according to unsupervised 

clustering in order to reveal gene correlation networks in the LIg-DC 
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Figure 3.9 Manufacturing, intra-donor and inter-donor related variability of the 

291 candidate marker genes. The 291 genes are plotted three-dimensionally 

according to the assay adjusted variances: manufacturing related variability 

(x-axis), intra-individual related variability (z-axis) and inter-individual 

related variability (y-axis). Genes included in the first decile according to the 

Index of Variability are represented in green, genes in the tenth decile in red 

and the others in grey. 
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Interestingly, most of these 29 potential marker genes have already been 

described as being induced in DCs by IFNγ or LPS, the maturation agents 

used in this study, such as AIM2, FEM1C, APOL1, NUB1, MAZ, DRAM1, 

AK4; or induced by both agents, like IFI27, WARS, PSME2 and ICAM1 

(CD54). All of these potential markers encode for proteins belonging to 

inflammation or immune-related functional groups indicating a phenotype of 

the manufactured mDCs that could sustain a Th1 response once administered  

in vivo.  

 

3.2.2.3 Identification of candidate markers of variability/potency of LIg-DC. 

By using the described experimental setting and computational approach we 

also selected genes that may be good markers of variability and possibly 

useful markers for stability and potency of LIg-DC products by simply 

focusing on the tenth decile of the 291 genes according to the IV index. 

Interestingly, CD80, CCL1, CCRL1, CD70 were among these genes. CD80 

is a costimulatory protein essential for T cell activation. CCL1 is a 

chemokine that attracts several immune cells by interacting with 

CCR8(Gombert et al. 2005).  CCRL1 binds the chemokines CCL19, CCL21, 

and CCL25 all of which play a fundamental role in lymphnode homing of 

DCs(Comerford et al. 2006). CD70 has been reported to play a critical role in 

the immunogenicity of CD40-independent, CD4+ T cell-dependent CD8+ T 

cell response(Van Deusen et al. 2010).  Of particular note is the observation 

that although most of the other highly variable mDC induced genes that 

encode for proteins that have not been reported to play a key role in DC 

function, the expression of most of these genes clearly correlate (positively or 

negatively) with the level of mDC secretion of 14 functionally important 

cytokines (Figure 3.10). This feature makes these genes possible candidates 

as surrogate markers of the secretion of LIg-DC key cytokines and indirectly 

LIg-DC phenotype and function.  

 

3.2.2.4 Characteristics of candidate markers are conserved in an 

independent clinical LIg-DC product dataset. To assess the robustness of our 

findings, we tested the identified potential quality assurance marker genes in 

a different dataset obtained from the transcriptional profiling of 80 LIg-DC 

samples manufactured for the clinical trial NCI-09-C-0139. The autologous 

LIg-DC products were manufactured from 14 patients and for each patient a 

median of 6 different products were manufactured and administered. An 

aliquot from each of these products was saved and tested. For these 80 

products, IV was calculated for the 291 identified as potential markers for 

quality assurance, based on the same principles used for the analysis of the 

initial LIg-DC samples (see Methods). As clearly depicted in Figure 3.11, the 

features previously observed were confirmed in the clinical data set, 
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suggesting the potential relevance of the 29 most and least variable markers 

for quality assurance analysis.  

 

 

 

 

 

 

 

 
Figure 3.10 Expression levels of candidate markers of variability/potency of LIg-

DC correlate with secretion levels of key cytokines. Pearson correlations between 

the level of expression of genes in the tenth decile of the index of variability and the 

concentrations of selected cytokines measured in the culture media. Both genes and 

cytokines are ordered according to unsupervised hierarchical clustering 
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Figure 3.11Analysis of the variability of expression of the 291 candidate LIg-DC 

markers in a clinical dataset. The expression of 291 candidate genes were measured 

in a clinical dataset made up of 80 different LIg-DC products (14 patients, between 2 

and 8 products were manufactured for each patient). The Index of Variability was 

calculated for each gene. The genes were grouped in deciles according to their Index 

of Variability calculated in the initial LIg-DC dataset. The boxes indicate the 25% and 

75% percentiles, and whiskers indicate the 10% and 90% percentiles. 
 

 

3.3 Discussion 

Although preclinical and early clinical studies of DC-based therapies have 

been highly promising, several issues have hindered their translation into 

clinic. In particular, quality control of cellular products, an essential step to 

assess identity, consistency, stability and potency, has been one of the major 

stumbling blocks for the scale up and out of these therapies. Without high 

quality markers, it is difficult to establish and implement manufacture 

processes for moving products from phase I/II studies to phase III clinical 

trials and licensure. Testing cellular therapy products using the same methods 

and standards applied to conventional drugs is not possible for several 

reasons including their biological complexity, short shelf life, the timing of 

complex assays and the difficulty associated with implementing an effective 
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assay. The identification of the factors that affect cell therapy product 

consistency is essential for the discovery of markers reflecting relevant 

changes in the final cell product (Hinz et al. 2006).  In this study, analyzing 

LIg-DC we developed a method for characterizing factors affecting product 

consistency that may be useful for identity, consistency, stability and potency 

testing. Also, we proved the importance of in-depth testing of DC vaccines 

by gene expression as a tool to identify phenotypic differences among 

different DC preparations in order to select candidate markers for advanced 

quality assurance of DC.  

Our main goal was to define factors affecting LIg-DC consistency and 

identify candidate gene markers to use for quality control.  Considering the 

complexity of events related to the mode of action of DC; microarray 

technology provides an effective tool for large scale gene expression 

profiling of cells and tissue, allowing the simultaneous measurement of 

thousands of genes and therefore capturing a snap shot of all possible 

molecular markers associated with cellular function both expected (known) 

and unexpected (unknown). Traditional analytical assays, such as flow 

cytometry immunophenotyping and ELISA, have a lower power in 

discovering such global signatures, given their a priori selection of a limited 

number of factors to be tested. Other major advantages offered by gene 

expression microarray techniques are the small number of cells needed, often 

a limiting factor when cells are manufactured for autologous use, and the 

potential to use either fresh or cryopreserved material. Major disadvantages 

are the still relatively high cost of high through-put technologies and time 

needed to complete the assays, precluding their use for in process and lot 

release testing.  

Using global gene expression profiling, we were able to characterize the 

magnitude of variability introduced into LIg-DC by intra-donor and inter-

donor differences and by manufacturing and determined how these three 

major factors affected DC consistency.  Each of these factors provides useful 

information related to cell manufacturing. Low manufacturing consistency 

suggests that the manufacturing process includes critical steps that need 

additional optimization.  Low intra-donor consistency indicates the existence 

of differences in the starting material and more comprehensive testing of the 

starting material should be considered. Low inter-donor consistency suggests 

that the genetic makeup of the cell donors affects the final products and 

supports the search for genetic factors contributing to the consistency of the 

final products. Our analysis of LIg-DC suggests that manufacturing and intra-

donor variability affected the final products less than inter-donor factors. 

Such information is essential for correctly evaluating the existence of 

correlations between DC properties and clinical or immunological results 

derived from clinical studies using cells manufactured with the same 
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protocol. Monocyte phenotype may be used to predict DC phenotype. Others 

have also shown that monocyte-derived DC from healthy donors differ from 

those derived from patients with colorectal cancer, non-small-cell-lung-

cancer (Kvistborg et al. 2009), systemic lupus erythematosis(Decker et al. 

2006), Chagas disease (Cuellar et al. 2008)and allergies (van den Heuvel et 

al. 1998). Although this phenomenon has been known for more than 10 

years, a complete understanding of the reasons for these differences is 

lacking. Here we showed that at least part of the variability in the final 

products could be traced back on monocytes strengthening the hypothesis 

that final DC potentials can be predicted by studying the phenotype of 

monocytes. However,  our data indicates that two confounding factors should 

be considered: on one hand that even under highly standardized procedures 

manufacturing may introduce variation in final product consistency, while on 

the other hand that intra-donor variability observed in monocytes could 

diminish during processing. While our observations are based on the analysis 

of cells obtained from healthy subjects, it has to be noted that greater 

differences in starting material and final products are possible when our 

approach is applied to clinical samples from heavily pretreated cancer 

patients.  

We found the consistency of expression of donor genes is affected differently 

by manufacturing, intra-donor and inter-donor variables. Although we 

observed a statistical significant number of overlapping genes among the 

most variable genes for each factor, this represented a relatively small subset 

and each factor mainly perturbed a different set of genes, indicating that 

functions of the final LIg-DC products are affected dissimilarly by 

manufacturing, intra-donor and inter-donor variability.  However, in order to 

define the specific functions that may be affected by each factor, further 

studies are needed to construct models of manufacturing and intra-donor 

variability based on more than one single donor. Such an approach may be 

able to unravel the degree of variability that could normally be expected for 

each specific important cell function and consequently to set parameters for 

determining when the final production quality is low and it would be 

worthwhile repeating the entire collection and manufacturing process to 

produce a more potent DC. 

By applying highly stringent statistical filters to the gene expression data to 

select markers induced in the final product, LIg-DC, but not in an 

intermediate, immature DC, or in the starting monocytes, we identified 

potential markers for final product identity, consistency and potency testing 

according to their index of variability. Although LIg-DC identity can be 

assured by the analysis of the expression of classical DC markers, such as 

CD80, CD86, CD83, using flow cytometry this analysis is of limited 

usefulness considering that these markers are expressed by DC having 
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different phenotypes.  This observation suggests that new and more specific 

DC markers are needed to better assess quality of the final cellular product.  

In particular, since cells have more than a single critical function and since 

multiple markers may be required to assess some functions, it is likely that a 

panel of markers is needed to quality control assessment.  We focused on 

genes specifically induced during maturation by comparing LIg-DC with 

both monocytes and immature DC. The genes strongly and reproducibly 

differentially expressed in LIg-DC were further categorized according to 

their IV.  

Among the donor genes that are highly expressed in LIg-DCs, those whose 

expression showed the least variability should be good markers for identity 

testing since they are effected least by donor and manufacturing factors. Most 

of the 29 potential markers for identify testing were DC genes already known 

to be induced by IFN-gamma and LPS.  All of the proteins in this group 

encoded inflammation or immune-related genes. One of these genes is 

already being used as a quality control marker, CD54. The protein encoded 

by ICAM1 (CD54) is a ligand for the leukocyte integrin complex 

CD11a/CD18 (LFA-1) that strengthens immune cross-talk (Carrasco et al. 

2004)and, because it indicates antigen presenting cell (APC) activation, its 

protein expression has been selected for potency testing of the APC based 

vaccine Provenge (Sipuleucel-T) – the only cellular immunotherapy 

approved by the FDA for clinical use (Sheikh & Jones 2008). While the 

genes we identified may be good candidate markers, their usefulness must be 

tested by other comparability studies and functional testing. 

Among the 29 highly variable genes were some factors that are likely to be 

functional important for LIg-DC. Furthermore, the expression of many of the 

29 highly variable genes correlated with the levels of several cytokines and 

chemokines in the LIg-DC supernatant, In particular, the secretion of IL-12 is 

considered essential for the induction of a desirable Th1 immune activation 

(Trinchieri 2003). Similarly, the induction of chemokines capable of 

attracting Th1 cells (e.g., MDC, MIG and IP10) is considered critical for DC 

effectiveness for cancer immunotherapy (Lebre et al. 2005). This feature 

suggests that these genes may reflect mDCs function and might be potential 

markers of LIg-DC consistency and potency. 

