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SUMMARY 

 
Process Analytical Technology (PAT) is defined by the FDA as a “System for designing, analyzing and 
controlling manufacturing through timely measurements of critical quality and performance attributes of raw and 
in-process materials and processes, with the goal of ensuring final product quality”. The goal of implementing 
PAT is defined therein as enhancing the understanding and the control of a production process. This broad 
definition encompasses testing of raw material for batch consistency as well as online sensors that provide 
feedback for the process control. In this context, rapid methods placed at-line, i.e. close to the process, can be 
considered to be PAT applications since they will both contribute to the understanding how individual steps 
impact on product quality and will accelerate and facilitate process development and optimization decisions. 

There are many tools available that enable process understanding for scientific, pharmaceutical development. 
These tools can provide effective and efficient means for acquiring information to facilitate process 
understanding and continuous improvement. From a physical, chemical and biological perspective, 
pharmaceutical products and processes are complex multi-factorial systems. Methodological experiments based 
on multivariate statistical principles provide useful means for the identification and study the effect and 
interaction of product and process variables. Traditional one-factor-at-time experiments cannot address these 
kinds of interactions. These tools enable the identification and evaluation of product and processes variables that 
may be critical to product quality and performance. 

Thanks to the PAT initiative, spectroscopic sensors systems have gained interest for bioprocess monitoring 
because they allow rapid and non-destructive monitoring of product quality attributes. The improvements in 
spectrometers, detectors and optics have led to interesting applications related to PAT.  

The main goal of the thesis is the development of novel methodologies based on spectroscopic techniques 
coupled with multivariate data analysis for the optimization of production process of biopharmaceuticals. 

One of the approaches described here combines the strengths of various spectroscopic techniques, such as 
Circular Dichroism (CD), Infrared (IR), Raman, Fluorescence and UV-Visible-NIR measurements, to provide a 
more comprehensive description of a substance, the so-called “fingerprint”. This, in combination with Principal 
Component Analysis (PCA) may be use to establish and define quality, equivalence, and comparability of 
substances while also providing a means to monitor processes and provide relevant information about molecular 
changes in product. Moreover, it can highlight the relationships between different properties, for example that 
between structure and aggregation, and a better understanding of the nature of a product. The potential of such a 
fingerprint has an impact in a wide variety of areas within biopharmaceutical research and development. 

The protein used in this study is a homo-dimeric Fc-fusion protein. In particular, for this first part of the project, 
focused on PCA of multispectroscopic data, were used ten batches of drug substance produced with the current 
process called “process C”. This bulk material has a concentration of “not less than” 160 mg/ml. Within this set, 
the batches differ with respect to hydrolysates that were used as feed during the fermentation process. In addition 
to these difference, three additional batches form the new “process D”, after some minor optimisations with 
respect to “process C”, were analysed. In order to generate a wider diversity of samples, with aspects of 
deterioration, solutions were diluted with water (instead of using a buffer) and then stored at room temperature 
for several weeks before spectroscopic analysis. The major consequence of this treatment is a change in 
buffer/additive concentrations, a change in pH, and a deterioration of solutions through aggregation, structural 
and chemical decomposition.  

A comprehensive set of spectra of eleven batches thus were acquired, using a variety of techniques. Some twelve 
variants of five spectroscopies have been employed, covering the complete wavelength range from far-ultra 
violet to infrared and involving phenomena including absorption, fluorescence, Raman scattering, Rayleigh 
scattering and circular dichroism. Both concentrated stock and deliberately deteriorated dilute solutions were 
investigated. All of the techniques employed have yielded useful data of some forms in terms of identifying 
variance in the batches and are potentially complementary and cross-supporting.  
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Each set of spectra were subjected to multivariate data analysis, primarily PCA, to highlight patterns and 
differences between batches. Such analysis highlighted an apparent connection between the spectra and the 
history of batches regarding production date and hydrolysate type used. In particular, a series of anomalous 
absorptions in the visible wavelength region, together with potentially related fluorescent species, were 
identified. These may derive from contaminants, post-translational modifications (PTM) dependent on 
production conditions. 

Another aim of the thesis was to assess the feasibility of obtaining quantitative data about degradation products 
of a therapeutic protein when employing Circular Dichroism and infrared spectroscopy in combination with 
multivariate data analysis, primarily Partial Least Squares (PLS) regression, and an extension of PLS, 
Orthogonal Partial Least Squares (O-PLS). This is a novel approach since the classical applications for CD and 
IR spectroscopy are the determination of secondary structure content of proteins. Also the use of multivariate 
statistical methods for the determination of secondary structure content is reported. Nevertheless, the present 
approach is to our knowledge the first one that seeks to exploit PLS in order to correlate CD and IR spectral data 
with quantitative data of common protein degradation forms. 

In order to generate a suitable calibration matrix, a set of samples containing pre-defined levels of aggregates, 
oxidized forms, and free Fc, was generated. In order to ensure non-correlation of the degradation levels within 
the calibration matrix, the target concentrations therein were chosen according to an approach described by 
Brereton (2000). All the samples generated were then analyzed separately for each of the three degradation 
forms employing dedicated chromatographic QC assays in order to obtain accurate degradant levels. 
Furthermore, both CD (near and far UV) and IR spectra were measured. Both the QC and the spectroscopic data 
form the basis for the generation of various PLS/O-PLS models, i.e. based respectively CD or IR spectra alone, 
as well as CD and IR data combined.  

The feasibility of employing PLS/O-PLS analysis to extract quantitative data for common protein degradation 
forms was successfully demonstrated for an Fc fusion protein. Both CD and IR spectra contained the relevant 
information, nevertheless, CD-based O-PLS models achieved a higher accuracy compared to that of IR-based 
models for predicting aggregate and oxidation levels, while the accuracy for free Fc levels could be equally well 
predicted. Combining CD and IR data improved the accuracy of the prediction for all degradation forms. In 
addition, we demonstrated that O-PLS models yielded to a better accuracy compared to that obtained with PLS 
models. 

The last part of the thesis is based on the “protein design” methodologies. Aim of the present thesis is to study 
the scaffold stability of contryphan-Vn, a small peptide isolated from the venom of Conus ventricosus formed by 
only 9 residues and characterized by the presence of a single disulfide bridge, after substitution of 4 of 9 amino 
acids of its sequence.  

Contryphans are bio-active peptides, isolated from the venom of marine snails of the genus Conus, which are 
characterized by the short length of the polypeptide chain and the high degree of unusual post-translational 
modifications. The cyclization of the polypeptide chain through a single disulphide bond, the presence of two 
conserved Pro residues and the epimerization of a Trp/Leu residue confer to Contryphans a stable and well 
defined structure in solution, conserved in all members of the family. The potential of Contryphans as scaffolds 
for the design of redox-active (macro)molecules was tested by engineering a copper binding site on two different 
variants of the natural peptide Contryphan-Vn, named Cupryphan and Arg-Cupryphan through the introduction 
of four His residues. The binding site was designed by computational modelling and the redesigned peptides 
were synthesized and characterized by optical, fluorescence, electron spin resonance and nuclear magnetic 
resonance spectroscopy. 

The novel peptides, named Cupryphan and Arg-Cupryphan bind Cu2+ ions with a 1:1 stoichiometry and a Kd = 
1.3(± 0.2) × 10-7 M and 1.0(± 0.4) × 10-7 M, respectively. Other divalent metals (e.g. Zn2+ and Mg2+) are 
bound with much lower affinity. In addition, Cupryphans catalyze the dismutation of superoxide anions with an 
activity comparable to other non-peptidic superoxide dismutase mimicks. 

We tested the potential of conopeptides as scaffolds for the engineering of novel, metal based, biocatalysts 
starting from the simplest prototype of disulphide constrained conopeptides: the Contryphans. The results of the 
present work indicate that indeed this class of peptides could be successfully exploited to engineer novel, stable 
and redox active macromolecules. 

.
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RIASSUNTO  
 

La produzione di prodotti biofarmaceutici è un processo complesso che si evolve costantemente durante l’intero 
sviluppo di un prodotto. Negli ultimi 30 anni sono stati fatti significativi progressi nello sviluppo di metodi di 
analisi delle caratteristiche chimiche (es. identità e purezza) di un prodotto. Nonostante ciò, alcuni aspetti 
chimico-fisici dei componenti di prodotti biofarmaceutici non sono ancora di facile comprensione. Di 
conseguenza, l’inerente e non rilevata variabilità dei materiali grezzi può manifestarsi anche nel prodotto finale. 

In più l’esigenza di aumentare la produzione e/o la purezza di un determinato prodotto potrebbe richiedere lo 
sviluppo di un nuovo processo o l’ottimizzazione dello stesso. L’eterogeneità di un prodotto biofarmaceutico 
può derivare anche da variazioni nel processo di produzione, risultando nella presenza di varie forme di 
modificazioni post-traduzionali o prodotti di degradazione. Chiaramente, l’obiettivo primario dello sviluppo o 
ottimizzazione di un dato processo di produzione è quello di ottenere la massima purezza del prodotto, 
minimizzando quindi le sue eventuali forme di degradazione. Nondimeno, soprattutto per molecole sul mercato e 
usate nei “clinical trial”, è molto importante assicurare la consistenza della molecola e dei suoi parametri critici 
di qualità, in modo da assicurare che qualsiasi cambiamento nel processo di produzione non influisca 
negativamente sulla sicurezza ed efficacia della stessa. Quindi, con l’obiettivo di accelerare i tempi di sviluppo, 
c’e’ un chiaro bisogno di sviluppare nuovi metodi che riducano i tempi di analisi sui campioni e allo stesso 
tempo massimizzino l’informazione ottenuta. 

Process Analytical Technology (PAT) è definita come un “sistema per lo sviluppo, analisi e controllo della 
produzione attraverso misure appropriate dei parametri critici di qualità dei materiali grezzi e dei processi stessi, 
con l’obiettivo di assicurare la massima qualità del prodotto finale”. L’obiettivo della PAT è definito quindi 
come un aumentata comprensione e controllo dei processi di sviluppo. Questa definizione generale comprende 
test di consistenza sui materiali cosi come “sensori” on-line che forniscano informazioni per il controllo del 
processo. In questo ambito, metodi analitici rapidi posti in stretta vicinanza del processo possono essere 
considerati in conformità con quanto dettato dalla PAT, in quanto possono sia contribuire ad una maggiore 
comprensione di come ogni singolo step del processo possa influenzare la qualità del prodotto, sia accelerare e 
facilitare lo sviluppo e l’ottimizzazione dello stesso. 

Esistono molti strumenti che pemettono una migliore comprensione dello sviluppo scientifico e farmaceutico. 
Questi possono fornire reali mezzi per acquisire informazioni volte a facilitare la comprensione di un dato 
processo e il suo continuo miglioramento. Da un punto di vista chimico e biologico, i prodotti biofarmaceutici e i 
processi di produzione sono complessi sistemi multifattoriali. Esperimenti metodologici basati su principi di 
statistica multivariata forniscono dei mezzi molto utili per l’identificare e studiare l’effetto e l’interazione tra 
prodotto e variabili del processo. I tradizionali esperimenti univariati (che analizzano un fattore alla volta) non 
sono in grado di identificare questo tipo di interazioni. Quindi, l’analisi multivariata permette di valutare quali 
variabili del prodotto e del processo possono essere cruciali per la qualità e la performance del prodotto finale. 

Grazie alla PAT, la spettroscopia ha guadagnato molto interesse per i processi di monitoraggio in quanto 
permette analisi rapide e non distruttive per il prodotto. In più, i miglioramenti raggiunti negli strumenti, nei 
detector e nelle ottiche hanno condotto ad interessanti iniziative conformi alla PAT.  

L’obiettivo principale di questa tesi è lo sviluppo di nuove metodologie basate su tecniche spettroscopiche in 
combinazione con analisi multivariata per l’ottimizzazione dei processi di produzione di biofarmaceutici. 

Uno degli approcci descritti unisce la forza di varie tecniche spettroscopiche quali dicroismo circolare (CD), 
Infrarossi (IR), Raman, Fluorescenza e UV-Vis allo scopo di fornire una migliore ed esauriente descrizione di 
una molecola, il cosiddetto “fingerprint”. Questo, in combinazione con la PCA (Principal Component Analysis) 
può essere utilizzato per stabilire la qualità, uguaglianza e eventuali differenze tra prodotti e allo stesso tempo 
fornire un mezzo per monitorare i processi di sviluppo e fornire informazioni rilevanti su possibili cambiamenti 
della molecola. Inoltre, può mettere in evidenza relazioni tra differenti proprietà (per esempio quella tra struttura 
e aggregazione) e una migliore comprensione sulla natura della molecola. 
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La molecola usata in questo studio è una proteina omodimerica di fusione con Fc. In particolare, per questa 
prima parte del progetto, incentrata sull’analisi di dati multi-spettroscopici attraverso PCA, sono stati utilizzati 
10 batches di “drug substance” (DS) prodotti con il corrente processo di produzione chiamato “process C”. 
Questo materiale ha una concentrazione non inferiore di 160 mg/ml. Tra questi campioni, ci sono delle 
differenze in termini di idrolizzato usato come nutrimento durante il processo di fermentazione. Oltre a questi 
campioni, sono stati analizzati altri 3 campioni provenienti dal nuovo “process D”. Allo scopo di generare una 
più vasta varietà di campioni a livello di deterioramento, i campioni originali sono stati diluiti in acqua e 
conservati a temperatura ambiente per diverse settimane. Le conseguenze principali di questo trattamento sono il 
cambiamento delle concentrazioni di additivi/buffer e il conseguente cambio di pH, la formazione di aggregati e 
la decomposizione chimica e strutturale della molecola. 

E’ stato generato un esauriente set di spettri a partire da undici diversi lotti di proteina, utilizzando una grande 
varietà di tecniche, coprendo l’intero “range” dal lontano ultravioletto all’infrarosso e coinvolgendo fenomeni 
quali assorbimento, fluorescenza, Raman e Rayleigh scattering e dicroismo circolare. Sono stati analizzati sia i 
campioni originali sia quelli diluiti, ed ogni tecnica utilizzata ha dato origine a risultati utili per l’identificazione 
di eventuale variazione tra i campioni in analisi.  

