
UNIVERSITY ROMA TRE

Faculty of Engineering
Doctoral School in Mechanical and Industrial Engineering

Doctoral thesis

Theoretical and numerical
modeling of wind instruments:

virtual lutherie and
time–domain simulations

Author
Francesco Centracchio

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Supervisor
Prof. Umberto Iemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Doctoral School Coordinator
Prof. Edoardo Bemporad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Rome, June 2015





« Regis Iussu Cantio Et Reliqua Canonica Arte Resoluta »

Johann Sebastian Bach, Musicalisches Opfer





Contents

List of Figures ix

List of Tables xxi

Abstract xxiv

Outline of the work xxv

I Ouverture 1

1 Introduction 3
1.1 A brief history of the synthesizer . . . . . . . . . . . . . . . . . . . . 3
1.2 The modern approaches to sound synthesis . . . . . . . . . . . . . . 5

1.2.1 Signals models . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2.2 Physical modeling . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 The proposed approach . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.3.1 Acoustical characterization . . . . . . . . . . . . . . . . . . . 10
1.3.2 Excitation mechanism and sound propagation . . . . . . . . . 12
1.3.3 Exploration of the brass physical model . . . . . . . . . . . . 13

II Modeling the instrument in action 17

2 Acoustical characterization of resonators and surroundings 19
2.1 On the timbrical characteristics . . . . . . . . . . . . . . . . . . . . . 19
2.2 Modeling the acoustic response of the pipe . . . . . . . . . . . . . . . 21

2.2.1 Numerical solution . . . . . . . . . . . . . . . . . . . . . . . . 23

v



CONTENTS

2.2.2 Validation of the methodology . . . . . . . . . . . . . . . . . 25
2.3 On the sound propagation . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3.1 Embouchure–to–Microphone transfer function . . . . . . . . . 35
2.3.2 Embouchure–to–Listener transfer function . . . . . . . . . . . 39

3 Interaction with the player and sound propagation 43
3.1 The interaction with the player . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 The reflection function . . . . . . . . . . . . . . . . . . . . . . 45
3.2 The inflow sustentation . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Woodwinds . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.2 Brasses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.3 The radiation of the signal . . . . . . . . . . . . . . . . . . . . . . . . 61

III Time–domain simulations of brasses 67

4 From the geometric model to the auralized sounds 69
4.1 The natural Eb trumpet . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.1.1 The geometric model . . . . . . . . . . . . . . . . . . . . . . . 70
4.1.2 Acoustical characterization . . . . . . . . . . . . . . . . . . . 72

4.2 The system solution . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
4.2.1 Signals inside the embouchure . . . . . . . . . . . . . . . . . . 83
4.2.2 Pressure at the microphone location . . . . . . . . . . . . . . 85
4.2.3 The auralization . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.3 Towards the real–time simulations . . . . . . . . . . . . . . . . . . . 88
4.3.1 Block diagram representation . . . . . . . . . . . . . . . . . . 88
4.3.2 System realization . . . . . . . . . . . . . . . . . . . . . . . . 92

5 Exploration of the physical model parameters 95
5.1 Sculpting the variables space . . . . . . . . . . . . . . . . . . . . . . 95

5.1.1 Initial premises . . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.1.2 Employed methodologies . . . . . . . . . . . . . . . . . . . . . 98

5.2 On the note detection . . . . . . . . . . . . . . . . . . . . . . . . . . 102
5.3 Sounds and self–sustained oscillations . . . . . . . . . . . . . . . . . 107

5.3.1 Phases–plane analysis . . . . . . . . . . . . . . . . . . . . . . 108
5.4 The physics of the case study . . . . . . . . . . . . . . . . . . . . . . 117

5.4.1 Blowing pressure . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.4.2 The lip behaviour . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4.3 The pressure efficiency . . . . . . . . . . . . . . . . . . . . . . 127

5.5 Musical properties of the solution . . . . . . . . . . . . . . . . . . . . 130
5.5.1 Attack–time estimation . . . . . . . . . . . . . . . . . . . . . 130
5.5.2 Pitch quality factor . . . . . . . . . . . . . . . . . . . . . . . . 133

5.6 The performance space . . . . . . . . . . . . . . . . . . . . . . . . . . 136

vi



CONTENTS

6 The sound as an optimization problem 141
6.1 Generalities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
6.2 Single–objective optimization . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 Seeking a note: the G4 . . . . . . . . . . . . . . . . . . . . . . 142
6.3 Multi–objective optimization . . . . . . . . . . . . . . . . . . . . . . 147

6.3.1 Seeking the note: the C#5 . . . . . . . . . . . . . . . . . . . . 148

IV Finale 155

7 Conclusions and future works 157
7.1 Completed tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.2 Future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

V Appendices 161

A Kirchhoff-Helmholtz Integral Equation 163

B Boundary Element Method for acoustic problems 167

C Optimization problems 173

Bibliography 177

vii





List of Figures

1.1 Sketch of the Wolfgang von Kempelen’s speaking machine [64]. . . . 4
1.2 The signal models and the source models as branches of the sound

synthesis. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Acoustical characterization of the field inside and outside the res-

onator with the purpose of evaluate the radiated sound. . . . . . . . 10
1.4 Simultaneous characterization of the acoustical characteristics of res-

onators and surroundings in the frequency–domain. . . . . . . . . . . 11
1.5 Solution of the acousto–elastic coupling between the exciter and the

resonator and sound propagation in the time–domain. . . . . . . . . 12

2.1 Representation of the acoustic field inside and outside the pipe [44]. . 22
2.2 CHIEF regularization of the acoustic pressure on the boundary of a

rigid sphere of radius r = 8.75 cm located at distance d = 3 m from
the outlet section of a Bessel horn. . . . . . . . . . . . . . . . . . . . 24

2.3 Acoustical impedance load per unit area, divided by ρc as a function
of kR for a vibrating piston of radius R set in the end of an infinite
pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.4 Geometry of the end of a cylindrical resonator. . . . . . . . . . . . . 27
2.5 Convergence of the first resonant frequency of a uniform pipe, f t0 =

100 Hz and fw0 = 99.57 Hz, as a function of the number of panels per
wavelength at the analytical (Webster) frequency. . . . . . . . . . . . 28

2.6 Convergence of the second resonant frequency of a uniform pipe, f t1 =
300 Hz and fw1 = 298.95 Hz, as a function of the number of panels
per wavelength at the analytical (Webster) frequency. . . . . . . . . . 28

2.7 Convergence of the third resonant frequency of a uniform pipe, f t2 =
500 Hz and fw2 = 497.83 Hz, as a function of the number of panels
per wavelength at the analytical (Webster) frequency. . . . . . . . . . 29

ix



LIST OF FIGURES

2.8 Unflanged uniform pipe: analytical (Webster) vs. numerical (BEM)
input impedance spectrum divided by ρc/Sin. . . . . . . . . . . . . . 29

2.9 Convergence of the first resonant frequency of a conical horn, fw0 =
229.13 Hz, as a function of the number of panels per wavelength at
the analytical (Webster) frequency. . . . . . . . . . . . . . . . . . . . 30

2.10 Convergence of the second resonant frequency of a conical horn, fw1 =
487.17 Hz, as a function of the number of panels per wavelength at
the analytical (Webster) frequency. . . . . . . . . . . . . . . . . . . . 30

2.11 Convergence of the third resonant frequency of a conical horn, fw2 =
764.04 Hz, as a function of the number of panels per wavelength at
the analytical (Webster) frequency. . . . . . . . . . . . . . . . . . . . 31

2.12 Conical horn: analytical (Webster) vs. numerical (BEM) input impedance
spectrum divided by ρc/Sin. . . . . . . . . . . . . . . . . . . . . . . . 31

2.13 Convergence of BEM solution for the first resonant frequency of an
exponential horn, fw0 = 259.28 Hz. . . . . . . . . . . . . . . . . . . . 32

2.14 Convergence of BEM solution for the second resonant frequency of
an exponential horn, fw1 = 437.61 Hz. . . . . . . . . . . . . . . . . . 32

2.15 Convergence of BEM solution for the third resonant frequency of an
exponential horn, fw2 = 655.94 Hz. . . . . . . . . . . . . . . . . . . . 33

2.16 Exponential horn: analytical (Webster) vs. numerical (BEM) input
impedance spectrum divided by ρc/Sin. . . . . . . . . . . . . . . . . 33

2.17 Uniform pipe connected to a conical horn: analytical (Webster) vs.
numerical (BEM) input impedance spectrum divided by ρc/Sin. . . . 34

2.18 Geometric model of the Bessel horn with a bottleneck close to the
inlet section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.19 Input impedance spectrum divided by ρc/Sin of the Bessel horn with
a bottleneck close to the inlet section. . . . . . . . . . . . . . . . . . 36

2.20 Resonances directivity patterns of the Bessel horn with a bottleneck
close to the inlet section, evaluated on an half–circle of virtual mi-
crophones located at a distance r = 2 m from the outlet section. . . . 37

2.21 Antiresonances directivity patterns of the Bessel horn with a bottle-
neck close to the inlet section, evaluated on an half–circle of virtual
microphones located at a distance r = 2 m from the outlet section of
the resonator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.22 Comparison between the Embouchure–to–Microphone transfer func-
tion divided by 1/Sin related to the lateral virtual microphone and
the longitudinal virtual microphone, both at distance r = 2 m from
the outlet section of the resonator. . . . . . . . . . . . . . . . . . . . 38

2.23 Bode plot of the Embouchure–to–Microphone transfer function di-
vided by 1/Sin related to a virtual microphone located at distance
r = 2 m from the outlet section of the resonator, with an offset
α = 30◦ with respect to its longitudinal axis. . . . . . . . . . . . . . . 39

x



LIST OF FIGURES

2.24 Embouchure–to–Listener transfer function divided by 1/Sin related
to a simple model of head located on the instrument axis at distance
d = 3 m with respect to the outlet section of the Bessel horn with a
bottleneck close to the inlet section, being the ears at two antipodal
locations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Time–domain acousto–elastic feedback for resonant aerophones. . . . 44
3.2 Input impedance spectrum divided by ρc/Sin for a uniform pipe of

radius R = 2.5 cm and length L = 40.0 cm. Superposition of the
analytical (Webster) and numerical (BEM) solution. . . . . . . . . . 46

3.3 Impulse response for a uniform pipe of radius R = 2.5 cm and length
L = 40.0 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.4 Reflection function of a uniform pipe of radius R = 2.5 cm and length
L = 40.0 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 Superposition of the normalized impulse response and the normalized
reflection function of a uniform pipe of radius R = 2.5 cm and length
L = 40.0 cm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.6 Modeling of the single reed as a simple harmonic oscillator. . . . . . 50
3.7 A typical nonlinear characteristic of the single–reed: inflow as a func-

tion of the pressure jump accross the reed. . . . . . . . . . . . . . . . 52
3.8 Geometric model of the soprano saxophone. . . . . . . . . . . . . . . 53
3.9 Input impedance spectrum of the soprano saxophone. . . . . . . . . . 53
3.10 Reflection function of the soprano saxophone. . . . . . . . . . . . . . 54
3.11 Soprano saxophone: reed displacement, inflow and pressure signal

inside the embouchure during the performance of the Bb3. . . . . . . 54
3.12 A typical nonlinear characteristic of the double–reed: inflow as a

function of the pressure jump across the reed. . . . . . . . . . . . . . 55
3.13 Modeling of the mechanism of sound production in flute–like instru-

ments [80]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.14 Paintings of trumpet–like instruments in the egyptian figurative art. 57
3.15 Modeling of the lip as a simple harmonic oscillator. . . . . . . . . . . 58
3.16 Geometric model of the Bb piston trumpet related to the first position. 59
3.17 Input impedance spectrum of a Bb piston trumpet. . . . . . . . . . . 59
3.18 Reflection function of a Bb piston trumpet. . . . . . . . . . . . . . . 60
3.19 Bb piston trumpet: lips displacement, inflow and pressure signal in-

side the embouchure during the execution of the F4. . . . . . . . . . 60
3.20 Translated triangle wave, used as prescribed inflow uin(t) at the inlet

surface of the resonator. . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.21 Microphone response related to a virtual microphone located at dis-

tance r = 2 m from the outlet section of the resonator, with an offset
α = 30◦ with respect to its longitudinal axis. . . . . . . . . . . . . . . 63

xi



LIST OF FIGURES

3.22 Pressure signal at the virtual microphone located at distance r = 2 m
from the outlet section of the resonator, with an offset α = 30◦ with
respect to its longitudinal axis, evaluated using a prescribed triangle
wave as the inflow uin(t) at the inlet surface of the resonator. . . . . 63

3.23 Pressure spectrum at the virtual microphone located at distance r =
2 m from the outlet section of the resonator, with an offset α = 30◦

with respect to its longitudinal axis, evaluated using a prescribed
triangle wave as the inflow uin(t) at the inlet surface of the resonator. 64

3.24 Response at the listener’s ears, related to a simple model of head
located on the instrument axis at distance d = 3 m with respect to
the outlet section of the resonator. . . . . . . . . . . . . . . . . . . . 64

3.25 Pressure signal at the listener location, related to a simple model of
head located on the instrument axis at distance d = 3 m with respect
to the outlet section of the resonator. . . . . . . . . . . . . . . . . . . 65

3.26 Pressure spectrum at the listener location, related to a simple model
of head located on the instrument axis at distance d = 3 m with
respect to the outlet section of the resonator. . . . . . . . . . . . . . 65

4.1 First page of the manuscript of the second version (in D major) of the
Magnificat BWV 243: the first version BWV 243a was in Eb major.
On the top lines of the score, the parts of the three trumpets. . . . . 70

4.2 Geometric model of the mouthpiece of the Eb natural trumpet. . . . 71
4.3 Geometric model of the bell of the Eb natural trumpet. . . . . . . . 71
4.4 Jan Vermeer (Delft, 1632 – Delft, December 1675), The Allegory of

Painting (detail: girl holding a trumpet, the symbol of the glory),
1665-1668, oil on canvas, 130x110 cm, Kunsthistorisches Museum,
Vienna. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.5 Components of the complex input impedance spectrum of the Eb
natural trumpet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 Module of the input impedance spectrum of the Eb natural trumpet. 73
4.7 Impulse response of the Eb natural trumpet. . . . . . . . . . . . . . . 75
4.8 Components of the reflection coefficient of the Eb natural trumpet. . 76
4.9 Module of the reflection coefficient of the Eb natural trumpet. . . . . 76
4.10 Reflection function of the Eb natural trumpet. . . . . . . . . . . . . . 77
4.11 Resonances directivity patterns of the Eb natural trumpet, evaluated

on an half–circle of virtual microphones located at a distance r = 2 m
from the outlet section. . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.12 Antiresonances directivity patterns of the Eb natural trumpet, eval-
uated on an half–circle of virtual microphones located at a distance
r = 2 m from the outlet section. . . . . . . . . . . . . . . . . . . . . . 78

4.13 Input impedance spectrum divided by ρc/Sin related to the mouth-
piece of the Eb natural trumpet. . . . . . . . . . . . . . . . . . . . . 78

xii



LIST OF FIGURES

4.14 Position of the virtual microphone located at a distance r = 2 m
from the outlet section of the trumpet, with an offset α = 30◦ with
respect to the longitudinal axis of the Eb natural trumpet. . . . . . . 79

4.15 Magnitude of the Embouchure-to-Microphone transfer function di-
vided by 1/Sin related to a virtual microphone located at a distance
r = 2 m from the outlet section of the trumpet, with an offset α = 30◦

with respect to the longitudinal axis of the Eb natural trumpet. . . . 79
4.16 Bode diagram of the Embouchure-to-Microphone transfer function

divided by 1/Sin related to a virtual microphone located at a distance
r = 2.0 m from the outlet section of the trumpet, with an offset
α = 30◦ with respect to the longitudinal axis of the Eb natural trumpet. 80

4.17 Microphone response related to a virtual microphone located at a
distance r = 2.0 m from the outlet section of the trumpet, with an
offset α = 30◦ with respect to the longitudinal axis of the Eb natural
trumpet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.18 Position of the head with respect to the outlet section of the Eb
natural trumpet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.19 Magnitude of the Embouchure-to-Listener transfer function divided
by 1/Sin for the Eb natural trumpet related to a simplified model of
head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

4.20 Bode diagram of the Embouchure-to-Listener transfer function di-
vided by 1/Sin for the Eb natural trumpet related to a simplified
model of head. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.21 Response at the listener’s ears, related to a simple model of head
located on the instrument axis at distance d = 3 m with respect to
the outlet section of the Eb natural trumpet. . . . . . . . . . . . . . 82

4.22 Bode diagram for the one degree of freedom model of the valve during
the performance of the G4 with the Eb natural trumpet. . . . . . . . 83

4.23 Normalized impulse response of the one degree of freedom model
of the valve during the performance of the G4 with the Eb natural
trumpet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.24 Lip displacement, inflow and pressure signal inside the embouchure
during the performance of the G4, 395.6 Hz pitched, with the Eb
natural trumpet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.25 Phase–trajectory related to the performance of the G4, 395.6 Hz
pitched, with the Eb natural trumpet. . . . . . . . . . . . . . . . . . 85

4.26 Pressure signal at microphone location during the performance of the
G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . . . . 86

4.27 Pressure spectrum at microphone location related to the performance
of the G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . . 86

4.28 Comparison between recorded waveform (sampling frequency Fs =
44100 Hz) and simulated waveform at the microphone location. . . . 87

xiii



LIST OF FIGURES

4.29 Pressure signal at the ears of the listener during the performance of
the G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . . 87

4.30 Pressure spectrum at the ears of the listener during the performance
of the G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . . 88

4.31 Block diagram for the valve motion ξ(t), related to the physical model
of a brass instrument. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.32 Block diagram for the opening area S(t), related to the physical model
of a brass instrument. . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.33 Block diagram for the inflow uin(t), related to the physical model of
a brass instrument. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

4.34 Block diagram for the pressure signal p(t) at the inlet section of the
instrument and for the sound radiation (pm(t) and pl(t)), related to
the physical model of a brass instrument. . . . . . . . . . . . . . . . 91

4.35 Block diagram for the physical model of a brass instrument with the
sound propagation and auralization. . . . . . . . . . . . . . . . . . . 91

4.36 Eigenvalues of the matrix A (see Eq. 4.11) related to the realization
of the input impedance Zin of the natural Eb trumpet. . . . . . . . . 93

5.1 Identification of the performance sounds as superposition of sub-
spaces in the global space of the solutions: sustained solutions, feasi-
ble solutions and musical solutions with the condition that the signal
periodicity falls within the hearing–range. . . . . . . . . . . . . . . . 97

5.2 Variables spaceXhr of the the natural Eb trumpet (obtained with the
condition that the pressure signals must fall into the hearing–range),
with the blowing pressure as parameter. . . . . . . . . . . . . . . . . 101

5.3 Current pitch and mean pitch detected with the time–domain algo-
rithm: mean pitch detected 747.13 Hz for a simulation of 0.5 seconds. 104

5.4 Current pitch and mean pitch detected with the time–domain algo-
rithm: mean pitch detected 750.72 Hz for a simulation of 2.0 seconds. 104

5.5 Variables spaceXhr of the the natural Eb trumpet (obtained with the
condition that the pressure signals must fall into the hearing–range),
with the sound pitch as parameter. . . . . . . . . . . . . . . . . . . . 105

5.6 The piano keyboard. . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
5.7 Fundamental frequency as a function of the lip resonance frequency

with the mass ratio as parameter, related to the variables space Xhr

of the natural Eb trumpet obtained by imposing the fundamental
frequency within the hearing–range. . . . . . . . . . . . . . . . . . . 107

5.8 Phase–trajectory with converging spiral motion. . . . . . . . . . . . . 109
5.9 Phase–trajectory with converging–translating spiral motion. . . . . . 109
5.10 Phase–trajectory with diverging–translating spiral motion. . . . . . . 110
5.11 Phase–trajectory related to a self–oscillating dynamical system. . . . 110
5.12 Phase–trajectory as function of the time related to a self–oscillating

dynamical system during the transient. . . . . . . . . . . . . . . . . . 111

xiv



LIST OF FIGURES

5.13 Time–history of the spiral areas Aφk divided by the initial area Aφ0 ,
related to a time window within which the signal grow up. . . . . . . 113

5.14 Time–history of the spiral areas Aφk divided by Aφ0 and standard
deviation function σφn, related to a signal that reaches the steady–state.114

5.15 Time–history of the spiral areas Aφk divided by Aφ0 and standard
deviation function σφn, related to a signal that does not reach the
steady–state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

5.16 Variables space Xσ (sustained solutions within the hearing–range) of
the natural Eb trumpet with the blowing pressure as parameter. . . 116

5.17 Variables space Xσ (sustained solutions within the hearing–range) of
the natural Eb trumpet with the sound pitch as parameter. . . . . . 116

5.18 Sound pitch as a function of the lip resonance frequency with the
mass ratio as parameter, related to the variables space XS (sustained
solutions within the hearing–range) of the natural Eb trumpet. . . . 117

5.19 Measured sound pressure level as a function of blowing pressure for
different notes played by two different musician [33]. . . . . . . . . . 118

5.20 Pressure signal at the intake section of the natural Eb trumpet, ob-
tained with a blowing pressure Pm = 1 MPa. . . . . . . . . . . . . . 119

5.21 Variables space Xσ of the natural Eb trumpet with the blowing pres-
sure as parameter, obtained bounding the values of the blowing pres-
sure (1kPa ≤ Pm ≤ 20kPa). . . . . . . . . . . . . . . . . . . . . . . . 119

5.22 Variables spaceXσ of the natural Eb trumpet with the sound pitch as
parameter, obtained with the single value of blowing pressure Pm =
9 kPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

5.23 Adimensional damping factor as a function of the sound pitch with
the mass ratio as a parameter, related to the variables space Xσ of
the natural Eb trumpet, obtained with the single value of blowing
pressure Pm = 9 kPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

5.24 Oscillations ξ(t) and lip displacement y(t) related to a self–sustained
solution without the constraint of the maximum displacement. . . . . 122

5.25 Maximum lip displacement as a function of the sound pitch with
the mass ratio as a parameter, related to the variables space Xσ

(sustained solutions within the hearing–range) of the natural Eb, with
Pm = 9 kPa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5.26 Variables space Xσ of the natural Eb, with Pm = 9 kPa, obtained
constraining the maximum lip displacement, with the maximum lip
displacement as parameter. . . . . . . . . . . . . . . . . . . . . . . . 123

5.27 Series of images from a digital high–speed film visualizing the lip
separation during the performance of a note with a brass instrument
[15]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

5.28 Oscillations ξ(t) and lip displacement y(t) related to a high–pitched
non–buzzing solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 124

xv



LIST OF FIGURES

5.29 Oscillations ξ(t) and lip displacement y(t) related to a low–pitched
non–buzzing solution. . . . . . . . . . . . . . . . . . . . . . . . . . . 125

5.30 Phases–trajectory related to a non–buzzing solution. . . . . . . . . . 125
5.31 Non–buzzing solutions in the variables space Xσ of the natural Eb

trumpet, with Pm = 9 kPa and constraint on the maximum lip dis-
placement, with the buzzing coefficient βy as parameter. . . . . . . . 126

5.32 Buzzing solutions in the variables space Xσ of the natural Eb trum-
pet, with Pm = 9 kPa and constraint on the maximum lip displace-
ment, with the sound pitch as parameter. . . . . . . . . . . . . . . . 127

5.33 Variables space Xσ of the natural Eb trumpet, with Pm = 9 kPa
and constraint on the lip behaviour (maximum displacement and
buzzing), with the pressure efficiency ηP as parameter. . . . . . . . . 128

5.34 Pressure efficiency ηP as a function of the maximum lip displacement
with the sound pitch as parameter, related to the variables space Xσ

of the natural Eb trumpet, with Pm = 9 kPa and constraint on the
lip behaviour (maximum displacement and buzzing). . . . . . . . . . 128

5.35 Pressure efficiency ηP as a function of the sound pitch with the mass
ratio as parameter, related to variables space Xσ of the natural Eb
trumpet, with Pm = 9 kPa and constraint on the lip behaviour (max-
imum displacement and buzzing). . . . . . . . . . . . . . . . . . . . . 129

5.36 Variables space Xσφ of the natural Eb trumpet with Pm = 9 kPa
(sustained solution within the hearing–range with all the physical
constrains), with the sound pitch as parameter. . . . . . . . . . . . . 129

5.37 Time–history of the spiral areas Aφk divided by the initial area Aφ0 ,
standard deviation function σφn and sigmoid approximation, related
to a self–sustained signal. . . . . . . . . . . . . . . . . . . . . . . . . 131

5.38 Variables space Xσφ of the natural Eb trumpet with Pm = 9 kPa,
with the attack–time τφ as parameter. . . . . . . . . . . . . . . . . . 132

5.39 Attack time as a function of the sound pitch, with the adimensional
damping factor as parameter, related to the variables space Xσφ of
the natural Eb trumpet with Pm = 9 kPa. . . . . . . . . . . . . . . . 132

5.40 Variables space Xσφ of the natural Eb trumpet with Pm = 9 kPa,
constrained with a maximum and minimum attack–time 25 ms ≤
τφ ≤ 250 ms, with the sound pitch as parameter. . . . . . . . . . . . 133

5.41 Pitch fluctuation related to the Eb5 performed with the natural Eb. . 134
5.42 Pitch fluctuation falling outside the prescribed tolerance of a quarter–

tone, related to a note performed by the natural Eb trumpet. . . . . 135
5.43 Phase–trajectory of a sound whose pitch fluctuation fall outside the

prescribed tolerance of a quarter–tone, related to a note performed
by the natural Eb trumpet. . . . . . . . . . . . . . . . . . . . . . . . 135

5.44 Performance space Xπ =
[
Phr ∩ (PS ∩PF )

]
∩PM of the natural Eb

trumpet. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

xvi



LIST OF FIGURES

5.45 Performance space of the natural Eb trumpet: massic viscosity as a
function of the mass ratio with the lip resonance frequency as param-
eter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

5.46 Performance space of the natural Eb trumpet: lip resonance fre-
quency as a function of the mass ratio with the massic viscosity as
parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

5.47 Performance space of the natural Eb trumpet: lip resonance fre-
quency as a function of the massic viscosity with the mass ratio as
parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

6.1 Convergence of the genetic algorithm for the single–objective opti-
mization problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.2 Progress of the design variables as a function of the index of genera-
tion for the single–objective optimization problem. . . . . . . . . . . 143

6.3 Optimal solution of a multi–objective optimization problem: lip dis-
placement, inflow and pressure signal inside the embouchure related
to the performance of the a G4 with the Eb natural trumpet. . . . . 144

6.4 Optimal solution of the single–objective optimization problem: cur-
rent pitch, mean pitch and tolerance related to the performance of
the a G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . 145

6.5 Optimal solution of the single–objective optimization problem: pres-
sure signal at the virtual microphone located at distance r = 2 m
with respect to the outlet section of the instrument, with an offset
α = 30◦ with respect to its longitudinal axis, during the performance
of the a G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . 145

6.6 Optimal solution of the single–objective optimization problem: pres-
sure spectrum at the virtual microphone located at distance r = 2 m
with respect to the outlet section of the instrument, with an offset
α = 30◦ with respect to its longitudinal axis, during the performance
of the a G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . 146

6.7 Optimal solution of the single–objective optimization problem: pres-
sure signal at the ears of the listener related to a simple model of head
located on the instrument axis at distance d = 3 m with respect to
the outlet section of the resonator, during the performance of the a
G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . . . . 146

6.8 Optimal solution of the single–objective optimization problem: pres-
sure spectrum at the ears of the listener related to a simple model of
head located on the instrument axis at distance d = 3 m with respect
to the outlet section of the resonator, during the performance of the
a G4 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . . . 147

6.9 Convergence of the genetic algorithm for the multi–objective opti-
mization problem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

xvii



LIST OF FIGURES

6.10 Progress of the design variables as a function of the index of genera-
tion for the multi–objective optimization problem. . . . . . . . . . . 149

6.11 Optimal solution of a multi–objective optimization problem: lip dis-
placement, inflow and pressure signal inside the embouchure related
to the performance of the a C#5 with the Eb natural trumpet. . . . 150

6.12 Optimal solution of a multi–objective optimization problem: current
pitch, mean pitch and tolerance related to the performance of the a
C#5 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . . . 150

6.13 Optimal solution of the multi–objective optimization problem: pres-
sure signal at the virtual microphone located at distance r = 2 m
with respect to the outlet section of the instrument, with an offset
α = 30◦ with respect to its longitudinal axis, during the performance
of the a C#5 with the Eb natural trumpet. . . . . . . . . . . . . . . 151

6.14 Optimal solution of the multi–objective optimization problem: pres-
sure spectrum at the virtual microphone located at distance r = 2 m
with respect to the outlet section of the instrument, with an offset
α = 30◦ with respect to its longitudinal axis, during the performance
of the a C#5 with the Eb natural trumpet. . . . . . . . . . . . . . . 151

6.15 Optimal solution of the multi–objective optimization problem: pres-
sure signal at the ears of the listener related to a simple model of head
located on the instrument axis at distance d = 3 m with respect to
the outlet section of the resonator, during the performance of the a
C#5 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . . . 152

6.16 Optimal solution of the multi–objective optimization problem: pres-
sure spectrum at the ears of the listener related to a simple model of
head located on the instrument axis at distance d = 3 m with respect
to the outlet section of the resonator, during the performance of the
a C#5 with the Eb natural trumpet. . . . . . . . . . . . . . . . . . . 152

xviii



xix





List of Tables

2.1 Comparison between theoretical (1D), analytical (Webster) and nu-
merical (BEM) solution for the first three resonant frequencies of a
uniform pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 Comparison between analytical (Webster) and numerical (BEM) so-
lution for the first three resonant frequencies of a conical horn. . . . 30

2.3 Comparison between analytical (Webster) and numerical (BEM) so-
lution for the first three resonant frequencies of an exponential horn. 32

2.4 First resonances of the Bessel horn with a bottleneck close to the
inlet section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.5 First antiresonances of the Bessel horn with a bottleneck close to the
inlet section. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.1 Resonances of the natural trumpet in Eb, with deviation from the
theoretical frequencies related to the Eb harmonic series in equal
temperament tuned at 440 Hz. . . . . . . . . . . . . . . . . . . . . . 74

4.2 Antiresonances of the natural trumpet in Eb, with deviation from the
theoretical frequencies related to the nearest note in equal tempera-
ment tuned at 440 Hz. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.1 The C major scale obtained from the pytagorean tuning. . . . . . . . 105
5.2 Typical ranges of attack–times of the trombone and the modern trum-

pet related to the dynamics pianissimo and fortissimo. . . . . . . . . 133
5.3 Summary of the criteria used for the recognition of the performance

sounds. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.1 Optimal solution of the single–objective optimization. . . . . . . . . 144
6.2 Summary of the characteristics of the solution related to the optimal

point of the single–objective optimization. . . . . . . . . . . . . . . . 144

xxi



LIST OF TABLES

6.3 Optimal solution of the multi–objective optimization. . . . . . . . . . 149
6.4 Summary of the characteristics of the solution related to the optimal

point of the multi–objective optimization. . . . . . . . . . . . . . . . 149

xxii



xxiii





Abstract

The present research work deals with the synthesis of the sound produced by a
wind instrument through the direct physical modeling. Specifically the purpose
is the development theoretical physical models and numerical solution procedures
aimed at the time–domain simulations.