In conclusion, although specific studies will be needed to clearly define 

newer biomarkers, the approach described proves the feasibility of gene-

expression-profile based characterization to address essential information on 

the nature of the sources and factors affecting the consistency of cellular 

based immunotherapies. Moreover, by studying the level of variability of a 

selected group of highly induced genes, new candidate markers can be 

detected for the assessment of identity, stability comparability and possibly 

potency.  Although other gene-expression characteristics (e.g., the kurtosis 
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and the skew of expression levels) might reveal features impacting the 

function of single products, these features can only be truly detected by 

correlation with in vivo evidence. 
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4. IDENTIFICATION OF CANDIDATE BIOMARKERS 

OF LIg-DC EFFICACY IN PROSTATE CARCINOMA 

PATIENTS 
 

4.1 Introduction 

Dendritic cells (DC) are potent antigen presenting cells that are able to 

activate both innate and adaptive arms of the immune system (Ueno et al. 

2010). For this reason DC-based vaccines represent a promising 

immunotherapeutic approach in several clinical settings. In fact, since the 

discovery of monocyte differentiation into DC (Sallusto & Lanzavecchia 

1994), over 300 clinical trials have been conducted which have proven the 

feasibility and safety of DC vaccines (Castiello et al. 2011).However, despite 

extensive preclinical and clinical studies, very few clinical trials have 

demonstrated the desired clinical efficacy. For the majority of trials, the 

overall response rates have been well below 20%. Many reasons have been 

hypothesized for such low response rates, among which the generation of DC 

with suboptimal potency is considered the most relevant. It’s not known yet 

how to generate the most potent DC; furthermore, differences in clinical 

setting, study design, sources of antigens, and route of administration make it 

almost impossible to compare results from previously conducted trials in 

order to clearly delineate the shared determinants of in vivo efficacy of DC-

based vaccines.  

Compared to drug therapy, cell therapies are more challenging because of 

their considerable lot-to-lot and patient-specific variability that in most cases 

has yet to be sufficiently quantified and characterized (Stroncek et al. 2010). 

In fact, while each cell therapy lot has to be tested for identity, consistency 

and potency among other tests, feasibility issues dictate these tests to be 

focused on a handful of factors and, therefore, they cannot assure an 

exhaustive characterization of each lot. An accurate characterization of DC 

should ideally assay all the factors affecting their in vivo biological 

functions: antigen processing and presentation, expression of co-stimulatory 

signals, absence or reduced expression of co-inhibitory signals, lymph node 

migration, and secretion of activating cytokines and chemokines. These are 

all essential features of potent DC and should be thoroughly tested. Since it is 

impossible to routinely evaluate each product for every cell function using 

cellular assays, the identification of reliable biomarkers of identity, 

consistency and potency of cell therapies is highly encouraged by regulatory 

agencies beginning in the earliest phases of clinical development of the 

cellular product (Hinz et al. 2006; Vatsan et al. 2013). 

Many factors are known to play a key role in DC-induced activation of the 

immune system. Secretion of interleukin-12 (IL-12) is considered the most 
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important driving factor for Th1 inflammatory T cell activation. Surface 

expression of CCR7 is necessary for DC migration into lymph nodes and 

expression of co-stimulatory molecules (i.e., CD80 and CD86) is essential for 

the activation of T cells (Kalinski et al. 2009). On the other hand, several 

detrimental factors have also been identified. Secretion of IL-10 is considered 

a hallmark of tolerogenic activities exerted by DC (Vieira et al. 2000; 

Kalinski et al. 2009). Similarly, the maintenance of immature/monocytic 

factors (e.g., CD14) are also known to be characteristic of tolerogenic DC 

(Chitta et al. 2008; Torres-Aguilar et al. 2010).Even though these and many 

other molecular factors have been characterized thoroughly for their role in 

DC function and many of them have been used to discriminate among DC 

produced using different differentiation/maturation procedures, it has rarely 

been determined how these factors are differentially expressed among DC 

manufactured using the same differentiation/maturation procedure and 

whether such difference has a functional relevance. 

In the previous part of this project, we have shown that even when highly 

standardized procedures are used to generate monocyte-derived LIg-DC, 

manufacturing, intra-donor and inter-donor related factors may affect DC 

phenotype (Castiello et al. 2013). In particular, we observed that while most 

of the well-known and usually tested DC markers (e.g., CD80, CD86, CD83, 

HLA-DR) did not show any differences in expression among LIg-DC 

generated at different times from different donors, the expression of several 

genes and the levels of several key secreted cytokines and chemokines 

showed significant variability among LIg-DC products. However, whether 

such lot-to-lot variability affects the identity, potency and/or efficacy of LIg-

DC-based vaccines used in human clinical trials has yet to be determined. 

NCI-09-C-0139 (NCT00908258) is a randomized, prospective, pilot study of 

vaccination with a mixture of wild type (TARP27-35) and epitope-enhanced 

(TARP29-37-9V) T cell receptor gamma chain alternative reading frame 

protein (TARP) peptides in HLA-A*0201 patients with stage D0 prostate 

cancer (no evidence of visceral or bone metastasis with persistently elevated 

or rising PSA levels i.e. biochemical progression) and at increased risk for 

disease progression based on PSA doubling time (PSADT) (Wood et al., 

2014 Submitted to Science Translational Medicine). TARP is a tumor-

associated antigen expressed in over 90% of prostate and 50% of breast 

carcinomas (Epel et al. 2008). The study compared two vaccination 

regimens: in one TARP peptides were admixed with Montanide ISA 51 VG 

plus Sargramostim to generate a peptide emulsion administered by deep 

subcutaneous injection; in the other, TARP peptide-pulsed autologous LIg-

DC were administered intradermally. TARP vaccines were administered 

every three weeks at weeks 3, 6, 9, 12, and 15 as part of the primary 

vaccination series, with a conditional sixth booster at week 36 dependent on 
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documented immunologic and/or clinical responses at week 24.  The original 

48 week study design was amended and extended to subsequently allow 

seventh and/or eighth booster doses of vaccine at weeks 48 and 96 after 

initial immunologic and clinical activity of TARP vaccination was 

documented. 

In the current study we analyzed 114 peptide-pulsed LIg-DC preparations 

manufactured to vaccinate 18 patients randomized to the autologous TARP 

peptide-pulsed DC arm in order to understand which factors are affected by 

lot-to-lot variability in clinical GMP manufactured DC and whether such 

variability has an impact on DC identity, potency and efficacy. By analyzing 

DC surface marker expression, gene expression profiles, protein secretion 

profiles and culture data, we observed the existence of a tolerogenic DC 

signature that was negatively correlated with the development of clinical and 

immunological response. 

 

 

4.2 Results 

4.2.1 LIg-DC induced clinical and immunological response in prostate 

carcinoma patients. Each LIg-DC vaccine was manufactured starting from 

one aliquot of autologous cryopreserved monocytes cultured for 3 days with 

GM-CSF and IL-4. On day 2, Keyhole Limpet Hemocyanin (KLH) was 

added to the culture as a control antigen. On day 3 cells were matured for 

additional 24 hourswith LPS and IFN-gamma and then pulsed for 2 hours 

with WT and EE peptides. 

13 out of 16 evaluable patients were considered to have achieved clinical 

response (decrease in slope log PSA) at week 48 (two additional patients 

completed the treatments but their week 48 clinical responses were not 

included as a result of the data analysis cut-off date for the dataset).The 

development of TARP-specific immune response (assessed by IFN-gamma 

ELISPOT) was observed in 10 out of 18 evaluable patients (ELISPOT was 

performed on patient samples taken at baseline and weeks 12, 18 and 24 after 

vaccination). Immune activation against control antigen KLH was observed 

in the majority of patients (15 out of 16 subjects in whom KLH reactivity was 

assessed). Clinical (change in slope log PSA) and immunological responses 

were assessed both qualitatively (i.e., in term of Responder or Non 

responder)and quantitatively (Table 4.1). Interestingly, slope log PSA 

responses were observed almost independently of TARP-specific T cell 

responses, however, a strong immunological response (defined as a median 

ELISPOT reading greater than 500) was observed only in patients with a 

notable decrease in slope (log PSA) (i.e. equivalent to a lengthening in 

PSADT and considered to be a stronger clinical response). 
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Table 4.1. Clinical and immunological patient responses 

ID 

Week 24 

clinical 

response 

ΔlogPSA 

24week-

0 

Week 48 

clinical 

response 

ΔlogPSA 

48week-

0 

Immuno-

logical 

response 

Median 

ELISPOT 

countb 

Immuno-

logical 

response 

to KLH 

201 Yes -0.172 Yes -0.093 No 0 No 

202 Yes -0.017 Yes -0.011 Yes 210 Yes 

203 No 0.144 Off Study Yes 30 Yes 

204 No 0.039 No 0.066 No 50 Yes 

205 Yes -0.148 Yes -0.178 Yes 1180 Yes 

206 No 0.036 No 0.03 Yes 100 Yes 

207 Yes -0.002 Yes -0.008 No 0 Yes 

208 Yes -0.054 Yes -0.026 No 0 Yes 

209 Yes -0.018 Yes -0.119 No 0 ND 

210 Yes -0.052 Yes -0.038 No 0 Yes 

211 Yes -0.087 Yes -0.113 Yes 710 Yes 

212 Yes -0.002 Yes -0.041 No 0 ND 

214 Yes -0.028 Yes -0.049 Yes 4480 Yes 

215 Yes -0.103 Yes -0.066 Yes 4370 Yes 

216 Yes -0.013 Yes -0.083 Yes 230 Yes 

217 Yes -0.028 Yes -0.008 No 0 Yes 

218 Yes -0.025 / / Yes 50 Yes 

220 Yes -0.07 / / Yes 90 Yes 
*Absence or presence of a clinical response was defined as having negative difference 

in the slope log PSA at either 24 or 48 weeks minus the pre-treatment slope log PSA. 

aIntensity of clinical response was calculated as the difference in slope of PSA trend 

over time observed at time of analysis compared pretreatment value (e.g., log PSA 

slope at week 24 –log PSA slope before treatment) 
bIntensity of immunological response was calculated as the median # of spots 

observed through 7d in vitro stimulation ELISPOT against wild type 27-35, epitope 

enhanced 29-37-9V and wild type 29-37 TARP peptides tested at week 12, 18 and 24 

/ Not Available 

ND: not done 
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4.2.2 LIg-DC showed high level of variability on CD14 and CCR7 surface 

expression. Phenotypically all lots of DC products were positive for CD80, 

CD83, CD86, CD123. CD11c CD38, CD54, HLA-DR (all > 95%) by flow 

cytometry (Figure 4.1). The markers showing significant degrees of 

variability among DC products were CD14 (ranging from 14% to 90% 

CD14+) and CCR7 (ranging from 5% to 90%). This variability was 

dependent on both manufacturing and inter-patient factors, but only for CD14 

the inter-patient variability was substantially greater than manufacturing 

variability (Figure 4.2). Interestingly, when we analyzed DC for differential 

expression among those from patients that achieved a decreasing slope log 

PSA clinical response (RespDC)versus those from patients that did not 

(NonRespDC), we observed a trend with RespDC expressing higher levels of 

CCR7 and lower levels of CD14 compared to NonRespDC (not statistically 

significant).To analyze how CCR7 or CD14 levels were able to discriminate 

RespDC vs NonRespDC we used receiver operating characteristic (ROC) 

analysis. The underlying assumption of ROC analysis is that a variable under 

study (e.g. % of CCR7+ DC) is used to discriminate between two mutually 

exclusive states (i.e., RespDC vs NonRespDC). For these analyses, ROC 

curve represents an easy visualization tool because it illustrates the 

performance of the variable under study by plotting specificity vs sensitivity 

of the test for each possible cut-off; and the area under the curve (AUC) 

summarizes the overall ROC curve and can be considered as a summary 

statistic of its ability to classify cases correctly. A perfect test would have an 

AUC of 100%; a worthless test would have an AUC of 50%. According to an 

arbitrary guideline AUC values may be classified as follows: 90%–100%, 

excellent; 80%–90%, good; 70%–80%, fair; 60%–70%, poor; 50%–60%, fail 

(Hanley & McNeil 1982). 

