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Abstract 
 
The constitutive model of steel reinforcing bar incorporating inelastic 
buckling is crucial to accurate seismic performance evaluation of the 
existing reinforced concrete structures. According to experimental 
observations, in presence of inelastic buckling the absolute maximum 
stress of the rebar in compression could reduce to half of the value in 
absence of buckling. 
In this thesis, based on fiber element model, the effect of the yield 
strength on the critical slenderness of the rebar is studied. Then the 
formulas, incorporating the effect of yield stress, are given to calculate the 
computational slenderness critical slenderness. Next the anisotropy of 
some stainless steel rebar is studied according to a series of monotonic 
and cyclic tests on bare stainless steel rebars. Two parameters are 
proposed to consider the effects of anisotropy of rebar.  
Considering the above studies, the modified Monti-Nuti Model is 
proposed to improve the applicability. In order to eliminate 
overestimation of stress when the model is subjected to generalized 
loading, the criteria to update the parameters in the model for each half 
branch at the reversal are discussed and new strategies to update the 
model parameters in different unloading or reloading cases are proposed. 
The Framework adopting Genetic Algorithm is designed to identify the 
parameters in the modified Monti-Nuti model. By minimizing the stress 
difference between the numerical curve and experimental curve at each 
strain step of the cyclic loading histories, the optimized parameters could 
be identified. Then the empirical formulae are proposed to calculate the 
values of the parameters in a simpler, more efficient and still robust way.  
The modified Monti-Nuti model is implemented into OpenSees as a new 
material model named as “steel05”. Then validation of this material 
model with the experimental curves of carbon steel rebars and stainless 
steel rebars confirms the effectiveness and significance of this new model. 
Furthermore, the application of the new material in the structural analysis 
of circular reinforced concrete piers is made and the numerical curves are 
compared with the experimental curves to verify the effectiveness of the 
new material.  
Finally, the effects of corrosion of the rebar, which is inevitable in aged 
reinforced concrete structures, are studied based on a series of 
experiments on the bare corroded reinforcing bars. It is found that the 
mean yield stresses of the corroded rebar could be different in tension and 
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in compression. The computational length of the rebar increases resulting 
from the deterioration of the confinement from the transverse loop. The 
corrosion extended model is proposed to consider the aforementioned 
characteristics resulting from corrosion.  
 



 

 

 

vi

 
Contents 
 
 
LIST OF FIGURES ...................................................................................................... IX 

LIST OF TABLES ..................................................................................................... XVI 

LIST OF SYMBOLS ................................................................................................XVII 

1.  INTRODUCTION ................................................................................................. 1 

1.1  BACKGROUNDS .............................................................................................. 1 
1.1.1 Importance of Inelastic Buckling .................................................................... 2 
1.1.2 Rebar Applied in the Concrete Structures ...................................................... 5 

1.2 LITERATURE REVIEW ....................................................................................... 5 
1.2.1 Cyclic Steel Model for Rebar .......................................................................... 6 
1.2.2 Steel Model Incorporating Inelastic Buckling .............................................. 14 

1.3 SIGNIFICANCE AND AIMS OF CURRENT RESEARCH ............................... 18 
1.3.1 Significance .................................................................................................. 18 
1.3.2 Aims of Current Research............................................................................. 19 

1.4 ORGANIZATION OF THIS THESIS ............................................................................ 19 

2.  ORIGINAL MONTI-NUTI MODEL ................................................................ 20 

2.1 MONOTONIC SKELETON CURVE .................................................................. 20 
2.2 HARDENING RULES FOR CYCLIC BEHAVIORS OF STEEL REBAR ......... 23 

2.2.1 In Absence of Buckling ................................................................................. 23 
2.2.2 In Presence of Buckling ................................................................................ 27 

2.3 CURVE TRANSITION PARAMETER R ........................................................... 31 
2.3.1 In Absence of Buckling ................................................................................. 32 
2.3.2 In Presence of Buckling ................................................................................ 32 

2.4 HARDENING RATIO ......................................................................................... 33 
2.4.1 In Absence of Buckling ................................................................................. 34 
2.4.2 In Presence of Buckling ................................................................................ 34 

2.5 ELASTIC MODULUS E ...................................................................................... 35 
2.5.1 In Absence of Buckling ................................................................................. 35 
2.5.2 In Presence of Buckling ................................................................................ 35 

3.  IMPROVEMENT OF THE ORIGINAL MODEL .......................................... 37 

3.1 EFFECT OF YIELD STRESS ON CRITICAL SLENDERNESS ........................ 44 
3.1.1 Fiber Model Adopted in Microanalysis of Bare Bar .................................... 45 
3.1.2 Verification of the Fiber Model .................................................................... 55 
3.1.3 Combined Factor Affecting Critical Slenderness ......................................... 58 

3.2 ANISOTROPY OF STEEL REBAR .................................................................... 60 



 

 

 

vii

3.3 MODIFIED MONTI-NUTI MODEL ................................................................... 62 
3.3.1 Effect of the Yield Strength ........................................................................... 63 
3.3.2 Effect of the Anisotropy ................................................................................ 63 

3.4 ADDITIONAL CRITERIA FOR UPDATE THE MODEL PARAMETERS ....... 65 
3.4.1 Discussion of the Proposed Solutions to Address the Above Issues ............. 65 
3.4.2 Proposed Criteria to Update the Model Parameters under Generalized 
Loading.................................................................................................................. 70 

4.  PARAMETER IDENTIFICATION BY GENETIC ALGORITHM .............. 83 

4.1 INTRODUCTION OF PARAMETER IDENTIFICATION BY GENETIC 

ALGORITHM ............................................................................................................ 83 
4.1.1 Parameter Identification .............................................................................. 83 
4.1.2 Genetic Algorithm ........................................................................................ 85 

4.2 DESIGN OF PARAMETER IDENTIFICATION OF MODIFIED MONTI-NUTI 

MODEL ..................................................................................................................... 85 
4.2.1 Parameters to Be Calibrated ........................................................................ 86 
4.2.2 Flowchart ..................................................................................................... 86 
4.2.3 Objective Function ....................................................................................... 88 
4.2.4 Bounds of the Parameters ............................................................................ 88 

4.3 EFFECTIVENESS OF THE OPTIMIZED PARAMETERS ................................ 89 
4.3.1 Stress-Strain Curve ....................................................................................... 89 
4.3.2 Step-Stress Comparison ................................................................................ 92 
4.3.3 Robustness .................................................................................................... 94 

4.4 PROPOSED FORMULAS FOR THE PARAMETERS IN THE MODIFIED 

MONTI-NUTI MODEL ............................................................................................. 96 

5.  IMPLEMENTATION AND VALIDATION OF THE MODIFIED MONTI-
NUTI MODEL .............................................................................................................. 97 

5.1 IMPLEMENT THE MATERIAL MODEL IN OPENSEES................................. 97 
5.2 VALIDATION OF THE MODIFIED MONTI-NUTI MODEL .......................................... 98 

5.2.1 Experiments of Carbon Steel Rebar ........................................................... 101 
5.2.2 Experiments of Stain Steel Rebar ............................................................... 109 

6.  APPLICATION IN REINFORCED CONCRETE COLUMN ..................... 114 

6.1 APPLICATION OF FIBER MODEL IN CANTILEVER COLUMN ANALYSIS
.................................................................................................................................. 114 
6.2 PSEUDO-DYNAMIC TEST OF REINFORCED CONCRETE BRIDGE PIER 115 

6.2.1 Regular Reinforced Concrete Bridge Pier ................................................. 115 
6.3 COMPARISON BETWEEN THE NUMERICAL ANALYSIS AND EXPERIMENTAL RESULTS

.................................................................................................................................. 118 
6.3.1 Main Parameters in the Fiber Model ......................................................... 118 
6.3.2 Experimental Test of the Bridge Piers ........................................................ 119 
6.3.3 Comparisons Between Numerical Curves and Experimental Curves ......... 122 

7.  EFFECT OF CORROSION ON MODEL FOR REBAR .............................. 124 



 

 

 

viii

7.1 MECHANISM OF CORROSION OF REBAR IN REINFORCED CONCRETE
.................................................................................................................................. 125 
7.2 EFFECT OF CORROSION ................................................................................ 131 

7.2.1 EFFECT OF CORROSION ON YIELD STRESS ....................................... 132 
7.2.2 Effect of Corrosion on Critical Slenderness ............................................... 137 
7.2.3 Effect of Corrosion on Computational Length of Rebar ............................. 139 

7.3 CORROSION EXTENDED MODEL FOR REBAR ......................................... 140 
7.3.1 Notional Yield Stresses in Tension and Compression ................................ 141 
7.3.2 Slenderness Ratio of Corroded Rebar ........................................................ 142 

8.  CONCLUSIONS AND FURTHER WORKS ................................................. 147 

8.1 CONCLUSIONS ................................................................................................ 147 
8.2 FURTHER WORKS ........................................................................................... 149 

ACKNOWLEDGEMENTS ........................................................................................ 151 

REFERENCES ............................................................................................................ 152 

 



 

 

 

ix

List of figures 
 

Figure 1.1 Fiber Element Method .............................................................. 1 

Figure 1.2 Bearing capacity of column ...................................................... 2 

Figure 1.3 Theoretical model for the reinforced bar in the concrete 
columns (Gomes & Appleton, 1997) .............................................. 3 

Figure 1.4 The effect of the inelastic buckling on the stress-strain curve .. 4 

Figure 1.5 Cyclic model proposed by Aktan et al. (1973) ......................... 7 

Figure 1.6 Cyclic model for rebar proposed by Ma et al. (1976) based on 
Ramberg-Osgood model ................................................................. 8 

Figure 1.7 Cyclic stress-strain curve with envelope proposed by 
Thompson and Park (1978) based on Ramberg-Osgood model ..... 9 

Figure 1.8 Cyclic stress-strain curve with envelope proposed by ............ 10 

Figure 1.9 Cyclic model proposed by Aktan and Ersoy (1980) ............... 10 

Figure 1.10 Menegotto-Pinto Model ........................................................ 12 

Figure 1.11 Modified Menegotto-Pinto model ........................................ 13 

Figure 1.12 Combination of Gomes and Appleton Model ....................... 14 

Figure 1.13  Monotonic Skeleton curve proposed by Dhakal and 
Maekawa(2002b) .......................................................................... 16 

Figure 1.14 Schematic Diagram of rebar in Concrete Column ................ 17 

Figure 1.15 Trilinear Model proposed by Zong (2010) ........................... 18 

Figure 2.1 Monotonic tests of carbon steel rebar (Giorgio Monti & Nuti, 
1992) ............................................................................................. 20 

Figure 2.2 Monotonic skeleton curve of Monti-Nuti model .................... 22 

Figure 2.3 Effect of strain hardening in absence of buckling .................. 24 

Figure 2.4 Effect of strain hardening in presence of buckling ................. 28 

Figure 2.5 Stress shift in compressive curve ............................................ 31 

Figure 2.6 Degradation of curve transition .............................................. 32 



 

 

 

x 

Figure 2.7 The effect of b  on the curve transition ................................... 33 

Figure 2.8 Degradation of elastic modulus .............................................. 35 

Figure 3.1 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (S5, L/D=5) ................. 38 

Figure 3.2 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (S8, L/D=8) ................. 38 

Figure 3.3 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (S11, L/D=11) ............. 39 

Figure 3.4 Monotonic tests on stainless steel rebar (AISI304 or 1.4301) 40 

Figure 3.5 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, 
XA1, L/D=5) ................................................................................ 41 

Figure 3.6 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, 
XA2, L/D=5) ................................................................................ 41 

Figure 3.7 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, 
XA3, L/D=5) ................................................................................ 42 

Figure 3.8  Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, 
XC1, L/D=11) .............................................................................. 43 

Figure 3.9 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, 
XC2, L/D=11) .............................................................................. 43 

Figure 3.10 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, 
XC3, L/D=11) .............................................................................. 44 

Figure 3.11 Fiber technique in simulating the bare rebar ........................ 45 

Figure 3.12 Comparisons between monotonic compressive curves of rebar 
generated by fiber model with or without initial imperfection ..... 47 



 

 

 

xi

Figure 3.13 Comparisons between the monotonic curves of rebar with 
different slenderness (L/D) generated by fiber model with different 
initial imperfections ...................................................................... 49 

Figure 3.14 Comparisions between monotonic curves of rebar with 
different slendernesses generated by fiber model using different 
numbers of elements ..................................................................... 50 

Figure 3.15 Comparisions between monotonic curves of rebar with 
different slendernesses generated by fiber model using different 
numbers of Integration Points for each element ........................... 52 

Figure 3.16 Comparisions between monotonic curves of rebar with 
different slendernesses generated by fiber model adopting 
different numbers of subdivisions along the circle and the radius 
for cross section meshing ............................................................. 54 

Figure 3.17 Verification of the fiber model with monotonic compressive 
experimental curves with different slendernesses ........................ 55 

Figure 3.18 Loading strain histories of cyclic test A1 and C1 ................. 56 

Figure 3.19 Verification of the fiber model with the experimental cyclic 
stress-strain curves of rebar with differernt slendernesses ........... 57 

Figure 3.20 Effect of yield stress on the stress-strain curves of rebar with 
different slenderness and yield stress generated by fiber model .. 59 

Figure 3.21 Monotonic stress-strain curves of rebar with different 
combined parameters generated by fiber model ........................... 59 

Figure 3.22 Testing machine and the specimen: a) Test machine MTS 
810; b) specimen in tension; c) specimen in compression ........... 61 

Figure 3.23 Update curvature parameter  R   in the case of partial 

unloading and reloading ............................................................... 66 

Figure 3.24 Solution to eliminate the overestimation under partial 
unloading and reloading (Attolico et al., 2000) ............................ 67 

Figure 3.25 Solution to eliminate the overestimation under partial 
unloading and reloading ............................................................... 69 

Figure 3.26 Fiber technique and applied in Finite Element Method 
(Dhakal & Maekawa, 2002c) ....................................................... 70 



 

 

 

xii 

Figure 3.27 Different types of positions of reversal ................................. 72 

Figure 3.28 Status of branch n+1: Plastic, UL/RL, AB/PB; .................... 73 

Figure 3.29 Status of branch n+1: Elastic, UL, AB/PB; .......................... 76 

Figure 3.30 Status of branch n+1: Elastic, RL, AB; ................................ 77 

Figure 3.31 Status of branch n+1: Elastic, RL, PB; ................................. 78 

Figure 3.32 Status of branch n+1: Small, UL, AB/PB; ............................ 80 

Figure 3.33 Status of branch n+1: Small, RL, AB; .................................. 81 

Figure 3.34 Status of branch n+1: Small, RL, PB; ................................... 82 

Figure 4.1 General flowchart of parameter identification ........................ 84 

Figure 4.2 Parameter identification of modified Monti-Nuti model ........ 87 

Figure 4.3 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (carbon steel rebar, A1, 
L/D=5) .......................................................................................... 90 

Figure 4.4 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (carbon steel rebar, C1, 
L/D=11) ........................................................................................ 90 

Figure 4.5 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (stainless steel rebar, 
XA1, L/D=5) ................................................................................ 91 

Figure 4.6 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (stainless steel rebar, 
XC1, L/D=11) .............................................................................. 91 

Figure 4.7 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (carbon steel rebar, 
L/D=5, A1) ................................................................................... 92 

Figure 4.8 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (carbon steel rebar, 
L/D=11, C1) ................................................................................. 93 

Figure 4.9 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (stainless steel rebar, 
L/D=5, XA1) ................................................................................ 93 



 

 

 

xiii

Figure 4.10 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (stainless steel rebar, 
L/D=11, XC1) .............................................................................. 94 

Figure 4.11Derivations of optimized parameters ..................................... 96 

Figure 5.1 Inheritance Diagram of steel model “Steel05” .......................... 98 

Figure 5.2 Column setup in OpenSees for material test ........................... 99 

Figure 5.3 Scripts used to test “Steel05” in OpenSees ........................... 100 

Figure 5.4 Loading strain histories of carbon steel reinforcement ......... 101 

Figure 5.5 Comparison of numerical curves and experimental curves 
(L/D=5) ....................................................................................... 104 

Figure 5.6 Comparison of numerical curves and experimental curves 
(L/D=11) ..................................................................................... 106 

Figure 5.7 Loading strain histories of carbon steel reinforcement ......... 107 

Figure 5.8 Comparison of numerical curves and experimental curves (S5, 
L/D=5) ........................................................................................ 107 

Figure 5.9 Comparison of numerical curves and experimental curves (S8, 
L/D=8) ........................................................................................ 108 

Figure 5.10 Comparison of numerical curves and experimental curves 
(S11, L/D=11) ............................................................................ 108 

Figure 5.11 Loading strain histories of stainless steel reinforcement .... 110 

Figure 5.12 Comparison of numerical curves and experimental curves 
(L/D=5) ....................................................................................... 111 

Figure 5.13 Comparison of numerical curves and experimental curves 
(L/D=11) ..................................................................................... 113 

Figure 6.1 Fiber element technique used in reinforced concrete pier 
analysis under cyclic loading ...................................................... 114 

Figure 6.2 Regular bridge ...................................................................... 116 

Figure 6.3 Pier Specimen corresponding to the middle pier in the regular 
bridge .......................................................................................... 116 

Figure 6.4 Damage of the specimen at the end of the cyclic tests ......... 117 



 

 

 

xiv

Figure 6.5 Lateral loading displacement histories at the top of the pier 120 

Figure 6.6 Experimental lateral force and displacement curve of pier 1 121 

Figure 6.7 Experimental lateral force and displacement curve of pier 5 121 

Figure 6.8 Comparison of force-displacement curve (horizontal force at 
the bottom and lateral displacement at the top of pier) between the 
fiber model and the experimental curves .................................... 122 

Figure 6.9 Comparison of force-displacement curve (horizontal force at 
the bottom and lateral displacement at the top of pier) between the 
fiber model and the experimental curve ..................................... 123 

Figure 7.1 Corrosion of rebar in the highway bridge: a) corrosion of the 
pier b)corrosion of the rebar and spalling of the cover concrete of 
the wall c) overview of the highway bridge (Tullmin, 2010) ..... 125 

Figure 7.2  corrosion of rebar in concrete (Tullmin, 2010).................... 127 

Figure 7.3 Stage 1 of corrosion (Tullmin, 2010).................................... 128 

Figure 7.4 Stage 2 of corrosion (Tullmin, 2010).................................... 128 

Figure 7.5  Stage 3 of corrosion (Tullmin, 2010)................................... 129 

Figure 7.6 Stage 4 of corrosion (Tullmin, 2010).................................... 129 

Figure 7.7  Electrochemical reaction of rebar in concrete ..................... 130 

Figure 7.8 Notional yield stress deterioration in tension and compression 
(L/D=5) ....................................................................................... 134 

Figure 7.9 Notional yield stress deterioration in tension and compression 
(5<L/D<=10) .............................................................................. 134 

Figure 7.10 Notional yield stress deterioration in tension and compression 
(L/D>10) ..................................................................................... 135 

Figure 7.11 Relationship between mean yield stress and mass loss rate 
L/D=5,  data from Kashni et al. (2013a) .................................... 136 

Figure 7.12 Relationship between mean yield stress and mass loss rate 
L/D=10, data from Kashni et al. (2013a) ................................... 136 

Figure 7.13 Relationship between mean yield stress and mass loss rate 
L/D=15, data from Kashni et al. (2013a) ................................... 137 



 

 

 

xv

Figure 7.14 Ratio between the critical slenderness of corroded rebar and 
critical slenderness of original rebar '

cr cr   ................................ 138 

Figure 7.15 Buckling of compressed bar between two consecutive stirrups
 .................................................................................................... 139 

Figure 7.16 Buckling exceeds two consecutive stirrups ........................ 140 

Figure 7.17 Stress-strain relationship of corroded rebar with different 
slenderness .................................................................................. 143 

Figure 7.18 Relationship between '   (ratio computational slenderness 
of corroded rebar and original rebar) and mass loss rate ............ 144 

 



 

 

 

xvi

List of tables 
 

Table 3.1Properties of test rebar (Dhakal & Maekawa, 2002b) ............... 37 

Table 3.2 Content of chemical composition in stainless steel AISI304 ... 40 

Table 3.3 Selection of Parameters for Fiber Model ................................. 54 

Table 3.4 Geometric and Mechanical properties of bare rebar ................ 55 

Table 3.5 Parameters values of “Steel02” adopted in the fiber model ..... 56 

Table 3.6 Combined parameter for different rebars ................................. 58 

Table 3.7 Possible conditions of the previous branch .............................. 71 

Table 3.8 Stragety for model update at reversal ....................................... 72 

Table 4.1 Lists of parameters to be calibrated ......................................... 86 

Table 4.2 Lower bound and Upper bound of the parameters ................... 89 

Table 4.3 Parameter Identification for stainless steel rebar (L/D=5) ....... 95 

Table 4.4 Parameter Identification for stainless steel rebar (L/D=11) ..... 95 

Table 5.1 Properties of tested carbon steel rebar ................................... 101 

Table 5.2 Properties of test rebar (Dhakal and Maekawa 2002) ............ 106 

Table 5.3 Properties of tested stainless steel rebar ................................. 109 

Table 6.1 Geometries and configuration of the piers ............................. 117 

Table 6.2 Mechanical properties of the materials tested in the laboratory
 .................................................................................................... 118 

Table 6.3 Parameters of “Concrete07” in the fiber model ..................... 119 

Table 6.4 Parameters of “Steel05” in the fiber model ............................ 119 

Table 7.1 Parameters to calculate the notional yield stress deterioration
 .................................................................................................... 133 

Table 7.2 Values of c  to calculate the notional stress ........................... 145 



 

 

 

xvii

 

List of symbols 
 
Nell’elenco che segue sono riportati i principali simboli che compaiono 
nei capitoli della tesi. 
 