The attention is mainly focused on two fundamental topics: the identification
of the acoustic response of the resonator as well as the environment in which the
performance takes place, and the characterization of the interaction between the
resonator and the musician, with particular emphasis to the connection between
the mathematical parameters governing the physics of the phenomenon and the
properties of the resulting sound.

The acoustical characterization of the resonators and the surroundings is ad-
dressed with a prime–principles based approach. The simulation of the acoustic
field produced by the instruments alone and in a realistic performing environment
is achieved using an integral representation in the frequency–domain. A particular
attention is paid to the identification of the transfer functions aimed at the auralized
signal propagation.

A simplified model of valve is used to represent the exciter behaviour. The
attention has been especially focused on the analysis of a brass instrument during
the performance, since the link between the acousto–elastic coupled system and the
performed note is crucial.

The transfer functions have been analytically approximated as rational functions
in the frequency–domain in order to obtain a block diagram representation of the dy-
namical system suitable for real–time application. The algorithm has demonstrated
to be accurate and efficient in offline calculation, and the observed performance
discloses the possibility to implement real–time applications compatible with the
consumer devices currently available on the market.
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Outline of the work

Part I - Ouverture

• Chapter 1: Introduction In the first chapter a brief history of the sound
synthesis is outlined, with the purpose of introduce the modern techniques
adopted in the musical sound synthesis. Is thus presented the approach de-
veloped within this work, with emphasis to the main differences with respect
to the commonly used sound synthesis techniques.

Part II - Modeling the instrument in action

• Chapter 2: Acoustical characterization of resonators and surround-
ings The second chapter deals with the description of the virtual lutherie,
namely the methodologies used to evaluate the acoustic response of the res-
onators and derive the propagation transfer functions aimed at the signals
propagation. Such a characterization is carried out in the frequency–domain.

• Chapter 3: Interaction with the player and sound propagation In the
third chapter are discussed the methodologies used to model the interaction
between the resonator and the exciter in the time–domain, as well as the
techniques exploited in order to achieve the time–varying pressure signals
radiated by the instruments.

Part III - Time–domain simulations of brasses

• Chapter 4: From the geometric model to the auralized sounds The
complete time–domain simulation of a natural brass instruments is presented
in the fourth chapter, starting from the identification of the characteristics
of the resonator up to the auralization of the pressure signal. The attempt
to exploit the developed methodologies in real–time applications will be also

xxvii



outlined, identifying a suitable block diagram representation of the involved
acousto–elastic system, and proposing a strategy for the system realization.

• Chapter 5: Exploration of the physical model parameters The fifth
chapter concerns the characterization of the pressure signals at the inlet section
of the brasses during the performance. This part of the work leads to the
recognition of the “playability” conditions of the physical model.

• Chapter 6: The sounds as an optimization problem In the sixth chap-
ter will be defined an optimization problem with the purpose to identify the
physical model parameters aimed at the generation of sounds complying pre-
scribed characteristics.

Part IV - Finale

• Chapter 7: Conclusions and future works In the last chapter will be sum-
marized the achievements of this work, outlining the possible developments in
the future research works.

Part V - Appendices

• Appendix A: Kirchhoff-Helmholtz Integral Equation The integral rep-
resentation of the wave equation is derived for small acoustic perturbations
through a homogeneous, inviscid, non–heat conducting and compressible fluid.

• Appendix B: Boundary Element Method for acoustic problems A
description of the BEM for acoustic problems is outlined: is derived the source
and doublet integrals computation related to the zeroth–order formulation.

• Appendix C: Optimization problems Is presented a brief introduction to
the problems of constrained and unconstrained optimization.

xxviii



xxix





Part I

Ouverture

1





CHAPTER 1

Introduction

In this chapter a brief history of the sound synthesis will be outlined, starting from
the origins, with the purpose of introduce the modern techniques adopted in the
musical sound synthesis. Such historical background has the aim of introduce the
approach developed within this work, emphasizing the main differences with respect
to the commonly used sound synthesis strategies.

1.1 A brief history of the synthesizer

The connection between the mathematics and the music was known since the 6th
century BC. In those times Pythagoras developed a system of tuning starting from
the analysis of a monochord, i.e. from the physics of the vibrating string: this tuning
system is based on the hypothesis that the ratio of the frequencies belonging the
musical scale is given by simple rational numbers. Such a link was so deeply rooted
that it is interesting to recall that in the Middle Ages the music science, particularly
the harmonic theory, was connected with the arithmetic, the geometry and the
astronomy in the teaching of the liberal arts: these disciplines constituted the so–
called quadrivium which, with the trivium, i.e. grammar, rhetoric and dialectic,
represented the seven fundamental disciplines.

Through the ages, and especially with the advent of the modern era, the de-
velopment of the science and the technology led to the need to put into practice
the theoretical basis of the musical physics. The most natural consequence was
the birth of that branch today called sound synthesis. In the thinking about the
musical synthesis the mind, for the most, is addressed to some of the prestigious
inventions of the 20th century, such as the Hammond organ or the Moog synthesizer.
Actually very few know that the first attempts to create a synthesizer dates back
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to the 18th century, when the Austro–Hungarian inventor Wolfgang von Kempelen
designed the speaking machine, one of the most important description of the voice
production [79, 64, 14, 13].

Figure 1.1: Sketch of the Wolfgang von Kempelen’s speaking machine [64].

The first design of the machine is dated 1769, and is based on a reed pipe, with
the aim of simulate the vocal folds, connected with a short rubber horn represent-
ing the human mouth. In this configuration the machine produces the vowel “a”,
whereas the other vowels can be approximated by the manual partial closure of the
horn with the palm of the hand. Some consonants have to be made through the full
closure of the mouth with the hand of the player [13].

From then on have been many precursors of the modern–day analog synthesiz-
ers, some of which designed by prominent personalities of the science, as Hermann
von Helmholtz, who began the first significant studies concerning the perception
of the sounds1 about a hundred years the speaking machine, and was among the
first people to use the electricity with musical purpose, building several electro–

1It should be recalled that in the introduction of his “On the sensation of tone as physiological
basis for the theory of music” [41], Helmholtz declares its intention to link the boundaries of the
physical and physiological acoustics on the one side and the musical science and esthetics on the
other side.
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mechanical oscillators. Shortly afterwards, at the beginning of the 20th century,
Thaddeus Cahill presented the Telharmonium, developed starting from the 1897: a
colossal electro–mechanical musical instrument (the second and the third versions
weighed about 200 tons) using tone–wheels for the sound production.

Between the First and the Second World War began the first experiments on the
design of innovative musical instruments, as the Theremin developed in 1919 and
patented in 1928 by the Russian physician and inventor Léon Theremin (was the
first musical instrument in history that does not involve the direct contact with the
musician) and hybrid/augmented musical instruments, such as the Neo–Bechstein
electric grand piano [54] invented in 1929 (which can be considered as the precursor
of the electric piano). The analog keyboard synthesizers hold the stage, and the
American engineer Laurens Hammond in 1935 introduced the first model of the
organ (the Model A) still associated with his name. The mechanism of the sound
production is completely electromagnetic and is based on the additive synthesis2

exploiting several rotating contoured tone–wheels.3 It is worth noting that the
success of the Hammond organ is also attributable to its compact size and the low
weight compared with the pipe organs. Indeed the compactness of the instruments
was a matter to be reckoned with: in those times the electronic components were
bulky and frangible, and this issue was solved with the coming of the transistors.

In fact, in the early ’50s the transistors became available on the market and
the technology of the analog sound synthesis has been revolutionized: the voltage–
controlled technique allows to set the output characteristics of an oscillator simply
by varying the input voltage. An excellent example of the exploitation of these po-
tentialities is the Melochord, made by the German engineer Harald Bode. The same
technology has been used by the American engineer Robert Moog who designed,
starting from 1964, a complex system of synthesizers based on voltage-controlled
oscillators and amplifiers. The technological revolution represented by the compo-
nents miniaturization has made possible the reducing of the size of the synthesizers,
making them compact and easy–to–use.

Is clear how the need of the “imitation” of the sounds produced by existing
musical instruments was developed in parallel to the need of the “exploration” of new
sound visions. Such two points of view, apparently unrelated but often converging,
found several benefit from the coming of the digital era.

1.2 The modern approaches to sound synthesis

Simultaneously with the birth of electronic music have been outlined the different
strategies for the musical sounds synthesis. Such techniques can be differentiated
according to their ultimate purpose: on one hand there are the so–called signal
models, on the other hand the source models.

2For details concerning the additive synthesis see below.
3The mechanism of the sound generation was the same as the Telharmonium.
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As suggested by the designation itself, the aim of the signal models is the gen-
eration of complex waveforms, instead the source models propose to describe the
physical phenomena that produce the sound event.

Figure 1.2: The signal models and the source models as branches of the sound synthesis.

1.2.1 Signals models

Two classes of methodologies pertain to the signal models, as shown in Fig. 1.2,
i.e. the direct generation methods and the feed–forward techniques. The methods
based on the direct generation of the signal rely on the direct creation of the wave-
forms. Such waveforms can be created from theoretical bases, or else generated
from recording of the real sounds [10, 74, 84, 18, 27]. The feed–forward techniques
are instead based on the alteration a posteriori of existing waveforms produced by
oscillators: the input waveforms may have a high level of complexity and subse-
quently are simplified, or can be simple and then combined to each other as well as
filtered [17, 7, 68, 77].

It is worth noting that the waveform can not characterize by itself the timbre of
a complex sound. The time envelope of the waveform allows to discern the nature
of the sound differentiating the percussive from the non–percussive sounds, and
all the intermediate gradations. For this reason the musical sound synthesis based
on signal models employs an envelope control, often an ADSR control (Attack,
Decay, Sustain, Release) which allows to set the amplitude envelope of the sound,
by setting the following four parameters:

• attack time: is the time that the sound takes for the initial slide from zero
to the maximum value of the volume;

• decay time: determines the duration of the falling from the full volume to
the sustain level;

• sustain level: represents the steady level, i.e. the amplitude at “key–down”;

• release time: is the time that the sound takes to vary its volume up to zero.

Out below, a brief description of the most commonly used techniques belonging to
the signals models is proposed.
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The direct generation synthesis

Sample–based synthesis The sample–based synthesis is probably the most com-
mon form of sound synthesis. It is not properly a synthesis method, since a real
sound is digitally recorded, and the recording is played back. The problem of this
kind of synthesis is in the impossibility to know a priori the length of the sound
that the musician will want to perform. On the other hand the memory required
to store long sounds could be very wide. In order to overcome this drawback, few
periods of the wave in its steady–state are recorded, and by a suitable choosing of
the initial and the final sample, the recording is played in closed–loop, with the
purpose of create a continuous waveform. This technique, the looping, ensures the
extension of the sampled sound duration.

The limitation of the sample–based synthesis is that the waveforms are rather
static due to the looping, making difficult to add expression and dynamics to the
performance: indeed the perfect periodicity is perceived as “artificial”, since the
microfluctuations of the sound pitch turn out to be pleasing to the human ears.

Additive synthesis The Fourier analysis ensures that each signal can be consid-
ered as sum of monochromatic, i.e. sinusoidal, components at different frequencies
and different amplitudes. In the event that the signal is periodic, the expression
of the sum is such that only the sinusoids with frequencies equal to multiples of
to the fundamental periodicity of the signal are involved. In this view a sound is
the superposition of its harmonic components, and this seems to be consistent with
the Helmholtz theory of the timbre [41]. This perspective suggests a technique for
the conversely usage of the Fourier analysis, and such technique is the additive syn-
thesis, through which a purposeful number of sine waves is combined to produce a
complex waveform.

It is interesting to point up that such method is computationally inexpensive
and can provide, in the more general formulation, both harmonic and inharmonic
time–dependent partials with time–dependent amplitudes.

Granular synthesis The granular representation of the sounds seems to be a
way to interpret a complex sound phenomenon as the superposition of elementary
units of the duration of around 1 to 100 ms called grains, being the latter exactly
bounded in both the time–domain and in the frequency–domain. Introduced by
the electrical engineer and physicist Dannis Gabor in 1946 is based on the same
principles of the sample–based synthesis: the grains are properly overlapped and
sequence of them are played back, following the selection a number of parameters
as the volume or the speed.
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The Feed–forward synthesis

Subtractive synthesis The subtractive synthesis had great popularity between
the ’60s and the 70s, with the rising of the analog synthesizers. The principle on
which it is based may seem the reverse with respect to the additive synthesis: a
waveform rich in harmonic components, as a sawtooth or a square wave, is gener-
ated by an oscillator and is subsequently filtered in order to modify its spectrum.
Specifically the resonant voltage–controlled filter can be low–pass, high–pass, band–
pass, band–reject or all–pass:4 it is clear how the resulting waveform can gain color
and complexity.

Nonlinear distorsions The synthesis of she sounds through nonlinear distortion
is based on the modification of an existing sound using nonlinear filters in order
to obtain a richer frequency spectrum. The input waveform is often a monochro-
matic signal, as a simple sinusoid, hence it is easy to understand that the harmonic
components of the output signal are entirely attributable to the effect of the nonlin-
ear transfer function. It is interesting to mention the possibility of dynamic filters
with the purpose of achieve a time–varying envelope of both the amplitude and the
harmonic component of the signal.

Frequency modulation synthesis The frequency modulation synthesis, also
referred to as the FM synthesis, was introduced by John Chowning in 1973, with the
aim of extend the well–understood radio transmission technique to the generation
of audio signals. This method simply consists in change an input waveform, such
as a square wave or a triangle wave, by modulating its frequency. Substantially an
oscillator generates an audio signal with a carrier frequency fc, then a modulating
audio signal with a frequency fm is applied, and the rate at with the carrier wave
varies is the modulating frequency.

It is interesting to highlight that the FM synthesis can produce both harmonic
and inharmonic sounds. The generation of harmonic sounds is achieved by impos-
ing an harmonic relationship between the modulating wave and the carrier signal,
whereas by dropping the assumption of integer ratio between fm and fc, can be
progressively reached percussive atonal sounds.

1.2.2 Physical modeling

The sound synthesis through the physical modeling has a relatively short history.
Differs from the signal model for the purpose of reconstruct the physical phenomenon
on the basis of the sound generation instead of the sound waveform: often referred to
as the source models, the physical modeling seems to have begun with the attempts
to reduce the data-flows in the telecommunications.

4The all–pass filter leaves unchanged the amplitude of the spectrum, but alters the phases.
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The basic idea is to consider the production sounds as the effect of the interaction
between an vibrating element, the exciter, and a resonator which provide the
harmonic content of the signal, e.g. a string of an air column. The interaction
strictly depends on the instrument, and can be both impulsive, as an hammer
that hit a string or a membrane, as well as feedback–like, as in the case of a wind
instrument.

Historically, the first approach to the solution of the interaction between the
exciter and the resonator is represented by the waveguides. This approach consists
in describing the dynamics of the oscillations in the musical instruments with a bi-
dimensional wave equation, whose solution can be considered as the superposition of
a progressive wave and a regressive wave (the D’Alembert solution): in this view the
acoustic perturbation can be evaluated starting from the initial conditions, being
the latter indefinitely propagated through the resonator. The first implementation
of such a waveguide [47, 46] was computationally inexpensive, but the formulation
did not yet provide the exciter model. In the event that complex excitations, even
time–variant, force the resonator, it becomes necessary to introduce a contribution
to both the progressive wave and regressive wave, by the exploitation of two waveg-
uides with the aim of describe the phenomenon. It is worth noting that both the
models implementations described above describe a conservative system, meaning
that the produced sounds involve infinite duration and constant amplitude, as well
as infinitely increasing amplitude in the event that the excitation is repetitive [72].

These drawbacks suggest to introduce dissipative terms in the equations de-
scribing the physical models and the waveguide models began going towards a more
detailed description of the mechanisms of the sound production.

1.3 The proposed approach

This work deals with the time–domain simulation of wind instruments, i.e. the
woodwind and the brasses, through a physical–models–based direct simulation. The
purpose is the development of a methodology that allows to reconstruct the tim-
bre of a given musical instrument (not necessarily existing) starting just from the
geometric model of the instrument itself and from the knowledge of the type of
excitation, focusing on the interaction of the player with the instrument, and of the
instrument with the performance environment and the listener. The usefulness of
this approach lies on the possibility not only to achieve valuable sounds for elec-
tronic music compositions, but also to explore new features of the design of hybrid
and augmented musical instruments as well as the implement real–time applications
compatible with the consumer devices.

The novelty of the present approach is in the integrated modeling of the in-
strument response and the propagation and scattering within the hall where the
performance takes place: this will be referred to as virtual lutherie. The pro-
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posed technique allows to derive the time–varying perceived5 signals starting from
the knowledge of the frequency–dependent acoustical characteristics of the field in-
side and outside the resonator, and the instrument excitation type. The acoustical
characterization of the field inside the instrument is evaluated with the aim of com-
pute the time–varying signals inside the embouchure of the instrument (otherwise
called mouthpiece) by solving the acousto–elastic coupling between the resonator
and the exciter, whereas the knowledge of the acoustic field outside the resonator
enables the evaluation of the sound radiated by the instrument.

Figure 1.3: Acoustical characterization of the field inside and outside the resonator with the
purpose of evaluate the radiated sound.

The strength of this method is in the simultaneous evaluation of both the acous-
tic fields inside and outside the resonator, by exploiting a single frequency–domain
simulation. Indeed it is notorious that a satisfactory6 identification of the acoustical
characteristics of resonators can be achieved even theoretically,7 i.e. making use of
the Webster’s horn equation, but the characterization of the acoustic fields produced
by the instrument during the performance provides an additional contribution to
obtain coherent radiated waveforms.

1.3.1 Acoustical characterization

The approach proposed in this work is based, as mentioned above, on the simulta-
neous acoustical characterization the resonators, i.e. the musical instruments, and
the surroundings, i.e. the environment where the performance takes place.

The acoustical characterization, carried out through prime–principle methods, is
achieved in the frequency–domain, and this method allows to derive simultaneously,
and for each frequency the transfer functions relating the instrument inflow with

5Perceived by an acoustical transducer, i.e. a virtual microphone in the field, or perceived by
a listener even in presence of other scattering objects.

6With the purpose of solve the acousto–elastic coupling between the exciter and the resonator.
7As long as the resonator is axisymmetrical.
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the pressure perturbation inside the resonator and at an arbitrary location in the
surroundings, i.e.

• the input impedance of the resonator, namely the ratio between the pressure
at the inlet section of the instrument and the resulting inflow. The knowledge
of the input impedance is aimed to model the acousto–elastic feedback between
the exciter and the resonator itself. The importance of the input impedance is
in its use for the complete identification of the acoustical characteristic of the
musical instrument, since provides information on the sound pressure intensity
at a given frequency. In fact the harmonic content of a sound produced by a
wind instrument is strictly dependent on its frequency response;

• the propagation transfer functions, i.e. the ratio between the acoustic
pressure at any point in of the field and the inflow at the inlet section of the
instrument, by means of which it is possible to compute the time–varying
signal radiated by the instrument once the acousto–elastic coupling between
the exciter and the resonator is solved.

The frequency–domain simulations are carried out by exploiting the integral repre-
sentation of the acoustic field through the Kirchhoff–Helmholtz Integral Equa-
tion (KHIE). The latter is solved numerically using a zeroth–order Boundary El-
ement Method (BEM) by imposing a constant inflow at the inlet section of the
resonator at all the frequencies of the simulation.8 This is equivalent to consider
the acoustical system forced by a constant spectrum i.e. imitating the frequency
behaviour a time–impulsive force at the inlet section, that is compliant with the
definition of frequency response.

Figure 1.4: Simultaneous characterization of the acoustical characteristics of resonators and sur-
roundings in the frequency–domain.

8The numerical results have been obtained using the open–source BEM code AcouSTO [45].
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The velocity potential field is solved on the boundary of the acoustic field, and
the solution is evaluated at the inlet section of the instrument with the aim of derive
the input impedance, and in several points of interest, such virtual microphones,
with the purpose of estimate the propagation transfer functions.

The BEM method for the evaluation of broad acoustic frequency responses turns
out to be quite expensive in computational terms. In order to overcome this draw-
back several strategies will be adopted, as the exploitation of axisymmetric problems
through the modeling of straight resonators.

1.3.2 Excitation mechanism and sound propagation

Once the acoustic characteristics of the resonator and the surroundings are evaluated
through a unique frequency–domain numerical (BEM) simulation, the proposed
method allows the evaluation of the time–dependent state variables (displacement,
pressure and inflow) at the inlet section of the instrument through the solution of the
acousto–elastic coupling between the resonator and the excitation mechanism, with
the aim of radiate the signal outside the instrument and reconstruct the waveform.

The solution of the acousto–elastic coupling between the exciter and the res-
onator is performed in the time–domain, as well as the sound propagation.

Figure 1.5: Solution of the acousto–elastic coupling between the exciter and the resonator and
sound propagation in the time–domain.

The mechanism of the sound production of the wind instruments can be con-
sidered as a constant interaction between an exciter and a resonator, and such
interaction turns out to be feedback–like, meaning that the change in variables in-
side the resonator,9 i.e. the pressure and the flow, modifies the dynamic response
of the exciter. The exciter is the “mechanical device” with which the musician let
vibrate the air column inside the instrument and can be a piece (or two pieces) of
cane in the case of reed–driven instruments, an unstable jet for the air–jet–driven
instruments or the lips in the brasses. The control parameters of the exciter are

9The resonator, is the musical instrument, and by its acoustical properties depends the harmonic
content of the signal, as mentioned above.
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provided by the musician, which represent the energy source of the system: such
parameters substantially consist in the blowing pressure and everything with which
the act of blowing is related, e.g. the pronunciation of vowels.10

Modeling of the exciter is crucial aspect of the physical modeling, since the
perceived acoustic signature of the wind instruments primarily depends by the ex-
citation mechanism. In fact it is useful to recall that i.e. a flute played with a
clarinet mouthpiece will be sensed like a clarinet and vice–versa. Thus it could be
argued that the acoustical characteristics of the resonators are mainly responsible
of the tuning of the instruments. A wide literature provides suitable models to de-
scribe the acousto–elastic coupling between the exciter and the resonator for both
the woodwinds (single–reed, double–reed and jets) and the brasses. Most of these
models are based on the introduction of several simplification of the phenomenon,
e.g. using one degree–of–freedom models of valve for describe the reed and the
lip motion. Instead other models, making use of multiple degree–of–freedoms me-
chanical systems, provide a meticulous description of the dynamics of the exciter.
Obviously the more rigorous is the model, the more accurate is the reconstruction
of the exciter dynamics. On the other hand, the link between the accuracy of the
model and the quality sounds is still unclear, at least according to the knowledge of
the author.

1.3.3 Exploration of the brass physical model

Another issue that will be analysed is the connection between the parameters gov-
erning the equation of the lip motion and the musically–relevant characteristics of
the produced sound by the brass instruments. This aspects turns out to be crucial
since the physical model must be somehow “routed” toward the desired sounds. In
fact the input of the physical model is a combination of parameters of some equa-
tions and the output is the sound. Assuming a prescribed acoustical behaviour of
the instrument, such parameters are related to the mechanical characteristics of the
exciter. Regarding the brasses it is worth noting that the mechanical characteristics
of the exciter, i.e. the lip, are difficult to quantify since are strictly dependent on
the performance condition: the player varies the mechanical behaviour of the lips
depending upon both the note and the musical emphasis, such the dynamics, the
accents and the articulation.

Nevertheless an attempt to define several objective criteria aimed at the sound
identification will be presented. Under the hypothesis that a solution must be
considered as “sound” only if its periodicity fall within the hearing–range, several
subspaces belonging the solutions of the brass physical model will be identified:

• the sustained solutions, i.e. the set of all the solution that admit a sustained
steady–state;

10It is interesting to note that in the cases of the brasses, the frontier between the control
parameters and the exciter is not is not clearly defined, since is the musician himself that provide
the mechanical characteristics of the exciter.
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• the feasible solution, which involve physical quantities consistent with the case
study;

• the musical solutions, characterized by prescribed timbrical characteristics.

It was noticed that the identified subspaces are independent: accordingly, the inter-
section of the latter will be considered as the set of the sounds mirroring a realistic
performance.

It is interesting to note that the criteria aimed at the identification of the above-
mentioned subspaces are suitable for the formulation of an optimization problem,
with the purpose of find the combination of the parameters of the physical model
leading to a sound with prescribed characteristics in terms of both the physics and
the timbrical properties.

14



15





Part II

Modeling the instrument in action
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CHAPTER 2

Acoustical characterization of resonators and surroundings

In this chapter, the virtual lutherie will be presented. It should be pointed out
that the used expression must be understood as an “augmented locution’ due to
two reasons. The first one is that, historically, the luthier (lutist, lute–maker) is
someone who builds or repair string instruments, while this work dealing with the
wind instruments. The second plea concerns the fact that the lutherie is not confined
to the instrument since the proposed approach give the possibility of characterize
the instrument response contextually to the propagation and scattering within the
hall where the performance takes place, by exploiting a single frequency–domain
simulation.

Below the methodologies used to evaluate the acoustic response of the resonators
and derive the propagation transfer functions will be presented. The acoustical
characterization is with the aim of reconstruct the timbre of wind instrument and
obtain the auralization of the signals. These methodologies are based on prime–
principles and consist in the solution of the acoustic field inside and outside the pipe,
even in presence of scattering phenomena within the hall where the performance
takes place. The numerical simulations aimed at the acoustical characterizations
are achieved using the Boundary Element Method, BEM.

2.1 On the timbrical characteristics

The timbre is the peculiarity of a sound that make it different form another one,
such as musical instruments or voices. The American Standards Association, ASA,1

define the timbre as “[...] that attribute of sensation in terms of which a listener

1From 1928, previously American Engineering Standards Committee, AESC, and in 1969, fol-
lowing a reorganization became the United States of America Standards Institute, USASI.
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can judge that two sounds having the same loudness and pitch are dissimilar” and,
in addition, “[...] depends primarily upon the spectrum of the stimulus, but it
also depends upon the waveform, the sound pressure, the frequency location of
the spectrum, and the temporal characteristics of the stimulus.”. In addition, it is
crucial to note that the above–mentioned characteristics are, in the most general
case, time–varying.

The complexity of the topic led both scientists and musicians, e.g. Hermann von
Helmholtz and Arnold Schoenberg, to question about the timbre of the sounds.2

Strong multidimensionality characterize, in fact, the sound events due to the fact
that the perception of a sound is related to both the spectral dynamic and psycho-
cognitive phenomena [41].

