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Introduction

General Relativity is the theoretical foundation of Modern Cosmology.
Almost one century after the publication of this fundamental theory
(Einstein A., 1916), the state of art of cosmology is that a concordance model
consisting in an expanding Universe, approximatively flat, in which matter
is around one third of the total energy content, agrees with observations.
According to this model about 15% of the total matter content is in the
form of non relativistic ordinary particles, usually referred to as baryonic
matter, while the remaining part is in the form of a dark component made of
particles not predicted by the Standard Model of particle physics. Because of
its domination over the baryonic component this dark matter plays a crucial
role in determining the evolution of the cosmic structures in the Universe.
The existence of this dark component was firstly proposed by Zwicky in
1933 when analizing the motions of the galaxies in the Coma cluster. He
noticed that the velocity dispersion within the cluster implied a virial mass
of the cluster well above the one associated with visible galaxies. Hence the
need of an additional, dominating ”dark” mass component. Another indirect
observational evidence of the dark matter came later (Rubin et al. 1980)
from the rotation velocity profiles of stars and gas in spiral galaxies. The
existence of an extra component, not interacting electromagnetically but
only gravitationally, could explain the deviation of the rotation curves from
the model expected by gravity theory if visible matter were responsible for
the gravity field. More recently the existence of an extra component, called
dark energy, was advocated to explain a number of additional cosmological
observations. First of all the discovery of cosmic acceleration, confirmed by
two independent studies about the relation between distance of Supernovae
Ia type and redshift (Riess et al. 1998, Permuttler et al. 1999) . Other
independent evidences in favour of dark energy come from the abundance
of clusters of galaxies, the Large Scale Structure and the Cosmic Microwave
Background. The emerging picture is that of a Universe in which most
of the matter is dark but the energy budget is dominated by yet another
component, called dark energy, responsable for the accelerated expansion of
the Universe. Dark energy is not the only possible theoretical explanation
of cosmic acceleration. Other possibilities come if one assumes that General
Relativity theory breaks down on cosmological scales and a modified theory
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Introduction 4

of gravity must be advocated instead. Despite of the remarkable progess
of cosmology in the last decades, the nature of the dark matter and dark
energy and, in fact, their physical reality are still under scrutinity.

The study of the Large Scale Structure of the Universe, namely the spatial
distribution of matter on cosmological scales, coupled to the ”classical”
cosmological test based on distance estimates prompt the possibility of
addressing these issues and, in particular, to test the validity of General
Relativity. In the last decades a significant number of galaxy surveys have
traced the spatial distribution of different types of galaxies using their
redshift as distance measure. These surveys cover different sky areas and
are differently dept. The 2MASS Redshift Survey (Hucra et al. 2012), for
example, which we focus on in this thesis, is aimed to map the distribution of
galaxies in the local Universe. Higher redshifts are spanned for example by
the 2dFGRS (Colless et al. 2003) and SDSS (i.e. Abazajian et al. 2009, data
release 7). These two surveys cover quite large sky patches, at intermediate
redshifts: the 2dFGRS is characterized by a median redshift z ∼ 0.1 and sky
coverage 1800 deg2, the SDSS (I - II) covers a largest sky area (∼ 9000 deg2,
namely ∼ 23% of the sky, for the DR7). In the last few years , deeper surveys
have spanned even higher redshifts such as the VIMOS Public Extragalactic
Redshift Survey (VIPERS, Garilli et al. 2014), which covers a relatively
small area of the sky (∼ 16 and 8 square degree) but is characterized by
a wide redshift coverage (extending from z =0.45 to z =0.95), WiggleZ
(Parkinson D. et al. 2012, median redshift 0.6) or the BOSS survey (Ahn
et al. 2014) , that’s part of the third SDSS (SDSS-III) and contains more
than 1 million galaxy spectra.

Assuming that galaxies trace the distribution of the matter (mostly
composed by dark matter as we have seen) these surveys show that the
mass is not randomly distributed in the Universe but organized in a
coherent pattern of large scale structures dubbed ”cosmic web.” This is
thought to be the result of the evolution, mostly due to the effect of
gravity, of primordial perturbations on early quasi-homogeneus and isotropic
density field. Density fluctuations in the dark matter component above a
characteristic scale, called Jeans lenght, started growing by gravitational
instability eventually forming the cosmic structure that we observe in our
Universe today. The baryonic component, after decoupling itself from
radiation, responds to the gravitational pull of the dark matter fluctuations
and, after a short period,trace the same large scale structures as the dark
matter; a picture that has been drastically confirmed by the detection of
the temperature fluctuations in the Cosmic Microwave Background (COBE,
Smoot et al.1992) and the spatial distribution of galaxies in the surveys
(BAOs, Eisenstein et al. 2005). Structure formation theory allows to follow
this evolution: a simple linear perturbative approach is valid in the limit
of small perturbations, i.e. both at early epochs or on very large scales.
On small scales, when density fluctuations become large, the growth can
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not be described by the linear approximation and the theoretically more
challenging nonlinear regime sets in. In fact, the full non linear evolution
of density fluctuations can only be tested with numerical techniques: the
N-body simulations. One success of theoretical cosmology is the ability to
predict either analitically or numerically the statistical properties of the
mass distribution and their relation with the fundamental parameters of
the model, which we call cosmological parameters. As a consequence, the
observational estimates of such statistical properties are crucial to determine
the parameters and constrain the model. Hence the widespread intent
and effort in building large galaxy surveys capable of tracing the three
dimensional distribution of extra-galactic objects. To go from there to the
undelying mass distribution one needs to assume a ”bias” relation between
the mass and the galaxy distribution that must be considered as an extra
degree of freedom of the model.

In this thesis we investigate the possibility of measuring the ”bias
relation” with present surveys and surveys of next generation. We focus
on the power spectrum of the galaxy distribution, that is the Fourier
transform of the 2-point correlation function and is sufficient to characterize
completely the statistical properties of the matter density field if it is
Gaussian distributed. We implement a code which computes the ”classical”
estimator of the power spectrum of the galaxy distribution proposed by
Feldman, Kaiser and Peacock (Feldman et al. 1994), dubbed FKP estimator.
We validate the possibility of using this estimator to all sky surveys. Not all
the cosmological signals that can be detected in the galaxy power spectrum
require a full sky coverage, even if they need in any case large and dense
coverage in order to reduce statistical errors on the measures. As pointed
out in Bilicky (2014), a coverage of the full sky can be useful for example in
order to test the validity of the isotropy and homogeneity assumption at late
times. In order to validate the possibility of using FKP on all sky surveys we
have considered the most difficult scenario, as the one of an all sky survey
and local as the 2MASS Redshift Survey, 2MRS. It is a spectroscopic redshift
survey, which contains approximatively 45000 galaxies of the local Universe,
at median redshift 0.03, selected in the near infrared magnitude band Ks.
Some of the difficulties in computing the power spectrum of such a survey
are: the small volume covered by the survey, which implies a relatively small
value of the largest explorable scales, and as a consequence, the limited range
of scales in which the linear perturbation theory approach can be considered
valid. This issue is emphasized by the small median redshift of the survey
that implies late time highly non linear evolution in a wide range of scales,
too. Associated with that, high statistical errors characterize the scales of
cosmological interest. Furthermore, the FKP estimator is implemented in
cubic boxes and consists in the decomposition of the galaxy distribution in
Fourier coefficients. The peculiar motions of the galaxies, associated with the
forming cosmic structures, induce anisotropies in the spatial distribution of
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these objects as it is deduced from their redshift. These distortions are along
the radial direction (namely the line of sight direction). The FKP method
doesn’t lend naturally to the study of such distortions with an all sky local
survey. Other methods more computationally expensive are expected to
work better. We concentrate on the monopole of the power spectrum so the
latter issue , as we’ll see, is not expected to affect significantly our measures.
We used mock catalogs in order to test our ability of measuring the power
spectrum and its distortions due to the peculiar velocities, to the nonlinear
bias relation and to the dynamical non linearities. We apply all this stuff to
the 2MRS in order to measure the bias of the 2MRS galaxies and the matter
density parameter. Finally, we study the possible dependence of the bias on
the scale, induced by non linear effects in the galaxy power spectrum and
how this dependence is constrained by future observations. Differently from
the 2MRS, future redshift surveys, like Euclid (Laurejis R. et al., 2012), are
expected to estimate the cosmological parameters at the level of per-cent
and a potential scale dependent bias could affect the results obtained from
the analysis of the power spectrum.

The structure of the thesis is as follows.
In Chapter 1 we present the fundamental aspects of the Standard

cosmology, starting from the Friedmann equations and the linear
perturbation theory solutions from which the linear power spectrum of
matter can be derived. We describe how the matter power spectrum depends
on the cosmological parameters and then we briefly describe the possible
approaches to non linearities. We describe the galaxy power spectrum and
discuss about the ”galaxy bias” and distortions due to the peculiar motions
of the galaxies.

In Chapter 2 we describe how the galaxy power spectrum is in practice
computed starting from the spatial distribution of the galaxies. First we
discuss the simple case of a constant density distribution within a cubic
volume, then we consider the more general case in which both angular
and radial distribution are not constant due to selection effects which
characterize the real world galaxy surveys. In this context we describe the
estimator proposed by Feldman , Kaiser and Peacock and how it has been
practically implemented by us.

In Chapter 3 we show the test done in order to assess the performance of
the code which computes the power spectrum and we show the preliminary
tests done with simulations in order to set approximatively the wavenumber
range in which we can push the analysis of the 2MRS. We test also the code
developed in order to account for the window function of the survey and
show the tests done in order to check the performance of this code with a
2MRS-like window.

In Chapter 4 we describe the 2MRS and the mock catalogs used in order
to obtain an estimate of the uncertainties of the measured power spectrum
and test the non linear models of bias and redshift distortions to be used in
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the analysis and then, we show the results of the analysis of the 2MRS power
spectrum. We study the dependence of the clustering on the luminosity of
the galaxies and on the morphological type , splitting the main sample in
different smaller subsamples and measuring the relative bias. Finally we
show the estimates of the absolute bias parameter and the matter density
parameter.

In Chapter 5 we show how we forecast the scale dependent
parametrizations of the bias by means of a Fisher matrix analysis for a
Euclid-like survey and show the results.

We conclude with a summary and discuss the future prospects.



Chapter 1

Standard Cosmology

In this Chapter we present a brief review of the basic concepts of the
Background Cosmology and gravitational instability theory that togheter
constitute the backbone of the Standard Cosmological Model. Then we’ll
focus on the power spectrum of matter, its shape and how it encodes
information about fundamental cosmological parameters. Since in this thesis
the main focus is on the power spectrum of galaxies and its estimates, we
shall also discuss the so called ”galaxy bias” relation required to link the
observed galaxy spectrum to that of the matter.

1.1 Background Cosmology

One class of solutions of Einstein’s equations is based on the Cosmological
Principle. It assumes isotropy (rotational invariance) and homogeneity
(traslational invariance) of the Universe. The evidence of homogeneity at
extremely large scales, more than several hundreds of Mpc 1, has been source
of debate up to mid-90s, but today is almost generally accepted thanks to the
advent of large galaxy redshift surveys like 2dF and SDSS able to encompass
scales significant larger the scale of coherence in the spatial distribution of
galaxies. In other words, when smoothed on these scales the distribution of
galaxies appears to be homogeneus and isotropic. These solutions imply
that the Universe is filled with ideal fluids of non interacting particles
characterized by an energy (or mass) density, an equation of state and a
temperature, all of them constant across space, i.e. with no fluctuations.
From these assumptions derives the so called Standard Cosmological Model.
Under the restrictions imposed by the Cosmological Principle, the only
allowed metric is the Friedmann-Robertson-Walker one (FRW) that can be

11 pc=3.086 ×1013 Km
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1.1 Background Cosmology 9

expanded as:

ds2 =

3∑
µ,ν=0

gµνdx
µdxν = −c2dt2 + a2(t)[dr2 + Sk(r)

2(dθ2 + sen2(θ)dφ2)]

(1.1)
where µ and ν vary from 0 to 3, with the 0 index related to the time
coordinate ( dt = dx0 ) and 1,2,3 related to the spatial coordinates. gµν
is the metric tensor. In the right side of equation 1.1 c represents the speed
of light, t is the cosmological proper time; r, θ and φ are spatial comoving
coordinates that do not vary over time, whereas the physical distances
do indeed vary because of the scale factor a(t) that can either increase
(expansion) or decrease (contraction) over time. Such expansion/contraction
is homogeneous and isotropic so that the Cosmological Principle remains
valid over cosmic epochs. Sk(r) = Rsen(r/R) , r , Rsenh(r/R) respectively
in case of positive (”close” Universe) , null (”flat” Universe) or negative
curvature (”open”Universe) . k refers to the curvature parameter, k = k′/R2,
where k′ can be equal to 1, 0, -1 and identifies with its value the sign of
the curvature, respectively for close , flat and open geometry and R is the
curvature radius. The scale factor a(t) has the dimensions of a lenght as
opposite to the adimensional comoving coordinates. Its value at present
epoch, a(t0), is convectionally set to 1. Expliciting the curvature parameter
k , the FRW metric becomes:

ds2 = −c2dt2 + a(t)2

[
dx2

1− kx2
+ x2(dθ2 + sen2(θ)dφ2)

]
(1.2)

where x=Sk(r).
Eintein’s field equations link space-time geometry and energy content of

the Universe and are given by:

Gµν = Rµν −
1

2
gµνR =

8πG

c4
Tµν (1.3)

where the Einstein tensor Gµν describes geometry; Rµν is the Ricci tensor
and depends on metric and its derivative; R is the Ricci scalar, contraction
of Ricci tensor R = gµνRµν ; G is the gravitational constant and Tµν is the
energy-momentum tensor and describes the energy content of the Universe.
On large scales, the latter can be considered as the one of a perfect fluid (this
assumption also derives from having assumed the Cosmological Principle):

Tµν = (p+ ρ)uµuν/c
2 + pgµν (1.4)

where uµ is the quadrivelocity of the fluid , ρ its energy density and p
its pressure. From the 00 tensor component of the Einstein equations and
assuming FRW metric one can derive the Friedmann equation (1922) for
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a(t) : (
ȧ

a

)2

=
8πG

3c2

∑
i

ρi −
kc2

a2
. (1.5)

The sum
∑

i ρi runs over the energy densities of all components, assumed
to be perfect fluids with their equation of state p(ρ) and represents the
mean total energy density in the Universe. It is worth defining the density
parameter for the i−th component :

Ωi =
8πGρi
3c2H2

(1.6)

and the curvature density parameter :

Ωk = − kc2

a2H2
(1.7)

and the total density parameter :

Ω(t) =
∑
i

Ωi(t), (1.8)

where H = ȧ(t)/a(t) is the Hubble parameter. With these definitions the
Friedmann equation becomes:

1 = Ω + Ωk. (1.9)

Written in this form Friedmann equation shows clearly that the values of Ω
e Ωk are not independent (this arises from Einstein’s equations coupling).
If Ω < 1 then k < 0 (open universe); if Ω > 1 then k > 0 (close universe), if
Ω = 1 then k = 0 (flat universe).

The value of the energy density for which Ω = 1 is called critical density
and is given by:

ρc =
3c2H2

8πG
(1.10)

So the density parameter, written in terms of ρc, is:

Ω(t) =

∑
i ρi(t)

ρc(t)
. (1.11)

From now on, we use Ωi for the present day energy density parameters, and
explicitate the time dependence only for t 6= t0. The Friedmann equation
evaluated at present day becomes:

1 =
8πGρ0

3c2H2
0

− kc2

H2
0

(1.12)

where subscript 0 indicates the present epoch and , as said before, a(t0) = 1.
H0 ≡ H(t0) is referred to as Hubble ”constant”. If present energy density of
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each component andH0 are known then it is possible to obtain the curvature.
Then, if we want to know also the time evolution of the scale factor a(t),
a second differential equation is needed. It is obtained setting to 0 the
covariant derivative of energy-momentum tensor obtaining the conservation
equation:

ρ̇+ 3
ȧ

a
(ρ+ p) = 0. (1.13)

Combining equation 1.5 and 1.13 another significant equation, acceleration
equation, known also as Friedmann equation too, can be derived:

ä

a
= −4πG

3c2

∑
i

(ρi + 3pi). (1.14)

The sum is over each component contributing to the energy density of
the Universe, Ω. This equation implies that ordinary components with
positive pressure, like radiation and non relativistic matter, determine a
decelerated expansion ä < 0. An accelerated expansion can be obtained if a
component with p < −(1/3)ρ is present and dominates the energy budget.
Now equations 1.5 and 1.13 can be solved for a(t) and ρ(t), if the equation
of state, namely a relation between pressure and density , is known for each
component. Writing the equation of state in the following form, proposed
by Zel’dovich:

p = wρ (1.15)

where w is an adimensional equation of state parameter, a solution for the
scale factor and energy density in function of proper time can be obtained.
The evolution of the energy density in function of the scale factor can be
obtained from equation 1.13 for constant w and for each component and is
given by:

ρw(a) = ρw,0a
−3(1+w) (1.16)

where ρw,0 is the present day energy density.
In 1929 Edwin Hubble discovered that galaxies receed from us with a

velocity proportional to their distance , measuring the redshift z of these
objects. Such experimental law agrees with the hypothesis of an homogeneus
and isotropic expansion of the Universe and is fully consistent with the FRW
metrics, where a positive evolution of the scale factor would determine
a homogeneus and isotropic expansion of the system, as observed. This
evidence supports the Cosmological Principle and suggests the existence
of a Big Bang, i.e. that in the past the Universe was in a very dense
state. The temperature associated to each component (reducing to a
single temperature when these are coupled) also increases backward in time.
Extrapolating the density, pressure and temperature back in time the model
predicts an epoch in which the physical state of the Universe was similar
to that of a stellar interior and a ”cosmological” Nucleosynthesis could
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have happened. Predictions reveal that non negligible quantities of light
elements would have been produced (notably He and D) that we have indeed
observed at hight redshifts in the intergalactic medium, hence providing
additional observational support to the Big Bang model. At high density and
temperature baryons and photons were highly coupled. Decoupling occurs
when the temperature drops enough for the hydrogen ionization finishes to
decrease significantly. This occurs at z ∼ 1100 (i.e. 3×108 years after the Big
Bang) when the baryons decouple from photons and the Universe becomes
transparent to the radiation that , because of the adiabatic cooling, we
observe now as a Cosmic Microwave Background radiation. The commonly
accepted model for the present day Universe as depicted by a variety of
cosmological observations is expanding, approximatively flat, accelerating
(ä > 0). In the energy density budget, nonrelativistic matter constitutes
∼ 1/3 of the total of which 15% is ordinary matter (defined conventionally
baryonic) and 85% is cold dark matter (not electromagnetically but only
gravitationally interacting). A small contribution, less than 10−4%, is
the relativistic matter in form of photons and neutrinos, generically called
radiation. Finally, the remaining two thirds is believed to be made of dark
energy, with negative pressure responsable for acceleration (see eq. 1.14).
The simplest model of dark energy is the cosmological constant Λ, which is
characterized by a constant energy density and equation of state parameter
w = −1. This model of universe, with a cosmological constant and non
relativistic cold dark matter is generally referred to as ΛCDM .

Table 1.1 shows the best fit energy density parameters for the ΛCDM
model from the Planck experiment (Planck collaboration, 2013). ΩM is the
matter density parameter at present time, Ωb and Ωc are respectively the
baryonic matter and cold dark matter density parameters.

best fit 68% limits

H0 67.11 67.4±1.4

Ωbh
2 0.022068 0.02207±0.00033

Ωch
2 0.12029 0.1196±0.0031

ΩM 0.3175 0.314±0.020

ΩΛ 0.6825 0.686±0.020

Table 1.1: Results for cosmological parameters for ΛCDM model. Planck collaboration 2013.
h represents the Hubble constant in unity of 100Kms−1Mpc−1.

The parameter of state w for non relativistic matter, simply referred
to as matter, is ∼ 0, therefore, according to 1.16, matter density evolves
as a−3 decreasing with the increase of volume due to the expansion. The
parameter of state for radiation is 1/3 so radiation density evolves as a−4.
The extra factor a−1 comes from the increase of the radiation wavelenghts
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due to expansion. The nature of dark energy is matter of debate: if it is in
the form of a cosmological constant then w = −1 and its the energy density
remains constant with time. Values of w < −(1/3) either constant or time
dependent characterize more general forms of dark energy.

In the limit a→ 0 the component with the higher value of w dominates,
for a → ∞ the component with the lower value of w dominates. In a
model of expanding universe with radiation , matter and dark energy ,
radiation dominates for a → 0 (early times), and dark energy dominates
at later times. The present day values of energy densities and other type of
observations suggest that radiation-matter domination transition happens
for a value of the scale factor aeq ∼= 2.8× 10−4 namely around 47000 year
after Big Bang. aeq denotes the value of the scale factor at the epoch when
the energy density of the radiation component is equal to the energy density
of matter. Accounting for the evolution of the radiation component and the
matter component, respectively given by ρr(t0)a−4 and ρM (t0)a−3, then aeq
can be expressed as the ratio between the present day energy densities of
radiation and matter:

aeq =
ρr(t0)

ρM (t0)
(1.17)

Only recently we should have entered an epoch dominated by a dark
energy component. Fig. 1.1 shows the evolution of radiation , matter and
dark energy densities with redshift. The latter, as shown in next Section,
is related with the scale factor. The figure shows the radiation, matter
and dark energy dominated epochs. In each epoch the evolution of the
scale factor with time is driven by the dominant component. In particular
a(t) ∝ t1/2 in the radiation epoch, ∝ t2/3 in the matter dominated epoch
and ∝ exp(Ht) if dark energy dominates in form of cosmological constant.

1.1.1 Redshift-distance relation

The proper distance of an object at time t, d(t), with respect to an
hypotetical observer in an expanding homogeneus and isotropic universe is
given by the integral of the space interval, i.e. the integrated spatial interval
measured instantanously by a chain of observers between the central observer
and the object. If the observer is at the origin of the comoving coordinates
system (r , θ, φ) then , from eq. 1.1:

d(t) = a(t)r (1.18)

where r is the comoving radial coordinate of the object. For the present day
t0, the distance is:

d(t0) = r =

∫ t0

te

cdt

a(t)
. (1.19)

where te is the emission time of the light signal received at t0, the present
time. The latter formula can be used to derive the relation between the



1.1 Background Cosmology 14

Figure 1.1: Evolution of radiation, matter and dark energy with redshift. The blue
band represents deviation from cosmological constant state parameter w = −1±0.2.
Plot from (Frieman, Turner, Huterer, 2008).

redshift of the light emitted by an object and the scale factor at the time of
the light emission a(te): 1 + z = 1/a(te). From this relation and Friedmann
equation 1.5, the comoving distance can be written in function of redshift,
Hubble parameter and density parameters:

d(z) =
c

H0

∫ z

0
X(z′)−1/2dz′ (1.20)

where

X(z′) = ΩR(1+z′)4+ΩM (1+z′)3+Ωk(1+z′)2+ΩDEexp

{
−3

∫ z′

0

dz′′

z′′
[1 + wDE(z′′)]

}
(1.21)

The parameter wDE(z) is the state parameter of the dark energy component,
here assumed to be time dependent. As can be seen from equation 1.20, the
relation redshift-distance depends on the density parameters and equation
of state of the various components. The H0 value sets the scale lenght.
Therefore, observing d at different redshifts allows, in practice, derive all
these fundamental quantities. However, the comoving distance is not an
observable quantity since it would request symultaneous measurements.
Fortunately there are two observable quantities that are related to the
comoving distance: the luminosity distance dL and the angular diameter
distance D. The first is obtained by measuring the photon flux F from an
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object with known luminosity L:

dL(z) ≡
√

L

4πF
= Sk(d)(1 + z), (1.22)

where L is the intrinsic luminosity of the object. Analogously one can
observe the angular diameter distance from the angular size of an object
with known size D′:

D(z) =
D′

δθ
=
Sk(d)

1 + z
. (1.23)

The best known application of 1.22 is with Type Ia Supernovae, an ideal type
of standar candles with very similar luminosities. They have successfully
used to perform the so called ”Hubble-test” that is obtained by rewriting
the 1.22 in terms of magnitudes:

m−M = 5log10(dL[pc]/10pc) = 5log10(Sk(d)(1 + z)[pc])− 5 (1.24)

in which the apparent magnitude m of Supernovae Ia Type with known
absolute magnitude M is used togheter with the observed redshift z to trace
Sk(d) out to large distances. This test has provided the first evidence for an
accelerating Universe.

In the limit z → 0:

d(z) ≈ dL(z) ≈ D(z) ≈ c

H0
z (1.25)

For small redshifts , namely small distances from the observer, this simple
relation is a good approximation for the current proper distance.

1.2 Density fluctuations and gravitational insta-
bility

The Cosmological Principle is valid only on large scales. Indeed,
disomogeneities and anisotropic structures such as galaxies, clusters,
superclusters, voids and filaments are observed on increasingly large scales
as the Universe evolves. Therefore we need to extend the Standard Model,
based on the Cosmological Principle. As already anticipated, the structures
in galaxy and matter distribution can be explained as result of growth of
initial perturbations of the smooth background . The basic mechanism
of this evolution is gravitational instability in density fluctuations of a
self gravitating fluid beyond a characteristic scale called ”Jeans lenght”.
This is the mechanism that determines star formation in galaxies. In the
cosmological framework, the expansion of the Universe and the coupling
of matter perturbations with perturbations of the other components and
with perturbations of the metric complicate this picture. The theory of
gravitational instability is greatly simplified when density fluctuations are
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small and the equations that describe their evolution can be linearized. This
is a feasible approximation since fluctuations were indeed small at early
epochs and still are on large scales. On small scales the linear approach
breaks down and higher order perturbation theory or numerical simulations
are mandatory. In this Section a brief summary of the basic concepts of the
linear perturbation theory is given. We set ~ = c = kB = 1.

Let’s linearly perturb the metric tensor with respect to FRW metric of
the zero order homogeneus cosmology:

g00(~x, t) = −1− 2ψ(~x, t)

g0i(~x, t) = 0

gij(~x, t) = a2δij(1 + 2φ(~x, t)). (1.26)

The perturbations to the metric are ψ , the Newtonian potential, and φ , the
perturbation to the spatial curvature. They are assumed to be small so that
all quadratic terms are neglected and we only retain linear perturbations
to the metric. Equations 1.26 contain only scalar perturbations; we focus
on them because they are the ones which couple to matter perturbations,
even if also vector or tensor perturbations of the metric are possible. These
equation are written in conformal Newtonian gauge and this corresponds
to set equal to 0 two of the four scalar degrees of freeedom, that in this
way reduce to ψ and φ. Let us introduce the following variables: the
temperature fluctuation Θ = δT/T of the photon fluid, decomposed in its
multipole components Θl; the distribution function for massless neutrinos,
N; the overdensity field of cold dark matter: δ(~x, t) = ρ(~x, t)/ρ̄((~x, t) − 1;
the peculiar velocity field of cold dark matter v(~x, t) and the analogous
for baryons: δb(~x, t) = ρb(~x, t)/ρ̄b((~x, t) − 1 and vb(~x, t). The differential
equation system that describes the evolution of all these quantities is
basically given by: 1) the Boltzmann equations; 2) the two independent
equations, analogous to the Friedman equation, that can be derived from
Einstein’s field equations expressed in terms of the perturbed metrics 1.26.

Let us focus on dark matter perturbations. In this case one can
simplify the system of equations described above thanks to the following
considerations: the contribution of baryonic matter to fluctuations of the
metric can be neglected because baryon mass density is negligible respect to
that of the dark matter. The contribution of photons to metric fluctuations is
taken into account only in the radiation dominated epoch. During this epoch
the photons are tightly coupled with baryons, and the scattering Compton
is so efficient that the quadrupole and higher order moments of distributions
of photons are neglected. Neglecting the higher radiation moments implies
that ψ = −φ. Under the above approximations and neglecting all terms
that are quadratic in the fluctuations, the set of differential equations to be
solved in order to obtain the evolution of dark matter density perturbation
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is given by:

Θ̇r,0 + kΘr,1 = −φ̇ (1.27)

Θ̇r,1 +
k

3
Θr,0 = −k

3
φ (1.28)

δ̇ + ikv = −3φ̇ (1.29)

v̇ +
ȧ

a
v = ikφ (1.30)

k2φ+ 3
ȧ

a
(φ̇+ φ

ȧ

a
) = 4πGa2[ρcδ + 4ρrΘr,0] (1.31)

In these equations the apex r indicates generically radiation (photons and
neutrinos), 0 and 1 are the multipole indices l of the temperature distribution
of radiation. These equations are defined in Fourier space: in linear theory,
the Fourier transform produces a set of independent ordinary differential
equations that can be solved for each k−mode indipendently. In this Chapter
the Fourier transform convention is:

Θ̃(~x) =

∫
d3k

(2π)3
ei
~k·~xΘ(~k) (1.32)

All the variables Θ, δ, v and φ are function of the comoving wavenumber ~k
and the conformal time η defined as :

η ≡
∫ t

0

dt′

a(t′)
. (1.33)

η is used as evolution variable, analogous to the scale factor a, the redshift
z or the proper time t. It coincides (if c is set to 1) with the comoving
horizon, namely the comoving distance that a photon has traveled from the
Big Bang to the epoch t. Regions separated by distances greater than η
can not be causally connected. The derivatives in 1.27 have to be estimated
with respect to the conformal time.

Now it is possible to solve this set of equations for each comoving wave
number ~k. A simple qualitative description of the analitic solutions for the
epochs in which one of the energy density components dominates and for
different comobile scale ranges is given in the next Subsection.

1.2.1 Linear theory solutions

The comoving horizon increases with time incorporating larger and larger
comoving scales. Let’s examine first the wavenumbers k which enter the
horizon in the matter dominated epoch, well after the matter-radiation
equivalence. These large scale modes lie beyond the horizon at early times,
when radiation dominates the Universe energy density content. As long as
these modes are outside the horizon, the gravitational potential φ, on the
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corresponding scale, is approximatively constant and density perturbations
of dark matter δ are constant too. These modes enter the horizon Universe
during the matter dominated epoch. During this epoch, when density
fluctuations are small and the Universe is approximatively Einstein-de Sitter,
namely a flat, matter only Universe, the time derivative of the gravitational
potential is zero and the density fluctuations within the horizon has a simple
dependence on the scale k and the time variable a:

δ(~k, a) =
k2φ(~k, a)a

(3/2)ΩMH2
0

. (1.34)

dφ/dt = 0 implies that the density perturbations grow proportionally to the
scale factor a during the matter domination epoch. This is not true at later
times when dark energy dominates, and the amplitude of the gravitational
potential decreases, dφ/dt < 0.

For the smaller scales that have entered the horizon earlier on in the
radiation dominated epoch, the solution to the equations 1.27-1.31 for dark
matter perturbations is:

δ(~k, η) ∝ ln(~k, η). (1.35)

This means that, when radiation dominates, dark matter perturbations
grow logaritmically with the scale factor a after the mode has entered
into the horizon since η coincides with a (from eq. 1.33 and the relation
a(t) ∝ t1/2 valid during the radiation dominated epoch). The growth is not
fast as during the matter era (where δ ∝ a) due to the radiation pressure.
Later on, when matter starts dominating, perturbations grow faster. The
equation which governs the dark matter perturbations after radiation
perturbations have become negligible can be derived from equations 1.27–
1.31 and has two independent solutions: a growing solution D1(η) (called
growth function) and a decaying mode D2(η). The general solution for dark
matter perturbations is:

δ(~k, η) = C1D1(η) + C2D2(η) (1.36)

where C1 and C2 depend on ~k and are set by the initial conditions. At late
times, in the matter dominated era, the growing solution scales with a and
the decaying mode vanishes.

To summarize: large scales perturbations in the dark matter component
which enter the causal horizon at relatively late times, during the matter
dominated epoch, grow proportionally to the scale factor a after the crossing.
Perturbations on smaller scales, which cross the horizon earlier during the
radiation dominated epoch, grow less prominently (only logaritmically)
during the radiation era. At later times when matter dominates, this
perturbations scale as a, namely in the same way as perturbations on larger
scales. Consequently, the evolution of the matter perturbations on all the
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modes of cosmological interest becomes scale independent at late times and
can be described by a time dependent factor only, namely the growth factor
D1. Finally, at later times (a > 0.1 and z < 10), when the dark energy
dominates the energy budget and the Universe accelerates its expansion,
the growth of fluctuations slows down, the quantitative estimate of the effect
depending on the equation of state of dark energy.

1.2.2 The linear growth factor and the growth rate

In the matter dominated epoch the evolution of matter perturbations can
be described by a scale independent growth factor D1. In linear regime an
explicit expression for D1 in function of the scale factor a can be derived
from the equations of the evolution of the matter density fluctuations also
allowing for the possibility of energy other than matter or radiation:

D1(a) =
5ΩM

2

H(a)

H0

∫ a

0

da′

(a′H(a′)/H0)3
, (1.37)

in which the dependence on ΩM and H(a)/H0 is explicit. The dependence
of the growth factor from these cosmological parameters is illustrated in fig.
1.2 for three different models. For flat models that include a dark energy
component the behaviour matches that of the flat and matter-only case
(ΩM = 1) out to z ∼ 2, when the cosmological constant starts outmatching
to the energy budget in a significant way. After z = 2, the growth is
suppressed. A suppression over all cosmic times characterizes the open
Universe case (short dashed curve). The growth factor can be used to
constrain dark energy models. Different types of dark energy would produce
different growth history, i.e. different curves in the plot. This means that
an accurate estimate of the growth factor at different epochs can constrain
the amount of dark matter, dark energy and its equation of state thanks to
the dependence of D1 on H(a).

An even more effective constrain can be obtained by measuring the time
derivative of the growth factor, the so called growth rate:

f ≡ dlnD1

dlna
=

a

D1

dD1

da
. (1.38)

The dependence of f from the cosmological parameters is even more
transparent. An accurate approximation to the growth rate is given by the
following expression: f = ΩM (z)γ , where the exponent γ depends on the
type of dark energy (for ΛCDM model γ ∼ 0.55) and also on the underlying
gravity model. This means that measuring f allows, in principle, not only to
constrain the nature of the dark energy but also to detect possible deviations
from the General Relativity predictions on cosmological scales. This in fact
justifies the widespead interest in measuring this quantity from the real data
which constitutes one of the main point of this thesis.
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Figure 1.2: The black continous curve represents the growth factor for a flat
universe without cosmological constant. The intermediate curve is for ΛCDM
universe. The short dashed curve represents the growth factor for an open universe.
Plot from Dodelson, Modern Cosmology, Academic Press, 2003.