  Computational slenderness  

L Computational length 

D  Diameter of the cross section of rebar 

E   Elastic modulus 

0E  Initial tangent modulus 

  Stress 

  Strain 

i Raidus of gyration 

r ,  cr
L D  Critical slenderness between inelastic buckling and elastic 

buckling 

r  Critical stress between inelastic buckling and elastic 
buckling 

p  Critical slenderness between plastic and inelastic buckling 

p  Critical stress between plastic and inelastic buckling 

i  Initial stress at the beginning of the half cycle 

i   Initial strain at the beginning of the half cycle 

0 , y  Yield stress 



 

 

 

xviii

0 , y  Yield strain 

*   Normalized stress in Menegotto-Pinto model 

*  Normalized strain in Menegotto-Pinto model 

b  Hardening ratio used in Menegotto-Pinto model, equaling 
the ratio between the tangent modulus of the asymptote 
after yielding point and the initial tangent modulus at the 
original point or reversal point 

n
r  Stress corresponding to the reversal point 

n
r  Strain corresponding to the reversal point 

1n
y   Stress corresponding to the yield point of the n+1 half 

cycle 

1n
y
  Stain corresponding to the yield point of the n+1 half cycle 

n  Plastic excursion at the n th semi cycle normalized by the 
strain y  corresponding to the initial yield stress yf  

R  Curve transition parameter defined in Menegotto-Pinto 
model 

0R  Initial curve transition value defined in Menegotto-Pinto 
model 

1A , 2A  Parameters to calculate R , defined in Menegotto-Pinto 
model 

st  Stress shift due to isotropic strain hardening 

max  Absolute maximum value at the reversal of previous half 
cycles 



 

 

 

xix

3a , 4a  Experimentally determined  parameters to calculate stress 
shift proposed by Filippou et al. 

s  Normalized superposition length, representing the distance 
between the tensile curve and the monotonic compressive 
curve after the yield point, defined in Monti-Nuti model 

*
s  Real superposition length 

0b  Initial hardening ratio in tension, defined in Monti-Nuti 
model 

0b  Initial hardening ratio in compression, defined in Monti-
Nuti model 

b  Hardening ratio in tension 

b  Hardening ratio in compression 

i
p  Plastic strain hardening at the i th half cycle 

max  Maximum plastic strain hardening of previous half cycles 

n
p  Plastic work of n th half cycle 

n
K  Stress variation due to kinematic strain hardening at n th 

half cycle 

n
I  Stress variation due to isotropic strain hardening at n th 

half cycle 

n
p  Additional plastic excursion 

n
IM  Stress variation due to isotropic strain hardening and 

memory rule, defined in Monti-Nuti model, in absence of 
buckling 

P  Weight coefficient which determines the contribution 



 

 

 

xx 

made by the kinematic rule and the isotropic rule 

n
KM ,b  Stress variation due to kinematic strain hardening and 

memory rule in presence of buckling, defined in Monti-
Nuti model 

sh  Stress shift defined in Monti-Nuti model 

0
bR  Initial value of curve transition parameter in presence of 

buckling, defined in Monti-Nuti model 

1
bA , 2

bA  Parameter to calculate R in presence of buckling, defined 
in Monti-Nuti model 

1
bR  Lower bound of R in presence of buckling, defined in 

Monti-Nuti model 

  The limitation value of the asymptote for softening branch 

  The sum of  additional plastic excursion of previous half 
cycles 

L yD f  Computational slenderness 

450yL D F Computational critical slenderness 

  Parameter anisotropy coefficient 

  Critical slenderness coefficient 

Yf  Yield stress of Feb44, equaling 450 MPa 

ytf  Yield strength of rebar in tension 

ycf  Yield stress of the rebar in compression 

1
tA , 2

tA  Parameters to calculate R  in tensile half branch, defined in 



 

 

 

xxi

modified Monti-Nuti model 

1
cA , 2

cA  Parameters to calculate R  in compressive half branch, 
defined in modified Monti-Nuti model 

tr  , cr  Parameters to calculate the initial value of 0R , defined in 

modified Monti-Nuti model 

n  The set of controlling parameters in the model for n th half 
branch 

f  Fitness function 

kf  Value of the fitness function for each experimental curve 

Y  The difference between the numerical curve and the 
experimental curve 

Y   Sum of the square of the experimental stresses at each 
strain steps 

,E iy , ,N iy  Stress on the experimental curve and numerical curve 
corresponding to the same strain 

kw  Weight coefficient for  each experimental curve 

'D  Mean cross section of the corroded rebar  

c  Mass loss rate due to corrosion 

  Mass loss rate due to corrosion, in percentage 

0m  Original mass of the rebar 

m  Mass of corroded rebar 

'
ytf  Yield stress in tension corresponding to the corroded rebar 

based on the mean cross section area 



 

 

 

xxii 

a  Regression factor to calculate '
ytf ,  representing the effect 

of non-uniform pitting corrosion 

'
ycf  Yield stress in compression corresponding to the corroded 

rebar based on the mean cross section area 

c  Regression factor to calculate '
ycf ,  representing the effect 

of non-uniform pitting corrosion 

t
cd  Notional yield stress deterioration in tension due to 

corrosion 

c
cd  Notional yield stress deterioration in compression due to 

corrosion 

'
cr  Critical slenderness of corroded rebar corresponding to 

mean yield stress '
ycf  

'  Slenderness of the corroded rebar corresponding to mean 
yield stress '

ycf  

'L  Computational length of the corroded rebar 

t
c  Corrosion deterioration factor incorporating the effect of 

non-uniform pitting corrosion in tension 

c
c  Corrosion deterioration factor incorporating the effect of 

non-uniform pitting corrosion in compression 

g  Gap distance generated at the contact point between the 
stirrup and the longitudinal rebar due to corrosion 

sD  Diameter of the uncorroded stirrup  

'
sD  Diameter of the uncorroded stirrup 

  Coefficient to calculate the computational length increase 



 

 

 

xxiii

due to corrosion 

''  Slenderness of the corroded rebar based on the cross 
section of the original uncorroded rebar 

''
cr  Critical slenderness of the corroded rebar based on the 

cross section of the original uncorroded rebar 

c  deterioration coefficient to calculate ycf  which is the 

notional yield stress in compression corresponding to the 
corroded rebar 





 
 

1. INTRODUCTION 
 
 
 
The material model for rebar including inelastic buckling is crucial for 
precise seismic performance evaluation of existing reinforced concrete 
structures. Through literature review, the state of art of steel material 
model for rebar in reinforced concrete structures is introduced. 
Subsequently the significance of this research is demonstrated, and finally 
the organization of this thesis is briefly explained. 

1.1 BACKGROUNDS 
 
 
There are many existing concrete structures designed before the effect of 
earthquake was fully studied. The stirrup spacing in existing structures 
exceeds the maximum limit specified in the current seismic code, thus the 
confinement of the transverse stirrups towards the longitudinal 
reinforcement is not sufficient, which will result in the lateral deformation 
of the longitudinal rebar named as buckling after the collapse of the 
concrete cover under severe seismic loading. 
 

 

Figure 1.1 Fiber Element Method 

 
In order to evaluate the seismic performance of these reinforced concrete 
structures, the finite element method adopting fiber element model is 
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widely applied to reduce the computational cost. As shown in Figure 1.1, 
the concrete column or beam is divided into segments along the axial 
length, and the cross section of the segment is further divided into fibers 
which represent concrete and rebar (Mullapudi, 2010). Supposing that the 
plane section remains plan, the strain in each fiber is calculated from the 
centroidal section strain and curvature. Subsequently the stresses and 
modulus of fibers are calculated from the fiber strain. The constitutive 
relation of the section is derived by integration of the response of the 
fibers. Furthermore, the response of the element is derived by integration 
of the response of the sections along the length of the element. 
In the fiber element model, proper material models for concrete and steel 
reinforcing bar take very important roles. Subjected to seismic action, the 
structures suffer repeated loading and unloading and the elements of the 
structures could undergo elastic and plastic deformation. Hereby, the 
material model for steel reinforcement should consider the cyclic stress-
strain behaviors including inelastic buckling. 

1.1.1 Importance of Inelastic Buckling  
 
Under compressive load, the bearing capacity of the steel column depends 
on the slenderness of the column. As shown in Figure 1.2, the bearing 
capacity of the pin-ended column under axial force could be divided into 
three ranges: the plastic strength, the inelastic strength and the elastic 
(Quimby, 2008). 
 

 

Figure 1.2 Bearing capacity of column 
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The computational slenderness   is defined as the ratio between the 
computational length of the element L  and the radius of gyration i . r  is 

the critical slenderness between inelastic buckling and elastic buckling, 

and r  is the corresponding stress, defined as  22
r E L r  according 

to Euler’s Equation; p  is the critical slenderness between plastic and 

inelastic buckling and p  is the corresponding buckling stress. Inelastic 

buckling of the rebar will emerge in the reinforced concrete structures 
under compressive loads. 
In Figure 1.3, the theoretical model for the longitudinal rebar is illustrated 
based on the assumption that the buckling of the rebar emerges inside the 
consecutive stirrups.  
 

 

Figure 1.3 Theoretical model for the reinforced bar in the concrete columns 
(Gomes & Appleton, 1997) 

 
The effect of the inelastic buckling on the cyclic behavior of the rebar 
could be observed in Figure 1.4. If the steel material model doesn’t 
consider the inelastic buckling, the maximum response of the rebar in 
compression will be overestimated up to 50%. Hence the buckling effect 
has to be considered properly in the theoretical model for the rebar. 
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a)  Cyclic model for rebar without inelastic buckling 

 

 

b) Cyclic model for rebar with inelastic buckling 

Figure 1.4 The effect of the inelastic buckling on the stress-strain curve 
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1.1.2 Rebar Applied in the Concrete Structures 
 
Originally concrete structures are unreinforced. Concrete is a material that 
is very strong in compression but relatively weak in tension. To 
compensate this imbalance in concrete’s behavior, rebar (short for 
reinforcing bar) is embedded in the concrete to increase the tensile 
bearing capacity.  
Steel has an expansion coefficient nearly equal to the concrete; therefore, 
this feature could avoid the additional stress between the concrete and the 
rebar resulting from the temperature in the structure different from the 
original setting temperature. Hence steel rebar is widely used in the 
concrete structures, and the mostly widely applied steel rebar is the 
carbon steel rebar with rib which could bind with concrete effectively. 
However the cracking of the concrete is inevitable and this makes the 
carbon steel rebar susceptible to rust. As rust takes up greater volume than 
the steel from which it was formed, it causes severe pressure on the 
surrounding concrete, leading to cracking, spalling and ultimately failure 
of the structures (Tullmin, 2010). This is a particularly problem where the 
concrete is exposed in the salt water or in the marine applications. 
Corrosion-resistant rebar such as the stainless steel rebar could be used in 
this situation at a greater initial expense, but significantly lower expense 
over the service life of the project (Knudsen, Jensen, Klinghoffer, & 
Skovsgaard, 1998).  
However, according to the experimental tests of the stainless steel rebar 
(Albanesi, Lavorato, & Nuti, 2006), the mechanical properties are 
different from the carbon steel rebar. The yield stress of the stainless steel 
rebar in tension is different from that in compression, named as 
anisotropy. For the carbon steel rebar, the yield stress is the same both in 
tension and in compression. The anisotropy of the stainless steel rebar 
should be considered in the numerical model for the stainless steel rebar. 

1.2 LITERATURE REVIEW  
 
 
A lot of numerical models for steel reinforcement have been proposed to 
describe the stress-strain relationship of the rebar. All the models could be 
divided into three classes (Filippou, Popov, & Bertero, 1983): the implicit 
algebraic model, the explicit algebraic model and the differential model, 
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and among which the algebraic models are widely used in the numerical 
analysis with the Finite Element Method (FEM). 

1.2.1 Cyclic Steel Model for Rebar 
 
As for the implicit algebraic model, the stress is the independent variable 
and the strain is the dependent variable.  
Ramberg and Osgood (1943) proposed the well-known implicit 
monotonic model to simulate the stress-strain relationship of steel sheet, 
based on the experimental tests on aluminum alloy, stainless steel and 
carbon steel sheet.   
The stress-strain relationship is defined in Eq. (1.1), where E  is the 
elastic modulus, K  and n  are the parameters to describe the strain 
hardening. 

 
1

0

=
E

n

E

   



 

  
 

 (1.1) 

Then Aktan et al. (1973) described the stress-strain relationship for each 
half-cycle between two stress-reversals using the Ramberg-Osgood 
function, illustrated in Figure 1.5, defined in Eq. (1.2). 

 
0 0 0

i i i


     
  

   
   

 
 (1.2) 

Where  and  denote the strain and stress, and i  and i  are the initial 

values of the strain and stress at the beginning of the half cycle. 0  and 

0  are the yield strain and yield stress, and   is the parameter of the 

Ramberg-Osgood function. 
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Figure 1.5 Cyclic model proposed by Aktan et al. (1973) 

based on Ramberg-Osgood Model 
 
Ma, Bertero, and Popov (1976) divided each half cycle into elastic, plastic 
and hardening periods, and proposed a series of rules to describe the 
cyclic unloading and reloading stress-strain relationship respectively, 
based on the Ramberg-Osgood model, as shown in Figure 1.6. 

 

 

a) Unloading    stress-strain curve of the first reversal half cycle 
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b) Reloading    curve of the second reversal and subsequent half cycles 

Figure 1.6 Cyclic model for rebar proposed by Ma et al. (1976) based on 
Ramberg-Osgood model 

 
Thompson and Park (1978) proposed the cyclic model adopting the 
Ramberg-Osgood model with empirical constants to describe the cyclic 
stress-strain relationship. As shown in Figure 1.7, the stress-strain curve 
for monotonic loading, with suitably adjusted origin of co-ordinates, is 
used to describe the envelope which the steel stress cannot exceed. 
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Figure 1.7 Cyclic stress-strain curve with envelope proposed by Thompson 
and Park (1978) based on Ramberg-Osgood model 

 
On the contrary, in the explicit algebraic model, the strain is the 
independent variable, and the corresponding stress is the dependent 
variable.  
One multiline model was proposed by Aktan et al. (1973) to simulate the 
cyclic behaviors including isotropic hardening. The initial stress-strain 
relationship is elastic-plastic with strain hardening slope. If any plastic 
strain is obtained for the half cycle before the reversal, the boundary of 
the hardening line will shift against the horizontal axial. Meanwhile, the 
slope of the hardening line is less than the slope of the previous hardening 
line, as illustrated in Figure 1.8. 
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Figure 1.8 Cyclic stress-strain curve with envelope proposed by  

Aktan et al. (1973) 

 
Then Aktan and Ersoy (1980) suggested another multiline model to 
describe the cyclic behaviors of reinforcing bars considering the 
Bauschinger Effect, illustrated in Figure 1.9.  

 

Figure 1.9 Cyclic model proposed by Aktan and Ersoy (1980) 
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Menegotto and Pinto (1973) built up a widely applied explicit model 
which was first proposed by Giuffre and Pinto (1970). The stress-strain 
relationship is defined by Eq. (1.3): 

 
*

* *
1

*

( 1 )
= b

(1 )R R

b  






 (1.3) 

where b  is the hardening ratio between the tangent modulus of the 
asymptote after yielding point and the initial tangent modulus at the 
original point or reversal point, defined in Eq. (1.4); the normalized stress 

*  and strain * are defined in Eq. (1.5); the curved transition from the 
initial asymptote with initial tangent modulus 0E  to the hardening 

asymptote with slope equal to 0bE  is defined by R in Eq. (1.6). 
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n
r  and n

r  are the strain and stress corresponding to the reversal point 

which is the intersection between the nth half cycle and n+1 half cycle. 
1n

y
 and 1n

y   are the stain and stress corresponding to the yield point of 

the n+1 half cycle. The yield point is the intersection of the asymptotes 
which are the envelope of the n+1 half cycle. The asymptote at the 
reversal point is determined by the reversal point ( n

r , n
r ) and the 

unloading slope ratio 0E . Subsequently, the yield stress 1n
y   could be 

determined by the yield stresses 1
y  and y

n , strains y
n  and r

n  and 

hardening ratio b. Then 1n
y
  could be obtained by n

r , 1n
y   and tangent 

modulus 0E . Hereby the second asymptote could be determined by the 

yield point and the hardening ratio b. 
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In Eq. (1.6), n  is the plastic excursion at the nth semi cycle normalized by 

the strain y  corresponding to the initial yield stress yf , defined as: 

 n n
n r y y     ; 0R  is the initial curvature value, 1A  and 2A  are the 

constant parameters depending on the material properties. The greater the 
value of R , the steeper the transition curve. 

 

 
Figure 1.10 Menegotto-Pinto Model 

 
The typical cyclic stress-strain curve depicted by the Menegotto-Pinto model is 
shown in Figure 1.10. For the first half cycle from the origin, the yield point is 
A, the curve transition parameter R  equals 0R . At the reversal B, the 
asymptote (2) is determined and thus the yield point of the unloading half 
cycle is obtained which is the intersection C of the asymptote (2) and (3). The 
curve transition parameter 1R  is calculated according to 1  the plastic 

excursion of the last half cycle. Likewise, the yield point F and the curve 
transition parameter 2R  are determined at the reversal point D. 