The physical modeling of musical instruments has the objective of generating
appropriated waveforms.3 Since the harmonic content and the partials envelope
of the sounds produced by the wind instruments, i.e. the timbre, comes from the
acoustic characteristics of the resonator, the first step is to determine the proper-
ties of the instrument in terms of its frequency response. The fundamental tone
produced by the instrument during playing, the pitch, as well as the harmonic over-
tones, are strictly depended by the input impedance spectrum. Reed-driven and
brass instruments sound close peaks of the input impedance spectrum (high pres-
sure, low inflow), whereas jet-driven instruments play near the minima (high inflow,
low pressure). This distinction directly comes from the notion of input impedance
Zin,

Zin =
p− p0

v̄ · n
(2.1)

defined as the ratio beween the pressure jump across the input section and the
resulting inflow throught the same section. The unit of acoustic impedance is the
acoustic Ohm, being

[Ω] =

[
Pa

s ·m3

]
(2.2)

The input impedance is an intrinsic property of the resonator and is a function of
the geometry and the characteristics of the medium. In the frequency–domain

Zin(ω) =
p̃in(ω)

ũin(ω)
(2.3)

indicates how intense is the sound pressure generated by the air vibration at a given
frequency, so represents the acoustic response of the instrument at each frequency.
It is a complex function of the angular frequency ω = 2πf and its real part is called
acoustic resistance, while the imaginary part is called acoustic reactance.

2The classical distinction between sound and noise is considered outdated, given that the general
definition of timbre encloses all sound events.

3The meaning of the word “appropriate” must be linked to the “consistency” with respect to
the model, i.e. coherent.
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Based on the spectral energy decay analysis related to recorded sounds of the
wind instruments, one can note that the pressure spectrum is of interest even at
very high frequencies. Seems to be important to earn the acoustical characteriza-
tion of the resonators up to the highest frequency possible, consistently with the
computational resources.

2.2 Modeling the acoustic response of the pipe

The generic acoustic problems can be written, in the frequency–domain, as follow

∇ϕ̃(x)− κ2ϕ̃(x) = q̃, x ∈ V (2.4)

being ϕ̃ the scalar velocity potential function, κ = s/c0 the complex wave number
(s = α+ ιω is the Laplace variable and c0 the speed of sound in reference condition)
and q̃ the acoustic sources present in the field. The problem is completed by suitable
boundary conditions for x ∈ V. Defining the acoustic delay θ = r/c0, recalling the
fundamental solution G for the 3D wave equations,

G(x,y, s) = − e−sθ

4π||x− y||
= G0e

−sθ (2.5)

it is possible to provide an integral representation of the Eq. 2.4. Assuming q̃ = 0
the integral formulation is

E(y)ϕ̃(y) =

∮
S

(
G
∂ϕ̃

∂n
− ϕ̃∂G

∂n

)
dS(x) (2.6)

with S = ∂V, being the domain function E(y) such that

E(y) =


1, y ∈ V
1/2, y ∈ ∂V
0, y 6∈ V

(2.7)

The Eq. 2.6, integral representation of the Eq. 2.4, is the well–known Kirchhoff–
Helmholtz Integral Equation, KHIE (see App. A).

Indeed, when y ∈ ∂V , KHIE can be solved for the unknown ϕ̃ from the knowl-
edge of the boundary conditions, that can be derived from the relationship between
the velocity potential function and its normal derivative as follows

γ(x, ω)ϕ̃(x, ω) + λ(x, ω)
∂ϕ̃(x, ω)

∂n
= f̃(x, ω) (2.8)

Noting that γ(x, ω), λ(x, ω) and f̃(x, ω) are complex functions and the can easily
provided providing them the appropriate form.4

4This general formulation allows to easily identify the Neumann and Dirichelet boundary con-
ditions imposing γ(x, ω) = f̃(x, ω) and λ(x, ω)∂ϕ̃(x, ω)/∂n = f̃(x, ω) respectively, as well as each
linear combination of the latter, obtaining the Robin boundary conditions.
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In the system theory the frequency response is used to characterize the dynamics
of the system: it quantify the frequency–dependent magnitude and phase of the
output in comparison to a the input. The frequency response of an acoustical
system can be computed by forcing the system with a constant spectrum, and
evaluating the complex amplitude of the response for all frequencies. It is easy
to note that a constant spectrum can be achieved by exploiting a time–impulsive
forcing of the system.5 The proposed method simulates the frequency behaviour
of the time–impulsive forcing [44] by imposing in the Eq. 2.8 a pure Neumann
boundary condition on the inlet section Sin,

∂ϕ̃(x, ω)

∂n
= uin · n, x ∈ Sin (2.9)

with hard-wall boundary conditions on the pipe surface Sp.6

∂ϕ̃(x, ω)

∂n
= 0, x ∈ Sp (2.10)

Note that such a boundary condition is equivalent to considering an ideal piston
forcing the pipe in correspondence of the inlet section: as said above, the condi-
tion corresponds to consider the response of the instrument to a time-impulsive
input inflow. The integral formulation can provide the simultaneous solution of the
potential acoustic field inside and outside the pipe.

Figure 2.1: Representation of the acoustic field inside and outside the pipe [44].

5Flat spectra are also provided by the sweep (chirp) and by the white noise.
6Moreover the Sommerfeld radiation condition must be imposed in order to ensure that ϕ̃→ 0

for x→∞.
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Recalling the linearised Bernoulli theorem in the frequency–domain

p̃− p̃0 = −ρsϕ̃ (2.11)

one can obtain the relationship between the pressure jump across the input section
and the velocity potential ϕ̃. Therefore the Eq. 2.3 becomes

Zin(ω) = − 1

Sin

∫
Sin

jωρϕ̃(ω)

uin(ω) · n
dS (2.12)

where uin(ω) represents the constant inflow across the intake section, defined by
the Eq. 2.9.

2.2.1 Numerical solution

The numerical solution of Eq. 2.6 is provided by a Boundary Element Method (see
App. B). In the zeroth–order formulation, one can discretize the boundary in N
panels and consider the collocation points yk located in the centroid of each panel,
obtaining

1

2
ϕ̃i =

N∑
j=1

[Bijχ̃j + (Cij + sDij) ϕ̃j ] e
−sθij (2.13)

where the subscripts indicate the the evaluation at the corresponding collocation
point and the integral coefficients have form

Bij =

∫
Sj
G0dS

Cij = −
∫
Sj

∂G0

∂n
dS

Dij =

∫
Sj
G0

∂θ

∂n
dS

(2.14)

In matrix form the numerical solution on the boundary is given by

ϕ̃ = Y−1Bχ̃ (2.15)

where
Y =

(
1

2
I−C− sD

)
(2.16)

The CHIEF regularization

The numerical methodology described above involves an issue, i.e. solving the scat-
tered acoustic field in unbounded domains can manifest non–physical resonances.
The so–called fictitious eigenfrequencies are related to the eigensolutions of the
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complementary boundary value problem, BVP. Specifically, the exterior Neumann
problem, with boundary conditions

∂ϕ̃(y, κ)

∂n
= f(y, κ) for y ∈ ∂V

is affected by the eigenfrequencies of the interior Dirichlet problem. Similarly, the
solution of the exterior problem with Dirichlet boundary conditions

ϕ̃(y, κ) = f(y, κ) for y ∈ ∂V

is singular at the eigenfrequencies of the interior Neumann problem. The CHIEF
(Combined Helmholtz Integral Equation Formulation) method [16, 9] is used to
circumvent the well–known fictitious eigenfrequencies problem, which arises in the
solution of external problems using the KHIE: Nc additional collocation points are
added inside V and the resulting over–determined set of N +Nc equation is solved.
The solution is now given by

ϕ̃ = (ŶT Ŷ)−1b̃ŶT χ̃ (2.17)

where, indicating with the superscript the coefficients influencing the CHIEF collo-
cation points, the terms Ŷ and b̃ are defined as follows

Ŷ =

[
Y

−Cc − sDc

]
, b̃ =

[
B
Bc

]
(2.18)

and are related to the over–determined problem.
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Figure 2.2: CHIEF regularization of the acoustic pressure on the boundary of a rigid sphere of
radius r = 8.75 cm located at distance d = 3 m from the outlet section of a Bessel
horn.

The other well–known approaches are the so–called Burton–Miller method (also
referred to as the normal derivative method) and the CONDOR (Composite Out-
ward Normal Derivative Overlap Relation) method [71, 48, 73].
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2.2.2 Validation of the methodology

The convergence of the numerical solution obtained with the 3D Boundary Element
Method [45] will be now investigated, in terms of resonant frequencies as well as the
shape of the input impedance spectrum, with respect to the approximated analytical
solution of the Webster’s horn equation. Noting that the i–th resonance must be
computed as the zero-crossing of the imaginary part of the complex input impedance
spectrum, thus all the resonant frequencies are affected by a systematic error of the
order of the frequency step ∆f .

In order to derive the Webster’s horn equation, let us consider the wave equation
in the three dimensional Cartesian system

∂2ϕ

∂t2
− c2∇2ϕ = 0 (2.19)

In the early twentieth century Webster suggested a simplification of the Eq. 2.19
for the horns [55].

Horns are acoustical transducers consisting of a tube of carrying sectional area.
Generally the horns act as impedance adapter between an acoustic source and the
free acoustic field: the exploitations of the horns are manifold and in musical wind
instruments represent the terminal part of the bell, in brasses, or the full wholeness
of the instrument, in the case of woodwinds. Assuming that the acoustic energy is
distributed over wavefronts orthogonal to the horn axis, the wave equation become

∂2ϕ

∂x2
− 1

A

∂A

∂x

∂ϕ

∂x
− 1

c2

∂2ϕ

∂t2
= 0 (2.20)

The Eq. 2.20 is the so-called Webster’s horn equation,7 and its solution [49] can be
reached under the assumption

ϕ = Au+Bv (2.21)

where the terms u and v depend on the horn’s type and A and B represent the
outgoing and the reflected wave. Note that in the case of an infinite horn B = 0
because there is no reflected wave.

By solving the Eq. 2.20 for pressure and velocity at the end section S2 of the
horn, it is possible to make explicit the impedance at the inlet section S1 as a
function of the geometry, the wavenumber and the characteristics of the medium,
as follow

Z1 =
gZ2 − b
a− fZ2

(2.22)

being Z2 the acoustical impedance load for a piston set in an infinite baffle, as shown
in Fig. 2.3.

7Often referred to as the 1.5D wave equation.
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Figure 2.3: Acoustical impedance load per unit area, divided by ρc as a function of kR for a
vibrating piston of radius R set in the end of an infinite pipe.

The expression of the coefficients a, b, f and g was given by Stewart and Lindsay
[76] for the uniform pipe, the conical horn and the exponential horn, and their
analytical (Webster) solutions are presented below.

Let define the relative errors εt and εw between the BEM solution and respec-
tively the theoretical8 and the analytical solution (Webster) are defined as follow

εtn = 100 · | f
t
n − fBEMn |

f tn
, εwn = 100 · | f

w
n − fBEMn |

fwn
(2.23)

On the thickness of the resonator and its end Before going ahead it seems
necessary to point out, without giving details, an issue typical of the case studies.
The link between the acoustical characterization of a resonator via BEM and its
thickness turns out to be extremely important. Indeed on the one hand the numer-
ical method requires a not infinitesimal thickness otherwise the matrices (Eq. 2.15)
may be ill–conditioned.9 On the other hand, the unqualified increase in thickness,
aimed at the proper numerical solution, may change the acoustical characteristics
of the domain, since the unflanged resonators radiate into a solid angle of 4π, while
flanged resonators radiate into a solid angle of 2π [59].

8The theoretical 1D solution is related only to the uniform pipe.
9The topology may be such that two neighbour–opposite panels would have opposite normals.
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In those circumstances the adopted strategy was choosing a plentiful thickness,
even not compatible with the geometry of the problem,10 making sharp the end of
the geometry (see Fig. 2.4) in order to let it radiate as an unflanged resonator.

Figure 2.4: Geometry of the end of a cylindrical resonator.

Uniform pipe

Regarding pipes, it is possible to evaluate the 1D approximated resonant frequen-
cies, both in the case that is closed at one end and opened at the other end or opened
at both ends, as long as the analysis is bounded to a frequency range such that the
problem can be considered one-dimensional. The choice of the cut-off frequency
[67] fcut = c/2D only depend on the sound velocity and the pipe’s diameter. For
the 1D resonant frequencies estimation it is necessary to apply a correction for the
length.11 Defining L the pipe’s length, c the sound velocity and λ the wavelength,
the approximated fundamental frequency of the pipe closed at one end is

f0 =
c

λ
=

c

4L
(2.24)

and the harmonic overtones, according to the boundary condition at the closed end,
are such that fn = (2n + 1)f0.12 As exhaustively described by Olson [59, 60], in
compliance with the foregoing, the expression of the acoustic input impedance (Eq.
2.22) become

Z1 =
ρc

S
· SZ2 cos(kL) + jρc sin(kL)

ρc cos(kL) + jSZ2 sin(kL)
(2.25)

being ρ the density of the medium, c the sound velocity, S the section of the pipe, k =
2π/λ the wavenumber, Z1 the throat impedance and Z2 the acoustical impedance
load for a piston set in an infinite baffle.

10Notice that, as an example, the thickness of a brass instrument is a few tenths of a millimetre,
compared with characteristics lengths that can reach several meters.

110.62R for the unflanged pipe, 0.82R for flanged pipe, being R the radius.
12In the case of the pipe opened at both ends the fundamental frequency is f0 = c

λ
= c

2L
being

the overtones such that fn = (n+ 1)f0.
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Example Let us consider, as test case, an unflanged pipe of length L = 85.09 cm
and diameter D = 2.5 cm. Setting the sound velocity c = 343.0 m/s, the cut-
off frequency is fcut = 6.86k Hz: the first three 1D resonant frequencies are f t0 =
100 Hz, f t1 = 300 Hz and f t2 = 500 Hz, while the resonant frequencies obtained using
the Eq. 2.25 are fw0 = 99.57 Hz, fw1 = 298.95 Hz and fw2 = 497.83 Hz. The relative
errors are presented in table 2.1, as well as the first three resonant frequencies.

1D Webster BEM εt εw

I 100 Hz 99.57 Hz 99.81 Hz 0.19 % 0.24 %

II 300 Hz 298.95 Hz 299.00 Hz 0.33 % 0.02 %

III 500 Hz 497.83 Hz 498.03 Hz 0.43 % 0.04 %

Table 2.1: Comparison between theoretical (1D), analytical (Webster) and numerical (BEM)
solution for the first three resonant frequencies of a uniform pipe.

The convergence analysis highlights that the 3D BEM solution converges to an in-
termediate solution between the 1D theoretical and the resonant frequencies derived
from the approximated solution of the Webster’s equation, as shown in Figs. 2.5,
2.6 and 2.7, and when the convergence is achieved, the numerical input impedance
spectrum overlaps spectrum achieved with Eq. 2.25, as shown in Fig. 2.8.
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Figure 2.5: Convergence of the first resonant frequency of a uniform pipe, f t0 = 100 Hz and
fw0 = 99.57 Hz, as a function of the number of panels per wavelength at the analytical
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Figure 2.7: Convergence of the third resonant frequency of a uniform pipe, f t2 = 500 Hz and fw2 =
497.83 Hz, as a function of the number of panels per wavelength at the analytical
(Webster) frequency.
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Figure 2.8: Unflanged uniform pipe: analytical (Webster) vs. numerical (BEM) input impedance
spectrum divided by ρc/Sin.

Conical horn

For a given conical horn, being ρ the density of the medium, c the sound velocity,
S the section of the pipe, k = 2π/λ the wavenumber, Z1 the throat impedance, Z2

the acoustical impedance load for a piston set in an infinite baffle, S1 the throat
section area, S2 the mouth section area, θi = tan−1(kxi)/k with xi the distance of
the i− th section from the apex, the expression of the acoustical input impedance
of a conical horn [59, 60] can be evaluated as follows

Z1 =
ρc

S1
·

ρc
S2

sin(kL) + jZ2
sin[k(L−θ2)]

sin(kθ2)

Z2
sin[k(L+θ1−θ2)]
sin(kθ1) sin(kθ2) − j

ρc
S2

sin[k(L+θ1)]
sin(kθ2)

(2.26)
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Example Considering a divergent conical horn of lenght L = 56.73 cm, which
cross section varies from S1 = 1.25 cm to S2 = 5 cm: the first resonant fre-
quencies evaluated using the Eq. 2.26 are fw0 = 229.13 Hz, fw1 = 487.17 Hz and
fw2 = 764.04 Hz. The approximated analytical and the numerical (BEM) resonant
frequencies are presented in the table 2.2, with the relative errors.

Webster BEM εw

I 229.13 Hz 228.09 Hz 0.45 %

II 487.17 Hz 487.99 Hz 0.17 %

III 764.04 Hz 764.82 Hz 0.10 %

Table 2.2: Comparison between analytical (Webster) and numerical (BEM) solution for the first
three resonant frequencies of a conical horn.

The convergence of the BEM resonances with respect to the approximated ana-
lytical resonances is presented in in Figs. 2.9, 2.10 and 2.11, and the convergence
numerical input impedance spectrum, in Fig. 2.12, is in remarkable agreement with
the approximated analytical solution of the Eq. 2.26.
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Figure 2.9: Convergence of the first resonant frequency of a conical horn, fw0 = 229.13 Hz, as
a function of the number of panels per wavelength at the analytical (Webster) fre-
quency.

 440

 460

 480

 500

 520

 540

 0.01  0.1

fr
e
q

u
e
n
cy

 [
H

z]

1/N'

BEM solution (2nd frequency)
analytical input impedance

Figure 2.10: Convergence of the second resonant frequency of a conical horn, fw1 = 487.17 Hz,
as a function of the number of panels per wavelength at the analytical (Webster)
frequency.
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Figure 2.11: Convergence of the third resonant frequency of a conical horn, fw2 = 764.04 Hz,
as a function of the number of panels per wavelength at the analytical (Webster)
frequency.
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Figure 2.12: Conical horn: analytical (Webster) vs. numerical (BEM) input impedance spectrum
divided by ρc/Sin.

Exponential horn

Considering, lastly, the exponential horn: the cross-sectional area varies exponen-
tially with a given flare constant m. The expression of acoustic impedance [59, 60]
is given by the following expression

Z1 =
ρc

S1
· S2Z2 cos(bL+ θ) + jρc sin(bL)

ρc cos(bL− θ) + jS2Z2 sin(bL)
(2.27)

being ρ the density of the medium, c the sound velocity, S the section of the pipe,
k = 2π/λ the wavenumber, Z1 the throat impedance, Z2 the acoustical impedance
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load for a piston set in an infinite baffle, S1 the throat section area, S2 the mouth
section area, θi = tan−1(a/b), with a = m/2, and b =

√
4k2 −m2/2.

Example Let us analyse an exponential horn of length L = 68.07 cm, with a
throat section S1 = 0.625 cm and a flare constant m = 0.0676: the first analytical
resonant frequencies, evaluated with Eq. 2.27, are fa0 = 259.28 Hz, fa1 = 437.61 Hz
and fa2 = 655.94 Hz. The first three resonant frequencies (Webster) are presented
in the table 2.3, with the relative errors.

Webster BEM εw

I 259.28 Hz 255.79 Hz 1.34 %

II 437.61 Hz 437.59 Hz 0.005 %

III 655.94 Hz 656.03 Hz 0.013 %

Table 2.3: Comparison between analytical (Webster) and numerical (BEM) solution for the first
three resonant frequencies of an exponential horn.

The convergence of the numerical (BEM) resonant frequencies is presented in Figs.
2.13, 2.14 and 2.15, whereas the comparison of the input impedance spectra, in Fig.
2.16, highlights a remarkable similarity.
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Figure 2.13: Convergence of BEM solution for the first resonant frequency of an exponential
horn, fw0 = 259.28 Hz.
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Figure 2.14: Convergence of BEM solution for the second resonant frequency of an exponential
horn, fw1 = 437.61 Hz.
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Figure 2.15: Convergence of BEM solution for the third resonant frequency of an exponential
horn, fw2 = 655.94 Hz.
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Figure 2.16: Exponential horn: analytical (Webster) vs. numerical (BEM) input impedance
spectrum divided by ρc/Sin.

Complex geometries

The acoustical impedance of a complex geometry, considered as superposition of n
elementary geometries, can analytically be computed using the Eqs. 2.25, 2.26 and
2.27,13 taking into account that the i–th input acoustical impedance at the throat
matches with the (i− 1)–th terminating acoustical impedance at the mouth. Note
that it is also possible to consider any geometry as superposition or infinitesimal
uniform pipes with different cross–sectional areas, as well as superposition of in-
finitesimal conical horns,14 imposing the continuity of both pressure and volume

13In addition, the input impedance of hyperbolic and parabolic horns can also be analytically
computed, but their discussion have been overlooked in this work.

14Certainly the uniform pipe can be considered as a special case of the conical horn.
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current as boundary conditions for the i–th elementary horn.

Example As an example, without going into details as done in the case of the
basic horns, let consider a complex resonator of length L consisting in a uniform
pipe of length L/2 and diameter d, connected with a divergent conical horn. The
the approximated analytical solution, as mentioned above, is provided by the com-
bination of the Eqs. 2.25 and 2.26. The analysis of Fig. 2.17 highlights that the
agreement of the numerical solution (BEM) is remarkable.
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Figure 2.17: Uniform pipe connected to a conical horn: analytical (Webster) vs. numerical
(BEM) input impedance spectrum divided by ρc/Sin.

2.3 On the sound propagation

Although an accurate acoustical characterization of resonators is possible, in prin-
ciple, even availing of analytical formulations (see Eqs. 2.25, 2.26 and 2.27), the
strength of the acoustic fields integral representation is in the possibility to derive
the transfer functions aimed at the propagation of the signal at any point of the
domain: in fact, the representation used in order to obtain the frequency response
of the resonator (see Sect. 2.2 and App. A) can be used to evaluate the pressure
complex amplitude anywhere in the field.

Indeed the signature of a musical instrument, as well as that of any sound source,
is highly affected by the propagation pattern of the sound in the space. The spectral
components of a complex signal emit, in fact, with different efficiency with respect
to both polar and azimuthal angles, and therefore the timbre may be different
in relation to the listening area. Moreover, propagation can occur inside closed
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spaces, where other objects are present, and therefore occur complex phenomena of
reflection and diffusion, among them the reverb is only the most evident.

In the following sections, the propagation transfer functions will be presented,
with the purpose of introducing the methodologies that lead to the timbrical recon-
struction of wind instruments, as well as the auralization of the signals, which will
be discussed hereinafter.

2.3.1 Embouchure–to–Microphone transfer function

Let us consider the propagation of the pressure signal in open space, without scat-
tering objects. The integral formulation can be used as a “sound propagator” from
the input section Sin to the virtual microphone locate at yM .

The linearised Bernoulli theorem (see Eq. 2.11) can provide the connection be-
tween the frequency–varying velocity potential ϕ̃ at the virtual microphone location
and the pressure signal p̃

p̃(yM , s) = −ρsϕ̃(yM , s) (2.28)

with ϕ̃(yM , s) given by the following

ϕ̃(yM , s) =

N∑
n=1

[
BM
n

∂ϕ̃n
∂n

+
(
CMn − sDM

n

)
ϕ̃n

]
e−sθ

M
n (2.29)

In matrix form
ϕ̃M = BM χ̃+

(
CM − sDM

)
ϕ̃ (2.30)

Coupling the solution on the boundary, given by the Eq. 2.15, with the representa-
tion at the virtual microphone location (see Eq. 2.29), with simple steps (for details
see App. B) one can obtain the expression of the pressure at the virtual microphone
location

p̃(yM , s) = E2M(s)χ̃in (2.31)

where E2M, the Embouchure-to-Microphone transfer function, is defined by

E2M(s) = −ρs
[
BM +

(
CM − sDM

)
Y−1B

]
(2.32)

and χin represents the inflow across the intake section of the instrument, calculated
as will be shown in the Chap. 3, solving the equations describing the acousto-elastic
coupling between the virtual player and the resonator.

Example Considering a Bessel horn with a bottleneck close to the inlet section
of total length L = 70 cm and inlet diameter d = 2 cm, shown in Fig. 2.18.
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Figure 2.18: Geometric model of the Bessel horn with a bottleneck close to the inlet section.

The acoustical input impedance of the resonator is shown in Fig. 2.19.
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Figure 2.19: Input impedance spectrum divided by ρc/Sin of the Bessel horn with a bottleneck
close to the inlet section.

The input impedance maxima and minima, i.e. the resonances and the antires-
onances of the resonator, are presented in Tab. 2.4 and 2.4, and are responsible of
the harmonic composition of the sounds reproducible with the resonator.

Frequency Note
fI 239.88 Hz Bb3

fII 447.98 Hz A4

fIII 656.89 Hz E5

fIV 841.07 Hz G#5

fV 1065.97 Hz C6

fV I 1243.77 Hz Eb6

Table 2.4: First resonances of the Bessel horn with a bottleneck close to the inlet section.
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Frequency Note
fI 299.02 Hz D4

fII 498.86 Hz B4

fIII 690.78 Hz E5

fIV 921.72 Hz A#5

fV 1141.49 Hz D6

Table 2.5: First antiresonances of the Bessel horn with a bottleneck close to the inlet section.

Instead, the efficiency with which the harmonic component of the sounds are spa-
tially perceived in the field, depends on the directivity pattern of each frequency.

Considering an half–circle of radius r = 2 m of virtual microphones centred on
the outlet section of the resonator: the evaluation of the Embouchure–to–Microphone
transfer function E2M along such half–circle allows to assess the directivity patterns
of the resonator,15 related to both the resonances and the antiresonances of the
instrument, as shown in Figs. 2.20 and 2.21.

 0  2  4  6  8

239.9 Hz
448.0 Hz
656.9 Hz
841.1 Hz

1065.7 Hz
1243.8 Hz

Figure 2.20: Resonances directivity patterns of the Bessel horn with a bottleneck close to the
inlet section, evaluated on an half–circle of virtual microphones located at a distance
r = 2 m from the outlet section.

15Obviously one can expect that the directivity is also a function of the distance from the outlet
section of the resonator.
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Figure 2.21: Antiresonances directivity patterns of the Bessel horn with a bottleneck close to
the inlet section, evaluated on an half–circle of virtual microphones located at a
distance r = 2 m from the outlet section of the resonator.

The difference in radiation efficiency is even more evident when comparing the
transfer functions E2M related to the lateral microphone located at α = 0◦ with
respect to the axis of the instrument and the longitudinal microphone located on
the axis of the resonator, both at distance r = 2 m, in Fig. 2.22.
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Figure 2.22: Comparison between the Embouchure–to–Microphone transfer function divided by
1/Sin related to the lateral virtual microphone and the longitudinal virtual micro-
phone, both at distance r = 2 m from the outlet section of the resonator.

In Fig. 2.23, the bode plot of the Embouchure–to–Microphone transfer function
E2M related to a virtual microphone located at distance r = 2 m from the outlet
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section of the resonator, with an offset α = 30◦ with respect to its longitudinal axis.
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Figure 2.23: Bode plot of the Embouchure–to–Microphone transfer function divided by 1/Sin
related to a virtual microphone located at distance r = 2 m from the outlet section
of the resonator, with an offset α = 30◦ with respect to its longitudinal axis.

2.3.2 Embouchure–to–Listener transfer function

In order to achieve the auralization of the signal it is important to simulate the
spatial effects due to the closed space where the performance take place and where
scattering objects, including the listener’s head itself, are present. In this condition
the total pressure field is sum of incident pressure and scattering pressure

p̃L(x̄, s) = p̃Linc(x̄, s) + p̃Lsc(x̄, s) = −ρs
[
ϕ̃Linc(x̄, s) + ϕ̃Lsc(x̄, s)

]
(2.33)

For a given acoustic admittance α, one has

∂ϕ̃Lsc
∂n

= −
[
∂ϕ̃Linc
∂n

+−ρsα
(
ϕ̃Linc + ϕ̃Lsc

)]
(2.34)

The incident field is derived from the solution on the instrument

p̃Linc(s) = Q(s)χ̃in (2.35)

where Q(s), defined by the following expression

Q(s) = −ρs
[
Binc +

(
Cinc − sDinc

)
Y−1B

]
(2.36)

is the matrix transfer function relating the mouthpiece input velocity to the inci-
dent pressure field. The scattering pressure field is derived from definitions of the
boundary conditions

χLsc = −χLinc − ρsα
(

˜ϕLinc + ϕ̃Lsc

)
(2.37)
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and the scattering component of the potential ϕLsc can be expressed as a function of
the incident field ϕLinc as follows

ϕLsc = −Y−1Bsc

(
χLinc + ρsαϕLinc

)
(2.38)

being

Y =
1

2
I + ρsαBsc −Csc − sDsc (2.39)

The incident field must be compliant with the compatibility condition on the listener
surface

−1

2
IϕLinc = Bscχ

L
inc + Cscϕ

L
inc + sDscϕ

L
inc (2.40)

namely
χLsc = B−1

sc Yϕ
L
inc (2.41)

being

Y = −1

2
I−Csc − sDsc (2.42)

Given the above one can express the scattering component of pressure as function
of the incident field

p̃Lsc(s) = V(s)χ̃in (2.43)

where V(s), defined by the equation

V(s) =
(
Y−1Y + ρsαY−1 −Bsc

)
Q(s) (2.44)

is the matrix transfer function relating the mouthpiece input velocity to the scat-
tered pressure whereas Q(s) is the matrix transfer function between the velocity at
the inlet section Sin of the resonator and the incident pressure field.

