==ROMA

AZTRE

NIVERSITA DEGLISTUIM

Roma Tre University
Ph.D. in Computer Science and Engineering

A Methodology for Generating
Grammars for Multimodal
Languages

Arianna D’Ulizia

A Methodology for Generating Grammars for
Multimodal Languages

A thesis presented by
Arianna D’Ulizia
in partial fulfillment of the requirements for the degree of
Doctor of Philosophy
in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

February 2009

COMMITTEE:
Ing. Fernando Ferri

REVIEWERS:
Prof. Esteban Zimanyi
Prof. Irina Kondratova

To my parents and Domenico

“Tell me and I'll forget,
Show me and I may remember,
Involve me and I'll understand”

Vil

Abstract

Human communication is naturally multimodal. People normally
interact through several communication channels, such as gesture,
drawing, handwriting, facial expressions, gaze in combination with
speech or speech only, which is the prevalent modality. This
synergistic use of multiple interaction channels makes human
communication flexible, natural and robust. In the last years several
efforts have been made to endow computer interface with similar
flexibility, naturalness and robustness. The research presented in
this thesis represents one of this effort.

The main contributions of this thesis are twofold. First of all, it
provides a methodology for multimodal language definition that is
general enough to be applicable for whatever modalities and in
whichever domains. Secondly, it provides an efficient incremental
learning algorithm that, following an approach “by example”,
allows to generate the production rules of the defined grammar
starting from the acceptable multimodal sentences.

Acknowledgments

First, I would like to thank my supervisor Fernando Ferri at CNR
who suggested many of the ideas realized in this work, encouraged
me to tackle the problems during the whole period of studies, and
gave many important comments on the text of the thesis.

I also want to express my gratitude to Patrizia Grifoni and all the
members of the Multi Media & Modal Laboratory group at CNR
who have created a great working atmosphere and provided a lot of
useful feedback.

Finally, I would like to thank Domenico, my parents, and my

relatives and friends for constant moral support and belief in my
ability to do the work and write this thesis.

X

Contents

Contents X
List of Tables X1V
List of Figures XV
Chapter 1 Introduction 1
Chapter 2 Multimodal Interaction 7
2.1 Introductioncoceeiieienienieieeee e 7
2.2 The Multimodal Human-Computer Communication
PrOCESS .. ettt e 9
2.3 Conceptual Features of Multimodal Interaction 12
2.4 Architectural Features of Multimodal Systems 14
2.5 Human-Computer Interaction Modalities..............c....... 15
2.5.1 SPEECH ...t 15
2.5.2 Handwriting and GeStUIeccccoceververveieeneneneneennn 16
2.5.3 Other Modalitiesccceoveiereirerinienieicicceerceeneeenne 18
2.6 Advantages and Critical Elements of Multimodal
INEETACTION. ¢..ceieiieieierieete ettt 18
2.6.1 Naturalness and Accessibilityccccevievverervienieiieniene

2.6.2 Robustness and Stabilitycccoeereveriecieniennnnns
2.6.3 Expressive Power and Efficiency

Chapter 3 Multimodal Fusion And Grammars 22
3.1 INtrodUCtiON ..ccveeeeieeiie et 22

X1

3.2 Data Fusion Levels In Multimodal Fusion..................... 23

3.2.1 Recognition-based Fusion Strategies
3.2.2 Decision-based Fusion Strategies..........
3.2.3 Hybrid Multi-level Fusion Strategies
3.2.4 Final Discussion on Multimodal Fusion Approaches......37

3.3 Grammars for Multimodal Fusion................cccceeeeeunenn. 38

3.3.1 Context-Free Grammars.............ccoceeeevvveeeeiveeeeireeeeineeens
3.3.2 Multi-Modal Definite Clause Grammar ...
3.3.3 Finite-State Multimodal Grammarc...cceeeveeennnnns
3.3.4 Multimodal Functional Unification Grammar.................
3.3.5 Multimodal Combinatory Categorial Grammar
3.3.6 Final Discussion on Multimodal Grammars....................

Chapter 4 Learning of Grammars 52

4.1 INtroduCtioN.......cooeviiiiiiieee et 52
VS \\[0] 7: 15 (o) 4 SRR 54
4.3 Models of 1earningcccoeoeeeieieneneneneee e 55

4.3.1 Identification in the Limit............ccocovvevvieveeeiieieeieennen, 55
4.3.2 QUETIES ..covvrereeereereecrreennen,
4.3.3 PAC Learning

4.4 Algorithms for Learning of Context-Free Grammars 57

4.4.1 Inductive CYK Algorithm........ccccooeiiininininicecen 57

4.4.2 Learning CFG by Version Space....

4.4.3 e-GRIDS Algorithmccocoeieiniiiicieeeeeee 67
4.5 Final Discussion on Learning Methods.............ccoe....... 71

Chapter 5 The Multimodal Grammar Editor: Theoretical

Foundations 73
5.1 INtroduCtion........cccceeieriieniiesieie e 73

5.2 General Discussion on Application Scenarios 75

5.3 Multimodal Input Modeling..........ccccceeeereiienenencnennne 78
5.3.1 Representing Unimodal Inputcccecvevirvieneneenreennnne. 79

5.3.2 The Linearization Processc.cccoceevvvevvvrevrveeiveeeneeennnnn 83

5.4 The Multimodal Attribute Grammar..............c..cceeueeneene. 88
5.5 The Grammar Inference Algorithm..........ccocceooeeniennene 96
5.5.1 First Step: the MAG Generation from Positive Examples
98
5.5.2 Second Step: Improving the Grammar Description for
Avoiding the Over-Generalization Problemc.ccceeeee. 106
5.5.2.1 Description Length of a MAG
5.5.2.2 Learning OPerators.......c.coeceueeerireereuereerenenuencrccrensneene
5.6 Final DiSCUSSION ...cceevuieiiieiieiieieeiesiee e 115
Chapter 6 Multimodal Grammar Editor Design 117
6.1 INtroduCtioncccooeeriiiieniiiieeeeceeee e 117
6.2 Overall System Architecture..........ccoceverereeeeieneennenn. 118
6.2.1 The Multimodal Grammar Editor Architecture............. 121
6.3 Design of the Multimodal Grammar Editor.................. 123
6.3.1 Creating the MUI of the Multimodal Grammar Editor..124
6.3.2 Acquiring the Lexicon of the Grammar 125
6.3.3 Specifying Examples of Multimodal Sentences............ 126
6.3.4 Implementing the Grammar Inference Algorithm......... 129
6.4 MGE Sequence Diagram...........cccoceeeeveenivenieeieneenen. 129
6.5 SUMMALY....cceieiiiiiiieiieeee e 130

Chapter 7 Multimodal Grammar Editor Implementation 132
7.1 INtroduCtionccceeeeiieiieniiiie e 132
7.2 Software Class Design.......cccocevererinereninieieeeene

7.2.1 Multimodal User Interfacecccoevevvievreeniecneenen.
7.2.2 Multimodal Attribute Grammar
7.2.3 Multimodal Sentencecceeeveevveecrieeeeeneeeieereenen.
7.2.4 Grammar INfEerencecccoovvvevveeeieeceeeeeeee e

7.3 Main Software Classes of the System............ccccceeeenee. 138

7.3.1 Defining Syntactic Roles.........cccecerireneiieiniiiieee 139
7.3.2 Building of the CYK Matrix
7.3.3 Revised CYK Algorithm........ccocoevuerininnininniencnieee 142

Xiil

7.4 Usage Example of the Editorccooceviiiienieinee 144

7.5 SUMMATIY ..ottt 154
Chapter 8 Evaluation and Results 156
8.1 INtroduction.........cceceeieieiienieieiieeieee e 156

8.2 Usability Evaluation of the MGE...........ccccooevvrrvenennne. 157
8.2.1 Experimental Setting..........ccccocevveruevieenieneneneeiincnnens 157

8.2.2 ReESUILS.c.couiriiriiiiiiiciceecc e 162

8.3 Evaluation of the Grammar Inference Algorithm 164
8.3.1 Evaluation mMetriCs........ccceeereruenieieieenenienieneeeeeiennene 165

8.3.2 Experimental Setting..........ccocvevverierierieneniienieeiesienenns 167

8.3.3 Evaluation Results.........ccoceririniiiieiieiierieeececeee 169
Chapter 9 Conclusion and Future Work 172
9.1 Summary of the Thesis........cceevvrrerrerienieeeeee 172

0.2 ContribUtIONS.cevuieiieiieiieriiesieeeee e 173

0.3 Future Workcocoviiniiiiiiiiieeieeeee e 175
Appendices 177
Usability Evaluation 179
Instructions for Using Yellow Editor.........ccccceveveninenene 179
Instructions for Using Red Editor........c.ccccovevininincncnene. 180
The training set of multimodal sentences............ccccceevuenee. 182
Evaluation Questionnaire............ccccocevevererereenienienenennenne 185
Bibliography 188

List of Tables

Table 2.1: Characteristics of a multimodal interaction and relative

LT TSR 12
Table 3.1: Advantages and drawbacks of multimodal fusion
SETALEZICS. e enveeuteeiieeite ettt ettt ettt 38
Table 3.2: Advantages and shortcomings of multimodal grammar
FOrMAliSMS......coveveiieiiicicicc e 49
Table 4.1: Advantages and shortcomings of CFG grammar
inference algorithms...........ccocveviieciincienieceeeee e 71
Table 5.1: Linear sentences for the examplecccceeevvriennnnen. 85
Table 5.2: CYK matrix for the examplecccevevervenvenrennns 104
Table 5.3: Calculating the GDL.........cccoocieiieiiieeeeeeeeee 112
Table 5.4: The effect of the Merge operator............cccceveenereneenne 114
Table 5.5: The effect of the Create operator............ccccevvenereneenne 115
Table 8.1: The multimodal sentences for the experiments 159
Table 8.2: The multimodal attribute grammar for the experiments
... 161
Table 8.3: The questionnaire for the usability evaluation............ 162
Table 8.4: Training and test sentences for the experiments......... 168
Table 8.5: The multimodal attribute grammar inferred by the
AlGOTItRIM ..o 169
Table 8.6: test sentences generated from the inferred grammar for
the eXPEeriment.........ccevuieriieiieieere sttt 170

Xiv

List of Figures

Figure 2.1: The multimodal human-computer communication
PTOCESS cenevieeiiieeiieeeieeeteeetreetteestreetreesseeensreessseensseesnseennseens 10

Figure 2.2: A common architecture of a multimodal system 15

Figure 3.1: Possible levels of multimodal data fusion: a) fusion at
signal level; b) fusion at recognition level; c) fusion at

deciSion 1eVel....c..ooiviriiiiiiiiicce e 25
Figure 3.2: The output path of the MS-MIN of Vo [V09S] 27
Figure 3.3: The multimodal integration approach of Pavlovic et al.

[PBHOT ettt 28

Figure 3.4: An example of typed feature structures unification.... 30
Figure 3.5: An example of representation of a spoken word by

typed feature StrUCtUIEcccvieveeierieiieie et 31
Figure 3.6: The structure of a melting pot [NiC95].......cccvevennen. 32
Figure 3.7: The structure of the semantic frame of Russ et al.

[RSHOS] ..ottt 34
Figure 3.8: A finite-state transducer in the approach of Johnston et

al. [JOBOO] ..o 35
Figure 3.9: An example of dialogue move in the approach of Perez

et al. [PAMOS] .. 37
Figure 3.10: An example of MUG functional description............. 46
Figure 4.1: The top-level procedure of Synapsecccceeeeueenee. 59
Figure 4.2: The procedure of the extended inductive CYK

AlGOTTtRIML. ..ot 60
Figure 4.3: The simple tree product for the positive strings 'b' and

D e 63
Figure 4.4: Construction of the derivational version space for the

fourth tree SEqUENCE.......covevvieiieieeie ettt 64
Figure 4.5: Construction of the derivational version space for the

15321111 0] (TSR 66
Figure 4.6: The e-GRIDS algorithm..........cccoccevvvriiniiiieieeee 68

XV

Figure 4.7: The initial grammar for the e-GRIDS algorithm......... 69
Figure 4.8 The grammar after the “merge” step of the e-GRIDS

AlOTTtRIM ..o 70
Figure 4.9: The final grammar produced by the e-GRIDS algorithm
... 70
Figure 5.1: The input element representationc.cceeveeveennenne. 79
Figure 5.2: The set of attributes of input elements 80
Figure 5.3: Penn treebank syntactic categories.........coovverveerveennenne. 81

Figure 5.4: The input element representation for the example 83
Figure 5.5: Cooperative relations of input elements in the example

Figure 5.6: Syntactic proximity of input elements in the example 87
Figure 5.7: Information flow in the attribute grammar notation.... 90
Figure 5.8: The derivational tree of the sentence in Example 4.1..96
Figure 5.9: Workflow of the proposed grammar inference algorithm

... 97
Figure 5.10: First step of the revised CYK algorithm.................. 100
Figure 5.11: Second step of the revised CYK algorithm............. 101
Figure 5.12: Grammar updating Stepeccvevvereervrercvereenreennns 108
Figure 5.13: Calculating the DDLcccoooievienieiecieeieeee 113
Figure 6.1: Architecture of the M2LP framework 119
Figure 6.2: Architecture of the Multimodal Grammar Editor...... 121
Figure 6.3: Sequence diagram of the MGEcoccoveninnn. 130
Figure 7.1: General diagram of packagescccecceveevvenrenne 134
Figure 7.2: Class diagram of the MUI packageccccoeeueneeee. 135
Figure 7.3: Class hierarchy for the MAGccccooeviiininienne. 135
Figure 7.4: Class diagram of the MultimodalAttributeGrammar

PACKAZE ..ottt 136

Figure 7.5: Class diagram of the MultimodalSentence package .. 137
Figure 7.6: Class diagram of the GrammarInference package138

Figure 7.7: A code excerpt from the method Tagging() 139
Figure 7.8: A code excerpt from the method
upgradeGrammar(Grammar g, Sentence s)....................... 140

Figure 7.9: A code excerpt from the method
createMatrixCYK (matrixCYK, sentenceElements,
SENIENCELONGLN)cc.oovueiiiiiiiiiiieeeeeeeee e 141
Figure 7.10: A code excerpt from the method
getCandidateDerivation(j,i,k)ccccoeevervenceenvenncnnnnne. 142

Xvil

Figure 7.11: A code excerpt from the method
addProductions(HashMap candidateProd, String prodldx)
... 143

Figure 7.12: The graphical user interface of the grammar editor 144

Figure 7.13: The dialog box for inserting the new grammar name

... 145
Figure 7.14: The panel for modality selection in the graphical user
interface of the grammar editorcccceceeeeveevienincnennene 146
Figure 7.15: The panel for multimodal sentence acquisition in the
graphical user interface of the grammar editor.................. 147
Figure 7.16: The window for visualizing the unimodal input
recognized by the specific recognizerscceeeeveeeeenee. 149
Figure 7.17: Multimodal sentence acquisitioncccceeuenee. 150
Figure 7.18: Recognized unimodal inputs...........cccceceerierereenene 151
Figure 7.19: Interface for the definition of syntactic roles of
INSEItEd INPULvvieviiieiieie et sre e 152

Figure 7.20: Interface for the definition of modality cooperation 153
Figure 7.21: Visualization of the generated production rules for the
331111 o) [T 154
Figure 8.1: Interface of the yellow editor..........cccceceeeeiincnennene 160
Figure 8.2: Responses to the evaluation questionnaire................ 163

Chapter 1

Introduction

Human communication is naturally multimodal. People normally
interact through several communication channels, such as gesture,
drawing, handwriting, facial expressions, gaze in combination with
speech or speech only, which is the prevalent modality. This
synergistic use of multiple interaction channels makes human
communication flexible, natural and robust. In the last years several
efforts have been made to endow computer interface with similar
flexibility, naturalness and robustness.

These efforts are producing an evolution of traditional
Graphical User Interfaces (GUI) into multimodal interfaces
incorporating human modalities, such as gesture, written or spoken
language, as well as gaze and facial expressions into the computer
system. Consequently, in the field of Human-Computer Interaction
(HCI), that is a discipline “concerned with the design, evaluation
and implementation of interactive computing systems for human
use and with the study of major phenomena surrounding them
[Hew92]”, an increasing importance has been gained by the study
of multimodal interaction, that refers to the “interaction with the
virtual and physical environment through natural modes of
communication” [Bou03].

Three of the main advantages of multimodal interfaces,
compared to traditional GUI, consist in making human-computer
communication more intuitive, natural and efficient, enabling a
broader spectrum of users with different ages, skill levels and
abilities to access technological devices, and increasing the level of
freedom offered to users. These advantages are also demonstrated

1

2 Chapter 1. Introduction

by many research studies [ODK97] [OC00] [OCWO00] that
emphasize the enhancement of multimodal interface in terms of
usability, accessibility, flexibility and efficiency, compared to
unimodal ones. In particular, a multimodal interaction is
intrinsically natural because of the naturalness of human
communication; it improves usability because it provides users with
the means to choose among different available modalities, as s/he
prefers. Moreover, multimodality improves accessibility to the
device by encompassing a broader spectrum of users. Finally, it
offers improved flexibility and interaction efficiency.

Several aspects characterize multimodal interaction compared
to usual interaction through GUIs. Firstly, a GUI requires atomic
and unambiguous inputs (such as the selection of an element by
mouse or the input of a character by keyboard), whereas a
multimodal interaction involves several simultaneous inputs that
have to be recognized and opportunely combined by managing the
uncertainty of inputs through probabilistic techniques. The process
of integrating information coming from various input modalities
and combining them into a complete command is called multimodal
fusion. Secondly, temporal constraints of inputs have to be taken
into account in a multimodal interaction process; consequently it
requires to define a time-sensitive architecture and to record time
intervals of each modality. Finally, in a GUI the output messages
are conveyed only visually, whereas in a multimodal system a way
of arranging outputs through the various channels has to be found
in order to provide the user with consistent feedback. This process
is called multimodal fission, in contrast with multimodal fusion.

Consequently, in the design and development of a multimodal
system the two main challenges to face are the multimodal fusion
and fission processes. My specific concern in this thesis is with the
fusion of multiple input modalities.

In the literature, two different approaches to the fusion process
have been proposed. The first one, which will be referred as
grammar-based approach, combines the multimodal inputs at
grammar level. This means that the different unimodal inputs are
considered as a unique multimodal input by using the multimodal
grammar specification. Subsequently, the dialogue parser applies
the grammar rules to interpret the multimodal sentence. The second
strategy, which is referred to as dialogue-based approach, combines

Chapter 1. Introduction 3

the multimodal inputs at dialogue level. This means that the
different unimodal inputs are distinctly interpreted and then they
are combined by the dialogue management system.

A comparison of these two approaches [MPA06] showed that
the grammar-based paradigm is the most natural one as it is more
coherent with the human-human communication paradigm in which
the dialogue is seen as a unique and multimodal communication
act. Moreover, this approach allows an easier inter-modality
disambiguation. However, the use of a grammar implies a higher
computational complexity for generating the rule sets of the
grammar as well as a highly expert user that is skilled in
computational linguistics for writing the grammar.

As the benefits of the grammar-based paradigm meet the
requirements of naturalness and flexibility for an efficient
multimodal interaction, the problem to face is to overcome the
deficiencies of this paradigm that preclude its use in multimodal
language definition.

This thesis intends to provide a solution to this problem.
Specifically, for dealing with the complexity of grammar definition
it is proposed the adoption of a “by example” paradigm, which
allows the end user to provide concrete examples of multimodal
sentences that have to be recognized, and the system automatically
generates the grammar rules to parse those examples. In such a way
no skilled grammar writers are needed, but even non-expert users
can define multimodal grammars. Moreover, to overcome the issue
of the high computational complexity of the grammar-based
paradigm, an efficient grammatical inference algorithm has been
applied that allows to generate the grammar rules starting from the
acceptable multimodal sentences (positive sample) in polynomial
time.

Therefore, actually, the objective of this thesis concerns the
development of an innovative multimodal languages editor that,
unlike task-specific multimodal grammars, allows to define
complex multimodal expressions, integrating whatever input
modalities and maintaining at the same time a low computational
complexity.

Specifically, the editor relies on a multimodal grammar, the
Multimodal Attribute Grammar, which is an extension of attribute
grammars for multimodal input processing [Knu68]. The choice of

4 Chapter 1. Introduction

this kind of grammar has been led by the capability to manage
whatever modalities and to represent temporal constraints into the
grammar rules.

To generate the grammar, a computationally efficient
algorithm for grammatical inference, which extends the inductive
CYK algorithm proposed by Cocke-Younger-Kasami [Kas65] to
multimodal sentences, has been developed. This algorithm has been
a valuable starting point as enabled to learn the multimodal
grammar from positive sample strings in polynomial time.

The activity to attain this result started from modeling
multimodal inputs, as they will compose the alphabet of terminal
elements of the grammar. After a careful comparative analysis of
existing grammars for natural language, the attribute grammar has
been chosen due to its capability to represent multiple modalities
and temporal constraints and consequently an original evolution of
this grammar adapted to define multimodal sentences has been
proposed. The analysis of the grammatical inference methods
existing in literature has resulted in the choice of the inductive
CYK algorithm for its acceptable computational time, and its
extension for the inductive inference of the defined multimodal
grammar has been proposed. Finally, the multimodal language
editor has been designed, implemented and validated in its
applicability through several experiments.

At the end of these activities, the main contributions of this thesis
are twofold:

- a grammatical framework for multimodal language
definition that is general enough to be applicable for
whatever modalities and in whichever domains,

- an efficient incremental learning algorithm that, following
an approach “by example”, allows to generate the
production rules of the defined grammar starting from the
acceptable multimodal sentences (positive sample).

The remainder of this dissertation presents the results of my
research according to the following structure.

Chapter 2 gives an introduction to multimodal human-
computer interaction, giving some preliminary definitions that will
be used during this dissertation and focusing on conceptual and

Chapter 1. Introduction 5

architectural aspects of multimodal interaction systems. The
chapter also discusses the main kinds of modalities that can convey
information from a human user to a computational machine, and
the advantages of multimodal interfaces in terms of accessibility,
robustness, stability and expressive power.

Chapter 3 presents an overview of research related to
multimodal fusion strategies, classifying them according to the data
fusion level (e.g. the fusion process takes place at recognition,
decision or in both levels). The chapter also provides a critical
survey of the literature on multimodal grammars approaches, as the
multimodal language processor described in this thesis uses this
kind of approach.

Chapter 4 surveys current literature on methodologies for
inferring context-free grammars from sample sentences. After
introducing some preliminary definitions and notations concerning
learning and inductive inference, the attention will be focused on
the existing models of learning. The last section of the chapter will
explore the state of the art concerning the algorithms for learning
context-free languages and grammars.

Chapter 5 describes the theoretical foundations at the base of
the proposed multimodal grammar editor. The aim is to allow an
easy multimodal grammar specification, overcoming the difficulties
arising from the textual description of the grammar production
rules (that require the skill of computer programmers and linguistic
experts together) and proposing a “by example” approach in order
to define a multimodal grammar in a very intuitive way.

Chapter 6 details the design process that has been followed to
develop the Multimodal Grammar Editor (MGE). This editor
constitutes one of the many system components needed in the
construction of the Multimodal Language Processing (M2LP)
framework. Even in its general validity, the design description of
the Multimodal Grammar Editor has been carried out using outputs
of the unimodal recognizers for speech, gesture, handwriting and
sketch, and involving concepts implied by multimodal inputs.

Chapter 7 presents the implementation process that has been
followed to develop the Multimodal Grammar Editor. For
explaining the software classes implemented in the prototype, the
class diagrams of the main packages are presented following the
standard Unified Modeling Language (UML) notation. The editor

6 Chapter 1. Introduction

is implemented using the Java language due to its portability in
order to maximize the system independence and to make possible
to deploy it on the World Wide Web.

Chapter 8 offers some validation of the Multimodal Grammar
Editor (MGE), whose theoretical foundations, design and
implementation are described in previous chapters. The goals of the
validation are mainly twofold. First of all, the workability and
usability of the MGE has been assessed for understanding how well
it works in practice. Secondly, the evaluation of the grammar
inference algorithm has been performed for measuring the
correctness of the induced grammar.

Chapter 9 summarizes the contributions of the research of this
thesis and outlines some directions for future work.

Chapter 2

Multimodal Interaction

This chapter presents an introduction to multimodal human-
computer interaction. The first four sections give an overview of
the multimodal interaction process, giving some preliminary
definitions that will be used during this dissertation and focusing on
conceptual and architectural aspects of multimodal interaction
systems. The next section discusses the main kinds of modalities
that can convey information from a human user to a computational
machine. The last section describes the advantages of multimodal
interfaces in terms of accessibility, robustness, stability and
expressive power.

2.1 Introduction

The use of the five senses of touch, hearing, sight, smell and taste
allows human beings to perceive the external world. A combination
of these senses is also used, in all situations of the everyday life,
during natural human-human communication. Therefore,
communication between human beings is multimodal in nature.

In the last few years this multimodal paradigm has been
extensively applied in computer interfaces with the aim of making
computer behaviour closer to human communication paradigm.
Multimodal human-computer interaction refers to the “interaction
with the virtual and physical environment through natural modes of
communication” [Bou03]. Multimodal interaction provides the user
with a way to interface with a system in both input and output,

8 Chapter 2. Multimodal Interaction

enabling users to communicate more freely and naturally with
automated systems [StS05].

Specifically, in a multimodal system the user communicates
with the computer through the simultaneous or alternative use of
input/output channels at a time. Such a kind of systems offers a
more flexible, efficient and usable environment allowing the user to
interact through input modalities, such as speech, handwriting,
hand gesture and gaze, and to receive information by the system
through output modalities, such as speech synthesis and smart
graphics and others modalities, opportunely combined.

Multimodal systems have been largely studied since the 1980s
when the first original system “put-that-there” was developed by
Bolt [Bol80]. This system used speech and a cursor to point on a
touchpad display the location to allow a simple deictic reference, as
for example “create a blue square here”. Note that a deictic is a
word (e.g., “this”, “that”, “here”, “there”, etc.) that specifies
identity or spatial or temporal location from the perspective of a
speaker in the context in which the communication occurs. Deictic
expressions are commonly used in multimodal interaction.

As well as the “put-that-there” system, several attempts to
overcome common graphical user interface have been made since
the 1990s until now [NeS91] [NiC95] [CIM97] [V098] [WRBO1].
CUBRICON [NeS91] used typed and spoken sentences and deictic
mouse clicks as input in order to interact with a two-dimensional
map. MATIS (Multimodal Airline Travel Information System)
[NiC95] allows the user to ask for information about the
departure/arrival time of air flights by using speech and pen-based
gesture modalities, along with mouse clicks and keyboarding.
QuickSet [CIM97] was developed with the aim of training
Californian military troops and used speech and pen-based gestures
to interact with a geo-referenced map. QuickTour [Vo98] is a
multimodal system that enables a spoken and pen-based interaction
to navigate geographical maps. The Smartkom [WRBO01] is another
multimodal dialogue system that merges gesture, speech and facial
expressions for both input and output via an anthropomorphic and
affective user interface.

In the next sections an overview of multimodal interaction is
given, starting from illustrating some of the main characteristics of
multimodal human-computer communication process. Then, a brief

Chapter 2. Multimodal Interaction 9

description of conceptual features of multimodal interaction and
architectural aspects of a multimodal system is presented. Finally,
the main interaction modalities used in multimodal systems are
introduced and the main advantages of multimodal interaction are
discussed.

2.2 The Multimodal Human-Computer
Communication Process

The success of the human-computer communication depends on the
possibility of sharing a common ground by exchanging information
through the communication modalities. Such a communication
modality refers to the medium or channel of communication that
conveys information [CoC91]. Multimodality refers to the quality
of a system to allow more than one communication modality to be
used during human-computer interaction.

A general model of multimodal human-computer
communication is shown in Figure 2.1. Four different kinds of
input/output communication modalities can be identified, according
to the study of Schomaker et al. [SNC95]:

- the human output modalities, that are devoted to control and
manipulate computational systems by achieving a high level
of interactivity and naturalness of the multimodal interface.
The speech is the dominant modality that carries most of the
informational content of a multimodal dialogue. However,
gesture and gaze modalities are extensively studied in
literature as efficient input modalities that are better suited to
represent spatio-temporal information and are usually
complementary (that is, their information need to be merged
in order to be complete and meaningful) modalities of the
speech input;

- the human input channels, that are devoted to perceive and
acquire information coming from the feedback channels of
computational systems. The most frequently used perception
channels are eyes, ears and touch, among which the first is
the dominant input modality that receives the most
information flow, followed by the auditive and tactile
channels;

10 Chapter 2. Multimodal Interaction

- the computer input modalities, through which the computer
gets information from the human output modalities. Some
examples of devices for computer input modalities are
microphone, camera, keyboard, mouse Once acquired, the
inputs need to be brought together and interpreted in order to
give a coherent meaning to the multimodal act of the user;

- the computer output channels, that are devoted to give a
feedback to the user, as, for instance, display, loudspeakers,
haptic feedback and so on.

Gesture Microphone
Speech Catnera
Gaze Keyboard
_' Human Cutput Modalities 5‘ Computer Input Modalities
CONTROL E ACOQIRSTTION
=
PERCEPTION B | FEEDBACE GENERATIONS,
-+ - ot
Human Input Channels a Computer Cutput Channels
=
Eves 2 Display
Fars Loudspealkeers
Touch Haptic feedback

Figure 2.1: The multimodal human-computer communication
process

In order to allow that the multimodal human-computer
communication process takes place successfully, the actions that
the user expresses through the human output modalities have to be
acquired by the system through the computer input modalities, and
the human input channels of the user have to be able to perceive
and understand feedback from the computer output channels.

The informational flow that involves the human output and the
computer input modalities is named input flow, whereas the flow
that involves the human input and computer output channels is
named feedback flow. The multimodal fusion, that refers to the
process of integrating information from various input modalities
and combining them into a complete command, takes place during
the input flow, while the multimodal fission, which refers to the

Chapter 2. Multimodal Interaction 11

process of disaggregating information through the various
computer output channels, takes place during the feedback flow.
Concerning the human output modalities, six different types of
cooperation between these modalities can be identified, as
described in the typology proposed by Martin et al. [MGAO1]:

- Equivalence: several modalities cooperate by equivalence if
the same information may be processed as an alternative
by either of them;

- Specialization: modalities cooperate by specialization if a
specific kind of information is always processed by the
same modality;

- Redundancy: modalities cooperate by redundancy if the
same information is processed by these modalities;

- Complementarity: several modalities cooperate by
complementarity if different information are processed by
each modality but have to be merged;

- Transfer: modalities cooperate by transfer if information
produced by a modality is used by another modality;

- Concurrency: several modalities cooperate by concurrency if
different information are processed by several modalities
at the same time but must not be merged.

In multimodal systems, fusion techniques are mostly applied to
complementary and redundant modalities in order to integrate the
information provided by them. In particular, complementary
modalities provide the system with non-redundant information that
have to be merged in order to get a complete and meaningful
message. In the same way, redundant modalities require a fusion
process that avoids non-meaningful information, increasing, at the
same time, the accuracy of the fused message by using one
modality to disambiguate information in the other ones.

12

Chapter 2. Multimodal Interaction

2.3 Conceptual Features of Multimodal
Interaction

Characteristics of multimodal interaction relevant to computational
modeling of user interfaces and interaction languages include:

Multiple modes: the modalities through which user and
system can exchange information are manifold, and
include speech, gesture, eye tracking, keyboarding, etc. An
interaction modality can be defined [BNB04] as a couple
<d, L>, in which d is the physical device and L is the
interaction language. Each modality provides a specific
piece of information and taken together, they enable the
command to be interpreted. Modalities can be classified as
active or passive. The former is used when the user must
explicitly perform an action with a device to specify a
command. The latter is used when an explicit user action is
not necessary to specify a command. The information
specified by different modalities may be redundant.

Temporal constraints: in a multimodal dialogue there is
not a clear, definite instant in which the user finishes
formulating the command.

In defining multimodal interaction languages, the input and output
modes, temporal constraints and their related issues must be taken
into account, as shown in Table 2.1.

Table 2.1: Characteristics of a multimodal interaction and relative

Issues

issues
Characteristics
Multiple modes
T Temporal consiraink
Inpntt rodes Chitpt modes
. Integrated . decomposition of - gradual Irmproverent in
interpretation of | different outpats | interpretation
different mputs (fesion | (flssion process)
Process)
synchr onization of spnchromization of input

inprt modes mndes

Chapter 2. Multimodal Interaction 13

To better understand the difficulties in formalizing languages
for a multimodal environment, an explanation of these issues is
given below.

— Integrated interpretation of different inputs (fusion process).
As a multimodal dialog involves the simultancous use of
multiple modalities, the user’s input/commands must be
interpreted through a fusion process. This integrates
information from various input modalities by removing
redundant or complementary information across the
modalities and combining them into a complete command.

— Synchronization of input modes. Timing is essential in
conveying information during a multimodal interaction, so a
tight synchrony among the various communicative
modalities is required. This means that user inputs must be
synchronized to deliver the correct information at the right
time.

— Decomposition of different outputs (fission process). The
system has to find ways to integrate output through the
various channels in order to provide the user with consistent
feedback. This process is called fission, in contrast with
multimodal fusion.

— Gradual improvement in interpretation. The system must
interpret the input while the interaction is ongoing and refine
the interpretation when a new multimodal action is
performed by the user.

Many works have focused on the development of a multimodal
dialogue system that considers all the interaction features and
issues described above. Gupta [Gup03] outlines a method to collect
input information supplied in different modalities, to determine
when the user has finished providing input, to fuse the collected
information to create a joint interpretation using an unification
algorithm, and to send the joint interpretation to a dialogue
manager that can perform reasoning. This method also considers
temporal relationships between the modalities used during the
interaction. Another comprehensive exploratory analysis of
multimodal integration and synchronization patterns during pen-

14 Chapter 2. Multimodal Interaction

voice human-computer interaction is conducted by Oviatt et al.
[ODK97].

2.4 Architectural Features of Multimodal Systems

Having looked at conceptual aspects of multimodal
communication, some remarks about the architectural features of a
multimodal system are given in this section.

A common architecture of a multimodal system [Ovi02], that
involves speech, sketch and handwriting modalities, is depicted in
Figure 2.2. During the acquisition phase, the input that the user
expresses through these human output modalities is acquired
through the appropriate computer input channels (touch-pad for
sketch and handwriting, and microphone for speech) and processed
by the related recognition modules (sketch and handwriting
recognition and Natural Language Processing (NLP), respectively)
in the subsequent recognition phase. Afterwards, the multimodal
fusion system carries out the integration of the recognized inputs,
by removing possible redundancy, merging complementary
information from each modality and synchronizing the information
in order to produce a meaningful and correct input. At this point,
the dialogue management system aims at processing the integrated
multimodal message/command by activating appropriate
applications and service in order to retrieve the output to be
returned to the user (decision phase).

The mapping between the input message expressed by the user
and the corresponding output returned by the system is defined
input interpretation. Thus the interpretation process involves,
generally, four phases, corresponding to the main architectural
levels of a multimodal system, from the top to the bottom (see
Figure 2.2): the acquisition, recognition, integration and decision
phases (levels). Although the acquisition, recognition and decision
are consecutive phases, the same does not occur for the integration
phase (where the fusion process takes place), because in some
systems the integration phase is prior to the recognition or decision
phases, whereas in other systems it is just the opposite.

Chapter 2. Multimodal Interaction 15

Sketch Handwriting Speech g
£
+ + + =
| touchpad | | microphone | =
[[[
! { ; =
Sketch Handwriting A 2
recoghition recogition B E;E;gmg %
[}
=
\\\\‘ 1 / §
| IWltiradal fusion system | 4
Y §
L4 g
| Dialogue Management system | %:
[}
Tl i b B
e

K ¥

App 1 App 2 Appn

Figure 2.2: A common architecture of a multimodal system

2.5 Human-Computer Interaction Modalities

In this section the human output modalities will be illustrated
starting from the speech, which is the prevalent modality that
carries most of the informational content of a multimodal dialogue
and concluding with gesture, drawing and other less conventional
modalities.

25.1 Speech

There is no doubt that speech is the most spontaneous modality
through which a user can communicate with computational
machines. Therefore, speech recognition is of primary importance
for the development of multimodal systems.

Speech recognition consists in translating from a data stream
into a sequence of meaningful words that need to be interpreted by
the recognizer. Although in the last few years several efforts have
been made and impressive achievements have been carried out, the

16 Chapter 2. Multimodal Interaction

issue of automatic speech recognition is not at all solved. The
difficulties to correctly recognize input data are mainly due to:

— the use of a spontaneous language: speech input may contain
any noise, hesitation and other prosodic behaviors as well as
meaningful information. These phenomena characterize a
speaker that talks spontancously. As a multimodal system
relies on a flexible, natural and spontaneous interaction, it is
necessary to consider these phenomena during speech
recognition.

— the number of words in the vocabulary: more is the amount of
words in the vocabulary used by the recognizer, more is the
accuracy of the recognizer. At the same time, however, the
probability of an incorrectly recognition for a word increases
and the processing time gets longer.

— speaker-dependency: the automatic speech recognition has to
be independent from the speaker as more as possible.
However, a speaker-dependent recognizer is more efficient
than a speaker-independent one.

— environmental factors: noise due to the environment around the
speaker and the overlapping of simultaneous dialogues can
make the performance of recognition worse.

Generally, speech recognition follows a grammar-based
approach, which is able to define a set of acceptable sentences.
Speech recognition systems that are based on grammar (both
regular and context-free) provide the best performance in terms of
simplicity and efficiency.

2.5.2 Handwriting and Gesture

Handwriting can be classified as a pen-based input modality as,
generally, the user interacts through the use of a pen on a touch-
sensitive screen. Similarly, a particular kind of two-dimensional
gesture, named pointing gesture, makes use of the finger, instead of
a pen, for indicating an object on the screen.

Handwriting and pointing gesture recognition has been
extensively studied in literature.

Chapter 2. Multimodal Interaction 17

Concerning handwriting [TSW90], two different approaches to
input processing exist: off-line, in which the handwritten words are
captured by a static picture, and on-line, in which the system
dynamically acquires the strokes, where a stroke is a pen down, pen
movement, pen up sequence on a touch-sensitive screen. The
difficulties in handwriting recognition are similar to those in
automatic speech recognition: the presence of noise, the size of
vocabulary, the writer-dependency. Other difficulties may arise
from:

— character ambiguity: some characters are similar and
consequently they may be not correctly recognized, as for
example the number zero and a capital ‘O’. In this case the
context is very useful for resolving the ambiguity.

— the kind of alphabet: the Italian alphabet is composed of
twenty-one characters, each one can be generally represented
by one or two strokes. Chinese alphabet is composed of 50,000
characters; each one is represented by eight/ten strokes on the
average.

— spacing of characters: in the Italian italic text there is no space
among the characters. On the contrary, in a Chinese written
text characters of the same word are spaced.

Pen-based gesture recognition is quite similar to handwriting,
except for the arbitrariness of the alphabet. According to the
taxonomy of gesture modalities define by Blattner et al. [BIM95],
three different categories of gesture can be used in a multimodal
interface:

— Arbitrary gesture: these gestures can be interpreted without a
preliminary training of the system. Generally, they are called
non-transparent gestures because are not immediately derived.