Ogni set di spettri è stato analizzati attraverso analisi multivariata, soprattutto PCA, allo scopo di evidenziare 
similarità e differenze tra i campioni. Questo tipo di analisi ha evidenziato una apparente connessione tra gli 
spettri e la storia del campione in termini di data di produzione ed idrolizzato usato. In particolare, sono state 
evidenziate una serie di bande di assorbimento inaspettate nella regione del visibile, insieme a probabili 
molecole fluorescenti potenzialmente correlate a questi fenomeni di assorbimento. Queste ultime potrebbero 
derivare da contaminanti, modificazioni post-traduzionali (PTM) o trasformazioni post-PTM dipendenti dalle 
condizioni di produzione. 

Un ulteriore obiettivo della tesi è quello di dimostrare la possibilità di ottenere dati quantitativi su prodotti di 
degradazione di una proteina terapeutica utilizzando spettroscopia di dicroismo circolare e infrarossi in 
combinazione con analisi multivariata, in particolare la Partial Least Squares (PLS) regression e la O-PLS  
(orthogonal-PLS), un’estensione della classica PLS. Questo è approccio nuovo in quanto le applicazioni 
classiche del CD e IR sono la determinazione del contenuto di strutture secondarie di una proteina. Nondimeno, 
il presente approccio è, secondo la nostra conoscenza, il primo che cerca di sfruttare la PLS allo scopo di 
correlare la spettroscopia CD e IR con dati quantitativi di comuni forme di degradazione di proteine. 

Allo scopo di generare una matrice di calibrazione idonea, sono stati preparati una serie di campioni contenenti 
quantità predefinite di aggregati, ossidati e Fc libero. Per assicurare la non correlazione di ciascuna forma di 
degradazione all’interno della matrice di calibrazione, queste concentrazioni sono state scelte seguendo quanto 
descritto da Brereton (2000). Tutti i campioni generati sono stati quindi analizzati separatamente per ognuna 
delle tre forme di degradazione utilizzando le rispettive e specifiche analisi cromatografiche, allo scopo di 
determinare in maniera accurata i livelli di tutte e tre le forme di degradazione. Inoltre, tutti i campioni sono stati 
analizzati attraverso spettroscopia CD e IR. Sia i dati spettroscopici sia i dati cromatografici rappresentano le 
basi per generare i vari modelli PLS/O-PLS, basati sia su dati CD e IR singolarmente, sia su dati CD e IR 
combinati insieme. 

Questo approccio ha dimostrato la capacità di estrarre dati quantitativi su alcune forme di degradazione proteiche 
per una proteina di fusione con Fc. Sebbene entrambi gli spettri CD e IR contengano informazioni rilevanti, si è 
dimostrato che i modelli O-PLS basati su dati CD hanno dato una accuratezza maggiore rispetto a quella ottenuta 
attraverso i modelli O-PLS basati su dati IR nel predire i livelli di tutte e tre le forme di degradazione. Inoltre, si 
è dimostrato come l’accuratezza di predizione raggiunta coni modelli O-PLS è maggiore di quella ottenuta con i 
rispettivi modelli PLS. 

Nell’ultima parte della tesi ci si è soffermati sull’utilizzo del “protein design” nelle biotecnologie. In questo 
ambito, l’obiettivo della tesi è quello di studiare la stabilità dello scheletro peptidico del contrifano-Vn, un 
piccolo peptide isolato dal veleno della lumaca di mare Conus ventricosus formato da solo nove aminoacidi e 
caratterizzato dalla presenze di un singolo ponte disolfuro, dopo la sostituzione di 4 su 9 residui aminoacidici 
della sua sequenza. 
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I contrifani sono piccoli peptidi bio-attivi isolati dal veleno di piccole lumache di mare del genere Conus, 
caratterizzati dalla piccola lunghezza della catena peptidica e dall’alto grado di modificazioni post-traduzionali 
insolite. La ciclizzazione della catena peptidica attraverso il singolo ponte disolfuro, la presenza di due residui 
conservati di Prolina (Pro) e l’epimerizzazione di residui di Triptofano (Trp)/Leucina (Leu) conferiscono una 
struttura ben definita e stabile in soluzione, conservata in tutti i membri della famiglia. È stato testato il 
potenziale dei contrifani come struttura per il design di macromolecole attive dal punto di vista redox attraverso 
l’ingegnerizzazione di un sito di legame per il rame su due varianti del peptide naturale contrifano-Vn, chiamate 
Cuprifano e Arg-Cuprifano, inserendo quattro residui di Istidina (His). Il sito di legame è stato modellato 
attraverso modelling computazionale e le due varianti peptidiche sintetizzate e caratterizzate attraverso 
spettroscopia UV-Vis, fluorescenza, EPR (Electron Paramagnetic Resonance) e NMR (Nuclear Magnetic  
Resonance). 

I nuovi peptidi Cuprifano e Arg-Cuprifano legano ioni Cu2+ con stechiometria 1.1 e una Kd = 1.3(± 0.2) × 10-7 
M e 1.0(± 0.4) × 10-7 M, rispettivamente. Altri metalli divalenti (Zn2+ e Mg2+ ) vengono legati con una affinità 
molto minore. Inoltre, i nuovi peptidi catalizzano la dismutazione di anioni superossido con un attività 
comparabile con quella altre molecole non peptidiche che mimano l’azione della superossido-dismutasi. 

Quindi, sfruttando la stabilità dello scheletro peptidico del contrifano-Vn, la sua capacità di tollerare sostituzioni 
aminoacidiche che non influiscono sulla sua stabilità e struttura, questo lavoro ha dimostrato la possibilità di 
usare lo scheletro peptidico dei conopeptidi come base per l’ingegnerizzazione di nuovi biocatalizzatori e 
ingegnerizzare nuove e stabili macromolecole attive dal punto di vista redox 
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1 INTRODUCTION 
 

The manufacture of biological products is a complex process that constantly evolves throughout the development 
of a product (Bierau et al., 2007). It consists of a series of unit operations, each intended to modulate certain 
properties of the materials being processed. To ensure acceptable and reproducible modulation, consideration 
should be given to the quality attributes of incoming materials and their process-ability for each unit operation. 
During the last 3 decades, significant progress has been made in developing analytical methods for chemical 
attributes (e.g., identity and purity). However, certain physical and mechanical attributes of pharmaceutical 
ingredients are not necessary well understood. Consequently, the inherent, undetected variability of raw 
materials may be manifested in the final product  (Food and Drug Administration, 2004). 

Moreover, a number of constraints, such as increased yields, scale-up or increased purity may require the re-
design or optimization of a given process. Heterogeneity in a biopharmaceutical product, at the beginning of its 
shelf life, arises from inherent variation within the production process, resulting in the presence of various forms 
of post-translational modifications or degradation products. Clearly, the foremost aim of designing or optimizing 
a production process is obtaining maximum purity of the product, i.e. minimization of its degradation forms. 
Nevertheless, especially for products on the market or used in clinical trials, product consistency, i.e. a consistent 
pattern of critical quality parameters, is equally important in order to ensure that any change in a manufacturing 
process does not adversely affect the safety or efficacy of a product (Bierau et al., 2007). 

Process development accounts for a significant fraction of the cost (Harms et al., 2002) of bringing a drug to the 
market and there is a strong economic incentive for improved monitoring tools. In theory, early process 
development stages have the goal of understanding and optimizing the process by measuring as many parameters 
as possible. Later on in production, only critical parameters may be measured to enable proper control of the 
process and to ensure high quality and yield; however, in practice, the inadequacy of suitable sensors and tools 
for online monitoring has not allowed this ideal to be widely implemented (Harms et al., 2002). 

Thus, with the aim to speed up development time, there is a clear need for establishing rapid methods that 
shorten the turnaround time for analyzing in-process samples and simultaneously maximize the information 
content obtained (Bierau et al., 2007) Today significant opportunities exist for improving pharmaceutical 
development, process analysis and process control. Unfortunately, the pharmaceutical industry generally has 
been hesitant to introduce innovative systems into the manufacturing sector for a number of reasons. One reason 
is regulatory uncertainty, which may arise from the perception that the regulatory system is rigid and 
unfavourable to the introduction of innovative systems. On the other hand, pharmaceuticals continue to have a 
prominent role in health care, therefore pharmaceutical manufacturing will need to employ innovation, and 
scientific knowledge (Food and Drug Administration, 2004). 

 

1.1  PAT (PROCESS ANALYTICAL TECHNOLOGY) 

 

In August 2002, the Food and Drug Administration (FDA) launched a new initiative entitled “Pharmaceutical 
CGMPs for the 21st Century: A risk based approach. With this initiative, manufacturers are encouraged to use 
the latest scientific advances in pharmaceutical manufacturing and technology.  

Pharmaceutical manufacturing continues to evolve with increased emphasis on science and engineering 
principles. Effective use of the most current pharmaceutical science and engineering principles and knowledge 
can improve the efficiency of both manufacturing and regulatory processes. This FDA initiative is designed to do 
that by using an integrated system approach to regulate pharmaceutical quality. The approach is based on science 
principles for assessing and mitigating the risks related to poor product and process quality. The desired state of 
pharmaceutical manufacturing and regulation may be characterized as follows:  
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• Product quality and performance are ensured through the design of effective and efficient 
manufacturing processes 

• Product and process specifications are based on the understanding of how process factors affect product 
performance 

• Continuous real time quality assurance 

Process Analytical Technology (PAT) is defined by the FDA as a “System for designing, analyzing and 
controlling manufacturing through timely measurements of critical quality and performance attributes of raw and 
in-process materials and processes, with the goal of ensuring final product quality” (Food and Drug 
Administration, 2004).  

It is important to note that the term analytical in PAT includes chemical, physical, microbiological, mathematical 
and risk analysis conducted in an integrated manner. 

The goal of implementing PAT is defined therein as enhancing the understanding and the control of a production 
process, with the following approach: quality cannot be tested into products; it should be built-in or should be by 
design. (Food and Drug Administration, 2004).  

Quality is built into pharmaceutical products through a complete understanding of the intended therapeutic 
objectives and the pharmacological, toxicological, pharmacokinetic, chemical, physical and biopharmaceutic 
characteristic of a drug, and by design of manufacturing processes using principles of engineering, material 
science and quality assurance to ensure reproducible product quality and performance throughout a product’s 
shelf life. 

Using this approach of building quality into products, PAT highlights the necessity for process understanding 
and opportunities for improving manufacturing efficiency through innovation. A process is well understood 
when: i) all critical sources of variability are identified and explained; ii) variability is managed by the process; 
iii) product quality attributes can be accurately and reliably predicted over the design space established for 
materials used, process parameters, manufacturing and other conditions.  
A desired goal of the PAT framework is to design and develop well-understood processes that will consistently 
ensure a predefined quality at the end of the manufacturing processes. (Food and Drug Administration, 2004). 

 

1.2 PAT TOOLS 

 

There are many tools available that enable process understanding for scientific, pharmaceutical development. 
These tools, can provide effective and efficient means for acquiring information to facilitate process 
understanding and continuous improvement. In the PAT framework, these tools can be categorized according to 
the following:  

• Multivariate tools for design, data acquisition and analysis 

• Process analyzers 

• Process control tools 

An appropriate combination of some, or all, of these tools may be applicable to an entire manufacturing process 
(Food and Drug Administration, 2004). 

 



Marco Barba Introduction 

3 

1.2.1 Multivariate tools for data analysis 

 

From a physical, chemical and biological perspective, pharmaceutical products and processes are complex multi-
factorial systems. There are many development strategies that can be used to identify optimal processes, and the 
knowledge acquired in these development programs is the basis for process design. A knowledge base can be 
very useful when it arises from scientific understanding of the multi-factorial relationships, e.g. between process 
and quality attributes. This benefit can be achieved by using multivariate approaches in conjunction with 
knowledge management systems. 

Methodological experiments based on multivariate statistical principles provide useful means for the 
identification and study of the effect and interaction of product and process variables. Traditional one-factor-at-
time experiments cannot address these kinds of interactions. Multivariate statistical tools enable the 
identification and evaluation of product and processes variables that may be critical to product quality and 
performance (Food and Drug Administration, 2004). 

 

1.2.2 Process analyzers 

 

Process analysis has advanced significantly during the last several decades, due to an increasing appreciation for 
the value of collecting processing data. Available tools have evolved from those that predominantly take 
univariate process measurements, such as pH, temperature and pressure, to those that measure biological, 
chemical and physical attributes in a non-destructive way (Food and Drug Administration, 2004). 

Indeed some process analyzers provide non-destructive measurements that contain information related to 
biological, physical and chemical attributes of the materials. These measurements can be: 

• at-line: Measurements where the sample is removed isolated and analyzed in proximity to the process 

• on-line: Measurements where the sample is diverted from the manufacturing process 

• in-line:  Measurements where the sample is not removed from the process 

Measurements collected from these process analyzers don’t need to be absolute values of the attributes of 
interest. The capability to measure relative differences in material before and during processing can provide 
useful information in process development and control. However, multivariate analyses are often necessary to 
get critical process knowledge for real time control and quality assurance (Food and Drug Administration, 2004). 

 

1.2.3 Process control tools 

 

It is important to emphasize that a strong link between product design and process development is essential to 
allow the effective control of all critical quality attributes. Process monitoring and control activities are intended 
to monitor the state of a process and manipulate it to maintain a desired state (Food and Drug Administration, 
2004). 

Design and optimization of manufacturing process within the PAT framework can include: 

• Identification and measure of critical material and process attributes related to product quality 

• Design a process measurements system to allow real time or near real time (on-, in or at-line) 
monitoring of all critical parameters 



Marco Barba Introduction 

4 

• Design process controls that provide adjustments to ensure control of all critical attributes 

• Develop mathematical relationships between product quality attributes and measurements of critical 
process attributes 

Thus, within the PAT framework, a process end point is not a fixed time, but rather it’s the achievement of the 
desired attribute. Obviously, this does not mean that process time is not considered (Food and Drug 
Administration, 2004). 

 

1.3 PAT PRINCIPLES 

1.3.1 Real time release 

 

Real time release is the ability to evaluate and ensure the acceptable quality of in-process and/or final product 
based on process data. The PAT component of real time release includes a combination of assessed material 
attributes and process controls. Material attributes can be determined using process analytical methods. The 
combined process measurements and other test data collected during the manufacturing process can serve as the 
basis for real time release of the final product and to demonstrate that each batch conforms to established 
regulatory quality attributes. 

 

1.3.2 Risk-based approach 

 

Within an established quality system and for a particular process, one would expect an inverse relationship 
between the level of process understanding and the risk of producing a poor quality product.  For a well-
understood process, opportunities exist to develop less restrictive regulatory approaches to manage change (Food 
and Drug Administration, 2004). 

