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Abstract 
 

Human communication is naturally multimodal. People normally 
interact through several communication channels, such as gesture, 
drawing, handwriting, facial expressions, gaze in combination with 
speech or speech only, which is the prevalent modality. This 
synergistic use of multiple interaction channels makes human 
communication flexible, natural and robust. In the last years several 
efforts have been made to endow computer interface with similar 
flexibility, naturalness and robustness. The research presented in 
this thesis represents one of this effort. 
The main contributions of this thesis are twofold. First of all, it 
provides a methodology for multimodal language definition that is 
general enough to be applicable for whatever modalities and in 
whichever domains. Secondly, it provides an efficient incremental 
learning algorithm that, following an approach “by example”, 
allows to generate the production rules of the defined grammar 
starting from the acceptable multimodal sentences. 
 
 
 
 
 

 



 

 



 

 
 
 
 
Acknowledgments 
 
 
First, I would like to thank my supervisor Fernando Ferri at CNR 
who suggested many of the ideas realized in this work, encouraged 
me to tackle the problems during the whole period of studies, and 
gave many important comments on the text of the thesis. 
 
I also want to express my gratitude to Patrizia Grifoni and all the 
members of the Multi Media & Modal Laboratory group at CNR 
who have created a great working atmosphere and provided a lot of 
useful feedback. 
 
Finally, I would like to thank Domenico, my parents, and my 
relatives and friends for constant moral support and belief in my 
ability to do the work and write this thesis. 

ix 



 

 
 
 
 

Contents 
 
Contents.........................................................................................X 

List of Tables.............................................................................XIV 

List of Figures ............................................................................ XV 

Chapter 1   Introduction ...............................................................1 

Chapter 2   Multimodal Interaction.............................................7 

2.1   Introduction ......................................................................7 

2.2   The Multimodal Human-Computer Communication 
Process......................................................................................9 

2.3   Conceptual Features of Multimodal Interaction .............12 

2.4   Architectural Features of Multimodal Systems ..............14 

2.5   Human-Computer Interaction Modalities .......................15 
2.5.1 Speech.............................................................................15 
2.5.2 Handwriting and Gesture ................................................16 
2.5.3 Other Modalities .............................................................18 

2.6   Advantages and Critical Elements of Multimodal 
Interaction...............................................................................18

2.6.1 Naturalness and Accessibility .........................................18 
2.6.2 Robustness and Stability .................................................19 
2.6.3 Expressive Power and Efficiency....................................20 

Chapter 3   Multimodal Fusion And Grammars ......................22 

3.1   Introduction ....................................................................22 

x 



xi 

3.2   Data Fusion Levels In Multimodal Fusion..................... 23 

3.2.1 Recognition-based Fusion Strategies...............................26 
3.2.2 Decision-based Fusion Strategies....................................29 
3.2.3 Hybrid Multi-level Fusion Strategies ..............................34 
3.2.4 Final Discussion on Multimodal Fusion Approaches......37 

3.3   Grammars for Multimodal Fusion.................................. 38 
3.3.1 Context-Free Grammars ..................................................39 
3.3.2 Multi-Modal Definite Clause Grammar ..........................42 
3.3.3 Finite-State Multimodal Grammar ..................................44 
3.3.4 Multimodal Functional Unification Grammar.................45 
3.3.5 Multimodal Combinatory Categorial Grammar ..............47 
3.3.6 Final Discussion on Multimodal Grammars....................48 

Chapter 4   Learning of Grammars........................................... 52 

4.1   Introduction.................................................................... 52 

4.2   Notations ........................................................................ 54 

4.3   Models of learning ......................................................... 55 

4.3.1 Identification in the Limit................................................55 
4.3.2 Queries ............................................................................56 
4.3.3 PAC Learning .................................................................57 

4.4   Algorithms for Learning of Context-Free Grammars .... 57 
4.4.1 Inductive CYK Algorithm...............................................57 
4.4.2 Learning CFG by Version Space.....................................61 
4.4.3 e-GRIDS Algorithm ........................................................67 

4.5   Final Discussion on Learning Methods.......................... 71 

Chapter 5   The Multimodal Grammar Editor: Theoretical 
Foundations ................................................................................. 73

5.1   Introduction.................................................................... 73 

5.2   General Discussion on Application Scenarios ............... 75 

5.3   Multimodal Input Modeling........................................... 78 
5.3.1 Representing Unimodal Input .........................................79 
5.3.2 The Linearization Process ...............................................83 

  



xii 

5.4   The Multimodal Attribute Grammar...............................88 

5.5   The Grammar Inference Algorithm ................................96 
5.5.1 First Step: the MAG Generation from Positive Examples
 98 
5.5.2 Second Step: Improving the Grammar Description for 
Avoiding the Over-Generalization Problem ............................106

5.5.2.1 Description Length of a MAG....................................... 108 
5.5.2.2 Learning Operators ........................................................ 114 

5.6   Final Discussion ...........................................................115 

Chapter 6   Multimodal Grammar Editor Design ..................117 

6.1   Introduction ..................................................................117 

6.2   Overall System Architecture.........................................118 
6.2.1 The Multimodal Grammar Editor Architecture.............121 

6.3   Design of the Multimodal Grammar Editor..................123 
6.3.1 Creating the MUI of the Multimodal Grammar Editor..124 
6.3.2 Acquiring the Lexicon of the Grammar ........................125 
6.3.3 Specifying Examples of Multimodal Sentences ............126 
6.3.4 Implementing the Grammar Inference Algorithm.........129 

6.4   MGE Sequence Diagram ..............................................129 

6.5   Summary.......................................................................130 

Chapter 7   Multimodal Grammar Editor Implementation...132 

7.1   Introduction ..................................................................132 

7.2   Software Class Design..................................................133 
7.2.1 Multimodal User Interface ............................................134 
7.2.2 Multimodal Attribute Grammar ....................................135 
7.2.3 Multimodal Sentence ....................................................136 
7.2.4 Grammar Inference .......................................................137 

7.3   Main Software Classes of the System...........................138 
7.3.1 Defining Syntactic Roles...............................................139 
7.3.2 Building of the CYK Matrix .........................................140 
7.3.3 Revised CYK Algorithm...............................................142 

 



xiii 

7.4   Usage Example of the Editor ....................................... 144 

7.5   Summary ...................................................................... 154 

Chapter 8   Evaluation and Results ......................................... 156 

8.1   Introduction.................................................................. 156 

8.2   Usability Evaluation of the MGE................................. 157 
8.2.1 Experimental Setting .....................................................157 
8.2.2 Results...........................................................................162 

8.3   Evaluation of the Grammar Inference Algorithm ........ 164 
8.3.1 Evaluation metrics.........................................................165 
8.3.2 Experimental Setting .....................................................167 
8.3.3 Evaluation Results.........................................................169 

Chapter 9   Conclusion and Future Work .............................. 172 

9.1   Summary of the Thesis................................................. 172 

9.2   Contributions................................................................ 173 

9.3   Future Work ................................................................. 175 

Appendices................................................................................. 177 

Usability Evaluation.................................................................. 179 

Instructions for Using Yellow Editor ................................... 179 

Instructions for Using Red Editor ........................................ 180 

The training set of multimodal sentences............................. 182 

Evaluation Questionnaire ..................................................... 185 

Bibliography .............................................................................. 188 

 

  



 

 
 
 
 

List of Tables 
 
Table 2.1: Characteristics of a multimodal interaction and relative 

issues ....................................................................................12 
Table 3.1: Advantages and drawbacks of multimodal fusion 

strategies...............................................................................38 
Table 3.2: Advantages and shortcomings of multimodal grammar 

formalisms............................................................................49 
Table 4.1: Advantages and shortcomings of CFG grammar 

inference algorithms.............................................................71 
Table 5.1: Linear sentences for the example .................................85 
Table 5.2: CYK matrix for the example ......................................104 
Table 5.3: Calculating the GDL...................................................112 
Table 5.4: The effect of the Merge operator ................................114 
Table 5.5: The effect of the Create operator ................................115 
Table 8.1: The multimodal sentences for the experiments ..........159 
Table 8.2: The multimodal attribute grammar for the experiments

...........................................................................................161
Table 8.3: The questionnaire for the usability evaluation............162 
Table 8.4: Training and test sentences for the experiments .........168 
Table 8.5: The multimodal attribute grammar inferred by the 

algorithm ............................................................................169 
Table 8.6: test sentences generated from the inferred grammar for 

the experiment....................................................................170 
 

xiv 



 

 
 
 
 

List of Figures 
 
Figure 2.1: The multimodal human-computer communication 

process ................................................................................. 10 
Figure 2.2: A common architecture of a multimodal system ........ 15 
Figure 3.1: Possible levels of multimodal data fusion: a) fusion at 

signal level; b) fusion at recognition level; c) fusion at 
decision level ....................................................................... 25 

Figure 3.2: The output path of the MS-MIN of Vo [Vo98] .......... 27 
Figure 3.3: The multimodal integration approach of Pavlovic et al. 

[PBH97]............................................................................... 28 
Figure 3.4: An example of typed feature structures unification .... 30 
Figure 3.5: An example of representation of a spoken word by 

typed feature structure ......................................................... 31 
Figure 3.6: The structure of a melting pot [NiC95]....................... 32 
Figure 3.7: The structure of the semantic frame of Russ et al. 

[RSH05]............................................................................... 34 
Figure 3.8: A finite-state transducer in the approach of Johnston et 

al. [JoB00] ........................................................................... 35 
Figure 3.9: An example of dialogue move in the approach of Perez 

et al. [PAM05] ..................................................................... 37 
Figure 3.10: An example of MUG functional description............. 46 
Figure 4.1: The top-level procedure of Synapse ........................... 59 
Figure 4.2: The procedure of the extended inductive CYK 

algorithm.............................................................................. 60 
Figure 4.3: The simple tree product for the positive strings 'b' and 

'ab'........................................................................................ 63 
Figure 4.4: Construction of the derivational version space for the 

fourth tree sequence............................................................. 64 
Figure 4.5: Construction of the derivational version space for the 

example................................................................................ 66 
Figure 4.6: The e-GRIDS algorithm.............................................. 68 

xv 



xvi 

Figure 4.7: The initial grammar for the e-GRIDS algorithm.........69 
Figure 4.8 The grammar after the “merge” step of the e-GRIDS 

algorithm ..............................................................................70 
Figure 4.9: The final grammar produced by the e-GRIDS algorithm

.............................................................................................70
Figure 5.1: The input element representation ................................79 
Figure 5.2: The set of attributes of input elements ........................80 
Figure 5.3: Penn treebank syntactic categories..............................81 
Figure 5.4: The input element representation for the example ......83 
Figure 5.5: Cooperative relations of input elements in the example

.............................................................................................85
Figure 5.6: Syntactic proximity of input elements in the example 87
Figure 5.7: Information flow in the attribute grammar notation....90
Figure 5.8: The derivational tree of the sentence in Example 4.1..96
Figure 5.9: Workflow of the proposed grammar inference algorithm

.............................................................................................97
Figure 5.10: First step of the revised CYK algorithm..................100 
Figure 5.11: Second step of the revised CYK algorithm .............101 
Figure 5.12: Grammar updating step ...........................................108 
Figure 5.13: Calculating the DDL ...............................................113 
Figure 6.1: Architecture of the M2LP framework .......................119 
Figure 6.2: Architecture of the Multimodal Grammar Editor......121 
Figure 6.3: Sequence diagram of the MGE .................................130 
Figure 7.1: General diagram of packages ....................................134 
Figure 7.2: Class diagram of the MUI package ...........................135 
Figure 7.3: Class hierarchy for the MAG ....................................135 
Figure 7.4: Class diagram of the MultimodalAttributeGrammar 

package ..............................................................................136 
Figure 7.5: Class diagram of the MultimodalSentence package ..137
Figure 7.6: Class diagram of the GrammarInference package ....138 
Figure 7.7: A code excerpt from the method Tagging() ..............139 
Figure 7.8: A code excerpt from the method 

upgradeGrammar(Grammar g, Sentence s).......................140 
Figure 7.9: A code excerpt from the method 

createMatrixCYK(matrixCYK, sentenceElements, 
sentenceLength) .................................................................141 

Figure 7.10: A code excerpt from the method 
getCandidateDerivation(j,i,k) ............................................142 

 



xvii 

Figure 7.11: A code excerpt from the method 
addProductions(HashMap candidateProd, String prodIdx)
........................................................................................... 143 

Figure 7.12: The graphical user interface of the grammar editor 144
Figure 7.13: The dialog box for inserting the new grammar name

........................................................................................... 145
Figure 7.14: The panel for modality selection in the graphical user 

interface of the grammar editor ......................................... 146 
Figure 7.15: The panel for multimodal sentence acquisition in the 

graphical user interface of the grammar editor .................. 147 
Figure 7.16: The window for visualizing the unimodal input 

recognized by the specific recognizers .............................. 149 
Figure 7.17: Multimodal sentence acquisition ............................ 150 
Figure 7.18: Recognized unimodal inputs................................... 151 
Figure 7.19: Interface for the definition of syntactic roles of 

inserted input ..................................................................... 152 
Figure 7.20: Interface for the definition of modality cooperation153
Figure 7.21: Visualization of the generated production rules for the 

example.............................................................................. 154 
Figure 8.1: Interface of the yellow editor.................................... 160 
Figure 8.2: Responses to the evaluation questionnaire................ 163 
 
 

  





 

 
 
 
 

 Chapter 1 Introduction 
 
Introduction 
 
 
Human communication is naturally multimodal. People normally 
interact through several communication channels, such as gesture, 
drawing, handwriting, facial expressions, gaze in combination with 
speech or speech only, which is the prevalent modality. This 
synergistic use of multiple interaction channels makes human 
communication flexible, natural and robust. In the last years several 
efforts have been made to endow computer interface with similar 
flexibility, naturalness and robustness. 

These efforts are producing an evolution of traditional 
Graphical User Interfaces (GUI) into multimodal interfaces 
incorporating human modalities, such as gesture, written or spoken 
language, as well as gaze and facial expressions into the computer 
system. Consequently, in the field of Human-Computer Interaction 
(HCI), that is a discipline “concerned with the design, evaluation 
and implementation of interactive computing systems for human 
use and with the study of major phenomena surrounding them 
[Hew92]”, an increasing importance has been gained by the study 
of multimodal interaction, that refers to the “interaction with the 
virtual and physical environment through natural modes of 
communication” [Bou03]. 

Three of the main advantages of multimodal interfaces, 
compared to traditional GUI, consist in making human-computer 
communication more intuitive, natural and efficient, enabling a 
broader spectrum of users with different ages, skill levels and 
abilities to access technological devices, and increasing the level of 
freedom offered to users. These advantages are also demonstrated 
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by many research studies [ODK97] [OC00] [OCW00] that 
emphasize the enhancement of multimodal interface in terms of 
usability, accessibility, flexibility and efficiency, compared to 
unimodal ones. In particular, a multimodal interaction is 
intrinsically natural because of the naturalness of human 
communication; it improves usability because it provides users with 
the means to choose among different available modalities, as s/he 
prefers. Moreover, multimodality improves accessibility to the 
device by encompassing a broader spectrum of users. Finally, it 
offers improved flexibility and interaction efficiency. 

Several aspects characterize multimodal interaction compared 
to usual interaction through GUIs. Firstly, a GUI requires atomic 
and unambiguous inputs (such as the selection of an element by 
mouse or the input of a character by keyboard), whereas a 
multimodal interaction involves several simultaneous inputs that 
have to be recognized and opportunely combined by managing the 
uncertainty of inputs through probabilistic techniques. The process 
of integrating information coming from various input modalities 
and combining them into a complete command is called multimodal 
fusion. Secondly, temporal constraints of inputs have to be taken 
into account in a multimodal interaction process; consequently it 
requires to define a time-sensitive architecture and to record time 
intervals of each modality. Finally, in a GUI the output messages 
are conveyed only visually, whereas in a multimodal system a way 
of arranging outputs through the various channels has to be found 
in order to provide the user with consistent feedback. This process 
is called multimodal fission, in contrast with multimodal fusion. 

Consequently, in the design and development of a multimodal 
system the two main challenges to face are the multimodal fusion 
and fission processes. My specific concern in this thesis is with the 
fusion of multiple input modalities. 

In the literature, two different approaches to the fusion process 
have been proposed. The first one, which will be referred as 
grammar-based approach, combines the multimodal inputs at 
grammar level. This means that the different unimodal inputs are 
considered as a unique multimodal input by using the multimodal 
grammar specification. Subsequently, the dialogue parser applies 
the grammar rules to interpret the multimodal sentence. The second 
strategy, which is referred to as dialogue-based approach, combines 
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the multimodal inputs at dialogue level. This means that the 
different unimodal inputs are distinctly interpreted and then they 
are combined by the dialogue management system.  

A comparison of these two approaches [MPA06] showed that 
the grammar-based paradigm is the most natural one as it is more 
coherent with the human-human communication paradigm in which 
the dialogue is seen as a unique and multimodal communication 
act. Moreover, this approach allows an easier inter-modality 
disambiguation. However, the use of a grammar implies a higher 
computational complexity for generating the rule sets of the 
grammar as well as a highly expert user that is skilled in 
computational linguistics for writing the grammar.    

As the benefits of the grammar-based paradigm meet the 
requirements of naturalness and flexibility for an efficient 
multimodal interaction, the problem to face is to overcome the 
deficiencies of this paradigm that preclude its use in multimodal 
language definition.  

This thesis intends to provide a solution to this problem. 
Specifically, for dealing with the complexity of grammar definition 
it is proposed the adoption of a “by example” paradigm, which 
allows the end user to provide concrete examples of multimodal 
sentences that have to be recognized, and the system automatically 
generates the grammar rules to parse those examples. In such a way 
no skilled grammar writers are needed, but even non-expert users 
can define multimodal grammars. Moreover, to overcome the issue 
of the high computational complexity of the grammar-based 
paradigm, an efficient grammatical inference algorithm has been 
applied that allows to generate the grammar rules starting from the 
acceptable multimodal sentences (positive sample) in polynomial 
time. 

Therefore, actually, the objective of this thesis concerns the 
development of an innovative multimodal languages editor that, 
unlike task-specific multimodal grammars, allows to define 
complex multimodal expressions, integrating whatever input 
modalities and maintaining at the same time a low computational 
complexity. 

Specifically, the editor relies on a multimodal grammar, the 
Multimodal Attribute Grammar, which is an extension of attribute 
grammars for multimodal input processing [Knu68]. The choice of 
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this kind of grammar has been led by the capability to manage 
whatever modalities and to represent temporal constraints into the 
grammar rules. 

To generate the grammar, a computationally efficient 
algorithm for grammatical inference, which extends the inductive 
CYK algorithm proposed by Cocke-Younger-Kasami [Kas65] to 
multimodal sentences, has been developed. This algorithm has been 
a valuable starting point as enabled to learn the multimodal 
grammar from positive sample strings in polynomial time. 

The activity to attain this result started from modeling 
multimodal inputs, as they will compose the alphabet of terminal 
elements of the grammar. After a careful comparative analysis of 
existing grammars for natural language, the attribute grammar has 
been chosen due to its capability to represent multiple modalities 
and temporal constraints and consequently an original evolution of 
this grammar adapted to define multimodal sentences has been 
proposed. The analysis of the grammatical inference methods 
existing in literature has resulted in the choice of the inductive 
CYK algorithm for its acceptable computational time, and its 
extension for the inductive inference of the defined multimodal 
grammar has been proposed. Finally, the multimodal language 
editor has been designed, implemented and validated in its 
applicability through several experiments. 
At the end of these activities, the main contributions of this thesis 
are twofold: 

- a grammatical framework for multimodal language 
definition that is general enough to be applicable for 
whatever modalities and in whichever domains, 

- an efficient incremental learning algorithm that, following 
an approach “by example”, allows to generate the 
production rules of the defined grammar starting from the 
acceptable multimodal sentences (positive sample). 

The remainder of this dissertation presents the results of my 
research according to the following structure. 

Chapter 2 gives an introduction to multimodal human-
computer interaction, giving some preliminary definitions that will 
be used during this dissertation and focusing on conceptual and 
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architectural aspects of multimodal interaction systems. The 
chapter also discusses the main kinds of modalities that can convey 
information from a human user to a computational machine, and 
the advantages of multimodal interfaces in terms of accessibility, 
robustness, stability and expressive power. 

Chapter 3  presents an overview of research related to 
multimodal fusion strategies, classifying them according to the data 
fusion level (e.g. the fusion process takes place at recognition, 
decision or in both levels). The chapter also provides a critical 
survey of the literature on multimodal grammars approaches, as the 
multimodal language processor described in this thesis uses this 
kind of approach. 

Chapter 4 surveys current literature on methodologies for 
inferring context-free grammars from sample sentences. After 
introducing some preliminary definitions and notations concerning 
learning and inductive inference, the attention will be focused on 
the existing models of learning. The last section of the chapter will 
explore the state of the art concerning the algorithms for learning 
context-free languages and grammars. 

Chapter 5 describes the theoretical foundations at the base of 
the proposed multimodal grammar editor. The aim is to allow an 
easy multimodal grammar specification, overcoming the difficulties 
arising from the textual description of the grammar production 
rules (that require the skill of computer programmers and linguistic 
experts together) and proposing a “by example” approach in order 
to define a multimodal grammar in a very intuitive way. 

Chapter 6 details the design process that has been followed to 
develop the Multimodal Grammar Editor (MGE). This editor 
constitutes one of the many system components needed in the 
construction of the Multimodal Language Processing (M2LP) 
framework. Even in its general validity, the design description of 
the Multimodal Grammar Editor has been carried out using outputs 
of the unimodal recognizers for speech, gesture, handwriting and 
sketch, and involving concepts implied by multimodal inputs. 

Chapter 7 presents the implementation process that has been 
followed to develop the Multimodal Grammar Editor. For 
explaining the software classes implemented in the prototype, the 
class diagrams of the main packages are presented following the 
standard Unified Modeling Language (UML) notation. The editor 
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is implemented using the Java language due to its portability in 
order to maximize the system independence and to make possible 
to deploy it on the World Wide Web. 

Chapter 8 offers some validation of the Multimodal Grammar 
Editor (MGE), whose theoretical foundations, design and 
implementation are described in previous chapters. The goals of the 
validation are mainly twofold. First of all, the workability and 
usability of the MGE has been assessed for understanding how well 
it works in practice. Secondly, the evaluation of the grammar 
inference algorithm has been performed for measuring the 
correctness of the induced grammar. 

Chapter 9 summarizes the contributions of the research of this 
thesis and outlines some directions for future work. 

 



 

 
 
 
 

 Chapter 2 Multimodal Interaction 
 
Multimodal Interaction 
 
 
This chapter presents an introduction to multimodal human-
computer interaction. The first four sections give an overview of 
the multimodal interaction process, giving some preliminary 
definitions that will be used during this dissertation and focusing on 
conceptual and architectural aspects of multimodal interaction 
systems. The next section discusses the main kinds of modalities 
that can convey information from a human user to a computational 
machine. The last section describes the advantages of multimodal 
interfaces in terms of accessibility, robustness, stability and 
expressive power. 

2.1  Introduction 
The use of the five senses of touch, hearing, sight, smell and taste 
allows human beings to perceive the external world. A combination 
of these senses is also used, in all situations of the everyday life, 
during natural human-human communication. Therefore, 
communication between human beings is multimodal in nature. 

In the last few years this multimodal paradigm has been 
extensively applied in computer interfaces with the aim of making 
computer behaviour closer to human communication paradigm. 
Multimodal human-computer interaction refers to the “interaction 
with the virtual and physical environment through natural modes of 
communication” [Bou03]. Multimodal interaction provides the user 
with a way to interface with a system in both input and output, 
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enabling users to communicate more freely and naturally with 
automated systems [StS05]. 

Specifically, in a multimodal system the user communicates 
with the computer through the simultaneous or alternative use of 
input/output channels at a time. Such a kind of systems offers a 
more flexible, efficient and usable environment allowing the user to 
interact through input modalities, such as speech, handwriting, 
hand gesture and gaze, and to receive information by the system 
through output modalities, such as speech synthesis and smart 
graphics and others modalities, opportunely combined. 

Multimodal systems have been largely studied since the 1980s 
when the first original system “put-that-there” was developed by 
Bolt [Bol80]. This system used speech and a cursor to point on a 
touchpad display the location to allow a simple deictic reference, as 
for example “create a blue square here”. Note that a deictic is a 
word (e.g., “this”, “that”, “here”, “there”, etc.) that specifies 
identity or spatial or temporal location from the perspective of a 
speaker in the context in which the communication occurs. Deictic 
expressions are commonly used in multimodal interaction. 

As well as the “put-that-there” system, several attempts to 
overcome common graphical user interface have been made since 
the 1990s until now [NeS91] [NiC95] [CJM97] [Vo98] [WRB01]. 
CUBRICON [NeS91] used typed and spoken sentences and deictic 
mouse clicks as input in order to interact with a two-dimensional 
map. MATIS (Multimodal Airline Travel Information System) 
[NiC95] allows the user to ask for information about the 
departure/arrival time of air flights by using speech and pen-based 
gesture modalities, along with mouse clicks and keyboarding. 
QuickSet [CJM97] was developed with the aim of training 
Californian military troops and used speech and pen-based gestures 
to interact with a geo-referenced map. QuickTour [Vo98] is a 
multimodal system that enables a spoken and pen-based interaction 
to navigate geographical maps. The Smartkom [WRB01] is another 
multimodal dialogue system that merges gesture, speech and facial 
expressions for both input and output via an anthropomorphic and 
affective user interface. 

In the next sections an overview of multimodal interaction is 
given, starting from illustrating some of the main characteristics of 
multimodal human-computer communication process. Then, a brief 
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description of conceptual features of multimodal interaction and 
architectural aspects of a multimodal system is presented. Finally, 
the main interaction modalities used in multimodal systems are 
introduced and the main advantages of multimodal interaction are 
discussed. 

2.2  The Multimodal Human-Computer 
Communication Process 

The success of the human-computer communication depends on the 
possibility of sharing a common ground by exchanging information 
through the communication modalities. Such a communication 
modality refers to the medium or channel of communication that 
conveys information [CoC91]. Multimodality refers to the quality 
of a system to allow more than one communication modality to be 
used during human-computer interaction. 

A general model of multimodal human-computer 
communication is shown in Figure 2.1. Four different kinds of 
input/output communication modalities can be identified, according 
to the study of Schomaker et al. [SNC95]:  

- the human output modalities, that are devoted to control and 
manipulate computational systems by achieving a high level 
of interactivity and naturalness of the multimodal interface. 
The speech is the dominant modality that carries most of the 
informational content of a multimodal dialogue. However, 
gesture and gaze modalities are extensively studied in 
literature as efficient input modalities that are better suited to 
represent spatio-temporal information and are usually 
complementary (that is, their information need to be merged 
in order to be complete and meaningful) modalities of the 
speech input; 

- the human input channels, that are devoted to perceive and 
acquire information coming from the feedback channels of 
computational systems. The most frequently used perception 
channels are eyes, ears and touch, among which the first is 
the dominant input modality that receives the most 
information flow, followed by the auditive and tactile 
channels; 
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- the computer input modalities, through which the computer 
gets information from the human output modalities. Some 
examples of devices for computer input modalities are 
microphone, camera, keyboard, mouse Once acquired, the 
inputs need to be brought together and interpreted in order to 
give a coherent meaning to the multimodal act of the user; 

- the computer output channels, that are devoted to give a 
feedback to the user, as, for instance, display, loudspeakers, 
haptic feedback and so on. 

 
Figure 2.1: The multimodal human-computer communication 

process 

In order to allow that the multimodal human-computer 
communication process takes place successfully, the actions that 
the user expresses through the human output modalities have to be 
acquired by the system through the computer input modalities, and 
the human input channels of the user have to be able to perceive 
and understand feedback from the computer output channels. 

The informational flow that involves the human output and the 
computer input modalities is named input flow, whereas the flow 
that involves the human input and computer output channels is 
named feedback flow. The multimodal fusion, that refers to the 
process of integrating information from various input modalities 
and combining them into a complete command, takes place during 
the input flow, while the multimodal fission, which refers to the 
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process of disaggregating information through the various 
computer output channels, takes place during the feedback flow. 

Concerning the human output modalities, six different types of 
cooperation between these modalities can be identified, as 
described in the typology proposed by Martin et al. [MGA01]: 

- Equivalence: several modalities cooperate by equivalence if 
the same information may be processed as an alternative 
by either of them; 

- Specialization: modalities cooperate by specialization if a 
specific kind of information is always processed by the 
same modality; 

- Redundancy: modalities cooperate by redundancy if the 
same information is processed by these modalities; 

- Complementarity: several modalities cooperate by 
complementarity if different information are processed by 
each modality but have to be merged; 

- Transfer: modalities cooperate by transfer if information 
produced by a modality is used by another modality; 

- Concurrency: several modalities cooperate by concurrency if 
different information are processed by several modalities 
at the same time but must not be merged. 

In multimodal systems, fusion techniques are mostly applied to 
complementary and redundant modalities in order to integrate the 
information provided by them. In particular, complementary 
modalities provide the system with non-redundant information that 
have to be merged in order to get a complete and meaningful 
message. In the same way, redundant modalities require a fusion 
process that avoids non-meaningful information, increasing, at the 
same time, the accuracy of the fused message by using one 
modality to disambiguate information in the other ones. 
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2.3  Conceptual Features of Multimodal 
Interaction 

Characteristics of multimodal interaction relevant to computational 
modeling of user interfaces and interaction languages include: 

− Multiple modes: the modalities through which user and 
system can exchange information are manifold, and 
include speech, gesture, eye tracking, keyboarding, etc. An 
interaction modality can be defined [BNB04] as a couple 
<d, L>, in which d is the physical device and L is the 
interaction language. Each modality provides a specific 
piece of information and taken together, they enable the 
command to be interpreted. Modalities can be classified as 
active or passive. The former is used when the user must 
explicitly perform an action with a device to specify a 
command. The latter is used when an explicit user action is 
not necessary to specify a command. The information 
specified by different modalities may be redundant. 

− Temporal constraints: in a multimodal dialogue there is 
not a clear, definite instant in which the user finishes 
formulating the command.  