— Mimetic gesture: this kind of gestures can be interpreted by the
system at a glance, as for example the iconic gesture. For this
reason they are named also transparent gesture.

— Deictic (or pointing) gesture: this kind of gesture is used only
with reference to the situation in which it is expressed. The
following three kinds of deictic gestures exist:

18 Chapter 2. Multimodal Interaction

= Specific, if they refer to a precise object;
= Generic, if they refer to the whole class of objects;

= Mimetic, when the reference is followed by an
additional movement.

2.5.3 Other Modalities

In the literature several other less conventional modalities have
been explored besides speech and pen-based gestures. A brief
overview of to this kind of modalities is given below.

Lip-reading is a method used for increasing the efficiency of
speech recognition algorithms. In fact, the analysis of lip movement
allows to synchronize the visual information source with the audio
stream and permits to easily distinguish acoustically confusable
speech words.

Another modality used in multimodal systems is three-
dimensional gesture, which is more complete than two-dimensional
ones, even if more complex to process. In 2D gesture a digital pen
is used, while 3D gesture are captured using a glove, a camera, or
some kinds of sensors.

Eye movement is another useful source of information that
allows to identify what is the referred object while a user is
performing a task.

2.6 Advantages and Critical Elements of
Multimodal Interaction

Although multimodal applications are considerably more complex
than traditional unimodal ones, they are characterized by several
advantages that will be shown in this section. The use of
multimodality has benefits for the user in terms of naturalness of
interaction, accessibility and expressive power. A critical element,
even for a well-designed multimodal system is its robustness and

stability.

2.6.1 Naturalness and Accessibility

Humans in the everyday life use their body and five senses to
communicate each other; for this reason imitating face to face

Chapter 2. Multimodal Interaction 19

interaction between humans involving all senses makes the
interaction process very natural and intuitive. For this reason
multimodal interfaces, if correctly designed, appear to be
intrinsically natural. Naturalness improves the easy use of
interfaces and, consequently, the accessibility to information,
services and more generally to resources.

The term accessibility refers to the ability of a device, service
or resource of being easily accessible by a large number of different
users in various contexts. The accessibility is one of the most
relevant features of a multimodal system. Since each person can
have her/his own preferences and communication ability,
multimodal interfaces join user needs by allowing users of
whichever age, intellectual ability, skill, physical or sensorial
disability, language, etc., to access the computational systems.

Therefore, a multimodal system that has to be flexible must
allow not only to combine data coming from different sources, but
also to let the user to choose the preferred interaction way
according to his/her task and context.

Research studies [CBB94] [CoO91] have proved that users
prefer spoken language for describing objects or situations, while
generally they use pen-based modalities for communicating
numbers or graphic topics and for pointing and highlighting.

Moreover, multimodal systems that enable speech, pen-based
gesture and handwriting ease the exploration of new hardware and
software technologies, mainly in mobile field.

2.6.2 Robustness and Stability

Robustness is one of the features of a computational system,
concerning the suitable management of unexpected situations, such
as errors or wrong uses. It is a critical aspect in particular for
complex systems such as a multimodal one. Indeed, due to the
complexity of the interaction process the multimodal interface
design could improve the criticism of the communication process
or, on the contrary a good design could produce a major aptitude
for handling errors than unimodal one. In fact, it could allow to:

— select the input modality that is less error prone in a given
context, by avoiding, in such a way, to introduce possible
mistakes;

20 Chapter 2. Multimodal Interaction

— use several modalities by reducing complexity of natural
language processing and consequently errors due to the
recognition process;

— change from a modality to another one, making easier to
correct possible errors due to the interpretation process.

Moreover, a multimodal interface that is correctly designed
enables a mutual disambiguation of input modalities. Semantic
information coming from each modality may be used as (partial)
support for clarifying the semantic meaning of the other modalities.
Therefore, this mutual disambiguation property makes a
multimodal interface more robust.

2.6.3 Expressive Power and Efficiency

Computational systems that interpret inputs from different
modalities aim at achieving a powerful interface able to acquire and
manage these inputs. Interfaces that rely only on keyboard and
mouse modalities, like traditional computational systems, are
inadequate for interacting with mobile devices and last-generation
technologies. Moreover, multimodal interaction allows users with
temporary disabilities (i.e. people that are not able to express an
input through a specific modality for a limited time) to use the
system. For instance, when the user is driving he/she can interact
with mobile devices through the keyboard, but he/she could use
speech input.

As speech and pen-based modalities are the prevalent
communication channels used in face-to-face interaction, they
represent an easy and useful way to express objects’ descriptions,
constraints, and spatial relationships to a multimodal system. For
instance, a user could mark an area on a map by drawing a circle
and, at the same time, express the name of an element related to the
area by voice. Whether the user had to express the same
information by one modality only, for instance by voice, he/she
would have more difficulties. Moreover, the user is free to
distribute various parts of the message to different modalities to
ease (complex) communication and to reduce cognitive loading
[Ovi04]. For these reasons, the use of a multimodal interface

Chapter 2. Multimodal Interaction 21

increases the efficiency and offers expressive power to the
language at user’s disposal.

Chapter 3

Multimodal Fusion and Grammars

In this chapter an overview of research related to multimodal fusion
strategies is presented. The first part analyses the existing
approaches to multimodal fusion, classifying them according to the
data fusion level (e.g. the fusion process takes place at recognition,
decision or in both levels). The last section focuses on the
grammar-based fusion approach providing a critical survey of the
literature on multimodal grammars approaches, as the multimodal
language processor described in this thesis uses this kind of
approach.

3.1 Introduction

The integration of multiple interaction modalities in multimodal
systems is a fundamental process that has been largely studied in
the literature giving rise to a wide variety of multimodal fusion
approaches.

Analyzing the human-human communication process, it
becomes obvious that the interaction between multiple modalities
can occur at different levels of their production. For instance,
considering speech and pointing gestures, information conveyed by
these two modalities are not only referred to the same mental
concept of the speaker but they are also generated by the same
lower level mental process of the speaker, as suggested by some
studies on human communicative behavior [LeM92]. Analogously,
considering the perspective of sensor data fusion, different levels of

22

Chapter 3. Multimodal Fusion and Grammars 23

data integration can be identified. Consequently, the integration of
multimodal features at different levels of analysis becomes obvious
also in multimodal systems. In Section 3.2 a survey of existing
multimodal fusion approaches, classified according to the level at
which the fusion takes place, is presented.

This dissertation follows the approach that integrates multiple
input modes with the use of a multimodal grammar. This choice is
due to the ability of the grammar-based paradigm to meet the
requirements of naturalness and flexibility needed for achieving an
efficient multimodal interaction. In contrast to the multimodal
grammars existing in the literature, of which a brief description is
provided in Section 3.3, the grammatical approach proposed in this
thesis relies on an attribute grammar that is able to handle an
arbitrary number of modalities as well as temporal information into
the grammar, and provides explicit constructions for modeling
semantic aspects of the language. Moreover, a “by example”
paradigm has been followed, which allows the end user to provide
concrete examples of multimodal sentences that have to be
recognized, and the system automatically generates the grammar
rules to parse those examples. All these choices are justified in the
discussion, provided in Section 3.3.6.

3.2 Data Fusion Levels in Multimodal Fusion

The input signals, expressed by the user through the human output
modalities and acquired by the system through the computer input
modalities, can be combined at several different levels [SPH98]. As
introduced in the previous chapter (see Section 2.4), a multimodal
system is composed of four main architectural levels (acquisition,
recognition, integration and decision). The integration level, in
which the fusion of the input signals is performed, may be placed:
(i) immediately after the acquisition level and we refer to the fusion
at acquisition, or signal, level; (ii) immediately after the recognition
level and in this case we refer to the fusion at recognition, or
feature, level; (iii) during the decision level and we refer to the
fusion at decision, or conceptual, level.

The fusion at acquisition level (see Figure 3.1.a) generally
consists in mixing two or more, electrical signals. As this kind of
fusion may be performed if the signals are synchronized and of the

24 Chapter 3. Multimodal Fusion and Grammars

same nature (two speech inputs, two sketch inputs, etc.) it cannot be
applied to multimodal inputs, which usually are of different nature.
Consequently, this level of fusion is not taken into account
hereafter.

The fusion at recognition level (named also early fusion or
recognition/feature-based fusion) consists in merging the outcomes
of each recognizer by using integration mechanisms, such as, for
example, statistical integration techniques, agent theory, hidden
Markov models, artificial neural networks, etc. The integrated
sentence is therefore processed by the decision manager that
provides the most probable interpretation of the sentence (see
Figure 3.1.b). Thus a unimodal recognition stage and an integrated
decision stage characterize the interpretation process of the early
fusion. This strategy is generally preferred for closely and
synchronized inputs that convey the same information (redundant
modalities), as for example speech and lip movements for speech
recognition or voice and video features for emotion recognition.
The main drawbacks of the early fusion are the necessity of a large
amount of data for the training, and the high computational costs.

The fusion at decision level (named also late fusion or
decision/conceptual-based fusion) means merging neither the
signals nor the features of each recognized input, but directly the
semantic information that are extracted from the specific decision
managers (see Figure 3.1.c). In fact, in this kind of fusion the
outcomes of each recognizer are separately interpreted by the
decision managers and the extracted semantic meanings are
integrated by using specific dialogue-driven fusion procedures to
yield the complete interpretation. Late fusion is mostly suitable for
modalities that differ both in their nature and in the time scale. This
implies that a tight synchrony among the various communicative
modalities is essential to deliver the correct information at the right
time. As each input modality is separately recognized and
interpreted, the main advantages of this kind of fusion rely on the
use of standard and well-tested recognizers and interpreters for
each modality, as well as the greater simplicity of the fusion
algorithms.

In addition to these three levels of multimodal fusion, a fourth
level, named hybrid multi-level fusion, can be identified (as
described also in [V098]). In this kind of fusion the integration of

Chapter 3. Multimodal Fusion and Grammars 25

input modalities is distributed among the acquisition, the
recognition and decision levels. In particular, the interdependence
among modalities, that allows predicting subsequent symbols
knowing previous symbols in the input data flow, is exploited to
improve accuracy of the interpretation process. This implies that a
joint multimodal language model, which relies on the symbols
acquired during the acquisition phase and which is governed by
their semantic meanings extracted during the decision phase, is the
basis of the hybrid multi-level fusion strategy.

Oupt Ot = O Oupa ous || 7
Output Output Output = i bl :
Wiodality! Miodaity2 o ,g_ Iilcdality] Modality2 Modalityh] 'E;
t *) E 'Computr]npm Cnmpu‘]‘exlnp\n‘ Cnmpmixlmut g
Computer Input | |Computer Ingut Computer [rput I | | 3
Iilodalityl Nodalityd = | Modalityll ﬂwd;shm Modality2 ‘ Modalitytl
! g | | | —
B : ; : —
Mubizmodal fusion system g Modality] Modality2 Modsitytt ||
=3 Tecognition reco gnition mcoguition || 2
‘ 2 Ik =
7 oy, R =
Iukimodal input =} z 5 &
‘ recognition) | Ilultiroodal fision system ‘ “;
£ 2 f g
g '* v
‘ Dialo gue Management system ‘ § | Dialogne Maragement systemn ‘ g;
oS SR 1
I ¥ "y e h] 4
‘ App 1 App2 Appn Appl ‘ App 2 Appn
())
Human Human ‘Human
Oulpul Cutput Oulput =
Modalily | Modality2 ModalityH 2
|Cnmpu[c’ Input ‘ |Cnmp\.\nr Input | Computer Input g8
Tocatity| Mnliialil Indaitytd
i =i i
i ¥ i 7
Modaliyl Mndality? ModatityH g
recognition recognition - recogrition 5
1= Iz Iz
B B .
)
|Dec|swnl\f[amagu" rDa:.s'onManager‘ |Decision Manager|
- . —r
= = 7
[Wltimmedal fusion system] g
A g
| Dialogue Management system
P ¥ .
Pl + T
‘ App L App 2 ‘ Appn

=

Figure 3.1: Possible levels of multimodal data fusion: a) fusion at
signal level; b) fusion at recognition level; c¢) fusion at decision
level

26 Chapter 3. Multimodal Fusion and Grammars

To sum up, depending on the data fusion level at which the
different inputs are combined, multimodal fusion strategies can be
broadly classified as: recognition-based, decision-based and hybrid
multi-level strategies.

3.2.1 Recognition-based Fusion Strategies

To achieve the integration of input signals at recognition level,
multimodal systems have to rely on appropriate structures to
represent these signals. In particular, three main representations can
be found in literature, namely: action frame [Vo098], input vectors
[PBH97] and slots [APS98].

In the approach based on action frame, proposed by Vo
[Vo98], the multimodal input is regarded as a set of parallel
information streams. Each stream represents one unimodal input
coming from a computer input modality (e.g. a sequence of words
and phrases in spoken modality, shapes in gestures, etc.) and
consists of elements associated to a set of parameters. The
integration of unimodal inputs consists in producing a sequence of
input segments, named parameter slot, which separately contribute
to the multimodal input interpretation, called action frame. Such an
action frame specifies the action that has to be performed by the
system in response to the multimodal input. Each parameter slot
specifies one action parameter and should contain enough
information to determine the value of the corresponding parameter.
The integration of the information streams is carried out through
the training of a Multi-State Mutual Information Network (MS-
MIN). More in detail, this network allows to find an input
segmentation and a corresponding parameter slot assignment in
order to extract the actual action parameters from the multimodal
input. To achieve that the a posteriori probability of the parameter
slot assignment conditional on the input segmentation is
introduced. This probability is estimated by output activations in
the MS-MIN network and can be interpreted as the score of a path
that goes through the segmented parameter slots. An example of
path over two multidimensional inputs (the spoken words “How far
is it from here to there?” and the drawing of an arrow between two
points) is shown in Figure 3.2.

Chapter 3. Multimodal Fusion and Grammars 27

Query

Distance —=
Dst sy - \
Qury .

Distance —
Sre

am:w_end\
arvowr_start

hio far is i from here to there
Figure 3.2: The output path of the MS-MIN of Vo [V098]

Therefore, a path score maximization algorithm is applied to
find the input segmentation and the corresponding parameter slot
assignment. This algorithm creates an extra layer on the top of the
network. In particular, each output unit of the MS-MIN is an output
state and the top layer of the network produces the best states
sequence that fits the input, according to the path score
maximization algorithm. The main advantage of this approach
relies on the use of the MS-MIN network that allows the
incremental and automatic learning of the mapping from input
messages to output actions and the consequent improvement of the
interpretation accuracy during the real use.

The input vectors proposed by Pavlovic et al. [PBH97] are
used to store the outputs of the visual and auditory interpretation
modules. More in detail, the visual module firstly tracks the
features of the video data by using skin colour region segmentation
and motion-based region tracking algorithms and the time series of
the tracked features is stored into an input vector. Secondly, these
features are dynamically classified by wusing Probabilistic
Independence Networks (PINs) and Hidden Markov Models
(HMMs). Therefore, the output of this module consists in a set of
higher level features ranged from gestural movement elements,
called visemes (e.g. “left movement”), to full gestural words (e.g.
symbol for “rotate about x-axis). The auditory module has the same
architecture and functions of the visual module applied to audio
data. A HMM PIN allows to classify the auditory features into
auditory elements, called phones, and full spoken words. The
integration of the two interaction modalities is carried out through a
set of HMM PIN structures (see Figure 3.3), each corresponding to
a predefined audio/visual command. The state of each HMM is

28 Chapter 3. Multimodal Fusion and Grammars

defined according to the input vectors containing the high level
features coming from the auditory and visual modules. As the
multimodal integration occurs after a two-stage recognition process
(for audio and visual data, distinctly) and before the interpretation
of the joint features has been performed, the fusion approach of
Pavlovic et al., similarly to the action frame approach, can be
classified as a recognition-based fusion strategy.

o L

& o
o EE o 35 o
: £ & : g 8 '
31% o m% e m%
Visual %5 g %5 g E*E
Iloduls mi m% mi
5 o 5 o 5
E °§;‘ E °_§;~ E

e | T

= g5 = g5 =
bdtoy | £ = gy = £y
Module—bgi 5 5% E 5%
E E E
3]]

Figure 3.3: The multimodal integration approach of Pavlovic et al.
[PBH97]

In the strategy based on slots [APS98], the information
inputted by the user is stored into a slot buffer, which allows back
referencing of past lexical units (e.g.: “it” can be used to reference
the previously selected object). The command language of the
application is encoded in semantic units called frames. The
command frames are composed of slots, i.e. lexical units provided
by the multimodal input. For instance, considering the “move
frame” two slots can be identified: “object” (to specify the object)
and “where” (to specify the final position). The frames are

Chapter 3. Multimodal Fusion and Grammars 29

predefined (computed off line) and are application-dependent. The
parser extracts the lexical units from different input modalities and
fills the appropriate slots in the slot buffer. The slot buffer is
continuously monitored checking for filled frames. Once a frame is
filled (enough information to generate a command), the fusion
agent sends it to be executed in the current application. The main
advantage of this architecture is the uniform access of the input
modes.

In all the three fusion strategies, described above, the input
signals are merged after recognizers have transformed them into a
more appropriate representation (action frames, input vectors, and
slots) but before any interpretation has been assigned to the
unimodal input. This has led us to classify them as recognition-
based fusion strategies.

The main advantage of these strategies relies on the great
coherence with the human-human communication paradigm in
which the dialogue is considered as a unique and multimodal
communication act. Analogously, the recognition-based fusion
strategies merge the recognized inputs into a unique multimodal
sentence that has to be opportunely interpreted. Moreover, they
allow an easier inter-modality disambiguation. The main drawbacks
of the recognition-based fusion strategies consist in the significant
computational load and the high dependency on time measures.
This dependency implies as well a large amount of real data to train
the network (both the MS-MIN and the PIN HMM).

3.2.2 Decision-based Fusion Strategies

In the decision-based approach, the outcomes of each recognizer
are separately interpreted by specific decision managers and then
sent to the dialogue management system that performs their
integration by using specific dialogue-driven fusion procedures to
yield the complete interpretation. To represent the partial
interpretations coming from the decision managers and achieve the
integration of input signals at decision level, past and actual
multimodal systems employ several kinds of structures, namely:
typed feature structures [CIM97] [Joh98], melting pots [NiC95]
[BNGO04], semantic frames [VoW96] [RSHO05], and time-stamped
lattices [CMBO3].

30 Chapter 3. Multimodal Fusion and Grammars

The typed feature structures, originally proposed by Carpenter
[Car92], are used by Cohen et al. [CIM97] to represent the
semantic contributions of the different input modalities. In
particular, this data structure consists of two main elements: the
type that specifies the class which the input to be represented
belongs to, and a collection of feature-value pairs, in which the
values can be atoms or another feature structure. An example of
typed feature structure representing the syntactic features of a
proper noun is shown in Figure 3.4.a. Feature structures and atoms
are assigned to hierarchically ordered types. The authors achieve
the integration of spoken and gestural inputs through a unification
operation over these typed feature structures. Such operation
requires pairs of feature structures or pairs of atoms that are
compatible in type and the result of the unification is the most
specific feature structure or atom in the type hierarchy. Figure 3.4.c
shows the unification of the two feature structures represented in
Figures 3.4.a and 3.4.b, which is the syntactic features of the word
“dog”. To select the best-unified interpretation among the
alternative solutions probabilities are associated with each
unimodal input. This decision-based fusion strategy is implemented
in QuickSet [CIM97], a multimodal system briefly described in
Section 2.1.

cat : LING - SIGH cat : LING - SIGH
Gl B= | content : | phon DOGS
cortent © | sintax N_type : proper
{a) L]

cat : LING - SIGH
phon DOGH

LTUB=C= | content: cat N
sintax :

M _type : proper

()
Figure 3.4: An example of typed feature structures unification

Johnston [Joh98] carries on the study of Cohen et al. [CIM97]
introducing a grammar representation in which spoken sentences

Chapter 3. Multimodal Fusion and Grammars 31

and pen gestures are the terminal elements of the grammar, referred
to as lexical edges. Each lexical edge is assigned grammatical
representations in the form of typed feature structures. For instance,
to represent the spoken word ‘helicopter’ the feature structure in
Figure 3.5 is created, where the cat feature indicates the basic
category of the element, the content feature specifies the semantic
content, and the remaining features represent the modality, the
temporal interval and the probability associated with the edge.
Multimodal grammar rules are encoded as feature structure rule
schemata that can be hierarchically ordered allowing the
inheritance of basic constraints from general rule schemata. The
application of these rules enables the unification of two candidate
edges and the consequent fusion of the corresponding multimodal
elements.

Although these two approaches, based on typed feature
structures, provide a generally applicable representation for the
different modalities and the exploitation of well-known grammar-
based techniques extensively explored in natural language
processing, they show significant limitations on the expressivity
and complexity.

eat t ereate unit
fsI'YPE : create_unit
fsTYPE : unit

content @ | object | type : car

group : vehicle

|ocation : [fsTY PE : point] |
maodality @ apeech
time @ interval(.. , ..}

prab : .85
L

Figure 3.5: An example of representation of a spoken word by
typed feature structure

The fusion strategy based on melting pots, proposed by Nigay
and Coutaz [NiC95], was originally implemented within the

32 Chapter 3. Multimodal Fusion and Grammars

MATIS multimodal system. As shown in Figure 3.6, a melting pot
is a 2-D structure, in which the vertical axis contains the “structural
parts”, i.e. the task objects generated by the input actions of the
user, and the horizontal axis is the time. The fusion is performed
within the dialogue manager by using a technique based on agents
(PAC-Amodeus agents). Three criteria are used to trigger the fusion
of melting pots. The first criterion, referred to as microtemporal
fusion, is used to combine information produced either in parallel
or over overlapping time intervals. The second criterion, called
macrotemporal fusion, takes care of either sequential inputs or time
intervals that do not overlap but belong to the same temporal
window. A further criterion, referred to as contextual fusion, serves
to combine input according to contextual constraints without
attention to temporal constraints.

Structural parts
P4I_nfoii_-___--_
p3 [nlo.,
— -
pl |Info; ‘
T 1= ©T 2 53 tF = —P‘Tnne
I | Tmin; ITmnx.I
1

| ATJ Temp_win ; Temporal \\mldm\’l__x_\‘r

I
g‘}.)l-: Life span

Figure 3.6: The structure of a melting pot [NiC95]

A refinement of the approach of Nigay and Coutaz [NiC95]
has been carried out by Bouchet et al. [BNGO04] and implemented
in the ICARE (Interaction CARE - Complementarity Assignment,
Redundancy and Equivalence) framework. Such framework
considers both pure modalities, described through elementary
components, and combined modalities, specified through
composition components. Two kinds of elementary components are
defined: the device components that abstract the captured input
signals into recognized inputs, and the interaction language
components that abstract the recognized inputs coming from the
device components into commands. Finally, the composition

Chapter 3. Multimodal Fusion and Grammars 33

components describe the fusion criteria of data provided by the
elementary components, in line with the criteria defined in
[NiC95]. The main advantage of the ICARE approach relies on the
component-based structure that allows to reduce production costs
ensuring a high reusability and maintainability.

In the approach based on semantic frames, proposed by Vo and
Wood [VoW96], input from each modality is parsed and
transformed into a semantic frame containing slots that specify
command parameters. The information in these partial frames may
be incomplete or ambiguous if not all elements of the command
were expressed in a single modality. A domain independent frame-
merging algorithm combines the partial frames into a complete
frame by selecting slot values from the partial frames to maximize
a combined score. This approach is quite similar to the melting-pot
strategy described above.

The use of semantic frames with slots is followed also by Russ
et al. [RSHOS5]. As opposed to the previous fusion mechanism, in
the approach of Russ et al. each slot (called main slot) contains also
the connections to a semantic network, as well as the attributes
associated to each recognized input (contained into the attribute
slots), as shown in Figure 3.7. A node in the network consists of a
term and an activation value. If a connected node of the semantic
network is activated, the slots of the frames are filled with the
attributes as well as the activation values of the nodes. Therefore,
the overall activation of a frame corresponds to the probability that
the user input correlates with the frame. As each input can have
multiple interpretations, this probability is taken into account to
evaluate the best candidate interpretation. The main advantage of
this approach is the uselessness of knowing a predetermined
language or specific commands.

Main slots Attribute slots Dependant slots

Term 1

Attribute 1

Term 2 —|Aﬂribute 2

| - Uattribute 3

Dependant term

34 Chapter 3. Multimodal Fusion and Grammars

Figure 3.7: The structure of the semantic frame of Russ et al.
[RSHOS5]

In the approach based on time-stamped lattices, proposed by
Corradini et al. [CMBO03], each recognizer produces a set of
candidate interpretations where each one stands for an independent
and diverse interpretation of the input signal. They are encoded by
means of word lattices where several paths through the word lattice
reflect the individual interpretations or n-best lists. The fusion
engine combines the time-stamped lattices received from the
recognizers, selects its multimodal interpretation, and passes it on
to the dialogue manager. The selection of the most probable
interpretation is carried out by the dialogue manager that rules out
inconsistent information by both binding the semantic attributes of
different modalities and using environment content to disambiguate
information from the single modalities.

All the approaches introduced above occur at decision level,
since individual input coming from the specific recognizers are
partially interpreted before their integration.

The main advantage of these strategies is the multi-tasking, as
different multimodal channels, recognizers and interpreters are
arranged for carrying out independent unimodal input processing at
the same time. This implies also the possibility to use standard and
well-tested recognizers and interpreters for each modality. On the
other hand, decision-based fusion strategies are characterized by a
high complexity of the inter-modality disambiguation, particularly
when dealing with more complex modalities that need not only
pairs item-time but full lattices from each channel to disambiguate
the multimodal input.

3.2.3 Hybrid Multi-level Fusion Strategies

In the hybrid multi-level approach, the integration of input signals
is distributed among the acquisition, the recognition and decision
levels. To parse multiple input streams and to combine their content
into a single semantic representation three main methodologies
have been applied in literature: finite-state transducers [JoBO0O],
multimodal grammars [SCS06] and dialogue moves [PAMOS].

The approach based on finite-state transducers was proposed
by Johnston et al. [JoB0O]. The authors perform multimodal

Chapter 3. Multimodal Fusion and Grammars 35

parsing and understanding by using weighted finite-state
transducers (FSTs) running on three tapes, in which the first tape
represents the speech stream (words), the second the gesture stream
(gesture symbols), and the third their combined meaning (meaning
symbols). The transitions of the FST, which consist of an input and
output symbol, are traversed if the input symbol matches the
current recognized symbol and consequently it generates the
corresponding output symbol. Figure 3.8 shows an example of
transducer relating the spoken input “Email this person and that
organization” and the gesture with the pen on the appropriate
person and organization on the screen. Modalities integration is
carried out by merging and encoding into a FST both semantic and
syntactic content from multiple streams. In this way, the structure
and the interpretation of multimodal utterances by using FST is
roughly equivalent to a context-free multimodal grammar that
parses the inputs and yields the output tape providing semantic
information.

The FST approach is very versatile and provides a high degree
of flexibility, allowing a huge spectrum of multimodal commands
to be implemented. On the other hand, this approach does not
support mutual disambiguation, i.e., using information from a
recognized input to enable the processing of any other modality.
Moreover, a huge amount of data is required to train the FST
limiting portability.

department:Gd:depi(epsielel

° arganization:Gozorg(°

person:Gp:person(

thatzepszeps

thisiepsieps

\ andeps:,

Figure 3.8: A finite-state transducer in the approach of Johnston et
al. [JoB0O]

7vcmnil:e ps:email([-
pagezepsipage(|

In the approach based on multimodal grammars, the outcomes
of each recognizer are considered as terminal symbols of a formal
grammar and consequently they are recognized by the parser as a
unique multimodal sentence. Therefore, in the interpretation phase
the parser uses the grammar specification (production rules) to
interpret the sentence. This fusion strategy has been implemented in

36 Chapter 3. Multimodal Fusion and Grammars

the MUMIF system [SCS06]. The fusion module of MUMIF
applies a multimodal grammar to unify the recognized unimodal
inputs into a unique multimodal input that is represented by using
the TFS (Typed Feature Structures) structure proposed by
Carpenter [Car92]. The MUMIF multimodal grammar is composed
of two kinds of rules: lexical rules that are used to specify the TFS
representation and grammar rules that constrain the unification of
inputs.

The dialogue moves are used by Perez et al. [PAMOS] to
represent multimodal user inputs coming from the lexical-
syntactical analyzer. This structure, originally proposed by Quesada
et al. [QTGO00], consists of a feature-value structure with four main
features, which are DMOVE, TYPE, ARG and CONT (DTAC). An
example of DTAC for the command “Turn on the kitchen light” is
shown in Figure 3.9. The DTAC is quite similar to the typed feature
structure of Carpenter [Car92]. This approach is implemented in the
Delfos system, consisting of Multimodal input pool, a Natural
Language Understanding (NLU) module and a collaborative
dialogue manager. The multimodal input pool receives and stores
all inputs (each one considered as an independent dialogue move)
including information such as time and modality. The NLU module
parses the input and adds further features in the DTAC structure,
such as the modality of the event, the time at which the event
started and ended. The dialogue manager checks the input pool
regularly to retrieve the corresponding input. It operates by means
of update unification rules, which define the constraints on the
integration of DTAC structures. If more than one input is received
during a certain time frame, further analysis is performed in order
to determine whether those independent multimodal inputs are truly
related or not.

Chapter 3. Multimodal Fusion and Grammars 37

/DM OVE: specity Command \
TYPE:

swdCommand
ARG: swdDevice
COMT:

=5
DMOVE: = pacifParamstar

THPE: srudbevize
lDeYICE | conT. kitchen

o 2/

Figure 3.9: An example of dialogue move in the approach of Perez
et al. [PAMO5]

The main advantage of the hybrid multi-level fusion strategies
relies on the similarity with the paradigm used in the human-human
communication, in which the dialogue is considered as a unique
linguistic phenomenon. On the other hand, these strategies are
characterized by a high complexity of the inter-modality
disambiguation.

3.2.4 Final Discussion on Multimodal Fusion
Approaches

As discussed in the previous sub-paragraphs, each multimodal
fusion strategy has some advantages and drawbacks, which can be
summarized as shown in Table 3.1.

38 Chapter 3. Multimodal Fusion and Grammars
Table 3.1: Advantages and drawbacks of multimodal fusion
strategies

Recognition-bhased Decision-based Hybrid multi-level
fusion fusion fusion

= great coherence with the | = multi-tasking = similarity with the
e | hutoan-human = possibility to use hurnan-turoan
% communication paradigm | standard and well-tested | COMmunication paradigm
<0 | * easier inter-modality recognizers and * possibility to use
5 disarmbignation interpreters for each standard and well-tested
5 modality recognizers for each
é modality
i = pogsibility of mmilti-

tasking

o | " significant ® high complexity of the | = significant
= | computational load inter-modality computational load
% * high dependency on disarnbiguation = medivmn complexity of
_EE time measures the inter-modality
= | * large amount of real disambiguation
E\j data to train the network
[

The multimodal integration approach proposed in this thesis
follows the hybrid multi-level fusion paradigm, as it joins together
the advantages of recognition-based and decision-based fusion
strategies and, at the same time, it is able to overcome most of their
drawbacks, with the exception of the high computational load.

In particular, a grammar-based approach has been adopted as it
is the most coherent with the human-human communication
paradigm and it meets the requirements of naturalness and
flexibility for an efficient multimodal interaction.

The next section surveys the literature on grammars used in
multimodal fusion, providing a critical comparison of them.

3.3 Grammars for Multimodal Fusion

The first works on grammars for multi-dimensional languages (i.e.
languages whose expressions are assembled in more than one
dimension) were addressed to define two-dimensional graphical
expressions. Some examples of grammatical framework for visual
languages were given by Constraint Multiset Grammars [HMO91]
and Relation Grammars [CGN90]. The main difficulty of these

Chapter 3. Multimodal Fusion and Grammars 39

grammars, that precludes their reuse in multimodal language
definition, consists in the significant computational complexity. In
fact, a study of Wittenburg et al. [WWT91] showed that an
exponential number of combinations of visual input elements needs
to be considered, at worst, giving rise to a high complexity of the
parsing too.

In multimodal expressions the number of elements to be parsed
is generally far smaller than in complex graphical expressions.
Some studies of Oviatt et al. [Ovi96] [ODK97] showed that a
multimodal utterance generally does not contain more than three
elements. Consequently, the number of potential combinations of
these elements remains sufficiently small to enable a fast
processing, which is not achievable through the aforementioned
visual grammars.

A more promising approach, put forward by several
researchers, consists in starting from techniques used in Natural
Language Processing (NLP) (see [JCM97]) and extending them to
Multimodal Language Processing (MLP). As traditional grammars
for natural language (NL) (that is, the kind of language used by
human beings) are not powerful enough to cope with the syntactic
structure of multimodal languages, an evolution of NL grammars
towards multimodal grammar is necessary.

This section only presents a review of those grammatical
theories that have been developed in natural language processing
and subsequently extended and adapted for multimodal input
processing. I firstly provide a short overview of the most traditional
grammar formulation: the context-free grammar. Furthermore, a
brief description and a critical analysis of formal grammatical
approaches extensively used in NLP are provided in Sections 3.3.2,
3.3.3, 3.3.4, and 3.3.5, in conjunction with an explanation of how
these grammars have been adapted to multimodal inputs.

Grammar descriptions are brief as they are intended only to
provide a background for the discussion in Section 3.3.6, which
aims at justifying the theoretical choice of the approach proposed in
this thesis.

3.3.1 Context-Free Grammars

The most popular kind of grammar that has been firstly used to
define the syntax of natural language is the context-free grammar

40 Chapter 3. Multimodal Fusion and Grammars

(CFGs), defined by Chomsky in the mid-1950s [Cho57]. A
grammar is termed context-free when the expansion of a symbol
does not depend on its context (i.e., the position of the symbol in a
sequence or the relationship with surrounding symbols). A context-
free grammar consists of four components:

T, is a finite set of terminal symbols;

N, is a finite set of non-terminal
symbols;

P, is a finite set of production rules;

X, 1s a start symbol in N.

Terminal symbols are the words that constitute the alphabet of
the language (represented in italics in the subsequent examples).

Non-terminal symbols represent the grammatical categories,
that may be sentence (in short S), noun phrase (in short NP), verb
phrase (in short VP), prepositional phrase (in short PP), determiner
(in short DET), noun (in short N), verb (in short V), preposition (in
short PREP), etc.

A production rule consists of a single non-terminal symbol,
followed by an arrow -> that is followed by a finite sequence of
terminal and/or non-terminal symbols. They express how different
grammatical categories can be built up.

Any sequence of terminal symbols that can be derived from the
start symbol is called sentence. Therefore, the set of sentences that
can be derived from the start symbol applying the set of production
rules constitute the language generated by the grammar.

The following is an example of a CFG for a small fragment of
English:

S -> NP VP % A sentence (s) is a noun phrase (np)
plus a verb phrase (vb)

NP -> N % A noun phrase is a noun

VP -> V PP % A verb phrase is a verb plus a

prepositional phrase (pp)

PP -> PREP NP % A prepositional phrase (pp) is a
preposition plus a noun phrase

N -> John % ‘John” ‘CNR’ are nouns

N -> CNR

PREP -> at % ‘at’ is a preposition

Chapter 3. Multimodal Fusion and Grammars 41

vV -> works % ‘works’ is a verb

Consider the string of words “John works at CNR”. This is a
sentence in the language defined by the previous grammar, since
the sequence of terminal symbols “John” “works” “at” “CNR” can
be derived from the start symbol S by repeatedly applying the
production rules.

In addition to the information about the grammaticality of a
sentence, CFGs can be used also to parse (i.e. syntactically analyze)
sequences of terminal symbols, assigning them a structure in the
form of a parse tree. For instance, the following is a parse tree for
the sentence “John works at CNR”:

S

2l <

np W
IR
Johkn works PLED yal

=]
[

S
|
|

CHER

To know the sentence structure is very important in order to
understand what the sentence actually means (that is, if we wanted
to do semantics).

The main advantages of CFGs are the simplicity and the
possibility to use methodologies and tools that have been widely
studied for more than half a century.

However, two limitations of the CFG formulation that need to
be overcome in order to use this formulation in MLP are the
following:

- there is no possibility to represent symbols (neither terminal
nor non-terminal) from different modalities;

- there are no explicitly defined constructions for modeling
semantic aspects of input symbols.

42 Chapter 3. Multimodal Fusion and Grammars

3.3.2 Multi-Modal Definite Clause Grammar

The Multi-Modal Definite Clause Grammar (MM-DCG) [ShT95] is
the first reported grammatical framework for multimodal
languages. This grammar is an extension of Definite Clause
Grammar (DCG) [PeW80]. The following is a brief introduction to
some of the main features of DCG. Afterwards, a description of the
additional characteristics of MM-DCG over DCG can be found,
along with a brief discussion on advantages and limitations of MM-
DCG for MLP.

DCGs are an evolution of context free grammars that have
proven their usefulness for describing natural languages, and that
may be conveniently expressed and executed in Prolog.

Unlike the context-free case, in which only simple non-
terminal symbols can be expressed, in DCG non-terminals are
allowed to be compound terms. Moreover, in the head of a rule, in
addition to non-terminals, lists of terminals and sequences of
Prolog procedure call (written within the curly brackets) can occur.

DCGs allow to build representations of the meaning of
sentences by adding extra arguments to the non-terminal symbols.
For instance, if the meaning of a proper noun “John” is “john” an
argument is added to the rule “proper noun” in this way:

proper noun(john) --> [john]

The fragment of English, which has been written using CFG
formulation in the previous paragraph, can be expressed in the
following DCG notation:

sentence (s (NP,VP)) -——> noun_phrase (NP),
verb phrase (VP) .
noun_phrase (np (ProperNoun)) -->
propernoun (Propernoun) .
noun_phrase (np (Noun)) --> noun (Noun) .
verb phrase (vp (IV, PP))-->

intrans_verb (IV), prep phrase (PP).

prep phrase (prep (P,NP)) -—> prep (P),
noun_phrase (NP) .

prep(p(at))--> [at], {is preposition(at)}.

Chapter 3. Multimodal Fusion and Grammars 43

propernoun (propernoun (john)) -->[john],
{is_propernoun (john) }.

noun (noun (CNR)) --> [CNR], {is_noun(CNR) }.

intrans_verb (IV(works)) -—> [works],

{is_intrans (works)}.

The Multimodal Definite Clause Grammar (MM-DCG)

extends DCG in the following ways:

Any input from every stream contains the start and end
times. Therefore, each item of an input sequence is
represented in the following way:

Input (start-time, end-time, <actual
input>)

This means that the actual input was begun at start-time
and completed at end-time. This extension permits to
define chronological constraints among categories.

A non-terminal symbol in the head of a rule may be
accompanied by the consuming stream name. As an
example, consider the following rule:

noun_phrase —--> speech:pronoun

This means that whereas a pronoun category is generated
from the speech stream a noun-phrase is found.

If the non-terminal symbol is not accompanied by any
consuming stream name, it is regarded as coming from
whichever modes.

A terminal symbol is always accompanied by a specific
stream name. For example, the following rule:
noun (noun (CNR)) --> keyboard: [CNR]

means that if a string “CNR” is inputted via the keyboard
stream, the noun category is instantiated and an argument
with the meaning of that symbol is added to the noun
category.

The major advantages of MM-DCG include the capability to

handle an arbitrary number of modalities as well as temporal

44 Chapter 3. Multimodal Fusion and Grammars

information in grammar rules. Temporal information is tightly
integrated into the grammar formulation in the form of time
variables and time-out specifications.