Once that both incident field and scattering field are known, the Eq. 2.33
becomes

p̃(yL, s) = E2L(s)χ̃in (2.45)

where E2L, the Embouchure-to-Listener transfer function, is defined by

E2L(s) = −ρs [Q(s) + V(s)] (2.46)

It seems essential to specify that the quality of the geometric models of the scatter-
ing bodies in the acoustic field, as well as that of the performance environments for
which evaluate the Embouchure-to-Listener transfer function E2L, depends exclu-
sively on the available computing resources.
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Example With reference to the previous case (the Bessel horn with a bottleneck
close to the inlet section, discussed for the E2M transfer function), let consider a
simple model of head16 located on the instrument axis at distance d = 3 m with
respect to the outlet section of the resonator. The Embouchure–to–Listener transfer
function E2L is evaluated for two antipodal location of the head, and is presented
in Fig. 2.24.
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Figure 2.24: Embouchure–to–Listener transfer function divided by 1/Sin related to a simple
model of head located on the instrument axis at distance d = 3 m with respect to
the outlet section of the Bessel horn with a bottleneck close to the inlet section,
being the ears at two antipodal locations.

16The head is assumed to be a simple rigid sphere of radius rsph = 8.75 cm.
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Interaction with the player and sound propagation

The methodologies used to model the interaction between the resonator and the
exciter are discussed in this chapter. Once known the acoustic characteristics of
the resonators and of the surroundings, provided in the frequency–domain by the
methodologies described in the Chap. 2, a model for the coupling with the mech-
anism of the inflow sustentation is necessary in order to reconstruct in the time–
domain the state variables at the inlet section of the instruments. Starting from the
latter, the perceived signal anywhere in the field, as well as the auralized acoustic
pressure signals are easily achievable.

In what follows, will be shown the models developed in the context of the sound
synthesis aimed at the description in the time–domain of the acousto–elastic feed-
back for the woodwinds and in the brasses, and for some cases will be presented
suitable examples.

3.1 The interaction with the player

Playing a resonant aerophone consists in sustain an airflow into a resonating cavity
to let the air column vibrate in its interior, and can be envisaged as a constant
interaction between the player, an exciter and a resonator. Note that the player
represents the energy source, while the exciter and the resonator are respectively
the active elastic element and the passive acoustic element of the acousto–elastic
feedback (see Fig. 3.1).
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Figure 3.1: Time–domain acousto–elastic feedback for resonant aerophones.

In order to understand the interaction between the exciter and the resonator is
essential to formalize the relationship between static pressure and flow inside the
embouchure: in the frequency–domain, is given by

p̃in(ω) = Zin(ω)ũin(ω) (3.1)

Accordingly to the model of McIntyre, Schumacher and Woodhouse [56] the time–
dependent acoustic pressure at the input section of the instrument can be interpreted
as the superposition of the outgoing wave p+

in(t) and the incoming wave p−in(t)

p(t) = p+
in(t) + p−in(t) (3.2)

Exploiting this view the resonator can be described in the time–domain just with
p−in(t), i.e. the pressure at the inlet section in the time–domain is provided by the
convolution between the inflow and the the impulse response

p−in(t) = uin(t) ∗ z(t) (3.3)

where z(t) is simply the inverse Fourier transform of the input impedance

z(t) = F−1 [Zin(ω)] (3.4)

and represents the response of the instrument to an incident pressure impulse at
the intake section, then considered ideally closed [3].

Remarks In order to focus the acousto–elastic coupling between the exciter and
the resonator, in this work some aspects were purposely omitted. These aspects
mainly concern three issues:

• Fluid–dynamic effects, i.e. the influence of the viscous and thermal boundary
layer, as well as the propagation of the shock waves inside the mouthpiece,
especially in the brasses, during the playing of fortissimo and sforzatissimo;1

• Structural effects, namely the vibration of the instrument itself during the
performance;

• The Helmholtz resonator effect caused by the pronunciation of vowels during
the blowing into the embouchure.

Such issues, at least according to the knowledge of the author, should not influence
the interaction between the air column and the mechanism of inflow sustentation,
that is the objective of the modeling.

1In musical language ff and fff .
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3.1.1 The reflection function

The process leading to the simulation of the instrument behaviour consists in solving
a convolution integral numerically. The time–domain function z(t) in the Eq. 3.3,
which describes the impulse response, consists of a series of multiple reflections of
the incident pulse from ends of the pipe. Since the pipe is open at one end, a portion
of the energy is radiated outside while the residue energy is inverted and return back
to to the input section, so the sign of the pulse alternates, whereas in the case of a
pipe closed at both the ends, the the energy remains inside the pipe and the pulses
keeps the same sign.

Since the spectrum of Zin(ω) is highly rich, its inverse Fourier transform consists
in an infinite series of reflections, then its decay time can be highly wide. The
complexity of z(t) leads to the limitation of the use of the impulse response in the
numerical simulations, because the current p(t) depends not only on p(t − τ), but
also on p(t− 2τ), p(t− 3τ) and so on [43].

Let now consider a pulse that propagates inside the tube and running backwards
towards the inlet section, after being inverted: if the input section, rather than being
closed, continued with an infinite uniform pipe of section equal to the inlet, the
pulse would no longer be reflected. This assumption allows you to draw up a time–
domain function, the so–called reflection function r(t), which neglects the multiple
reflections subsequent to the first one, therefore isolating only the first as a distinct
entity. Is crucial to note that the multiple reflections due to the discontinuities in
the pipe2 will necessarily continue, and this explains the reason why the reflection
function of musical instruments is particularly complex.

In order to derive the reflection function r(t), is useful to consider the reflection
coefficient R(ω) which represents, in terms of physical, the ratio of the amplitude
of the reflected wave to the incident wave at a given frequency

R(ω) =
p−(ω)

p+(ω)
(3.5)

Considering a plane wave propagating forward in the direction of the axis of the
resonator and, once arrived at the interface it reflects propagating backward: the
input impedance can be expressed in terms of R(ω) as follows

Zin(ω) = ρ0c
1 +R(ω)

1−R(ω)
(3.6)

being ρ0 the density of the medium and c the sound velocity. With simple steps,
knowing the characteristic impedance of the wave guide Z0 = ρ0c/Sin the frequency–
domain representation of the reflection function can be easily computed

R(ω) =
Zin(ω)−Z0

Zin(ω) + Z0
(3.7)

2A change in the section has to be considered a discontinuity, since each shape is to be considered
as the superposition or infinitesimal uniform pipes, as described in the Sect. 2.2.
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where Zin(ω) can be evaluated analytically or numerically using the integral formu-
lation, as described above in the Chap. 2.

Note that the condition for which the resonator is energetically passive is

Im [R(ω)] < 1, ∀ω 6= 0 (3.8)

which implies, recalling the Eq. 3.7, that Re [Zin(ω)] > 0, i.e. in terms of velocity
potential (see Eq. 2.12) is verified if Im [ϕ̃(ω)] > 0 on the inlet section Sin of the
resonator.

Example Let now consider a uniform pipe of radius R = 2.5 cm and length
L = 40.0 cm. The input impedance spectrum can be evaluated exploiting the Eq.
2.25 (Webster’s horn equation) or numerically via BEM, as seen in the Chap. 2.3
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Figure 3.2: Input impedance spectrum divided by ρc/Sin for a uniform pipe of radius R = 2.5 cm
and length L = 40.0 cm. Superposition of the analytical (Webster) and numerical
(BEM) solution.

The comparison between the solution derived by the Eq. 2.25 and the numerical
solution highlights a remarkable agreement.

The impulse response, presented in Fig. 3.3, can easily be obtained as the inverse
Fourier transform of the input impedance, as described above.

3As detaild before, if the cross-sectional area is smaller than the wavelength, the 1D theoretical
model with the end correction provides the resonances of the pipe.
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Figure 3.3: Impulse response for a uniform pipe of radius R = 2.5 cm and length L = 40.0 cm.

The reflection coefficient is obtained with the Eq. 3.7 and, by operating its
inverse Fourier transform it is possible to isolate a single reflection, as shown in Fig.
3.4.
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Figure 3.4: Reflection function of a uniform pipe of radius R = 2.5 cm and length L = 40.0 cm.

It is worth noting that the choice of the frequency sampling can change the shape
of the discrete reflection function: as evidenced by Amir et al. [6], if Fmax is chosen
to be on a zero of Zin(ω), the discrete reflection function is beset by ripple, while
by choosing Fmax in correspondence of a resonance the ripple tends to disappear.

As evident by the superposition of the impulse response and the reflection func-
tion (see Fig. 3.5) the reflection function reproduces the impulse response with
respect to the first reflection, otherwise its value is zero.
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Figure 3.5: Superposition of the normalized impulse response and the normalized reflection func-
tion of a uniform pipe of radius R = 2.5 cm and length L = 40.0 cm.

Lastly it is interesting to point out that, regarding the cylindrical pipe, the decay
time, that appears to be extremely long for the impulse response, in the reflection
function become comparable to the fundamental period, and such a shortening is
relevant indeed in the numerical solution of the convolution integral, as mentioned
above.

3.2 The inflow sustentation

Out below, a general discussion concerning the equations governing the dynamics
of the reeds (single and double) and the lips will be presented. The air–jets deserve
a separate discussion and will be briefly detailed later.

As previously mentioned the dynamics of the exciter, which is represented by
an oscillator, is controlled by the energy source with a feedback derived from the
acoustic characteristic of the resonator. Such a mechanical system can be depicted
by a second–order differential equation

m(t)
d2y(t)

dt2
+ b(t)

dy(t)

dt
+ k(t)y(t) = S0H [P0(t), p(t)] (3.9)

being P0(t) the blowing pressure, the coefficients m(t), g(t), k(t) are respectively
the inertial, viscous and the stiffness terms, whereas S0 is the section on which acts
the flow and the generic function H [P0(t), p(t)] represents the function with which
the exciter depends on the resonator.

Note that the term P0 must be considered as a function of the time in the view
of model the intention of the musician to vary the dynamics of the performance,
primarily in terms of loudness. Instead the time dependence of the coefficientsm(t),
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g(t) and k(t) are due to two reasons, i.e. the active change of coefficients (aimed
at the variation of the note in the brasses, or during the performance of the vibrato
for the reed–driven instruments) and the passive fluctuations of the mechanical
characteristics of the exciters, e.g due to the changes in temperature.

Here the pressure is assumed to be constant, and the pressure at the inlet section
of the resonators can be described by the Eqs. 3.2 and 3.3. The pressure jump
P0 − p(t) between the player mouth, or the bellow pressure in the case of organ
pipes, and the air column inside the resonator can be easily formalized with the
Bernoulli law

P0 − p(t) =
1

2
ρ
uin(t)

S(t)
(3.10)

being S(t) the time-dependent area through which the air-flow passes to the instru-
ment from the musician’s mouth. Therefore

uin(t) =

√
2

ρ
S(t)

√
| P0 − p(t) | · sgn (3.11)

with sgn function takes the values 1 or −1 depending on the fact that the sign of
P0 − p(t) is respectively greater or less than zero.

Actually, if the aim of the simulation is the identification and the characterization
of a single sustained sound, it is possible to neglect the fluctuations of the mechanical
characteristics of the exciter, since in addition it is legitimate to hypothesize that
the frequency of these changes are much smaller compared to the frequencies of the
generated sounds.

Combining the Eqs. 3.2, 3.3, 3.9 and 3.11, defining the mass ratio µ = m/S0,
the damping factor g = b/m and the exciter angular frequency ω =

√
(k/m), one

can obtain the system
ÿ(t) + gẏ(t) + ω2y(t) = H [P0, p(t)] /µ

p(t) = p+
in(t) + p−in(t)

p−in(t) = uin(t) ∗ z(t)
uin(t) =

√
2/ρS(t)

√
| P0 − p(t) | · sgn

(3.12)

whose solution allows to obtain the complete time–domain simulation.

3.2.1 Woodwinds

Woodwinds [70] are a large family of musical instruments that use feedback from
an oscillating air column to control the air flow into the pipe. The valve may be
a vibrating reed or an oscillating stream of air. According to the type of the flow-
control valve, one can classify woodwinds into two categories:

1. Vibrating–reed: the feedback control (pressure-controlled input) is applied to
a vibrating piece of cane. In single-reed instruments only one reed is used to
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produce sounds. Belong this class the clarinets and the saxophones (soprano,
alto, bass, contra–alto/baritone and contrabass/bass). Regarding double–reed
instruments, two pieces of cane vibrate aganist each other in order to establish
the acousto-elastic loop during the inflow sustentation. Oboe-like instruments
(heckelphones, english horns, etc.) and bassoon-like instruments are the main
orchestral double-reed driven musical instruments.

2. Air–jet: an air flow concur with the air column inside the pipe to oscillate
producing pressure perturbation. The air stream oscillates back and forth,
and the direction of the air flow, due to standing waves, controls the input
flow (flow-controlled input). Flutes, recorders and flue organ pipes are part of
this category.

The resonances of the air column, except for flue organ pipes and pan flutes, are
tuned by tone holes or mechanical keys so the sound is also radiated form the open
tone holes and the radiation pattern is very complex.

Single–reed–driven instruments

The attention will be now focused on single–reed instruments (also called clarinet–
like instruments) i.e. clarinets and saxophones. Such instruments consist of a
non–uniform holed and keyed pipe, whose section is cylindrical, as in the case of
the clarinets, or conical, in the saxophones. Note that the tone holes and the keys
modify the characteristics of the resonator in terms of input impedance spectrum,
but not the acousto–elastic interaction loop between the air column and the virtual
player.

The embouchure of the single–reed instruments consist in is a thin strip, the
reed, rigidly clamped in one extreme to the mouthpiece. The reed represents the
exciter and the player provides a flow triggering an interaction between the reed
and the air column.

By applying a blowing pressure, the puff of air u(t) travels into the pipe and
simultaneously the reed starts vibrating, interacting with the wave front reflected
by the bell. During such a interaction, reed can be modeled as a simple harmonic
oscillator without non-linearity (see Fig. 3.6).

Figure 3.6: Modeling of the single reed as a simple harmonic oscillator.
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Its dynamic can be described by the following expression

d2y(t)

dt2
+ gR

dy(t)

dt
+ ω2

Ry(t) =
p(t)− Pm

µR
(3.13)

where gr is the damping factor, ωR the natural resonance frequency and µR rep-
resent the ratio between the reed mass mR and its surface SR. Note that the
abovementioned parameters are peculiarities of the materials of which the reed is
made. During the reed movement, total acoustic flow [35] is:

uin(t) = u(t)− uR(t) (3.14)

where u(t) is the Bernoullian flow, due to the pressure jump between player’s mouth
and the air column, and the secondary flow uR(t) is due to the reed movement and
can be considered as fallows

uR(t) = SR
dy(t)

dt
(3.15)

Taking the definitions formalized with the Eqs. 3.14 and 3.15, using the auxiliary
displacement variable

ξ(t) = y(t) +
Pm
µRω2

, (3.16)

the Eq. 3.13 can be rewritten(
ξ̇(t)

u̇R(t)

)
=

[
0 1

SR
−ω2

RSR −gR

](
ξ(t)

uR(t)

)
+

(
0
SR
µR

)
p(t) (3.17)

with (
ξ(t)

uR(t)

)
=

(
−H

0

)
, if y(t) ≤ −H (3.18)

The solution of the system represented by the Eq. 3.17 could be provided numeri-
cally. The pressure is given by the convolution between the reflection function and
the resulting inflow (see the Eq. 3.12). Once ξ[n] is known, recalling Eq. 3.16, is
possible to compute the reed displacement and the knowledge of the inflow compo-
sition (see the Eq. 3.14) can give the pressure signal inside the embouchure.4

It is interesting to highlight that, since the resonance of the reed is usually greater
than the typical fundamental frequencies of the performed notes5, its dynamics, in
quasi–static consitions, can be considered approximatively governed by the pressure
jump across the reed

kR(y − y0) = ∆p (3.19)

4Details for the system solution, as well as explanations of the useful numerical schemes, are
present in the exhaustive paper [35] of Gazengel et al. (1995).

5Typically around 3000 Hz [82].
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being kR the reed stiffness and ∆p the pressure jump between the player mouth and
the embouchure (see Eq. 3.10). Under this hypothesis, the inflow can be expressed
as a function of the pressure jump across the reed

uin = αwR

(
y0 −

∆p

kR

)√
2

ρ
∆p (3.20)

having been introduced the semi–empirical parameter α for jet contraction at the
beginning of the reed channel [42, 82], i.e. the so–called vena contracta effect. The
Eq. 3.20 represents the nonlinear characteristic of the single–reed (see Fig. 3.7).
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Figure 3.7: A typical nonlinear characteristic of the single–reed: inflow as a function of the
pressure jump accross the reed.

The study of the sign of the Eq. 3.20 suggests that when ∆p exceeds the value
y0kR the reed is closed and the flow passage is inhibited. Instead, the value of
pressure jump corresponding to the maximum inflow is given by the annulment of
the first derivative, i.e. for ∆p = y0kR/3. Lastly it can be proved, by defining the
dimensionless inflow, that the shape of the nonlinear characteristic of the single–reed
is independent of both the reed characteristics and the blowing pressure [5].

Example As an example let us consider a simulation on a soprano saxophone
playing the lowest note. The soprano sax is a transposing instrument6 pitched in
the key of Bb and is the third smallest member of the saxophone family. Was
patented by Adolphe Sax (6 November 1814–February 1894) on March 1846, and is
comparable to the Bb clarinet, but unlike this has a smaller extension and can pan
out more energetic sounds on high register.

6Transposing instrument are notated at a different pitch from the pitch that actually sounds.
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The performed simulation, as mentioned above, refers to the lowest note of a
soprano saxophone and the geometrical model, shown in Fig. 3.8, approximates
that of a professional high–end concert instrument.

Figure 3.8: Geometric model of the soprano saxophone.

The input impedance spectrum, numerically obtained using the methodology
described above, is shown in Fig. 3.9.
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Figure 3.9: Input impedance spectrum of the soprano saxophone.

The analysis of the impedance spectrum shows that the the first resonance fre-
quency of the instruments is close to the Bb3.7 Using the Eq. 3.7 is possible to
evaluate the reflection coefficient, whose inverse Fourier transform is presented in
Fig. 3.10.

7Ab3 in the musical tuning at 440 Hz.
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Figure 3.10: Reflection function of the soprano saxophone.

The reflection function, inverse Fourier transform of the reflection coefficient,
can be used in order to solve the system represented by the Eq. 3.12 in order to
compute the reed displacement, the inflow and the pressure signal, i.e. the state
variables inside the embouchure (see Fig. 3.11).
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Figure 3.11: Soprano saxophone: reed displacement, inflow and pressure signal inside the em-
bouchure during the performance of the Bb3.

54



INTERACTION WITH THE PLAYER AND SOUND PROPAGATION

Double–reed–driven instruments

Double–reed instruments are also called oboe–like instruments due to its best–known
member, and differ between the single–reed instruments primarily in the excitation
mechanism. In fact the exciter is represented by two vibrating pieces of cane.

Several studies [4, 82] have shown that the displacements of the two reeds are
symmetrical and the oscillations are synchronous. Given this assumption, the model
of the single-reed dynamic (see Eq. 3.13) can be used with the foresight to dupli-
cate the displacement of the single oscillator, with the aim of compute the time–
dependent area through which the inflow transits.

Notwithstanding it seems necessary to point up that the particular geometry of
the reeds cause inflow separation, hence the nonlinear characteristic would change
from single–valued to multi–valued, as shown in Fig. 3.12.
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Figure 3.12: A typical nonlinear characteristic of the double–reed: inflow as a function of the
pressure jump across the reed.

Air–jet–driven instruments

Air–jet–driven instruments seem to be the most ancient tunable musical instru-
ments. Flute–like instruments present a wide variety of geometries and performing
techniques, providing both soft and pure tones, like recorders and ocarinas, and
loud and noisy sounds, like zampoñas and shakuhachis [23].

It is interesting to note that the studies concerning the physical modeling of
these instruments starting with the 17th Century, following the development of the
modern fluid dynamics [57, 11, 41, 66].

The sound production of flute–like instruments can be modeled as a nonlinear
coupling between an air–jet and an edge, often called labium (see Fig. 3.13).
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Figure 3.13: Modeling of the mechanism of sound production in flute–like instruments [80].

When the musician starts to play by applying a blowing pressure, an unstable
air–jet interacting with the labium is generated. The acoustic perturbation start
travelling along the resonator and is reflected by its end, thus the reflected wave
goes back to the exciter location and, in turn, perturbs the jet, sustaining the self–
oscillations.

The transversal deflection of the air–jet at the labium, can be expressed as
follows

η(W, t) = eαjW η0(t− τ) =
h

uj
eαjW vac(t− τ) (3.21)

being αj the amplification parameter,8 W the distance between the channel exit and
the labium, η0 the transversal displacement of the jet, h the height of the channel,
uj the jet central velocity, vac the oscillating amplitude of the acoustic velocity at
the resonator exit and

τ =
W

cp
(3.22)

the convection delay of the perturbation along the jet, with cp the convection velocity
of perturbations along the jet. It is worth noting that the oscillation of the jet around
the labium is responsible of a flow injection inside and outside the pipe and such
alternate injection can be modeled as a pressure difference ∆p as follows

∆p(t) =
ρδd
Sw

dQin
dt

(3.23)

being ρ the air density, δd the effective distance between the inflow sources, Sw the
area bounded by the channel exit and the labium and Qin the inflow injected in the
pipe [81]. The term Qin can be modeled as a function of the jet velocity profile,
and the Eq. 3.23 represents the aeroacoustic source that excites the resonator [80].

3.2.2 Brasses

Brasses [8] produce sounds by sympathetic vibration of the air column in the res-
onator. A lip–energized noise [62] is projected towards the outside of a tube, and
is amplified by a bell. The earliest use of trumpet–like instruments seems to date
about in the fourth millennium B.C. Mesopotamia, although no instruments have
been excavated from archaeological sites, and then only illustrations suggest their

8The empirical expression αj = 0.4/h seems to be suitable [24].
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existence. Actually the conscious and extensive, documented by artefacts and paint-
ings, use of brasses came from Egypt during the Egyptian Empire (c. 1550 B.C. -
c. 1077 B.C.), when the first trumpet was discovered.

Figure 3.14: Paintings of trumpet–like instruments in the egyptian figurative art.

Modern brasses can be categorized into four classes:

1. Natural brasses: only produce sounds in the instrument’s harmonic series.
This category include older variants of the trumpet and horn, that were nat-
ural brass instrument until about 18th century.

2. Valved brasses: these instruments use a set of valves (piston–valves or rotary–
valves) operated by the player’s fingers that introduce additional tubing into
the instrument, changing its overall length. Such valves allow the players use a
single instrument in more than one key. This family includes all of the modern
brass instruments (trumpet, french horn, euphonium, tuba, cornet, flugelhorn,
tenor horn, baritone horn, sousaphone, mellophone, and the saxhorn) except
the trombone.

3. Slide brasses: such instruments use a slide to change the tubing’s length, and
the main instruments are the trombone family. Occasionally, valve trombones
are used especially in jazz.

4. Keyed or Fingered brasses: include the cornet, serpent, ophicleide, keyed bugle
and keyed trumpet. Use holes along the body, which are covered by fingers
or keys as in the case of woodwind instrument.

Whichever is the type of brass, the player trims the tension of lips, controlling
simultaneously the air flow, in order to emit sounds. Lips dynamic can be described,
as done for single-reed, with the motion of a simple harmonic oscillator [32, 40, 26],
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but unlike what was seen for single reed instruments, the back wavefront arise from
the bell leads to close the valve while the flow due to the mouth pressure carries
out its opening.

The valve displacement is now governed by the following:

d2y(t)

dt2
+ gL

dy(t)

dt
+ ω2

Ly(t) =
Pm − p(t)

µL
(3.24)

where gL is the damping factor, ωL the natural resonance frequency of the lips and
µL is the mass ratio. It is worthy emphasize that all the coefficients of the Eq. 3.24
only depend on musicians lips contraction: the musician acts on the mechanical
properties of his lips (accordingly the portion of vibrating mass of lips varies) note
by note, and all playable notes are close to input impedance maxima peaks. This
is the main difference with reed-driven woodwind instruments, when the player can
only slightly alter elastic properties of reed by tightening the mouth around the
mouthpiece.

Figure 3.15: Modeling of the lip as a simple harmonic oscillator.

This time is reasonable to neglect the flow due to lips movement, so only the
Bernoullian one, due to pressure jump between mouth and mouthpiece, is consid-
ered. The auxiliary variable can be now defined as

ξ(t) = y(t)− Pm
µLω2

(3.25)

Setting ẏ(t) = v(t), one can obtain( ˙ξ(t)
˙v(t)

)
=

[
0 1
−ω2

L −gL

](
ξ(t)

v(t)

)
+

(
0

− 1
µL

)
p(t) (3.26)

with
y(t) = 0, if y(t) ≤ 0 (3.27)

Knowing ξ[n] for each time step, the displacement y[n] is given by the Eq. 3.25 and
the lips opening area can be evaluated by assuming an arbitrary shape.9

9Typically is used a rectangle whose height is the displacement y[n].
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Example Considering now, as a test case, a B-flat trumpet with a standard mod-
ern mouthpiece, playing the F4 on first position.10 The geometric model is presented
in Fig. 3.16.

Figure 3.16: Geometric model of the Bb piston trumpet related to the first position.

The input impedance spectrum of first position is shown in Fig. 3.17 and it is
easy to see that the F4 arises the third impedance peak.11
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Figure 3.17: Input impedance spectrum of a Bb piston trumpet.

As well as done before, the inverse Fourier transform of the reflection coefficient
(see Eq. 3.7) provide the reflection function, in Fig. 3.18.

10First position refers to all key opened.
11The analysis of the input impedance spectrum highlights that the trumpet is slightly out of

tune, but for the purposes intended at the moment the fine tuning of the instrument is not required.
For details concerning the tuning of the brass geometry see the Chap. 4 (see Sect. 4.1.2).
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Figure 3.18: Reflection function of a Bb piston trumpet.

The reflection function is used for the solution of the system represented by the
Eq. 3.12, which provides the state variables (lip displacement, inflow and pressure
signal) inside the embouchure (see Fig. 3.19).
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Figure 3.19: Bb piston trumpet: lips displacement, inflow and pressure signal inside the em-
bouchure during the execution of the F4.
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3.3 The radiation of the signal

As detailed in the Chap. 2 (see Sect. 2.3), the frequency dependent transfer func-
tions related to the sound propagation can be easily obtained with the integral for-
mulation, solving the acoustic fields inside and outside the resonator. Such transfer
functions enshrine the connection between the boundary condition χ̃in at the inlet
section of the resonator the propagated pressure signals p̃(yext, s).

In the operating conditions, i.e. during the performance of a note, in the
frequency–domain one have

χ̃in ≡ ũin (3.28)

thus, the propagation of the signal in the time–domain is simply provided by the
convolution integral between the inlow uin(t) and the inverse Fourier transform of
the Embouchure–to–Microphone transfer function E2M or of the Embouchure–to–
Listener transfer function E2L.

In more detail, the signal at the virtual microphone location is given by the
following expression

pm(t) = uin(t) ∗ e2m(t) (3.29)

being uin(t) the inflow across the intake section and e2m(t) the inverse Fourier
transform of E2M

e2m(t) = F−1 [E2M(ω)] (3.30)

Similarly the pressure signal at the listener’s ears is provided by

pl(t) = uin(t) ∗ e2l(t) (3.31)

denoting with the superscripts “R” and “L” respectively the right–channel and the
left–channel, being the vector pl(t) the stereophonic auralized pressure signal at the
listener’s ears

pl(t) =

(
pRl (t)

pLl (t)

)
(3.32)

with uin(t), as the first, the inflow across the inlet section of the resonator. The
inverse Fourier transform of E2L in this case consists in two components

e2l(t) = F−1

(
E2L

R(ω)

E2L
L(ω)

)
(3.33)

With reference to the Fig. 3.1 it is easy to understand that the inflow uin(t) must
be computed by solving the acousto–elastic coupling between the exciter and the
resonator.
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Example Let consider the example of the Sect 2.3, i.e. the Bessel horn with a
bottleneck close to the inlet section. Considering, as a test case, a prescribed inflow
uin(t) at the inlet surface of the resonator, e.g. a translated triangle wave of the
type

uin(t) =
G

2

[
1 +

2

a

(
t− a

⌊
t

a
+

1

2

⌋)
(−1)b

t
a

+ 1
2c
]

(3.34)

being a = T ∗/2 the half–period of the wave and G a simple gain. As the frequency
of the wave let impose f∗ = 328.6 Hz, an intermediate frequency between the first
maximum and the first minimum of the input impedance spectrum (see Tabs. 2.4
and 2.5).12 The triangle signal used as prescribed inflow uin(t) at the inlet surface
of the resonator is presented in Fig. 3.20.
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Figure 3.20: Translated triangle wave, used as prescribed inflow uin(t) at the inlet surface of the
resonator.

In the following, the signal of Fig. 3.20 will be radiated outside the instrument
using the integral representation of the acoustic field (for details see Sect. 2.3).
The time–varying pressure signal is evaluated for a virtual microphone located at
distance r = 2 m with respect to the outlet section, with an offset α = 30◦ with
respect to its longitudinal axis (see Fig. 2.23). The auralized signal is related to
a simple model of head located on the instrument axis at distance d = 3 m with
respect to the outlet section of the resonator (see Fig. 2.24).