In defining multimodal interaction languages, the input and output 
modes, temporal constraints and their related issues must be taken 
into account, as shown in Table 2.1. 

Table 2.1: Characteristics of a multimodal interaction and relative 
issues 
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To better understand the difficulties in formalizing languages 
for a multimodal environment, an explanation of these issues is 
given below. 

− Integrated interpretation of different inputs (fusion process). 
As a multimodal dialog involves the simultaneous use of 
multiple modalities, the user’s input/commands must be 
interpreted through a fusion process. This integrates 
information from various input modalities by removing 
redundant or complementary information across the 
modalities and combining them into a complete command. 

− Synchronization of input modes. Timing is essential in 
conveying information during a multimodal interaction, so a 
tight synchrony among the various communicative 
modalities is required. This means that user inputs must be 
synchronized to deliver the correct information at the right 
time. 

− Decomposition of different outputs (fission process). The 
system has to find ways to integrate output through the 
various channels in order to provide the user with consistent 
feedback. This process is called fission, in contrast with 
multimodal fusion. 

− Gradual improvement in interpretation. The system must 
interpret the input while the interaction is ongoing and refine 
the interpretation when a new multimodal action is 
performed by the user. 

Many works have focused on the development of a multimodal 
dialogue system that considers all the interaction features and 
issues described above. Gupta [Gup03] outlines a method to collect 
input information supplied in different modalities, to determine 
when the user has finished providing input, to fuse the collected 
information to create a joint interpretation using an unification 
algorithm, and to send the joint interpretation to a dialogue 
manager that can perform reasoning. This method also considers 
temporal relationships between the modalities used during the 
interaction. Another comprehensive exploratory analysis of 
multimodal integration and synchronization patterns during pen-
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voice human-computer interaction is conducted by Oviatt et al. 
[ODK97]. 

2.4  Architectural Features of Multimodal Systems 
Having looked at conceptual aspects of multimodal 
communication, some remarks about the architectural features of a 
multimodal system are given in this section. 

A common architecture of a multimodal system [Ovi02], that 
involves speech, sketch and handwriting modalities, is depicted in 
Figure 2.2. During the acquisition phase, the input that the user 
expresses through these human output modalities is acquired 
through the appropriate computer input channels (touch-pad for 
sketch and handwriting, and microphone for speech) and processed 
by the related recognition modules (sketch and handwriting 
recognition and Natural Language Processing (NLP), respectively) 
in the subsequent recognition phase. Afterwards, the multimodal 
fusion system carries out the integration of the recognized inputs, 
by removing possible redundancy, merging complementary 
information from each modality and synchronizing the information 
in order to produce a meaningful and correct input. At this point, 
the dialogue management system aims at processing the integrated 
multimodal message/command by activating appropriate 
applications and service in order to retrieve the output to be 
returned to the user (decision phase). 

The mapping between the input message expressed by the user 
and the corresponding output returned by the system is defined 
input interpretation. Thus the interpretation process involves, 
generally, four phases, corresponding to the main architectural 
levels of a multimodal system, from the top to the bottom (see 
Figure 2.2): the acquisition, recognition, integration and decision 
phases (levels). Although the acquisition, recognition and decision 
are consecutive phases, the same does not occur for the integration 
phase (where the fusion process takes place), because in some 
systems the integration phase is prior to the recognition or decision 
phases, whereas in other systems it is just the opposite. 
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Figure 2.2: A common architecture of a multimodal system 

2.5  Human-Computer Interaction Modalities 
In this section the human output modalities will be illustrated 
starting from the speech, which is the prevalent modality that 
carries most of the informational content of a multimodal dialogue 
and concluding with gesture, drawing and other less conventional 
modalities.  

2.5.1 Speech 
There is no doubt that speech is the most spontaneous modality 
through which a user can communicate with computational 
machines. Therefore, speech recognition is of primary importance 
for the development of multimodal systems.  

Speech recognition consists in translating from a data stream 
into a sequence of meaningful words that need to be interpreted by 
the recognizer. Although in the last few years several efforts have 
been made and impressive achievements have been carried out, the 
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issue of automatic speech recognition is not at all solved. The 
difficulties to correctly recognize input data are mainly due to: 

− the use of a spontaneous language: speech input may contain 
any noise, hesitation and other prosodic behaviors as well as 
meaningful information. These phenomena characterize a 
speaker that talks spontaneously. As a multimodal system 
relies on a flexible, natural and spontaneous interaction, it is 
necessary to consider these phenomena during speech 
recognition. 

− the number of words in the vocabulary: more is the amount of 
words in the vocabulary used by the recognizer, more is the 
accuracy of the recognizer. At the same time, however, the 
probability of an incorrectly recognition for a word increases 
and the processing time gets longer. 

− speaker-dependency: the automatic speech recognition has to 
be independent from the speaker as more as possible. 
However, a speaker-dependent recognizer is more efficient 
than a speaker-independent one. 

− environmental factors: noise due to the environment around the 
speaker and the overlapping of simultaneous dialogues can 
make the performance of recognition worse. 

Generally, speech recognition follows a grammar-based 
approach, which is able to define a set of acceptable sentences. 
Speech recognition systems that are based on grammar (both 
regular and context-free) provide the best performance in terms of 
simplicity and efficiency. 

2.5.2 Handwriting and Gesture  
Handwriting can be classified as a pen-based input modality as, 
generally, the user interacts through the use of a pen on a touch-
sensitive screen. Similarly, a particular kind of two-dimensional 
gesture, named pointing gesture, makes use of the finger, instead of 
a pen, for indicating an object on the screen. 

Handwriting and pointing gesture recognition has been 
extensively studied in literature. 
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Concerning handwriting [TSW90], two different approaches to 
input processing exist: off-line, in which the handwritten words are 
captured by a static picture, and on-line, in which the system 
dynamically acquires the strokes, where a stroke is a pen down, pen 
movement, pen up sequence on a touch-sensitive screen. The 
difficulties in handwriting recognition are similar to those in 
automatic speech recognition: the presence of noise, the size of 
vocabulary, the writer-dependency. Other difficulties may arise 
from: 

− character ambiguity: some characters are similar and 
consequently they may be not correctly recognized, as for 
example the number zero and a capital ‘O’. In this case the 
context is very useful for resolving the ambiguity. 

− the kind of alphabet: the Italian alphabet is composed of 
twenty-one characters, each one can be generally represented 
by one or two strokes. Chinese alphabet is composed of 50,000 
characters; each one is represented by eight/ten strokes on the 
average. 

− spacing of characters: in the Italian italic text there is no space 
among the characters. On the contrary, in a Chinese written 
text characters of the same word are spaced. 

Pen-based gesture recognition is quite similar to handwriting, 
except for the arbitrariness of the alphabet. According to the 
taxonomy of gesture modalities define by Blattner et al. [BlM95], 
three different categories of gesture can be used in a multimodal 
interface: 

− Arbitrary gesture: these gestures can be interpreted without a 
preliminary training of the system. Generally, they are called 
non-transparent gestures because are not immediately derived. 

− Mimetic gesture: this kind of gestures can be interpreted by the 
system at a glance, as for example the iconic gesture. For this 
reason they are named also transparent gesture. 

− Deictic (or pointing) gesture: this kind of gesture is used only 
with reference to the situation in which it is expressed. The 
following three kinds of deictic gestures exist: 
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 Specific, if they refer to a precise object; 

 Generic, if they refer to the whole class of objects; 

 Mimetic, when the reference is followed by an 
additional movement. 

2.5.3 Other Modalities 
In the literature several other less conventional modalities have 
been explored besides speech and pen-based gestures. A brief 
overview of to this kind of modalities is given below. 

Lip-reading is a method used for increasing the efficiency of 
speech recognition algorithms. In fact, the analysis of lip movement 
allows to synchronize the visual information source with the audio 
stream and permits to easily distinguish acoustically confusable 
speech words. 

Another modality used in multimodal systems is three-
dimensional gesture, which is more complete than two-dimensional 
ones, even if more complex to process. In 2D gesture a digital pen 
is used, while 3D gesture are captured using a glove, a camera, or 
some kinds of sensors. 

Eye movement is another useful source of information that 
allows to identify what is the referred object while a user is 
performing a task. 

2.6 Advantages and Critical Elements of 
Multimodal Interaction 

Although multimodal applications are considerably more complex 
than traditional unimodal ones, they are characterized by several 
advantages that will be shown in this section. The use of 
multimodality has benefits for the user in terms of naturalness of 
interaction, accessibility and expressive power. A critical element, 
even for a well-designed multimodal system is its robustness and 
stability. 

2.6.1 Naturalness and Accessibility 
Humans in the everyday life use their body and five senses to 
communicate each other; for this reason imitating face to face 
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interaction between humans involving all senses makes the 
interaction process very natural and intuitive. For this reason 
multimodal interfaces, if correctly designed, appear to be 
intrinsically natural. Naturalness improves the easy use of 
interfaces and, consequently, the accessibility to information, 
services and more generally to resources.  

The term accessibility refers to the ability of a device, service 
or resource of being easily accessible by a large number of different 
users in various contexts. The accessibility is one of the most 
relevant features of a multimodal system. Since each person can 
have her/his own preferences and communication ability, 
multimodal interfaces join user needs by allowing users of 
whichever age, intellectual ability, skill, physical or sensorial 
disability, language, etc., to access the computational systems. 

Therefore, a multimodal system that has to be flexible must 
allow not only to combine data coming from different sources, but 
also to let the user to choose the preferred interaction way 
according to his/her task and context. 

Research studies [CBB94] [CoO91] have proved that users 
prefer spoken language for describing objects or situations, while 
generally they use pen-based modalities for communicating 
numbers or graphic topics and for pointing and highlighting. 

Moreover, multimodal systems that enable speech, pen-based 
gesture and handwriting ease the exploration of new hardware and 
software technologies, mainly in mobile field. 

2.6.2 Robustness and Stability 
Robustness is one of the features of a computational system, 
concerning the suitable management of unexpected situations, such 
as errors or wrong uses. It is a critical aspect in particular for 
complex systems such as a multimodal one. Indeed, due to the 
complexity of the interaction process the multimodal interface 
design could improve the criticism of the communication process 
or, on the contrary a good design could produce a major aptitude 
for handling errors than unimodal one. In fact, it could allow to: 

− select the input modality that is less error prone in a given 
context, by avoiding, in such a way, to introduce possible 
mistakes; 
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− use several modalities by reducing complexity of natural 
language processing and consequently errors due to the 
recognition process; 

− change from a modality to another one, making easier to 
correct possible errors due to the interpretation process. 

Moreover, a multimodal interface that is correctly designed 
enables a mutual disambiguation of input modalities. Semantic 
information coming from each modality may be used as (partial) 
support for clarifying the semantic meaning of the other modalities. 
Therefore, this mutual disambiguation property makes a 
multimodal interface more robust. 

2.6.3 Expressive Power and Efficiency 
Computational systems that interpret inputs from different 
modalities aim at achieving a powerful interface able to acquire and 
manage these inputs. Interfaces that rely only on keyboard and 
mouse modalities, like traditional computational systems, are 
inadequate for interacting with mobile devices and last-generation 
technologies. Moreover, multimodal interaction allows users with 
temporary disabilities (i.e. people that are not able to express an 
input through a specific modality for a limited time) to use the 
system. For instance, when the user is driving he/she can interact 
with mobile devices through the keyboard, but he/she could use 
speech input. 

As speech and pen-based modalities are the prevalent 
communication channels used in face-to-face interaction, they 
represent an easy and useful way to express objects’ descriptions, 
constraints, and spatial relationships to a multimodal system. For 
instance, a user could mark an area on a map by drawing a circle 
and, at the same time, express the name of an element related to the 
area by voice. Whether the user had to express the same 
information by one modality only, for instance by voice, he/she 
would have more difficulties. Moreover, the user is free to 
distribute various parts of the message to different modalities to 
ease (complex) communication and to reduce cognitive loading 
[Ovi04]. For these reasons, the use of a multimodal interface 
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increases the efficiency and offers expressive power to the 
language at user’s disposal. 

  



 

 
 
 
 

 Chapter 3 Multimodal Fusion and 
Grammars 

Multimodal Fusion and Grammars 
 
 
In this chapter an overview of research related to multimodal fusion 
strategies is presented. The first part analyses the existing 
approaches to multimodal fusion, classifying them according to the 
data fusion level (e.g. the fusion process takes place at recognition, 
decision or in both levels). The last section focuses on the 
grammar-based fusion approach providing a critical survey of the 
literature on multimodal grammars approaches, as the multimodal 
language processor described in this thesis uses this kind of 
approach.  

3.1  Introduction 
The integration of multiple interaction modalities in multimodal 
systems is a fundamental process that has been largely studied in 
the literature giving rise to a wide variety of multimodal fusion 
approaches. 

Analyzing the human-human communication process, it 
becomes obvious that the interaction between multiple modalities 
can occur at different levels of their production. For instance, 
considering speech and pointing gestures, information conveyed by 
these two modalities are not only referred to the same mental 
concept of the speaker but they are also generated by the same 
lower level mental process of the speaker, as suggested by some 
studies on human communicative behavior [LeM92]. Analogously, 
considering the perspective of sensor data fusion, different levels of 

22 
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data integration can be identified. Consequently, the integration of 
multimodal features at different levels of analysis becomes obvious 
also in multimodal systems. In Section 3.2 a survey of existing 
multimodal fusion approaches, classified according to the level at 
which the fusion takes place, is presented. 

This dissertation follows the approach that integrates multiple 
input modes with the use of a multimodal grammar. This choice is 
due to the ability of the grammar-based paradigm to meet the 
requirements of naturalness and flexibility needed for achieving an 
efficient multimodal interaction. In contrast to the multimodal 
grammars existing in the literature, of which a brief description is 
provided in Section 3.3, the grammatical approach proposed in this 
thesis relies on an attribute grammar that is able to handle an 
arbitrary number of modalities as well as temporal information into 
the grammar, and provides explicit constructions for modeling 
semantic aspects of the language. Moreover, a “by example” 
paradigm has been followed, which allows the end user to provide 
concrete examples of multimodal sentences that have to be 
recognized, and the system automatically generates the grammar 
rules to parse those examples. All these choices are justified in the 
discussion, provided in Section 3.3.6. 

3.2  Data Fusion Levels in Multimodal Fusion  
The input signals, expressed by the user through the human output 
modalities and acquired by the system through the computer input 
modalities, can be combined at several different levels [SPH98]. As 
introduced in the previous chapter (see Section 2.4), a multimodal 
system is composed of four main architectural levels (acquisition, 
recognition, integration and decision). The integration level, in 
which the fusion of the input signals is performed, may be placed: 
(i) immediately after the acquisition level and we refer to the fusion 
at acquisition, or signal, level; (ii) immediately after the recognition 
level and in this case we refer to the fusion at recognition, or 
feature, level; (iii) during the decision level and we refer to the 
fusion at decision, or conceptual, level. 

The fusion at acquisition level (see Figure 3.1.a) generally 
consists in mixing two or more, electrical signals. As this kind of 
fusion may be performed if the signals are synchronized and of the 
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same nature (two speech inputs, two sketch inputs, etc.) it cannot be 
applied to multimodal inputs, which usually are of different nature. 
Consequently, this level of fusion is not taken into account 
hereafter. 

The fusion at recognition level (named also early fusion or 
recognition/feature-based fusion) consists in merging the outcomes 
of each recognizer by using integration mechanisms, such as, for 
example, statistical integration techniques, agent theory, hidden 
Markov models, artificial neural networks, etc. The integrated 
sentence is therefore processed by the decision manager that 
provides the most probable interpretation of the sentence (see 
Figure 3.1.b). Thus a unimodal recognition stage and an integrated 
decision stage characterize the interpretation process of the early 
fusion. This strategy is generally preferred for closely and 
synchronized inputs that convey the same information (redundant 
modalities), as for example speech and lip movements for speech 
recognition or voice and video features for emotion recognition. 
The main drawbacks of the early fusion are the necessity of a large 
amount of data for the training, and the high computational costs. 

The fusion at decision level (named also late fusion or 
decision/conceptual-based fusion) means merging neither the 
signals nor the features of each recognized input, but directly the 
semantic information that are extracted from the specific decision 
managers (see Figure 3.1.c). In fact, in this kind of fusion the 
outcomes of each recognizer are separately interpreted by the 
decision managers and the extracted semantic meanings are 
integrated by using specific dialogue-driven fusion procedures to 
yield the complete interpretation. Late fusion is mostly suitable for 
modalities that differ both in their nature and in the time scale. This 
implies that a tight synchrony among the various communicative 
modalities is essential to deliver the correct information at the right 
time. As each input modality is separately recognized and 
interpreted, the main advantages of this kind of fusion rely on the 
use of standard and well-tested recognizers and interpreters for 
each modality, as well as the greater simplicity of the fusion 
algorithms. 

In addition to these three levels of multimodal fusion, a fourth 
level, named hybrid multi-level fusion, can be identified (as 
described also in [Vo98]). In this kind of fusion the integration of 
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input modalities is distributed among the acquisition, the 
recognition and decision levels. In particular, the interdependence 
among modalities, that allows predicting subsequent symbols 
knowing previous symbols in the input data flow, is exploited to 
improve accuracy of the interpretation process. This implies that a 
joint multimodal language model, which relies on the symbols 
acquired during the acquisition phase and which is governed by 
their semantic meanings extracted during the decision phase, is the 
basis of the hybrid multi-level fusion strategy. 

 
Figure 3.1: Possible levels of multimodal data fusion: a) fusion at 
signal level; b) fusion at recognition level; c) fusion at decision 

level 
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To sum up, depending on the data fusion level at which the 
different inputs are combined, multimodal fusion strategies can be 
broadly classified as: recognition-based, decision-based and hybrid 
multi-level strategies. 

3.2.1 Recognition-based Fusion Strategies 
To achieve the integration of input signals at recognition level, 
multimodal systems have to rely on appropriate structures to 
represent these signals. In particular, three main representations can 
be found in literature, namely: action frame [Vo98], input vectors 
[PBH97] and slots [APS98]. 

In the approach based on action frame, proposed by Vo 
[Vo98], the multimodal input is regarded as a set of parallel 
information streams. Each stream represents one unimodal input 
coming from a computer input modality (e.g. a sequence of words 
and phrases in spoken modality, shapes in gestures, etc.) and 
consists of elements associated to a set of parameters. The 
integration of unimodal inputs consists in producing a sequence of 
input segments, named parameter slot, which separately contribute 
to the multimodal input interpretation, called action frame. Such an 
action frame specifies the action that has to be performed by the 
system in response to the multimodal input. Each parameter slot 
specifies one action parameter and should contain enough 
information to determine the value of the corresponding parameter. 
The integration of the information streams is carried out through 
the training of a Multi-State Mutual Information Network (MS-
MIN). More in detail, this network allows to find an input 
segmentation and a corresponding parameter slot assignment in 
order to extract the actual action parameters from the multimodal 
input. To achieve that the a posteriori probability of the parameter 
slot assignment conditional on the input segmentation is 
introduced. This probability is estimated by output activations in 
the MS-MIN network and can be interpreted as the score of a path 
that goes through the segmented parameter slots. An example of 
path over two multidimensional inputs (the spoken words “How far 
is it from here to there?” and the drawing of an arrow between two 
points) is shown in Figure 3.2.  
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Figure 3.2: The output path of the MS-MIN of Vo [Vo98] 

Therefore, a path score maximization algorithm is applied to 
find the input segmentation and the corresponding parameter slot 
assignment. This algorithm creates an extra layer on the top of the 
network. In particular, each output unit of the MS-MIN is an output 
state and the top layer of the network produces the best states 
sequence that fits the input, according to the path score 
maximization algorithm. The main advantage of this approach 
relies on the use of the MS-MIN network that allows the 
incremental and automatic learning of the mapping from input 
messages to output actions and the consequent improvement of the 
interpretation accuracy during the real use. 

The input vectors proposed by Pavlovic et al. [PBH97] are 
used to store the outputs of the visual and auditory interpretation 
modules. More in detail, the visual module firstly tracks the 
features of the video data by using skin colour region segmentation 
and motion-based region tracking algorithms and the time series of 
the tracked features is stored into an input vector. Secondly, these 
features are dynamically classified by using Probabilistic 
Independence Networks (PINs) and Hidden Markov Models 
(HMMs). Therefore, the output of this module consists in a set of 
higher level features ranged from gestural movement elements, 
called visemes (e.g. “left movement”), to full gestural words (e.g. 
symbol for “rotate about x-axis). The auditory module has the same 
architecture and functions of the visual module applied to audio 
data. A HMM PIN allows to classify the auditory features into 
auditory elements, called phones, and full spoken words. The 
integration of the two interaction modalities is carried out through a 
set of HMM PIN structures (see Figure 3.3), each corresponding to 
a predefined audio/visual command. The state of each HMM is 
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defined according to the input vectors containing the high level 
features coming from the auditory and visual modules. As the 
multimodal integration occurs after a two-stage recognition process 
(for audio and visual data, distinctly) and before the interpretation 
of the joint features has been performed, the fusion approach of 
Pavlovic et al., similarly to the action frame approach, can be 
classified as a recognition-based fusion strategy. 

 
Figure 3.3: The multimodal integration approach of Pavlovic et al. 

[PBH97] 

In the strategy based on slots [APS98], the information 
inputted by the user is stored into a slot buffer, which allows back 
referencing of past lexical units (e.g.: “it” can be used to reference 
the previously selected object). The command language of the 
application is encoded in semantic units called frames. The 
command frames are composed of slots, i.e. lexical units provided 
by the multimodal input. For instance, considering the “move 
frame” two slots can be identified: “object” (to specify the object) 
and “where” (to specify the final position). The frames are 
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predefined (computed off line) and are application-dependent. The 
parser extracts the lexical units from different input modalities and 
fills the appropriate slots in the slot buffer. The slot buffer is 
continuously monitored checking for filled frames. Once a frame is 
filled (enough information to generate a command), the fusion 
agent sends it to be executed in the current application. The main 
advantage of this architecture is the uniform access of the input 
modes. 

In all the three fusion strategies, described above, the input 
signals are merged after recognizers have transformed them into a 
more appropriate representation (action frames, input vectors, and 
slots) but before any interpretation has been assigned to the 
unimodal input. This has led us to classify them as recognition-
based fusion strategies. 

The main advantage of these strategies relies on the great 
coherence with the human-human communication paradigm in 
which the dialogue is considered as a unique and multimodal 
communication act. Analogously, the recognition-based fusion 
strategies merge the recognized inputs into a unique multimodal 
sentence that has to be opportunely interpreted. Moreover, they 
allow an easier inter-modality disambiguation. The main drawbacks 
of the recognition-based fusion strategies consist in the significant 
computational load and the high dependency on time measures. 
This dependency implies as well a large amount of real data to train 
the network (both the MS-MIN and the PIN HMM). 

3.2.2 Decision-based Fusion Strategies 
In the decision-based approach, the outcomes of each recognizer 
are separately interpreted by specific decision managers and then 
sent to the dialogue management system that performs their 
integration by using specific dialogue-driven fusion procedures to 
yield the complete interpretation. To represent the partial 
interpretations coming from the decision managers and achieve the 
integration of input signals at decision level, past and actual 
multimodal systems employ several kinds of structures, namely: 
typed feature structures [CJM97] [Joh98], melting pots [NiC95] 
[BNG04], semantic frames [VoW96] [RSH05], and time-stamped 
lattices [CMB03]. 
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The typed feature structures, originally proposed by Carpenter 
[Car92], are used by Cohen et al. [CJM97] to represent the 
semantic contributions of the different input modalities. In 
particular, this data structure consists of two main elements: the 
type that specifies the class which the input to be represented 
belongs to, and a collection of feature-value pairs, in which the 
values can be atoms or another feature structure. An example of 
typed feature structure representing the syntactic features of a 
proper noun is shown in Figure 3.4.a. Feature structures and atoms 
are assigned to hierarchically ordered types. The authors achieve 
the integration of spoken and gestural inputs through a unification 
operation over these typed feature structures. Such operation 
requires pairs of feature structures or pairs of atoms that are 
compatible in type and the result of the unification is the most 
specific feature structure or atom in the type hierarchy. Figure 3.4.c 
shows the unification of the two feature structures represented in 
Figures 3.4.a and 3.4.b, which is the syntactic features of the word 
“dog”. To select the best-unified interpretation among the 
alternative solutions probabilities are associated with each 
unimodal input. This decision-based fusion strategy is implemented 
in QuickSet [CJM97], a multimodal system briefly described in 
Section 2.1. 

 
Figure 3.4: An example of typed feature structures unification 

Johnston [Joh98] carries on the study of Cohen et al. [CJM97] 
introducing a grammar representation in which spoken sentences 

 



 Chapter 3. Multimodal Fusion and Grammars 31

and pen gestures are the terminal elements of the grammar, referred 
to as lexical edges. Each lexical edge is assigned grammatical 
representations in the form of typed feature structures. For instance, 
to represent the spoken word ‘helicopter’ the feature structure in 
Figure 3.5 is created, where the cat feature indicates the basic 
category of the element, the content feature specifies the semantic 
content, and the remaining features represent the modality, the 
temporal interval and the probability associated with the edge. 
Multimodal grammar rules are encoded as feature structure rule 
schemata that can be hierarchically ordered allowing the 
inheritance of basic constraints from general rule schemata. The 
application of these rules enables the unification of two candidate 
edges and the consequent fusion of the corresponding multimodal 
elements. 

Although these two approaches, based on typed feature 
structures, provide a generally applicable representation for the 
different modalities and the exploitation of well-known grammar-
based techniques extensively explored in natural language 
processing, they show significant limitations on the expressivity 
and complexity. 

 
Figure 3.5: An example of representation of a spoken word by 

typed feature structure 

The fusion strategy based on melting pots, proposed by Nigay 
and Coutaz [NiC95], was originally implemented within the 
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MATIS multimodal system. As shown in Figure 3.6, a melting pot 
is a 2-D structure, in which the vertical axis contains the “structural 
parts”, i.e. the task objects generated by the input actions of the 
user, and the horizontal axis is the time. The fusion is performed 
within the dialogue manager by using a technique based on agents 
(PAC-Amodeus agents). Three criteria are used to trigger the fusion 
of melting pots. The first criterion, referred to as microtemporal 
fusion, is used to combine information produced either in parallel 
or over overlapping time intervals. The second criterion, called 
macrotemporal fusion, takes care of either sequential inputs or time 
intervals that do not overlap but belong to the same temporal 
window. A further criterion, referred to as contextual fusion, serves 
to combine input according to contextual constraints without 
attention to temporal constraints. 

 
Figure 3.6: The structure of a melting pot [NiC95] 

A refinement of the approach of Nigay and Coutaz [NiC95] 
has been carried out by Bouchet et al. [BNG04] and implemented 
in the ICARE (Interaction CARE - Complementarity Assignment, 
Redundancy and Equivalence) framework. Such framework 
considers both pure modalities, described through elementary 
components, and combined modalities, specified through 
composition components. Two kinds of elementary components are 
defined: the device components that abstract the captured input 
signals into recognized inputs, and the interaction language 
components that abstract the recognized inputs coming from the 
device components into commands. Finally, the composition 
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components describe the fusion criteria of data provided by the 
elementary components, in line with the criteria defined in 
[NiC95]. The main advantage of the ICARE approach relies on the 
component-based structure that allows to reduce production costs 
ensuring a high reusability and maintainability. 

In the approach based on semantic frames, proposed by Vo and 
Wood [VoW96], input from each modality is parsed and 
transformed into a semantic frame containing slots that specify 
command parameters. The information in these partial frames may 
be incomplete or ambiguous if not all elements of the command 
were expressed in a single modality. A domain independent frame-
merging algorithm combines the partial frames into a complete 
frame by selecting slot values from the partial frames to maximize 
a combined score. This approach is quite similar to the melting-pot 
strategy described above. 

The use of semantic frames with slots is followed also by Russ 
et al. [RSH05]. As opposed to the previous fusion mechanism, in 
the approach of Russ et al. each slot (called main slot) contains also 
the connections to a semantic network, as well as the attributes 
associated to each recognized input (contained into the attribute 
slots), as shown in Figure 3.7. A node in the network consists of a 
term and an activation value. If a connected node of the semantic 
network is activated, the slots of the frames are filled with the 
attributes as well as the activation values of the nodes. Therefore, 
the overall activation of a frame corresponds to the probability that 
the user input correlates with the frame. As each input can have 
multiple interpretations, this probability is taken into account to 
evaluate the best candidate interpretation. The main advantage of 
this approach is the uselessness of knowing a predetermined 
language or specific commands.  
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Figure 3.7: The structure of the semantic frame of Russ et al. 
[RSH05] 

In the approach based on time-stamped lattices, proposed by 
Corradini et al. [CMB03], each recognizer produces a set of 
candidate interpretations where each one stands for an independent 
and diverse interpretation of the input signal. They are encoded by 
means of word lattices where several paths through the word lattice 
reflect the individual interpretations or n-best lists. Th  fusion 
engi  
rec n 
to the dialogue manager. ion of the most probable 
inte

gies are characterized by a 
high

annel to disambiguate 
the 

ed on finite-state transducers was proposed 
by Johnston et al. [JoB00]. The authors perform multimodal 

e
ne combines the time-stamped lattices received from the

ognizers, selects its multimodal interpretation, and passes it o
The select

rpretation is carried out by the dialogue manager that rules out 
inconsistent information by both binding the semantic attributes of 
different modalities and using environment content to disambiguate 
information from the single modalities. 

All the approaches introduced above occur at decision level, 
since individual input coming from the specific recognizers are 
partially interpreted before their integration. 

The main advantage of these strategies is the multi-tasking, as 
different multimodal channels, recognizers and interpreters are 
arranged for carrying out independent unimodal input processing at 
the same time. This implies also the possibility to use standard and 
well-tested recognizers and interpreters for each modality. On the 
other hand, decision-based fusion strate

 complexity of the inter-modality disambiguation, particularly 
when dealing with more complex modalities that need not only 
pairs item-time but full lattices from each ch

multimodal input. 