However, this grammar lacks of representing semantic aspects,
mainly, for the combined input. Moreover, it is not independent
from the programming language for executing the grammar rules,
since specific constructions for calling Prolog procedures into the
grammar rules are provided.

3.3.3 Finite-State Multimodal Grammar

The Finite-state Multimodal Grammar (FMG) has been proposed
by Johnston and Bangalore [JoB05] to support parsing and
interpretation of multimodal utterances.

The FMG relies on a finite-state device that operates over n+1
tapes, where n tapes represent the inputs from n possible modalities
and the n+1™ tape represents their combined semantic meaning.

The syntax of FMG is composed of:

- a set of non-terminal symbols that, similarly to CFG
formalism, represent the grammatical categories (S, NP, VP,
V, etc);

- a set of terminal symbols, in which the multimodal aspects
of the grammar are noticeable. In fact, each terminal
contains n+1 components corresponding to the n+1 tapes of
the finite-state device. For instance, for a three tape finite-
state device which reads speech and gesture input, the
terminal symbols are expressed in the following way:

W:G:M

where W is the spoken language stream, G is the gesture
stream and M is the combined meaning;

- a set of production rules that are quite similar to the CFG
rules. In fact, the body of the rule may contain only non-
terminal symbols, while the head of the rule both terminals
and non-terminals.

An example of a FMG for a small fragment of English is:
S --> NP,VP «¢€:g:])
NP --> N

Chapter 3. Multimodal Fusion and Grammars 45

VP --> V ADV

N --> john:e:john ([

V —--> works:e:works

ADV --> here:G:place(ENTRY
ENTRY --> g€:e;:e; €:€:)

The ¢ is the empty symbol, and symbol e; is used as reference
to the entity referred to by the gesture G. This fragment of
grammar allows to parse a multimodal sentence composed of the
spoken words “John works here” and the gesture at the appropriate
organization icon on the screen.

The FMG has the benefit to enable a higher level of
compensation for recognition errors in individual modes, since it
directly influences the recognition phase of unimodal input.
Moreover, FMG has the capability to represent the combined
semantic meaning of multiple inputs.

However, this formalism is strongly centered on speech and
gesture input. More importantly, it does not support mutual
disambiguation, i.e., using the speech recognition information to
inform the gestural recognition processing, or the processing of any
other modality.

3.3.4 Multimodal Functional Unification Grammar

The Multimodal Functional Unification Grammar (MUG) is a non-
deterministic grammar formalism defined by Reitter et al. [RPC04]
for specifying adaptable user interfaces. The authors started from
the Functional Unification Grammars (FUGs) [Kay79] [EIR92], a
well-known technique for NLP from which MUG is derived.

FUGs follow a unification-based approach that, as suggested
by the name, is a formalism where unification is the only
information-combining operation [Shi86]. More specifically,
entities are represented by feature structures (attribute value
matrices, previously introduced in Section 3.2.2), and information
carried by such entities is combined only through unification.

MUG extends FUG by introducing the possibility to support
several coordinated modes and to unify one grammar rule for each
mode. To achieve that, the MUG is composed of a set of
components, named functional descriptions (FDs). Each FD is an
attribute-value matrix and specifies a realization variant for a given

46 Chapter 3. Multimodal Fusion and Grammars

partial semantic and syntactic representation (specific to a mode or
generic), similar to a production rule in a CFG grammar. Variables
can be named and always start with an upper-case letter.

MUG is based on the unification of such attribute-value
matrices. In particular, a FD is unified with each m-constituent
substructure, i.e. a FD that has an attribute path m|cat which is
designed as a constituent for the mode m.

An example of MUG functional description for the
confirmation of tasks by voice or screen is shown in Figure 3.10.
The FD is obtained by the unification of four m-constituents. The
symbols (] [3] denote the elements that are the same, i.e.
shared.

action Mode [cat E”
type m

action

cat cunﬁ]‘m-mnd}

text

instruction

Mode {

cat 3'0snulistj|

user-input | Mode
P text[3]

cat askconfirmation
Mode

text concat(| I)

Figure 3.10: An example of MUG functional description

The main advantages of MUG consist in:
- the possibility to support several coordinated modalities;

- the uniform representation of syntax and semantics into an
overall structure, which makes the grammar easier to
maintain;

- the improvement of parsing disambiguation since it allows to
use semantics to prune possible alternatives.

At the same time, there are certain drawbacks to using the
MUG approach. First of all, it is not sufficiently amenable to

Chapter 3. Multimodal Fusion and Grammars 47

capturing detailed lexical semantic properties. In fact, as observed
by Fodor and Lepore [FoL98] the real meaning of a sentence is not
easily captured by a fixed set of FDs. Moreover, since the FDs of a
language are numerous and each FD is defined by using prose, the
definition of complex categories requires a high computational
effort that makes this formalism difficult to use.

3.3.5 Multimodal Combinatory Categorial Grammar

Multimodal Combinatory Categorial Grammar (MCCG) is one of
the most recent approaches to MLP developed by Sun et al.
[SSCO07]. MCCG is an adaptation of Combinatory Categorial
Grammar (CCG) [Ste00] [StB03] for multimodal utterances.

Similarly to CCG, the MCCQG is a form of lexicalised grammar
based on a set of syntactic rules, whose application is conditioned
on the syntactic type (or category) of their inputs.

Categories identify constituents of the grammar and may be
atomic categories or functions. The atomic categories (e.g. NP, PP,
S, N) may have some features, such as number, case, etc. Functions
are a combination of atomic categories, the forward application
operator (/), the backward application operator (\) and appropriate
bracketing to define the order in which the categories must be
combined.

The set of MCCG rules allows to combine categories and to
type-raise a category to another one. In particular, in addition to the
two basic rules of forward and backward application, i.e. X/Y Y =>
X and Y X\Y => X respectively, the MCCG rules include:

- forward composition rule: XY Y/Z=>X/Z
- backward composition rule: Y\Z X\Y => X\Z
- forward type-raising rule: X =>T/(T\X)
- backward type-raising rule: X =T\ (T/X)

- forward crossing composition rule: X/Y Y\Z =>X\Z
- backward crossing composition rule: Y/Z X\Y => X/Z

The forward composition rule means that a function (X/Y)
takes another function (Y/Z) to its right and returns function (X/Z).
By applying these rules the complete parse tree can be built from
the bottom to up.

48 Chapter 3. Multimodal Fusion and Grammars

For example, consider the sentence composed of the spoken
words “John works here”. John will be assigned the atomic
category N. The intransitive verb works is an entity that will expect
one argument (N) to its left and a prepositional phrase (PP) to its
right. Once this argument is applied the result will be a sentence
(S). Therefore the verb will be tagged (N \ S) / PP. The application
of MCCQG rules to these categories allows to parse the sentence, as
shown in the following:

John works here
N (N\S) /PP PP
=>right
N N\S
=>left
S

Analogously to CCG, MCCG has the advantage that it is easy
to relate the grammar to a compositional semantics by assigning
semantic values to the lexical entries and semantic functions to the
combinatory rules such that no intermediate representation is
required [StBO3].

However, there are several drawbacks in the use of MCCG for
multimodal language processing. First of all, the parse tree is
defined by categories that may become increasingly complex in
larger sentences, leading to many difficulties in parsing them.
Secondly, the update of the grammar is much more complicated
that with simple CFG. In fact, since the parse tree is completely
dependent on the word categories and in complex sentences there
are interdependencies between words, if a change of a word
category occurs other word categories have to be changed causing a
ripple effect throughout the parse tree.

3.3.6 Final Discussion on Multimodal Grammars

As discussed in the previous sub-paragraphs, each multimodal
grammar formalism has a set of advantages and drawbacks, which
can be summarized as shown in Table 3.2

Chapter 3. Multimodal Fusion and Grammars 49

Table 3.2: Advantages and shortcomings of multimodal grammar

formalisms
Context-Free Multi-Modal Definiie Finite-stae Multimodal Multimodal
Grammar Clawe Grammar Multimodal Functional Conthinatory
Grammar Unification Grammar | Caiegorial Granumar
i [sitnplcity « capablity to Jandle an |« bigh level of *easy fo maitainand |+t s easy to relate the
g posshilty to e afuitrary_' e of cumpe_nsatiun for update the mammmar | grammer foa
o | wellstudied todalities tecagrition exrors shproverent of | Conpositional
% teethodologes and » capality o handle parsing disanhiguation semantics
& | tools forparsingtesk | temmpore informiation in
a qranar mles
1 posstblity to vlackof representing | #steongly cemteredon | » diffieultiss in + tany diffieultiss in
w | Tepmsent symbals from | semantic aspects, speech and gesture captming detailed pasing larger
% different modalties | manly, for the Input lexacal se tantic settences
< | *no explicitly defined corined fpnt * 1o support to ot | Fopettes + the update of the
E construstions for disarnbignation *high computstional | gratemar is
é rndeling sernantic effort for the defivition | compheated
& | sspects of input of complex categonies
symhols

The multimodal grammar proposed in this thesis follows the
context-free paradigm. This choice was partly motivated by the
ultimate aim of the multimodal language processor, presented in
this dissertation, to define and update multimodal language,learning
it by example.

Since a multimodal language is characterised by a large variety
of linguistic syntactic phenomena, the ideal candidate grammar,
which is sufficiently expressive to represent any of these
phenomena, is the class of context-sensitive grammars. This kind of
grammar is similar to CFG,except that the body of the production
rules may contain both terminal and non-terminal symbols. The
name context-sensitive comes from the fact that the expansion of a
symbol depends on its context (i.e., the position of the symbol in a
sequence or the relationship with surrounding symbols).

Context-sensitive grammars, however, have two shortcomings
with respect to multimodal language processing:

- parsing complexity: all known algorithms for parsing these
grammars have exponential time dependency.

50 Chapter 3. Multimodal Fusion and Grammars

- too needless expressiveness: only a few linguistic
phenomena, such as cross-serial dependency (that can occurs
in Dutch and Swiss-German languages), require the
expressiveness of context-sensitive grammars. In the
majority of cases, the sublanguages generated by these
grammars do not occur in multimodal language.

Consequently, although CFGs have less expressive power than
context-sensitive ones, they are able to model all frequent linguistic
phenomena of multimodal language assuring, at the same time, a
lower parsing complexity. For these reasons this thesis has been
developed opting for context-free grammars instead of context-
sensitive ones.

However, as said earlier, in order to use CFG for multimodal
language processing it is necessary to overcome the two main
deficiencies of this grammatical formalism, i.e. the lack of
constructions both for representing input symbols from different
modalities (and how they are combined together into the input
sentence), and for modeling semantic aspects of input symbols.

The four grammatical frameworks presented in the previous
subparagraphs constitute an attempt to resolve these issues. In
particular, MM-DCGs, following the context-free paradigm of
DCGs, introduce a notation that allows to specify the input
modality associated with input symbols, their temporal information
and their semantic meanings. However, this formalism does not
overcome the limitation due to the lack of representing semantic
aspects, mainly, for the combined input. This last issue is evident
also in MUGs, which, in addition, have the disadvantage that do not
follow a context-free paradigm. On the contrary, FMGs provide a
solution to the limitation of capturing semantic properties of
multimodal input, but they do not allow to handle whichever
modality as they are strictly related to speech and gesture input
only. MCCGs, too, provide a solution for assigning semantic values
to lexical input but, similarly to MUGs, they do not rely on a
context-free paradigm.

The grammatical framework proposed in this dissertation tries
to join together the efforts made by the aforementioned multimodal
grammar formalisms in overcoming the CFG limitations. In
particular, the proposed grammar, named Multimodal Attribute

Chapter 3. Multimodal Fusion and Grammars 51

Grammar (MAG), is based on the context-free paradigm and
provides constructions for representing multiple input streams, the
meaning of these inputs as well as temporal relationships among

inputs. A detailed description of the MAG notation is given in
Section 5.4.

Chapter 4

Learning of Grammars

In this chapter a survey of existing methodologies for inferring
context-free grammars from sample sentences is presented. After
introducing some preliminary definitions and notations concerning
learning and inductive inference, the attention will be focused on
three existing models of learning. The last section of the chapter
will explore the state of the art concerning the algorithms for
learning context-free languages and grammars.

4.1 Introduction

The mathematical theory of language learning (also known as
learnability theory, grammar induction, or grammatical inference)
deals with idealized learning procedures for acquiring grammars on
the basis of exposure to evidence about languages [Pul03]. A more
accurate definition of language learning and some notations used in
the chapter will be introduced in Section 4.2.

The main research studies in grammatical inference,
particularly for CFGs, have been made in several application
domains, such as speech recognition [Bak79], computational
linguistics [Adr92], computational biology [SBH94][SaB02], and
machine learning [Sak97][HiO03].

All these studies agree with the fact that the learnability of
various language classes, either in the Chomsky hierarchy (i.e.
regular languages, context-free languages, context-sensitive
languages, and unrestricted languages) or not, is a hard problem.
From a mathematical point of view, three different reference

52

Chapter 4. Learning of Grammars 53

models of learning have been studied in the literature. The first
more classical paradigm, namely identification in the limit model,
was presented by Gold [Gol67] in the middle 1960s. Then, the
learning with queries model was proposed by Angluin [Ang81] in
the early 1980s. The most recent model, named Probably
Approximately Correct (PAC) model, was proposed by Valiant
[Val84] in the middle 1980s. Some details of these models of
learning will be given in the Section 4.3.

The majority of these learning models takes as input an initial
set of positive training examples and output the language
description, i.e. the specific grammar that is able to recognize only
these examples. To achieve that, a set of negative examples (i.e.
sentences that should not be recognized by the grammar) is also
needed for limiting the extent of generalisation, as an overly
general grammar will never be refuted considering a new positive
example.

Therefore, the two main issues that grammar inference
methodologies have to face are the overspecialisation (or over-
fitting) and the over-generalisation. The former occurs when the
inference process produces a grammar whose language is smaller
than the unknown target language (which is always the case when
algorithms are not trained ad infinitum). This issue can be
prevented by some extent setting aside some data (which takes part
of the so-called “validation set”) and measuring performance on
this data after each training example has been processed.
Analogously, the latter occurs when the inference process produces
a grammar whose language is larger than the unknown target
language. Over-generalisation can be controlled by using a set of
negative examples.

In Multimodal Language Processing (MLP), similarly to NLP,
large sets of positive examples may be available but it is rarely
possible to obtain a set of negative examples for training. To
overcome this lack of negative evidence, two solutions have been
proposed in the literature:

- to restrict the language to one of the classes of formal
languages, which have been proven to be learnable from
positive examples only, such as reversible languages
[Ang82], k-testable languages [GaV90], code regular and

54 Chapter 4. Learning of Grammars

code linear languages [EST96], pure context-free languages
[KMT97] and strictly deterministic automata [Yok95].

- to introduce various heuristics aiming to avoid over-
generalisation without the use of negative examples, such as
simplicity [LaS00].

The first solution does not fit with the choice of context-free
language as basic paradigm for the multimodal grammar proposed
in this dissertation. Consequently, the use of heuristics is the
solution that can be applied for avoiding over-generalisation in
multimodal grammar inference. The issue of learning CFGs from
positive examples only and the proposed heuristics for solving the
overgeneralization problem will be discussed in Section 4.4.

4.2 Notations

Following Gold [Gol67], in order to specify a learning environment
it is necessary to specify:

= the class of languages £ to be inferred;

= the language description (or hypothesis) class # used to
describe the languages in £, which corresponds to the
grammar in our case. Let 2 € % L(h) denotes the language
described by #;

= the way the learning process obtains information.

This statement has been followed by Lee [Lee96] for defining
what the problem of grammatical inference means, whereby it is, in
its broadest sense, the problem of learning a description of a
language (i.e. a grammar) from data drawn from the language.

Formally, a learning algorithm L4 can be modeled as a function
that takes as input a finite sequence of examples and gives as output
a language description. A presentation is an infinite sequence of
examples. Two types of presentations are usually allowed:

= A text for a language L is an infinite sequence of strings
Xy, X3, . . . from L such that every string of L occurs at least
once in the text. The inference algorithms that use this
type of information are said to learn from positive
examples. Note that the class of all the possible text
presentations for a language L is denoted by @;.

Chapter 4. Learning of Grammars 55

= An informant for a language L is an infinite sequence of
pairs (x;, dp), (x2, d3), . . . in L xB, (where B is the set of
Booleans) such that every string of L occurs at least once
in the sequence and d; = true << x; € L. The inference
algorithms that use this type of information are said to
learn from positive and negative examples. Note that the
class of all the possible informant presentations for a
language L is denoted by @M.

Therefore, a standard classification of learning algorithms can
be done according to the presentation they adopt. In this chapter
this classification is used for describing some examples of
algorithms (see Section 4.4) that learn from text as well as
informant.

4.3 Models of Learning

Language learning can be studied in a mathematical way by
considering three different models of learning: identification in the
limit [Gol67], Queries [Ang88], and PAC learning [Val84]. In the
following sub-paragraphs further notions about these models are
given.

4.3.1 ldentification in the Limit

Identification in the limit is the most classic paradigm of learning,
presented in a seminal article by Mark Gold [Gol67], which views
inductive inference as an infinite process. In fact, in this paradigm a
learning procedure is an algorithm infinitely running on a never-
ending stream of inputs. The inputs are grammatical strings chosen
from a target language in a known class of languages. That
language has to be identified by choosing a grammar for it from a
known set of grammars. At each point in the process, any string in
the language might be the next string that turns up (strings can turn
up repeatedly). After each input, the algorithm updates the
grammar, so that it conforms to the new training string. Success in
identifying a language “in the limit” consists in achieving a
grammar that does not change when an additional string is inputted
and which is correct for the target language.

56 Chapter 4. Learning of Grammars

Identifiability in the limit is a fragile property, however. Gold
proved that none of the standard classes of formal languages (e.g.,
the regular languages, the context-free languages, the context-
sensitive languages, or the unrestricted languages) are identifiable
in the limit from text. On the contrary, regular, context-free and
context-sensitive languages are identifiable in the limit from an
informant.

However, in NLP and MLP, learners typically get evidence
about what is grammatical (positive samples), but no details about
what is not grammatical (negative samples). Therefore, natural and
multimodal languages require to be identifiable in the limit from
text. Such a requirement is supported by the statement of Gold
whereby, choosing a number £ and considering the class of all
context-free languages generable by a context-free grammar with
not more than k rules, it is demonstrable that every choice of &
defines a class that is identifiable in the limit from text. And the
same is true for context-sensitive grammars.

Consequently, if positive results for learning from positive
examples are expected, it is necessary to restrict the language to
non super-finite sub-classes of the context-free languages.

4.3.2 Queries

Learning with queries is another popular learning model that has
been introduced by Angluin [Ang81] [Ang88]. In this model, the
learner makes use of an oracle that is able to answer some questions
about the target language. Generally, two types of queries, known
as membership queries and equivalence queries, may be used. The
former returns “true” if the given string belongs to the language,
“false” if not. The latter is made by presenting to the oracle a
grammar for a hypothesis language.

Similarly to identifiability in the limit model, learning with
queries is a not useful model for dealing with context-free
languages. Angluin [Ang90] showed that context-free grammars
are not learnable from equivalence queries alone and that
membership queries alone are insufficient. However, restricting the
language to a simple deterministic language, i.e. recognizable by a
deterministic push-down automaton by empty store, the learning
with queries model gives positive results.

Chapter 4. Learning of Grammars 57

The problem is that these languages do not allow to express all
linguistic phenomena occurring in natural and multimodal
languages. Consequently, the learning with queries model do not
guarantee exact inference of these languages.

4.3.3 PAC Learning

The “Probably Approximately Correct” (PAC) learning was
introduced by Valiant [Val84] in an attempt to model distribution
independent learning. The basic idea of PAC learning is that it is
possible to minimize the chance of learning something that is
wrong without being completely sure that this is right. Valiant
applied his theory to Boolean concept learning.

Unfortunately, PAC learning, in its pure distribution free form,
does not help Grammar Induction much. Even simple classes of
languages are known to be not PAC learnable [Den01] [Den98]. In
particular, although the PAC learning model takes many features of
natural learning into account, in most cases it fails to describe such
kind of learning.

4.4 Algorithms for Learning of Context-Free
Grammars

The majority of grammar inference algorithms presented in the
literature is based on an initial set of positive training examples and
a specific grammar that is able to recognize only these examples.

According to the choice of following the context-free paradigm
for defining the proposed multimodal attribute grammar, in the
following subparagraphs three existing grammatical inference
algorithms for CFGs are explored. The first is the inductive CYK
algorithm, which belongs to the class of algorithms that learn from
an informant. A further algorithm of this class is the learning by
version space algorithm, which is presented in Section 4.4.2.
Finally, an example of algorithm, named e-GRIDS, that learns from
text is analyzed in Section 4.4.3.

4.4.1 Inductive CYK Algorithm

In this section the grammatical inference approach, namely
inductive CYK (Cocke, Younger, Kasami) algorithm, is explored.

58 Chapter 4. Learning of Grammars

This approach, proposed by Nakamura et al. [Nal00, NaMO02,
Nak03], is implemented in an inductive grammar inference system
called Synapse (Synthesis by Analyzing Positive String Examples).

Roughly, the algorithm synthesizes CFGs from positive and
negative sample strings generating the minimum production rules,
which derive positive strings, but do not derive any given negative
strings. All the production rules generated by the algorithm follow
the extended Chomsky Normal Form (extended CNF), that is have
the forms A — B and A — By, where A is a non-terminal symbol, 3
and vy are terminal symbols. An important feature of the extended
CNF is that it is simpler than the standard CFG production rules
reducing the computation time of the inference process.

The grammatical inference approach of Synapse employs two
main procedures, the top-level procedure and the procedure that
implements the extended inductive CYK algorithm.

The top-level procedure is shown in Figure 4.1. It takes as
inputs two ordered sets Sp and Sy of positive and negative sample
strings, respectively, and an initial set P, of rules. The procedure
searches for the set P of rules, that contains the set Py (P < Py), and
the set N of non-terminals such that all the string in Sp can be
derived from P but no string in Sy is derived from P. This search is
carried out by calling inductive CYK algorithm. A control on the
search is performed by iterative deepening on the number of rules
to be generated. Starting from an initial limit & of the number of
rules, this limit is increased by one when the system fails to
generate enough rules to parse the sample within this limit and
repeats the search.

Chapter 4. Learning of Grammars 59

Input an ordered set 5p of postive sarple strings; an ordeted set 5 of negative sample strings; an mitial
set Py of rules; and the lreat K, of the moher of rles.

Output & set P of rules such that all the strings in 5p are dertved from P bt no string i Sy is derived from
P.

Procedure

Siep L Iatialize varishles P+ PO (the set of mles),
N { 5w {the set of nonvteranal sywhols m PO}, and
X+ |P| (the livt of'the soazeher of rles).

Siep 2: Foreach w € S5, terate the following operations.

1. Fird 2 set of rles by calling induetrve CVK algonithe with the mputs w, P, and K. The results are
teturtied to the global varishles P and .

2. Foreachw € 5y, test whether v is derved from P by CVE algorithen. If there is a string v derived
from P, then backtrack to the previous choice pomt.

If nio get of niles iz obtained, then
1IFK » K, terminate (o set of rules is found within the livt),
2. Otherwise, add 1 to K and restatt Step 2.
Siep 3. Outpt the result .
For finding roltiple solutinns, backivack to the previous choies poind. Otherwise, tertnate.

Figure 4.1: The top-level procedure of Synapse

The procedure of the extended inductive CYK algorithm is
shown in Figure 4.2. It takes as inputs a string w and a set P, of
rules and outputs a set P; of rules such that w is derived from P,
P 1

The extended inductive CYK algorithm is composed of two
steps that have to be repeated until w is derived from the production
rules. The first step includes CYK algorithm for testing whether the
string w can be derived from P,. This algorithm makes use of a
variable TS that keeps the test set of symbol pairs (B, y), to which a
rule 4 — Py is applied during the running of the algorithm. These
pairs are candidates of the body of newly generated rules. The
second step provides a function for adding production rules when
the set P, does not derive the string w. The rules that are produced
(included in the set P;) are in the form A — By or 4 — B, where (B,
v) is a pair contained in the test set TS.

60 Chapter 4. Learning of Grammars

Input & string w, & set P of rules in extended CHF; 4 set W of nonterminal syrebols; and an integer X (the
lirnit of the nurdber of mules).

{P and Nare consudered as global varishles declared m the top-level procedure.)

Quiput & set of niles in the varisble P from which w is derived and a set of nonterinal symbols in the
rules in .

Procedure Initialize the varishle T5 & & (the test set). Repeat Steps 1 and 2 until w is dertved fiom P.

Siep 1: (Test whether w is dertved fror P by CVE algorithen, and at the same time generate o test set T
used n Step 2)
1. Consider w as the string aa,. .4, Inthialize a 2-dimensional aray Thy
TEI]={a b A|(A= a)eF) forall 15750
2. (Find every element T of Towhthat 4 = 5 Y forall 4 & TT0). Herate the following
processes for 24 7<n and 1450y 541

() TR 1« @

(o) Forallki 14545-10, 8T, k), and y € TE 5,5 -F],
L IFeTiO{(&1) (adding a pa to the test set).

iif (B gpep thn
{for generating unarbiguons graramars, If B € TT3;] then backtrack to the previous choice
pont { fdure).)
M= T B A= Be B
3015 e Thin) then retum (success).

4. I (the womber of rules generated for w) 2 B, and [F 2 K, then backtrack to the previons choice
point (faihoe).

Siep 2. (Generate a rule of the forn (4 — fy) or (A B)and add it to F, where(g yyis & pair contained
in the test set T')

1. Select a paw(g y) e T that matches the form of the rules selected by the user,
2. Belect a nonderramal syobol 4 & Nsuch that (A— Gy)e P

3. Peformn ome of the following opetations,
(&) (Crenerate a ol of the form (A 25

If (B 8re P then PePuld=B
(b} Pe Pulid— 81}
{ch Generate a new nonterminal symbold ¢ N NeNuid, P Pul{d- 87}

Figure 4.2: The procedure of the extended inductive CYK
algorithm

The extended inductive CYK algorithm has non-deterministic
branches, or choice points, to which the control backtracks when
the process fails. If the process terminates with success, the
algorithm returns the sets of rules P, « P; and non-terminal
symbols as a result. The algorithm can have multiple results for a

Chapter 4. Learning of Grammars 61

single set of inputs, since the backtracking processes may generate
different results.

The original CYK algorithm has worst-case computational
complexity O(n), where 7 is the number of words in the sentence
in input. The extended inductive CYK algorithm is similar to the
usual CYK algorithm, except that when the rule set does not derive
the sentence, it adds production rules so that the parsing always
succeeds. Therefore, its computational complexity is still
polynomial.

For increasing the synthesis speed several heuristics can be
applied, as described in [Nak03]. First of all, when the process of
inductive CYK algorithm generates a rule 4 — Py, a constraint can
be applied that restricts the subsequent rule generation to not
terminating until a rule containing 4 in the body is also generated.
Secondly, a test on the effectiveness of the newly generated rules
allows to perform an intelligent backtracking. In fact, whether any
negative sample is derived from the set of newly generated rules,
another rule may be generated in the redoing process. Finally, the
use of a hash memory for checking whether each rule set has been
processed, each time the system generates the set, allows to avoid
repeated search.

The main advantages of the extended inductive CYK algorithm
rely on the generation of simpler sets of rules and shorter
computation times in the inference of CFG grammars for some
simple languages.

A hard limitation of the grammar inference method of Synapse
is that it cannot synthesize grammars with more than about 14 rules
from their samples because of the computation cost.

4.4.2 Learning CFG by Version Space

The grammar inference algorithm based on version space has been
proposed by Vanlehn and Ball [VaB87] and belongs to the class of
algorithms that learn from an informant, i.e. it needs of positive and
negative examples for inferring the grammar.

A version space is a set of all generalizations of a grammar,
consistent with a given set of instances. The algorithm applies a
particular induction technique, called version space strategy, which
is based on a compact way of representing the version space. In

62 Chapter 4. Learning of Grammars

particular, the central idea of this strategy is that the space of
generalizations defined by the representation language can be
partially ordered by generality.

For applying the version space strategy to grammar inference
the main issue to face is that the version space is potentially
infinite. A well-known theorem [VaB87] states that for any class of
grammars the version space is infinite for any finite set of training
examples.

To make the version space finite several restrictions are made.
First of all, a restriction on the form of grammar rules is introduced
by considering only simple CFGs, i.e. grammar in which rules have
the following features: (i) no rule has an empty body, (ii) if a rule
has just one symbol on its body, then the symbol is a terminal, (iii)
and every non-terminal appears in a derivation of some string.
Secondly, the grammar has to be reduced, i.e. all the rules in an
inferred grammar are necessary for the derivation of some positive
training examples. According to these restrictions, given a finite set
of training examples (positive and negative), there are finitely many
reduced simple CFGs consistent with those examples.
Consequently, a finite version space is produced.

The version space strategy allows to calculate a reduced
version space, but it cannot be directly applied due to the
undecidability of the problem to testing whether the language
generated by a grammar A4 includes the language generated by a
grammar B. To solve this problem the version space algorithm
makes use of three strategies:

- A set, called the derivational version space, that is a superset
of the reduced version space and a subset of the version
space.

- A computable predicate, called FastCovers, that is a partial
order over grammars in the derivational version space.

- An Update algorithm for the maximal and minimal elements
in FastCovers of the derivational version space.

Given a set of positive strings, the derivational version space is
the set of grammars corresponding to all possible labeling of each
tree sequence in the simple tree product for those strings, where a
simple tree is a derivational (or parse) tree for a simple grammar,

Chapter 4. Learning of Grammars 63

and a simple tree product is given by the Cartesian product over the
sets of unlabelled simple trees for each strings of the given set.

Given a set of positive and negative strings, the derivational
version space is the derivational version space for the positive
strings minus those grammars that generate any of the negative
strings.

For instance, consider the two positive strings 'b' and 'ab'. As
there is one unlabelled tree for 'b' and four unlabelled trees for 'ab’,
so there are four tree sequences in the Cartesian product of the trees
for 'a' and the trees for 'ab'. These four tree sequences constitute the
simple tree product, which is shown in Figure 4.3.

1. O @) 3. @) Q
| /\ | / N\
b a b b a CI)
2. @) @) 4. O o °
1 ?/ N s \?

Figure 4.3: The simple tree product for the positive strings 'b' and
’abY

For each of the four tree sequences, the construction of the
derivational version space consists in partitioning the nodes in the
trees and assigning labels. Figure 4.4 illustrates how the
derivational version space is constructed for the fourth unlabelled
tree sequence in Figure 4.3. Trees 1 through 5 show all possible
partitions of the four nodes and the labeling of the trees that result.
Each of the resulting labeled tree sequences is converted to a
grammar, as shown in the third column of the figure. The
derivational version space is the union of these grammars, which
derive from the fourth tree sequence, with the grammars from the
other tree sequences.

64 Chapter 4. Learning of Grammars

Unlabelled trees: 1 1
I /7 N\
b 2 3
I |
a b
Partition Labelled Trees Grammar
4.1 {1,2,3} s S S—b
| / \ 5 - a
b S s S — 8§
| |
a b
4.2 {1,2} {3} S S S = b
I VRN §—a
b 5 A 5 — S5A
| | A—Db
a b
4.3 {1,3}{2} S S S - b
| VRN S — AS
b A s A —a
| |
a b
4.4 {1} {2,3} S S S—hb
| VAN S = AA
b A A A a
I | A b
a b
45 {1}{2}{3} s s S b
I VAN S — AB
b A B A —a
I | B

Figure 4.4: Construction of the derivational version space for the
fourth tree sequence

At this point, the version space algorithm calculates a partial
order for the set of grammars of the derivational version space by
applying the FastCovers predicate. A formal definition of this
predicate can be found in [VaB87]. This dissertation only
highlights the usefulness of this operator within the version space
algorithm for ordering the derivational version space.

Chapter 4. Learning of Grammars 65

Finally, the version space algorithm applies the Update
algorithm that takes as input an instance and the current pair [P+,
G], where P+ is the set of positive examples and G is the current
derivational version space, and returns a revision of the pair that is
consistent with the given instance. Briefly, the Update algorithm
proceeds in the following way:

1. If the string is positive and a member of P+, then do
nothing and return the current version space. If the string
is not a member of P+, then add it to P+ and call the
UpdateG+ procedure.

2. If the string is negative and a member of P+, then return
NIL. If the string is not a member of P+, then call the
UpdateG- procedure.

The task of the UpdateG- procedure is to modify G, so that
none of the grammars will parse the negative string. All the
grammars in G are organized in a queue and the procedure picks a
grammar off the queue and verifies if it parses the negative string.
If it does not, then the grammar is placed in NewG, the revised
version of G. If it does parse the string, then the algorithm refines
the node partition once, in all possible ways. As each of these
partitions corresponds to a new grammar, the algorithm verifies if
they parse the negative string and eventually places them in the
NewG set. When the queue is exhausted, i.e. all grammars are
verified, the NewG set contains the maximal set of the grammars
that fail to parse the negative string.

The UpdateG+ procedure proceeds in the following three
steps:

1. Given a positive string, form the set of all unlabelled
simple derivation trees for that string.

2. For each grammar in the old G and for each tree for the
new positive string,

a. append the tree onto the end of the tree sequence of
the grammar's triple, and

b. allocate the new tree's nodes to the partition elements
in all possible ways.

66 Chapter 4. Learning of Grammars

3. Place all the candidate grammars generated in the
preceding step on the queue for the UpdateG- algorithm,
which tests that the grammar is consistent with all the
negative strings in the presentation that have been received
so far.

To clarify the algorithm’s behaviour a simple example is
presented. Suppose that the set of training examples is composed of
four positive and three negative strings of command words, that are
P = {+“delete all-of-them”, -“all-of-them delete”, -“delete delete”,
+delete it”, -“it it”, +*print it”, +*print all-of-them”}. Considering
the first string “delete all-of-them”, there are four possible
unlabelled simple trees that lead directly to four grammars for the
derivational version space G, shown in Figure 4.5.

Parfifion Labelled Trees Grantmar
I) 5 & —rdelete allof-fhem
' |
Delefe all-of-them
Iz {121 5 & odelete ¥
- g & all-of them
Delate
All-of-ihem
13 1,23 b F=r aII—ojl!hem
' ! & deled
3 - Eﬂ-o_ﬁfhem - e
Delotfe
g g8y
W 123} g g &y deleda

| | & —all-of them

Dxlote All-ofthem

Figure 4.5: Construction of the derivational version space for the
example

Suppose the next string is a negative string “all-of-them
delete”. This string cannot be parsed by grammars 1, 2 or 3, so they
remain unchanged in the G set. The fourth grammar is overly
general, so it is split in three legal partitions {1 2} {3}, {1 3} {2},

Chapter 4. Learning of Grammars 67

and {1} {2 3}. The first two survive becoming the grammar 1.5 and
1.6, shown below.

L3 {1,2} {3} oy &, dalete

|S 1‘!ll A = all-of-them
Delete All-of-them
16 {1,3} {2} 5

IR

| |
Delefe All-of-them

=48
_y delefa

& —all-of-them

o

The next string is the negative instance “delete delete”. None
of the grammars in G parse this string, so the G set remains
unchanged. The next string is positive, “delete if”. There are four
possible unlabelled simple derivation trees for this string. Each is
paired with each of the five grammars in the current G, yielding 20
combinations. The resulting 20 grammars are queued and verified
against P-. At the end of the version space algorithm the NewG set
contains 25 grammars.

As demonstrated also by the previous example, the algorithm
is inapplicable for a large set of training instances due to the
combinatorial explosion inherent in the UpdateG+ algorithm when
more instances are present. Moreover, the version space algorithm
is not immediately applicable to grammar induction, because it
produces a set of grammars and some other process have to choose
among them. Therefore, the algorithm is good for being used as a
general framework for the development of practical, task-specific
learning machines.

443 e-GRIDS Algorithm

The e-GRIDS algorithm [PPK04] is a grammar inference method
that extends the GRIDS algorithm [LaS00] by improving the search
performed by the learning operators in the space of possible
grammars. Like its predecessor, the e-GRIDS algorithm utilises a
simplicity bias for inferring CFGs from positive examples only.

68 Chapter 4. Learning of Grammars

4

Training :J::-:%‘:’—
Examples . MergeNT
Operator

Initial Beam of <1-.::>

Grammar

CreateNT
Operator

[Fa:ff@

Create
Optional NT

si0jesad) Suruwaea|

Final

Grammar

Figure 4.6: The e-GRIDS algorithm

A general workflow of the e-GRIDS algorithm is shown in
Figure 4.6. e-GRIDS uses the training sentences in order to
construct an initial grammar by converting each one of the training
examples into a grammatical rule. Subsequently, the learning
process takes place, which is organised as a beam search. Having
an initial hypothesis (the initial grammar) in the beam, e-GRIDS
uses three learning operators in order to explore the space of CFGs:

- MergeNT operator, which merges two non-terminal symbols
into a single symbol X, thereby replacing all their
appearances in the head and the body of rules by X;

- CreateNT operator, which creates a new non-terminal
symbol X from two existing non-terminal symbols that are
its constituent symbols.

- Create Optional NT, which duplicates a rule created by the
CreateNT operator and appends a non-terminal symbol to
the rule, thus making this symbol optional.

Chapter 4. Learning of Grammars 69

The learning process occurs in three steps, according to the
operator that is applied. In the first step, called “merge” step, the
MergeNT operator is repeatedly applied for merging non-terminal
symbols in each grammar in the beam. The resulting grammars are
then evaluated for deciding if replacing the grammar in the beam
that has the lowest score with the newly generated grammar that
has a better score. The second step is the “create” step that
considers all ways of creating new terms from pairs of symbols that
occur in sequence within the grammar, by repeatedly applying the
CreateNT operator. Finally, in the “create optional” step all ways of
duplicating a rule by the addition of an optional extra symbol at the
end of the rule body are examined by repeatedly applying the
CreateOptionalNT operator. The learning process terminates when
it is unable to produce a successor grammar that scores better than
the ones in the beam.

As mentioned above, the e-GRIDS algorithm uses a simplicity
bias for directing the search through the space of CFGs and
avoiding overly general grammars. This criterion measures the
simplicity of a grammar through its description length that is
defined as the sum of the number of symbols required to encode the
grammar and the number of symbols required to encode the
training examples. Therefore, the algorithm directs the learning
process described above towards grammars that are compact, i.e.
ones that have minimum description length.

To clarify the algorithm’s behaviour a simple example is
described. Suppose that the set of training samples is composed of
the following six sentences: “The cat saw the mouse”, “The cat
heard a mouse”, “The mouse heard”, “A cat saw”, “A cat heard the
mouse”, “A mouse saw”. Therefore, the initial grammar is shown in
Figure 4.7.

S — ART NOUN VERB2 ART NOUN2 ART — the
S — ART NOUN VERB ART2 NOUN2 ART1— a

S — ART2 NOUN VERB NOUN — cat

S — ART NOUN2 VERB NOUN2 — mouse
5 — ART2 NOUN VERB ART NOUN2 VERB — heard

S — ART2 NOUN2 VERB2 VERB2 — saw

Figure 4.7: The initial grammar for the e-GRIDS algorithm

70 Chapter 4. Learning of Grammars

This grammar has description length equal to 54, as the rules
contain 30 words and there are six training sentences containing 24
words.