1.2.3 The Matter Power Spectrum in the linear regime

We have seen how, given a set of initial conditions for the density, velocity
and metric perturbations, it’s possible in principle to obtain analytical
solutions of the differential equations which govern their evolution if the
linear approximation is valid. In this regime each k-mode of a Fourier
expansion of all the fields (density, velocity, potential, etc.) evolves
indipendently, i.e constitutes an independent solution to the set of ordinary
differential equations 1.27 - 1.31. However, it is neither possible not
particularly informative to guess the correct initial condition and provide
the precise value of the fluctuation at a specified position and time.
Cosmologically interesting information can instead be extracted from the
statistical properties of fluctuation’s fields and their spatial distributions.
Let us focus on density fluctuations. The cosmological model assumes that
primordial fluctuations were originally set during the inflation era. The
cosmological inflationary theory states that the Universe has undergone, in
the very early epochs, a period of accelerated expansion, following which the
Universe appears highly homogeneus and flat on sub-horizon scales. The
residual fluctuations that are the seeds to present day cosmic structures,
are quantuum fluctuations, originally produced at microscopic scales and
then upgraded to cosmological scales after the inflationary expansion. A
variety of inflationary models predict that primordial perturbations obey
to Gaussian statistics. Deviations from Gaussianity are also possible, but
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constrained to be very small by Cosmic Microwave Background observations
(Komatsu et al. 2011). The n-point statistics are useful to characterize the
spatial properties of the density perturbations field. Let’s focus on the 2-
point statistics of matter density fluctuations, namely the 2-point correlation
function defined as an ensemble average over all pairs of points separated
by a distance ~r:

〈δ(~x)δ∗(~x+ ~r)〉 = ξ(~r) (1.39)

and its Fourier transform, the power spectrum:

〈δ(~k)δ∗(~k′)〉 = (2π)3P (~k)δD
3(~k − ~k′). (1.40)

If the fluctuations are Gaussian, the ensemble average and 2-point statistics
are sufficient to completely characterize the spatial distribution in a
statistical sense. This thesis focuses on the power spectrum, which represents
the variance (i.e. 2-point ensemble average) of the distribution in Fourier
space. Linear perturbation theory plus initial conditions from inflation
predict the shape of the power spectrum of density fluctuations simply
referred to as matter power spectrum, at each time. In practical applications,
these predictions are only valid for a limited range of scales in which density
perturbations are still small and linearly evolving. Because of the growth of
density fluctuations this range reduces with time.

The assumption of isotropy on large scales implies that the matter power
spectrum is independent from the direction of the ~k vector. Therefore, under
this assumption, the power spectrum can be expressed as function of the
module of ~k, k.

Equation 1.34 relates the dark matter density fluctuation field δ to the
metric peturbations φ well after the matter-radiation equivalence, aeq. For
a given choice of cosmological parameters this equation allows to obtain an
analytical expression for the matter power spectrum. We have seen that for
a >> aeq, the evolution of perturbations is independent of k so let us define
alate as the epoch in which all the Fourier modes of interest start evolving
in the same way. The gravitational potential φ(~k, a), for each time and
mode and a > alate, can be written as the product of the primordial power
spectrum of the gravitational potential at the end of the inflationary epoch,
φP (~k), and a transfer function T (k), which modulates the primordial power
spectrum, and the growth function GF (a), which accounts for the late time
evolution (a > alate), i.e.:

φ(~k, a) = φP (~k)× T (k)×GF (a) =
9

10
φPT (k)

D1(a)

a
. (1.41)

The last equality follows from the fact that in the linear regime for the
gravitational potential GF (a) = D1(a)/a. In the matter dominated era
D1 ∝ a and GF remains constant.
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The transfer function T (k) is set equal to 1 for the largest scales that
never cross the horizon, and the additional factor 9/10 accounts for the slight
overall decrease of the potential respect to the primordial value. Substituting
eq.1.41 in eq. 1.34, we obtain:

δ(~k, a) =
3

5

k2

ΩMH2
0

φP (~k)T (k)D1(a). (1.42)

The primordial power spectrum is conveniently expressed to highlight
possible deviations from scale-invariance that implies k3Pφ(k) = constant,
i.e.:

Pφ(k) ∝ k−3

(
k

H0

)ns−1

(ΩM/D1(a = 1))2. (1.43)

where ns is the scalar spectral index. A scale invariant power spectrum
is characterized by ns = 1. Given this expression for the primordial
power spectrum for the potential, the power spectrum of matter density
fluctuations at late times is:

P (k, a) ∝ kns

Hns+3
0

T 2(k)

(
D1(a)

D1(a = 1)

)2

. (1.44)

This equation shows that the linear power spectrum of the matter, as we
shall from now on refer to it, at a = alate, is proportional to knsT 2(k),
and the growth factor D1 determines its evolution at later times a > alate.
Fig. 1.3 shows the linear matter power spectrum at present time (z = 0
or a = 1) for two different cosmological models. The shape of the power
spectum at large scales, is proportional to kns as expected for modes that
cross the horizon after the radiation-matter equivalence where T (k) ≡ 1.
On smaller scales, the power spectrum is increasingly suppressed respect to
the primordial one kns . These scales cross the horizon when radiation still
dominates slowing down the growth of the dark matter perturbations.This
leads to a turn over in the power spectrum at the scale that enters the horizon
at radiation-matter equivalence, keq. Fig. 1.3 shows also the approximate
validity limit of linear theory at z = 0 (vertical line).

So far we have focused on dark matter density perturbations, neglecting
the contribution of the baryons to the total matter perturbations. Even
if the leading role in the total matter power spectrum is played by dark
matter, the contribution of baryons alterates the total transfer function
shape. The baryon’s evolution is different from the dark matter one: they
are coupled with photons untill recombination and then turn free to cluster
in the dark matter potential wells. The perturbations of the photo-baryon
plasma don’t grow appreciably with time, but oscillate under the combined
effect of radiation pressure and gravitational collapse. Slightly after the
recombination, these sound waves freeze, leading to intermediate scales
oscillations in the power spectrum (referred to as BAO, acronymous for
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Figure 1.3: Power spectrum in two cosmological models: ΛCDM universe and
without cosmological constant. They are normalized to agree on large scales. The
veritical line evidences the linear scales. Plot from Dodelson, Modern Cosmology,
Academic Press, 2003.

baryonic acoustic oscillations) and to an overall suppression of power on
intermediate and small scales. The physical scale of the BAO is known and
can be used as a standard ruler. The BAO signature has now been detected
in the power spectrum and correlation function of galaxies (Cole et al. 2005,
Eisenstein et al. 2005), and is now routinely used as a observational test to
trace the expansion history of the Universe.

Dependence on cosmological parameters -
Here’s a summary of how the cosmological parameters determine the

shape and the amplitude of the linear total matter power spectrum:

1. As: represents the amplitude of the primordial curvature perturbations
power, namely the amplitude of the primordial power spectrum of the
gravitational potential, linked to the matter density fluctuations by
1.42.

2. ns: the scalar spectral index, it uniquely determines the shape of the
primordial power spectrum, which should be preserved on large scales.

3. ΩM : the dark matter density parameter. Togheter with the radiation
density parameter it sets the value of the scale factor at radiation-
matter equivalence : aeq = ρR/ρM , namely the scale where the P (k)
turns over. It affects also the amplitude of the power spectrum.

4. ΩDE : the dark energy density parameter. Dark energy affects the
growth of the perturbations at very late times, contributing at the
suppression of the growth and the precise impact depends on the
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specific type of dark energy. Another indirect effect of dark energy
is that for a flat universe, the higher ΩDE the smaller ΩM , with a
corresponding shift in the turnover scale.

5. Ωb: the presence of baryons also suppresses power on small scales.
Indeed, the baryon overdensities are suppressed or frozen until
decoupling. After decoupling the baryons fall into the potential
wells associated to dark matter fluctuations and then share their
growth history. Increasing the baryon fraction with respect to the
total mass density reduces the depth of dark matter potential wells,
effectively reducing the power in the corresponding scales. In addition
baryons impact their BAO feature into the transfer function. Finally
photon diffusion damps baryonic oscillations, leaving yet another
characteristic signature on the transfer function.

6. σ8: it is the rms fluctuation in total matter in spheres of 8 Mpc/h at
z=0, computed in linear theory. It’s given by:

σ2
R =

∫
dk

2π2
k2P (k)[

3j1(kR)

kR
]2 (1.45)

where R =8 Mpc/h and j1 is the spherical Bessel function of order
1. σ8 measures the normalization of the power spectrum , and is a
derived parameter. σ2

8 and As are related by a proportionality law.
The proportionality constant depends on the cosmological model.

7. Ων and Nν : the mass density in neutrinos and the number of neutrinos
fractions modify the value of aeq and further suppress power on scales
smaller than that of the turnover.

1.3 The Galaxy Power Spectrum

So far we have seen how the matter distribution on large scale can be
characterized in a statistical way and how perturbation theory describes
the relevant 2-point statistics in the limit of the linear approximation.

What type of dataset can be used to assess these predictions? 2-point
statistics, like 2-point correlation function and power spectrum, can be
measured for a discrete sample of objects with known positions and this
suggests that we could use galaxy redshift surveys to map the position of
extragalactic objects in space, compute their 2-point statistics and compare
it with theoretical predictions. Is this comparison meaningful? Let us
postpone the potential problem of using galaxy redshifts as distance proxy
in Section 1.3.3 and let us focus on the adequacy of galaxies as tracers
for the distribution of the (mostly dark) matter. Galaxies are thought to
form within gravitational potential wells determined by the dark matter
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component and, more specifically, within virialized structures, called dark
matter haloes. The physical processes which govern the evolution of both
these dark matter structures and of the galaxies are very complex. The
main issues are two. First of all, dark matter haloes where galaxies reside
are nonlinear structures, therefore their evolution and properties can not
be simply predicted using linear theory. Describing the growth of density
fluctuations in the non linear regime is the first problem to solve to analyze
the spatial distribution of galaxies down to small, galaxy-like scales. The
second issue is the physics of the baryons and the stellar feedback process
that greatly complicate our understanding of how galaxies form and evolve.
Both effects are discussed in the next Sections.

1.3.1 Galaxy Bias

Since one typically observes the spatial distribution of galaxies, not mass,
some independent estimate or theoretical insight of the mapping from one
to the other is mandatory. This mapping, which is commonly referred to as
galaxy bias, parametrises our ignorance on the physics of galaxy formation
and evolution and represents one of the main source of uncertainties in the
study of the large scale structure of the universe. Quantifying the galaxy
bias is not just necessary to obtain unbiased cosmological information. It
also allows to discriminate among competing models of galaxy formation
and the physical processes that regulate the evolution of stars and galaxies.
Assuming that the bias relation between the galaxy density field and the
mass field is local, namely the galaxy density is uniquely determined by the
underlying mass density, and linear, i.e. δg = bδM , then the galaxy power
spectrum and the linear matter power spectrum can be related by a simple
direct proportionality law:

Pg(k) = b2P (k) (1.46)

where b is referred to as linear galaxy bias. On scales much larger than those
affected by galaxy formation processes the linear bias relation is likely to be
valid and fluctuations are still in the linear regime, so that the galaxy power
spectrum is well approximated by b2Plin(k).

This relation, commonly adopoted in the literature, is scale independent
and supported by cosmological observations, but valid only on large scales.
A step towards more realistic bias model is represented by the Halo Model
(HM) which provides a theoretical scheme to describe the clustering of dark
matter, haloes and galaxies in both the linear and the non linear scales
(Cooray et al., 2002 for a review). According to the HM prescriptions,
galaxies can form only in the potential wells of virialized dark matter objects,
the haloes, that are formed via gravitational collapse in correspondence of
the density peaks of the density field. The galaxy properties are strictly
related to the mass and angular momentum of the parent halo in which the
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baryonic matter collapse forming galaxies. In the HM framework the galaxy
power spectrum is given by the sum of two terms: the 1 halo term , which is
the power relative to the structure within a single halo, and the 2 halo term
relative to the correlation between haloes, which dominates on large scales:

Pg(k) = P 1h
g (k) + P 2h

g (k) (1.47)

In the large scales limit, the galaxy power spectrum is related to the linear
power spectrum of matter by a 1.46-like formula where b is now given by:

b(z,mg, Lg) =

∫
n(z,m)b1,halo(z,m)

< Ng|m >

n̄g
dm. (1.48)

In this formula, m is the halo mass, b1,halo(z,m) is the linear bias of the
haloes with mass m at redshift z, while n(z,m) is the halo mass function
which gives the comoving number density of haloes with mass m at redshift
z. Halo mass function and halo bias can be derived assuming a dynamical
model for the halo formation in a given cosmological framework. A simple
model in which one assumes that haloes form through spherical collapse
(Press, Schechter, 1974) has been later improved , providing a better fit
to the numerical simulations of gravitational clustering (Sheth & Tormen,
1999). According to this models haloes are generally biased respect to dark
matter because they form in the overdensity peaks of dark matter density
field and bias grows with the halo mass. Once the halo bias and halo mass
function are specified, the bias relation between galaxies and mass can be
obtained assuming a halo occupation number that specifies the number of
galaxies that populate a halo of a given mass. Its mean value, < Ng|m >,
represents the mean number of galaxies Ng in a halo of mass m. Different
prescriptions for this conditional probability can be found in literature(e.g.
Jing, Mo & Borner, 1998; Sheth & Diaferio, 2001;Tinker et al. 2005; Zheng
et al. 2005). This probability generally depends on halo mass, redshift,
type of galaxy, luminosity and mass of the galaxies. The integral on all halo
masses in eq. 1.48 gives the linear galaxy bias. Qualitatively, one expects
that galaxies with high mass and luminosity tend to populate the higher
peaks of the density field of matter so that they are more clustered than less
massive or faint galaxies which are distributed more homogeneously (Kaiser
1984). At the same time, galaxies with early morphological type, namely
elliptical galaxies in the Hubble morphological classification, preferentially
populate the massive galaxy clusters, whereas spiral galaxies are commonly
found in lower density environments. Similar differences in clustering are
expected for galaxies characterized by different colours. The dipendence of
the bias from the redshift is physically motivated by the fact that, in the
past, when galaxies started forming , they populated the highest density
peaks that are statistically more clustered.

Current limitations in the theoretical models of galaxy evolution and
in the HM do not allow to predict galaxy bias with sufficient accuracy
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in order to constrain cosmological models so in general, the galaxy bias
and non linearities of the bias (see Subsection 1.3.2 and Chapter2) are
measured directly from the data, like the power spectrum. The linear bias b
is generally set as free parameter in the galaxy power spectrum modelling.
This approach in principle introduces degeneracies with other cosmological
parameters that can be broken through combinations with independent
experiments or with sufficient accurate future galaxy redshift surveys.

1.3.2 Non linearities

All non linearities are very tricky to predict theoretically. Going back to the
matter power spectrum , there’s a variety of approaches to the non linear
evolution of density fluctuations.

The simplest analytical approach consists in following the evolution
of an overdensity with spherical form, constant density inside it, initially
small δi << 1 and with an initial peculiar velocity on its edges equal to
zero. Assuming an Einstein-de Sitter background Universe, at early times
the density perturbation increases with the scale factor a, according to
linear theory, but at some point the sphere breaks away from the Universe
expansion and begin to collapse reaching a final virialized configuration.
This simple model is useful to understand the non linear evolution of
structures but relies on not realistic assumptions, as the more realistic
models of structure formation reveal.

Equations of density and velocity fluctuations 1.27-1.31 can be
analitically solved to some higher order perturbative terms. The solution
works quite well in the middly non-linear regime (Jeong & Komatsu, 2006,
2009) but not on smaller scales. Another parallel analytical approach is
represented by the Zel’dovich approximation, (1970): it consists in following
the trajectories of a particle distribution. The Eulerian coordinate ~x is
given for each time η by the sum of the initial unperturbed (Lagrangian)
coordinate ~q and a displacement field ψ(~q, η). The particles are assumed to
move in their initial direction. The Zel’dovich approximation is described as
a first order Lagrangian perturbation theory (alternative to the Eulerian
perturbation theory which follows the evolution of density and velocity
fluctuations). For small displacements, this approximation recovers the
Eulerian linear regime, briefly discussed in the Section 1.2. The Zel’dovich
approximation consists in a purely kinematical approach. It doesn’t account
for close-range forces as well as pressure or shocks and breaks down in the
strongly non linear regime.

Different approaches to non linearities come from the use of fits to N-
body simulations, among them Hamilton et al. (1991), Peacock & Dodds
(1996), Smith et al. (2003). The latter work consists in an improved fitting
formula based on the Halo Model, in which a code aimed to compute the non
linear matter power spectrum, Halofit, is provided. The Halo Model itself,
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introduced in Subsection 1.3.1, provides a physical motivation to the linear
and non linear clustering of mass, haloes and galaxies but doesn’t match
perfectly N-body data. Particularly tricky is to predict galaxy non linearities
of the bias, both in real space and in redshift space. As already anticipated,
the approach to non linearities in the data is typically phenomenological:
empirical formulas, based on some physical motivation, like from the HM
or simulations, are very often used in literature to model non linearities,
for example in the power spectra analysis of the galaxy surveys. The
introduction in these formulas of a small number of free parameters, on
which in general one marginalizes over, permits to recover the cosmological
parameters of interest with a good accuracy (Cole et al. 2005). At the same
time, they can be used to estimate the non linearities of the bias themselves
from the data, if applied to the future galaxy redshift surveys. We postpone
the discussion about non linear models of bias to the next Chapter.

1.3.3 Redshift space

Another complication which must be taken into account if one wants to
extract unbiased cosmological information from the galaxy power spectrum
and that, at the same time, introduces extra cosmological information
respect to the one contained in the linear matter power spectrum is related
to the use of the observed redshift as distance indicator.

As seen in the Subsection 1.1.1, the comoving distance is linked to the
redshift by a model dependent relation. As a consequence the mapping
from the measured redshift to the comoving distance d is generally model
dependent, and the choice of the model affects the clustering measure. We
don’t focus on this kind of problem because of the very local nature of the
galaxy survey under study, the 2MRS redshift survey. In the limit of small
redshifts , equation 1.25 shows that the redshift distance mapping consists
in a simple direct proportionality law.

The observed redshift, zobs, doesn’t coincide in general with the
cosmological redshift, zcos, determined by the expansion of the Universe as if
the galaxy was fixed in its comobile radial position.Each galaxy experiences
a peculiar motion which contributes to the observed redshift with a Doppler
effect due to the radial component of its peculiar velocity vector, ~v. A
galaxy’s velocity, ~vobs, is in general given by:

~vobs = ~v + r̂vcos (1.49)

where vcos is the expansion velocity , and r̂ the radial versor. Focusing on
the low redshift limit we have:

sobs ≡ czobs = czcos + r̂ · ~v = H0d+ v (1.50)

where d is the comoving distance and v is the component of the peculiar
velocity in the radial direction. When mapping the radial positions from
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redshift one in general ignores the peculiar velocity of the object, introducing
an error in the radial positioning. The expression redshift space means this
type of mapping and corresponds to assign distances to galaxies equal to:

ds =
sobs
H0

=
czobs
H0

. (1.51)

The redshift space mapping constitutes a problem, inducing a bias in
the power spectrum measure, but also an opportunity because it contains
informations about the growth of the cosmological structures. The peculiar
motions of the galaxies are in fact due to the gravitational collapse due to
the surrounding density field, so are stricly related with the growth of the
perturbations. Focusing on linear perturbation theory, we have seen that,
at late times on scales well within the horizon, the gravitational potential is
constant with time while the dark matter density fluctuations grow as the
growth factor D1. The continuity equation for dark matter perturbations
1.29 reduces to:

δ̇ + ikv = 0. (1.52)

So, the peculiar velocity field can be written in function of δ and the growth
factor as:

v(k, η) =
i

k

d

dη

[
δ

D1
D1

]
=
iδ(k, η)

kD1

dD1

dη
. (1.53)

In the two previous equations and in Section 1.2 v is written for simplicity
without the vector symbol, but it is the Fourier component of the velocity
parallel to ~k. In terms of the linear growth rate f (eq. 1.38) and scale factor
a, the velocity field, is given by:

~v(~k, a) = ifaHδ(~k, a)
~k

k2
. (1.54)

Here the vector symbol is explicitly indicated. This equation shows the
relation between peculiar velocities and density field valid in linear theory.

The result of using the observed redshift as distance is that the resulting
distribution of objects appears distorted along the line of sight and this
induces anisotropy in the correlation function and power spectrum P (~k).
Using the linear theory approximation it is possible to quantify this
distortion, namely relate the underlying linear power spectrum in real space,
which is isotropic under the Cosmological Principle assumption, to the
redshift space anisotropic power spectrum. In order to do this, the distant
observer approximation is needed: it assumes that the galaxies are so distant
from the observer that, dubbed ẑ the versor pointing along the line of sight
from the observer (pointing to the centre of the galaxy sample under study),
and r̂ the versor pointing to a galaxy, the projection of the peculiar velocity
vector of that galaxy along r̂, r̂ · v, can be approximated by the projection
of the peculiar velocity vector along the line of sight, ẑ · v. In practice the
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galaxies under study must be sufficiently near to each other. Assuming the
distant observer approximation and linear theory, the relation between linear
power spectrum in real space and galaxy power spectrum in redshift space,
first derived by Kaiser (1987), is given by:

Pg(~k) = b2Plin(k)[1 + βµ2]2 (1.55)

where µ is the cosine of the angle between the vector ~k and the line of sight,
and the parameter β, dubbed linear redshift distortions parameter, is given
by:

β =
f

b
≈ Ω0.55

M (z)

b
. (1.56)

The linear bias parameter has been introduced in equation 1.55 in order to
account of the bias between galaxies and matter. Equation 1.55 shows that
the power spectrum is boosted in the direction of the line of sight, because in
that direction the peculiar velocities squash virtually the structures enancing
the power. The direction perpendicular to the line of sight is unaffected by
peculiar velocities, because the distortion affects only the radial coordinate
that in the distant observer approximation coincides with the direction
parallel to line of sight. Let decompose the k vector in the parallel and
perpendicular directions respect to the line of sight: ~k ≡ (k//, k⊥) . Fig.
1.4 shows the contour levels of the galaxy power spectrum in the plane
(k//, k⊥) and shows that , for small k’s, namely large scales, where linear
approximation is valid, the power spectrum is enhanced in the parallel
direction. The spherical average in k-space of the galaxy power spectrum
1.55, namely the monopole of the Legendre decomposition of Pg(~k), is given
by:

P (0)
g (k) = b2Plin(k)

(
1 +

2

3
β +

1

5
β2

)
. (1.57)

The monopole is boosted of the quantity:(
1 +

2

3
β +

1

5
β2

)
(1.58)

dubbed Kaiser boost.
All these relations are valid in the linear regime. On smaller scales the

galaxies are collapsing or are part of virialized structures, like the galaxy
clusters, and the velocities are random (in case of virialized velocities)
and so large that the structures appear elongated in redshift space. So,
galaxy power is damped on small scales due to this random motions. This
elongation along the line of sight is referred to as Fingers of God or simply
FoG. The FoG are generally accounted for by empirical damping formulas
(e.g. Hamilton, 1997; Hamilton et al. 2001; Blake et al. 2011), that are
the Fourier transform of the line of sight component of a random isotropic
pairwise peculiar velocities distribution function. The latter is generally
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assumed to be an exponential or gaussian in v, characterized by a velocity
dispersion parameter σ that is generally let free and marginalized over when
one tries to constrain cosmology from data.

Figure 1.4: Contour plots of the galaxy power spectrum in the plane (k//, k⊥).
The light solid contours are for the linear theory redshift space power spectrum:
Pg(~k) = Plin(k)[1 + βµ2]2; increase of power on large scales along the parallel
direction is shown. Heavy solid contours are from N body simulations: the results
agree with linear theory for large scales, on smaller scales power is damped along the
parallel direction due to FoG. Dotted contours are from the same N-body simulation
but removing the FoG: this remotion restores power on small scales. Plot from Cole,
1993.

Besides the random motions due to the virialized structures, random
errors on the redshift measures affect the power spectrum on small scales.
They are generally taken into account in the same way as FoG.



Chapter 2

The Galaxy Power Spectrum
estimate

As seen in the previous Chapter, the power spectrum is the variance of the
density fluctuation field in Fourier space, and corresponds to the Fourier
transform of its 2 point correlation function. In this Chapter we discuss
how we compute the power spectrum of a continous density field of a
distribution of discrete tracers. As first step we consider the simple case
in which the density field is defined in a cubic box with constant mean
number density, and show how an efficient estimator that exploits the Fast
Fourier Transform can be implemented. Then we focus on the more realistic
case of galaxy redshift surveys characterized by complex geometries and a
mean number density of objects that varies in space. The estimator that
we have considered and extensively applied throughout this thesis is the one
originally proposed by Feldmann, Kaiser and Peacock in 1994. We describe
it in detail. Finally we shall discuss the theoretical model of galaxy power
spectra from simple linear prescription to nonlinear models for bias and the
growth of density fluctuations.

2.1 Estimating the power spectrum

Let’s consider the simplified case in which the density field is defined in a
cubic box and the mean number density is constant within the all box.

Galaxies are discrete tracers and are assumed to sample the density field
following a Poissonian distribution. The galaxy fluctuation field is defined
in this way:

F (~r) ≡ ng(~r)− n̄
n̄

(2.1)

where ng(~r) =
∑

i δ(~r − ~ri) is the number density of galaxies, with ~ri being
the position of the ith galaxy. n̄ is the mean number density of galaxies,
constant in this case. In this case, apart from a shot noise term, dubbed

32
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Pshot and described below, the ensamble average of the squared modulus of
the galaxy fluctuation distribution (in Fourier space) coincides with the true
galaxy power spectrum P (~k):

< |F (~k)|2 >= P (~k) + Pshot (2.2)

This is true only under the simplified hypotesis of constant mean number
density and cubic samples. The shot noise term, Pshot, is due to the discrete
nature of the density field tracers, like galaxies, and would be measured even
if the galaxy density were constant (P (~k) = 0). Since galaxies are Poisson
samplers of the underlying density field and if the mean density is constant
then the shot noise contribution to power is: Pshot = 1/n̄.

The estimated power spectrum is then given by:

P̂ (~k) = |F (~k)|2 − 1

n̄
(2.3)

where P̂ (~k) indicates the estimator of the power spectrum P (~k). The shot
noise power is opportunely subtracted to the measured |F (~k)|2 in order to
obtain an unbiased estimation of the power spectrum.

The power spectrum P (~k) is a scalar function of the wavenumber vector.
As we shall see it may be convenient to express this quantity as a function of
k⊥ and k//, the components of ~k across and along the line of sight. In many
applications, however, one can assume that galaxy clustering is homogeneus
and isotropic and therefore is common to express the monopole of P (~k) i.e.
to express the power spectrum as a function of |~k|.

In order to estimate the monopole of the density field the power
spectrum, P̂ (~k), is averaged on spherical shells in k−space:

P̂ (k) ≡ 1

Vk

∫
Vk

d3k′P̂ (~k′). (2.4)

The main advantage of considering cubic samples is that one can
decompose the density field in Fourier modes and compute the power
spectrum directly from the Fourier coefficients. The latter can be efficiently
obtained through Fast Fourier Transform algorithms that make possible to
handle very large samples of objects (Press, 1992). This is what makes
Fourier-based scheme so attractive even when the geometry of the sample is
not cubic.

The practical steps to estimate the power spectrum are tipically the
following ones:

1. interpolation of the discrete galaxy distribution to an overdensity field
F (~r) defined onto a regular grid. Different interpolation schemes can
be used for this purpose;
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2. Fourier transform of F (~r) through an FFT algorithm and estimate of
the Fourier coefficients of the field F (~k);

3. computation of the squared modulus of the Fourier coefficients:
|F (~k)|2;

4. correction for the adopted interpolation scheme;

5. average of the Fourier coefficients in spherical shells in Fourier space
to compute the monopole of the power spectrum:

1

Nk

∑
k<|k|<∆k

|F (~k)|2 (2.5)

where ∆k is the shell size and Nk is the number of Fourier modes in
each shell. ∆k is tipically set to 2π/L where L is the lenght of the
computational box.

6. finally, shot noise subtraction:

P̂ (~k) = |F (~k)|2 − Pshot (2.6)

P̂ (k) =
1

Nk

∑
k<|k|<∆k

|F (~k)|2 − Pshot (2.7)

Before describing the technical details of the steps listed above it is worth
mentioning that Fourier decomposition is by no means the only way to
compute a power spectrum. Sometimes the geometry of the problem makes
more natural to adopt different approaches, especially when the focus is on
the anisotropies in the clustering and not on the monopole of P (~k). The
typical examples are all-sky surveys. In this case the density field traced by
galaxies can be more correctly decomposed using spherical harmonics and
Bessel functions in what is called ”Fourier-Bessel” decomposition (Tadros et
al. 1999). The drawback is the speed of the procedure which is much slower
than the ”standard” Fourier transform and, therefore, difficult to apply to
very large datasets.

On the other hand, the adoption of the Fourier decomposition approach
poses severe limits on the possibility to estimate anisotropies in galaxy
clustering since the underlying assumption is ”flat sky” in which all the line
of sights to galaxies are considered parallel to each other. Indeed a hybrid
approach has also been proposed (Beutler et al. 2013; Yamamoto et al.
2006) in which this approximation is adopted only in a local sense. Yet, this
method is significantly more computationally demanding than the Fourier
decomposition. For this reason in this thesis we will focus on the latter and
on the analysis of the P (k) monopole.
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2.1.1 Interpolation schemes

The first step consists in computing a continous density field for a discrete
set of objects. This is typically done by interpolating the mass of each object
onto a regular grid, before transforming it into the Fourier domain. The use
of a cubic grid is dictated by the need of applying the Fast Fourier Transform
technique (Press, 1986-1992). Note that most of the commonly used FFT
also impose a constrain on the number of gridpoints that should be equal to
some power of 2.

There is some freedom in the interpolation scheme. Basically
interpolation is performed using some polynomial functions whose order is
detemined by the nature of the problem. In this thesis we shall consider two
different mass assignement schemes (MAS): the nearest grid point (NGP)
and the cloud in cell (CIC) schemes. The interpolated density field is the
convolution between the original density field F (~r) with a MAS function
WMAS(~r) given by:

WMAS(~r) =

3∏
i=1

WMAS(xi) (2.8)

where the coordinate of the generic object xi = x, y, z for i = 1, 2, 3 are
expressed in unities of cell size. WMAS(xi) for NGP and CIC are:

WNGP (xi) =


1 if |xi| < 0.5
0.5 if |xi| = 0.5
0 if |xi| > 0.5

(2.9)

WCIC(xi) =

{
1− |xi| if |xi| ≤ 1
0 if |xi| > 1

(2.10)

The Fourier transform of WMAS(~r) is :

W̃MAS(~k) =

[
3∏
i=1

sin(πki/2kNy)

πki/2kNy

]p
(2.11)

where p is the order of the interpolation scheme. For NGP p = 1, for CIC
p = 2. kNy is the 1-dimensional Nyquist frequency that we describe in the
next Section.

After computing the Fourier transform of the interpolated density
field and the squared modulus of each Fourier mode |F (~k)|2, we use the
convolution theorem to correct for the MAS spurious signal:

|F (~k)|2 =
|FNC(~k)|2
W̃ 2
MAS(~k)

(2.12)

where the subscript NC on the right end side of this expression indicates
the Fourier coefficient before being corrected for the MAS.
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2.1.2 Aliasing

As for all the discrete Fourier transform methods (DFT) , the output will
be affected by aliasing. The typical scale of the aliasing problem is the
cell size, ∆. This quantity is determined by the size of the box in which
the power spectrum is computed, L, and the number of cells/grid points,
N , and corresponds to the spatial resolution with which the density field
is sampled. Let’s consider for simplicity a 1 dimensional Fourier transform.
The interpolated density field, obtained as described in the previous Section,
corresponds to a function sampled at a finite number of points (in our case
the grid points) separated each other by a regular interval ∆, the cell size.
Then, the sampling frequency of the density field (the function which must
be Fourier transformed), will be given by 1/∆. The computation of the
Fourier transform of a function from a discrete sample of points (in our case
the regular grid points), implies the periodicy of the Fourier transformed
field with period [0,2fNy], where fNy, the Nyquist frequency, corresponds to
an half of the sampling frequency and is given by 0.5/∆.The corresponding
wavenumber kNy is π/∆. All the modes out of the range [0,2fNy] are
spouriously moved , aliased, into that range. This effect will distort the
result. Generalizing to higher dimensions , also the 3D measured Fourier
coefficients and spherically averaged power spectrum will be affected by
aliasing.

The expectation value of the squared modulus of the Fourier transform
of the interpolated density field |F (~k)|2 is in principle given by (Hockney
and Eastwood (1981)):

< |F (~k)|2 >=
∑
~n

|W (~k+2kNy~n)|2P (~k+2kNy~n)+
1

n̄
|W (~k+2kNy~n)|2 (2.13)

where ~n is an integer vector. In order to obtain an estimate of P (~k)
(corrected for shot noise, aliasing and MAS) one should in principle solve this
equation. The first term on the right end side of the equation corresponds to
the contribution of the true power spectrum (multiplied by the MAS window
function) to the ~k mode plus all the spurious contributions at that k from
higher modes ~k + 2kNy~n, with ~n 6= 0 . The second term represents the shot
noise plus higher modes contribution. As described in Jing et al. (2005),
the shot noise term 1

n̄ |W (~k + 2kNy~n)|2 can be explicited through simple
analytic formulas, that can be easily computed and opportunely subtracted
to each Fourier coefficient |F (~k)|2. Jing et al. (2005) also suggest an iterative
method to obtain P (k) from

∑
~n |W (~k + 2kN~n)|2P (~k + 2kN~n). However in

this thesis we decided to correct for MAS simply dividing each Fourier mode
|F (~k)|2 by the square of the Fourier transform of the MAS function W̃ 2(~k),
according to formula 2.12. In this way we are not correcting for aliasing
induced by the finite sampling of the density field. This approach, 2.12, is
quite standard (Angulo, 2008). The typical scale of the aliasing problem,
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∆ = L/(N1/3), is chosen in order to push the Nyquist frequency to values
significantly higher than the scales of cosmological interest. In this thesis we
set ∆ to typical values ∼ 1 − 2 Mpc h−1, so that the Nyquist wavenumber
is equal or greater than 1 h Mpc−1. We see that aliasing (togheter with
a not properly exact correction for MAS) distorts significantly the galaxy
power spectrum only at ∼ 60% − 65% of the Nyquist frequency π/∆, i.e.
on physical scales much smaller than those in which we are interested for
cosmological analysis.

2.1.3 Geometry and selection effects

All the previous considerations are valid if the mean number density of
objects is constant within the sampled volume and if the volume is a
cube. However, real galaxy samples are seldom like that, unless they are
conveniently trimmed, which typically implies some loss of information. In
real world galaxy samples are selected according to observational criteria
that have a direct impact on the geometry of the sample and its mean
density.

First of all geometry effect. The area of the sky covered by the survey is
seldomly regular and, unless the angular size and the redshift is large, close
to a box-like shape. On the contrary the geometry can be rather irregular.
In this case the use of a Fourier based power spectrum estimator requires to
embed the sample within a larger box, zero padding the galaxy distribution
outside the suveyed regions. The measured power spectrum will then be the
convolution of the true galaxy spectrum and the so called window function
of the survey that accounts for its geometry. We shall discuss the effect of
convolution and how to account for it in Section 2.3.4.