When qualitative clinical responses were evaluated by ROC curves both 

factors led to an Area Under the Curve (AUC)of 76.3% based on percent of 

CD14+ cells and of 69.6% based on percent of CCR7+ cells (Figure 4.3). 

In addition to phenotypic expression of surface markers we also analyzed cell 

culture data and noticed a great variability in final product viabilityand DC 

yield (i.e., the percentage of initial cells that were recovered at the end of DC 

manufacture), respectively ranging between 37% and 91% and between 6% 

and 48%. For these factors the sources of variability were also traced back to 

both manufacturing and inter-patient differences (Figure 4.2). A non-random 

distribution was also observed for these factors between RespDC and 

NonRespDC, but with a much lower relevance (AUC based onDC viability 

was 60.8% and the AUC based on DC yield was 61%)(Figure 4.3).All 

together these data indicate that lot-to-lot variability can be observed in 

clinical DC products and that inter-patient variability might be responsible 

forphenotypic differences among RespDC and NonRespDC. 
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Figure 4.1 Flow Cytometry Analysis of LIg-DC. Histograms of the expression of 

surface markers CD86, CD83, HLA-DR, CD14, CD80, CD123, CD11c, CD54, 

CCR7, CD38 of a representative DC product; 

 

 

 

 
Figure 4.2 Coefficients of Variation(CV) of % of CD14+, % CCR7+, % of viable 

cells and final DC Yields CV were calculated for manufacturing (black bars) and 

inter-patient variability (light grey bars) among all manufactured DC. Manufacturing 

related CV was calculated as the average CV registered among all the DC generated 

from each patient, whereas inter-patient CV was calculated on patients averaged 

values; 
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Figure 4.3 ROC curves of CD14, CCR7, viability and yield on clinical response. 

ROC curves of showing the power of % of CD14+, % CCR7+, % of viable cells, and 

final DC Yields to discriminate among RespDC and NonRespDC. In a ROC curve 

plot, the “true positive” diagnosis rate (sensitivity) is plotted against the “false 

positive” diagnosis rate (1-specificity) for a test with a binary outcome. The AUC 

summarizes the discrimination of the test, i.e., its ability to classify cases correctly. A 

perfect test would have an AUC of 100%; a worthless test would have an AUC of 

50%. AUC values may be classified as follows: 90%–100%, excellent; 80%–90%, 

good; 70%–80%, fair; 60%–70%, poor; 50%–60%, fail(Hanley & McNeil 1982) 

 

4.2.3 DC transcriptomes clustered according to patient. Next, we analyzed 

gene expression profiles of 99 DC vaccine products derived from the 18 

patients who received at least 5 vaccines using microarray technology. 

Unsupervised hierarchical clustering analysis grouped the DC products 

according to patient (Figure 4.4), confirming the prominent role of inter-

patient variability in affecting DC lot-to-lot variability shown in our previous 
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report (Castiello et al. 2013). In addition, the node analysis of the 

unsupervised hierarchical clustering did not show the existence of separated 

subclusters but rather indicated that the DC products were spread on 

continuum levels of variability as indicated by the fact that except for a few 

outliers samples, the vast majority of DC showed similar inter-patient 

distances. Similar observations were obtained using principal component 

analysis (PCA) of the whole dataset and through Davies-Bouldin Index 

testing on partitioning the dataset into defined numbers of groups (not 

shown). All together these analyses suggested that clinical DC products show 

inter-patient differences that cannot be easily grouped into well-defined 

phenotypes. In particular, in both clustering and PCA analysis RespDC were 

not separated from NonRespDC, pointing to the fact that differences between 

RespDC and NonRespDC, if they exist, are hidden by inter-patient 

variability.  

 

Figure 4.4 Unsupervised cluster of gene expression data. DC products (n=99) were 

analyzed by gene expression profiling using Agilent microarrays.  Unsupervised 

hierarchical clustering of the DC based on the whole dataset (35753 genes). Branches 

are colored according to patient 

 

 

4.2.4 Class comparison failed showing differences between RespDC and 

NonRespDC. After observing that unsupervised analysis were not able to 

separate RespDC from NonRespDC, we tested whether statistical analysis 

was able to identify gene expression signatures that distinguish the two 

groups. A direct class comparison of RespDC versus NonRespDC revealed 

the presence of only 55 statistically differentially expressed genes(p-value < 
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0.001). Such a low number of significant genes (false discovery rate was 

equal to 65%) pointed to the fact that RespDC and NonRespDC do not 

represent two strictly different classes. In our opinion, these results could be 

the consequence of three different possibilities: i) RespDC and NonRespDC 

do not have any differences, ii) given the heterogeneity in the magnitude of 

responses, only DC with strong clinical responses should be compared to 

NonRespDC, or iii) responses could be the consequence of multiple factors 

and therefore DC cannot be simply grouped into classes based on response, 

but have to be characterized for their inter-patient variability first. Regarding 

the first hypothesis, surface marker expressions and culture data clearly 

pointed to the existence of some difference between RespDC and 

NonRespDC, therefore we decided to test the other two hypothesis. 

In order to evaluate the second hypothesis, we decided to tailor our analysis 

using more restrictive clinical and immunological response criteria, but even 

in this case we did not observe a significant number of genes differentially 

expressed among DC from patients showing a strong clinical and/or 

immunological response compared to NonRespDC. For example, when we 

used only immunological response to discriminate DC only 3 genes were 

differentially expressed with a p-value < 0.001.  

Altogether, and in line with unsupervised clustering analysis, these data 

suggested that to delineate differences between RespDC and NonRespDC 

more complex models must be implemented in order to unbiasedly analyze 

inter-patient variability. 

 

4.2.5 Weighted Gene Coexpression Analysis revealed the presence of 8 

modules in DC. To characterize the inter-patient variability without any a 

priori assumption, we applied to our dataset the weighted gene coexpression 

analysis (WGCNA)in order to identify modules of genes that are coexpressed 

(i.e., whose expression changes similarly among different samples) and 

thereforeshould bestrongly representative of inter-patientvariability 

(12).WGCNA revealed the existence of 8 modules that were differentially 

expressed among the DC in our dataset(Figure 4.5).Modules were labeled 

numerically in decreasing order (i.e., Module 1 being the one made of the 

highest number of genes). To dissect the characteristics of the eight modules 

and define whether the modules reflect manufacture-related variability or 

inter-patient variability, we calculated the manufacturing and inter-patient 

standard deviations for each module. As shown in Figure 4.6 while module 1 

and 8 clearly showed a low level of inter-patient variability, the other 

modules showed a much higher degree of inter-patient variability indicating 

that differences in the expression levels of these modules exist among patient 

DC(Figure 4.6 and 4.7). Interestingly, modules 2, 3 and 7 showed somewhat 

low manufacturing related variability, suggesting that levels of expression of 
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these modules are mainly affected by manufacturing unrelated factors (Figure 

4.6). On the other hand, modules 4, 5 and 6 were characterized by 

manufacturing-related variability levels comparable to inter-patient 

variability, indicating that genes belonging to these modules were more 

susceptible to manufacture-related variability. 

 

4.2.6 Low expression of module 2 genes correlated with clinical and strong 

immunological responses. We then analyzed modules for their differential 

expression among RespDC and NonRespDC. Notably,only module 2 showed 

a statistically significant correlation with clinical response (r = 0.5278, p-

value = 0.035, Figure 4.8), therefore suggesting that expression level of genes 

belonging to module 2 may play a role in clinical response. In particular, 

when we analyzed the expression of module 2 among different patient DC we 

observed that while up-regulation of module 2 led to mixed clinical 

responses, down-regulation of module 2 was strongly associated with clinical 

and immunological responses (Chi-square p-value = 0.008829, Figure 4.9). 

Next we evaluated module 2 expression for its predictive value for clinical 

response and through a ROC curve we obtained an AUC of 85.5% (Figure 

4.10). However, when tested as a predictor of strong immunological 

response, module 2 led to an almost perfect prediction with an AUC of 

97.9%. All together these data indicate that lower expression of module 2was 

correlated with more potent DC vaccines that resulted in strong 

immunological and clinical responses, even though clinical responses were 

observed even in patients that received DC expressing high levels of module 

2. 

 

 

 
 

Figure 4.5 WGCNA modules in LIg-DC. Similarity matrix analysis of the 1864 

genes belonging to the 8 modules identified by WGCNA. On the right, magnification 

of the top-right corner of the matrix to show less abundant modules. Similarity matrix 

is on a white-to-red gradient, where white represents a correlation equal to 0, whereas 

red is 1 
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Figure 4.6 Manufacturing and inter-patient variability of the expression levels of 

the 8 modules in clinical DC. For each module, the standard deviation of module 

expression is shown for both inter-patient (black bars) and manufacturing variability 

(grey bars). Manufacturing variability was calculated as the average standard 

deviation registered among all the DC generated from each patient, whereas inter-

patient variability was calculated on patients averaged values 

 

 

 

 
Figure 4.7 Average expression levels of the 8 identified modules in the DC of each 

patient. The heatmap is shown on a Blue-White-Red Gradient, where blue represents 

an expression level below the average, white is an average expression level and red 

represents an expression above the average 
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Figure 4.8 Module 2 expression correlated with clinical response. Plot showing the 

correlation of module 2 expression in DC and the quantitative measure of clinical 

response at week 48 (measured as the decrease in slope (log PSA) over time) 
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Figure 4.9 Heatmap of the patient-averaged expression level of the genes 

belonging to module 2. Each column represents the average value observed among 

the DC manufactured from the same patient. Columns are ordered according to the 

quantitative measure of clinical response at week 48 with non-responders on left 

shown by the color bar on the top of the heatmap (green: no response, yellow: mild 

response, red: strong response). * indicates DC of patients showing strong 

immunological response (median ELISPOT count >500). The top gene cluster of the 

heatmap shows genes more expressed in Resp-DC whereas the lower cluster shows 

genes more expressed in NonResp-DC. 
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Figure 4.10 ROC curves of module 2 expression and clinical and immunological 

response. ROC curves showing the ability of module 2 expression on DC to 

discriminate among clinical and non-clinical responders in black and strong 

immunological responders vs non-strong immunological responders in red 

 

  

4.2.7 Module 2 was a tolerogenic DC module. To characterize module 2 

genes we performed a gene ontology (GO) analysis and among the most 

over-represented “biological process” GO families we observed: immune 

response, chemotaxis, and endocytosis (not shown). In particular, network 

analysis revealed that the dominant module 2 factors were CD14, IL-10, 

thrombospondin, estrogen receptor 1, Insulin-like growth factor-binding 

protein 4, and hepatocyte growth factor (HGF). Most of these genes are 

known factors in driving immune tolerance and specifically the first two are 

widely described as the major markers of tolerogenic DC (Krispin et al. 

2006; Pulendran et al. 2010; Torres-Aguilar et al. 2010; Rutella et al. 2006; 

Gregori et al. 2010). To better understand whether module 2 represents a 

module of tolerogenic DC, we performed a meta-analysis of all the publicly 

available tolerogenic DC gene expression studies and looked at how genes 

belonging to module 2 behaved in these other datasets of tolerogenic DC. In 

total, we found 8 gene expression datasets describing in vitro generated 

tolerogenic DC that could be used for the analysis. In these studies, 

tolerogenic DC were generated according to different protocols using IL-10 

alone or in combination with other cytokines, mesenchymal stromal cells, T 

regulatory cells, or adhesion protein disruption. In 5 of the 8 analyzed 

datasets, we observed a statistically significance concordance of module 2 



49 
 

overexpression in tolerogenic DC (Table 4.2), strengthening the link between 

the expression of module 2genesandtolerogenic DC. 