 

1.4 SPECTROSCOPIC TECHNIQUES 

 

Thanks to the PAT initiative, spectroscopic sensors systems have gained interest for bioprocess monitoring 
because they allow rapid and non-destructive monitoring of product quality attributes. Improvements in 
spectrometers, detectors and optics have led to interesting applications related to PAT (Harms et al., 2002; Adam 
et al., 1999; Vaidyanathan et al., 1999; Schugerl, 2001). More specifically several authors showed that 
spectroscopic techniques could be used to analyze glycosylation, aggregation or  oxidation (Lu et al., 1995; Petty 
et al., 2005). 

 

1.4.1 Circular Dichroism spectroscopy (CD) 

 

Circular Dichroism (CD) is being increasingly recognised as a valuable technique for examining the structure of 
proteins in solution. It measures the optical activity of asymmetric molecules in solution by measuring their 
unequal absorption of left- and right- handed circularly polarised light. 
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Plane polarised light can be viewed as being made up of 2 circularly polarised components of equal magnitude, 
one rotating counter-clockwise (left handed, L) and the other clockwise (right handed, R) (fig. 1). 

Figure 1. Origin of CD effect 
(I) the L and R circularly polarized components have the same 
amplitude and when combined generate plane polarized radiation,; 
(II) the components are of different magnitude and the resultant 
(dashed line) is elliptically polarized 

 

Circular Dichroism is observed when molecules absorb left and right circularly polarized light to different extent 
(Pelton and McLean, 2000). If, after passage through the sample, the L and R components are not absorbed or 
are absorbed to an equal extent, the recombination of L and R would regenerate radiation polarised in the 
original plane. However, if L and R are absorbed to different extents, the resulting radiation would be said to 
possess elliptical polarisation (Fig. 1) (Kelly et al., 2005). A CD signal will be observed only when a 
chromophore is chiral (optically active). A chromophore is chiral when: 

• It is intrinsically chiral because of its structure, e.g. a C atom with 4 different substituents, or the 
disulfide bond which is chiral due to the dihedral angles of S-C-C-S chain of atoms. 

• It is covalently linked to a chiral centre in the molecule 

• It is placed in a asymmetric environment because of the three-dimensional structure adopted by the 
molecule 

In proteins, the chromophores of interest include the peptide bonds, aromatic amino acids side chains, and 
disulphide bonds. If a number of chromophores of the same type are in close proximity, they can behave as a 
single absorbing unit that will give rise to characteristic spectral features. CD is measured in two spectra regions, 
the far-UV and near-UV region (Kelly et al., 2005). 

Far-UV spectra. The far-UV (ca. 180-250 nm), also called the amide region, is dominated by contributions of 
the peptide bond. CD bands in the far-UV contain information about the configuration of the peptide bonds and 
therefore the secondary structure of the protein. It can be used to detect changes in secondary structure (New 
technologies catalogue, MerckSerono). 
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Alpha helix, beta-sheet and random coil structures each give rise to a characteristic shape and magnitude of the 
CD spectrum (fig. 2). 

Figure 2. Far-UV spectra associated with 
various types of secondary structure 
Solid line; α-helix; long dashed line, anti-parallel 
β-sheet; dotted line, type I β-turn; cross dashed 
line, extended 31-helix or poly (pro) II helix; 
short dashed line, irregular structure 
 
 

The approximate fraction of each secondary structure can thus be determined by analyzing its far-UV CD 
spectrum as a sum of fractional multiples of such reference spectra for each structural type. (New technologies 
catalogue, MerckSerono). 

Near-UV spectra. In the near-UV region (250-340 nm), also called aromatic region, CD bands arise from the 
absorption of aromatic amino acids. In addition, disulphide bonds give rise to minor CD bands around 250 nm. 
CD bands in the near-UV region are observed when aromatic amino acids are immobilized in a folded protein 
and thus transferred to an asymmetric environment. Each of the amino acids tends to have a characteristic 
wavelength profile (fig. 3).  

Figure 3. The near-UV CD spectrum 
Wavelength ranges corresponding to signals from Phe, Tyr 
and Phe side-chains are indicated 
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Tryptophan (Trp) shows a peak close to 290 nm, with fine structure between 290 and 305 nm; Tyrosine (Tyr) a 
peak between 275 and 282 nm, with a shoulder at longer wavelengths often obscured by bands due to Trp; 
Phenylalanine (Phe) shows weaker but sharper bands with fine structure between 255 and 270 nm (Kelly et al., 
2005). The actual shape and magnitude of a near-UV spectrum depends on the number of each type of aromatic 
amino acids present, their mobility and environment (H-bonding, polar groups and polarizability) (Kelly et al., 
2005). 

 

1.4.2 Fourier- transformed infrared spectroscopy (FT-IR) 

 

Infrared (IR) spectroscopy is one of the most common spectroscopic techniques used by organic and inorganic 
chemists for the determination of secondary structure of proteins in solution. It is based on the wavelength and 
intensity of the absorption of infrared light by a sample. Infrared light is energetic enough to excite vibrational 
transitions of bonds in molecules. The energy of these molecular vibrations corresponds to the IR region of the 
electromagnetic spectrum (New technologies catalogue, MerckSerono).  

Two experimental methods are available for measuring infrared spectra. In the dispersive method, infrared light 
is passed through the sample, and the absorption is measured. This method has been largely supplanted by 
Fourier transform method. Instead of viewing each component frequency sequentially, as in a dispersive IR 
spectrometer, all frequencies are examined simultaneously in Fourier transform infrared (FTIR) spectroscopy. 
Basically with Fourier transform infrared measurements, a beam of light is split in two, with  half of the light 
going directly to the sample, and the other half of it is diverted to a moving mirror which then directs it to the 
sample. The difference in phase of the two waves creates a constructive and/or destructive interference and is a 
measure of the sample absorption. The waves are scanned over a specific wavelength region of the spectra, and 
multiple scans are averaged to create the final spectrum (Hammes, 2005). Among the fundamental vibrations 
(also known as normal modes of vibration), those that produce a net change in the dipole moment may result in 
an IR activity. The major types of molecular vibrations are stretching and bending (fig. 4). 

 

Figure 4. Major vibrational modes for a non-linear group, CH2 

 

The carbonyl group of amide bond in proteins is particularly useful for the determination of secondary structure 
(Hammes, 2005). The stretching normal mode, amide I mode, of the carbonyl has been shown to have a specific 
frequency associated with α-helices, β-sheets and other characteristic structures. According to the spectra-
structure database of infrared frequencies (Hammes, 2005) the major absorbance peaks can be assigned to 
specific chemical structures (Hammes, 2005).  The C=O stretch vibration of peptide bonds can be identified 
around 1650 cm-1. It corresponds to the amide I vibrational state. The N-H bending is located at 1550 cm-1. It 
corresponds to the amide II vibrational state. The N-H bending and the C-N stretching absorb IR light around 
1250 cm-1 (fig. 5). 
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Figure 5. Infrared spectra of proteins 

 
The vibrational spectrum of the amide bond for a protein is complex because of the many amide bonds present in 
multiple environments (Hammes, 2005).The amide I band is the most intense absorption band in proteins. It is 
primarily governed by the stretching vibration of C=O (70-85%) and C-N groups (10-20%). Its frequency is 
found in the range between 1600 and 1700 cm-1. The exact band positions are determined by the backbone 
conformation and hydrogen-bonding pattern (New technologies catalogue, MerckSerono). 

For structure determination in proteins, analysis of amide I band is the method of choice, because it is the 
strongest band, and it almost exclusively arise from C=O stretching and therefore directly correlated to the 
backbone conformation (New technologies catalogue, MerckSerono). 

 

1.4.3 Raman spectroscopy 

 

IR and Raman spectroscopy are the main methods to measure the vibrational spectrum of proteins. When a 
molecular vibration is accompanied by a change of dipole moment, the mode is IR active, and when the 
vibration is accompanied by a change of polarizability, the mode is Raman active (Kitagawa et al., 2002). In 
addition to absorbing light, samples also scatter light. The amount of scattered light is at maximum at 90° from 
the direction of the incident light. Most of the scattered light is at the same frequency of the incident light. This is 
called Rayleigh scattering (Hammes, 2005). At the molecular level, the electric field of the light perturbs the 
electron distribution, but no transitions between energy levels occur so that the molecule immediately returns to 
its unperturbed state. This scattering is inversely proportional to the fourth power of the wavelength so that the 
scattering is much greater at shorter wavelengths. Rayleigh scattering is observed at all wavelengths and the 
intensity of the scattered light is related to the polarizability of the molecule.  

A small fraction of the molecules return to a different vibrational energy level after scattering. The vibrational 
energy level can be either higher or lower than the initial state. As a result of this change in energy level, some of 
the scattered light will be at a lower or a higher frequency than the incident light. This is called Raman scattering 
(Hammes, 2005) (fig. 6). 
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Figure 6. Origin of Rayleigh and Raman effect 

 

The Rayleigh line is very intense, but much less intense scattering can be detected at a lower frequency than the 
incident light, because the incident light was used to promote the molecule to a higher vibrational energy level. 
These are called Stokes line. An even smaller fraction of the scattered light occurs at a higher frequency than the 
incident light, because energy is added to the incident light by the movement of the molecule to a lower 
vibrational state. These are called anti-Stokes line  (Hammes, 2005) (fig. 6). 

Raman spectroscopy has two principal advantages over infrared spectroscopy. First, a permanent dipole is not 
required. Second, a Raman spectrum can be easily obtained in aqueous solution, because the Raman scattering of 
water is very weak (Kitagawa et al., 2002).   The primary disadvantages are that because the intensity of the 
Raman lines is very weak, an intense light source and high concentrations of the molecule are required  
(Hammes, 2005). Another important characteristic of Raman spectroscopy is the possibility of resonance 
enhancement. When the excitation wavelength of Raman scattering approaches an absorption maximum of an 
electronic transition of a molecule, some of the molecular vibrations gain strong enhancement of Raman 
intensity. This is called resonance Raman spectroscopy (Kitagawa et al., 2002). 

Raman and infrared spectroscopy should be regarded as complementary. Since infrared spectroscopy is 
dependent on the permanent dipole moment and Raman spectroscopy on the polarizability, usually a vibrational 
transition is observed either in the infrared or in Raman scattering, but not in both (Hammes, 2005). 

The frequencies of the vibrational motions of the amide I, II and III modes reflect the structure of the main 
polypeptide mainchain. Typical frequencies for α-helix, β-sheet and non-regular structures are shown in table 1 
(Nielsen) 

 

Table 1. Characteristic amide bands in Raman 
spectra of proteins. 

 

The side-chain vibrational modes of aromatic amino acids have been established by Harada and Takeuchi 
(Kitagawa et al., 2002). The Raman bands around 1360 and 1340 cm-1 are called the Trp doublet and their 
relative intensity reflect the hydrophobic/hydrophilic environment of Trp residues, being larger for more 
hydrophobic environments (Kitagawa et al., 2002). The Raman bands around 860 and 833 cm-1 are called the 

Secondary 
structure

Amide I 
(cm-1)

Amide III 
(cm-1)

α-helix 1645-1658 1260-1305
β-sheet 1665-1680 1230-1245
β-turn 1663-1678 1258-1300
Randm coil 1660-1665 1242-1255
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Tyr doublet, the relative intensity of which is sensitive to the microenvironment of Tyr residues (Kitagawa et al., 
2002). 

 

1.4.4 UV-Vis absorption spectroscopy 

 

The most common type of spectroscopy involves light in the visible and ultraviolet (UV) region of the spectrum 
interacting with molecules. This interaction causes electrons to shift between their allowed energy levels 
(Hammes, 2005). The most important aspect of the quantum mechanical calculation is the determination of how 
much light is absorbed by the sample. This is embodied in the Lambert-Beer law, which gives the relationship 
between the light intensity entering the solution, I0, and the light intensity leaving the solution, I: 

Log(I0/I) = A = εcl    (1) 

Here A is defined as the absorbance, ε is the molar absorptivity or extinction coefficient, c is the concentration of 
the absorbing sample and l is the thickness of the sample trhough which the light passes. The extinction 
coefficient is a different constant for each wavelength and it is characteristic of the molecule (Hammes, 2005). 

A very important property of the light absorbing solutions is that if multiple absorbing species are present, the 
total absorbance is simply the sum of the absorbance of the individual species (Hammes, 2005). UV 
spectroscopy can be used to confirm the identity and to assess the purity of recombinant proteins and their 
peptide fragments. The near-UV (250 to 350 nm) absorbance spectrum of a protein is almost entirely a function 
of its aromatic amino acids (tryptophan, tyrosine and phenylalanine). Because each protein has a unique amino 
acid sequence, the particular aromatic amino acids content of each protein results in a unique spectrum in the 
near-UV region (Coligan et al., 1995).  

The spectra of the aromatic amino acids phenylalanine, tyrosine and tryptophan are shown in figure 7. It can be 
seen that electronic transitions in tyrosine and tryptophan are responsible for the absorption peak at around 280 
nm. It can also be seen that all three amino acids absorb strongly at shorter wavelengths. Measurements of 
spectra of proteins without aromatic amino acids show strong absorbance at around 192 nm, due to the electronic 
transitions associated with peptide bonds (Hammes, 2005). 

Figure 7. Spectral characteristics of 
chromophores in proteins 
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The spectra of aromatic amino acids and peptide bonds are strongly influenced by their local environments. 
Thus, the spectra of peptide bonds and aromatic residues buried inside are somewhat different from  those on the 
exterior of the protein. This environmental sensitivity of protein spectra can be used to obtain information about 
protein structure (Hammes, 2005). 

 

1.4.5 Fluorescence spectroscopy 

 

Fluorescence is a very common phenomenon in biology. Fluorescence is the emission of light associated with 
electrons moving from an excited state to the ground state. It is a more useful tool for studying biological process 
than absorbance and can be considerably more sensitive than absorbance so that much lower concentrations can 
be detected (Hammes, 2005). This means, however, that small traces of fluorescent impurities in the solvent are 
readily detected and can lead to misinterpretation of the spectra  (Coligan et al., 1995). In order to understand 
fluorescence, an energy diagram such as that shown in figure 8 is useful. 

 

Figure 8. Schematic energy level diagram 
for absorbance and fluorescence 

 

In this diagram are shown two electronic energy levels, each with their vibrational energy levels, due to the 
vibrations of atoms within the molecule. Electrons are in their ground electronic energy state at room 
temperature, and the molecule it is in its lowest vibrational level. They can be excited by light to the next 
electronic energy level, but can be in many different vibrational levels in the excited state. After this excitation, 
the molecule will return to the lowest vibrational level of the second electronic energy level very rapidly, 
through a radiationless transition (production of heat). Electrons in the second energy level can then decay to the 
electronic ground state. The light emission produced is is named fluorescence (Hammes, 2005). 