Stanton and McNiven (1979) compared the Ramberg-Osgood model and 
the Menegotto-Pinto model and pointed out that the Menegotto-Pinto 
demonstrated advantages over the Ramberge-Osgood model. The 
Menegotto-Pinto model could generate numerical curve with more 
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computional efficiency and smaller minimum error. The authors pointed 
out that the second envelope in the original Menegotto-Pinto model, 
which is a straightline and is definitely not the real dynamic envelope of 
the typical steel, should be replaced by monotonic skeleton curve. 
Furthermore, the authors studied the effect of the strain hardening on the 
cyclic stress-strain relationship of the rebar and proposed one function to 
calculate the stress shift at each reversal, in Figure 1.11. 
 

 

Figure 1.11 Modified Menegotto-Pinto model  

by Stanton and McNiven (1979) 

 
Filippou, Bertero and Popov (1983) thought that the original Menegotto-
Pinto Model could simulate the real stress-strain relationship accurately 
enough if the strain hardening is considered properly. The authors put 
forward Eq. (1.7) to calculate the stress shift due to isotropic hardening.  

  3 max 4st y ya a       (1.7) 

Where max  is the absolute maximum value at the reversal of previous 

half cycles,  y  and y , respectively, are the yield strain and yield stress, 

and 3a  and 4a are the experimentally determined  parameters. 

Dodd and Restrepo (Dodd & Restrepo-Posada, 1995) built one model for 
the cyclic behaviors of carbon steel rebar without buckling and proposed 
the empirical formulas for updating the tangent modulus at reversal in 



 

 

 

14 

tension and compression respectively, which could be used to modify the 
Menegotto-Pinto model. 

1.2.2 Steel Model Incorporating Inelastic Buckling 
 
Monti and Nuti (1992) proposed the first model which could consider the 
buckling of the reinforcement based on a series of experimental tests on 
carbon steel rebar. The authors proposed a series of rules to consider the 
effects of strain hardening on the yield stress and hardening ratio between 
the second asymptote and the first asymptote. 
The Monti-Nuti model is proposed based on the experimental observation 
of carbon steel rebar Feb44 with yield stress 450 MPa which was 
produced in Italy. The effect of the yield stress of different types of rebar 
is not considered properly in the model. 
Gomes and Appleton (1997) built up one model describing the monotonic 
compressive skeleton curve based on the equilibrium of plastic 
mechanism of a buckled rebar. The authors describe the buckled 
compressive branch with the proposed model and simulate the tensile 
branch and the unbuckled compressive branch with the Menegotto-Pinto 
model. The combined model is illustrated in Figure 1.12. 
 

 

Figure 1.12 Combination of Gomes and Appleton Model  

and Menegotto-Pinto Model 
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The Gomes-Appleton Model is set up based on the equilibrium equation 
of fix-ended column and assumption that the plastic hinge occurs in the 
midspan of the column. This model doesn’t consider the effect of cyclic 
loading and unloading on the yield stress variation. 
Dhakal and Maekawa (2002b) suggested the monotonic skeleton curves 
of reinforcement in tension and compression, respectively, shown in 
Figure 1.13. Also the authors presented formulas to update the tangent 
modulus at the reversal points in tension and compression, respectively. 
Then the parameter b in the Menegetto-Pinto model is modified and the 
skeleton curves are applied to describe the stress-strain relationship when 
the strain exceeds the attained maximum or minimum strain of previous 
half cycles. This model doesn’t consider the yield stress variation at the 
reversal. 
 

 

a) Monotonic tensile skeleton curve 
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b) Monotonic compressive skeleton curve 

Figure 1.13  Monotonic Skeleton curve proposed by Dhakal and 
Maekawa(2002b)  

 

Kunnath, Heo, and Mohle (2009) developed the combined material model 
in OpenSees named as “ReinforcingSteel” based on the Chang and 
Mander (1994) uniaxial steel model incorporating Gomes-Appleton 
model and Dhakal-Maekawa model.  
Zong (2010) proposed the “beam on spring” model to simulate the 
stiffness of the confinement from the transverse stirrups, as illustrated in 
Figure 1.14, and then the model was simplified into trilinear model to 
adopt the “Hysteretic” material model in OpenSees, shown in Figure 1.15. 
The formulas in the model are empirical formulas derived through data 
fitting on a series of numerical data generated by the 3D FEM model of 
the rebar. 
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Figure 1.14 Schematic Diagram of rebar in Concrete Column 

 

 

a) model proposed by Zong (2010) 
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b) proposed model application in OpenSees 

Figure 1.15 Trilinear Model proposed by Zong (2010) 

 

1.3 SIGNIFICANCE AND AIMS OF CURRENT 
RESEARCH 
 
 
The proper steel material model for rebar incorporating buckling is crucial 
for the seismic analysis of the reinforced concrete structures. In this paper, 
the modified Monti-Nuti model is proposed and the effectiveness is 
demonstrated. 

1.3.1 Significance  
 
As introduced above, evaluation of the seismic performance of existing 
reinforced concrete structures is important to ensure the inhabitants and 
property safe in case of earthquake. The accurate cyclic model for rebar 
incorporating inelastic buckling is very important for seismic analysis of 
the concrete structures (Bae, Mieses, & Bayrak, 2005). 
In this study, cyclic behaviors of different types of rebar are carefully 
researched and one improved Monti-Nuti model for rebar is proposed. 



 

 

 

19

This model solves the drawbacks of existing model and could obtain more 
accurate result with less computational cost. 

1.3.2 Aims of Current Research 
 
In this thesis, one modified Monti-Nuti model is proposed to simulate the 
cyclic behaviors of rebar such as carbon steel rebar and stainless steel 
rebar, based on the experimental and numerical study of carbon steel 
rebar and stainless steel rebar.  
The parameters in the modified Monti-Nuti model are identified by the 
Genetic Algorithm. The effectiveness and robustness of the parameters 
are verified. 
The modified material model is implemented in the OpenSees, and the 
material model is named as “Steel05”.  
The numerical curves generated by the modified model are calibrated 
with the experimental curves.  
The material model is applied in the structural analysis of cantilever 
column. 
Finally, the effect of corrosion of rebar on the cyclic stress-strain behavior 
is studied and the corrosion extend model is proposed. 

1.4 Organization of this Thesis 
 
 
In section 2, the essence of the original Monti-Nuti model is explained in 
detail. In section 3, the drawbacks of the original model are studied and 
then the improved Monti-Nuti is proposed. In section 4, the parameters in 
the model are identified by the Genetic Algorithm and the formulas for 
the parameters are proposed. In section 5, the implementation of the 
material in OpenSees is briefly introduced, and the numerical model is 
validated with the experimental curves. In section 6, the application of the 
modified Monti-Nuti model in reinforced concrete piers is made to verify 
the effectiveness of the new material model. In section 7, the effects of 
corrosion of rebar are studied and the corrosion extended model is 
proposed. Finally in section 8, main conclusions and the further work are 
briefly discussed. 
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2. ORIGINAL MONTI-NUTI MODEL 
 
 
 
The Monti-Nuti Model is proposed based on experimental observation of 
the carbon steel rebar (Giorgio Monti & Nuti, 1992). This model consists 
of four hardening rules such as kinematic rule, isotropic rule, memory 
rule and saturation rule. The model calculates the yield stress, elastic 
modulus, hardening ratio and the curve transition parameter at each 
reversal, which considers the effects of strain hardening in absence of 
buckling and in presence of buckling respectively. 

2.1 MONOTONIC SKELETON CURVE 
 
A series of experiments on carbon steel rebars Feb44, with yield stress 
equal to 450 MPa, diameter D=16, 20, 24 mm, were tested under 
monotonic tensile, compressive and cyclic loads, and the monotonic 
curves are illustrated in Figure 2.1.  

 

Figure 2.1 Monotonic tests of carbon steel rebar (Giorgio Monti & Nuti, 
1992) 
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Several observations could be obtained in Figure 2.1. 1) the tensile 
monotonic curves are identical regardless of the slenderness of the rebar; 
2) even though the diameters of the rebars are different, the monotonic 
compressive could be identical if the slenderness ratios L/D are equal; 3) 
when the slenderness ratio L/D equals 5, the monotonic compressive 
curve coincides with the monotonic tensile curve; 4) when the slenderness 
ratio L D is 11, the monotonic compressive curve diverges from the 
tensile curve as soon as it reaches the yield point; 5) when the slenderness 
ratio L D  varies between 5 and 11, the compressive curve coincides with 
the tensile curve for certain length, and then the compressive curve 
diverges from the tensile curve. 
The skeleton curve for the rebar in the Monti-Nuti model is shown in Figure 
2.2. The skeleton curve in tension is a bilinear curve. As shown in Figure 2.2 
a), the slope of the first line is the initial tangent modulus 0E , after the stress 

exceeds the yield stress 0
y , the curve converts to the second line with slope 

equal  to 0bE , where b is the hardening ratio. 

The monotonic compressive skeleton is shown in Figure 2.2 b). After the 
stress reaches the yield point A, the path for the curve dependting on the 
slenderness ratio L D : 

The curve converts to the line (1) with the slope ratio equal to 0 0b E , where 

0b is positive and equals the hardening ratio in the tensile curve, if the 

slenderness ratio L 5D  ;  

The curve converts to the line (2) with the slope ratio 0 0b E , where 0b is 
negative representing the hardening ratio in compression, if the slenderness 
ratio L 11D  ; 
The curve follows the line (1) for lenth s  until point B, and then swiths to line 

(3) with slope ratio 0 0b E , if the slenerness ratio 5 L 11D  . 
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a)Tensile skeleton curve 

 

 

b) Compressive skeleton curve 

Figure 2.2 Monotonic skeleton curve of Monti-Nuti model 

 

s  is the superposition length between the monotonic tensile curve and the 

monotonic compressive curve after the yield point, and the formula is given in 
Eq. (2.1) based on the experimental observation. 



 

 

 

23
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  (2.1) 

c  is a parameter related to the rebar, and the given as 0.5 in the test. 
 

  2.2 HARDENING RULES FOR CYCLIC 
BEHAVIORS OF STEEL REBAR 

 
 
As mentioned above, the effect of strain hardening on the cyclic behaviors 
of stress-strain curves should be considered properly if the Menegotto-
Pinto Model is adopted to simulate the cyclic behaviors of reinforcing bar. 
The Monti-Nuti model could update the yield stress of each half cycle and 
the hardening ratio between the hardening modulus and the initial elastic 
modulus.  
The stress variation is calculated by equations incorporating the strain 
hardening which represents the plastic deformation of the rebar after 
exceeding the yielding point. If an isotropic specimen under tension or 
compression is loaded exceeding the yield strength, and then it is 
unloaded and reloaded towards the opposite direction, the yield strength 
will become smaller or larger due to the plastic deformation at pervious 
loading process. The effect of the plastic deformation could be divided 
into kinematic hardening and isotropic hardening.  
According to the experimental results, the critical slenderness L D  
equals 5, where L is the distance between the subsequent transversal 
rebars and D is the diameter of the longitudinal rebars. If the slenderness 
L D  exceeds 5, the buckling could be observed in the experimental 
stress-strain curves, otherwise, no buckling occurs. The effects of strain 
hardening in absence of buckling and in presence of buckling are different.  

2.2.1 In Absence of Buckling 
 
The kinematic hardening results in the yield stress reduction in the 
opposite direction after the specimen is loaded exceeding the yield 
strength in tension or compression. The kinematic hardening could 
explain the Bauschinger Effect. This kinematic hardening is considered in 
the original Menegotto-Pinto model. In Figure 2.3 a), the yield stress 
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corresponding to point C is 1  smaller than that of point A due to the 

kinematic strain hardening 1
p . Meanwhile, the yield stress corresponding 

to point F is 2  smaller than the enlarged yield stress corresponding to 

point B in tension, due to the kinematic strain hardening 2
p  in the second 

half cycle. In one word, the effect of the kinematic is to pull the yield 
strength towards the horizontal axis. 
 

 

a) Effect of kinematic hardening 

 

b) Effect of isotropic hardening 

Figure 2.3 Effect of strain hardening in absence of buckling 
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On the contrary, the isotropic strain hardening causes the yield stress to 
increase in the opposite direction. As shown in Figure 2.3 b), the isotropic 
strain hardening 1

p  causes the yield point in the second half cycle to 

move from C1 to C2. Likewise, the isotropic strain hardening 2
p  results in 

the shift of the yield point from F1 to F2. However the isotropic hardening 
will have no effect on the stress variation if the absolute value of the 
plastic deformation (like 2

p ) doesn’t exceed the absolute value of the 

maximum plastic deformation of previous half cycles (like max ). This 
means that the isotropic hardening has the memory character which 
decides that the isotropic hardening only take effect when the current 
strain hardening is beyond the maximum previous plastic strain 
deformation. Different from the effect of the kinematic hardening, the 
effect of the isotropic hardening is to transfer the yield point away from 
the horizontal axis. 
A half cycle is the path between two subsequent load reversals. The 
plastic excursion at the nth half cycle is defined in Eq. (2.2): 

 (n 1,2,3, )n n n
p r y       (2.2) 

where n
r  is the strain corresponding to the reversal point at the end of the 

nth half cycle and n
y  is the strain corresponding to the yielding point 

which is the intersect of the two envelope lines at the nth half cycle, and is 
calculated according to Eq. (2.3). 
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
 
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where n
y  is the yield stress of the nth half cycle, 1n

r
  is the stress 

corresponding to the end reversal point of the n 1  half cycle. 
Then the half cycle plastic work n

p  decides the sign of the stress 

variation and is defined as follows, in Eq. (2.4): 

  1

2
n n n n
p r y p      (2.4) 

The hardening ratio b  is always positive both in tension and in 
compression, so the stress increases with the strain increasing and the 
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stress reduces with the strain decreasing. Thereby the plastic work n
p  is 

always positive in absence of buckling. 
 
1. Kinematic rule 
 
The kinematic rule corresponds to the effect of the kinematic strain 
hardening. The stress variation due to the kinematic rule is given in Eq. 
(2.5): 

 
1

n
n i
K p

i

bE 


   (2.5) 

For each half cycle, the stress variation i
pbE  reduces the absolute value 

of the yield stress in the opposite direction. 
 
2. Isotropic rule 
 
The isotropic rule corresponds to the effect of the isotropic strain 
hardening. The stress variation due to the isotropic rule is defined in Eq. 
(2.6): 

  
1

sign( ) -
n

n i n n
I p p p

i

bE sign  


     
  (2.6) 

where (x)sign  is the sign function: (x) 1sign   if x 0 ; (x) 1sign    if 
x 0 ; otherwise (x) 0sign  . 
The stress variation due to the isotropic rule is always opposite to the 
strain variation of current half cycle, thus it will always increase the yield 
stress in the opposite direction. 
 
3. Memory rule 
 
According to the experimental results, if the plastic excursion at current 
half cycle n

p  doesn’t exceed the maximum plastic excursion of the 

previous 1n   half cycles max
p , no isotropic hardening develops at current 

half cycle. Thus one new symbol n
p  is defined in Eq. (2.7) to describe 

this character. 
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  maxn n n
p p p psign      (2.7) 

where  u uH u  is the step function. If 0u  ,   1H u  ; otherwise, 

  0H u  . Replace i
p  in Eq. (10) with i

p  in Eq. (11), the stress variation 

due to the isotropic rule and memory rule is named as n
IM  and is 

defined in Eq. (2.8): 

    
1

n
n i i n
IM p p p

i

bE sign sign  


      
  (2.8) 

The yield stress at the n+1th half cycle could be calculated by Eq. (2.9):  

    1 1 1n n n n
y y p K IMsign P P             (2.9) 

where P  is the weight coefficient which determines the contribution 
made by the kinematic rule and the isotropic rule. The value of P  
depends on the properties of the material. In the experimental tests on the 
carbon steel rebar, P is given as 0.5 (Giorgio Monti & Nuti, 1992). 

2.2.2 In Presence of Buckling 
 
Due to buckling, the absolute value of the stress in compression decreases 
with the strain increasing after the unloading path exceeds the yield point. 
Hereby the effects of the kinematic hardening and isotropic hardening are 
different from that in absence of buckling. 
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a) Effect of kinematic hardening 

 

b) Effect of isotropic hardening 

Figure 2.4 Effect of strain hardening in presence of buckling 

 
As shown in Figure 2.4 a), the effects of the kinematic hardening are 
different in tension and compression. The strain hardening in tension 
could cause the absolute value of the yield stress reduction in 
compression. The absolute value of the stress corresponding to point C is 
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smaller than the yield stress of point A. However, the strain hardening in 
compression increases the yield stress in tension (The yield point shifts 
from F1 to F2). Like the isotropic hardening rule in absence of buckling, 
the kinematic hardening will have no effect if the absolute value of the 
plastic hardening of current half cycle doesn’t exceed the maximum 

plastic deformation of previous half cycles (for instance, if 2
maxp  , the 

stress variation 2 =0), which means that the kinematic hardening has 

the memory character in presence of buckling. In general terms, the effect 
of the kinematic hardening is to move the cyclic curve upwards in 
presence of buckling.  
In Figure 2.4 b), the isotropic hardening will increase the absolute value 
of the yield stress in compression but reduce the yield stress in tension. In 
one word, the effect of the isotropic hardening is to shift the cyclic curve 
downwards (Move the yield point C1 to C2 and shift the yield point F1 to 
F2.). 
In presence of buckling, the half cycle plastic work n

p  is still positive in 

tension, but it becomes negative in compression due to the stress increase 
with the strain decreasing as the hardening ratio b  is negative in 
compression. Thus the rules corresponding to the kinematic strain 
hardening and isotropic hardening in presence of buckling are different 
from those in absence of buckling. 
 
1. Kinematic rule and Memory rule 
 
The stress variation due to the kinematic rule will not develop if the 
plastic excursion at current half cycle n

p  doesn’t exceed the maximum 

plastic excursion of the previous n-1 half cycles max
p . Thus, the stress 

variation is calculated via the combination of the kinematic rule and the 
memory rule, and is given in Eq. (2.10): 
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n
n i
KM ,b p

i

bE 


   (2.10) 

In tension, the hardening ratiob and the additional plastic excursion i
p  

are positive, thus i
pbE  is positive, and then the absolute value of the 

yield stress in compression will reduce. In compression, the hardening 
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ratiob and the additional plastic excursion i
p  are negative, thus i

pbE  is 

positive, which will result in the increase of the yield stress in tension. 
 
2. Isotropic rule 
 
The expression of stress variation is the same with that defined in absence 
of buckling. However, the effect of the isotropic rule is different. In 
tension the plastic work n

p  is positive, thus the absolute value of the 

yield stress in compression will increase. In compression, the plastic work 
n
p  is negative; as a result, the yield stress in tension will decrease.  

The yield stress at the n+1th half branch could be calculated according to 
the Eq. (2.11): 

    1 1 1n n n n
y y p KM ,b Isign P P             (2.11) 

 
3. Stress shift 
 
If the slenderness ratio 5 L 11D  , as shown in Figure 2.5, the 

superposition length s will be positive, thus the intersection between the 

two asymptotes will shift from the original yield point A to another 
position B. In order to eliminate the discontinuity, the shifted yield stress 
could be calculated according to Eq. (2.12), which is deduced based on 
geometrical considerations. 