 
Table 4.2 Meta-analysis of tolerogenic DC dataset  

Dataset #  

(Source) 

Type of DC Ref p-value  

GSM468775 

(NCBI GEO) 

IL-10/IL-6 mDCs vs mDCs (Torres-

Aguilar et 

al. 2010) 

3.56E-06 

GSE23371 

(NCBI GEO) 

IL10/dexamethason DC vs LPS 

DC 

(Jansen et 

al. 2011) 

7.34E-06 

GSE18921 

(NCBI GEO) 

IL-10/IL6 DC vs standard DC (Torres-
Aguilar et 

al. 2010) 

7.52E-06 

MTAB-286 

(EMBL-EBI) 

DC grown in presence of MSC vs 
normal DC 

(Aldinucci 
et al. 

2010) 

7.34E-05 

GSE18921 

(NCBI GEO) 

IL-10 DC vs standard DC (Torres-
Aguilar et 

al. 2010) 

0.005962 

GSE7387 

(NCBI GEO) 

Induced-regulatory T cell treated- 
and untreated-DC from patients 

with ITP 

(Zhang et 
al. 2009) 

>0.05 

GSE9241 

(NCBI GEO) 

E-cadherin-stimulated DCs vs 
bacteria activated DCs 

(Jiang et 
al. 2007) 

>0.05 

GSE18921 

(NCBI GEO) 

IL-10/TGFb1 DC vs standard DC (Torres-

Aguilar et 
al. 2010) 

>0.05 

Ref: Publication reference 

p-value: p-value of the overlap of tolerogenic genes in the dataset with genes in module 2 

 

4.2.8 Low IL-10 concentrations correlated with strong immunological 

response. Next, we analyzed media supernatants obtained from the last 6 h of 

DC culture  (see methods) in order to characterize the cytokine/chemokine 

secretion profiles of DC immediately before they were injected. We tested 93 

supernatants (90 of which corresponding to the same DC we tested by gene 

expression) by ELISA for the presence of 11 proteins: IFN-gamma, IL-10,IL-

12p70, IL-6, IP10 (CXCL10), MCP1 (CCL2), MIG (CXCL9), TNF-alpha, I-

TAC (CXCL11), MDC(CCL22), and TGF-beta1. Interestingly, we observed 

high levels of both manufacturing and inter-patient related variability for 

most of the tested proteins, with coefficients of variation ranging between 

0.27 and 0.67 for manufacturing-related variability and between 0.33 and 

1.34 for inter-patient related variability (Figure 4.11). When tested for their 

predictive value of clinical response none of the proteins showed an AUC 

greater than 80% indicating that single cytokine concentrations in 

supernatants may not be good predictors of DC efficacy. However, when we 

tested protein concentrations for their predictive value of strong 
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immunological response (similarly to what was observed with module 2 

genes) we observed an impressive predictive value for IL-10 with an AUC of 

95.8% (Figure 4.12). In particular and as expected, minimal levels of IL-10 

were detected in the supernatants of those DC that led to a strong 

immunological response compared to the ones that did not. A similar result 

was obtained when we tested the IL-12/IL-10 ratio. In this case, we observed 

an AUC of 94.3%, with the highest IL-12/IL-10 ratios leading to strong 

immunological responses. 

 

4.2.9 Module 2 expression correlated with CD14, IL-10, MDC and MCP-1 

secretion. Given that it is not possible to routinely test DC by gene 

expression profiling, we analyzed how the expression of module 2 genes 

correlated with the other analyzed factors that can be tested more easily 

assayed. As expected, we observed a statistically significant correlation 

between module 2 expression levels and percentages of CD14+ DC assessed 

by flow cytometry (r = 0.71, p-value < 0.0001) and IL-10 secretion levels (r = 

0.604, p-value < 0.001), confirming at a proteomic level, the observations 

made on gene expression profiles. Also, module 2 expression correlated 

positively with secreted concentrations of MCP-1 (CCL2)(r = 0.537, p-value 

< 0.0001) and negatively with level of MDC (CCL22)(r = -0.534, p-value < 

0.0001). Given that none of these proteins was able to replace module 2 for 

its predictive value as single factor, we evaluated whether by combining all 

four proteins we were able to obtain a better correlation with module 2. We, 

therefore, calculated for each DC that we analyzed by gene expression, CD14 

expression by flow and supernatant analysis by ELISA (n= 89) a 

CD14/IL10/MCP1/MDC index(made by adding up DC ranks of the 

expression level of the 4 proteins, see methods for details)and observed that it 

strongly correlated with module 2 expression (r = 0.867, p-value < 0.0001, 

Figure 4.13). Next we tested its predictive value for both clinical and strong 

immunological responses and we obtained AUC of 88.7% and 97.2%, 

respectively(Figure 4.14). All together, these data suggest that the analysis of 

CD14 expression by flow cytometry combined with IL-10, MCP-1 and MDC 

cytokine concentrations was able to discriminate between RespDC and 

NonRespDC. 
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Figure 4.11 Variation in cytokine/chemokine secretion levels. Coefficients of 

Variation (CV) of supernatant concentrations of indicated cytokines/chemokines 

calculated for manufacturing (black bars) and inter-patient variability (light grey bars) 

among 93 manufactured DC. Manufacturing related CV was calculated as the average 

CV registered among all the DC generated from each patient, whereas inter-patient 

CV was calculated on patient-averaged values 

 
Figure 4.12 ROC curves of IL-10 on clinical and immunological response. ROC 

curves showing the ability of IL-10 concentrations measured on DC supernatants to 

discriminate among clinical and non-clinical responders in black and strong 

immunological responders vs not-strong immunological responders in red 
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Figure 4.13 CD14+/IL-10/MCP-1/MDC index correlated with module 2. Plot 

showing the correlation of module 2 expression with the CD14+/IL-10/MCP-1/MDC 

index 

 

 
Figure 4.14 ROC curves the CD14+/IL-10/MCP-1/MDC index on clinical and 

immunological response. ROC curves showing the ability of CD14+/IL-10/MCP-

1/MDC index to discriminate among clinical responders and non-responders in black 

and strong immunological responders vs not-strong immunological responders in red. 
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4.2.10 Module 2 genes are co-expressed also in other DC. Lastly, we wanted 

to check whether co-expression of module 2 genes is shared among DC 

differentiated by different protocols or is unique of LIg-DC. Therefore, we 

performed a metanalysis on publicly available gene expression dataset on 

monocyte-derived DC. We selected only human dataset that were made of at 

least 8 samples, with more than 3 biological replicates per condition, that 

were testing at least one maturation agent for more than six hours, and that 

had sufficient level of details about experimental design. A total of six 

dataset were selected covering a broad array of IL-4-DC and IFNa-DC both 

immature as well as matured by several stimuli. Gene expression data were 

generated on three different platforms (i.e., Agilent, Illumina, Affymetrix). 

Therefore data were normalized each according to standard procedures for 

the specific platform used. Module 2 genes were selected, and co-expression 

patterns analyzed by hierarchical clustering. In three out of six dataset 

module 2 genes were mostly co-expressed, whereas in the remaining dataset 

co-expression was not observed (Table 4.3 and Figure 4.15). No clear factors 

affecting the presence/absence of co-expression of module 2 genes were 

identified. 

 

 

 

 
Table 4.3 Meta-analysis of matured monocyte-derived DC for co-expression of 

module 2 genes 

Series # Series Title # of 

samples 

Co-

expression? 

GSE39745 Human monocyte-derived dendritic cells 

treated with U0126 or SB203580 

35 Yes 

GSE26438 Recombinant human lactoferrin activates 

human dendritic cells via Toll-like 

receptors-2 and -4 

12 Yes 

GSE47621 Interferon-gamma critically determines 

dendritic cell function 

8 Yes 

GSE44719 IFNa and IL4 DCs stimulated with 

microbial components for 6hr 

77 No 

GSE44721 IL4 DCs and monocytes stimulated by 

13 human vaccines and LPS for 6hr 

128 No 

GSE44720 IFNa DCs and IL4 DCs exposed to 

H1N1, heat killed S. aureus, or heat 

killed S. enterica (HKSE) for 1h, 2h, 6h, 

12h, or 24h 

120 No 
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Figure 4.15 Co-expression of module 2 genes in DC. Heatmaps of module 2 genes 

in two different dataset. On the left, representative heatmap of dataset in which 

module 2 genes are not co-expressed, on the right representative heatmap of dataset in 

which module 2 genes are co-expressed. 

 

4.3 Discussion 

DC-based cell therapies represent a promising approach to activate immune 

responses against tumors even though the vast majority of clinical trials have 

failed to show efficacy for such approach. Several reasons for such 

disappointing results have been identified: suboptimal generation and 

delivery of DC, inappropriate selection of immunogenic tumor associated 

antigens, systemic inactivation of the immune system in advanced tumors 

and the ability of the established tumor microenvironment to inhibit T cell 

function. These factors have all been widely described and analyzed as 

possible justification of poor clinical trial result outcomes (Castiello et al. 

2011; Whiteside 2006; Whiteside 2013; Vasaturo et al. 2013; Hargadon 

2013). It has also been recently recognized that response evaluation of 

immunotherapies, especially cell-based therapies, should be based on 

different criteria compared to standard chemotherapy drugs and treatments, 

implying that the previous reports should be careful reevaluated (Hinz et al. 

2006). 
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In this study, we focused our analysis on the DC products administered to 

stage D0 prostate cancer patients, by eliminating issues related to systemic 

tumor burden and a local immune-tolerizing microenvironment, and observed 

a strong correlation between DC phenotype and slope log PSA responses (a 

well-established surrogate for clinical outcomes in the stage D0 population) 

and immunological responses. In particular, we identified a gene signature 

made up of several well-known tolerogenic DC factors such as CD14 and IL-

10that was able to discriminate RespDc from NonRespDC. The differential 

expression of CD14 and IL-10 was confirmed at the proteomic level and 

observed that MCP-1 and MDC protein levels correlated with the expression 

level of the tolerogenic gene expression signature. Even though IL-10 

secretion levels were able to predict strong immunological responses, it was 

only by combining CD14, IL-10, MCP-1 and MDC measures that it was 

possible to obtain an index able to replace the tolerogenic gene expression 

signature in its ability to discriminate both clinical and strong immunological 

responses.  

Lot-to-lot variability is a critical issue for DC-based immunotherapies. Our 

data revealed a correlation between the phenotype of DC used as vaccines 

and the induction of clinical and immunological responses. Even though 

functional analyses are needed to support a causative role of the identified 

phenotype, our observations further strengthen the need for extensive 

characterization of cellular products used in preclinical and early phase 

clinical trial in order to identify manufacturing and inter-patient related issues 

that may hamper identity, consistency and potency of final DC products. In a 

previous report, we described a framework for preclinical analysis of cell 

therapies for the identification of factors affecting consistency of cell 

products (Castiello et al. 2013), but only by using accepted surrogates for 

clinical outcomes such as slope log PSA used in this study was it possible to 

correctly determine which factors play a role in product efficacy. The 

consistency of DC-based products is critical considering that many reports 

have highlighted how DC generated from patient monocytes show 

phenotypic differences compared to those manufactured from healthy donor 

monocytes (van den Heuvel et al. 1998; Kvistborg et al. 2009; Cuellar et al. 

2008; Decker et al. 2006). Therefore, lot-to-lot variability should be carefully 

characterized for each cell product in the early phases of product 

development to determine which factors should be analyzed routinely to 

control and manage product consistency. 

The generation of potent DC capable of inducing a strong anti-tumor immune 

response is highly sought after, but a consensus concerning optimal DC 

generation protocols is still lacking.The changes in slope log PSA and TARP-

specific immunogenicityfollowing therapeutic vaccination observed in the 

current study were encouraging and highly statistically significant. Clinical 
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responses were observed in 15 of 18 evaluable patients at 24 weeks and 13 

out of 16 evaluable patients at 48 weeks, whereas immunological responses 

were detected in 10 out of 16 evaluable patients. However and more 

interestingly, our results suggest that even among DC products manufactured 

following identical standard operating procedures it is possible to identify 

more potent DC. The detrimental role of tolerogenic signals on DC function, 

such as expression of CD14 and secretion of IL-10 has been widely discussed 

in literature (Kalinski et al. 2009; Torres-Aguilar et al. 2010; Gregori et al. 