The second selection effect is typically represented by the flux threshold
that is adopted in the survey.

All these selection effects are referred to as ’mask’, while we refer
exclusively to the geometrical characteristic of a galaxy sample as
’geometrical mask’.

One way to account for the flux cut is to extract a volume limited sub-
sample containing all galaxies that would have been included in the sample
if placed at a maximum distance. In practical terms given the flux of the
object, dMAX a maximum distance and a k-correction, an object at the
redshift z is moved at dMAX and removed from the sample if its new flux
is below the survey limit. This guarantees a constant mean number density
within the sample.

The downside of this option is to remove a significant amount of objects
(and information) while increasing the shot noise error. Alternatively one
can keep the whole flux limited sample and account for the variation in the
mean number density either by weighting each object by a statistical factor
that accounts for the flux selection or to model this selection effect in the
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window function similar to that used to account for geometry effects. In this
thesis we mainly extract flux limited samples and we shall use two type of
weighting schemes: the one described above and the weighting FKP scheme.
As we shall see in the next section FKP weights don’t account exactly for
the flux selection and their effect is modelled in the window function too.

2.2 The FKP estimator

FKP is one of the most commonly used galaxy power spectrum estimators.
It’s easy to implement and computationally fast since it relies on the FFT
technique. The FKP estimator of the galaxy power spectrum can deal with
the complex geometries of the galaxy redshift surveys and variations of
the mean number density due to selection effects, since density fluctuation
are defined with respect to a control sample of unclustered objects (the
random catalog) with precisely the same selction effects. The use of an
appropriate weighting scheme guarantees that FKP is a minimum variance
P (k) estimator.

2.2.1 Method

In the FKP framework, the galaxy fluctuation field is defined as:

F (~r) ≡ w(~r)[ng(~r)− αns(~r)]
[
∫
d3rn̄2

g(~r)w
2(~r)]1/2

(2.14)

where w(~r) is a weighting function introduced in order to minimize the
variance of the estimator, α and ns(~r) are functions that account for the
varying mean number density of objects as follows. ns(~r) represents the
number density at the point ~r of a sample of objects that are unclustered
but characterized by the same selection effects as the real sample, that is
to say, same geometry and redshift distributions. The number of objects in
this random catalog doesn’t need to match that of the real one. The ratio
between the two is set by a parameter α defined as:

α =

∫
d3rng(~r)w(~r)∫
d3rns(~r)w(~r)

(2.15)

which guarantees that the fluctuation field has zero mean < F (~r) >= 0.
Since this random catalog is used to compute the window function of the
sample it typically consists of a much higher number of objects, α << 1.

The weighted mask of the survey M̃(~r) = n̄g(~r)w(~r). The galaxy
fluctuation field can be factorized leading to:

F (~r) =
M̃(~r)

N

[
ng(~r)

n̄g(~r)
− αns(~r)

n̄g(~r)

]
(2.16)
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where

N =

[∫
d3rM̃2(~r)

]1/2

. (2.17)

When averaged on large values the second term on the right end side of the
2.16 is equal to 1.

The expectation value of the square of the Fourier transform of F (~r) is
given by:

< |F (~k)|2 >=

∫
d3r

∫
d3r′w(~r)w(~r′) < [ng(~r)− αns(~r)][ng(~r′)− αns(~r′)] > ei

~k·(~r−~r′)∫
d3rn̄2

g(~r)w
2(~r)

(2.18)
Under the Poisson sampling hypotesis equation 2.18 can be written as:

< |F (~k)|2 >=

∫
d3k′

(2π)3
P (~k′)|M(~k−~k′)|2 + (1 +α)

∫
d3rn̄g(~r)w

2(~r)∫
d3rn̄2

g(~r)w
2(~r)

(2.19)

where

M(~k) ≡
∫
d3rn̄g(~r)w(~r)ei

~k·~k

[
∫
d3rn̄2

g(~r)w
2(~r)]1/2

. (2.20)

The function M(~k) is the Fourier transform of the weighted mask of the
survey M̃(~r). Equation 2.19 is the generalization of equation 2.2. It shows
that the expected value of the squared modulus of the galaxy overdensity
field in Fourier space is given by the sum of two terms: the convolution
between the true galaxy power spectrum P (~k) and the window function of
the survey W ≡ |M(~k − ~k′)|2 and a term which represents the shot noise
contribution due the discrete nature of the tracers. The first term shows
that the window of the survey induce a correlation among different Fourier
modes. The second term is the shot noise power, given by:

Pshot ≡ (1 + α)

∫
d3rn̄g(~r)w

2(~r)∫
d3rn̄2

g(~r)w
2(~r)

. (2.21)

This term includes also the shot noise contribution of the objects of the
random catalog, that is in general less important because α << 1.

As for the constant density case, the FKP estimator of P (~k) is given by:

P̂ (~k) = |F (~k)|2 − Pshot. (2.22)

The subtraction of the shot noise term Pshot removes contribution to the
power simply due to the discrete sampling of the field. The final estimator
of P (k) is obtained averaging on spherical shells in k-space:

P̂ (k) ≡ 1

Vk

∫
Vk

d3k′P̂ (~k′). (2.23)
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2.2.2 Variance of the estimator

The variance of the FKP estimator P̂ (k) is obtained under the assumption
that the Fourier coefficients F (~k) are realizations of a Gaussian distribution.
As seen in the previous Chapter, this corresponds to the prediction of most
of inflationary models and observationally confirmed by the spectrum of the
CMB. The variance can be written as:

σ2
P ≡ < [P̂ (k)− P (k)]2 >=

1

V 2
k

∫
Vk

d3k

∫
Vk

d3k′ < δP̂ (~k)δP̂ (~k′) > (2.24)

where δP̂ (~k) = P̂ (~k) − P (k). Under the assumption that the Fourier
coefficients F (~k) are Gaussian distributed it follows that:

< δP̂ (~k)δP̂ (~k′) >= | < F (~k)F ∗(~k′) > |2. (2.25)

Using equation 2.19, < F (~k)F ∗(~k′) > can be written as:

< F (~k)F ∗(~k′) >=

∫
d3k′′

(2π)3
P (~k′′)M(~k−~k′′)M∗(~k′−~k′′) +S(~k′−~k) (2.26)

where the function S is defined as:

S(~k) ≡ (1 + α)
∫
d3rn̄g(~r)w

2(~r)ei
~k·r∫

d3rn̄2
g(~r)w

2(~r)
(2.27)

Let’s call ~k−~k′ = δ~k. If the survey is characterized by a compact geometry,
then the Fourier transform of the mask M(~k) is a rather compact function
that is defined over a range δk ∼ 1/D, where D is the typical size of the
survey. If |~k| >> 1/D, the quantity P (~k′′) can be extracted from the integral
in the right end side of the expression 2.26, that reduces to:

< F (~k)F ∗(~k′) >' P (~k)Q(δ~k) + S(δ~k) (2.28)

where Q(~k) is defined as

Q(~k) ≡
∫
d3rn̄2

g(~r)w
2(~r)ei

~k·r∫
d3rn̄2

g(~r)w
2(~r)

. (2.29)

So
< δP̂ (~k)δP̂ (~k′) >= |P (~k)Q(δ~k) + S(δ~k)|2. (2.30)

This formula, evaluated for ~k = ~k′, represents the variance of the estimator
P̂ (~k). It is given by the squared module of the sum of two terms: the
total power and the shot noise (equation 2.27 evaluated for ~k = 0, S(0),
corresponds to the shot noise contribution to power).

When the k-shell in which the spherical average is performed is large
compared to the coherence lenght δk = 1/D, namely when the effect of the
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mode coupling due to the presence of the mask is limited within each k-shell,
so that the different k-bins can be considered approximatively independent,
then equation 2.24 reduces to:

σ2
P (k) ' 1

Vk

∫
d3k′|P (k)Q(~k′) + S(~k′)|2 (2.31)

Therefore, using the Parseval’s theorem , the fractional variance of the power
is:

σ2
P (k)

P 2(k)
=

(2π)3
∫
d3rn̄4

gw
4[1 + 1/n̄gP (k)]2

Vk[
∫
d3rn̄2

gw
2]2

(2.32)

FKP weights. The optimal choice for the weighting function w(~r) is
obtained minimizing the fractional variance 2.32 with respect to w(~r) and
is given by:

wFKP (~r) =
1

1 + n̄g(~r)P (k)
. (2.33)

The use of the weighting function 2.33 requires a preliminary evaluation of
the P (k). In practice, it is approximated to the mean value of the recovered
power spectrum in the k-range of interest.

Substituting equation 2.33 into 2.32 gives

σ2
P (k)

P 2(k)
=

(2π3)

Vk

1

Veff
(2.34)

where Veff represents the effective volume of the survey that can be
explicited for clustering analysis as

Veff =

∫
d3r

[
n̄g(~r)P (k)

1 + n̄g(~r)P (k)

]2

. (2.35)

Let’s consider for simplicity the case of constant mean number density
n̄g(~r) = n̄g. In this case the effective volume reduces to:

Veff =

[
n̄gP (k)

1 + n̄gP (k)

]2

Vsurvey (2.36)

with Vsurvey equal to the survey volume, and the squared root of the variance
of the power spectrum is:

σP =

√
2π3

VkVsurvey

(
P (k) +

1

n̄g

)
(2.37)

The term (P + n̄−1
g ) corresponds to the squared root of the variance in the

power for a single k-mode: as already anticipated it is given by the sum
of power spectrum and shot noise (see section 2.1 for shot noise in case of
constant density ). The first term derives from having estimated the variance
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of the distribution of the fluctuations, namely the power spectrum P (~k),
from one single realization of the distribution, namely the single sampled
Fourier coefficient |F (~k)|2. The quantity VkVsurvey/2π

3 corresponds to the
number of independent modes within the k-shell in which we average in
order to obtain P̂ (k). In fact Vk corresponds to the volume of the k-shell
and 2π3/Vsurvey is the coherence volume in Fourier space. Each volume
can be considered approximatively independent from the others (Tegmark
1997). When Vsurvey → ∞ the statistical error on P̂ (k) tends to 0 and
the estimator tends to the true galaxy power spectrum P̂ (k) → P (k). The
overdensity field is real valued, so , the number of independent modes per
shell should be, more correctly, equal to VkVsurvey/4π

3, being ~k and −~k not
independent.

The first term of 2.37 : √
4π3

VkVsurvey
P (k) (2.38)

represents the cosmic variance contribution to the uncertainty. This term
dominates the error budget on large scales. It is due to the finite volume
under study and constitutes an intrinsic limitation to the precision with
which the power spectrum can be determined.

The second term is the shot noise contribution to the variance, due to
the discrete and finite sampling of the density field. It dominates on small
scales.

2.3 Practical implementation of the FKP estima-
tor

In this Section we show how FKP estimator has been practically
implemented. First of all, we show how we measure the mean number
density of a galaxy sample. Then, we briefly show how the FKP method is
implemented, and finally how one can account for the window survey.

2.3.1 The mean number density estimation

An accurate estimate of the variation of the mean number density of objects
across the sample is an important pre-requisite to the building of the mock
catalog and to obtain an unbiased estimate of the power spectrum. Here we
assume that spatial variation in the mean number density can be factorized
in two terms: one that quantifies angular variation and the other that
quantifies radial variations. The former is the subject of the next Section
in which we assume that it can be modelled with a geometry mask with
no angular selection effect within the surveyed area and zero mean density
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outside. Here we focus on the radial selection issue and on how to quantify
it.

The radial variation of the mean number density can be estimated in
different ways. One of them consists in counting objects in redshift bins,
derive the histogram of galaxy counts and smooth it to regularize the features
that large scale structures can imprint if the sample is not a fair sample. The
advantage of this approach is its simplicity and the downback is the lack of
rigorous criteria about the smoothing procedure.

A better method, more statistically robust is the F/T estimator, in Davis
and Hucra (1982), based on the measure of the selection function.

The technique consists in the evaluation of the selection function from the
observed counts. It has been applied on the 2MRS galaxy redshift survey
(Branchini et al. 2012) and provides results that are consistent with the
methods in which the radial selection function is derived from the luminosity
function of the sample (i.e. Schmidt , 1968). For this purpose two functions,
dubbed F (s) and T (s) are introduced, where s is the redshift in Km s−1.
For a given s value, T (s) represents the number of galaxies that would still
be included in the sample (i.e. bright enough) when placed at s′ > s. F (s)
is the number of objects that can only be detected out to s+ ds. The ratio
between F and T gives an estimate of the relative variation of the selection
function S(s) at distance s, independent from the local inhomogeneities.
The selection function can then be computed by integrating the differential
equation:

dlnS(s)

ds
= −F (s)

T (s)
(2.39)

The selection function is by definition proportional to the mean number
density , apart from a normalization factor A, that can be set directly from
the data. As outlined in Branchini et al. (2012), this method assumes no
dependence of the galaxy luminosity on the redshift and, consequently, the
selection does not evolve with the redshift. This is not true and a possible
luminosity evolution must be allowed for in the modelling and determined
by fitting the observed histogram of galaxy counts as a function of redshift.

2.3.2 Random catalog building

As we have seen the random catalog is an essential ingredient of the FKP
estimator and consists of a collection of unclustered objects with mean
number density equal to 1/α than the real catalog.The building of such
catalog is made in two steps. First we generate a random distribution
of objects in a cubic box with lenght L, encompassing the real catalog.
Each object is randomly placed at ~r ≡( xran, yran , zran ) where each
Cartesian coordinate is randomly sampled in the range [0,L] according to a
flat probability distribution. This temporary random catalog has a constant
density, and is 1/α denser than the maximum value of the mean number
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density measured in the real sample, n̄0. The factor 1/α is typically set to
a value greater than 10 to model accurately the survey mask. In the second
step, the temporary catalog is diluted by a spatially varying fraction n̄(~r)/n̄0

using the following Monte Carlo rejection procedure: we select an object of
the temporary catalog at ~r, draw a random number in the interval [0,1] and
compare it with n̄(~r)/n̄0. If the random number is larger, then the object is
discarded. Otherwise, we keep it. The resulting catalog has a mean number
density ns(~r) = n̄(~r)/α but no clustering properties. This is the catalog
used in the FKP estimator.

2.3.3 Steps to the implementation

The steps to estimate P (k) and its uncertainties, with the FKP method are
as follows:

1. estimate of FKP weights using 2.33 for both the real and the random
objects.

2. The weighted number densities of the real and the random catalog,
respectively given by

∑
g,i δD(~r − ~rg,i)w(~rg,i) and

∑
s,i δD(~r −

~rs,i)w(~rs,i), where ~rg,i is the position of the i-th real catalog object
and ~rs,i the position of the i-th random catalog object, are separately
interpolated onto a cubic grid, using CIC mass assignement scheme.

3. Estimate the difference density field in 2.14 as: [ng,W (~r)− αns,W (~r)],
where ng,W (~r) and ns,W (~r) are respectively the interpolated weighted
number densities of the real and the random catalog. The factor α,
specified in 2.15, is estimated as α =

∑
g w(~rg)/

∑
sw(~rs).

4. Fourier Transform of the difference field using FFT and correction for
the mass assignement scheme.

5. Compute the monopole by averaging over spherical k−shells:

F̂ (k) =
1

Nk

∑
k<|k|<∆k

|F (~k)|2 (2.40)

6. Compute the normalization factor 2.17:

N2 = α
∑
s

n̄g(~rs)w
2(~rs) (2.41)

7. Estimate the shot noise contribution to be subtracted from the power
spectrum:

Pshot = α(1 + α)
∑
s

w2(~rs). (2.42)
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8. Estimate of the power spectrum:

P̂ (k) = F̂ (k)− Pshot. (2.43)

9. Compute the statistical errors on P (k). The squared root of the
variance of the power spectrum FKP estimator (2.24) is computed
as:

σ2
P (k) =

2

N2
k

∑
~k′

∑
~k′′

|PQ(~k′ − ~k′′) + S(~k′ − ~k′′)|2. (2.44)

This expression accounts for possible correlations among the different
k-bins due to the window function convolution. Q(~k) is computed as:

Q(~k) =
α
∑

s n̄g(~rs)w
2(~rs)e

i~k·~rs

N2
(2.45)

and S(~k) as

S(~k) =
α(1 + α)

∑
sw

2(~rs)e
i~k·~rs

N2
. (2.46)

If we assume all Fourier modes are independent, which is not necessarly
true when a geometric mask is present, the squared root of the variance
reduces to :

σP (k) =

√
2

Nk
(P (k) + S(0)). (2.47)

where Nk is the number of modes sampled in each k-shell.

Expression 2.44 is quite tricky to express and it is valid only in the limit
of Gaussian distributed Fourier coefficients F (~k). In this thesis we estimate
the errors from mock dataset matching the properties of the real sample.
Given a set of independent mock catalogs, we evaluate the statistical error
from the rms scatter of the measured power spectra around the mean:

σP (k)

< P (k) >
=

1

< P (k) >

√∑Nmocks
i=1 (Pi(k)− < P (k) >)2

Nmocks − 1
(2.48)

where Nmocks is the number of mocks, Pi(k) is the measured power spectrum
of the i-th mock and < P (k) > is the mean among the mocks.

2.3.4 Mask Convolution

According to equation 2.19 and 2.22, the FKP estimator of the power
spectrum P̂ (~k), that from now on we generically refer to as the measured
power spectrum, Pm(~k), is the convolution between the true galaxy power
spectrum Pg(~k

′) and the window function |M(~k)2| = W (~k) (2.20).

Pm(~k) =

∫
d3ε

(2π)3
Pg(~k

′ + ~ε)W (~ε)− W (~k)

W (0)

∫
d3εPg(~ε)W (~ε) (2.49)
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The second term on the right end side of this expression represents the
integral constraint , and accounts for the fact that the measured power
spectrum is set to zero at k = 0 to guarantee a zero-mean density fluctuation
field.

The spherically averaged power spectrum , i.e. the measured monopole
of the galaxy distribution, is:

Pm(k) =
1

Vk

∫
Vk

d3k′
[∫

d3ε

(2π)3
Pg(~k

′ + ~ε)W (~ε)− W (~k)

W (0)

∫
d3εPg(~ε)W (~ε)

]
(2.50)

Let’s focus on the first term on the right end side of the 2.50 that
quantifies the convolution effect of the window function that needs to be
accounted for to extract the physical information encoded in Pg(~k

′) from the

measurement Pm(~k). The deconvolving procedure from which one obtains
Pg(~k

′) from Pm(~k) is notoriously challenging and plagued by numerical
instabilities. For this reason the common procedure, also adopted in this
thesis, is to model Pg(~k

′), estimate the integral on the right end side of

2.50 and compare the results with Pm(~k). The accuracy of this procedure
critically depends on the precision with which we can define W (~k).

We refer to the power spectrum obtained convolving a generic theoretical
model Pg(~k) with the window function as Pconv(~k), the convolved model
power spectrum.

In general the window function of the sample is not isotropic and one
should account for the explicit dependence on the single vector ~ε. However,
the geometry of the sample is reasonably regular (like in the case of all sky-
surveys) and one is interested in the monopole of the power spectrum then
one can consider the spherically-averaged window function Ws (Percival et
al. 2001, Cole et al.2005,Ross et al. 2013), defined as:

Ws(ε) =
1

4π

∫
dΩε′W (~ε′)δ(rε′ − rε) (2.51)

where dΩε′ is the solid angle element: sin(θ)dθdφ with θ polar angle and φ
azimuthal angle. rε = |~k + ~ε|. Ws does not depend on angles and can be
used to link the monopole of the true and measured power spectra:

Pm(k) =

∫
d3ε

(2π)3
Pg(|~k + ~ε|)Ws(ε) (2.52)

where the direction of ~k is kept fixed and the integral is over ~ε. A possible
drawback of this simplifying assumption is the systematic error that it may
be induced on possible clustering anisotropies, like redshift-space distortions,
that may compromise important cosmological information. In these case the
magnitude of this effect needs to be carefully quantified.
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In this thesis we verify that this approximation does not compromise
the extraction of cosmological parameters from the clustering of the 2MRS
galaxies.

In order to perform the integral 2.52 we follow Ross et al. 2013 (appendix
A) and perform the convolution integral with a matrix-based approach. The
actual estimate of Ws(|~ε|) is obtained directly from the random catalog by
computing the monopole power spectrum of the random sample using FFT:

Ws(ε) =
1

Nε

∑
ε<|ε|<ε+δε

[W (~ε)− Pshot,W ] (2.53)

where W (~ε) is the squared modulus of the Fourier transform of the
interpolated density field of the random catalog, corrected for the MAS,
Pshot,W is the shot noise and Nε is the number of Fourier modes in the
shell δε. Both the spherically averaged window function Ws and the power
spectrum of the real catalog Pm(k) are measured in discrete k-bins. As a
result, the integral convolution can be estimated as:

Pconv(ki) =
∑
j

W [ki][kj ]Pg(kj)−
Ws(ki)

Ws(0)

∑
j

W [0][kj ]Pg(kj) (2.54)

where W [ki][kj ] is the convolution matrix:

W [ki][kj ] =
1

2π2

∫ ∫
Ws(ε)ε

2Θ(rε, kj) sin(θ)dθdε (2.55)

where rε ≡ |~ki + ~ε| =
√
k2
i + ε2 − 2kiε cos(θ). Θ(rε, kj) is equal to 1 if rε is

within the kj bin and 0 otherwise. The second term on the right end side of
this expression is the spherical average of the integral constraint.

2.4 Modelling galaxy bias and redshift space
distortions

In this Section we focus on the modelling of the bias and redshift space
distortions. A model of the galaxy power spectrum is required to compare
the measured quantity with the theoretical predictions represented by the
convolution integral. The model galaxy power spectrum in 2.19, P (k′), needs
to account for galaxy bias, i.e. the fact that galaxies do not necessarly trace
the mass, possible non linear effects that affect the modelling of the mass
power spectrum and for the fact that observed redshifts are typically used as
proxy for the galaxy distance, hence inducing spurious redshift distortions
in galaxy clustering. We adopt the standard phenomenological approach of
using some simple but physically motivated models for the galaxy power
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spectrum that account for all these effects. These models are characterized
by a small number of free parameters.

A fairly general model for the monopole of the galaxy power spectrum
at z = 0 can be expressed as follows:

Pg(k) = b2Plin(k, P1)K(β)F (k, P2)G(k, σ) (2.56)

where Plin(k, P1) is the mass power spectrum in the linear regime that
depends on a number of cosmological parameters P1, b is the galaxy bias
that is assumed to be deterministic and linear and F (k, P2) is a term that
accounts for mildly non linear and scale-dependent effects both in the galaxy
bias and in the growth of density fluctuations. It is specified by a number of
free parameters P2 and can be included in the bias expression as well as in
the matter power spectrum. G(k, σ) is the damping term that accounts for
highly non linear motions characterized by a virial pair velocity dispersion
σ. K(β) is the Kaiser boost, eq. 1.58. We shall use the formalism described
by eq. 2.56 in Chapter 3 and 4.

The galaxy power spectrum on large scales should be sufficiently well
reproduced by:

Pg(k) = b2Plin(k, P1)K(β) (2.57)

where the linear theory prediction Plin(k, P1)K(β) is multiplied by a scale
independent bias.

In order to model the power spectrum in the mildly non linear regime,
several authors have proposed different analytic models. One of the most
diffuse in literature is the model proposed by Cole et al. 2005:

Pg(k) = b2K(k)K(β)Plin(k) (2.58)

where

bK(k) = b

[
1 +Q(k/k1)2

1 +A(k/k1)

]1/2

(2.59)

This expression, commonly referred to as Q-model, corresponds to a k-
dependent correction to the linear model 1.57. Without lack of generality
we fix k1 at 1 h Mpc−1.

Fig. 2.1 shows the power spectrum measures of the N-body Hubble
Volume simulation, both for dark matter and galaxies, from Cole et al.
2005. The upper panel shows the linear theory power spectrum Plin(k),
computed for the input cosmology of the simulation, denoted by a continous
line. The dotted curve represents the power spectrum of galaxies in real
space: the square of the large scale linear bias b is equal to 1.061 while
for k > 0.12h Mpc−1 the bias becomes scale dependent. The dashed red
line represents the power spectrum of galaxies in redshift space. On large
scales the power spectrum is boosted due to the coherent motions (Kaiser
boost, dubbed K) and the product b2K is equal to 1.441. On smaller scales
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the power spectrum is damped respect to the real space one , due to the
incoherent motions (FoG). The lower panel shows how the power spectrum
of the Hubble volume galaxies differs from the linear theory, both in real
and redshift space. The continous line shows what happens with the power
spectrum of the dark matter particles of the Hubble Volume simulation. It
differs significantly from linear theory on small scales. As explained in Cole
et al. 2005, the Hubble Volume simulations are realistic in some respects
but not completely physically motivated. This figure is shown here only to
give a qualitative idea of the differences between galaxy power spectrum and
linear theory.

The k-dependent correction 2.59, provides a good fit to the predictions
of semi-analitic models of galaxy formation, as shown in the paper. It has
been used in order to fit the full shape of the power spectrum of the 2dF
Galaxy Redshift Survey. In order to do this, the authors propose to fix the
A parameter to the result of the fits to the numerical simulation, A = 1.4
for the redshift space case (A = 1.7 for real space). The robustness of
this assumption is quite well supported by the Halo Model predictions, as
explained in the paper. Differently, the Q parameter is treated as nuisance
parameter, allowed to vary from 0 to approximatively the double of the
recovered value from the simulations and marginalized over when fitting the
2dF power spectrum measures.

One limitation of the Q-model is that it doesn’t account for the
dependence of the A parameter on the galaxy type, unless one considers
A as additional free parameter. Another limit of the Q-model is that it
doesn’t account for an eventual non-Poisson shot noise term, due to the fact
that, if galaxies form only in the dark matter haloes, they are not Poissonian
samplers of the density field.

Other possible models of bias and redshift distortions, that we use in
this thesis, are:

Pg(k) = b2K(β)Plin(k)(1 +Q(k/k1)2) (2.60)

and
Pg(k) = b2K(β)Plin(k)(1 +Q(k/k1)3/2) (2.61)

The first model is the Q-model for A = 0. The second one is analogous to
the previus one but shows a different dependence on k. In both cases k1 is
set to 1 h Mpc−1.

Another simple model for the bias is:

Pg = b2K(k)K(β)Plin(k) (2.62)

with
bK(k) = b+ b1(k/k1)n (2.63)

where b and b1 are constant. We refer to this model as P−model, a shorcut
for Power-law model. It is similar to the one obtained from a Taylor
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Figure 2.1: The upper panel shows the power spectrum of galaxies of the Hubble
Volume simulation in real space (dotted line) and redshift space (dashed line).
The continous line is denotes the linear theory power spectrum computed for the
input cosmological parameters of the simulation. The lower panel shows the ratio
between the galaxy power spectrum and b2sPlin(k) both in real and redshift space,
respectively dotted and dashed line (b2s = b2 in real space, b2s = b2K in redshift
space). The continous line is denotes the dark matter particles of the simulation.
Plot from Cole et al., 2005.
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estimates; for independent samples, we would expect differ-
ences comparable to the statistical errors. The errors from
our log-normal mocks shown on the independent NGP and
SGP estimates indicate that only on the very largest scales,
where the data points are highly correlated, do the estimates
differ by more than 1σ. If the likelihood analysis described in
Section 8 is applied separately to these two samples we find
Ωmh = 0.168 ± 0.035, Ωb/Ωm = 0.163 ± 0.075 for the SGP
and Ωmh = 0.205 ± 0.037, Ωb/Ωm = 0.116 ± 0.072 for the
NGP, which are entirely consistent within their statistical
errors.

6.8 Estimator

In Figs 17s and t, we compare the result of using the FKP
rather than the PVP estimator. We have adjusted the nor-
malization of the FKP estimate by a factor 〈b−2〉 to ac-
count for the normalization difference in the definition of
the two estimators. If galaxies have a luminosity dependent
bias, then the FKP estimator is biased, with the result that
one recovers a power spectrum convolved with an effective
window function that is slightly different to the one assumed
(PVP). Provided the model of luminosity dependent bias
is correct, then the PVP estimator removes this bias. The
two recovered power spectra shown in Fig. 17t differ only
slightly in shape indicating that the bias resulting from using
the FKP estimator, as was done in P01, is small. Further-
more, even if our model of bias dependence on luminosity
and colour is not highly accurate, the effect on the recovered
power spectrum will be significantly smaller than the differ-
ence between the FKP and PVP estimates and so entirely
negligible.

6.9 Summary

In conclusion, we have not identified any systematic effects
at a level that is significant compared to the statistical er-
rors. We return to this point in Section 8, where we show ex-
plicitly how various systematic uncertainties affect the likeli-
hood surfaces that quantify our constraints on cosmological
parameters.

7 NON-LINEARITY AND
SCALE-DEPENDENT BIAS

The previous Section has demonstrated that we can measure
the spherically-averaged redshift-space power spectrum of
the 2dFGRS in a robust fashion. We now have to consider
in detail the critical issue of how the galaxy measurements
relate to the power spectrum of the underlying density field.

The conventional approach is to assume that, on large
enough scales, linear theory provides an adequate descrip-
tion of the shape of the galaxy power spectrum. In reality,
this agreement can never be perfect, and we need a model
for the differences between the galaxy power spectrum and
linear theory. In this Section, we pursue a number of ap-
proaches for estimating such corrections; detailed simula-
tions, analytical models, and an empirical hybrid approach
are all considered.

Figure 18. The power spectrum of the mass and galaxies in the
Hubble Volume simulation cube. The solid curve in the upper
panel shows the input linear theory power spectrum. The dot-
ted and dashed curves show the power spectrum for the galaxies
in real and redshift space respectively. In the lower panel, using
the same line types, we show these galaxy power spectra divided
by the linear theory power spectrum, scaled by the square of ex-
pected bias factor. The solid curve shows the ratio of the mass to
linear theory power spectra.

7.1 Simulated galaxy catalogues

We start by considering the power spectrum of the Hubble
Volume galaxies. Fig. 18 shows results from the full Hubble
Volume, both in real and redshift space. Here, we use all 109

particles in the simulation cube weighted by the probability
of each particle being selected as a galaxy. On large scales
(k <∼ 0.1 h−1 Mpc) both the real-space and redshift-space
galaxy power spectra are related to linear theory by a simple
scale independent constant. The large scale linear bias factor
for the galaxies in real space is b = 1.03. On these large scales
the redshift-space power is boosted by the Kaiser (1987)
factor b2(1 + 2/3 β + 1/5 β2); here β = Ω0.6

m /b = 0.471, so
the expected boost factor is 1.441, in excellent agreement
with the simulation results.

In real space, both the mass and galaxy power spectra
begin to exceed the linear theory prediction significantly for
k >∼ 0.12 h Mpc−1. In redshift space, the smearing effect of
the random galaxy velocities reduces the small scale power
with the result that deviations from linear theory are greatly
reduced. This cancellation of the distortions caused by non-
linearity, bias and mapping to redshift space was used in

expansion of the mass density contrast (Fry and Gaztanaga, 1993). We note
that this model is also similar to the one proposed by Seo and Eisenstein
(2005) whose validity is limited to ranges of wavenumber where the power
spectrum can be well approximated by a power law. Note that for A � 1
and n = 1 the Q-model and the P-model are the same. Also in this case we
fix k1 at 1 h Mpc−1.

Other models have been proposed with stronger theoretical motivations
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(Smith et al. 2007 and references therein). These models account, for
example, for eventual non-Poisson shot noise term. Smith et al. 2007
propose a complex starting point for empirical modelling , which includes
non linear corrections galaxy type dependent and non Poisson shot noise,
that, for k << 1h/Mpc, is:

Pg(k, T ) = b2(T ){Plin(k)[1−A1(T )k2] +A2k
m(T )}+A0(T ) (2.64)

where T denotes the galaxy type. The factor [1−A1(T )k2] term in the right
end side of 2.64 accounts for the damping effect of BAO. The term A2k

m(T )

accounts for non linear bias and increase of power due to the correlations
among the k-modes. The term A0(T ) accounts for all possible sources of
constant power.

Another type of model of the galaxy power spectrum that we adopt
consists in using the non linear matter power spectrum output of the Halofit
code, Pnl(k), and modelling dynamical non linearities with the damping
factor, as follows:

Pg(k) = b2K(β)Pnl(k)G(k, σ) (2.65)

where

G(k, σ) =
π1/2

2

erf(σk)

σk
. (2.66)

The damping factor in the 2.65 is obtained averaging over all angles
the line of sight Fourier transform of the velocity distribution, given by:
exp

[
−(µkσ)2/2

]
, where µ is the cosine of the angle between ~k and the line

of sight. We show that also expression 2.65 provides a good model for the
galaxy power spectrum.



Chapter 3

Assessing Code Performance

The goal of this Chapter is to assess the performance of the code that we use
to estimate the power spectrum of the galaxy distribution. We do this in two
steps. First we test the performance of the code by comparing the results
with those of other implementations of the same FKP estimator. This code
contest was performed using the same test of ideal, mock dataset. Second,
focusing on our code, we assess the impact of the geometry and selection
effects typical of the catalog that we want to study, the 2MASS Redshift
Survey, on the power spectrum estimate. The goal is that of selecting the
best range of wave numbers in which one should perform the analysis of the
real data and obtain a first assessment of its accuracy.

3.1 Comparing different FKP codes

As we have seen, in our analysis of 2MRS we use the FKP method to estimate
the power spectrum of the galaxy distribution. An effective way of testing
the performance of our implementation of the method is that of comparing
the results obtained by our numerical code with those obtained by other
codes, independently estimated by other authors. We have done this in the
more general framework of the code contest that has been set up to select
the best performing FKP code to be further developed within the Euclid
Consortium and that it will be used to estimate the power spectrum of the
galaxies in the Euclid spectroscopic survey (Laurejis et al 2012).

The codes considered in this contest besides ours were:

• the FKP code developed by A.Balaguera-Antolinez, dubbed B-code,
and used to analyse the spatial distribution of Galaxy Clusters in the
Reflex survey (Balaguera-Antol̀ınez et al. 2011);

• the FKP code developed by W. Percival and L. Samushia (S-code)
and extensively used to estimate the power spectrum of galaxies in
the SDSS and BOSS surveys.

52
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All codes are based on the Fast Fourier Transform technique. Unlike
these two codes, which are based on the FFTW public libraries (Frigo &
Johnson, 2005), our code (dubbed C-code) uses the FFT routine described
in the Numerical Recipes libraries (Press, 1992). Furthermore, B and S-
code use NGP, CIC and TSC mass assignment schemes (MAS) and their
corrections to interpolate the density field at the grid positions. TSC is an
higher order mass assignement scheme. Our code uses NGP and CIC mass
assignement schemes. The three codes have been used to analyze the same
simulation distribution of 12798 galaxies in a cubic box of 200 h−1 Mpc
with a density field interpolated onto a grid 2563. The sample has been
extracted from the so called ”100 deg2” mock galaxy catalogs 1 obtained
by applying the Semi-Analytic galaxy formation model ”GALFORM” (Cole
et al. 2000, Baugh et al. 2005, Bower et al. 2006) to the outputs of
the Millennium N-body simulation (Springel et al. 2005). The simulated
volume consists of a lightcone with a sky coverage of 100.206 deg2 spanning
the redshift range [0.0, 2.0]. Mock galaxies are characterised by angular
position, redshift, comoving distances (according to the cosmological model
of the parent N-body simulation) and several observational properties among
which the luminosity of the Hα line. The cubic sample used for these tests
consists in a volume limited sample extracted along the line of sight from
the lightcone at redshift 0.75.