 
1sh s

b b
E

b
 

 







  (2.12) 

Where E is the tangent modulus at the original point of the unloading half 
cycle, b is the hardening ratio of the superposition zone, b is the slope 
of the buckled asymptote, which is negative. 
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Figure 2.5 Stress shift in compressive curve 

 

2.3 CURVE TRANSITION PARAMETER R 
 
 
The curve transition parameter R defines the curvature of the transition 
from the first asymptote to the second envelope. The larger the value of R , 
the steeper the curve transition. In Figure 2.6, 0R >  1R  >  2R   , the 

curve transition becomes smoother. 
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Figure 2.6 Degradation of curve transition 

 
In Monti-Nuti model, the parameters in the expression for R  is redefined 
in absence of buckling and in presence of buckling, respectively. 

2.3.1 In Absence of Buckling 
 
Different from the original equation, the formula for the curve transition 
R  is defined in Eq. (2.13): 

 1 max
1 0

2 max
n

A
R R

A


  


 (2.13) 

Where max  is the maximum plastic excursion, defined as 

max max( )n
p  . Through calibration, 0R  is set 20, 1A  equals 18.5 and 

2A  is 0.0001. 

2.3.2 In Presence of Buckling 
 
The parameters 1A  and 2A in the formula corresponding to R , are 

modified according to the calibration of the experimental results, and the 
formula is given in Eq. (2.14). 
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 1 max
1 0 1

2 max

b
b b

n b

A
R R R

A


   


 (2.14) 

where max  is the maximum plastic excursion, defined as 

max max( )n
p  , 1

bA =19.5, 2
bA =0.001, 0

bR  is defined in Eq. (2.15) and 

the lower boundary 1
bR  is defined in Eq. (2.16). 

  0 0 2b

cr
R R L D L D        (2.15) 

  1 10b

cr
R L D L D b      (2.16) 

 

2.4 HARDENING RATIO 
 
 
b represents the ratio between the hardening modulus and the initial 
elastic modulus at the reversal point. In Figure 2.7, the effect of b  on the 
curve is illustrated. If b >0, the stress increase with the increase of strain 
after the yield point; if b <0, the stress reduce with increase of strain after 
the yield point. 
 

 

a) b=0; b) b>0; c) b<0 

Figure 2.7 The effect of b  on the curve transition 
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The initial value of b is determined by the mechanical properties of the 
material. Then the value of b  varies according to the plastic deformation. 
In absence of buckling, b  is updated by the same formula for tensile 
branch and compressive branch. In presence of buckling, b is defined for 
tensile branch and compressive branch respectively. 

2.4.1 In Absence of Buckling 
 
In the original Menegotto-Pinto model, the hardening ratio b  is constant, 
which is always equal to the original hardening ratio b  in the monotonic 
skeleton curve. According to the experimental observation, the hardening 
ratio b  varies and is expressed in Eq. (2.17): 

 
   01

0
yb E /nb b e

     (2.17) 

where  is the sum of  additional plastic excursion of previous half 

cycles, defined as 
1

n
i
p

i

 


  , and   is the limitation value of the 

asymptote for softening branch and the approximation of  is evaluated 

by Eq. (2.18): 

 
6 y

L D


   (2.18) 

2.4.2 In Presence of Buckling 
 
The formulas for hardening b are different in tension and in compression 
due to buckling and are given in Eq. (2.19). 
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 (2.19) 

Where 
0

b  is the initial hardening ratio which could be obtained through 

monotonic tensile tests, and 0b is the strain hardening ratio of the first 

unloading branch and is given in Eq. (2.20). 
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cr cr
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b a for

D D D D
           

    
 (2.20) 

in which, for the tested bars, 0 006a . .  

2.5 ELASTIC MODULUS E 
 
 
The elastic modulus at the reversal could be different from the original 
elastic modulus, as shown in Figure 2.8. 
 

 

Figure 2.8 Degradation of elastic modulus 

 

2.5.1 In Absence of Buckling 
 
In absence of buckling, the elastic modulus at the reversal from 
compressive branch towards tensile branch could be considered as the 
same as the original elastic modulus of the first half cycle. 

2.5.2 In Presence of Buckling 
 
When the curve reloads from the compressive reversal point, the tangent 
modulus will reduce according to the experimental observation. Eq. (2.21) 
was proposed to evaluate the reduced modulus. 
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    26

0 5 51
n
pA

E E A A e
     

 (2.21) 

where 0E  is the initial elastic modulus; 5A  is defined by 

 5 1 7.5
cr

A L D L D     and 6A  is set as 620 for the tested bars. 
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3. IMPROVEMENT OF THE ORIGINAL 
MODEL 

 
 
 
The original Monti-Nuti model was proposed based on the experiments 
on Carbon Steel rebarsFeB44 of the Italian production, with the nominal 
yielding strength 450 MPa (G Monti & Nuti, 1989). Three different 
slenderness ratios between Length L and diameter D such as L D =5, 8, 
11 were designed for the monotonic and cyclic tests. The diameters of the 
tested rebar are 16mm, 20mm and 24 mm (G.  Monti & Nuti, 1990). 
In the original model, the yield stresses of the tested rebars are identical, 
the effect of different yield stress of the rebar is not considered.  In order 
to study the effect of yield stress on the original Monti-Nuti model, 
several experimental tests on rebar with yield stress equal to 500 MPa 
(Dhakal & Maekawa, 2002b) are simulated by the original Monti-Nuti 
model, and the geometric characteristics, mechanical properties and the 
loading strain histories are listed in Table 3.1. 
 

Table 3.1Properties of test rebar (Dhakal & Maekawa, 2002b) 

Test L/D fy (MPa) Es (MPa） b Strain histories (%) 
S5 5 500 200000 0.037 +1 -1 +2 -2 +3 -3 
S8 8 500 200000 0.037 +1 -1 +2 -2 +3 -3 
S11 11 500 200000 0.037 +1 -1 +2 -2 +3 -3 
 
The comparisons between the numerical curves of the rebars, with 
slenderness equal to 5, 8 and 11, generated by the original Monti-Nuti 
model and the experimental curves are shown in Figure 3.1, Figure 3.2 
and Figure 3.3. 
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Figure 3.1 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (S5, L/D=5) 

 

 

Figure 3.2 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (S8, L/D=8) 
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Figure 3.3 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (S11, L/D=11) 

 
Obvious disagreements between the experimental curves and the 
numerical curves could be observed, especially in the curves for the rebar 
with slenderness equal to 8 and 11. This disagreement could be eliminated 
if the effect of the yield stress on the cyclic behaviors is considered 
properly. 
The original Monti-Nuti model is able to simulate the rebar with the same 
yield stress in tension and in compression. However, some types of 
stainless steel rebar are not isotropic which means that the yield strengths 
in tension and in compression are different. The stainless steel rebar 
AISI304 or 1.4301, produced in Italy before 2008 according to the old 
product standard (DM14.01.08, 2008), shows obvious anisotropic 
(Albanesi et al., 2006). The chemical contents of the specimen are listed 
in  
Table 3.2 and the monotonic stress-strain curve of the specimen is 
illustrated in Figure 3.4. 
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Table 3.2 Content of chemical composition in stainless steel AISI304 

AISI304 C Si Mn P S N Cr Mo Ni 

content 0.034 0.53 1.85 0.029 0.001 - 18.09 - 8.58 
 
 

 

Figure 3.4 Monotonic tests on stainless steel rebar (AISI304 or 1.4301) 

 
The yield stress of the specimen in tension is 790 MPa, while the yield 
stress in compression is 680 MPa. 
Figure 3.5, Figure 3.6 and Figure 3.7 are the comparisons between the 
numerical curves generated by the original Monti-Nuti model and the 
experimental curves of stainless steel rebar with slenderness L D equal to 
5. 
The original Monti-Nuti is not able to capture the main characteristics of 
the cyclic stress-strain curves of the stainless steel rebar with different 
yield stresses in tension and in compression. 
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Figure 3.5 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, XA1, L/D=5) 

 

 

Figure 3.6 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, XA2, L/D=5) 
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Figure 3.7 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, XA3, L/D=5) 

 
Figure 3.8, Figure 3.9 and Figure 3.10 illustrate the comparisons between 
the numerical curves generated by the original Monti-Nuti model and the 
experimental curves of stainless steel rebar with slenderness L D equal to 
11. 
The comparisons between the numerical curves generated by the original 
Monti-Nuti model and the experimental curves indicate the original 
Monti-Nuti model needs be improved to incorporate the effect of 
anisotropy on the cyclic behaviors. 
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Figure 3.8  Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, XC1, L/D=11) 

 

 

Figure 3.9 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, XC2, L/D=11) 
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Figure 3.10 Comparison between experimental curve and numerical curve 
generated by original Monti-Nuti model (Stainless steel rebar, XC3, L/D=11) 

 
The effects of the yield strength and the anisotropy are fully studied in the 
following section and the original Monti-Nuti is improved to be 
applicable for different types of steel reinforcing bars. 

3.1 EFFECT OF YIELD STRESS ON CRITICAL 
SLENDERNESS 
 
 
According to the experiments on the carbon steel reinforcement with yield 
stress equal to 450 MPa, Monti and Nuti (1992) suggested that the critical 
slenderness ratio (the length between two subsequent transversal rebars 
divided by diameter of the reinforcing bar) is 5 when buckling could 
emerge. Mau and El‐Mabsout (1989) pointed out that the critical 
slenderness is 6, above which the buckling of the reinforcement will occur. 
Dhakal and Maekawa (2002a) demonstrated that both the yield strength 
and the slenderness have effect on the critical slenderness and proved that 
the combined parameter L yD f  determines the cyclic behaviors. 

Through a series of numerical experiments, it is illustrated that the rebars 
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with different slenderness ratios L D  and different yield strengths could 
generate the identical cyclic stress-strain curves if the combined 
parameters L yD f  of different reinforcing bars are equal.  

3.1.1 Fiber Model Adopted in Microanalysis of Bare Bar 
 
In order to study the effect of yield stress on the effect of stress-strain 
relationship of the rebar, the fiber model is built to simulate the behavior 
of one bare rebar. As shown in Figure 3.11, the rebar is divided into 
segments along its axial length, and each segment is simulated by one 
finite element. At each end cross section, the finite element is divided into 
sub-elements named as fibers. The strain of each fiber is calculated based 
on the Euler-Kirchoff’s hypothesis that plane section remains plane after 
bending. The corresponding stress of each fiber is calculated according to 
the constitutive material model. Then the response of the cross section of 
the element is calculated by integral the stress of the fibers (Patxi Uriz, 
2008). 

 
Figure 3.11 Fiber technique in simulating the bare rebar 

 
(P. Uriz, Filippou, & Mahin, 2008) proposed the method to simulate the 
inelastic buckling of the brace with slenderness larger than 60. Initial 
imperfection is applied in the middle of the brace to induce and capture 
the inelastic buckling of brace. Adopting the force-based element and 
steel material model without buckling, here one fiber model is built to 
simulate the monotonic and cyclic behavior of rebar with slenderness no 
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larger than 20. In order to capture the characteristics of the behaviors of 
rebar including buckling, the precise fiber model should be built properly. 
Thus the parameters study of the fiber model is made, including effect of 
initial imperfection on buckling, number of elements, number of 
Integration Points of the element, and meshing at the cross section of 
element. 
 
1. Geometry nonlinearity  
 
According to the experiments carried out by Monti and Nuti (1992), when 
its slenderness exceeds 5, obvious lateral deformation will emerge at the 
middle of the rebar if the corresponding stress of the rebar is over the 
yield stress. In order to capture the buckling of the rebar in the fiber 
model, the initial imperfection should be adopted at the middle of the 
rebar.  
As shown in Figure 3.12, the slenderness L D of the rebar equals 5, 8 and 
11, same to the slenderness of the carbon steel rebar tested by Monti and 
Nuti (1992). If initial imperfection is not applied at the middle of the rebar, 
the stress-strain curves of rebars with different slenderness are identical 
and no buckling could be observed. If the initial camber is considered, the 
stress-strain curve of rebar with slenderness L D =5 coincides with the 
curve of the rebar without initial camber; while the curves of rebar with 
slenderness L D equal to 8 and 11 will diverge from the curves without 
initial imperfection and buckle after reaching the yield point. 
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Figure 3.12 Comparisons between monotonic compressive curves of rebar 

generated by fiber model with or without initial imperfection 

 
2. Effect of Initial Imperfection 
 
In Figure 3.13, the sensitivity of the initial camber of the fiber model is 
illustrated. In Figure 3.13 a), for the curves of rebar with L D =5, when 
the initial camber equals 0.01% or 0.1% of the length of rebar, the curves 
coincide with the curve without initial buckling. However, if the initial is 
larger than 1%, buckling emerge before yield stress, which means that the 
initial camber is so large that the induced second order moment is two big. 
In Figure 3.13 b) and Figure 3.13 c), similar conclusions could be 
obtained, thus the initial camber is set as 0.01% of the length of the rebar. 
Another conclusion could be drawn that the rebar with L D  equal to 5 
doesn’t buckle, while buckling emerges in the curves of the rebar with 
L D  equal to 8 and 11. This conforms with the observations from the 
experiment (Giorgio Monti & Nuti, 1992). 
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a) L D =5 

 
b) L D =8 
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c) L D =11 

Figure 3.13 Comparisons between the monotonic curves of rebar with 
different slenderness (L/D) generated by fiber model with different initial 
imperfections  

 
3. Number of elements 
 
Figure 3.14 demonstrates the sensitivity analysis of the number of 
elements used for one bare rebar. It could be concluded that 2 elements 
could simulate the behavior of the rebar precisely. 
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Figure 3.14 Comparisions between monotonic curves of rebar with different 
slendernesses generated by fiber model using different numbers of elements 

 
4. Effect of Number of Integration Points 
 
For the force-based element, to increase the number of integration points 
(NIP) in the element could improve the computational accuracy but 
doesn’t make computation more expensive. In Figure 3.15, the sensitivity 
of NIP is illustrated for the rebar with different slenderness respectively. 
The minimum number of integration points should be two and the 
limitation of the maximum NIP for each element is 10 (Scott, 2011). 
From the comparisons, it is found that when NIP equals 5, computational 
accuracy could be guaranteed. 
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a) L D =5 

 
b) L D =8 
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c) L D =11 

Figure 3.15 Comparisions between monotonic curves of rebar with different 
slendernesses generated by fiber model using different numbers of 
Integration Points for each element 

 
5. Meshing of cross section 
 
The cross section is divided along the circle and along the radius. The 
sensitivity analysis is made for the rebar with different slenderness 
respectively. From Figure 3.16, when the subdivision along the circle 
equals 16 and the subdivision along the radius equals 4, satisfactory 
computational accuracy is obtained for the reinforcing bar with different 
slenderness.  
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a) L D =5 

 
b) L D =8 
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c) L D =11 

Figure 3.16 Comparisions between monotonic curves of rebar with different 
slendernesses generated by fiber model adopting different numbers of 
subdivisions along the circle and the radius for cross section meshing 

 
Through the above parameter study and sensitivity analysis, the parameter 
of the fiber could be determined and shown in Table 3.3. 
 

Table 3.3 Selection of Parameters for Fiber Model 

Model parameters Values 
Number of elements 2 
Initial imperfection 0.01% 
NIP 5 
Cross section meshing NSC=16, NSR=4 
Note: NIP is short for number of integration points for each element; 
NSC is the number of subdivisions along the circle of the cross section;  
NSR is the number of subdivisions along the radius of the cross section. 
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3.1.2 Verification of the Fiber Model 
 
After the parameters in the fiber model are determined, the experiments 
on carbon steel rebar with slenderness L D  equal to 5, 8, 11 and 
diameters equal 16, 20, and 24mm (Giorgio Monti & Nuti, 1992) are 
simulated and the comparisons between the numerical curves and the 
experimental curves of the rebar under monotonic compression are 
illustrated in Figure 3.17. The fiber model could simulate the monotonic 
behaviors quite well. 

 
Figure 3.17 Verification of the fiber model with monotonic compressive 
experimental curves with different slendernesses 

 
Then the cyclic tests of the rebar are simulated by the fiber model. The 
geometric and mechanical properties of the specimen are shown in Table 
3.4. 
 

Table 3.4 Geometric and Mechanical properties of bare rebar 

Load case L [mm] D [mm] Fy [MPa] E [MPa] b [-] 
A1 80 16 470 200000 0.03 
C1 176 16 470 200000 0.03 
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The cyclic stress-strain behaviors of the rebar are path-dependent, thus the 
cyclic material model “Steel02” in OpenSees is adopted. The material 
model “Steel02” is developed based on the Menegotto-Pinto model 
improved by Filippou et al. (1983) introducing the isotropic hardening 
rule. This material model could not simulate precisely the cyclic behavior 
of the rebar in presence of buckling; however the buckling behavior could 
be captured by the fiber model adopting initial imperfection. The 
parameters of “Steel02” used in the fiber model in absence of buckling 
and in presence of buckling are listed respectively in Table 3.5. 
 

Table 3.5 Parameters values of “Steel02” adopted in the fiber model 

Load case R0 CR1 CR2 a1 a2 a3 a4 sigInit 
A1 20 0.925 0.15 0.05 1 0 1 0 
C1 20 0.925 0.15 0.03 1 0 1 0 
 
The loading histories for two test cases are identical and illustrated in 
Figure 3.18. 

 
Figure 3.18 Loading strain histories of cyclic test A1 and C1 
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a) L/D=5, in absence of buckling 

 
b) L/D=11, in presence of buckling 

Figure 3.19 Verification of the fiber model with the experimental cyclic 
stress-strain curves of rebar with differernt slendernesses 
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In Figure 3.19, the comparisons between the numerical curves generated 
by the fiber model and the experimental curves are illustrated. The 
numerical curve could coincide with the experimental results very well. 
Hereby, the effectiveness of the fiber model is verified for the rebar under 
monotonic loading and cyclic loading in absence of buckling and in 
presence of buckling.  
 

3.1.3 Combined Factor Affecting Critical Slenderness 
 
In order to verify the effect of yield stress on the behavior of the rebar, a 
series of tests adopting the fiber model are built for the rebar with 
different slenderness and yield stresses, and the details are listed in Table 
3.6. 
 

Table 3.6 Combined parameter for different rebars 

L D  
yF  [MPa] 450yL D F  

5 

112.5 5/2 
225 5 2 2  
450 5 
900 5 2  
1800 10 

10 

112.5 5 
225 5 2 2  
450 10 
900 10 2  
1800 20 

 
 
In Figure 3.20, the stress-strain curves could coincide with each other 

quite well if the combined parameters 450yL D F  are equal. This 

combined parameter could be named as computational slenderness which 
incorporates the effect of yield stress on the critical slenderness.  
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Figure 3.20 Effect of yield stress on the stress-strain curves of rebar with 
different slenderness and yield stress generated by fiber model 

 

 
Figure 3.21 Monotonic stress-strain curves of rebar with different combined 
parameters generated by fiber model 
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In Figure 3.21, the stress-strain curves of the rebars with different 
computational slenderness are illustrated. The curves of rebar will be 
identical when the computational slenderness equal. And the buckling of 
the rebar will be more obvious if its computational slenderness is larger. 
 
Monti and Nuti (1992) pointed out the critical slenderness is 5 when 
buckling emerges, based on the experimental observation of the carbon 
steel rebar Feb44, with yield stress equal to 450 MPa. Given the 
computational slenderness obtained from the fibre model simulation, the 
critical slenderness is affected by one parameter named as critical 
slenderness coefficient  , defined in Eq. (3.1). 

 yc

Y

f

f
    (3.1) 

where ycf  is the yield stress of the material in compression, and Yf is the 

base yield stress, equaling 450 MPa. 
Thus the critical slenderness could be defined in Eq. (3.2). 