3.2.3 Hybrid Multi-level Fusion Strategies 
In the hybrid multi-level approach, the integration of input signals 
is distributed among the acquisition, the recognition and decision 
levels. To parse multiple input streams and to combine their content 
into a single semantic representation three main methodologies 
have been applied in literature: finite-state transducers [JoB00], 
multimodal grammars [SCS06] and dialogue moves [PAM05]. 

The approach bas
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parsing and understanding by using weighted finite-state 

based on multimodal grammars, the outcomes 
h recognizer are considered as terminal symbols of a formal 

grammar and consequently they are recognized by the parser as a 
uniq e multimodal sentence. Therefore, in the interpretation phase 
the parser uses the grammar specification (production rules) to 
interpret the sentence. This fusion strategy has been implemented in 

transducers (FSTs) running on three tapes, in which the first tape 
represents the speech stream (words), the second the gesture stream 
(gesture symbols), and the third their combined meaning (meaning 
symbols). The transitions of the FST, which consist of an input and 
output symbol, are traversed if the input symbol matches the 
current recognized symbol and consequently it generates the 
corresponding output symbol. Figure 3.8 shows an example of 
transducer relating the spoken input “Email this person and that 
organization” and the gesture with the pen on the appropriate 
person and organization on the screen. Modalities integration is 
carried out by merging and encoding into a FST both semantic and 
syntactic content from multiple streams. In this way, the structure 
and the interpretation of multimodal utterances by using FST is 
roughly equivalent to a context-free multimodal grammar that 
parses the inputs and yields the output tape providing semantic 
information. 

The FST approach is very versatile and provides a high degree 
of flexibility, allowing a huge spectrum of multimodal commands 
to be implemented. On the other hand, this approach does not 
support mutual disambiguation, i.e., using information from a 
recognized input to enable the processing of any other modality. 
Moreover, a huge amount of data is required to train the FST 
limiting portability. 

 

 

 

 
Figure 3.8: A finite-state transducer in the approach of Johnston et 

al. [JoB00] 

In the approach 
of eac

u
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the MUMIF system [SCS06]. The fusion module of MUMIF 

inputs into a unique multim at is represented by using 
the 

applies a multimodal grammar to unify the recognized unimodal 
odal input th

TFS (Typed Feature Structures) structure proposed by 
Carpenter [Car92]. The MUMIF multimodal grammar is composed 
of two kinds of rules: lexical rules that are used to specify the TFS 
representation and grammar rules that constrain the unification of 
inputs. 

The dialogue moves are used by Perez et al. [PAM05] to 
represent multimodal user inputs coming from the lexical-
syntactical analyzer. This structure, originally proposed by Quesada 
et al. [QTG00], consists of a feature-value structure with four main 
features, which are DMOVE, TYPE, ARG and CONT (DTAC). An 
example of DTAC for the command “Turn on the kitchen light” is 
shown in Figure 3.9. The DTAC is quite similar to the typed feature 
structure of Carpenter [Car92]. This approach is implemented in the 
Delfos system, consisting of Multimodal input pool, a Natural 
Language Understanding (NLU) module and a collaborative 
dialogue manager. The multimodal input pool receives and stores 
all inputs (each one considered as an independent dialogue move) 
including information such as time and modality. The NLU module 
parses the input and adds further features in the DTAC structure, 
such as the modality of the event, the time at which the event 
started and ended. The dialogue manager checks the input pool 
regularly to retrieve the corresponding input. It operates by means 
of update unification rules, which define the constraints on the 
integration of DTAC structures. If more than one input is received 
during a certain time frame, further analysis is performed in order 
to determine whether those independent multimodal inputs are truly 
related or not. 
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 example of dialogue move in the approacFigure 3.9: An h of Perez 

et al. [PAM05] 

relies on the similarity wi sed in the human-human 
com

multimodal 
fusion st e advantages and drawbacks, which can be 
sum

The main advantage of the hybrid multi-level fusion strategies 
th the paradigm u

munication, in which the dialogue is considered as a unique 
linguistic phenomenon. On the other hand, these strategies are 
characterized by a high complexity of the inter-modality 
disambiguation. 

3.2.4 Final Discussion on Multimodal Fusion 
Approaches 

As discussed in the previous sub-paragraphs, each 
rategy has som

marized as shown in Table 3.1. 
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Table 3.1: Advantages and drawbacks of multimodal fusion 
strategies 

 
The multimodal integration approach proposed in this thesis 

follows the hybrid multi-level fusion paradigm, as it joins together 
the advantages of recognition-based and decision-based fusion 
strategies and, at the same time, it is able to overcome most of their 
drawbacks, with the exception of the high computational load. 

In particular, a grammar-based approach has been adopted as it 
is the most coherent with the human-human communication 
paradigm and it meets the requirements of naturalness and 
flexibility for an efficient multimodal interaction. 

The next section surveys the literature on grammars used in 
multimodal fusion, providing a critical comparison of them. 

3.3 Grammars for Multimodal Fusion 
The first works on grammars for multi-dimensional languages (i.e. 
languages whose expressions are assembled in more than one 
dimension) were addressed to define two-dimensional graphical 
expressions. Some examples of grammatical framework for visual 
languages were given by Constraint Multiset Grammars [HMO91] 
and Relation Grammars [CGN90]. The main difficulty of these 
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grammars, that precludes their reuse in multimodal language 
definition, consists in the significant computational complexity. In 
fact, a study of Wittenburg et al. [WWT91] showed that an 
exponential number of combinations of visual input elements needs 
to be considered, at worst, giving rise to a high complexity of the 
parsing too.  

In multimodal expressions the number of elements to be parsed 
is generally far smaller than in complex graphical expressions. 
Some studies of Oviatt et al. [Ovi96] [ODK97] showed that a 
multimodal utterance generally does not contain more than three 
elements. Consequently, the number of potential combinations of 
these elements remains sufficiently small to enable a fast 
processing, which is not achievable through the aforementioned 
visual grammars. 

A more promising approach, put forward by several 
researchers, consists in starting from techniques used in Natural 
Language Processing (NLP) (see [JCM97]) and extending them to 
Multimodal Language Processing (MLP). As traditional grammars 
for natural language (NL) (that is, the kind of language used by 
human beings) are not powerful enough to cope with the syntactic 
structure of multimodal languages, an evolution of NL grammars 
towards multimodal grammar is necessary. 

This section only presents a review of those grammatical 
theories that have been developed in natural language processing 
and subsequently extended and adapted for multimodal input 
processing. I firstly provide a short overview of the most traditional 
grammar formulation: the context-free grammar. Furthermore, a 
brief description and a critical analysis of formal grammatical 
approaches extensively used in NLP are provided in Sections 3.3.2, 
3.3.3, 3.3.4, and 3.3.5, in conjunction with an explanation of how 
these grammars have been adapted to multimodal inputs. 

Grammar descriptions are brief as they are intended only to 
provide a background for the discussion in Section 3.3.6, which 
aims at justifying the theoretical choice of the approach proposed in 
this thesis. 

3.3.1 Context-Free Grammars 
The most popular kind of grammar that has been firstly used to 
define the syntax of natural language is the context-free grammar 
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(CFGs), defined by Chomsky in the mid-1950s [Cho57]. A 
grammar is termed context-free when the expansion of a symbol 
does not depend on its context (i.e., the position of the symbol in a 
sequence or the relationship with surrounding symbols). A context-
free grammar consists of four components: 

T, is a finite set of terminal symbols; 
N, is a finite set of non-terminal 
symbols; 
P, is a finite set of production rules; 
X, is a start symbol in N. 

Terminal symbols are the words that constitute the alphabet of 
the language (represented in italics in the subsequent examples).  

Non-terminal symbols represent the grammatical categories, 
that may be sentence (in short S), noun phrase (in short NP), verb 
phrase (in short VP), prepositional phrase (in short PP), determiner 
(in short DET), noun (in short N), verb (in short V), preposition (in 
short PREP), etc. 

A production rule consists of a single non-terminal symbol, 
followed by an arrow  that is followed by a finite sequence of 
terminal and/or non-terminal symbols. They express how different 
grammatical categories can be built up. 

Any sequence of terminal symbols that can be derived from the 
start symbol is called sentence. Therefore, the set of sentences that 
can be derived from the start symbol applying the set of production 
rules constitute the language generated by the grammar. 

The following is an example of a CFG for a small fragment of 
English: 

S -> NP VP    % A sentence (s) is a noun phrase (np)  
plus a verb phrase (vb) 

NP -> N   % A noun phrase is a noun
VP -> V PP    % A verb phrase is a verb plus a 

prepositional  phrase (pp) 
PP -> PREP NP % A prepositional  phrase (pp) is a 

preposition plus a noun phrase 
N -> John  % ‘John’ ‘CNR’ are nouns 
N -> CNR  
PREP -> at % ‘at’ is a preposition  
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V -> works % ‘works’ is a verb 

Consider the string of words “John works at CNR”. This is a 
sentence in the language defined by the previous grammar, since 
the sequence of terminal symbols “John” “works” “at” “CNR” can 
be derived from the start symbol S by repeatedly applying the 
production rules. 

In addition to the information about the grammaticality of a 
sentence, CFGs can be used also to parse (i.e. syntactically analyze) 
sequences of terminal symbols, assigning them a structure in the 
form of a parse tree. For instance, the following is a parse tree for 
the sentence “John works at CNR”: 

 
To know the sentence structure is very important in order to 

understand what the sentence actually means (that is, if we wanted 
to do semantics). 

The main advantages of CFGs are the simplicity and the 
possibility to use methodologies and tools that have been widely 
studied for more than half a century.  

However, two limitations of the CFG formulation that need to 
be overcome in order to use this formulation in MLP are the 
following: 

- there is no possibility to represent symbols (neither terminal 
nor non-terminal) from different modalities; 

- there are no explicitly defined constructions for modeling 
semantic aspects of input symbols. 
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3.3.2 Multi-Modal Definite Clause Grammar 
The Multi-Modal Definite Clause Grammar (MM-DCG) [ShT95] is 
the first reported grammatical framework for multimodal 
languages. This grammar is an extension of Definite Clause 
Grammar (DCG) [PeW80]. The following is a brief introduction to 
some of the main features of DCG. Afterwards, a description of the 
additional characteristics of MM-DCG over DCG can be found, 
along with a brief discussion on advantages and limitations of MM-
DCG for MLP. 

DCGs are an evolution of context free grammars that have 
proven their usefulness for describing natural languages, and that 
may be conveniently expressed and executed in Prolog. 

Unlike the context-free case, in which only simple non-
terminal symbols can be expressed, in DCG non-terminals are 
allowed to be compound terms. Moreover, in the head of a rule, in 
addition to non-terminals, lists of terminals and sequences of 
Prolog procedure call (written within the curly brackets) can occur. 

DCGs allow to build representations of the meaning of 
sentences by adding extra arguments to the non-terminal symbols. 
For instance, if the meaning of a proper noun “John” is “john” an 
argument is added to the rule “proper_noun” in this way: 

      proper_noun(john) --> [john] 

The fragment of English, which has been written using CFG 
formulation in the previous paragraph, can be expressed in the 
following DCG notation:  

sentence(s(NP,VP)) --> noun_phrase(NP), 
verb_phrase(VP). 

noun_phrase(np(ProperNoun))--> 
propernoun(Propernoun). 

noun_phrase(np(Noun)) --> noun(Noun).            
verb_phrase(vp(IV,PP))--> 

intrans_verb(IV), prep_phrase(PP).  
prep_phrase(prep(P,NP)) --> prep(P), 

noun_phrase(NP).       
prep(p(at))--> [at], {is_preposition(at)}. 
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propernoun(propernoun(john))-->[john], 
{is_propernoun(john)}.  

noun(noun(CNR)) --> [CNR], {is_noun(CNR)}. 
intrans_verb(IV(works)) --> [works], 

{is_intrans(works)}. 

The Multimodal Definite Clause Grammar (MM-DCG) 
extends DCG in the following ways: 

- Any input from every stream contains the start and end 
times. Therefore, each item of an input sequence is 
represented in the following way: 

Input(start-time,end-time,<actual 
input>) 

This means that the actual input was begun at start-time 
and completed at end-time. This extension permits to 
define chronological constraints among categories. 

- A non-terminal symbol in the head of a rule may be 
accompanied by the consuming stream name. As an 
example, consider the following rule: 

 noun_phrase --> speech:pronoun 

This means that whereas a pronoun category is generated 
from the speech stream a noun-phrase is found. 
If the non-terminal symbol is not accompanied by any 
consuming stream name, it is regarded as coming from 
whichever modes. 

- A terminal symbol is always accompanied by a specific 
stream name. For example, the following rule: 

 noun(noun(CNR)) --> keyboard:[CNR] 

means that if a string “CNR” is inputted via the keyboard 
stream, the noun category is instantiated and an argument 
with the meaning of that symbol is added to the noun 
category. 

The major advantages of MM-DCG include the capability to 
handle an arbitrary number of modalities as well as temporal 
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information in grammar rules. Temporal information is tightly 
integrated into the grammar formulation in the form of time 
variables and time-out specifications. 

However, this grammar lacks of representing semantic aspects, 
mainly, for the combined input. Moreover, it is not independent 
from the programming language for executing the grammar rules, 
since specific constructions for calling Prolog procedures into the 
grammar rules are provided. 

3.3.3 Finite-State Multimodal Grammar 
The Finite-state Multimodal Grammar (FMG) has been proposed 
by Johnston and Bangalore [JoB05] to support parsing and 
interpretation of multimodal utterances. 

The FMG relies on a finite-state device that operates over n+1 
tapes, where n tapes represent the inputs from n possible modalities 
and the n+1th tape represents their combined semantic meaning. 

The syntax of FMG is composed of: 
- a set of non-terminal symbols that, similarly to CFG 

formalism, represent the grammatical categories (S, NP, VP, 
V, etc); 

- a set of terminal symbols, in which the multimodal aspects 
of the grammar are noticeable. In fact, each terminal 
contains n+1 components corresponding to the n+1 tapes of 
the finite-state device. For instance, for a three tape finite-
state device which reads speech and gesture input, the 
terminal symbols are expressed in the following way:  

W:G:M  

where W is the spoken language stream, G is the gesture 
stream and M is the combined meaning; 

- a set of production rules that are quite similar to the CFG 
rules. In fact, the body of the rule may contain only non-
terminal symbols, while the head of the rule both terminals 
and non-terminals. 

An example of a FMG for a small fragment of English is:  
S --> NP,VP  ε:ε:]) 
NP --> N 
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VP --> V ADV  
N --> john:ε:john([ 
V --> works:ε:works 
ADV --> here:G:place( ENTRY 
ENTRY --> ε:e1:e1  ε:ε:) 

The ε is the empty symbol, and symbol e1 is used as reference 
to the entity referred to by the gesture G. This fragment of 
grammar allows to parse a multimodal sentence composed of the 
spoken words “John works here” and the gesture at the appropriate 
organization icon on the screen. 

The FMG has the benefit to enable a higher level of 
compensation for recognition errors in individual modes, since it 
directly influences the recognition phase of unimodal input. 
Moreover, FMG has the capability to represent the combined 
semantic meaning of multiple inputs. 

However, this formalism is strongly centered on speech and 
gesture input. More importantly, it does not support mutual 
disambiguation, i.e., using the speech recognition information to 
inform the gestural recognition processing, or the processing of any 
other modality. 

3.3.4 Multimodal Functional Unification Grammar 
The Multimodal Functional Unification Grammar (MUG) is a non-
deterministic grammar formalism defined by Reitter et al. [RPC04] 
for specifying adaptable user interfaces. The authors started from 
the Functional Unification Grammars (FUGs) [Kay79] [ElR92], a 
well-known technique for NLP from which MUG is derived. 

FUGs follow a unification-based approach that, as suggested 
by the name, is a formalism where unification is the only 
information-combining operation [Shi86]. More specifically, 
entities are represented by feature structures (attribute value 
matrices, previously introduced in Section 3.2.2), and information 
carried by such entities is combined only through unification.  

MUG extends FUG by introducing the possibility to support 
several coordinated modes and to unify one grammar rule for each 
mode. To achieve that, the MUG is composed of a set of 
components, named functional descriptions (FDs). Each FD is an 
attribute-value matrix and specifies a realization variant for a given 
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partial semantic and syntactic representation (specific to a mode or 
generic), similar to a production rule in a CFG grammar. Variables 
can be named and always start with an upper-case letter. 

MUG is based on the unification of such attribute-value 
matrices. In particular, a FD is unified with each m-constituent 
substructure, i.e. a FD that has an attribute path m|cat which is 
designed as a constituent for the mode m. 

An example of MUG functional description for the 
confirmation of tasks by voice or screen is shown in Figure 3.10. 
The FD is obtained by the unification of four m-constituents. The 
symbols     denote the elements that are the same, i.e. 
shared. 
 

 
Figure 3.10: An example of MUG functional description 

The main advantages of MUG consist in: 
- the possibility to support several coordinated modalities; 
- the uniform representation of syntax and semantics into an 

overall structure, which makes the grammar easier to 
maintain; 

- the improvement of parsing disambiguation since it allows to 
use semantics to prune possible alternatives. 

At the same time, there are certain drawbacks to using the 
MUG approach. First of all, it is not sufficiently amenable to 
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capturing detailed lexical semantic properties. In fact, as observed 
by Fodor and Lepore [FoL98] the real meaning of a sentence is not 
easily captured by a fixed set of FDs. Moreover, since the FDs of a 
language are numerous and each FD is defined by using prose, the 
definition of complex categories requires a high computational 
effort that makes this formalism difficult to use. 

3.3.5 Multimodal Combinatory Categorial Grammar 
Multimodal Combinatory Categorial Grammar (MCCG) is one of 
the most recent approaches to MLP developed by Sun et al. 
[SSC07]. MCCG is an adaptation of Combinatory Categorial 
Grammar (CCG) [Ste00] [StB03] for multimodal utterances. 

Similarly to CCG, the MCCG is a form of lexicalised grammar 
based on a set of syntactic rules, whose application is conditioned 
on the syntactic type (or category) of their inputs.  

Categories identify constituents of the grammar and may be 
atomic categories or functions. The atomic categories (e.g. NP, PP, 
S, N) may have some features, such as number, case, etc. Functions 
are a combination of atomic categories, the forward application 
operator (/), the backward application operator (\) and appropriate 
bracketing to define the order in which the categories must be 
combined.  

The set of MCCG rules allows to combine categories and to 
type-raise a category to another one. In particular, in addition to the 
two basic rules of forward and backward application, i.e. X/Y Y => 
X  and Y  X\Y => X respectively, the MCCG rules include: 

- forward composition rule:     X/Y Y/Z => X/Z 
- backward composition rule:     Y\Z X\Y => X\Z 
- forward type-raising rule:     X => T/ (T\X) 
- backward type-raising rule:     X => T\ (T/X) 
- forward crossing composition rule:   X/Y Y\Z => X\Z 
- backward crossing composition rule:  Y/Z X\Y => X/Z 

The forward composition rule means that a function (X/Y) 
takes another function (Y/Z) to its right and returns function (X/Z). 
By applying these rules the complete parse tree can be built from 
the bottom to up. 
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For example, consider the sentence composed of the spoken 
words “John works here”. John will be assigned the atomic 
category N. The intransitive verb works is an entity that will expect 
one argument (N) to its left and a prepositional phrase (PP) to its 
right. Once this argument is applied the result will be a sentence 
(S). Therefore the verb will be tagged (N \ S) / PP. The application 
of MCCG rules to these categories allows to parse the sentence, as 
shown in the following: 

John  works  here 
 N  (N\S)/PP  PP 
  ------------------------------=>right 
 N   N\S 
---------------------------------=>left 
       S 

Analogously to CCG, MCCG has the advantage that it is easy 
to relate the grammar to a compositional semantics by assigning 
semantic values to the lexical entries and semantic functions to the 
combinatory rules such that no intermediate representation is 
required [StB03]. 

However, there are several drawbacks in the use of MCCG for 
multimodal language processing. First of all, the parse tree is 
defined by categories that may become increasingly complex in 
larger sentences, leading to many difficulties in parsing them. 
Secondly, the update of the grammar is much more complicated 
that with simple CFG. In fact, since the parse tree is completely 
dependent on the word categories and in complex sentences there 
are interdependencies between words, if a change of a word 
category occurs other word categories have to be changed causing a 
ripple effect throughout the parse tree. 

3.3.6 Final Discussion on Multimodal Grammars 
As discussed in the previous sub-paragraphs, each multimodal 
grammar formalism has a set of advantages and drawbacks, which 
can be summarized as shown in Table 3.2 
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Table 3.2: Advantages and shortcomings of multimodal grammar 
formalisms 

 
The multimodal grammar proposed in this thesis follows the 

context-free paradigm. This choice was partly motivated by the 
ultimate aim of the multimodal language processor, presented in 
this dissertation, to define and update multimodal language,learning 
it by example.  

Since a multimodal language is characterised by a large variety 
of linguistic syntactic phenomena, the ideal candidate grammar, 
which is sufficiently expressive to represent any of these 
phenomena, is the class of context-sensitive grammars. This kind of 
grammar is similar to CFG,except that the body of the production 
rules may contain both terminal and non-terminal symbols. The 
name context-sensitive comes from the fact that the expansion of a 
symbol depends on its context (i.e., the position of the symbol in a 
sequence or the relationship with surrounding symbols). 

Context-sensitive grammars, however, have two shortcomings 
with respect to multimodal language processing: 

- parsing complexity: all known algorithms for parsing these 
grammars have exponential time dependency. 
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- too needless expressiveness: only a few linguistic 
phenomena, such as cross-serial dependency (that can occurs 
in Dutch and Swiss-German languages), require the 
expressiveness of context-sensitive grammars. In the 
majority of cases, the sublanguages generated by these 
grammars do not occur in multimodal language. 

Consequently, although CFGs have less expressive power than 
context-sensitive ones, they are able to model all frequent linguistic 
phenomena of multimodal language assuring, at the same time, a 
lower parsing complexity. For these reasons this thesis has been 
developed opting for context-free grammars instead of context-
sensitive ones. 

However, as said earlier, in order to use CFG for multimodal 
language processing it is necessary to overcome the two main 
deficiencies of this grammatical formalism, i.e. the lack of 
constructions both for representing input symbols from different 
modalities (and how they are combined together into the input 
sentence), and for modeling semantic aspects of input symbols. 

The four grammatical frameworks presented in the previous 
subparagraphs constitute an attempt to resolve these issues. In 
particular, MM-DCGs, following the context-free paradigm of 
DCGs, introduce a notation that allows to specify the input 
modality associated with input symbols, their temporal information 
and their semantic meanings. However, this formalism does not 
overcome the limitation due to the lack of representing semantic 
aspects, mainly, for the combined input. This last issue is evident 
also in MUGs, which, in addition, have the disadvantage that do not 
follow a context-free paradigm. On the contrary, FMGs provide a 
solution to the limitation of capturing semantic properties of 
multimodal input, but they do not allow to handle whichever 
modality as they are strictly related to speech and gesture input 
only. MCCGs, too, provide a solution for assigning semantic values 
to lexical input but, similarly to MUGs, they do not rely on a 
context-free paradigm. 

The grammatical framework proposed in this dissertation tries 
to join together the efforts made by the aforementioned multimodal 
grammar formalisms in overcoming the CFG limitations. In 
particular, the proposed grammar, named Multimodal Attribute 
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Grammar (MAG), is based on the context-free paradigm and 
provides constructions for representing multiple input streams, the 
meaning of these inputs as well as temporal relationships among 
inputs. A detailed description of the MAG notation is given in 
Section 5.4. 

  



 

 
 
 
 

 Chapter 4 Learning of Grammars 
 
Learning of Grammars  
 
 
In this chapter a survey of existing methodologies for inferring 
context-free grammars from sample sentences is presented. After 
introducing some preliminary definitions and notations concerning 
learning and inductive inference, the attention will be focused on 
three existing models of learning. The last section of the chapter 
will explore the state of the art concerning the algorithms for 
learning context-free languages and grammars. 

4.1 Introduction 
The mathematical theory of language learning (also known as 
learnability theory, grammar induction, or grammatical inference) 
deals with idealized learning procedures for acquiring grammars on 
the basis of exposure to evidence about languages [Pul03]. A more 
accurate definition of language learning and some notations used in 
the chapter will be introduced in Section 4.2. 

The main research studies in grammatical inference, 
particularly for CFGs, have been made in several application 
domains, such as speech recognition [Bak79], computational 
linguistics [Adr92], computational biology [SBH94][SaB02], and 
machine learning [Sak97][HiO03]. 

All these studies agree with the fact that the learnability of 
various language classes, either in the Chomsky hierarchy (i.e. 
regular languages, context-free languages, context-sensitive 
languages, and unrestricted languages) or not, is a hard problem. 
From a mathematical point of view, three different reference 
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models of learning have been studied in the literature. The first 
more classical paradigm, namely identification in the limit model, 
was presented by Gold [Gol67] in the middle 1960s. Then, the 
learning with queries model was proposed by Angluin [Ang81] in 
the early 1980s. The most recent model, named Probably 
Approximately Correct (PAC) model, was proposed by Valiant 
[Val84] in the middle 1980s. Some details of these models of 
learning will be given in the Section 4.3. 

The majority of these learning models takes as input an initial 
set of positive training examples and output the language 
description, i.e. the specific grammar that is able to recognize only 
these examples. To achieve that, a set of negative examples (i.e. 
sentences that should not be recognized by the grammar) is also 
needed for limiting the extent of generalisation, as an overly 
general grammar will never be refuted considering a new positive 
example.  

Therefore, the two main issues that grammar inference 
methodologies have to face are the overspecialisation (or over-
fitting) and the over-generalisation. The former occurs when the 
inference process produces a grammar whose language is smaller 
than the unknown target language (which is always the case when 
algorithms are not trained ad infinitum). This issue can be 
prevented by some extent setting aside some data (which takes part 
of the so-called “validation set”) and measuring performance on 
this data after each training example has been processed. 
Analogously, the latter occurs when the inference process produces 
a grammar whose language is larger than the unknown target 
language. Over-generalisation can be controlled by using a set of 
negative examples. 

In Multimodal Language Processing (MLP), similarly to NLP, 
large sets of positive examples may be available but it is rarely 
possible to obtain a set of negative examples for training. To 
overcome this lack of negative evidence, two solutions have been 
proposed in the literature: 

- to restrict the language to one of the classes of formal 
languages, which have been proven to be learnable from 
positive examples only, such as reversible languages 
[Ang82], k-testable languages [GaV90], code regular and 
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code linear languages [EST96], pure context-free languages 
[KMT97] and strictly deterministic automata [Yok95]. 

- to introduce various heuristics aiming to avoid over-
generalisation without the use of negative examples, such as 
simplicity [LaS00]. 

The first solution does not fit with the choice of context-free 
language as basic paradigm for the multimodal grammar proposed 
in this dissertation. Consequently, the use of heuristics is the 
solution that can be applied for avoiding over-generalisation in 
multimodal grammar inference. The issue of learning CFGs from 
positive examples only and the proposed heuristics for solving the 
overgeneralization problem will be discussed in Section 4.4. 

4.2 Notations 
Following Gold [Gol67], in order to specify a learning environment 
it is necessary to specify: 

 the class of languages L to be inferred; 
 the language description (or hypothesis) class H used to 

describe the languages in L, which corresponds to the 
grammar in our case. Let h ∈ H, L(h) denotes the language 
described by h; 

 the way the learning process obtains information. 

This statement has been followed by Lee [Lee96] for defining 
what the problem of grammatical inference means, whereby it is, in 
its broadest sense, the problem of learning a description of a 
language (i.e. a grammar) from data drawn from the language. 

Formally, a learning algorithm LA can be modeled as a function 
that takes as input a finite sequence of examples and gives as output 
a language description. A presentation is an infinite sequence of 
examples. Two types of presentations are usually allowed: 

 A text for a language L is an infinite sequence of strings 
x1, x2, . . . from L such that every string of L occurs at least 
once in the text. The inference algorithms that use this 
type of information are said to learn from positive 
examples. Note that the class of all the possible text 
presentations for a language L is denoted by PL.   
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 An informant for a language L is an infinite sequence of 
pairs (x1, d1), (x2, d2), . . . in L × , (where  is the set of 
Booleans) such that every string of L occurs at least once 
in the sequence and di = true ⇔ xi ∈ L. The inference 
algorithms that use this type of information are said to 
learn from positive and negative examples. Note that the 
class of all the possible informant presentations for a 
language L is denoted by PNL. 

Therefore, a standard classification of learning algorithms can 
be done according to the presentation they adopt. In this chapter 
this classification is used for describing some examples of 
algorithms (see Section 4.4) that learn from text as well as 
informant. 

4.3 Models of Learning 
Language learning can be studied in a mathematical way by 
considering three different models of learning: identification in the 
limit [Gol67], Queries [Ang88], and PAC learning [Val84]. In the 
following sub-paragraphs further notions about these models are 
given. 

4.3.1 Identification in the Limit  
Identification in the limit is the most classic paradigm of learning, 
presented in a seminal article by Mark Gold [Gol67], which views 
inductive inference as an infinite process. In fact, in this paradigm a 
learning procedure is an algorithm infinitely running on a never-
ending stream of inputs. The inputs are grammatical strings chosen 
from a target language in a known class of languages. That 
language has to be identified by choosing a grammar for it from a 
known set of grammars. At each point in the process, any string in 
the language might be the next string that turns up (strings can turn 
up repeatedly). After each input, the algorithm updates the 
grammar, so that it conforms to the new training string. Success in 
identifying a language “in the limit” consists in achieving a 
grammar that does not change when an additional string is inputted 
and which is correct for the target language.  
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Identifiability in the limit is a fragile property, however. Gold 
proved that none of the standard classes of formal languages (e.g., 
the regular languages, the context-free languages, the context-
sensitive languages, or the unrestricted languages) are identifiable 
in the limit from text. On the contrary, regular, context-free and 
context-sensitive languages are identifiable in the limit from an 
informant.  

However, in NLP and MLP, learners typically get evidence 
about what is grammatical (positive samples), but no details about 
what is not grammatical (negative samples). Therefore, natural and 
multimodal languages require to be identifiable in the limit from 
text. Such a requirement is supported by the statement of Gold 
whereby, choosing a number k and considering the class of all 
context-free languages generable by a context-free grammar with 
not more than k rules, it is demonstrable that every choice of k 
defines a class that is identifiable in the limit from text. And the 
same is true for context-sensitive grammars. 