The e-GRIDS algorithm begins by considering all possible
merges of symbols that occur in the heads of rules. Merging ART
with ART2, VERB with VERB2, and NOUN with NOUN2 allows
to eliminate four redundant sentences producing the grammar in
Figure 4.8, which has a score of 22.

S — ART NOUN VERB ART NOUN NOUN — cat

S — ART NOUN VERB NOUN — mouse
ART — the VERBE— heard
ART — a VERB— saw

Figure 4.8 The grammar after the “merge” step of the e-GRIDS
algorithm

The algorithm continues applying the CreateNT operator that
produces the term NP as an ART followed by a NOUN, and then
replaces all occurrences of this sequence with the new symbol. This
operation introduces another rule into the grammar, but it simplifies
the two rules, giving 18 as evaluation score. At this point, the
algorithm does not produce simpler grammar and therefore it
terminates returning the grammar in Figure 4.9.

S — NP VERB NP NOUN — cat

S — NP VERB NOUN — mouse
NP — ART NOUN VERB — heard
ART — the VERB — saw
ART — a

Figure 4.9: The final grammar produced by the e-GRIDS algorithm

One the main advantages of the e-GRIDS algorithm is its
computational efficiency which facilitates its scalability to large
example sets. Although this algorithm is able to infer grammars
that perform well, based on relatively small sets of training
examples, it is also able to handle large example sets in
significantly reduced amounts of time.

Chapter 4. Learning of Grammars 71

The main property that leads this algorithm to be a good
candidate for use in domains like natural and multimodal language
processing is the capability to infer from positive training
examples, without requiring any negative evidence.

4.5 Final Discussion on Learning Methods

As discussed in the previous sections, each CFG grammar inference
algorithm has a set of advantages and drawbacks, which can be
summarized as shown in Table 4.1.

Table 4.1: Advantages and shortcomings of CFG grammar
inference algorithms

Inductive CYEK Yersion space e-GRIDS algorithm
algorithm algorithm
i = siraplicity = good for being nsed as = high comgpmtational
g = short comptation a general framework for | efficiency also for large
- time for simple set of the developraent of exarple sets
% mles practical, task-specific = capahility to infer
= leaming machines frore positrve training
a exarples, without
requiting any negative
evidence
2 = high computation cost | = not irenediatelsy = over-generalization
= for syrthesizing applicable to grarenar
E grararaars with more indnction, becanse it
g than shout 14 mles produces a set of
é gramrmars
= = inapplicable for large
get of training instances

The grammar inference method proposed in this thesis follows
the learning from text paradigm. This choice has been motivated by
the fact that it is difficult to obtain a set of negative examples for
training for NLP and MLP. In the literature, the majority of the
learning algorithms applied to NLP, in fact, infers grammars solely
from positive examples.

Among the aforementioned algorithms, the e-GRIDS is the
only one that learns CFGs from text, without requiring any negative
examples. As described in Section 4.4.3, it assumes to have an
initial grammar that is obtained by converting each one of the
training examples into a grammatical rule. Subsequently, this

72 Chapter 4. Learning of Grammars

algorithm applies the learning operators for improving the grammar
description in order to make it more accurate and it resolves the
over-generalization problem. The core of the e-GRIDS algorithm is
then represented by the application of the learning operators, while
the production of the initial grammar is not a primary task for the
algorithm. An improvement of this algorithm could be achieved by
optimizing the production of the initial grammar.

The inductive CYK algorithm, unlike the e-GRIDS one,
focuses on the production of a CFG, but it starts from positive and
negative sample strings. As this algorithm has the property of being
simple and efficient, mainly for simple set of training examples, it
has been used in this thesis for producing the initial grammar. As it
learns from an informant, however, an adaptation of the algorithm
is necessary in order to make it able to learn from positive example
only.

Therefore, the grammar inference method, proposed in this
dissertation, tries to join together the strengths of the inductive
CYK and e-GRIDS algorithms. In particular, a revised version of
the inductive CYK algorithm is provided for generating the initial
grammar from positive sample sentences, while the e-GRIDS
learning operators are taken as starting point for improving the
initial grammar description. A detailed description of the proposed
grammar inference method is given in Section 5.5.

Chapter 5

The Multimodal Grammar Editor:
Theoretical Foundations

This chapter describes the theoretical foundations underlying the
proposed multimodal grammar editor. The aim is to allow an easy
multimodal grammar specification, overcoming the difficulties
arising from the textual description of the grammar production
rules (that require the skill of computer programmers and linguistic
experts together) and proposing a “by example” approach in order
to define a multimodal grammar in a very intuitive way.

5.1 Introduction

Multimodal interfaces can be used in many real-world applications,
such as, for example, command and control systems, web and
mobile search engines, and information retrieval systems. An
overview of four different application scenarios, used as examples
throughout the course of this dissertation, is shown in Section 5.2.

The analysis of these scenarios proves not only the advantages
of multimodal interfaces in term of usability, naturalness and
robustness, but also the difficulties of building a multimodal
language.

Consider for example a user saying, “Show me the phone
number of this person” while pointing at the picture of that person

73

74 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
on the display. In the attempt of representing such a multimodal
sentence, the first difficulty derives from the multidimensionality of
input. In fact, in unimodal languages each input data, which may be
words in spoken or written modalities, shapes in gestures, or eye
fixations in gaze, etc., can be represented as a stream (i.e. a
sequence of tokens), reducing the dimensions from two or three
(e.g., drawings or 3D gestures) to a single one. Though each
unimodal input is one-dimensional, the combination of multiple
streams gives rise to a multidimensional input. Therefore, in
multimodal interfaces a technique able to model the
multidimensionality of multimodal input is necessary. For instance,
in the aforementioned example of sentence, the pointing gesture
may be issued before, in-between or after speech. As the sentence’s
meaning may be different in each of these three cases, the problem
of representing the multidimensionality of inputs is very important
and requires a preliminary phase of input modeling. This issue is
discussed in Section 5.3.

The second difficulty, strictly related to the first one, is about
the syntactic structure and semantic meaning representations of
multimodal sentences. Although several grammars for natural
language have been defined since the 1950s, these grammars can
not be used for multimodal input as they are not appropriate to
model input symbols from different modalities due to the
incompleteness connected with the modality semantics. For
instance, considering again the example of the sentence previously
given, speech input has an incomplete semantic meaning without
considering the pointing gesture too. A well-formed syntactic
structure and a complete semantic meaning can only be achieved by
integrating inputs from both modalities using an appropriate
grammar. Therefore, an extension of the concepts of grammar
widely used in Natural Language Processing (NLP) to multimodal
grammars is necessary and represents a challenge in order to
develop an efficient multimodal language editor. This challenge is
addressed in Section 5.4.

Finally, the third difficulty is strictly related to the grammar
definition process. In fact, usually grammars are defined by writing
a text file containing the grammar syntax rules. This file serves as
input for the grammar parser, that acquires the new multimodal
sentences and decides whether it belongs to the language generated

Chapter 5. The Multimodal Grammar Editor: Theoretical 75
Foundations

by the grammar and also defines its structure by building the
associated parse tree. Creating or editing a large grammar in textual
form is not a simple task, which requires a high skill in
computational linguistics. In contrast, designing a grammar “by
example”, i.e. by inserting the positive sample of multimodal
sentences, which the system has to recognize, is much more
intuitive and requires less training. This issue and the proposed
solution will be discussed in Section 5.5.

5.2 General Discussion on Application Scenarios

Multimodal interfaces have been applied to a broad range of
different real-world applications, including, for example, command
and control systems, web and mobile search engines, information
retrieval systems, and so on.

As the thesis goal is to develop a multimodal grammar editor
that is not addressed to a specific task-driven application, but rather
able to recognize whichever multimodal expression in whichever
task domain, the generality and applicability of the editor to more
than one domain is shown (Chapter 7) and some examples of
multimodal sentences from these application domains are used
throughout the course of all this dissertation.

Therefore, before starting with explaining the theoretical
foundations, some real application scenarios, which all the
subsequent examples of sentences are referred to, are presented.
Note that unimodal inputs can have an incomplete meaning. Only
the fusion with the other complementary modalities allows to give a
complete sense to the sentence. For instance, the speech input
“Show this in Rome” has an incomplete meaning if considered
alone, while it acquires a complete meaning if joined to the
sketching of a river/road.

A driver assistant system

One of the aims of a driver assistance system is to provide
navigational assistance to car drivers. Multimodal dialogue
interfaces are a support for enhancing interaction between humans
and vehicles. In this scenario, for instance, the wuser can
multimodally interact through speech and gesture for knowing
information about the car state or the traffic condition, for setting

76 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
some driving options, for switching lights on or off, for calling
emergency or breakdown services, and so on. For instance, a set of
multimodal sentences for this scenario include:

Si: speech: “Call this emergency service”
gesture: to indicate the breakdown service on a
touch-screen display

S,: speech: “Switch on/off this”
gesture: to point the headlight icon

S;: speech: “Set to 22 degrees”
gesture: to point the temperature icon

S4: speech: “Search for the traffic condition”
gesture: to indicate the map area for the search

A multimodal phone book

A multimodal phone book allows the user to communicate with the
telephone to perform voice dialing and other phonebook control
functions, such as to save or update telephone numbers. In this
scenario the user can interact by the synchronized use of speech
and handwriting modalities for setting and searching information
about the telephone number, address, e-mail, and working company
of people and organizations. For example, the user might say “call
this person” while writing the name of the person on a touch-screen
display. This is a scenario that might occur if the user wants to
preserve his/her privacy. Other examples of multimodal sentences
are the following:

Si: speech: “This person works at CNR”
handwriting: the name of the person on a touch-
screen display

S,: speech: “The new number of this person is”
handwriting: the name of the person and the
telephone number on a touch-screen display

S;: speech: “Give the e-mail of this organization”
handwriting: the name of the organization on a
touch-screen display

A flight timetable system

Chapter 5. The Multimodal Grammar Editor: Theoretical 77
Foundations

A flight timetable system provides timetable information of airline
companies connections. In this scenario, the user can ask
information about flights and companies using speech and pointing
gesture. The system interprets a speech input combined with a
pointing gesture on a digital map. Examples of acceptable
multimodal sentence include:

Si: speech: “What company flies here?”
gesture: to point the location on a map

S,: speech: “Does this company fly here?”
gesture: to point the icon of the company on a
touch-screen display and the location on a map

Ss: speech: “Zoom” or “Zoom this”
gesture: to point the location on a map

Sy speech: “I want to take this”
gesture: to point the icon of the company on a
touch-screen display

A map-based information retrieval system

A map-based information retrieval system allows the user to
retrieve information using maps and concepts connected with them.
The multimodal sentences, which allow to retrieve information are
specified using a speech input in combination with a sketch or
handwriting input that complete the meaning of the speech
sentence. Some examples of mutlimodal sentences in this
application scenario are the following:

Si: speech: “Show this house near school with
garden”
sketch: a drawing of a house on a touch-screen
display

S,: speech: “Show this in Rome”

sketch: a drawing of a river/road on a touch-
screen display

S;: speech: “Show Italian river”
handwriting: the word “name” on a touch-screen
display

78 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations

5.3 Multimodal Input Modeling

As mentioned in Chapter 2, most of the input modalities used in
human communication can be interpreted as information streams,
referring to sequences of data packets or tokens, which may be
words, phrases and sentences in spoken or written modalities,
shapes in gestures, or eye fixations in gaze, etc. Representing input
data as a stream reduces multi-dimensional inputs (e.g., pen-based
or 3D gestures) to a single temporal dimension. However, the
combination of multiple streams gives rise to multidimensionality.
This multidimensionality is strictly related to the type of
cooperation between modalities (see Section 2.2). In particular,
following the typology of Martin et al. [MGAO1], redundant
modalities convey full information alone, without support from the
other. As an example, consider when the address of a hotel is
described, in parallel, by speech and by a pointing on a map. In this
case the problem of representing the multimodal input is quite easy,
because each input has a complete meaning and, therefore, can be
specified by using the specific unimodal syntax. The problem is
less obvious when the modalities are complementary, i.e. they are
not just alternative ways to convey the same information but each
modality processes different information that contributes to the
overall meaning of the sentence. For instance, consider when a user
says “Call this person” while handwriting his name on a touch-
screen display. In this case, a method for combining modalities into
a unique multimodal utterance is necessary. This necessity arises
from the fact that traditional parsing is sequential and, therefore, the
recognition of a sentence occurs only if a linear sequence of tokens
is given as input to the parser.
The building of this multimodal sentence requires a solution to
the following issues:
= how to represent each unimodal input stream;
= how to linearize different input streams into a unique
structure, corresponding to the multimodal sentence that
will be used as positive sample in the grammar inference
process.

These two issues are described in detail in the following
sections.

Chapter 5. The Multimodal Grammar Editor: Theoretical 79
Foundations

5.3.1 Representing Unimodal Input

In order to build a meaningful multimodal sentence from each
unimodal input, first of all it is necessary to represent each input
stream as a sequence of input elements (see Figure 5.1). Generally,
input elements are separated by periods of inactivity, in which no
input signals are detected. The choice of what is represented by an
input element depends on the specific application and, in particular,
on the level of granularity that is required by the application. For
instance, some speech recognizers divide the input signal into
utterances according to the period of silence and the prosody
information, and assign to each utterance the role of an input
element. On the contrary, other speech recognizers regard more
consecutive utterances as a meaningful speech unit, giving them the
role of input element.

In the proposed unimodal input representation, an input
element refers to the basic unit of input that is meaningful to the
application and that can be generated from each unimodal input
recognizer. For instance, an input element may be a word in spoken
or written modalities, a shape in gestures, an eye fixation in gaze,
etc.

Modality 1
recognizer

Modality 1 —PI Tuput element 1 H Input elewent 2 ‘ Input element k ‘

‘ Input element m ‘

Modality 2 Mﬂﬂﬂﬁ_‘? 2 —'| Input element 1 ‘ | Input element 2
I

Modality 11 Modality n —'i Input element 1 ‘ | Input element 2 ‘ Input element p ‘

recognizer

Figure 5.1: The input element representation

In order to determine whether input elements from different
modalities have to be considered redundant or complementary and
consequently decide how to group them according to the
cooperation classes between modalities for building a unique
multimodal sentence, the knowledge of the following information
is necessary, for each input element, as depicted in Figure 5.2:

80 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations

- the value of the element, which has to belong to the
vocabularies of specific input recognition systems,

- the modality used to express the input element,

- the syntactic role that the element has inside the unimodal
sentence. The standard nomenclature of the Penn treebank
[MSM94] is used to represent the syntactic categories. This
is composed by 45 syntactic categories, some of which are
summarized in Figure 5.3.

- the modalities cooperation class, which represent the inter-
modality relationships.

Actual value
T Modality
Input eleme >
| tputerentt | Syntactic role

Modality cooperation

Figure 5.2: The set of attributes of input elements

Moreover, in order to decide what kind of interaction/dialogue
the user wants to have with the system, the information about the
category of multimodal sentence is necessary.

In natural language, sentences can be classified in: simple,
compound, complex and compound-complex. Simple sentence
consists of a single independent clause with one subject and one
verb. Compound sentence has two or more clauses related by
coordinating conjunctions. Complex sentence consists of at least
one independent clause and one or more subordinating clauses
related by subordinating conjunctions. Finally, compound-complex
sentence join together compound and complex sentences.
Considering the complexity of managing complex and compound
sentences, in this thesis only simple sentences will be considered.
The management of more complex sentences represents a future
work.

Chapter 5. The Multimodal Grammar Editor: Theoretical 81
Foundations

| Tag Description Example] Tag Description Example
CC Ceordin. Conjunction and, but, or SYM Symbol +, %, &
CD Cardinal numher one, two, three | TO “o” fo
DT Determiner a, the UH Interjection aft, oopy
EX Existential ‘there’ there VB Verb, base form ear
FWw Foreign word e m!pa VBD Verb, past tense ale
IN Preposition/sub-conj f; in, by VYBG Verb, gerund eating
Il Adjective)-‘e;’f{)lu VBN Verh, past participle eaien
IR Adj., comparaiive bigger WBF Verb, non-3sg pres eat
JIS Adi., superlative wildest VBZ Verb, 3sg pres ears
LS List item marker 1,2, One WDT Wh-determiner which, that
MD Modal can, should WP Wh-pronoun what, wiho
NN Noun, sing. ormass Hama WP$ Tossessive wh- whase
NS Noun, plural Hameas WRE Wh-udverb fuow, where
NNP Proper nonn. singular fTBM b Dollar sign g
NNPS Proper noon, plural Carolinas # Pound sign #
FDT Predeterminer all, both - Left quote (or®)
POS Possessive ending ' " Right quotz ("or™)
PP Personal pronoun I, you, he { Lell purenthesis ([.({ <)
FPS Possessive pronoun VoY, one's) Right parenthesis (1.3, }.>)
RB Mdwerk quickly, never ||, Comma .
RBR Adverb, comparative fasier . Sentence-final punc (. ! 7)
RBS Adverb, superlative fasiest " Mid -sentence pune (... —=)
EF Parlicle up, off

Figure 5.3: Penn treebank syntactic categories

Another sentence classification in natural language is based on
the sentence meaning. Following this criterion, sentences can be
broadly classified as: declarative (statement), imperative
(command), interrogative (question), and exclamatory. From the
analysis of the human behavior in the aforementioned application
scenarios, the following categories can be envisaged in a
multimodal human-computer communication:

- Multimodal Question (MQ)

= “Wh question” Ex: Who is this?
= [nterrogative form Ex: Does this person work in
this company?

- Multimodal Command (MC)

= Imperative Ex: Call
= [mperative adverb command Ex: Show people that work

82 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
here
» [mperative pronoun command Ex: Call this
» [mperative noun command Ex: Modify the number of

this person

- Multimodal Statement (MS)

» Declarative sentence Ex: This is the company of
John Smith
= Demonstrative noun sentence Ex: This person works at
CNR
» Demonstrative pronoun sentence Ex: The number of John
Smith is this
= Demonstrative adverb sentence Ex: John Smith works here
= Negative sentence Ex: John Smith does not
work here

Identifying the category of a multimodal sentence allows to
determine its structure and the expected action. For instance, if the
sentence belongs to the “imperative noun command” category, it
should contain an imperative verb, which corresponds to the action
expected by the user, and a demonstrative noun phrase, that
represents the deictic expression. Moreover, a sentence belonging
to the “wh question” category should contains an interrogative
pronoun that begins with wh- (e.g., who, when, what,etc.).

As an example, consider the multimodal sentence composed of
the speech “call this person and that company”, by the handwriting
of the person’s name and by the pointing gesture on the company
icon on a touch-screen display. The sequence of input elements of
each one of the three modalities and their associated sets of
attributes is depicted in Figure 5.4. Moreover, the category of this
multimodal sentence is “imperative noun command”.

Chapter 5. The Multimodal Grammar Editor: Theoretical 83
Foundations

“Call” “this™ “person” “amd™ “that™ “company”
3 speech speech speech speech speech speech
Speech
v deict n conj deict n
s || Compl v || Compl py | [etoina: Conpl ary || Comy ATy
----- -HW -HW —— -gesture -gesture
John' “Smith”
. HW HW
Handwritme
£ = N n
(HW)
Corpl 'y || Comy ry
-speech -speech
Atos
gesture
T
Gesture =
Complementary
-speech

Figure 5.4: The input element representation for the example

All these information, about input elements and the sentence
category, will be used during the linearization process, as shown in
the following section. Moreover, the input elements, as defined
above, will constitute the set of terminal symbols of the multimodal
grammar, which will be described in Section 5.4.

5.3.2 The Linearization Process

Starting from the input elements, described as shown in the
previous section, the linearization process aims at combining these
elements, grouping them opportunely, in order to generate a linear
sequence of elements, which represents the multimodal sentence
that will be used as positive sample during the grammar inference
process. The linearization takes place according to modality
cooperation and syntactic roles defined in the previous stage.

In particular, modality cooperation allows to determine
whether input elements convey information that have some
relations with the information conveyed by the other elements.
Generally, cooperative input modalities are close together in time.
Although temporal proximity is a quite easy and application-
independent criterion, it does not take into account semantic aspects
of input sentences, producing sometimes a linear sequence of
elements that does not make sense. Moreover, forcing the user to
express a multimodal sentence according to pre-defined constraints

84 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
imposed by temporal links compromises the flexibility that has to
be one of the main features of a multimodal language. Therefore, in
a multimodal dialogue the knowledge of how two or more
modalities cooperate each another represents a more meaningful
information than pre-defined temporal links among input elements,
as this information do not force the user to synchronize the input
elements of a multimodal sentence, capturing likewise the inter-
modality relations.

Information about modality cooperation is used during the
linearization process in conjunction with other criteria that take into
account the syntactic role of each input element. In particular, if
two input elements, coming from different modalities, have the
same syntactic role, they can be considered close together in
syntax. This syntactic proximity is an easy criterion that reinforces
the information about modality cooperation, making the
linearization output more accurate.

Finally, the linearization process makes use of the sentence
category, defined during the previous stage, as final criterion for
determining which is the linear sequence of input elements that will
be the positive sample for the grammar inference process. In
particular, the sentence category allows to understand if a
demonstrative (or deictic) expression should be detected into the
sentence and whether this expression is expressed through a noun,
pronoun or adverb phrase. These information allow to add further
constraints on syntactic proximity.

Let us continue the illustrative example introduced in the
previous section (see Figure 5.4). According to the classes of
modality cooperation, the combination of input elements into a
unique multimodal utterance can be given in several different ways.
Figure 5.5 shows the cooperative relations for the input elements of
the example (the highlighted rectangles include the elements
involved in the cooperation). Any combination of input elements,
which respects the unimodal input order, is acceptable inside the
highlighted rectangles.

Chapter 5. The Multimodal Grammar Editor: Theoretical 85
Foundations

“Call” “this"” “person” “amud”™ “that™ “company”
3 speech speech speech speech speech speech
Speech
v deict n conj deict n
------- Compl ary || Compl ary || -—-——-—- || Corpl ¥ || Cowmpl ¥
————— -HW -HW - -geste -geste
“John” “Smith”
HW HW
Handwriting N
2 n
(ITW)
Compl v || Compl ¥
-speech -speech
Atos
gesture
Gresture =
Complementary
-speech

Figure 5.5: Cooperative relations of input elements in the example

As in the first rectangle (on the left of Figure 5.5) there are
four input elements, six ways of combining them exist, as shown in
Table 5.1. For each element of the sentence the modality
(HW=handwriting, SP=speech, G=gesture) and the actual value of
the element is expressed. For instance, the first sentence is the
linear sequence composed by the handwriting elements “John” and
“Smith” followed by the speech elements “this” and “person”. The
second sentence is composed by the handwriting element “John”,
followed by the speech element “#his”, followed by the handwriting
element “Smith”, and ended by the speech element “person”, and so
on for all the sequences.

Table 5.1: Linear sentences for the example

Hw'idahni HW{Smith) SP{thiz) SP{person)
Hw'idahn SPithis) HWSmith) SP{person)
Hw'ilahni SPithis) SPiperson) HW(Smith)
SPithiz) HW(John) HWSmith) SP{perzon)
SPithiz) HW(John) SPiperson) HW(Smith)
SP(thiz) SP(perzan) HtW(dahn) HWSmith)

M = 03 R~

86 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations

In the second highlighted rectangle (on the right of Figure 5.5)

three input elements occur, giving rise to three different linearized
sentences:

1. SP(that) SP(company) G(Atos)
2. SP(that) G(Atos) SP(company)
3. G(Atos) SP(that) SP(company)

Therefore, the overall sentence can be combined in eighteen
different ways, such as for example:

1. SP(Call) HW(John) HW(Smith) SP(this) SP(person)
SP(and) SP(that) SP(company) G(Atos)

2. SP(Call) HW(John) SP(this) HW(Smith) SP(person)
SP(and) SP(that) SP(company) G(Atos)

3. SP(Call) HW(John) SP(this) SP(person) HW(Smith)
SP(and) SP(that) SP(company) G(Atos)

18. SP(Call) SP(this) SP(person) HW(John) HW/(Smith)
SP(and) G(Atos) SP(that) SP(company)

By applying the syntactic proximity criterion, a reduction of
the number of acceptable linearized sentences occurs. In fact, only
sentences, in which input elements with the same syntactic role are
close together, are acceptable. Figure 5.6 shows syntactic proximity
of input elements in the example (the rectangles highlight the

elements involved in the syntactic proximity). In the first interval
the following three sentences will be considered:

1. SP(this) HW(John) HW(Smith) SP(person)

2. SP(this) HW(John) SP(person) HW(Smith)

3. SP(this) SP(person) HW(John) HW(Smith)
while in the second interval these one:

1. SP(that) SP(company) G(Atos)
2. SP(that) G(Atos) SP(company)

Chapter 5. The Multimodal Grammar Editor: Theoretical 87

Foundations
“Call” “this” “person” “amd”™ “that” “company”
3 speech speech speech speech speech speech
Speech
v deict n conj deict n
_______ Compl ary || Compl ary || -—-——- || Compl uy | | Compl wy
----- -HW -HW ————- -gesture -gesture
“John" “Swnith”
- HW HW
Handwriting N
n
(HW)
Compl ary || Comp ary
-speech -speech
Atos
gesture
Gesture

n

Complementary
-speech

Figure 5.6: Syntactic proximity of input elements in the example

Therefore, the number of acceptable linearized sentences is
decreased from eighteen to six, that are:

1.

2.

SP(Call) SP(this) HW(John) HW(Smith) SP(person)
SP(and) SP(that) SP(company) G(Atos)
SP(Call) SP(this) HW(John) SP(person) HW(Smith)
SP(and) SP(that) SP(company) G(Atos)
SP(Call) SP(this) SP(person) HW(John) HW/(Smith)
SP(and) SP(that) SP(company) G(Atos)
SP(Call) SP(this) HW(John) HW(Smith) SP(person)
SP(and) SP(that) G(Atos) SP(company)
SP(Call) SP(this)y HW(John) SP(person) HW(Smith)
SP(and) SP(that) G(Atos) SP(company)
SP(Call) SP(this) SP(person) HW(John) HW(Smith)
SP(and) SP(that) G(Atos) SP(company)

Finally, taking into account the information about sentence
category, it is possible to detect whereas a demonstrative
expression is defined into the sentence and which is its syntactic
category (noun, pronoun or adverb sentence). In the example, the
sentence category is an imperative noun command. This means that
it contains a demonstrative expression that is used as noun phrase.
Therefore, the deictic word “this” (or “that”) has to be followed by

88 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
a noun, that implies the selection of the third sentence (among the
above six sentences), that is:

SP(Call) SP(this) SP(person) HW(John) HW(Smith) SP(and)
SP(that) SP(company) G(Atos)

In summary, the multimodal input model presented here allows
to represent each input stream as a set of input elements, and to
linearize different input streams into a unique multimodal
sequence, that will be used as positive sample for the inference of
the multimodal grammar.

5.4 The Multimodal Attribute Grammar

Designing and developing a grammar editor for a multimodal
language processor that is not addressed to a specific task-driven
application, but rather able to recognize whichever multimodal
expression, is a focal question. The editor is intended to be used by
expert and/or non-expert users who want to specify the multimodal
language that has to be recognized by the system.

As a language can be formally described through a grammar,
the specification of a multimodal language requires the definition
of a multimodal grammar. The most popular kind of grammar,
extensively used in natural language processing and frequently
adapted to represent multimodal languages, is the context-free
grammar (CFG), previously introduced in Section 3.3.1.

For defining the multimodal grammar proposed in this
dissertation, the context-free paradigm has been followed due to its
ability to model all frequent linguistic sentences of multimodal
language by assuring, at the same time, a lower parsing complexity.
However, in order to use CFG for multimodal language processing
it is necessary to overcome the two main deficiencies of this
grammatical formalism, i.e. the lack of constructions both for
representing input symbols from different modalities and for
modeling semantic and temporal aspects of input symbols.

In this attempt, attribute grammars provide a good compromise
between the context-free paradigm and the necessity to represent
semantic and temporal aspects of multimodal input.

Attribute grammars [Knu68] were firstly developed by Donald
Knuth as a means of formalizing the semantics of a context-free

Chapter 5. The Multimodal Grammar Editor: Theoretical 89
Foundations

language. They may be informally defined as a context-free
grammar that has been extended to provide context sensitivity
using a set of attributes (associated with each distinct symbol in the
grammar), assignment of attribute values, evaluation rules, and
conditions.

Starting from the attribute grammar formalism, an extension of
this notation for multimodal input processing is necessary.
Therefore, the Multimodal Attribute Grammar (MAG) has been
introduced, whose formal definition is given below.

Definition 5.1. A Multimodal Attribute Grammar is a triple
G=(GAR

where:

(1) Gis a context-free grammar (T, N,P,S) with T as set of terminal
symbols, N as set of non-terminal symbols, P as set of production
rules of the form:

X = XX ... X, wheren>1, Xy e Nand X, e NU T
for 1 <k<n

and S € N as start symbol (or axiom)

(2) Ais a collection (A(X)) x «y U T of attributes of the non-terminal
and terminal symbols, such that for each X e N v T, A(X) is split
in two finite disjoint subsets 1(X), the set of inherited attributes of
X, and S(X), the set of synthesized attributes. The set S(X) with X
€ T includes a set of attributes MS(X), called set of multimodal
synthesized attributes, composed of the following four attributes:

MS(X)={val, mod, synrole, coop}
(3) R is a collection (R,) , < p of semantic functions (or rules).]

A derivation tree for a sentence in a context-free language has
the property that each of its leaf nodes is labeled with a symbol
from 7'and each interior node ¢ corresponds to a production p € P
such that ¢ is labeled with X} and ¢ has n children labeled with X,
X, ..., X, in left-to-right order, as shown in Figure 5.7.

The set of production rules P can be partitioned in two disjoint
subsets, the set of background rules Py and the set of target rules

90 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
Pr. The former is composed of rules that are directly derived from
the background knowledge, i.e. they contain terminal symbols only
in the body. The latter is composed of rules that are derived from
the background rules, i.e. they contain at least one non-terminal
symbol in the body. Therefore, background rules are of the form p,:
Xyo = A, where X e N and 4 € 7, while target rules are of the
form p,: Xy - X;...X,,, where Xy e Nand X; e N U T.

inherited

syrthesized
| available

| compted

R N 2 G S
Figure 5.7: Information flow in the attribute grammar notation

The attributes of the set MS(X) are domain independent and are
necessary for managing the multimodal properties of a sentence. As
discussed in Section 5.3.1, each input element of a multimodal
sentence, corresponding to a terminal symbol of the grammar,
contains information about the actual value of the element, the
modality, the syntactic role, and the modality cooperation. These
information are contained into the four attributes of MS(X).
Precisely, the val attribute expresses the current value (concept) of
the terminal symbol, the mod attribute represents the modality, the
synrole attribute conveys information about the syntactic role, and
finally the coop attribute expresses the modality cooperation with
other terminal symbols. In particular, the domains of these
attributes are the following:

Dval =T

Duoa= {speech, handwriting, gesture, sketch}

Chapter 5. The Multimodal Grammar Editor: Theoretical 91
Foundations

Dgynrole = {noun phrase, verb phrase, determiner, verb, noun,
adjective, preposition, deictic}

Deoop = {complementary, redundant}

The set R, of semantic functions associated with each
production rule in P allows to compute the values of the inherited
and synthesized attributes. In order to explain how these functions
are defined the following definition has to be provided.

Definition 5.2. Let p be a production rule in P of the form
p:Xy—=> X1 X5 X,

For each i=0,...,n and each a in A(X,), the notation X,.a denotes the
occurrence of the attribute a of the symbol X; in p. The set of all
such occurrences is denoted Occ(p) and is called the set of
occurrences of p.]

Given a production rule p, the set Occ(p) is composed of two
finite and disjoint sets, named Input(p) and Output(p). The former
contains the occurrences of the attributes in p that are available
from the context, i.e. the inherited attributes for the head of the rule
p and the synthesized attributes for the symbols in the body of p.
The latter contains the occurrences of the attributes in p that have to
be computed using the semantic functions, i.e. the synthesized
attributes for the head of the rule p and the inherited attributes for
the symbols in the body of p. This is expressed in the following
lemma.

Lemma 5.1. The set of occurrences of a production rule p: Xy —
X; X5 ... X, is given by

Occ(p) = Input(p) U Output(p)

where
Input(p) = {X.a | X; € I(Xy) or X; € S(X;) for i>0} and
Output(p) = {X.a | X; € S(Xy) or X; € I(X;) for i>0}]

Whether the production rule p contains any terminal symbol X;
in the body, then the set Input(p) contains also the occurrences of

92 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
the attributes of X; in MS(X,) as they are included in the synthesized
attributes S(X,).

The attribute occurrences X.a € Input(p) take a value from
some semantic domain (such as integers, strings of characters, or
structures of some type) that is given by example. The attribute
occurrences X.b € Output(p) take a value that has to be evaluated
by semantic functions. Therefore, a finite set R, of semantic
functions is associated with the production p, with exactly one
function for each attribute occurrence X.b € Output(p). Each
semantic function in R, is composed of an assignment statement.
The left side of each assignment statement is an occurrence X.b €
Output(p) while the right side contains an expression (in some
predefined logical language) with variables in (Occ(p) — X.b).
Formally, the definition of a semantic function can be given as
follows.

Definition 5.3. Let p: X;) = X; X5 ... X, be a production rule in P.
The set R, is composed of semantic functions that have the form

Xib — f1, ., Wi with k > 1
where
1. X.b € Output(p);
2.y, with 1<j<k, is an occurrence in (Occ(p) — X.b);
3. fis a function that maps the values of y;, ..., yy to the value
of X..b.]

Analogously to the set of production rules P, the collection ®
of semantic functions can be partitioned in two disjoint subsets, the
set of background functions Ry associated with the production rules
belonging to Py and the set of target functions Ry associated with
the production rules belonging to Pr.

Example 5.1. Consider again the multimodal sentence composed of
the input elements shown in Figure 5.4. The consequent linearized
sentence, that has been evaluated in Section 5.3.2, has the form:

SP(Call) SP(this) SP(person) HW(John) HW(Smith) SP(and)
SP(that) SP(company) G(Atos).

Chapter 5. The Multimodal Grammar Editor: Theoretical 93
Foundations

The multimodal attribute grammar that is able to generate this
sentence is written as follows.

- Terminal symbols: T={Call, This, Person, John, Smith, And,
That, Company, Atos}

- Non-terminal symbols: N={Sentence, VP, VB, NN, DT, NP,
NNP, CC, NNS}

- Start symbol: S

- Attributes: A(X) =I(X) U S(X) where
I(X)=0
S(X) = {val, mod, synrole, coop} so that

= S(NN)=S(DT)=S(NNP)=S(CC)=S(NNS)=S(VB)={v
al, mod, synrole, coop} and
= S(Sentence)=S(VP)=S(NP)= {val, mod}

- Production rules and semantic functions:

P1) S - VP Sentence

R1.1) S.val « VP.val + Sentence.val

R1.2) S.mod <~ VP.mod + Sentence.mod
P2) VP - VB

R2.1) VP.val <~ VB.val

R2.2) VP.mod <~ VB.mod
P3) Sentence - NP CC NP

R3.1) Sentence.val «— NP.val + CC.val + NP.val

R3.2) Sentence.mod <— NP.mod + NP.mod
P4) NP — DT NN NNP1 NNP2

R4.1) NP.val <~ NNP1.val + NNP2.val

R4.2) NP.mod <~ DT.mod + NNP1.mod
P5S) NP — DT NN NNS

R5.1) NP.val <~ NNS.val

R5.2) NP.mod < DT.mod + NNS.mod
P6) NN — Person

R6.1) NN.val < person

R6.2) NN.mod <« speech

R6.3) NN.synrole < noun

94

Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations

R6.4) NN.coop < complementary
P7) NN — Company

R7.1) NN.val <- company

R7.2) NN.mod « speech

R7.3) NN.synrole < noun

R7.4) NN.coop < complementary
P8) DT —> This

R8.1) DT.val « this

R8.2) DT.mod <« speech

R8.3) DT.synrole <« deictic

R8.4) DT.coop «— complementary
P9) DT — That

R9.1) DT.val « that

R9.2) DT.mod « speech

R9.3) DT.synrole < deictic

R9.4) DT.coop <— complementary
P10) NNP1 — John

R10.1) NNP1.val < John

R10.2) NNP1.mod <« handwriting

R10.3) NNP1.synrole < noun

R10.4) NNP1.coop < complementary
P11) NNP2 — Smith

R11.1) NNP2.val <~ Smith

R11.2) NNP2.mod <« handwriting

R11.3) NNP2.synrole <— noun

R11.4) NNP2.coop <— complementary
P12) NNS — Atos

R12.1) NNS.val < Atos

R12.2) NNS.mod <« gesture

R12.3) NNS.synrole < noun

R12.4) NNS.coop <« complementary
P13) VB — Call

R13.1) VB.val « call

R13.2) VB.mod « speech

R13.3) VB.synrole « verb
P14) CC - And

R14.1) CC.val « and

Chapter 5. The Multimodal Grammar Editor: Theoretical 95
Foundations

R14.2) CC.mod <« speech

R14.3) CC.synrole <— conjunction

The set of background rules is Py = {P6, ..., P14} while the set
of target rules is Pr= {P1, P2, P3, P4, P5}.

The background functions Rjp, associated with rules in Pj,
assign the values of the attributes of terminal symbols to the
attributes of the corresponding syntactic categories. For instance,
Function R14.1 assigns the value “and” to the attribute val of the
syntactic category CC, while Function R14.2 assigns the value
speech to the attribute mod of the syntactic category CC, and so on
for all the background functions.

The target functions Ry, associated with rules in Pr, map the
opportunely combined values of the attributes of non-terminal
symbols in the body of the rules into the attributes of the non-
terminal symbols in the head. For example, Function R4.1 assign to
the attribute va/ of non-terminal symbol NP the value obtained by
combining the values of the attribute val of the non-terminal NPP1
and NPP2 (the + operator produces the sequence of terminal
symbols involved in the operation), while Function R4.2 assign to
the attribute mod of non-terminal symbol NP the value obtained by
combining the values of the attribute mod of the non-terminal DT
and NPPI (+ represent the operation of union between two
modalities), and so on for all the target functions.

The derivational tree of the multimodal sentence in the
Example 5.1 is shown in Figure 5.8.

96 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations
furl= Call T Smath and oo
mndespeech + Hi+geshme} @

fal= Tohn Stnih nd Atos
mndespeech + Hi+geshme

Sentence

flcl @ il Tk St ooy e s
mod=spesch mod=gpesch + HW} {rramd mod=speedihgestire

!

Cali and
{val=this {wl=mth {wil=that {l=company {mal= Btns
mod=speech ; mod=HW mod=speech | mod=speech mod=gestime
Y Le=deictic o 1 o Le=deirtic Y 1 Y 1
cogp=conply coop=totpl} conp=comepl) | coop=roeepl} coop=compl}

this peram ok Stk that company Atos

Figure 5.8: The derivational tree of the sentence in Example 4.1

5.5 The Grammar Inference Algorithm

Given the set of multimodal linearized sentences and the
multimodal attribute grammar formalism, both described in the
previous paragraphs, the next step in developing a multimodal
language editor is to define a computationally efficient algorithm
for grammatical inference that takes as input the set of linearized
sentences (containing positive examples only) and generates the
MAG production rules and the associated semantic functions to
parse those examples.