 5cr    (3.2) 

For the carbon steel rebar with yield stress 450 MPa, the critical 
slenderness remains 5. It could be concluded that the greater the yield 
strength, the smaller the critical slenderness ratio L D when the buckling 
turns up.  
Zong (2010) who built three dimensional finite element model of 
individual reinforcing bar and verified that identical stress-strain curves 
could be obtained for the same value of the combined parameter 

 420 Lyf D  where 420 representing the average yield stress of 

commonly used steel rebar in structure and the unit is MPa. 
 

3.2 ANISOTROPY OF STEEL REBAR 
 
 
For the stainless steel reinforcing bar produced according to earlier 
production specifications, the yield stresses in tension and in compression 
are different, and this phenomenon is named as anisotropy of stainless 
steel.  
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The tested stainless steel rebars specimens AISI304 or 1.4301 are 
provided by Valbruna Italy. The test machine is MTS 810 operating under 
displacement control, and the loads were applied axially with four strain 
gauges along the specimen. The tests were conducted at ambient 
temperature, with the increment of load at 60Mpa/s, or at equivalent 
deformation 0.044mm/s. Displacements were obtained by transducers 
placed on the rebars. Thus a series of load-displacement curves were 
obtained. The machine and the tested specimen were shown in Figure 
3.22. 
 

      
 a) b) c) 

 

Figure 3.22 Testing machine and the specimen: a) Test machine MTS 810; b) 
specimen in tension; c) specimen in compression 

 
The slenderness ratio of the specimen equals 5 and 11; and the monotonic 
tensile and compressive curves are demonstrated in Figure 3.4. It could be 
observed that the yield stress in tension is around 790 MPa, but the yield 
stress in compression is 680 MPa.  
Several different monotonic tensile material models for stainless steels 
have been set up based on Ramberg-Osgood model improved by Hill. The 
behaviors of stainless steel in tension and compression are unsymmetrical, 
named as anisotropic, which is quite different from the carbon steel. 
Consequently, several material models are developed to describe the 
stainless steel stress-strain behavior. Romberg-Osgood stress-strain 
relationship, which is improved by Hill (1944), is mostly used to describe 
the stainless steel. This model could simulate the stress-strain relationship 
accurately up to 0 2.  but fails at higher stress.  
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Rasmussen (2003) and Gardner and Nethercot (2004) respectively 
propose new expressions to predict the stress-strain relationship when the 
stress exceeds 0 2. . 

Quach, Teng, and Chung (2008) points out that Rasmmuen Model 
succeeds in simulating accurately the behavior of stainless steel in tension 
but fails in compression. The Gardner-Nethercot Model could predict the 
stress-strain relationship both in tension and compression, but fails when 
the stress exceeds 2 0. . Consequently, one three-stage stress-strain model 

is proposed by Quach et al. (2008). 
In order to improve the versatility of the model for reinforcing bar with 
different yield stresses in tension and in compression which is different 
from the original carbon steel rebar, the parameter named as anisotropy 
coefficient   (Zhou, Nuti, & Lavorato, 2014),  is defined in Eq. (3.3). 

 yt

yc

f

f
   (3.3) 

where ytf  is the yield strength of stainless steel rebar in tension, and ycf is 

the yield strength in compression. 
For the stainless steel with different yield stresses in tension and in 
compression, the critical slenderness should depend on the yield stress in 
compression because the buckling of reinforcement emerges under 
compressive load. Thus, the combined parameter should be modified as 
L ycD f , where ycf  is the yield stress of the reinforcement in 

compression. 
 

3.3 MODIFIED MONTI-NUTI MODEL 
 
 
To make the original Monti-Nuti model applicable in general cases, the 
effects of different yield stress and anisotropy on the model should be 
considered to improve the model (Zhou, Nuti, & Lavorato, 2015a).  
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3.3.1 Effect of the Yield Strength 
 
The different yield strengths result in the variation of the slenderness 
ratio  L

cr
D , which is a critical parameter to decide whether considering 

the buckling or not when the yield strength at the reversal point of each 
half cycle is updated. The original critical slenderness ratio  L

cr
D is 5, 

and hereby should be revised according to Eq. (3.4):  

  L 5 450cr ycr
D f    (3.4) 

where yf  is the yield stress of the reinforcing bar. 

The critical slenderness varies according to the yield stress, thus it will 
result in the variation of the superposition length s . 

 
( 5)

11
0 5 L 11

1
s c L D

L D
for D

e 


 




   


 (3.5) 

c is related to the rebar and is set as 0.5 in the original test. The value of 

s  is normalized by the strain corresponding to the yield stress. The real 

superposition length *
s is defined in Eq. (3.6). 

 *

0

y
s s

f

E
    (3.6) 

The lower bound for the curve transition parameter is determined by the 
critical slenderness cr , thus the lower bound is redefined as: 

   1 10b
crR L D b   , 5cr   (3.7) 

 

3.3.2 Effect of the Anisotropy 
 
The anisotropy of the reinforcing bar results in different curve transitions 
in tension and in compression. Thus the parameters in the formula related 
to R  were redefined. The values of parameters 0R , 1A  and 2A  are defined 
by Eqs. (3.8-3.12), considering the effects of anisotropy and the yield 
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strength. The anisotropy is depicted by two parameters: anisotropy 
coefficient  , critical slenderness coefficient  .   
The formula for R in the original model is modified in Eq. (3.8): 

 
1

2

1
0

2

0

t
max

t
max

c
max

c
max

A
R , in tensile branch

A
R

A
R , in compressive branch

A








  

  

 (3.8) 

where 0R  is the initial value of R, defined in Eq. (3.9); 1
tA , 2

tA  are the 

coefficients under tensile loading defined in Eq. (3.11) and 1
cA , 2

cA  are the 
coefficients under compressive loading defined in Eq. (3.12), which are 
related to the mechanical properties of reinforcing bar; in presence of 
buckling 1

bR  is the lower bound, thus 1
bR R , is defined in Eq. (3.13). 

 
1
0

0 1
0

t

c

r R ( in tension )
R

r R ( in compression )

 


 (3.9) 

where tr  and cr  are the coefficients to calculate the initial value of 0R  for 

the tensile curve and compressive curve respectively, and are defined by 
the anisotropy coefficient  and the critical slenderness coefficient  in 
Eq. (3.10). 

 
2tr


 , 
2

t
c

r
r


 

   (3.10) 

1At  and 2
tA are the parameters to update the curve transition parameter R  

at each reversal in tension, defined in Eq. (3.11). 

    2

1

1

100
t

c cA          ,  2 4

8
4

10
t

cA
      (3.11) 

Where    is the anisotropy coefficient,   is the critical slenderness 

coefficient,   is the slenderness of the rebar, and c  is the critical 

slenderness of the rebar. 
 1

cA and 2
cA  are defined in Eq. (3.12) to update the curve transition 

parameter R  at each reversal in compression  
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 1 1
c tA A ,  2 3

6
2

10
cA

     (3.12) 

Where    is the anisotropy coefficient, defined in Eq. (3.3), 1At  is the 

parameter to update the curve transition parameter R  at each reversal in 
tension, defined in Eq. (3.8), and   is the critical slenderness coefficient, 
calculated in Eq. (3.1). 

  1 10b
crR L D b    (3.13) 

 

3.4 ADDITIONAL CRITERIA FOR UPDATE THE 
MODEL PARAMETERS  
 
 
Under seismic action, the rebar in the reinforced concrete structures could 
suffer very complicated partial unloading and reloading strain histories. In 
this case, the Menegotto-Pinto model could overestimate the 
corresponding stress of the rebar, as in the original Menegotto-Pinto 
model, two straight lines are adopted as the envelope lines and the stress-
strain curve is controlled by the two envelopes and the curve transition 
parameter R . In general, the parameters such as the elastic modulus at the 
origin (or the reversal), the new intersection between the two envelopes, 
the hardening ratio b , the curve transition parameter R are updated. 
However, if the reversal doesn’t exceed the strain corresponding to the 
intersection of previous branch, the Menegotto-Pinto model will 
overestimate the stress. 
In order to solve the above phenomenon of Menegotto-Pinto model, 
several researchers proposed different solutions.  
 

3.4.1 Discussion of the Proposed Solutions to Address 
the Above Issues 
 
Filippou et al. (1983) pointed out that the new partial reloading curve 
should follow the previous loading branch once it reaches the previous 
loading branch (curve (a) in Figure 3.23). However, to achieve this aim, it 
requires the model to store all necessary information, such as the origin, 
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reversal, intersection, elastic modulus at origin and tangent modulus at 
target and curvature parameter R , to retrace all previous reloading curves. 
This will increase the memory cost and reduce the computational 
efficiency.  
To simplify the solution, only four controlling curves besides the current 
branch need be memorized:  
1) The monotonic tensile skeleton curve; 
2) The monotonic compressive skeleton curve; 
3) The ascending up branch originating at the reversal with the smallest 
strain value; 
4) The descending lower branch originating at the reversal with the 
largest strain value. 
 

 

Figure 3.23 Update curvature parameter  R   in the case of partial 

unloading and reloading 

 
Adopting the aforementioned solution, the reloading branch  (in Figure 
3.23) will follow branch (b) instead of branch (a). The proposed solution 
joints tangently the new partial reloading branch to the controlling branch 
memorized. But the criteria to define the partial unloading and reloading 
is not given. Furthermore, if the strain distance between two consecutive 
parital unloading and reloading reversal is too small, the transition from 
the current strain step to the controlling line should be elastic. 
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Attolico, Biondi, Nuti, and Petrangeli (2000) proposed another solution 
for the Monti-Nuti model combining with the Menegotto-Pinto model to 
eliminate the overestimation problem in the case of partial unloading and 
reloading. The new unloading curve joints tangently to the previous 
unloading branch which update all parameters, if the reversal does exist 
inside the small interval specified as ̂ , shown in Figure 3.24 a); the 
unloading or reloading will be linear elactic if the previous reversal also 
exists inside the loops, shown in Figure 3.24 b). The expression for ̂  is 
not given by the authors, but it could be difined based on the maximum 
plastic excursion of previous branches. 
 

 

a) tangently joint to the previous branch 

 

 

b) linear elastic stress-strain relationship inside the small interval  

Figure 3.24 Solution to eliminate the overestimation under partial 
unloading and reloading (Attolico et al., 2000) 
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This solution calculates the corresponding stress at each strain step using 
the Monti-Nuti model or simple line model depending on the position of 
the revarsal. The criteria to judge partial unloading or reloading is that 
whether the reversal exceeds the interval ̂ . 
Fragiadakis, Pinho, and Antoniou (2007) proposed another solution to 
update the Monti-Nuti model under partial unloading and reloading strain 
histories. The new branch is calculated based on the Monti-Nuti model or 
the straight line, depending on the position of the reversal and the status 
of the new branch.  
In Figure 3.25 a), the origin (reversal, point 4) of the new branch exists in 
the interval based on the origin (point 3) of previous branch, thus the 
branch 3-4 is partial reloading branch; and then the new branch 4-5 
exceeds this interval (point 5 is outside the interval), branch 4-5 joints 
tangently to the previous branch which update all the controlling 
parameters. In Figure 3.25 b), the origin of branch 4-5 existing the 
interval, and the reversal (point 5) of the following branch 5-6 still 
existing in the interval, thus branch 4-5 should be linear elastic. Then 
point 6 of the branch 5-6 exceeds the interval, joints branch 5-6 tangently 
to the previous branch 3-4 which updated all controlling parameters. 
 

 

a) tangently joint to the previous branch 
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b) linear elastic unloading inside the interval  

Figure 3.25 Solution to eliminate the overestimation under partial 
unloading and reloading 

 
The solution needs to judge whether the new branch exists inside the 
interval or goes beyond the interval. That means it is necessary to know 
all the strain steps of the new branch at the reversal. It is not practical for 
the structural analysis, because it is impossible to know in advance the 
strain steps of the reinforcement in the structural element like reinforced 
concrete column or beam.  
As for the fiber element method, shown in Figure 3.26, the cross section 
of the column is divided into fibers; then the strain of different fibers 
could be obtained by the fiber element. When the displacement at each 
step is applied into the fiber element, the strain step could be obtained for 
the fiber, and then the corresponding stress could be calculated based on 
the fiber material model. And then the force of the cross section could be 
calculated by integral. Hereby, it is impractical to judge the status of the 
new branch at the reversal. 
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Figure 3.26 Fiber technique and applied in Finite Element Method (Dhakal 
& Maekawa, 2002c) 

 

3.4.2 Proposed Criteria to Update the Model Parameters 
under Generalized Loading 
 
As discussed above, the Menegotto-Pinto model is used to define the 
stress-strain relationship between two reversal; at the reversal, the Monti-
Nuti model could update the controlling parameters, such as intersection, 
hardening ratio b , curve transition parameter R . However, if the model 
is applied under generelized loading, the criteria to apply the Monti-Nuti 
model to update the controlling parameters should be defined to avoid 
overestimation of the stress. 
The model is path-depentent, thus how to update the controlling 
parameter at the reversal depends on the status of previous branch. There 
are three statuses for the previous branch: full parameters are updated, 
partial parameters are updated, no parametres are updated. Accordingly, it 
is necessary to define the criterion to judge different cases of  unloading 
and reloading branches.  
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For each status of the previous branch, three importans aspects need be 
considered at the reversal which is the critical point between two 
consecutive branches. There are twelve possible conditions for the 
previous branch,  all the possible conditions are listed in Table 3.7. To be 
clear, the start point of one branch is named as orgin, and the end of the 
branch is called target point. 
 

Table 3.7 Possible conditions of the previous branch 

Properties of the 
previous branch 

Position of 
target point 

Loading 
direction 

Whether buckle 

 Plastic; 
Elastic; 
Small 

Unloading 
(UL); 
Reloading 
(RL)  

In absence of 
buckling (AB); 
In presence of 
buckling (PB) 

Different cases 3 2 2 
 
The position of the target point is critial to determine the stragety for the 
new branch. The position of the target point could be classified as: plastic, 
elastic and small, which depends on the intersection of the branch and the 
previous branch. 
As shown in Figure 3.27, the target point 2 exceeds the intersection 1, 
thus point 2 is plastic; target point 4 doesn’t exceed the intersection 3, and 
the absolute stress different between tagert point 4 and origin point 2 is 
smaller than the different of previous branch between target point 2 and 
orgin point 1, thus position of point 4 is small; target point 7 doesn’t 
exceed intersection point 6, but the absolute stress difference between 
target point 7 and origin point 5 is larger than the difference between  
target point 5 and origin point 1 in previous branch which update the 
controlling parameters, thus the position of point 7 is elastic.   
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Figure 3.27 Different types of positions of reversal 

Then the strategies are defined for updating the parameters in the new 
branch at the reversal. Three reasonable strageties are enough to deal with 
different cases,  named as fullly update (FU), partially update (PU) and 
non update (NU). The strategies are listed in Table 3.8. 

Table 3.8 Stragety for model update at reversal 

Figures Status of previous branch Update  
Strategy 

Cases 
Reversal Loading Bucking 

Figure 3.28 a) Plastic UL 
RL 

AB 
 

FU 2 

Figure 3.28 b) Plastic UL 
RL 

PB FU 2 

Figure 3.29 Elastic UL AB 
PB 

PU 2 

Figure 3.30 Elastic RL AB PU 1 
Figure 3.31 Elastic RL PB PU 1 
Figure 3.32 Small UL AB 

PB 
NU 2 

Figure 3.33 Small RL AB NU 1 
Figure 3.34 Small RL PB NU 1 
UL: unloading, RL: reloading, AB: in absence of buckling, PB: in 
presence of buckling; FU: fully update, PU: partially update, NU: non 
update. 
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The criteria to judge the position of target point and the application of 
strategies in different cases are given below. 
 

 

a) In absence of buckling (AB) 

 

 

b) In presence of buckling (PB) 

Figure 3.28 Status of branch n+1: Plastic, UL/RL, AB/PB;  

Update strategy: Fully update 
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At the reversal, the new branch to update is named as branch 2n  , the 
previous branch is called branch 1n  , and the previous branch with the 
same loading or unloading direction to the new branch is called branch n . 
In Figure 3.28 a), in absence of buckling, unloading branch 1n   reverses 
at point 4, whose position is plastic, or the reloading branch  1n   

reverses at the plastic point 2, thus the strategy to update branch 2n  or 

 2n   is to update all the contolling parameters. In branch +2n , the 

controlling parameters is expressed as:  2 2 2 2
2 , , , , , ,n n n n

n r r y yb R E       
 . 

The criteria to judge the status of branch 1n   is defined in expression 
(3.14). 

    

2 1 1 1

1 1 1 1

0

n n n n
r r y r

kon n kon n

flagBuckling

         
     
 

 (3.14) 

Where 1n
r
 and 2n

r
 are the strain at the orgin of branch 1n   and 2n   

respectively; 1n
y
 is the yield stain corrrsponding to the intersection of 

branch 1n  ;  kon n  is defined to mark the loading direction of the 

branch, 1 means reloading ascending upwards, and -1 stands for the 
unloading descending towards lower bound; flagBuckling  represents 

buckling could occcur or not, if  flagBuckling n =0, no buckling will 

emerge; otherwise, in presence of buckling,  flagBuckling n =1. 

In Figure 3.28 b), the condition that the unloading or reloading branch 
reverses from the plastic point in presence of buckling could be identified 
by expression (3.15). 

    

2 1 1 1

1 1 1 1

1

n n n n
r r y r

kon n kon n

flagBuckling

         
     
 

 (3.15) 
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The strategies to update the controlling parameters of the model in the 
aforementioned four cases are identical. Thus the cretion to judge the four 
cases could be summarized in expression (3.16).  

 2 1 1 1n n n n
r r y r          (3.16) 

The steps to update the controlling parameters are shown below: 

 2 2i) ,n n
r rupdate     

2ii) n
yupdate   

iii) , ,update b R E  
2iv) n

yupdate    

 
In Figure 3.29, unloading branch 1n   reverses at point 4 which doesn’t 
exceed the the intersection point 3 in absence of buckling or in presence 
of buckling. And the absolute stress difference between target point 4 and 
orgin point 2 of branch 1n   is larger than the difference between the 
target point 2 and intersection point 1 of branch n , which means the 
position of reversal point 4 is elastic. 
The expression to judge the status of branch 1n   is shown in expression 
(3.17). 

 
 

   

2 1 1 1

2 1 1

1 1

1 0 1 1

n n n n
r r y r

n n n n
r r r y

kon n

flagBuckling n flagBuckling n

   

   

   

  

   

   


  


   

 (3.17) 
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Figure 3.29 Status of branch n+1: Elastic, UL, AB/PB;  

Update strategy: Partially update 

 
In absence of buckling, the reloading branch 1n   reverses at the plastic 
point 4, as shown in Figure 3.30, and the criteria is given in expression 
(3.18): 

  
 

 

2 1 1 1

2 1 1

1 1

1 0

n n n n
r r y r

n n n n
r r r y

kon n
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   

   

   

  

   

   


 


 

 (3.18) 
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Figure 3.30 Status of branch n+1: Elastic, RL, AB;  

Update strategy: Partially update 

 
In Figure 3.31, the reloading branch 1n   reverse at the plastic point 4 in 
presence of buckling,  and the criteria is defined in expression (3.19). 