The emitted light is always at a longer wavelength than the absorbed light, since the energy change associated 
with emission can never be greater than the energy change associated with absorption and the number of photons 
emitted can never exceed the number of photons absorbed (Hammes, 2005).  The efficiency of fluorescence is 
characterized by the quantum yield, Q, that is the fraction of photons absorbed that are eventually emitted: 

Q= n photons emitted / n photons absorbed    (2) 

The measurement of fluorescence is more complex than the measurement of absorption since the sample must be 
excited at a specific wavelength and the fluorescence observed at a different wavelength. The emission spectrum 
is obtained by keeping the excitation wavelength constant and observing the emission over a range of 
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wavelengths. The emission spectrum of figure 9 was determined by exciting tryptophan with light at the 
absorption maximum of 275 nm (Hammes, 2005). 

Figure 9. Fluorescence spectrum of Trp 
The solid curve is the fluorescence excitation 
spectrum and the dashed curve is the fluorescence 
emission spectrum. The fluorescence intensity is 
normalized to one in order to display the spectral 
shape of the excitation and emission curves. 

. 

1.5 CHEMOMETRICS ANALYSIS 

 

For a number of good reasons, spectral measurement is often the method of choice in qualitative and quantitative 
analysis of chemical mixtures. It is relatively easy to generate a good deal of data in a short time by proper use of 
spectroscopy. Getting useful results from a set of spectral data is not always straightforward, however. 
Determining the amounts of the components of a mixture can often be problematic without a prior separation 
step because of the overlap of spectral responses. Identifying the components of a mixture can also be 
challenging because of the similarity of many spectral responses. Often, the solution to these problems has been 
to increase spectral resolution or, as in the case of the quantitative analysis, to enhance the spectral resolution by 
means of a prior separation step. Many of these spectroscopic fixes to the problem of extracting results from data 
work less well than one might expect, given the apparent "information" in a spectral scan. For this reason, 
spectroscopists have increasingly turned to chemometrics for help in dealing with spectral data. 

Svante Wold and Bruce R. Kowalski introduced the term chemometrics in the early 1970s. Chemometrics is 
rapidly advancing in industry. In the year 2003, the regulative authorities in USA—the Food and Drug 
Administration—indirectly recommends chemometrics contained as a vital component in process analytical 
technology (PAT) in guidance for the pharmaceutical industry (Munck, 2007). There is no doubt that an 
investment in process monitoring by new multivariate instruments combined with training of staff in 
chemometric data analysis has an extremely short payback time in almost all kinds of industries (Munck, 2007). 
A reasonable definition of chemometrics remains as: “how do we get chemical relevant information out of 
measured chemical data, how do we represent and display this information, and how do we get such information 
into data” (Chau et al., 2004). There are two main reasons why chemometrics developed so rapidly at that time: 
(1) large piles of data not available before could be acquired from advanced chemical and (2) advancements in 
microelectronics technology within that period. The abilities of chemists in signal processing and data 
interpretation were enhanced with the increasing computer power (Chau et al., Wiley, 2004). 

Masses of data are produced by measuring many variables on ensembles of chemical samples, or by frequently 
recording many signals from an industrial process in order to track its behaviour (Eriksson et al., 2006). The data 
explosion necessitates the use of appropriate tools for extracting meaningful information from the large amount 
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of raw data. It is no longer efficient to analyze data by simply looking at them or by plotting them in simple 
graphs. More sophisticated computer-based methods are needed  (Eriksson et al., 2006). 

Two multivariate projection methods are very useful: 

• Principal Component Analysis (PCA) 

• Partial least squares projection to latent structures (PLS) 

Multivariate data analysis (MVDA) provides a toolbox of versatile data analytical tools. There are three basic 
problem types to which these multivariate tools can be applied: 

• Overview of data table 

• Classification and/or discrimination among groups of observations 

• Regression modelling between two blocks of data (X and Y) 

1.5.1 Principal component analysis (PCA) 

 

In the early stage of a project, when little is known about a problem, a simple overview of the information in a 
data table is often required. Such overview can be obtained with principal component analysis (PCA) (Eriksson 
et al., 2006). PCA is a way of identifying patterns in data, and expressing the data in such a way as to highlight 
their similarities and differences. Since patterns in data can be hard to find in data of high dimension, where the 
luxury of graphical representation is not available, PCA is a powerful tool for analyzing data (Smith, 2002). PCA 
produces a summary showing how the observations are related and if there are any deviating observations or 
groups of observation in the data. In addition, PCA also provides an understanding of the relationships among 
the variables: which variables contribute similar information to the PCA model and which provide unique 
information about the observations. PCA describes the correlation structure in the X block of data (Eriksson et 
al., 2006). Often an initial PCA of a data set reveals grouping among the observations. This may indicate the 
need for further PCA modelling of each subgroup (“class”) in order to understand the features of the different 
groups. Subsequently, it is possible to use the separate class models for classification. By “classification” it is 
meant the use of the established class models for classifying new observations (Eriksson et al., 2006). 

Principal component analysis forms the basis for multivariate data analysis. As shown in figure 10, the starting 
point for PCA is a matrix of data with N rows (observations) and X columns (variables), here denoted by data 
matrix X. The observations can be analytical samples, chemical compounds, process time points of a process, 
batches from a batch process and so on (Eriksson et al., 2006). In order to characterize the properties of the 
observations, one measures variables. These variables may be of spectral origin (e.g. NIR, IR, CD, UV, NMR), 
chromatographic origin (e.g. HPLC, UPLC, GC) or they may be measurements from sensors in a process (e.g. 
pH, temperature, flows). 
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Figure 10. Notation used in PCA 

 

The most important use of PCA is indeed to represent a multivariate data table as a low-dimensional plane, 
usually consisting of 2 to 5 dimensions. Statistically, PCA find lines and planes in the K-dimensional space that 
best approximate the data in the least square sense. A line or a plane that is the least squares approximation of a 
set of a data points makes the variance of the co-ordinates on the line or plane as large as possible (fig. 
11)(Eriksson et al., 2006). 

 

 

Figure 11. A geometric interpretation of PCA  

 

Prior to PCA, data are often pre-treated, in order to transform data into a form suitable for the analysis. Variables 
often have substantially different numerical ranges. A variable with a large range has a large variance and a 
variable with small range has a small variance. Since PCA is a maximum variance projection method, a variable 
with a large variance is more likely to be expressed in the modelling than a low-variance variable  (Eriksson et 
al., 2006). In order to give to all variables equal weight, the data have to be standardized. Such standardization is 
also known as “scaling” or “weighting”. 
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After scaling, the data are ready for the computation of the first principal component (PC1). This component is 
the line in the K-dimensional space that best approximates the data in the least squares sense, and represents the 
maximum variance direction in the data (Eriksson et al., 2006) (fig. 12). Usually one component is not sufficient 
to model the variation of a data set. Thus a second principal component (PC2) is calculated, which is orthogonal 
to the first (fig. 12). It reflects the second largest variation in the data and improves the approximation of X-data 
as much as possible (Eriksson et al., 2006). The two principal components define a plane, which can be 
visualized graphically (fig. 12). By projecting all the observations onto this plane, it is possible to investigate the 
structure of the data set. The co-ordinate values of each observation on this plane are called scores and hence the 
plotting is known as score plot (Eriksson et al., 2006). The score plot shows how the observations are projected 
into the plane. In a PCA model, we wonder which variables are responsible for the patterns seen among the 
observations. We would like to know which variables are influential and also how the variables are correlated. 
Such knowledge is given by the principal component loadings. These loading vectors are called p1, p2, 
p3….(Eriksson et al., 2006). The loadings unravel the magnitude (large or small correlation) and the manner 
(positive or negative correlation) in which the measured variables contribute to the scores (Eriksson et al., 2006). 

 

 
Figure 12. Principal components of PCA 
Two PCs form a plane, which can be visualized graphically. Each 
observation can be projected onto this giving a score for each 

 

1.5.2 Partial least squares projection to latent structures (PLS) 

 

PLS regression is a recent technique used to connect two data matrices, X and Y, to each other by a linear 
multivariate model (Eriksson et al., 2006). It has been successfully applied to the quantitative analyses of UV, 
near-infrared, chromatographic and electrochemical data (Haaland et al., 1988). It is particularly useful when we 
need to predict a set of dependent variables from a very large set of independent variables (i.e., predictors). Thus, 
the goal of PLS regression is to predict Y from X and to describe their common structure. This prediction is 
achieved by extracting from the predictors a set of orthogonal factors called latent variables which have the best 
predictive power. (Abdi, 2007). 
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PLS derives its usefulness from its ability to analyze data with many, noisy and even incomplete variables both 
in X and Y. For parameters related to the observations, (samples, compounds, items), the precision of a PLS 
model improves with the increasing number of relevant X-variables  (Eriksson et al., 2006). As in PCA, each 
observation can be represented graphically. The big difference in PLS is that each row of a data table 
corresponds to two points rather than one, one in the X-space and one in the Y-space. The task for the data 
analysis is to describe the relationship between the position of the observations in the predictor space (X) and 
their positions in the response space (Y) (Eriksson et al., 2006). 

After scaling, it is time to calculate the first PLS principal component. This component is a line in the X-space 
that well approximates the point-swarm and provides a good correlation with the y-vector. The projections of the 
observations onto this line on the X-space give the score values for each observation. The scores of all the 
observations from the X-score vector, and this score can then be used to acquire an estimate of Y (Eriksson et al., 
2006). The differences between measured and estimated response data are called residuals. The y-residuals 
represent the variation that is left unexplained by the first PLS component. A good model has small residuals. As 
in PCA, usually one PLS component is not sufficient to model the variation in the y-data. The predictive ability 
of the model is then improved calculating a second PC, a line in the X-space orthogonal to the first component. 

In analytical chemistry, PLS is mainly used for multivariate calibration. Here X contains N spectra digitized at K 
wavelengths, and Y the analyte concentrations of the N training set samples. The resulting model can then be 
used to predict the analyte concentrations from the spectra of new samples (fig.13). Since the whole spectra is 
used, the multivariate PLS model results in better predictive precision, and also much improved selectivity in 
comparison with traditional univariate calibration (Eriksson et al., 2006). 

 

1.5.2.1 Orthogonal Partial Least Squares (O-PLS) 

 

Orthogonal Partial Least Squares is an extension of PLS. The objective of OPLS is to divide the systematic 
variation in the X-block into two model parts: one part which models the co-variation between X and Y, and a 
second part which captures systematic variation in X that is unrelated (orthogonal) to Y. O-PLS removes 
variation from X (descriptor variables) that is not correlated to Y (property variables). The non-correlated 
systematic variation in X is removed, making interpretation of the resulting PLS model easier and with the 
additional benefit that the non-correlated variation itself can be analyzed further. (Trygg and Wold, 2002). 

 

Figure 13. PLS regression model 

 

PLS model

Spectra
(unknown samples)

Degradant levels
QC degrad. data

(calibration set)

 

-200

-150

-100

-50
0

50

100
150

200

250

300
350

190 210 230 250
nm

m
d

eg
/A

28
0

Prot A
Prot B
Prot C

Spectral data
(calibration set)

Prediction



Marco Barba Introduction 

17 

1.5.3 Multivariate calibration 

 

Spectroscopic sensors require calibration to determine the proportional relationship between the spectra 
measured and the component concentration or properties that are to be estimated. The signal of spectroscopic 
techniques in fact is not specific to the product to be measured. In complex mixtures the spectral features of the 
different components overlap. Due to this overlapping, univariate analysis such as Lambert-Beer’s law cannot be 
applied to determine the relationship between spectra and the component concentration. Multivariate calibration 
has historically been a major corner stone of chemometrics as applied to analytical chemistry (Brereton, 2000). 

The traditional approach to calibration is univariate. Analytical samples with known concentration (Ci) of an 
analyte are used as the basis for a calibration curve. In summary, traditional calibration means that known 
reference concentrations of an analyte are related to data arising from another measuring technique. The relevant 
calibration relationship is usually established by means of regression analysis (Eriksson et al., 2006). Traditional 
calibration normally utilizes only one predictor variable. Usually, more than one measured x-variable is 
available, especially when samples have been analyzed by spectroscopic methods. In such cases multivariate 
calibration can be used; this involves the use of all the information in a battery of X-variables (x1, x2… xk) to 
predict the analyte concentration (y) (Eriksson et al., 2006). In multivariate calibration we employ not just one 
selected signal from a spectrum, but rather the entire spectrum. Translating a spectrum in discrete variables is 
called digitization. Each spectrum is digitized at K wavelengths, and K variables (signal) are the results. These 
data are then analyzed with multivariate projection methods like PLS (Eriksson et al., 2006). 

A typical multivariate calibration experiment involves spectra of several compounds, recorded at several 
concentration levels (Brereton, 1997).  In many real-world situations there are a large number of components in a 
mixture. In order to build up models in laboratory, experiments involving mixing together compounds in 
different proportions and recording the resultant spectra are commonly employed (Brereton, 1997).  One of the 
major problems arises in designing an adequate training set (Brereton, 2000). It is essential that the compounds 
forming the training set are uniformly distributed over mixture space (Brereton et al., 1998). An unbalanced 
design may results in poor predictions for unexpected and fairly subtle combinations of component concentration 
(Brereton, 1997).  In practical cases, a series of mixtures may be made in the laboratory and a model developed 
using a multivariate approach such as PLS to predict concentrations of compounds from spectra using 
experimental mixtures. However, if the laboratory experiments don’t adequately cover the mixture space, 
predictions could be dramatically in error under certain situations (Brereton, 1997). A key concept is that of 
orthogonality. Two factors are said to be orthogonal if they have a correlation factor of zero. This is equivalent to 
assess that the factors span each other’s mixture space evenly. In order to have good predictions, it is necessary 
that any combination of factors is orthogonal (Brereton, 1997).  

 

1.6 PROTEIN DESIGN 

 

Engineering of metal centers has led to the development of a number of merging technologies with a wide 
variety of applications, including protein stability, control of protein structure and, therefore, control of protein 
activity (Hellinga, 1996). The ability to manipulate function rationally also offers the possibility of creating new 
proteins of biotechnological value (Marvin et al, 1997). 