The code-by-code comparison has been performed considering the partial
output (interpolated density field onto a grid, its Fourier transform, the MAS
corrections, the shot-noise correction) as well as the final one in the form
of spherically averaged power spectrum. To illustrate the outcome of the
contest we focus on the final output only. Figure 3.1 shows the output
of the three codes (B, S and C) when the same density field is considered
(i.e. skipping the mass interpolation step). The upper panels show the
monopole power spectra of the three codes whereas the bottom panels
illustrate the relative % differences between the B-code and S-code. The
difference between our code (C-code) and the B-code are not shown in the
figure: they are below 10−10% and probably purely numerical. Plots on the
right panel show the effect of the MAS (CIC) correction. Clearly the relative
agreement among the codes is excellent. Differences are below 10−5%. The
agreement is also excellent when, starting from the same distribution of
objects rather than the same density field, we take into account of the impact
of the CIC interpolation schemes.

Based on this result we have decided to proceed with the analysis using
our own code.

1The catalogs are available at http://astro.dur.ac.uk/∼ 40qra/lightcones/EUCLID/
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Figure 3.1: Cross comparison of the three FKP codes considered in the contest.
Upper panel: power spectrum. Lower panel: relative differences (in %). In the
upper panel different colours are used for the various codes, as illustrated by the
captions. B-codes: Balaguera Antolinez code; S-code: Percival-Samushia code; C-
code: our code. All codes have been applied to the same density field. The lower
panel shows the relative differences between B and S code. Differences between our
code and B-code are below 10−10%. Plot courtesy of A.Balaguera Antolinez.
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3.2 Tests with BASICC simulation: real space

The previous test used a distribution of objects within a cubic box. However,
here we are interested in the power spectrum of very wide and yet not
completely all-sky survey with a well defined flux limit and incomplete sky
coverage. Both effects can be encoded in the window function, that we
have introduced in the previous Chapter 2. Here we adopt this option in
order to account simultaneously for these effects. The combined effect of
these selections can be evaluated and eventually accounted for by means of
mock catalogs of galaxies to which we apply the same selection effects as the
2MRS catalog. The assessment is then obtained by comparing the power
spectrum of the ideal, i.e. with no selection applied, galaxy distribution
to the one of the realistic mock sample in which the selection has been
properly quantified. A statistically sound estimate of the effect requires a
large number of mock catalogs. Therefore the parent catalog needs to be
large and dense enough to allow a reliable estimate of the reference power
spectrum and to extract a sufficiently large number of mock catalogs. These
are quite demanding constraints that, in practice, will not allow an accurate
modelling of the 2MRS selection. Therefore, in this Chapter, we aim at a first
assessment of the effect of the window function, mainly aimed at spotting
possible systematic errors and identifying the range of scales suitable for
clustering analysis in the 2MRS, and postpone a more precise assessment
of the 2MRS random errors to the next Chapter in which we use a more
realistic set of mock samples.

3.2.1 Parent simulation and mock catalogs

Mock galaxy catalogs for the analysis presented here were extracted from
the high resolution N-body simulation BASICC, acronymous for Baryon
Acoustic Simulation performed at the ICC (Angulo et al., 2008) using the
publicly available GADGET-2 code (Springel 2005). Initial conditions were
set up from a Gaussian realisation of the CAMB 2 (Lewis et al., 2000) power
spectrum of density fluctuations. The gals-like particle distribution was then
evolved using the Zel’dovich approximation up to z = 60. The cosmological
model adopted is the same as the Millennium Simulation: ΛCDM cosmology
with ΩM = 0.25 , ΩΛ = 0.75 , σ8 = 0.9 and h = 0.733.

The BASICC simulation is dark matter only and consists of 14483

particles with mass m = 5.491010h−1Msolar loaded within a cubic volume
of side 1340 h−1 Mpc. Outputs are stored at different redshifts. We only
consider the one corresponding to z = 0. Dark matter haloes are identified
using the Friend of Friend algorithm with linking length equal to 1/5th of

2camb.info/
3h represents the Hubble constant in unity of 100Kms−1Mpc−1
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the mean interparticle separation. Since we do not aim at realistic mocks but
only at assessing the impact of the window function we make the simplistic
assumption that each halo contains only one 2MRS galaxy, sitting at its
center, and we build 2MRS mocks by considering all dark matter halos with
more then 10 particles which allows to have enough objects (17258579 in
total corresponding to a number density of 7.2 ∗ 10−3Mpc−3h3) to match
the number density of 2MRS galaxies. We notice that with a threshold
of 10 particles per halo we expect that a non negligible fraction of these
haloes will be simply a temporary clump of unbounded objects rather than
genuine virialized structures. This would affect the estimate of the true
power spectrum. However, this is not a concern here where we rather aim
at assessing the relative difference between power spectra.

We divide the computational cube at z = 0 into 125 not overlapping
smaller cubes with size 256 h−1 Mpc now containing dark matter haloes
only. Small variations in the mean number density in each of the cubes
reflects the effect of cosmic variance. For the aim of this analysis each
catalog is characterised by its comoving coordinates only, ignoring peculiar
velocities. As a result the clustering analysis presented in this Section is
performed in real space. Redshift distortions will be accounted for in the
next Section. As we describe in detail in the next Chapter, the 2MRS
window function is quite simple: the 2MRS is an almost all sky survey
with no objects within a latitude of ∼ 5 degrees from the Galactic plane.
The region within that latitude is dubbed Zone of Avoidance. To mimic
the effect of the 2MRS window function we extract, from each sub-cube,
all haloes within a distance of 128 h−1 Mpc from the center. This radius,
within which the mean number density of 2MRS galaxies is ∼ 10−3Mpc−3h3,
is close to the maximum distance that we shall consider in the real catalog
analysis. We then randomly dilute the distribution of haloes to match the
dN/ds (the redshift s = cz is expressed in km s−1) of the more realistic
2MRS mocks that we will describe and extensively use in the next Chapter.
The result of this second step is illustrated in fig. 3.2. The blue line shows
the mean dN/ds over 135 realistic mocks that here we use to average out the
effect of cosmic structures and obtain a dN/ds representative of a generic
galaxy sample. The mean dN/ds estimated in this way is sufficient for the
purposes of these preliminary tests, and we don’t adopt the F/T method
here. The mean number density of dark matter haloes is similar but smaller
than that of the 2MRS galaxies in the realistic mocks. As a result, when
extracting random subsamples we undersample objects near the center of
the spheres. To minimise the effect we keep all the haloes within 7000 km/s
and randomly select the others according to the reference dN/ds. The result
is the black curve, in which the discrepancy below 7000 km/s illustrates
the effect of the mismatch in the mean number densities. However, this
mismatch is not large (it affects a limited number of nearby objects) and its
effect is to overestimate the impact of the window function and artificially
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increases the shot noise level.
As a final realistic touch, we model the Zone of Avoidance of the 2MRS

by excluding all objects within ±5 degrees from the Galactic plane that we
define by laying to a set of spherical coordinates centred at the center of the
cube.

Figure 3.2: dN/ds of 135 2MRS realistic mocks (blue curve) vs. dN/ds of the
mocks extracted from the BASICC simulation.
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The main scope of this analysis is to assess systematic errors driven
by the window function. For this purpose and to assess the impact of the
various selection effects, we compute and then compare different types of
power spectra listed below:

1. The reference power spectrum obtained considering all haloes within
the BASICC simulation cube with no selection applied: P0.

2. The mean power spectrum computed from haloes in the 125 sub-cubes
when no selection is applied: PC .

3. The mean power spectrum computed from haloes in the 125 spheres
extracted from the sub-cubes when no selection is applied: PS . The
corresponding window function is a top hat sphere.

4. The mean power spectrum computed from haloes in the 125 spheres
with the dN/ds selection: PSR. The corresponding window function
is spherically symmetric with a radial profile dN/ds in fig. 3.2.
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5. The mean power spectrum computed from haloes in the 125 spheres
with the dN/ds selection and the Zone of Avoidance: PSRZ . The
corresponding window function is axis-symmetric with a ±5o disk-like
void and the rest in which the halo radial distribution is described by
the dN/ds.

In all cases, the power spectrum was estimated using a random sample
of objects with the same window function as the halo distribution.

In Table 3.1 we summarize the characteristics of the cubic boxes used to
compute the power spectra and their grids.

Table 3.1: Characteristics of the computational box for each subsample and step.
P (k)=type of power spectrum. N = number of grid points. L = side of the
computational box in h−1Mpc. ∆k = k-bin in h Mpc−1.

P (k) N L ∆k

P0 10243 1340 0.0094

All the others 2563 256 0.024

Table 3.2 shows the characteristics of the various mocks subsamples for
which the power spectra have been computed.

Table 3.2: Characteristics of the BASICC subsamples. P (k)=type of power
spectrum. L = side of the computational box in h−1Mpc. R = maximum distance
from the center in h−1Mpc. n̄(s) mean number density in h3 Mpc−3. ZoA = Type
of the zone of avoidance (degrees above and below the Galactic Plane).

P (k) L R n̄(s) ZoA

P0 1340 n.d. 7.2 ∗ 10−3 ±0◦

PC 256 n.d. 7.2 ∗ 10−3 ±0◦

PS 256 128 7.2 ∗ 10−3 ±0◦

PSR 256 128 2MRS-like dN/ds ±0◦

PSRZ 256 128 2MRS-like dN/ds ±5◦

3.2.2 Assessing the impact of the weighting scheme

Each power spectrum has been computed with the two different weighting
schemes described in Chapter 2: the first method, dubbed W1, consists in
weighting each halo with the inverse of the local mean number density , the
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second method, dubbed W2, consists in using the standard FKP weights.
The aim of this Section is to evaluate possible differences between the two
methods in order to assess the best method to be used in the 2MRS catalog
analysis. FKP weights, explicited in equation 2.33, depend on the power
spectrum and, in principle, should be computed iteratively. However, this
has little impact on the final result and it is common practice to adopt
the value of a reasonable (i.e. ΛCDM) power spectrum evaluated at the
scale relevant for the analysis. Our 2MRS analysis will be limited to the
wavelength range ∼ 0.03 − 0.4 h Mpc−1 to compromise between cosmic
variance and nonlinear effects . We set P ≡ 8000h3 Mpc−3 that corresponds
to the mean value of a ΛCDM power spectrum at z = 0 in the approximate
k range [0.05,0.15] h Mpc−1. We have verified that the results do not change
appreciably when using values larger than 5000h3 Mpc−3.

Fig. 3.3(a) shows in blue the mean difference between PSRZ computed
with W1 and PSRZ computed with W2, | < PSRZ,i(W1)− PSRZ,i(W2) > |,
where i varies from 1 to 125 and the mean is over the all 125 subsamples.
The rms scatter of the measures < (PSRZ,i− < PSRZ,i >)2 >1/2 from W1 is
plotted in red.

Figure 3.3(a) shows that systematic differences between the two methods
are well below the scatter of the estimator and that the scatter of both
methods are very similar (overlapping red and blue curves in Fig. 3.3(b)).
This result shows that, in this case, the two weighting schemes are quite
similar. Which is not surprising since the mean number density, and
therefore the quantity n̄P , is sufficiently large to guarantee that the FKP
weights are close to the asymptotic value 1/n̄, i.e. the W1 weighting scheme.
From here on we decide to use the standard FKP weighting scheme for
the 2MRS analysis because FKP weights, built to minimize variance of the
estimator, give a slightly smaller scatter as can be seen in fig. 3.3(b), as
expected.
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Figure 3.3: Upper plot: mean discrepancy between the power spectra obtained
with method 1 and method 2 (blue curve) vs. the rms scatter among the mocks
of the power spectrum evaluated with method 1 (red curve). Bottom plot: rms
scatter of method 1 (red) vs. rms scatter of method 2 (blue).
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3.2.3 Assessing window-induced systematic errors

Limited sky coverage and flux cuts can, if not properly accounted for, induce
systematic errors in the power spectrum estimate. Their amplitude depends
on the geometry of the survey and the number density of the objects. The
effect of the latter can be minimized by limiting the depth of the survey and
by using an appropriate weighting scheme, as shown in the previous Section.
The former is also supposed to have a limited impact thanks to the simple
geometry of 2MRS that, because of its very large sky coverage, is close to
spherical. The impact of the window function is illustrated in fig. 3.4 where
the reference power spectrum P0(k) (black curve) is compared with the mean
power spectrum measured in the 125 spheres PSRZ(k) (purple solid) and its
rms scatter (purple shaded area). All spheres are embedded in a cube with
no objects beyond the sphere radius. Power spectra were measured with the
FKP estimator and the mean density used in the weighting scheme is the
one measured within each sphere (for the PSRZ(k) case). The fact that the
minimum wavenumber kmin are different for the two spectra simply reflects
the different side of the two boxes used: kmin = 2π/256h Mpc−1 for PSRZ(k)
and kmin = 2π/1340h Mpc−1 for P0(k). For the same reason the resolution
is different in the two cases. Since for P0(k) we set the shell size in which
the power spectrum is computed ∆k = 2π/1340h Mpc−1 whereas for the
PSRZ(k) the shell size is ∆k = 2π/256h Mpc−1, for the purpose of comparing
the two spectra, we degrade the resolution of P0(k) to that of PSRZ(k) by
averaging over the same ∆k shells.

At small ks the power PSRZ(k) is systematically below P0(k), which is
reasonable since in this case the volume sampled is smaller. However, the
significance of the mismatch is well below 1 σ defined from the rms mock
scatter shown in the plot.

Fig.3.5 illustrates the individual effect of all the contributions to the
window function. The top-left panel shows the relative difference between
P0(k) and PC(k), averaged over the sub-cubes. The only mismatch is at
small values of k and derives from the fact that, on those scales, the BASICC
cube contains more modes that those in the 125 non-overlapping cubes. On
the top right we show the effect of considering a spherical, rather than a
cubic volume. The red curve shows the relative difference between P0(k)
and PS(k) averaged over all spheres. Discrepancies are still small but larger
than in the previous case. The fact that the volume covered by the sphere is
smaller than that of the corresponding cube is reflected in the loss of large
scale power, which is now more prominent than in the top-left panel. The
bottom-left plot shows the effect of diluting the spherical sample to match
the observed dN/ds. FKP weights compensate for the loss of objects due
to the radially-varying galaxy distribution. Finally, the bottom-right panel
shows the cumulative effects of all selections, including that of the Zone of
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Figure 3.4: P0(k) estimated with FKP (black, solid curve) vs. PSRZ (k) (purple,
solid) and its rms scatter from the mocks.
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Avoidance whose main effect is to enhance the loss of large scale power.
The total systematic error induced by the window function is about 10 %
at k ∼ 2kmin.

Fig. 3.6 shows the ratio between the estimated systematic error due
to the survey window and the statistical estimated error, σSRZ(k). The
former is computed as shown before, as difference between ”reference”
power spectrum, P0(k), and mean power spectrum of the sampled spheres,
characterized by geometrical and selection properties of the real survey,
PSRZ(k). The latter is computed as standard deviation of the PSRZ(k)
respect to the mean.

This ratio is smaller than one at any k , meaning that the effect of
the mask on power will be in any case smaller than the precision of the
measure, but can not be considered negligible respect to the statistical
uncertainties. It’s more than 30% around kmin, and in general around one
third of the scatter at the smallest sampled ks. This suggests to correct for
this systematic. The strategy to account for systematic errors induced by
the 2MRS is outlined in Section 3.2.5.
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Figure 3.5: Relative errors induced by the various selection effects in 2MRS. Top
left: effect of finite volume. Relative difference between P0(k) and PC(k), averaged
over the sub-cubes. Top right: effect of the spherical window. Relative difference
between P0(k) and PS(k) averaged over all spheres. Bottom left: effect of flux
limit and its dN/ds. Relative difference between P0(k) and PSR(k) averaged over all
spheres. Bottom right: cumulative effect of volume, flux and Zone of Avoidance.
Relative difference between P0(k) and PSRZ(k) averaged over all spheres.
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Figure 3.6: Ratio between the estimated systematic error due to the survey
window and the statistical estimated error, σSRZ(k).
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3.2.4 Setting the k−range of the analysis

The range of wavenumbers appropriate for our analysis is determined by
both the scientific goal of our analysis and the expected accuracy. At large
scales the dominant source of error is cosmic variance. At small scales is
shot noise. In addition, at small scales the cosmological interpretation of
the results is hampered by nonlinear effects. Let us consider the two scales
and their errors separately.

As anticipated in Section 2.1.2, the smallest accessible scales are those
corresponding to the 65% of the Nyquist frequency that in our case is:
π(N1/3)/L = 3.14h Mpc−1, where N is the number of grid points of the
computational box, and L the side of the box (here N = 2563 and L = 256
h−1 Mpc, see Table 3.1). At z = 0 this scale is well within the nonlinear
regime. Therefore the maximum wavenumber, kmax, to which we can push
our analysis will be set by the scale where nonlinear effects become dominant
and difficult to model. We shall address this point in the next Chapter. Here
we anticipate that the maximum non linear scale that we use in the analysis
is kNL ∼ 0.4 − 0.5h/Mpc. To determine the maximum scale we compute
relative rms scatter PSRZ to the mean value, defined in eq. 2.48.

This noise to signal ratio is shown in fig.3.7 as a function of k. The
continuous curve shows the ratio estimated from the mocks. The dashed one
is the theoretical prediction from FKP (eq.2.47). This expression assumes
independent Fourier modes and Gaussian random field. None of these
assumptions is fully valid in our case. First, the geometry of the sample
and the nonlinear evolution mix the various Fourier modes. In addition, a
nonlinear evolved density field is also non Gaussian. These effects justify
the fact that the actual errors in the plot are larger than FKP predictions
that assume independent Fourier modes. Indeed, because of the nonlinear
evolution or indeed any deviations from Gaussianity, non-vanishing off-
diagonal terms arise in the power spectrum covariance matrix due to the
mode coupling. These contributions are fully described by the trispectrum,
whereas contributions from the bispectrum vanish (Scoccimarro et al. 1999).
These additional contributions to the power spectrum variance include the
so called beat coupling effect. In our case the fact that we use the mean
number density in each sphere should guarantee that these off-diagonal terms
are small, but not completely negligible as demonstrated by de Putter et al.
(2012).

The results indicate that the relative random errors can be kept at
the 20% level for kmin ≥ 0.06 h Mpc−1, increasing to 20 − 30% in the
0.03 < k < 0.06h h Mpc−1 interval.

To summarize, we shall restrict the power spectrum analysis of the 2MRS
to the interval [kmin, kNL], where kNL ∼ 0.5 and kmin ∼ 0.06, although we
occasionally push the analysis out to k ∼ 0.03.
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Figure 3.7: Noise to signal ratio obtained from the rms scatter of PSRZ(k) (solid
curve) vs. the theoretical expression from FKP (dashed).
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3.2.5 Modelling the effect of the window

In this Section we assess the ability to account for the effect of the window
function and to recover the underlying power spectrum. We have seen in
subsection 3.2.3 that the systematic window induced error is around 40% -
30% of the rms scatter for the smallest sampled ks so we have to reduce it
taking into account of the convolution with the window function.

We do this in two steps. First we consider the case of a simple window
function that can be described analytically and assess the numerical accuracy
of the convolution integral. This is a relevant test since, as we have said, the
2MRS window function is close to a spherical top hat, for which an analytic
expression is available. Then we repeat the exercise using the numerical
estimate of the same window function to check whether our numerical
modelling of the window function introduces additional errors.

This test is performed with the same samples described in section 3.2.1
and extracted from the BASICC simulation.

To assess the accuracy of the convolution model we use P0(k) as the
”true” power spectrum and an analytic or numerical model for the window
function, as described below.

For the first test we consider purely spherical samples with measured
power spectrum PS(k). In this case the window function is a simple spherical
top hat with radius 128 Mpc h−1 and its Fourier transform is:

Wth(k) = ((4π/k3)
(sin(kR)− kRcos(kR))2

((4/3)πR3)
(3.1)

Then we perform the convolution integral 2.52 using P0(k) as underlying
power spectrum, as anticipated, and compare the result with the measured
PS(k), the mean power spectrum of the 125 spherical samples.

To numerically estimate the convolution 2.52 we use the numerical
estimator 3.2. We verify that the effect of the integral constraint is negligible
in the k−range explored so that our estimate of the convolved power
spectrum is:

Pconv(ki) =
∑
j

W [ki][kj ]P0(kj). (3.2)

The elements of the convolution matrix W [ki][kj ] are computed as in eq.
3.3:

W [ki][kj ] =
1

2π2

∫ ∫
Wth(ε)ε2Θ(rε, kj) sin(θ)dθdε (3.3)

where Wth(ε) corresponds to the analytical expression 3.1.
The numerical estimator 3.2 is computed for discrete k-bins, ∆ki and

∆kj . The size of ∆ki corresponds to the resolution of the measured power
spectrum , in our case PS(k), with which we want to compare the convolved
power spectrum Pconv(ki). In our case ∆ki = 2π/L = 0.024 h Mpc−1, where
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L = 256 Mpc h−1 is the size of the boxes in which PS(k) is computed, and
that corresponds to the diameter of the spherical samples. This resolution
can’t be improved because of cosmic variance. ∆kj is typically related to
the resolution with which the window function is measured. We adopt
∆kj = 0.0047 h Mpc−1 both for the analytical top hat and the measured
window function. The power spectrum P0(kj) is truncated at k = 1.79
h Mpc−1. Beyond that scale we can’t neglect aliasing, being the Nyquist
wavenumber equal to 2.4 h Mpc−1 (see table 3.1 for details on box size and
number of grid points).

The comparison of the convolved power spectrum with the mean PS(k)
is in fig.3.8. Errorbars reflect the rms scatter of PS among the mocks,
normalized by Pconv(k). The result shows that our convolution procedure
does not introduce systematic errors down to kmin, where the window
function effects are expected to be larger.

Figure 3.8: Convolution with analytic spherical top hat (R=128 Mpc/h) and
comparison with PS(k).

0.0 0.2 0.4 0.6 0.8 1.0

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10

@h�MpcDk

P
S

Hk
L�

P
co

nv
Hk

L

In the second test we have repeated the same exercise using again PS(k)
and a numerically estimated spherically averaged window function, Ws(k),
that we have computed as follows. We use the random catalog used to
measure the power spectrum of the constant mean number density spheres:
it consists in a top hat sphere with radius R equal to 128 Mpc/h filled with
random points. We compute Ws(k) from this distribution of random objects
in the same way we compute the power spectrum of the spheres extracted
from the simulation: we interpolate the density field on grid 10243, with CIC
mass assignement scheme, compute Fourier coefficients with FFT technique
and then spherical average in k bins. In order to improve the resolution
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of Ws(k), the computation has been carried on in a box of side L equal to
1340 Mpc/h greater than the spherical volume sample. The sampling of
modes is finer and the window is computed in bins ∆k = 2π/1340h /Mpc
= 0.0047. We deduced that this resolution is sufficient in the sense that
increasing resolution does not affect the results. The spherically averaged
window function Ws(k) is truncated at k ' 65% of the Nyquist wavenumber
kNy to avoid aliasing impact on the measure. The comparison between the
analytical top hat function and its numerical estimate obtained from the
top hat spherical distribution of points is shown in fig. 3.9. As can be
seen the measured window (red curve) matches quite well the analytical
top hat (blue curve). The numerical estimate in fig. 3.9 shows some
discontinuity that can affect the numerical integration. To avoid this we
fit a spline to the spherically averaged window function and obtain a more
regular function. The result of the convolution is then compared to the
expected power spectrum PS(k) in fig. 3.10 which is analogous to fig. 3.8
and we find that the accuracy of the numerically estimated window function
is good enough to avoid introducing systematic errors except, perhaps at
the smallest scales.

Figure 3.9: Top hat window function: analytical function (blue) vs. numerical
estimate (red).
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Figure 3.10: Convolution with the top hat computed window and comparison
with PS(k).
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Finally, we focused on the more realistic case PSRZ(k). We have repeated
the same procedure to compute the new window function that now accounts
for the dN/ds, FKP weights and Zone of Avoidance that we plot in fig.
3.11 togheter with the top hat one. The similarity between the two window
functions shows what we anticipated: the 2MRS window function is quite
simple and not too different from the cases of an ideal all-sky survey. The
results of the convolution are compared with the expected PSRZ(k) in fig.
3.12 which is analogous to 3.8. No systematic deviations from unity are
detected for k < 0.7 h Mpc−1. Discrepancies of 1%-2% are seen at smaller
scales at which, however, we do not perform our analysis. The discrepancies
are probably due to the fact that we have truncated the window function at
kmax = 1.2 h Mpc−1 to avoid aliasing. We don’t see any systematic when
the analytic top-hat window function is used (fig.3.8), for which, thanks to
the fact that aliasing is not an issue in this case, we set kmax = 2.0 h Mpc−1.
We verified that reducing progressively the value of kmax and performing the
convolution integral using both the analytical expression for the spherical
top hat and the numerical one, the ratio PS(k)/Pconv decreases progressively,
especially at large ks. This possibly explains the differences between fig.
3.8 and fig. 3.10. The discrepancies at small scales are more pronounced
when the realistic window function computed numerically is used (fig. 3.12),
although, in this case, we have truncated the window function at the same
maximum wavenumber kmax = 1.2 h Mpc−1 as in the case of the numerical
estimate of a top hat window function (fig. 3.10). Although very similar,
the realistic window function don’t coincide with a simple top hat window,
and this could justify the differences between fig. 3.10 and 3.12.
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Figure 3.11: Realistic computed window.
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Figure 3.12: Convolution with computed window and comparison with PSRZ(k).
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3.3 Tests with BASICC simulation: redshift space

In this Section we account for redshift space distortions. As described
in section 1.3.3, redshift distortions modify the amplitude (in the linear
regime) and the shape (in the non linear one) of the power spectrum and
need to be properly accounted for when comparing model with data. Our
goal is to verify our ability to model redshift space distortions (dubbed
z−distortions) and to assess the performance of the convolution technique
when z−distortions are present. For this purpose we measure the monopole
of the halo power spectrum in redshift space. The halo positions in z−space,
ds, where obtained by adding the line of sight peculiar velocity component,
v, to their comoving distance d: ds = d + v, both expressed in Mpc h−1

at z = 0. The haloes were selected using the same criteria as in the real
space case. And, in analogy with the procedure described in section 3.2.1,
we obtain 3 types of power spectra:

1. P0,z. This is analogous to P0 and represents the P (k) of almost all the
haloes in the computational cube. The observer position is set at the
center of the cube of the simulation. Peculiar velocities were added
along the line of sight with respect to the central observer. This has
the effect of blurring the edges of the original cube, as a consequence
we consider only the objects within a smaller cube , with size L=1200
Mpch−1 centered at the center of the parent cube.

2. PC,z. This is the analogous of PC and represents the mean power
spectrum of 125 subcubes. Subcubes in z−space were obtained by
selecting a central observer, adding radial velocities to each object
distance and select all haloes in a L = 256Mpc/h cube.

3. PSRZ,z is the analogous of PSRZ and the corresponding objects were
obtained by extracting spherical samples from each of the 125 subcubes
in z−space. The spherical samples match the dN/ds of the 2MRS
mocks shown in fig. 3.2 and contain a Zone of Avoidance of ±50

respect to a plane passing through the center of the sphere.

For each power spectrum mentioned above we have the corresponding
power spectrum in real space: P0,real , PC,real and PSRZ,real. The last two
are already shown in Section 3.2; here we’re adding the subscript real to
distinguish them from the corresponding redshift space ones.

Fig. 3.13 shows in red the mean power spectrum of the 125 cubes
with constant mean number density in redshift space, PC,z. In blue, for
comparison, there’s the mean power spectrum of the 125 cubes in real space
PC,real. The mean of the 125 ratios between redshift space and real space
power spectrum, < PCi,z(k)/PCi,real(k) >, where the subscript i indicates
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one of the 125 samples, with error bars given by the scatter over the 125
cubes, is shown in fig. 3.14.

Figure 3.13: Mean power spectrum of 125 redshift space cubes exctracted from
the BASICC simulation, PC,z, with side L=256h/Mpc and constant density, in
red. Mean power spectrum of 125 real space cubes exctracted from the BASICC
simulation, PC,real, side L=256h/Mpc and constant density, in blue.
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As expected on large scales the redshift space power spectrum is higher
than the real space one due to coherent velocities in the linear regime (Kaiser
1987). On smaller scales, non linear velocities have the opposite effect of
reducing the power. In fact, as pointed out by Angulo et al. (2008), (see
fig. 9, left panel, in that paper), the small scale damping in this case is
mostly due to halo merging rather than non linear motions since the halo
finder is such that only virialized haloes and not their sub-structures are
selected. As a consequence highly non linear effects represented by sub-halo
motions within virialized structures are artificially smoothed out, leaving no
imprint in the power spectrum. We shall come back to this point when we
consider realistic mock galaxy catalogs where, instead, non linear motions
are present.
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Figure 3.14: Mean of the ratios redshift space real space power spectrum of 125
cubes with constant density, < PCi,z/PCi,real >.
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3.3.1 Linear redshift space distortions

The first set of tests is carried on with the cubic subsamples with constant
mean number density. These tests are aimed to check the ability of modelling
redshift space distortions before introducing the complication of the window
function.

Linear theory predicts that the amplitude of power spectrum in redshift
space is higher than the real space power because of the coherent bulk
motions. As described in Section 1.3.3, the boost is scale independent
and when averaged over all directions amounts to K(β) = 1 + 2

3β + 1
5β

2,
quantity usually referred to as ”Kaiser boost”. This is the first ingredient in
the z−distortion model and should be sufficient to reproduce the observed
behaviour on large scales. To check whether this is true and the maximum
scale at which linear theory holds, we estimate the Kaiser boost from the
ratio between the real and the z−space power spectra, like in fig. 3.14, and
compare β with the expected value which we get from the bias parameter
previously estimated in real space and described below and the ΩM value of
the BASICC simulation. The best fit β values were obtained by minimizing
the χ2 difference between data and model, that in this case is simply a
constant function, with error bars obtained from the mocks.

The linear bias b is obtained from the ratio between the P0,real and the
linear matter power spectrum computed using the CAMB package, PCAMB,
for the cosmological parameters of the BASICC simulation. In practice we fit
a constant function to the ratio P0,real/PCAMB up to kmax = 0.15h Mpc−1

to keep non linear effect small and we obtain b=0.86. The result of the fit
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is very robust with respect to variations of kmax: variations under ∼ 1% are
obtained when varying kmax in the range [0.05,0.15] h Mpc−1.

We have obtained β by fitting a measured power spectrum with different
models.

1. MODEL NL0: fitting P0,z with P0,realK(β).

In this test we exploit the size of almost the full cube to extend the
analysis well into the linear regime. The maximum scale probed here
is ∼ 5 times larger than the size of the 2MRS sample. Errors in this
case are set equal to the variance of the FKP estimator (eq. 2.47).
They contribute to both P0,z and P0,real and are propagated to the
ratio P0,z/P0,real ignoring the fact that taking the ratio eliminates the
contribution of the cosmic variance to first order. The resolution is
set by the fundamental mode of the box ∆k = 2π/1200 h Mpc−1 and
represents the size of the spherical shell used to estimate P0.

2. MODEL L0: fitting P0,z with PCAMBb
2K(β).

The aim of this test is to check the adequacy of using a linear model
to the halo power spectrum in real space (PCAMBb

2). Discrepancies
with respect to the results obtained in the previous test would
indicate departures from linear theory both in the evolution of density
fluctuations and in the bias. The resolution is the same as in the
previous test. Errors, indeed, are only contributed by P0,z and set
equal to the variance of the estimator. No uncertainty is associated to
the model PCAMB and, in this respect, this is analogous to the case of
the real data analysis.

3. MODEL NLC: fitting PC,z with PC,realK(β).

This is analogous to the P0,z/P0,real case but now we consider the
average power spectra measured in the smaller cubes. The goal of this
test is to assess the effect of reducing the k−range usable for the linear
theory fit to the intent that can be probed with the 2MRS sample.
Errors on PC,z and PC,real are obtained from the scatter among the
cubes and propagated to their ratio. We note that the scatter of
the ratio < PCi,z/PCi,real > is about 4 times smaller, indicating that
the cosmic variance dominates the error budget in this k−range, as
expected. The resolution is ∆k = 2π/256 h Mpc−1, lower than in the
P0 case.

4. MODEL LC: fitting PC,z with PCAMBb
2K(β).

This is analogous to model L0 and is aimed at assessing the impact of
non linear effects in a sample with a size similar to that of the 2MRS
catalog.
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In all cases we have obtained β by fitting a constant function to the ratio
between the estimated and the model spectrum.

Fig. 3.15 shows the results of these tests, each one of them indicated
with a different symbol.
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Figure 3.15: The best fit β values and their rms uncertainty for the various tests
as a function of kmax. Black dashed line the β ”reference” expected value. Red
dashed line is βtheory=Ω0.55

M /b.

On the y−axis we show the best fit β value while, on the x−axis, we show
the maximum value of k used to compute the χ2, i.e. the fit is performed in
a k-range [kmin, kmax] where kmin = 2π/L and kmax is the value displayed
on the x−axis. To avoid overlapping the plot, the results of these tests that
refer to the same kmax have been slightly shifted. The black dashed line,
β = 0.46, represents the best fit value obtained in the P0,z/(PCAMBb

2) test
using kmax = 0.05 h Mpc−1, not shown in the plot, well into the linear
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regime. We take this as the reference β value. The horizontal red-dashed
line is the expected value β = Ω0.55

M /b where ΩM = 0.25 is the BASICC
simulation value and b = 0.86. β values plotted in fig.3.15 and their rms
uncertainties are listed in Table 3.3.

Table 3.3: The best fit β values and their rms uncertainty for the various tests
(columns) as a function of kmax (rows).

kmax[h/Mpc] NL0 L0 NLC LC

0.3 0.3961±0.0041 0.5298±0.0028 0.386±0.039 0.525±0.031

0.2 0.4346±0.0072 0.4631±0.0051 0.433±0.07 0.455±0.056

0.15 0.454±0.013 0.4452±0.0072 0.45±0.11 0.432±0.082

0.1 0.475±0.023 0.448±0.013 0.48±0.20 0.454±0.14

The results show that the value of β obtained from the tests are all
consistent with each other up to k =0.2 h Mpc−1. On smaller scales, the
β values obtained by fitting the data with the CAMB linear model are
systematically higher than those obtained with the power spectra measured
in the simulation, indicating that non linear effects can not be neglected
on these scales. Focusing on test 4, the more realistic one, we see that,
using linear theory only, one could expect to estimate the value of β with
an uncertainty < 15% if one pushes the analysis out to kmax = 0.2h Mpc−1,
∼ 20% if one uses the more conservative limit of kmax = 0.15h Mpc−1. On
these scales the error budget is dominated by cosmic variance, as we have
seen. Therefore, to improve the accuracy, one needs to push the analysis to
larger kmax, i.e. one needs to model non linear effects.