 
 

 
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   
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 

 (3.19) 

 
 
 
 



 

 

 

78 

 

Figure 3.31 Status of branch n+1: Elastic, RL, PB;  

Update strategy: Partially update 

 
Figure 3.29, Figure 3.30 and Figure 3.31 demonstrate all the cases when 
the unloading or reloading branch 1n   reverse in the plastic point in 
absence of buckling or in presence of buckling. The strategies to update 
the model are identical in the aforementioned cases when branch 1n   
reverses at plastic point. The general criteria to judge the condition when 
the branch 1n   reverses at plastic point could be summaried in 
expression (3.20). 

 

2 1 1 1

2 1 1

n n n n
r r y r

n n n n
r r r y

   

   

   

  

   


  
 (3.20) 

The strategy to update the model for branch 2n   is to joint the branch 
1n   tangently to the previous branch n , the steps  are shown as follows: 

i)  rerieve , ,b R E from branch n :    2 , , , ,n nb R E b R E    

ii) update orgin of branch 2n   
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iii)  calculate the new intersection  2 2,n n
y y    between the first envelope 

at orgin of branch 2n  and the targent envelope of branch n  accroding 
to Eq. (3.21). 

 

   
 

 

2 2

2

2 2 2 2

1

n n n n
y r r yn

y

n n n n
y r y r

E b

E b

E

   


   

 


   

   
  
   

 (3.21) 

In Figure 3.32, in absence of buckling or in presence of buckling, 
unloading branch 1n   reverses at point 3 which is quite near the origin 
point 2. The new branch 1n   goes towards the branch n  along one 
straightline with the same tangent modulus E  to branch E  at its origin. 
Once it reaches the branch n , the new branch 2n  should go along the 
path of branch n . The status of point 3 could defined as small, and the 
criteria to judge the small reversal are given in expression (3.22). 
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   

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

  
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   

 (3.22) 
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Figure 3.32 Status of branch n+1: Small, UL, AB/PB;  

Update strategy: None update 

 
In absence of buckling, the reloading branch 1n  reverses at small point 3, 
as shown in Figure 3.33. The criteria to judge this condition are given in 
expression (3.23). 
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Figure 3.33 Status of branch n+1: Small, RL, AB;  

Update strategy: None update 

 
In Figure 3.34, the reloading branch 1n   reverses at the small point 3 in 
presence of buckling. The judge criterion for this case is given in 
expression (3.24). 
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Figure 3.34 Status of branch n+1: Small, RL, PB;  

Update strategy: None update 

 
The strageties to update the model for branch 2n   are identical if the 
branch 1n   reverses from the small reversal. All the controlling 
parameters in the model for unloading or reloading branch 2n  are 
retrieved from the previous branch n  no matter in absence of buckling or 
in presence of buckling.  The stragety is given in expression (3.25). 

   2 2 2 2
2 , , , , , , , , , , , ,n n n n n n n n

n r r y y n r r y yb R E b R E          
    (3.25) 

It should be highlighted that before the branch 2n   reaches branch n , 
the new branch goes along the line which  starts from the target point of 
branch 1n   and retrieves the tangent modulus E  from branch n . 
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4. PARAMETER IDENTIFICATION BY 
GENETIC ALGORITHM 

 
 
 
In the Modified Monti-Nuti Model, the values of the parameters such as 

1
tA , 2

tA , 1
cA , 2

cA , tr  and cr needed to be assigned. In order to obtain the 
reasonable values of the parameters, the parameter identification is carried 
out based on a series of experimental curves. Then the empirical formulas 
are proposed. 

4.1 INTRODUCTION OF PARAMETER 
IDENTIFICATION BY GENETIC ALGORITHM 
 
 
Parameter identification is used to select the proper values of the 
parameters in the model (Quaranta, Monti, & Marano, 2010). Here the 
Genetic Algorithm is used to generate the possible solutions for the 
parameters in the model. 

4.1.1 Parameter Identification 
Parameter identification is to determine the proper values of the 

parameters in the model in order to generate precise numerical curves 
which could coincide with the experimental curve very well. 
Theoretically, the numerical should be the same with the experimental 
curve, thus the experimental curve could be designated as the numerical 
curve, and subsequently, the values of the parameters in the model could 
be deduced. The parameter identification is a reversal process.  

However, the Monti-Nuti model is one path-dependent model, and it is 
impossible to deduce the values of the parameters in the model. Thus, 
above all, a series of values of the parameters could be assigned, and then 
generate the numerical curve, finally, define some rules to calculate the 
curvature tolerance between the numerical curve and the experimental 
curve. Reassign the values of the parameters in the model and repeat this 
process unless the curve tolerance meets the demand. 

 The general flowchart of the parameter identification is shown in 
Figure 4.1. There could be a lot of iterations before the proper set of the 
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parameter values could be found, thus it is necessary to reassign the 
values of the parameters and generate the numerical curve and then 
compare with the experimental curve automatically instead of iterate this 
progress manually. In order to achieve this aim in an efficient way, the 
genetic algorithm is adopted. 
 

 
Figure 4.1 General flowchart of parameter identification 
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4.1.2 Genetic Algorithm 
 
Genetic algorithms belong to evolutionary algorithms (EA), which 
generate solutions to optimization problems using techniques mimicking 
natural evolution, such as inheritance, mutation, selection, and crossover.  
In a genetic algorithm (Marano, Quaranta, & Monti, 2011), a group of 
candidates named individuals are evolved toward better solutions. Each 
individual has a set of properties to represent the parameters to be 
optimized, which can be mutated and altered. The evolution usually starts 
from a population of randomly assigned individuals, and is an iterative 
process. The group of the individuals in each iteration is called a 
generation. In each generation, the fitness of every individual in the group 
is evaluated; the fitness is usually the value of the objective function in 
the optimization problem being solved. The fittest individuals are 
stochastically selected from the current generation, and each individual is 
modified (recombined and possibly randomly mutated) to form a new 
generation. The new generation of candidate solutions is then used in the 
next iteration of the algorithm. Commonly, the algorithm terminates when 
either a maximum number of generations has been produced, or a 
satisfactory fitness level has been reached for the population. 
A typical genetic algorithm requires: 
1) A genetic representation of the solution domain; 
2) A fitness function to evaluate the solution domain. 
Once the genetic representation and the fitness function are defined, a GA 
proceeds to initialize a population of solutions and then to improve it 
through repetitive application of the mutation, crossover, inversion and 
selection operators. 

4.2 DESIGN OF PARAMETER IDENTIFICATION OF 
MODIFIED MONTI-NUTI MODEL 
 
 
In this section, the parameters are selected to carry out parameter 
identification. Then the flowchart of the parameter identification is 
illustrated. Next the object function defined for the identification is 
introduced. Finally the lower bound and upper bound of the parameters 
are given. 
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4.2.1 Parameters to Be Calibrated 
 
In the modified Monti-Nuti model, the parameter b , 0E  and yf  are 

determined by the material properties.  However, the curve transition 
parameter R and weight coefficient parameter P in the strain hardening 
rule should be specified. In order to update R , tr , 1

tA  and 2
tA  are defined to 

update R in tension, and cr , 1
cA  and 2

cA  are defined to update R in 

compression. Meanwhile, the tangent modulus Es at reversal from 

compressive branch to tensile branch is updated by 5A and 6A , and 5A  is 

defined by an empirical formula. According to parameters study, the 
value of the weight coefficient P could be set as constant 0.5. The 
parameters need to be calibrated are listed in Table 4.1. 
 

Table 4.1 Lists of parameters to be calibrated 

Parameters Meaning 

tr  Parameter to calculate 0R in tension 

cr  Parameter to calculate 0R in compression 

1
tA  Parameter to update R in tension 

2
tA  Parameter to update R in tension 

1
cA  Parameter to update R in compression 

2
cA  Parameter to update R in compression 

6A  Parameter to update E at reversal from compression to 
tension 

 

4.2.2 Flowchart 
 
The flowchart to identify the parameters in the modified Monti-Nuti 
model is designed and illustrated in Figure 4.2. 
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Figure 4.2 Parameter identification of modified Monti-Nuti model 
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4.2.3 Objective Function 
 
In order to do the parameter identification, the fitness function, as 
generally defined in Eq. (4.1), has the form: 

 
Y

f
Y


  (4.1) 

Where Y  represents the difference between the numerical curve and the 

experimental curve and is defined as: 2 2
, ,

1

n

E i N i
i

Y y y


   , and ,E iy  and 

,N iy  are the stress on the experimental curve and numerical curve 

corresponding to the same strain; Y  is the sum of the square of the 

experimental stresses, and is defined as: 2
E,

1

n

i
i

Y y


  . 

If there are more than one experimental tests, define the weight 
coefficient kw  to decide the contribution of each test, thus the fitness 

function could be defined as Eq. (4.2) : 

 
m

1
k k

k

f w f


  (4.2) 

Where kf is the value of the fitness function for each experiment, and is 

defined in Eq. (4.3). 

 
k

k
k

Y
f

Y


  (4.3) 

4.2.4 Bounds of the Parameters 
 
The bounds of the parameters determine the region where the Genetic 
Algorithm could search for the optimized values of the parameters. 
Theoretically, the larger bounds are specified, the more likely to search 
better optimized solution. However, if the bounds are not set properly, the 
model could generate complex stress value which is meaningless and 
should be avoided. Through a series of trial and error, the bounds of the 
parameters to be identified are specified in Table 4.2.  
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Table 4.2 Lower bound and Upper bound of the parameters 

 
tr  cr  

1
tA  2

tA  1
cA  2

cA  6A  

LB 1 1 5 0.00001 5 0.00001 300 
UB 20 20 100 0.03 100 0.03 5000 
Note: LB is short for Lower Bound, and UB is short for Upper Bound. 
 

4.3 EFFECTIVENESS OF THE OPTIMIZED 
PARAMETERS 
 
 
Through parameter identification, the optimized values of the parameters 
are obtained. The numerical curves generated by the modified model 
using the optimized parameters are illustrated. Furthermore, the 
robustness of the parameter identification (Marano, Greco, & Sgobba, 
2010) is demonstrated. 

4.3.1 Stress-Strain Curve 
 
The comparisons are made between the numerical curves generated by the 
modified Monti-Nuti model and the experimental curves of the carbon 
steel rebar shown in Figure 4.3and Figure 4.4, and the comparisons about 
the stainless steel rebar are illustrated in Figure 4.5 and Figure 4.6. 
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Figure 4.3 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (carbon steel rebar, A1, L/D=5) 

 

 

Figure 4.4 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (carbon steel rebar, C1, L/D=11) 
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Figure 4.5 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (stainless steel rebar, XA1, L/D=5) 

 

 

Figure 4.6 Comparison between experimental curve and numerical curve 
generated by modified Monti-Nuti Model (stainless steel rebar, XC1, 

L/D=11) 
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4.3.2 Step-Stress Comparison 
 
In the step-stress curves, the step stands for the loading strain histories, 
the stresses of the experimental curve and the numerical curve correspond 
to the same strain at each step. From the step-stress curve, the comparison 
indicates the modified Monti-Nuti model could simulate the experimental 
curve quite precisely. 
The comparisons of the carbon steel rebar with slenderness L/D equal to 5 
are shown in Figure 4.7, and the comparisons of the carbon steel rebar 
with slenderness L/D equal to 11 are shown in Figure 4.8. In Figure 4.9, 
the step-stress curve of the stainless steel rebar with L/D equal to 5 is 
demonstrated; and the step-stress curve of the stainless steel rebar with 
L/D equal to 11 is illustrated in Figure 4.10. 
 

 

Figure 4.7 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (carbon steel rebar, L/D=5, A1) 
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Figure 4.8 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (carbon steel rebar, L/D=11, 

C1) 

 

 

Figure 4.9 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (stainless steel rebar, L/D=5, 

XA1) 
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Figure 4.10 Step-Stress comparison between experimental curves and 
numerical curve with optimized parameters (stainless steel rebar, L/D=11, 

XC1) 

 

4.3.3 Robustness 
 

As for the parameter identification, robustness means that the 
optimized parameters could be used by the model to generate precise 
numerical curve for different types of rebar, such as rebar different 
slenderness and different loading histories.  

The parameter identification is carried out for the carbon steel rebar 
and the stainless steel rebar with different slenderness and different 
loading histories. First of all, the parameter identification is made for the 
rebar with different loading histories individually, and then the rebars 
with same slenderness and different loading histories are identified 
together to find the best optimization for the rebar with the same 
slenderness.  

The identified values for the stainless steel rebars with slenderness L/D 
equal to 5 are listed in Table 4.3 and the optimized values of the 
parameters with slenderness L/D equal to 11 are listed in Table 4.4. 
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 Table 4.3 Parameter Identification for stainless steel rebar (L/D=5) 

 XA1 XA2 XA3 XA Mean
Standard 
Deviation 

Difference (%) 
Standard 
Deviation/ Mean 

1
tA  2.524 2.765 2.473 2.759 2.587 0.127 4.9 
2
tA  0.007 0.020 0.004 0.010 0.010 0.007 67.2 

1
cA  2.949 2.254 2.911 2.403 2.705 0.319 11.8 
2
cA  0.002 0.001 0.012 0.001 0.005 0.005 99.3 

Note: XA means the optimized values for XA1, XA2 and XA3, with L/D=5. 
 

Table 4.4 Parameter Identification for stainless steel rebar (L/D=11) 

 
XC1 XC2 XC3 XC Mean

Standard 
Deviation 

Difference (%) 
Standard 
Deviation/ Mean 

1
tA  2.584 2.858 2.985 2.842 2.809 0.167 6.0 
2
tA  0.004 0.003 0.002 0.002 0.003 0.001 27.2 

1
cA  2.509 2.004 2.688 2.429 2.400 0.290 12.1 
2
cA  0.004 0.002 0.009 0.002 0.005 0.003 58.9 

Note: XC means the optimized values for XC1, XC2 and XC3, with L/D=11. 
 
 
The robustness of the optimized could be observed from and Table 4.4.  

1
tA  and 1

cA are sensitive to the numerical model, and the identified  values 

of the parameters vary in a little range. But 2
tA  and 2

cA  are not sensitive to 

the model, thus the derivation of values have little effect on the numerical 
results. The column diagram of 1

tA  and 1
cA is shown in Figure 4.11, the 

variations of the parameter 1
tA  and 1

cA for the stainless steel rebar with 

different slenderness in different loading cases are small. 
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Figure 4.11Derivations of optimized parameters 

 

4.4 PROPOSED FORMULAS FOR THE PARAMETERS 
IN THE MODIFIED MONTI-NUTI MODEL 
 
 
Through parameter identification, a series of optimized parameters are 
obtained for different types of rebars with different slenderness and 
different loading histories. Then the empirical formulas are given to 
evaluate the parameters to calculate R , which are given in Eq. (3.10-3.12). 
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5. Implementation and Validation of the 
Modified Monti-Nuti Model 

 
 
 
 The modified Monti-Nuti model incorporates the effect of the yield 
strength of different rebar and the effect of the anisotropy. This modified 
Monti-Nuti model is implemented in OpenSees and named as “Steel05” 
(Zhou, Nuti, & Lavorato, 2015b). 
It is found that the Monti-Nuti model could overestimate the stress if the 
partial unloading and reloading strain histories are very complicated, and 
the methods to eliminate this disadvantage of the model is proposed and 
thus the robustness of the model is improved. Subsequently, in order to 
validate the effectiveness of the modified Monti-Nuti model, the 
experiments on the carbon steel rebars and stainless steel reabrs are used 
to compare with the numerical stress-strain curves generated by the 
modified model. 
 

5.1 IMPLEMENT THE MATERIAL MODEL IN 
OPENSEES 
 
 
OpenSees is object-oriented Finite Element program (Mckenna, 1997), 
and the library file of the custom designed material model could be loaded 
by the framework when the OpenSees.exe is running and it comes across 
the custom designed material. The modified Monti-Nuti Model is named 
as “Steel05” and is compiled as “Steel05.dll”, thus this new material 
model could be used in OpenSees to simulate the rebar in concrete 
structures in OpenSees. The inheritance diagram of the new steel model 
“Steel05” is shown in Figure 5.1. 
As OpenSees is open source software, there are two ways to implement 
the material model into OpenSees (OpenSees). Implement the material as 
one dynamic link library and the OpenSees executable will automatic to 
load the Steel05.dll file when the material “Steel05” is used in the 
OpenSees scripts. The other way is to add the material file into the 
OpenSees framework and recompile the whole framework to build one 
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new OpenSees executable.  Thus the “Steel05” material is included in the 
new built executable. The author of this dissertation has succeeded in 
implementing the new material model in both two ways. The first way is 
easier to be carried out by OpenSees developers and it is a better way to 
share the new material model with other users. 
 

 

Figure 5.1 Inheritance Diagram of steel model “Steel05” 

 

5.2 Validation of the Modified Monti-Nuti Model 
 
 
After the modified Monti-Nuti model is implemented in the OpenSees, 
this material is used to simulate the tested bare rebars and compare with 
the experimental curves.  
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In order to test the material model “Steel05” in OpenSees, one structural 
element such as one column should be built, and proper element could be 
used to simulate the force-displacement of the column, and then the steel 
material “Steel05” implemented in OpenSees could be used to describe 
the stress-strain relationship of the cross section of the element. The 
benchmark test method proposed by Michael H. Scott was adopted to 
simplify the test model, as illustrated in Figure 5.2. One special 1D 
column is set up and the unit length and unit cross section are specified, 
and the axial displacement is applied on the column.  Thus the output 
force equals the axial force of the column, and the applied axial 
displacement equals the strain. That is to say, the output axial force-axial 
displacement curve of the element is identical to the stress-strain curve of 
the material. 
 

 

Figure 5.2 Column setup in OpenSees for material test 

 
The scripts in Figure 5.3 are used to build the column in OpenSees and 
apply the strain histories and output the corresponding axial force. Then 
the stress-strain curves of different types of rebars are plotted and the 
comparisons are illustrated. 
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Figure 5.3 Scripts used to test “Steel05” in OpenSees 
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5.2.1 Experiments of Carbon Steel Rebar 
 
For the carbon steel rebar tests, the A series tests are the cyclic tests with 
slenderness ratio L D equal to 5, and the yield stress is 450 MPa, 

thus  450yf L D  is 5, which means that the A series are the cyclic 

curves without buckling. In the C series tests, the L D is 11, and 

 450yf L D equals 11, which means that the buckling should emerge 

in the cyclic curves. 
The properties of the tested carbon steel rebars are listed in Table 5.1. The 
cyclic loading histories of the carbon steel rebar are shown in Figure 5.4. 
 

 Table 5.1 Properties of tested carbon steel rebar 

Test L/D Yield stress 
 fy (MPa) 

Elastic modulus 
 Es (MPa） 

Hardening ratio 
 b 

A1/ C1 5/11 470 200000 0.03 
A2/ C2 5/11 470 200000 0.03 
A3/ C3 5/11 430 180000 0.04 
A4/ C4 5/11 450 160000 0.04 
 

 
Figure 5.4 Loading strain histories of carbon steel reinforcement  

(A1, A2, A3 and A4: L/D=5; C1, C2, C3 and C4: L/D=11) 
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The comparisons between the numerical curves generated by the modified 
model and the experimental curves of the carbon steel rebars are shown in 
Figure 5.5 and Figure 5.6.  
The numerical curves coincide with the experimental curves quite well 
but there are disagreement to some degree if the compressive strain is 
smaller than -0.01. However, for the real concrete structures, the strain of 
the reinforcement could not exceed -0.01 due to the confinement of the 
concrete, thus the model is applicable in the seismic analysis of real 
structures. 
 