Consequently, if positive results for learning from positive 
examples are expected, it is necessary to restrict the language to 
non super-finite sub-classes of the context-free languages. 

4.3.2 Queries 
Learning with queries is another popular learning model that has 
been introduced by Angluin [Ang81] [Ang88]. In this model, the 
learner makes use of an oracle that is able to answer some questions 
about the target language. Generally, two types of queries, known 
as membership queries and equivalence queries, may be used. The 
former returns “true” if the given string belongs to the language, 
“false” if not. The latter is made by presenting to the oracle a 
grammar for a hypothesis language.  

Similarly to identifiability in the limit model, learning with 
queries is a not useful model for dealing with context-free 
languages. Angluin [Ang90] showed that context-free grammars 
are not learnable from equivalence queries alone and that 
membership queries alone are insufficient. However, restricting the 
language to a simple deterministic language, i.e. recognizable by a 
deterministic push-down automaton by empty store, the learning 
with queries model gives positive results. 
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The problem is that these languages do not allow to express all 
linguistic phenomena occurring in natural and multimodal 
languages. Consequently, the learning with queries model do not 
guarantee exact inference of these languages. 

4.3.3 PAC Learning 
The “Probably Approximately Correct” (PAC) learning was 
introduced by Valiant [Val84] in an attempt to model distribution 
independent learning. The basic idea of PAC learning is that it is 
possible to minimize the chance of learning something that is 
wrong without being completely sure that this is right. Valiant 
applied his theory to Boolean concept learning.  

Unfortunately, PAC learning, in its pure distribution free form, 
does not help Grammar Induction much. Even simple classes of 
languages are known to be not PAC learnable [Den01] [Den98]. In 
particular, although the PAC learning model takes many features of 
natural learning into account, in most cases it fails to describe such 
kind of learning. 

4.4 Algorithms for Learning of Context-Free 
Grammars 

The majority of grammar inference algorithms presented in the 
literature is based on an initial set of positive training examples and 
a specific grammar that is able to recognize only these examples. 

According to the choice of following the context-free paradigm 
for defining the proposed multimodal attribute grammar, in the 
following subparagraphs three existing grammatical inference 
algorithms for CFGs are explored. The first is the inductive CYK 
algorithm, which belongs to the class of algorithms that learn from 
an informant. A further algorithm of this class is the learning by 
version space algorithm, which is presented in Section 4.4.2. 
Finally, an example of algorithm, named e-GRIDS, that learns from 
text is analyzed in Section 4.4.3. 

4.4.1 Inductive CYK Algorithm 
In this section the grammatical inference approach, namely 
inductive CYK (Cocke, Younger, Kasami) algorithm, is explored. 

  



 Chapter 4. Learning of Grammars 58

This approach, proposed by Nakamura et al. [NaI00, NaM02, 
Nak03], is implemented in an inductive grammar inference system 
called Synapse (Synthesis by Analyzing Positive String Examples). 

Roughly, the algorithm synthesizes CFGs from positive and 
negative sample strings generating the minimum production rules, 
which derive positive strings, but do not derive any given negative 
strings. All the production rules generated by the algorithm follow 
the extended Chomsky Normal Form (extended CNF), that is have 
the forms A → β and A → βγ, where A is a non-terminal symbol, β 
and γ are terminal symbols. An important feature of the extended 
CNF is that it is simpler than the standard CFG production rules 
reducing the computation time of the inference process. 

The grammatical inference approach of Synapse employs two 
main procedures, the top-level procedure and the procedure that 
implements the extended inductive CYK algorithm.  

The top-level procedure is shown in Figure 4.1. It takes as 
inputs two ordered sets SP and SN of positive and negative sample 
strings, respectively, and an initial set P0 of rules. The procedure 
searches for the set P of rules, that contains the set P0 (P ⊆ P0), and 
the set N of non-terminals such that all the string in SP can be 
derived from P but no string in SN is derived from P. This search is 
carried out by calling inductive CYK algorithm. A control on the 
search is performed by iterative deepening on the number of rules 
to be generated. Starting from an initial limit k of the number of 
rules, this limit is increased by one when the system fails to 
generate enough rules to parse the sample within this limit and 
repeats the search. 
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Figure 4.1: The top-level procedure of Synapse 

The procedure of the extended inductive CYK algorithm is 
shown in Figure 4.2. It takes as inputs a string w and a set P0 of 
rules and outputs a set P1 of rules such that w is derived from P0 ∪ 
P1.  

The extended inductive CYK algorithm is composed of two 
steps that have to be repeated until w is derived from the production 
rules. The first step includes CYK algorithm for testing whether the 
string w can be derived from P0. This algorithm makes use of a 
variable TS that keeps the test set of symbol pairs (β, γ), to which a 
rule A → βγ is applied during the running of the algorithm. These 
pairs are candidates of the body of newly generated rules. The 
second step provides a function for adding production rules when 
the set P0 does not derive the string w. The rules that are produced 
(included in the set P1) are in the form A → βγ or A → B, where (β, 
γ) is a pair contained in the test set TS. 
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Figure 4.2: The procedure of the extended inductive CYK 

algorithm 

The extended inductive CYK algorithm has non-deterministic 
branches, or choice points, to which the control backtracks when 
the process fails. If the process terminates with success, the 
algorithm returns the sets of rules P0 ∪ P1 and non-terminal 
symbols as a result. The algorithm can have multiple results for a 
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single set of inputs, since the backtracking processes may generate 
different results. 

The original CYK algorithm has worst-case computational 
complexity O(n3), where n is the number of words in the sentence 
in input. The extended inductive CYK algorithm is similar to the 
usual CYK algorithm, except that when the rule set does not derive 
the sentence, it adds production rules so that the parsing always 
succeeds. Therefore, its computational complexity is still 
polynomial.  

For increasing the synthesis speed several heuristics can be 
applied, as described in [Nak03]. First of all, when the process of 
inductive CYK algorithm generates a rule A → βγ, a constraint can 
be applied that restricts the subsequent rule generation to not 
terminating until a rule containing A in the body is also generated. 
Secondly, a test on the effectiveness of the newly generated rules 
allows to perform an intelligent backtracking. In fact, whether any 
negative sample is derived from the set of newly generated rules, 
another rule may be generated in the redoing process. Finally, the 
use of a hash memory for checking whether each rule set has been 
processed, each time the system generates the set, allows to avoid 
repeated search. 

The main advantages of the extended inductive CYK algorithm 
rely on the generation of simpler sets of rules and shorter 
computation times in the inference of CFG grammars for some 
simple languages. 

A hard limitation of the grammar inference method of Synapse 
is that it cannot synthesize grammars with more than about 14 rules 
from their samples because of the computation cost. 

4.4.2 Learning CFG by Version Space 
The grammar inference algorithm based on version space has been 
proposed by Vanlehn and Ball [VaB87] and belongs to the class of 
algorithms that learn from an informant, i.e. it needs of positive and 
negative examples for inferring the grammar. 

A version space is a set of all generalizations of a grammar, 
consistent with a given set of instances. The algorithm applies a 
particular induction technique, called version space strategy, which 
is based on a compact way of representing the version space. In 
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particular, the central idea of this strategy is that the space of 
generalizations defined by the representation language can be 
partially ordered by generality. 

For applying the version space strategy to grammar inference 
the main issue to face is that the version space is potentially 
infinite. A well-known theorem [VaB87] states that for any class of 
grammars the version space is infinite for any finite set of training 
examples.  

To make the version space finite several restrictions are made. 
First of all, a restriction on the form of grammar rules is introduced 
by considering only simple CFGs, i.e. grammar in which rules have 
the following features: (i) no rule has an empty body, (ii) if a rule 
has just one symbol on its body, then the symbol is a terminal, (iii) 
and every non-terminal appears in a derivation of some string. 
Secondly, the grammar has to be reduced, i.e. all the rules in an 
inferred grammar are necessary for the derivation of some positive 
training examples. According to these restrictions, given a finite set 
of training examples (positive and negative), there are finitely many 
reduced simple CFGs consistent with those examples. 
Consequently, a finite version space is produced. 

The version space strategy allows to calculate a reduced 
version space, but it cannot be directly applied due to the 
undecidability of the problem to testing whether the language 
generated by a grammar A includes the language generated by a 
grammar B. To solve this problem the version space algorithm 
makes use of three strategies: 

- A set, called the derivational version space, that is a superset 
of the reduced version space and a subset of the version 
space. 

- A computable predicate, called FastCovers, that is a partial 
order over grammars in the derivational version space. 

- An Update algorithm for the maximal and minimal elements 
in FastCovers of the derivational version space. 

Given a set of positive strings, the derivational version space is 
the set of grammars corresponding to all possible labeling of each 
tree sequence in the simple tree product for those strings, where a 
simple tree is a derivational (or parse) tree for a simple grammar, 
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and a simple tree product is given by the Cartesian product over the 
sets of unlabelled simple trees for each strings of the given set.  

Given a set of positive and negative strings, the derivational 
version space is the derivational version space for the positive 
strings minus those grammars that generate any of the negative 
strings. 

For instance, consider the two positive strings 'b' and 'ab'. As 
there is one unlabelled tree for 'b' and four unlabelled trees for 'ab', 
so there are four tree sequences in the Cartesian product of the trees 
for 'a' and the trees for 'ab'. These four tree sequences constitute the 
simple tree product, which is shown in Figure 4.3. 

 
Figure 4.3: The simple tree product for the positive strings 'b' and 

'ab' 

For each of the four tree sequences, the construction of the 
derivational version space consists in partitioning the nodes in the 
trees and assigning labels. Figure 4.4 illustrates how the 
derivational version space is constructed for the fourth unlabelled 
tree sequence in Figure 4.3. Trees 1 through 5 show all possible 
partitions of the four nodes and the labeling of the trees that result. 
Each of the resulting labeled tree sequences is converted to a 
grammar, as shown in the third column of the figure. The 
derivational version space is the union of these grammars, which 
derive from the fourth tree sequence, with the grammars from the 
other tree sequences. 
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Figure 4.4: Construction of the derivational version space for the 

fourth tree sequence 

At this point, the version space algorithm calculates a partial 
order for the set of grammars of the derivational version space by 
applying the FastCovers predicate. A formal definition of this 
predicate can be found in [VaB87]. This dissertation only 
highlights the usefulness of this operator within the version space 
algorithm for ordering the derivational version space. 
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Finally, the version space algorithm applies the Update 
algorithm that takes as input an instance and the current pair [P+, 
G], where P+ is the set of positive examples and G is the current 
derivational version space, and returns a revision of the pair that is 
consistent with the given instance. Briefly, the Update algorithm 
proceeds in the following way:  

1. If the string is positive and a member of P+, then do 
nothing and return the current version space. If the string 
is not a member of P+, then add it to P+ and call the 
UpdateG+ procedure. 

2. If the string is negative and a member of P+, then return 
NIL. If the string is not a member of P+, then call the 
UpdateG- procedure. 

The task of the UpdateG- procedure is to modify G, so that 
none of the grammars will parse the negative string. All the 
grammars in G are organized in a queue and the procedure picks a 
grammar off the queue and verifies if it parses the negative string. 
If it does not, then the grammar is placed in NewG, the revised 
version of G. If it does parse the string, then the algorithm refines 
the node partition once, in all possible ways. As each of these 
partitions corresponds to a new grammar, the algorithm verifies if 
they parse the negative string and eventually places them in the 
NewG set. When the queue is exhausted, i.e. all grammars are 
verified, the NewG set contains the maximal set of the grammars 
that fail to parse the negative string. 

The UpdateG+ procedure proceeds in the following three 
steps: 

1. Given a positive string, form the set of all unlabelled 
simple derivation trees for that string. 

2. For each grammar in the old G and for each tree for the 
new positive string, 

a. append the tree onto the end of the tree sequence of 
the grammar's triple, and 

b. allocate the new tree's nodes to the partition elements 
in all possible ways. 
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3. Place all the candidate grammars generated in the 
preceding step on the queue for the UpdateG- algorithm, 
which tests that the grammar is consistent with all the 
negative strings in the presentation that have been received 
so far. 

To clarify the algorithm’s behaviour a simple example is 
presented. Suppose that the set of training examples is composed of 
four positive and three negative strings of command words, that are 
P = {+“delete all-of-them”, -“all-of-them delete”, -“delete delete”, 
+“delete it”, -“it it”, +“print it”, +“print all-of-them”}. Considering 
the first string “delete all-of-them”, there are four possible 
unlabelled simple trees that lead directly to four grammars for the 
derivational version space G, shown in Figure 4.5. 

 
Figure 4.5: Construction of the derivational version space for the 

example 

Suppose the next string is a negative string “all-of-them 
delete”. This string cannot be parsed by grammars 1, 2 or 3, so they 
remain unchanged in the G set. The fourth grammar is overly 
general, so it is split in three legal partitions {1 2}{3}, {1 3}{2}, 
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and {1}{2 3}. The first two survive becoming the grammar 1.5 and 
1.6, shown below. 

 
The next string is the negative instance “delete delete”. None 

of the grammars in G parse this string, so the G set remains 
unchanged. The next string is positive, “delete it”. There are four 
possible unlabelled simple derivation trees for this string. Each is 
paired with each of the five grammars in the current G, yielding 20 
combinations. The resulting 20 grammars are queued and verified 
against P-. At the end of the version space algorithm the NewG set 
contains 25 grammars. 

As demonstrated also by the previous example, the algorithm 
is inapplicable for a large set of training instances due to the 
combinatorial explosion inherent in the UpdateG+ algorithm when 
more instances are present. Moreover, the version space algorithm 
is not immediately applicable to grammar induction, because it 
produces a set of grammars and some other process have to choose 
among them. Therefore, the algorithm is good for being used as a 
general framework for the development of practical, task-specific 
learning machines. 

4.4.3 e-GRIDS Algorithm 
The e-GRIDS algorithm [PPK04] is a grammar inference method 
that extends the GRIDS algorithm [LaS00] by improving the search 
performed by the learning operators in the space of possible 
grammars. Like its predecessor, the e-GRIDS algorithm utilises a 
simplicity bias for inferring CFGs from positive examples only. 
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Figure 4.6: The e-GRIDS algorithm 

A general workflow of the e-GRIDS algorithm is shown in 
Figure 4.6. e-GRIDS uses the training sentences in order to 
construct an initial grammar by converting each one of the training 
examples into a grammatical rule. Subsequently, the learning 
process takes place, which is organised as a beam search. Having 
an initial hypothesis (the initial grammar) in the beam, e-GRIDS 
uses three learning operators in order to explore the space of CFGs: 

- MergeNT operator, which merges two non-terminal symbols 
into a single symbol X, thereby replacing all their 
appearances in the head and the body of rules by X; 

- CreateNT operator, which creates a new non-terminal 
symbol X from two existing non-terminal symbols that are 
its constituent symbols. 

- Create Optional NT, which duplicates a rule created by the 
CreateNT operator and appends a non-terminal symbol to 
the rule, thus making this symbol optional. 
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The learning process occurs in three steps, according to the 
operator that is applied. In the first step, called “merge” step, the 
MergeNT operator is repeatedly applied for merging non-terminal 
symbols in each grammar in the beam. The resulting grammars are 
then evaluated for deciding if replacing the grammar in the beam 
that has the lowest score with the newly generated grammar that 
has a better score. The second step is the “create” step that 
considers all ways of creating new terms from pairs of symbols that 
occur in sequence within the grammar, by repeatedly applying the 
CreateNT operator. Finally, in the “create optional” step all ways of 
duplicating a rule by the addition of an optional extra symbol at the 
end of the rule body are examined by repeatedly applying the 
CreateOptionalNT operator. The learning process terminates when 
it is unable to produce a successor grammar that scores better than 
the ones in the beam.  

As mentioned above, the e-GRIDS algorithm uses a simplicity 
bias for directing the search through the space of CFGs and 
avoiding overly general grammars. This criterion measures the 
simplicity of a grammar through its description length that is 
defined as the sum of the number of symbols required to encode the 
grammar and the number of symbols required to encode the 
training examples. Therefore, the algorithm directs the learning 
process described above towards grammars that are compact, i.e. 
ones that have minimum description length.  

To clarify the algorithm’s behaviour a simple example is 
described. Suppose that the set of training samples is composed of 
the following six sentences: “The cat saw the mouse”, “The cat 
heard a mouse”, “The mouse heard”, “A cat saw”, “A cat heard the 
mouse”, “A mouse saw”. Therefore, the initial grammar is shown in 
Figure 4.7.  

 
Figure 4.7: The initial grammar for the e-GRIDS algorithm 
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This grammar has description length equal to 54, as the rules 
contain 30 words and there are six training sentences containing 24 
words. 

The e-GRIDS algorithm begins by considering all possible 
merges of symbols that occur in the heads of rules. Merging ART 
with ART2, VERB with VERB2, and NOUN with NOUN2 allows 
to eliminate four redundant sentences producing the grammar in 
Figure 4.8, which has a score of 22. 

 
Figure 4.8 The grammar after the “merge” step of the e-GRIDS 

algorithm 

The algorithm continues applying the CreateNT operator that 
produces the term NP as an ART followed by a NOUN, and then 
replaces all occurrences of this sequence with the new symbol. This 
operation introduces another rule into the grammar, but it simplifies 
the two rules, giving 18 as evaluation score. At this point, the 
algorithm does not produce simpler grammar and therefore it 
terminates returning the grammar in Figure 4.9. 

 
Figure 4.9: The final grammar produced by the e-GRIDS algorithm 

One the main advantages of the e-GRIDS algorithm is its 
computational efficiency which facilitates its scalability to large 
example sets. Although this algorithm is able to infer grammars 
that perform well, based on relatively small sets of training 
examples, it is also able to handle large example sets in 
significantly reduced amounts of time. 

 



 Chapter 4. Learning of Grammars 71

The main property that leads this algorithm to be a good 
candidate for use in domains like natural and multimodal language 
processing is the capability to infer from positive training 
examples, without requiring any negative evidence. 

4.5 Final Discussion on Learning Methods 
As discussed in the previous sections, each CFG grammar inference 
algorithm has a set of advantages and drawbacks, which can be 
summarized as shown in Table 4.1.  

Table 4.1: Advantages and shortcomings of CFG grammar 
inference algorithms 

 
The grammar inference method proposed in this thesis follows 

the learning from text paradigm. This choice has been motivated by 
the fact that it is difficult to obtain a set of negative examples for 
training for NLP and MLP. In the literature, the majority of the 
learning algorithms applied to NLP, in fact, infers grammars solely 
from positive examples.  

Among the aforementioned algorithms, the e-GRIDS is the 
only one that learns CFGs from text, without requiring any negative 
examples. As described in Section 4.4.3, it assumes to have an 
initial grammar that is obtained by converting each one of the 
training examples into a grammatical rule. Subsequently, this 

  



 Chapter 4. Learning of Grammars 72

algorithm applies the learning operators for improving the grammar 
description in order to make it more accurate and it resolves the 
over-generalization problem. The core of the e-GRIDS algorithm is 
then represented by the application of the learning operators, while 
the production of the initial grammar is not a primary task for the 
algorithm. An improvement of this algorithm could be achieved by 
optimizing the production of the initial grammar. 

The inductive CYK algorithm, unlike the e-GRIDS one, 
focuses on the production of a CFG, but it starts from positive and 
negative sample strings. As this algorithm has the property of being 
simple and efficient, mainly for simple set of training examples, it 
has been used in this thesis for producing the initial grammar. As it 
learns from an informant, however, an adaptation of the algorithm 
is necessary in order to make it able to learn from positive example 
only. 

Therefore, the grammar inference method, proposed in this 
dissertation, tries to join together the strengths of the inductive 
CYK and e-GRIDS algorithms. In particular, a revised version of 
the inductive CYK algorithm is provided for generating the initial 
grammar from positive sample sentences, while the e-GRIDS 
learning operators are taken as starting point for improving the 
initial grammar description. A detailed description of the proposed 
grammar inference method is given in Section 5.5. 
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The Multimodal Grammar Editor: 
Theoretical Foundations 
 
 
This chapter describes the theoretical foundations underlying the 
proposed multimodal grammar editor. The aim is to allow an easy 
multimodal grammar specification, overcoming the difficulties 
arising from the textual description of the grammar production 
rules (that require the skill of computer programmers and linguistic 
experts together) and proposing a “by example” approach in order 
to define a multimodal grammar in a very intuitive way. 

5.1  Introduction 
Multimodal interfaces can be used in many real-world applications, 
such as, for example, command and control systems, web and 
mobile search engines, and information retrieval systems. An 
overview of four different application scenarios, used as examples 
throughout the course of this dissertation, is shown in Section 5.2. 

The analysis of these scenarios proves not only the advantages 
of multimodal interfaces in term of usability, naturalness and 
robustness, but also the difficulties of building a multimodal 
language. 

Consider for example a user saying, “Show me the phone 
number of this person” while pointing at the picture of that person 
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on the display. In the attempt of representing such a multimodal 
sentence, the first difficulty derives from the multidimensionality of 
input. In fact, in unimodal languages each input data, which may be 
words in spoken or written modalities, shapes in gestures, or eye 
fixations in gaze, etc., can be represented as a stream (i.e. a 
sequence of tokens), reducing the dimensions from two or three 
(e.g., drawings or 3D gestures) to a single one. Though each 
unimodal input is one-dimensional, the combination of multiple 
streams gives rise to a multidimensional input. Therefore, in 
multimodal interfaces a technique able to model the 
multidimensionality of multimodal input is necessary. For instance, 
in the aforementioned example of sentence, the pointing gesture 
may be issued before, in-between or after speech. As the sentence’s 
meaning may be different in each of these three cases, the problem 
of representing the multidimensionality of inputs is very important 
and requires a preliminary phase of input modeling. This issue is 
discussed in Section 5.3. 

The second difficulty, strictly related to the first one, is about 
the syntactic structure and semantic meaning representations of 
multimodal sentences. Although several grammars for natural 
language have been defined since the 1950s, these grammars can 
not be used for multimodal input as they are not appropriate to 
model input symbols from different modalities due to the 
incompleteness connected with the modality semantics. For 
instance, considering again the example of the sentence previously 
given, speech input has an incomplete semantic meaning without 
considering the pointing gesture too. A well-formed syntactic 
structure and a complete semantic meaning can only be achieved by 
integrating inputs from both modalities using an appropriate 
grammar. Therefore, an extension of the concepts of grammar 
widely used in Natural Language Processing (NLP) to multimodal 
grammars is necessary and represents a challenge in order to 
develop an efficient multimodal language editor. This challenge is 
addressed in Section 5.4. 

Finally, the third difficulty is strictly related to the grammar 
definition process. In fact, usually grammars are defined by writing 
a text file containing the grammar syntax rules. This file serves as 
input for the grammar parser, that acquires the new multimodal 
sentences and decides whether it belongs to the language generated 
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by the grammar and also defines its structure by building the 
associated parse tree. Creating or editing a large grammar in textual 
form is not a simple task, which requires a high skill in 
computational linguistics. In contrast, designing a grammar “by 
example”, i.e. by inserting the positive sample of multimodal 
sentences, which the system has to recognize, is much more 
intuitive and requires less training. This issue and the proposed 
solution will be discussed in Section 5.5. 

5.2 General Discussion on Application Scenarios 
Multimodal interfaces have been applied to a broad range of 
different real-world applications, including, for example, command 
and control systems, web and mobile search engines, information 
retrieval systems, and so on. 

As the thesis goal is to develop a multimodal grammar editor 
that is not addressed to a specific task-driven application, but rather 
able to recognize whichever multimodal expression in whichever 
task domain, the generality and applicability of the editor to more 
than one domain is shown (Chapter 7) and some examples of 
multimodal sentences from these application domains are used 
throughout the course of all this dissertation. 

Therefore, before starting with explaining the theoretical 
foundations, some real application scenarios, which all the 
subsequent examples of sentences are referred to, are presented. 
Note that unimodal inputs can have an incomplete meaning. Only 
the fusion with the other complementary modalities allows to give a 
complete sense to the sentence. For instance, the speech input 
“Show this in Rome” has an incomplete meaning if considered 
alone, while it acquires a complete meaning if joined to the 
sketching of a river/road. 

A driver assistant system  

One of the aims of a driver assistance system is to provide 
navigational assistance to car drivers. Multimodal dialogue 
interfaces are a support for enhancing interaction between humans 
and vehicles. In this scenario, for instance, the user can 
multimodally interact through speech and gesture for knowing 
information about the car state or the traffic condition, for setting 
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some driving options, for switching lights on or off, for calling 
emergency or breakdown services, and so on. For instance, a set of 
multimodal sentences for this scenario include: 

S1:   speech: “Call this emergency service” 
gesture: to indicate the breakdown service on a 
touch-screen display 

      S2:  speech: “Switch on/off this” 
gesture: to point the headlight icon 

   S3:   speech: “Set to 22 degrees” 
   gesture: to point the temperature icon 

      S4:   speech: “Search for the traffic condition” 
            gesture: to indicate the map area for the search 

A multimodal phone book  

A multimodal phone book allows the user to communicate with the 
telephone to perform voice dialing and other phonebook control 
functions, such as to save or update telephone numbers. In this 
scenario the user can interact by the synchronized use of speech 
and handwriting modalities for setting and searching information 
about the telephone number, address, e-mail, and working company 
of people and organizations. For example, the user might say “call 
this person” while writing the name of the person on a touch-screen 
display. This is a scenario that might occur if the user wants to 
preserve his/her privacy. Other examples of multimodal sentences 
are the following: 

S1:   speech: “This person works at CNR”  
handwriting: the name of the person on a touch-
screen display 

S2:   speech: “The new number of this person is” 
handwriting: the name of the person and the 
telephone number on a touch-screen display 

S3:   speech: “Give the e-mail of this organization” 
handwriting: the name of the organization on a 
touch-screen display   

A flight timetable system  
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A flight timetable system provides timetable information of airline 
companies connections. In this scenario, the user can ask 
information about flights and companies using speech and pointing 
gesture. The system interprets a speech input combined with a 
pointing gesture on a digital map. Examples of acceptable 
multimodal sentence include: 

     S1:   speech: “What company flies here?” 
            gesture: to point the location on a map 

     S2:   speech: “Does this company fly here?” 
gesture: to point the icon of the company on a 
touch-screen display and the location on a map 

  S3:   speech: “Zoom” or “Zoom this” 
gesture: to point the location on a map 

     S4:   speech: “I want to take this” 
gesture: to point the icon of the company on a 
touch-screen display 

A map-based information retrieval system  

A map-based information retrieval system allows the user to 
retrieve information using maps and concepts connected with them. 
The multimodal sentences, which allow to retrieve information are 
specified using a speech input in combination with a sketch or 
handwriting input that complete the meaning of the speech 
sentence. Some examples of mutlimodal sentences in this 
application scenario are the following: 

S1:   speech: “Show this house near school with 
garden”  
sketch: a drawing of a house on a touch-screen 
display 

     S2:   speech: “Show this in Rome” 
sketch: a drawing of a river/road on a touch-
screen display 

  S3:  speech: “Show Italian river” 
handwriting: the word “name” on a touch-screen 
display 
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5.3 Multimodal Input Modeling 
As mentioned in Chapter 2, most of the input modalities used in 
human communication can be interpreted as information streams, 
referring to sequences of data packets or tokens, which may be 
words, phrases and sentences in spoken or written modalities, 
shapes in gestures, or eye fixations in gaze, etc. Representing input 
data as a stream reduces multi-dimensional inputs (e.g., pen-based 
or 3D gestures) to a single temporal dimension. However, the 
combination of multiple streams gives rise to multidimensionality. 

This multidimensionality is strictly related to the type of 
cooperation between modalities (see Section 2.2). In particular, 
following the typology of Martin et al. [MGA01], redundant 
modalities convey full information alone, without support from the 
other. As an example, consider when the address of a hotel is 
described, in parallel, by speech and by a pointing on a map. In this 
case the problem of representing the multimodal input is quite easy, 
because each input has a complete meaning and, therefore, can be 
specified by using the specific unimodal syntax. The problem is 
less obvious when the modalities are complementary, i.e. they are 
not just alternative ways to convey the same information but each 
modality processes different information that contributes to the 
overall meaning of the sentence. For instance, consider when a user 
says “Call this person” while handwriting his name on a touch-
screen display. In this case, a method for combining modalities into 
a unique multimodal utterance is necessary. This necessity arises 
from the fact that traditional parsing is sequential and, therefore, the 
recognition of a sentence occurs only if a linear sequence of tokens 
is given as input to the parser. 

The building of this multimodal sentence requires a solution to 
the following issues: 

▪ how to represent each unimodal input stream; 
▪ how to linearize different input streams into a unique 

structure, corresponding to the multimodal sentence that 
will be used as positive sample in the grammar inference 
process. 

These two issues are described in detail in the following 
sections. 
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5.3.1 Representing Unimodal Input 
In order to build a meaningful multimodal sentence from each 
unimodal input, first of all it is necessary to represent each input 
stream as a sequence of input elements (see Figure 5.1). Generally, 
input elements are separated by periods of inactivity, in which no 
input signals are detected. The choice of what is represented by an 
input element depends on the specific application and, in particular, 
on the level of granularity that is required by the application. For 
instance, some speech recognizers divide the input signal into 
utterances according to the period of silence and the prosody 
information, and assign to each utterance the role of an input 
element. On the contrary, other speech recognizers regard more 
consecutive utterances as a meaningful speech unit, giving them the 
role of input element.  

In the proposed unimodal input representation, an input 
element refers to the basic unit of input that is meaningful to the 
application and that can be generated from each unimodal input 
recognizer. For instance, an input element may be a word in spoken 
or written modalities, a shape in gestures, an eye fixation in gaze, 
etc.  