2010),but the direct involvement of these signals in clinical DC products has 

not yet been described. DC generated with our protocol and expressing low 

levels of tolerogenic genes, as determined by scoring low on our CD14/IL-

10/MCP-1/MDC index, strongly correlated with the induction of strong 

immunological and clinical responses. How to more consistently manufacture 

DC with such a potent phenotype is under investigation in our laboratory, but 

the possibility of predicting which patients are more likely to benefit from 

vaccination is already an appealing scenario that will be tested further in 

forthcoming clinical trials at our institution. 

Response to DC-based vaccine depends on several factors. In the current 

study, by analyzing DC administered to patients with relatively low tumor 

burdens i.e. micrometastatic disease since the only evidence of disease is 

PSA biochemical progression, we were able to more directly link DC 

phenotype with clinical and immune responses. However, it’s reasonable to 

expect that in more complex clinical settings, additional factors related to DC 

phenotype as well as unrelated factors (e.g., overall patient immune system 

status following multiple chemotherapies, tumor phenotype and tumor 

burden)  should also be considered. Therefore, complex data modeling should 

be developed that is able to extract precious information on DC phenotype 

and identify factors that correlate with clinical and immunologic outcomes.  

In this study, when we used standard statistical tools for the analysis of gene 

expression data (i.e., t-test based class comparison) we were not able to 

observe statistical differences among RespDC and NonRespDC. It was only 

when using a novel unsupervised method for the selection of gene modules 

which were co-expressed across the dataset (i.e., WGCNA) we were able to 

identify the tolerogenic gene signature. In fact, some of RespDC did express 

similar levels of the tolerogenic signature of NonRespDC. What is the 

mechanism behind the ability of these DC to induce clinical responses in the 

absence of a conventional immunological response will be tested in future 

clinical trials, but considering the multiplicity of effects DC can exert 

(Steinman & Banchereau 2007), it is possible that these DC worked by 

activating immune cells other than T cells (Bray et al. 2011). However, 

further investigations are needed to explore such hypotheses, including 
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studies that involve expanded patient immunomonitoring and/or systems 

immunology. 
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5. CHARACTERIZATION OF IFNa-DC USED IN 

METASTATIC MELANOMA PATIENTS AND THEIR 

LOT-TO-LOT VARIABILITY 

 
5.1 Background 

Dendritic cells (DC) are professional antigen presenting cells that are able to 

activate both innate and adaptive arms of the immune system (Ueno et al. 

2010). Given their pivotal role in shaping the immune system, DC-based 

vaccines represent a promising immunotherapeutic approach in several 

clinical settings. In particular, over 300 clinical trials have been conducted in 

cancer setting which have proven the feasibility and safety of DC vaccines 

(Castiello et al. 2011). However, so far clinical trials have not demonstrated 

the desired clinical efficacy and in most of the cases stopped in very early 

phases. In fact, for the majority of trials, the overall response rates have been 

well below 20%. Many reasons have been hypothesized for such low 

response rates, among which the generation of DC with suboptimal activity 

in vivo is considered the most relevant, even though it’s not known yet how 

to generate the most potent DC. Also, it has to be noted that differences in 

clinical setting, study design, sources of antigens, and route of administration 

make it almost impossible to compare results from previously conducted 

trials in order to clearly delineate the shared determinants of in vivo efficacy 

of DC-based vaccines. 

DC-based therapies, similarly to other cell therapies, face an additional issue 

for their implementation into clinics: their considerable lot-to-lot and patient-

specific variability. Extensive characterization is extremely costly, time-

demanding, and hypothetically endless, given the fact that differently from 

standard drugs, cells cannot be completely characterized (Stroncek et al. 

2010). Therefore, the identification of reliable biomarkers of identity, 

consistency and potency of cell therapies is highly encouraged by regulatory 

agencies beginning in the earliest phases of clinical development of the 

cellular product (Hinz et al. 2006; Vatsan et al. 2013). 

In the previous part of this project, we have shown that even when highly 

standardized procedures are used to generate monocyte-derived LIg-DC, 

manufacturing, intra-donor and inter-donor related factors may affect DC 

phenotype (Castiello et al. 2013). In particular, we observed that while most 

of the well-known and usually tested DC markers (e.g., CD80, CD86, CD83, 

HLA-DR) did not show any differences in expression among LIg-DC 

generated at different times from different donors, the expression of several 

genes and the levels of several key secreted cytokines and chemokines 

showed significant variability among LIg-DC products. Next, we analyzed 

114 peptide-pulsed LIg-DC preparations manufactured to vaccinate 18 
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patients with autologous TARP peptide-pulsed DC in order to characterize 

whether lot-to-lot variability in clinical GMP manufactured DC has an impact 

on DC identity, potency and efficacy. By analyzing DC surface marker 

expression, gene expression profiles, protein secretion profiles and culture 

data, we observed the existence of a tolerogenic DC signature that was 

negatively correlated with the development of clinical and immunological 

response. Then, by analyzing publicly available gene expression datasets, we 

observed that such tolerogenic signature was shared also in other DC 

differentiation protocols, while other datasets were not showing the co-

expression of such a signature. 

In the current part we explored whether DC differentiated in presence 

of GM-CSF and interferon-alpha (IFNa-DC) show patterns of variability 

similar to LIg-DC and whether biomarkers of efficacy are shared with LIg-

DC. IFNa-DC represent a relatively new DC showing a semi-mature 

phenotype and endowed with potent functional activities (Santini et al. 2000; 

Farkas et al. 2008; Paquette et al. 1998; Santini et al. 2009). In fact, these 

cells produce mostly T-helper-1 (Th-1) cytokines and chemokines, express 

toll-like receptors (TLRs) 1 to 8, show migratory response to chemokines, 

and are capable of stimulating Th-1 polarized immune responses after 

injection into severe combined immunodeficient mice reconstituted with 

human peripheral blood leukocytes(Santini et al. 2009; Farkas et al. 2008). 

Notably, IFNa-DC exert a direct cytotoxic effect on tumor cells (Santini et al. 

2000), are capable to take up apoptotic cells through the scavenger receptor 

Lectin-like oxidized-LDL receptor-1 (LOX-1) (Parlato et al. 2010) and cross-

present their antigens to CD8+ T cells, thus leading to an efficient cross-

priming of these cells(Santodonato et al. 2003; Tosi et al. 2004; Lapenta et al. 

2006). In addition, IFNa-DC are capable of expanding both Th1 and Th17 

responses as a result of the production of cytokines such as IL-23 and IL-

12(Santini et al. 2011). Remarkably, IFN-DC do not require TLR triggering 

to induce antigen specific cytotoxic T lymphocytes and to stimulate 

allogeneic CD4+ T cells(Bracci et al. 2008). All these features make IFNa-

DC highly promising new candidates for the development of more effective 

DC-based strategies of cancer immunotherapy(Farkas & Kemény 2011; 

Bracci et al. 2013).  

Here, we characterized IFNa-DC manufactured to sustain a phase I clinical 

trial for advanced melanoma patients. Differently from most of the DC-based 

immunotherapies, in this case IFNa-DC were injected intratumorally one day 

after dacarbazine aiming at an in situ loading of tumor antigens relesead by 

cancer cell death induced by the chemotherapeutic agent. By analyzing DC 

surface marker expression, gene expression profiles, protein secretion 

profiles and culture data, we observed a different pattern of variability 

compared to LIg-DC and that in this setting biomarkers of efficacy might be 
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mostly related to phagocytic activity coupled to secretion of high level of 

chemokines. 

 

5.2 Results 

5.2.1 IFNa-DC showed variability in final viability, phagocytosis and surface 

expression of key markers. Monocyte-derived IFNa-DC generated from 5 

patients were characterized according to release criteria  for cell viability, cell 

counts, cell phenotype and antigen uptake on cryopreserved aliquots. As 

shown in Figure 5.1, IFNa-DC showed some lot-to-lot variability in all 

factors analyzed. In fact, viability ranged between 73% and 91% (release 

threshold 70%); cell recovery was in the range of 55-90% (release threshold 

50%); and phagocytic activity averaged in the range of 40-50% with IFNa-

DC of patient 3 showing a much higher level (ranging approximately at 70%) 

(release threshold 30%). 

Phenotypic analysis showed that IFNa-DC from all patients displayed 

significant and barely invariable expression of class I and class II molecules, 

co-stimulatory receptors CD80 and CD11c marker. IFNa-DC also retained 

CD14 expression at the same level among different patients, in line with their 

semi-mature phenotype. CD86, CD40, CD83 and CD1a, instead were 

expressed at different levels among the IFNa-DC made from different 

patients.  

 

 

5.2.2 Gene expression profiling revealed changes occurring upon 

differentiation from monocytes. Then, to more deeply characterize IFNa-DC 

and monitor molecular changes occurring during the manufacturing process, 

we also analyzed gene expression profiles of starting monocytes, of DC at the 

end of the culture before cryopreservation, and of one aliquot of the thawed 

DC product from each of the five patients for which DC were manufactured. 

As shown in Figure 5.2, unsupervised clustering of the whole dataset clearly 

separated monocytes from DC samples, showing that a huge change occurred 

during differentiation of monocytes into IFNa-DC. Also, DC samples 

clustered according to patient, implying that changes occurring along 

cryopreservation and subsequent thawing of the cells are little compared to 

inter-patient differences and insignificant when considering changes 

occurring during DC differentiation, which was the main focus of our 

microarray analysis.  

Therefore, to better characterize molecular pathways affected during IFNa-

DC differentiation, we performed a paired class comparison between 

monocytes and IFNa-DC and observed that 5,725 genes were differentially 

expressed with a p-value < 0.001 (false discovery rate < 0.01) (Figure 5.3). 
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Figure 5.1 Viability, Post-thaw recovery and antigen uptake ability of IFNa-DC. 
IFNa-DC were analyzed after thawing for cell viability by trypan blue, cell recovery 

was assessed as the number of living cells after thaw divided by the number before 

cryopreservation. Antigen uptake assay was set as described in Appendix to assess 

phagocytic activity of IFNa-DC and % of FITC-OVA positive cells is shown. 

 

As expected, among top up-regulated genes there were many well-known 

IFN-alpha-induced ones, such as ISG15, MX1, IFI27 and IFIT1. 

Interestingly, several chemokines, such as chemokine (C-C motif) ligand 13 

(CCL13), CCL17 and CCL19, were all strongly up-regulated showing fold 

changes above 100, suggesting a strong chemotactic potential of IFNa-DC 

towards T cells and other immune cells. Then, to classify genes induced by 

IFN-DC differentiation, we performed gene ontology (GO) analysis on genes 

up-regulated in IFNa-DC compared to monocytes, focusing on mostly 

modulated genes (fold change >3) (Figure 5.3C). 
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Figure 5.2 Expression of surface markers by IFNa-DC. Percentages of cells 

expressing the indicated surface markers as assessed by flow cytometry after 

subtraction of signal from isotype labeled cells. 

 

Most over-represented families were immune related with a strong up-

regulation of genes belonging to “antigen processing and presentation” and 

“response to virus”. Considered the relevance of these GO families, we 

looked at exactly which genes were in our analysis falling into these families. 