There are many reasons to pursue the goal of protein design. In medicine and industry, the ability to engineer 
protein hormones and enzymes to perform existing functions, or to perform entirely new functions, has 
tremendous potential (Street e Mayo, 1999). Great interest is directed towards mini metal-proteins and metal-
enzymes, because of the wide range of applications in which can be used. Among these, the ones with oxidase 
and peroxidase activity are the most attractive. Metal binding sites are very interesting for protein design for 
many reasons (Regan, 1993). First of all, metal ions are simple ligands, the minimum requirements for a binding 
site is the right positioning of two to four amino acid side chains. Then, in natural proteins metal ions are 
responsible for a wide variety of functions: electron transfer, activation of molecular oxygen, protein structure 
stabilization, hydrolysis and structural rearrangements (Glusker, 1991). 
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Furthermore, a practical reason to choose metal binding sites as main candidates for design is the great number 
of spectroscopic techniques that can be used to detect the number and type of ligands involved and the binding 
site geometry (Regan, 1995). An important feature of metals chemistry is that one metal ion can carry out several 
functions depending on the nature of protein environment. For example, iron can act as electron transporter when 
is located in the eme group of a protein (in cytochromes) and as an oxygen transporter (in hemoglobin). In these 
two cases, the metal centre remains the same, but the reactivity is determined by the protein environment 
(Hellinga, 1996). 

Protein engineering requires well-organized protein scaffolds. By engineering several disulfide bridges in short 
sequences (10-70 amino acids) nature has produced small proteins, toxins and protease inhibitors, which are able 
to adopt stable and biologically active structures. These natural mini-proteins constitute interesting candidates as 
core structures for protein design, since the disulfide bonds provide most of their stabilization energy, leaving a 
large part of the protein structure available for mutations (Vita et al., 1995). Among these, the most interesting, 
because of their scaffold stability, are a group of small toxins found in the venom of scorpions and of small sea 
predators, called Coni. Contryphans, a small peptides (8-9 residues) family found in the venom of Coni, are an 
example of well-organized protein scaffolds. Stability of Contryphans scaffold has been proved by engineering a 
member of this family, Contryphan-R, with the aim of design a mimic of the pharmacophore part of the 
unrelated globular polypeptide -conotoxin GVIA, which blocks N-type calcium channels. (Pallaghy e Nortorn, 
2000). Contryphan-R is a 8 residues peptide. Residues D-Tyr4, Asn5 and Lys7 were replaced respectively by D-
Tyr, Asn e Lys, generating a cyclic peptide called YNK-contryphan. The structure of this engineered contryphan, 
YNK-contryphan-R was shown to be similar to that of native contryphan-R confirming that the scaffold is robust 
with respect to the multiple substitutions (Pallaghy e Nortorn, 2000). 

 

1.7 AIM OF THE THESIS 

 

The main goal of this thesis is the development of novel methodologies based on spectroscopic techniques 
coupled with multivariate data analysis for the optimization of the production process of biopharmaceuticals. 
The approach combines the strengths of various spectroscopic techniques, such as Circular Dichroism (CD), 
Infrared (IR), Raman, Fluorescence and UV-Visible, to provide a more comprehensive description of a 
substance, the so-called “fingerprint”. This may be used to establish and define quality, equivalence, and 
comparability of substances while also providing means to monitor processes and provide relevant information 
on changes in a product. Moreover, it can highlight the relationships between different properties (for example 
those between structure, condition and aggregation) and provide a better understanding of the nature of a 
product.  

Furthermore, the thesis presents the feasibility of obtaining quantitative data about degradation products of a 
therapeutic protein by employing Circular Dichroism and infrared spectroscopy in combination with multivariate 
data analysis (i.e., partial least squares, PLS) (Bierau et al., 2007), in order to be compliant with the PAT 
initiative launched by the FDA. This is a novel approach since the typical applications for CD and IR 
spectroscopy are the determination of secondary structure content of proteins (Kelly et al., 2005; Haris and 
Chapman, 1995). Also the use of multivariate statistical methods for the determination of secondary structure 
content has been reported (Rahmelow and Hubner, 1996; Oberg et al., 2004; Pribic, 1994). Nevertheless, the 
present approach is to our knowledge the first one that seeks to exploit PLS in order to correlate CD and IR 
spectral data with quantitative data of common protein degradation forms. 

Regarding the “protein design”, aim of the present thesis is to study the scaffold stability of contryphan-Vn, a 
small peptide isolated from the venom of Conus ventricosus formed by only 9 residues and characterized by the 
presence of a single disulfide bridge, after substitution of 4 of the 9 amino acids of its sequence. The potential of 
Contryphans as scaffolds for the design of redox-active (macro)molecules was tested by engineering a copper 
binding site on two different variants of the natural peptide Contryphan-Vn, named Cupryphan and Arg-
Cupryphan through the introduction of four His residues. The binding site was designed by computational 
modeling and the redesigned peptides were synthesized and characterized by optical, fluorescence, electron spin 
resonance and nuclear magnetic resonance spectroscopy. 
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2 RESULTS AND DICUSSION 

 

2.1 MULTI-SPECTROSCOPIC CHARACTERIZATION OF DRUG SUBSTANCE 

 

One of the aims of the thesis was to develop a new approach that combines the strengths of various spectroscopic 
techniques, such as Circular Dichroism (CD), Infrared (IR), Raman, Fluorescence and UV-Visible spectroscopy, 
to provide a more comprehensive description of a substance, the so-called “fingerprint”. This may be used to 
establish and define quality, equivalence, and comparability of substances while at the same time providing 
means to monitor processes and provide relevant information on changes in product characteristics. The potential 
of such a fingerprint has impact in a wide variety of areas within biopharmaceutical research and development. 

 

2.1.1 CD spectroscopy analysis 

 

All the eleven batches of drug substance were analyzed by CD spectroscopy, both in the near and far-UV region.. 
Near-UV CD analysis were performed both on the concentrated (> 160 mg/ml), and on the diluted samples. Far-
UV analysis were performed only on diluted samples. For instrumental parameters see Materials and Methods 
section. 

Near-UV spectra of concentrated samples. In figure 14 are shown the near-UV spectra of concentrated samples. 
All the spectra were normalized using the correction factor described in Materials and Methods section. 

Figure 14. Near-UV CD spectra of concentrated samples 

 

From the analysis of figure 14, it is evident that all the CD spectra of concentrated samples have similar form and 
exhibit CD bands between 250-310 nm, typical of  proteins containing aromatic amino acids residues, but lacking 
of positive bands between 290-310 nm often associated to tryptophan residues. However, the normalised spectra 
are not absolutely identical, particularly in the 250-280 nm region (often associated with Phenylalanine) and in 
the tail between 300-350 nm (associated with disulfide bridges). The only spectrum that looks different from the 
others is the “final bulk” spectrum. In fact, this one shows a different shape in the region from 300 to 330 nm. 
This batch is the one arising from the new process called “process D”. 
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Near-UV spectra of diluted samples. In general, all the spectra acquired on the diluted solutions were normalised 
both for pathlength and concentration, using the directly comparable 4°C store solutions concentrations. The 
samples pH values are listed in table 2, and can be compared with the stated pH 5.0 of the original concentrated 
stock solutions.  

 

Table 2. pH values of 4°C and 
room temperature stored solutions 

 
It is clear that dilution led to an increase of the samples pH. Moreover, it is noticeable that the pH of the ambient 
stored solutions generally increased more than the corresponding ones stored at 4°C. Batch A87G3032 
consistently displayed the lowest pH for both modes of storage. The spectra of diluted samples (fig. 15) were 
generally very reproducible within the noise level. We can assess that all the CD spectra look highly comparable, 
both for concentrated and for diluted ones. Only one sample looks different; the final bulk (process D) among the 
concentrated spectra.  

Figure 15. Near-UV CD spectra of diluted sample 

 

Far-UV spectra. In figure 16 are shown the far-UV CD spectra normalized by using a specific correction factor. 
As expected, due to the excessive absorbance of buffer components, the spectra become dominated by noise for 
wavelength lower than 205 nm, and therefore spectra were truncated at this wavelength limit. As it can be seen, 
all the far-UV spectra look noisy in the whole region. By visual inspection, it can be noticed that all the far-UV 
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CD spectra are very reproducible, sharing the same spectral shape in the whole spectral range. The forms of CD 
spectra are consistent with a protein adopting a predominantly anti-parallel β-sheet secondary structure. 

 

Figure 16. Far-UV CD spectra of diluted samples 

 
2.1.2 PCA analysis of CD spectra 

 

To have further information about the real comparability of the spectra, and to eventually detect difference 
features of the spectra not detectable by only visual inspection, the CD data, both near and far-UV, were 
analyzed by PCA analysis,  

Near-UV PCA analysis of concentrated sample. In figure 17 is shown the score plot of near-UV data of 
concentrated samples. Normalized data were used, and these were “mean-centred” before PCA analysis. 

 

 
Figure 17. PCA score plot of near-UV CD spectra of 
concentrated samples 
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The score plot shows that data points form a main central cluster, in which the data scatter mainly along PC1, 
with A87G2044, 46, 30 and 31 at one extreme and A87G2032 and 33 at the other. However, the final bulk and 
A87G2030 batches are distinguished as opposite extremes in PC2. To understand which variables, or in other 
words which part of the spectrum contributes more to the patterns observed among the spectral data in the score 
plot, the loading plots of figure 18 must be analysed. 
 

 
Figure 18. PCA loading plots of CD near-UV 
spectra of concentrated samples.  
A) PCA loading plot of first component p1; B) PCA 
loading plots of second component p2 

 

In these loading plots, the farther the variables values are from zero (black line), the higher is the importance of 
these variables in the model. 

The loading plot p1 (fig. 18 A) shows which variables are responsible for the pattern seen among the observations 
in the score plot along PC1. From loading plot p1, it is evident that PC1 mainly represents a broad CD band at 275 
nm with a CD signal rising to below 240.  

The loading plot p2 shows instead which variables are important for the pattern of data points along the t2 
component of the score plot. From the figure 18 B, it can be noticed that PC loading plot p2 represents a very 
broad CD band centred around 285 nm and tailing towards visible wavelength values. These features are 
consistent with phenylalanine and disulfide bridges respectively.  

It can be hypothesised that batches A87G2044, 46, 30 and 31 may subtly differ from A87G2032 and 33 in the 
environment of phenylalanine components, with a subtle difference in disulfide environment being apparent 
between final bulk and the other batches. 
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Near-UV PCA analysis of diluted samples. . In figure 19 is shown the score plot of near-UV data of diluted 
samples. As for concentrated samples, normalized and “mean-centred” data were used for PCA analysis.  

The score plot shows that data points form a main central cluster, in which the data scatter equally along PC1 and 
PC2 Batch G2017 is separated from this cluster with respect PC2. Furthermore, it can be noticed that PC1 
explains 80% of variation among data points. 

Figure 19. PCA score plot of near-UV CD spectra of 
diluted samples. 

 

Analysing the loading plots (fig 20 and 21), it is possible to have further information about which wavelengths 
are responsible for the observed data distribution along PC1 and PC2. 

 

Figure 20. PCA loading p1 plot of  near-UV CD spectra 
of diluted samples 

 

The loading plot p1 (fig. 20) shows that PC1 mainly represents a broad CD band around 295-250 nm, which 
looks like an inverted mean spectrum of the drug substance, and may represents changes in concentration.  

In contrast, loading plot p2 (fig. 21) indicates that PC2 represents a tailing CD band from 290 to 240 nm and may 
represents either a baseline drift or extended disulphide CD bands.  



Marco Barba Results and discussion 

  

24 

 

Figure 21. PCA loading plot p2 of near-UV CD 
spectra of diluted samples 

 
PCA analysis confirms that all the diluted spectra are comparable to each other throughout the near-UV range, 
with only the G2017 spectrum showing little differences in the region from 295 to 250 nm.  

Far-UV PCA analysis. As for the near-UV data, far-UV spectra were analysed with PCA analysis, using the 
normalized and mean-centred data. In figure 22 is shown the score plot of far-UV data.  

As expected from the visual inspection of the spectra (fig. 16), data form a big single cluster, in which is not 
observable any specific pattern. Only data G2046 seem slightly separated from the cluster along PC2. This is an 
indication of the complete comparability of the far-UV spectra. The score plot also indicates that 79% of the 
variation of data points is explained by the PC1. 

 

Figure 22. PCA score plot of far-UV spectra 

 

Inspecting loading plot p1 (fig. 23, A) it is evident that PC1 looks like an inverted far-UV CD spectrum for this 
drug substance, and may therefore be correlated either to concentration variations or simple loss of secondary 
structure.  

Loading plot p2 (fig. 23, B) indicates that the pattern of data points seen along t2 component of the score plot is 
mainly due to instrumental noise, equally distributed in the whole far-UV range. Consequently, the delineation of 
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Batch G2046 as an extreme of the distribution with respect to PC2 may be connected to a relative higher level of 
noise in this spectrum.  

 
Figure 23. PCA loading plots of far-UV spectra 
A) PCA loading plot of first component p1; B) PCA 
loading plots of second component p2 

 

2.1.3 FT-IR spectroscopy analysis 

 

FT-IR measurements were performed only on the concentrated drug substance. For instrumental parameters and 
normalization process see Materials and Methods section. In figure 24 are shown the spectra obtained after 
correction for the buffer spectrum. 
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Figure 24. FT-IR spectra of concentrated samples 

 

We can see that all the FT-IR spectra look highly comparable in terms of vibrational bands, but exhibit some 
variations in baseline level, as it is frequently observable when performing ATR measurements. In particular, all 
FT-IR spectra exhibit strong Amide I and II bands at ca. 1640 and 1540 cm-1 respectively together with a visible 
shoulder at ca. 1675 cm-1 also associated with the Amide I band, all consistent with a protein having a 
predominantly anti-parallel β-sheet structure. 

 

2.1.4 PCA analysis of FT-IR spectra. 

 

To further investigate the structural/spectral comparability of these batches, FT-IR spectra were analyzed by 
using PCA, as already done for CD spectral data. 

From the score plot of figure 25 it can be seen how data points are arranged in a single cluster, indication of 
spectral comparability among all the FT-IR spectra. The first two principal components are sufficient to describe 
92% of the overall variance in the spectra. 

Figure 25. PCA score plot of FT-IR spectra 
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The loading plot p1 (fig. 26) indicates that PC1 mainly represents a baseline shift across the whole spectral 
region, this is often seen in FTIR-ATR spectra and is connected with different aggregation of the proteins on the 
ATR crystal. 