  
Figure 5.1: The input element representation 

In order to determine whether input elements from different 
modalities have to be considered redundant or complementary and 
consequently decide how to group them according to the 
cooperation classes between modalities for building a unique 
multimodal sentence, the knowledge of the following information 
is necessary, for each input element, as depicted in Figure 5.2: 
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- the value of the element, which has to belong to the 
vocabularies of specific input recognition systems, 

- the modality used to express the input element,  

- the syntactic role that the element has inside the unimodal 
sentence. The standard nomenclature of the Penn treebank 
[MSM94] is used to represent the syntactic categories. This 
is composed by 45 syntactic categories, some of which are 
summarized in Figure 5.3. 

- the modalities cooperation class, which represent the inter-
modality relationships. 

 
Figure 5.2: The set of attributes of input elements 

Moreover, in order to decide what kind of interaction/dialogue 
the user wants to have with the system, the information about the 
category of multimodal sentence is necessary.  

In natural language, sentences can be classified in: simple, 
compound, complex and compound-complex. Simple sentence 
consists of a single independent clause with one subject and one 
verb. Compound sentence has two or more clauses related by 
coordinating conjunctions. Complex sentence consists of at least 
one independent clause and one or more subordinating clauses 
related by subordinating conjunctions. Finally, compound-complex 
sentence join together compound and complex sentences. 
Considering the complexity of managing complex and compound 
sentences, in this thesis only simple sentences will be considered. 
The management of more complex sentences represents a future 
work. 
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Figure 5.3: Penn treebank syntactic categories 

Another sentence classification in natural language is based on 
the sentence meaning. Following this criterion, sentences can be 
broadly classified as: declarative (statement), imperative 
(command), interrogative (question), and exclamatory. From the 
analysis of the human behavior in the aforementioned application 
scenarios, the following categories can be envisaged in a 
multimodal human-computer communication: 

- Multimodal Question (MQ) 

 “Wh question”      Ex: Who is this? 
 Interrogative form      Ex: Does this person work in 

                                                            this company? 

- Multimodal Command (MC) 

 Imperative          Ex: Call 
 Imperative adverb command       Ex: Show people that work 
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                                                               here 
 Imperative pronoun command    Ex: Call this 
 Imperative noun command        Ex: Modify the number of 

                                                               this person 

- Multimodal Statement (MS) 
 Declarative sentence                   Ex: This is the company of 

                                                               John Smith 
 Demonstrative noun sentence     Ex: This person works at 

                                                              CNR 
 Demonstrative pronoun sentence  Ex: The number of John 

                                                                 Smith is this 
 Demonstrative adverb sentence    Ex: John Smith works here 
 Negative sentence                        Ex: John Smith does not 

                                                                 work here 

Identifying the category of a multimodal sentence allows to 
determine its structure and the expected action. For instance, if the 
sentence belongs to the “imperative noun command” category, it 
should contain an imperative verb, which corresponds to the action 
expected by the user, and a demonstrative noun phrase, that 
represents the deictic expression. Moreover, a sentence belonging 
to the “wh question” category should contains an interrogative 
pronoun that begins with wh- (e.g., who, when, what,etc.). 

As an example, consider the multimodal sentence composed of 
the speech “call this person and that company”, by the handwriting 
of the person’s name and by the pointing gesture on the company 
icon on a touch-screen display. The sequence of input elements of 
each one of the three modalities and their associated sets of 
attributes is depicted in Figure 5.4. Moreover, the category of this 
multimodal sentence is “imperative noun command”. 
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Figure 5.4: The input element representation for the example 

All these information, about input elements and the sentence 
category, will be used during the linearization process, as shown in 
the following section. Moreover, the input elements, as defined 
above, will constitute the set of terminal symbols of the multimodal 
grammar, which will be described in Section 5.4. 

5.3.2 The Linearization Process 
Starting from the input elements, described as shown in the 
previous section, the linearization process aims at combining these 
elements, grouping them opportunely, in order to generate a linear 
sequence of elements, which represents the multimodal sentence 
that will be used as positive sample during the grammar inference 
process. The linearization takes place according to modality 
cooperation and syntactic roles defined in the previous stage. 

In particular, modality cooperation allows to determine 
whether input elements convey information that have some 
relations with the information conveyed by the other elements. 
Generally, cooperative input modalities are close together in time. 
Although temporal proximity is a quite easy and application-
independent criterion, it does not take into account semantic aspects 
of input sentences, producing sometimes a linear sequence of 
elements that does not make sense. Moreover, forcing the user to 
express a multimodal sentence according to pre-defined constraints 
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imposed by temporal links compromises the flexibility that has to 
be one of the main features of a multimodal language. Therefore, in 
a multimodal dialogue the knowledge of how two or more 
modalities cooperate each another represents a more meaningful 
information than pre-defined temporal links among input elements, 
as this information do not force the user to synchronize the input 
elements of a multimodal sentence, capturing likewise the inter-
modality relations. 

Information about modality cooperation is used during the 
linearization process in conjunction with other criteria that take into 
account the syntactic role of each input element. In particular, if 
two input elements, coming from different modalities, have the 
same syntactic role, they can be considered close together in 
syntax. This syntactic proximity is an easy criterion that reinforces 
the information about modality cooperation, making the 
linearization output more accurate. 

Finally, the linearization process makes use of the sentence 
category, defined during the previous stage, as final criterion for 
determining which is the linear sequence of input elements that will 
be the positive sample for the grammar inference process. In 
particular, the sentence category allows to understand if a 
demonstrative (or deictic) expression should be detected into the 
sentence and whether this expression is expressed through a noun, 
pronoun or adverb phrase. These information allow to add further 
constraints on syntactic proximity. 

Let us continue the illustrative example introduced in the 
previous section (see Figure 5.4). According to the classes of 
modality cooperation, the combination of input elements into a 
unique multimodal utterance can be given in several different ways. 
Figure 5.5 shows the cooperative relations for the input elements of 
the example (the highlighted rectangles include the elements 
involved in the cooperation). Any combination of input elements, 
which respects the unimodal input order, is acceptable inside the 
highlighted rectangles.  
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Figure 5.5: Cooperative relations of input elements in the example 

As in the first rectangle (on the left of Figure 5.5) there are 
four input elements, six ways of combining them exist, as shown in 
Table 5.1. For each element of the sentence the modality 
(HW=handwriting, SP=speech, G=gesture) and the actual value of 
the element is expressed. For instance, the first sentence is the 
linear sequence composed by the handwriting elements “John” and 
“Smith” followed by the speech elements “this” and “person”. The 
second sentence is composed by the handwriting element “John”, 
followed by the speech element “this”, followed by the handwriting 
element “Smith”, and ended by the speech element “person”, and so 
on for all the sequences. 

Table 5.1: Linear sentences for the example 
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In the second highlighted rectangle (on the right of Figure 5.5) 
three input elements occur, giving rise to three different linearized 
sentences: 

1. SP(that) SP(company) G(Atos) 
2. SP(that) G(Atos) SP(company) 
3. G(Atos) SP(that) SP(company) 

Therefore, the overall sentence can be combined in eighteen 
different ways, such as for example: 

1. SP(Call) HW(John) HW(Smith) SP(this) SP(person) 
SP(and) SP(that) SP(company) G(Atos) 

2. SP(Call) HW(John) SP(this) HW(Smith) SP(person) 
SP(and) SP(that) SP(company) G(Atos) 

3. SP(Call) HW(John) SP(this) SP(person) HW(Smith) 
SP(and) SP(that) SP(company) G(Atos) 
… … … … … … … … … … … … 

18. SP(Call) SP(this) SP(person) HW(John) HW(Smith) 
SP(and) G(Atos) SP(that) SP(company) 

By applying the syntactic proximity criterion, a reduction of 
the number of acceptable linearized sentences occurs. In fact, only 
sentences, in which input elements with the same syntactic role are 
close together, are acceptable. Figure 5.6 shows syntactic proximity 
of input elements in the example (the rectangles highlight the 
elements involved in the syntactic proximity). In the first interval 
the following three sentences will be considered: 

1. SP(this) HW(John) HW(Smith) SP(person) 
2. SP(this) HW(John) SP(person) HW(Smith) 
3. SP(this) SP(person) HW(John) HW(Smith) 

while in the second interval these one: 

1. SP(that) SP(company) G(Atos) 
2. SP(that) G(Atos) SP(company) 
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Figure 5.6: Syntactic proximity of input elements in the example 

Therefore, the number of acceptable linearized sentences is 
decreased from eighteen to six, that are: 

1. SP(Call) SP(this) HW(John) HW(Smith) SP(person) 
SP(and) SP(that) SP(company) G(Atos) 

2. SP(Call) SP(this) HW(John) SP(person) HW(Smith) 
SP(and) SP(that) SP(company) G(Atos) 

3. SP(Call) SP(this) SP(person) HW(John) HW(Smith) 
SP(and) SP(that) SP(company) G(Atos) 

4. SP(Call) SP(this) HW(John) HW(Smith) SP(person) 
SP(and) SP(that) G(Atos) SP(company) 

5. SP(Call) SP(this) HW(John) SP(person) HW(Smith) 
SP(and) SP(that) G(Atos) SP(company) 

6. SP(Call) SP(this) SP(person) HW(John) HW(Smith) 
SP(and) SP(that) G(Atos) SP(company) 

Finally, taking into account the information about sentence 
category, it is possible to detect whereas a demonstrative 
expression is defined into the sentence and which is its syntactic 
category (noun, pronoun or adverb sentence). In the example, the 
sentence category is an imperative noun command. This means that 
it contains a demonstrative expression that is used as noun phrase. 
Therefore, the deictic word “this” (or “that”) has to be followed by 
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a noun, that implies the selection of the third sentence (among the 
above six sentences), that is: 

SP(Call) SP(this) SP(person) HW(John) HW(Smith) SP(and) 
SP(that) SP(company) G(Atos) 

In summary, the multimodal input model presented here allows 
to represent each input stream as a set of input elements, and to 
linearize different input streams into a unique multimodal 
sequence, that will be used as positive sample for the inference of 
the multimodal grammar. 

5.4 The Multimodal Attribute Grammar 
Designing and developing a grammar editor for a multimodal 
language processor that is not addressed to a specific task-driven 
application, but rather able to recognize whichever multimodal 
expression, is a focal question. The editor is intended to be used by 
expert and/or non-expert users who want to specify the multimodal 
language that has to be recognized by the system. 

As a language can be formally described through a grammar, 
the specification of a multimodal language requires the definition 
of a multimodal grammar. The most popular kind of grammar, 
extensively used in natural language processing and frequently 
adapted to represent multimodal languages, is the context-free 
grammar (CFG), previously introduced in Section 3.3.1. 

For defining the multimodal grammar proposed in this 
dissertation, the context-free paradigm has been followed due to its 
ability to model all frequent linguistic sentences of multimodal 
language by assuring, at the same time, a lower parsing complexity. 
However, in order to use CFG for multimodal language processing 
it is necessary to overcome the two main deficiencies of this 
grammatical formalism, i.e. the lack of constructions both for 
representing input symbols from different modalities and for 
modeling semantic and temporal aspects of input symbols.  

In this attempt, attribute grammars provide a good compromise 
between the context-free paradigm and the necessity to represent 
semantic and temporal aspects of multimodal input.  

Attribute grammars [Knu68] were firstly developed by Donald 
Knuth as a means of formalizing the semantics of a context-free 
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language. They may be informally defined as a context-free 
grammar that has been extended to provide context sensitivity 
using a set of attributes (associated with each distinct symbol in the 
grammar), assignment of attribute values, evaluation rules, and 
conditions. 

Starting from the attribute grammar formalism, an extension of 
this notation for multimodal input processing is necessary. 
Therefore, the Multimodal Attribute Grammar (MAG) has been 
introduced, whose formal definition is given below. 

Definition 5.1. A Multimodal Attribute Grammar is a triple 

G = (G,A,R)  

where: 

(1) G is a context-free grammar (T,Ν,P,S) with T as set of terminal 
symbols, N as set of non-terminal symbols, P as set of  production 
rules of the form:  

X0 →  X1 X2 … Xn                where n ≥ 1, X0 ∈ N and Xk ∈ N ∪ Τ 
                                                                 for 1 ≤ k ≤ n 

and S ∈ N as start symbol (or axiom) 

(2) A is a collection (A(X)) X ∈ N ∪ Τ  of attributes of the non-terminal 
and terminal symbols, such that for each X ∈ N ∪ Τ, A(X) is split 
in two finite disjoint subsets I(X), the set of inherited attributes of 
X,  and S(X), the set of synthesized attributes. The set S(X) with X 
∈ Τ  includes a set of attributes MS(X), called set of multimodal 
synthesized attributes, composed of the following four attributes: 

MS(X)={val, mod, synrole, coop} 

(3) R  is a collection (Rp) p ∈ P  of semantic functions (or rules).       ■ 
A derivation tree for a sentence in a context-free language has 

the property that each of its leaf nodes is labeled with a symbol 
from Τ and each interior node t corresponds to a production p ∈ P 
such that t is labeled with X0 and t has n children labeled with X1, 
X2, …, Xn in left-to-right order, as shown in Figure 5.7. 

The set of production rules P can be partitioned in two disjoint 
subsets, the set of background rules PB and the set of target rules 
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PT. The former is composed of rules that are directly derived from 
the background knowledge, i.e. they contain terminal symbols only 
in the body. The latter is composed of rules that are derived from 
the background rules, i.e. they contain at least one non-terminal 
symbol in the body. Therefore, background rules are of the form pb: 
X0 →  A, where X0 ∈ N and A ∈ Τ, while target rules are of the 
form pt: X0 →  X1…Xm, where X0 ∈ N and Xi ∈ N ∪ Τ. 

 
Figure 5.7: Information flow in the attribute grammar notation 

The attributes of the set MS(X) are domain independent and are 
necessary for managing the multimodal properties of a sentence. As 
discussed in Section 5.3.1, each input element of a multimodal 
sentence, corresponding to a terminal symbol of the grammar, 
contains information about the actual value of the element, the 
modality, the syntactic role, and the modality cooperation. These 
information are contained into the four attributes of MS(X). 
Precisely, the val attribute expresses the current value (concept) of 
the terminal symbol, the mod attribute represents the modality, the 
synrole attribute conveys information about the syntactic role, and 
finally the coop attribute expresses the modality cooperation with 
other terminal symbols. In particular, the domains of these 
attributes are the following: 

Dval = T 

Dmod = {speech, handwriting, gesture, sketch} 
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Dsynrole = {noun phrase, verb phrase, determiner, verb, noun, 
adjective, preposition, deictic} 

Dcoop = {complementary, redundant} 

The set Rp of semantic functions associated with each 
production rule in P allows to compute the values of the inherited 
and synthesized attributes. In order to explain how these functions 
are defined the following definition has to be provided. 

Definition 5.2. Let p be a production rule in P of the form 

p: X0 →  X1 X2 … Xn

For each i=0,…,n and each a in A(Xi), the notation Xi.a denotes the 
occurrence of the attribute a of the symbol Xi in p. The set of all 
such occurrences is denoted Occ(p) and is called the set of 
occurrences of p.                                                                 ■ 

Given a production rule p, the set Occ(p) is composed of two 
finite and disjoint sets, named Input(p) and Output(p). The former 
contains the occurrences of the attributes in p that are available 
from the context, i.e. the inherited attributes for the head of the rule 
p and the synthesized attributes for the symbols in the body of p. 
The latter contains the occurrences of the attributes in p that have to 
be computed using the semantic functions, i.e. the synthesized 
attributes for the head of the rule p and the inherited attributes for 
the symbols in the body of p. This is expressed in the following 
lemma. 

Lemma 5.1. The set of occurrences of a production rule p: X0 →  
X1 X2 … Xn is given by 

Occ(p) = Input(p) ∪ Output(p) 

where  

Input(p) = {Xi.a | Xi ∈ I(X0) or Xi ∈ S(Xi) for i>0}           and 

Output(p) = {Xi.a | Xi ∈ S(X0) or Xi ∈ I(Xi) for i>0}        ■ 
Whether the production rule p contains any terminal symbol Xi 

in the body, then the set Input(p) contains also the occurrences of 
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the attributes of Xi in MS(Xi) as they are included in the synthesized 
attributes S(Xi). 

The attribute occurrences Xi.a ∈ Input(p) take a value from 
some semantic domain (such as integers, strings of characters, or 
structures of some type) that is given by example. The attribute 
occurrences Xi.b ∈ Output(p) take a value that has to be evaluated 
by semantic functions. Therefore, a finite set Rp of semantic 
functions is associated with the production p, with exactly one 
function for each attribute occurrence Xi.b ∈ Output(p). Each 
semantic function in Rp is composed of an assignment statement. 
The left side of each assignment statement is an occurrence Xi.b ∈ 
Output(p) while the right side contains an expression (in some 
predefined logical language) with variables in (Occ(p) – Xi.b). 
Formally, the definition of a semantic function can be given as 
follows. 

Definition 5.3. Let p: X0 →  X1 X2 … Xn  be a production rule in P. 
The set Rp is composed of semantic functions that have the form  

Xi.b ←  f(y1,…, yk)                  with k ≥ 1 

where  

1. Xi.b ∈ Output(p); 

2. yj, with 1≤ j≤ k, is an occurrence in (Occ(p) – Xi.b); 

3. f is a function that maps the values of y1, …, yk to the value 
of Xi.b.                                                                                ■ 
Analogously to the set of production rules P, the collection R  

of semantic functions can be partitioned in two disjoint subsets, the 
set of background functions RB associated with the production rules 
belonging to PB and the set of target functions RT associated with 
the production rules belonging to PT. 

Example 5.1. Consider again the multimodal sentence composed of 
the input elements shown in Figure 5.4. The consequent linearized 
sentence, that has been evaluated in Section 5.3.2, has the form: 

SP(Call) SP(this) SP(person) HW(John) HW(Smith) SP(and) 
SP(that) SP(company) G(Atos). 
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The multimodal attribute grammar that is able to generate this 
sentence is written as follows. 

- Terminal symbols: T={Call, This, Person, John, Smith, And, 
That, Company, Atos} 

- Non-terminal symbols: N={Sentence, VP, VB, NN, DT, NP, 
NNP, CC, NNS} 

- Start symbol: S 

- Attributes: A(X) = I(X) ∪ S(X)          where  

  I(X) = ∅ 

S(X) = {val, mod, synrole, coop} so that 

 S(NN)=S(DT)=S(NNP)=S(CC)=S(NNS)=S(VB)={v
al, mod, synrole, coop} and 

 S(Sentence)=S(VP)=S(NP)= {val, mod} 

- Production rules and semantic functions: 

P1) S →  VP Sentence 
R1.1) S.val ← VP.val + Sentence.val 
R1.2) S.mod ← VP.mod + Sentence.mod 

P2) VP →  VB 
R2.1) VP.val ← VB.val 
R2.2) VP.mod ← VB.mod 

P3) Sentence →  NP CC NP 
R3.1) Sentence.val ← NP.val + CC.val + NP.val 
R3.2) Sentence.mod ← NP.mod + NP.mod 

P4) NP →  DT NN NNP1 NNP2 
R4.1) NP.val ← NNP1.val + NNP2.val 
R4.2) NP.mod ← DT.mod + NNP1.mod 

P5) NP →  DT NN NNS 
R5.1) NP.val ← NNS.val 
R5.2) NP.mod ← DT.mod + NNS.mod 

P6) NN →  Person 
R6.1) NN.val ← person 
R6.2) NN.mod ← speech 
R6.3) NN.synrole ← noun 
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R6.4) NN.coop ← complementary 
P7) NN →  Company 

R7.1) NN.val ← company 
R7.2) NN.mod ← speech 
R7.3) NN.synrole ← noun 
R7.4) NN.coop ← complementary 

P8) DT → This 
R8.1) DT.val ← this 
R8.2) DT.mod ← speech 
R8.3) DT.synrole ← deictic 
R8.4) DT.coop ← complementary 

P9) DT → That 
R9.1) DT.val ← that 
R9.2) DT.mod ← speech 
R9.3) DT.synrole ← deictic 
R9.4) DT.coop ← complementary 

P10) NNP1 →  John 
R10.1) NNP1.val ← John 
R10.2) NNP1.mod ← handwriting 
R10.3) NNP1.synrole ← noun 
R10.4) NNP1.coop ← complementary 

P11) NNP2 → Smith 
R11.1) NNP2.val ← Smith 
R11.2) NNP2.mod ← handwriting 
R11.3) NNP2.synrole ← noun 
R11.4) NNP2.coop ← complementary 

P12) NNS → Atos 
R12.1) NNS.val ← Atos 
R12.2) NNS.mod ← gesture 
R12.3) NNS.synrole ← noun 
R12.4) NNS.coop ← complementary 

P13) VB → Call 
R13.1) VB.val ← call 
R13.2) VB.mod ← speech 
R13.3) VB.synrole ← verb 

P14) CC → And 
R14.1) CC.val ← and 
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R14.2) CC.mod ← speech 
R14.3) CC.synrole ← conjunction 

The set of background rules is PB = {P6, …, P14} while the set 
of target rules is PT = {P1, P2, P3, P4, P5}.  

The background functions RB, associated with rules in PB, 
assign the values of the attributes of terminal symbols to the 
attributes of the corresponding syntactic categories. For instance, 
Function R14.1 assigns the value “and” to the attribute val of the 
syntactic category CC, while Function R14.2 assigns the value 
speech to the attribute mod of the syntactic category CC, and so on 
for all the background functions. 

The target functions RT, associated with rules in PT, map the 
opportunely combined values of the attributes of non-terminal 
symbols in the body of the rules into the attributes of the non-
terminal symbols in the head. For example, Function R4.1 assign to 
the attribute val of non-terminal symbol NP the value obtained by 
combining the values of the attribute val of the non-terminal NPP1 
and NPP2 (the + operator produces the sequence of terminal 
symbols involved in the operation), while Function R4.2 assign to 
the attribute mod of non-terminal symbol NP the value obtained by 
combining the values of the attribute mod of the non-terminal DT 
and NPP1 (+ represent the operation of union between two 
modalities), and so on for all the target functions. 

The derivational tree of the multimodal sentence in the 
Example 5.1 is shown in Figure 5.8. 
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Figure 5.8: The derivational tree of the sentence in Example 4.1 

5.5 The Grammar Inference Algorithm 
Given the set of multimodal linearized sentences and the 
multimodal attribute grammar formalism, both described in the 
previous paragraphs, the next step in developing a multimodal 
language editor is to define a computationally efficient algorithm 
for grammatical inference that takes as input the set of linearized 
sentences (containing positive examples only) and generates the 
MAG production rules and the associated semantic functions to 
parse those examples. 

This section describes such an algorithm that relies on the 
inductive CYK (Cocke-Younger-Kasami [Kas65]) algorithm and 
the e-GRIDS [PPK04] learning operators. In particular, a revised 
version of the inductive CYK algorithm is provided for generating 
the initial grammar from positive sample sentences, while the e-
GRIDS learning operators are taken as starting point for improving 
the initial grammar description. The choice of the CYK algorithm 
has been led by its simplicity and efficiency, mainly for simple set 
of training examples, while the e-GRIDS learning operators are 
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able to improve the grammar description making it more accurate 
and it resolves the over-generalization problem. Therefore, the 
proposed grammar inference method tries to join together the 
strengths of the inductive CYK and e-GRIDS algorithms, adapting 
them to multimodal input. In particular, this method consists of two 
main steps (see Figure 5.9): the first step includes a revised version 
of the inductive CYK algorithm for generating the multimodal 
attribute grammar that is able to parse the input sentence; the 
second step makes use of the e-GRIDS operators for improving the 
grammar description coming from the first step and avoiding the 
over-generalization problem. 

 
Figure 5.9: Workflow of the proposed grammar inference algorithm 

These two steps are described in detail in the following sections. In 
particular, next section illustrates the first step of the algorithm, 
which generates the MAG production rules and the associated 
semantic functions to parse positive examples, while Section 5.5.2 
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presents the second step, which applies the learning operators and 
provides a measurement of the accuracy of the grammar for 
improve the grammar description. 

5.5.1 First Step: the MAG Generation from Positive 
Examples 

The proposed grammatical inference algorithm enhances the 
inductive CYK algorithm along two main dimensions. The greatest 
disadvantage of the application of the inductive CYK algorithm to 
MLP is associated with the fact that it learns from an informant (see 
Section 4.4.1). In fact, it is difficult to obtain a set of negative 
examples in NLP and MLP. To be more precise, the user is unable 
to specify all sentences that have not to be included into the 
grammar, while s/he can easily define sentences that have to be 
included. In the literature, the majority of the learning algorithms 
applied to NLP, in fact, infers grammars solely from positive 
examples. Therefore, an adaptation of inductive CYK algorithm is 
necessary in order to learn from positive examples only. However, 
this requires the introduction in the second step of some heuristics 
to avoid the over-generalization problem. Another significant 
improvement relates to handle Multimodal Attribute Grammars 
rather than CFGs. Therefore, not only the set of production rules 
has to be generated by the algorithm, but also the collection of 
associated semantic functions for evaluating the attribute values. 

For the sake of convenience, the revised CYK algorithm has 
been split in two consecutive steps, whose detailed descriptions are 
given in Figure 5.10 and 5.11, respectively.  

The first step takes as input:  
- the linearized sentence x= x1x2…xk, with xi∈T; 
- the current multimodal grammar G=(G,A,R), if exists, with 

G=(T0,N0,P0,S0), A =(A(X)) X ∈ N0 ∪ Τ0, and R  is the set of 
semantic functions for evaluating the attributes of X∈ N0 
∪ Τ0;  

- the sets of synthesized attributes S(xi) associated with each 
terminal symbol xi; 

- the sets of occurrences of attributes in S(xi) for 1 ≤ i ≤ k;  
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- a target sentence xt composed of terminal symbols xi∈T.The 
output is a CYK matrix, in which each position cij contains the non-
terminals, the associated weights and the semantic functions for 
evaluating the attribute occurrences of the non-terminals. At the 
same time, a structure that contains all the candidate production 
rules (with the associated weights) generated by the algorithm is 
created and updated. The first step ends whether the sentence x is 
generated by the current grammar. Otherwise the algorithm 
proceeds with the second step. 

During this step the analysis of the structures generated during 
the first step, that are the CYK matrix C and set CPR of candidate 
production rules is performed. In particular, the algorithm selects 
the candidate derivations with the highest weights. Non-terminal 
symbols, which belong to the set N0, do not need any processing, 
while those symbols that are created during the first phase for 
simulating the generation of some productions, need to be 
definitely included into the grammar. Consequently, non-terminals 
that make part of the production rule inserted into the grammar, 
have to be re-defined until all symbols belong to the grammar. 
Therefore, the output of the revised CYK algorithm is a new 
multimodal attribute grammar G’=(G’,A’,R’), where 
G’=(T’,N’,P’,S’), A’ =(A(X)) X ∈ N ∪ Τ, and R  is the set of semantic 
functions for evaluating the attributes of X∈ N ∪ T. 
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Figure 5.10: First step of the revised CYK algorithm 
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Figure 5.11: Second step of the revised CYK algorithm 

More in details, the first step of the revised CYK algorithm 
(shown in Figure 5.10) works in the following way. Assume we 
have a multimodal linearized sentence x, that is composed of input 
elements xi, for 1≤ i≤ k that are the terminal symbols of the 
grammar. Each terminal symbol is associated with a syntactic 
category, which corresponds to a non-terminal symbol of the set 
N0. If x is not the first multimodal sentence inputted to the editor, a 
multimodal attribute grammar G exists yet and it is given as input 
to the algorithm. This initial grammar G is composed of (G,A,R), 
with G=(T0,N0,P0,S0), A =(A(X)) X ∈ N0 ∪ T0, and R  is the set of 
semantic functions for evaluating the attributes of X ∈ N0 ∪ T0. 
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Moreover, for each terminal symbol xi assume that a set of 
synthesized attribute S(xi)={val, mod, synrole, coop} is specified 
by the user. Finally, assume that the user specifies a target sentence 
xt in NL, that is a sentence equivalent to the linearized sentence x, 
i.e. conveys the same information, and it is composed of a subset of 
terminal symbols of x. The target sentence is necessary for 
associating the meaning the user wants to give to the multimodal 
sent

op} of the terminal symbols xi to 
the 

ence x. 
For each terminal symbol xi, for 1 ≤ i ≤ k, the revised CYK 

algorithm considers the set P’ of production rules of the form Ai→ 
xi, which have the ith terminal symbol in the body and the 
corresponding syntactic category Ai ∈ N0 in the head. This set P’ is 
added to the initial set P0. Afterwards, the CYK matrix C (that has 
dimension k) is initialized and its first row is computed as follows: 
the elements of the ith entry of the matrix are the heads Ai of the 
production rules in P’, for 1 ≤ i ≤ k. Moreover, the algorithm 
assigns both a weight to each non-terminal symbol Ai, which is 
equal to 0.5, and a set of semantic functions Ri, which allow to 
compute the occurrences of attributes of Ai. In particular, each 
function Ai.b ← xi.b assigns the occurrences of the synthesized 
attributes b={val, mod, synrole, co

corresponding attributes of Ai. 
Therefore, the algorithm computes all the remaining rows in 

the following way. Let i be the column number and j be the row 
number. The element cij of the matrix is equal to the head of a 
production rule p: A → X Y such that X=ciq and Y=ci+q,j-q for all 
q=1, …, j-1. If A is a non-terminal symbol in N0 then the algorithm 
assigns it to the entry cij of the matrix C. Otherwise, it creates an 
appropriate non-terminal symbol B (not in N0) in order to simulate 
the generation of the non-terminal symbols X and Y and assigns it 
to the entry cij of the matrix C. Moreover, the algorithm assigns a 
weight to each non-terminal symbol, that is the sum of the weights 
assigned to X and Y. If A∈N0 the weight is doubled. Furthermore, 
two semantic functions are assigned to the non-terminal A (or B). 
The first function computes the occurrence of the attribute val of 
the non-terminal A (or B) as the sum of the occurrences of the 
attribute val of the non-terminal  X and/or Y, whose occurrences of 
the attribute val appear as terminal symbols in the target sentence 
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xt. The second function computes the occurrence of the attribute 
mod of the non-terminal A (or B) as the sum of the occurrences of 
the 

nce of the attributes of the non-terminal B 
(and

attribute mod of the non-terminal X and Y. 
When all rows of the CYK matrix are computed, the algorithm 

checks if the cell c1k, associated with the overall sentence x, 
contains the start symbol S. In the positive case the sentence x can 
be parsed by the actual grammar and there is no need to update the 
grammar. Otherwise, the algorithm proceeds with the second step 
(shown in Figure 5.11) for identifying a further start symbol. In 
particular, the algorithm chooses the non-terminal symbol A with 
the highest weight in the location c1k of the CYK matrix. Then it 
considers the production rule A → B C containing A in the head and 
adds the symbols B and C as a further derivation of the start symbol 
S. At this point, the new derivation tree can be created by selecting 
the derivation p1 (within the set CPR of candidate production rules) 
that contain B (and C) in the head. The set of non-terminal symbols, 
production rules and semantic functions are consequently updated, 
by adding B (and C) to N0, the rule p1 to P0, and the functions for 
computing the occurre

 C) to Rp. 
Comparing the original CYK algorithm, that has been 

introduced in Section 4.4.1 (see Figure 4.2) with the revised CYK 
algorithm proposed in this thesis, there are basically two main 
differences in the first step. Firstly, the revised CYK algorithm 
introduces a weight (see point 2.b and 3.b.ii in Figure 5.10) 
associated with each element of the CYK matrix for choosing the 
appropriate candidate production rules during the second step, 
without the necessity of backtracking. Secondly, as the MAG 
notation requires that a set of semantic functions is associated to 
each production rules, the algorithm provides a way to evaluate 
these functions (see point 2.c and 3.b.ii in Figure 5.10) and stores 
them in the CYK matrix along the non-terminal symbols. 
Analogously, in the second step the revised CYK algorithm differs 
from the original CYK algorithm for two reasons. First of all, the 
choice of the candidate production rules is based on the weight that 
each rule has into the grammar (see point 1 in Figure 5.11), instead 
of the similarity with the form of the rules selected by the user (see 
point 1 in Step 2 of Figure 4.2). This allows to obtain a more 
accurate and weighted choice of the production rules to be inserted 

  



 Chapter 5. The Multimodal Grammar Editor: Theoretical 
Foundations 

104

into the grammar. Finally, in addition to the set of production rules, 
the algorithm outputs a set of opportunely defined semantic 
functions associated with each production rule (see point 4 and 5.iv 

h-screen display. The consequent linearized 
sent

e initial set of production rules P’ contains the following 
rules: 

P’ = {VB →Atos } 

Table 5.2: CYK matrix for the example 

in Figure 5.11). 