 

(a) in absence of buckling-A1 
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(b) in absence of buckling-A2 

 

 

(c) in absence of buckling-A3 
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(d) in absence of buckling-A4 

Figure 5.5 Comparison of numerical curves and experimental curves 
(L/D=5) 

 

 

(a) in presence of buckling-C1 
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(b) in presence of buckling-C2 

 
 

 

(c) in presence of buckling-C3 

 
 



 

 

 

106 

 

 
(d) in presence of buckling-C4 

Figure 5.6 Comparison of numerical curves and experimental curves 
(L/D=11) 

 
In chapter 3, the comparisons between the numerical curves generated by 
the original Monti-Nuti model are made. The original Monti-Nuti model 
could not simulate the cyclic behaviors of the rebar with properties listed 
in Table 5.2. 
Here the comparisons between the numerical curves generated by the 
modified Monti-Nuti model and the experimental curves are made. The 
loading histories are shown in Figure 5.7. The comparisons are shown in 
Figure 5.8, Figure 5.9 and Figure 5.10. 
 

 Table 5.2 Properties of test rebar (Dhakal and Maekawa 2002) 

Test L/D fy (MPa) Es (MPa） b 
S5 5 500 200000 0.037 
S8 8 500 200000 0.037 
S11 11 500 200000 0.037 
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Figure 5.7 Loading strain histories of carbon steel reinforcement  

(S5, L/D=5; S8, L/D=8; and S11, L/D=11, from Dhakal and Maekawa, 2002) 

 

 

Figure 5.8 Comparison of numerical curves and experimental curves (S5, 
L/D=5) 
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Figure 5.9 Comparison of numerical curves and experimental curves (S8, 

L/D=8) 

 

 
Figure 5.10 Comparison of numerical curves and experimental curves (S11, 

L/D=11) 
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5.2.2 Experiments of Stain Steel Rebar 
 
The effectiveness of the modified Monti-Nuti model is verified by 
simulating the cyclic behaviors of the stainless steel rebar with different 
yield stresses in tension and in compression. The properties of the 
stainless steel rebar are listed in Table 5.3. The XA1, XA2 and XA3 are 
tests of rebars with slenderness L/D equal to 5; and the XC1, XC2 and 
XC3 are tests of rebars with slenderness L/D equal to 11. 

 

 Table 5.3 Properties of tested stainless steel rebar  

Test L/D Yield stress in 
tension 
fyt (MPa) 

Yield stress in 
compression 
fyc (MPa) 

Es 
(MPa） 

b 

XA1/XC1 5/11 790 680 200000 0.02 
XA2/XC2 5/11 790 680 200000 0.02 
XA3/XC3 5/11 790 680 200000 0.02 
 
The loading histories for XA1, XA2 and XA3 are shown in Figure 5.11 a), 
and the loading histories for XC1, XC2 and XC3 are shown in Figure 
5.11 b). 
 

 

a) XA1, XA2 and XA3 (L/D=5) 
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b) XC1, XC2 and XC3 (with L/D=11) 

Figure 5.11 Loading strain histories of stainless steel reinforcement 

 
For the stainless steel rebars, the numerical curves could coincide with the 
experimental curves very well, shown in  
Figure 5.12 and Figure 5.13, thus the validity of the model in simulating 
the anisotropic material is also verified. 
 

 

(a) in presence of buckling-XA1 
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(b) in presence of buckling-XA2 

 
 

 
(c) in presence of buckling-XA3 

Figure 5.12 Comparison of numerical curves and experimental curves 
(L/D=5) 
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(a) in presence of buckling-XC1 

 

 

(b) in presence of buckling-XC2 
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(c) in presence of buckling-XC3 

 

Figure 5.13 Comparison of numerical curves and experimental curves 
(L/D=11) 
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6. APPLICATION IN REINFORCED 
CONCRETE COLUMN 

 
 
 
The application of the steel material “Steel05” is verified in simulating 
the cyclic behaviors of the reinforced concrete piers. In OpenSees, fiber 
model is built to simulate the concrete column. 

6.1 APPLICATION OF FIBER MODEL IN CANTILEVER 
COLUMN ANALYSIS 
 
 
The theory to build the fiber model for the reinforced concrete column is 
shown in Figure 6.1. The column could be divided into segments along its 
axial length, and each segment could be simulated by one element. 

 

Figure 6.1 Fiber element technique used in reinforced concrete pier analysis 
under cyclic loading 

 



 

 

 

115

The force-based element is adopted which allows plasticity to spread at 
any location along the element, and the accuracy could be improved by 
the number of integration point in the element without reducing the 
computational efficiency. Hereby the force-based element named as 
“nonlinearBeamColumn” in OpenSees is chosen to build the fiber model.  
As for the steel material model, “Steel05” is selected for the reinforcing 
bar, and “Concrete07” (Waugh, 2009) is used to simulate the cyclic 
behaviors of the unconfined concrete cover and confined concrete core. 

6.2 PSEUDO-DYNAMIC TEST OF REINFORCED 
CONCRETE BRIDGE PIER 
 
 
Two bridges (one regular and the other irregular) were designed by 
Attolico el al. (2000) according to the Italian Seismic Code 
(DMLL.PP.24.01.1986, 1986) and Eurocode8 Part 2 (EN1998, 2004) 
concerning the design of anti-seismic structures.  
Then the most stressed pier in each bridge was picked and then the 1:6 
scaled piers were casted in the laboratory to represent the corresponding 
piers (De Sortis, Nuti, & Petrangeli, 1998). The scaled pier specimens 
were pseudo-dynamically tested in the structural laboratory in Rome Tre 
University (Lavorato, 2009). 

6.2.1 Regular Reinforced Concrete Bridge Pier 
 
For the regular bridge shown in Figure 6.2, the most stressed pier is side 
pier with height equal to 14m. The dead axial load due to deck is 10800 
kN. According to the scaled criteria, the dead axial load applied to the 
pier specimen equals 300 kN. 
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Figure 6.2 Regular bridge 

 
As shown in Figure 6.3, the specimens numbered from 1 to 5 were made 
in the laboratory to represent the side pier in the regular pier. The number 
and deposition of the longitudinal rebars, the configuration of the stirrups 
and the design code are different for different specimen. The details are 
shown in Table 6.1. 
 
 

 

Figure 6.3 Pier Specimen corresponding to the middle pier in the regular 
bridge 



 

 

 

117

 

 Table 6.1 Geometries and configuration of the piers 

pier design 
basis 

Diameter 
(mm) 

Height 
(mm) 

Concrete 
cover  
(mm) 

Longitudinal  
rebars 

Spiral  
(mm) 

1 DM 420 2340 30 24∅10 ∅5/80 
2 DM 420 2340 30 24∅10 ∅5/100 
3 DM 420 2340 30 24∅10 ∅5/100 
4 DM 420 2340 30 24∅10 ∅5/80 
5 EC8 420 2340 30 24∅10 ∅6/40 
Note: DM is short for the Italian seismic code D.M. LL.PP. 24.01.1986; 
EC8 stands for Eurocode8 Part 2 (1998-2). 

 
Pseudo-dynamic tests of the pier specimens were made using the Italian 
Tolmezzo accelerogram (1976, E-W PGA=0.35g). Figure 6.4 
demonstrates the damage state of one pier specimen after tested. 
 

 

 

Figure 6.4 Damage of the specimen at the end of the cyclic tests 
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6.3 Comparison between the Numerical Analysis and 
Experimental Results 
 
The mechanical characteristic of the materials used in the piers are shown 
as follows: 
Concrete 

 Ultimate strength 25cu MPa  ; 

 Initial elastic modulus 30000cE MPa . 

Steel 
 Yield Stress 500yf MPa ; 

 Initial elastic modulus 200000sE MPa . 

The real mechanical properties of the materials tested in the laboratory are 
shown in  

Table 6.2. 

 

Table 6.2 Mechanical properties of the materials tested in the laboratory 

Material concrete steel 
Specimen fcm 

[MPa] 
Φ 
 (mm) 

fsy 
[MPa] 

Fst 
 [MPa] 

εsu  
[%] 

Εsh 
 [%] 

1,2,3,4 
17.21 5; 6* 445.46 680.4 16 1.4 

10 513.69 608.04 15.68 2.67 

5 
17.35 6 444.19 680.82 21.81 1.4 

10 537.61 618.01 16.7 4 
 

6.3.1 Main Parameters in the Fiber Model 
 
The material model “Concrete 07” is used to simulate the concrete, but 
the parameters for the confined core concrete and unconfined cover 
concrete are different. All the parameters for “Concrete07” used in the 
fiber model are listed in  
Table 6.3. 
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Table 6.3 Parameters of “Concrete07” in the fiber model 

concrete Unconfined cover concrete Confined core concrete 
fc [MPa] 17.44  20.17 

ec [-] 0.00178  0.00316 

Ec[MPa] 24090  24090 

ft [MPa] 2.6  2.6 

et [-] 0.000215  0.000216 

xp [-] 2  2 

xn [-] 2.3  30 

r [-] 1.4726  1.3605 

 
The material model “Steel05” is used to simulate the behavior of the 
longitudinal rebar and the values of the input parameters for “Steel05” are 
listed in Table 6.4. 
 

Table 6.4 Parameters of “Steel05” in the fiber model 

Steel05 Fy [Mpa] b 
[-] 

E0 
[MPa] 

L/D 
[-] 

r0 
[-] 

A6 
[-] 

P 
[-] 

 574.37 0.0037 200000 10 5 1000 0.5 
 

6.3.2 Experimental Test of the Bridge Piers 
 
As shown in Figure 6.5, the cyclic lateral displacement, corresponding to 
the accelerogram of the 1976 Friuli earthquake recorded at Tolmezzo, is 
applied at the top of the pier specimens. 
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Figure 6.5 Lateral loading displacement histories at the top of the pier 

 
The relationships between the shear forces measured at the bottom and 
the corresponding lateral displacements at the top of the pier 1 and 5 are 
illustrated in Figure 6.6 and Figure 6.7. 
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Figure 6.6 Experimental lateral force and displacement curve of pier 1 

 

 
Figure 6.7 Experimental lateral force and displacement curve of pier 5 
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6.3.3 Comparisons Between Numerical Curves and 
Experimental Curves 
 
The comparision between the numerical curves generated by the fiber 
model and the experimental curves of pier 1 is shown in Figure 6.8. 

 

Figure 6.8 Comparison of force-displacement curve (horizontal force at the 
bottom and lateral displacement at the top of pier) between the fiber model 
and the experimental curves 

 
The comparision between the numerical curve generated by the fiber 
model and the experimental curve of pier 5 is shown in Figure 6.9. 
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Figure 6.9 Comparison of force-displacement curve (horizontal force at the 
bottom and lateral displacement at the top of pier) between the fiber model 
and the experimental curve 

 
From the above comparisons, the fiber could capture the main 
characteristics of the experimental curves, but the stiffness of the 
numerical curve is greater than the experimental curves. If the column is 
divided into two segments to consider the eccentricity and second order 
effect of the pier, better simulation results could be obtained. 
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7. EFFECT OF CORROSION ON MODEL 
FOR REBAR 

 
 
 
Serious durability problem has been observed in the reinforced concrete 
structures such as bridge decks, parking garages, undersea tunnels, and 
other marine structures even less than 20 years old, when they are 
exposed to corrosive environments like deicing salts and seawater (Mehta 
& Burrows, 2001). The structures could fail to provide sufficient bearing 
capacity or plastic deformation performance before the designed service 
life, resulting from the corrosion of the rebar (as shown in Figure 7.1) in 
the reinforced concrete elements which is the leading cause of 
deterioration in concrete.  
 

  

 a) b) 
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c) 

Figure 7.1 Corrosion of rebar in the highway bridge: a) corrosion of the 
pier b)corrosion of the rebar and spalling of the cover concrete of the wall c) 
overview of the highway bridge (Tullmin, 2010) 

 
In the following section, the mechanism of corrosion of rebar will be 
briefly introduced and the effect of the corrosion of rebar on the 
mechanical performance of the rebar will be studied. 
 

7.1 MECHANISM OF CORROSION OF REBAR IN 
REINFORCED CONCRETE 
 
 
As a result of the hydration reactions of cement, the pore solution of 
concrete tends to be alkaline, with pH values typically in the range 12.5-
13.6. Under such alkaline conditions, reinforcing steel tends to passivate 
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and display negligible corrosion rates. However, due to the porous nature 
of concrete, corrosive species and chemical species supporting corrosion 
reactions can enter the concrete and lead to corrosion problems (Associate, 
1995).  
Chloride ions and carbonation are two important inducements to promote 
rebar corrosion. 
Primarily due to exposure of reinforced concrete to chloride ions, which 
could permeate through sound concrete pore or cracks into reinforced 
concrete, the premature corrosion of steel reinforcement occurs, if oxygen 
and moisture are available to sustain the electrochemical reaction.  
Chloride-containing admixtures can also cause corrosion. The mechanism 
how chlorides promote corrosion is not completely understood. The 
widely accepted theory is that chloride ions get through the protective 
oxide film easier than other ions, leaving the steel vulnerable to corrosion. 
The initiation of corrosion primarily results from chlorides, but chlorides 
don’t affect directly the rate of corrosion after initiation. Instead the 
availability of oxygen, the electrical resistivity and relative humidity of 
the concrete, and the pH and temperature are the primary rate-controlling 
factors. 
When carbon dioxide in the air gets through the concrete and reacts with 
hydroxides such as calcium hydroxide, calcium carbonates is formed, 
which progress is called carbonation of concrete. The reaction is shown as 
follows in Eq. (7.1): 

    2 3 22
    Ca OH CO CaCO H O     (7.1) 

 
This reaction reduces the pH of the pore solution to as low as 8.5, 
resulting in the passive film on the steel not stable.  
Another effect of carbonation of concrete is that the chloride ions 
threshold needed to promote corrosion becomes lower. When pH equals 
12 to 13 in new concrete, the chlorides threshold to corrosion initiation of 
rebar is about 7000 to 8000 parts per million (ppm) of chlorides; while the 
chloride threshold for corrosion could reduce to 100 ppm or below if the 
pH is lowered to a range of 10 to 11(PortlandCementAssociation). 
However, like chloride ions, carbonation destroys the passive film of the 
reinforcement to promote corrosion initiation, but does not influence the 
rate of corrosion. 
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When steel corrodes, the rust generated occupies greater volume than the 
steel. This expansion creates tensile stresses in the concrete, and 
eventually causes cracking, delamination, and spalling of concrete. 
 

 
Figure 7.2  corrosion of rebar in concrete (Tullmin, 2010) 

 
After the protective concrete cover is collapsed, the reinforcing steel is 
more vulnerable to further corrosion. 
The corrosion of rebar in the reinforced concrete could be divided into 
four stages (Kumar Mehta, 2000): 
Stage 1: At beginning, the concrete appears to be sound with relatively 
inevitable little macroscopic cracking due to shrinkage of concrete, 
illustrated in Figure 7.3. 
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Figure 7.3 Stage 1 of corrosion (Tullmin, 2010) 

 
Stage 2: Obvious macroscopic cracks have appeared and the concrete 
surface is stained by reddish discoloration from corrosion product 
formation, shown in Figure 7.4. 
 

 

Figure 7.4 Stage 2 of corrosion (Tullmin, 2010) 
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Stage 3: Voluminous of corrosion products are built up, causing the 
concrete cover over the reinforcing steel to spall, as illustrated in Figure 
7.5. 
 

 

Figure 7.5  Stage 3 of corrosion (Tullmin, 2010) 

 
Stage 4: With the development of the spalling of the concrete cover, the 
reinforcing steel bars directly exposed to the atmosphere, shown in Figure 
7.6. 
 

 

Figure 7.6 Stage 4 of corrosion (Tullmin, 2010) 
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Corrosion of rebar (Trethewey & Chamberlain, 1995) is an 
electrochemical process involving the flow of charges (electrons and ions). 
Two half-cell reactions occur in the process of corrosion: an oxidation 
reaction at the anode where iron atoms lose electrons and move into the 
surrounding concrete as ferrous ions, demonstrated in Eq. (7.2); and a 
reduction reaction at the cathode, where electrons combine with water and 
oxygen in the concrete, defined in Eq. (7.3).  

 22 2   4Fe Fe e    (7.2) 

 2 22     4 4H O O e OH     (7.3) 

To maintain electrical neutrality, the ferrous ions migrate through the 
concrete pore water to these cathodic sites and form iron hydroxides, or 
rust, expressed in Eq. (7.4): 

  22   4 2Fe OH Fe OH    (7.4) 

 

 
Figure 7.7  Electrochemical reaction of rebar in concrete 

 
For corrosion of rebar to occur, four fundamental components are 
necessary in an electrochemical (Daily, 1999): 

 An anode. 
 A cathode. 
 A conducting environment for ionic movement (electrolyte). 
 An electrical connection between the anode and cathode for the 

flow of electron current. 
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If any of the above components is missing or disabled, the 
electrochemical corrosion process will be stopped.  Thus different 
methods to prevent rebar corroding based on prevent or reduce the 
aforementioned electrochemical progress (Song & Shayan, 1998).  
Most previous research topics related to corrosion of rebar are 
concentrated on mechanism of corrosion, methods to prevent corrosion of 
rebar and techniques to repair the corroded rebar in the concrete structures 
(Verma, Bhadauria, & Akhtar, 2014).  
Next the effect of corrosion on the mechanical properties of rebar in the 
reinforced concrete will be introduced and studied.  
For the reinforced concrete structures, in order to evaluate the seismic 
performance precisely, deterioration due to the corrosion of rebar should 
be considered properly. Following the effects of corrosion of rebar on the 
seismic behaviors of the reinforced concrete will be considered. 
 

7.2 EFFECT OF CORROSION 
 
The effects of corrosion on the residual tensile capacity and the 
mechanical properties like ductility of reinforcement have been 
researched recent years. It is found that the non-uniform cross section loss 
due to pitting corrosion along the bar has an important effect on the force-
axial displacement in tensile tests. 
Kashani et al. (2013b) adopted the accelerated techniques on bare bar to 
simulate corrosion process in the laboratory and used 3D optical 
measurement technique to analyze the patterns of the corroded rebars.  
Then a series of monotonic and cyclic test on rebar corroded rebars were 
carried out to study the effects of corrosion on the compressive strain-
strain relationship and the cyclic behaviors including inelastic buckling 
respectively. The corrosion extended Dhakal-Maekawa buckling model 
was proposed by the authors to simulate the cyclic behavior of corroded 
rebar. The model could precisely simulate the cyclic behavior of corroded 
reinforcing bar including inelastic buckling when the slenderness ration 
L/D<8. 
In this section, the effects of corrosion on the yield stress, the critical 
slenderness and the computational length of the reinforcement are studied. 
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7.2.1 EFFECT OF CORROSION ON YIELD STRESS 
 
According to the experimental investigation of the corroded rebars, the 
cross section of the rebar varies along the length of the rebar. The exact 
position of the pitting corrosion is impossible to be predicted in the real 
structure. However the corrosion rate of the rebar in existing structures 
could be detected by non-destructive monitoring system (M. M. Kashani, 
A. J. Crewe, & N. A. Alexander, 2013). Thus the mean cross section of 
the corroded rebar 'D could be deduced according to the corrosion rate, 
and shown in Eq. (7.5). 

 ' 1 cD D    (7.5) 

Where D  is the cross section diameter of the original uncorroded rebar, 

c  represents the corrosion rate and is defined in Eq. (7.6): 

 0

0
c

m m

m



  (7.6) 

Where 0m  is the original mass of the rebar, m is the mass of corroded 
rebar. 
It was found that the non-uniform area of cross section of the corroded 
rebar due to pitting corrosion has an important effect on the axial bearing 
capacity of the corroded rebar.  
Du et al. (2005) proposed the empirical formula Eq. (7.7) based on 
extensive tensile force-extension experimental tests to calculate the 
regressed tensile yield stress of the corroded rebar. 