Before doing this, however, we note that our measured β values are
significantly different from the expected one. This may indicate that
errors are predominantly systematic, not random. We therefore need to
understand the nature of such discrepancy. The fact that the best fit β
value doesn’t vary significantly for kmax < 0.2h Mpc−1 and with the type of
test performed, speaks against systematic errors. Indeed such discrepancy
has been alredy noticed by Bianchi et al. (2012) and Marulli et al. (2012)
who performed clustering analysis using the same BASICC simulations. In
particular Bianchi et al. (2012) pointed out that the β value obtained from
the clustering analysis is significantly smaller than the expected values and
that the discrepancy increases when selecting haloes of progressively smaller
masses. This mismatch originates from the fact that not all the structures
identified as haloes are genuinely virialized structures. Some of them are
transient clumps of matter. The fraction of fake haloes increases when
decreasing the mass of the structure and is large when haloes are made by 10
particles only, as in our case. Then, our halo catalog contains a significant
fraction of objects that, in fact, are simply collection of particles that are
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basically unbiased respect to the underlying mass field. Hence the effective
bias is smaller and the β value larger.

3.3.2 Non linear redshift space distortions

In this Section we test our ability to model non linearities in both the bias
and the growth of density fluctuations. Our goal is to fit PC,z with the
different models described below:

1. MODEL NLC1: P (k) = b2PCAMBK(β)(1 + Qk2), where the last
term corresponds to the one originally proposed by Cole et al. (2005)
(eq.2.59) and where we fix A = 0. We use model NLC1 to match the
measured power spectrum up to kmax = 0.6h Mpc−1. b is set to the
fiducial value 0.86 whereas β and Q are treated as free parameters.

2. MODEL NLC2: P (k) = b2PCAMBK(β)(1 +Qk3/2), that is analogous
to NLC1 but uses a different model for the mildly non linear effect.

3. MODEL NLC3: P (k) = PC,realK(β)π
1/2

2
erf(σk)
σk . In this case we use

PC,real to account for the halo bias and non linear effects. The Kaiser

boost accounts for the coherent motions whereas the term π1/2

2
erf(σk)
σk

accounts for highly non linear motions (see Section 2.4), that, as we
have pointed out, are undersampled by the BASICC simulation, and
therefore, poorly modelled by NLC3. The rationale for this NLC3
model is to reduce the uncertainties related to the bias and mildly non
linear models and assess the impact of highly non linear effects. Free
parameters of the model are β and σ.

The fitting procedure is similar to that of the previous Section. In this
case we fit the ratios PC,real/b

2PCAMB and PC,z/PC,real with the proposed
model, taking into account the errors on the measured PC,real and PC,z.
The best fit β values obtained from models NLC1, NLC2, NLC3 are shown
in fig. 3.16 and listed in Table 3.4 as a function of kmax with their 1-σ
uncertainties. Model NLC3, which is intrinsically more accurate, provides a
good fit to the estimated one and successfully recovers the correct β value up
to kmax = 0.6h Mpc−1. The stability of the result is indeed remarkable. The
accuracy increases with kmax since cosmic variance decreases with k. As a
result, at kmax = 0.6h Mpc−1 β is estimated with 10% accuracy. The results
obtained with the more realistic NLC1 and NLC2 show that the estimated
value of β have similar accuracy at kmax = 0.6h Mpc−1. However, model
NLC2 systematically underestimates β, although the discrepancy is within
the error bars.

We conclude that the proposed non linear models are adequate to
estimate the value of β well into the non linear regime, with an accuracy of
about 10% and with no significant systematic errors. This accuracy is higher
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than that obtained with the linear model LC. The results also suggest model
NLC1 performs better than NLC2. Table 3.5 shows the best fit values for
the remaining parameters Q and σ. The best fit Q values are smaller than
unity and determined with an accuracy of 15− 20% at kmax = 0.6h Mpc−1.
The parameter σ, typically interpreted as the 1 dimensional pair velocity
dispersion, is of the order of 150 Km s−1. This is rather small if compared
with the value typically obtained from real galaxy samples and confirms the
fact that BASICC haloes underestimate non linear motions.

Table 3.4: The best fit β values and their rms uncertainty for the various tests
(columns) as a function of kmax (rows).

kmax[h/Mpc] β / NLC1 β / NLC2 β / NLC3

0.2 0.44±0.13 0.43±0.16 0.48±0.19

0.3 0.408±0.079 0.382±0.096 0.462±0.098

0.4 0.431±0.053 0.392±0.065 0.460±0.074

0.5 0.456±0.041 0.408±0.050 0.447±0.053

0.6 0.483±0.033 0.430±0.041 0.437±0.046

Table 3.5: The best fit Q and σ values and their rms uncertainty for the various
tests (columns) as a function of kmax (rows).

kmax[h/Mpc] Q / NLC1 Q / NLC2 σ [Mpc/h] / NLC3

0.2 0.5±3.5 0.2±1.7 2.0±3.7

0.3 1.5±1.0 0.92±0.61 1.58±0.96

0.4 1.20±0.40 0.85±0.29 1.56±0.51

0.5 0.97±0.21 0.76±0.17 1.45±0.25

0.6 0.78±0.13 0.69±0.11 1.39±0.18



3.3 Tests with BASICC simulation: redshift space 80

à

à

à

à

à

ì

ì

ì

ì

ì

ì

ò

ò ò

ò

ò

0.0 0.1 0.2 0.3 0.4 0.5 0.6
0.2

0.3

0.4

0.5

0.6

0.7

@h�MpcDkmax

Β

ò NLC3

ì NLC2

à NLC1

Figure 3.16: The best fit β values and their rms uncertainty for the various tests
as a function of kmax. Black dashed line the β ”reference” expected value. Red
dashed line is βtheory=Ω0.55

M /b.

3.3.3 Including the effect of the window function

The second set of tests is carried on with the spherical subsamples that
match the 2MRS window function. The goal of these tests is to check the
ability to model the redshift space distortions when the effect of the window
function is included. We account for the window function convolving models
of power spectrum in redshift space with the spherically averaged window
function, as described in 2.3.4. We have obtained β by fitting the measured
power spectrum PSRZ,z, or the ratio PSRZ,z/PSRZ,real, with the following
models.

1. MODEL NLW: fitting PSRZ,z/PSRZ,real with K(β).
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This model is analogous to NLC, described in Section 3.3.1. The goal
of this test is to check if the results obtained with the NLC model
are confirmed when real space and redshift space power spectra are
affected by the same window function. In these case PSRZi,z and
PSRZi,real are indeed characterized by the same window function.
Errors on PSRZ,z and PSRZ,real were obtained from the scatter among
the spheres and propagated to their ratio.

2. MODEL LW: fitting PSRZ,z with [PCAMBb
2K(β)] ∗WF .

This is analogous to LC model, but now the fitting function accounts
for the window function, more precisely, the model corresponds to
the convolution between the linear [PCAMBb

2K(β)] and the measured
spherically averaged window function WF, computed from a random
distribution of objects that match the 2MRS selection properties,
shown in fig.3.11. As for the previous tests b is set to 0.86 and the
CAMB parameters are set to the BASICC simulation values. The
errors come from the scatter among the spheres only. This model is
more realistic respect to NLW. The goal of this test is to verify if we are
able to model redshift distortions when the window function is present
using the convolution with the sherically averaged window function,
described in Section 2.3.4 and a linear model. Deviations with respect
to the expected β value would indicate departures from linear theory
or non correct modelling of the window function.

3. MODEL NLW1: P (k) = [b2PCAMBK(β)(1 +Qk2)] ∗WF .

This is the analogous of NLC1 model. We use it to model the mildly
non linear effects and the window function. We set β and Q as the
only free parameters.

4. MODEL NLW2: P (k) = [b2PCAMBK(β)(1 +Qk3/2)] ∗WF .

This is the analogous of NLC2 model. This is a different model to
account for the mildly non linear effects and the window function. β
and Q are free parameters.

We fit the ratio PSRZ,z/PSRZ,real with NLW. We fit the measured power
spectrum PSRZ,z with models LW, NLW1 and NLW2. In all these cases we
estimate β fitting data up to different kmax values. The best fit β values
obtained from models NLW, LW, NLW1 and NLW3 are shown in fig. 3.17
and listed in Table 3.6 as a function of kmax with their 1-σ uncertainties.

The results obtained with model NLW are very similar to the ones
obtained with model NLC. We can recover the β value up to kmax = 0.2
h Mpc−1. These results indicate that the ratio PSRZ,z/PSRZ,real is similar
to PC,z/PC,real, and that a k-independent model for redshift distortions is
valid on large scales.
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The more realistic model LW indicates that we recover β with an
uncertainty of ∼ 15% if we push the analysis out to kmax = 0.15 h Mpc−1,
and 20% for the more conservative choice kmax = 0.15 h Mpc−1. Non
linearities in the growth of density fluctuations and bias affect the result for
k = 0.20h Mpc−1. These results are similar to the ones obtained with LC
model.

When using non linear models NLW1 and NLW2 we recover the expected
β value with an uncertainty of ∼ 10% fitting data up to kmax = 0.6 h Mpc−1.

From these results we conclude that we are able to account correctly
for the combination of redshift distortions and 2MRS-like window function.
The latter, as shown in Section 3.2.5, is a rather compact function and
affects mostly the largest scales, where we are able to account for it. The
introduction of the convolution with such a window function doesn’t change
the ability to model redshift space distortions with respect to the simpler
case without window function, seen in the previous Section. The method
of convolving with the spherically averaged window function (described in
Section 2.3.4) works well when using the redshift space power spectrum
monopole as true underlying power spectrum because the 2MRS window
function is rather compact, almost isotropic and affects principally scales
where the redshift distortion can be modelled with k-independent model.

Table 3.6: The best fit β values and their rms uncertainty for the various tests
(columns) as a function of kmax (rows).

kmax[h/Mpc] β / NLW β / LW β / NLW1 β / NLW2

0.1 0.48±0.26 0.494±0.19 × ×
0.15 0.45±0.15 0.464±0.10 × ×
0.2 0.43±0.10 0.469±0.073 0.46±0.19 0.45±0.23

0.3 0.386±0.054 0.533±0.042 0.42±0.10 0.40±0.13

0.4 × × 0.443±0.072 0.407±0.088

0.5 × × 0.464±0.055 0.420±0.067

0.6 × × 0.489±0.046 0.441±0.056
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Figure 3.17: The best fit β values and their rms uncertainty for the various tests
as a function of kmax. Black dashed line the β ”reference” expected value. Red
dashed line is βtheory=Ω0.55
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Chapter 4

The 2MRS analysis

In this Chapter we describe the 2MRS catalog, to which we have applied
our own FKP code. We describe also the mock catalogs used in order to
estimate the uncertainties in the power spectrum estimate. We use the mock
catalogs also in order to select the optimal type of model of bias and non
linearities to be adopted in the true analysis and to select the wavenumber
range in which these models are valid, allowing to recover unbiased values
of the cosmological parameters. Finally we compute the P (k) of the real
2MRS galaxies, divided in subsamples. One of the goals of this Chapter is
to see how well we constrain the bias using FKP estimator on a local all sky
survey. An accurate bias estimate is important per se and a pre-requisite
to obtain unbiased estimates of the cosmological parameters. At the same
time, it provides information about the galaxy evolution models. We decide
to carry on the analysis as follows: first, we study the clustering properties
of different galaxy groups, obtained splitting the main 2MRS sample in
subsamples according to a specific and physically motivated criterion. In
this part of the work we are interested in the relative bias between the
different groups of objects and in the precision with which we are able to
recover it, and compare results with that obtained in previous works. Finally
we use the full shape of the power spectrum of the main sample in order
to obtain an estimate of the linear bias parameter b and the matter density
parameter, ΩM .

4.1 The 2MRS catalog

The 2MASS Redshift Survey (2MRS, Hucra et al. 2012) is a selection of
galaxies from the 2MASS Extended Source Catalog (XSC; Jarrett et al.
2000) and 2MASS Large galaxy Atlas (LGA) , version 2.5 (Jarrett et al.
2003). The 2MASS Extended Source Catalog contains approximatively
1 million extended objects from the 2MASS, 2 Micron All Sky Survey
(Skrutskie et al. 2006), with Ks <13.5 mag, detected as extended sources

84
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through dedicated algorithms (XSC; Jarrett et al. 2000). The 2MASS is
an all sky imaging survey in the three near infrared photometric bands J
(1.25µm), H (1.65µm), and Ks(2.16µm). It used the twin 1.3-m telescopes
located at Mount Hopkins, Arizona and Cerro Tololo, Chile. The effects of
interstellar extinction, are strongly reduced with respect to the optical or far
infrared surveys and this allows a wider coverage of the sky. The complete
coverage of the sky for the galaxies with Ks ≤11.75 of the 2MASS XSC is
limited only by a confusion region around the galactic center, as shown in
fig.4.1.

Figure 4.1: 2MASS galaxies in Galactic coordinates, Aitoff projection, with
Ks ≤ 11.75 mag. Blue dots correspond to the galaxies in the area not covered
by the 2MRS. Figure from Hucra et al., 2012. 2MASS Redshift Survey 3

Fig. 1.— Distribution of 2MASS galaxies with Ks ≤ 11.75 mag
in Galactic coordinates (Aitoff projection). Blue dots represent
galaxies outside our survey area. Note that due to stellar confusion
we cannot cover, even to this bright magnitude limit, the very
central region of the galaxy but we do cover ∼91% of the sky.

the galactic center. Figure 2 is an update of Fig. 7 from
Huchra et al. (2005) and shows the galaxy surface den-
sity versus galactic latitude for several magnitude limits.
At the bright magnitudes surveyed by 2MRS, the catalog
is essentially complete to very low latitudes.

3. THE 2MASS REDSHIFT SURVEY

The primary extragalactic goal of 2MASS was to feed
the next generation of all-sky redshift surveys to fully
map the nearby Universe. To this end, we started a pro-
gram in September 1997 to obtain the required spectro-
scopic data for a magnitude-limited sample of galaxies:
the 2MASS Redshift Survey (2MRS). Our initial survey
limits of Ks = 11.25 mag and |b| = 10◦ (20,860 galaxies;
hereafter 2MRS11.25) were progressively increased to fi-
nal values of Ks = 11.75 mag and |b| = 5 − 8◦ (44,599
galaxies; the full 2MRS), allowing us to steadily complete
our view of the local universe.

2MRS builds and improves on the previous genera-
tion of local surveys (see Table 1) and is complemen-
tary to contemporaneous larger, deeper surveys, notably
2dF (Colless et al. 2001), SDSS (Aihara et al. 2011) and
specially 6dFGS (Jones et al. 2004, 2005, 2009) which
also used the 2MASS XSC as its input catalog and pro-
vided a large number of redshifts for our survey. These
larger surveys have not attempted to be complete over
the whole sky, since many cosmological measurements do
not require this level of completeness and trade-offs must
be made between depth and sky coverage given available
telescope time and resources.

3.1. Sample selection

The initial selection of sources was based on the
2MASS Extended Source Catalog (XSC). The 2MASS
photometric pipeline performed a variety of magnitude
measurements for each extended source in each band. We
selected as our primary set of magnitudes the isophotal
magnitudes measured in an elliptical aperture defined at
the Ks =20 mag/"#′′ isophote. We also include in our
data tables the “total extrapolated magnitudes” derived
by the pipeline, but do not use them for our sample se-
lection. In the case of galaxies with angular sizes much

Fig. 2.— Surface number density vs galactic latitude for three
cuts in the 2MASS XSC at Ks =11.75, 12.5 and 13.25 mag. While
the number counts drop sharply in the 5◦ ≤ |b| ≤ 10◦ bin for the
13.25 mag sample, the incompleteness is reduced for the 12.5 mag
sample and it is essentially zero for the 11.75 mag sample. The
upturn in all samples at 90◦ is due to the Coma supercluster.

greater than the width of a single 2MASS scan, we used
the photometry presented in the 2MASS Large Galaxy
Atlas (LGA) by Jarrett et al. (2003). We applied a mod-
est extinction correction to the 2MASS XSC or LGA
magnitudes using the maps of Schlegel et al. (1998).

We selected 45,086 sources which met the following
criteria:

• Ks ≤ 11.75 mag and detected at H

• E(B − V ) ≤ 1 mag

• |b| ≥ 5◦ for 30◦ ≤ l ≤ 330◦; |b| ≥ 8◦ otherwise.

We rejected 324 sources of galactic origin (multiple
stars, planetary nebulae, H II regions) or pieces of galax-
ies detected as separate sources by the 2MASS pipeline.
These rejected objects are listed in Table A1. Addition-
ally, we flagged 314 bona fide galaxies with compromised
photometry for reprocessing at a future date. Some of
these galaxies have bright stars very close to their nuclei
which were not detected by the pipeline. Others are in
regions of high stellar density and their center positions
and/or isohpotal radii have been incorrectly measured
by the pipeline. Lastly, some are close pairs or multiples
but the pipeline only identified a single object.

Tom Jarrett used the original 2MASS LGA pipeline
to reprocess 72 of the flagged galaxies by the date this
paper was submitted for publication. These galaxies are
listed in Table A2. The remaining 242 flagged galaxies
are separated in two categories. Table A3 lists 87 objects
for which the photometric parameters are expected to
exhibit little change after reprocessing, but would still
benefit from such a procedure. These galaxies have not
been removed from the catalog. Table A4 contains 165
galaxies with seriously compromised photometry, which
have been removed from the catalog.

In summary, the final input catalog contains 44,599
entries which are plotted using black symbols in Figure 1.
Galaxies outside the survey area are plotted in blue and
outline the “zone of avoidance” described previously. In
this work, we present redshifts for 43,533 of the selected
galaxies, or 97.6% of the sample.

The 2MASS Redshift Survey is the result of a program aimed to obtain
the spectroscopic redshifts of a magnitude limited sample selected from the
2MASS XSC started in September 1997. In this thesis we use the 2.4 version
of the catalog, publicly released on 16 December 2011, and available at
http://tdc-www.cfa.harvard.edu/2mrs/. The reference paper is Hucra et al.
(2012). The selection criteria are the following:

1. Ks ≤ 11.75 mag and detected at H−band

2. E(B − V ) ≤1.0 mag

3. |b| ≥5 deg for 30≤ l ≤330 deg; |b| ≥8 deg otherwise.

where Ks is the apparent isophotal magnitude, measured at Ks =20
mag/arsec2 isophote. The isophote curves denote the curves of equal
apparent surface brightness. In this thesis, we use only the isophotalKs band
magnitudes that are the ones on which the selection has been applied in the
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2MRS and not the total ones. The excess E(B − V ) measures the effects of
interstellar absorption on the B-V colour where B and V are two magnitude
bands of the Johnson’s photometric system. b and l are respectively the
Galactic latitude and longitude. The third selection criterion excludes, as
anticipated in the previous Chapter, objects within the region near the
galactic plane, referred to as Zone of Avoidance. The resulting catalog
contains 44599 objects, the redshift is provided for 43533 of them. For
each galaxy selected according to the criteria enumerated above, a multiple
query to the following databases have been done: SDSS (data release 8),
6dF Galaxy Survey, NASA Extragalactic Dabase and Hucra’s personal
compilation of redshifts (ZCAT). For the galaxies without a match in any
database at the time of the query, the redshift have been measured, at the
Fred L. Whipple Observatory 1.5-m telescope for the northern hemisphere
part of the survey, at the Cerro Tololo Interamerican Observatory 1.5-m
telescope for the southern hemisphere. The observations have been carried
on between 1998 July and 2011 January. The redshifts were obtained
through longslit spectroscopy. The median redshift of the survey is 0.03.
Fig. 4.2 shows the Table with the main characteristics of the telescopes and
instruments used in the survey.

Figure 4.2: Telescopes and instruments used for the redshift measures for the 2MRS. Table
from Hucra et al., 2012.

4 Huchra et al.

TABLE 2
Telescopes and instruments used in the survey

Observatory/Telescope Camera Grating Coverage Res. N gal with Ks

(l/mm) (Å) (Å) < 11.75 > 11.75

Fred L. Whipple 1.5-m FAST 300 3500-7400 5 7,590 2,596
Cerro Tololo 1.5-m RCSpec 300 3700-7200 7 3,245 238
McDonald 2.1-m es2 600 3700-6400 4 114 50
Cerro Tololo 4-m RCSpec 527 3700-7400 3 48
Hobby-Eberly 9.2-m LRS 300 4300-10800 9 3

3.2. Observations, data reduction and analysis

We obtained spectra for 11,000 galaxies that met the
selection criteria listed above, plus an additional 2,898
galaxies beyond the catalog limits. Observations were
carried out between September 1997 and January 2011
using a variety of facilities, listed in Table 2. The major-
ity of the spectra obtained for this survey were acquired
at the Fred L. Whipple Observatory 1.5-m telescope,
which mostly targeted galaxies in the northern hemi-
sphere. In the southern hemisphere, we relied heavily on
observations by the 6dFGS project (Jones et al. 2004,
2005, 2009) but also carried out our own observations
using the Cerro Tololo Interamerican Observatory 1.5-m
telescope. We initially targeted Ks < 11.25 mag galaxies
to obtain a complete all-sky sample (Huchra et al. 2005)
while 6dFGS observations were still ongoing. Later, we
targeted galaxies below the Galactic latitude limit of
6dFGS and filled gaps in their coverage.

At FLWO, most observations were carried out by
P. Berlind and M. Calkins, with additional observations
by J. Huchra, L. Macri, A. Crook and E. Falco. Ad-
ditional spectra were obtained in queue mode by other
CfA-affiliated observers. At CTIO, observations were
carried out by J. Huchra, L. Macri and the SMARTS
consortium queue operators. At McDonald, observa-
tions were carried out by J. Mader, T. George and res-
ident astronomers. Exposure times ranged from 120s
to 2,400s with an average value of 550s. Some galax-
ies were observed on multiple nights (sometimes with in-
creased exposure times relative to the first exposure) to
improve the quality of the redshift measurement. The
total “open shutter” time for the observations was ap-
proximately 2,100 hours. Bias and flat frames (dome or
internal quartz lamp) were obtained daily. Comparison
spectra were obtained before or after each science expo-
sure using a variety of He, Ne and Ar lamps. Stellar and
galaxy radial velocity standards were observed nightly.

The spectra were reduced and analyzed in a uniform
manner using IRAF17. Images were debiased and flat-
fielded using routines in the CCDRED package and one-
dimensional spectra were extracted using routines in the
APEXTRACT package. Dispersion functions were derived
from the comparison lamp spectra and applied to the ob-
servations using routines in the ONEDSPEC package. The
spectra obtained at FLWO were processed by S. Tokarz
and N. Martimbeau using the automated pipeline de-
scribed in Tokarz & Roll (1997). Two typical spectra
are shown in the top panels of Figure 3.

17 IRAF is distributed by the National Optical Astronomy Ob-
servatory, which is operated by the Association of Universities for
Research in Astronomy (AURA) under cooperative agreement with
the National Science Foundation.

Radial velocities were measured by the usual tech-
nique of cross-correlating spectra against templates
(Tonry & Davis 1979) using the XCSAO task in the RVSAO
package (Kurtz & Mink 1998). We used a variety of tem-
plates developed at the Harvard-Smithsonian Center for
Astrophysics. The bottom panels of Figure 3 show the
results of the cross-correlation technique for the two rep-
resentative spectra. Figure 4 shows histograms of in-
ternal velocity uncertainties for the galaxies observed at
FLWO and CTIO. The median uncertainty values for
spectra that only contain absorption lines are 29 and 41
km/s for FLWO and CTIO, respectively, while the cor-
responding values for emission-line spectra are 12 and 24
km/s.

The reduced spectra are available for further analysis
at the Smithsonian Astrophysical Observatory Telescope
Data Center18 (hereafter, “2MRS web site”). For exam-
ple, a list of galaxies with emission-line features is avail-
able for those interested in searching for nearby AGN.

3.3. Matching with previous redshift catalogs

We retrieved the SDSS-DR8 spectroscopic catalog19

and searched for counterparts to 2MASS sources using
a tolerance radius of 2.′′5. We found 7,069 matches to
galaxies without 2MRS redshifts (including 390 galaxies
with multiple SDSS observations for which we calculated
a weighted mean redshift). These are identified with the
catalog code “S”.

We retrieved the 6dFGS-DR3 spectroscopic catalog20

and searched for counterparts to 2MASS sources using a
tolerance radius of 10′′. We only selected redshifts mea-
sured with the 6dF instrument (code=126 in column 17
of their catalog), with velocity quality 3 or 4 (equivalent
to velocity uncertainties of 55 and 45 km/s, respectively).
We obtained 11,763 matches to galaxies without 2MRS
redshifts. These are identified with the catalog code “6”.

We performed a literature search for galaxies without
2MRS, 6dF or SDSS redshifts using the NASA Extra-
galactic Database (NED). First, we carried out a “Search
by Name” query using the 2MASS IDs of the galaxies as
input. This returned 12,694 redshifts that were incor-
porated into our catalog. We refer to these redshifts as
the “NED default” set, and they are identified with the
catalog code “N”. Next, we performed a “Search near Po-
sition” query using the 2MASS coordinates of the galax-
ies for which no redshift information had been returned
by the previous query. We used a tolerance radius of
1.′3 for the search, which resulted in an additional 226

18 http://tdc-www.cfa.harvard.edu/2mrs/
19 http://data.sdss3.org/sas/dr8/common/sdss-spectro/redux/galSpecInfo-
20 http://www-wfau.roe.ac.uk/6dFGS/6dFGSzDR3.txt.gz

For each galaxy the catalog contains various informations, among them:

1. Galactic coordinates l,b;

2. Ks, J , H isophotal magnitudes, extinction corrected;

3. Ks, J , H total magnitudes, extinction corrected;

4. uncertainties in the magnitude estimates;

5. galaxy type;

6. observed redshift in Km s−1 in the heliocentric reference frame.

Galaxy types are provided for a 20860 objects with Ks <=11.254 mag and
|b| > 10, plus around 5000 fainter objects.
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4.2 2MRS mock catalogs

In addition to the real 2MRS catalog we use a set of 135 2MRS mock catalogs
in order to estimate the statistical errors on the measured power spectrum.
As detailed in Chapter 2, the uncertainties are quite tricky to be formalized
analitically due to the coupling between the modes induced by the window
function and non linearities. The mock catalogs have been also used in order
to test models of non linear bias and non linear dynamics to be adopted in the
true analysis and to set the wavenumber range in which they can be applied.
These mock catalogs match approximatively the general properties of the
2MRS. Given the volume of the parent simulation’s box only 15 of them are
independent. They have been extracted from the Millennium Simulation
volume. 2MASS catalogs were generated through the semi analytic model
of galaxy formation of De Lucia & Blaizot (2007) from which we finally
extracted our 2MRS mocks. Each mock galaxy in the catalog is identified
by:

1. Galactic coordinates l,b;

2. the Cartesian components of the peculiar velocity along the line of
sight with respect to the Hubble flow in Kms−1 , vpec;

3. peculiar velocity along the line of sight to which a Gaussian random
error has been added to simulate errors on the observed redshift,
vpec,obs;

4. observed redshift in Kms−1 , cz, (including vpec,obs);

5. comoving Cartesian coordinates of comoving distance d in Mpc h−1;

6. apparent magnitude in K band , extinction corrected;

7. total on stellar mass of the Galactic bulge;

8. absolute magnitude in K, J and H band;

9. absolute magnitude in u, g, r, i, z optical bands. The latter are not
available in the real 2MRS catalog. These will be used to colour-select
galaxy subsamples.

4.3 Analysis of the mocks

In this Chapter we compare the measured power spectrum of 2MRS galaxies
with theoretical predictions. We estimate the free parameters of the model
by minimising the χ2 differences between model and data using the errors
computed from the mocks. In so doing we consider different models that
can be divided in two categories: linear models and nonlinear models. The
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former assume that density fluctuations are small and, consequently, we
restrict model vs. data comparison on large scales. For the latter we push
the comparison to smaller scales.

In both cases we make an important assumption: the covariance
matrix is purely diagonal, i.e. the power measured in different k-bins is
uncorrelated. This hypothesis holds true only when the field is Gaussian,
density fluctuations are small and the spectrum is measured in a cubic region
with periodic boundary conditions. Breaking any of these hypotheses will
produce non-zero off-diagonal elements in the covariance matrix. Since none
of these hypotheses are rigorously valid in our case, we make the assumptions
that off-diagonal terms are small compared to the diagonal ones and can be
neglected in the error budget.

This sounds reasonable when we consider the linear regime. In this case
we focus on large scales, where linear theory should hold, and we consider a
sample with a simple window function that is close to the spherical top hat,
as we have verified. For the nonlinear model, the validity of this hypothesis
should be tested. However, such assessment would require a large number
of independent mock 2MRS catalogs, whereas only 15 of them among the
135 we have extracted from the Millennium Simulation can be considered
statistically independent. This is beyond the scope of this thesis and our
current computational capabilities. Therefore, we shall regard our errors,
estimated from the rms scatter among the mocks, as a lower limit to the
true uncertainties. However, it is reassuring that, as we shall see, the errors
on the cosmological parameters estimated from the linear model are close to
those estimated from the nonlinear ones. A clue that off-diagonal errors in
the nonlinear case cannot be much larger than those in the linear model.

4.3.1 Accounting for redshift space distortions : methodol-
ogy

As in Section 3.3 we need to model z−distortions. We can’t rely on those
results since 2MRS mock catalogs are more accurate in this respect since
they allow for multiple galaxy within the same halo, each one with its own
peculiar velocity. A better model for the mock galaxies’ velocity field requires
a better model for redshift distortions. For this purpose we use 95 of the
135 mock realizations described in Section 4.2 and consider objects within a
distance of 140 Mpc h−1 from the observer to mimic the cut applied in the
real catalog, justified by the fact that shot noise becomes high beyond that
radius. We also exclude objects within the Zone of Avoidance, |b| < 5o, in
order to match the real catalog geometry. We apply a luminosity cut at the
redshift scut = 3000Kms−1 to minimize incompleteness. This luminosity
cut is set to extract a semi-volume limited sample, as follows. We eliminate
all the objects that, if placed at scut would have a K-band magnitude above
the constant limit Ks =11.75 mag or, which is a more operable definition,
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that have absolute Ks magnitude:

MK > MK,cut = 11.75− 5log(dLcut)− 25 (4.1)

where dLcut is the luminosity distance at scut, defined in 1.22. The luminosity
distance has been computed from the comoving distance as dcut(1 + zcut),
with dcut =30 Mpc h−1. We keep all the galaxies beyond scut. The result
is a volume limited sample up to s = 3000Kms−1 and flux limited beyond
this distance. When we compare the redshift distribution of galaxies in
these mocks, dN/ds, with that of the real catalog, we notice that mock
galaxies are more concentrated around the central observer. To eliminate
this mismatch and possible incompleteness in the real catalog that may miss
nearby, extended objects, we decided to exclude all objects within 30 Mpc
h−1.

4.3.2 Comparison real space - redshift space

The mean power spectrum of the 95 2MRS mocks is shown in fig.4.3 (blue
solid line) togheter with its 1-σ scatter (blue filled region). In this case
distances where computed from observed redshifts that include peculiar
velocities, i.e. the spectrum is computed in redshift space and dubb it
< Pmocki,z >.

We also compute the real space power spectrum < Pmocki,real > using
the comobile distances provided in the mocks. < Pmocki,real > and its
scatter are also shown in fig.4.3 (red line and red filled region) togheter
with linear theory predictions obtained from CAMB (black line). From the
comprehensive comparison between < Pmocki,z > and < Pmocki,real > and
CAMB shown in fig.4.3 we can appurate the small scale boost induced by
non linear effects in < Pmocki,real >, the small scale damping induced by
non linear motions in < Pmocki,z > and the large scale Kaiser boost in
< Pmocki,z > induced by coherent motions.

The ratio between real space and redshift space power spectra is shown
in fig. 4.4. Linear theory would predict a constant K(β) = (1 + 2

3β + 1
5β

2)
for this ratio. The plot shows that the ratio is a decreasing function of k,
which indicates that non linear effects cannot be neglected for k > 0.1 h
Mpc−1.

4.3.3 Modelling the 2MRS power spectrum

A second ingredient to extract cosmological parameters from the measured
2MRS power spectrum is a model for the window function of the catalog.
The window function is computed from a random catalog matching the
selection effects of the 2MRS mocks but with no clustering on 10243 grid
with size L = 1400 Mpc h−1 to match a resolution of ∆k = 2π/1400h
Mpc−1. We now put everything togheter (non linearities, bias , window



4.3 Analysis of the mocks 90

Figure 4.3: Mean redshift space power spectrum (blue line) and mean real space
power spectrum (red line) of the 95 2MRS mock catalogs with their 1-σ scatter
(blue and red shaded areas, respectively). Linear matter power spectrum for mocks
cosmology (black solid line) obtained from CAMB.
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function) to fit the power spectrum of the mock galaxies. The goal is to
select the best model for the P (k) and the corresponding k−range, that we
shall use in the real analysis. As in Section 3.3 we have obtained an estimate
of the β parameter by fitting the measured power spectrum < Pmocki,z >,
or the ratio < Pmocki,z > / < Pmocki,real >, with the following models.

1. MODEL NLW: fitting < Pmocki,z > / < Pmocki,real > with K(β).

To put the impression given by fig. 4.4 on a more quantitative ground
in this case we fit a constant function, the so called Kaiser boost, K(β),
to the measured ratio < Pmocki,z > / < Pmocki,real >. In this model
the errors are computed for < Pmocki,z > and < Pmocki,real > from the
rms scatter among the 95 mocks and then are propagated to the ratio.
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Figure 4.4: Ratio between mean redshift space power spectrum and mean real
space power spectrum: < Pmocki,z > / < Pmocki,real >. The error bars are
computed for < Pmocki,z > and < Pmocki,real > from the rms scatter among the 95
mocks and then propagated to the ratio.
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2. MODEL NLWG: fitting < Pmocki,z > / < Pmocki,real > with

K(β)G(k, σ) where G(k, σ) = π1/2

2
erf(σk)
σk .

This model corresponds to the previous one with the additional
introduction of a damping term. β and σ are free parameters. The
error bars are computed as before.

3. MODEL LW: fitting < Pmocki,z > with P (k) = [PCAMBb
2K(β)]∗WF .

PCAMB is the linear matter power spectrum from CAMB with the
same cosmological parameters of the simulation and WF is the
measured spherically averaged window function of the mocks. b is
obtained from the ratio between the real space mean power spectrum
of the mocks and linear matter power spectrum from CAMB (with
input parameters fixed to the simulation ones). The ratio is fitted up
to kmax = 0.1h/Mpc to guarantee linearity obtaining b =1.077±0.056.
Here we fix b to the best fit value 1.077. β is free parameter. In
this model, as in the following ones, the error bars come from the
rms scatter among the mocks only. This model is more realistic with
respect to the previous ones, and accounts for linear terms only.