This section describes such an algorithm that relies on the
inductive CYK (Cocke-Younger-Kasami [Kas65]) algorithm and
the e-GRIDS [PPKO04] learning operators. In particular, a revised
version of the inductive CYK algorithm is provided for generating
the initial grammar from positive sample sentences, while the e-
GRIDS learning operators are taken as starting point for improving
the initial grammar description. The choice of the CYK algorithm
has been led by its simplicity and efficiency, mainly for simple set
of training examples, while the e-GRIDS learning operators are

Chapter 5. The Multimodal Grammar Editor: Theoretical 97
Foundations

able to improve the grammar description making it more accurate
and it resolves the over-generalization problem. Therefore, the
proposed grammar inference method tries to join together the
strengths of the inductive CYK and e-GRIDS algorithms, adapting
them to multimodal input. In particular, this method consists of two
main steps (see Figure 5.9): the first step includes a revised version
of the inductive CYK algorithm for generating the multimodal
attribute grammar that is able to parse the input sentence; the
second step makes use of the e-GRIDS operators for improving the
grammar description coming from the first step and avoiding the

over-generalization problem.

Multimodal linearized Multimodal Attribute Target sentence
senience X Grammar G x

[i i

592 93 92

Lralyze if % canbe generated by G by creating the CVE matrix and Ifxis =
producing a set of candidate production rles CPR with the associated ted by ':IUP
semantic functions C5F

l If xis not generated by G

STEP1

Select the production niles in CPR. and the associated
serantic functions in CSF that are able to generate x producing a new
Ivluttimodal & ttribute Crrararear G

Nultimodal Attribute Gravumar G

k.

Frraluate the description length DL of the grammar 7

|

Aypby the learming operators for generating equrvalent grarmmar
descriptions, evaluate the description lengths of these grammars, and
select the roultirodal attribute gravamar G with miniraum description

lengthDL™= DL
I

=

STEP

Muliimedal Atixihuie
Grammar G

Figure 5.9: Workflow of the proposed grammar inference algorithm

These two steps are described in detail in the following sections. In
particular, next section illustrates the first step of the algorithm,
which generates the MAG production rules and the associated
semantic functions to parse positive examples, while Section 5.5.2

98 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
presents the second step, which applies the learning operators and
provides a measurement of the accuracy of the grammar for

improve the grammar description.

55.1 First Step: the MAG Generation from Positive
Examples

The proposed grammatical inference algorithm enhances the
inductive CYK algorithm along two main dimensions. The greatest
disadvantage of the application of the inductive CYK algorithm to
MLP is associated with the fact that it learns from an informant (see
Section 4.4.1). In fact, it is difficult to obtain a set of negative
examples in NLP and MLP. To be more precise, the user is unable
to specify all sentences that have not to be included into the
grammar, while s/he can easily define sentences that have to be
included. In the literature, the majority of the learning algorithms
applied to NLP, in fact, infers grammars solely from positive
examples. Therefore, an adaptation of inductive CYK algorithm is
necessary in order to learn from positive examples only. However,
this requires the introduction in the second step of some heuristics
to avoid the over-generalization problem. Another significant
improvement relates to handle Multimodal Attribute Grammars
rather than CFGs. Therefore, not only the set of production rules
has to be generated by the algorithm, but also the collection of
associated semantic functions for evaluating the attribute values.
For the sake of convenience, the revised CYK algorithm has
been split in two consecutive steps, whose detailed descriptions are

given in Figure 5.10 and 5.11, respectively.
The first step takes as input:

- the linearized sentence x= x;x;...x;, with x;e T}

- the current multimodal grammar G=(G,4,®), if exists, with
G=(To,No,Po,S0), A =(4(X)) x cnvo w10 and R, is the set of
semantic functions for evaluating the attributes of Xe N,
v Ty

- the sets of synthesized attributes S(x;) associated with each
terminal symbol x;;

- the sets of occurrences of attributes in S(x;) for 1 <i<k;

Chapter 5. The Multimodal Grammar Editor: Theoretical 99
Foundations

- atarget sentence x, composed of terminal symbols x;7.The
output is a CYK matrix, in which each position c¢; contains the non-
terminals, the associated weights and the semantic functions for
evaluating the attribute occurrences of the non-terminals. At the
same time, a structure that contains all the candidate production
rules (with the associated weights) generated by the algorithm is
created and updated. The first step ends whether the sentence x is
generated by the current grammar. Otherwise the algorithm
proceeds with the second step.

During this step the analysis of the structures generated during
the first step, that are the CYK matrix C and set CPR of candidate
production rules is performed. In particular, the algorithm selects
the candidate derivations with the highest weights. Non-terminal
symbols, which belong to the set Ny, do not need any processing,
while those symbols that are created during the first phase for
simulating the generation of some productions, need to be
definitely included into the grammar. Consequently, non-terminals
that make part of the production rule inserted into the grammar,
have to be re-defined until all symbols belong to the grammar.
Therefore, the output of the revised CYK algorithm is a new
multimodal attribute grammar G’=(G’ 4,R), where
G=(T"N",P’,S*), A’ =(A(X)) x e~ o1, and R is the set of semantic
functions for evaluating the attributes of Xe N U T.

100 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations
Ingrutan gt sentence X 3% 380t T = {5 % ..., 1} of temamal syndols, nonbiodsl attriote gramm G={.1),
fexdsts, with G=(T, M, P30 A=) o gy, m nd & 15 the set of sementic fimetions for eveluating the attrbutes of
£ e Ny u T, the sets of synthesed attrlutes S(x) associated with each tenwinal symbol x for | 2 1 2 k; the sets of
occumences of sttriutes i 30r) for | <1< K a target sertence o composed of terminal symhals 1, T
Qutput & CVE nateie C; aset CPR of pandidate production nies,

Preconditions x 1s & string that has been pased by the sydactic analyser yet. Each i eleoend s then assocated wath
ayntactyc category el .
Procedure (Geterate 2 candidste set of production rales CPR used m Step 2)

1. Consider ¥ 85 the sertence %%, . ¥y, Generste the set P of poodustion nes that is conposed of nules of the forn &=
¥, where 335 the ith it eleraent of x and & €N, 15 the symtactic categury of . givenby the symtactic analyzer,
B=RuP’

2. Theate the following processes forall 1 212k

(&) Tnatialize a new CVEC matrix C (ko k) by
oy (B ey (&) eFy} forall1 212k

(b Assign aweight wiey) = 0.3 fo eacheg
(c) Assign o each o 4 set of semantic finctions of the fomm & 4 28 foralla eS(x)
3. Tteate the following processes forall 2 < < kand 1 212 bt

{a) Initialize the element 6= 0

@fordlg(l<qzj0)
L consider the matit elemente ¢ =X and ey, =T
1.1 production nde p: (4 =X V) such that & e, st in By
lemcy = A
wiA) = 2wl (7]
for =2,V if tvad ex, then {A val e Ty vl A mood & 7yt 200}
else introduce & new production e x: (B = X V) such that B g,
5B
w(B) = [mX (7]
CPR=CPRU(B —XT)
fort=2, ¥ if vl ex, then {Bovdd ¢ Byt Burood &= By trnod)
4 175 & oy then rabuem (suecess)
ekse procesd with step 4

Figure 5.10: First step of the revised CYK algorithm

Chapter 5. The Multimodal Grammar Editor: Theoretical 101
Foundations

Input an inprut senterce % %%y & CVK matix C; o set CPR of candidate production rles; & curent nodtimodal
attriute gramwar Ge= (g4, &t with, G<{T,N, F,.5), & contains the sets of syrthesized attrbutes 3y associated with each
feminal syrehol 3; =T, & contauns the setvantic fanctions R, for evaluating the attrlnte occunences of nondeminal in
the head of sorne production rales i F,.

Oruiput & new ronttiods] attobute grarear G'= (8 &twith AT NP5 and & =R.Pu R'p

Preconditions the sentence x does nat belong to the lngnage genersted by the cument marar G.

Procedure
1. Gelect the non-teremal syl & withthe bighest weight o the locstion e, of the CYK ratrix.
2. Find the candidate production rale r £ CPR of the fomr: & = B C, contaiing & i the head, and comsider the
gytthols B and C in the body,
3. Intiahize P = Fy
4. hld the produstion rile t: § < B C o the set P and
Re{Sae Bepeta) forall a eSit) witht=B.C
=E, UE,
5. Tterate the following processes for all syhols in the body of aprodustion nie:
B {C) 15 contamed in the head of any e of CPR, then
1 Comsider the production nide Py: B = X'V with the highest weight
Ll «HNuB
i PP ub
I, Rpf{B.a & Beyvta) foralla eS(t) with =¥
wh=R Ry

w1, tetum to poizt 5, considerng the syphols £ and ¥ in the body of the production nds By

Figure 5.11: Second step of the revised CYK algorithm

More in details, the first step of the revised CYK algorithm
(shown in Figure 5.10) works in the following way. Assume we
have a multimodal linearized sentence x, that is composed of input
elements x;, for 1<i<k that are the terminal symbols of the
grammar. Each terminal symbol is associated with a syntactic
category, which corresponds to a non-terminal symbol of the set
No. If x is not the first multimodal sentence inputted to the editor, a
multimodal attribute grammar G exists yet and it is given as input
to the algorithm. This initial grammar G is composed of (G, 4,®),

with G=(T,No,Po,S¢), A =(A(X)) x cno o0, and R is the set of
semantic functions for evaluating the attributes of X e N, U T,.

102 Chapter 5. The Multimodal Grammar Editor: Theoretical

Foundations
Moreover, for each terminal symbol x; assume that a set of
synthesized attribute S(x;)={val, mod, synrole, coop} is specified
by the user. Finally, assume that the user specifies a target sentence
x, in NL, that is a sentence equivalent to the linearized sentence x,
i.e. conveys the same information, and it is composed of a subset of
terminal symbols of x. The target sentence is necessary for
associating the meaning the user wants to give to the multimodal
sentence x.

For each terminal symbol x;, for 1 <i <k, the revised CYK
algorithm considers the set P’ of production rules of the form 4,—
x;, which have the i" terminal symbol in the body and the
corresponding syntactic category 4; € N, in the head. This set P’ is
added to the initial set P,. Afterwards, the CYK matrix C (that has
dimension k) is initialized and its first row is computed as follows:
the elements of the i™ entry of the matrix are the heads 4; of the
production rules in P’, for 1 <i <k. Moreover, the algorithm
assigns both a weight to each non-terminal symbol A4,, which is
equal to 0.5, and a set of semantic functions R;, which allow to
compute the occurrences of attributes of A4, In particular, each
function 4.b « x.b assigns the occurrences of the synthesized
attributes h={val, mod, synrole, coop} of the terminal symbols x; to
the corresponding attributes of 4.

Therefore, the algorithm computes all the remaining rows in
the following way. Let i be the column number and j be the row
number. The element c; of the matrix is equal to the head of a
production rule p: A — X Y such that X=c,, and Y=c;,;, for all
g=1, ..., j-1. If 4 is a non-terminal symbol in N, then the algorithm
assigns it to the entry c; of the matrix C. Otherwise, it creates an
appropriate non-terminal symbol B (not in N,) in order to simulate
the generation of the non-terminal symbols X and Y and assigns it
to the entry ¢; of the matrix C. Moreover, the algorithm assigns a
weight to each non-terminal symbol, that is the sum of the weights
assigned to X and Y. If 4 eN, the weight is doubled. Furthermore,
two semantic functions are assigned to the non-terminal 4 (or B).
The first function computes the occurrence of the attribute val of
the non-terminal 4 (or B) as the sum of the occurrences of the
attribute val of the non-terminal X and/or Y, whose occurrences of
the attribute val appear as terminal symbols in the target sentence

Chapter 5. The Multimodal Grammar Editor: Theoretical 103
Foundations

x,. The second function computes the occurrence of the attribute
mod of the non-terminal 4 (or B) as the sum of the occurrences of
the attribute mod of the non-terminal X and Y.

When all rows of the CYK matrix are computed, the algorithm
checks if the cell ¢y, associated with the overall sentence x,
contains the start symbol S. In the positive case the sentence x can
be parsed by the actual grammar and there is no need to update the
grammar. Otherwise, the algorithm proceeds with the second step
(shown in Figure 5.11) for identifying a further start symbol. In
particular, the algorithm chooses the non-terminal symbol 4 with
the highest weight in the location c;; of the CYK matrix. Then it
considers the production rule 4 — B C containing A4 in the head and
adds the symbols B and C as a further derivation of the start symbol
S. At this point, the new derivation tree can be created by selecting
the derivation p; (within the set CPR of candidate production rules)
that contain B (and C) in the head. The set of non-terminal symbols,
production rules and semantic functions are consequently updated,
by adding B (and C) to N, the rule p; to Py, and the functions for
computing the occurrence of the attributes of the non-terminal B
(and C) to R,

Comparing the original CYK algorithm, that has been
introduced in Section 4.4.1 (see Figure 4.2) with the revised CYK
algorithm proposed in this thesis, there are basically two main
differences in the first step. Firstly, the revised CYK algorithm
introduces a weight (see point 2.b and 3.b.ii in Figure 5.10)
associated with each element of the CYK matrix for choosing the
appropriate candidate production rules during the second step,
without the necessity of backtracking. Secondly, as the MAG
notation requires that a set of semantic functions is associated to
each production rules, the algorithm provides a way to evaluate
these functions (see point 2.c and 3.b.ii in Figure 5.10) and stores
them in the CYK matrix along the non-terminal symbols.
Analogously, in the second step the revised CYK algorithm differs
from the original CYK algorithm for two reasons. First of all, the
choice of the candidate production rules is based on the weight that
each rule has into the grammar (see point 1 in Figure 5.11), instead
of the similarity with the form of the rules selected by the user (see
point 1 in Step 2 of Figure 4.2). This allows to obtain a more
accurate and weighted choice of the production rules to be inserted

104 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations

into the grammar. Finally, in addition to the set of production rules,
the algorithm outputs a set of opportunely defined semantic
functions associated with each production rule (see point 4 and 5.iv
in Figure 5.11).

Example 5.2. Consider the multimodal sentence composed of the
speech “call that company” and the pointing gesture on the
company icon on a touch-screen display. The consequent linearized
sentence has the form:

SP(Call) SP(that) SP(company) G(Atos).

The initial set of production rules P’ contains the following
rules:

P’ ={VB— Call; DT— that; NN— company, NNS—Atos }

Table 5.2: CYK matrix for the example

Call that COMpAnY Atog
1 2 3 4
VB (0.5 DT 0.5 HN (0.5 HH35{0.5)
WE walecall DT wrale—that HH wrale—comparne: HHE xrale— Sos
WE modsspeech DT modespeech HHmode—speech HHE mode—geshme
VB gptmoleeterh DT .syrmolee—deictic HH.. 1 HHE syrrol
D T.coops—compl HH.coops—compl HHE .coope—compl
Bil) cin D1y =]
E wle—call Drwrale— Ao
B mode—speech D mod—geshme
E(1.5) 315
Exle—call Garale— Atos
Emodespeech mode—geshme & b=
F(l.5) Hil5
Falecall Hoale— Ao
Fmode—speach Hmode—geshme
I3
Trrale—call Atos
Impde—speech+geshire
L@
L wvale—call fitos & i =]
L mode—speech+geshmre
M(2)
Blwale—call Atos
Mmodespeech+gesture

The CYK matrix consequent to the running of the first step of
the revised CYK algorithm is shown in Table 5.2. Furthermore, the
set of candidate production rules CPR contains the following rules:

Chapter 5. The Multimodal Grammar Editor: Theoretical 105
Foundations

CPR = {B— VB DT: C— DT NN; D— NN NNS; E VB C; F
— B NN; G »DT D; H— C NNS; I VB G; L— B D; M— E
NNS}

During the second step, the algorithm chooses randomly one of
the symbols in the location c¢,;, of the matrix, as they have the same
weight (equal to 2). For instance, suppose that the symbol 7 is
chosen, which consequently becomes the new start symbol S of the
grammar. Moreover, the production rule S — VB G is added to the
set P’, along with the corresponding set of semantic functions
R&~{S.val«~VB.val+G.val; S.mod<«-VB.mod+G.mod}. At this
point the symbols in the body of the selected rule are taken into
account: as VB € N,, it is included in the grammar yet, while G is
an additional symbol that is not included in the grammar yet.
Therefore, the algorithm selects the rule in CPR that contains G in
the head (i.e. G —-»DT D) and adds this rule to the set P’
Moreover, it adds G to N, and the set of semantic functions
Rs={G.val D.val; G.mod«-DT.mod+D.mod} to R,
Analogously, considering the symbols in the body of the selected
rule G -»DT D, D is not included in the grammar yet. Therefore,
the algorithm selects the rule in CPR that contains D in the head
(i.e. D— NN NNS) and adds this rule to the set P’. Moreover, it
adds D to N, and the set of semantic functions Rp={D.val«
NNS.val; D.mod<-NN.mod+NNS.mod} to R,,".

At the end, the grammar G’ is composed of the following
production rules and semantic functions:

P1)S—> VBG

R1.1) S.val«~VB.val+G.val

R1.2) S.mod<«VB.mod+G.mod
P2) G »DT D

R2.1) G.val« D.val

R2.2) G.mod<«-DT.mod+D.mod
P3) D— NN NNS

R3.1) D.val<— NNS.val

R3.2) D.mod<«-NN.mod+NNS.mod
P4) VB — Call

R4.1) VB.val « call

106 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations
R4.2) VB.mod « speech
R4.3) VB.synrole < verb
P5) DT — That
R5.1) DT.val « that
R5.2) DT.mod « speech
R5.3) DT.synrole < deictic
R5.4) DT.coop < complementary
P6) NN —» Company
R6.1) NN.val < company
R6.2) NN.mod <« speech
R6.3) NN.synrole <— noun
R6.4) NN.coop <— complementary
P7) NNS — Atos
R7.1) NNS.val < Atos
R7.2) NNS.mod « gesture
R7.3) NNS.synrole <— noun
R7.4) NNS.coop < complementary

At the end of the revised CYK algorithm a new multimodal
attribute grammar G’ that is able to generate the multimodal
linearized sentence x is available.

However, as the revised CYK algorithm does not use negative
examples (i.e. sentences that should not be recognized by the
grammar) for limiting the extent of generalization, an additional
criterion is needed to avoid the generation of a trivial grammar that
accepts any example.

Therefore, during the second step of the proposed grammar
inference method, a heuristic based on the minimum description
length [Ris78] of the grammar is introduced for computing the
“simplicity” of the grammar and a set of two learning operators is
applied for improving the grammar description towards more
“simple” grammars.

5.5.2 Second Step: Improving the Grammar
Description for Avoiding the Over-Generalization
Problem

The goal of the second step of the proposed grammar inference
method is to update the multimodal attribute grammar G, outputted

Chapter 5. The Multimodal Grammar Editor: Theoretical 107
Foundations

by the first step, by evaluating its description length and applying to
it the learning operators for producing equivalent grammar
descriptions that are more “simple” with respect to the description
length of the grammar.

In order to handle Multimodal Attribute Grammars, it is
necessary to adapt the evaluation of the description length, as well
as the merge and create operators, defined by Petasis et al.
[PKKO4] and applied to CFGs. Therefore, the significant
improvement introduced in this step of the proposed grammar
inference method relates to handle not only the set of production
rules but also semantic functions both in the description length
evaluation and in the learning operator definition.

Roughly, the second step of the grammar inference method,
named briefly grammar updating step, works in the following way.
It takes as input the multimodal attribute grammar G'=(G’4,R)
generated during the first step, where G=(T",N’,P*,S’), 4’ =(4(X))
x env o and R is the set of semantic functions for evaluating the
attributes of Xe N U T.

First of all, the algorithm evaluates the description length DL’
of G’. Afterwards, it repeatedly applies the merge operator
considering all ways of unifying non-terminal symbols of G’. The
resulting grammar G’ is evaluated by computing the description
length DL’’. If G’ scores better than the current grammar G’, then
G’ replaces the current grammar G’, otherwise G’ remains the
current grammar. At this point, the algorithm continues by
considering all ways of creating new non-terminal symbols from
pairs of symbols that occur in sequence within the grammar
repeatedly applying the create operator to the current grammar.
Again, the description length of this resulting grammar is evaluated
and the grammar that has the lowest score is selected as current
grammar. The algorithm iterates the application of the merge and
create operators until it is unable to produce a grammar that scores
better than the current grammar. A detailed description of the
grammar updating step is given in Figure 5.12. Note that the loop
identified by a in the figure represents the merge operator, while

the loop identified by c in the figure represents the create operator.

108 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations

Input & current wultinodsl attrbute gammar G'=(g.46) with GTHF5), A contains the sets of
symthesized attrbntes S(x) associated with each terminal symhbol x €T, ® contains the ssmantic
functions Ry, for evaluating the attrlboute ocourrences of non-temuinal in the head of some production
ruesin B,

Output a new multimodal attrbute gravamar G

Procedure
1. Esaluate the description length DL of G

2. Tterate the following processes
a. Foreach production rule p e P, such thatp: & =B C
for each production rile p’# p eF, such that p™ & = BD
Lreplace pand p’ withp™: & =B X
1. for each rale m P and each semantic fmetion m PH
replace C and D with £
b, Evaluate DL of the new gravnar G
ifDLIG™) < DL{G") then & G
c. For each production rule p e F, such that such that B Chelongs to the body of p
for each production rae p'= p 2P, such that B C belongs to the body of g,
Laddanewrle p™ & B Cta P
L. for each mle in P
teplace all secmences B C with &
fior each seantic rle
replace B and C with &
d. Evaluate DL of the new grarmmar 57
HDL{G) = DL{G") then retwn to point 2 considering &7 & 57
else stop

Figure 5.12: Grammar updating step

Some more details about the minimum description length model
and the learning operators are given in the following two sub-

paragraphs.

55.21 Description Length of a MAG

The minimum description length (MDL) principle, as introduced by
Rissanen [Ris78], is a general principle of statistics that allows to
seek the shortest possible representation of data expressed through
a representation language. In natural language, this principle has

Chapter 5. The Multimodal Grammar Editor: Theoretical 109
Foundations

been extensively used for grammar inference from positive
examples [Wol82] [Gru96] [KelL97] [PPKO04] as a heuristic for
comparing grammars and selecting the one that is more “compact”
with respect to both the length of the grammar as well as the
encoding of the training set by the grammar. The choice of the
MDL heuristic in our approach is motivated by the encouraging
results of the application of the MDL approach to the inference of
natural language grammars. In fact, several works [LaS00]
[PPK04] show how the use of this heuristic helps in avoiding the
over-generalization problem guiding the search process towards the
optimal grammar. However, the application of the MDL heuristic
to our grammar inference method needs an adaptation as it fits well
for CFGs but it can not be applied to MAGs as is.

Before explaining how the MDL principle has been adapted to
MAGs, some preliminary definitions have to be given.

Following the approach proposed by Petasis et al. [PPK04],
given a context-free grammar G and a set of positive examples E,
the description length DL of G is the sum of two independent
lengths:

DL = GDL + DDL, where:

* GDL is the Grammar Description Length, i.e. the bits
required to encode the grammar rules and transmit them to a
recipient who has minimal knowledge of the grammar
representation, and

* DDL is the Derivation Description Length, i.e. the bits
required to encode and transmit all examples in the set E, provided
that the recipient already knows the grammar G.

Searching for grammars with minimum description length
allows to avoid trivial grammar that has a separate rule for each
training sentence, as this grammar will have a large GDL, but also
overly general grammars, which will have a large DDL. In fact, the
DDL of the language is expected to vary proportionally with its
derivation power. As a general grammar involves several rules in
the derivation of a single sentence, requiring substantial effort to
track all the rules involved in the generation of the sentence, its
derivational power has the worst score, and consequently it has the
highest DDL.

110 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations

The evaluation of the two components GDL and DDL, as
presented in [PPK04], fits well for CFGs but it needs to be adapted
for being applied to MAGs.

Starting from the calculation of the GDL, in order to count the
bits required to transmit a multimodal attribute grammar G’ to a
recipient, not only grammar rules have to be encoded but also
semantic functions associated with each rule. Similarly to the
approach of Petasis et al. [PPK04], a separation of the grammar
rules into three independent subsets is applied: the start symbol
subset, that contains all the rules whose head is the start symbol S;
the terminal symbol subset (corresponding to the set of target rules
Pr (see Section 5.4)) that contains all the rules of the form 4 —B;
the non-terminal symbol subset that contains all the rules that are
not in the first two subsets.

In addition to the bits required to encode the production rules
of the three subsets, that are evaluated by Petasis et al. [PPK04,
p.7], the evaluation of the bits required to encode semantic
functions is necessary. For this purpose, the following expression
can be used:

BitSSemFunc = BitsHead + BitSBody + BitsStap

In other words, the total number of bits needed for encoding a
semantic function is the sum of the bits required to encode the head
(Bitspeqq) and its body (Bitsg,a), similarly to the production rule.
Furthermore, a stop symbol should be appended for signaling the
end of the semantic function.

For each production rule p, the set of occurrences Occ(p) and
its subsets Output(p) and Input(p) are considered. Therefore, the
bits required for encoding the head of the semantic function is:

BitSHead = ZOgZ (IOutput(p) |)

and the bits required to encode each term of the body of the
semantic function is:

Bits gogyrerm= l0g> (10cc(p)| - 1)

Furthermore, in order to encode a semantic function associated
with a production rule p, the following expression can be used:

Chapter 5. The Multimodal Grammar Editor: Theoretical 111
Foundations

Bits g, s = 108, QOutput(p)\)+ Z log, QOcc(p)|- 1)+ Bitsg,,

V term in
rule body
The total GDL is therefore given by the sum of the bits
required to encode each production rule and its set of semantic
functions, for each one of the three subsets, plus two additional stop
symbols required to separate the three subsets, as expressed in the
following equation.

GDL = Z ZthsNT + Bitsg,, |+ ZthsSemFm +
Y rule in Y NT Y SemFunc
Start Symbol in rule body of the rule
Subset

Bits siop T

Z (BitSNT +BitsT)+ ZBitSSemFunc +

Y rule in Y SemFunc
Ter min al of the rule
Subset

Bits siop T

Z Bits ;. + ZBitsNT + Bitsg,, |+ ZBits&,mFW

Y rule in v NT YV SemFunc
Non—Ter min al in rule body of the rule
Subset

In the formula Bitsyr and Bitsy are the bits required to encode a
single instance of a non-terminal and a terminal, respectively,
which are computed by using the following expressions from
Petasis et al. [PPKO04, p.7]:

Bitsyr = log, (IN|+1)

Bitsr = log, (IT))

Note that the Stop symbol is required for signaling the end of
the rules and the semantic functions since their bodies can have

variable lengths. This symbol is treated as a non-terminal one,
requiring Bitsyr to be encoded.

112 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations

An example of calculating the GDL of the grammar in
Example 5.2 of Section 5.5.1 is shown in Table 5.3.

Table 5.3: Calculating the GDL

M= 6 . § and STO) m=4
Bitsgy=lng 5+1)= 28 Bitey=hgit) =2
Stirtsyribel Subset DL Pyl
D)5 VBB 193 +14 8+ By o be G020 Bl =l)=]
RLDS vl VBwls bl 1+2232+
RLI)Sende VBmnd# Ganod 1+2231+
ST 198+
Tamiinal Subset
Bl M1 e el
A ks By, o =hgb)=13 Bie,=lhe()=15
R4 VB 200 et 14,59+ 1232+ Bl
A2 B nmle e 14,58+ 14232+
ST 198+
RS Dol e gess 149+ 145+ Hopg B BU=IE Bi=le)=l
RS2 DT.qumil ¢ ditic 19+ 4+
R34 DTcoop & complemerntay 14+ 148+
ST 198+
T — 148+ 19 I R
A1) HH vl - comtipatgy 14+ 148+ . i r . % o
R 2) Wl e pech 14+ 146+ R e L ™ e,
B3 W qpole + nom 14+ 148+
Ri4) HH.conp & complemertay 14+ 148+
$TE 198+
DPHKS — At 1+ 19 T B
RA1) Sl e doos 19+ 148+ I Dupllt
B Mol - pots 14+ 1493+ R L ™ i
R7E) S sl + nom 14+ 148+
RI4) T coop + complamentioy 14+ 148+
ST 198+
Hin- Teminal Subset
T Go0T D 106+24 0 148+ o [—
R0 e D 14414+ My o sbgGhsl Bingeigg)sl
R2:2) Gmode- DT oD i 1424+ il
I 148+
T3 D-s M HHS 108+20. 128+ P FS—
B3 D Wl 1+ 19+ sy, SWEGYS) Bisgebe)e]
R32) Do modt TS 20 19+ 1+ ik
eIL: 163,30 s

For the calculation of the DDL, in order to count the bits
required to encode and transmit the set of training sentences, as
recognized by a multimodal attribute grammar G’ (provided that
the recipient already knows the grammar), the equation proposed
by Petasis et al. [PPK04, p.9] has been followed, which is quoted
below for the sake of thoroughness.

Chapter 5. The Multimodal Grammar Editor: Theoretical 113
Foundations

r
f

DDL = Z | Iog(H.S'mr? Symbol] + Z IDg [Hi;']

: F.:w.’e +
7 rulein VXin
Stars Spmbol Subser |, rulebody

Yrulein VX in

Non-Terminal Subser\ rulebady

Z_ Z lﬂg [H&'] : F;'uh‘
kY

where:

. Number of times X appears as Head of a rule

¥ =

" |1 if X does not appear as Head of a rule

F,. is the rule frequency, i.e. the number of sentences
from the training set in which the rule is involved in
parsing.

An example of calculating the DDL of the grammar in
Example 5.2 of Section 5.5.1 is shown in Figure 5.13.

{ual= Call Atos
mind=speach + HW+geshme }

Jral=call fural= Atos
mod=epeech mod=epeach + HW+gechma }
eyrmo le=warh }

fual= dtog
mod=cpeech+gectime ¥
{ral=that
mod=speech

eyrrole=deictic
coop=cormpl}
that
{rral=compary {ral=stns
mod=speech mod=geshme
- I 1 il 1
DDL = 7* log(1)=0 conp=compl} coop=commpl}
company! Atos

Figure 5.13: Calculating the DDL

114 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations
Therefore, the description length of the grammar in Example

5.2 of Section 5.5.1 is:

DL(G’) =GDL + DDL = 163.38 + 0 = 163.38 Bits

5.5.2.2 Learning Operators

After evaluating the description length of the multimodal attribute
grammar G’, outputted by the revised CYK algorithm during the
first step, the learning operators, proposed by Petasis et al.
[PPKO04], are applied for computing equivalent grammar
descriptions, among which the grammar with minimum description
length is selected as output of the proposed grammatical inference
method.

Again, the application of the learning operators to our grammar
inference method needs an adaptation as they fit well for CFGs but
they can not be applied to MAGs as are. Therefore, not only the
production rules have to be created or unified but also the
associated semantic functions.

A brief description of these learning operators is given below.

The merge operator unifies two non-terminals 4 and B € N
into a new non-terminal Z, replacing all occurrence of 4 and B and
the corresponding rule heads. An example of the application of the
merge operator is shown in Table 5.4. The merge operator
decreases the GDL of the grammar, since fewer bits are required to
encode one non-terminal instead of two. Moreover, the DDL can

either increase or decrease.

Table 5.4: The effect of the Merge operator

F1) Sentence — NP &F1
P11} Sentence wal « NP wal + AP1 wal
P1.2) Sentence. modeNF mod+ AF1 mod
P2) Sentence — NP &P2
P2.1) Sentence val « NP wal + AP2 val
P2.2) Sentence. mode MNP mod+ AP2 mod
P3) &P1 — prep HN =
P3.1) 4P1 wal < prepval + NN wal
F3.2) AP1 mode—prep rod+ NI raod
P4) 4P2 — CCHP
P 1) AP2wal « CCwal + NP wal
P4.2) £P2 mode—CC mod+ NP raod

FP1) Sentence — NP AP3

F1.1% Sentence wal « NP val + AP3 vl

F1.2) Sentence. mode NP mod+ AP3 mod
P2} AP — prep NN

P2.1) £P3 val ¢ prepval + MM wval

P2.2) AP3 modeprep raod+ NN mod
P3) 4P3 — CCNP

P31} AP2al +— CCwval + NP vl

P3.2) AP2 modeCC mod+ NP mod

Chapter 5. The Multimodal Grammar Editor: Theoretical 115
Foundations

The create operator creates a new non terminal symbol Z that
is composed of two sequential non-terminals 4 and B € N. This
implies that a new rule “Z — 4 B” with the associated semantic
function(s) is introduced into the grammar and all occurrences of
the sequence 4 B are replaced by the symbol Z in the grammar
rules. An example of the application of the create operator to the
grammar of the Example 5.1 (see Section 5.4) is shown in Table
5.5. Moreover, the create operator has no effect on the DDL of the
grammar, as the derivational power of the grammar remains the
same, while it increases the GDL, since more bits are needed in
order to represent a further non-terminal.

Table 5.5: The effect of the Create operator

P4 NP — AF1 NHMP1 NNP2

P4) NP — DT NN NHFP1 HNP2 R4.1) NP wal <= NP1 sl + NP2 val
B4.1) NEval <~ NHP1 3al + NP2 val R4.2) NP raod « AF1 mod + MNP mod
R4.2) NP raod « DT raod +NNFP1 raod = P53 NP — AP1 MM3

P5) NP — DT NN NH3 B5.1) NP wal « NHSwal
F5.10 MP vl < FNS wval B35 2) NP raod < AP1 mod + NN3 raod
B52) NP raod « DT raod + NS raod P15y &F1 — DT NN

R15.1) AP1xaod + DT mod

5.6 Final Discussion

This chapter is motivated by the idea that a grammar-based
paradigm is the most natural and coherent with the human-human
communication, and, therefore, to provide a multimodal system that
relies on a grammar for parsing and interpreting the sentence
expressed by the user enables a more flexible and natural
interaction. Moreover, a large number of grammars has been
defined for natural language processing, which represent a valuable
and standardize starting point toward the extension to multimodal
input.

To facilitate the grammar definition a “by example” paradigm
can be adopted, which allows the end user to provide concrete
examples of multimodal sentences that have to be recognized, and
the system automatically generates the grammar rules to parse
those examples. This implies that a grammar inference method has
to be implemented.

116 Chapter 5. The Multimodal Grammar Editor: Theoretical
Foundations

Therefore, in this chapter the main achieved results are the
definition of a Multimodal Attribute Grammar (MAG) and an
algorithm for the inference of this grammar.

The strength of the MAG is the capability to manage whatever
modalities and to represent temporal constraints into the grammar
rules. Moreover, it provides a good compromise between the
context-free paradigm and the necessity to represent semantic and
temporal aspects of multimodal input.

The proposed grammar inference method, following an
approach “by example”, allows to generate the MAG production
rules and the associated semantic functions starting from the
acceptable multimodal sentences (positive examples only) in
polynomial time. The strength of this algorithm relies on its
efficiency, simplicity and capability of avoiding the over-
generalization problem through the introduction of a heuristic based
on the simplicity of the grammar description.

Both the grammar and the inference method represent the key
elements on which the development of the grammar editor,
described in the following section, is based.

Chapter 6

Multimodal Grammar Editor
Design

This chapter, starting from the description of the general
architecture of the Multimodal Language Processing (M2LP)
framework, details the design process of the Multimodal Grammar
Editor (MGE), on which this thesis is focused. Even in its general
validity, the design description of the Multimodal Grammar Editor
has been carried out using outputs of the unimodal recognizers for
speech, gesture, handwriting and sketch, and involving concepts
implied by multimodal inputs. Finally, the sequence diagram of the
MGE synthetically shows its functioning.

6.1 Introduction

Editing grammars is a difficult and error-prone activity, mainly for
users not highly skilled in computational linguistics. Furthermore, a
grammar editor represents a useful software tool that enables to
define grammars interactively. This chapter describes the
Multimodal Grammar Editor (MGE), i.e. a software tool that assists
language designers in defining and editing multimodal grammars.
The MGE proposed in this thesis allows to define the left and right-
hand side of production rules of the grammar, as well as the
attribute constraints.

The MGE allows the language designer both to express
concrete examples of multimodal sentences, which s/he wants the

117

118 Chapter 6. Multimodal Grammar Editor Design

system recognizes, and to define all the opportune constraints on
syntactic roles and types of cooperation among modalities.
Afterwards, the editor applies the grammar inference method,
described in Section 5.5, for generating the set of production rules
and the associated semantic functions, expressed following the
MAG notation, described in Section 5.4. The generated grammar
serves as input for the multimodal interpreter that applies the
grammar production rules and the semantic functions for parsing
the sentence and outputting the appropriate interpretation.

A detailed description of the architecture of the Multimodal
Language Processing (M2LP) framework, in which the MGE is
inserted, is given in Section 6.2, along with a description of the
architecture of the MGE. The design process of the MGE is
illustrated in Section 6.3. Finally, the functioning of the MGE is

showed by means of the sequence diagram given in Section 6.4.

6.2 Overall System Architecture

The Multimodal Grammar Editor (MGE) is a component of the
Multimodal Language Processing (M2LP) framework, a system
able to acquire information derived from whatever input modalities
according to their different representations, to appropriately
interpret these inputs with a shared meaning, to integrate these
different interpretations into a joint semantic interpretation, and to
understand which is the better way to react to the interpreted
multimodal sentence by activating the most appropriate output
devices.

The overall architecture of the (M2LP) framework is depicted
in Figure 6.1. This framework is integrative, configurable, scalable,
and adaptive to several application scenarios in order to efficiently
manage multimodal communication between people and

computational systems.

Chapter 6. Multimodal Grammar Editor Design 119

— L0 devices and sensors

Ist level
ACQUISITION fiDeiel | [Devio2) . (Devindt | [sersrt] . emsortt
PRESENTATION ‘ ‘ |
1 1 I [[
. . 2
Recognition of | [Recogrition of Recognition of Outpt | | Owufpet
rndality 1 wmodility 2 |+ | modality N Generator] Generatorf,
* — |
T T]
l ¥ I I
Multimodal Inltimodal Ilntirmodal
2nd level Achignities Grarmar Editor Output Manager
ANALYSIS Classifier Iubirodsl Interpreter +
| Wil
Ilutirandal Component 1
Muktimodal :
i FraNmaL
Ambiguities Modelirg r
Sober components [————
Component P
Syster "
Iri level e
PLANNING E“Em 2t
k. J
| Electro-mechanizal systems Gateway
i
¥
| Fratework interface adapter
4ih level ;
ACTINATIONS| | e . (e 00 emmsam—ss :
LAt

'—— Eleciro-mechanical sysiems

Figure 6.1: Architecture of the M2LP framework

As shown in Figure 6.1, four different architectural levels
make up the framework:

The acquisition/presentation level: This level includes the
specific /0O devices, such as, for example, display,
cameras, microphone, loudspeakers, and input sensors.