  1yt yf f a   (7.7) 

Where ytf  is the notional yield stress in tension corresponding to the 

corroded rebar based on the original rebar cross section area, yf  is the 

yield stress of uncorroded rebar, a  is the regression factor considering the 
effect of non-uniform distribution of pitting corrosion and equals 0.015 
according to Du et al. The value of a , obtained by different researchers, 
ranges from 0.01 to 0.017. And  represents the mass loss due to 
corrosion, and is defined as: 100 c  . 
The mean stress and mean strain are adopted to represent the behavior of 
the reinforcement. The yield stress in tension '

ytf  corresponding to the 
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corroded rebar based on the mean cross section area could be deduced as 
Eq. (7.8): 

    ' 1 1yt y cf f a     (7.8) 

It was found by Kashani et al. (2014) that the non-uniform pitting 
corrosion has an obvious effect on the buckling reduction of the rebar in 
compression. The empirical formula for notional yield stress in 
compression is given in Eq. (7.9): 

  ' 1yc y cf f     (7.9) 

Where '
ycf  is the notional yield stress in compression corresponding to the 

corroded rebar based on the mean cross section area, c is the regression 
factor that represents the effect of non-uniform pitting corrosion. 
Then define    ' 1 1t

c yt y cd f f a      to represent the notional yield 

stress deterioration in tension due to corrosion, and define 
 ' 1c

c yc y cd f f      to represent the notional yield stress reduction in 

compression. a  and c  are the parameters in the formula for slenderness 
ratio and the values given by Kashani et al. (2013) are listed in Table 7.1. 
 

 Table 7.1 Parameters to calculate the notional yield stress deterioration 

Slenderness ratio L D  a c  

5L D   0.017 0.005 
5 10L D   0.017 0.0065 

10L D   0.017 0.0125 

 
Then the relationships between the notional yield stress deterioration and 
mass loss rate of rebar with different slenderness are illustrated in Figure 
7.8, Figure 7.9 and Figure 7.10.  
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Figure 7.8 Notional yield stress deterioration in tension and compression 
(L/D=5) 

 

 

Figure 7.9 Notional yield stress deterioration in tension and compression 
(5<L/D<=10) 
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Figure 7.10 Notional yield stress deterioration in tension and compression 
(L/D>10) 

 
From the above figures, it could be found that the notional yield stress 
deterioration coefficient in tension is smaller than that in compression 
when slenderness ratio 5L D  and 5 10L D  . This means that the 
notional yield stress corresponding to the corroded rebar based on the 
mean cross section area in tension is smaller than that in compression, if 
the yield stresses of the original uncorroded rebar in tension and in 
compression are the same, which seems unreasonable. 
Then the notional yield stress corresponding to the corroded rebar based 
on the mean cross section, named as mean yield stress, were obtained by 
Kashani et al. (2013a) in the laboratory. The relationship between the 
mean yield stress and the mass loss rate are illustrated in Figure 7.11, 
Figure 7.12 and Figure 7.13, with different slenderness, respectively. 
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Figure 7.11 Relationship between mean yield stress and mass loss rate 
L/D=5,  data from Kashni et al. (2013a) 

 

 

Figure 7.12 Relationship between mean yield stress and mass loss rate 
L/D=10, data from Kashni et al. (2013a) 
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Figure 7.13 Relationship between mean yield stress and mass loss rate 
L/D=15, data from Kashni et al. (2013a) 

 
From the above three figures, it is found that the reduced notional yield 
stress in tension is always larger than that in compression. This 
phenomenon makes sense because the non-uniform pitting corrosion 
could increase the effect of load eccentricity and the second order 
moment on the axial residual capacipy in compression. As a result, it is 
necessary to propose new formula for notional yield stress corresponding 
to the corroded rebar based on the corroded cross section area. 
 

7.2.2 Effect of Corrosion on Critical Slenderness 
 

As mentioned in chapter 3, the critical slenderness cr  equals 5  , and 

  equals 450ycf . ycf  is the yield stress in compression and 450 

represents the original yield stress of the carbon steel rebar Feb44 tested 
by Monti and Nuti (1992).  
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For the corroded rebar, the mean yield stress in compression 
 ' 1yc y cf f    , thus the critical slenderness '

cr  is expressed in Eq. 

(7.10): 

 ' ' '5 450 5 450
1

cr
cr yc yc yc yc

c

f f f f

 

  


 (7.10) 

For corroded rebar, as 0 1 1c    , '
cr cr  . The ratios between 

critical slenderness of corroded rebar and critical slenderness of original 
rebar with different slenderness are illustrated in Figure 7.14. 

 
Figure 7.14 Ratio between the critical slenderness of corroded rebar and 
critical slenderness of original rebar '

cr cr   

 
This means that the critical slenderness of the corroded rebar increases 
due to the notional yield stress deterioration. However, it doesn’t mean 
that the rebar corrosion could postpone the occurrence of buckling of the 
reinforcement. On the contrary, the buckling should occur earlier because 
the mean diameter of the rebar 'D  is smaller than the original diameter of 
the original uncorded rebar D . Furthermore, the computational length of 
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the reinforcing bar 'L  should increase, because the confinement from the 
stirrup deteriorates due to the corrosion in the contact point between the 
longitudinal rebar and the transversal loop. Thus the slenderness of the 
corroded rebar '  could grow faster than the increase of the critical 
slenderness of the corroded rebar '

cr . 

7.2.3 Effect of Corrosion on Computational Length of 
Rebar 
 
Following the schema shown in Figure 7.15, uncorroded longitudinal 
rebars usually buckle between two consecutive stirrups, based on the 
assumption that stirrups constitute a strong rigid link for the longitudinal 
rebar.  

 

 
a) buckling of rebar in RC column 

 

 
b) computational model for rebar 

Figure 7.15 Buckling of compressed bar between two consecutive stirrups 
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In case the transversal loops are not stiff enough, buckling of the 
longitudinal will buckle beyond the stirrup, as demonstrated in Figure 
7.16.  

 

 

Figure 7.16 Buckling exceeds two consecutive stirrups 

 
As the stiffness of the original uncorroded stirrup is sufficient, the second 
case can usually be disregarded. However, if corrosion occurs, both 
longitudinal rebar and stirrups are affected. The contact points between 
the longitudinal rebar and transversal rebar is vulnerable to corrosion. At 
the beginning of the corrosion, the product of corrosion remains near the 
contact points, therefore the link is unchanged and the confinement from 
the stirrups is sufficient. However, as corrosion continues, both stirrups 
and longitudinal bars reduce their diameter and the confinement is not 
sufficient. As a result, a short gap arises around the contact point between 
the stirrup and the longitudinal rebar. The buckling will occur beyond the 
two consecutive stirrups.  
The computational length of the corroded rebar 'L  should be defined 
incorporating the aforementioned effect. 
 

7.3 CORROSION EXTENDED MODEL FOR REBAR 
 
 
As discussed above, the effect of corrosion on the yield stress, the critical 
slenderness and the slenderness ratio of the corroded rebar should be 
considered. 
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7.3.1 Notional Yield Stresses in Tension and 
Compression 
 
As discussed in section 7.2.1, the corrosion could cause the notional yield 
stresses corresponding to corroded rebar based on the mean cross section 
area different in tension and compression to reduce. The phenomenon that 
the yield stresses are different in tension and compression is named as 
anisotropy in chapter 3. 
The notional yield stresses corresponding to the corroded rebar based on 
the mean cross section area are called mean yield stress and are defined in 
Eq. (7.11) and Eq. (7.12) respectively. 

  ' 1 t
yt y cf f     (7.11) 

  ' 1 c
yc y cf f     (7.12) 

Where '
ytf  and '

ycf  are the mean yield stress in tension and in compression 

respectively, yf  is the yield stress of the original uncorroded rebar, t
c  

and c
c  are the corrosion deterioration factor incorporating the effect of 

non-uniform pitting corrosion,    represents the mass loss. 
Hereby, the anisotropy coefficient  defined in section 3.2 could be 
expressed in Eq. (7.13): 

 
'

'

1

1

t
yt c

c
yc c

f

f

 
 


 


 (7.13) 

The critical slenderness coefficient  , defined in Eq. 3.1 could be 
expressed in Eq. (7.14): 

 
 ' 1 c

y cyc

Y Y

ff

f f

 



    (7.14) 

Where Yf  is the constant represent the yield stress of carbon steel Feb44k, 

and equals 450 MPa. 
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7.3.2 Slenderness Ratio of Corroded Rebar 
 
Dhakal and Maekawa (2002c) proposed that the buckling length of the 
longitudinal rebar could be times of the stirrup spacing if the confinement 
from the transversal rebar is not sufficient and provided the iterative 
procedure to calculate the buckling length. According to their methods, 
the computational length of the longitudinal rebar should be at least two 
time of the stirrup spacing after corrosion generates the gap at the contact 
point between longitudinal rebar and stirrup and reduce the confinement 
towards the longitudinal rebar, if the original buckling length equals the 
stirrup spacing. However this doesn’t comform with the experimental 
result on the bare corroded rebar made by Kashani et al. (2014), as shown 
in Figure 7.17. From the comparison between Figure 7.17 a) and Figure 
7.17 b), it could be found that the stress-strain curves of corroded rebar 
with L D =5 and L D =10 are quite different. Thus other method should 
be proposed to predict the computational length of the corroded rebar. 
 

 

a) L/D=5 
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b) L/D=10 

Figure 7.17 Stress-strain relationship of corroded rebar with different 
slenderness 

 
There are two proposals to calculate the computational length. 
For the first proposal, assume that the computational length increment is 
the function of the gap generated at the contact point between the stirrup 
and the longitudinal rebar. Considering that the gap could be the sum of 
radius reduction in stirrup and radius reduction in longitudinal rebar, the 
gap could be expressed in Eq. (7.15): 

       '' 1 1 1 1 22s s c s cg D D D D D D              (7.15) 

Where g  is the gap at the contact point, D and 'D  are diameter of original 

uncorroded longitudinal rebar and corroded rebar, sD and '
sD  are the 

diameter of the uncorroded stirrup and corroded stirrup, c is the mass 

loss rate due to corrosion. 
Assuming that the longitudinal rebar and the stirrup at the contact point 
have the same mass loss rate c , substitute D  to sD  to simplify the 

expression but guarantee the effectiveness of the evaluation, the 
simplified formula is given in Eq. (7.16): 
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  2 ' /[ 2 1 )1( cg D D D       (7.16) 

Assume that at each contact point the gap could exceed the computational 
length times of g , define as g , thus the total computational length 'L  of 
the corroded rebar is given in Eq. (7.17): 

 '  2 ( )2 1 1 cL L g L D         (7.17) 

Thus the computational slenderness of the corroded rebar '  could be 
determined, and the relationships between the ratio '  to the original 
slenderness of the rebar   and the mass loss rate are illustrated in Figure 
7.14. 

 

Figure 7.18 Relationship between '   (ratio computational slenderness of 
corroded rebar and original rebar) and mass loss rate 

 
Another method is based on the ratio between the slenderness and the 
critical slenderness of the corroded rebar equal to that of uncorroded rebar. 
Define the slenderness of the corroded rebar based on the cross section of 
the original uncorroded rebar ''  in Eq. (7.18): 
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'

''
L

D
   (7.18) 

Where 'L is the computational length of the corroded rebar. 
The corresponding critical slenderness of the corroded rebar based on the 
original cross section could be calculated by Eq. (7.19): 

 '' 5 450cr ycf   (7.19) 

Where ycf  is the notional yield stress in compression corresponding to 

the corroded rebar based on the original cross section area, and is defined 
in Eq. (7.20). 

  1yc yf f c   (7.20) 

In which yf  is the yield stress of original uncorroded rebar, c is the 

deterioration coefficient incorporating the effect of non-uniform pitting 
corrosion. The value of c , given by Kashani et al. (2013), depends on the 
slenderness and is listed in Table 7.2. 
 

 Table 7.2 Values of c  to calculate the notional stress  

Slenderness L D  c

8-10 0.016 
15-20 0.020 

 
Assume that the ratio between the slenderness and the critical slenderness 
of the original uncorroded rebar and the corroded rebar based on the 
original rebar is equal, shown in Eq. (7.21).  

 
''

''

cr cr

 
 

  (7.21) 

Thus the relationship between 'L  and L  could be defined in Eq. (7.22): 

 '
1

y

yc

f L
L L

f c
 


 (7.22) 
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For the corroded rebar with slenderness L D =5, if the mass loss rate 
 =0.1, the computational length  'L  could be calculated by the above 
two methods respectively. 
Without experimental data, assume that   equals 5, which means the 
length increase at each contact point is five times of the gap, in Eq. (7.23), 
the slenderness is given as: 

 
10 1 1' ( )

5.8 
'

1
1

c

c

L DL

D D





  

  (7.23) 

Adopting the second method, the slenderness could be calculated in Eq. 
(7.24): 

 
1'

5.55
' 1 1

y yc

c c

L f f L cL

D D D


 


  

 
 (7.24) 
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8. CONCLUSIONS AND FURTHER WORKS  
 
 
 
The cyclic behaviors of the reinforcing bar in the existing reinforced 
concrete structures are fully studied, and the effects of yield stress on the 
critical slenderness and the anisotropy of some stainless steel reinforcing 
bar have been incorporated in the improved Monti-Nuti model proposed 
to simulate the cyclic behaviors of the reinforcement including buckling. 
The parameters in the model are identified by Genetic Algorithm and 
empirical formula is proposed to calculate the values of the parameters in 
more efficient but still robust way. The criteria to update the model 
parameters for each half branch at the reversal are proposed. Then the 
modified model is implemented in OpenSees. The material model is 
validated with the experimental curves. The material is adopted to do 
cyclic pushover analysis of piers and the effectiveness of the material 
could be confirmed from comparisons with the experimental curves. 
Then effects of corrosion, which is inevitable in the aged reinforced 
concrete structures, on the monotonic and cyclic behaviors of the 
reinforcement are studied and corrosion extended model has been 
proposed for cyclic behaviors of corroded rebar. Further works about this 
issue are discussed at the end. 
 

8.1 CONCLUSIONS 
 
 
The cyclic behaviors of the reinforcing bar depend on both the 
slenderness of the reinforcement and the yield stress of the reinforcement. 
The cyclic stress-strain curves of the rebar could be identical if the 

combined parameters yL D f  of different reinforcing bars are equal, 

even though the slenderness L D and yield stress yf  of different rebars 

are different. Based on the experimental observation from Monti and Nuti 
(Giorgio Monti & Nuti, 1992), the critical slenderness, which determines 
when the rebar could buckle in compression, is 5 for the carbon steel 
rebar Feb44k with yield stress 450 MPa. Hereby for the rebar with yield 
stress equal to yf  in compression, the critical slenderness is modified 
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as 5 450 yf , which means that the larger the yield stress, the earlier 

buckling will emerge in compressive branch. 
Due to better corrosion resistive performance, the stainless steel 
reinforcement has been applied to build the reinforced concrete structures 
in corrosive environment or repair the corrosion damaged reinforced 
structures. The anisotropic phenomenon of the stainless steel rebar which 
is produced according to the old Italian code before 2008, have been 
observed in the monotonic experiment tests (Albanesi et al., 2006). The 
critical slenderness of the anisotropic stainless steel reinforcing bar 
depends on the slenderness and the yield stress in compression. The 
original Monti-Nuti model has been improved to consider the effects of 
different yield stresses in tension and in compression. 
In the modified Monti-Nuti model, calibration of the parameters is 
necessary to obtain accurate simulation of the experimental results.  The 
parameters in the modified model determine in common the stress-strain 
relationship of the following half branch at each reversal. The Genetic 
Algorithm Method is effective to identify the proper values of the 
parameters. The objective of the fitness function is set to minimize the 
different between the numerical curve and experimental curve at each step 
of the cyclic loading. The designed framework could calculate the 
objective function for total difference between the experimental curves 
and numerical curves of the rebar under different loading cases. Through 
the Genetic Algorithm, the optimized values are obtained and the 
empirical formulae are proposed based on the optimized results. Adopting 
the empirical formulae, it could be easier to determine the parameter 
values which are determined by experimental test in the original model. 
The robustness and effectiveness of the formulae are validated by 
comparing with the experimental data. 
When the reinforcing bar is subjected to generalized action, the 
parameters of the model for each half branch should not be fully updated 
at the partial unloading or reloading branch reversal. The strategies to 
update the parameters depend on the status of the previous half branch 
before the reversal. There are twelve possible conditions of the unloading 
or reloading half branch before the reversal, and they could be divided 
into three categories: plastic, elastic and small, and the corresponding 
judge criteria are proposed. For plastic half branch, the model parameters 
for the new half branch should be fully updated; for the elastic half branch, 
only partial parameters in the model for the new half branch need to be 
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updated; and for the small half branch, all the parameters in the model for 
the new half branch should be retrieved from the previous unloading or 
reloading branch in the same direction.  
The modified Monti-Nuti steel material model is named “Steel05” and the 
implementation of this material model in OpenSees has been completed. 
Then the steel material model is applied in cyclic pushover analysis of 
piers. Comparisons between the numerical results and the experimental 
curve of the piers confirm the effectiveness of the material model. 
Finally, the corrosion effects of the reinforcing bar, which is inevitable for 
the aged reinforced concrete structures, are studied base on the 
experiments on bare corroded rebar. After corrosion, the diameter of the 
corroded rebar decreases and varies along the length. Even though the 
non-uniform pitting corrosion has an effect on the monotonic and cyclic 
behaviors of the rebar, the mean cross section could be used to represent 
the corroded rebar. The mean yield stress reduces and the critical 
slenderness could increase according to the previous studies. However, 
the computational length of the corroded rebar also increases, as gap 
emerges at the contact point between the longitudinal rebar and transverse 
loop after the corrosion occurs and thus the confinement from the stirrup 
is not sufficient. The slenderness of the corroded rebar increase faster than 
the critical slenderness, thus the buckling will emerge earlier than the 
original uncorroded rebar. Furthermore, it is observed that the mean yield 
stresses, corresponding to the corroded rebar based on the mean cross 
section area, are different in tension and in compression. The anisotropy 
phenomenon of the corroded rebar should also be considered in the model 
for cyclic behavior. Finally the corrosion extended Monti-Nuti model is 
proposed based on aforementioned studies.  

8.2 FURTHER WORKS 
 
 
The modified Monti-Nuti could simulate accurately the cyclic behaviors 
of reinforcement both in absence of buckling and in presence of buckling 
when the minimum strain in compression is not smaller than -0.01. If the 
threshold value is exceeded, the disagreement between the experimental 
curve and the numerical curve will be obvious. Even though the strain of 
the reinforcement in the real reinforced concrete could not exceed -0.01 
due to the confinement of the concrete, more study could be made on this 
issue to eliminate this disadvantage of the proposed model. 
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Corrosion has a significant effect on the seismic behaviors of aged 
reinforced concrete. In order to consider properly the effects of corrosion, 
the computational length of the corroded reinforcing bar should be studied. 
The relationship between the computational length and the gap, which 
emerged at the contact point between the longitudinal rebar and the 
stirrup, should be studied based on more experimental observation or 
investigation of real aged concrete structures. The effect the deterioration 
of confinement from the traverse loop on the computational length should 
also be studied. Furthermore, the effects of corrosion on the seismic 
performance should be studied through numerical analysis and 
experimental tests. 
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