Up-regulated “antigen processing and presentation” genes were mainly class 

II HLA genes and CD1 genes (a, b, c, and e), highlighting the well- 
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Figure 5.3 Gene expression analysis of IFNa-DC. A. Unsupervised Hierarchical 

Clustering of samples using the whole dataset. Monocyte, IFNa-DC and prior to 

cryopreservation DC are shown by red, green and blue bars, respectively; B) Heatmap 

of the average corrected expression levels of the 5725 genes differentially expressed 

between IFNa-DC and monocytes with a p-value < 0.001. Genes are in rows and 

samples in columns. Monocyte, IFNa-DC and prior to cryopreservation DC are shown 

by red, green and blue bars, respectively; C) Gene Ontology Analysis of up-regulated 

genes in IFNa-DC vs monocytes (p-value<0.001 and ratio >3). The plot show for each 

GO “biological function” term the enrichment among genes up-regulated in IFNa-DC 

expressed as –log10(p-value). Enrichment p-values were calculated through 

hypergeometric test. Statistical significance threshold for hypergeometric test was set 

to 0.05 (i.e., -log10(p-value) > 1.3 were statistically significant). 

 

 

documented ability of IFNa-DC to strongly process and present antigens. 

Altogether, these data indicated that strong molecular changes are induced 

upon  monocyte differentiation into IFNa-DC and that GMP-manufactured 

IFNa-DC were empowered, at least at gene expression level, with strong 

chemotactic and antigen processing and presentation abilities. 
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5.2.3 Module 2 genes were not co-expressed in IFNa-DC. Next, we analyzed 

whether genes previously identified as co-expressed in LIg-DC that were 

correlating with the induction of clinical and immunological response in 

prostate carcinoma patients (i.e., module 2 genes) resulted co-expressed also 

among IFNa-DC. Therefore, given the different platform we selected only 

annotated genes belonging to the tolerogenic signature and found 142 genes. 

As shown in Figure 5.4a, IFNa-DC did not co-expressed module 2 genes as 

can be observed by different expression of the genes within a sample (i.e., to 

be co-expressed all genes should show an expression level above or below 

average within the same sample). Therefore, this analysis pointed to the 

absence of a clear tolerogenic signature among DC made from different 

patients according to this protocol and suggested that inter-individual 

variability in IFNa-DC may be different from the one observed in LIg-DC. 

Therefore, to better characterize inter-individual IFNa-DC variability we 

selected top ventile showing the highest variability among IFNa-DC 

generated from the 5 patients (2127 genes, Figure 5.4b) and analyzed through 

gene ontology (GO) their biological relevance. Interestingly, the most over-

represent GO family was “Immune Response” (p-value = 2.13 x10
-39

). In 

particular, we found highly variable many cytokines and chemokines (CCL1, 

CCL2, CCL3, CCL4, CCL5, CCL8, CCL13, CCL14, CCL18, CCL19, 

CCL20, CXCL1, CXCL2, CXCL3, CXCL9, CXCL10, CXCL11); CD1 

family genes (CD1a-e); co-stimulatory/co-inhibitory molecules CD83, 

CD274, CD276; interleukins (IL1A, IL6, IL8, IL10, IL27, IL32) and many 

leukocyte immunoglobulin-like receptor (LILRA3, LILRA5, LILRA6, 

LILRB1, LILRB3, LILRB4, LILRB5). Altogether these results highlight how 

even if inter-individual patterns of variability in IFNa-DC are different from 

the ones observed in LIg-DC, even for these cells most affected genes play a 

key role in DC biology and therefore may hinder functional differences in 

IFNa-DC generated from different individuals. 

 

5.2.4 IFNa-DC showed a different pattern of variability in cytokine secretion. 

Next, we wanted to characterize cytokine secretion profile of IFNa-DC. 

Thus, we analyzed culture media supernatants by ELISA for concentration 

levels of IL-10, IL-12p70, CCL3, CXCL10, CXCL9, and CCL22. 

Interestingly, both IL-10 and IL-12 levels were always below lower detection  

limit. However, we detected high concentrations of CXCL10, CXCL9, and 

CCL22 (usually above 1000 pg/ml), whereas CCL3 was secreted at much 

lower levels (ranging between 0.7 and 11 pg/ml). As expected, secretion 

levels of IFNa-DC were completely different to the ones of LIg-DC, given 

the wide difference existing between these two types of DC. 

Then, we analyzed whether at least variability patterns in cytokine secretion 

ability of IFNa-DC were similar to LIg-DC, but even in this case we 
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observed that inter-individual variation affect cytokines secretion with a 

different pattern compared to LIg-DC (Figure 5.5). Therefore, in line with 

gene expression results, even at proteomic level IFNa-DC show inter-

individual differences that are not comparable to the ones observed in LIg-

DC and thus strengthening the hypothesis that different DC are characterized 

by not-universal patterns of variability. 

 

 

a                                                              b 

             
 

Figure 5.4 Inter-individual variability of IFNa-DC. a) Heatmap showing the 

absence of co-expression of module 2 genes in IFNa-DC. The 142 genes that were 

found in this dataset are in rows and the 5 samples in columns. b) Heatmap showing 

the top ventile genes in IFNa-DC showing the highest inter-individual variability. The 

2127 genes are in rows and the 5 samples in columns. 
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5.3 Discussion 

The possibility to activate immune response against tumor through DC-based 

immunotherapies remains extremely attractive despite the results so far 

observed in early phases clinical trials. Many causes have been identified for 

the failure of previous studies, but many issues are still on debate. 

Suboptimal generation and delivery of DC, inappropriate selection of 

immunogenic tumor associated antigens, systemic inactivation of the immune 

system in advanced tumors and the ability of the established tumor 

microenvironment to inhibit T cell function are all considered grounding 

factors for the success DC-based immunotherapy (Castiello et al. 2011; 

Whiteside 2006; Whiteside 2013; Vasaturo et al. 2013; Hargadon 2013). It 

has also been recently recognized that different criteria should be used when 

evaluating immunotherapies because standard criteria may be less 

meaningful or even fallacious conclusions (Hinz et al. 2006). 

In this study, we analyzed IFNa-DC manufactured for a clinical trial for 

advanced melanoma patients. Even though the paucity of treated patient did 

not allow the identification of molecular markers associated with increased 

potency/efficacy in this setting, we were able to characterize molecular 

changes occurring upon their differentiation from monocytes and gene 

expression patterns. In particular, we observed a different pattern of inter-

individual variability from the one previously observed in LIg-DC. In fact, 

IFNa-DC did not show a clear tolerogenic signature, but even for IFNa-DC it 

was possible to observe that inter-individual variation affects relevant genes 

and proteins and that therefore can affect their ability in vivo to activate 

immune response.  

Lot-to-lot variability is a critical issue for DC-based immunotherapies. In the 

previous parts of this study, we described a framework for preclinical 

analysis of cell therapies for the identification of factors affecting consistency 

of cell products (Castiello et al. 2013) and described a correlation between 

the phenotype of LIg-DC used as vaccines and the induction of clinical and 

immunological responses. Here, by analyzing IFNa-DC used in a clinical trial 

we strengthened the importance of in-depth characterization of cellular 

products for the identification of manufacturing and inter-patient related 

issues that may hamper identity, consistency and potency of final DC 

products. The consistency of DC-based products is a critical issue 

considering that many reports have highlighted how DC generated from 

patient monocytes show phenotypic differences compared to those 

manufactured from monocytes of healthy donors (van den Heuvel et al. 1998; 

Kvistborg et al. 2009; Cuellar et al. 2008; Decker et al. 2006). Therefore, lot-

to-lot variability should be carefully characterized for each cell product in the 

early phases of product development to determine which factors should be 

analyzed routinely to control and manage product consistency. 
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The generation of potent DC capable of inducing a strong anti-tumor immune 

response is highly sought after, but a consensus concerning optimal DC 

generation protocols is still lacking. IFNa-DC have shown very promising 

results in vitro and in animal models, but had not been tested in human. Here, 

we showed the analysis of the IFNa-DC used for the first time clinically in 

advanced melanoma patients. Even though the results cannot be considered 

conclusive given the paucity of vaccinated patients, we observed disease 

stabilization and the induction of immune response against melanoma 

antigens in two of the five treated patients. Similarly to previous studies 

(Santini et al. 2009), IFNa-DC used in the trial showed a semi-mature 

phenotype characterized by immature features (such as the expression of 

CD14 and an high phagocytic activity) mixed with maturing ones (such as 

high secretion of cytokines and chemokines, increased surface expression of 

MHC and co-stimulatory molecules). In particular, these features may be 

especially crucial in the setting of intra-tumoral injection as occurred in this 

trial. High phagocytic activity is in fact essential for a proper antigen uptake 

in situ; in a similar way chemotactic activity and partial mature features may 

have played a favorable phenotype. However, the low number of treated 

patients did not allow us to perform any analysis aimed at identifying IFNa-

DC molecular markers associated with clinical results in patients. 

Even though with different patterns also in IFNa-DC inter-individual 

variability affects key genes/proteins/functions. In fact we observed among 

top variable genes key cytokines and chemokines such as CCL2, CCL3, 

CCL5, CXCL9, CXCL10, CXCL11; CD1 family genes (CD1a-e); co-

stimulatory/co-inhibitory molecules CD83, CD274, CD276; interleukins 

(IL1A, IL6, IL8, IL10, IL27, IL32) and many leukocyte immunoglobulin-like 

receptor (LILRA3, LILRA5, LILRA6, LILRB1, LILRB3, LILRB4, 

LILRB5). How variability affects also protein level and eventually function 

has to be carefully study for each identified gene, but we did observe high 

level of variation also at the protein level for CXCL10/IP10 and 

CXCL9/MIG as revealed by ELISA on culture media supernatants. 

In conclusion, our study strongly suggests that pattern of variability are 

different among different DC preparations and that an in-depth 

characterization of DC vaccines may strongly benefit the identification of key 

factors and candidate biomarkers of DC identity, consistency and potency. 

Also it highlighted the potent phenotype shown by IFNa-DC, strengthening 

the rationale that these DC represent the ideal candidate in the setting of 

intratumoral injection aimed at in situ antigen loading.  
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6. CONCLUSION 
 

 

Dendritic cells (DC) play a key role in the activation of immune system by 

presenting antigens to T cells and, by so, generating an antigen-specific 

immune response (Ueno et al. 2010). For this reason, several attempts have 

been done so far in order to develop effective immunotherapeutic approaches 

that consist of ex vivo generated fully-functional DC to be infused in patients 

in order to induce an antigen specific T cell expansion (Palucka & 

Banchereau 2012). Many methods have been developed to generate DC from 

monocytes. In fact, DC can be generated ex vivo by culturing monocytes in 

presence of differentiating cytokines (such as GM-CSF, IL4, IL15 and IFNa) 

to obtain immature DC. Usually these cells are then matured with single 

agents or cocktails of agents (such as TNFa, LPS, IFNg, CD40L, IL6, 

IL1)(Kalinski et al. 2009). Once generated, DC are usually pulsed with tumor 

antigens and injected into patients (usually intranodally or intradermally). 

More recently a newer approach has been developed that is based on directly 

injection of unloaded DC intratumorally aiming at in situ antigen loadings 

usually after chemo/radiotherapy. This latter approach even if less studied 

and tested, is surging as an attractive option given promising results shown in 

early phase clinical trials (Tanaka et al. 2005; Finkelstein et al. 2012; Kolstad 

et al. 2014) .  

Clinical results, mainly from studies in cancer patients, clearly showed the 

feasibility and efficacy of this approach even if the overall response rate is 

below the 15% (Engell-Noerregaard 2009). Several possible reasons have 

been hypothesized to justify such low response rate, among which the 

suboptimal generation of DC able to activate an anti-inflammatory Th1-

polarized T cell response is considered the main bottleneck, even if there is 

no general consensus on how to improve DC function and which factors are 

responsible for the discrepancies between preclinical and clinical results 

(Castiello et al. 2011). Furthermore, cell based immunotherapies would 

strongly benefit of new markers for quality control assessment. Since many 

more factors are responsible for the function and effectiveness of cellular 

therapies than those of drugs and other biological products, an in depth 

evaluation of the characteristics of all newly developed cellular therapies is 

extremely desirable and needed(Stroncek et al. 2010). 