4. MODEL NLW1: P (k) = [b2PCAMBK(β)(1 +Qk2)] ∗WF .

This model is used to account for the mildly non linear effects and the
window function. β and Q are fre parameters.

5. MODEL NLW2: P (k) = [b2PCAMBK(β)(1 +Qk3/2)] ∗WF .
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Analogous to the previous one but with a different dependence on k.
β and Q are free parameters.

6. MODEL NLW3: P (k) = [PHfb
2K(β)] ∗WF .

In this model we use the non linear matter power spectrum from the
Halofit code, with input cosmological parameters fixed. β is the only
free parameter.

7. MODEL NLW3G:P (k) = [PHfb
2K(β)G(k, σ)] ∗WF .

This model is analogous to the previous one but contains the Gaussian
damping term which accounts for dynamical non linearities.

The best fit β values were obtained by minimizing the χ2 difference
between data and model with error bars from the mocks.

Fig. 4.5 shows the best fit β as a function of the maximum wavenumber
kmax considered, when fitting data with model NLW and NLWG. The
plot for model NLW shows non linear effects beyond k = 0.15 h Mpc−1.
Introducing a damping term, with model NLWG, has the effect of increasing
the best fit β-value. The results have been compared with the expected
β value, dubbed βtheory, given by Ω0.55

M /b , where ΩM is the one used in
the simulation. b is estimated from the ratio between real space power
spectrum and PCAMB, as described above, obtaning b =1.077±0.056 and
βtheory =0.433±0.023, respectively. This is higher but still compatible within
1-σ with the best fit value obtained both with linear theory (β = 0.29±0.14
at k=0.15 h Mpc−1) and non linear damping term (β = 0.35 ± 0.13 at
k=0.3 h Mpc−1) and possibly indicates that additional non linear effects,
non modelled by a simple damping term, are present on these scales (Marulli
et al. 2012).

The results are also summarized in Table 4.1.
Fig. 4.6 shows the best fit β value as a function of kmax when the z−space

power spectrum is simply modelled using linear theory (model LW), i.e.
using PCAMB as the spectrum for the matter, K(β) to model z−distortions
and b = 1.077 as linear bias parameter. The linear model provides an
acceptable fit (i.e. in agreement with expectations βtheory =0.433±0.023,
represented by the thick black line) if kmax < 0.2h Mpc−1 and overestimates
the correct value on smaller scales. For kmax = 0.15h Mpc−1 the β
parameter is estimated with an accuracy of 19%. When an additional
degree of freedom is added to model mildly non linearities with the Q-factor
F (k,Q) = (1 + Qk2) (model NLW1) the accuracy on the β measurement
decreases, as expected, but systematic difference between the true and the
measured β−values are within random errors out to kmax = 0.4h Mpc−1,
well into non linear scales. These results are shown in fig.4.7. The accuracy
at kmax = 0.4h Mpc−1 is ∼ 15% as a result of the largest number of k−modes
sampled. All β−values plotted in the figure for NLW1 model are computed



4.3 Analysis of the mocks 93

in correspondence of the best fit Q-values, shown in Table 4.3. In the figure
we show the results obtained with model NLW2. The results can not be
distinguished from the previous ones.

An alternative way to model non linear effects is to use non linear P (k)
model obtained from Halofit. The results are shown in fig. 4.8, model NLW3.
They are less satisfactory than the ones obtained with the model NLW1.
β is systematically underestimated meaning that Halofit is overestimating
power on large scales, which is not surprising since we are not modelling
the damping effect of small scales virial motions on the P (k) measured in
z−space. Adding a Gaussian damping term ( model NLW3G ), characterized
by a velocity dispersion parameter σ, improves the quality of the fit, as
expected. Fig. 4.9 demonstrates this point. The correct β value is recovered
all the way down to kmax = 0.4h Mpc−1, with an accuracy of 16%, which is
quite remarkable.

The results of this exercise provide important guidelines for the analysis
of the real data. First of all, the analysis of the mocks allows to estimate
uncertainties on the parameter of the fit, here we focused on the parameter
β, and indicates the range of validity of each of the models we have used
for the z−space power spectrum. We shall use this information, which we
summarize in Table 4.2, in the analysis presented in the following Sections.
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Table 4.1: The best fit β values and their rms uncertainty for the various tests
(columns) as a function of kmax (rows).

kmax[h/Mpc] β / NLW β / NLWG

0.1 0.33±0.23 ×
0.15 0.29±0.14 0.36±0.28

0.2 0.247±0.099 0.35±0.20

0.3 0.103±0.058 0.35±0.13

0.4 × 0.33±0.10

0.5 × 0.325±0.089

0.6 × 0.310±0.080

Table 4.2: The best fit β values and their rms uncertainty for the various tests
(columns) as a function of kmax (rows).

kmax[h/Mpc] β / LW β / NLW1 β / NLW2 β / NLW3 β / NLW3G

0.1 0.32±0.17 × × 0.42±0.17 0.43±0.44

0.15 0.446±0.083 0.22±0.24 0.15±0.32 0.356±0.082 0.41±0.13

0.2 0.484±0.064 0.33±0.16 0.28±0.19 0.302±0.062 0.36±0.13

0.3 0.578±0.042 0.381±0.097 0.33±0.12 0.152±0.040 0.44±0.10

0.4 × 0.449±0.067 0.390±0.081 × 0.472±0.076

0.5 × 0.495±0.054 0.433±0.066 × 0.485±0.068

0.6 × × 0.472±0.054 × ×
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Table 4.3: The best fit non linear parameters values and their rms uncertainty for
the various tests (columns) as a function of kmax (rows).

kmax[h/Mpc] Q / NLW1 Q / NLW2 σ[Mpc/h] / NLWG σ[Mpc/h] / NLW3G
0.15 10±13 4.6±7.5 3.7±5.2 0.0±3.5

0.2 4.6±4.9 2.5±2.7 3.4±2.6 3.1±1.6

0.3 3.1±1.5 1.89±0.95 3.34±0.79 3.61±0.72

0.4 1.90±0.55 1.38±0.40 3.23±0.46 3.83±0.32

0.5 1.39±0.31 1.095±0.25 3.18±0.32 3.91±0.24

0.6 × 0.90±0.16 3.10±0.25 ×

Figure 4.5: The best fit β values and their rms uncertainty for the models NLW
and NLWG as a function of the maximum wavenumber kmax. The results are
obtained by fitting the ratio between the mean redshift space and the mean real
space power spectrum of 95 mocks with the Kaiser boost factor K(β) (model NLW),
and Kaiser boost multiplied by Gaussian damping K(β)G(k, σ) (model NLWG).
The kmax values are slightly artificially shifted respect to the orginal value. The
β ”reference” expected value βtheory=Ω0.55

M /b = 0.433 (with the value of ΩM given
by the one used in the mocks simulation and b measured from the real space power
spectrum, see text for details), is represented by the black thick dashed line with
1− σ error (shaded area).
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Figure 4.6: The best fit β values and their rms uncertainty for the model LW as a
function of the maximum wavenumber kmax. The results are obtained by fitting the
redshift space mean power spectrum of 95 mocks with P (k) = [PCAMBb

2K(β)]∗WF
(where K(β) is the Kaiser boost, b is the bias measured from the real space
power spectrum, PCAMB is the linear matter power spectrum from CAMB, WF
denotes the window function of the mocks). The β ”reference” expected value
βtheory=Ω0.55

M /b = 0.433 (with the value of ΩM given by the one used in the mocks
simulation, see text for details), is represented by the black thick dashed line with
1− σ error (shaded area).
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Figure 4.7: The best fit β values and their rms uncertainty for the models
NLW1 and NLW2 as a function of the maximum wavenumber kmax. The results
are obtained by fitting the redshift space mean power spectrum of 95 mocks
with P (k) = [b2PCAMBK(β)F (k,Q)] ∗ WF (where K(β) is the Kaiser boost, b
is the bias measured from the real space power spectrum, PCAMB is the linear
matter power spectrum from CAMB, F (k,Q) = (1 + Qk2) for model NLW1 and
F (k,Q) = (1 + Qk3/2) for model NLW2, WF denotes the window function of the
mocks). The kmax values are slightly artificially shifted respect to the orginal value.
The β ”reference” expected value βtheory=Ω0.55

M /b = 0.433 (with the value of ΩM
given by the one used in the mocks simulation), is represented by the black thick
dashed line with 1− σ error (shaded area).
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Figure 4.8: The best fit β values and their rms uncertainty for the model
NLW3 as a function of the maximum wavenumber kmax. The results are obtained
by fitting the redshift space mean power spectrum of 95 mocks with P (k) =
[PHf b

2K(β)] ∗WF (where K(β) is the Kaiser boost, b is the bias measured from
the real space power spectrum, PHf is the non linear matter power spectrum from
the Halofit code, WF denotes the window function of the mocks). The β ”reference”
expected value βtheory=Ω0.55

M /b = 0.433 (with the value of ΩM given by the one
used in the mocks simulation), is represented by the black thick dashed line with
1− σ error (shaded area).
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Figure 4.9: The best fit β values and their rms uncertainty for the model
NLW3G as a function of the maximum wavenumber kmax. The results are
obtained by fitting the redshift space mean power spectrum of 95 mocks with
P (k) = [PHf b

2K(β)G(k, σ)] ∗WF (where K(β) is the Kaiser boost, b is the bias
measured from the real space power spectrum, PHf is the non linear matter power

spectrum from the Halofit code, G(k, σ) = π1/2

2
erf(σk)
σk is the Gaussian damping

term accounting for non linear motions, WF denotes the window function of the
mocks). The β ”reference” expected value βtheory=Ω0.55

M /b = 0.433, (with the value
of ΩM given by the one used in the mocks simulation), is represented by the black
thick dashed line with 1− σ error (shaded area).
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4.4 The 2MRS power spectrum

4.4.1 Power spectrum measure

In this Section we compute the power spectrum of the 2MRS galaxy sample
and show the result.

The analysis is performed in redshift space therefore, before computing
the power spectrum , we convert the redshift in the catalog, expressed in the
heliocentric frame, into the Local Group frame using the transformation of
Yahil et al. 1977:

vLG = vHE + (−79 cos l cos b + 296 sin l cos b − 36 sin b) (4.2)

where vHE denotes the heliocentric velocity of the galaxy in Km s−1 and vLG
is the new velocity in the Local Group frame in Km s−1. This conversion does
not have great impact on the power spectrum measurement but could affect
redshift and luminosity cuts used in the sample selection. In addition, we
collapse Fingers-of-God in the 7 main nearby clusters with known redshifts.
In practice we assign the redshift of the cluster to galaxies members. Cluster
membership is assigned to all galaxies that are within a specified distance
(the cluster virial radius) from the center of the cluster. This should help
to reduce errors in the estimate of the absolute magnitudes and to reduce
local dynamical non linearities. The total number of objects assigned to the
7 clusters is 1966.

Redshifts are then converted into distances. This require specifying
cosmological parameters. However, since we are considering a very local
sample extending out to dMAX =140 Mpc h−1 = 0.046, we can assume a
locally Euclidean Universe and simplify eq. 1.20 with d = cz/H0, where d is
the comoving distance. Note that in our analysis we do not need to specify
H0 as long as we use velocity units (Km s−1) to measure distances.

The maximum distance of 140 Mpc h−1 is set to guarantee a sufficiently
high number density of objects to avoid a too large shot noise error at the
edge of the sample. We also adopt: conservative cut excluding objects with
|b| < 8 deg , which is significantly larger than the Zone of Avoidance of
the 2MRS and is set to guarantee high completeness in the sample. We
also exclude the objects that are nearby. We exclude all Local Group
members within 3 Mpc h−1 and apply the luminosity cut at the redshift
scut = 3000Kms−1, described in Section 4.3.1, to minimize incompleteness
as already done for the mocks.

The final number of objects in the catalog is 34904. We refer to this
galaxy sample as the main sample.

The redshift distribution of galaxies in the sample, dN/ds, is estimated
using the so called F/T estimator (see Section 2.3.1). Since we need this
dN/ds to build the random catalog used by the FKP estimator, i.e. a sample
of objects with no clustering, we need to estimate all features in the measured
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dN/ds that can be attributed to local structures. In other words, we use the
observed dN/ds to determine a redshift distribution representative of the
cosmic mean. This is the aim of the F/T estimator. We first compute the
selection function S(s) integrating equation 2.39 in bins ∆s = 150Kms−1

and then we obtain the dN/ds as:

dN

ds
=
S(s)dV

∆s

Nnorm∫ snorm
0 S(s)dV

(4.3)

where dV is the survey volume between the redshift s and s + ∆s , Nnorm

is the total number of galaxies up to snorm of 12000 Km s−1. The selection
function is proportional to the mean number density, so the dN/ds is
proportional to S(s)dV . In order to compute the equation 2.39, as well
as in order to apply the semi-volume limited cut, one needs an estimate of
the absolute magnitude of the galaxies. To do this we need to account for
the k−correction and for possible additional evolutionary correction in the
luminosity of the galaxies. Following Branchini et al. (2012) we use k(z) of
2MRS galaxies determined by Kochanek et al. (2001):

k(z) = −6log(1 + z), (4.4)

and, for an evolutionary correction, e(z) = 3.04z. This value was obtained
by minimizing the difference between the dN/ds obtained from 4.3, including
the k-correction and the evolutionary term, and the dN/ds of the catalog.

The total correction to the estimate of the absolute magnitudes of the
2MRS galaxies, adopted here is then:

MKs = mKs − 25− 5log(dL)− k(z)− e(z) (4.5)

where mKs is the apparent Ks magnitude of the galaxy and dL is its
luminosity distance in Mpc h−1. In this thesis we assume that the
k−correction is the same for all galaxies. This is an approximation
since galaxies of different types and colours have in general different
k−corrections. However k−corrections are quite independent on galaxy
type for infrared surveys at low redshifts (Cowie et al. 1994, Kochanek et
al. 2001) so that this approximation can be considered valid for the 2MRS
catalog. The redshift distribution of all 2MRS galaxies is shown in fig. 4.10
(blue histogram). The binning is ∆r = ∆s/H0 = 1.5Mpc/h and the error
bars are given by the Poisson noise of objects count in each bin. The red
continous line is the mean dN/ds computed with F/T method. This second
dN/ds is used both to estimate the mean number of objects at each redshift
(we assume that no angular selection effect exists, above |b| = 8 deg) and
used as a probability distribution function to generate the random catalog of
the FKP estimator (see Section 2.3.2). The random catalog contains more
than 1.5 million of objects, i.e more than 30 times more than the real one,
to minimize shot noise.
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Figure 4.10: Observed (dN/ds)H0 of the 2MRS galaxy sample in bins ∆s=150
Km s−1 denoted by the blue points with Poissonian 1 − σ uncertainties. Mean
(dN/ds)H0 denoted by the solid red line computed with F/T method (see text for
details).
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Finally we compute the power spectrum with the FKP estimator
described previously. For this goal we include the catalog in a cube, i.e.
with a size equal to 280 Mpc h−1, which is the equal to the diameter
of the spherical considered sample, zero padding the galaxy density field
outside the surveyed volume. To apply the FKP estimator we need to
set a representative value for the spectral power on the scale of interest,
to set the statistical weight. We use P =8000 (Mpc/h)3, which, as we
verified a posteriori, is approximatively equal to the amplitude of the power
spectrum in the range 0.1− 0.15 h Mpc−1. We have verified that changing
this value does not significantly affect the result. The measured power
spectrum has been computed in k-bins ∆k = 2π/280h Mpc−1 and it is
plotted in fig. 4.11 with 1σ errors obtained from the scatter among the
95 2MRS mocks. In order to compute the error bars we take the 95 mock
realizations of the 2MRS, described in the in Section 4.3.1. They match the
real catalog geometry, luminosity cut and selection function. In the plot 4.11
the measured power spectrum is represented by the small dots connected
with a continous line. The shaded area represents the uncertainty strip.

This power spectrum is convolved with the window function of the
catalog. To infer the true galaxy power spectrum we need to estimate the
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Fourier transform of the latter. This was done by computing the power
spectrum of the random catalog on 10243 grid with size L = 1400 Mpc h−1

to match a resolution of ∆k = 2π/1400h Mpc−1. The result is shown in
Fig. 4.12. The geometry of the 2MRS catalog is close to spherical. This is
evident in the same figure when we overplotted the Fourier transform of a
spherical top hat (blue curve) to the actual window function.

Figure 4.11: The power spectrum of the 2MRS galaxy sample is represented by
blue dots connected with continous line. 1σ errors from the rms scatter among 95
mock catalogs are represented by the shaded area.
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4.5 Relative bias estimates

As a first application of the P (k) estimator we have established so far, we
compute the relative bias of different galaxy populations within the 2MRS
sample. The rationale behind this choice is that this estimate is model
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Figure 4.12: Spherically averaged window function, Ws(k), of the 2MRS galaxy
sample, represented by the red line. It corresponds to the power spectrum of the
random catalog, computed on 10243 grid with size L = 1400 Mpc h−1 to match a
resolution of ∆k = 2π/1400h Mpc−1. The blu line denotes the spherical top hat
with radius R =140 Mpc h−1. The plot evidences that the geometry of the 2MRS
catalog is close to spherical.
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independent: as long as we consider linear scales, and all objects trace the
same velocity field (i.e. no velocity bias), the relative bias does not depend
on the underlying cosmology. For this purpose we first split the main sample
in luminosity bins and compare the power spectra of these subsamples, then
we repeat the same exercise dividing the 2MRS sample in two populations
with galaxies of different morphological types.
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4.5.1 Bias as a function of luminosity

It is a well known fact that galaxy bias depends on luminosity. More
precisely it increases with the luminosity of the objects, a fact that we
interpret with the hypotesis that the more the luminous is the object the
more massive is its host dark matter halo. This trend was clearly detected
in several galaxy samples (e.g. Norberg et al. 2001, 2002 ; Zehavi et al.
2011). Estimates at z ∼ 0 have been limited by the restricted number
of objects in the sample. For this reason we tackle this problem here,
exploiting the angular size and number of objects in the 2MRS catalog.
For this purpose we divide the main sample, defined in Section 4.4.1, in 4
absolute magnitude bins, dubbed S1, S2, S3, S4. Each of them contains a
similar number of objects to guarantee similar errors in the bias estimates.
Table 4.4 summarize the main characteristics of these subsamples.

Table 4.4: Luminosity (not volume limited) subsamples in the 2MRS catalog.
mKs,cut = 11.75mag. All the magnitude are isophotal magnitudes. < MKs >
is the average magnitude of each bin. N denotes the number of objects in each
sample, after rejecting all galaxies beyond the maximum distance of 140 Mpc h−1.

MKs,range[mag] < MKs > [mag] N

S1 MKs ≤ −24 -24.36 8402

S2 −24 < MKs ≤ −23.5 -23.75 8678

S3 −23.5 < MKs ≤ −22.8 -23.18 9749

S4 MKs > −22.8 -22.16 8075

We compute the mean number density and the dN/ds of each subsample
through F/T method and build a random catalog matching the computed
mean number density for each subsample. Fig. 4.13 shows the measured
dN/ds (continous histogram) and the one obtained from the F/T method
(dashed curves) for each subsample, both computed in bins ∆s =150 Km
s−1. The samples are characterized by different median redshifts as a result
of the luminosity cuts. The brightest objects have, on average, largest
redshifts than the faint ones, as expected. The vertical line in fig. 4.13,
drawn at 140 Mpc h−1, corresponds to the maximum distance of the objects
used to estimate the power spectrum. All the objects beyond this distance
are not considered in the analysis.

For each subsample we compute the power spectrum using the FKP
estimator in the same computational box with lenght 280 Mpc h−1 and
2563 grid points centered at the objects’ central position. The use of the
same computational box for the luminosity bins makes easier the comparison
between the power spectrum measures because in this case the P (k) is
computed in the same k bins for all the subsamples. The power spectra
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of each subsample are shown in fig. 4.14.

Figure 4.13: The solid lines correspond to the observed dN/ds of each 2MRS
magnitude (not volume limited) subsample computed in bins ∆s=150 Km s−1. The
absolute magnitude range and the number of objects in each subsample is indicated
in Table 4.4. The dashed lines represent the mean dN/ds of each subsample
computed with F/T method (see text for details). The vertical line denotes the
maximum distance from the observer. All the objects beyond this distance are not
considered in the analysis.
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We notice that on large scales, except for the less luminous bin, the
amplitude of the spectra increases with the luminosity, which is expected.
This reflects the different bias of each sample. In the linear regime we can
estimate the bias from the ratio of the power spectra:

√
PSi/PSj, with

PS = power spectrum, i ranges from 1 to 4 and identifies each luminosity
subsample and j = 3, i.e. relative biases are referred to objects in the
luminosity range −23.5 < MKs ≤ −22.8. The choice of S3 as reference
sample allows a more quantitative comparison with the results of Westover
(2007) who computed the relative bias of 2MRS galaxies using the 2-point
correlation function. In that case the pivot at b value was that corresponding
to M∗ galaxies. In this case, M∗ corresponds to -23.43, 1, a value that lies

1M∗ is the characteristic luminosity of the sample and corresponds to characteristic
lumnosity L∗ of the Schecher-like luminosity function of 2MRS galaxies. Schecher function
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Figure 4.14: Power spectrum of each magnitude subsample: S1, S2, S3 and S4.
The absolute magnitude range and the number of objects in each subsample is
indicated in Table 4.4. The shaded areas represent 1 − σ errors from the scatter
among the mocks. The minimum k is higher for the fainter samples, due to the
smaller volume covered by them.
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within the magnitude range of the S3 sample. Fig. 4.15 shows in blue the
spectral ratios

√
PSi(k)/PS3(k), for each subsample. In all cases, but S4,

the spectral ratio drops at k ' 0.1 h Mpc−1. The possible origin of the drop
at large scales is discussed hereinafter in this Section. Since we are interested
in the linear regime, where it make sense to compute relative biases from
the spectral ratio, we shall compute the relative bias using large scales only.

To estimate errors we have repeated the same procedure as in the real

is given by: Φ(L)dL = Φ∗
(
L
L∗

)α
e(−

L
L∗ ) dL

L∗ where Φ(L) represents the luminosity function.
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catalog on the 95 mocks. For each mock we extract four absolute magnitude
subsamples. Each magnitude bin is defined as for the real catalog. Let’s
denote the 4 luminosity subsamples for the j−th mock as: M1j , M2j ,
M3j , M4j , where j is an integer index ranging from 1 to 95 that identifies
the mock catalog. The mean redshift distribution of mock galaxies in the
different subsamples is shown in fig.4.16. The agreement with those of the
real galaxies is remarkable since mock catalogs were not built to match these
properties. These are the dN/ds used to build the random catalogs and to
estimate the power spectrum of the mock subsamples.

For each mock we have computed the ratios
√
PMij/PM3j , their mean

and scatter among the mocks. In particular the rms scatter used to estimate
the 1-σ error is:

σi3 =

√∑N
j=1(

√
PMij/PM3j− <

√
PMij/PM3j >)2

N − 1
(4.6)

where N is the total number of mocks and <> is the average over all mocks.
To estimate the relative bias from the spectra ratios shown in fig.4.15 we

fit a constant function to the data points, each one weighted by its error bar,
over a limited range of wave numbers. In the linear regime this constant
function is equal to the ratio of the linear biases of the two subsamples
times the ratio of the Kaiser boost factors of the two populations. The
Kaiser boost factor, eq. 1.58, also depends on galaxy bias. It turns out
that the actual dependence is small and could be safely ignored, which we
did in the following analysis. If one accounts for it then the estimated bias
ratio decreases by ∼ 4 % for the brightest sample and remains constant in
the faintest. We fit the bias ratios in two different k-ranges [kmin, kmax]
for each subsample. For kmax we have considered two different values,
0.15 and 0.3 h Mpc−1, to check the robustness of the results and the
impact of nonlinearity, whereas we set kmin = 0.067 h Mpc−1, a value
significantly larger than the fundamental mode of the cube used to compute
the power spectrum 2π/280 = 0.022 h Mpc−1. This is a conservative choice
that reflects the need to consider the range of scales accessible to all the
luminosity-subcatalogs. Since the faintest subsample is also the smallest one,
the criterion used to set kmin is as follows. We consider the diameter of the
smallest (faintest) subsample, Dmin, and set kmin = 2π/Dmin + ∆k = 0.067
h Mpc−1, where ∆k is the binsize. The rationale of adding the extra ∆k
term is to reduce the impact of the window function. The advantage is that
we try to eliminate any systematics induced by comparing samples with
different window functions. The drawback, of course, is to erase information
on large scales.

We estimate the bias ratios for the four different subsamples as a function
of the luminosity. The bias ratios are measured with respect to the S3
sample: b/b(S3). For this reason, in the S3 case the bias ratio is set equal to
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unity and has no error. We set the luminosity L for each subsample equal
to the mean of the different luminosity bins.

To compare our results with other works, we show, in fig. 4.17, the
estimated bias ratios with respect to L∗ (as already anticipated we set
the corresponding absolute magnitude value at M∗ = −23.43, computed
in Westover, 2007, for the 2MRS galaxies). M∗ doesn’t coincide with the
mean absolute magnitude of galaxies in the S3 magnitude bin (although
M∗ lies in that bin), for this reason L/L∗ is different from unity for the
S3 subsample. At the same time we shift the relative bias values b/b(S3)
to b/b∗ assuming that, for the S3 sample, the relative bias b/b∗ is equal to
the result of an independent work by Norberg et al., 2001, (see below for
details about this work). The variations in the b/b∗ ratios due to this shift
are around 3%, well within the error bars for the S1, S2 and S4 samples.
Filled dots show the case of kmax = 0.15 h Mpc−1 and open dots the case
kmax = 0.3 h Mpc−1. The latter were slightly shifted for clarity. Error bars
represent the rms scatter from the mocks. The smallness of the error bars
on the bias ratio reflects the fact that, the cosmic variance is negligible in
this case since the different subcatalogs sample the same structure in largely
overlapping regions of the Universe.

We note a trend of more luminous objects to be more biased than
the faint ones. This is expected. At low luminosity the relative bias is
quite constant. Indeed the faintest point suggests that bias may be higher
for the faintest sample. However, the significance of this trend is well
within 1-σ. The fact that the two sets of points are in good agreement
is very reassuring since it possibly indicates that our bias estimates are not
significantly affected by nonlinear effects.

To compare these results with previous tests and theoretical predictions
we overplot to the datapoints four different curves. The black one is the best
fit proposed by Westover (2007) who performed a similar analysis, based
however on the two-point correlation function, using an earlier version of
the 2MRS catalog that contained nearly half of the objects, with Ks < 11.5.
In that analysis six different luminosity subsamples roughly matching ours
were selected and the redshift space correlation function was estimated for
each of them. The bias ratio was then computed from the amplitude of
the correlation function at a separation of 2.4 Mpc h−1, i.e. well into the
nonlinear regime. The blue curve is also from Westover (2007) and is an
analogous fit that uses the projected correlation function at a separation
of 5.9 Mpc h−1, hence simultaneously eliminating redshift distortions and
alleviating the impact of nonlinearity. These analytic fits have the form

b/b∗ = A+ C(L/L∗) ,

where A and C are the free parameters of the model and L∗ is the
characteristic luminosity of the Schecher fit to the galaxy luminosity
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function. In the two cases the best fit parameters are A = 0.82± 0.08 , C =
0.11± 0.05 and A = 0.73± 0.07 , C = 0.24± 0.04, respectively.

None of the two curves seem to fit our data. The black curve lies
systematically below our data points, which is somewhat difficult to explain
in terms of nonlinear effect. We notice that whereas the bias ratio measured
by Westover (2007) at L = L∗ is indeed equal to unity, this value represents
a local maximum in the measured b/b∗ vs L relation. Since the bias ratio
is set equal to unity at L = L∗, this seems more an issue of incorrect
normalisation. Indeed, if the black curve is shifted upwards in the plot
so that is passes through the pivot value at L = L∗ the quality of the fit
improves considerably. The blue curve is significantly steeper and does not
provide a good fit to our data points. Again, this is not surprising. That
curve is a fit to a clustering analysis performed in real space and probing
the nonlinear regime, whereas we made an effort to estimate the relative
bias in the linear regime and in redshift space. We do not expect that linear
redshift distortions may significantly affect the result of our analysis. This is
certainly true when the bias ratio is equal to unity, i.e. for the faint samples,
but is also true for the bright samples where b/b∗ ∼ 1.2, unless the absolute
bias of bright 2MRS galaxies is very large, which is not the case, as we shall
see below. As anticipated we estimate that the effect is of the order of a few
per cent. Therefore, the mismatch must be attributed to nonlinear effects.
Which is indeed plausible, since we are probing scales in the range [30, 100]
Mpc h−1, much larger than those considered in Westover’s analysis.

The red dashed curve is also a best fit and refers to 2dFGRS galaxies,
Norberg et al. (2001). As for the blue curve, these values were estimated
from the projected galaxy-galaxy correlation function at a separation of 4.9
Mpc h−1. The fitted curve has the same shape as in the previous cases
and parameters A = 0.85 , C = 0.15 (no errors provided). The curve seems
to provide an acceptable fit to our data as well, which is quite surprising
given the fact that this analysis is performed in real space, non-linear regime
and uses a different galaxy sample with different type composition and at
slightly higher redshifts than 2MRS. Finally, the black shaded curve refers
to the bias ratio of an even higher redshift sample, that of SDSS galaxies
(Tegmark et al., (2004)). In this case the relative bias was estimated from
the power spectrum, obtained from the galaxy power spectra, in real space,
on scales that are similar or larger than ours. Therefore, in this case the
main differences with our estimates arise from the different composition of
the sample and its redshift. This curve, b/b∗ = A+C(L/L∗) +B(M −M∗),
with parameters A = 0.85 , C = 0.15, B = −0.04, provides a good fit to our
data points except the faintest one.

In order to check the robusteness of our results, we repeat the same
analysis as before with volume limited samples rather than flux limited. This
would ”clean” each subsample from any incompleteness or selection effects
that we may have been underestimated. In order to extract volume limited
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samples we consider the subcatalogs S1,S2 and S3 and reject, for each of
them, all the objects beyond a maximum distance from the observer Rmax.
In the parent luminosity-subsamples the mean galaxy density decreases
beyond Rmax because of the apparent magnitude cut of the survey. Rmax
provides then the location of the maximum of the dN/ds curve (see fig.4.13).
The volume limited subsamples, dubbed S1V L,S2V L and S3V L, are then
characterised by a constant mean number density of objects. The number
of objects, the absolute magnitude range and the maximum distance from
the observer for each subsample are reported in Table 4.5. We exclude from
the analysis the faintest sample (S4V L) due to the limited size of its volume.

Table 4.5: Luminosity subsamples in the 2MRS catalog, volume limited. All
the magnitude are isophotal magnitudes. N denotes the number of objects in
each sample. Rmax indicates the maximum distance from the observer for each
subsample. The samples are obtained rejecting all the objects beyond Rmax in
the subsamples S1, S2 and S3 described in Table 4.4. The subsamples SiV L80 are
characterized by the same volume (Rmax = 80 Mpc h−1).

MKs,range[mag] Rmax[h−1Mpc] N

S1V L MKs ≤ −24 130 6918

S2V L −24 < MKs ≤ −23.5 110 6764

S3V L −23.5 < MKs ≤ −22.8 80 6232

S1V L80 MKs ≤ −24 80 1496

S2V L80 −24 < MKs ≤ −23.5 80 2496

S3V L80 −23.5 < MKs ≤ −22.8 80 6232

As before, for each subsample we compute the power spectrum in
the same computational box with lenght 280 Mpc h−1 and 2563 grid
points centered at the objects’ central position. In fig.4.15 we show the
spectral ratios computed in case of volume limited samples (red squares):√
PSiV L(k)/PS3V L(k), i = 1, 2 . The error bars are from the scatter among

95 volume limited mock catalogs. We note that the results agree quite well
within the error bars with the previous ones (in blue). Fig.4.18 shows the
bias versus luminosity results, computed in the same k ranges used in the
analysis of the parent luminosity-subsamples. The results are quite similar
to the ones obtained with the parent luminosity-subsamples S1, S2 and S3
(shown in fig.4.17): they totally agree when we restrict the analysis below
kmax = 0.15 h Mpc−1. This implies that the effect of having excluded the
external part of the original samples (the more luminous objects) does not
change significantly the results and confirms their robustness. At the same
time the drop in the power ratio at k = 0.15 h Mpc−1 is still evident in
the volume limited case (fig.4.15), especially when comparing PS1V L and
PS3V L and is at the origin of the discrepancies between the linear analysis
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(restricted to kmax = 0.15 h Mpc−1) and the nonlinear one (that extends
out to kmax = 0.3 h Mpc−1).

To corroborate the robustness of the luminosity dependence of the bias
we performed an additional test in which we we further reduce the volume
of the S1V L, S2V L and S3V L by keeping only objects within Rmax = 80
h Mpc−1, i.e. by comparing volume limited samples of the same size
but different number density. The main characteristics of the subsamples,
dubbed S1V L80, S2V L80 and S3V L80, are reported in Table 4.5. For each
subsample we compute the power spectrum in the same computational
box with lenght 160 Mpc h−1 (two times the maximum distance from the
observer) and 2563 grid points centered at the objects’ central position.
Fig.4.15 shows the spectral ratios (green triangles). The error bars are from
the scatter among the mocks. We note that the drop in the power ratio bias
has decreased, significantly when comparing PS2V L80 and PS3V L80.The
results for the relative bias are shown in fig.4.19. We note that they are
more stable than the previous two cases with respect to kmax.

In the light of these results we conclude that the drop in the power ratio
at k = 0.15 h Mpc−1 is not an intrinsic feature but probably reflects the
uncertainties in the estimate of the selection function at large distances, or
possibly some evolutionary effect that was not modelled properly. Nonlinear
effects may also play a role. Note, however, that because of the limited
number of objects and the size of the survey the significance of this drop
is barely 1σ. Table 4.6 summarizes the results of bias versus luminosity
obtained.

To summarize, in this study we find a dependency of galaxy bias on
luminosity. The qualitative trend is in agreement with the results of previous
studies: a weak luminosity dependence at low luminosities and an increase
above L∗. The increase is particularly sharp for the brightest galaxies in the
sample. A more quantitative comparison, however, is hampered by several
effects. Norberg et al. (2001) and Tegmark et al. (2004) use samples
that are different from ours in terms of redshift and galaxy composition.
In addition, our analysis is performed in redshift space whereas the other
cases shown in the plot, apart from the continuous black curve, refer to
real space analyses. In the linear regime the correction would be trivial,
the Kaiser boost, and rather small. But one should also account for the
fact that correction for nonlinear motions may reverberate to large scales
when Fingers of God associated to massive clusters are compressed (see
e.g. fig.55 in Tegmark et al., 2004). This of course depends on the details
of the compression, the prominence of the Fingers of God features in the
redshift maps and the type of objects in the catalog. In the 2MRS case,
which preferentially contains late type galaxies and in which we have only
compressed a handful of clusters, the effect should not be large. However,
a dedicated analysis would be needed to quantify the effect. Finally, the
different analyses have focused on different scales. Those of Westover (2007)
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and Norberg et al. (2001) have considered small, highly nonlinear scales, in
which both dynamical nonlinear effects and scale-dependent bias affect the
result of the analysis. Again, quantifying the effect would require a proper
analysis that can only be based on realistic mock catalogs of all samples
considered in this comparisons.