In contrast loading plot p2 (fig. 27), encompasses a counteracting shift together with distinct absorbance at Amide 
I and II band positions. The peaks in PC2 may represent concentrations effects and/or subtle changes in 
secondary structure. Overall, batch G2031, 17 and final bulk are separated from the others by PC2, which may be 
associated with subtle changes in structure. In addition, batch G2032 is distinguished by the other batches by 
PC1, which is consistent with different aggregation on the ATR crystal. 

 

Figure 26 PCA loading plot p1 of FT-IR spectra 

 

Figure 27 PCA loading plot p2 of FT-IR spectra 

 

2.1.5 UV-Vis spectroscopy analysis 

 

UV-Vis measurements were performed under different conditions. At first, the analysis was performed using the 
concentrated samples (> 160 mg/ml). Then, these samples were diluted to about 0.5 mg/ml in water, generating 
two replicates of each sample. Then, one replicate was stored at room temperature, and the other at 4°C and 
analyzed separately. 
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UV-Vis measurements of concentrated samples. The UV-Vis spectra of concentrated samples are reported in 
figure 28. Spectra were normalized using a specific correction factor (see Materials and Methods section). 

All the spectra are extremely reproducible in form, indicating high comparability of the different batches 
obtained with different processes. Analyzing more in detail the spectra, the only evident difference is a slight 
raising of the baseline for batch G2030, probably due to scattering effects,  

Figure 28. UV-Vis spectra of concentrated samples 
A) Enlarged view of 240 –260 nm region; B) Enlarged view of 300-340 nm region 

 

UV-Vis measurements of diluted samples (room temperature). The UV-Vis spectra of diluted samples (fig. 29) 
stored at room temperature shows some differences with respect to the spectra obtained by using the concentrated 
analytes. It is evident in fact how a number of spectra show the appearance of a little shoulder at ca. 275 nm, 
while some others show a completely different shape in the region from 270 to 240 nm, consistent with sample 
deterioration.  
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Figure 29. UV-Vis spectra of dilute samples (room 
temperature) 

 

The reasons of these changes could be, on one hand, the storage conditions, that may facilitate degradation 
processes such as aggregation, and, on the other hand, the dilution in water, since replacing the original buffer 
solution could affect the structure of the drug substance in solution. 

UV-Vis measurements of diluted samples (4°C). UV-Vis spectra of diluted samples stored at 4°C are shown in 
figure 30. It’s immediately clear that spectra are much more comparable with respect to the spectra of the same 
samples stored at room temperature.  

Figure 30. UV-Vis spectra of diluted samples (4°C) 
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However, the spectra are not identical and, in particular, the final bulk and G2017 batches show a raised 
absorbance from 240 to 270 nm, where the two spectra cross each other, in a manner often associated with 
scattering of particulates. 

2.1.6 PCA analysis of UV-Vis spectra 

 

PCA of concentrated samples. PCA analysis of spectra obtained by analyzing the concentrated samples (fig. 31) 
confirms the difference already seen by visual inspection of the spectra (fig. 28). 

 

Figure 31. PCA score plot of UV-Vis spectra of 
concentrated samples 

 

From the score plot it is evident that data points arrange themselves in a large central cluster, excepting final bulk 
marginally distinguished by PC2 component, and G2030 which is an outlier from the central cluster with respect 
to the PC1. This pattern confirms the difference seen between G2030 and the other spectra. To further investigate 
the reasons of the different pattern of G2030 and final bulk data points detected in the score plot, once again the 
loading plots must be analyzed(fig. 32). 
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Figure 32. PCA loading plots of UV-Vis spectra of 
concentrated samples 
A) Loading plot of p1 component; B) Loading plot of 
p2 component 

 

From the inspection of loading plot p1 (fig. 32, A) it is evident that PC1 represents a raised baseline at long 
wavelength, consistent with the reason why batch G2030 is an outlier. The loading plot p2 (fig. 32, B) shows that 
PC2, which distinguishes final bulk, has a form consistent with a change in the relative absorbance of tryptophan 
with respect to phenylalanine and tyrosine residues.  

PCA of diluted samples (room temperature). As expected, data points of UV-Vis diluted spectra do not form a 
single cluster in the score plot (fig. 33), but distribute themselves with a characteristic pattern reflecting the 
spectral difference seen in figure 30. 
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Figure 33. PCA score plot of UV-Vis spectra of 
diluted samples (room temperature) 

 

Batches G2017 and final bulk are clear outliers with respect to PC1. Batches G2046, G2018, G2044 and G2045 
are delineated by PC2. PC1 and PC2 account for 97% of the total variance. Such complicated pattern can be 
understood only analyzing the respective loading plots of figure 36.  

 

Figure 34. PCA loading plots of UV-Vis spectra 
of diluted samples (room temperature) 
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Inspecting loading plot p1 (fig. 34, A) it is evident that PC1 represents a raised absorbance in the region from 240 
to 270 nm, perhaps corresponding to particulate scattering, together with a loss of absorbance at 265 nm.  

Loading plot p2 (fig. 34, B) highlights instead that PC2  looks like a mean UV-Vis spectrum of the drug 
substance and may reflect a loss of concentration although the correspondence is not perfect and PC2 could also 
include a perturbation of the aromatic residues such as tyrosine and/or phenylalanine.  

Concluding, it is clear from these analysis that the spectra do not completely correspond to each other and that 
deterioration of the solutions has occurred. 

PCA of diluted samples (4°C). The differences observed in the dilute samples stored at room temperature are 
present at very lower extent in the UV-Vis spectra of the 4°C stored diluted samples. 

The data points in the score plot (fig. 35) are in close proximity to each other, although not as close as in the 
concentrated case, excepting final bulk and G2017 which are completely outliers from this cluster with respect to 
PC1. These two outliers are also separated from each other by PC2. These two principal components explain 
98% of the total variation. 

 

Figure 35. PCA score plot of UV-Vis spectra of diluted samples (4°C) 

 

Loading plot p1 (fig. 36, A) indicates that PC1 mainly represents a raised absorbance at short wavelengths, with 
two observable bands at 242 and 264 nm.  

Loading plot p2 (fig. 36, B) in contrast represents a raised absorbance at 264 nm, but a loss at short wavelength 
below 250 nm. Notably, phenylalanine has a major absorption band around the 264 nm region, and thus this 
amino acid residue could be involved in the outlying positions of G2017 and final bulk, although the differences 
are small. 
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Figure 36. PCA loading plots of UV-Vis spectra of diluted 
samples (4°C) 

 
2.1.7 UV-Vis-NIR spectroscopy 

 

UV-Vis-NIR measurements were performed under different conditions. At first, the analysis was performed 
using the concentrated samples (> 160 mg/ml). Then, these samples were diluted to about 0.5 mg/ml in water. 

 

Figure 37. Vis region of normalized UV-Vis-NIR spectra 
of concentrated samples 
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Figure 38. NIR region of normalized UV-Vis-NIR spectra of 
concentrated samples 

 

UV-Vis-NIR of concentrated samples. UV-Vis-NIR spectra of concentrated samples are shown in figures 37 and 
38. These spectra were normalized using a specific correction factor (see Materials and Methods section). 

The expected effect of excessive absorbance of water in the 1400-1800 nm region is evident, with the spectra 
being dominated by noise in this region; for this reason the 1400-1800 nm region has been disregarded in the 
analysis. First, it is apparent that all the spectra show absorption bands in the 400-800 nm region (fig. 37), 
although of varying magnitude. These bands are not expected for a pure native (glyco)protein solution and may 
be related to the “yellow-protein” phenomenon often observed for biotechnology products. Spectroscopic 
features are also observed in the 800-400 nm NIR region (fig. 38). The origin of these features is debated and 
under further investigation, but could be related to solvent-protein effects (which would be consistent with the 
apparent “negative absorption” characteristics relative to the water baseline). 

UV-Vis-NIR of diluted samples. The UV-Vis-NIR spectra of diluted samples are shown in figure 39. These 
spectra were normalized using a specific correction factor (see Materials and Methods section). 

Figure 39. UV-Vis-NIR normalised spectra of diluted samples 
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As for concentrated samples, the expected effect of excessive absorbance by water in the 1400-1800 nm region is 
evident, with the spectra being dominated by noise in this region; for this reason the 1400-1800 nm region has 
been disregarded in the analysis. Figures 40, 41 and 42 show a close-up of the UV, visible and NIR region 
respectively. 

Figure 40. NUV region of UV-Vis-NIR spectra of diluted 
samples 

 

It is evident that all the batches show a diversity of peak heights and shape in the UV region (fig .40), as might be 
expected from the UV-Vis spectra discussed above. In addition, all batches show raised tail of absorption 
extending across the 300-800 nm region (fig. 41). Some of the batches show a series of small peaks in the NIR 
region (800-1400 nm)(fig. 42). However  the molecular origin of these features cannot be  established and they 
will not be considered further . 

The clear absorption bands seen in the visible region for the concentrated solution are not evident for the diluted 
solutions, due to ca. 300-fold reduced concentration, which brings them below the detection level. However, the 
absorption tails observed in the visible region may be related to the bands observed in the concentrated 
solutions.. 

Figure 41. Visible region of UV-Vis-NIR spectra 
of diluted samples 

 

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

300 400 500 600 700 800nm

A
bs

/K
d

G2016(norm
G2017(norm)
G2018(norm)
G2030(norm)
G2031(norm)
G2032(norm)
G2033(norm)
G2044(norm)
G2045(norm)
G2046(norm)
final bulk(norm)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

240 260 280 300 320 340nm

A
bs

/K
d

G2016(norm
G2017(norm)
G2018(norm)
G2030(norm)
G2031(norm)
G2032(norm)
G2033(norm)
G2044(norm)
G2045(norm)
G2046(norm)
final bulk(norm)



Marco Barba Results and discussion 

  

37 

Figure 42. NIR region of UV-Vis-NIR spectra of 
diluted samples. 

 

PCA analysis of UV-Vis-NIR spectra of concentrated samples. In the score plot of figure 43, spectra are 
predominantly separated by PC1, with only minor separation by PC2. Only batch of A87G2017 is separated from 
the group by PC2. It is apparent that the first two PC’s are sufficient to explain 98% of the total variation in the 
spectra. 

Figure 43. PCA score plot of UV-Vis-NIR spectra 
of concentrated samples 

 

Inspecting the loading plot p1 (fig. 44, A) it is evident that PC1 mainly represents absorption bands around 400-
450 nm, and a tail extending across the visible region, consistent with the spectral features commented above 
regarding the “yellow-protein” phenomenon.  

Loading plot p2 (fig. 44, B) indicates instead that PC2 represents a further increase in absorbance at 450 nm 
together with a decrease at 400 nm and shorter wavelengths. Given that the batches A87G2016-18 and 
A87G2030-33 are delineated by PC1 (opposite extremes) and this is, in turn, associated with the appearance of 
additional bands at 400-450 nm and a tail extending across the visible region, it can be hypothesised that these 
spectral features could be related to the period in which the batch was produced and/or the change in 
hydrolysates used.  
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Figure 44. PCA loading plots of UV-Vis-NIR 
spectra of concentrated samples 

 

PCA analysis of UV-Vis-NIR spectra diluted samples. The spectra of diluted samples clearly contain information 
of two scales, a large absorption around 280 nm, and a small absorption elsewhere. Thus, the two spectral regions 
were considered separately. First, the 340-800 nm region was subject to PCA analysis (fig. 44). The spectra are 
delineated mainly by PC1, with batches A87G2017 and A87G2044 at either extremes, and with minor separation 
by PC2, with A87G2045 more detached from the other batches. 
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Figure 45. PCA score plot of Vis region of UV-
Vis-NIR spectra of diluted samples 

 

The first PC is sufficient alone to explains 97,9% of the total variation. Inspection of the loading plot p1 (fig. 45) 
indicates that PC1 represents a gradual rising absorbance with decreasing wavelengths, similar to what seen for 
Rayleigh scattering. Batch A87G2017 displays the greatest contribution of this spectral feature while batch 
A87G2044 displays the lowest contribution, as can be also observed in the spectra (fig. 41). 

 

Figure 46 Vis region PCA loading plot p1 of 
UV-Vis-NIR spectra of diluted samples 

 

The near-UV region of 240-340 nm (fig. 40) was also subjected to PCA. This region has already been covered by 
the specific NUV absorption spectra reported above. However, these spectra were acquired at different time and 
NUV region from UV-Vis-NIR spectra was treated separately. 

The score plot of this region is illustrated in figure 47. Batches A87G2017 and G2033 are clear outliers to the 
others batches with respect toPC1, although batches A87G2018 and final bulk are also delineated by PC2. 
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Figure 47. NUV PCA score plot of UV-Vis-NIR 
spectra of diluted samples 

 

Almost 98% of the total variance is explained by the first two PCs. The loading plot p1 (fig. 48) shows that PC1 
represents an increased absorbance at short wavelength, perhaps corresponding to Rayleigh scattering. The 
loading plot p2 (fig. 49) indicates instead that PC2 is a broad band centred around 270 nm, akin to an aromatic 
residue absorption, especially tyrosine and phenylalanine. This is very similar, but not identical, to that deduced 
for NUV absorption spectra described above. In this case PC2 is less associated with the mean spectrum of drug 
substance (i.e. concentration) and has more a character of specific classes of aromatic residues. This may be a 
consequence of all the UV-Vis-NIR spectra being recorded close in time to each other, whereas the NUV 
absorption spectra were run over a slightly more extended period of few days, allowing concentration variations 
through aggregation to become apparent in the samples. 

 

Figure 48. NUV PCA loading plot p1 of  UV-Vis-NIR 
spectra of diluted samples 
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Figure 49. NUV PCA loading plot p2 of  UV-Vis-
NIR spectra of diluted samples 

 

2.1.8 Raman scattering  

 

Solution Raman scattering of concentrated solutions (fig. 50) proved to be of a very poor quality, predominantly 
due to massive fluorescence artefacts. The spectra described below were obtained from constant volume aliquots 
of the solutions that were freshly allowed to dry onto glass microscope slides, and using the concentration of 
each sample as normalization factor. 