The inverse Fourier transform of E2M related to the virtual microphone is
presented in Fig. 3.21

12The choice to use an intermediate frequency between the first maximum and the first minimum
of the input impedance spectrum, is in the attempt to generalize the filtering behaviour of transfer
functions E2M and E2L, without falling into a specific type of coupling between the exciter and
the resonator (see Sect. 2.1).
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Figure 3.21: Microphone response related to a virtual microphone located at distance r = 2 m
from the outlet section of the resonator, with an offset α = 30◦ with respect to its
longitudinal axis.

The time shift of the microphone response is related to the distance of the
microphone from the inlet section of the resonator. The Eq. 3.29 gives rise to the
time–dependent pressure signal at the virtual microphone location, in Figs. 3.22
and 3.23.
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Figure 3.22: Pressure signal at the virtual microphone located at distance r = 2 m from the
outlet section of the resonator, with an offset α = 30◦ with respect to its longitudinal
axis, evaluated using a prescribed triangle wave as the inflow uin(t) at the inlet
surface of the resonator.
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Figure 3.23: Pressure spectrum at the virtual microphone located at distance r = 2 m from
the outlet section of the resonator, with an offset α = 30◦ with respect to its
longitudinal axis, evaluated using a prescribed triangle wave as the inflow uin(t) at
the inlet surface of the resonator.

Let now consider the inverse Fourier transform of the transfer function E2L,
related to two antipodal location of a head model located on the instrument axis at
distance d = 3 m with respect to the outlet section of the resonator (see Fig. 3.24).
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Figure 3.24: Response at the listener’s ears, related to a simple model of head located on the
instrument axis at distance d = 3 m with respect to the outlet section of the res-
onator.

The time shift between the right ear and the left ear response is related to
the time required by the wave to sail around the head, and is responsible of the
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stereophonic perception of the sounds.13 The Eq. 3.31 lead to the stereophonic
auralized signal of Figs. 3.25 and 3.26.
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Figure 3.25: Pressure signal at the listener location, related to a simple model of head located
on the instrument axis at distance d = 3 m with respect to the outlet section of the
resonator.
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Figure 3.26: Pressure spectrum at the listener location, related to a simple model of head located
on the instrument axis at distance d = 3 m with respect to the outlet section of the
resonator.

13Indeed the perception of the provenance of an acoustic source derives by the cerebral inter-
pretation of the phases shift.
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Time–domain simulations of
brasses
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CHAPTER 4

From the geometric model to the auralized sounds

A complete time–domain simulations of a brass instruments will shown in this chap-
ter. To be noted, as previously mentioned, that the presence or not of the piston
does not affect the interaction between the air column inside the resonator and the
dynamics of the vibrating lip, hence will be presented the complete simulation of a
valveless brass, the natural Eb trumpet, starting from the identification of the char-
acteristics of the resonator up to the auralization of the pressure signal, using the
methodologies previously described in the Chaps. 2 and 3. The technique used in
order to obtain the offline real–time utilization of the physical model is also detailed.

4.1 The natural Eb trumpet

The natural trumpet is one of the most ancient musical instrument. The earliest
evidence of its use dates back to the Middle Ages. It reached the widest diffusion
in Western music during the Baroque era when important composers like Antonio
Vivaldi, Georg Philipp Telemann, Georg Friderich Händel and Johann Sebastian
Bach reserved to this instrument a key role in their compositions. For this reason
the natural trumpet is commonly referred to as baroque trumpet. In that period
the trumpet scores were almost written for C and D tuned natural trumpets1 but
eminent exceptions, as the trumpet parts of the first version2 of the Magnificat in
Eb major BWV 243a, by Johann Sebastian Bach, gave glory to the natural Eb
trumpet.

1Notice that the tuning frequency of the musical instruments in the baroque era was averagely
415 Hz, hence the compositions today would sound an helf–tone below.

2Composed in the 1723 and transposed in D major about ten years later.
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Figure 4.1: First page of the manuscript of the second version (in D major) of the Magnificat
BWV 243: the first version BWV 243a was in Eb major. On the top lines of the
score, the parts of the three trumpets.

4.1.1 The geometric model

The construction of the geometric model of the Eb natural trumpet implied an
extensive literature survey [28, 65, 63, 53, 29], and the one that has been adopted
for the simulations is based a baroque trumpet replica. The global size is comparable
with original instruments, but it was chosen to model a modern mouthpiece and
the bell has more accentuated flaring.

It is worth noting that due to the high computational cost deriving from the
necessity of catch a wide frequency spectrum, a straight geometry was generated.
This choice, by exploiting the axial symmetry, allows to reduce the size of the prob-
lem and, consequently, the memory that must be allocated by the computer for the
simulation. On the other hand should be specified that the natural trumpet was
originally built with straight piping, and then the need to keep long instruments
compact imposed the bending of portions of the pipe. The influence of the cur-
vatures can be significant, and the study of such effects [31, 38, 30] have proven
that the curvatures can both increase and decrease the resonances of the resonator,
providing a complex inharmonicity. These effects cannot be considered negligi-
ble, since the timbrical perception is highly responsive to the inharmonicity of the
sounds: notwithstanding the numerical simulation of a geometry with curvature is
too onerous, and hence an axisymmetric resonator was simulated.3

3In order to understand this difference, considering that the memory requirement of a BEM
implementation is related to the square of the number of elements N : for a simulation involving
N = 106 elements,4 the only storage of the matrix Y (see Eq. 2.16) is over 100 Gbytes, whereas
the corresponding problem, symmetrized by using about a hundred slices, requires little more than
1 Gbytes.
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The geometry of the instrument can be roughly divided in three parts: the
mouthpiece, the cylindrical pipe and the bell.

The mouthpiece (see Fig. 4.2), whose total length approximately arises 10 cen-
timetres, has a profile generated by imposing the cup diameter and depth, the throat
diameter and both the backbore length and slope. It was noticed that that the ex-
ternal profile doesn’t affect the acoustical behaviour of the resonator, thus a generic
contour has been chosen.
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Figure 4.2: Geometric model of the mouthpiece of the Eb natural trumpet.

The bell, whose profile is shown in Fig. 4.3, consisting in a Bessel horn, with a
flaring constant of γ = 0.57 and a throat–base ratio TBR = 11.8: its total length
is about 65 centimetres.
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Figure 4.3: Geometric model of the bell of the Eb natural trumpet.

The total length of the trumpet geometric model, including the mouthpiece is
just over 210 centimetres and the diameter of the cylindrical piping is about 12
millimetres. The size is fully in agreement with a real instrument.

It is worth nothing that the tuning of the natural trumpet is highly affected
by both the mouthpiece type (and size) and the bell shape. Indeed the effect of
the bell is such that the lower resonant frequencies are pulled upward,5 as well as
the mouthpiece forces the upper resonant frequencies downward. The aim of such

5And furthermore is produced the pedal–tone, which is the lowest, rarely performed, playable
note of a brass instrument.
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detuning is the achievement of the harmonic sequence of a closed pipe. An accurate
selection of the geometric parameters was therefore necessary with a view to get the
proper intonation.

Figure 4.4: Jan Vermeer (Delft, 1632 – Delft, December 1675), The Allegory of Painting (de-
tail: girl holding a trumpet, the symbol of the glory), 1665-1668, oil on canvas,
130x110 cm, Kunsthistorisches Museum, Vienna.

4.1.2 Acoustical characterization

The BEM simulation was carried out by imposing a constant inflow χin acting at
the inlet section using hard–wall boundary condition on the instrument surface, as
shown in the Chap. 2, and solving the acoustic field inside and outside the instru-
ment. The frequency response was evaluated up to 6250 Hz, which is equivalent to
having a sampling frequency equal to 12.5 kHz.6 The simulation was accomplished
by introducing a simple model of the head distant d = 3 m from the outlet section
of the instrument, and the solution was also evaluated on a quarter circle of radius
r = 2 m of virtual microphones.

6The maximum frequency is a slightly higher frequency with respect to the frequency for which
the wavefronts can be considered plane. This choice penalizes the quality of the solution at the
upper part of the frequency spectrum but is to the benefit of the grade of the reconstructed sounds,
since the time discretization ∆t is inversely proportional to the sampling frequency.
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Input impedance

The complex input impedance spectrum (see Figs. 4.5 and 4.6) is directly derived
from the knowledge of the velocity potential function ϕ̃ (see Eq. 2.12).
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Figure 4.5: Components of the complex input impedance spectrum of the Eb natural trumpet.
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Figure 4.6: Module of the input impedance spectrum of the Eb natural trumpet.

The resonances, in proximity of which the musician can perform the notes, are
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close to the Eb harmonic series.7 Defining the deviation in cents of tone with respect
to the frequencies of the notes as follows

εc = 1200 log

(
fTn
fn

)
(4.1)

it is possible to examine the tuning of the instrument, presented in Tab. 4.1.

Frequency Note Deviation
fI 49.49 Hz G1 +17 cents
fII 144.05 Hz D3 -33 cents
fIII 228.97 Hz Bb3 -31 cents
fIV 308.07 Hz Eb4 -17 cents
fV 391.88 Hz G4 -1 cents
fV I 474.17 Hz Bb4 +29 cents
fV II 552.06 Hz C#5 -7 cents
fV III 629.67 Hz Eb5 +21 cents
fIX 705.19 Hz F5 +17 cents
fX 774.83 Hz G 5 -20 cents
fXI 843.17 Hz Ab5 +26 cents
fXII 915.47 Hz Bb5 -32 cents

Table 4.1: Resonances of the natural trumpet in Eb, with deviation from the theoretical frequen-
cies related to the Eb harmonic series in equal temperament tuned at 440 Hz.

The deviation of the resonant frequencies from the theoretical frequency of each note
of the Eb harmonic series seems to be dependant by the quality of the geometric
model.8 It is important to note that the tuning of a brass is a serious challenge and
it was noticed that even in real instruments the first peak, excluding the pedal–tone,
is shifted towards the half-tone immediately below.

With the purpose to obtain a suitable tuning starting from knowledge of the
rough geometrical sizes of the instrument, the adopted strategy was that of vary
the flaring constant of the bell and slightly change the length of the cylindrical
piping. With these precautions it has been possible to readily reach a satisfactory
tuning of the instrument (this can be considered virtual lutherie), obtaining the
proper tuning without excessively altering the geometric sketch of the instrument.

To complete the acoustical characterization of the resonator, the minima of the
input impedance spectrum are reported in Tab. 4.2.

7Is an exception the second resonance which results to be a D instead of Eb, but it is noted
that is a characteristic of also detected in the real instruments.

8Moreover, being resonances calculated as the crossing, from positive to negative, of the imag-
inary part of the complex impedance spectrum (see Fig. 4.5), each resonant frequency is affected
by an error of the order of the frequency step, as described in the Chap. 2.
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Frequency Note Deviation
fI 86.50 Hz F2 -16 cents
fII 171.08 Hz F3 -35 cents
fIII 249.36 Hz B3 +17 cents
fIV 327.12 Hz E4 +13 cents
fV 410.32 Hz Ab4 -21 cents
fV I 492.18 Hz B4 -6 cents
fV II 571.70 Hz D5 -47 cents
fV III 654.15 Hz E5 -13 cents
fIX 736.44 Hz F#5 -8 cents
fX 816.72 Hz Ab5 -29 cents
fXI 899.38 Hz A5 +38 cents

Table 4.2: Antiresonances of the natural trumpet in Eb, with deviation from the theoretical
frequencies related to the nearest note in equal temperament tuned at 440 Hz.

The inverse Fourier transform of the input impedance, shown in Fig. 4.7, pro-
vides the impulse response of the resonator which, as detailed above, turns out to
be not suitable for the time–domain simulation due to its decay time.
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Figure 4.7: Impulse response of the Eb natural trumpet.

Reflection coefficient and reflection function

As described in the Chap. 3, the numerical simulations are based on defining the
reflection coefficient (see Eq. 3.7), directly descending from the knowledge of the
input impedance (see Figs. 4.8 and 4.9).
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Figure 4.8: Components of the reflection coefficient of the Eb natural trumpet.
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Figure 4.9: Module of the reflection coefficient of the Eb natural trumpet.

It is worth noting that the condition of passive resonator, expressed by the Eq.
3.8, is fully complied.

The reflection coefficient allows to isolate a single reflection inside the resonator,
so that the decay time of its inverse Fourier transform, shown in Fig. 4.10, be
shorter than the impulse response, in Fig. 4.7.
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Figure 4.10: Reflection function of the Eb natural trumpet.

It seems important to emphasize that, unlike the cylindrical pipe, the decay
time of the reflection function is is certainly not comparable with the fundamental
period due to the complex shape of the resonator, nevertheless become such that
the convolution integral has a faster convergence.

Embouchure-to-Microphone transfer function

The Embouchure-to-Microphone transfer function E2M is achievable solving the
Eq. 2.32, and its evaluation at suitable locations allows to assess the directivity
pattern of both the resonances and the antiresonances (see Figs. 4.11 and 4.12).
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Figure 4.11: Resonances directivity patterns of the Eb natural trumpet, evaluated on an half–
circle of virtual microphones located at a distance r = 2 m from the outlet section.
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Figure 4.12: Antiresonances directivity patterns of the Eb natural trumpet, evaluated on an
half–circle of virtual microphones located at a distance r = 2 m from the outlet
section.

It is interesting to note that the behaviour of the directivity pattern at increasing
frequencies related to the resonances manifests a maximum for the tenth peak, which
results to be close to the first peak of the mouthpiece (see Fig. 4.13).
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Figure 4.13: Input impedance spectrum divided by ρc/Sin related to the mouthpiece of the Eb
natural trumpet.

Let now consider a single virtual microphone located at a distance r = 2 m
from the outlet section of the trumpet, with an offset α = 30◦ with respect to the
longitudinal axis of the instrument, as shown in Fig. 4.14.
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Figure 4.14: Position of the virtual microphone located at a distance r = 2 m from the outlet
section of the trumpet, with an offset α = 30◦ with respect to the longitudinal axis
of the Eb natural trumpet.

Since the problem is axisymmetric, the virtual microphone is representative of
the entire circumference of radius r sin(α), distant r cos(α) from the outlet section
of the trumpet. In this location the Embouchure-to-Microphone transfer function
E2M takes the shape of Fig. 4.15.
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Figure 4.15: Magnitude of the Embouchure-to-Microphone transfer function divided by 1/Sin
related to a virtual microphone located at a distance r = 2 m from the outlet
section of the trumpet, with an offset α = 30◦ with respect to the longitudinal axis
of the Eb natural trumpet.

The Bode diagram of the Embouchure-to-Microphone transfer function E2M is
presented in Fig. 4.16.

79



CHAPTER 4

-40

-30

-20

-10

 0

 10

 20

 100  1000

M
ag

ni
tu

de
 [d

B
]

Frequency [Hz]

-80

-60

-40

-20

 0

 20

 40

 60

 80

P
ha

se
 [d

eg
]

Figure 4.16: Bode diagram of the Embouchure-to-Microphone transfer function divided by 1/Sin
related to a virtual microphone located at a distance r = 2.0 m from the outlet
section of the trumpet, with an offset α = 30◦ with respect to the longitudinal axis
of the Eb natural trumpet.

The pressure signal at the microphone location is given by the convolution be-
tween e2m(t), the inverse Fourier transform of E2M, and the inflow uin(t) (see Eq.
3.12): such inverse Fourier transform e2m(t), in Fig. 4.17, represents the impulse
perceived at the virtual microphone.
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Figure 4.17: Microphone response related to a virtual microphone located at a distance r = 2.0 m
from the outlet section of the trumpet, with an offset α = 30◦ with respect to the
longitudinal axis of the Eb natural trumpet.

Obviously such impulse response is shifted in the time–domain of the distance
between the input section and the microphone multiplied by the sound velocity.
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Embouchure-to-Listener transfer function

Considering a simple model of the head9 located at distance d = 3 m from the outlet
section of the instrument. The transfer function is evaluated, as illustrated in Fig.
4.18, at two antipodal location of the head.

Figure 4.18: Position of the head with respect to the outlet section of the Eb natural trumpet.

The auralization of the sound, as described above (Eq. 2.46), is based on the
knowledge of the Embouchure-to-Listener E2L transfer function (see Fig. 4.19).
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Figure 4.19: Magnitude of the Embouchure-to-Listener transfer function divided by 1/Sin for
the Eb natural trumpet related to a simplified model of head.

The Bode plot of the Embouchure-to-Listener transfer function E2L is presented
9In the simulation the head is assumed to be a simple sphere of radius rsph = 8.75 cm.
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below, in Fig. 4.20.
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Figure 4.20: Bode diagram of the Embouchure-to-Listener transfer function divided by 1/Sin for
the Eb natural trumpet related to a simplified model of head.

The function e2l(t), in Fig. 4.21, represents the impulse perceived by the listener
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Figure 4.21: Response at the listener’s ears, related to a simple model of head located on the
instrument axis at distance d = 3 m with respect to the outlet section of the Eb
natural trumpet.
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In fact, as in the case of the virtual microphone, the pressure signal at the listener
ears is given by the convolution between e2l(t), the inverse Fourier transform of
E2L, and the inflow uin(t) (see Eq. 3.12). Even this time the impulse response is
shifted in the time–domain of the distance between the input section and each ear
multiplied by the sound velocity, consequently the peak–to–peak distance between
the right–channel and the left–channel of Fig.4.21 multiplied by the sound velocity
provides the spatial distance between the ears of the listener.

4.2 The system solution

4.2.1 Signals inside the embouchure

The step integration of the Eq. 3.26 provides simultaneously the displacement, the
inflow and the pressure signal inside the embouchure, at the inlet section of the
instrument. By a suitable choosing of the parameters of the Eq. 3.24, the virtual
trumpet it is able to play several notes, all close to the resonant peaks of the input
impedance spectrum (see Tab. 4.1).

The one degree of freedom model of the valve is characterized by the frequency
response in Fig. 4.22.
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Figure 4.22: Bode diagram for the one degree of freedom model of the valve during the perfor-
mance of the G4 with the Eb natural trumpet.

The inverse Fourier transform of the valve frequency response, in Fig. 4.23,
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provides the impulse response of the mechanical system.
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Figure 4.23: Normalized impulse response of the one degree of freedom model of the valve during
the performance of the G4 with the Eb natural trumpet.

The state variables inside the embouchure related to the performance of the G4,
395.6 Hz pitched, are presented in Fig. 4.24.
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Figure 4.24: Lip displacement, inflow and pressure signal inside the embouchure during the per-
formance of the G4, 395.6 Hz pitched, with the Eb natural trumpet.
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It is worth noting that the state variables, i.e. the lip’s displacement y(t), the
inflow u(t) and the pressure p(t) exhibit behaviour fully consistent with what is
available in literature [2, 50].

The analysis of the phases portrait (see Fig. 4.25) highlights the limit–cycle
rotating clockwise around the center of the phases,10 proving the stability of the
solution.
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Figure 4.25: Phase–trajectory related to the performance of the G4, 395.6 Hz pitched, with the
Eb natural trumpet.

It seems essential to highlight that the occurrence of the limit–cycle is necessary
and sufficient condition for the dynamic evolution of the system represented by the
Eq. 3.12 to produce a pressure signal attributable to a sustained–sound: as will be
shown in the Chap. 5, it depends on the combination of the parameters of the Eq.
3.24, i.e. the blowing pressure Pm and the mechanical characteristics of the valve,
µL, gL and ωL, describing the motion of the lips.

4.2.2 Pressure at the microphone location

The signal at the virtual microphone location will be assessed for a microphone
located at a distance r = 2 m from the outlet section of the trumpet, with an offset
α = 30◦ with respect to the longitudinal axis of the instrument (see Fig. 4.14). The
pressure signal at such microphone location related to the performance of the G4,
395.6 Hz pitched, is presented in Fig. 4.26, and is evaluated using the Eq. 3.29.

10The phases–plane analysis will be detailed in the Chap. 5 (see Sect. 5.3.1).
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Figure 4.26: Pressure signal at microphone location during the performance of the G4 with the
Eb natural trumpet.

In the frequency–domain (see Fig. 4.27) it is evident that the signal spectrum
is rich even at high frequency, which shows that it is essential to carry out the
frequency analysis up to very high frequencies.
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Figure 4.27: Pressure spectrum at microphone location related to the performance of the G4

with the Eb natural trumpet.

It seems essential to point up, as shown in Fig. 4.28, that the coherence of the
simulated waveform at the virtual microphone location with respect to a recorded
waveform with an instrument of the same category, is remarkable.
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Figure 4.28: Comparison between recorded waveform (sampling frequency Fs = 44100 Hz) and
simulated waveform at the microphone location.

4.2.3 The auralization

As seen above, the transfer function E2L related to the listener ears was evaluated
on a simple head model, specifically on two poles apart points of the sphere. This
choice is particularly interesting, since it allows to have the greatest differences
between the left and right channel of the stereophonic signal.

The pressure signals referred to both right and left ears is computed by solving
the Eq. 3.31, and are presented in Fig. 4.29
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Figure 4.29: Pressure signal at the ears of the listener during the performance of the G4 with
the Eb natural trumpet.
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Figure 4.30: Pressure spectrum at the ears of the listener during the performance of the G4 with
the Eb natural trumpet.

4.3 Towards the real–time simulations

The exploitation of the physical models for the real–time sound synthesis can find
several employment in the digital synthesizers or applications compatible with the
consumer devices, as well as in the hybrid and augmented musical instruments
design. The need of the scientific community of focusing the efforts on the real–time
sound synthesis is also attributable to the recent development of several low–cost
portable devices. It is worth noting that the interaction between the “computability”
and the “playability” of the physical model turns out to be crucial in the real–time
approach to the physical modeling.

Out below will be outlined an operating block diagrams representation of the
acousto–elastic coupled system which represents the physical model of the brasses,
and of the sound radiation.

4.3.1 Block diagram representation

In the Feedback Control Theory and in the Signal Processing fields, the classic
diagram modeling consists of several interconnected blocks: each block represents a
dynamic system and the all the blocks at once describe the overall dynamic. Each
block has an input (or several inputs) and an output (or several outputs), and three
basic elements can be identified, i.e.

• the summing junction, used to sum or subtract signals, is represented by a
circle within which the signs “+” and “−” indicate the operations of addition
or subtraction of the inputs;
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• the constant gain, which is simply a scalar multiplier. It consists in a triangle
block, and its output is equal to the input multiplied the value of the gain;

• the transfer function, representing the ratio between the output signal and
the input signal, is sketched with a rectangle and contains the model of the
transfer function.

By exploiting the abovementioned elements it is possible to achieve a suitable de-
scription of the system represented by the Eq. 3.24, in order to obtain the sound
radiated at the virtual microphone and the auralized signal, making use of the Eqs.
2.31 and 2.45.

Let consider the dynamic of the acousto–elastic system. The player supplies a
constant blowing pressure Pm: the latter combines with the time–varying acoustic
pressure inside the embouchure p(t) and both interact with the exciter, modeled as
a simple valve (characterized by the inertial term µL, the viscous term gL and the
resonant frequency ωL), providing the displacement ξ(t), as shown in Fig. 4.31.

Figure 4.31: Block diagram for the valve motion ξ(t), related to the physical model of a brass
instrument.

The gain G1 in Fig. 4.31, being µL the mass ratio, is defined in accordance with
the Eq. 3.24 as

G1 = −µ−1
L (4.2)

As described by the Eq. 3.25 the resulting valve displacement ξ(t) provides the lip
movement y(t), and the opening area S(t) can be evaluated as a function of y(t)
(see Fig. 4.32).

Figure 4.32: Block diagram for the opening area S(t), related to the physical model of a brass
instrument.
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The gains G2, according with the Eq. 3.25, and G3 in Fig. 4.32 are given by
the following

G2 =
(
µLω

2
L

)−1

G3 = hL
(4.3)

being µL the mass ratio, ωL the resonance of the lip and hL the diameter of the
inlet section of the embouchure.11 Note that the saturation block downstream the
summing junction, in Fig. 4.32, means that the lip displacement cannot assume
negative values, as described by the Eq. 3.27.

The opening area S(t) let transit the volume inflow uin(t) through the player
lips (see Fig. 4.33), under the Bernoulli law.

Figure 4.33: Block diagram for the inflow uin(t), related to the physical model of a brass instru-
ment.

The gain G4 of Fig. 4.33, derived from the Eq. 3.11, is defined as follows

G4 = (2/ρ)1/2 (4.4)

being ρ the air density.12

Finally, the volume inflow uin(t), in agreement with the Eq. 3.3 and with the no-
tion of input impedance, contributes to the temporal variation of the acoustic pres-
sure p(t) inside the embouchure: moreover, with the knowledge of the Embouchure–
to–Microphone transfer function E2M, one can obtain the pressure signal pm(t) at
the virtual microphone (or several virtual microphones), whereas the Embouchure–
to–Listener transfer function E2L enables the achievement of the auralized signal,
obtaining the pressure signal pl(t) at the listener’s ear (see Fig. 4.34).

11The shape of the area has been arbitrarily choosen (see Sect. 3.2.2).
12The block of Fig. 4.33 identified by the symbol “×” refers to the multiplication of the two

inputs (see Eq. 3.11).
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Figure 4.34: Block diagram for the pressure signal p(t) at the inlet section of the instrument and
for the sound radiation (pm(t) and pl(t)), related to the physical model of a brass
instrument.

The block diagram related to the complete brass physical model with the sound
propagation and auralization can be obtained by combining the subsystems of Figs.
4.31, 4.32, 4.33 and 4.34, and is sketched in Fig. 4.35.

Figure 4.35: Block diagram for the physical model of a brass instrument with the sound propa-
gation and auralization.

Continuous–time vs. discrete–time

With few precautions and modifications,13 this schematic representation of brass
instruments physical model may be used in both the continuous–time and in the
discrete–time.

The continuous–time systems describe differential equations and employ the
transfer function representation in the Laplace–domain, namely the s–domain, being

13It is worth noting that, e.g. in the first summing junction the output is driven by the output
of the same line through the feedback path: in order to overcome this drawback, a delay on the
feedback line must be placed.
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s = α+ iω: a transfer function can be written as

H(s) =
N(s)

D(s)
=
bms

m + bm−1s
m−1 + b1s+ b0

ansn + an−1sn−1 + a1s+ a0
(4.5)

or in zero/pole/gain form as

H(s) = G
(s− zm) . . . (s− z1)

(s− pn) . . . (s− p1)
(4.6)

Instead the discrete–time systems describe finite–differences equations making use
of the transfer function representation in the z–domain. Actually the z–domain is
the discrete counterpart of the s–domain. Indeed it is easy to note that, defining
z = es∆t, the z–transform is proportional to the Laplace transform of continuous–
time signal sampled every ∆t seconds [78, 75, 1].

In addition it is easy do demonstrate that

z = es
∆t
2 =

es
∆t
2

e−s
∆t
2

≈ 1 + es
∆t
2

1− es
∆t
2

(4.7)

being ∆t the time step of the sampled continuous–time signal. It follows that the
s–domain representation of a transfer function can be mapped into the z–domain
by substitution

H(z) = H(s)|s= 2
∆T

z−1
z+1

= H

(
2

∆T

z − 1

z + 1

)
(4.8)

The Eq. 4.8 is the bilinear approximation, also referred to as the Tustin’s method.

Example As an example, let consider the model of the valve (see Fig. 4.31)
described, as detailed above, by a simple second–order system. Its transfer function
in the s–domain, imposing arbitrary values for gl and ω2 is given by the following

Hv(s) =
1

s2 + 3 · 102s+ 4 · 106
(4.9)

Using the Eq. 4.8 with a time step ∆t = 10−3, the z–domain representation of
Hv(s) turns out to be

Hv(z) =
2.496 · 10−7z2 + 4.992 · 10−7z + 2.496 · 10−7

z2 + 1.997z + 0.997
(4.10)

4.3.2 System realization

The block representation of the Fig. 4.35 implies the realization of the input
impedance Zin, the Embouchure–to–Microphone transfer function E2M, aimed at
the propagation of the signal to toward the virtual microphone, and the Embouchure–
to–Listener transfer function E2L for the signal auralization.
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One can demonstrate that the bilinear approximation (see Eq. 4.8) preserves
the stability of the frequency response, mapping every point of H(s). Accordingly,
a suitable Reduced–Order–Model (ROM) in the s–domain was used. Specifically,
a representation [36, 37] of the abovementioned transfer functions was provided by
the following

E(s) = C (sI−A)−1 B (4.11)

It is worth noting that in all the analysed cases the realization has demonstrated to
be stable using a few hundred of degrees–of–freedom (see Fig. 4.36).
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Figure 4.36: Eigenvalues of the matrix A (see Eq. 4.11) related to the realization of the input
impedance Zin of the natural Eb trumpet.

Starting from the Eq. 4.11, the N poles pn and the M zeros zm (see Eq. 4.6)
are easy achievable and the discrete–time system can be provided by the Eq. 4.8.
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Exploration of the physical model parameters

The variety of playable notes is attributable to the mastery of the player to move on
each of the harmonic sounds, typically from the 3rd to the 16th, and in this chapter
the link between the mechanical characteristics of the lip and the emitted sounds
will be explained, with emphasis on identifying all the signals peculiarity that may
be considered musically relevant.