As for the analysis presented here, a few improvements can be
foreseen.The effect of the window function of each subsample should
be explicitly accounted for, when considering different volume samples.
However, the stability of our results to the choice of kmin indicates that
the improvement in this sense would be marginal. Another improvement of
the analysis could be to adjust the statistical weight of the FKP estimator
according to the subsample considered rather than using a unique weight,
calibrated on the full 2MRS catalog, for all sub-catalogs considered.
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Figure 4.15: Power spectrum ratios vs. the wavenumber k: in blue√
PSi(k)/PS3(k), i = 1, 2, 4. Red:

√
PSiV L(k)/PS3V L(k), i = 1, 2 (volume

limited samples). Green:
√
PSiV L(k)/PS3V L(k), i = 1, 2 (volume limited and

same maximum distance (80 Mpc h−1)) Error bars are given by the scatter among
the spectral ratios among the mocks. The red squares are slightly shifted to higher
k values.
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Figure 4.16: Mean dN/ds of mock subsamples computed in bins ∆s=150 Km s−1.
As done for the real catalog, we divide each of the 95 2MRS mocks in four absolute
magnitude subsamples (magnitude bins are indicated in Table 4.4). Each solid line
corresponds to the mean dN/ds of the 95 mock subsamples relative to the same
magnitude bin. The vertical line denotes the maximum distance of the subsamples.
As for the real catalog, all objects beyond that distance are not considered in the
analysis. The dN/ds is shown also for distances larger than that.
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Figure 4.17: Bias versus luminosity obtained using the flux limited samples S1,
S2, S3 and S4. The filled and open dots denote our results with the 2MRS galaxies
for kmax = 0.15 and kmax = 0.30 h Mpc−1 respectively, both redshift space. The
open dot circles are slightly shifted to higher L values. The black curve denotes
the Westover (2007) best fit model to the bias vs. luminosity results obtained by
measuring the ratio between the correlation functions of 2MRS galaxies in redshift
space at r = 2.4 Mpc h−1: b/b∗ = 0.82 + 0.11L/L∗. The blue curve denotes
the Westover (2007) best fit model to the bias vs. luminosity results obtained
from the ratio between the projected correlation functions of 2MRS galaxies at
r = 5.9 Mpc h−1: b/b∗ = 0.73 + 0.24L/L∗. The red dashed curve and the black
dashed one correspond respectively to Norberg (2001) model for 2dF galaxies,
with b/b∗ = 0.85 + 0.15L/L∗, obtained using projected correlation functions at
a separation of r = 4.9 Mpc h−1, and Tegmark (2004) model for SDSS galaxies,
with b/b∗ = 0.85 + 0.15L/L∗− 0.04(M −M∗), obtained using the real space power
spectrum at scales similar or larger than ours.
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Figure 4.18: Bias versus luminosity with volume limited samples. The filled
and open dots denote our results with the 2MRS galaxies for kmax = 0.15 and
kmax = 0.30 h Mpc−1 respectively, both redshift space. The open dot circles are
slightly shifted to higher L values. The black curve denotes the Westover (2007) best
fit model to the bias vs. luminosity results obtained by measuring the ratio between
the correlation functions of 2MRS galaxies in redshift space at r = 2.4 Mpc h−1:
b/b∗ = 0.82+0.11L/L∗. The blue curve denotes the Westover (2007) best fit model
to the bias vs. luminosity results obtained from the ratio between the projected
correlation functions of 2MRS galaxies at r = 5.9 Mpc h−1: b/b∗ = 0.73+0.24L/L∗.
The red dashed curve and the black dashed one correspond respectively to Norberg
(2001) model for 2dF galaxies, with b/b∗ = 0.85 + 0.15L/L∗, obtained using
projected correlation functions at a separation of r = 4.9 Mpc h−1, and Tegmark
(2004) model for SDSS galaxies, with b/b∗ = 0.85 + 0.15L/L∗ − 0.04(M −M∗),
obtained using the real space power spectrum at scales similar or larger than ours.

æ

æ

æ

ç

ç
ç

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

Log10HL�L*L

b�
b*

ç 2MRS, kmax=0.30 h Mpc-1
æ 2MRS,kmax=0.15 h Mpc-1



4.5 Relative bias estimates 118

Figure 4.19: Bias versus luminosity with samples that trace exactly the same
spatial region (maximum distance from the observer 80 Mpc h−1). The filled
and open dots denote our results with the 2MRS galaxies for kmax = 0.15 and
kmax = 0.30 h Mpc−1 respectively, both redshift space. The open dot circles are
slightly shifted to higher L values. The black curve denotes the Westover (2007) best
fit model to the bias vs. luminosity results obtained by measuring the ratio between
the correlation functions of 2MRS galaxies in redshift space at r = 2.4 Mpc h−1:
b/b∗ = 0.82+0.11L/L∗. The blue curve denotes the Westover (2007) best fit model
to the bias vs. luminosity results obtained from the ratio between the projected
correlation functions of 2MRS galaxies at r = 5.9 Mpc h−1: b/b∗ = 0.73+0.24L/L∗.
The red dashed curve and the black dashed one correspond respectively to Norberg
(2001) model for 2dF galaxies, with b/b∗ = 0.85 + 0.15L/L∗, obtained using
projected correlation functions at a separation of r = 4.9 Mpc h−1, and Tegmark
(2004) model for SDSS galaxies, with b/b∗ = 0.85 + 0.15L/L∗ − 0.04(M −M∗),
obtained using the real space power spectrum at scales similar or larger than ours.
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Table 4.6: Bias versus luminosity. FL indicates the original not volume limited
subsamples extracted from the 2MRS main sample (S1,S2,S3,S4). VL indicates
that the bias versus luminosity results are obtained from volume limited subsamples,
obtained rejecting all objects beyond a maximum distance (Rmax) from the original
subsamples. VL80 indicates that we use samples which cover the same volume
(Rmax = 80 Mpc h−1 for all the subsamples). In the last two cases, VL and VL80
we exclude from the analysis the faintest luminosity bin. The results are obtained
fitting the spectral ratios shown in fig. 4.15 with a constant function in the k range
[kmin, kmax]. In all cases kmin ∼ 0.067 Mpc−1 h. The value of L∗ is assumed to
correspond to the absolute magnitude value M∗ = −23.43 computed in Westover
(2007) for the 2MRS galaxies. The value of L for each luminosity bin corresponds
to the average luminosity value inside that bin.

kmax[Mpc−1h] L/L∗ b/b*

FL 0.15 2.36 1.239±0.041

FL 0.15 1.35 1.061±0.039

FL 0.15 0.80 0.970

FL 0.15 0.31 0.995±0.069

FL 0.30 2.36 1.194±0.026

FL 0.30 1.35 1.014±0.023

FL 0.30 0.80 0.970

FL 0.30 0.31 0.995±0.042

V L 0.15 2.34 1.244±0.058

V L 0.15 1.31 1.076±0.049

V L 0.15 0.76 0.964

V L 0.30 2.34 1.142±0.025

V L 0.30 1.31 0.986±0.022

V L 0.30 0.76 0.964

V L80 0.15 2.33 1.250±0.038

V L80 0.15 1.31 1.051±0.029

V L80 0.15 0.76 0.964

V L80 0.30 2.33 1.208±0.025

V L80 0.30 1.31 1.058±0.019

V L80 0.30 0.76 0.964
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4.5.2 Bias dependence on galaxy morphological type

Different types of galaxies have different clustering properties. Indeed,
morphological segregation is a long known effect (Dressler et al., 1980). Our
goal here is to quantify the bias dependence on galaxy type in 2MRS. To do
this we have repeated the same analysis presented in the previous Section
dividing, however, the catalog in 2 subsamples characterised by different
morphological types, instead of four subsamples of different luminosities.

For this purpose we have considered the sample of 20860 galaxies with
|b| > 10 deg and mKs ≤ 11.254 mag for which the morphological T-type is
provided. The T-type ranges from -7 for unclassified elliptical galaxies to 0
for S0/a galaxies and +9 for Sm galaxies (see de Vaucouleurs et al. (1976)
for details on the galaxy classification). Irregular and peculiar galaxies are
also classified as separate classes.

We divide the sample in two subsets: Se containing early type galaxies
and Sl containing late type galaxies, using the following criteria: Se with T-
type in the range [-9,-1] (elliptical and lenticular up to S0+ type) constitute
the early type sample, galaxies with T-type in the range [0,+9] (SO/a and
all spirals) are placed in the Sl subsample. Irregular galaxies and non
classified spirals are excluded from the analysis. The two sets have different
characteristics like their respective luminosity functions that, as shown in
Kochanek et al. (2001), are quite robust to the selection criteria since
shifting the T-type boundary between early and late type by +1 or -1 doesn’t
change the luminosity functions.

We extract a semi volume limited sample from both samples applying
the same procedure described in Subsection 4.3.1 and consider all objects
that do not belong to our Local Group and out a maximum distance of
100 Mpc h−1. The radius of the samples is then smaller than for most of
the sub-catalogs considered so far. The rational behind this choice is the
brighter magnitude cut that we have used here (to guarantee a morphological
classification to each object).

The two Se and Sl samples contain respectively 6538 and 9447 objects.
Their dN/ds are plotted in fig. 4.20 (histograms) and compared with the
same quantities estimated using the F/T method (dashed curve).

The power spectra of both subsamples were estimated using the same
procedure described in the previous Subsection but using a computational
box of 200 Mpc h−1. The result is shown in fig. 4.21 where the red and blue
line refer to the early and late type samples, respectively, as indicated in the
plot. The shaded region represents the 1-σ uncertainty strip obtained from
the rms scatter among the mocks. These mocks are not the same one used
so far. The parent catalog extracted from the simulation does not contain
any morphological information. Therefore, to build mocks mimicking the
ones used in this analysis we decided to use colour information to split
the mock catalog into two subsamples with relative number of objects and
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Figure 4.20: dN/ds of the two morphological subsamples: early type (Se) and
late type (Sl) galaxies. The solid lines correspond to the observed dN/ds of each
subsample computed in bins ∆s = 150 Km s−1. The dashed lines represent the
mean dN/ds of each subsample computed with F/T method (see text for details).
The vertical line denotes the maximum distance from the observer. All the objects
beyond this distance are not considered in the analysis.
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characteristics similar to that of the real catalogs. The idea is to identify
early and late type galaxies with red and blue galaxies, respectively. So all
we had to do was to separate red and blue objects in the mocks where colour
information is available thanks to the fact that magnitudes are specified not
only in the 2MRS near-infrared bands but also in the optical SDSS bands.

For this purpose we tried several different criteria, following different
colour-colour or colour-magnitude cuts proposed in the literature ( Baldry et
al. (2004), Zehavi et al. (2005), Zehavi et al. (2011), Loveday et al. (2012)).
It turned out that the most effective in our case is the one proposed by Zehavi
et al. (2005) that considers the relation between the (g − r) colour and the
Mr magnitude. The distribution of mock 2MRS galaxies in this plane (see
fig. 4.22) shows a clear bimodality that can be exploited to separate the the
two populations. As shown in the plot, our only selection criterion was a
colour cut at g− r=0.75, slightly different from the one proposed by Zehavi
et al. (2005) that, however, was calibrated for SDSS galaxies at significantly
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Figure 4.21: Power spectrum of early type (Se) and late type (Sl) galaxies. The
shaded areas represent 1− σ errors from the scatter among the mocks.
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higher redshifts. The relative number of objects in the red vs. blue galaxies
mock samples turned out to be close to that of the early vs. late galaxies in
the real samples. A remarkable similarity was also found among the redshift
distributions of the corresponding real and mock subsamples.

In fig. 4.23 we show the square root of the power spectrum ratio between
the Se and Sl subsamples

√
PSe/PSl as a function of the wavenumber. This

plot, which basically corresponds to the bias ratio between the two samples,
indicates that the ratio is rather constant across the k-range, i.e. it is rather
insensitive to nonlinearities at least out to k = 0.4 Mpc−1 h, despite the fact
that nonlinear effects are expected to be more prominent for the Se sample,
since early type objects preferentially inhabit high density environments.



4.5 Relative bias estimates 123

Figure 4.22: Colour-magnitude diagram of one 2MRS mock catalog. The red line
shows the colour cut g − r = 0.75, applied to the mocks in order to separate red
from blue galaxies.
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Errorbars were computed from the mocks. For each mock we considered
the power spectra of the blue and red subsamples and their ratio. Then we
averaged over all ratios and considered the rms scatter that we used as a
proxy for the 1-σ random error, i.e.

σel =

√∑N
j=1(

√
Prj/Pbj− <

√
Prj/Pbj >)2

N − 1
(4.7)

where j runs over all N mocks and Pr and Pb indicate the power spectrum
of the red and blue objects, respectively.

From this power ratio we derive an estimate for the relative bias of the
early vs. late galaxies by determining the best fitting constant function in
the range [kmin, kmax], where kmin = 0.04 Mpc−1 h and kmax varies between
0.15 and 0.5 Mpc−1 h, i.e. well into the non-linear regime. The results, listed
in Table 4.7, are quite robust to the choice of kmax out to 0.4 Mpc−1 h, as
anticipated by the visual inspection of fig. 4.23. The value of the relative
bias shows that early type galaxies are more clustered than late type objects,
as expected.

Westover (2007) also performs a similar analysis but provides the values
of the bias for early and late types in different luminosity bins. Averaging
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over the published values, the relative bias be/bl ' 1.32 with a 1-σ error of
about 15%. This value matches our estimate at kmax = 0.5 Mpc−1 h, which
is not surprising since Westover (2007) estimates the bias ratio at 2.4 h−1

Mpc, i.e. in the nonlinear regime.

Figure 4.23: Power spectrum ratio vs. the wavenumber k:
√
PSe/PSl. Error

bars are given by the scatter among the spectral ratios among the mocks.
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Table 4.7: Relative bias early−late type galaxies obtained fitting
(PSe(k)/PSl(k))1/2 up to different kmax. 1σ errors are from χ2 minimiza-
tion.

kmax[h Mpc−1] b± σ
0.15 1.228 ± 0.067

0.20 1.232 ± 0.056

0.30 1.289 ± 0.037

0.50 1.353± 0.029
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4.6 Estimating cosmological parameters

In this Section we fit a model power spectrum to that of all 2MRS galaxies
shown in fig.4.11. In practice we repeat the analysis performed on the halo
catalogs of the BASICC simulation, in Section 3.3 and on the realistic 2MRS
catalogs earlier on in this Chapter. We shall fit different model power spectra
to the measured 2MRS spectrum and estimate the best fitting parameters
and their uncertainties by minimising the χ2 differences between the two
spectra. As anticipated, we assume uncorrelated power in different k-bins
and use the results of the analysis presented in the first part of this Chapter
to select k-ranges in which we compare the measured spectrum with the
various models. The upper limits of the interval [kmin, kmax] are listed in
Table 4.9 together with the associated model. In all cases the value of kmin
was set equal to 0.03 h Mpc−1.

The models are those described is Section 4.3.3.
All of them are based on the ΛCDM model and depend on a number

of common cosmological parameters that characterise the properties of
the background cosmology and the properties of the primordial density
fluctuations. Some of them are kept fixed at the values recently estimated by
CMB analysis performed by the Planck collaboration (2013). They are listed
in Table 4.8 and include the Hubble constant, H0, the baryon density Ωb,
the spectral normalization σ8 and the primordial index ns. The rationale
behind keeping these parameters at their estimated values, ignoring their
errors, is twofold. First, as we shall see, the uncertainty in the estimate of
the free parameters from our 2MRS analysis is rather large, and these errors
will not significant affect the error budget. The second reason is that some
of the parameters in the Table, namely σ8, are completely degenerate with
some of the free parameters (the galaxy bias or the distortion parameter β).
The problem could be avoided by considering combination of cosmological
parameters like the product σ8 times the growth rate of density fluctuations
that carries a similar information content (Percival & White, 2009) but we
prefer here to take a more traditional rule of considering the individual
parameters and fix some of them at pre-determined values.

Table 4.8: Values of the fixed parameters. The values are the best fit values for
the ΛCDM model from Planck collaboration, 2013.

Parameter Value

Ωbh
2 0.022068

H0 67.11

σ8 0.8344

ns 0.9624
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In all cases considered the free parameters are the galaxy bias, b, and
the mass density parameter, ΩM , and our goal is to estimate their value by
means of χ2 minimisation. Since the magnitude of the Kaiser boost depends
on their value, they both determine the amplitude of the power spectrum but
only ΩM affects its shape. Therefore, to estimate both of them we need to
fit the measured spectrum over a sufficiently large k- range and the goodness
of the result will be a compromise between the need to have a large leverage
on the k-axis and that of reducing systematic errors induced by nonlinear
effects on small scales. Some of the models explored require some additional
parameter (the Q-value that quantifies mild nonliearities or the pairwise
velocity dispersion σ in the small scale damping term). In these cases the
additional parameters are free to vary but then we shall marginalise over
it to focus on b and ΩM only. To summarise, the parameters b, ΩM and,
if present, the additional parameter X where obtained by minimising the
following quantity:

χ2(ΩM , b,X) =

∑N
i=1(Pm(ki)− Pconv(ki,ΩM , b,X))2

σ2(ki)
(4.8)

where Pm(ki) is the power spectrum estimated from the 2MRS sample,
Pconv(ki) is the model power spectrum convolved with the window function,
ki is the modulus of the wavenumber in the i-th bin, σ2(ki) is the variance
from the rms dispersion among the mocks and the sum runs over all k-bins
between kmin and kmax.

Let us now describe the outcome of the best fitting procedure for the
different models considered.

• MODEL LW: Pconv(k) = b2K(ΩM , b)PCAMB(k) ∗WF .

In this expression K(ΩM , b) is the Kaiser boost factor given by
(1 + 2

3β + 1
5β

2) with β = Ω0.55
M /b, PCAMB(k) is the ΛCDM linear

matter power spectrum obtained from CAMB and ∗WF indicates
the convolution with the window function computed from the mocks.
Since this model relies on linear theory, we limit the fit to large scales
k ≤ 0.15 Mpc−1 h. The results are shown in fig.4.24 where we plotted
the confidence contour levels in the b−ΩM plane. The contours filled
with different shades of blue represent 1, 2, 3 σ contours. The best
fit (b,ΩM ) values together with their 1-σ uncertainty obtained after
marginalising over the other parameters are listed in Table 4.9. The
best fit values appear to be in the right ballpark. The accuracy of
the matter density parameter is rather limited, as anticipated. ΩM

is estimated with a 1-σ accuracy of about 20% and the absolute bias
with an accuracy of about 3%. The accuracy of the latter result could
depend on the fact that we are fixing the normalization parameter
σ8, which in Planck is determined with an accuracy of 3% but not in
agreement with estimates from clustering.
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• NLW3: Pconv(k) = [PHf (k)b2K(ΩM , b)] ∗WF

This case is analogous to the previous one except for the fact that the
model matter power spectrum is nonlinear, obtained using Halofit,
dubbed PHf (k). The goal here is to assess whether nonlinear effects
exist at k ≤ 0.15 h Mpc−1 that may have affected the previous result.
Therefore we shall fit the NLW3 to the data in the same k-range
used in the LW , i.e. out to k = 0.15 h Mpc−1. The results are
shown as black contours in fig.4.24, superimposed to the coloured
contours obtained from models LW . The agreement between the two
results is remarkable. The new contours are slightly shifted to lower
values of ΩM and b. The shift may indeed indicate that non-linear
effects affect the analysis even on these scales. On the other hand,
the mismatch may reflect the fact that this model couples nonlinear
dynamics, responsible for the Halofit spectrum, with linear theory,
responsible for the Kaiser boost, in an inconsistent fashion since it
ignores the role of nonlinear, incoherent velocities. The net effect
is to predict too large power which, in the fit, is compensated by
decreasing the values of b and ΩM . Irrespective of its possible origin,
the significance of the shift is well within 1-σ and the result of this test
constrain the magnitude of nonlinear effects at k ≤ 0.15 h Mpc−1 and
their impact on the outcome of the fitting procedure.

• NLW3G: Pconv(k) = [PHfb
2K(ΩM , b)G(k, σ)] ∗WF

To push the analysis to higher k values one must then include the effect
of non-linear motions, which we model by adding a Gaussian damping

term G(k, σ) = π1/2

2
erf(σk)
σk to the NLW3 model. This additional term

is characterised by a single parameter, σ, that is treated as a free
parameter together with b and ΩM . The tests performed with the
mocks have shown that this model provides a good fit to the measured
spectrum out to k = 0.4 h Mpc−1 , a value that we used for kmax.
To check the sensitivity of the results on this choice we also push the
analysis out to kmax = 0.5 h Mpc−1, The results are shown in fig. 4.25.
in the form of coloured contours (for kmax = 0.4 Mpc−1 h) and black
contours (for kmax = 0.5 h Mpc−1 ) in the b−ΩM plane. To minimise
the degeneracy among the parameters (that, as we have verified, is
very weak when kmax > 0.3 h Mpc−1 ) we put a flat prior [0,5] Mpc
h−1 on σ. The contours in the plot were obtained after marginalising
over this additional parameter.

The two sets of contours are in very good agreement with each other,
showing that the results are quite robust to the choice of the nonlinear
scale, and with those obtained from the LW model. As shown in
Table 4.9 including a damping term has improved the accuracy in the
estimate of ΩM and b to ∼ 15 % and ∼ 2.5 %, respectively.
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• NLW1 and NLW2: Pconv(k) = [b2PCAMBK(ΩM , b)F (k,Q)] ∗WF

In both models, non-linear effects are modelled with a k-dependent
function F (k,Q) which in the NLW1 has the form (1 + Qk2) and in
the case NLW2 has the form (1 + Qk3/2). The tests performed with
the mocks have shown with these models that the accuracy in the
estimates of b and ΩM is similar to that obtained with model NLW3G
but the value of kmax is smaller. Therefore we shall restrict the fit to
k ≤ 0.4 h Mpc−1. Even in this case we rest Q as a free parameter
with a flat prior of [0.5]. The significance contours in fig. 4.26 refer
to the NLW1 model (coloured contours) and to the NLW2 model
(black curve contours) and where we marginalised over the additional
nonlinear parameter Q.

The results are in agreement, and sometimes in very good agreement,
with those obtained from some of the other models and altogether
demonstrate the robustness of these results.

Table 4.9: Best fit results for the cosmological parameters and 1σ marginalized
errors.

Model kmax[h Mpc−1] ΩM ± σ b± σ
LW 0.15 0.320±0.063 1.228±0.038

NLW3 0.15 0.289±0.061 1.185±0.040

NLW3G 0.40 0.334±0.053 1.253±0.032

NLW3G 0.50 0.354±0.048 1.265±0.029

NLW1 0.40 0.350±0.040 1.240±0.027

NLW2 0.40 0.333±0.045 1.218±0.034
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Figure 4.24: 1− 2− 3σ confidence levels on the plane b− ΩM . Fit of the 2MRS
power spectrum up to kmax = 0.15 h Mpc−1. The filled contours correspond to
model LW : b2K(ΩM , b)PCAMB(k) ∗ WF , where b is the linear bias parameter,
K(ΩM , b) is the ”Kaiser boost” factor, PCAMB(k) is the linear matter power
spectrum from CAMB, WF is the window function of the survey. The black solid
contours are obtained fitting data with model NLW3 : [PHf (k)b2K(ΩM , b)] ∗WF ,
where PHf (k) is the non linear matter power spectrum from Halofit.
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Figure 4.25: Marginalized constraints on the plane b − ΩM . Fit of the
2MRS power spectrum with Halofit plus Gaussian damping (model NLW3G):
[PHf b

2K(ΩM , b)G(k, σ)] ∗ WF , where PHf (k) is the non linear matter power
spectrum from Halofit, b is the linear bias parameter,K(ΩM , b) is the ”Kaiser boost”

factor, G(k, σ) = π1/2

2
erf(σk)
σk is the Gaussian damping term accounting for non

linear motions, WF is the window function of the survey. The filled contours
are obtained fitting data up to kmax = 0.4 h Mpc−1. The black solid contours
correspond to kmax = 0.5 h Mpc−1.
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Figure 4.26: Marginalized constraints on the plane b − ΩM . Fit of the 2MRS
power spectrum with NLW1 : [b2PCAMBK(ΩM , b)](1+Qk2)∗WF (filled contours)
and NLW2 : [b2PCAMBK(ΩM , b)](1 +Qk3/2) (black solid contours), where b is the
linear bias parameter, PCAMB(k) is the linear matter power spectrum from CAMB,
K(ΩM , b) is the ”Kaiser boost” factor, WF is the window function of the survey.
Both contours are obtained fitting data up to kmax = 0.4 h Mpc−1.
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Chapter 5

Estimating scale-dependent
galaxy bias

In the previous analyses we made the simplifying hypothesis that mass and
galaxy overdensity field can be simply related through a linear bias relation.
In fact, we made, except for some cases, the stronger hypothesis that linear
theory holds, on the scales of the analysis, for both galaxy bias and for
the density fluctuations. Disentangling the two effects is doable in principle
since the type of nonlinearity, its time evolution and the possible associated
scale-dependence are different in the two cases. Dynamical models for
the evolution of density fluctuations are indeed available, either based on
analytic approximation or on numerical N-body approach. In practice,
however, these models have limitations. Their validity is usually limited
to a restricted range of scales and depend on the assumed cosmological
model. On the other hand, the state-of-the-art of theoretical models of
galaxy evolution do not allow to predict galaxy bias with good accuracy. For
all these reasons, a phenomenological approach in which deviations from the
linear biasing prescriptions are measured directly from the data should be
regarded as a valid alternative that we shall explore in this Chapter. The
content of this Chapter is based on L. Amendola et al., Constraints on a
scale-dependent bias from galaxy clustering, in preparation.

Di Porto et al. (2012), among others, have shown that future galaxy
redshift surveys do contain enough information to break the degeneracy
between the galaxy bias, clustering amplitude and the growth factor,
effectively allowing to estimate galaxy bias from the data itself. Of course
this comes at the price of making some assumptions on the biasing relation.
We assume that the bias relation between the galaxy density field and the
mass field is local, deterministic but not necessarily scale-independent. The
locality and deterministic hypotheses are likely to break down on those scales
in which processes involved in galaxy formation and evolution, like stellar
feedback, are effective. These scales are typically small compared to the

132
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typical size of current and future galaxy surveys and can be safely ignored
by smoothing small scale fluctuations or by restricting the analysis of galaxy
clustering on large scales.

From an observational viewpoint, the scale dependent bias has been
advocated at low and at high redshifts to account for 2-point galaxy
clustering statistics, higher order statistics, galaxy counts (e.g. Norberg
et al. 2001, Verde et al. 2002, Branchini 2001, di Porto et al. 2014)and
gravitational lensing (Hoekstra et al., 2002). In this Chapter we shall then
assume that galaxy bias is scale dependent and we investigate the possibility
of estimating it using next generation galaxy surveys. In particular we shall
focus on a type of survey which has characteristics similar to that of the
spectroscopic galaxy survey that will be carried out with the satellite Euclid,
that will be launched by ESA in 2020 (Laureijs et al., 2011).

This survey is expected to target about 30 million galaxies whose redshift
will be determined thanks to their Hα emission line over an area of 15,000
deg2 in a redshift range that should be approximately equal to z = [1.0, 2.0].
We stress that the aim here is not to mimic the exact properties of the Euclid
survey but to assess the possibility that a survey of this type could detect a
scale dependency in galaxy bias.

Our primary theoretical tool here will be the Fisher Matrix analysis and
we shall provide some details on its practical implementation in the next
Sections. In addition, and with the aim of providing a realistic setup, we
use mock Euclid catalogs to calibrate the reference scale-dependent bias
model that we use in the analysis. The results are presented and discussed
in the last two Sections.

In the Fisher matrix analysis we set a fiducial cosmological model.
We choose a model with the following parameters: a Hubble parameter
h = 0.7, mass density parameter ΩM = 0.25, baryon density Ωb = 0.0445,
curvature parameter Ωk = 0, the primordial index ns = 1, dark energy
equation of state parameters w0 = −0.95 and w1 = 0 (see next Section for
details), rms density fluctuation at 8 h−1 Mpc σ8 = 0.8, and growth rate
f(ΩM ) = ΩM (z)γ with γ = 0.545.

In order to constrain the parameters, we use the Fisher matrix method
(Fisher, R. A., 1935), (Tegmark, M. et al., 1997), that, following (Komatsu
E., et al., 2011), we apply to the power spectrum analysis in redshift space.

5.1 Modelling the Redshift Space Power Spectrum

The analytic model of the power spectrum in redshift space is modelled as
follows.

• We use CMBFAST (Seljak, U., Zaldarriaga, M., 1996) to obtain the
linear power spectrum of the matter in real space at the present epoch,
P0r(k), where the subscript r characterises the reference model. This
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power spectrum depends on most of the cosmological parameters listed
above, namely: h, ΩM , Ωb, ΩDE , Ωk and σ8.

• To convert the reference power spectrum model into a different
cosmology we use the multiplicative term

R(z) =
D2
r(z)H(z)

D2(z)Hr(z)
, (5.1)

where D(z) is the angular diameter distance and H(z) is the expansion
history, i.e. the Hubble parameter as a function of epoch:

H(z)2 = H2
0

[
ΩM (1 + z)3 + Ωk(1 + z)2 + (1− ΩM − Ωk)

]
exp

{
3

∫ (
1 + w0 + w1

z

1 + z

)
dz

1 + z

}
,

in which we allow for a more general dark energy model characterised
by an equation of state w(z) = w0 + w1

z
1+z .

• We model the linear redshift distortions using the Kaiser boost in
which, unlike in the previous Chapters, we explicitly indicate the
angular dependence instead of performing angular averages:

K(Ωm(z), b, µ) = (1 + β(z)µ2)2 , (5.2)

where β(z) = ΩM (z)γ/b, µ is the cosine angle between the wavenumber
vector ~k and the line of sight and b is the bias parameter.

• To account for the linear evolution of density fluctuations we further
multiply the matter power spectrum at the present epoch by D1(z),
the growth factor at the redshift z, properly normalized.

• To model nonlinear effects on large scales, where we shall focus our
Fisher analysis, we follow Eisenstein et al. (2007) and Seo et al. (2007)
and multiply P0r(k) by the factor

S(k, µ) = exp

{
−k2

[
(1− µ2)Σ 2

⊥
2

+
µ2Σ 2

‖
2

]}
(5.3)

where Σ⊥ and Σ‖ represent the Lagrangian displacement across and
along the line of sight, respectively. They are related to the growth
factor D1 and to the growth rate f(ΩM ) = ΩM (z)γ through Σ⊥ =
Σ0D1 and Σ‖ = Σ0D1(1 + f). The value of Σ0 is proportional to σ8.
For our reference cosmology, where σ8 = 0.8, we have Σ0 = 11h−1Mpc.

• An additional issue, is the error in the measured redshift, δz, which
propagates into an uncertainty in the estimated distances, σr = δz

H(z) .
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Under the assumption that these errors do not correlate with the local
galaxy density we can quantify its impact in the measured spectrum
by an additional multiplicative term

W (k, σr, µ) = e−k
2µ2σ2

r . (5.4)

• We also include an additive, scale independent term to account for
uncertainties in the shot noise removal, Ps(z).

• Finally, to obtain a model for the galaxy power spectrum, we multiply
that of the matter by a scale dependent bias b(k, z) that we model in
the next Section.

To summarise, the model power spectrum that we consider in this
Chapter has the form as

Pg(z, k, µ) = P0r(k)R(z)D2
1(z)b(k, z)2K(Ωm(z), b, µ)W (k, σr, µ)S(k, µ)+Ps(z) .

(5.5)
Observations will allow to estimate the power spectrum in finite redshift

bins whose size should compromise between the need of large statistics
and volume and the need to minimise evolution effects. To mimic the
characteristics of a Euclid like survey we shall use bins of width ∆z = 0.2
starting at z = 0.6 and with a number of objects similar to that expected
for the real survey. The relevant numbers are provided in Table 5.1.

Table 5.1: Redshift bins used in our analysis. Col 1: central redshift of a z-bin of
width ∆z = 0.2. Col 2: expected mean number density of objects within each bin
(in Mpc−3 h3) matching those expected in the Euclid survey according to Laureijs
R., et al.(2011).

z n̄ [Mpc−3 h3]

0.6 3.56× 10−3

0.8 2.42× 10−3

1.0 1.81× 10−3

1.2 1.44× 10−3

1.4 0.99× 10−3

1.6 0.55× 10−3

1.8 0.29× 10−3

2.0 0.15× 10−3

5.2 Modelling the scale dependent bias

Several authors have proposed phenomenological or theoretical models for
the scale dependent bias b(z, k) (see Section 2.4). Since here we are focusing
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on the accuracy with which one can constrain galaxy bias rather than on the
accuracy of the bias model, we shall consider the two rather simple analytic
prescriptions given in eq. 2.59 and eq. 2.63, that we write here including
dependence on redshift in the more general form:

P−model : b(z, k) = b0(z) + b1(z)

(
k

k1

)n
(5.6)

Q−Model : b(z, k) = b0(z)

[
1 +Q(z)(k/k1)2

1 +A(z)(k/k1)

]1/2

. (5.7)

Furthermore here we use the subscript 0 to indicate the k−independent
bias parameter.

Although other bias models have been proposed with stronger theoretical
motivations, see Section 2.4, we have decided to adopt these two for two
reasons. First, both models, especially the second one, have been used in
the literature. This way our results can be directly compared with those
of previous works, helping us to limit the allowed parameter space to be
explored. Second, in this Chapter we focus on large scales encompassing the
BAO scales (∼ 100 Mpc h−1) and consider a limited range of wavenumbers
where the differences among the various models proposed in the literature
are small. We then consider those that have a simple analytic form and are
easier to handle within the Fisher Matrix formalism. Finally, we notice that
neither model allows for non-Poisson shot noise term. This, however, could
be easily accounted for by modifying the last term in eq. 5.5.

In our analysis we shall consider two types of reference models for both
the P-model and the Q-model cases. The first is the unbiased reference
model which corresponds to the case in which galaxies are unbiased tracers
of the underlying mass density field. The bias parameters corresponding to
this case are b0 = 1 , b1 = 0 for the P-model and b0 = 1 , A = 0 , Q = 0 for
the Q-model. The second is a more realistic bias model calibrated using a
mock Euclid catalog of galaxies, as detailed below. The parameters of the
corresponding reference models for the P-model and Q-model, specified bin
by bin are listed in Table 5.2.