 

Figure 50. Raman scattering of concentrated samples 

 

It can be immediately seen that the Raman scattering is dominate by fluorescence and that the fluorescence varies 
from batch to batch, both in intensity and wave number. The Raman spectrometer employed a 632.8 nm incident 
laser, an intense light source capable of exciting any absorbing species with absorption bands in the 600 nm area. 
Notably, the fluorescence doesn’t occur at a constant wavenumber, but varies across the batches. Based on the 
position of fluorescence maxima, batches can be divided into 5 groups as summarized in table 3. 
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Table 3 Fluorescence maxima 
in Raman spectra 

2.1.9 PCA of Raman scattering spectra 

 

The score plot of Raman scattering normalised spectra is presented in figure 51. The spectra are predominantly 
delineated by PC1 and PC2,explaining together 98% of total variance in the spectra.  

In particular, batch A87G2033 is an extreme with respect to PC1 and A87G2030 with respect to PC2. Notably, 
batches A87GG2016, 17 , 18 and final bulk are discriminated from the other batches by PC2. So, the batches 
broadly cluster as shown in table 6. 

The loading plots shows that principal components are, as might be expected, dominated by fluorescence, with 
PC1 representing the broad fluorescence centred at 1950 cm-1 (fig. 52, A), and PC2 introducing a shift of this 
peak to higher (with negative scores) or lower (positive scores) wavenumber (fig. 52, B). 

 

Figure 51. PCA score plot of Raman spectra 

 

Batch A87G2033 is therefore seen as an outlier due to its higher fluorescence around 1950 cm-1, with batches 
A87G2016, 17, 18 and final bulk being separated by having a fluorescence peak at higher wavenumber. Batch 
A87G2030 is unique to have a fluorescence band at a particularly low wavenumber (~ 2250 cm-1). However, in 
each case it can be seen that the fluorescence seems to be the sum of two or more bands 

Fluorescence 
Maximum (cm-1)

Batches

1400 A87G2030
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A87G2016
A87G2017
final bulk

2300 A87G2018
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Figure 52. PCA loading plots of Raman spectra  
A) loading plot p1; B) loading plot p2 
 
 
 
 

2.1.10 Fluorescence mapping and emission 

Fluorescence mapping of concentrated samples. An example of the series of emission scans making up an 
excitation-emission map are presented in figure 53. Each emission spectrum corresponds to a different excitation 
wavelength, progressing from 260 to 595 nm as the emission peaks progress to longer wavelength. 

 
Due to the excessive absorbance of the solutions, and hence the fluorescence self-masking effect, there is no 
signal detected when excited at wavelength shorter than 300nm. Consequently, the normal tryptophan 
fluorescence at 300-350 nm that would typically be observed with excitation in the 270-300 nm region is 
unobservable.  
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Figure 53. Excitation-emission map of drug substance 

 
However, very distinctive fluorescence bands in the visible region 355-600 nm are evident, arising from 
excitation with light of wavelengths longer than 300 nm. These visible region fluorescence bands occur for all 
the samples and can be separated into at least four separate excitation-emission pairs, which partially overlaps to 
each other. The corresponding normalised emission spectra for all the batches are illustrated in figure 54 (Ex 330, 
360, 400 and 480 nm). 

Such visible fluorescence is not an expected feature of pure, native glycoproteins. Fluorescence bands in these 
region are often related to the “yellow protein” phenomenon often observed for biotechnology products. 
Moreover, they may be related to the visible absorption bands described in the UV-Vis-NIR absorption section 
above. 

Figure 54. Fluorescence emission spectra at different excitation 
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A methods of viewing fluorescence excitation-emission maps is a colour coded contour map over the excitation-
emission domain. Such maps for each batch, based on the normalised spectra are shown from figures 55 to 65. 
The localisation of the fluorescence in the excitation-emission wavelength domain is evident in the maps of all 
samples and correspond to a broad fluorescence across the visible region with excitation in the 330-480 nm 
region. 

It should be borne in mind that the fluorimeter light source (450 W Xenon arc lamp) possesses some sharp 
modulations (spikes) in the intensity of its radiation at some wavelengths in the 450-500 nm region. The 
increased excitation at these wavelengths will give rise to apparent sharp increases in fluorescence superimposed 
on the broad fluorescence. So, the sharp, “fine structure” to the fluorescence with varying excitation wavelength 
in the 450-500 nm range should be ascribed to lamp intensity effects rather than real molecular excitations. 

 

 
Figure 55. Fluorescence excitation-emission maps of A87G2016 
A) Excitation emission contour map; B) excitation-emission surface map 

 
 

 
Figure 56. Fluorescence excitation-emission maps of A87G2017 
A) Excitation emission contour map; B) excitation-emission surface map 
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Figure 57. Fluorescence excitation-emission maps of A87G2018 
A) Excitation emission contour map; B) excitation-emission surface map 

 

 
Figure 58. Fluorescence excitation-emission maps of A87G2030 
A) Excitation emission contour map; B) excitation-emission surface map 

 

 
Figure 59. Fluorescence excitation-emission maps of A87G2031 
A) Excitation emission contour map; B) excitation-emission surface map 
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Figure 60. Fluorescence excitation-emission maps of A87G2032 
A) Excitation emission contour map; B) excitation-emission surface map 

 
Figure 61. Fluorescence excitation-emission maps of A87G2033 
A) Excitation emission contour map; B) excitation-emission surface map 
 

 
Figure 62. Fluorescence excitation-emission maps of A87G2044 
A) Excitation emission contour map; B) excitation-emission surface map 
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Figure 63. Fluorescence excitation-emission maps of A87G2045 
A) Excitation emission contour map; B) excitation-emission surface map 

 

 
Figure 64. Fluorescence excitation-emission maps of A87G2046 
A) Excitation emission contour map; B) excitation-emission surface map 

 

 
Figure 65. Fluorescence excitation-emission maps of final bulk 
A) Excitation emission contour map; B) excitation-emission surface map 
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Fluorescence mapping of diluted samples. An example of the series of emission scans making up an excitation-
emission map are presented in figure 66. Each emission spectrum corresponds to a different excitation 
wavelength, progressing from 260 to 595 nm as the emission peaks progress to longer wavelength. 

 

Figure 66. Fluorescence map of diluted samples 

 

Unlike in the concentrated solution case, diluted samples do not have excessive absorbance in the NUV 
wavelength region, and thus the usual tryptophan absorption at 300- 350 nm is observable. 

In addition, the effect of Rayleigh and Raman scattering of excitation light detected by the emission 
monochromator second-order dispersion are apparent at 500-600 nm. See the section “Fluorimetry Second-order 
scatter mapping” below for more details.  

A methods of viewing fluorescence excitation-emission maps is a colour coded contour map over the excitation-
emission domain. Such maps for each batch, based on the normalised spectra are shown in figure 67 to 72. The 
fluorescence maps of all the batches excepting final bulk have similar form, although there is some variation in 
fluorescence intensity. In contrast, final bulk exhibits a greater Rayleigh and Raman scattering band in the 500-
600 nm region. The tryptophan fluorescence region (Ex: 250-300 nm, Em: 265-480 nm) and the Rayleigh-Raman 
scattering region (Ex: 250-300 nm, Em: 480-600 nm) are treated as separate maps for the purposes of pattern 
recognition.  
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Figure 67. Fluorescence excitation-emission maps of A87G2016 and A87G2017 
A) Excitation emission contour and surface map of A87G2016; B Excitation emission contour and surface map of A87G2017 

 

 

Figure 68. Fluorescence excitation-emission maps of A87G2018 and A87G2030 
A) Excitation emission contour and surface map of A87G2018 B) Excitation emission contour and surface map of A87G2030 
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Figure 69. Fluorescence excitation-emission maps of A87G2031 and A87G2032 
A) Excitation emission contour and surface map of A87G2031 B) Excitation emission contour and surface map of A87G2032 
 

 

Figure 70. Fluorescence excitation-emission maps of A87G2033 and A87G2044 
A) Excitation emission contour and surface map of A87G2033 B) Excitation emission contour and surface map of A87G2044 
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Figure 71. Fluorescence excitation-emission maps of A87G2045 and A87G2046 
A) Excitation emission contour and surface map of A87G2045 B) Excitation emission contour and surface map of A87G2046 
 

Figure 72. Fluorescence excitation-emission maps of final bulk 
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PCA of concentrated samples fluorescence maps. By concatenating successive emission scans a fluorescence 
excitation-emission map can be transformed to a format amenable to PCA and other multivariate analysis. The 
PCA score plots of the normalised fluorescence maps in the excitation: emission 305:460 315:600 range are 
illustrated in figure 73. 

 

Figure 73. PCA score plot of fluorescence map of 
concentrated samples 

 
From the score plot it can be seen that batches A87G2044 and final bulk are clearly outliers with respect to PC1, 
whereas batches A87G2016, 17 and 18 are discriminated from the others by PC2. the first two components are 
sufficient to explain 97% of total variance in the map.  

Form the loading plot p1 (fig. 74, A), it can be seen that PC1 represents a broad fluorescence band in the 320-400 
nm region, while PC2 (fig. 74,B) represents a decrease in the fluorescence from excitation with short wavelength, 
and an increase in the fluorescence from long wavelength excitation. 

Consequently, batches A87G2044 and final bulk can be seen to be outliers by having a generally higher 
fluorescence in the emission region from 320 to 400 nm, while batches A87G2016, 17 and 18 are discriminated 
from the other batches in having a relatively higher fluorescence from short wavelength excitation and a lower 
fluorescence frorn long wavelength excitation: this is consistent with the presence of an additional (or an 
increased quantity) of an additional fluorophore in these batches that absorb at short wavelength. 
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Figure 74. PCA loading plots of fluorescence map 
of concentrated samples 
A) Loading plot p1; B) loading plot p2 

 
PCA of diluted samples fluorescence maps. From the score plot of figure 75  it can be seen that the batches are 
primarily delineated by PC1, with batch A87G2046 at one extreme and A87G2017 to the other, while final bulk 
is separated from the other batches by PC2. these first two components are sufficient to explain 97% of overall 
variance in the maps. 

 

Figure 75. PCA score plot of fluorescence maps of 
diluted samples 
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From the loading plots of figure 76,  it can be seen that PC1 (fig. 76, A) represents a broad fluorescence band in 
the 300-380 nm fluorescence emission region, corresponding to tryptophan fluorescence, while PC2 (fig. 76, B) 
essentially increase the fluorescence for 285 nm excitation at the expense of that from shorter wavelength 
excitation. Thus, the separation of the batches in terms of PC1 relates to the magnitude of the tryptophan 
fluorescence. 

 

Figure 76. PCA loading plots of fluorescence maps of 
diluted samples 

 
2.1.11 Fluorimetry Second-order scatter mapping 

 
Following from the previous section, the Rayleigh-Raman scattering region of the fluorescence maps can be 
explored.  

The Rayleigh-Raman scattering detection derives from the fact that diffraction gratings used in monochromators 
actually disperse not just light of wavelength λ, but also all the related orders λ/n, where n= 1, 2, 3…, at a 
coincident angle, although less efficiently. Thus, when the emission monochromator is set to a wavelength λ nm, 
it will also pass an amount of the second order light of wavelength λ/2 nm. 

Consequently, if the excitation monochromator is set to a wavelength λex  nm and this is then Rayleigh-or Raman 
scattered by the sample, it will pass through the emission monochromator when it is set to λem = 2 λex, appearing 
to be an “emission“ at a wavelength close to 2 λex nm. For example, when exciting at 250 nm, this can be 
scattered and passed at apparently 500 nm by the emission monochromator to the detector. 
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Figure 79 presents the normalised emission scans form the fluorescence maps of batch A87G2016 and final bulk. 
It can be seen that the scattering band between 500-600 nm (for the scattering of 250-300 nm light) are much 
larger for final bulk than A87G2016. 

 
Figure 77. Fluorescence maps of diluted samples 
A) fluorescence map of A87G2016; B) fluorescence map of final bulk 

 
The score plot of the normalised fluorescence maps in the scattering region is presented in figure 78. As 
expected, the final bulk is an extreme outlier with respect PC1. PC1 is the only PC necessary to account 99.9% of 
total variance and has the form of Rayleigh and Raman scattering features observed for final bulk (fig. 77). 

The Rayleigh scattering derives predominantly form particulates in the solution, including aggregated protein, 
whereas the Raman scattering, at a slightly lower wavenumber, will have a large contribution from water. 

 

 

 
Figure 78.  Scorew and loading plots of fluorescence scattering region 

Figure 78. Fluorescence maps of scattering region  
A) PCA score plot of fluorescence scattering region; B) PCA loading plot p1 of fluorescence scattering region 
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2.2 QUANTIFICATION OF DEGRADATION PRODUCTS BY USING CD AND IR IN 
COMBINATION WITH MVDA 

 

The aim of the present thesis was to assess the feasibility of obtaining quantitative information about degradation 
of biopharmaceuticals when employing spectral data, here exemplified by CD and IR in combination with PLS 
regression. In order to generate a suitable calibration matrix, a set of samples containing pre-defined levels of 
aggregates, oxidized forms and free-Fc, was generated as described in the Materials and Methods section. Table 
4 shows the ranges covered by the calibration matrix for each degradation form. 

 

Table 4. Ranges covered by the 
calibration matrix 

 

All the samples generated were then analyzed separately for each of the three degradation forms employing 
dedicated chromatographic QC assays in order to obtain accurate degradant levels. Furthermore, both CD (near 
and far-UV) and IR spectra were measured. Both QC and spectroscopic data form the basis for the generation of 
various PLS models, based respectively on CD and IR spectra alone, as well as CD and IR data combined. 

 

2.2.1 CD spectra of matrix samples 

 
All matrix samples were analyzed by CD spectroscopy, both in the near and far-UV region. For instrumental 
parameters see Materials and Methods section. The obtained spectra are shown in figures 79 and 80. 

 

Figure 79. Near-UV CD normalised spectra  
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Figure 80. Far-UV CD normalized spectra 

 
Data are usually pre-processed before PLS analysis. CD spectra, both near and far-UV, were normalized dividing 
the obtained signal by the UV absorption value measured at 280 nm. This normalization allows to keep only 
information about structural changes. So, as it can be seen from the graphs, by normalizing the spectra spectral 
differences arising from the different concentration of each sample were eliminated. Looking at the near-UV 
spectra, it can be noted that all of them are very consistent to each other, but, despite the normalization process, 
there is a set of four spectra lightly separated from all the other. On the other hand, far-UV spectra are all very 
similar, with all the spectra forming a single group. 