Particularly will be described the process leading to the characterization of the
pressure signals at the inlet section, referring to the natural trumpet in Eb described
in the Chap. 4. The aim of this part of the work is seeking, in the space of
the coefficients of the Eq. 3.24, the spots that give rise to physically–feasible and
musically–relevant sounds. The process leading to the identification of such spots
passes through both physical and aesthetical considerations, digging the initial space
with the purpose of reach the performance space which provide the performance
sounds.

5.1 Sculpting the variables space

5.1.1 Initial premises

The sound synthesis through physical modeling may be intended to two issues,
different and ostensibly contrasting. On one hand, the accurate reconstruction of
both the physical phenomena concerning the act of playing and the pressure signals,
with special attention to the correlation between phenomenon and perception. On
the other hand, the modelation in a wider sense, offers the opportunity, i.e. of
scanning the effect of a negative mass or a negative damping, as well listen the sound
produced by a senseless geometry, namely scanning the space of the non–physical
variables. In a certain sense, however, the proper modelation of the real phenomena
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is essential prerequisite for the exploration of improbable realities. Moreover should
be highlighted that the link between the two points of view lies in the artistic field,
within which turns to be essential the exploration of new sonorities, for purposes
of both the electronic music composition and the hybrid or augmented musical
instruments design.

The time–domain simulation provide a time–varying signal given a prescribed
combination of input data, identified within a mathematical domain. The domain
characterization is no easy matter due to the limitations imposed by modeling itself,
such as the degree–of–freedom reduction or the compatibility with the available
computing resources. It is important to note that identification of the “quality” of
the sounds, solution of the simulations, should involve a perceptual investigation.
Instead, in the following will be outlined an attempt to objectively characterize the
solutions of the physical model through a mathematical description.

Given this, turns out to be essential to formalize the terminology that will be
used hereafter. Let so define

• Variables space: is the domain X of definition of the physical model in the
space of the involved parameters. A prescribed location in the variables space
consists of a combination of the parameters of the Eq. 3.24 and constitutes
the input data set of the simulation;

• Solutions space: is the space P, image of X , of the time–varying signals
generated by prescribed coordinates of the variables space. The solutions
space contains several subspaces, among which is useful to identify:

– the hearing–range solutions, which are characterized by a periodicity
within the hearing–range;

– the sustained solutions, i.e. with a steady–state characterized by self–
sustained oscillations.

– the feasible solutions, then which not involve absurd physical quanti-
ties, i.e. if are in accordance with the physics of the case study in terms
of geometric values and performance praxis;

– the musical solutions, whose timbrical properties in terms of attack–
time transient and spectral fluctuation can ascribed to a brass instru-
ment.1

• Performance sounds: are the solutions belonging the intersection of all
the subspaces detailed above. Such sounds turn out to be attributable to the
sounds performed by an experienced musician, with timbrical characteristics
compliant with the real sounds. In addition the involved state variables are
feasible in physical terms;

1These solutions can be considered by definition within the hearing–range.
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• Performance space: is the subspace of the variable space the image of
which is the space of the performance sounds.

Figure 5.1: Identification of the performance sounds as superposition of subspaces in the global
space of the solutions: sustained solutions, feasible solutions and musical solutions
with the condition that the signal periodicity falls within the hearing–range.

With the purpose to identify the sounds that can be attributable to the musical
instrument under examination, considering that playing a resonant aerophone con-
sists in producing a sustained and controlled oscillation of the air column inside
the instrument, and this is possible as long as the musician directly sustains the
oscillation, i.e. the solution should be sustained (sustained solutions subspace).
Moreover, the sustained solution must lead to a physically–feasible combination
displacements, inflow and pressure at the inlet section of the instrument (feasible
solutions subspace). In addition, the sounds should also be coherent in terms of
spectral fluctuations and attack–time (musical solutions subspace).

The reason to consider the intersection of these subspaces (under the condition
that the periodicity fall within the hearing–range) lies on the knowledge that the
physical model may lead to the generation of solutions not referable to a brass
instruments, some of which are exceptionally similar to membranophones and chor-
dophones sounds: thus the timbrical characteristics identified in the subspace of the
musical solutions are not sufficient to identify a brass–like sound.

Then a solution will be characterized as sustained–sound if it reaches self–
sustained oscillations with periodicity within the hearing–range. In the event that
the solution is musically relevant but is not sustained, will be referred to simple as
sound on the condition that the periodicity falls within the hearing–range.
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It is obvious as the identification of the solutions characteristics plays a key role.
The interplay between mathematics, physics and music seems to be crucial, since
the set of the solutions of the models equations turns out to be significantly larger
than the set of the expected sounds.

5.1.2 Employed methodologies

First of all it is essential to specify that, since the qualitative aspects of the perceived
sounds are closely linked to the signals across inlet section, everything that follows
will be related to the variables inside the embouchure, computed as step–integration
of the system formalized by the Eq. 3.12: indeed the propagation of the signal
consists in a frequency–dependent linear filtering of the resulting inflow at the intake
section of the instrument (see Eqs. 2.31 and 2.45).

For a given resonator,2 the generic solution p(t) of the system described by the
Eq. 3.12 can be seen as a function F of domain X

F : X −→ P, X ∈ R4, P ∈ R (5.1)

Such a function, under certain hypothesis, can provide a time–varying pressure
signal at the intake section of the embouchure. The latter is thus a function of the
coefficients of the Eq. 3.24

p(t) = f (xp) (5.2)

being xp the vector of the parameters related to the performance which identifies a
locus on the domain X

xp = (µL, gL, ωL, Pm) (5.3)

the latter having coordinates consisting of both the blowing pressure Pm and the
mechanical properties of the valve representing the lips, i.e. the inertial term µL,
the damping factor gL, the resonant frequency of the lips ωL.

In order to perform the exploration of the domain X , let formalize the discrete
four-dimensional space X consisting in a set of spots each one providing a solution
of the Eq. 3.24:

X := [xpqrs] =
(
µLp, gLq, ωLr, Pms

)
,


p = 1, . . . , NµL

q = 1, . . . , NµL

r = 1, . . . , NgL

s = 1, . . . , NPm

(5.4)

being NµL , NgL , NωL and NPm the number of subdivisions of the domain related to

2As mentioned above, the space of the variables related to the natural trumpet in Eb, described
above in the Chap. 4, will be analysed.
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each variable. 3 In this view, it can be easily defined the function F of the discrete
domain X, such that

F : X −→ P (5.5)

being P = F (X) the global discrete space of the solutions. The function F provides
a generic pressure signal ppqrs inside the embouchure

ppqrs = p[n∆t] =

 p[∆t]
...

p[NS∆t]

 , n = 1, . . . , Ns (5.6)

with ∆t the time step and Ns the total number of samples of the time–domain
simulation. The target of the analysis is the identification Xπ ⊆ X, defined as
follows

Xπ :=
[
xp′q′r′s′

]
: P = Pπ =

[
pp′q′r′s′

]
(5.7)

where p′ ≤ p, q′ ≤ q, r′ ≤ r, s′ ≤ s and hence Pπ ⊆ P is the space of the
performance sounds, being pp′q′r′s′ the generic pressure signal inside the embouchure
mirroring specified requirements both physical and musical. Such requirements, as
will detailed below, identify three subspaces in the solutions space, i.e. the sustained
solutions PS , the feasible solutions PF and the the musical solutions PM . The
intersection of the abovementioned subspaces gives to the space of the performance
sounds.

Note that the criteria aimed at the recognition of the physical and the musical
requirements should be construed as a tapering functions for the variables space X,
obtained as suitable filter functions W ∗ on the solutions space P

P
W ∗−−→ P∗ (5.8)

Accordingly the tapered variables space X∗, can be obtained applying a specific
criterion represented by W ∗ on the solutions space P, i.e.

P∗ = F (X∗) = W ∗ 〈F (X)〉 (5.9)

where the meaning of the angle brackets is the filtering of the solutions related to
the previous variables space.

Notice that the same methodologies aimed at the identification of the perfor-
mance sounds are even oriented to identification of the aforementioned partial in-
tersection spaces, via the backward usage of the filter functions W ∗, namely

P
W ∗−1−−−→ (P−P∗) (5.10)

3It is worth to point up that it seems not possible to predict neither the shape nor the boudaries
of the variables space, but one can expect that the lips resonant frequency is close to the funda-
mental frequency of the signal as well as the adimensional damping ζ = gL/2ωL must be such that
the second order system not results over-damped. In order to achieve a qualitative but meaningful
exploration of the variables space, it was imposed a bounding box compatible with computational
resources.
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and thus, as mentioned above, the complementary set X∗c is such that

P∗c = P−P∗ = W ∗−1 〈F (X)〉 (5.11)

According to what have been explained, the process leading to the definition of Xπ,
starting the identification of the performance sounds, substantially consists in the
sequential filtering of the space of the solutions P through an adequate number of
filtering functions

W i, i = . . . , nW (5.12)

formalizing the characteristics of the performance sounds, such as the condition of
sustained oscillations, as well as physical or aesthetical restrictions.

Noting lastly that, giving two generic W i1 and W i2 and defining

Xi1 : Pi1 = W i1 〈F (X)〉

X
i2

: P
i2

= W
i2 〈F (X)〉

(5.13)

it is easy to verify the equivalence

Xi1 ∩X
i2

= W i1
〈
F
(
X
i2
)〉

= W
i2
〈
F
(
Xi1
)〉

(5.14)

and therefore, in the seeking of the performance space Xπ, the order of the appli-
cation of the several W i is totally irrelevant.

The hearing–range

It is worth to point up that, regarding the performance space Xπ, it seems not
possible make any predictions about neither its shape nor its boundaries.4 Actually
is worth formulate a hypothesis concerning the aim of the study. If the components
of xpqrs are positive real numbers, the solution of the system 3.24 can consist in
a set of time–dependent variables and the dynamics of such variables mark the
pressure signal inside the embouchure. Since the goal of this part of the work is the
recognition of Xπ, via the identification and the characterization of the performance
sounds space Pπ, one can immediately exclude the signals whose periodicity falls
outside the hearing–range.

Notice that the one degree of freedom model of the valve, described in the Sect.
3.2.2, secures that the oscillation frequency of the latter, described by the auxiliary
variable ξ(t) (see Eq. 3.26), is mainly monochromatic, as opposed the pressure signal
as well as the inflow signal, whose harmonic components are often predominant, in
terms of amplitude, compared to the fundamental frequency. Since the fundamental
frequency of the pressure signal inside the embouchure is the same of the oscillation

4Actually one can expect that the lips resonant frequency is close to the fundamental frequency
of the signal as well as the adimensional damping ζ = gL/2ωL must be such that the second order
system not results over-damped.
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of the valve, in convenient enumerate the local maxima (or minima) Np of the
displacement function ξ(t) as fallows

NP = NP + 1, if

{
ξ[n] > ξ[n− 1]

ξ[n] > ξ[n+ 1]
n = 1, . . . , Ns − 1 (5.15)

being Ns the total number of samples of the time–domain simulation, and impose,
in order to discern if the signal falls within the hearing–range, the condition

Tmin ≤
n∆t

Np
≤ Tmax, ∀ppqrs ∈ P (5.16)

being Tmax = 1/flow, Tmin = 1/fup with flow = 20 Hz and fup = 20 kHz. Actually,
the event that the signal falls above the hearing–range is highly improbable, since
the box constraint on the resonance frequency of the lip turns out to be much lower
than the upper bound of the hearing–range. Moreover the sampling frequency is
such that the Nyquist frequency is in the hearing–range. Given this, the condition
expressed by the Eq. 5.16 should be considered in terms of its lower limit.

The Eq. 5.16 defines the the space Xhr, subspace of X, shown in Fig. 5.2.

Figure 5.2: Variables space Xhr of the the natural Eb trumpet (obtained with the condition that
the pressure signals must fall into the hearing–range), with the blowing pressure as
parameter.

Noting that the space Xhr consists in a dense distribution of spots which seem
slightly dug for high values of gL. The analysis of Fig. 5.2 highlights that the spots
xpqrs seem tend to leave the bound of the domain for increasing blowing pressure
Pm and increasing resonance frequency of the lip ωL.

The assumption formalized with the Eq. 5.16 automatically ensures that the
signal is periodic but, of course, does not provide information on the evolution of
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the signal, meaning that an accurate analysis of the time evolution of the signals is
needed in order to achieve the performance space.

Numerical stability

The basis of the simulation is the stability of the numerical scheme which leads
to the generation of the pressure signals. Indeed the aim of find out criteria for
the characterization of the sounds, the unconditioned numerical stability turns out
to be essential. In order to ensure it, the Crank–Nicolson method [20, 22] was
implemented. Such method is a combination of the forward Euler method and the
backward Euler method and approximates the derivative as follows

yn+1 − yn

∆t
=
Hn+1 +Hn

2
(5.17)

being Hn+1 and Hn respectively the forward and the backward Euler approxima-
tions for the derivative.

5.2 On the note detection

In music, a note is simply defined as a pitched sound, i.e. a sound event for which
it is possible to define a fundamental frequency f0.5 Two issues are involved in the
identification of a musical note, namely the recognition of the perceived pitch and the
choice or the musical tuning, from which it is possible to unambiguously determine
the note (name and octave), starting from the knowledge of the characteristics of
the signal.

The pitch estimation is a popular topic in many fields of research, and if related
to the musical sound appears to be a more complex topic. The pitch range can
be wide, and the sound of the musical instruments vary a lot in terms of spectral
content. The pitch perception is highly dependent on the harmonic composition of
the signal and f0 it rarely corresponds to the maximum of the signal spectrum.

The methods aimed at the estimation of the fundamental frequency f0 (PDA,
pitch detection algorithms) of monophonic sounds could be classified into time–
domain and frequency–domain algorithms. In the time–domain algorithms the de-
tection is provided by the inversion of the fundamental period, computed as the
distance between alternate zero–crossing points, peak–to–peak distances, or slope
periodicity of the signal.6 Instead, the frequency–domain algorithms attempt to
recognize the fundamental tone, by computing the spectrum of the signal within

5Psychoacoustic tests have also proved that the brain decodes the pitch of sound only if its
duration is greater or equal than 10 milliseconds, whereas below this value the feeling is the same
of an impulse.

6Another method consists in computing the autocorrelation function, defined as the sum of
the pointwise absolute difference between the shifted signal and the original signal, identifying the
fundamental period in correspondence with the minimum of the autocorrelation function
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appropriately overlapped windows. Statistical frequency–domain methods, as neu-
ral networks and maximum likelihood estimators, was recently developed.

The frequency–domain algorithms turn out to be typically more accurate then
the time–domain methods, but are computationally more expensive. On the con-
trary, the time–domain algorithms appear to be little less efficient in the case of
complex waveforms, but are very easy to implement.

Should be noted that, as mentioned above, the waveform of ξ(t) is mainly
monochromatic, hence a peak–to–peak algorithm was implemented. The only shrewd-
ness pertains the evaluation of the time instant T ck related to the local k-th peak,
computed as the position of the vertex of the parabola defined by three points
among which the central has the greater ordinate.

f c0 [n] =
1

T ck − T ck−1

, n = 1, ..., N, k = 1, ..., NP (5.18)

where the superscript c indicates that the fundamental frequency is instantaneous.
Indeed the identification of the note will entail the definition of two pitch frequencies,
i.e. the current pitch f c0 [n], described above, and the mean pitch fm0 [n], obtained
as the geometric mean value of the current pitch frequencies

fm0 [n] = n

√√√√ n∏
i=1

f c0 [n], i = 1, ..., n, n = 1, ..., Ns (5.19)

being n the current sample and Ns the total number of samples of the time–domain
simulation. Note that the geometric mean, compared to the algebraic mean, is less
affected by the presence of terms far from the group, typically distinctive of the
transients, so provides a result closer to statistical mode. Furthermore in the step
integration the n–th value of the geometric mean

fm0 [n] = f c0 [n− 1]
n−1
n · f c0 [n]

1
n n = 1, ..., Ns (5.20)

seems converge to the perceived pitch lightly faster than the n–th value of the
algebraic mean.

In Fig. 5.3, the time–history of both the current pitch and the mean pitch.

103



CHAPTER 5

 600

 650

 700

 750

 800

 850

 900

 0  0.1  0.2  0.3  0.4  0.5

F
un

da
m

en
ta

l f
re

qu
en

cy
 [H

z]

Time [s]

current
mean

Figure 5.3: Current pitch and mean pitch detected with the time–domain algorithm: mean pitch
detected 747.13 Hz for a simulation of 0.5 seconds.

Note that the mean pitch is affected by the length of the simulation so the
relative errorsare lower as longer is the simulation, as shown in Fig. 5.4.
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Figure 5.4: Current pitch and mean pitch detected with the time–domain algorithm: mean pitch
detected 750.72 Hz for a simulation of 2.0 seconds.

The variables space Xhr of Fig. 5.2, using the sound pitch as parameter, is
presented in Fig. 5.5.
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Figure 5.5: Variables space Xhr of the the natural Eb trumpet (obtained with the condition
that the pressure signals must fall into the hearing–range), with the sound pitch as
parameter.

The analysis of Fig. 5.5 evidences that the sound pitch is a quasi–linear function
of the lip resonance frequency, but it was noticed that that the link between the
latter and the pitch frequency highly complex.

For what concerns the musical tuning, it is essential to choose both tuning
system the reference tuning frequency. Historically, the first important system is
ascribed to Pythagoras, and consists in generate all the musical intervals from the
pure perfect fifth,7 i.e. the 3 : 2 ratio, as shown in Tab. 5.2.

Note C D E F G A B C
Ratio 1:1 9:8 81:64 4:3 3:2 27:16 243:128 2:1

Table 5.1: The C major scale obtained from the pytagorean tuning.

The pytagorean tuning tuning, particularly suitable for medieval and renaissance
music, appears to be unsatisfactory for tonal music, and through the centuries
many tuning systems were developed. Up to now the western music is based almost
exclusively on the so-called twelve–tone equal temperament, or simply equal temper-
ament. This tuning system divides the octave8 into 12 parts, all of which are equal
on a logarithmic scale. Denoting by f I0 the fundamental frequency of a reference
note, and f II0 ,..., fN0 the subsequent, it is necessary to calculate the ratio between

7This interval is choosen because it is the most consonant.
8The octave is defined as the distance between two sounds among which the high–pitched has

the fundamental frequency twice with respect to the low–pitched.
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two adjacent notes assuming it constant,9 as shown below

f II0

f I0
=
f III0

f II0

=
fN0
fN−1

0

= k (5.21)

By relating two non–adjacent notes one obtain

fN0
f I0

=
fN0
fN−1

0

fN−1
0

fN−2
0

...
f II0

f I0
= (N − 1)k = kN−1 (5.22)

Since the octave is the thirteenth note with respect to any reference note

fXIII0

f I0
= 2 = k12 → k =

12
√

2 (5.23)

Accordingly, each successive note is derived by multiplying or dividing the previous
by the twelfth root of two. Once the relationship between the semitones is known,
is necessary to establish the reference frequency from which derive all the notes of
the tempered system. Until the 19th century there was no coordinated effort to set
a standard in the field of music, but in 1939 an international conference suggested
that the fifth A of the piano keyboard (see Fig. 5.6), A4 which is the forty-ninth
note of the piano keyboard, was tuned to fA4 = 440 Hz.10

Figure 5.6: The piano keyboard.

At this stage, the following equation gives the order number of a generic note
with respect to the piano keyboard.

n = 49 + 12log

(
f0

fA4

)
(5.24)

The space Xhr is such that the physical model can produce signals characterized
by a continue distribution of fundamental frequencies, as shown in Fig. 5.7.

9This hypothesis was first proposed by Aristoxenus of Tarentum in c. 320 BC.
10The standard had to be 439 Hz, but was changed because 440 is numerically easier to reproduce

than the 439, which is a prime number.
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Figure 5.7: Fundamental frequency as a function of the lip resonance frequency with the mass
ratio as parameter, related to the variables space Xhr of the natural Eb trumpet
obtained by imposing the fundamental frequency within the hearing–range.

It seems that, for a given lip resonance frequency, the pitch of the signal is also
weakly a function of the mass ratio µL, i.e. the greater the amount of vibrating
mass, the less will be the fundamental frequency of the signal. Obviously one can
expect that many of the solutions of Fig. 5.7 are not related to sounds, as will be
detailed below.

5.3 Sounds and self–sustained oscillations

Once the periodicity of the signals is automatically ensured by imposing the condi-
tion expressed by the Eq. 5.16 it may be useful to swiftly predict the steady–state
behaviour of the oscillations, since a sound correspond to the self–oscillations of the
system.

The aim of this section is the identification, within the space of the solutions,
of the space Pσ. Such a space is the intersection between the space of the solution
which fall within the hearing–range Phr, and the space PS of the solutions which
involve a sustained steady–state.

Pσ = Phr ∩PS (5.25)

It is important to note that the solution belonging the space Pσ are related to those
that have been called the sustained–sounds.

When the musician start to play, more or less consciously, imposes a combination
of the four parameters governing the Eq. 3.24, positioning in a definite location of
the variables space Xhr. If the blowing pressure overcome the inertia of the valve,
an acoustic perturbation start travelling inside the resonator. Such a perturbation
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is reflected by the bell and come back towards the embouchure. Depending on
xpqrs it can occur that that the system continuously loses energy, which is never
restored and thus the oscillations decline and the system reaches a resting state.
Contrariwise, if the energy source plumps the system, the self–sustained oscillations
are established. Both the previous instances comply with the condition defined
above with the Eq. 5.16, and just the signal observation provides information on
the steady–state behaviour of the system.

5.3.1 Phases–plane analysis

Considering a generic steady–state solution of the system: if occurs that the velocity
tends to vanish, the oscillations are destined to fade, i.e. the valve reaches a quasi–
idle state. This condition refers to a solution of the system formalized by the Eq.
3.12 which not give rise to a sound, since the oscillations turns out to be non–
sustained.

However the mere analysis of the velocity function v(t) = ξ̇(t) (see Eq. 3.25) is
not enough to predict the dynamical behaviour of the system, since the stable peri-
odic motion implies a periodic annulment of the velocity. Thereafter, a simultaneous
observation of velocity and position is forcedly needful.

Let consider the Eq. 3.26, governing the dynamic of the lips motion. The
definition of the auxiliary variable ξ(t) of the Eq. 3.25, yields that ẏ = ξ̇ = v, hence

dv

dt
=
d2ξ

dt2
= f

(
ξ,
dξ

dt

)
= f(ξ, v)

dξ

dt
= v = g(ξ, v)

(5.26)

Combining the equations, with simple steps one can obtain

dv

dξ
=
F (ξ, v)

G(ξ, v)
(5.27)

The (ξ,v)–plane is the phases–plane and the integral curve, the phase–trajectory,
represents the solution of the equation. The direction of travel along the trajectories
can then be assigned, moving to the right, in the direction of increasing ξ in the
upper half of the (ξ,v)–plane and moving to the left, in the direction of decreasing ξ
in the lower half of the (ξ,v)–plane. The centre of the phases–plane is the equilibrium
point (0,0) and any stable self–sustained oscillation must clockwise rotate round this.

In the event that the oscillations becomes gradually smaller, may occur the spiral
motion in the phases–plane may converge to the centre of the phases enclosing the
latter, as illustrated in Fig. 5.8.
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Figure 5.8: Phase–trajectory with converging spiral motion.

Moreover, as shown in Fig. 5.9, it is possible that the converging motion is such
that the first spire does not enclose the equilibrium point.

-3 -2.5 -2 -1.5 -1 -0.5  0  0.5

Displacement [mm]

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

V
el

oc
ity

 [m
/s

]

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 0.16

T
im

e 
[s

]

Figure 5.9: Phase–trajectory with converging–translating spiral motion.

Both the previous cases are referred to the condition that the inflow keeps the lip
opened, and the latter is animated by decaying microfluctuations around a constant
value. Furthermore, if the inflow tends to translate indefinitely the oscillating lip,
as illustrated in Fig. 5.10, the spiral motion is divergent.
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Figure 5.10: Phase–trajectory with diverging–translating spiral motion.

Instead, if the trajectory maintains indefinitely a clockwise rotation around the
centre of the phases, as shown in Fig. 5.11
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Figure 5.11: Phase–trajectory related to a self–oscillating dynamical system.

Notice that the cases of Figs. 5.8, 5.9 and 5.10, the acousto–elastic coupling
can be considered destructive, whereas in the case of Fig. 5.11 the acousto–elastic
coupling is constructive and the limit–cycle represents the steady–state

A criterion aimed at the recognition of the self–sustained solutions, cannot rely
on the comparison between two consecutive spires, due to the unpredictable tran-
sient behaviour (see Fig. 5.12), and to the periodical contraction and relaxation of
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the limit–cycle.
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Figure 5.12: Phase–trajectory as function of the time related to a self–oscillating dynamical
system during the transient.

However it was noticed that the observation of the system dynamics in the
phases–plane may contribute to the establishment of a suitable criterion aimed at
discarding the solution that will not reach a self–sustained steady–state. Note that
the phase–trajectories with a limit–cycle must enclose the centre of the phases (see
Fig. 5.11) but this is a necessary and not sufficient condition for achievement of
the self–sustained oscillation because may occur that such oscillation manifest a
decaying behaviour (see Fig. 5.8, Fig. 5.9).

In order to formalize these assumption, considering the generic k-th cycle and
let define the the intercepts of the phase–trajectory with the axes v = 0 and ξ = 0
of each cycle as

ξ+
k = [ξ]vmaxc

, ξ−k = [ξ]vminc

v+
k = [v]ξmaxc

, v−k = [v]ξminc

(5.28)

being ξc and vc respectively the current displacement and the current velocity on
the cycle. Since the limit–cycle solution must enclose the centre of the phases, the
following condition

ξ+
k

ξ−k
< 0,

v+
k

v−k
< 0 (5.29)

must verified for each cycle of the steady–state.
In addition, in the event that the trajectory enclose the centre of the phases,

one can define the phases radius rφ as follows

rφ =
√
ξ2 + v2 (5.30)
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and the area Aφk swept in clockwise direction by rφ during the k-th cycle from an
arbitrary origin θφ0

Aφk =

∫ 2π

0

∫ rφ

0
ρφdρφdθφ (5.31)

being

dθφ = tan−1

(
|dv|
|dξ|

)
(5.32)

As soon as the Eq. 5.29 is satisfied, the initial area Aφ0 of the limit–cycle can be
defined. As detailed before, an assumption based on the observation of only two
cycles cannot represent the oscillations destined to the collapse, since it may occur
that the area of the k-th spire is less than the area of the (k − 1)-th spire in the
transient, or the oscillations increase and then decrease periodically in the steady–
state. Thus is necessary to analyse the global time history of the spiral areas Aφk .
With this purpose let define a reference area Aφmin as follows

Aφmin = Aφk , if Aφk < Aφmin (5.33)

It is easy to note that a solution can be considered leaving the limit–cycle if the
area Aφmin continuously decreases as long as the Eq. 5.29 is satisfied. To ensure
a reliable recognition of the oscillations which tend to a rest state,11 let define the
index m such that

m = m+ 1, if Aφk < Aφmin, with m < M (5.34)

Then, ifm exceeds a prefixed appropriate valueM , one can consider that the energy
loss is irreversible, and the system will reach a quasi–resting state.

It is worth noting that if M is chosen too small, several self–oscillating solutions
with irregular transients are rejected, while high values of M make the condition of
Eq. 5.34 totally ineffective.

In addition, since this methodology is affected by the simulation length, it seems
appropriate to impose that the spire enclosing the greater area Amax is greater than
the first spire of the limit–cycle

Aφmax ≥ A
φ
0 (5.35)

with the purpose of exclude oscillating solutions with a manifest tendency to decay.
Notwithstanding such a methodology do not provides information concerning

the trend of the oscillations to grow up. It is worth remembering that the model
of the acousto–elastic dynamical system is such that even the solutions that reach
the steady–state in infinite time are provided, i.e. at the moment, with the condi-
tions described above, even the solution which slowly reach the steady–state, are

11Note that Aφmin is constantly updated during the step integration.
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considered. In the view of characterize the performance sounds, the hypothesis of
self–sustained oscillations must be supplemented by the imposition of the temporal
length within which the oscillation are established. In order to discard all the signals
whose transient behaviour is not compatible with the brass instruments12 let define
the function aφn as follows

aφn =
Aφk−1

Aφ0
if θφn < θφ0 + 2kπ, k = 1, . . . ,K (5.36)

Noting that the function aφn describes the time–history of the complete spiral areas
and is piecewise defined, since for all the duration of the clockwise revolution of rφ

related to the k–th spire the value of aφn is constant.

 0

 200

 400

 600

 800

 1000

 1200

 300  350  400  450  500  550

N
or

m
al

iz
ed

 s
pi

ra
l a

re
a

Samples [n]

area of the (k-1)-th cycle
current area on the cycle

Figure 5.13: Time–history of the spiral areas Aφk divided by the initial area Aφ0 , related to a time
window within which the signal grow up.