The analysis level: This includes both the unimodal input
recognizers, as for example the Automatic Speech
Recognizer and the gesture recognizer, and the output
generators, as the Speech Synthesizer. The Multimodal
Interpreter component integrates the recognized inputs,
assigning them the appropriate values for the attributes, as
required by the multimodal grammar notation, and applies
the production rules stored in the Multimodal Grammar
Repository, to parse the multimodal input. When the
Multimodal Interpreter produces multiple interpretations
of the same sentence, the linearised multimodal sentence

120

Chapter 6. Multimodal Grammar Editor Design

and the different interpretations are sent to the Multimodal
Ambiguities Classifier that intercepts the class of
ambiguity, which will be solved by the Multimodal
Ambiguities Solver. The framework acquires the set of
production rules of the grammar through the Multimodal
Grammar Editor component, whose design and
development are addressed in this thesis. The analysis
level contains also the Modeling components, that are
aimed at capturing some information used during the
interpretation and disambiguation phases for leading up to
the most probable interpretation of the user input.
Examples of modeling components that can be integrated
in the framework can be the user, content and context
modeling components. Finally, the analysis level includes
the Multimodal Output Manager for generating
appropriate output information, through the available
output modalities (multimodal fission).

The planning level: This includes the System Response
Generator, whose main tasks is the understanding of
which is the better way to react to the user input (either
directly intervening on the electro-mechanical systems,
through the electro-mechanical systems Gateway, and/or
providing specific sensorial feedback) and the consequent
adaptation of the human-machine interaction, taking into
account also the outputs of the Modeling Components.
This level contains also the Electro-mechanical systems
Gateway that provides the link with the -electro-
mechanical systems. Proper solutions shall be applied to
ensure safe interfacing and communication between the
two levels.

The activation level: This level contains the electro-
mechanical components offering specific functionalities to
the user. It includes a framework interface adapter
offering specific functions such as communicating to the
framework through the electro-mechanical systems
gateway.

As the topic of this thesis is the Multimodal Grammar Editor

(MGE) component (highlighted by a red rectangle in Figure 6.1),

Chapter 6. Multimodal Grammar Editor Design 121

the focus of this chapter will be hereafter the design of this
component, starting from its architecture described in the following

section.

6.2.1

A block diagram of the architecture of the MGE is shown in Figure
6.2.

The Multimodal Grammar Editor Architecture

Lexical
Editor

Speech Recognition

o o
Teer

HW Recognition
———

W

Sketch Recognition

s
T

(esture Recognition

eSTTe

Diictinnary Dictionary Diictiotary Distionary

Editor
Multimedal it

|
i

Concept Definition

I

i
i Dictinnary Accpmisition
i

Multimedal Sentence Definition

Dilodality
definition * *

Interface 1o

Ivlodal Fecognizers i

Symtactic mle
definition :

Ilodality Cooperation
definition e o

i

CInterfaceta

Tlutirodal
Grrarurnats

| Wkt ivandal
Interpreter

TvTultirnodal

Interpreter

i
,—.

MAG Inference

Revised CTE algorithm

WIGE interface

Crramar Updating algorithm

Figure 6.2: Architecture of the Multimodal Grammar Editor

Using the MGE, the language designer, which is the primary
user of this component, can create all up the intended grammar or
update an existing one. The MGE contains the Multimodal
Grammar Definition and the MAG Inference components and a
MGE interface. The MGE interface is a Multimodal User Interface
(MUI) responsible of the interaction between the language designer
and both the Multimodal Grammar Definition and the MAG

122 Chapter 6. Multimodal Grammar Editor Design

Inference components. This interface allows the acquisition of the
data to be used for inferring the grammar, i.e. the (positive)
examples of sentences and the concepts used for expressing these
sentences, since the grammar definition follows a “by example”
approach. Moreover, it presents a view onto the multimodal
grammar resulting from the MAG inference stage.

The Multimodal Grammar Definition sets the grammar that the
language designer wants to define by either instantiating a new
grammar or selecting an existing grammar from the Multimodal
Grammars repository, according to the designer’s choice.
Furthermore, the Multimodal Grammar Definition is responsible
for the linearization process, i.e. it takes the elements of the
unimodal sentences, coming from the Multimodal Sentence
Definition sub-component, and combines them opportunely, in
order to generate a linear sequence of elements. Such a sequence
represents the multimodal linearized sentence that is sent to the
MAG Inference component for grammar inference.

The Concept Definition allows to define the set of terminal
symbols, by selecting the appropriate elements from the
dictionaries (i.e. the lexicon) of the unimodal recognizers. For this
purpose, the Dictionary Acquisition requests the dictionaries to the
recognizers of the modalities involved in the sentence definition.

The Multimodal Sentence Definition allows to specify the
positive examples of sentences along with all information needed
for the linearization process. In particular, for each example of
sentence, this component is responsible of three main tasks. Firstly,
it requests to the language designer to select the modalities
involved in the example of sentence in order to enable the
connection with the appropriate modality recorders. This task is
mainly performed by the Modality definition component. Secondly,
it requests to the language designer to identify the syntactic role
that each element has within the sentence. This task is mainly
performed by the Syntactic role definition component. Finally, it
requests to the language designer to define the kind of cooperation
among the elements of the inserted sentence. This task is mainly
performed by the Modality Cooperation definition component.

The Interface to Modal Recognizers is responsible for enabling
communication between the recorders of the defined modalities,

Chapter 6. Multimodal Grammar Editor Design 123

which capture unimodal inputs, and the related recognizers, which
convert the captured inputs to recognized concepts.

The MAG Inference takes as input the linearized sentence
coming from the Multimodal Grammar Definition. Furthermore, it
applies the grammatical inference method for generating the
production rules and the semantic functions (following the MAG
notation) that are able to parse the sentence. In particular, the
Revised CYK and the Grammar Updating algorithms (that are
described in Sections 5.5.1 and 5.5.2, respectively) are
consecutively applied: the former for generating the multimodal
attribute grammar that is able to parse the input sentence; the latter
for improving the grammar description and avoiding the over-
generalization problem. When both the algorithms are applied, the
MAG Inference stores the generated/updated grammar into the
Multimodal Grammars repository.

The Interface to Multimodal Interpreter provides the bridge
between the Multimodal Grammars repository and the Multimodal
Interpreter.

6.3 Design of the Multimodal Grammar Editor

This section describes the design process that has been followed to
create the MGE within the M2LP framework.

The MGE aims at providing the language designer all tools for
defining a multimodal language. Therefore, the MGE has to satisfy
the following requirements:

- to provide a multimodal user interface that interactively
leads the designer toward the correct definition of a
multimodal grammar by adopting a “by example” approach;

- to allow the acquisition of the lexicon of the grammar, i.e.
the terminal symbols that the designer can use for expressing
the multimodal sentence;

- to allow the definition of the positive examples of
multimodal sentences, by providing the tools for acquiring
each unimodal input (e.g., speech, handwriting, sketch, and
gesture recorders) and for converting it into a recognized
meaningful concept (e.g., using speech, handwriting, sketch,
and gesture recognition);

124 Chapter 6. Multimodal Grammar Editor Design

- to provide the way of incrementally updating the grammar
description by automatically generating the production rules
for parsing the defined examples of multimodal sentences.

These requirements suggested the following steps to design the
MGE:

1) create a multimodal user interface (MUI) that allows the
language designer to input the data needed for inferring the
grammar, according to a “by example” paradigm;

2) use the multimodal user interface for acquiring/defining the
lexicon of the grammar;

3) use the multimodal user interface for specifying concrete
examples of multimodal sentences and all the opportune
constraints on syntactic roles and types of cooperation
among modalities;

4) implement a grammar inference algorithm that automatically
generates MAG production rules and the associated semantic
functions to parse the defined examples of multimodal
sentences.

Each step of this design process is explored in more detail in
the following sub-sections.

6.3.1 Creating the MUI of the Multimodal Grammar
Editor

The usually adopted approach to define grammars is by textually
specifying the rules in some descriptive language, such as the
Backus-Normal Form (BNF) syntax. The use of textual description,
however, is rather difficult for two main reasons. Firstly, it requires
the designer to learn the syntax of the descriptive language, i.e. the
designer has to have a special skill in computational linguistics for
writing the grammar. Secondly, it is very easy to make mistakes,
especially if the size of the grammar increases. The use of a MUI,
in conjunction with the adoption of a “by example” approach,
facilitates the language definition. In fact, in this way the user is not
forced to learn a language for manually writing the grammar rules,
but s/he has only to think about concrete examples that the
grammar has to generate. This makes the grammar definition much

Chapter 6. Multimodal Grammar Editor Design 125

more intuitive and less error-prone. In such a way, no skilled
language designers are needed, but even non-expert users can
define multimodal grammars.

Therefore, a multimodal user interface that leads the language
designer to accomplish all steps required for the grammar
definition/updating, by allowing her/him to see and verify any
moment the choices made till then, has been adopted in the MGE.

The idea of this multimodal user interface is that it has to
interactively acquire all data, necessary for generating the grammar,
from the language designer, and it has to display the results of the
grammatical inference process to the designer. Therefore, the MUI
components that can be envisaged are the following:

- anpanel for the initial grammar selection, where the language
designer can either select the grammar s/he wants to update
from a list of existing grammars (that are stored in a
multimodal grammar repository), or define a new grammar,
if the domains of interest of the existing grammars do not
match the need of the designer;

- a panel for the acquisition of the lexicon of the initial
grammar (see Section 6.3.2 for more details);

- a panel for the specification of the examples of multimodal
sentences (see Section 6.3.3 for more details);

- a panel for setting the opportune constraints on syntactic
roles and types of cooperation among modalities (see
Section 6.3.3 for more details);

- a panel for displaying both the initial and the grammar
generated by the inference method.

6.3.2 Acquiring the Lexicon of the Grammar

The lexicon of a language consists of its vocabulary, including its
words and expressions. The lexicon can hardly be complete for any
language, since new words are being added all the time, and
sometimes old words start to get inflected with new paradigms.

In order to allow that the system “understands” the multimodal
sentence specified by the language designer, the elements of the
sentence need to be just words from a lexicon known by the

126 Chapter 6. Multimodal Grammar Editor Design

system. In other words, the system needs to have a vocabulary
specific for the application domain of the intended grammar.

By default, this vocabulary will be composed of the
vocabularies of the unimodal input recognizers. If the language
designer wants to use a special vocabulary that contains some
words not included in the dictionaries of the recognizers, it is
necessary that s/he edits the vocabulary by using the lexical editor
component (see Figure 6.2), which provides a good support for
adding new words to the vocabulary. The design and development
of this component is out the scope of this thesis and is one of the
topics of future work. However, for the current implementation of
the MGE the standard vocabularies of speech, handwriting and
sketch recognizers will be used according to the fact that the
current implementation of the editor supports these three
modalities, even if other modalities can be integrated into the
M2LP framework by adding the appropriate input devices and
recognizers.

A brief description of the vocabularies of the recognizers is
given below.

The standard vocabulary used by the speech recognizer is
based on the CMU Pronouncing Dictionary [CMU], which
provides pronunciations for words, each one breaking words into
sequences of sub-word units.

The vocabulary used by the handwriting recognizer is a small
dictionary of lower case Latin letters. However, the lexical editor
allows to build further dictionaries according to the need of the
designer.

The standard vocabulary used by the sketch recognizer is a
small library of geometric objects. Similarly to the handwriting, the
lexical editor allows both to build further objects to add to the
standard vocabulary, or to define a completely new vocabulary.

6.3.3 Specifying Examples of Multimodal Sentences

In order to start with the grammar inference process, a set of
examples of multimodal sentences has to be inputted by the
language designer.

As a multimodal sentence consists of different inputs
expressed through one or more modalities, each input modality has
to be acquired by the editor through an appropriate input device

Chapter 6. Multimodal Grammar Editor Design 127

(e.g., a microphone for speech, an editable area for sketch and
handwriting). Moreover, the editor has to convert the acquired
input data into “meaningful” concepts through the appropriate input
recognizers (e.g., speech, sketch and handwriting recognizers).

Once the unimodal inputs are recognized, the language
designer has to complete the multimodal sentence specification by
defining the opportune constraints both on syntactic roles and types
of cooperation among modalities.

Concerning syntactic roles, it is necessary that the designer
tags the input elements (previously recognized) with the syntactic
category the element belongs to. To support the designer in this
task, a syntactic analyzer is used, which provides the possible
associations between the input elements and the syntactic
categories of the Penn Treebank [MSM94]. In the current
implementation of the MGE, the Stanford Log-linear Part-Of-
Speech Tagger [TKMO03] has been used. Note that this tagger is
addressed to NL expression and reads text. Therefore, it can be
applied in our editor to unimodal sentences (coming from the
recognizers), which are represented by text.

In order to define the types of cooperation among modalities,
the designer needs to specify the relations (e.g., complementarity,
redundancy) among the input elements (if necessary).

When the multimodal sentence is completely specified, the
editor performs the linearization process that translates the
unimodal inputs into a linear sequence of elements. This sequence
represents the multimodal sentence that will be used as positive
sample during the grammar inference process.

For the current implementation of the MGE the following
existing recognizers are used, but any other recognizer can also be
used.

The SPHINX speech recognizer

The first SPHINX speech recognition system was developed at
Carnegie Mellon University in the 1990s. The version used in the
MGE, Sphinx-4 [WLKO04], is a flexible, modular and pluggable
framework based on Hidden Markov Model (HMM). It is
composed of three primary modules: the FrontEnd, the Decoder,
and the Linguist. The FrontEnd takes one or more input signals and
parameterizes them into a sequence of features. The Linguist

128 Chapter 6. Multimodal Grammar Editor Design

translates any type of standard language model, along with
pronunciation information from the dictionary and structural
information from one or more sets of AcousticModels, into a
SearchGraph. The Decoder uses the features from the FrontEnd
and the SearchGraph from the Linguist to perform the actual
decoding, generating Results.

The JARNAL handwriting recognizer

The JARNAL handwriting recognition system [JARNAL] is an
open-source application for notetaking, sketching, annotating a
document by using a stylus, mouse or keyboard. The version used
in the MGE, Jarnal 2.75, works in the following way. It normalizes
each strokes to a common scale. Then, a whole bunch of different
methods are used to try to determine which stroke/strokes in the
dictionary match whatever the user is drawing, and they are
averaged together to get a score. Afterwards, a table of probabilities
of pairs of letters is applied to guess which the next letter is going
to be. Spacing is handled by seeing how far apart you drew your

letters, and also using the table of letter pairs.
The sketch recognizer

For the sketch recognition, a system developed by the MultiModal
Laboratory of the Italian National Research Council has been used
[AFGO8]. This recognizer works with SVG files (the objects of the
library are SVG files), therefore, the sketch of the user is translated
into an SVG representation. Afterwards, a matching algorithm is
applied, which performs an exhaustive research of the sketched
object into the library, in order to select the right object providing
the correct interpretation of the sketch. To achieve that, both the
sketch of the user and the objects of the library are represented by a
set of nodes (identifying the opposite ends of the strokes that form
the sketch) and a set of relationships among these nodes. The
algorithm sequentially examines all nodes of the sketch and all
relationships searching for the library objects that have the same
nodes and relationships. The matching algorithm ends by ranking
the library objects according to the similarity of relationships and
nodes.

Chapter 6. Multimodal Grammar Editor Design 129

6.3.4

Implementing the Grammar Inference Algorithm

As described in Section 5.5.1, the grammar inference algorithm
takes as input:

the linearized sentence, that is generated by the editor after
the language designer has completely specified the
multimodal sentence in the MUI,

the current multimodal grammar, that is selected by the
designer through the MUI;

the sets of occurrences of the synthesized attributes (i.e.
actual value, modality, syntactic role, and modality
cooperation) associated with each element of the sentence.
Actual values of the elements are provided by the
recognizers, while the occurrences of all the other attributes
are provided by the designer during the specification of the
multimodal sentence (see Section 6.3.3).

When all these necessary inputs are acquired by the editor, it

applies the grammar inference method, described in Section 6.5, for
generating the set of production rules and the associated semantic
functions, expressed following the MAG notation. The results of
the inference process are displayed in an appropriate panel of the

MUL

6.4 MGE Sequence Diagram

In this section a brief description of the interaction between the
language designer and the MGE is illustrated.

Figure 6.3 shows the UML sequence diagram that clarifies

how execution switches from the designer to the involved
components of the grammar editor.

130 Chapter 6. Multimodal Grammar Editor Design

Multimodal Lexical Input MAG
Grammar editor Recognizers Inference
Definition

Designer

SelectGrammar()

SelectDictionary()

CreateDictionary()

L —
SendDictionary ()
SelectM odalities()

InserthewSentence()

Recognizelnput)

SendRecognizedinput() [|
S S . b st ir it S|

VisualizeUnimodallnput()
<

SelactSyntacticRoles)

SelectModality Cooperation()
R

SendSentence()

Grammarlnfaranca(

_4 SendGeneratedGrammar() D

Figure 6.3: Sequence diagram of the MGE

DisplayGrammar()

All the classes shown in the diagram realize the functionalities of
the MGE described in Sections 6.3.1, 6.3.2, 6.3.3, and 6.3.4. The

implementation of this classes is illustrated in the next chapter.

6.5 Summary

This chapter has presented the design process as well as
architectural details of the multimodal grammar editor.

Starting from an analysis of requirements that a grammar editor
should follow in order to be a useful tool, four main steps to design
the editor have been envisaged. First of all, a multimodal user

Chapter 6. Multimodal Grammar Editor Design 131

interface for the acquisition of examples of sentences has been
designed. Secondly, the acquisition of the vocabularies, containing
the terminal symbols that the designer can use for expressing the
multimodal sentence, has been discussed. Thirdly, the acquisition
of the multimodal sentence through the multimodal user interface
has been examined. Finally, the functioning of the grammar
inference algorithm has been discussed.

In the following chapter the requirements and design choices
explained in the previous sections will be used to implement the
multimodal grammar editor.

Chapter 7

Multimodal Grammar Editor
Implementation

This chapter describes the implementation process that has been
followed to develop the multimodal grammar editor. For explaining
the software classes implemented in the prototype, the class
diagrams of the main packages are presented following the standard
Unified Modeling Language (UML) notation [OMGO1]. The editor
is implemented using the Java language due to its portability in
order to maximize the system independence and to make possible
to deploy it on the World Wide Web.

7.1 Introduction

In this chapter the steps towards the development of a prototype of
the Multimodal Grammar Editor (MGE) are presented. This
prototype, according to the requirements and design choices
described in Section 6.3, is composed of two main components.
The former is the Multimodal Grammar Definition component that
performs the acquisition of all data necessary for defining/updating
a multimodal grammar, i.e. the (positive) examples of sentences,
the concepts used for expressing these sentences, and all the
constraints on syntactic roles and types of cooperation among
modalities. The acquisition of this data from the language designer
is performed through a multimodal user interface, whose design
features have been illustrated in Section 6.3.1. The latter is the

132

Chapter 7. Multimodal Grammar Editor Implementation 133

MAG Inference component that implements the grammar inference
algorithm, described in Section 6.5. This component generates the
production rules and semantic functions that are able to parse the
acquired examples of sentences.

The prototype has been implemented by using the Java
Platform Standard Edition 6 and Netbeans IDE 6.1 as programming
environment. The choice of the Java language is due to its
portability in order to maximize the system independence and to
make possible to deploy it on the World Wide Web.

In the next sections an overview of the implementation of the
MGE is given, starting from illustrating the software class design
by using the UML class diagrams. Then, a brief description of the
main implemented classes is presented. Finally, an example of use
of the MGE is described with the help of some screenshots of the
main interface of the MGE.

7.2 Software Class Design

The multimodal grammar editor is composed of four main
packages, each one implementing a component of the editor, as
described in the architecture of Section 6.2.1. These packages,
shown in Figure 7.1, are described below:

Multimodal User Interface (MUI). This package manages the
interaction between the language designer and the MGE. It
provides all functionalities for reading and managing inputs
specified by the designer and for writing and displaying the
grammar inference output. During the multimodal sentence
acquisition it activates the connection with the recorders of
the defined modalities and the related recognizers by
exploiting the classes of the interfaceToModalRecognizer
package.

Multimodal Attribute Grammar (MAG). This package
contains all classes that implement the data structure of the
grammar and the methods for manipulating it.

Multimodal Sentence. This package provides the data structure
of the sentence. As the language designer inserts all required
data in the MUI, the classes of this package store these data

134 Chapter 7. Multimodal Grammar Editor Implementation
and process them for building the linearized sentence, which
is sent as input to the grammar inference algorithm.

Grammar Inference. This package is responsible of the
grammar inference algorithm.

—
MUl
| |
[T~ zg e B |
|
WV | v
Multimedal I M:t'l‘:{]"l":'ed
Sentence |
| Grammar
| —] T
| |
| G rammar (_,_______l
Inference

Figure 7.1: General diagram of packages

An explanation of the responsibilities and purposes of each
package is given in the following sections.

7.2.1 Multimodal User Interface

Figure 7.2 shows the class diagram of the conceptually most
important classes of the MUI package.

The main class of this package is the GrammarEditorMain,
which contains the runnable interface of the MGE. This interface
allows both the acquisition of all data, necessary for generating the
grammar, from the language designer, and the visualization of the
output of the grammatical inference process. For this purpose,
several panels are placed in the main window of the interface, each
one aimed at allowing a dialogue with the user for acquiring the
required pieces of information, such as the current grammar that
has to be updated, the modalities used for expressing the sentence,
the multimodal sentence itself, the lexicon, and so on.

The class SyntacticRoleDefinition provides the interface for the
acquisition of the syntactic roles of the input elements.

Chapter 7. Multimodal Grammar Editor Implementation 135

Analogously, the class ModCooperationDefinition provides the
interface for defining the type of cooperation among input

elements.

G rammarE dito ivain SyntacticRol eD efinition Mo dC oop erationDefinition

+ initCampanents(; + SyntacticRoleDefintion(String defConcept), + ModCooperationDfinition(String defConcept);
+ GrammarChoicesActionP erformed(): void; + CorfirmRoleActionPerformed(): vaid; + ConfirmCoopActionP erarme d): vaid;

+ InsertModActionPerformed(): void;
+ AddSentenceActionPerformed(: void, N |
+ DefCoopActionPerformed () void, | ——————————— — | |
+ DefSynRoleActionPerformed0): void; uses |
+ StartAcquisitionActionPerformed): vaid;]
#BopAtquetispirtenrorammedivotl T T T R T T R e S e e T T T T e

Figure 7.2: Class diagram of the MUI package

7.2.2 Multimodal Attribute Grammar

The multimodal attribute grammar (MAG), described in Section
5.4, has been implemented by using an object-oriented structure in
the MultimodalAttributeGrammar package. In particular, the class
hierarchy for the components of this structure is shown in Figure

7.3.

MAGrammar
|
CFGGr:lmunar Attnlhute SemanﬁJ:lFumﬁnn
|
Pmduﬂ]l'nnRule Gra.m.lmllINnde
Terminal NonTerminal

Figure 7.3: Class hierarchy for the MAG

The MAGrammar is the root class that provides to external
entities all functionalities for creating and manipulating grammar
objects. These objects are composed of production rules and
grammar nodes, which are implemented by the homonym classes.
The class SemanticFunction represents and manages the semantic
functions associated to the production rules. The class

136 Chapter 7. Multimodal Grammar Editor Implementation

grammarNode manipulates Terminal and NonTerminal objects,
which have a set of attributes describing the synthesized and
inherited attributes of the MAG notation.

The class diagram of the conceptually most important classes
of the MultimodalAttributeGrammar package are depicted in

Figure 7.4.

Derivation
i SemanticFunction
contains + dumpDerivation(): String
+ addSemanticFunction(SemanticFunction
void
1
ProductionRule

idx: String

derivation: Vector

HaddDervation(Denvation), vid NonTerminalDerivation TerminalDerivation

e left: ncnTerminal t: Terminal
right. nonTerminal
contans —T
MAGramm ar
+loadGramm); vaid | compose of
+ dumpGammar(): String
createMatrixCYK(MatrixCYK, Sentence, in:).
HashMap
verifyProduction(HashMap, MatrixCYK, Vector, int, fit, GrammarNode
int): vaid
dof
+ addProductions(HashMapy String): void N compeszde
1.7 [+ dumphode(;: String
Boalean
£onains + sethonTeminal(: vaid
2 NonTerminal Terminal
expansion: String symbal: String [

Figure 7.4: Class diagram of the MultimodalAttributeGrammar
package

7.2.3 Multimodal Sentence

Figure 7.5 shows the class diagram of the conceptually most
important classes of the MultimodalSentence package.

Sentence is the main class of this package, which provides all
functionalities for creating and manipulating sentence objects.

Chapter 7. Multimodal Grammar Editor Implementation 137

According to the theoretical foundations discussed in Section 5.3.1,
these objects are composed of input elements, which are
implemented by the class SentenceElem. Each element of this class
has a set of synthesized attributes, representing the actual value
(token), modality (mod), syntactic role (syntacticCat), and modality
cooperation (cooperation). The actual values of the elements are
provided by the recognizers, while the occurrences of all the other
attributes are provided by the designer during the specification of
the multimodal sentence through the MUI.

Sentence

“ector elements;
String clearedSentence;

+Sertence();

+ getElements(): Vector,

+ getClearedSentence(): String;
+ addElem(SentenceElem el);

1

is composed of

1.7

SentenceElem

String token;

String mod;

String syntacticCat;
HashMap cooperation;

+ SentenceElem(String token, String mod, String syntacticCat,
HashMap cooperation);

+ getToken(): String;

+ getMod(): String;

+ setM od(String mod): void;

+ getCooperation(): HashMap;

+ setCooperation(HashMap cooperation): void;

+ setSyntacticCat(String syntacticCat): void,

+ getContent(): SentenceElem;

+ setContent(SentenceElem val): void,

Figure 7.5: Class diagram of the MultimodalSentence package

7.2.4 Grammar Inference

Figure 7.6 shows the class diagram of the conceptually most
important classes of the GrammariInference package.
Grammarlnference is the main class of this package, which
implements the grammar inference algorithm. In particular, the
method upgradeGrammar in this class is responsible of the control
of the algorithm (see Section 7.3.3). As discussed in Section 5.5.1,
the first step of the algorithm requires that a CYK matrix is built.

138 Chapter 7. Multimodal Grammar Editor Implementation

For this purpose, the class MatrixCYK is implemented for creating
and managing CYK matrix objects. The class MatrixCYKElement
provides all functionalities for manipulating the elements of the
CYK matrix. Each element, implemented by the class
MatrixCYKElementComp, is an object composed of a non-terminal,
its associated weight, and the semantic functions for evaluating the
values of the attributes of the non-terminal.

MatrixCYK
Grammarinference
produces + MatrixCY K(int size);
+ Grammarlnference(); A + addElement(int |, int], MatrikGY KElementComp element): void
+ upgradeGrammar(grammar g, Sentence s): void, + candidateDerivation(int j, inti, int k): Vector,
+ getLastElement(int n): MatrixCY KElement,
+ getDerivation(): Derivation;
uses 1.r
iscomposed of
CandidateDerivation 2
double weight MatrixCYKElement
+ CandidateDerivation{double weight); Vector elements
i addWe_\ght(duub\e weight); + MatrixCY KElement(boolean newElement);
+ getWeight(): double; + getElements(): ¥ oid;

+ add(MatrixCYKElmentComp element): void:
+ get{intx): MatrixCY KElementComp;

+ contains(String axiom): hoolean;

+ sentenceRecognized(String axiom): boolzan;

4*
iscomposed of
1
MatrixCYHKE lementC omp

String nonTerminal;
double weight;
Vector semanticF unc;

+ Matrix CYKElementComp(String norTerminal, double weight,
Vector semanticF unc):

+ gethatrix CY KElRment Comp(): Matrix CYKEl2mentComp,

+ setMatrix CYKElementComp(M atricCY KElementComp val): void:

Figure 7.6: Class diagram of the GrammarInference package

7.3 Main Software Classes of the System

In this section a general overview of the main classes of the MGE
is provided. In particular, the class Tagger used by the class
SyntacticRoleDefinition in the MUI package, and the class
Grammarinference in the Grammarlnference package are
described.

Chapter 7. Multimodal Grammar Editor Implementation 139

7.3.1 Defining Syntactic Roles

The syntactic role of the recognized input elements is a
fundamental information for building the CYK matrix during the
grammar inference step. To support the language designer in the
definition of syntactic roles that each input element has within the
sentence, the tagger of Stanford has been used.

The class Tagger is devoted to achieve this support. In
particular, for each input modality an object Tagger is initialized
with the unimodal input elements, outputted by the specific
recognizer. The output of the method Tagging(), in the class
Tagger, is a list composed of the syntactic categories corresponding
to the input elements of the sentence. The method TagView() takes
this list and opportunely display the association between input
elements and syntactic categories in a panel of the window for the
syntactic category definition.

Figure 7.7 shows a code excerpt from the method Tagging().
The first three rows allows to opportunely initialize the tagger.
Afterwards, the tree of the unimodal input elements is created and
the method taggedYield() is applied to this tree, which generates an
object Sentence that is the sequence of syntactic categories
corresponding to the input elements. The tagging ends by adding
the categories in a list, TaggedWord, which is used by the method

TagView() for displaying the output of the tagger to the designer.

LexcalizedTaggzer Ip = new LexicalizedTaggen “englishPCF G ser.zz™);
I setChptionFlagsrewr Stringf]
{“-mand ength”™, “207, “-retainTropSubeatesores™
Tree parse = (Tree) lp applizentence);
Sentence s = parse tagzed Vield(),
for (int 1=0; i=s lengthi); i++ {
Tagged Word tw = (Tagged Word) s.2e4(1),
tagged Words add(tw toString));
H

Figure 7.7: A code excerpt from the method Tagging()

140 Chapter 7. Multimodal Grammar Editor Implementation

7.3.2 Building of the CYK Matrix

When the language designer has inputted all needed information
through the MUI, the controller of the MUI activates the class
Grammarlinference for the generation/updating of the grammar. In
particular, the method upgradeGrammar(Grammar g, Sentence s)
is invoked, which takes as parameter the current MAG grammar g
and the linearized sentence s. A fragment of code of this method is
shown in Figure 7.8.

Vector sentence Ele ments = 5 getElements();
int sentencelength = sentenceElements sizel),
Hashlvlap candidateProd,
DlatrinCVE matrixCVE = new DWatrinC VI sentencelength),
g.oreatelTatrinC VE (matridT VE, sentence Elements, sentencelengthy;
if {candidate Prod 1= null) {

g addProductions{candidateProd, g getfdorm)); }

Figure 7.8: A code excerpt from the method
upgradeGrammar(Grammar g, Sentence s)

First of all, the elements of the linearized sentence are extracted and
the number of these elements is evaluated (through the method
size()) for defining the dimension of the CYK matrix that will be
created. The object candidateProd, that is a map, is created for
storing the candidate productions that will be inserted into the
grammar. Afterwards, the creation of the CYK matrix is delegated
to the class MAGrammar that invokes the method
createMatrixCYK (matrixCYK, sentenceElements, sentencelLength)
for creating the CYK matrix. An excerpt from this method is shown

in Figure 7.9.

Chapter 7. Multimodal Grammar Editor Implementation 141

Iterator it = serdence sterator),
HashlIap candidateProd = new HashlvIap();
Strng syra = mll;
inti=0;
it jk;
while (it hasHext()) {
SentenceEler el = (SentenceElem) it next();
rattixC VR addElement(0, 1 new MatrixCVEE lementComplel getSymtacticCat(), 0.5));
)
for (j=1; j=n; j++ {
for (i=0; i=n-j; i+ {
for (k=0; k==j-1; k) {
Vector candidateDerfrations = matrixC VI getCandid ateDerheation(j, 1 k),
serifyProduction) candidateProd, reatrixC VI, candidateDertvations, j, L n); }

Figure 7.9: A code excerpt from the method
createMatrixCYK(matrixCYK, sentenceElements, sentenceLength)

The while loop is responsible for loading the elements of the
first row of the CYK matrix. As described in Section 5.5.1, these
elements are the syntactic categories (obtained by the tagger (see
Section 7.3.1)) of the non-terminals that generate directly the
terminal symbols of the grammar in the production rules.
Afterwards, three nested for loops are implemented. For each
element of the matrix, a vector candidateDerivations is created,
which contains the non-terminals with the related weights. To
achieve that, the method getCandidateDerivation(j,i,k) of the class
MatrixCYK is invoked, which is briefly described below (see
Figure 7.10). Finally, the method verifyProduction(candidateProd,
matrixCYK, candidateDerivations, j, i, n) verifies the candidate
production rules to be added to the grammar. This method firstly
checks if a non-terminal of a candidate rule is present in the body
of some grammar rules yet. If it is so, the non-terminal is added in
the appropriate location of the CYK matrix and the inspection of
the vector of candidate production rules ends. Otherwise, the new

142 Chapter 7. Multimodal Grammar Editor Implementation

symbol is inserted as key of the map (called candidateProd)
containing the candidate rules and it is subsequently added in the
appropriate location of the CYK matrix.

As said before, another method relevant for building the CYK
matrix is getCandidateDerivation(j,i k) of the class MatrixCYK. An
excerpt from this method is shown in Figure 7.10. This method
firstly extracts the non-terminals from the CYK matrix. As more
than one element can be contained in a location of the matrix, a for
loop (with variable w) is used for extracting all the non-terminals of
a location. Afterwards, the weight of the candidate production is
computed. Finally, a new rule is created by initializing an object
CandidateDerivation that opportunely includes the elements
extracted from the CYK matrix as head and body of the rule.

Vector dermrations = new Vector),

IlatrinC YR E lerent iElement = matr[k] [1];

WMatrnnCYKElement jElernent = matrin])-k-1] [(+k+1],

for (it w=0; wiElement length); w+t) §

for {int w=0, w=jElement lengthi); w++ {

MatrnaCYEKElmentCorgp 10ormp = MWatmieC YR Ele mentCorap) iEle ment get(ar);
MMatnxCYEKE lmentCorg 1Cormp = MdatmieC VYEEle mentCorap) jEle ment get(v),
double weight = iCormp getWeight() + jCorap getWeight(),
CandidateDerrvation d = new Candidate Dermationweight),
d.setleftinew NonTermnal{iCorp getHonT exreanal()));
d.setRight(rew MonTemninal(jCo rp getMon Terrninal{)))
derfrations add{d); }

Figure 7.10: A code excerpt from the method
getCandidateDerivation(j,i,k)

7.3.3 Revised CYK Algorithm

When the CYK matrix is built, the revised CYK algorithm
proceeds with the analysis of both the matrix and the set of
candidate production rules for choosing which rule has to be added
to the current grammar. This task is delegated to the class
Grammarinference, which uses the method
upgradeGrammar(Grammar g, Sentence s), introduced in Section

Chapter 7. Multimodal Grammar Editor Implementation 143

7.3.2 (see Figure 7.8). In particular, this method takes the map of
the non-terminal symbols associated with the candidate production
rules, which is outputted by the invocation of the method
getCandidateDerivation(j,i,k), described in Section 7.3.2. If this
map is null, then the current grammar is able to generate the
multimodal linearized sentence and consequently the algorithm
ends. Otherwise, the method addProductions(HashMap
candidateProd, String prodldx) of the class MAGrammar is
invoked. A fragment of code of this method is shown in Figure
7.11.

if' (candidateProd contains K esnprodld:)) {
CandidateDermration derfrationTolnsert = new CandidateDertration(0);
Vector derreations = (Wector) candidateProd. get{prodldz);
Iterator itDer = dermrations iterator);
while (1tDer hastlexti)) {
CandidateDertration od = (CandidateDertration) itDer ne xt{);
if {cd. getWeight() = dermvationTolnsert zetWeight()) {
derrrationTolnsert = od; }
H
addProductionFuleprodldz, derrrationTolnsert),
addProductions{candidate Prod, dertrationTolrnsert getLefti). zet Expansion(y;
addProductions{randidateProd, dertrationTolnsert getRight(). getE xpansion)),
}
elae {

retum; }

Figure 7.11: A code excerpt from the method
addProductions(HashMap candidateProd, String prodldx)

This method takes as parameter the map of candidate
production rules and the non-terminal to be inserted in the grammar
(the first time the method is called, the axiom is passed). First of
all, it checks if the non-terminal is present as key of the map
candidateProd. 1f it is so, the vector containing the candidate
production rules corresponding to that key is extracted from the
map. Afterwards, a while loop is implemented for identifying the

144 Chapter 7. Multimodal Grammar Editor Implementation

derivation in the vector with the best weight. The object
derivationTolnsert contains the rule that will be added to the
grammar. Once the best candidate derivation is chosen, the current
grammar is updated by using the method addProductionRule,
which takes as parameter the non-terminal symbol and the
derivation. When the non-terminal symbol, contained in the left or
right side of the new derivation, is present yet in the set of non-
terminal symbols of the grammar, the method addProductions
ends.

7.4 Usage Example of the Editor

The definition of a new language or its updating is performed by
defining new multimodal sentences through the graphical editor
shown in Figure 7.12.

it b b oy

I | | —

[Sy the et s 95 [etetn e emtciod gy e (] I &

—o) et e

@ @

Figure 7.12: The graphical user interface of the grammar editor

This interface is composed of four main panels (identified by
number 1,6,7, and 8 in Figure 7.12), corresponding to the macro-

Chapter 7. Multimodal Grammar Editor Implementation 145

tasks that the language designer has to accomplish in order to
define the intended multimodal grammar.

In particular, the panel for the Grammar selection (number 1 in

Figure 7.12) contains the following elements:

a combo box for selecting an existing grammar in the
domain of interest for the application (number 2 in Figure
7.12). When the grammar is selected, it is shown in the panel
“Display grammar” (number 6 in Figure 7.12).

a button for defining a new grammar (number 3 in Figure
7.12), if the intended grammar is not present in the list of
existing grammars. When this button is pushed the dialog
frame, shown in Figure 7.13, appears and the user can insert
the name of the new grammar.

a button for deleting an existing grammar (number 4 in
Figure 7.12). If this button is pushed two warning messages
are consecutively visualized for asking the confirmation of
deleting the selected grammar in the combo box (number 2
in Figure 7.12).

a button for specifying the selected grammar (number 5 in
Figure 7.12), that enables the panel for the Modality
Selection (number 7 in Figure 7.12). When the user pushes
this button, the Grammar selection phase ends and the
Modality selection phase starts.

Define a new grammar

Insert the grarmmar 10:

Figure 7.13: The dialog box for inserting the new grammar name

146 Chapter 7. Multimodal Grammar Editor Implementation

Figure 7.14: The panel for modality selection in the graphical user
interface of the grammar editor

The panel for the Modality selection (number 7 in Figure 7.12)
contains the following elements:

- a combo box for selecting the modalities that are supported
by the system and involved in the multimodal sentence
(number 1 in Figure 6.14).

- a list (number 2 in Figure 7.14) where the selected
modalities are shown.

- abutton (number 3 in Figure 7.14) for inserting the selected
modality from the combo box into the list.

- a button (number 4 in Figure 7.14) for deleting the selected
modality from the list.

- a button for the confirmation of the modality selection
(number 5 in Figure 7.14). When this button is pushed, the
components of the panel “Multimodal Sentence Acquisition”
(number 8 in Figure 7.12) are dynamically created,

Chapter 7. Multimodal Grammar Editor Implementation 147

according to the modalities that the user has selected
(contained in the list).

Ao aloble ey
Ut of Qelred o srwars.
Sebetwd rudsiten
3 —-> cesosis 152) @
Y?.
e
i
® @ o @ o
BT |

Figure 7.15: The panel for multimodal sentence acquisition in the
graphical user interface of the grammar editor

The panel for the Multimodal sentence acquisition (number 8
in Figure 7.12) is dynamically created according to the selected
modalities. If the user selected the speech modality, an icon of a
microphone (number 1 in Figure 7.15) is shown in the panel and
the speech recorder is connected to the interface. If the user
selected the sketch (or handwriting) modality, an icon of a sketch
(or handwriting) and an editable area for the sketch input
acquisition are arranged in the panel (number 2 in Figure 7.15).