Differently from previous attempts to optimize DC by modifying 

differentiation and/or maturation procedures, this project explored the 

possibility to identify factors affecting DC potency/efficacy in vivo in order 

to gain knowledge of molecular determinants essential for DC function and 

that can thus be used for quality assessment of manufactured DC. Therefore, 
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this project aimed at identifying factors affecting DC consistency and 

candidate molecular biomarkers of consistency, potency and efficacy of GMP 

manufactured DC.  

In the first part, the project focused on a preclinical setting in order to 

evaluate feasibility of this approach by analyzing factors affecting DC 

consistency by combining genomic and proteomic approaches. Using global 

gene expression profiling, we were able to characterize the magnitude of 

variability introduced into LIg-DC by intra-donor and inter-donor differences 

and by manufacturing and determined how these three major factors affected 

DC consistency. Our analysis of LIg-DC suggested that manufacturing and 

intra-donor variability affected the final products less than inter-donor 

factors. Interestingly, we also observed that part of the variability in the final 

products could be traced back on monocytes, therefore strengthening the 

hypothesis that final DC potentials can be predicted by studying the 

phenotype of monocytes. 

Next we focused on the identification of candidate markers for quality 

assessment of DC and by using restrictive filters, we selected 29 genes that 

were showing the highest variability among DC. Interestingly many of these 

genes play a key role in DC biology and therefore their expression level may 

affect how LIg-DC will behave once injected in humans. To strengthen this 

observation we noted that the expression of many of the 29 highly variable 

genes correlated with the levels of several cytokines and chemokines in the 

LIg-DC supernatant, such as IL-12, whose secretion is considered essential 

for the induction of a desirable Th1 immune activation (Trinchieri 2003), and 

the Th1-cell-attracting chemokines MDC, MIG and IP10 (Lebre et al. 2005). 

This feature suggests that these genes reflect LIg-DC function and might be 

potential markers of LIg-DC consistency and potency. 

Given that the only reliable indicators of DC potency/efficacy derive from 

results in human, in the second part of the project we focused on the analysis 

of DC from a phase I/II clinical trial for prostate carcinoma patients. 

Interestingly, from the analysis of  over 100 DC vaccines used to sustain the 

trial we discovered that DC given to patients that developed a strong 

immunological and clinical response under-expressed a gene signature made 

of over 300 genes. This signature  was made of many well-known tolerogenic 

DC genes, such as CD14 and IL-10, and a meta-analysis with other publicly 

available dataset of tolerogenic DC revealed a statistically significant overlap 

between the signature identified and other tolerogenic signatures. The 

detrimental role of tolerogenic signals on DC function, such as expression of 

CD14 and secretion of IL-10 has been widely discussed in literature 

(Kalinski et al. 2009; Torres-Aguilar et al. 2010; Gregori et al. 2010), but the 

direct involvement of these signals in clinical DC products has not yet been 

described. Lastly, we were able to show that such a signature could be 
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replaced by the analysis of 4 proteins: CD14, IL-10, MDC and MCP-1. 

Overall, we identified new molecular markers, both a gene and protein level, 

that can be used as advanced quality control biomarkers of LIg-DC.  

Lastly, to conclude the project, we analyzed whether factors affecting DC 

potency/efficacy in the setting previously analyzed were shared among 

different DC or differed among DC generated with different protocols. 

Therefore, we started with a meta-analysis of gene expression data of DC 

generated by different protocols and observed that only in some DC we were 

able to observe the co-expression of the tolerogenic signature. Thus, we 

analyzed more in detail DC generated in presence of IFNa that were 

manufactured for a phase I clinical trial in advanced melanoma. As expected 

from previous studies (Santini et al. 2009), these DC showed a completely 

different phenotype, with some immature features (e.g., retained CD14 

expression and high phagocytic activity) mixed with mature ones (e.g., 

increased expression and secretion of activating signals). However, even 

though these DC were not showing co-expression of tolerogenic genes, the 

analysis of genes affected by inter-individual variability revealed that also 

IFNa-DC can strongly differ in many immune genes whose expression is 

essential for their function in vivo. This observation was also confirmed at 

proteomic level, where variability in secretion level of key cytokines strongly 

differed from LIg-DC one. 

Altogether, this project developed a methodological framework for the 

identification of biologically-relevant quality control markers of DC by 

combining genomic and proteomic analysis. When applied to clinical DC, 

such approach was able to identify genes and proteins that correlated with 

clinical and immunological response and that can therefore be used as 

efficacy biomarkers of LIg-DC. However, as highlighted from the analysis of 

different DC, such newer markers are specific for DC used. On a broader 

range, these results strongly support the need for in-depth analysis of DC for 

the identification of newer quality assessment markers and factors essential 

for DC activity in vivo. Once identified, these markers can be used for the 

advancement of DC immunotherapies and foster their implementation in 

clinic. 
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APPENDIX 

 

Materials and Methods 
 

Mature and Immature LIg-DC Cell Manufacturing Process 

LIg-DC were manufactured according to a standard procedure established in 

the Cell Processing Section (CPS), Department of Transfusion Medicine 

(DTM), Clinical Center (CC), NIH, Bethesda, Maryland, USA. Briefly, 

peripheral blood mononuclear cell (PBMC) concentrates were collected by 

apheresis using an Amicus Separator (Baxter Healthcare Corp., Fenwal 

Division, Deerfield, IL) from healthy donors or prostate cancer patients in the 

DTM. All donors and patients signed an informed consent approved by a 

NIH Institutional Review Board. Monocytes were enriched directly from the 

leukapheresis products by elutriation using the Elutra (Gambro BCT 

Lakewood, CO) automatic mode according to the manufacturer's 

recommendations and cryopreserved in aliquots of 100x10
6
 or 300 x10

6
 cells 

each. Immature DC and LIg-DC were manufactured from single monocyte 

aliquots after assessing post thaw viability and purity; in all cases both were 

greater than 80%. DC were manufactured in our cGMP facility by operators 

trained on this specific procedure whose competency was assessed 

periodically according to internal policies. At the time of culture initiation the 

cells were resuspended in RPMI-1640 media, containing 10% single donor 

AB heat inactivated plasma, 10 mcg/ml gentamicin, GM-CSF (Leukine 

Sargramostin, 2000 IU/ml, Genzyme, Cambridge, MA, USA) and IL-4 (USP 

grade recombinant human IL-4, 2000 IU/ml, CellGenix, Gmbh, Freiburg, 

Germany) at a final concentration of 1.5x10
6
/mL in T162 or T225 flask 

(Corning Incorporated Life Sciences, Lowell, MA, USA). The flasks were 

incubated at 37
o
C in 5% CO2. On day 2, fresh cytokines were added to the 

culture at the same concentrations. The culture was terminated on day 3 and 

immature DCs harvested or maintained for 24 hours after adding the 

maturation cocktail. The maturation cocktail contained lipopolysaccharide 

(LPS) (30 ng/ml, CTEP, NIH Frederick, MD) and interferon gamma (IFN-γ) 

(Actimmune Interferon gamma-1b, 1000 IU/ml, Intermune, Brisbane, CA, 

USA). Healthy donor LIg-DC were analyzed after harvesting whereas patient 

LIg-DC were additionally processed as follows. After two washes LIg-DC 

were also re-suspended in infusion media made of Plasma-Lyte A and 10% 

autologous heat-inactivated plasma. LIg-DC were then pulsed with wild type 

27-35 and epitope-enhanced 29-37-9V TARP peptides (NeoMPS, Inc., San 

Diego, CA) at 37oC in 5% CO2.  After pulsing, LIg-DC were combined and 

tested for recovery, viability, purity, sterility, mycoplasma absence, 

endotoxin concentration and expression of surface markers by flow 
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cytometry (see below). Release criteria for both healthy donor and patient 

lots were defined based on CD83 expression by flow cytometry and trypan 

blue viability set as equal or greater to 70% and 60% respectively.  If the 

cells met all the release criteria, then 20 million viable DC were used for 

vaccination and were administered intradermally to patients. The remaining 

cells were centrifuged, the supernatant was used for cytokine profile analysis 

(see below) and excess DC were used for RNA extraction. 

 

IFNa-DC Cell Manufacturing Process 

Leukapheresis was performed by a Fresenius Com-Tech blood cell separator 

(Fresenius Kabi, Friedberg, Germany) using the White Blood Cell Set 

(P1YA) for the collection of mononuclear cell (MNC) products. Monocytes 

enrichment from aphaeresis was performed according to Elutra® Cell 

Separation System Monocytes Enrichment Protocol. The monocyte enriched 

fraction was analyzed for cell viability and cell counts and purity were 

assessed by flow cytometry using CD14 mAb associated with the pan 

leukocyte CD45 mAb (all from BD Biosciences, San Jose, CA). When the 

purity of monocytes was less than 60%, an additional step of separation, by 

centrifugation on an isosmotic medium with a density of 1.077 g/ml as a 

Lymphoprep™ (Axis-Shield, Oslo, Norway), was performed. The enriched 

monocytes were cultured for three days in bags (Afc/American Fluoroseal 

Corporation, Gaithersburg, MD) at the concentration of 2x106 cell/ml in 

CellGenix DC medium (CellGenix GmbH, Freiburg, Germany) containing 

GM-CSF (600 IU/ml) (Leukine sargramostim, Bayer Healthcare 

Pharmaceuticals, Seattle, WA) and IFN-α (10,000 IU/ml) (Merck Sharp & 

Dohme Limited, Hoddesdon, UK).  

IFNa-DC were then harvested, counted and re-suspended in freezing 

medium, prepared by mixing 9 volumes of 5% Human Serum Albumin 

(HSA) (Baxter S.p.A., Rome, Italy) + 1 volume of DMSO (WAK-Chemie 

Medical GmbH, Steinbach, Germany), at the final concentration of 1-2x107 

cells/ml. Aliquots of 0.5 ml cell suspension were transferred to 2 ml cryo-

vials, that were deep-frozen under decreasing controlled temperature 

conditions and stored in liquid nitrogen vapor phase.  

Cell count, viability and recovery were evaluated by using trypan blue 

staining, counted into at least two large different squares of the Neubauer 

chamber. The viability was calculated as viable Cell Densityx100/total Cell 

Density. The recovery was evaluated as a ratio between the number of 

thawed viable IFNa-DC over the number of frozen viable IFNa-DC. Sterility 

was determined by Direct Inoculation technique and endotoxin status was 

evaluated by the LAL test.  
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Flow Cytometric analysis of LIg-DC 

Analysis of expression of surface markers was performed using fluorescent 

labeled antibodies (Abs) and flow cytometry. The purity of the elutriated 

monocytes was assessed by flow cytometry using CD33-PE, CD15-FITC, 

CD3/CD19/CD56-APC and CD45-APC-Cy7 (Becton Dickinson, Mountain 

View, CA, USA) and isotype controls (Becton Dickinson). The analysis of 

healthy donor LIg-DC was undertaken after harvest on Day 4. This included 

a panel consisted of CD86-FITC, CD83-PE, CD14-APC, CD209-FITC, 

CCR7-PE, CD40-APC, HLA-DR-FITC, CD123-PE, CD11c-APC, CD80-

FITC, CD154-PE, CD54-APC, CD16-FITC, CCR7-PE, and CD1a-APC. 

Instead, patient LIg-DC were analyzed after pulsing on Day 4. The analysis 

included the standard “DC panel” adopted in our institution as lot release for 

mature DC products and other investigational markers. The panel consisted 

of CD86-FITC, CD83-PE, CD14-APC, HLA-DR-FITC, CD123-PE, CD11c-

APC, CD80-FITC, CD54-APC, CCR7-APC, and CD38-FITC (Becton 

Dickinson). Flow cytometry acquisition and analysis were performed with 

FACScanto flow cytometer (Becton, Dickinson and Company, Franklin 

Lakes, NJ USA) according to CPS standard operating procedures. Spectral 

overlaps were electronically compensated using single color controls. Quality 

controls were run before each session according to internal quality control 

policy. 