Example 5.2. Consider the multimodal sentence composed of the 
speech “call that company” and the pointing gesture on the 
company icon on a touc

ence has the form: 

SP(Call) SP(that) SP(company) G(Atos). 

Th

→ Call; DT→ that; NN→ company; NNS

 

The CYK matrix consequent to the running of the first step of 
the revised CYK algorithm is shown in Table 5.2. Furthermore, the 
set of candidate production rules CPR contains the following rules: 
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CPR = {B→ VB DT; C→ DT NN; D→ NN NNS; E →VB C; F 
→ B NN; G →DT D; H→ C NNS; I→ VB G; L→ B D; M→ E 
NNS} 

During the second step, the algorithm chooses randomly one of 
the symbols in the location c14 of the matrix, as they have the same 
weight (equal to 2). For instance, suppose that the symbol I is 
chosen, which consequently becomes the new start symbol S of the 
grammar. Moreover, the production rule S → VB G is added to the 
set P’, along with the corresponding set of semantic functions 
RS={S.val←VB.val+G.val; S.mod←VB.mod+G.mod}. At this 
point the symbols in the body of the selected rule are taken into 
account: as VB ∈ N0, it is included in the grammar yet, while G is 
an additional symbol that is not included in the grammar yet. 
Therefore, the algorithm selects the rule in CPR that contains G in 
the head (i.e. G →DT  D) and adds this rule to the set P’. 
Moreover, it adds G to N0 and the set of semantic functions 
RG={G.val← D.val; G.mod←DT.mod+D.mod} to Rp’. 
Analogously, considering the symbols in the body of the selected 
rule G →DT  D, D is not included in the grammar yet. Therefore, 
the algorithm selects the rule in CPR that contains D in the head 
(i.e. D→ NN NNS) and adds this rule to the set P’. Moreover, it 
adds D to N0 and the set of semantic functions RD={D.val← 
NNS.val; D.mod←NN.mod+NNS.mod} to Rp’. 

At the end, the grammar G’ is composed of the following 
production rules and semantic functions: 

P1) S → VB G 
R1.1) S.val←VB.val+G.val 
R1.2) S.mod←VB.mod+G.mod 

P2) G →DT  D 
R2.1) G.val← D.val 
R2.2) G.mod←DT.mod+D.mod 

P3) D→ NN NNS 
R3.1) D.val← NNS.val 
R3.2) D.mod←NN.mod+NNS.mod 

P4) VB → Call 
R4.1) VB.val ← call 
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R4.2) VB.mod ← speech 
R4.3) VB.synrole ← verb  

P5) DT → That 
R5.1) DT.val ← that 
R5.2) DT.mod ← speech 
R5.3) DT.synrole ← deictic 
R5.4) DT.coop ← complementary 

P6) NN →  Company 
R6.1) NN.val ← company 
R6.2) NN.mod ← speech 
R6.3) NN.synrole ← noun 
R6.4) NN.coop ← complementary 

P7) NNS → Atos 
R7.1) NNS.val ← Atos 
R7.2) NNS.mod ← gesture 
R7.3) NNS.synrole ← noun 
R7.4) NNS.coop ← complementary 

At the end of the revised CYK algorithm a new multimodal 
attribute grammar G’ that is able to generate the multimodal 
linearized sentence x is available. 

However, as the revised CYK algorithm does not use negative 
examples (i.e. sentences that should not be recognized by the 
grammar) for limiting the extent of generalization, an additional 
criterion is needed to avoid the generation of a trivial grammar that 
accepts any example.  

Therefore, during the second step of the proposed grammar 
inference method, a heuristic based on the minimum description 
length [Ris78] of the grammar is introduced for computing the 
“simplicity” of the grammar and a set of two learning operators is 
applied for improving the grammar description towards more 
“simple” grammars. 

5.5.2 Second Step: Improving the Grammar 
Description for Avoiding the Over-Generalization 
Problem 

The goal of the second step of the proposed grammar inference 
method is to update the multimodal attribute grammar G’, outputted 
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by the first step, by evaluating its description length and applying to 
it the learning operators for producing equivalent grammar 
descriptions that are more “simple” with respect to the description 
length of the grammar. 

In order to handle Multimodal Attribute Grammars, it is 
necessary to adapt the evaluation of the description length, as well 
as the merge and create operators, defined by Petasis et al. 
[PKK04] and applied to CFGs. Therefore, the significant 
improvement introduced in this step of the proposed grammar 
inference method relates to handle not only the set of production 
rules but also semantic functions both in the description length 
evaluation and in the learning operator definition. 

Roughly, the second step of the grammar inference method, 
named briefly grammar updating step, works in the following way. 
It takes as input the multimodal attribute grammar G’=(G’,A’,R’) 
generated during the first step, where G’=(T’,N’,P’,S’), A’ =(A(X)) 
X ∈ N ∪ Τ, and R  is the set of semantic functions for evaluating the 
attributes of X∈ N ∪ Τ.  

First of all, the algorithm evaluates the description length DL’ 
of G’. Afterwards, it repeatedly applies the merge operator 
considering all ways of unifying non-terminal symbols of G’. The 
resulting grammar G’’ is evaluated by computing the description 
length DL’’. If G’’ scores better than the current grammar G’, then 
G’’ replaces the current grammar G’, otherwise G’ remains the 
current grammar. At this point, the algorithm continues by 
considering all ways of creating new non-terminal symbols from 
pairs of symbols that occur in sequence within the grammar 
repeatedly applying the create operator to the current grammar. 
Again, the description length of this resulting grammar is evaluated 
and the grammar that has the lowest score is selected as current 
grammar. The algorithm iterates the application of the merge and 
create operators until it is unable to produce a grammar that scores 
better than the current grammar. A detailed description of the 
grammar updating step is given in Figure 5.12. Note that the loop 
identified by a in the figure represents the merge operator, while 
the loop identified by c in the figure represents the create operator. 
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Figure 5.12: Grammar updating step 

Some more details about the minimum description length model 
and the learning operators are given in the following two sub-
paragraphs. 

5.5.2.1 Description Length of a MAG 
The minimum description length (MDL) principle, as introduced by 
Rissanen [Ris78], is a general principle of statistics that allows to 
seek the shortest possible representation of data expressed through 
a representation language. In natural language, this principle has 
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been extensively used for grammar inference from positive 
examples [Wol82] [Gru96] [KeL97] [PPK04] as a heuristic for 
comparing grammars and selecting the one that is more “compact” 
with respect to both the length of the grammar as well as the 
encoding of the training set by the grammar. The choice of the 
MDL heuristic in our approach is motivated by the encouraging 
results of the application of the MDL approach to the inference of 
natural language grammars. In fact, several works [LaS00] 
[PPK04] show how the use of this heuristic helps in avoiding the 
over-generalization problem guiding the search process towards the 
optimal grammar. However, the application of the MDL heuristic 
to our grammar inference method needs an adaptation as it fits well 
for CFGs but it can not be applied to MAGs as is.  

Before explaining how the MDL principle has been adapted to 
MAGs, some preliminary definitions have to be given. 

Following the approach proposed by Petasis et al. [PPK04], 
given a context-free grammar G and a set of positive examples E, 
the description length DL of G is the sum of two independent 
lengths:  

DL = GDL + DDL, where: 
• GDL is the Grammar Description Length, i.e. the bits 

required to encode the grammar rules and transmit them to a 
recipient who has minimal knowledge of the grammar 
representation, and 

• DDL is the Derivation Description Length, i.e. the bits 
required to encode and transmit all examples in the set E, provided 
that the recipient already knows the grammar G. 

Searching for grammars with minimum description length 
allows to avoid trivial grammar that has a separate rule for each 
training sentence, as this grammar will have a large GDL, but also 
overly general grammars, which will have a large DDL. In fact, the 
DDL of the language is expected to vary proportionally with its 
derivation power. As a general grammar involves several rules in 
the derivation of a single sentence, requiring substantial effort to 
track all the rules involved in the generation of the sentence, its 
derivational power has the worst score, and consequently it has the 
highest DDL. 
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The evaluation of the two components GDL and DDL, as 
presented in [PPK04], fits well for CFGs but it needs to be adapted 
for being applied to MAGs. 

Starting from the calculation of the GDL, in order to count the 
bits required to transmit a multimodal attribute grammar G’ to a 
recipient, not only grammar rules have to be encoded but also 
semantic functions associated with each rule. Similarly to the 
approach of Petasis et al. [PPK04], a separation of the grammar 
rules into three independent subsets is applied: the start symbol 
subset, that contains all the rules whose head is the start symbol S; 
the terminal symbol subset (corresponding to the set of target rules 
PT (see Section 5.4)) that contains all the rules of the form A→B; 
the non-terminal symbol subset that contains all the rules that are 
not in the first two subsets. 

In addition to the bits required to encode the production rules 
of the three subsets, that are evaluated by Petasis et al. [PPK04, 
p.7], the evaluation of the bits required to encode semantic 
functions is necessary. For this purpose, the following expression 
can be used: 

BitsSemFunc = BitsHead + BitsBody + BitsStop 

In other words, the total number of bits needed for encoding a 
semantic function is the sum of the bits required to encode the head 
(BitsHead) and its body (BitsBody), similarly to the production rule. 
Furthermore, a stop symbol should be appended for signaling the 
end of the semantic function. 

For each production rule p, the set of occurrences Occ(p) and 
its subsets Output(p) and Input(p) are considered. Therefore, the 
bits required for encoding the head of the semantic function is: 

BitsHead = log2 (|Output(p)|) 

and the bits required to encode each term of the body of the 
semantic function is: 

BitsBodyTerm= log2 (|Occ(p)| - 1) 

Furthermore, in order to encode a semantic function associated 
with a production rule p, the following expression can be used: 
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The total GDL is therefore given by the sum of the bits 
required to encode each production rule and its set of semantic 
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In the formula BitsNT and BitsT are the bits required to encode a 
single instance of a non-terminal and a terminal, respectively, 
which are computed by using the following expressions from 
Petasis et al. [PPK04, p.7]: 

BitsNT = log2 (|N|+1) 
BitsT = log2 (|T|) 

Note that the Stop symbol is required for signaling the end of 
the rules and the semantic functions since their bodies can have 
variable lengths. This symbol is treated as a non-terminal one, 
requiring BitsNT to be encoded. 
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An example of calculating the GDL of the grammar in 
Example 5.2 of Section 5.5.1 is shown in Table 5.3. 

Table 5.3: Calculating the GDL 

 
For the calculation of the DDL, in order to count the bits 

required to encode and transmit the set of training sentences, as 
recognized by a multimodal attribute grammar G’ (provided that 
the recipient already knows the grammar), the equation proposed 
by Petasis et al. [PPK04, p.9] has been followed, which is quoted 
below for the sake of thoroughness. 
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where: 
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⎪
⎨
⎧

=
ruleaofHeadasappearnotdoesXif

ruleaofHeadasappearsXtimesofNumber
H X 1

 Frule is the rule frequency, i.e. the number of sentences 
from the training set in which the rule is involved in 
parsing. 

An example of calculating the DDL of the grammar in 
Example 5.2 of Section 5.5.1 is shown in Figure 5.13. 

 
Figure 5.13: Calculating the DDL 
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Therefore, the description length of the grammar in Example 
5.2 of Section 5.5.1 is: 

DL(G’) = GDL + DDL = 163.38 + 0 = 163.38 Bits 

5.5.2.2 Learning Operators 
After evaluating the description length of the multimodal attribute 
grammar G’, outputted by the revised CYK algorithm during the 
first step, the learning operators, proposed by Petasis et al. 
[PPK04], are applied for computing equivalent grammar 
descriptions, among which the grammar with minimum description 
length is selected as output of the proposed grammatical inference 
method.  

Again, the application of the learning operators to our grammar 
inference method needs an adaptation as they fit well for CFGs but 
they can not be applied to MAGs as are. Therefore, not only the 
production rules have to be created or unified but also the 
associated semantic functions. 

A brief description of these learning operators is given below. 
The merge operator unifies two non-terminals A and B ∈ N 

into a new non-terminal Z, replacing all occurrence of A and B and 
the corresponding rule heads. An example of the application of the 
merge operator is shown in Table 5.4. The merge operator 
decreases the GDL of the grammar, since fewer bits are required to 
encode one non-terminal instead of two. Moreover, the DDL can 
either increase or decrease. 

Table 5.4: The effect of the Merge operator 
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The create operator creates a new non terminal symbol Z that 
is composed of two sequential non-terminals A and B ∈ N. This 
implies that a new rule “Z → A B” with the associated semantic 
function(s) is introduced into the grammar and all occurrences of 
the sequence A B are replaced by the symbol Z in the grammar 
rules. An example of the application of the create operator to the 
grammar of the Example 5.1 (see Section 5.4) is shown in Table 
5.5. Moreover, the create operator has no effect on the DDL of the 
grammar, as the derivational power of the grammar remains the 
same, while it increases the GDL, since more bits are needed in 
order to represent a further non-terminal. 

Table 5.5: The effect of the Create operator 

 

5.6 Final Discussion 
This chapter is motivated by the idea that a grammar-based 
paradigm is the most natural and coherent with the human-human 
communication, and, therefore, to provide a multimodal system that 
relies on a grammar for parsing and interpreting the sentence 
expressed by the user enables a more flexible and natural 
interaction. Moreover, a large number of grammars has been 
defined for natural language processing, which represent a valuable 
and standardize starting point toward the extension to multimodal 
input.  

To facilitate the grammar definition a “by example” paradigm 
can be adopted, which allows the end user to provide concrete 
examples of multimodal sentences that have to be recognized, and 
the system automatically generates the grammar rules to parse 
those examples. This implies that a grammar inference method has 
to be implemented. 
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Therefore, in this chapter the main achieved results are the 
definition of a Multimodal Attribute Grammar (MAG) and an 
algorithm for the inference of this grammar.  

The strength of the MAG is the capability to manage whatever 
modalities and to represent temporal constraints into the grammar 
rules. Moreover, it provides a good compromise between the 
context-free paradigm and the necessity to represent semantic and 
temporal aspects of multimodal input. 

The proposed grammar inference method, following an 
approach “by example”, allows to generate the MAG production 
rules and the associated semantic functions starting from the 
acceptable multimodal sentences (positive examples only) in 
polynomial time. The strength of this algorithm relies on its 
efficiency, simplicity and capability of avoiding the over-
generalization problem through the introduction of a heuristic based 
on the simplicity of the grammar description. 

Both the grammar and the inference method represent the key 
elements on which the development of the grammar editor, 
described in the following section, is based. 
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Multimodal Grammar Editor 
Design 
 
 
This chapter, starting from the description of the general 
architecture of the Multimodal Language Processing (M2LP) 
framework, details the design process of the Multimodal Grammar 
Editor (MGE), on which this thesis is focused. Even in its general 
validity, the design description of the Multimodal Grammar Editor 
has been carried out using outputs of the unimodal recognizers for 
speech, gesture, handwriting and sketch, and involving concepts 
implied by multimodal inputs. Finally, the sequence diagram of the 
MGE synthetically shows its functioning. 

6.1 Introduction 
Editing grammars is a difficult and error-prone activity, mainly for 
users not highly skilled in computational linguistics. Furthermore, a 
grammar editor represents a useful software tool that enables to 
define grammars interactively. This chapter describes the 
Multimodal Grammar Editor (MGE), i.e. a software tool that assists 
language designers in defining and editing multimodal grammars. 
The MGE proposed in this thesis allows to define the left and right-
hand side of production rules of the grammar, as well as the 
attribute constraints. 

The MGE allows the language designer both to express 
concrete examples of multimodal sentences, which s/he wants the 
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system recognizes, and to define all the opportune constraints on 
syntactic roles and types of cooperation among modalities. 
Afterwards, the editor applies the grammar inference method, 
described in Section 5.5, for generating the set of production rules 
and the associated semantic functions, expressed following the 
MAG notation, described in Section 5.4. The generated grammar 
serves as input for the multimodal interpreter that applies the 
grammar production rules and the semantic functions for parsing 
the sentence and outputting the appropriate interpretation. 

A detailed description of the architecture of the Multimodal 
Language Processing (M2LP) framework, in which the MGE is 
inserted, is given in Section 6.2, along with a description of the 
architecture of the MGE. The design process of the MGE is 
illustrated in Section 6.3. Finally, the functioning of the MGE is 
showed by means of  the sequence diagram given in Section 6.4. 

6.2 Overall System Architecture 
The Multimodal Grammar Editor (MGE) is a component of the 
Multimodal Language Processing (M2LP) framework, a system 
able to acquire information derived from whatever input modalities 
according to their different representations, to appropriately 
interpret these inputs with a shared meaning, to integrate these 
different interpretations into a joint semantic interpretation, and to 
understand which is the better way to react to the interpreted 
multimodal sentence by activating the most appropriate output 
devices. 

The overall architecture of the (M2LP) framework is depicted 
in Figure 6.1. This framework is integrative, configurable, scalable, 
and adaptive to several application scenarios in order to efficiently 
manage multimodal communication between people and 
computational systems. 
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Figure 6.1: Architecture of the M2LP framework 

As shown in Figure 6.1, four different architectural levels 
make up the framework: 

 The acquisition/presentation level: This level includes the 
specific I/O devices, such as, for example, display, 
cameras, microphone, loudspeakers, and input sensors. 

 The analysis level: This includes both the unimodal input 
recognizers, as for example the Automatic Speech 
Recognizer and the gesture recognizer, and the output 
generators, as the Speech Synthesizer. The Multimodal 
Interpreter component integrates the recognized inputs, 
assigning them the appropriate values for the attributes, as 
required by the multimodal grammar notation, and applies 
the production rules stored in the Multimodal Grammar 
Repository, to parse the multimodal input. When the 
Multimodal Interpreter produces multiple interpretations 
of the same sentence, the linearised multimodal sentence 
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and the different interpretations are sent to the Multimodal 
Ambiguities Classifier that intercepts the class of 
ambiguity, which will be solved by the Multimodal 
Ambiguities Solver. The framework acquires the set of 
production rules of the grammar through the Multimodal 
Grammar Editor component, whose design and 
development are addressed in this thesis. The analysis 
level contains also the Modeling components, that are 
aimed at capturing some information used during the 
interpretation and disambiguation phases for leading up to 
the most probable interpretation of the user input. 
Examples of modeling components that can be integrated 
in the framework can be the user, content and context 
modeling components. Finally, the analysis level includes 
the Multimodal Output Manager for generating  
appropriate output information, through the available 
output modalities (multimodal fission).  

 The planning level: This includes the System Response 
Generator, whose main tasks is the understanding of 
which is the better way to react to the user input (either 
directly intervening on the electro-mechanical systems, 
through the electro-mechanical systems Gateway, and/or 
providing specific sensorial feedback) and the consequent 
adaptation of the human-machine interaction, taking into 
account also the outputs of the Modeling Components. 
This level contains also the Electro-mechanical systems 
Gateway that provides the link with the electro-
mechanical systems. Proper solutions shall be applied to 
ensure safe interfacing and communication between the 
two levels. 

 The activation level: This level contains the electro-
mechanical components offering specific functionalities to 
the user. It includes a framework interface adapter 
offering specific functions such as communicating to the 
framework through the electro-mechanical systems 
gateway. 

As the topic of this thesis is the Multimodal Grammar Editor 
(MGE) component (highlighted by a red rectangle in Figure 6.1), 
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the focus of this chapter will be hereafter the design of this 
component, starting from its architecture described in the following 
section. 

6.2.1 The Multimodal Grammar Editor Architecture 
A block diagram of the architecture of the MGE is shown in Figure 
6.2. 

 
Figure 6.2: Architecture of the Multimodal Grammar Editor 

Using the MGE, the language designer, which is the primary 
user of this component, can create all up the intended grammar or 
update an existing one. The MGE contains the Multimodal 
Grammar Definition and the MAG Inference components and a 
MGE interface. The MGE interface is a Multimodal User Interface 
(MUI) responsible of the interaction between the language designer 
and both the Multimodal Grammar Definition and the MAG 
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Inference components. This interface allows the acquisition of the 
data to be used for inferring the grammar, i.e. the (positive) 
examples of sentences and the concepts used for expressing these 
sentences, since the grammar definition follows a “by example” 
approach. Moreover, it presents a view onto the multimodal 
grammar resulting from the MAG inference stage.  

The Multimodal Grammar Definition sets the grammar that the 
language designer wants to define by either instantiating a new 
grammar or selecting an existing grammar from the Multimodal 
Grammars repository, according to the designer’s choice. 
Furthermore, the Multimodal Grammar Definition is responsible 
for the linearization process, i.e. it takes the elements of the 
unimodal sentences, coming from the Multimodal Sentence 
Definition sub-component, and combines them opportunely, in 
order to generate a linear sequence of elements. Such a sequence 
represents the multimodal linearized sentence that is sent to the 
MAG Inference component for grammar inference. 

The Concept Definition allows to define the set of terminal 
symbols, by selecting the appropriate elements from the 
dictionaries (i.e. the lexicon) of the unimodal recognizers. For this 
purpose, the Dictionary Acquisition requests the dictionaries to the 
recognizers of the modalities involved in the sentence definition. 

The Multimodal Sentence Definition allows to specify the 
positive examples of sentences along with all information needed 
for the linearization process. In particular, for each example of 
sentence, this component is responsible of three main tasks. Firstly, 
it requests to the language designer to select the modalities 
involved in the example of sentence in order to enable the 
connection with the appropriate modality recorders. This task is 
mainly performed by the Modality definition component. Secondly, 
it requests to the language designer to identify the syntactic role 
that each element has within the sentence. This task is mainly 
performed by the Syntactic role definition component. Finally, it 
requests to the language designer to define the kind of cooperation 
among the elements of the inserted sentence. This task is mainly 
performed by the Modality Cooperation definition component. 

The Interface to Modal Recognizers is responsible for enabling 
communication between the recorders of the defined modalities, 
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which capture unimodal inputs, and the related recognizers, which 
convert the captured inputs to recognized concepts. 

The MAG Inference takes as input the linearized sentence 
coming from the Multimodal Grammar Definition. Furthermore, it 
applies the grammatical inference method for generating the 
production rules and the semantic functions (following the MAG 
notation) that are able to parse the sentence. In particular, the 
Revised CYK and the Grammar Updating algorithms (that are 
described in Sections 5.5.1 and 5.5.2, respectively) are 
consecutively applied: the former for generating the multimodal 
attribute grammar that is able to parse the input sentence; the latter 
for improving the grammar description and avoiding the over-
generalization problem. When both the algorithms are applied, the 
MAG Inference stores the generated/updated grammar into the 
Multimodal Grammars repository. 

The Interface to Multimodal Interpreter provides the bridge 
between the Multimodal Grammars repository and the Multimodal 
Interpreter.   

6.3 Design of the Multimodal Grammar Editor  
This section describes the design process that has been followed to 
create the MGE within the M2LP framework. 

The MGE aims at providing the language designer all tools for 
defining a multimodal language. Therefore, the MGE has to satisfy 
the following requirements: 

- to provide a multimodal user interface that interactively 
leads the designer toward the correct definition of a 
multimodal grammar by adopting a “by example” approach; 

- to allow the acquisition of the lexicon of the grammar, i.e. 
the terminal symbols that the designer can use for expressing 
the multimodal sentence; 

- to allow the definition of the positive examples of 
multimodal sentences, by providing the tools for acquiring 
each unimodal input (e.g., speech, handwriting, sketch, and 
gesture recorders) and for converting it into a recognized 
meaningful concept (e.g., using speech, handwriting, sketch, 
and gesture recognition); 
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- to provide the way of incrementally updating the grammar 
description by automatically generating the production rules 
for parsing the defined examples of multimodal sentences. 

These requirements suggested the following steps to design the 
MGE: 

1) create a multimodal user interface (MUI) that allows the 
language designer to input the data needed for inferring the 
grammar, according to a “by example” paradigm; 

2) use the multimodal user interface for acquiring/defining the 
lexicon of the grammar; 

3) use the multimodal user interface for specifying concrete 
examples of multimodal sentences and all the opportune 
constraints on syntactic roles and types of cooperation 
among modalities; 

4) implement a grammar inference algorithm that automatically 
generates MAG production rules and the associated semantic 
functions to parse the defined examples of multimodal 
sentences. 

Each step of this design process is explored in more detail in 
the following sub-sections. 

6.3.1 Creating the MUI of the Multimodal Grammar 
Editor 

The usually adopted approach to define grammars is by textually 
specifying the rules in some descriptive language, such as the 
Backus-Normal Form (BNF) syntax. The use of textual description, 
however, is rather difficult for two main reasons. Firstly, it requires 
the designer to learn the syntax of the descriptive language, i.e. the 
designer has to have a special skill in computational linguistics for 
writing the grammar. Secondly, it is very easy to make mistakes, 
especially if the size of the grammar increases. The use of a MUI, 
in conjunction with the adoption of a “by example” approach, 
facilitates the language definition. In fact, in this way the user is not 
forced to learn a language for manually writing the grammar rules, 
but s/he has only to think about concrete examples that the 
grammar has to generate. This makes the grammar definition much 
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more intuitive and less error-prone. In such a way, no skilled 
language designers are needed, but even non-expert users can 
define multimodal grammars. 

Therefore, a multimodal user interface that leads the language 
designer to accomplish all steps required for the grammar 
definition/updating, by allowing her/him to see and verify any 
moment the choices made till then, has been adopted in the MGE. 

The idea of this multimodal user interface is that it has to 
interactively acquire all data, necessary for generating the grammar, 
from the language designer, and it has to display the results of the 
grammatical inference process to the designer. Therefore, the MUI 
components that can be envisaged are the following: 

- a panel for the initial grammar selection, where the language 
designer can either select the grammar s/he wants to update 
from a list of existing grammars (that are stored in a 
multimodal grammar repository), or define a new grammar, 
if the domains of interest of the existing grammars do not 
match the need of the designer; 

- a panel for the acquisition of the lexicon of the initial 
grammar (see Section 6.3.2 for more details); 

- a panel for the specification of the examples of multimodal 
sentences (see Section 6.3.3 for more details); 

- a panel for setting the opportune constraints on syntactic 
roles and types of cooperation among modalities (see 
Section 6.3.3 for more details); 

- a panel for displaying both the initial and the grammar 
generated by the inference method. 

6.3.2 Acquiring the Lexicon of the Grammar 
The lexicon of a language consists of its vocabulary, including its 
words and expressions. The lexicon can hardly be complete for any 
language, since new words are being added all the time, and 
sometimes old words start to get inflected with new paradigms. 

In order to allow that the system “understands” the multimodal 
sentence specified by the language designer, the elements of the 
sentence need to be just words from a lexicon known by the 
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system. In other words, the system needs to have a vocabulary 
specific for the application domain of the intended grammar. 

By default, this vocabulary will be composed of the 
vocabularies of the unimodal input recognizers. If the language 
designer wants to use a special vocabulary that contains some 
words not included in the dictionaries of the recognizers, it is 
necessary that s/he edits the vocabulary by using the lexical editor 
component (see Figure 6.2), which provides a good support for 
adding new words to the vocabulary. The design and development 
of this component is out the scope of this thesis and is one of the 
topics of future work. However, for the current implementation of 
the MGE the standard vocabularies of speech, handwriting and 
sketch recognizers will be used according to the fact that the 
current implementation of the editor supports these three 
modalities, even if other modalities can be integrated into the 
M2LP framework by adding the appropriate input devices and 
recognizers. 

A brief description of the vocabularies of the recognizers is 
given below. 

The standard vocabulary used by the speech recognizer is 
based on the CMU Pronouncing Dictionary [CMU], which 
provides pronunciations for words, each one breaking words into 
sequences of sub-word units. 

The vocabulary used by the handwriting recognizer is a small 
dictionary of lower case Latin letters. However, the lexical editor 
allows to build further dictionaries according to the need of the 
designer. 