In addition to this dynamic components, the panel for the
Multimodal sentence acquisition contains the following static
elements:

- a button for starting the multimodal sentence acquisition
(number 3 in Figure 7.15). When this button is pushed, the
system enables the modality recorders to acquire the input of
the user.

148

Chapter 7. Multimodal Grammar Editor Implementation

a button for concluding the multimodal sentence acquisition
(number 4 in Figure 7.15). When this button is pushed, the
system disables the modality recorders to acquire the input
of the user.

a button for deleting the acquired multimodal sentence
(number 5 in Figure 7.15), if the user is not satisfied by this
sentence.

a button for visualizing the inserted input (number 6 in
Figure 7.15). When this button is pushed, the system opens a
new window where the unimodal input recognized by the
specific recognizers are displayed. This window is described
in detail below.

a button for confirming the acquired sentence (number 7 in
Figure 7.15), if the user is satisfied by this sentence. When
this button is pushed, the system starts the linearization
process, which provides the linear sequence of input
elements. Afterwards, the user can confirm the acquisition of
the sentence by pushing the button “Add Sentence” in the
main interface (number 9 in Figure 7.12), otherwise s/he can
cancel the acquisition by pushing the button “Delete
Sentence” (number 10 in Figure 7.12). If the “Add Sentence”
button is pushed, the system starts the grammar inference
algorithm, whose results are displayed in the panel “Display
grammar” (number 6 in Figure 7.12).

The window for visualizing the unimodal input recognized by

the specific recognizers is shown in Figure 7.16. This window
contains the following elements:

a button for defining the syntactic roles of the inserted
unimodal input;

a button for defining the kind of cooperation among the
inserted unimodal input;

a button for concluding the definition of the syntactic roles
and the kinds of cooperation of the recognized input
elements.

Chapter 7. Multimodal Grammar Editor Implementation 149

Inserted multimodal sentence

Display speech input

[Define Syntactic Roles]

Display sketch input
[Define Modality Cooperation]

Send Sentences] [Cancel

Figure 7.16: The window for visualizing the unimodal input
recognized by the specific recognizers

In order to explain the grammar editor functionalities, a simple
example is shown in the following. Suppose the user wants to
define a multimodal language for editing E-R diagrams. First of all,
s/he selects the appropriate grammar from the combo box (number
2 in Figure 7.12). Whether an E-R grammar does not exist yet, the
user can define it by pushing the button “Define a new grammar”
and inserting the name of the new grammar in the textual field. Let
us suppose that the concepts dictionary containing the entizy and the
relationship concepts belonging to the E-R domain have been
already defined. Moreover, dictionaries containing the different
modalities symbols representing these concepts have been already
defined too.

Suppose again that the first multimodal sentence that the user
inserts is composed by the speech input “This is the entity
Professor” and the sketch input of a rectangle representing an
entity. Therefore, the user selects the speech and sketch modalities
from the combo box (number 1 in Figure 7.14), and confirms the
selection by pressing the button “Confirm Modalities” (number 5 in
Figure 7.14). Afterwards, a dynamic editable area appears (number
8 in Figure 7.12) where the user can input the multimodal sentence
by using a microphone for the speech and the area for the sketch.

150 Chapter 7. Multimodal Grammar Editor Implementation

The acquisition of the sentence begins with the pressure of the
button “Start”, as shown in Figure 7.17.

Gramm Selection Hodaliyy Salaction
P
kst of defined grammars.
Selected modities
o)
|
|
==

Figure 7.17: Multimodal sentence acquisition

When the user finishes to insert the sentence, s/he presses the
button “Stop”. If the user is not satisfied by the inserted sentence
s/he can cancel it and start again the acquisition.

Pressing the button “Visualize”, the system acquires the input
elements of the multimodal sentence, sends them to the specific
recognizers and displays the recognized inputs in the window

“Inserted Multimodal Sentence”, as shown in Figure 7.18.

Chapter 7. Multimodal Grammar Editor Implementation 151

Inserted multimodal sentence

Display speech input

Thislid thelentitdProfessor

[Define Syntactic Roles]

Display sketch input

[Define Modality Cooperation]
entity

Send Sentences] [Cancel

Figure 7.18: Recognized unimodal inputs

At this point the user presses the button “Define Syntactic
Roles” for identifying the syntactic role that each element has
within the sentence. Pressing this button, the interface in Figure
7.19 is visualized. As the input in our assumption can be
represented through a Natural Language (NL) expression, the
system provides the possible syntactic roles of the input elements;
these roles comes from the application of a NL parser to the NL
expression. For instance, the application of a NL parser to the
speech input in the example produces the set of syntactic roles
shown in the area “Possible syntactic roles” of Figure 7.19.
Whether these roles correspond to the intention of the user, s/he can
confirm them by pressing the button “Confirm syntactic role”,
otherwise s/he can define the syntactic roles manually by selecting
the input element and choosing the appropriate role in the drop-
down list. When syntactic roles are defined for all input elements,
the user visualizes the defined roles in the text area on the right of
the interface, and either confirms them by pressing the button
“Send syntactic roles” or delete some syntactic roles by pressing
the button “Remove syntactic role”.

152 Chapter 7. Multimodal Grammar Editor Implementation

Define Syntactic Roles

Define syntactic roles Display defined roles
Display speech input This = deict ~
- is=v
o) [Thizlid by e =an
D
entity=n
Frofessar=n A
Display sketch inpuk entity = n ~
entity 7
&5" -
v
deict v

Possible syntactic roles

This = deict
is=w

the = adj
entity=n
Frofessor=n

Confirm syntactic role] [Remove syntackic role

Send syntactic rales

Figure 7.19: Interface for the definition of syntactic roles of
inserted input

At this point the user presses the button “Define Modality
Cooperation” for identifying the kind of cooperation among input
elements. Pressing this button, the interface in Figure 7.20 is
visualized. The user selects the input elements that have to be
linked by a cooperation mode (complementarity, redundancy..) and
chooses the appropriate mode in the drop-down list. When all
necessary rules of modality cooperation are defined, the user
visualizes them in the text area on the right of the interface, and
s/he either confirms them by pressing the button “Confirm modality
cooperation” or deletes some cooperation rules by pressing the
button “Delete modality cooperation” and the system shows again

the main interface configuration of Figure 7.17.

Chapter 7. Multimodal Grammar Editor Implementation 153

Define modality cooperation |’._||’E|F5__<|
Define modality cooperation Display defined cooperation
Display speech input cornplermnetarity (This, ertity)

E”) [Thiglid the[entitdFrofessar

Display sketch input
entity

Ry,

Madality caopetation [Delete modality cooperation]

Complementarity v| [Confirm modality cooperation]

Figure 7.20: Interface for the definition of modality cooperation

At this point the user presses the button “Add Sentence” of
Figure 7.17 for concluding the multimodal sentence input. The
system automatically applies the algorithm of grammar inference
and generates the production rules necessary for parsing the
inserted sentence. The user can visualize these rules in the text area
on the left of the interface (number 3 in Figure 7.12). In Figure 7.21
the production rules generated for the example are shown.

154 Chapter 7. Multimodal Grammar Editor Implementation

1B Grammar Editar
Avalaie modaites
List of defired grammars
Selected modaives
Ml Serders Bstivn
Sh)
[[5w Concel | [Cvsusee | [Ciem)

Figure 7.21: Visualization of the generated production rules for the
example

7.5 Summary

This chapter has presented the implementation process of the
multimodal grammar editor. The editor relies on two main
components: the first, named Multimodal Grammar Definition, is
devoted to acquire all data necessary for defining/updating a
multimodal attribute grammar through a multimodal user interface;
and the other one, named MAG Inference, is responsible of the
implementation of the grammar inference algorithm, described in
Section 5.5.

Therefore, the final result of the implementation process is an
editor that, following a “by example” approach, allows to define
production rules of the multimodal attribute grammar from concrete
examples of multimodal sentences. The application of a grammar
inference method, which automatically generates the production
rules, relieves the user from the task of learning the grammar

Chapter 7. Multimodal Grammar Editor Implementation 155

formalism, making grammars easier to use also by non-expert
users.

In the next chapter, two experiments are presented that were
conducted to investigate the usability of the multimodal grammar
editor and the performance of the grammar inference algorithm.

Chapter 8

Evaluation and Results

This chapter presents some validation of the Multimodal Grammar
Editor (MGE), whose theoretical foundations, design and
implementation are described in previous chapters. The goals of the
validation are mainly twofold. First of all, the usability of the MGE
has been assessed for understanding how well it works in practice.
Secondly, the evaluation of the grammar inference algorithm has
been performed for measuring the correctness of the induced
grammar.

8.1 Introduction

The evaluation of the Multimodal Grammar Editor (MGE) has been
carried out from a twofold point of view: firstly, by considering the
editor as a software system, the assessment of the usability of this
system can be performed; secondly, by considering the editor as a
grammar inference system, the correctness of the inferred grammar
can be evaluated.

In order to evaluate the usability of the editor, some
experiments were conducted, which involved six subjects. These
experiments aimed at observing the subjects while interacting with
the editor in order to provide some real data about the usability of
the editor. In particular, the ability of real users to accomplish the
grammar definition using the multimodal interface of the grammar
editor has been evaluated. This evaluation and its consequent
results are illustrated in Section 8.2.

156

Chapter 8. Evaluation and Results 157

Concerning the second point of view, evaluating grammar
inference systems within NLP is a critical task for several reasons.
First of all, in order to evaluate an inferred grammar it is necessary
to compare it against a “correct” grammar, which is difficult to
identify. Secondly, the ambiguity represent an obstacle as there is
no an obvious single correct grammar that represents a given set of
training examples. These issues have been largely addressed in the
literature and several evaluation metrics have been defined for
measuring the correctness of the induced grammar. A brief
description of the three main evaluation methods used in NL
grammar inference is provided in Section 8.3.1.

The analysis of the advantages and drawbacks of these
methods has lead to choice the rebuilding known grammars method
for evaluating the proposed grammar inference algorithm due to its
simplicity and objectivity of the evaluation. The application of this
method and its results are illustrated in Section 8.3.2 and 8.3.3.

8.2 Usability Evaluation of the MGE

Usability testing has been defined by Barnum [Bar02] as the
“process of learning from users about a product’s usability by
observing them using the product”. Originally, these tests were
conducted with a large number of users (30-50). Nowadays, the
advent of modern usability testing methods has allowed to decrease
the number of participants, requiring 5-7 representative users for
finding most of the problems, in particular when it is a qualitative
test.

The usability testing performed for evaluating the MGE
consisted of a series of user trials designed to assess how the editor
functionalities are perceived by the users. A total of six subjects
took part in the testing. This small number of people is justified
also by the qualitative nature of the analysis that has been
performed.

A detailed description of the testing phases and an overview of
obtained results are given in the following sub-sections.

8.2.1 Experimental Setting

In order to assess the usability of the implemented editor, a series
of experiments among the research staff of the Institute of Research

158 Chapter 8. Evaluation and Results

on Population and Social Policies were conducted. The objective of
these experiments was to compare the ease of writing grammars by
examples instead of writing grammars by text.

The total number of participants in the experiments is six.
These people have been divided in two groups: group 1 (1 male and
2 females) is composed of members of the MultiModal Laboratory,
with high skill with multimodal languages, and group 2 (2 males
and 1 female) is composed of members of the social science
research staff, without any skill with multimodal languages. This
partition has been introduced because people of group 1 already
know the multimodal grammar formalism and, therefore, they have
less difficulties to write grammars by text. For this reason people
belonging to group 1 should provide a preference in using MGE or
the text-based editor, independently from their specific skill. On the
contrary, people of group 2 need to be trained in the multimodal
attribute grammar formalism and, consequently, have more
difficulties to write grammars by text.

The trial consisted of defining a multimodal attribute grammar,
starting from a set of positive examples of multimodal sentences,
which are shown in the first column of Table 8.1. For defining this
grammar, the participants have to use alternatively a textual editor,
which requires the specification of grammar rules in BNF text
form, and the multimodal grammar editor proposed in this thesis,
that requires the specification of a set of multimodal sentences.
These different versions were identified to the participants as
“yellow editor” and “red editor”, respectively, in order to avoid
influencing their opinions on the editors.

Chapter 8. Evaluation and Results 159

Table 8.1: The multimodal sentences for the experiments

Multimodal sentences Syntactic roles Kinds of cooperation
S1) speech: “all this person” Call Sk Tobas -+ nowm Complementarityt This Jok)
Tndbwriting: the tame ofthe person ot the toude seen diplay This - deictic Sith -5 nom I ommplmentirity This Senth
Pesan - o Complenaitcitytperson, Jihn)
Complanentarityperson, Smith)
53) epeect: * Call thic compary™ Call vt company - now | Complemsntaring This Atos)
Zectumre: pofetingthe icon ofthe company on the touche srem disply | This - deictic Bos > nom Complanetirityeompany, dos)
§3) epeech: “The Fumnher of this person i The 5 desmmier Prson - Tomm Complementarityl Thic Joke)
Tundvriting; the name of the parvon o the trach. screen dicplay Hhaher - nom Tobn, > nom omuplementaic This Senth)
0f = preposition Stmith - nom s
This - drictic I vt Conglanatoripan. ta)
Complementarinyperson, Smith)
G4) speech: “The eamail of this person is” The 3 determiner~ persan = nomm Complementarityt This Joku)
dbariting: the name of the person o the toudhe sceen display Eamail nom Tob, -~ non orpleuentrity Thi Seuth
Of - preposition Smith - nom Comp! ityiperson, Job)
Thi - deictic It i
Complanentaityiperson, Smith)
55) epeedh: “The addrecs of this parsom is” The 3 damier paremn - o Complementarityl Thie Joku)
Tuirriting: the name ofthe person o the toucke seen display ddress 5 now Tobet -5 nowm o ety This Smik)
Of -+ prposition. Smith — nonm [
Ths - ¥ deictic L = warh G i
Complementarity(person, Smith)
56) speech: “The romnher of this copany ™ The 3 determiner company > newn | Complimentiriey This Atos)
gesture: pointing the icon of the compary on the touch- screen disply | Humber < nom o5 nom Complanetringcmpiy, Moc)
0f - preposition I
Thi - deictic
§7) sprech: “The e-mail of this company is” The - determiner company < nom | Complimentarity This Atos)
Zestire: poitting the icon of the comparyy on the touch- saeen displyy | Eamadl - nom Ao nom Commplanentarityts omp ey dos)
0f - pruposition I
Ths - < deictic
§8) speech: “The address of this compary is™ The - determiner compary < nom | Complmentarity This Atos)
Zectime: poietingthe icon of the compary on the tourhe seen disply | Address - nom Bos—3 nom Complamentcityicompay Aas)
0f = preposition I
Ths - ¥ deictic
59) epeech: * Shorrthe address ofthis person’ Shor > vt This -—» deicti Complementaring Thic Jok)
et the nme of the percon on the touch- een dieplyy The 3 demmier paremn - o oo ettty This Smik)
Address —» nom Jobw, = noum ;
0f > posposition Smith - nom Eamplsa b,
Complemntarinyperson, Smith)

The yellow editor has an interface (see Figure 8.1) similar to
the MGE interface, described in Section 7.4. The fundamental
difference is in the panel for the acquisition of multimodal
sentences, that in the yellow editor is replaced by an editable area
for manually inserting the textual rules of the multimodal attribute
grammar. Therefore, in this editor there is no need of the grammar
inference method, as the grammar description is manually defined
by the user. The trial with the yellow editor consists in writing the
production rules and semantic functions, which generate the given
multimodal sentences (in the first column of Table 8.1), within the
textual area of the editor. The correct description of the grammar
that generates these sentences is shown in Table 8.2. As group 2 is
composed of people not skilled in multimodal grammars, they need
to be trained in the multimodal attribute grammar formalism.

160 Chapter 8. Evaluation and Results

I Yellow Grammar Ldior

Lk of defed g

gty > (

Dt ke et e

Figure 8.1: Interface of the yellow editor

The red editor is the MGE and, therefore, it works as described
in Section 7.4. The trial with this editor consists in formulating the
set of multimodal sentences, which are shown in the first column of
Table 8.1, with syntactic roles and kinds of cooperation shown in
second and third columns of Table 8.1. If the grammar is correctly
defined, the red editor has to output the multimodal attribute
grammar shown in Table 8.2.

To perform the experiments a PC workstation has been
configured, with the two editors available. All trials were
conducted on this workstation, in order to have the same hardware
configuration.

Chapter 8. Evaluation and Results

161

Table 8.2: The multimodal attribute grammar for the experiments

T1) & - NP VERB
EL1L)E wale—HP val+VERE wal
F1.2) 5 mode NP mod+VERE mod

25 VD WP
R2.1)Svale Val+HP vl
R2.2) Stmde VP mod#iPruod

T3) VP - VERET
F3.1) VP vale VERET wal
F3.2) VP mod-VERET mod

4 NP P W HP
F4.1) HP vile HP wabt I aval+ MRl
F4.2) HP mode-HP mod+ Hmod+ HP mod

P3NP »DT HOUN
RS HE vale- DT HOUH il
F3.2)HP mod-T Tmod+ HOUN mod

T8 NP DT HOUN HHS
FA.1) HP vale- HHS 2wl
F6.2) P mod-D Tmod+ HOUN mod+ MRS mod

FT)HP »DT NOUN NHP1 HHPZ
R7.1) HP vile- HHP Lo HHP2wal
E7.2)HP mod=D Tmodt HOUN mod+ FHP Lmod
+HHP2 mod

P8) VERET — Call
F2.1) VEFET val - call
F4.2) VERET mod ¢ speech
Fi.3) VERET syrrole « b

T0) VERET — Show
FO.1) VEFET vl ¢ shuwr
F9.2) VERET mod « speech
BO3) VERBT symrolk + vtk

L) VERE »
RI10.1) VERE i+ &
R10.2) VEREmod + speech
RI0 %) VERE symrole & vt

L)DT— Thi
RIL1) DTl e thic
RIL1) DTamod + spesch,
R113) DT.syprole « deictic
RI14)DTcoop « complanentany

ML)DT— The
R12.1) DTl i the
R12.2) DTmod + speech.
R12.3) DT.symrole + determiner

PI3)NOUN — Company
R13.1) HOUM vl & comipaty
R13.2) HOUN mod + speech,

RI3 %) HOUN syprole nonm
RI13.4) FOUN.coop & complamentary

DPL)HOUH = Persent
RI14.1) FOUH sl & person
R14.2) HOUN mod & spuech
RI4 3 HOUN syrrcle « nom
R14.4) FOUN.coop & complanetary

DL HOUH - Hinsiber
RL3 1) HOUN w4l ¢ tomeher
R15.2) HOUN mod & speech
RLS 3) HOUH yrrols + nom

DPLE)HOUH = Epail
RI6 1) HOUH] & el
R16.2) HOUH mod « speech.
RI6 %) FOUN syprols nomm

PIT)HOUN - Address
RI7.1) HOUH vl + addrecs
R17.2) HOUH mod + speach
F173) NOUN syrmole e nonm

PG = of
RIE.1) Il e of
R18.2) Dmpd ¢+ sprech
F18.3) M syrrole & preposition

P19) HH3 - Atos
F10.1) FHE wil e Mtos
R10.2) HHE mod & geehme
F10.3) HFS gyrmole & nom
R10.4) M3 coop « complamerdsry

P20) HHPL — Tk
F20.1) FHP Lval + Jobm
F20.2) MNP Lzued ¢ bandvriting
F20.3) MHP 1 syrrole & o
F204) FHP.coop + complamentary

P21) NP2 — mith
R2L1) MNP vl Smih
R212) FFFImod « handoriting
F21.3) MHP2 syrrole & o
F214) FHP1.coop + complanetary

The trial included the following phases (in temporal order):

- a training phase, in which an explanation of the task and a
short tutorial on how to operate each editor prototype are
given. For people of group 2, a tutorial on the multimodal
attribute grammar formalism is provided.

a familiarization phase, in which the participants were asked
to use both editors in order to become familiar with their
functionalities. For this familiarization, a set of sample
sentences are used, different from the sentences of the trial.

an experimental phase, that is the core of the trial. Once the
participants felt comfortable with the editors, they were
asked to use alternatively the yellow editor, that requires the
definition of grammar rules in BNF text form (as shown in
Table 8.2) starting from the multimodal sentences, shown in
the first column of Table 8.1, and the red editor, that requires

162 Chapter 8. Evaluation and Results

the formulation of the set of multimodal sentences, shown in
Table 8.1.

- an evaluation phase, in which each participant was asked to
fill out a simple evaluation questionnaire aimed to find out
whether it liked the editor or not. The questionnaire (detailed
described in Appendix A) is composed of nine questions that
asked the users to rate (on a 5-point Likert scale ranging
from “strongly disagree” to “strongly agree”) certain features
(e.g., helpfulness, usefulness, etc.) of the two editors. These
questions are briefly summarized in Table 8.3. In addition, a
final question asked the users which of the editors they
preferred to use, and their comments, if any.

Table 8.3: The questionnaire for the usability evaluation

1) Defining a mltimodal graarar by wiiting the production rules and
gerantic functions is difficult

Q2 Defining a raultirvaodal grammar by specifying the exarples of
wmltirnndal zentences to be generated is difficult

3 Using the yellow editor for definirg a moltirnodal graranar is as
efficient as using the red editor (in terras of tirne)

Oy [found using the sellow editor eassy

53 I found writing all production mles time-consming

63 [found the mteraction with the yellow editor nserfhiendly
Q07 I found using the red editor easy

Q&) [fonund writing all multirodal sentences time-consuming
Q9 I found the interaction with the red editor userfriendly

A detailed description of the instructions provided to the test
participants and the evaluation questionnaire can be found in
Appendix A.

8.2.2 Results

The test results described below demonstrate that the multimodal
grammar editor, designed and implemented in this dissertation, is a
valid support for the definition of multimodal grammars.

Chapter 8. Evaluation and Results 163

In fact, the majority of participants (5 users, ie. 83%)
answered to the final question that they prefer using the red editor,
and only one participant (17%), belonging to group 1, prefers the
yellow editor. The answers to the evaluation questionnaire are
summarized in the pie charts of Figure 8.2.

Q1

o Strengly &8 agree
| D agree

O Newtral

Dagree

B Strengly agree

Figure 8.2: Responses to the evaluation questionnaire

The first three questions aim to find out whether the
participants have difficulty in writing grammars by examples using
the red editor or by text using the yellow editor. All people of group
2 and two people of group 1 found easier to define a multimodal
grammar by specifying the examples of multimodal sentences
instead of writing the production rules (question 1 and 2). The
remaining one person of group 1 was neutral.

Considering differences between the two users’ groups it is
possible to observe that the red editor is usually preferred also by
people skilled in multimodal grammars. In the comments, a user of
group 1 said that s/he “prefers the red editor as it is easier to use
according to its natural interaction”. Moreover, a user of group 2

164 Chapter 8. Evaluation and Results

said that s/he “prefers the red editor because s/he is not obliged to
remember how to formalize the grammar”.

The further three questions aim to assess the usability of the
yellow editor, in terms of difficulty, time and user-friendliness. 5
out of 6 participants evaluated negatively the ease and user-
friendliness of the yellow editor (question 4 and 6), while only one
person (of group 1) was neutral. Participants were divided as to
whether writing all production rules using the yellow editor is time-
consuming (question 5): people of group 2 tended towards the
agreement, while people of group 1 towards the disagreement. This
is due to the time required to learn the grammar by people of group
2. Comments made by participants of group 2 regarding the
interaction with the yellow editor are the following: “I found the
process of the grammar definition an onerous work for me”, “I’'m
not skill in grammars and the preliminary tutorial is not sufficient
for enabling me to use the yellow editor”. A user of group 1 said
that “I’m not sure of the correctness of the grammar I have defined
and the yellow editor does not support me in resolving my
problems”.

The final three questions aim to assess the usability of the red
editor, in terms of difficulty, time and user-friendliness. 5 out of 6
participants evaluated positively the ease and user-friendliness of
the red editor (question 7 and 9), while only one person (of group
1) was neutral. Most participants (4 users, i.e. 66%) did not find
writing the multimodal sentences through the red editor time-
consuming (question 8). Comments made by participants of group
2 regarding the interaction with the red editor are the following: “I
felt the red editor more suitable for my skill because I don’t need to
learn the grammar formalism”.

8.3 Evaluation of the Grammar Inference
Algorithm

A brief review of existing evaluation methods for grammar
inference, along with a detailed description of the experimental
phases and an overview of obtained results, are given in the
following sub-sections.

Chapter 8. Evaluation and Results 165

8.3.1 Evaluation metrics

The evaluation of grammar inference algorithms is not a trivial
task, and many different approaches have been proposed in the
literature.

The looks good to me approach has prevailed for many years
due to its apparent simplicity. When a grammar inference algorithm
is evaluated using this approach, the algorithm is applied to a piece
of unstructured text and the resulting grammar is qualitatively
evaluated on the base of the linguistic intuitions of the evaluator,
that highlights the grammatical structures which look “good”. As
this approach needs only unstructured data to be applied, it can be
evaluated on different languages without the need of structured
corpora [Zaa0l]. However, the method has many disadvantages.
First of all, this kind of evaluation is mainly conducted by an expert
who has specific knowledge of the syntax of the language, that is
generally the developer of the system. This leads to a high chance
of a biased evaluation, making it almost impossible to gain an
accurate picture of system performance.

Another approach for evaluating grammar inference algorithms
is the compare against treebank. This evaluation method consists in
applying the grammar inference algorithm to a set of plain natural
language sentences which are extracted from an annotated
treebank, which is selected as a “gold standard”. The structured
sentences generated by the algorithm are then compared against the
original structured sentences from the treebank. There are several
metrics that can be used to compare the learned tree against the
original tree structure. Most often, the recall, which gives a
measure of the completeness of the learned grammar, and the
precision, which shows how correct the learned structure is, are
used. The compare against treebank method does not need an
expert to indicate if some construction is correct or incorrect,
allowing for a relatively objective comparison of different
algorithms. The main problem with this approach is that structured
corpora are needed. This may be a problem in the case of
multimodal languages because structured treebanks are not
available and need to be built by hand (or semi-automatically).

The rebuilding known grammars approach is another
evaluation method, which will be followed in this thesis. This
method, starting from a pre-defined (simple) grammar, generates a

166 Chapter 8. Evaluation and Results

set of example sentences, which are given as input to the grammar
inference algorithm and the resulting grammar is compared
manually to the original grammar. If the inferred grammar is
similar or equal to the original grammar then the learning system is
considered good. The advantages of this evaluation method are
quite similar to the looks good to me approach. An additional
advantage, similarly to the compare against treebank method, is
that the evaluation can be done automatically, without the need for
a language expert, and, therefore, it yields a more objective way of
comparing different algorithms. One of the disadvantages of this
approach is that the evaluation of the system depends heavily on
the chosen grammar.

From the analysis of these existing evaluation methods, the
rebuilding known grammars and the compare against treebank
approaches have most potential, mainly for the objectivity of the
evaluation they perform. In particular, the former works well with
relatively small artificial grammars, while the latter requires a large
corpus that contains multimodal language data and syntactic tree
structures generated by the multimodal grammar. As such a kind of
corpus does not exist in the literature yet, it should be built
opportunely, requiring lots of resources (both in time and money).
This severely restricts the application of this evaluation method to
grammar inference methods for multimodal languages.

Therefore, the rebuilding known grammars method is applied
in this thesis. In particular, for evaluating whether the inferred
grammar is similar or equal to the original grammar, the following
two aspects of the inferred grammar are measured during the
evaluation, according to the study of [LaS00]:

- errors of omission (failures to parse sentences generated by
the “correct” grammar), which indicate that an overly
specific grammar has been learned,

- errors of commission (failures of the “correct” grammar to
parse sentences generated by the inferred grammar), which
indicate that an overly general grammar has been learned.

More formally, given the artificial “correct” grammar G and
the inferred grammar G, errors of omission can be estimated as the
fraction of the number of sentences generated by G that are not
parsed by Gy to the total number of sentences generated by Ge.

Chapter 8. Evaluation and Results 167

Errors of commission can be estimated as the fraction of the
number of sentences generated by Gj that are not parsed by G¢ to
the total number of sentences generated by G;.

The application of this method to the proposed grammar
inference algorithm is described in the following sections.

8.3.2 Experimental Setting

In order to evaluate the grammar inference algorithm proposed in
this thesis, several experiments were conducted, following the
rebuilding known grammars evaluation method.

The main objective of the experiments is to examine the ability
of the grammar inference algorithm to infer a “correct” multimodal
attribute grammar. To achieve that, the artificial grammar shown in
Table 8.2 has been used, which is the same applied for the usability
evaluation, described in the previous section. Two sets of positive
training sentences Sy and test sentences Sz were generated top-
down from the artificial grammar. The training sentences are shown
in Table 8.4.a (they are the linearized sentences corresponding to
the sentences used for the usability evaluation), while the test
sentences are depicted in Table 8.4.b. It is necessary that the same
sentence does not appear both in the training and test sets. The
training set S7z was used to train the algorithm for generating the
inferred grammar, while the test set Sz was used for evaluating the
performance of the inferred grammar in terms of errors of
omission. Furthermore, for evaluating the error of commission,
another set of test sentences Syz, was generated top-down from the
inferred grammar. These sentences were used for evaluating the
performance of the inferred grammar in terms of errors of
commission.

168 Chapter 8. Evaluation and Results

Table 8.4: Training and test sentences for the experiments

Training Seniences

817 FP(Cally SPithis) SPiperson) HVATobn) HVE(Smith)

£2) SPCall) SPithis) SPromparye) GlAtos)

857 FP(The) 5P {ronnher) SPiof) SPithis) SPrperson) HWTobwy) HW Smith) 5Pris)

547 FP(The) SPemail) SProf) SP(this) SPrperson) HWTakm) W Smith) SPris)

557 FP(The) SP(etnail) SPiof) SP(this) SProoampary’) Glitos] SR

867 FP(The) SP(address) SPiaf) SP(this) SProampany’) Giitos) SP(is)

57) SP¢ Show) SPithe) SPaddress’) SPiaf) SPithis) SPiperson) HWE Taky) ETW Smith)
(&)

Test Seniences
1) SP(Shov) SPithe) SPraddress) SPiof) SPithis) SPlcompary) Biatos)

52 FP(Fhow) SP(the) SPirommber) SP(of) SPthis) SPrpersan) W Takm) HHT Stmith)

837 FP(Fhow) SP(the) SPeamail) SPyof) SPithis) SPiperson) HVWATobay) EW Smith)

541 SR Show) SP(the) SPreamail) SProf) SPithis) SPicompay) Gidtos)

557 FP(Fhov) SP(the) SPirommber) SPoof) SPthis) SProompary) Gitos)

867 FP(The) 5P(address) SPiaf) SPithis) SPrpersor) W Tobey) W Smith) 3Pris)

7 FP(The) SP(romnber) SPiof) SP(this) SProamparny’) Giitos) SP(is)

(k)

Therefore, the evaluation requires the following phases:

- starting from the artificial “correct” grammar G¢, the two
sets of training and test sentences are generated;

- the set Sz of training sentences is given as input to the
grammar inference algorithm that generates the inferred
grammar Gj;

Chapter 8. Evaluation and Results 169

- the inferred grammar is evaluated on the test set Sy, i.e. the
errors of omission in parsing the test sentences are
measured;

- a further set S7z, of test sentences is generated from the
inferred grammar Gy,

- the artificial “correct” grammar is evaluated on the test set
Strs, 1.e. the errors of commission in parsing the test
sentences are measured.

8.3.3 Evaluation Results

When the grammar inference algorithm received as input the set
Stg of training sentences shown in Table 8.4.a, it generated the
inferred grammar that is shown in Table 8.5.

Table 8.5: The multimodal attribute grammar inferred by the

algorithm

P1) 8- VERET
R1.1) SvaleVERBT walt Gval
F1.1) Smode-VERET mod+ Gmod

F)G-SDT D
E2.1) Gale Dl
F2.2) GamodeDT modtD mod

131 I S HOTH K
F3.1) Dvnale- MHGwl
F3.2) Dmnode- HOUH mod+HH S mod

P41 T - HOTH HEP1 HHE2
F4.1) Dnale— MNP Lval+ HHP2 sl
FA.2) Datode- HOUH mod+HHE Litod +HNP2mod

I5) 58— HVERE
F3.1) Svale-Huval+ VERE vl
F3.2) S modeHmod+ VERE mod

PIHSL §
Ff.1) Hvale- Lval+ Gl
Ff.2) Hnode-L mod+Gmod

IL=DT M
R1.1) Ll DT vl + Mol
E7.2) Lmode-DTmod+ Mmod

P M - NOUH I¥
F8.1 M vale- HOUHwal+ T val
FA.2) M mode-HOTH modt I mod

PY) 5= VERETH
F3.1) Sl VERBT wab+ Hal
F3.2) Smode-VERET mod+Hmod

I10) VERET — Call
RI10.1) VERET wal ¢ call
F10.2) VERET ttiod & epuech
RI0.3) VERET syrmole e vurh

D11) VERET — Showy
RI1L1) VERET wil ¢ showr
F11.2) VERET mod + speech
E11.3) VERET synmole & varh

PINVERE—
RI21) VERE v+ &
F12.3) VERE thod + spesch
RI2.3) VERE sybrols — verh

DIE)DT— Thi
RI13.1) DTl ¢ this
E132) DTatod & speech
RI3.3) DT.opmole & deictic
RI34) DT.co0p & complaventary

PIIDT - The
R 1) DTl e-the
E14.2) DTatod & speech
R143) DT.syrmole o determiner

PISYNOUH — Compay
R15.1) HOUH xral ¢ commpary
R15.2) HOTH mod + speech
EL3.3) HOUM syzrole +nom
E15.4) HOUH.coop + complemertary

PI6)NOUN = Pareon
E16.1) HOUH x4l - person
E16.2) HOUH mod + speech.
RI16.3) HOUH synrole + nom
R16.4) HOUH coop + complamertary

PITYHOUH — Fhouher
R17.1) HOUM w4l + ronber
RI17.2) HOUN tod + speuch
R17.3) HOUN srmole - nom

PI8)HOUH - Eamail
R12.1) HOUH val + e-mail
R12.2) HOUN mod + speech
R18.3) HOUN ol e nom

PIOYHOUH — Address
R19.1) HOUM val + wddress
F19.2) HOUN tmod + speach
R19.3) HOUN srmole - nom

PN = of
F20.1) Male- of
F20.2) Mmod « speech
F20.3) M.yrrole ¢+ preposition

P HHE — Aos
F2LL) HHE vl & Mos
F212) HHS mod & gestime
F2L3) HHE syrrols + nom
F2L4) HHE coop + complanentay

P22) HHPL — Telm
F22.1) HHP 1 val - Jobw
R222) MHP I mod & handriting
F22.3) HHP1 syrrols + nom
F224) HHP 1 coop + complanetny

P23) FP2 = Smith
F23.1) HHP2 val Smih
F23.2) NP3 mod & handriting
F23.3) HHPI symrole + notm
F23.4) HHP2 coop + complianertary

170 Chapter 8. Evaluation and Results

Afterwards, the performance of the inferred grammar was
evaluated by testing if the sentences in S7z, shown in Table 8.4.b,
can be parsed by the inferred grammar. The results of this
evaluation showed that the algorithm infers a grammar that is able
to recognize all the sentences in the test set (error of omission = 0).
This means that the inferred grammar is general enough, as it is
able to recognize all the unseen sentences.

Moreover, generating top-down a set Syz, of test sentences
(with the same size of the training and test sets in Table 8.4.a and b)
from this inferred grammar, the errors of commission can be
measured. For instance, considering the set of sentences in Table
8.6, the results showed that the inferred grammar does not generate
ungrammatical sentences (error of omission = 0).

Table 8.6: test sentences generated from the inferred grammar for
the experiment

817 SP(Shovwr) SPithis) SPiperson ETobm) BTV Smith)

521 SP(Call) SPithe) SP(person) SProf) SP(this) SP(compary) (7 Atos)

831 SP(Shovwr) SPithe) SP(compary) SPiof) SPithic) SPiperson BV Tobn) BTV Smith)

547 SPrShovwr) SP(the) SPipersor SPiof) SPiths) SPcommparyy) G{Atos)

557 SPCAll) SP(the) SPaumuher) SP(of) SPhis) SPcommpary) GrAtas)

S SPCCall) SPithe) SP(tommher) SP(of) SPithis) SP(persor) EWA Tabeo) EIW(Semith)

571 SPThe) SP(percon) SPof) SPithic) SProompary) Gbtos) SP()

In order to further validate the performance of the algorithm,
fifteen other experiments were conducted, by varying the sets of
training and test sentences. In particular, the fourteen generated
sentences of Table 8.4 were shuffled and two new sets (with size
equal to 7) were randomly defined. The results showed that the
average error of omission is equal to 0.018 (only two sentences
were not parsed in all the sixteen conducted experiments), while the
average error of commission is equal to 0.009 (only one sentence
was not parsed in all the sixteen conducted experiments).

From these simple experiments it is possible to gather that the
proposed grammar inference method has an acceptable

Chapter 8. Evaluation and Results 171

performance, since the inferred grammar has a very high
probability (i.e. >0.97) of parsing valid sentences.

However, more complex experiments should be conducted in
order to have a more accurate evaluation of the algorithm. In
particular, the number of training and test sentences can be
increased, so that the experiments can be conducted over various
training and test set size. Moreover, several artificial grammars can
be considered in order to have a more objective evaluation,
dependent as little as possible on the chosen grammar. Experiments
along this line has not been performed yet because they require a
high effort for writing manually “correct” grammars following the
MAG notation, but they represent a future work to give more
accuracy to the performance evaluation of the algorithm.

Chapter 9 Conclusion and Future
Work

Conclusion and Future Work

This chapter concludes the dissertation by summarizing the
contributions which this thesis offers to the research community,
and point out directions for future research.

9.1 Summary of the Thesis

Multimodal interaction has emerged in the last few years as the
future paradigm of human-computer interaction. This fact is
gathered also by the increasingly application of the multimodal
paradigm to computer interfaces making computer behaviour closer
to human communication. Multimodal interaction requires that
several simultaneous inputs, coming from various input modalities,
are opportunely integrated and combined into a complete sentence,
i.e. a multimodal fusion process has to occur.

In the literature, three main different approaches to the fusion
process have been proposed: the recognition-based, decision-based,
and hybrid multi-level fusion. The last one contains the grammar-
based fusion strategy. A comparison of these approaches [MPAO06]
showed that the grammar-based paradigm is the most natural one as
it is more coherent with the human-human communication
paradigm in which the dialogue is seen as a unique and multimodal
communication act. Moreover, this approach allows an easier inter-
modality disambiguation. However, the use of a grammar implies a
higher computational complexity for generating the rule sets of the

172

Chapter 9. Conclusion and Future Work 173

grammar as well as a highly expert user that is skilled in
computational linguistics for writing the grammar.

In order to overcome the deficiencies of the grammar-based
paradigm, this thesis proposed an approach of grammar definition
that follows the “by example” paradigm, that is, the language
designer provides concrete examples of multimodal sentences that
have to be recognized, and a grammar inference algorithm
automatically generates the grammar rules to parse those examples.
In such a way no skilled grammar writers are needed, but even non-
expert users can define multimodal grammars.