 

Flow Cytometric analysis of IFNa-DC 

Immunophenotype of IFNa-DC was analyzed by flow cytometry using a 

panel of antibodies including HLA-ABC, HLA-DR, CD45, CD11c, CD1a, 

CD86, CD83, CD80, CD40 and CD14 (all from BD Biosciences, San Jose, 

CA). The capability of IFNa-DC to phagocytize antigens was verified by 

flow cytometry using OVA conjugated with fluorescein (OVA-FITC) 

(Molecular Probes, Inc., Eugene, OR). Flow cytometry was carried out with a 

FACSCanto flow cytometer and the data were analyzed using the FACSDiva 

software (BD Bioscience, San Jose, CA). IFNa-DC release criteria were: cell 

viability >70%, cell recovery >50%, antigen uptake >30%, CD80+ >80%, 

CD86+ >50%, CD83+ >10%, HLA-DR+> 80%, HLA-ABC+ >80%, CD14+ 

<65%, CD14 MFI <1000. 

 

Gene Expression Profiling of LIg-DC 

Total RNA was extracted from the unused fraction of DC using a miRNeasy 

kit (Qiagen, Valencia, CA, USA). Universal Human Reference RNA 

(Stratagene, Santa Clara, CA, USA) was used as reference. Test samples and 

reference RNA were amplified and labeled using an Agilent kit according to 

the manufacturer’s instructions and hybridized on Agilent Chip (Whole 

Human genome, 4X44k, Agilent Technologies, Santa Clara, CA, USA). The 
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arrays were scanned using an Agilent Microarray Scanner and images 

analyzed using Agilent Feature Extraction Software 9.5.1.1. The resulting 

data were uploaded onto mAdb Gateway (http://madb.nci.nih.gov), the 

Agilent-normalized processed signals retrieved and analyzed with BRB 

Array Tools (http://linus.nci.nih.gov/BRB-ArrayTools.html). The processed 

data set was subjected to filtration based on signal intensity, quality and 

presence across the data set.  

 

Gene expression profiling of IFNa-DC 

Total RNA was isolated from at least 5 million cells using RNeasy kit 

(Qiagen, Valencia, CA, USA) for both monocytes and IFNa-DC before and 

after cryopreservation/thawing. After passing quality control assessment of 

integrity of purity analyzed with ND-1000 Spectrophotometer (NanoDrop 

Technologies, Wilmington, DE, USA) and Agilent 2100 Bioanalyzer 

(Agilent Technologies, Waldbronn, Germany), RNA was amplified and 

labeled using Agilent kit according to manufacturer’s instructions and 

hybridized on Agilent Chip (SurePrint G3 Human GE 8x60K Microarray) at 

65 °C for 17 hours. At the end of the hybridization, chips were washed 

following manufacturer’s instructions and scanned on SureScan Microarray 

Scanner (Agilent) and images analyzed using Agilent Feature Extraction 

Software. Data were then analyzed with BRB Array Tools. The processed 

data set was subjected to filtration based on signal intensity, spot quality and 

presence across the data set.  

 

Protein Analysis of LIg-DC 

Supernatants of DC-conditioned infusion media were collected and properly 

stored. The levels of indicated soluble factors were further assessed on a 

customized antibody-based platform (Aushon, Boston, MA, USA) consisting 

of a multiplex array with different monoclonal antibodies spotted per well in 

standard 96-well plates. A sandwich enzyme-linked immunosorbent assay 

technique was used to generate signals via chemiluminescent substrate. Light 

corresponding to each spot in the array was captured by imaging entire plates 

with a commercially available cooled charge-coupled device camera. Data 

were reduced using image analysis software (Aushon Proteome Arrays, 

Boston, MA, USA) that calculates exact values (pg/mL) based on standard 

curves. Prior to further analysis, protein concentrations were normalized 

according to the number of DC. 

 

Protein Analysis of IFNa-DC 

Supernatants of DC-conditioned infusion media were collected and properly 

stored. The levels of indicated soluble factors were further assessed on plate 

by Bio-Plex® Multiplex System, Bio-Rad Laboratories, Inc. (Hercules, CA). 
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Assay was performed by a custom kit for simultaneous detection according to 

a capture sandwich immunoassay format. Briefly, the capture antibody-

coupled beads are first incubated with antigen standards or samples for a 

specific time. The plate is then washed to remove unbound materials, 

followed by incubation with biotinylated detection antibodies. After washing 

away the unbound biotinylated antibodies, the beads are incubated with a 

reporter streptavidin-phycoerythrin conjugate (SA-PE). Following removal of 

excess SA-PE, the beads are passed through the array reader, which measures 

the fluorescence of the bound SA-PE. 

 

Data Analysis 

Intraclass correlation coefficient was calculated for each class of samples to 

compare the variability of each group of samples (within assay, between 

assay, manufacture, intra-individual and inter-individual) as described in 

Korn 2004 (Korn et al. 2004). Briefly, using a component of variance model:  

𝑌𝑖𝑗 = 𝑔𝑖 + 𝑒𝑖𝑗 

 where 𝑌𝑖𝑗  is the log expression ratio for the i
th

 spot and j
th

 replicate, the 

intraclass correlation can be calculated as 

ICC = �̂�𝑔
2 (�̂�𝑔

2 + �̂�𝑒
2)⁄  

where �̂�𝑒
2 is the error variance component and �̂�𝑔

2 is the between-gene 

variance component.  The error variance component (�̂�𝑒
2) is estimated by 

�̂�𝑒
2 =  ∑ ∑(𝑌𝑖𝑗 − 𝑌𝑖.)

2
/[𝑛𝑔(𝑛𝑎 − 1)]

𝑛𝑎

𝑗=1

𝑛𝑔

𝑖=1

 

Where 𝑛𝑎 is the number of arrays of the class in exam, 𝑛𝑔 the number of 

genes and 𝑌𝑖. = ∑ 𝑌𝑖𝑗/𝑛𝑎
𝑛𝑎
𝑗=1 . The between-gene variance component is 

estimated by 

�̂�𝑔
2 = ∑

(𝑌𝑖. − 𝑌..)
2

(𝑛𝑔 − 1)
− �̂�𝑒

2/𝑛𝑎

𝑛𝑔

𝑖=1

 

Where 𝑌.. = ∑ ∑ 𝑌𝑖𝑗/(𝑛𝑔𝑛𝑎)
𝑛𝑎
𝑗=1

𝑛𝑔

𝑖=1
 

  

 

The index of variability was calculated as the sum of the variances evaluated 

for three factors affecting the final level of gene expression: manufacturing, 

intra-individual and inter-individual. In detail, manufacturing variance for the 

i
th

 gene ( 𝜎𝑖,𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔
2  ) was calculated as the variance of the i

th
 gene 

among 5 DC products manufactured on 5 different days starting from 

cryopreserved monocytes deriving from the same apheresis product. Intra-

individual variance for the i
th

 gene ( 𝜎𝑖,𝑖𝑛𝑡𝑟𝑎−𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
2  ) was calculated as the 
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variance of the i
th

 gene among the 5 DC products manufactured starting from 

monocytes of the same donor collected by 5 different apheresis procedures. 

Inter-individual variance for the i
th

 gene (𝜎𝑖,𝑖𝑛𝑡𝑒𝑟−𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
2   ) was calculated 

as the variance of the i
th

 gene among 9 DC products derived from 9 different 

donors. For the clinical data set, manufacturing variability was calculated as 

the average of all the manufacturing variances measured for each 

donor/apheresis product. Similarly, intra-individual variance was calculated 

as the average of all the measured intra-individual variances where average 

values were used when more than one DC product was generated starting 

from the same apheresis material. Inter-individual variance was calculated as 

the variance among the patient-averaged values. 

Considering that each gene shows a different assay-related repeatability, 

assay adjusted variances of the three factors were used by subtracting assay 

variance to the manufacturing, intra-individual and inter-individual variances. 

In conclusion, the index of variability fot the i
th

 gene was calculated as: 

𝐼𝑉𝑖 = (𝜎𝑖,𝑚𝑎𝑛𝑢𝑓𝑎𝑐𝑡𝑢𝑟𝑖𝑛𝑔
2 −  𝜎𝑖,𝑎𝑠𝑠𝑎𝑦

2 ) + (𝜎𝑖,𝑖𝑛𝑡𝑟𝑎−𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
2 − 𝜎𝑖,𝑎𝑠𝑠𝑎𝑦

2 )

+  (𝜎𝑖,𝑖𝑛𝑡𝑒𝑟−𝑖𝑛𝑑𝑖𝑣𝑖𝑑𝑢𝑎𝑙
2 − 𝜎𝑖,𝑎𝑠𝑠𝑎𝑦

2 ) 

 

 

Receiver operating characteristic (ROC) curves were generated using the R 

package “pROC” (Robin et al. 2011). The area under the curve (AUC) was 

used as a measure of the performance of a classifier and confidence intervals 

were computed with Delong’s method. Clinical responses as assessed by 

changes in slope log PSA (mathematically equivalent to an inverse calculated 

PSADT) at weeks 24 and 48 or strong immunological responses (defined as a 

TARP-specific ELISPOT count > 500) were used to classify DC. Clinical 

Response at week 24 was used for patient #203 that went off study during the 

trial.  

Unsupervised hierarchical clustering and Principal Component Analysis 

(PCA) of the whole dataset were run with Partek Genomic Suite (Partek, St. 

Louis, MO, U.S.A.). Davies-Bouldin Index was calculated with Partek to 

identify the number of clusters between 2 and 20 that better separates 

samples in subgroups. Class comparisons to identify genes differentially 

expressed between DC were performed with BRB ArrayTools with a p-value 

threshold of 0.001. In order to control false discoveries, the False Discovery 

Rate (FDR) was calculated for each analysis as the ratio of the expected 

number of false discoveries divided by the number of discoveries as 

described by Sorić  (Sorić 1989).    

 

Weighted Gene Co-expression Network Analysis (WGCNA) was performed 

using the R package “WGCNA” (Langfelder & Horvath 2008). The analysis 
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was applied only on the most variable quartile (9112 genes) as suggested by 

package instructions. To apply more stringent criteria in module definition 

we applied a modification to standard protocol. The data set was split in two 

and WGCNA was then performed in both data sets. Only genes assigned to 

the same module in both analyses were considered as forming a module and 

used in subsequent analysis.  

Gene Ontology was performed using the Database for Annotation, 

Visualization and Integrated Discovery (DAVID, 

http://david.abcc.ncifcrf.gov/) (Huang et al. 2009) and Network analysis was 

performed using QIAGEN’s Ingenuity Pathway Analysis (IPA®, QIAGEN 

Redwood City, CA, USA, www.qiagen.com/ingenuity). Clustering of genes 

was performed with Cluster (Eisen et al. 1998) and results were visualized 

with Java Treeview (Saldanha 2004). For the meta-analysis of tolerogenic 

DC, all publicly available tolerogenic DC data sets with clear sample 

information were selected from GEO and EMBL-EBI database. P-values 

were calculated with Fisher’s exact test. For the meta-analysis of different 

DC protocols, GEO dataset containing monocyte derived DC with at least 10 

samples in total and at least 3 replicates for condition were included in case 

sufficient info about experimental condition were included. 

CD14/IL10/MCP1/MDC index was calculated as follows: each DC was 

ranked according to % of CD14+ cells and concentrations levels of IL-10, 

MCP-1 and MDC measured in supernatants in decreasing order (i.e., rank 1 

to the highest expression DC). Then, taking into account that MDC levels 

negatively correlated with module 2, whereas CD14, IL-10 and MCP-1 levels 

positively correlated with module 2, the index was calculated as: MDC rank 

– (CD14 rank + IL-10 rank + MCP-1 rank). In this way, high scoring DC 

showed low expression of MDC and high expression of CD14, IL-10 and 

MCP-1. 

 