The current algebraic mean function āφn is

āφn =
1

n

n∑
i=1

aφi , i = 1, . . . , n, n = 1, . . . , Ns (5.37)

being Ns the total number of samples, the standard deviation function σφn related
to aφn can be easily formalized as follows

σφn =

√√√√ 1

n

n∑
i=1

(
aφi − ā

φ
i

)2
, i = 1, . . . , n, n = 1, . . . , Ns (5.38)

12Although the musicians have great possibilities of differentiate the sounds, performing notes
characterized by different rapidity, typically the brasses have a slightly percussive sound.
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and represent the amount of variation of aφn with respect to its current mean value.
Obviously, under the hypothesis that the limit–cycle exists and such limit–cycle is
stable, after the transient the areas related to the k–th cycle will be stabilize around
a constant values. This implies that

σφn → 0, n→∞ (5.39)

i.e. the standard deviation function will begin to decrease until tend to zero for
t→∞, hence in the steady–state will occur that

σφn − σ
φ
n−1 < 0, ∀n ≥ ns (5.40)

being ns the sample after which the solution can be considered stationary. Note
that the condition formalized with the Eq. 5.40 is satisfied only in the presence of
self–sustained oscillations (see Figs. 5.14 and 5.15).
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Figure 5.14: Time–history of the spiral areas Aφk divided by Aφ0 and standard deviation function
σφn, related to a signal that reaches the steady–state.
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Figure 5.15: Time–history of the spiral areas Aφk divided by Aφ0 and standard deviation function
σφn, related to a signal that does not reach the steady–state.

In the case of Fig. 5.15 the condition expressed by the Eq. 5.40 has been
violated, and one can consider that the signal does not reach the steady–state in
the length of the simulation.

In order to take into account this assumption, it is sufficient to simulate a rea-
sonably long and impose at the end of the simulation the condition expressed by
the Eq. 5.40, assuming that the steady–state should already have occurred, i.e.

σφNs − σ
φ
Ns−1 < 0 (5.41)

In summary, the phases–plane overview provides valuable information about the
system solution. Specifically the awareness that the sound of brasses is only provided
by a self–sustained solution, i.e. is linked to the existence of the limit cycle,13 offers
the possibility of analyse the spiral areas and impose them a behaviour globally
neither decreasing (Eq. 5.33) nor growing (Eq. 5.41), with the aim of ensure a
self–sustained steady–state within a reasonable length of the simulation.

The variables space Xσ, in Fig. 5.16, is strongly digged with respect to Xhr (see
Fig. 5.2).

13As detailed above the limit cycle must enclose the centre of the phases.
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Figure 5.16: Variables space Xσ (sustained solutions within the hearing–range) of the natural
Eb trumpet with the blowing pressure as parameter.

The discarded spots refer to both solutions that are not characterized by self–
oscillations and the solution with a slow transient behaviour, which are not compat-
ible with the sound of brasses. Notice that, using the sound pitch as parameter (see
Fig. 5.17), one can note a discrete distribution of fundamental frequencies along
the z–axis.

Figure 5.17: Variables space Xσ (sustained solutions within the hearing–range) of the natural
Eb trumpet with the sound pitch as parameter.
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The analysis of Fig. 5.17 suggests that the spots distribution seems gathering
in coherent structures, and such structures are characterized by different pitches,
being the latter close to the input impedance maxima, as shown in Fig. 5.18.

Figure 5.18: Sound pitch as a function of the lip resonance frequency with the mass ratio as pa-
rameter, related to the variables space XS (sustained solutions within the hearing–
range) of the natural Eb trumpet.

This phenomenon reflects the practice of the brasses, which reveals the impos-
sibility to emit sounds near the minima of the input impedance spectrum.

5.4 The physics of the case study

In this section, the issues concerning the connection between the physical model
and the physics of the case study will be discussed.14

Specifically will be examined the values that the blowing pressure can assume in
a real performance of a brass instrument. Then will be formalized the lip behaviour
during the playing. At last a kind of baric–efficiency will be introduced with the
purpose of taking into account the effort of the musician during the performance.

The superposition of the abovementioned criteria defines the space PF of the
feasible solutions (see Sect. 5.1.1), and the intersection between PS and PF , under
the condition that the sounds fall within the hearing–range

Phr ∩ (PS ∩PF ) (5.42)

gives rise to the space Pσφ of the feasible sustained–sounds i.e the space of the solu-

14In terms of the state variables related to a real performance. Note that several artificial mouths
can easily overcome the real performance techniques of the musical instruments.
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tion characterized by self–sustained oscillations and periodicity within the hearing–
range, coherent with the physics of the case study.

5.4.1 Blowing pressure

The blowing technique is the foundation of the trumpet playing, as well as the play-
ing of any wind instruments. The characterization of the aerodynamic parameters
involving the control of intra–oral pressure is a topic difficult to deal, due to the
variable and impulsive nature of the act of playing. Several works [12, 33, 61, 34]
focused the issue both theoretically and experimentally.

Certainly the blowing pressure affects the loudness of the sounds, sweeping val-
ues from about 1 kPa in the performance of the pianissimo reaching values up to
20 kPa for the sforzatissimo,15 but it was also noticed that the entity of the blowing
pressure is also closely linked to the pitch of the sound. In addition, as shown in
Fig. 5.19, the connection between the sound characteristics and the blowing pres-
sure is highly affected by the playing technique, or rather by the capabilities of the
musician.

Figure 5.19: Measured sound pressure level as a function of blowing pressure for different notes
played by two different musician [33].

Self–sustained oscillation may arise (see Fig. 5.16) from blowing pressures
greater than those that can be produced by a musician,16 as shown in Fig. 5.20.

15In musical notation respectively ppp and fff.
16Additional exploration of the performance space carried out by the author have proved that

the physical model works even with blowing pressures of the order of the GPa.
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Figure 5.20: Pressure signal at the intake section of the natural Eb trumpet, obtained with a
blowing pressure Pm = 1 MPa.

With the aim of characterize only the solutions compliant with the physics of
the case study, it is necessary to assume that the blowing pressure must not go
below 1 kPa and nor above 20 kPa (see Fig. 5.21).

Figure 5.21: Variables space Xσ of the natural Eb trumpet with the blowing pressure as param-
eter, obtained bounding the values of the blowing pressure (1kPa ≤ Pm ≤ 20kPa).

Just for convenience, let now remove the dependence of xpqrs (see Eq. 5.4) from
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Pm by choosing a single value of blowing pressure

P ∗m = 9 kPa (5.43)

This assumption decreases of a dimension the variables space,

[xpqr]s=s∗ =
(
µLp, gLq, ωLr, P

∗
m

)
,


p = 1, . . . , NµL

q = 1, . . . , NµL

r = 1, . . . , NgL

s = s∗

(5.44)

making more handy the the analysis of the successive constraints.17

The variables space related to the single blowing pressure chosen, with the sound
pitch as parameter, is presented in Fig. 5.22.

Figure 5.22: Variables space Xσ of the natural Eb trumpet with the sound pitch as parameter,
obtained with the single value of blowing pressure Pm = 9 kPa.

Notice that the values of the adimensional damping factor

ζLpqr =
gLpqr

2ωLpqr
(5.45)

related to the solutions, do not exceed 0.15 for all the notes with the exception of
the pedal–tone and the first note, as shown in Fig. 5.23.

17Obviously, the generality of the approach adopted in this chapter makes possible the applica-
tion of the criteria presented in the next sections to all the values of blowing pressure Pms.
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Figure 5.23: Adimensional damping factor as a function of the sound pitch with the mass ratio as
a parameter, related to the variables space Xσ of the natural Eb trumpet, obtained
with the single value of blowing pressure Pm = 9 kPa.

5.4.2 The lip behaviour

The motion of the lip inside the cup of the mouthpiece, which represents the excita-
tion system, is a very complex phenomenon. In the reality the motion of the lip is
such that it performs moderate shifts and is characterized by intermittent closure.
It was noticed that the physical model, as will be detailed below, provides solutions
that do not satisfy those conditions. In this section will be explained the methods
aimed at constrain the exciter behaviour into the physical bounds.

Maximum displacement

The one–dimensional models traditionally [2] employed to describe the physics of
the lips,18 model these last making use of a linear spring forced by both the mouth
pressure and the vibration of the air column. More sophisticated anatomy–based
models [26] describe the lip motion through two nonlinear differential equations
whose variables are the lip physical length and the inclination with respect to the
plane defined by the cup of the mouthpiece.

Irrespective of the model, the lip displacement described by the variable y(t)
(see Eq. 3.24), in the practice is quite small, in the order of a few millimetres for
the lowest notes and a few tenths of a millimetre for the higher. Nevertheless, as
mentioned above, the physical model simulates self–sustained oscillations involving
lip displacements far above the physical, as shown in Fig. 5.24.19

18Known as outward–striking and upward–striking.
19Actually it was noticed that the percentage of such solutions is really small.
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Figure 5.24: Oscillations ξ(t) and lip displacement y(t) related to a self–sustained solution with-
out the constraint of the maximum displacement.

It was noticed that the maximum displacement of the lip decrease with the
increasing of the sound pitch. Such a behaviour points up that wide movements
at high frequencies are not conceivable, indeed the solutions characterized by dis-
placements not even compatible with the geometric size of the mouthpiece are only
related to the pedal–tone and the first two notes (G1, D3 and Bb3). In addition, as
evidenced in Fig. 5.25, correspond to plausible displacements many solution related
to all the notes, this implies that it seem possible to bound the solutions within a
range of displacement physically feasible.

Figure 5.25: Maximum lip displacement as a function of the sound pitch with the mass ratio
as a parameter, related to the variables space Xσ (sustained solutions within the
hearing–range) of the natural Eb, with Pm = 9 kPa.

Notwithstanding some consideration must be done. First of all, as mentioned
above, though the player lip has very small movements, much lower than the cup
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size, it seems complicated to introduce a fixed value within which considering the
displacement as acceptable. It is also awkward to establish an unambiguous rule to
link the maximum admissible displacement to the other variables of the performance
space, or rather to the pitch of the sound. Nevertheless, defining

δy :=
max[y(t)]

Rcup
(5.46)

being Rcup the radius of the mouthpiece cup, imposing the pure geometrical con-
straint

δy < 1 ∀t (5.47)

seems reasonable with the purpose of excluding the solutions involving preposterous
displacements, such as the one presented in Fig. 5.24, where one can see a maximum
displacement of about 30 mm against a cup radius of less than a centimetre. The
variables space plot of Fig. 5.26, using the pitch the maximum value of the maximum
lip displacement δy as parameter, highlights a strong regularity in the distributions
of the latter.

Figure 5.26: Variables space Xσ of the natural Eb, with Pm = 9 kPa, obtained constraining the
maximum lip displacement, with the maximum lip displacement as parameter.

The buzzing issue

Several studies concerning the motion of the lips [25, 19, 83, 58, 15] have been
carried out, many of these taking advantage from photographic techniques (see Fig.
5.27), in order to achieve a proper model for the time–dependent behaviour of both
the upper and the lower lip.
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Figure 5.27: Series of images from a digital high–speed film visualizing the lip separation during
the performance of a note with a brass instrument [15].

The self–oscillating motion of the musician lips during the performance of any
note is characterized by intermittent closure, which implies the locking of the inflow
through the player’s lips: subsequently the pressure gradient, due to the blowing
pressure Pm, between the player’s mouth and the resonator is such that the lips
open again starting over the loop.

Given the above, it was noticed that many of the solutions provided by the mod-
els, may be such that the lips never close. Moreover, it is worth noting that the vast
majority of the high–pitched non–buzzing solutions are related to microfluctuations
of the valve, as shown in Fig. 5.28.
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Figure 5.28: Oscillations ξ(t) and lip displacement y(t) related to a high–pitched non–buzzing
solution.

Instead, as illustrated in Fig. 5.29 to the low–pitched non–buzzing solutions
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pertain proper displacements, compatible with the physics of the case study.
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Figure 5.29: Oscillations ξ(t) and lip displacement y(t) related to a low–pitched non–buzzing
solution.

In order to take into account the performing technique, admitted that the specific
spot xpqr in the variables space can be consistent with the mechanical properties of
the lips, seems necessary to verify the simulated lips behaviour emulate the lifelike
performance.

Note that, recalling the Eq. 3.25, a condition can easily be formalized in terms
of phase–trajectory. In fact, the analysis of the Fig. 5.30 highlights that the valve
motion keeps the lip opened if the limit–cycle of the phase–trajectory not include
the initial condition.
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Figure 5.30: Phases–trajectory related to a non–buzzing solution.
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Let so define a condition on the coefficient βy in the lip reference system, aimed
at the identification in the phases–plane of the horizontal distance between the
limit–cycle the initial condition (−Pm/(µω2), 0), as follows

βy :=
Pm
µω2

+ min [ξ(t)]k , ∀k > 1 (5.48)

being k the reference number of the spire of the phase-trajectory. It is easy to note
that the more decrease Cβ , the more the lips tends to a buzzing behaviour. In
these terms a slight regularity in the distribution of the spots in the space of the
non–buzzing solutions, as shown in Fig. 5.31, may be found, meaning that the lower
is the pitch frequency the greater is the distance between the limit–cycle and the
coordinates of the initial conditions.

Figure 5.31: Non–buzzing solutions in the variables space Xσ of the natural Eb trumpet, with
Pm = 9 kPa and constraint on the maximum lip displacement, with the buzzing
coefficient βy as parameter.

By giving a suitable condition on βy (see Eq. 5.48), such as

βy ≤ 0 (5.49)

the non–buzzing solution can be easily discarded. It is interesting to note that,
as shown in Fig. 5.31 and Fig. 5.32, the discarded solution pertain almost to
low–pitched sounds.
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Figure 5.32: Buzzing solutions in the variables space Xσ of the natural Eb trumpet, with Pm =
9 kPa and constraint on the maximum lip displacement, with the sound pitch as
parameter.

5.4.3 The pressure efficiency

The identification of a parameter aimed at taking into account the energetic content
of the pressure signal come from the assumption that the goal of the musician during
the performance is to emit the correct sound at the proper loudness with as little
effort as possible. This consideration, as well as being compliant to the principle
of least action,20 is founded on the observation of the musical practice which often
requires extreme duration. Let introduce a coefficient ηp with the purpose to take
into account the baric restoration with respect to the blowing pressure during the
performance. Since the pressure signal inside the embouchure is a zero–crossing
periodic signal it seemed appropriate to define such coefficient as follow

ηP :=
1

Pm

√
1

T

∫
T

[p(t)]2dt =
prms
Pm

(5.50)

being T the total time of the simulation.
It is interesting to highlights that, as shown in Fig. 5.33, the distribution ηp on

the spots xpqr manifest a remarkable regularity.

20In his Accord de diffèrentes lois de la nature qui avaient jusqu’ici paru incompatibles (1744),
Pierre–Louis Moreau de Maupertuis asserts that “Nature is thrifty in all its actions”, i.e. in all the
changes that occur in the universe, the amount of action necessary for them is always the least
possible.
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Figure 5.33: Variables space Xσ of the natural Eb trumpet, with Pm = 9 kPa and constraint on
the lip behaviour (maximum displacement and buzzing), with the pressure efficiency
ηP as parameter.

Moreover, as illustrated in Fig. 5.34, the pressure efficiency ηp is heavily linked
to the maximum lip displacement, described above.

Figure 5.34: Pressure efficiency ηP as a function of the maximum lip displacement with the sound
pitch as parameter, related to the variables space Xσ of the natural Eb trumpet,
with Pm = 9 kPa and constraint on the lip behaviour (maximum displacement and
buzzing).

It is also worth noting that the same note may be performed at different values
of ηp, as shown in Fig. 5.35.
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Figure 5.35: Pressure efficiency ηP as a function of the sound pitch with the mass ratio as
parameter, related to variables space Xσ of the natural Eb trumpet, with Pm =
9 kPa and constraint on the lip behaviour (maximum displacement and buzzing).

The pressure efficiency described above is based on energetic observations, and
assign a prefixed value beneath which considerate the performance strenuous is not
straightforward: however, for the purpose of examine the effect of such parameter
on the spot distribution in the variable space, let hypothesize that ηp should never
fall one order of size below the unit

ηp ≥ 0.1 (5.51)

The variables space further constrained by ηp is presented in Fig. 5.36,

Figure 5.36: Variables spaceXσφ of the natural Eb trumpet with Pm = 9 kPa (sustained solution
within the hearing–range with all the physical constrains), with the sound pitch as
parameter.
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5.5 Musical properties of the solution

In this section will be derived the space of the performance sounds, via the identi-
fication of the musically–relevant properties of the solutions. Such properties con-
cern the characteristics of the sounds in terms of perceived attack–time length and
“cleanliness” of the note, being the latter derived from the analysis of the pitch fluc-
tuations. Two criteria aimed at the control of the timbrical characteristics of the
sound will be defined, giving rise to the musical solutions space PM , within which
the abovementioned properties are prescribed.

The intersection between PS , PF , under the condition that such sounds fall
within the hearing–range, and PM[

Phr ∩ (PS ∩PF )
]
∩PM (5.52)

gives rise to the space Pπ of the performance sounds, i.e. sustained oscillations
within the hearing–range, physically feasible and attributable to a brass instrument.

5.5.1 Attack–time estimation

Believe that the waveform is the main discriminant for the recognition of musical
sounds is a very common mistake. Actually, as demonstrated by several studies,
the starting transient is of paramount importance in the differentiating the sounds
performed by different instruments [52, 39, 85, 51].

There exist several definition of “attack–transient”, since a sound event can be
characterized by many types of non–stationarity. Typically it consist in burst of
energy, which causes a fast change of the sound characteristics and can contain
non-periodic components with a greater involvement of high–frequency components
[69]. Lot of methods aimed at the attack–transient detection were developed, and
such techniques frequently lead to significantly different results. The main strategies
for the identification of the transient can summarized into three classes [21]. To the
first class pertain the algorithms based on the linear prediction: such time–domain
methods are based on the identification of a suitable resonating filter through which
it is possible to recognize the bulk of the energy of the excitation signal which is
exactly located at the transient. The second group of methods extract from the
signal the sinusoidal part and identify the bursts of energy, specific of the attack
transients, from the residual signal. Lastly, the third class of methods, the so–
called STN (Sines–Transients–Noise) models, hypothesize explicit models for the
transient behaviour and consider the signals as the superposition of a sinusoidal
part, a transient and the residual component.

In this work its identification comes from the necessity to distinguish the sounds
that are perceived as “wah” (long attack–times) from those that are perceived “dah”
(short attack–times).21 With this purpose let recall the Eq. 5.38, representing the

21Obviously there are an infinite number of sounds with different attack–times, and these two
onomatopoeias have the sole purpose to give the impression of the percussive effect of the sounds.

130



EXPLORATION OF THE PHYSICAL MODEL PARAMETERS

standard deviation function related to the spiral areas enclosed by the phases–
trajectory: since σφn is positive definite and by definition σφ1 = 0, it must be that
σ2 − σ1 > 0. If the Eq. 5.40 is satisfied there must be at least a maximum between
n = 1 and n → ∞. The absolute maximum of σφn occurs at tσ

φ
max and from

here the transient can be considered extinguished, since the limit–cycle stabilizes or
fluctuates around a constant mean value. Such a time instant occurs at the sample

nσ
φ
max = arg max

(
σφn

)
(5.53)

thus at the time
tσ
φ
max = nσ

φ
max∆t (5.54)

The behaviour of the standard deviation function σφn up to the time instant tσ
φ
max

can be approximated by a generic sigmoid function, such as

S(t) =
max

(
σφn
)

1 + c1e(−c2t+c3)
(5.55)

being c1, c2 and c3 suitable coefficients minimizing the L2 norm between σφn and the
discrete representation of S(t) between the origin and tσ

φ
max . The second derivative

of S(t), i.e. the change of concavity of the sigmoid function, crosses the zero at the
time instant τφ when the function aφn (see Eq. 5.36) almost reaches the maximum
value, as shown in Fig. 5.37.
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tion function σφn and sigmoid approximation, related to a self–sustained signal.
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Then τφ will be considered as the attack–transient, and for the symmetry of S(t)

τφ =
tσ
φ
max

2
=

∆t

2

[
arg max

(
σφn

)]
(5.56)

The distribution of the τφ in the variables space is quite regular (see Fig. 5.38).

Figure 5.38: Variables space Xσφ of the natural Eb trumpet with Pm = 9 kPa, with the attack–
time τφ as parameter.

Noting that the attack time is linked to the sound pitch, as shown in Fig.
5.39, and can be noted even a dependence from the adimensional damping factor,
especially for the high–pitched sounds.

Figure 5.39: Attack time as a function of the sound pitch, with the adimensional damping factor
as parameter, related to the variables space Xσφ of the natural Eb trumpet with
Pm = 9 kPa.
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It seems not easy to establish an univocal value of τφ with the purpose of identify
the sound of the brasses, since it is strongly dependent by the dynamic of the
performance, as summarized in Tab. 5.2

Trombone Trumpet
pianissimo 70-250 ms 40-60 ms
fortissimo 40-50 ms 25-35 ms

Table 5.2: Typical ranges of attack–times of the trombone and the modern trumpet related to
the dynamics pianissimo and fortissimo.

Thus it is reasonable to impose a suitable range, as

25 ms ≤ τφ ≤ 250 ms (5.57)

The variables space results now further restricted, as shown in Fig. 5.40.

Figure 5.40: Variables space Xσφ of the natural Eb trumpet with Pm = 9 kPa, constrained with
a maximum and minimum attack–time 25 ms ≤ τφ ≤ 250 ms, with the sound pitch
as parameter.

It is interesting to note that the pedal–tone almost disappear, this could mean
that is quite improbable to play this note within the imposed range of attack–times.

5.5.2 Pitch quality factor

The motion of contraction and relaxation of the limit–cycle leads to the fluctuation
of the spectral components of the sound: such fluctuations confers authenticity,
since the perception of the sounds is highly related the spectral dynamics.
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As explained above, the pitch of the simulated sounds is runtime estimated as
the geometric mean of a current pitch (see Fig. 5.41), computed as the inverse of
the fundamental period (see Eqs. 5.18 and 5.19).

 622.5

 623

 623.5

 624

 0.5  0.6  0.7  0.8  0.9  1

F
un

da
m

en
ta

l f
re

qu
en

cy
 [H

z]

Time [s]

current pitch

Figure 5.41: Pitch fluctuation related to the Eb5 performed with the natural Eb.

Since the perceived frequency increase an octave with every doubling in fre-
quency, the absolute value of the amplitude of pitch oscillations appears to be almost
meaningless. Indeed an amplitude range of few Hertz proves to be imperceptible
for high–pitched sounds and quite discernible for low–pitched sounds.

It is also worth noting that the estimation of the pitch fluctuation must be carried
out downstream of the attack–time since, as detailed above, from the starting of
the sound up to the end of the attack–transient, high–frequency components are
involved [69] (see Figs. 5.3 and 5.4).

Given this, with the aim of quantify the amplitude of the pitch oscillations let
consider the maximum value f c0max and the minimum value f c0min of the current
pitch downstream of the attack–time, and let define the pitch precision εf0 as follows

εf0 = max
[(

f0

f c0min

)
,

(
f c0max
f0

)]
t>τφ

(5.58)

being f0 the mean pitch evaluated at the end of the simulation. Using εf0 , recalling
the Eq. 5.23, it is possible to express the precision in terms of half–tones. Let
hypothesize that for a good sound,22 the range of oscillation of the current pitch
with respect to de sound pitch must not exceed the quarter–tone,23 by the imposition
of

εf0 ≤ 24
√

2 (5.59)
22As detailed before, the meaning of “good” must be intended in the view of seeking of the

performance sounds.
23With assumption can be justified that starting form the half–tone a change of note is percieved.

134



EXPLORATION OF THE PHYSICAL MODEL PARAMETERS

This assumption allows to discard the solutions, as the one in Fig. 5.42, whose
current pitch f c0 falls outside the tolerance.
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Figure 5.42: Pitch fluctuation falling outside the prescribed tolerance of a quarter–tone, related
to a note performed by the natural Eb trumpet.

Noting that in terms of phase–trajectory, such solution are related to the peri-
odical change of limit cycle, as shown in Fig. 5.43
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5.6 The performance space

In the previous sections several criteria aimed at the recognition of the performance
sounds have been developed. Such criteria have enabled the identification of several
subspaces, within the global space of the parameter of the Eq. 3.24, which lead to
time–dependent solutions characterized by

• periodicity within the hearing–range;

• self–sustained oscillations in the steady–state;

• feasible involved state variables;

• sounds relevant in terms of timbrical characteristics.

It is worth noting that the identification of the subspaces of X satisfying the above-
mentioned characteristics is aimed at the research of the the performance space X π
which represents the set of the locations of the space of the parameters in which
is positioned an experienced musician during the performance. A summary of the
criteria is listed in Tab. 5.3.

Subspace Motivation Description Formalization

Xhr
Periodicity within the

hearing–range
Runtime checking of the
peaks (maxima) Eq. 5.16

XS
Self–sustained

oscillations in the
steady–state

Phase–trajectory spiral
areas analysis

Eqs. 5.33 and
5.41

Feasible values of
blowing pressure

Constraining the
variables space Eq. 5.43

XF
Lip displacement limited

by the geometry
Runtime checking of the
lip displacement Eq. 5.47

Buzzing behaviour of
the lips (intermittent
closing and opening)

Verification of the initial
conditions inclusion by
the phase–trajectory

Eq. 5.49

Minimal musician effort Checking of a suitable
energetic index Eq. 5.51

XM
Proper maximum

attack–time length
Analysis of the standard
deviation function

Eqs. 5.38 and
5.57

Stable spectral
behaviour (pitch

oscillations)

Restriction of the
maximum range of the
pitch fluctuation

Eq. 5.59

Table 5.3: Summary of the criteria used for the recognition of the performance sounds.

The performance space of the natural Eb trumpet is so obtained by applying all the
conditions of Tab. 5.3, and is presented in Fig. 5.44.
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Figure 5.44: Performance space Xπ =
[
Phr ∩ (PS ∩PF )

]
∩PM of the natural Eb trumpet.

Note that the spots xpqr24 of the performance space Xπ manifest an asymptotic
behaviour with respect to both the mass ratio µL and the massic viscosity gL. The
location related to the performance sounds are, in the (µL,gL)–plane, superiorly
limited by an hyperbola with the exception of the pedal–tone as shown in Fig. 5.45.

Figure 5.45: Performance space of the natural Eb trumpet: massic viscosity as a function of the
mass ratio with the lip resonance frequency as parameter.

24The dependence of xpqrs from Pm is removed by the imposition of a single value of blowing
pressure Pm = 9 kPa (see Sect. 5.4.1).
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Furthermore the distribution of the xpqr, as illustrated in Figs. 5.46 and 5.46 is
such that coherent and separated structures are formed.

Figure 5.46: Performance space of the natural Eb trumpet: lip resonance frequency as a function
of the mass ratio with the massic viscosity as parameter.

Figure 5.47: Performance space of the natural Eb trumpet: lip resonance frequency as a function
of the massic viscosity with the mass ratio as parameter.

Such structures, as mentioned above, share common pitches as is evident from
the analysis of Fig. 5.44, close to the maxima of the input impedance spectrum (see
Fig. 5.18).
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The sound as an optimization problem

In this chapter will be defined an optimization problem for the identification, within
the performance space, of the location that provides a solutions complying prefixed
characteristics. Such characteristics deal with both physics of the involved state
variables and the timbrical characteristics of the sound, and can be described with
the criteria detailed in the Chap. 5.

6.1 Generalities

Seeking the coordinates in the performance space corresponding to a prefixed note,
for a given blowing pressure, is not too easy. Indeed one can note that moving in the
direction of the lips resonance frequency, small shifts can have large pitch variations,
this because exist several directions of the space such that the function F (see Eq.
5.5) is discontinuous. The treatment of this issue as an optimization problem, allows
to identify a certain sound starting from the selection of its characteristics.

A generic optimization problem (see App. C) yields the minimization of an
objective function J(x), while both the Ng inequality constraints gi(x) and the Nh

equality constraints hj(x) are satisfied. In the event of NJ multiple objectives, one
can be define an aggregate function JA(x) containing all the k–th objectives, each
one adequately weighed. It is worth noting that instead of solving the constrained
problem, it is possible to define a pseudo–objective function J̄(x) including the
inequality constraints through the so–called penalty function method. Once the
optimization problem is formulated, a numerical strategy for the optimum solution
research must be used.1

1In this work the minimization is provided by a genetic algorithm. The used algorithm is based
on the FORTRAN Genetic Algorithm (GA) by David L. Carroll.
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In the following, both the single–objective and the multi–objective approaches
will be detailed: the formalization of the objective functions and the constraints
related to the case study is addressed using the criteria described in the Chap. 5.

6.2 Single–objective optimization

Since the target of the musician is the intonation of the note2 it seems reasonable to
set as the objective function the distance between the sound pitch f0 and a target
pitch fT0 , hence

J(x) =
|fT0 − f0|

fT0
(6.1)

Regarding the constraints, note that if the time–varying pressure signal inside the
embouchure violates the condition expressed by the Eqs. 5.16, 5.34, 5.35 and 5.41,
the solution is automatically discarded and a penalty value is consequently given
to the function J(x). The Eqs. 5.47, 5.49 and 5.51 define the same number of
constraints which ensure that the sound is feasible in physical terms: such constraint
can be formalized as follows

g1(x) = δy − 1 < 0

g2(x) = βy ≤ 0

g3(x) =
1

10ηP
− 1 ≤ 0

(6.2)

The Eqs. 5.57 and 5.59 provide the control on the sound properties (attack–transient
and spectral fluctuations), and the following constraints are imposed

g4(x) =
τφ
τmaxφ

− 1 ≤ 0

g5(x) =
εf0

εmaxf0

− 1 ≤ 0
(6.3)

6.2.1 Seeking a note: the G4

As an example let impose as target frequency, in the Eq. 6.1, the frequency of the
note G4 which turns out to be the fourth peak of the input impedance spectrum of
the Eb natural trumpet.