The standard vocabulary used by the sketch recognizer is a 
small library of geometric objects. Similarly to the handwriting, the 
lexical editor allows both to build further objects to add to the 
standard vocabulary, or to define a completely new vocabulary. 

6.3.3 Specifying Examples of Multimodal Sentences 
In order to start with the grammar inference process, a set of 
examples of multimodal sentences has to be inputted by the 
language designer. 

As a multimodal sentence consists of different inputs 
expressed through one or more modalities, each input modality has 
to be acquired by the editor through an appropriate input device 
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(e.g., a microphone for speech, an editable area for sketch and 
handwriting). Moreover, the editor has to convert the acquired 
input data into “meaningful” concepts through the appropriate input 
recognizers (e.g., speech, sketch and handwriting recognizers). 

Once the unimodal inputs are recognized, the language 
designer has to complete the multimodal sentence specification by 
defining the opportune constraints both on syntactic roles and types 
of cooperation among modalities. 

Concerning syntactic roles, it is necessary that the designer 
tags the input elements (previously recognized) with the syntactic 
category the element belongs to. To support the designer in this 
task, a syntactic analyzer is used, which provides the possible 
associations between the input elements and the syntactic 
categories of the Penn Treebank [MSM94]. In the current 
implementation of the MGE, the Stanford Log-linear Part-Of-
Speech Tagger [TKM03] has been used. Note that this tagger is 
addressed to NL expression and reads text. Therefore, it can be 
applied in our editor to unimodal sentences (coming from the 
recognizers), which are represented by text. 

In order to define the types of cooperation among modalities, 
the designer needs to specify the relations (e.g., complementarity, 
redundancy) among the input elements (if necessary). 

When the multimodal sentence is completely specified, the 
editor performs the linearization process that translates the 
unimodal inputs into a linear sequence of elements. This sequence 
represents the multimodal sentence that will be used as positive 
sample during the grammar inference process. 

For the current implementation of the MGE the following 
existing recognizers are used, but any other recognizer can also be 
used. 

The SPHINX speech recognizer 

The first SPHINX speech recognition system was developed at 
Carnegie Mellon University in the 1990s. The version used in the 
MGE, Sphinx-4 [WLK04], is a flexible, modular and pluggable 
framework based on Hidden Markov Model (HMM). It is 
composed of  three primary modules: the FrontEnd, the Decoder, 
and the Linguist. The FrontEnd takes one or more input signals and 
parameterizes them into a sequence of features. The Linguist 
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translates any type of standard language model, along with 
pronunciation information from the dictionary and structural 
information from one or more sets of AcousticModels, into a 
SearchGraph. The Decoder uses the features from the FrontEnd 
and the SearchGraph from the Linguist to perform the actual 
decoding, generating Results.  

The JARNAL handwriting recognizer 

The JARNAL handwriting recognition system [JARNAL] is an 
open-source application for notetaking, sketching, annotating a 
document by using a stylus, mouse or keyboard. The version used 
in the MGE, Jarnal 2.75, works in the following way. It normalizes 
each strokes to a common scale. Then, a whole bunch of different 
methods are used to try to determine which stroke/strokes in the 
dictionary match whatever the user is drawing, and they are 
averaged together to get a score. Afterwards, a table of probabilities 
of pairs of letters is applied to guess which the next letter is going 
to be. Spacing is handled by seeing how far apart you drew your 
letters, and also using the table of letter pairs. 

The sketch recognizer  

For the sketch recognition, a system developed by the MultiModal 
Laboratory of the Italian National Research Council has been used 
[AFG08]. This recognizer works with SVG files (the objects of the 
library are SVG files), therefore, the sketch of the user is translated 
into an SVG representation. Afterwards, a matching algorithm is 
applied, which performs an exhaustive research of the sketched 
object into the library, in order to select the right object providing 
the correct interpretation of the sketch. To achieve that, both the 
sketch of the user and the objects of the library are represented by a 
set of nodes (identifying the opposite ends of the strokes that form 
the sketch) and a set of relationships among these nodes. The 
algorithm sequentially examines all nodes of the sketch and all 
relationships searching for the library objects that have the same 
nodes and relationships. The matching algorithm ends by ranking 
the library objects according to the similarity of relationships and 
nodes. 
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6.3.4 Implementing the Grammar Inference Algorithm 
As described in Section 5.5.1, the grammar inference algorithm 
takes as input: 

- the linearized sentence, that is generated by the editor after 
the language designer has completely specified the 
multimodal sentence in the MUI; 

- the current multimodal grammar, that is selected by the 
designer through the MUI; 

- the sets of occurrences of the synthesized attributes (i.e. 
actual value, modality, syntactic role, and modality 
cooperation) associated with each element of the sentence. 
Actual values of the elements are provided by the 
recognizers, while the occurrences of all the other attributes 
are provided by the designer during the specification of the 
multimodal sentence (see Section 6.3.3). 

When all these necessary inputs are acquired by the editor, it 
applies the grammar inference method, described in Section 6.5, for 
generating the set of production rules and the associated semantic 
functions, expressed following the MAG notation. The results of 
the inference process are displayed in an appropriate panel of the 
MUI. 

6.4 MGE Sequence Diagram 
In this section a brief description of the interaction between the 
language designer and the MGE is illustrated.  

Figure 6.3 shows the UML sequence diagram that clarifies 
how execution switches from the designer to the involved 
components of the grammar editor. 
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Figure 6.3: Sequence diagram of the MGE 

All the classes shown in the diagram realize the functionalities of 
the MGE described in Sections 6.3.1, 6.3.2, 6.3.3, and 6.3.4. The 
implementation of this classes is illustrated in the next chapter. 

6.5 Summary 
This chapter has presented the design process as well as 
architectural details of the multimodal grammar editor.  
Starting from an analysis of requirements that a grammar editor 
should follow in order to be a useful tool, four main steps to design 
the editor have been envisaged. First of all, a multimodal user 
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interface for the acquisition of examples of sentences has been 
designed. Secondly, the acquisition of the vocabularies, containing 
the terminal symbols that the designer can use for expressing the 
multimodal sentence, has been discussed. Thirdly, the acquisition 
of the multimodal sentence through the multimodal user interface 
has been examined. Finally, the functioning of the grammar 
inference algorithm has been discussed. 

In the following chapter the requirements and design choices 
explained in the previous sections will be used to implement the 
multimodal grammar editor. 

  



 

 
 
 
 

 Chapter 7 Multimodal Grammar 
Editor Implementation 

Multimodal Grammar Editor 
Implementation  
 
 
This chapter describes the implementation process that has been 
followed to develop the multimodal grammar editor. For explaining 
the software classes implemented in the prototype, the class 
diagrams of the main packages are presented following the standard 
Unified Modeling Language (UML) notation [OMG01]. The editor 
is implemented using the Java language due to its portability in 
order to maximize the system independence and to make possible 
to deploy it on the World Wide Web. 

7.1 Introduction 
In this chapter the steps towards the development of a prototype of 
the Multimodal Grammar Editor (MGE) are presented. This 
prototype, according to the requirements and design choices 
described in Section 6.3, is composed of two main components. 
The former is the Multimodal Grammar Definition component that 
performs the acquisition of all data necessary for defining/updating 
a multimodal grammar, i.e. the (positive) examples of sentences, 
the concepts used for expressing these sentences, and all the 
constraints on syntactic roles and types of cooperation among 
modalities. The acquisition of this data from the language designer 
is performed through a multimodal user interface, whose design 
features have been illustrated in Section 6.3.1. The latter is the 
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MAG Inference component that implements the grammar inference 
algorithm, described in Section 6.5. This component generates the 
production rules and semantic functions that are able to parse the 
acquired examples of sentences. 

The prototype has been implemented by using the Java 
Platform Standard Edition 6 and Netbeans IDE 6.1 as programming 
environment. The choice of the Java language is due to its 
portability in order to maximize the system independence and to 
make possible to deploy it on the World Wide Web. 

In the next sections an overview of the implementation of the 
MGE is given, starting from illustrating the software class design 
by using the UML class diagrams. Then, a brief description of the 
main implemented classes is presented. Finally, an example of use 
of the MGE is described with the help of some screenshots of the 
main interface of the MGE. 

7.2 Software Class Design 
The multimodal grammar editor is composed of four main 
packages, each one implementing a component of the editor, as 
described in the architecture of Section 6.2.1. These packages, 
shown in Figure 7.1, are described below: 

Multimodal User Interface (MUI). This package manages the 
interaction between the language designer and the MGE. It 
provides all functionalities for reading and managing inputs 
specified by the designer and for writing and displaying the 
grammar inference output. During the multimodal sentence 
acquisition it activates the connection with the recorders of 
the defined modalities and the related recognizers by 
exploiting the classes of the interfaceToModalRecognizer 
package. 

Multimodal Attribute Grammar (MAG). This package 
contains all classes that implement the data structure of the 
grammar and the methods for manipulating it. 

Multimodal Sentence. This package provides the data structure 
of the sentence. As the language designer inserts all required 
data in the MUI, the classes of this package store these data 
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and process them for building the linearized sentence, which 
is sent as input to the grammar inference algorithm. 

Grammar Inference. This package is responsible of the 
grammar inference algorithm. 

 
Figure 7.1: General diagram of packages 

An explanation of the responsibilities and purposes of each 
package is given in the following sections. 

7.2.1 Multimodal User Interface 
Figure 7.2 shows the class diagram of the conceptually most 
important classes of the MUI package. 

The main class of this package is the GrammarEditorMain, 
which contains the runnable interface of the MGE. This interface 
allows both the acquisition of all data, necessary for generating the 
grammar, from the language designer, and the visualization of the 
output of the grammatical inference process. For this purpose, 
several panels are placed in the main window of the interface, each 
one aimed at allowing a dialogue with the user for acquiring the 
required pieces of information, such as the current grammar that 
has to be updated, the modalities used for expressing the sentence, 
the multimodal sentence itself, the lexicon, and so on.  

The class SyntacticRoleDefinition provides the interface for the 
acquisition of the syntactic roles of the input elements. 
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Analogously, the class ModCooperationDefinition provides the 
interface for defining the type of cooperation among input 
elements. 

 
Figure 7.2: Class diagram of the MUI package 

7.2.2 Multimodal Attribute Grammar 
The multimodal attribute grammar (MAG), described in Section 
5.4, has been implemented by using an object-oriented structure in 
the MultimodalAttributeGrammar package. In particular, the class 
hierarchy for the components of this structure is shown in Figure 
7.3.  

 
Figure 7.3: Class hierarchy for the MAG 

The MAGrammar is the root class that provides to external 
entities all functionalities for creating and manipulating grammar 
objects. These objects are composed of production rules and 
grammar nodes, which are implemented by the homonym classes. 
The class SemanticFunction represents and manages the semantic 
functions associated to the production rules. The class 

  



 Chapter 7. Multimodal Grammar Editor Implementation 136

grammarNode manipulates Terminal and NonTerminal objects, 
which have a set of attributes describing the synthesized and 
inherited attributes of the MAG notation.  

The class diagram of the conceptually most important classes 
of the MultimodalAttributeGrammar package are depicted in 
Figure 7.4. 

 
Figure 7.4: Class diagram of the MultimodalAttributeGrammar 

package 

7.2.3 Multimodal Sentence 
Figure 7.5 shows the class diagram of the conceptually most 
important classes of the MultimodalSentence package. 

Sentence is the main class of this package, which provides all 
functionalities for creating and manipulating sentence objects. 
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According to the theoretical foundations discussed in Section 5.3.1, 
these objects are composed of input elements, which are 
implemented by the class SentenceElem. Each element of this class 
has a set of synthesized attributes, representing the actual value 
(token), modality (mod), syntactic role (syntacticCat), and modality 
cooperation (cooperation). The actual values of the elements are 
provided by the recognizers, while the occurrences of all the other 
attributes are provided by the designer during the specification of 
the multimodal sentence through the MUI. 

 
Figure 7.5: Class diagram of the MultimodalSentence package 

7.2.4 Grammar Inference 
Figure 7.6 shows the class diagram of the conceptually most 
important classes of the GrammarInference package. 

GrammarInference is the main class of this package, which 
implements the grammar inference algorithm. In particular, the 
method upgradeGrammar in this class is responsible of the control 
of the algorithm (see Section 7.3.3). As discussed in Section 5.5.1, 
the first step of the algorithm requires that a CYK matrix is built. 
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For this purpose, the class MatrixCYK is implemented for creating 
and managing CYK matrix objects. The class MatrixCYKElement 
provides all functionalities for manipulating the elements of the 
CYK matrix. Each element, implemented by the class 
MatrixCYKElementComp, is an object composed of a non-terminal, 
its associated weight, and the semantic functions for evaluating the 
values of the attributes of the non-terminal. 

 
Figure 7.6: Class diagram of the GrammarInference package 

7.3 Main Software Classes of the System  
In this section a general overview of the main classes of the MGE 
is provided. In particular, the class Tagger used by the class 
SyntacticRoleDefinition in the MUI package, and the class 
GrammarInference in the GrammarInference package are 
described. 

 



 Chapter 7. Multimodal Grammar Editor Implementation 139

7.3.1 Defining Syntactic Roles 
The syntactic role of the recognized input elements is a 
fundamental information for building the CYK matrix during the 
grammar inference step. To support the language designer in the 
definition of syntactic roles that each input element has within the 
sentence, the tagger of Stanford has been used. 

The class Tagger is devoted to achieve this support. In 
particular, for each input modality an object Tagger is initialized 
with the unimodal input elements, outputted by the specific 
recognizer. The output of the method Tagging(), in the class 
Tagger, is a list composed of the syntactic categories corresponding 
to the input elements of the sentence. The method TagView() takes 
this list and opportunely display the association between input 
elements and syntactic categories in a panel of the window for the 
syntactic category definition. 

Figure 7.7 shows a code excerpt from the method Tagging(). 
The first three rows allows to opportunely initialize the tagger. 
Afterwards, the tree of the unimodal input elements is created and 
the method taggedYield() is applied to this tree, which generates an 
object Sentence that is the sequence of syntactic categories 
corresponding to the input elements. The tagging ends by adding 
the categories in a list, TaggedWord, which is used by the method 
TagView() for displaying the output of the tagger to the designer. 

 
Figure 7.7: A code excerpt from the method Tagging() 
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7.3.2 Building of the CYK Matrix  
When the language designer has inputted all needed information 
through the MUI, the controller of the MUI activates the class 
GrammarInference for the generation/updating of the grammar. In 
particular, the method upgradeGrammar(Grammar g, Sentence s) 
is invoked, which takes as parameter the current MAG grammar g 
and the linearized sentence s. A fragment of code of this method is 
shown in Figure 7.8.  

 
Figure 7.8: A code excerpt from the method 
upgradeGrammar(Grammar g, Sentence s) 

First of all, the elements of the linearized sentence are extracted and 
the number of these elements is evaluated (through the method 
size()) for defining the dimension of the CYK matrix that will be 
created. The object candidateProd, that is a map, is created for 
storing the candidate productions that will be inserted into the 
grammar. Afterwards, the creation of the CYK matrix is delegated 
to the class MAGrammar that invokes the method 
createMatrixCYK(matrixCYK, sentenceElements, sentenceLength) 
for creating the CYK matrix. An excerpt from this method is shown 
in Figure 7.9. 
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Figure 7.9: A code excerpt from the method 

createMatrixCYK(matrixCYK, sentenceElements, sentenceLength) 

The while loop is responsible for loading the elements of the 
first row of the CYK matrix. As described in Section 5.5.1, these 
elements are the syntactic categories (obtained by the tagger (see 
Section 7.3.1)) of the non-terminals that generate directly the 
terminal symbols of the grammar in the production rules. 
Afterwards, three nested for loops are implemented. For each 
element of the matrix, a vector candidateDerivations is created, 
which contains the non-terminals with the related weights. To 
achieve that, the method getCandidateDerivation(j,i,k) of the class 
MatrixCYK is invoked, which is briefly described below (see 
Figure 7.10). Finally, the method verifyProduction(candidateProd, 
matrixCYK, candidateDerivations, j, i, n) verifies the candidate 
production rules to be added to the grammar. This method firstly 
checks if a non-terminal of a candidate rule is present in the body 
of some grammar rules yet. If it is so, the non-terminal is added in 
the appropriate location of the CYK matrix and the inspection of 
the vector of candidate production rules ends. Otherwise, the new 
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symbol is inserted as key of the map (called candidateProd) 
containing the candidate rules and it is subsequently added in the 
appropriate location of the CYK matrix.  

As said before, another method relevant for building the CYK 
matrix is getCandidateDerivation(j,i,k) of the class MatrixCYK. An 
excerpt from this method is shown in Figure 7.10. This method 
firstly extracts the non-terminals from the CYK matrix. As more 
than one element can be contained in a location of the matrix, a for 
loop (with variable w) is used for extracting all the non-terminals of 
a location. Afterwards, the weight of the candidate production is 
computed. Finally, a new rule is created by initializing an object 
CandidateDerivation that opportunely includes the elements 
extracted from the CYK matrix as head and body of the rule. 

 
Figure 7.10: A code excerpt from the method 

getCandidateDerivation(j,i,k) 

7.3.3 Revised CYK Algorithm  
When the CYK matrix is built, the revised CYK algorithm 
proceeds with the analysis of both the matrix and the set of 
candidate production rules for choosing which rule has to be added 
to the current grammar. This task is delegated to the class 
GrammarInference, which uses the method 
upgradeGrammar(Grammar g, Sentence s), introduced in Section 
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7.3.2 (see Figure 7.8). In particular, this method takes the map of 
the non-terminal symbols associated with the candidate production 
rules, which is outputted by the invocation of the method 
getCandidateDerivation(j,i,k), described in Section 7.3.2. If this 
map is null, then the current grammar is able to generate the 
multimodal linearized sentence and consequently the algorithm 
ends. Otherwise, the method addProductions(HashMap 
candidateProd, String prodIdx) of the class MAGrammar is 
invoked. A fragment of code of this method is shown in Figure 
7.11. 

 
Figure 7.11: A code excerpt from the method 

addProductions(HashMap candidateProd, String prodIdx) 

This method takes as parameter the map of candidate 
production rules and the non-terminal to be inserted in the grammar 
(the first time the method is called, the axiom is passed). First of 
all, it checks if the non-terminal is present as key of the map 
candidateProd. If it is so, the vector containing the candidate 
production rules corresponding to that key is extracted from the 
map. Afterwards, a while loop is implemented for identifying the 
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derivation in the vector with the best weight. The object 
derivationToInsert contains the rule that will be added to the 
grammar. Once the best candidate derivation is chosen, the current 
grammar is updated by using the method addProductionRule, 
which takes as parameter the non-terminal symbol and the 
derivation. When the non-terminal symbol, contained in the left or 
right side of the new derivation, is present yet in the set of non-
terminal symbols of the grammar, the method addProductions 
ends. 

7.4 Usage Example of the Editor 
The definition of a new language or its updating is performed by 
defining new multimodal sentences through the graphical editor 
shown in Figure 7.12.  

 
Figure 7.12: The graphical user interface of the grammar editor 

This interface is composed of four main panels (identified by 
number 1,6,7, and 8 in Figure 7.12), corresponding to the macro-
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tasks that the language designer has to accomplish in order to 
define the intended multimodal grammar.  

In particular, the panel for the Grammar selection (number 1 in 
Figure 7.12) contains the following elements: 

- a combo box for selecting an existing grammar in the 
domain of interest for the application (number 2 in Figure 
7.12). When the grammar is selected, it is shown in the panel 
“Display grammar” (number 6 in Figure 7.12). 

- a button for defining a new grammar (number 3 in Figure 
7.12), if the intended grammar is not present in the list of 
existing grammars. When this button is pushed the dialog 
frame, shown in Figure 7.13, appears and the user can insert 
the name of the new grammar. 

- a button for deleting an existing grammar (number 4 in 
Figure 7.12). If this button is pushed two warning messages 
are consecutively visualized for asking the confirmation of 
deleting the selected grammar in the combo box (number 2 
in Figure 7.12). 

- a button for specifying the selected grammar (number 5 in 
Figure 7.12), that enables the panel for the Modality 
Selection (number 7 in Figure 7.12). When the user pushes 
this button, the Grammar selection phase ends and the 
Modality selection phase starts. 

 
Figure 7.13: The dialog box for inserting the new grammar name 
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Figure 7.14: The panel for modality selection in the graphical user 

interface of the grammar editor 

The panel for the Modality selection (number 7 in Figure 7.12) 
contains the following elements: 

- a combo box for selecting the modalities that are supported 
by the system and involved in the multimodal sentence 
(number 1 in Figure 6.14).  

- a list (number 2 in Figure 7.14) where the selected 
modalities are shown. 

- a button (number 3 in Figure 7.14) for inserting the selected 
modality from the combo box into the list. 

- a button (number 4 in Figure 7.14) for deleting the selected 
modality from the list. 

- a button for the confirmation of the modality selection 
(number 5 in Figure 7.14). When this button is pushed, the 
components of the panel “Multimodal Sentence Acquisition” 
(number 8 in Figure 7.12) are dynamically created, 
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according to the modalities that the user has selected 
(contained in the list). 

 
Figure 7.15: The panel for multimodal sentence acquisition in the 

graphical user interface of the grammar editor 

The panel for the Multimodal sentence acquisition (number 8 
in Figure 7.12) is dynamically created according to the selected 
modalities. If the user selected the speech modality, an icon of a 
microphone (number 1 in Figure 7.15) is shown in the panel and 
the speech recorder is connected to the interface. If the user 
selected the sketch (or handwriting) modality, an icon of a sketch 
(or handwriting) and an editable area for the sketch input 
acquisition are arranged in the panel (number 2 in Figure 7.15). 

In addition to this dynamic components, the panel for the 
Multimodal sentence acquisition contains the following static 
elements: 

- a button for starting the multimodal sentence acquisition 
(number 3 in Figure 7.15). When this button is pushed, the 
system enables the modality recorders to acquire the input of 
the user. 
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- a button for concluding the multimodal sentence acquisition 
(number 4 in Figure 7.15). When this button is pushed, the 
system disables the modality recorders to acquire the input 
of the user. 

- a button for deleting the acquired multimodal sentence 
(number 5 in Figure 7.15), if the user is not satisfied by this 
sentence. 

- a button for visualizing the inserted input (number 6 in 
Figure 7.15). When this button is pushed, the system opens a 
new window where the unimodal input recognized by the 
specific recognizers are displayed. This window is described 
in detail below. 

- a button for confirming the acquired sentence (number 7 in 
Figure 7.15), if the user is satisfied by this sentence. When 
this button is pushed, the system starts the linearization 
process, which provides the linear sequence of input 
elements. Afterwards, the user can confirm the acquisition of 
the sentence by pushing the button “Add Sentence” in the 
main interface (number 9 in Figure 7.12), otherwise s/he can 
cancel the acquisition by pushing the button “Delete 
Sentence” (number 10 in Figure 7.12). If the “Add Sentence” 
button is pushed, the system starts the grammar inference 
algorithm, whose results are displayed in the panel “Display 
grammar” (number 6 in Figure 7.12). 

The window for visualizing the unimodal input recognized by 
the specific recognizers is shown in Figure 7.16. This window 
contains the following elements: 

- a button for defining the syntactic roles of the inserted 
unimodal input; 

- a button for defining the kind of cooperation among the 
inserted unimodal input; 

- a button for concluding the definition of the syntactic roles 
and the kinds of cooperation of the recognized input 
elements. 

 



 Chapter 7. Multimodal Grammar Editor Implementation 149

 
Figure 7.16: The window for visualizing the unimodal input 

recognized by the specific recognizers 

In order to explain the grammar editor functionalities, a simple 
example is shown in the following. Suppose the user wants to 
define a multimodal language for editing E-R diagrams. First of all, 
s/he selects the appropriate grammar from the combo box (number 
2 in Figure 7.12). Whether an E-R grammar does not exist yet, the 
user can define it by pushing the button “Define a new grammar” 
and inserting the name of the new grammar in the textual field. Let 
us suppose that the concepts dictionary containing the entity and the 
relationship concepts belonging to the E-R domain have been 
already defined. Moreover, dictionaries containing the different 
modalities symbols representing these concepts have been already 
defined too. 

Suppose again that the first multimodal sentence that the user 
inserts is composed by the speech input “This is the entity 
Professor” and the sketch input of a rectangle representing an 
entity. Therefore, the user selects the speech and sketch modalities 
from the combo box (number 1 in Figure 7.14), and confirms the 
selection by pressing the button “Confirm Modalities” (number 5 in 
Figure 7.14). Afterwards, a dynamic editable area appears (number 
8 in Figure 7.12) where the user can input the multimodal sentence 
by using a microphone for the speech and the area for the sketch. 
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The acquisition of the sentence begins with the pressure of the 
button “Start”, as shown in Figure 7.17.  

 
Figure 7.17: Multimodal sentence acquisition 

When the user finishes to insert the sentence, s/he presses the 
button “Stop”. If the user is not satisfied by the inserted sentence 
s/he can cancel it and start again the acquisition.  

Pressing the button “Visualize”, the system acquires the input 
elements of the multimodal sentence, sends them to the specific 
recognizers and displays the recognized inputs in the window 
“Inserted Multimodal Sentence”, as shown in Figure 7.18.  
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Figure 7.18: Recognized unimodal inputs 

At this point the user presses the button “Define Syntactic 
Roles” for identifying the syntactic role that each element has 
within the sentence. Pressing this button, the interface in Figure 
7.19 is visualized. As the input in our assumption can be 
represented through a Natural Language (NL) expression, the 
system provides the possible syntactic roles of the input elements; 
these roles comes from the application of a NL parser to the NL 
expression. For instance, the application of a NL parser to the 
speech input in the example produces the set of syntactic roles 
shown in the area “Possible syntactic roles” of Figure 7.19. 
Whether these roles correspond to the intention of the user, s/he can 
confirm them by pressing the button “Confirm syntactic role”, 
otherwise s/he can define the syntactic roles manually by selecting 
the input element and choosing the appropriate role in the drop-
down list. When syntactic roles are defined for all input elements, 
the user visualizes the defined roles in the text area on the right of 
the interface, and either confirms them by pressing the button 
“Send syntactic roles” or delete some syntactic roles by pressing 
the button “Remove syntactic role”. 
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Figure 7.19: Interface for the definition of syntactic roles of 

inserted input 

At this point the user presses the button “Define Modality 
Cooperation” for identifying the kind of cooperation among input 
elements. Pressing this button, the interface in Figure 7.20 is 
visualized. The user selects the input elements that have to be 
linked by a cooperation mode (complementarity, redundancy..) and 
chooses the appropriate mode in the drop-down list. When all 
necessary rules of modality cooperation are defined, the user 
visualizes them in the text area on the right of the interface, and 
s/he either confirms them by pressing the button “Confirm modality 
cooperation” or deletes some cooperation rules by pressing the 
button “Delete modality cooperation” and the system shows again 
the main interface configuration of Figure 7.17. 
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Figure 7.20: Interface for the definition of modality cooperation 

At this point the user presses the button “Add Sentence” of 
Figure 7.17 for concluding the multimodal sentence input. The 
system automatically applies the algorithm of grammar inference 
and generates the production rules necessary for parsing the 
inserted sentence. The user can visualize these rules in the text area 
on the left of the interface (number 3 in Figure 7.12). In Figure 7.21 
the production rules generated for the example are shown. 
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Figure 7.21: Visualization of the generated production rules for the 

example 

7.5 Summary 
This chapter has presented the implementation process of the 
multimodal grammar editor. The editor relies on two main 
components: the first, named Multimodal Grammar Definition, is 
devoted to acquire all data necessary for defining/updating a 
multimodal attribute grammar through a multimodal user interface; 
and the other one, named MAG Inference, is responsible of the 
implementation of the grammar inference algorithm, described in 
Section 5.5. 

Therefore, the final result of the implementation process is an 
editor that, following a “by example” approach, allows to define 
production rules of the multimodal attribute grammar from concrete 
examples of multimodal sentences. The application of a grammar 
inference method, which automatically generates the production 
rules, relieves the user from the task of learning the grammar 
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formalism, making grammars easier to use also by non-expert 
users. 

In the next chapter, two experiments are presented that were 
conducted to investigate the usability of the multimodal grammar 
editor and the performance of the grammar inference algorithm. 

  



 

 
 
 
 

 Chapter 8 Evaluation and Results 
 
Evaluation and Results 
 
 
This chapter presents some validation of the Multimodal Grammar 
Editor (MGE), whose theoretical foundations, design and 
implementation are described in previous chapters. The goals of the 
validation are mainly twofold. First of all, the usability of the MGE 
has been assessed for understanding how well it works in practice. 
Secondly, the evaluation of the grammar inference algorithm has 
been performed for measuring the correctness of the induced 
grammar. 

8.1 Introduction 
The evaluation of the Multimodal Grammar Editor (MGE) has been 
carried out from a twofold point of view: firstly, by considering the 
editor as a software system, the assessment of the usability of this 
system can be performed; secondly, by considering the editor as a 
grammar inference system, the correctness of the inferred grammar 
can be evaluated. 

In order to evaluate the usability of the editor, some 
experiments were conducted, which involved six subjects. These 
experiments aimed at observing the subjects while interacting with 
the editor in order to provide some real data about the usability of 
the editor. In particular, the ability of real users to accomplish the 
grammar definition using the multimodal interface of the grammar 
editor has been evaluated. This evaluation and its consequent 
results are illustrated in Section 8.2. 

156 
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Concerning the second point of view, evaluating grammar 
inference systems within NLP is a critical task for several reasons. 
First of all, in order to evaluate an inferred grammar it is necessary 
to compare it against a “correct” grammar, which is difficult to 
identify. Secondly, the ambiguity represent an obstacle as there is 
no an obvious single correct grammar that represents a given set of 
training examples. These issues have been largely addressed in the 
literature and several evaluation metrics have been defined for 
measuring the correctness of the induced grammar. A brief 
description of the three main evaluation methods used in NL 
grammar inference is provided in Section 8.3.1. 

The analysis of the advantages and drawbacks of these 
methods has lead to choice the rebuilding known grammars method 
for evaluating the proposed grammar inference algorithm due to its 
simplicity and objectivity of the evaluation. The application of this 
method and its results are illustrated in Section 8.3.2 and 8.3.3. 