5.2.1 Modelling galaxy bias from Euclid mock catalogs

Th Euclid spectroscopic redshift survey will target Hα emission-line galaxies
and is expected to provide a highly complete redshift catalog of objects with
a line flux Hα ≥ 3 · 10−16 erg cm−2 s−1 over a large range of redshift. These
objects are not expected to trace the mass field in an unbiased way. Current
samples of Hα galaxies at the relevant redshifts are too small to constrain
the bias of these objects. Therefore, in an attempt to obtain a realistic
reference model we rely on numerical and semi-analytic techniques.

More specifically, we consider the so-called ”100 deg2” mock galaxy
catalogs described in Chapter 3, Section 3.1. We have extracted a subsample
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Table 5.2: Table of reference values for the P-model and Q-model parameters,
for the realistic bias case. For the P-model (parameters b0 and b1) we set k1 = 1
and list the values for three different choice of the power law index n = 1 , 1.28 and
2. For the Q-model we set k1 = 1 and A=1.7.

P-Model Q-Model
n = 1 n = 1.28 n = 2

z b0 b1 b0 b1 b0 b1 b0 Q

0.6 1.052 0.669 1.060 0.707 1.159 0.668 1.239 4.70
0.8 1.038 0.673 1.088 0.663 1.169 0.682 1.257 4.54
1.0 1.133 0.747 1.191 0.750 1.277 0.786 1.359 4.92
1.2 1.217 0.988 1.298 0.971 1.410 1.017 1.494 5.50
1.4 1.355 1.093 1.441 1.063 1.550 1.123 1.635 5.70
1.6 1.487 1.220 1.583 1.192 1.706 1.251 1.752 6.62
1.8 1.614 1.401 1.719 1.399 1.879 1.436 1.920 6.99
2.0 1.754 1.439 1.853 1.495 2.011 1.650 2.084 6.47

consisting of all objects in the range z = [0.6, 2.0] and Hα line flux larger
than Hαmin(= 3 · 10−16 erg cm−2 s−1).

To model galaxy bias we measure the power spectrum of the mock
Hα galaxies in all redshift bins and compare the results with the linear
predictions obtained from CAMB. In principle, we could use this as a
reference bias model in the form of a stepwise function of k and z. However,
this bias estimate is noisy both on small scales, due to the finite number of
mock galaxies, and to large scales due to cosmic variance. Moreover, the
results would be in the form of a 2D, z-k table which is cumbersome to
implement in the Fisher Matrix procedure. For this reason we decide to
regularise the bias estimate by fitting both the P-model and the Q-model to
the measured bias.

The procedure to estimate the galaxy bias is as follows:

• We consider eight, partially overlapping cubic boxes of increasing
redshifts and align them along the line of sight, centring each of them
at the redshifts indicated in Table 5.1. Each of them is the largest box
fully contained in the lightcone at the given redshift. As a consequence,
the box size increases with the redshift.

• We select mock galaxies brighter than Hαmin from the simulation
and apply appropriate statistical weights given by the inverse of the
selection function, as described in Section 2.1.3, to account for the flux
limit selection. The radial dependence of these weights turned out to
be very mild within each box.

• We measure the power spectrum of the mock galaxies in real space
within each cube. We limit our analysis between the minimum
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wavenumber that we can reliably sample and that depends on the
redshift and kMAX = 1hMpc−1. This choice allows to reduce the
impact of shot noise and nonlinear effects.

• We estimate the scale dependent galaxy bias as b(k, z) =
√

Pm(k,z)
PCAMB(k,z) ,

where Pm(k, z) is the measured power spectrum of the mock galaxies
at redshift z and PCAMB(k, z) is the linear power spectrum of the mass
obtained from CAMB using the same cosmological parameters as the
parent N -body simulation.

• We fit the P-model and the Q-model to the estimated b(k, z) and
find the best fit parameters by minimising the χ2 of the residuals. In
the procedure we use errors obtained from the FKP estimate of the
power spectrum, eq. 2.47. In the process, to improve the robustness
of the minimisation we fix some of the free parameters. For the P-
model we set n = 1, 1.28 and 2 (n = 1.28 is the best fit value of a
three-parameters minimization) while for the Q-Model we set A = 1.7,
following Cole et al. 2005. The minimisation is first carried out over
a conservative range of wave numbers, [kmin, kmax] = [0.03, 0.3]. We
then gradually expand the range to both large and small scales and
stop when χ2/d.o.f. ∼ 1.

The best fit parameters are listed in Table 5.2.

5.3 Fisher Matrix Analysis

The observed power spectrum in a given redshift bin depends therefore on
a number of parameters, denoted collectively as pi. To estimate the Fisher
matrix elements, given the model power spectrum, we calculate numerically
or, whenever possible, analytically, the derivatives of the spectrum with
respect to the free parameters pi:(

∂ lnPg

∂pi

)
r

, (5.8)

evaluated at the parameter values of the fiducial model. The 1-σ error for
each parameter, pi, is σpi =

√
(F−1)ii, where F−1 is the inverse Fisher

matrix (for more details on Fisher matrix method see Kitching and Amara,
2009).

The elements of the Fisher matrix are evaluated at the parameter values
of the fiducial model in each of the redshift bins through Tegmark et al.
(1997):

Fij =
1

8π2

∫ +1

−1
dµ

∫ kmax

kmin

dk k2

(
∂ lnPg

∂pi

∂ lnPg

∂pj

)
r

Veff(k, µ) , (5.9)
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where

Veff(k, µ) =

[
n̄P (k, µ)

n̄P (k, µ) + 1

]2

Vsurvey , (5.10)

is the effective volume of the survey sampled at the scale k along the direction
µ. Vsurvey and n̄ represents the volume of the survey and the mean number
density of galaxies in each redshift bin.

Focusing on the free parameters of the biasing function we have for the
P-model:

d lnP

db0
|r =

2

b0,r
− 2fµ2

b0,r(b0,r + fµ2)
(5.11)

d lnP

db1
|r =

2

b0,r
(k/k1)n − 2fµ2(k/k1)n

b0,r(b0,r + fµ2)
, (5.12)

and for the Q-model :

d lnP

db0
|r =

2

b0,r
− 2fµ2

b0,r [T (k, µ) + fµ2]
(5.13)

d lnP

dQ
|r =

(k/k1)2

1 +Qr(k/k1)2
− fµ2(k/k1)2

1 +Qr(k/k1)2

1

fµ2 + T (k, µ)
(5.14)

d lnP

dA
|r = − k/k1

1 +Ar(k/k1)
+

fµ2(k/k1)b0,r
[1 +Ar(k/k1)] [fµ2 + T (k, µ)]

(5.15)

where T (k, µ) = b0,r

[
1+Qr(k/k1)2

1+Ar(k/k1)

]1/2

The subscript r refers to the fiducial reference model. In addition to
these, we also compute the uncertainties for the following cosmological
parameters: h ,ΩM ,Ωb , ns , σ8 and γ. Their reference values were listed
at the beginning of this Chapter.

5.4 Unbiased reference model: results

Let us consider first the reference case of a population of galaxies that are
unbiased tracers of the mass distribution. And, in this framework, let us
consider both the P- and the Q-models. For the P-model we explored two
different reference cases: one characterised by a power-law index n = 1,
corresponding to a bias with a mild dependence on the scale and one with
a stronger scale dependence characterised by n = 2. The 1-σ uncertainties
in the cosmological parameters obtained by considering all available redshift
bins and after marginalising over all other parameters are listed in Table 5.3.

These results confirm the fact that, as already pointed out by di Porto
et al. (2012), Euclid will constrain the cosmological parameters with % level
accuracy. Those results, reported in Table 5.4, however, assumed that bias
could depend on the redshift but not on the scale. The interesting result
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Table 5.3: 1σ errors on cosmological parameters for the P- and Q- models for the
reference case of an unbiased population of mass tracers.

P-model Q-model

n = 1 n = 2

σh 0.038 0.037 0.039
σΩM 0.016 0.015 0.016
σΩb 0.0036 0.0034 0.0036
σns 0.042 0.036 0.044
σγ 0.025 0.028 0.029
σσ8 0.0044 0.0045 0.0047

Table 5.4: 1σ errors on cosmological parameters for scale independent biased
population of mass tracers, from di Porto et al. 2012. The fiducial reference
model is quite similar to ours: h = 0.703, ΩM = 0.271, Ωb = 0.045, Ωk = 0,
ns = 0.966, equation of state parameters for the dark energy w0 = −0.95 and
w1 = 0, σ8 = 0.809, and growth rate f(ΩM ) = ΩM (z)γ with γ = 0.545, redshift
dependent bias from Orsi et al., 2010.

di Porto 2012 model

σh 0.008
σΩM 0.004
σΩb 0.0008
σns 0.02
σγ 0.03
σσ8 0.007
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here, is that a similar accuracy is also achieved when one allows for a scale
dependent bias.

The expected errors on the bias parameters in each redshift bin are listed
in Table 5.5. Errors for b1 are larger than those for b0 and increase with the
index n. This is not surprising since the leading term of the expansion of
the mass density contrast, b0, is expected to be more accurately determined
than the first term of the expansion, b1, n = 1, or the second, b1, n = 2. The
constant bias term b0 is expected to be determined with very high accuracy
(ı.e. at the % level) similar to that of the scale-dependent term b1 as long
as the scale dependence is close to linear. The accuracy degrades when the
scale dependence becomes stronger.

In the Q-model, absolute errors on A and Q appear to be large. However,
what really matter is the relative error that we can gauge by comparing the
values in Table 5.5 with the corresponding bias parameters values for the
reference case in Table 5.2. With this respect, the accuracy in the estimate
of the constant bias term b0 is similar to that of the P-model, as expected.
Errors on the nonlinear bias parameters are much larger. This is not entirely
surprising since weaker constraints result from having one more parameter
to marginalize over. Uncertainties on A, corresponding to the first order of
the expansion, are of the order of 15% and the ones on the second term Q
are about 50% of the signal.

Errors increase with the redshift. Again, this is not surprising as
the effective volume of the survey associated to the generic redshift shell
decreases when moving to high redshifts.

Table 5.5: 1− σ errors on the bias parameters for the P-model with n = 1, = 2
and the Q-model, for the reference case of an unbiased population of mass tracers.
We have set b0 = 1, b1 = 0, A = 0, Q = 0 and k1 = 1.0.

P-model Q-model

n=1 n=2
z σb0 σb1 σb0 σb1 σb0 σQ σA

0.6 0.013 0.14 0.0081 1.2 0.017 3.0 0.35
0.8 0.013 0.13 0.0093 0.97 0.017 2.5 0.32
1.0 0.013 0.12 0.011 0.86 0.017 2.2 0.31
1.2 0.014 0.12 0.012 0.82 0.018 2.2 0.31
1.4 0.014 0.13 0.013 0.91 0.020 2.5 0.34
1.6 0.016 0.16 0.014 1.2 0.023 3.4 0.42
1.8 0.019 0.22 0.016 1.9 0.027 5.4 0.60
2.0 0.026 0.34 0.019 3.3 0.037 9.4 0.97

To investigate the covariance among parameters we show their 68%
contours. Figure 5.1 refers to the b0 and b1 parameters in the P-model
case with n = 1. The different ellipses with increasing areas refer to bins
of increasing redshift. They are all centred on the same reference model
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Figure 5.1: Contours plot at 68% probability for b0 and b1 estimated in different
redshift bins. The higher the redshift the larger the contour. We show the case P-
model with n = 1, for the reference case of an unbiased population of mass tracers.
We set k1 = 1.0.

that is the same at all redshifts. There is a clear anti-correlation between
b1 and b0 since in a limited k−range on large scales an increase in b0 can be
compensated by a decrease in b1. This is less true when the scale dependence
is steep. Indeed the probability contours in the case n = 2 (not shown here)
are much more circular.

Similar consideration apply to the Q-model. The correlation between A
and Q indicates that these parameters can compensate each other to give the
same spectral amplitude. The fact that in this case the covariance is positive
simply reflects the fact that in the bias functional form the two terms appear
at the nominator and denominator. The corresponding probability contours
are shown in figure 5.2.

5.5 Realistic bias reference model: results

We have repeated the same Fisher Matrix analysis presented in the previous
Section using, however, a more realistic reference bias model obtained from
the mock Euclid catalog and fitted with both a P- and a Q-model. The
only difference is that we now consider a smaller redshift range z = [0.8, 1.8]
which is likely to match the one that will be effectively probed by Euclid.
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Figure 5.2: Contours plot at 68% probability for A and Q, Q-model parameters,
estimated in different redshift bins, for the reference case of an unbiased population
of mass tracers. We set k1 = 1.0.
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We first present the constraints on the cosmological parameters obtained
with the various models. Those shown in Table 5.6 are marginalised over all
other parameters.

We notice that the uncertainties on various parameters decrease by
∼ 10−20% with respect to the case of the previous Section with the unbiased
model as a reference. This is probably due to the change in the fiducial
model and the resulting increase of the fiducial power spectrum due to the
presence of a bias different from zero. An increase in the power should
correspond to an increase in the value of the Fisher matrix elements (see eq.
5.9 and eq. 5.10), so that the errors decrease. Anyway we can say that the
uncertainties on the cosmological parameters are quite similar among the
different bias models and match quite well those obtained in the previous
case with the unbiased model as a reference. This is reassuring and confirms
the fact that the accuracy with which a survey like Euclid will be able to
measure the cosmological parameters is at the % level, even when we drop
the theoretical prejudice that galaxy bias is linear on the BAO scales. The
only exception is the growth index γ for which the random errors in the
realistic case are significantly larger than in the unbiased fiducial model,
especially when one considers the Q-model, for which the relative random
error can be as large as 10 %. This probably reflects the fact that, for this
analysis, we have restricted the redshift range available, effectively reducing
the information on the rate at which fluctuations grow. The increase of
the uncertainty on γ (and the σ8 parameter too) respect to the unbiased
case can also probably reflect the fact that the bias in this fiducial model
changes with the redshift, effectively increasing the number of degrees of
freedom in the model and that these two parameters are the cosmological
parameters mostly affected by the bias since the power spectrum is sensitive
to the combinations σ8b(k, z) and f/b(k, z).

Table 5.6: Table of errors on cosmological parameters for the realistic biased P-
model (with n = 1, n = 1.28 and n = 2) and Q-model, when one considers six,
rather than 8, redshift bins and k1 = 1.0.

P-model Q-model

σcosmo n = 1 n = 1.28 n = 2

σh 0.035 0.035 0.029 0.031
σΩM 0.015 0.014 0.012 0.013
σΩb 0.0033 0.032 0.0028 0.0027
σns 0.040 0.038 0.030 0.034
σγ 0.036 0.035 0.036 0.052
σσ8 0.0049 0.0048 0.0046 0.0073

Table 5.7 shows the correlation parameters for all the combinations of
cosmological parameters for the P-model (with n = 1). For each generic pair
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of cosmological parameters (X,Y ), the correlation parameters are computed
as: cov(X,Y )/(σXσY ), where cov(X,Y ) is the covariance between the
two, and (σX , σY ) are their 1σ uncertainties. Of course some degeneracy
among these cosmological parameters is to be expected. We note that the
power spectrum shape parameters h, ΩM , Ωb and ns are highly correlated,
while γ is very poorly correlated with the other parameters, except for the
normalization parameter σ8. Let us focus on the covariance between σ8 and
γ, which is illustrated in fig. 5.3. In the plot we show the 68% probability
contours in the σ8-γ plane for the P-model case. The two parameters are
anti-correlated. This is not surprising, since both parameters contribute to
the amplitude of the power spectrum in redshift space so that an increase
in the rms amplitude of density fluctuations can be compensated by a
decrease in the index γ which, for a given value of ΩM , also affects the
spectral amplitude through the Kaiser boost. The Q-model case for the
same couple of parameters is similar to the P-model case, the anti-correlation
is confirmed, but the error size increases, due to higher number of free
parameters in the model. Let us now focus on two additional cases in which
we also expect covariance among parameters: ΩM -h and ns-Ωb. ΩM and h
are expected to be highly degenerate since the spectral shape constrains the
parameter combination ΩMh

2. This is clearly seen in figure 5.4 in which
we show their 68 % probability contour. The degeneracy is broken by the
additional information on the spectral amplitude and its evolution. This
plot, like the next one, is obtained from the P-model (with n = 1). However,
the very same trends are seen when the Q-model is considered.

Table 5.7: Correlations between the various cosmological parameters, obtained
when assuming the realistic biased P-model (with n = 1) as reference model. The
cosmological parameters are indicated in the first row and first column.

Parameters h ΩM Ωb ns γ

ΩM 0.99
Ωb 1.00 0.98
ns -0.94 -0.94 -0.92
γ 0.0078 0.01 0.0089 -0.024
σ8 -0.32 -0.33 0.32 0.43 -0.55

In figure 5.5 we show the analogous plot for ns and Ωb. In this case the
degeneracy reflects the fact that, in the k−range explored, a stronger tilt in
the power spectrum can be mimicked by a larger baryon fraction. In this
case the degeneracy can be broken by the BAO features that constitute a
unique baryon signature.

The uncertainties on the bias parameters are listed in Table 5.8.
The results are very similar to those found with the reference unbiased

model and listed in Table 5.5. Also in this case the Fisher matrix analysis
shows that with a Euclid-like survey it will be possible to estimate the scale-
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Figure 5.3: Errors on σ8 parameter and γ in the case of realistic biased P-model
with n = 1.
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Figure 5.4: Errors on the Hubble constant parameter and ΩM in the case of
realistic biased P-model with n = 1.
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Figure 5.5: Errors on the primordial spectral index ns and Ωb in the case of
realistic biased P-model, n = 1.

Table 5.8: 1 − σ errors on bias parameters for the P- and Q-model for k1 = 1.0
and for different n− values, indicated in the header. The reference values are those
listed in Table 5.2.

P-model Q-model

n=1 n=1.28 n=2
z σb0 σb1 σb0 σb1 σb0 σb1 σb0 σQ σA

0.8 0.014 0.12 0.012 0.19 0.011 0.91 0.029 2.6 0.46
1.0 0.016 0.12 0.014 0.18 0.013 0.76 0.033 1.9 0.39
1.2 0.018 0.12 0.016 0.18 0.016 0.66 0.039 1.6 0.36
1.4 0.021 0.13 0.019 0.20 0.019 0.69 0.045 1.6 0.34
1.6 0.024 0.16 0.022 0.24 0.023 0.89 0.049 1.8 0.37
1.8 0.028 0.21 0.026 0.32 0.027 1.3 0.056 2.1 0.40
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Figure 5.6: Constraints on b0 and b1 for six redshift values for the realistic biased
P-model with n = 1.28 as reference model and k1 = 1.

independent part of the galaxy bias parameters at the per-cent accuracy
in all redshift bins. The sensitivity to the scale-dependence is lower and
depends on its exact form. If the scale dependence is steep, i.e. if it is
more evident on small scales, then it is hardly surprising that estimating
the power spectrum on BAO scales will provide poor constraints. On the
contrary, if scale dependence is mild, then the additional bias parameter b1
in the P-model can be measured with a 10-20 % accuracy.

To illustrate the covariance between b0 and b1 we consider the
representative case of n = 1.28. The corresponding 68 % probability
contours are shown in figure 5.6. The different ellipses refer to the constraints
from the six redshift bins. Each one is centred on its own reference model.
No significant covariance is seen in the parameters. As it is apparent from the
size of the ellipse, uncertainties increase with the redshift. The probability
contours for the A and Q parameters, not shown here, are entirely consistent
with those shown in figure 5.2.



Conclusions

In the recent years galaxy clustering has emerged as one of the most
powerful probes to investigate the properties of the Universe and, in
particular, the nature of its dark components: the dark matter and the
dark energy. Quantitative estimates of galaxy clustering can be obtained
from spectroscopic redshift surveys that can map the three dimensional
distribution of galaxies.

Not surprisingly, large scientific collaborations are carrying out ambitious
research programs aimed at performing large galaxy redshift surveys over
ever increasing volumes and out to large redshift. At the end of the next
decade, next generation surveys like DESI and Euclid will be complete and
will have probed about 2 % of the observable Universe.

These ambitious programs aim at precision cosmology, i.e. at estimating
cosmological parameters at the % accuracy, which is a pre-requisite to
discriminate among alternative cosmological models and shed some light in
the nature of the dark components. With such small random uncertainties,
the risk is that the error budget could be dominated by systematic errors
that may arise from many sources: nonlinear effects, imperfect estimator
for galaxy clustering, the ill-constrained bias relation between galaxy and
matter. Local studies, can, in this respect, play an important role to
investigate the origin of some of these systematic errors and to set a sort of
’zero point’ at z = 0, for the quantities that one aims to constrain, such as
the growth rate of density fluctuations or galaxy bias.

In this thesis we have focused on the single largest local redshift survey to
date, the 2MRS catalog, of about 40000 objects with measured redshift over
the full sky. Indeed, large sky coverage is another desirable feature of this
sample, since next generation surveys will also aim at wide sky coverage and
investigating galaxy clustering over large angular separations is potentially
affected by specific systematic errors. Here, we have focused on one of the
most common statistical tools to galaxy clustering: the power spectrum. In
particular, we have considered the FKP estimator with its many advantages
(reliability, speed, flexibility) and few drawbacks (it is not designed for wide
angle surveys).

With this general purpose as a guideline, we have addressed the specific
issues detailed below.

149
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• We first focus on the implementation of our own FKP estimator. While
rather standard, there are subtleties in this estimator (like the choice
of weights) that can be best dealt with by the developer of the code
rather than its user. The making of the code and its validation have
been performed by comparing the outputs of different, similar codes
applied to the same mock catalog. Differences among the codes were
below 10−5%. This code-contest was performed in the framework of
the Euclid Consortium activity to select a prototype code candidate for
further development and implementation in the data analysis pipeline.

• The use of the Fast Fourier Transform is the main feature of the code
and determines its speed. However, it also sets a preferential (cubic)
geometry that does not match the intrinsic (quasi-spherical) 2MRS
geometry. In particular, our specific implementation of embedding the
surveyed volume in a cubic box, prevents us from performing a full
analysis of the power spectrum and its anisotropies and extract from
them useful cosmological information. For this reason we have focused
on the power spectrum monopole only. The non-cubic geometry of
the sample induces systematic differences between the estimated and
the true power spectrum. This needs to be accounted for through
an accurate modelling of the window function of the survey which we
estimated numerically through the random galaxy catalog. In the case
of a homogeneous, almost all-sky survey the window function is simple
enough to be accurately estimated (in fact is quite close to an analytic
top hat) and does not significantly affect the error budget. This has
been assessed by means of a suite of simulated catalogs of extragalactic
objects. Since the goal here was to assess geometry effect rather than
astrophysical issues, we have considered catalogs of dark matter halos
extracted from the large computational box of the BASICC simulation,
rather than aiming for realistic mock galaxy catalogs that would have
been smaller in size and number of objects.

More specifically, we have extracted 125 samples from the parent halo
catalog with size, geometry, radial selection and number of objects
similar to that of 2MRS and computed their power spectra over a
typical range [kmin ∼0.03,kNL ∼0.5-0.6] h Mpc−1. After accounting
for the effect of the window function, which we do by means of
a convolution integral that involves the true halo power spectrum
measured from the full sample, we find no evidence for systematic
errors on scales larger than k < 0.7 h Mpc−1. This result is a good
news for next generation surveys with large angular coverage on both
hemispheres, like Euclid, that are also expected to be characterised
by relatively simple window function that one could model with high
precision.
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• The ability to measure the redshift space distortions and the accuracy
with which one can estimate the so called distortion parameter β
closely related to the growth rate of density fluctuations is the second
issue that we have addressed. A first assessment was done by using
the very same halo catalogs extracted from the BASICC box. The
goal there was to search for the typical scale at which, at z = 0, non
linear effects become non-negligible and need to be modelled to obtain
an unbiased estimate of β. This exercise shows that k < 0.2 h Mpc−1

is a safe zone where to apply linear theory. However, this is probably
an optimistic estimate since halos were extracted by ignoring their
substructures, hence underestimating the impact of nonlinear motion
on small scales.

• For this reason we have repeated the same analysis using, however,
a suite of realistic mock 2MRS galaxy catalogs extracted from the
Millennium Simulation. Mock galaxies were modelled from the halo
and sub-halo populations using semi-analytic techniques. This new
analysis demonstrated that non linear effects need to be modelled if
one wants to analyse the galaxy power spectrum beyond k ∼ 0.1−0.15
h Mpc−1.

We found that a model redshift space power spectrum for galaxies
obtained by combining the nonlinear matter power spectrum generated
by Halofit, a small scale Gaussian damping term, a linear galaxy bias
and a Kaiser boost is adequate to match the power spectrum of the
mock 2MRS galaxies down to k ∼ 0.5 h Mpc−1 and to extract an
unbiased estimate of the β parameter. An alternative model, which
provides a similarly good fit, is one in which the matter power spectrum
is described by linear theory using CAMB and nonlinear effects are
modelled by a scale-dependent term similar to the one proposed by
Cole et al. (2005).

• Realistic mocks were then used to pave the way to the analysis of the
real 2MRS dataset. For that, we needed to estimate random errors
which we have obtained from the clustering analysis of all the realistic
mocks. The limited number of mocks didn’t allow us to build the full
covariance matrix. However, the fact that we have considered a power
spectrum statistics and that we focused on linear or quasi-linear scales
should limit the amplitude of the off-diagonal terms. Therefore, in the
present analysis we have assumed that they are all negligible and that
the errors can be obtained from the rms scatter among the mocks.

• Having calibrated the power spectrum analysis using the 2MRS mocks,
we then turned to the real sample to estimate the physically relevant
parameters. We first focused on the bias parameter and its dependence
on galaxy properties. The analysis we have performed here is similar



Conclusions 152

to that of Westover (2007) in his PhD thesis with three important
differences: 1) we used a larger and deeper sample of galaxies with
Ks ≤ 11.75, 2) we investigated galaxy clustering using the power
spectrum instead of the spatial 2-point correlation function, 3) the
focus on large, quasi-linear scales instead of small, nonlinear scales.
With this respect our results complement and improve those of
Westover (2007) and, in absolute terms, they significantly improve
current estimates of galaxy bias at z ' 0.

• Our results on the luminosity dependence of galaxy bias confirm the
qualitative behaviour found by Westover (2007) on a dataset similar
to ours and by Norberg et al. (2001) and Tegmark et al. (2004) using
the 2dF and SDSS galaxy catalogs, respectively. The bias is confirmed
to be a steep function of the luminosity for galaxies brighter than
L∗, whereas for fainter objects the dependence is milder or absent
altogether. The form of the bias vs. luminosity relation is very similar
to that obtained by Westover (2007) when the bias is estimated in
redshift space, like in our case. There is an offset difference, however,
that would disappear when changing the normalization adopted by
Westover (2007), which is based on a single, anomalously high, data
point. Westover (2007) also provides an estimate of the bias in real
space. In that case the normalisation problem disappears but bias vs.
luminosity relation is found to be significantly steeper, in disagreement
with our results on both the bright and faint end of the relation.
Indeed, there is a better agreement with the results of Norberg et al.
(2001) and Tegmark et al. (2004), the second of which where obtained
from power spectra measured on large scales. All these discrepancies
can be accounted for by considering the specific differences among
these analyses. What is reassuring, and of astrophysical interest, is
the fact that the dependence of the bias on luminosity at low redshift
is confirmed, with a very similar trend, all the way down to z = 0.

• The dependence of the bias on galaxy morphological type has been
explored as well. The issue is a long standing one and has been
verified in several analyses. Here we have repeated the exercise with
the goal of increasing the statistical evidence of the phenomenon at
z ∼ 0 where the available samples have been either small, like in the
Westover (2007) analysis, or dominated by one single galaxy type,
as in the IRAS 1.2 Jy or PSCz (Saunders et al., 2000) catalogs that
contained almost exclusively late-type galaxies. 2MRS also contains
a large fraction of late-type objects but in our analysis we have been
able to divide the sample into two sub-catalogs, one dominated by
early type galaxies and the other by S0/a and spiral galaxies, with a
similar number of members. The result has confirmed that early type
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objects are more clustered than the late type ones, with a relative bias
of 1.228 ± 0.067, in agreement with the previous findings of Westover
(2007).

• The second issue we focused on was the estimate of cosmological
parameters by comparing the measured monopole of the 2MRS power
spectrum with model predictions. Ideally one would like to infer the
values of all cosmological parameters that characterise the underlying
mass power spectrum and its redshift distortions. Unfortunately,
the limited k-range probed by the survey and the fact that we have
restricted the analysis to the monopole only does not allow to remove
the degeneracy among the parameters. For this reason we have decided
to rely on external priors and fix all parameters except the bias
and the mass density to the values estimated by the Planck team
(2013). This is in principle sufficient to remove any degeneracy and
to provide independent estimates of the two parameters. Second,
under the hypothesis that General Relativity holds on cosmological
scales, these two values can be used to determine the growth rate of
density fluctuations f = Ω0.55

M from the distortion parameter β = f/b
that determines the strength of the Kaiser boost-type redshift space
distortion.

This analysis allowed us to constrain ΩM and b with an accuracy
∼ 20% and ∼ 3%, respectively with best fitting values ΩM ' 0.33 and
b ' 1.23 in agreement with previous results and theoretical prejudices.
To assess the robustness of these results to nonlinear effects, that on the
scale of the analysis are expected to be rather small but not necessarily
negligible, we have used several different models for the redshift space
galaxy power spectrum, in which we have used different receipts to
model nonlinear effects. The results from the different models, each
one obtained in its own k-range, turned out to be in very good
agreement, indicating that nonlinear effects are well under control. In
so doing we have considered models that depend on some additional
parameter whose physical interpretation may not be straightforward.
In those cases the additional parameter was kept free and marginalised
over in the final results.

• The previous results showed that non linear effects do affect the
analysis of the galaxy power spectrum even at relatively large scales.
Their typical footprint is to induce additional scale dependence in the
linear power spectrum; a fact that can be exploited to detect and
characterise them. One of such effect is scale dependent bias, which is
certainly expected on small scales affected by stellar feedback effects
but can also affect much larger scales like those in which the BAO
feature is observed, especially in the analysis of the power spectrum.
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Scale dependent bias is known to be a relatively small effect, though,
and would not affect the conclusion of our 2MRS analysis. However,
it potentially affects the results of the clustering analysis of next
generation surveys like Euclid from which, as we have seen, one expects
to estimate the cosmological parameters with a per-cent accuracy.
For this purpose we have investigated the impact of possible scale
dependent bias in the power spectrum analysis of a Euclid-like survey
and the possibility to use the analysis itself to detect and quantify this
scale dependence.

We have therefore investigated this issue. In this case, instead of using
mock galaxy catalogs as in the 2MRS case, we adopted a Fisher matrix
approach. Mock Euclid galaxy catalogs were indeed used but only
to obtain a realistic bias model as a reference. The Fisher Matrix
analysis was performing in different spherical, not-overlapping shells
over a large redshift range z = [0.6, 2.0] that we have subsequently
reduced to z = [0.8, 1.8] to mimic the more realistic case of the real
Euclid survey and to explore the impact of reducing the interval. The
number of objects in each shell was set to match the expected values.
The analysis involved all type of free parameters, the ones that describe
the background cosmology, these that describe the density fluctuations
and their growth and the bias parameters. The results show that
adding an extra degree of freedom in the model power spectrum to
allow for a possible scale dependent bias does not significantly affect
the quality of the fit. All relevant parameters are estimated with a
few per-cent accuracy except the growth index γ. The error on this
parameter was found to depend on the specific bias model and in the
range 5-10 % when the reduced redshift interval is considered.

The accuracy on galaxy bias depends on its scale dependence. The
scale independent part of the bias, i.e. the 0-th order of the Taylor
expansion of the overdensity field, can be determined with high (∼ 2
%) accuracy. The errors on the parameters that quantify the amplitude
of the scale dependence are significantly larger. Their magnitude
depends on the exact type of scale dependence. If the dependence
is linear in k, which corresponds to a first order term in the Taylor
expansion, then errors increase to a level of ∼ 10 %. In case of
quadratic dependence the errors are of the same size as the signal
and the scale dependence cannot be detected, at least if the power
spectrum analysis is focused on BAO scales, as we have assumed here.

The common aspect of the various analyses presented in this thesis is the
analysis of galaxy clustering in wide angle, almost all-sky surveys, its specific
issues and possible solutions. With this respect, the work presented here
can be expanded along several directions. A crucial one, also considering
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the upcoming galaxy surveys, is the choice of the best estimator for the
power spectrum. With an almost spherical geometry, the natural way
of characterising galaxy clustering would be to consider some spherical
harmonics rather than Fourier-based estimator. The so-called Fourier-Bessel
estimator (see e.g. Tadros et al. 1999) in which the galaxy density field is
expanded in spherical harmonics on the 2=sphere and in Bessel functions
along the radial direction would be the natural choice. However, this
estimator is computationally too costly to deal with the large number of
objects in the next generation surveys.

The question is then whether the FKP estimator can still be used for the
spectral analysis and how. Embedding the surveyed volume in a box, as we
did here with the 2MRS, is not an option both because of the overwhelmingly
large fraction of volume that would remain empty and also because, has we
have seen, this choice does not allow to probe the anisotropy in galaxy
clustering and the estimate of the fluctuations’ growth rate. A possibility
would be to ”pixelize” the survey with large, possibly overlapping boxes with
their axis aligned along the line of sight and then combine the various power
spectra in a self consistent fashion. Or to project the celestial sphere onto a
flat coordinate system, using methods that are common in cartography, and
pixelize the flat sky in the new coordinate system.

One of the future goals is to asses the performance of these methods
using dedicated mock catalogs or real surveys. The problem with this second
option is that 2MRS is the best all-sky catalog available so far with no plan
for further extension, while a crucial feature for the study described above
is depth. With this respect, a significant improvement can be obtained by
using photometric-redshift catalogs instead of spectroscopic catalogs. The
all sky 2MASS Photometric Redshift catalog (2MPZ) (Bilicky, 2014, now
publicly available at http://surveys.roe.ac.uk/ssa/TWOMPZ) is probably
the best example. This catalog contains about 900000 galaxies out to
z = 0.3 with well calibrated photometric redshifts. Photometric redshifts
are intrinsically less precise of the spectroscopic ones, which effectively
dilutes the clustering signal, and have non-Gaussian errors that however
can be effectively characterised if the spectroscopic control sample is large,
representative and reliable. If the goal is to optimise the use of the FKP
estimator and not to obtain accurate estimates of cosmological parameters,
then this catalog is probably the best way to calibrate an FKP-based analysis
on a realistic all-sky catalog. An effective relative calibration can be obtained
by comparing results with those obtained by alternative estimators currently
available. Examples in this direction are the standard estimator of the
angular power spectrum applied, however, to the galaxy distribution in
different redshift shells. Or the estimator proposed by Beutler et al. (2014)
aimed at minimising large angle distortions. All this we plan to investigate
in the next future.
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