The maximum imposed attack–time length is τφmax = 250 ms and the maximum
pitch oscillation must be bounded in a quarter of tone, i.e. εf0

max = 24
√

2 (see Eq.
6.3) after the attack–transient. Must be also complied the constraints on the lip
behaviour, i.e. on the maximum displacement and on the intermittent closure (see
Eq. 6.2).

2Actually the intonation is just one of the targets, jointly the proper loudness and expression,
then it would seem appropriate to set an optimization problem involving multiple objectives.
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The convergence, as shown in Fig. 6.1, is achieved in about 500 generations,
which is equivalent to 15 · 103 objective function evaluations, having been imposed
a population size of 30 individuals.
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Figure 6.1: Convergence of the genetic algorithm for the single–objective optimization problem.

The progress of the variables with increasing iterations is illustrated in Fig. 6.2.
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Figure 6.2: Progress of the design variables as a function of the index of generation for the
single–objective optimization problem.

The optimal vector related to the single–objective optimization, in Tab. 6.1, is
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such that the optimal point falls within the performance space (see Figs. 5.44, 5.46,
5.45 and 5.47).

µL gL ωL

22.97 297.4 2332

Table 6.1: Optimal solution of the single–objective optimization.

The optimal vector leads to an optimal solution whose characteristics are presented
in Tab. 6.2.

f0 391.76 Hz
δy < 1

βy < 0

ηP 0.7181

τφ 146.67 ms
εf0 1.0010

Table 6.2: Summary of the characteristics of the solution related to the optimal point of the
single–objective optimization.

The state variables, i.e. the displacement, the inflow and the pressure at the inlet
section of the instrument, as well as the time history of the sound pitch are presented
in Figs. 6.3 and 6.4.
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Figure 6.3: Optimal solution of a multi–objective optimization problem: lip displacement, inflow
and pressure signal inside the embouchure related to the performance of the a G4

with the Eb natural trumpet.
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Figure 6.4: Optimal solution of the single–objective optimization problem: current pitch, mean
pitch and tolerance related to the performance of the a G4 with the Eb natural
trumpet.

The sound is radiated to a virtual microphone located at distance r = 2 m with
respect to the outlet section, with an offset α = 30◦ with respect to its longitudinal
axis (see Sects. 2.3.1 and 3.3): the resulting waveform and the spectrum are shown
in Figs. 6.5 and 6.6.
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Figure 6.5: Optimal solution of the single–objective optimization problem: pressure signal at the
virtual microphone located at distance r = 2 m with respect to the outlet section of
the instrument, with an offset α = 30◦ with respect to its longitudinal axis, during
the performance of the a G4 with the Eb natural trumpet.
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Figure 6.6: Optimal solution of the single–objective optimization problem: pressure spectrum at
the virtual microphone located at distance r = 2 m with respect to the outlet section
of the instrument, with an offset α = 30◦ with respect to its longitudinal axis, during
the performance of the a G4 with the Eb natural trumpet.

Let now consider a simple model of head (see Sects. 2.3.2 and 3.3): the auralized
signal related to two antipodal location of the head model located on the instrument
axis at distance d = 3 m with respect to the outlet section of the resonator, is
presented below with its pressure spectrum (see Figs. 6.7 and 6.8).
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Figure 6.7: Optimal solution of the single–objective optimization problem: pressure signal at the
ears of the listener related to a simple model of head located on the instrument axis
at distance d = 3 m with respect to the outlet section of the resonator, during the
performance of the a G4 with the Eb natural trumpet.
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Figure 6.8: Optimal solution of the single–objective optimization problem: pressure spectrum at
the ears of the listener related to a simple model of head located on the instrument
axis at distance d = 3 m with respect to the outlet section of the resonator, during
the performance of the a G4 with the Eb natural trumpet.

6.3 Multi–objective optimization

The single–objective optimization problem, that has just been described, allows
to find within the performance space the location which provides a signal with a
prescribed pitch. Nevertheless the musical praxis requires a huge variety of emphasis
during the performance, as the accents and the articulation, then the intonation (see
Eq. 6.1) cannot be the only goal of the musician. The dynamic accents, for example,
impose the control on the attack–time of the sound.3

Accordingly, it seems appropriate to treat the constraint g4(x) (see Eq. 6.3) as
additional objective function, by imposing a target attack–time τTφ . Furthermore
the minimization of the musician effort (the constraint g5(x) of the Eq. 6.3), by
maximizing ηP , is equally desirable.

J1(x) =
|fT0 − f0|

fT0

J2(x) =
|τTφ − τφ|

τTφ

J3(x) =
1

ηP

(6.4)

The objectives J1(x), J2(x) and J3(x) are the goal of the multi–objective optimiza-
tion problem, and the pseudo–objective function J̄(x) is completed by the definition

3The tonguing technique can help the the brass player to have a control on the attack–time of
the sounds.
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of the following constraints

g1(x) = δy − 1 < 0

g2(x) = βy ≤ 0

g3(x) =
εf0

εmaxf0

− 1 ≤ 0

(6.5)

with the aim of control the lip behaviour and the spectral fluctuations.

6.3.1 Seeking the note: the C#5

Let impose as target frequency, in the J1(x) of the Eq. 6.4, the frequency of the
note C#5, i.e. the seventh peak of the input impedance spectrum of the Eb natural
trumpet, whereas the target attack–time is τφT = 50 ms. Constrain the problem
the conditions on the lip behaviour and the maximum pitch oscillation, which must
be bounded within a quarter of tone, i.e. εf0

max = 24
√

2 (see Eq. 6.3).
The convergence, as shown in Fig. 6.9, is achieved in about 40 generations,

that is equivalent to 12 · 102 objective function evaluations, having been imposed a
population size of 30 individuals, as in the previous case.

 0.1

 1

 10

 1  10  100  1000

O
bj

ec
tiv

e 
fu

nc
tio

n

Figure 6.9: Convergence of the genetic algorithm for the multi–objective optimization problem.

It is important to note that the iterations needed for the convergence is slightly
smaller with respect to the single–objective optimization, this because the co-domain
is significantly restricted due to the identification of several objective functions.

Even in this case, as illustrated in Fig. 6.10, the optimal point falls within the
performance space.
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Figure 6.10: Progress of the design variables as a function of the index of generation for the
multi–objective optimization problem.

The optimal vector related to the multi–objective optimization, in Tab. 6.3, is
within the performance space (see Figs. 5.44, 5.46, 5.45 and 5.47).

µL gL ωL

6.250 498.1 3140

Table 6.3: Optimal solution of the multi–objective optimization.

The optimal vector leads to an optimal solution whose characteristics are presented
in Tab. 6.4.

f0 548.52 Hz
δy < 1

βy < 0

ηP 0.7509

τφ 49.985 ms
εf0 1.0014

Table 6.4: Summary of the characteristics of the solution related to the optimal point of the
multi–objective optimization.

The lip displacement, the inflow and the pressure at the inlet section of the instru-
ment are presented in Fig. 6.11 and the time history of the sound pitch is in Fig.
6.12.
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Figure 6.11: Optimal solution of a multi–objective optimization problem: lip displacement, in-
flow and pressure signal inside the embouchure related to the performance of the a
C#5 with the Eb natural trumpet.
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Figure 6.12: Optimal solution of a multi–objective optimization problem: current pitch, mean
pitch and tolerance related to the performance of the a C#5 with the Eb natural
trumpet.

Let now radiate the sound, as done before, to a virtual microphone located at
distance r = 2 m with respect to the outlet section, with an offset α = 30◦ with
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respect to its longitudinal axis (see Sects. 2.3.1 and 3.3): the waveform and the
pressure spectrum are shown in Figs. 6.13 and 6.14.
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Figure 6.13: Optimal solution of the multi–objective optimization problem: pressure signal at
the virtual microphone located at distance r = 2 m with respect to the outlet
section of the instrument, with an offset α = 30◦ with respect to its longitudinal
axis, during the performance of the a C#5 with the Eb natural trumpet.
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Figure 6.14: Optimal solution of the multi–objective optimization problem: pressure spectrum
at the virtual microphone located at distance r = 2 m with respect to the outlet
section of the instrument, with an offset α = 30◦ with respect to its longitudinal
axis, during the performance of the a C#5 with the Eb natural trumpet.

The auralized signal (see Sects. 2.3.2 and 3.3) related to two antipodal location
of the head model located on the instrument axis at distance d = 3 m with respect
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to the outlet section of the resonator, is presented below with its pressure spectrum
(see Figs. 6.15 and 6.16).
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Figure 6.15: Optimal solution of the multi–objective optimization problem: pressure signal at
the ears of the listener related to a simple model of head located on the instrument
axis at distance d = 3 m with respect to the outlet section of the resonator, during
the performance of the a C#5 with the Eb natural trumpet.
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Figure 6.16: Optimal solution of the multi–objective optimization problem: pressure spectrum at
the ears of the listener related to a simple model of head located on the instrument
axis at distance d = 3 m with respect to the outlet section of the resonator, during
the performance of the a C#5 with the Eb natural trumpet.
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Conclusions and future works

In this chapter will be presented a brief summary of the addressed work. Afterwards
a few suggestions for eventual future developments will be presented.

7.1 Completed tasks

This research dealt with the sound synthesis through physical modeling, and within
the work have been developed models and methodologies for the time–domain sim-
ulation of the wind instruments. The aim of the research lies on the possibility to
achieve valuable sounds for electronic music compositions, and to explore new fea-
tures of the design of hybrid and augmented musical instruments. Another crucial
aspect has been the characterization of the solution of the physical model of the
brass instruments.

The proposed methodology has as the starting point that which has been called
virtual lutherie, i.e. the integrated modeling of the instrument response and the
propagation and scattering within the hall where the performance takes place. Start-
ing from the geometric model, the acoustical characteristics of the resonator and the
surroundings was carried out by exploiting the integral representation of the acoustic
fields through the Kirchhoff–Helmholtz Integral Equation (KHIE) in the frequency–
domain, and the numerical solution was provided by a zeroth–order Boundary El-
ement Method (BEM). The pipe is considered ideally closed, and its frequency
response is evaluated by imposing a pure Neumann boundary conditions at the in-
let section. This is equivalent to considering the resonator forced by a flat spectrum
and is compliant with the definition of frequency response, since a flat spectrum
is provided by a time–impulse force. The solution has been evaluated at the inlet
section of the instrument in order to achieve the input impedance which completely
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characterize the resonator since provides information on the sound pressure inten-
sity at a given frequency. Have been made several comparisons and convergence
analysis between the numerical solutions and the approximated analytical solution
of the Webster’s horn equation: in all the analysed cases, the agreement is excel-
lent. The BEM solution of the KHIE were also evaluated at several locations of
the acoustic field with the aim of derive the propagation transfer functions and re-
construct sound radiated by the instrument towards the environment: such transfer
functions are related to both the locations of virtual microphones (Embouchure–to–
Microphone transfer function) or the antipodal points of a rigid sphere representing
the listener’s head (Embouchure–to–Listener transfer function).

The solution of the acousto–elastic coupling between the resonator and the ex-
citer was carried out in the time–domain. A wide literature provides valuable models
of exciters for the single–reed–instruments (clarinets and saxophones), the double–
reed–instruments (oboe, bassoon, etc.), the jet–driven instruments (flutes, flue or-
gan pipes, etc.) and brasses (trumpet, trombone, flughelhorn, etc.). The solution
consists in convolving the inflow with a time–domain function describing the res-
onator. The impulse response, inverse Fourier transform of the input impedance,
is not useful in the time–domain simulation due to its wide decay–time: according
to the literature the reflection function, inverse Fourier transform of the reflection
coefficient (directly derived from the input impedance), was used with the purpose
of implement an efficient step integration aimed at the delayed–time simulations.

A complete time–domain solution has been detailed for an interesting case study,
i.e. the natural Eb trumpet. Very ancient instrument, it is a valveless brass and the
variety of playable notes is attributable to the mastery of the player to move on each
of the harmonic sounds. Starting from the geometric model, based on a modern
replica, the acoustical characterization was carried out via BEM and the comparison
with the tuning of real instruments is fully consistent. The step integration has led to
the evaluation of the state variables (displacements, inflow and pressure signal at the
inlet section of the instrument) for a suitable performance condition and the radiated
sound compared with a recorded sound manifests an excellent agreement. A suitable
block diagram aimed at the physical model exploitation for real–time application
has been presented, and the algorithm has demonstrated to be accurate and efficient
in offline calculation. The utilization of meta-models for the representation of the
acoustic transfer functions with a finite number of states has been also described.

The solutions of the brasses physical model has been characterized: several
subspaces within the global space of the solutions have been identified and such
subspaces are related to different properties of the generated signals in terms of
physical feasibility and timbrical characterization. The identification of the solutions
characteristics provides the space of the performance, i.e. the set of the locations in
the space of the parameters governing the model where an experienced musician is
placed when performs a note. This method allows to predict the combinations of the
equations parameters corresponding to a sound complying prescribed characteristics
both physical and timbrical.
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The criteria developed for the characterization of the brass physical model so-
lutions have been exploited for the formalization of both a single–objective and a
multi–objective optimization problems. The optimal solutions, achieved with a ge-
netic algorithm, are related to physically feasible sounds with prescribed timbrical
characteristics.

7.2 Future research

The developed models and methodologies have led to more than satisfactory re-
sults regarding the time–domain simulation of the wind instruments. An adequate
acoustical characterization has allowed to obtain proper transfer functions which
have led to excellent timbrical reconstructions of the radiated sounds. Moreover it
has been developed an effective block diagram representation for the physical model
that reveals the opportunity to exploit it for real–time applications.

Nevertheless some aspects are still to be explored, and such issues can be divided
into two classes, i.e

• the models improvement, specifically the investigation on the connection
between the timbrical reconstruction and both the fluid–dynamic and the
structural effect on the instruments, e.g

– the influence of the viscous and thermal boundary layer, and the effect
of thermal gradients inside the resonator;

– the nonlinear effects of the shock–waves propagation inside the resonator,
i.e. during the performance of loudness sounds especially in the brass
instruments;

– the Helmholtz resonator effect caused by the pronunciation of vowels
during the blowing into the embouchure: this aspect seems to be crucial
for the simulation of musical instruments such as the didgeridoo;

– the connection between the acoustical properties of the resonator and
both the wall vibration and the wall impedance.

• the realization of real–time devices, e.g. physical–models–based synthesiz-
ers or equipment aimed at the design of hybrid or augmented musical instru-
ments, as well as applications for consumer devices.

The importance of further develop this research lies on the possibility to put be-
side the valuable sound synthesis techniques currently employed, the methodologies
based on physical modeling which allow to explore the limits of expressive space of
both the existing instruments and the virtual or innovative musical instruments.
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Kirchhoff-Helmholtz Integral Equation

The acoustic perturbations through a homogeneous, inviscid, non–heat conducting
and compressible fluid can be described with the wave equation. Under the hypoth-
esis that the medium is initially stationary, the wave equation can be expressed in
term of potential ϕ as follows

∇2ϕ− 1

c2

∂2ϕ

∂t2
= σ (A.1)

being c the sound velocity and σ the contribution of the nonlinear terms, defined as

σ =
1

c2

[
(c2 − a2)∇2ϕ+ 2∇ϕ · ∂∇ϕ

∂t
+
∇ϕ
2
· ∇|∇ϕ|2

]
(A.2)

with a the local sound velocity. Under the hypothesis of small acoustic perturbations
it is possible to assume

σ = 0 (A.3)

In the frequency–domain, for a simple harmonic of angular pulsation ω the potential
ϕ can be expressed as

ϕ̃ = ϕeiωt (A.4)

Combining the Eqs. A.1 and A.4 one obtain

∇2ϕ̃+ k2ϕ̃ = 0 (A.5)

being k = ω/c the wavenumber or reduced–frequency. Let now define the funda-
mental G such that

∇2G+ k2G (x,x∗) = δ (x− x∗) (A.6)
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The Eq. A.6 must satisfy the Sommerfeld radiation condition, i.e.

G = O
(
r−α

)
, α > 0, r = ||x− x∗|| (A.7)

The solution of the Eq. A.6 is the Green function

G(x,x∗) = − 1

4πr
e−ikr = G0e

−ikr (A.8)

being r = ||x − x∗|| with x∗ the observation point, and G0 the free-field Green’s
function. Let now define the fluid domain V bounded by the surface SB of a body
and a spherical surface S∞ of radius R that encloses the body, with R → ∞ and
let consider the system defined by the Eqs. A.5 and A.6{

∇2ϕ̃+ k2ϕ̃ = 0

∇2G+ k2G (x,x∗) = δ (x− x∗)
(A.9)

By subtracting the second of the Eq. A.9 multiplied by ϕ̃ from the first of the Eq.
A.9 multiplied by G, integrating on the volume V one obtain∫∫∫

V

(
G∇2ϕ̃− ϕ̃∇2G

)
dV = −

∫∫∫
V
ϕ̃δ (x− x∗) dV (A.10)

The second Green’s identity,1 considering the normals n internal and using the Dirac
delta selective property, 2, implies that∮

SB

(
G
∂ϕ̃

∂n
− ϕ̃∂G

∂n

)
dS +

∮
S∞

(
G
∂ϕ̃

∂n
− ϕ̃∂G

∂n

)
dS = E∗ϕ̃∗ (A.12)

The contribution of the integral on S∞ tends to zero due to the Sommerfeld radiation
condition

ϕ̃ = O
(
r−α

)
, α ≥ 1, r = ||x− x∗|| (A.13)

hence the Eq. A.12, making explicit the spatial dependences, becomes

E(x∗)ϕ̃(x∗) =

∮
SB

(
G(x,x∗)

∂ϕ̃(x∗)

∂n
− ϕ̃(x∗)

∂G(x,x∗)

∂n

)
dS (A.14)

1Given two arbitrary functions f and g both at least two times differentiable, one has∫
V

(
f∇2g − g∇2f

)
dV =

∫
S=∂V

(g∇f − f∇g) · ndS (A.11)

2By definition, for a given h with compact support∫
Ω

h(x)δ (x− x0) = h (x0)
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being the domain function E(x) such that

E(x∗) =


0, ∀x∗ 6∈ SB, 6∈ V
1, ∀x∗ 6∈ SB,∈ V
Ω/4π, ∀x∗ ∈ SB

(A.15)

where Ω represents the solid angle and for regular point one have that

Ω = 2π (A.16)

Combining the Eqs. A.8 and A.14 can be expressed in terms of the free-field Green’s
function G0

E∗ϕ̃∗ =

∮
SB

(
G0

∂ϕ̃

∂n
− ϕ̃∂G0

∂n
+ ikϕ̃G0

∂r

∂n

)
e−ikrdS (A.17)

Considering the Laplace variable s = σ + iω and imposing θ = r/c, the Eq. A.17
becomes

E∗ϕ̃∗ =

∮
SB

(
G0

∂ϕ̃

∂n
− ϕ̃∂G0

∂n
+ sϕ̃G0

∂r

∂n

)
e−sθdS (A.18)

The Eq. A.18 represents the equation for the velocity potential, known as Kirchhoff–
Helmholtz Integral Equation (KHIE).
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Boundary Element Method for acoustic problems

The Boundary Element Method (BEM), also referred to as the panels–method, is
based on the discretization of the bodies surface S into Ne panels. In general, in
order to reduce an integro–differential problem to and algebraic problem, one can
define the unknown function u as a linear combination of N global shape–functions
Ψ multiplied by the value of u in the collocation points, i.e.

u(ξ) ≈
N∑
n=1

unΨn(ξ) (B.1)

The evaluation of the coefficients with the knowledge of the boundary conditions
provides the approximate solution of the problem.

Let now consider the following integro–differential acoustic problem

E∗ϕ̃∗ =

∮
SB

(
G0

∂ϕ̃

∂n
− ϕ̃∂G0

∂n
+ ikϕ̃G0

∂r

∂n

)
e−ikrdS (B.2)

being the domain function E∗ equal to 1, 1/2, or 0, if the solution is respectively
evaluated in the field V, on the body surface SB = ∂V or out of the domain.

The scalar potential function ϕ̃ and its normal derivative χ̃ can be expressed
with the Eq. B.1 as follows

ϕ̃(x) =

Nϕ∑
j=1

ϕ̃jM
ϕ
j (x)

χ̃(x) =

Nχ∑
j=1

χ̃jM
χ
j (x)

(B.3)
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being ϕ̃j and χ̃j the values that ϕ̃ and χ̃ assume in the collocation point xj , whereas
Mϕ

j (x) and Mχ
j (x) are the global shape–functions such that

∑
j Mj = 1. Assuming

that Mϕ
j (x) = Mχ

j (x), for for each point xm the Eq. B.2 can be written as follows

Emϕm =

Ne∑
j=1

∮
SB
G0e

−sθMχ
j χjdS

−
Ne∑
j=1

∮
SB

(
∂G0

∂n
− sG0

∂r

∂n

)
e−sθMϕ

j ϕjdS

(B.4)

that is the general form of the discretization of the boundary integral equation.
In the zeroth–order approximation for the unknown the values of ϕ̃ and χ̃ are

assumed to be constant equal to the value at the centroid of the panel. The terms
of the Eq. B.2 can be written as follows∫

SB
G0χ̃e

−ikrdSB ≈
N∑
j=1

Bijχ̃e
−ikrij

−
∫
SB
ϕ̃
∂G0

∂n
e−ikrdSB ≈

N∑
j=1

Cijϕ̃je
−ikrij

∫
SB
ikϕ̃G0

∂r

∂n
e−ikrdSB ≈

N∑
j=1

Dijikϕ̃je
−ikrij

(B.5)

with influence coefficients

Bij =

∫
Sj
G0ijdSj

Cij = −
∫
Sj

∂G0ij

∂n
dSj

Dij =

∫
Sj
G0ij

∂rij
∂n

dSj

(B.6)

Using the Eqs. B.5 and B.6, the Eq. B.2 becomes

Ejϕ̃j =

N∑
j=1

Bijχ̃je
−ikrij +

N∑
j=1

Cijϕ̃je
−ikrij +

N∑
j=1

Dijikϕ̃je
−ikrij (B.7)

In the Eq. B.7 the terms Bij and Cij represent respectively the source and doublet
integral: it is worth noting that if the panels can be represented with portions of
hyperbolic paraboloid, the sources and doublets integral are known. Let assume
that the surface SB = ∂V is discretized into N quadrangular panels: defining the
generic x in the local system (ξ, η)

x = p0 + ξp1 + ηp2 + ξηp3 (B.8)
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being ξ ∈ [−1, 1] and η ∈ [−1, 1]. The position of the four vertices is given by the
following

xsξ,sη = p0 + sξp1 + sηp2 + sξsηp3 (B.9)

with sξ = ±1 and sη = ±1. Combining the Eqs. B.8 and B.9 one can obtain the
relation between p0, p1, p2, p3 with the vertices coordinates. Defining

r = p0 + ξp1 + ηp2 + ξηp3 − xk (B.10)

being ξ and η the local integration variables, it is possible to derive the source
integral ID and the doublet integral ID as follows

IS = Bij =

∫ 1

−1

∫ 1

−1
− 1

4πr
||a1 × a2||dξdη

ID = Cij =

∫ 1

−1

∫ 1

−1
− r · n

4πr3
||a1 × a2||dξdη =

−
∫ 1

−1

∫ 1

−1

r · a1 × a2

4πr3

(B.11)

with r = ||r||. The basis vectors can be expressed as

a1 =
∂x

∂ξ
= p1 + ηp3

a2 =
∂x

∂η
= p2 + ξp3

(B.12)

and the related normal is
n =

a1 × a2

||a1 × a2||
(B.13)

Considering now a generic panel p: the value of ϕ̃p, knowing the value of the domain
function E, is provided by the Eq. B.7

1

2
ϕ̃p =

N∑
q=1

Bpqχ̃qe
−ikrpq +

N∑
q=1

Cpqϕ̃qe
−ikrpq +

N∑
q=1

Dpqikϕ̃qe
−ikrpq (B.14)

being the influence coefficients defined by the Eq. B.6. Starting from the Eq. B.14
one can define the vector ϕ̃ of the values ϕ̃ representing the velocity potential at the
centroids of the N panels, and the vector χ̃ of the values χ̃ related to the N panels

ϕ̃ =

 ϕ̃1
...
ϕ̃N

 , χ̃ =

 χ̃1
...
χ̃N

 (B.15)

Let now define the matrix Z such that its generic element is

Zpq =

∫
Sq
G0pqe

−ikrpqdSq = Bpqe
−ikrpq (B.16)
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and the matrix Y

Ypq =
1

2

∫
Sq

∂G0pq

∂n
e−ikrpqdSq −

∫
Sq
G0pq

∂rpq
∂n

ike−ikrpqdSq

=
1

2
− Cpqe−ikrpq − ikDpqe

−ikrpq
(B.17)

Combining the Eqs. B.15, B.16 and B.17, the Eq. B.14 becomes

Y ϕ̃ = Zχ̃ (B.18)

and allows to evaluate the N values of velocity potential on the discretized body
surface SB.

Let now consider the solution for a generic location of the volume V identified
by the vector x∗. The integral representation of ϕ̃ is defined by the following

ϕ̃(x∗) =
N∑
q=1

Bx∗qχ̃qe
−ikrx∗q +

N∑
q=1

Cx∗qϕ̃qe
−ikrx∗q +

N∑
q=1

Dx∗qikϕ̃qe
−ikrx∗q (B.19)

Considering the vector ϕ̃M representing the velocity potential in M locations of the
domain V

ϕ̃M =

ϕ̃
M
1
...
ϕ̃MN

 (B.20)

and the matrix ZM such that

ZMpq =

∫
Sq
G0

M
pqe
−ikrpqdSq = Bpqe

−ikrpq (B.21)

Note that for a given location p identified with the vector x∗p with 1 ≤ p ≤ M
the free–field Green’s function with respect to the generic panel q is given by the
following

G0
M
pq = − 1

4π||xq − x∗p||
(B.22)

Let introduce the matrix SM

Spq =

∫
Sq

∂G0
M
pq

∂n
e−ikr

M
pqdSq −

∫
Sq
G0

M
pq

∂rMpq
∂n

ike−ikr
M
pqdSq

= Cpqe
−ikrMpq − ikDpqe

−ikrMpq

(B.23)

Combining the Eqs. B.15, B.21 and B.23, the Eq. B.19 becomes

ϕ̃M = ZM χ̃+ SM ϕ̃ (B.24)
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Optimization problems

The generic optimization problem yields the minimization of an objective function,
or multiple objective functions, while all the constraints are satisfied. The problem
can be formalized as follows

minimize [J1(x), ..., JK(x)] , k = 1, ..., NJ and x ∈ D
bounds xLn ≤ xn ≤ xUn , n = 1, ..., Nx

subject to gi(x) ≤ 0, i = 1, ..., Ng

and hj(x) = 0, j = 1, ..., Nh

(C.1)

being Jk(x) the k–th objective function with x the vector containing the Nx design
variables bounded by xLn and xUn in the design space D, gi(x) the Ng inequality
constraints and hj(x) the Nh equality constraints. The set of x in the n–dimensional
design space D which satisfy the constraints is called the feasible set.

Omitting the multiple–criteria decision analysis (Pareto optimization) methods,
the objective function can be processed by defining a single objective function JA(x)
containing all the objective functions Jk(x) by using suitable weight coefficients λk

JA(x) =

NJ∑
k=1

λkJk(x) (C.2)

where the weight vector λ generally respect the following rule

NJ∑
k=1

λk = 1 (C.3)
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Combining the Eqs. C.1 and C.2, and neglecting the Nh equality constraints hj(x)

minimize JA(x), x ∈ D
bounds xLn ≤ xn ≤ xUn , n = 1, ..., Nx

subject to gi(x) ≤ 0, i = 1, ..., Ng

(C.4)

The treatment of the inequality constraints gi(x) can be addressed by using several
techniques. One of these consists in solving the original constrained problem for-
malized with the Eq. C.4 by defining a pseudo–objective function J̄(x) including
all the inequality constraints: the idea is to combine the objective function JA(x)
and the Ng inequality constraints gi(x) so that even the constraints violation is
minimized. This strategy is the so–called penalty function method and provides the
solution of the original constrained problem by solving an unconstrained one.

The unconstrained optimization problem for the Eq. C.4, addressed with the
quadratic penalty function can be defined as follows

J̄(x) = JA(x) +
1

ε

Ng∑
i=1

max [0, gi(x)]2 (C.5)

being 1/ε the penalty parameter, with ε < 1: the smaller is ε the greater is the
penalty. The constrained problem of the Eq. C.4 reduces to

minimize J̄(x), x ∈ D
bounds xLn ≤ xi ≤ xUn n = 1, ..., Nx

(C.6)

Once the optimization problem is formulated, must be used a numerical technique
in order to find its solution: a wide scenario of optimization algorithms can be found
in the literature.
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