8.2 Usability Evaluation of the MGE 
Usability testing has been defined by Barnum [Bar02] as the 
“process of learning from users about a product’s usability by 
observing them using the product”. Originally, these tests were 
conducted with a large number of users (30-50). Nowadays, the 
advent of modern usability testing methods has allowed to decrease 
the number of participants, requiring 5-7 representative users for 
finding most of the problems, in particular when it is a qualitative 
test. 

The usability testing performed for evaluating the MGE 
consisted of a series of user trials designed to assess how the editor 
functionalities are perceived by the users. A total of six subjects 
took part in the testing. This small number of people is justified 
also by the qualitative nature of the analysis that has been 
performed. 

A detailed description of the testing phases and an overview of 
obtained results are given in the following sub-sections. 

8.2.1 Experimental Setting 
In order to assess the usability of the implemented editor, a series 
of experiments among the research staff of the Institute of Research 
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on Population and Social Policies were conducted. The objective of 
these experiments was to compare the ease of writing grammars by 
examples instead of writing grammars by text. 

The total number of participants in the experiments is six. 
These people have been divided in two groups: group 1 (1 male and 
2 females) is composed of members of the MultiModal Laboratory, 
with high skill with multimodal languages, and group 2 (2 males 
and 1 female) is composed of members of the social science 
research staff, without any skill with multimodal languages. This 
partition has been introduced because people of group 1 already 
know the multimodal grammar formalism and, therefore, they have 
less difficulties to write grammars by text. For this reason people 
belonging to group 1 should provide a preference in using MGE or 
the text-based editor, independently from their specific skill. On the 
contrary, people of group 2 need to be trained in the multimodal 
attribute grammar formalism and, consequently, have more 
difficulties to write grammars by text. 

The trial consisted of defining a multimodal attribute grammar, 
starting from a set of positive examples of multimodal sentences, 
which are shown in the first column of Table 8.1. For defining this 
grammar, the participants have to use alternatively a textual editor, 
which requires the specification of grammar rules in BNF text 
form, and the multimodal grammar editor proposed in this thesis, 
that requires the specification of a set of multimodal sentences. 
These different versions were identified to the participants as 
“yellow editor” and “red  editor”, respectively, in order to avoid 
influencing their opinions on the editors. 
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Table 8.1: The multimodal sentences for the experiments 

 

The yellow editor has an interface (see Figure 8.1) similar to 
the MGE interface, described in Section 7.4. The fundamental 
difference is in the panel for the acquisition of multimodal 
sentences, that in the yellow editor is replaced by an editable area 
for manually inserting the textual rules of the multimodal attribute 
grammar. Therefore, in this editor there is no need of the grammar 
inference method, as the grammar description is manually defined 
by the user. The trial with the yellow editor consists in writing the 
production rules and semantic functions, which generate the given 
multimodal sentences (in the first column of Table 8.1), within the 
textual area of the editor. The correct description of the grammar 
that generates these sentences is shown in Table 8.2. As group 2 is 
composed of people not skilled in multimodal grammars, they need 
to be trained in the multimodal attribute grammar formalism. 
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Figure 8.1: Interface of the yellow editor 

The red editor is the MGE and, therefore, it works as described 
in Section 7.4. The trial with this editor consists in formulating the 
set of multimodal sentences, which are shown in the first column of 
Table 8.1, with syntactic roles and kinds of cooperation shown in 
second and third columns of Table 8.1. If the grammar is correctly 
defined, the red editor has to output the multimodal attribute 
grammar shown in Table 8.2.  

To perform the experiments a PC workstation has been 
configured, with the two editors available. All trials were 
conducted on this workstation, in order to have the same hardware 
configuration. 
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Table 8.2: The multimodal attribute grammar for the experiments 

 

The trial included the following phases (in temporal order): 
- a training phase, in which an explanation of the task and a 

short tutorial on how to operate each editor prototype are 
given. For people of group 2, a tutorial on the multimodal 
attribute grammar formalism is provided. 

- a familiarization phase, in which the participants were asked 
to use both editors in order to become familiar with their 
functionalities. For this familiarization, a set of sample 
sentences are used, different from the sentences of the trial.  

- an experimental phase, that is the core of the trial. Once the 
participants felt comfortable with the editors, they were 
asked to use alternatively the yellow editor, that requires the 
definition of grammar rules in BNF text form (as shown in 
Table 8.2) starting from the multimodal sentences, shown in 
the first column of Table 8.1, and the red editor, that requires 
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the formulation of the set of multimodal sentences, shown in 
Table 8.1. 

- an evaluation phase, in which each participant was asked to 
fill out a simple evaluation questionnaire aimed to find out 
whether it liked the editor or not. The questionnaire (detailed 
described in Appendix A) is composed of nine questions that 
asked the users to rate (on a 5-point Likert scale ranging 
from “strongly disagree” to “strongly agree”) certain features 
(e.g., helpfulness, usefulness, etc.) of the two editors. These 
questions are briefly summarized in Table 8.3. In addition, a 
final question asked the users which of the editors they 
preferred to use, and their comments, if any. 

Table 8.3: The questionnaire for the usability evaluation 

 

A detailed description of the instructions provided to the test 
participants and the evaluation questionnaire can be found in 
Appendix A. 

8.2.2 Results 
The test results described below demonstrate that the multimodal 
grammar editor, designed and implemented in this dissertation, is a 
valid support for the definition of multimodal grammars. 
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In fact, the majority of participants (5 users, i.e. 83%) 
answered to the final question that they prefer using the red editor, 
and only one participant (17%), belonging to group 1, prefers the 
yellow editor. The answers to the evaluation questionnaire are 
summarized in the pie charts of Figure 8.2. 

 
Figure 8.2: Responses to the evaluation questionnaire 

The first three questions aim to find out whether the 
participants have difficulty in writing grammars by examples using 
the red editor or by text using the yellow editor. All people of group 
2 and two people of group 1 found easier to define a multimodal 
grammar by specifying the examples of multimodal sentences 
instead of writing the production rules (question 1 and 2). The 
remaining one person of group 1 was neutral.  

Considering differences between the two users’ groups it is 
possible to observe that the red editor is usually preferred also by 
people skilled in multimodal grammars. In the comments, a user of 
group 1 said that s/he “prefers the red editor as it is easier to use 
according to its natural interaction”. Moreover, a user of group 2 
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said that s/he “prefers the red editor because s/he is not obliged to 
remember how to formalize the grammar”. 

The further three questions aim to assess the usability of the 
yellow editor, in terms of difficulty, time and user-friendliness. 5 
out of 6 participants evaluated negatively the ease and user-
friendliness of the yellow editor (question 4 and 6), while only one 
person (of group 1) was neutral. Participants were divided as to 
whether writing all production rules using the yellow editor is time-
consuming (question 5): people of group 2 tended towards the 
agreement, while people of group 1 towards the disagreement. This 
is due to the time required to learn the grammar by people of group 
2. Comments made by participants of group 2 regarding the 
interaction with the yellow editor are the following: “I found the 
process of the grammar definition an onerous work for me”, “I’m 
not skill in grammars and the preliminary tutorial is not sufficient 
for enabling me to use the yellow editor”. A user of group 1 said 
that “I’m not sure of the correctness of the grammar I have defined 
and the yellow editor does not support me in resolving my 
problems”. 

The final three questions aim to assess the usability of the red 
editor, in terms of difficulty, time and user-friendliness. 5 out of 6 
participants evaluated positively the ease and user-friendliness of 
the red editor (question 7 and 9), while only one person (of group 
1) was neutral. Most participants (4 users, i.e. 66%) did not find 
writing the multimodal sentences through the red editor time-
consuming (question 8). Comments made by participants of group 
2 regarding the interaction with the red editor are the following: “I 
felt the red editor more suitable for my skill because I don’t need to 
learn the grammar formalism”. 

8.3 Evaluation of the Grammar Inference 
Algorithm 

A brief review of existing evaluation methods for grammar 
inference, along with a detailed description of the experimental 
phases and an overview of obtained results, are given in the 
following sub-sections. 
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8.3.1 Evaluation metrics 
The evaluation of grammar inference algorithms is not a trivial 
task, and many different approaches have been proposed in the 
literature.  

The looks good to me approach has prevailed for many years 
due to its apparent simplicity. When a grammar inference algorithm 
is evaluated using this approach, the algorithm is applied to a piece 
of unstructured text and the resulting grammar is qualitatively 
evaluated on the base of the linguistic intuitions of the evaluator, 
that highlights the grammatical structures which look “good”. As 
this approach needs only unstructured data to be applied, it can be 
evaluated on different languages without the need of structured 
corpora [Zaa01]. However, the method has many disadvantages. 
First of all, this kind of evaluation is mainly conducted by an expert 
who has specific knowledge of the syntax of the language, that is 
generally the developer of the system. This leads to a high chance 
of a biased evaluation, making it almost impossible to gain an 
accurate picture of system performance. 

Another approach for evaluating grammar inference algorithms 
is the compare against treebank. This evaluation method consists in 
applying the grammar inference algorithm to a set of plain natural 
language sentences which are extracted from an annotated 
treebank, which is selected as a “gold standard”. The structured 
sentences generated by the algorithm are then compared against the 
original structured sentences from the treebank. There are several 
metrics that can be used to compare the learned tree against the 
original tree structure. Most often, the recall, which gives a 
measure of the completeness of the learned grammar, and the 
precision, which shows how correct the learned structure is, are 
used. The compare against treebank method does not need an 
expert to indicate if some construction is correct or incorrect, 
allowing for a relatively objective comparison of different 
algorithms. The main problem with this approach is that structured 
corpora are needed. This may be a problem in the case of 
multimodal languages because structured treebanks are not 
available and need to be built by hand (or semi-automatically). 

The rebuilding known grammars approach is another 
evaluation method, which will be followed in this thesis. This 
method, starting from a pre-defined (simple) grammar, generates a 
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set of example sentences, which are given as input to the grammar 
inference algorithm and the resulting grammar is compared 
manually to the original grammar. If the inferred grammar is 
similar or equal to the original grammar then the learning system is 
considered good. The advantages of this evaluation method are 
quite similar to the looks good to me approach. An additional 
advantage, similarly to the compare against treebank method, is 
that the evaluation can be done automatically, without the need for 
a language expert, and, therefore, it yields a more objective way of 
comparing different algorithms. One of the disadvantages of this 
approach is that the evaluation of the system depends heavily on 
the chosen grammar. 

From the analysis of these existing evaluation methods, the 
rebuilding known grammars and the compare against treebank 
approaches have most potential, mainly for the objectivity of the 
evaluation they perform. In particular, the former works well with 
relatively small artificial grammars, while the latter requires a large 
corpus that contains multimodal language data and syntactic tree 
structures generated by the multimodal grammar. As such a kind of 
corpus does not exist in the literature yet, it should be built 
opportunely, requiring lots of resources (both in time and money). 
This severely restricts the application of this evaluation method to 
grammar inference methods for multimodal languages. 

Therefore, the rebuilding known grammars method is applied 
in this thesis. In particular, for evaluating whether the inferred 
grammar is similar or equal to the original grammar, the following 
two aspects of the inferred grammar are measured during the 
evaluation, according to the study of [LaS00]: 

- errors of omission (failures to parse sentences generated by 
the “correct” grammar), which indicate that an overly 
specific grammar has been learned, 

- errors of commission (failures of the “correct” grammar to 
parse sentences generated by the inferred grammar), which 
indicate that an overly general grammar has been learned. 

More formally, given the artificial “correct” grammar GC and 
the inferred grammar GI, errors of omission can be estimated as the 
fraction of the number of sentences generated by GC that are not 
parsed by GI to the total number of sentences generated by GC. 

 



 Chapter 8. Evaluation and Results 167

Errors of commission can be estimated as the fraction of the 
number of sentences generated by GI that are not parsed by GC to 
the total number of sentences generated by GI. 

The application of this method to the proposed grammar 
inference algorithm is described in the following sections. 

8.3.2 Experimental Setting  
In order to evaluate the grammar inference algorithm proposed in 
this thesis, several experiments were conducted, following the 
rebuilding known grammars evaluation method. 

The main objective of the experiments is to examine the ability 
of the grammar inference algorithm to infer a “correct” multimodal 
attribute grammar. To achieve that, the artificial grammar shown in 
Table 8.2 has been used, which is the same applied for the usability 
evaluation, described in the previous section. Two sets of positive 
training sentences STR and test sentences STE were generated top-
down from the artificial grammar. The training sentences are shown 
in Table 8.4.a (they are the linearized sentences corresponding to 
the sentences used for the usability evaluation), while the test 
sentences are depicted in Table 8.4.b. It is necessary that the same 
sentence does not appear both in the training and test sets. The 
training set STR was used to train the algorithm for generating the 
inferred grammar, while the test set STE was used for evaluating the 
performance of the inferred grammar in terms of errors of 
omission. Furthermore, for evaluating the error of commission, 
another set of test sentences STE2 was generated top-down from the 
inferred grammar. These sentences were used for evaluating the 
performance of the inferred grammar in terms of errors of 
commission. 
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Table 8.4: Training and test sentences for the experiments 

 

Therefore, the evaluation requires the following phases: 

- starting from the artificial “correct” grammar GC, the two 
sets of training and test sentences are generated; 

- the set STR of training sentences is given as input to the 
grammar inference algorithm that generates the inferred 
grammar GI; 
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- the inferred grammar is evaluated on the test set STE, i.e. the 
errors of omission in parsing the test sentences are 
measured; 

- a further set STE2 of test sentences is generated from the 
inferred grammar GI; 

- the artificial “correct” grammar is evaluated on the test set 
STE2, i.e. the errors of commission in parsing the test 
sentences are measured. 

8.3.3 Evaluation Results  
When the grammar inference algorithm received as input the set 
STE of training sentences shown in Table 8.4.a, it generated the 
inferred grammar that is shown in Table 8.5. 

Table 8.5: The multimodal attribute grammar inferred by the 
algorithm 
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Afterwards, the performance of the inferred grammar was 
evaluated by testing if the sentences in STE, shown in Table 8.4.b, 
can be parsed by the inferred grammar. The results of this 
evaluation showed that the algorithm infers a grammar that is able 
to recognize all the sentences in the test set (error of omission = 0). 
This means that the inferred grammar is general enough, as it is 
able to recognize all the unseen sentences. 

Moreover, generating top-down a set STE2 of test sentences 
(with the same size of the training and test sets in Table 8.4.a and b) 
from this inferred grammar, the errors of commission can be 
measured. For instance, considering the set of sentences in Table 
8.6, the results showed that the inferred grammar does not generate 
ungrammatical sentences (error of omission = 0). 

Table 8.6: test sentences generated from the inferred grammar for 
the experiment 

 

In order to further validate the performance of the algorithm, 
fifteen other experiments were conducted, by varying the sets of 
training and test sentences. In particular, the fourteen generated 
sentences of Table 8.4 were shuffled and two new sets (with size 
equal to 7) were randomly defined. The results showed that the 
average error of omission is equal to 0.018 (only two sentences 
were not parsed in all the sixteen conducted experiments), while the 
average error of commission is equal to 0.009 (only one sentence 
was not parsed in all the sixteen conducted experiments).  

From these simple experiments it is possible to gather that the 
proposed grammar inference method has an acceptable 
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perf

e algorithm. In 
part

ormance, since the inferred grammar has a very high 
probability (i.e. >0.97) of parsing valid sentences.  

However, more complex experiments should be conducted in 
order to have a more accurate evaluation of th

icular, the number of training and test sentences can be 
increased, so that the experiments can be conducted over various 
training and test set size. Moreover, several artificial grammars can 
be considered in order to have a more objective evaluation, 
dependent as little as possible on the chosen grammar. Experiments 
along this line has not been performed yet because they require a 
high effort for writing manually “correct” grammars following the 
MAG notation, but they represent a future work to give more 
accuracy to the performance evaluation of the algorithm. 

  



 

 
 
 
 

 Chapter 9 Conclusion and Future 
Work 

 
Conclusion and Future Work  
 
 
This chapter concludes the dissertation by summarizing the 
contributions which this thesis offers to the research community, 
and point out directions for future research.  

9.1 Summary of the Thesis 
Multimodal interaction has emerged in the last few years as the 
future paradigm of human-computer interaction. This fact is 
gathered also by the increasingly application of the multimodal 
paradigm to computer interfaces making computer behaviour closer 
to human communication. Multimodal interaction requires that 
several simultaneous inputs, coming from various input modalities, 
are opportunely integrated and combined into a complete sentence, 
i.e. a multimodal fusion process has to occur. 

In the literature, three main different approaches to the fusion 
process have been proposed: the recognition-based, decision-based, 
and hybrid multi-level fusion. The last one contains the grammar-
based fusion strategy. A comparison of these approaches [MPA06] 
showed that the grammar-based paradigm is the most natural one as 
it is more coherent with the human-human communication 
paradigm in which the dialogue is seen as a unique and multimodal 
communication act. Moreover, this approach allows an easier inter-
modality disambiguation. However, the use of a grammar implies a 
higher computational complexity for generating the rule sets of the 
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grammar as well as a highly expert user that is skilled in 
computational linguistics for writing the grammar.    

In order to overcome the deficiencies of the grammar-based 
paradigm, this thesis proposed an approach of grammar definition 
that follows the “by example” paradigm, that is, the language 
designer provides concrete examples of multimodal sentences that 
have to be recognized, and a grammar inference algorithm 
automatically generates the grammar rules to parse those examples. 
In such a way no skilled grammar writers are needed, but even non-
expert users can define multimodal grammars.  

For verifying the workability of this theoretical approach, an 
innovative multimodal grammar editor has been implemented, 
which, unlike task-specific multimodal grammars, allows to define 
complex multimodal expressions, integrating whatever input 
modalities. A test on the usability of this editor showed that it 
facilitates the grammar definition and is more suitable also for non-
expert people as it does not require the learning of the grammar 
notation. In fact, most of people involved in the test considered the 
MGE  user-friendly and ease to use compared to a text-based 
editor. 

9.2 Contributions 
This thesis offers some contributions to the area of multimodal 
human-computer interaction research, which are summarized in the 
following of this section. 

First of all, the thesis introduces a new multimodal grammar, 
named Multimodal Attribute Grammar (MAG), which is an 
extension of attribute grammars for multimodal input processing. 
This grammar has the capability to manage whatever modalities 
and to represent temporal constraints into the grammar rules. 
Moreover, it provides a good compromise between the context-free 
paradigm and the necessity to represent semantic and temporal 
aspects of multimodal input. 

Secondly, a computationally efficient algorithm for 
grammatical inference has been defined, which join together the 
strengths of the inductive CYK and e-GRIDS algorithms, adapting 
them to multimodal sentences. The strength of this algorithm relies 
on its efficiency, simplicity and capability of avoiding the over-
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generalization problem through the introduction of a heuristics 
based on the simplicity of the grammar description. 

Thirdly, an implementation of the underlying theory of 
multimodal grammars and grammar inference into the Multimodal 
Grammar Editor (MGE) has been provided. Using this editor the 
language designer can define grammars interactively, by expressing 
concrete examples of multimodal sentences, which s/he wants the 
system recognizes, and to define all the opportune constraints on 
syntactic roles and types of cooperation among modalities. 
Afterwards, the editor applies the grammar inference method for 
generating the set of production rules and the associated semantic 
functions, which are expressed following the MAG notation. 

Finally, a validation of the proposed grammar editor has been 
provided by the means of a usability evaluation experiment, which 
compare user acceptability in using the proposed editor against a 
text-based editor. This experiment confirmed that the MGE, 
designed and implemented in this dissertation, is a valid support for 
the definition of multimodal grammars, mainly for people not 
skilled in this field. Moreover, the performance of the grammar 
inference algorithm has been validated through several experiments 
which aim to examine its ability to infer a “correct” multimodal 
attribute grammar. The main outcome of these early experiments is 
that the algorithm has an acceptable performance, since the inferred 
grammar has a very high probability (i.e. >0.97) of parsing valid 
sentences. 

To summarize, the main contributions of this thesis are 
twofold: 

- a grammatical editor for multimodal language definition that 
is general enough to be applicable for whatever modalities 
and in whichever domains, 

- an efficient incremental learning algorithm that, following an 
approach “by example”, allows to generate the production 
rules of the defined grammar starting from the acceptable 
multimodal sentences. 
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9.3 Future Work 
This thesis is a first step into the domain of multimodal languages 
and grammars. In this section, some of the directions for future 
work in this area are presented.  

As discussed in Section 5.5.2.1, a heuristic, based on the 
minimum description length of the grammar, was developed in 
order to avoid the over-generalization problem without the use of 
negative examples. However, the definition of such a kind of 
heuristics constitutes an argument not deeply investigated yet. 
Therefore, a promising research direction for future work can be 
towards finding new heuristics or towards improving the developed 
one. Moreover, the introduction of new learning operators, in 
addition to the merge and create operators, can be examined in 
order to enhance the way the algorithm improves the grammar 
description. 

Another interesting task for future work is to further evaluate 
the proposed grammar inference algorithm. The improvements on 
the experimental phase are mainly twofold. First of all, experiments 
over larger example sets could be performed. In this dissertation, a 
basic evaluation over small artificial grammars was conducted. 
However, a more accurate evaluation of the algorithm can be 
achieved by increasing the number of training and test sentences, so 
that the experiments can be conducted over various training and test 
set size. Moreover, several artificial grammars can be considered in 
order to have a more objective evaluation, dependent as little as 
possible on the chosen grammar. Secondly, a comparison of the 
computational efficiency of the proposed grammar inference 
method with other existing algorithms could be performed. Such a 
comparison will also provide a deeper evaluation of the accuracy of 
grammars inferred by the proposed algorithm rather than the 
existing algorithms. 

A more implementative aspect that can be examined as future 
work is the integration of further modalities into the grammar 
editor. Although the theoretical framework presented in this thesis 
(i.e. the multimodal grammar and the inference algorithm) can 
accommodate many input modalities, the current implementation of 
the editor strongly supports only speech, handwriting, sketch, and 
pointing gesture modalities. Future versions of the editor should 
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support also other modalities, including lip-reading, 2D and 3D 
gestures, gaze tracking, and face tracking. 
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Usability Evaluation 
  

This appendix describes the procedure followed for the usability 
evaluation reported in Section 8.2. The instructions, which were 
given to participants for using the yellow and red editors, and the 
evaluation questionnaire are reported. The questionnaire included 
questions that asked the users to rate (on a 5-point Likert scale 
ranging from “strongly disagree” to “strongly agree”) certain 
features of the two editors. 

Instructions for using yellow editor 
Starting from the set of multimodal sentences, illustrated in the  
section about “The training set of multimodal sentences”, you will 
define the multimodal grammar by using the interface of the editor 
you visualize on your computer screen.  

First of all, you have to set the name of the grammar, that is 
“PHONE-BOOK”, by pushing the button “Define a new grammar” 
and inserting the name “PHONE-BOOK”. Afterwards, you have to 
write the production rules and the associated semantic functions, 
which allows to parse the first multimodal sentence of the set, in 
the text area “Multimodal grammar acquisition” at the right side of 
the interface. After all rules are written, you have to push the button 
“Insert Rule” and the current grammar will be displayed in the 
“Grammar Display” area.  

Afterwards, you have to select the name of the grammar you 
are defining (i.e. PHONE-BOOK) from the list of defined 
grammars and push the button “Specify the selected grammar”.  

At this point, you have to write (in the text area “Multimodal 
grammar acquisition”) the production rules and the associated 
semantic functions for parsing the second multimodal sentence, 
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taking into account the rules previously inserted and displayed on 
the area “Grammar Display”.  

You have to repeat these steps for each of the seven sentences 
in the training set. When you finish writing the production rules for 
parsing all the sentences, the defined grammar will be shown in the 
area “Grammar Display”. 

Instructions for using red editor 
Starting from the set of multimodal sentences, illustrated in the 
following section about “The training set of multimodal sentences”, 
you will define the multimodal grammar by using the interface of 
the editor you visualize on your computer screen. You will wear a 
headset that allows you to speak to the computer. You will be 
equipped also with a digital pen that allows you to draw/handwrite 
directly on the editable area of the editor’s interface. 

First of all, you have to set the name of the grammar, that is 
“PHONE-BOOK”, by pushing the button “Define a new grammar” 
and inserting the name “PHONE-BOOK”. Afterwards, you have to 
select the modalities you will use for expressing the first 
multimodal sentence (i.e. speech and handwriting modalities) from 
the combo box of the “Modality selection” panel, and you can 
confirm the selection by pressing the button “Confirm Modalities”.  

At this point, you have to insert the first multimodal sentence 
by using the headset for the speech and the digital pen for the 
handwriting. The acquisition of the sentence begins with the 
pressure of the button “Start”. When you finish to insert the 
sentence, you can press the button “Stop”. If you are not satisfied 
by the inserted sentence you can cancel it and start again the 
acquisition.  

Afterwards, you have to press the button “Visualize”, for 
visualizing the inputs recognized by the specific unimodal 
recognizers.  

At this point you have to define the syntactic role that each 
element has within the sentence, by pushing the button “Define 
Syntactic Roles”. The system automatically shows the possible 
syntactic roles of the input elements. Whether these roles 
correspond to the roles described in column a of Table A.1, you can 
confirm them by pressing the button “Confirm syntactic role”, 
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otherwise you can define the syntactic roles manually by selecting 
the input element and choosing the appropriate role in the drop-
down list. When syntactic roles are defined for all input elements, 
you can visualize the defined roles in the text area on the right of 
the interface, and you can either confirm them by pressing the 
button “Send syntactic roles” or delete some syntactic roles by 
pressing the button “Remove syntactic role”. 

Afterwards, you have to identify the kind of cooperation 
among input elements by pressing the button “Define Modality 
Cooperation”. According to the cooperation mode described in 
column b of Table A.1, you have to select the input elements that 
have to be linked by a cooperation mode (complementarity, 
redundancy..) and choose the appropriate mode in the drop-down 
list. When all necessary rules of modality cooperation are defined, 
you can visualize them in the text area on the right of the interface, 
and you can either confirm them by pressing the button “Confirm 
modality cooperation” or delete some cooperation rules by pressing 
the button “Delete modality cooperation”. 

At this point you can press the button “Add Sentence” for 
concluding the multimodal sentence input. The system 
automatically applies the algorithm of grammar inference and 
generates the production rules that can be visualized in the text area 
on the left of the interface. 

You have to repeat these steps for each of the nine sentences in 
the training set. When you finish inserting the multimodal 
sentences, the defined grammar will be shown in the area 
“Grammar Display”.  
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Table A.1: The syntactic roles and kind of cooperation of 
multimodal sentences for the usability test 

 

The training set of multimodal sentences 
The nine training sentences that you have to insert are the 
following: 

S1) speech: “Call this person”  
handwriting: the name of the person, that is “JOHN 

SMITH”, on the handwriting area 
Result: After you have inserted the sentence, the area for  

handwriting should look like this: 

 



Usability Evaluation 183

 
while the recognized speech input (that you can 
visualize when you push the button “visualize”) 
should be “Call this person”. 

S2) speech: “Call this company”  
gesture: pointing the icon of the company, that is “ATOS”, 

on the touch- screen display       
Result: After you have inserted the sentence, the pointing area 

should look like this: 

 
while the recognized speech input should be “Call this 
company”. 

S3) speech: “The number of this person is”  
handwriting: the name of the person, that is “JOHN 

SMITH”, on the handwriting area       
Result: After you have inserted the sentence, the pointing area 

should look like this: 

 
while the recognized speech input should be “The 
number of this person is”. 

S4) speech: “The e-mail of this person is”  
handwriting: the name of the person, that is “JOHN 

SMITH”, on the handwriting area       
Result: After you have inserted the sentence, the pointing area 

should look like this: 

 
while the recognized speech input should be “The e-
mail of this person is”. 
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S5) speech: “The address of this person is”  
handwriting: the name of the person, that is “JOHN 

SMITH”, on the handwriting area       
Result: After you have inserted the sentence, the pointing area 

should look like this: 

 
while the recognized speech input should be “The 
address of this person is”. 

S6) speech: “The number of this company is”  
gesture: pointing the icon of the company, that is “ATOS”, 

on the touch- screen display       
Result: After you have inserted the sentence, the pointing area 

should look like this: 

 
while the recognized speech input should be “The 
number of this company is”. 

S7) speech: “The e-mail of this company is”  
gesture: pointing the icon of the company, that is “ATOS”, 

on the touch- screen display       
Result: After you have inserted the sentence, the pointing area 

should look like this: 

 
while the recognized speech input should be “The e-
mail of this company is”. 

S8) speech: “The address of this company is”  
gesture: pointing the icon of the company, that is “ATOS”, 

on the touch- screen display       
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Result: After you have inserted the sentence, the pointing area 
should look like this: 

 
while the recognized speech input should be “The 
address of this company is”. 

S9) speech: “Show the address of this person”  
handwriting: the name of the person, that is “JOHN 

SMITH”, on the handwriting area       
Result: After you have inserted the sentence, the pointing area 

should look like this: 

 
while the recognized speech input should be “Show 
the address of this person”. 

Evaluation questionnaire 

EDITORS’ COMPARISON

1) Defining a multimodal grammar by writing the production 
rules and semantic functions is difficult 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
_____ strongly agree 

2) Defining a multimodal grammar by specifying the 
examples of multimodal sentences to be generated is 
difficult 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
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_____ strongly agree 

3) Using the yellow editor for defining a multimodal 
grammar is as efficient as using the red editor (in terms of 
time) 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
_____ strongly agree 

YELLOW EDITOR 
4) I found using the yellow editor easy 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
_____ strongly agree 

5) I found writing all production rules time-consuming 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
_____ strongly agree 

6) I found the interaction with the yellow editor userfriendly 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
_____ strongly agree 

RED EDITOR

7) I found using the red editor easy 

_____ strongly disagree  
_____ disagree  
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_____ neither agree or disagree 
_____ agree 
_____ strongly agree 

8) I found writing all multimodal sentences time-consuming 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
_____ strongly agree 

9) I found the interaction with the red editor userfriendly 

_____ strongly disagree  
_____ disagree  
_____ neither agree or disagree 
_____ agree 
_____ strongly agree 
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