For verifying the workability of this theoretical approach, an
innovative multimodal grammar editor has been implemented,
which, unlike task-specific multimodal grammars, allows to define
complex multimodal expressions, integrating whatever input
modalities. A test on the usability of this editor showed that it
facilitates the grammar definition and is more suitable also for non-
expert people as it does not require the learning of the grammar
notation. In fact, most of people involved in the test considered the
MGE user-friendly and ease to use compared to a text-based
editor.

9.2 Contributions

This thesis offers some contributions to the area of multimodal
human-computer interaction research, which are summarized in the
following of this section.

First of all, the thesis introduces a new multimodal grammar,
named Multimodal Attribute Grammar (MAG), which is an
extension of attribute grammars for multimodal input processing.
This grammar has the capability to manage whatever modalities
and to represent temporal constraints into the grammar rules.
Moreover, it provides a good compromise between the context-free
paradigm and the necessity to represent semantic and temporal
aspects of multimodal input.

Secondly, a computationally efficient algorithm for
grammatical inference has been defined, which join together the
strengths of the inductive CYK and e-GRIDS algorithms, adapting
them to multimodal sentences. The strength of this algorithm relies
on its efficiency, simplicity and capability of avoiding the over-

174 Chapter 9. Conclusion and Future Work

generalization problem through the introduction of a heuristics
based on the simplicity of the grammar description.

Thirdly, an implementation of the underlying theory of
multimodal grammars and grammar inference into the Multimodal
Grammar Editor (MGE) has been provided. Using this editor the
language designer can define grammars interactively, by expressing
concrete examples of multimodal sentences, which s/he wants the
system recognizes, and to define all the opportune constraints on
syntactic roles and types of cooperation among modalities.
Afterwards, the editor applies the grammar inference method for
generating the set of production rules and the associated semantic
functions, which are expressed following the MAG notation.

Finally, a validation of the proposed grammar editor has been
provided by the means of a usability evaluation experiment, which
compare user acceptability in using the proposed editor against a
text-based editor. This experiment confirmed that the MGE,
designed and implemented in this dissertation, is a valid support for
the definition of multimodal grammars, mainly for people not
skilled in this field. Moreover, the performance of the grammar
inference algorithm has been validated through several experiments
which aim to examine its ability to infer a “correct” multimodal
attribute grammar. The main outcome of these early experiments is
that the algorithm has an acceptable performance, since the inferred
grammar has a very high probability (i.e. >0.97) of parsing valid
sentences.

To summarize, the main contributions of this thesis are
twofold:

- a grammatical editor for multimodal language definition that
is general enough to be applicable for whatever modalities
and in whichever domains,

- an efficient incremental learning algorithm that, following an
approach “by example”, allows to generate the production
rules of the defined grammar starting from the acceptable
multimodal sentences.

Chapter 9. Conclusion and Future Work 175

9.3 Future Work

This thesis is a first step into the domain of multimodal languages
and grammars. In this section, some of the directions for future
work in this area are presented.

As discussed in Section 5.5.2.1, a heuristic, based on the
minimum description length of the grammar, was developed in
order to avoid the over-generalization problem without the use of
negative examples. However, the definition of such a kind of
heuristics constitutes an argument not deeply investigated yet.
Therefore, a promising research direction for future work can be
towards finding new heuristics or towards improving the developed
one. Moreover, the introduction of new learning operators, in
addition to the merge and create operators, can be examined in
order to enhance the way the algorithm improves the grammar
description.

Another interesting task for future work is to further evaluate
the proposed grammar inference algorithm. The improvements on
the experimental phase are mainly twofold. First of all, experiments
over larger example sets could be performed. In this dissertation, a
basic evaluation over small artificial grammars was conducted.
However, a more accurate evaluation of the algorithm can be
achieved by increasing the number of training and test sentences, so
that the experiments can be conducted over various training and test
set size. Moreover, several artificial grammars can be considered in
order to have a more objective evaluation, dependent as little as
possible on the chosen grammar. Secondly, a comparison of the
computational efficiency of the proposed grammar inference
method with other existing algorithms could be performed. Such a
comparison will also provide a deeper evaluation of the accuracy of
grammars inferred by the proposed algorithm rather than the
existing algorithms.

A more implementative aspect that can be examined as future
work is the integration of further modalities into the grammar
editor. Although the theoretical framework presented in this thesis
(i.e. the multimodal grammar and the inference algorithm) can
accommodate many input modalities, the current implementation of
the editor strongly supports only speech, handwriting, sketch, and
pointing gesture modalities. Future versions of the editor should

176 Chapter 9. Conclusion and Future Work

support also other modalities, including lip-reading, 2D and 3D
gestures, gaze tracking, and face tracking.

Appendices

177

178

Usability Evaluation

This appendix describes the procedure followed for the usability
evaluation reported in Section 8.2. The instructions, which were
given to participants for using the yellow and red editors, and the
evaluation questionnaire are reported. The questionnaire included
questions that asked the users to rate (on a 5-point Likert scale
ranging from “strongly disagree” to “strongly agree”) certain
features of the two editors.

Instructions for using yellow editor

Starting from the set of multimodal sentences, illustrated in the
section about “The training set of multimodal sentences”, you will
define the multimodal grammar by using the interface of the editor
you visualize on your computer screen.

First of all, you have to set the name of the grammar, that is
“PHONE-BOOK?”, by pushing the button “Define a new grammar”
and inserting the name “PHONE-BOOK?”. Afterwards, you have to
write the production rules and the associated semantic functions,
which allows to parse the first multimodal sentence of the set, in
the text area “Multimodal grammar acquisition” at the right side of
the interface. After all rules are written, you have to push the button
“Insert Rule” and the current grammar will be displayed in the
“Grammar Display” area.

Afterwards, you have to select the name of the grammar you
are defining (i.e. PHONE-BOOK) from the list of defined
grammars and push the button “Specify the selected grammar”.

At this point, you have to write (in the text area “Multimodal
grammar acquisition”) the production rules and the associated
semantic functions for parsing the second multimodal sentence,

179

180 Usability Evaluation

taking into account the rules previously inserted and displayed on
the area “Grammar Display”.

You have to repeat these steps for each of the seven sentences
in the training set. When you finish writing the production rules for
parsing all the sentences, the defined grammar will be shown in the
area “Grammar Display”.

Instructions for using red editor

Starting from the set of multimodal sentences, illustrated in the
following section about “The training set of multimodal sentences”,
you will define the multimodal grammar by using the interface of
the editor you visualize on your computer screen. You will wear a
headset that allows you to speak to the computer. You will be
equipped also with a digital pen that allows you to draw/handwrite
directly on the editable area of the editor’s interface.

First of all, you have to set the name of the grammar, that is
“PHONE-BOOK?”, by pushing the button “Define a new grammar”
and inserting the name “PHONE-BOOK?”. Afterwards, you have to
select the modalities you will use for expressing the first
multimodal sentence (i.e. speech and handwriting modalities) from
the combo box of the “Modality selection” panel, and you can
confirm the selection by pressing the button “Confirm Modalities”.

At this point, you have to insert the first multimodal sentence
by using the headset for the speech and the digital pen for the
handwriting. The acquisition of the sentence begins with the
pressure of the button “Start”. When you finish to insert the
sentence, you can press the button “Stop”. If you are not satisfied
by the inserted sentence you can cancel it and start again the
acquisition.

Afterwards, you have to press the button “Visualize”, for
visualizing the inputs recognized by the specific unimodal
recognizers.

At this point you have to define the syntactic role that each
element has within the sentence, by pushing the button “Define
Syntactic Roles”. The system automatically shows the possible
syntactic roles of the input elements. Whether these roles
correspond to the roles described in column a of Table A.1, you can
confirm them by pressing the button “Confirm syntactic role”,

Usability Evaluation 181

otherwise you can define the syntactic roles manually by selecting
the input element and choosing the appropriate role in the drop-
down list. When syntactic roles are defined for all input elements,
you can visualize the defined roles in the text area on the right of
the interface, and you can either confirm them by pressing the
button “Send syntactic roles” or delete some syntactic roles by
pressing the button “Remove syntactic role”.

Afterwards, you have to identify the kind of cooperation
among input elements by pressing the button “Define Modality
Cooperation”. According to the cooperation mode described in
column b of Table A.1, you have to select the input elements that
have to be linked by a cooperation mode (complementarity,
redundancy..) and choose the appropriate mode in the drop-down
list. When all necessary rules of modality cooperation are defined,
you can visualize them in the text area on the right of the interface,
and you can either confirm them by pressing the button “Confirm
modality cooperation” or delete some cooperation rules by pressing
the button “Delete modality cooperation”.

At this point you can press the button “Add Sentence” for
concluding the multimodal sentence input. The system
automatically applies the algorithm of grammar inference and
generates the production rules that can be visualized in the text area
on the left of the interface.

You have to repeat these steps for each of the nine sentences in
the training set. When you finish inserting the multimodal
sentences, the defined grammar will be shown in the area
“Grammar Display”.

182

Table A.1: The syntactic roles and kind of cooperation of

Usability Evaluation

multimodal sentences for the usability test

Syntactic roles Kinds of cooperation
Call = wrarh Jobzr = nonm Cortiplertent ity Thie Jokm)
This — deictic Smith — nenmm [ortplermentarityy This Sk
BiTsart 5 ot Corp Lerneritaritepers o, Jobey)
Cortiplementarityiperson, Smith)
Call - werh COMMpETYT — BT Corrpleneritaritgy This St
Thie = deictic Afos = nonm Coatpleentaringrorparyy, Atos)
The -» detenmirier PEEOE = RO Copnpleaeritaritg Thic Joba)
Hhamber = ronm Jobir, = ponar I i 5
ontiplernerdarityy This S
0Of = preposition Smith = nnm -
This > deictic I > vah Ermplanentaperan)
Cortiplementariterpereon, Smmith)
The = detemmirier DeTS0r = TnIL Cottiplevtentaritey This Toka)
Eanail = nom Jokir = o I i :
ontiplerterd ity This Smih)
0Of = prepositinm Srmith = nom Compl itviperson, Toby)
This = deictic L = verb 3 2
Cottiplesmentaritiperson, Simith)
The = detenmirer PETSORL =+ DOVIL Contap lesvemt ariten Thie Joko)
Address =+ nom Johey = nonm Copupleavetaring This Smik)
0Of = preposition Smith = nonm I Lemventarityrp ersc Toke
This = deictic I 3 varth e 5 A ,J
Cortiplermentariterpereon, Simith)
The — detemmirier COMMDTY — RO Copripletreritarityy This Stos)
Hipnher =+ nonm e = N Coanplementarity(cormpary, Atos)
0Of = prepositinm I = werh
This = deictic
The —* detemrmirier COMMpATY —F DOl Cornplerrwritarity This fios)
Eamail - nonm Loz = B Corvplarentaringcomparry dtos)
Of - prepositinm I = varh
This =+ deictic
The - detemmirer COMMpAEY — IolIn Cornplevrwritarity Thic Stoc)
Bddress = ronm Afos = no Cottplamentaringcomp ary Atos)
0Of = prepositine I = varh
This = deictic
Sherer =3 wreth This =+ deictic Corrp Lemneritaritet This Jobay)
The = detenmirier PETSOR —* DOnIL I lermentarityy This Srrhy
Bddress = rom Jobire — oV cﬁ] i u'sm,To}mzj
Of = prepositinm Smith = runm ¥ E
Comvplevmentariterpereon, Smmith)

The training set of multimodal sentences

The nine training sentences that you have to insert are the

following:

S1) speech: “Call this person”
handwriting: the name of the person, that is “JOHN
SMITH?”, on the handwriting area
Result: After you have inserted the sentence, the area for

handwriting should look like this:

Usability Evaluation 183

JOHN SMITy

while the recognized speech input (that you can
visualize when you push the button “visualize”)
should be “Call this person”.

S2) speech: “Call this company”
gesture: pointing the icon of the company, that is “ATOS”,
on the touch- screen display
Result: After you have inserted the sentence, the pointing area
should look like this:

ASim | QQ9
while the recognized speech input should be “Call this
company”.

S3) speech: “The number of this person is”
handwriting: the name of the person, that is “JOHN
SMITH?”, on the handwriting area
Result: After you have inserted the sentence, the pointing area
should look like this:

JOHN SMITy

while the recognized speech input should be “The
number of this person is”.

S4) speech: “The e-mail of this person is”
handwriting: the name of the person, that is “JOHN
SMITH?”, on the handwriting area
Result: After you have inserted the sentence, the pointing area
should look like this:

Jomn SOMIT Y

while the recognized speech input should be “The e-
mail of this person is”.

184 Usability Evaluation

S5) speech: “The address of this person is”
handwriting: the name of the person, that is “JOHN
SMITH”, on the handwriting area
Result: After you have inserted the sentence, the pointing area
should look like this:

Jomn SMITH

while the recognized speech input should be “The
address of this person is”.

S6) speech: “The number of this company is”
gesture: pointing the icon of the company, that is “ATOS”,
on the touch- screen display
Result: After you have inserted the sentence, the pointing area
should look like this:

5 |ogp
while the recognized speech input should be “The
number of this company is”.

S7) speech: “The e-mail of this company is”
gesture: pointing the icon of the company, that is “ATOS”,
on the touch- screen display
Result: After you have inserted the sentence, the pointing area
should look like this:

52 o
while the recognized speech input should be “The e-
mail of this company is”.

S8) speech: “The address of this company is”
gesture: pointing the icon of the company, that is “ATOS”,
on the touch- screen display

Usability Evaluation 185

Result: After you have inserted the sentence, the pointing area
should look like this:

S | Q%
while the recognized speech input should be “The
address of this company is”.

S9) speech: “Show the address of this person”
handwriting: the name of the person, that is “JOHN
SMITH”, on the handwriting area
Result: After you have inserted the sentence, the pointing area
should look like this:

Joun SM\TH

while the recognized speech input should be “Show
the address of this person”.

Evaluation questionnaire

EDITORS’ COMPARISON

1) Defining a multimodal grammar by writing the production
rules and semantic functions is difficult

strongly disagree
disagree

neither agree or disagree
agree

strongly agree

2) Defining a multimodal grammar by specifying the
examples of multimodal sentences to be generated is
difficult

strongly disagree
disagree

neither agree or disagree
agree

186 Usability Evaluation

strongly agree

3) Using the yellow editor for defining a multimodal
grammar is as efficient as using the red editor (in terms of
time)

strongly disagree
disagree

neither agree or disagree
agree

strongly agree

YELLOW EDITOR

4) I found using the yellow editor easy

strongly disagree
disagree

neither agree or disagree
agree

strongly agree

5) I found writing all production rules time-consuming

strongly disagree
disagree

neither agree or disagree
agree

strongly agree

6) I found the interaction with the yellow editor userfriendly

strongly disagree
disagree

neither agree or disagree
agree

strongly agree

RED EDITOR
7) 1 found using the red editor easy

strongly disagree
disagree

Usability Evaluation 187

neither agree or disagree
agree
strongly agree

8) I found writing all multimodal sentences time-consuming

strongly disagree
disagree

neither agree or disagree
agree

strongly agree

9) I found the interaction with the red editor userfriendly

strongly disagree
disagree

neither agree or disagree
agree

strongly agree

Bibliography

[Adr92] Adriaans, P. Language Learning from a Categorical
Perspective. Ph.D. thesis, Universiteit van Amsterdam.
1992.

[AFGO8] Avola, D., Ferri, F., Grifoni, P., Paolozzi, S. 4
Framework for Designing and Recognizing Sketch-Based
Libraries for Pervasive Systems. UNISCON 2008, LNBIP,
pp. 405-416. 2008.

[Ang81] Angluin, D. 4 Note on the Number of Queries Needed to
Identify Regular Languages. Information and Control (51),
pp-76-87. 1981.

[Ang82] Angluin, D. Inference of reversible languages. Journal of
ACM, vol. 29, pp. 741-765. 1982.

[Ang88] Angluin, D. Queries and concept learning. Machine
Learning. Vol. 2, pp. 319-342. 1988.

[Ang90] Angluin, D. Negative results for equivalence queries.
Machine Learning Journal (5), 121-150. 1990.

[APS98] Andre, M., Popescu, V.G., Shaikh, A., Medl, A., Marsic,
I., Kulikowski, C., Flanagan J.L. Integration of Speech
and Gesture for Multimodal — Human-Computer
Interaction. In Second International Conference on
Cooperative Multimodal Communication. 28-30 January,
Tilburg, The Netherlands. 1998.

[Bak79] Baker, J. K. Trainable grammars for speech recognition.
In. D. H. Klatt and J. J. Wolf (eds.): Speech

188

Bibliography 189

Communication Papers for the 97th Meeting of the
Acoustical Society of America. pp. 547-550. 1979.

[Bar02] Barnum, C. M. Usability Testing and Research. New York:
Longman Publishers, pp 9, 10, 147. 2002.

[BIM95] Blattner, M. M., Milota, A. D. Multimodal interfaces with
voice and gesture input, Proceedings of IEEE International
Conference on Systems, Man, and Cybernetics (ICSMC
'95) (Vancouver, Canada), vol. 3, October 1995. 1995.

[BNBO04] Bouchet, J., Nigay, L., Balzagette, D. ICARE: Approche
a composants pour l'interaction multimodale. Actes des
Premiéres Journées Francophones: Mobilité et Ubiquité
2004, Nice Sophia-Antipolis, France, June 2004, pp 36-43.
2004.

[BNGO04] Bouchet, J., Nigay, L., Ganille, T. Icare software
components for rapidly developing multimodal interfaces,
ICMI '04: Proceedings of the 6th international conference
on Multimodal interfaces (New York, NY, USA), ACM,
pp- 251-258. 2004.

[Bol80] Bolt, R. Put-that-there: Voice and gesture at the graphics
interface. Computer Graphics, 14(3), pp. 262-270. 1980.

[Bou03] Bourguet, M.L. Designing and Prototyping Multimodal
Commands. Proceedings of Human-Computer Interaction
(INTERACT'03), pp. 717-720. 2003.

[CMU] Carnegie Mellon University. CMU pronouncing dictionary.
[Online]. Available: http://www.speech.cs.cmu.edu/cgi-
bin/cmudict

[Car92] Carpenter, B. The logic of typed feature structures.
Cambridge University Press, Cambridge, England. 1992.

[CBB94] Cohen, D., Berke, L., Bloom, P., Cohen, D., Tsur, D. The
role of knowledge mining in the development and
evolution of new applications, Proceedings of the 10th
International Conference on Data Engineering (Houston,
TX) (Ahmed K. Elmagarmid and Erich Neuhold, eds.),
IEEE Computer Society Press, pp. 166-167. 1994.

190 Bibliography

[CGNI0] Crimi, C., Guercio, A., Nota, G., Pacini, G., Tortora, G.,
Tucci, M. Relation grammars for modelling multi-
dimensional structures. In IEEE Symposium on Visual
Languages, pages 168—173. IEEE Computer Society Press.
1990.

[Cho57] Chomsky, N. Syntactic Structures, The Hague Mouton.
1957.

[CIM97] Cohen, P.R., Johnston, M., McGee, D., Oviatt, S.L.,
Pittman, J., Smith, I.A., Chen, L., Clow, J. Quickset:
Multimodal interaction for distributed applications, ACM
Multimedia, pp. 31-40. 1997.

[CMBO03] Corradini, A., Mehta M., Bernsen, N.O., Martin, J.-C.
Multimodal Input Fusion in Human-Computer Interaction
on the Example of the on-going NICE Project. In
Proceedings of the NATO-ASI conference on Data Fusion
for Situation Monitoring, Incident Detection, Alert and
Response Management, Yerevan, Armenia. 2003.

[CoC91] Coutaz, J., Caelen, J. A Taxonomy For Multimedia and
Multimodal User Interfaces. In Proceedings of the Ist
ERCIM Workshop on Multimedia HCI, November 1991,
Lisbon. 1991.

[CoO91] Cohen, P. R., Owviatt, S. L. Discourse structure and
performance efficiency in interactive and noninteractive
spoken modalities, Computer Speech and Language, no.
5(4), 297-326. 1991.

[Den01] Denis, F. Learning Regular Languages from Simple
Positive Examples, Journal of Machine Learning, vol. 44,
pp. 37-66. 2001.

[Den98] Denis, F. PAC learning from positive statistical queries,
M. M. Richter, C. H. Smith, R. Wiehagen and T.
Zeugmann (eds), Proceedings of the 9th International
Conference on Algorithmic Learning Theory (ALT-98),
Berlin Springer Vol. 1501 of LNAIL pp 112-126. 1998.

[EIR92] Elhadad, M., Robin, J. Controlling content realization with
functional unification grammar. In Proc. of the 6th

Bibliography 191

International Workshop on NLG. Springer, Lecture Notes
in Al 1992.

[EST96] Emerald, J. D., Subramanian, K. G., Thomas, D. G.
Learning Code regular and Code linear languages.
Proceedings of International Colloquium on Grammatical
Inference (ICGI-96), Lecture Notes in Artificial
Intelligence 1147, Springer-Verlag, pp. 211-221. 1996.

[FoL98] Fodor, J., Lepore, E. The Emptiness of the Lexicon:
Reflections on James Pustejovsky's The Generative
Lexicon. Linguistic Inquiry 29: 269-288. 1998.

[GaV90] Garcia, P., Vidal, E. Inference of K-testable languages in
the strict sense and applications to syntactic pattern
recognition. Journal of IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 12(9), pp. 920-
925.1990.

[Gol67] Gold, E. M. Language identification in the limit.
Information and Control 10.447-474. 1967.

[Gru96] Grunwald, P. A minimum description length approach to
grammar inference. In S. Wemter, E. Riloff, and G.
Scheler, editors, Symbolic, Connectionist and Statistical
Approaches to Learning for Natural Language Processing,
Lecture Note inAl. Springer Verlag, pages 203-216. 1996.

[Gup03] Gupta, A. An adaptive approach to collecting multimodal
input, Proceedings of the 41st Annual Meeting of the
Association for Computational Linguistics. 2003.

[Hew92] Thomas T. H. Acm sigchi curricula for human-computer
interaction. Technical report, New Jersey Institute of
Technology, New York, NY, USA, 1992.

[HiO03] de la Higuera, C., Oncina, J. Identification with
Probability One of Stochastic Deterministic Linear
Languages. In: Proceedings of ALT 2003. Berlin,
Heidelberg, pp. 134—148, Springer-Verlag. 2003.

[HMO91] Helm, R., Marriott, K., Odersky, M. Building visual
language parsers. In Proceedings of Conference on

192 Bibliography

Human Factors in Computing Systems: CHI ’91, ACM
Press, New York, 105-112. 1991.

[JARNAL]
http://www.dklevine.com/general/software/tc1000/jarnal.h
tm

[JCM97] Johnston, M., Cohen, P.R., McGee, D., Oviatt, S.L.,
Pittman, J.A. Unification-based multimodal interaction, in
Proceedings of the 35th Annual Meeting of the
Association for Computational Linguistics, Madrid, Spain,
pp. 281-288. 1997.

[JoB0O] Johnston, M., Bangalore, S. Finite-state Multimodal
Parsing and Understanding, In Proceedings of the
International Conference on Computational Linguistics,
Saarbruecken, Germany. 2000.

[JoB05] Johnston, M., Bangalore, S. Finite-state multimodal

integration and understanding. Nat. Lang. Eng. 11, 2 (Jun.
2005), 159-187. 2005.

[Joh98] Johnston, M. Unification-based Multimodal Parsing.
Proceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and 17th
International Conference on Computational Linguistics
(COLING-ACL '98), August 10-14, Universit¢ de
Montréal, Montreal, Quebec, Canada. pp. 624-630. 1998.

[Kas65] T. Kasami. An efficient recognition and syntax analysis
algorithm for context-free languages. Science Report, Air
Force Cambridge Research Laboratory, Bedford MA.
1965.

[Kay79] Kay M. Functional grammar. In Proceedings of the Fifth
Meeting of the Berkeley Linguistics Society, pages 142—
158, Berkeley, CA. 1979.

[KeL97] Keller, B., Lutz, R. Evolving Stochastic Context-Free
Grammars from Examples Using a Minimum Description
Length Principle. In Worksop on Automata Induction,
Grammatical Inference and Language Acquisition,
Nashville, Tennessee, USA, ICML097. 1997.

Bibliography 193

[KMT97] Koshiba, T., Makinen, E., Takada, Y. Inferring pure
context-free languages from positive data, Technical
report A-1997-14, Department of Computer Science,
University of Tampere. 1997.

[Knu68] Donald E. Knuth. Semantics of context-free languages,
Mathematical Systems Theory 2, 127-145. 1968.

[LaS00] Langley, P., Stromsten, S. Learning Context-Free
Grammars with a Simplicity Bias. Proceedings of the
Eleventh European Conference on Machine Learning
(ECML 2000), Lecture Notes in Artificial Intelligence
1810, Springer-Verlag, pp. 220-228, Barcelona, Spain.
2000.

[Lee96] Lee, L. Learning of context-free languages: A survey of the
literature, Tech. Report TR-12-96, Harvard University.
1996.

[LeM92] Levy, E.T., McNeill, D. Speech, gesture, and discourse.
Discourse Processes, (15):277-301. 1992.

[MGAO1] Martin, J. C., Grimard, S., Alexandri, K. On the
annotation of the multimodal behavior and computation of
cooperation between modalities. Proceedings of the
Workshop on Representing, Annotating, and Evaluating
Non-Verbal and Verbal Communicative Acts to Achieve
Contextual Embodied Agents, Montreal, Canada. pp.1-7.
2001.

[MPAO6] Manchoén, P., Pérez, G., Amores, G. Multimodal Fusion:
A New Hybrid Strategy for Dialogue Systems. In
Proceedings of Eighth International Conference on
Multimodal Interfaces (ICMI 2006), Banff, Alberta,
Canada. ACM: New York, , pp. 357-363. 2006.

[MSM94] Mitchell P. M., Santorini, B., Marcinkiewicz, M.A.
Building a large annotated corpus of english: The penn
treebank. Computational Linguistics, 19(2), pp 313-330.
1994.

[Nal00] Nakamura, K., Ishiwata, T. Synthesizing context free
grammars from sample strings based on inductive cyk

194 Bibliography

algorithm, ICGI '00: Proceedings of the 5th International
Colloquium on Grammatical Inference (London, UK),
Springer-Verlag. pp. 186-195. 2000.

[Nak03] Nakamura K. [Incremental learning of context free
grammars by extended inductive cyk algorithm, ECML
Workshop on Learning Contex-Free Grammars (Colin de
la Higuera, Pieter W. Adriaans, Menno van Zaanen, and
José Oncina, eds.), Ruder Boskovic Institute, Zagreb,
Croatia. pp. 53-64. 2003.

[NaMO02] Nakamura, K., Matsumoto, M. Incremental learning of
context free grammars, ICGI '02: Proceedings of the 6th
International Colloquium on Grammatical Inference
(London, UK), Springer-Verlag. pp. 174-184. 2002.

[NeS91] Neal, J. G., Shapiro, S. C. Intelligent multimedia interface
technology. In J. Sullivan & S. Tyler (Eds.), Intelligent
User Interfaces, New York: ACM Press., pp.11-43. 1991.

[NiC95] Nigay, L. Coutaz, J. A generic platform for addressing the
multimodal challenge, in the Proceedings of the
Conference on Human Factors in Computing Systems,
ACM Press. 1995.

[OC00] Oviatt, S.L., Cohen, P.R. Multimodal interfaces that
process what comes naturally. Communications of the
ACM, 43, no. 3, 45-53. 2000.

[OCWO00] Oviatt, S.L., Cohen, P.R., Wu, L., Vergo, J., Duncan, L.
et al. Designing the user interface for multimodal speech
and pen-based gesture applications: State-of-the-art

systems and future research directions. Human-Computer
Interaction, vol. 15, pp. 263-322. 2000.

[ODK97] Oviatt, S. L., DeAngeli, A., Kuhn, K. Integration and
synchronization of inputmodes during multimodal human-
computer interaction. In Proceedings of Conference on
Human Factors in Computing Systems, 415-422. 1997.

[OMGO1] OMG. UML Unified modeling language specification.
http://www.omg.org/uml, 2001.

Bibliography 195

[Ovi02] Oviatt, S. L. Multimodal interfaces. in Handbook of
Human-Computer Interaction, (ed. by J. Jacko & A.
Sears), Lawrence Erlbaum: New Jersey. 2002.

[Ovi04] Oviatt S.L., Coulston R., Lunsford R. When Do We
Interact Multi-modally? Cognitive Load and Multi-modal
Communication Patterns, Proceedings of ICMI. pp. 129-
136. 2004.

[Ovi96] Oviatt, S. L. Multimodal interfaces for dynamic interactive
maps. In Proceedings of Conference on Human Factors in
Computing Systems, 95-102. 1996.

[PAMOS] Pérez, G., Amores, G., Manchon, P. Two strategies for
multimodal fusion. In Proceedings of Multimodal
Interaction for the Visualization and Exploration of
Scientific Data, Trento, Italy, 26-32. 2005.

[PBH97] Pavlovic, V.1, Berry, G.A., Huang, T.S. Integration of
audio/visual information for use in human-computer
intelligent interaction. Proceedings of the 1997
International Conference on Image Processing (ICIP '97),
Volume 1, pp. 121-124. 1997.

[PeW80] Pereira, F., and Warren, D.H.D. Definite Clause
Grammars for Language Analysis - A survey of the
Formalism and a Comparison with Augmented Transition
Networks, Artificial Intelligence, vol. 13, no. 3. 1980.

[PPKO04] Petasis, G., Paliouras, G., Karkaletsis, V., Halatsis, C.,
Spyropoulos, C.D. e-GRIDS: Computationally Efficient
Grammatical Inference from Positive Examples.
GRAMMARS, (7), pp. 69 — 110. 2004.

[Pul03] Pullum, G. K. Learnability. In the second edition of The
Oxford International Encyclopedia of Linguistics, 431-
434, Oxford: Oxford University Press. 2003.

[QTGO0] Quesada, J. F., Torre, D., Amores, G. Design of a Natural
Command Language Dialogue System. Deliverable 3.2,
Siridus Project. 2000.

196 Bibliography

[RPCO04] Reitter, D., Panttaja, E. M., Cummins, F. UI on the fly:
Generating a multimodal user interface. In Proceedings of
HLT-NAACL-2004, Boston, Massachusetts, USA. 2004.

[Ris78] Rissanen, J. Modeling by shortest data description.
Automatica, 14:465-471. 1978.

[RSHO5] Russ, G., Sallans, B., Hareter, H. Semantic Based
Information Fusion in a Multimodal Interface.
International Conference on Human-Computer Interaction
(HCT’05), Las Vegas, Nevada, USA, 20-23 June, pp 94-
100. 2005.

[SaB02] Salvador, 1., Benedi, J.-M. RNA Modeling by Combining
Stochastic Context-Free Grammars and n-Gram Models.
International Journal of Pattern Recognition and Artificial
Intelligence 16(3), 309-316. 2002.

[Sak97] Sakakibara, Y. Recent Advances of Grammatical
Inference. Theoretical Computer Science 185, 15-45.
1997.

[SBH94] Sakakibara, Y., Brown, M., Hughley, R., Mian, I,
Sjolander, K., Underwood, R., Haussler D. Stochastic

context-free grammars for tRNA modeling. Nuclear Acids
Res. 22, 5112-5120. 1994.

[SCS06] Sun, Y., Chen, F., Shi, Y.D., Chung, V. 4 novel method
for multi-sensory data fusion in multimodal human
computer interaction. In Proceedings of the 20th
conference of the computer-human interaction special
interest group (CHISIG) of Australia on Computer-human
interaction: design: activities, artefacts and environments,
Sydney, Australia, 401-404, 2006.

[Shi86] S.M. Shieber. An Introduction to Unification-Based
Approaches to Grammar. CSLI Publications. 1986.

[ShT95] Shimazu, H., Takashima, Y. Multimodal Definite Clause
Grammar. Systems and Computers in Japan 26(3):93-102.
1995.

Bibliography 197

[SNC95] Schomaker, L., Nijtmans, J., Camurri, A., Lavagetto, F.,
Morasso, P., Benoit, C., Guiard-Marigny, T., Le Goff, B.,
Robert-Ribes, J., Adjoudani, A., Defee, 1., Munch, S.,
Hartung, K., Blauert, J. A Taxonomy of Multimodal
Interaction in the Human Information Processing System.
Multimodal Integration for Advanced Multimedia
Interfaces (MIAMI). ESPRIT III, Basic Research Project
8579. 1995.

[SPH98] Sharma, R., Pavlovic, V. 1., Huang, T. S. Toward
Multimodal Human-Computer Interface. Proceedings of
the IEEE, special issue on Multimedia Signal Processing,
86(5), pp 853-869. 1998.

[SSCO07] Sun, Y., Shi, Y., Chen, F., and Chung, V. An Efficient
Multimodal Language Processor for Parallel Input Strings
in Multimodal Input Fusion. In Proceedings of the
international Conference on Semantic Computing
(September 17 - 19, 2007). ICSC. IEEE Computer Society,
Washington, DC, pp. 389-396. 2007.

[StBO3] Steedman, M. Baldridge, J. Combinatory categorial
grammar. Unpublished tutorial, School of Informatics,
Edinburgh University.

ftp://ftp.cogsci.ed.ac.uk/pub/steedman/ccg/manifesto.pdf.
2003.

[Ste00] Steedman, M. The syntactic process, Cambridge
Massachusset: the MIT press. 2000.

[StS05] Stivers, T., Sidnell, J. Introduction: Multimodal
interaction. Semiotica, 156(1/4), pp. 1-20. 2005.

[TKMO03] Toutanova, K., Klein, D., Manning, C., Singer, Y.
Feature-Rich Part-of-Speech Tagging with a Cyclic
Dependency Network. In Proceedings of HLT-NAACL
2003, pp. 252-259. 2003.

[TSW90] Tappert, C. C., Suen, C. Y., Wakahara, T. The state of
the art in online handwriting recognition, IEEE Trans.
Pattern Anal. Mach. Intell.12, no. 8, pp.787-808. 1990.

ftp://ftp.cogsci.ed.ac.uk/pub/steedman/ccg/manifesto.pdf

198 Bibliography

[VaB87] Vanlehn, K., Ball, W. 4 version space approach to
learning context-free grammars. Machine Learning, 2(1),
pp. 39-74. 1987.

[Val84] Valiant, L. A theory of the learnable. Communications of
the ACM, 27 (11), pp. 1134-1142. 1984.

[Zaa0l] van Zaanen, M. Bootstrapping structure into language:
alignment-based learning. PhD thesis, School of
Computing, University of Leeds. 2001.

[V098] Vo, M.T. 4 framework and Toolkit for the Construction of
Multimodal Learning Interfaces, PhD. Thesis, Carnegie
Mellon University, Pittsburgh, USA. 1998.

[VoW96] Vo, M.T., Wood, C. Building an application framework
for speech and pen input integration in multimodal
learning interfaces. In Proceedings of the Acoustics,
Speech, and Signal Processing (ICASSP’96), May 7-10,
IEEE Computer Society, Volume 06, pp. 3545-3548.
1996.

[WLKO04] Walker, W., Lamere, P.., Kwok, P., Raj, B., Singh, R,
Gouvea, E., Wolf, P., Woelfel, J. Sphinx-4: A flexible open
source framework for speech recognition. Technical
Report TR2004-0811, SMLI, Carnegie Mellon University,
SUN MICROSYSTEMS INC. 2004.

[WRBO01] Wahlster, W., Reithinger, N., Blocher, A. SmartKom:
Multimodal Communication with a Life-Like Character,
Proceedings of Eurospeech, Aalborg, Denmark, 2001.

[WWT9I1] Wittenburg, K., Weitzman, L., Talley, J. Unification-
Based grammars and tabular parsing for graphical

languages. Journal of Visual Languages and Computing 2,
pp. 347-370. 1991.

[Wol82] Wolff, G. Language Acquisition, Data Compression and
Generalisation, Language and Communication, 2, pp. 57-
89. 1982.

Bibliography 199

[Yok95] Yokomori, T. On Polynomial-Time Learnability in the
Limit of Strictly Deterministic Automata. Journal of
Machine Learning, vol. 19, pp. 153-179. 1995.

	Contents
	List of Tables
	List of Figures
	Introduction
	Multimodal Interaction
	Introduction
	The Multimodal Human-Computer Communication Process
	Conceptual Features of Multimodal Interaction
	Architectural Features of Multimodal Systems
	Human-Computer Interaction Modalities
	Speech
	Handwriting and Gesture
	Other Modalities

	Advantages and Critical Elements of Multimodal Interaction
	Naturalness and Accessibility
	Robustness and Stability
	Expressive Power and Efficiency

	Multimodal Fusion and Grammars
	Introduction
	Data Fusion Levels in Multimodal Fusion
	Recognition-based Fusion Strategies
	Decision-based Fusion Strategies
	Hybrid Multi-level Fusion Strategies
	Final Discussion on Multimodal Fusion Approaches

	Grammars for Multimodal Fusion
	Context-Free Grammars
	Multi-Modal Definite Clause Grammar
	Finite-State Multimodal Grammar
	Multimodal Functional Unification Grammar
	Multimodal Combinatory Categorial Grammar
	Final Discussion on Multimodal Grammars

	Learning of Grammars
	Introduction
	Notations
	Models of Learning
	Identification in the Limit
	Queries
	PAC Learning

	Algorithms for Learning of Context-Free Grammars
	Inductive CYK Algorithm
	Learning CFG by Version Space
	e-GRIDS Algorithm

	Final Discussion on Learning Methods

	The Multimodal Grammar Editor: Theoretical Foundations
	Introduction
	General Discussion on Application Scenarios
	Multimodal Input Modeling
	Representing Unimodal Input
	The Linearization Process

	The Multimodal Attribute Grammar
	The Grammar Inference Algorithm
	First Step: the MAG Generation from Positive Examples
	Second Step: Improving the Grammar Description for Avoiding
	Description Length of a MAG
	Learning Operators

	Final Discussion

	Multimodal Grammar Editor Design
	Introduction
	Overall System Architecture
	The Multimodal Grammar Editor Architecture

	Design of the Multimodal Grammar Editor
	Creating the MUI of the Multimodal Grammar Editor
	Acquiring the Lexicon of the Grammar
	Specifying Examples of Multimodal Sentences
	Implementing the Grammar Inference Algorithm

	MGE Sequence Diagram
	Summary

	Multimodal Grammar Editor Implementation
	Introduction
	Software Class Design
	Multimodal User Interface
	Multimodal Attribute Grammar
	Multimodal Sentence
	Grammar Inference

	Main Software Classes of the System
	Defining Syntactic Roles
	Building of the CYK Matrix
	Revised CYK Algorithm

	Usage Example of the Editor
	Summary

	Evaluation and Results
	Introduction
	Usability Evaluation of the MGE
	Experimental Setting
	Results

	Evaluation of the Grammar Inference Algorithm
	Evaluation metrics
	Experimental Setting
	Evaluation Results

	Conclusion and Future Work
	Summary of the Thesis
	Contributions
	Future Work

	Appendices
	Usability Evaluation
	Instructions for using yellow editor
	Instructions for using red editor
	The training set of multimodal sentences
	Evaluation questionnaire

	Bibliography