 

2.2.2 IR spectra of matrix samples 

 

IR spectra o f matrix samples are shown in figure 81. Here are showed the raw spectra, spectra obtained without 
any subtraction of the buffer spectrum. For all the instrumental settings, see Materials and Methods section 

Figure 81. IR spectra of matrix samples 
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In order to eliminate differences among the spectra due only to the different concentration of each sample, IR 
spectra were normalized dividing the obtained signal by the maximum absorption value measured in the 1700-
1600 cm-1 region of the IR spectrum (measured at ~ 1635 cm-1) 

Looking at the spectra, it can be noted that all the spectra are very consistent to each other along the whole 
spectral region. Also in the Amide region (1700-1500 cm-1), the most important region for structure 
determination in proteins directly correlated to the backbone conformation, the spectra are consistent; 
furthermore, are evident signals in the amide II region (1600-1500 cm-1), the second most important band in 
protein structure determination. 

 

2.2.3 QC analysis of matrix samples 

 

All matrix samples were analyzed by the dedicated QC chromatographic assays described in Material and 
Methods section. In this way, for each matrix sample the observed value of each degradation forms were 
obtained and used for the generation of PLS models. 

In table 5 are reported the QC values obtained for aggregates (SE-HPLC), oxidized forms (peptide mapping + 
UPLC) and free- Fc (IE-HPLC) for all the matrix samples. These values are compared with the corresponding 
theoretical values obtained generating the calibration matrix.  

 

Table 5. Observed vs. theoretical degradation values 

(SE-HPLC) Matrix UPLC Matrix IE-HPLC Matrix
1.79 0.00 11.03 3.21 3.28 2.65
3.75 0.88 10.77 6.32 0.22 0.00
33.20 13.34 as matrix 48.18 as matrix 6.63
10.79 3.55 24.84 19.26 3.46 3.53
8.97 3.10 20.50 14.90 2.01 2.05
6.36 5.16 5.61 0.00 4.30 3.85
4.85 0.00 17.05 13.23 3.17 2.91
7.16 2.95 15.03 10.66 0.20 0.00
28.90 10.60 as matrix 45.93 as matrix 10.53
6.09 2.97 11.04 5.37 2.74 2.46
3.74 1.54 7.10 3.71 3.56 3.06
3.67 0.86 11.98 6.18 1.31 1.28
8.57 2.79 21.44 15.13 1.81 1.39
12.50 5.23 25.41 18.90 3.92 3.47
5.62 3.82 6.36 1.87 4.65 3.79
3.51 0.34 13.16 7.44 2.78 2.46
4.13 2.25 7.66 3.25 0.46 0.36
8.70 4.56 as matrix 8.25 as matrix 11.34
1.97 0.56 7.29 2.01 as matrix 1.10
2.21 1.41 4.80 0.00 1.13 1.40
16.30 0.00 6.02 31.38 1.75 1.44
13.68 0.00 as matrix 40.73 as matrix 22.41
4.75 0.00 13.35 9.00 0.28 0.00
33.94 1.25 as matrix 45.81 as matrix 7.56
5.40 15.22 4.55 0.00 6.53 5.07
0.76 4.25 4.22 0.00 3.06 2.34
2.84 0.00 12.22 7.54 0.49 0.00
15.99 0.00 25.36 9.72 0.25 0.00
20.35 10.61 as matrix 48.19 as matrix 13.26
0.81 0.00 4.42 0.00 0.61 0.00

Samples 3
Samples 4

Samples 1
Samples 2

Samples 7
Samples 8

Samples 5
Samples 6

Samples 11
Samples 12

Samples 9
Samples 10

Samples 18

Samples 15
Samples 16

Samples 13
Samples 14

% Free Fc

Samples 30
Samples 31

Samples 28
Samples 29

Samples 26
Samples 27

Samples 24
Samples 25

Samples 21

% Aggregates % OxidisedSamples

Samples 23

Samples 19
Samples 20

Samples 17



Marco Barba Results and discussion 

  

60 

In those samples for which it was not feasible to perform QC analysis, due to concentration problems, the QC 
values were substituted by the corresponding theoretical values calculated in the calibration matrix . 

Looking at the table, it is evident a difference between theoretical matrix and observed QC values for all the three 
degradation forms. In particular, for aggregates, QC values of samples 3, 9, 21. 23. 25 and 29 are much higher 
with respect to the theoretical ones. For oxidized forms, QC value of sample 21 is much lower than the 
theoretical one, while QC value of sample 29 is higher than the theoretical one. Differences observed for free-Fc 
between QC and theoretical values are less pronounced than those observed for the other two degradation forms.  

 

2.2.4 PLS/O-PLS model of CD spectra 

 

PLS model. The results of calibration model based on CD measurements are illustrated in the plots of figure 82, 
where the levels of each degradation forms, measured by QC methods, are plotted against the predicted levels 
obtained by PLS regression of spectroscopic data. In other words, these plots show how well the PLS-predicted 
values for the matrix samples correspond with the reference values from the QC assays. The closer the data 
points scatter around the diagonal line, the better the correlation, hence the higher the quality of the model.  

Figure 82. QC vs. PLS-predicted degradation values for near and far UV combined   

 

Another way to assess the quality of the model is looking at the RMSEE (Root Mean Square Error of Estimation) 
values, representing the degree of confidence of how well QC data can be estimated for the calibration matrix 
samples. 

The fact that for all the three degradation forms a trend is observable, or in other words that the data points 
scatter around the diagonal, indicates that CD contain quantitative information about these degradation forms. 
Comparing the RMSEE values obtained with PLS model based on both the near and far-UV regions, with the 
values obtained by using near and far-UV regions separately (fig. 83), it is evident that with the model based only 
on the near-UV region (340-250 nm) we obtained an increase of the accuracy of the model. 
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Figure 83. QC vs. PLS-predicted degradation values for near and far-UV 
A) RMSEE values of near-UV based PLS-model; B) RMSEE values of far-UV based PLS-model 

 

In the case of free-Fc, pronounced spectral differences between intact and degraded forms can be expected due to 
the differences in primary and tertiary structure content. However, the presence of aggregates or oxidized forms 
did not result in pronounced spectral differences that were easily detectable visually. Thus, the use of 
multivariate data analysis becomes unavoidable to extract quantitative information. In order to numerically assess 
the quality of prediction of various PLS models generated, we used the so-called “cross-validation” method, 
where all 31 matrix samples and, in addition, five “unknown” samples (not contained in the calibration matrix, 
containing random amounts of each degradation forms) were leaved out one at a time from the employed PLS 
model. The results are expressed as RMSEP (Root Mean Square Error of Prediction). RMSEP is a measure to 
assess the quality of the prediction of the PLS model applied to the spectra. It expresses the average difference 
between spectroscopic and QC data. A lower RMSEP value indicates a better prediction. In figure 84 are showed 
the RMSEP values obtained with CD-based PLS models.  

Figure 84. RMSEP values for CD-based PLS models 
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As expected, the most reliable prediction was obtained for levels of free-Fc, a lower prediction quality was found 
for aggregate levels, while for oxidation levels the RMSEP values ranged from 5.1 to 10.9 %. It can be noticed 
that, using only the near-UV region, were obtained for all the three degradation forms lower RMSEP values, and 
hence better prediction, than those obtained using both near and far-UV regions or only the far-UV region. 
Furthermore, using only the far-UV region, the prediction obtained for aggregates and oxidized forms is the 
lowest (compared with near-UV and near + far-UV models), while for free-Fc levels the prediction is quite 
comparable with that obtained with the “all range” model. 

O-PLS model. Results of O-PLS calibration model are presented in the scatter plots of figure 85. These are the 
same plots showed for the PLS model, but in this case the O-PLS predicted values are plotted against the QC 
data obtained for each degradation forms. 

 

 
Figure 85. QC vs. O-PLS predicted degradation values for near and far-UV combined 

 

Comparing these plots with those of PLS model (fig. 82 and fig. 83), we can observe that applying O-PLS 
regression, we obtained an improvement of the quality of the model, since the RMSEE values are lower than the 
respective values obtained for each degradation form by using PLS regression, and the data points scatter around 
the diagonal closer than in the previous model. 

 
Figure 86. QC vs. O-PLS predicted degradation values for near and far-UV 
A) RMSEE values of near-UV based O-PLS model; B) RMSEE values of far-UV based O-PLS model 
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Furthermore, with O-PLS a further improvement of the model quality was also obtained using the near-UV based 
model (fig 86). As for CD-based PLS models, cross validation process was applied to determine the prediction 
accuracy of the O-PLS models generated.  

In figure 87,A are shown the RMSEP values obtained with O-PLS models. Furthermore, the prediction values 
obtained from the near-UV based O-PLS model are compared with those obtained with the corresponding near-
UV based PLS model (fig. 87, B) 

 

Figure 87. RMSEP values of CD based O-PLS models 
A) RMSEP values of CD based O-PLS model: B) PLS vs. O-PLS degradation values. 

 

Once again, the most reliable prediction was obtained for free-Fc levels, a lower prediction quality was found for 
aggregate levels, while for oxidation levels the RMSEP values ranged from 4.2 to 10.9 %. As in the PLS model, 
using only the near-UV region, we obtained, for all the three degradation forms lower RMSEP values than those 
obtained using near and far-UV region combined.  

Furthermore, comparing the lower RMSEP values obtained with the PLS and O-PLS models (fig 87, B), it is 
clear how using O-PLS we obtained an increase of the predictive power of the model. These data suggest that, in 
the determination of all the three degradation forms, near-UV based models perform better than near/far-UV 
combined based model.  

 

2.2.5 PLS/O-PLS model of FT-IR spectra 

 

PLS model. The results of calibration model based on FT-IR measurements are illustrated in the plots of figure 
88. Two different PLS models were generated, one using the 1700-900 cm-1 IR region (fig. 88, A); the other one 
was generated using only the so-called “Amide region” from 1700 to 1500 cm-1 (fig. 88, B). 
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Figure 88. QC vs. PLS predicted degradation values for IR spectra 
A) PLS model results based on 900-1700 cm-1 region; B) PLS model results based on 1500-1700 cm-1 

 

Comparing the RMSEE values obtained from the two different PLS models, we can assess that the PLS model 
based only on the amide region (1500-1700 cm-1) has lower RMSEE values, hence better quality, than the model 
obtained using the whole IR region. However, with respect to the near-UV based PLS model, the RMSEE values 
are still higher for all the three degradation forms, indicating that, when determining these contaminants, CD-
based PLS model performs better than IR-based PLS model. 

In order to determine the predictive power of the various PLS models generated, we followed the same approach 
used for CD models. So the 31 matrix samples and 5 “random” samples were used for the cross-validation 
process. 

 

 

 
Figure 89. RMSEP values of IR-based PLS models 
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The RMSEP values for the two models generated are shown in figure 89. As we can see, the amide region-based 
models yielded a better prediction for all the three degradation forms compared to the whole region-based 
models. As in CD based models, the better prediction was obtained, for levels of free-Fc, a lower prediction 
accuracy for aggregates, while for oxidation levels the RMSEP values are higher. In general, it can be affirmed 
that the prediction values of the two IR-based PLS models are all quite comparable. 

O-PLS model. The results of the calibration model based on FT-IR measurements are illustrated in plots of figure 
90. As for the PLS models, two models were generated, one using the whole region (fig 93, A) and the other one 
using only the amide region (fig. 90, B). 

Figure 90. QC vs. O-PLS predicted degradation values for IR spectra 
A) O-PLS model results based on 900-1700 cm-1 region; B) O-PLS model results based on 1500-1700 cm-1 

 
 

Analysing at the scatter plots shown above, we can see that the two different models perform in a comparable 
way, with slightly lower values for aggregates and oxidized forms in the amide region-based model, while for 
free-Fc the results are slightly lower in the whole region-based model. 

Comparing the RMSEE values obtained with O-PLS with those obtained with PLS, regarding aggregates and 
oxidized forms, both O-PLS models perform better than the corresponding PLS models. For free-Fc, the PLS and 
O-PLS models based in the whole region yield very similar results, while for the amide region, PLS model 
performs better than the respective O-PLS model.  

In conclusion, we can affirm that models based on the amide region, both PLS and O-PLS, give rise to a better 
quality than the corresponding models based on the whole region. 

Furthermore, the two amide region-based models (PLS and O-PLS) perform in a very similar way, with slightly 
lower RMSEE values for aggregates and oxidized forms in the O-PLS model. In the free-Fc case, we can notice 
that the results obtained with the two models are comparable. On the other hand, the quality of the IR-based 
models is lower with respect to that of CD-based models, since the RMSEE values for all the three degradation 
forms obtained in the IR-based model are much higher than those obtained with CD spectral data. As for PLS 
models, to determine the predictive power of the various IR-based O-PLS models generated, we followed the 
cross validation approach.  
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Figure 91. RMSEP values of IR-based O-PLS models  
A) RMSEP values of IR based O-PLS model; B) PLS vs. O-PLS degradation values. 

 

The RMSEP values for the O-PLS models are shown in figure 91. As in the PLS models, the amide region-based 
model yielded a slightly better prediction for all the three degradation forms as compared to the whole region-
based models. As for the CD based models, the better prediction was obtained, for levels of free-Fc, a lower 
prediction accuracy for aggregates, while for oxidation levels RMSEP values are much higher with respect to the 
others. Comparing the PLS and O-PLS models based on the amide region (fig 91, B), we can see that the results 
are quite comparable. 

In conclusion, in the prediction of all the three degradation forms, the amide region based PLS/O-PLS models 
perform better than the model based on the whole spectral region. However, applying O-PLS instead of PLS to 
the IR spectra doesn’t yield a great advantage in terms of quality of the prediction as when it has been applied to 
the CD-based models. Furthermore, in the determination of the degradation forms studied, the obtained accuracy 
of CD-based O-PLS models was higher than the accuracy obtained with IR-based O-PLS models. 

 

2.2.6 PLS/O-PLS model of CD and IR combined 

 

In addition to the PLS/O-PLS models generated using CD and IR spectra separately, models based on CD and IR 
data combined were generated, in order to enrich the information content of the (combined) spectrum by 
combining signals generated from different physical parameters, and hence increase the accuracy of prediction.  

With that goal, combined spectra were generated appending CD and IR data in a single array and scaled to each 
other (see Materials and Methods section) to ensure that they contribute in a similar way in the model building 
process. Both for PLS and O-PLS models, different combinations of the IR and CD spectral range were used and 
PLS/O-PLS model were generated for each of these combinations. 

PLS models. In figure 92 are shown the results of the calibration models based on CD and IR combined spectral 
data. Four different PLS models were created by combining in one model the complete region of each 
spectroscopic technique, and in the others different parts of each spectral range. In particular, are illustrated plots 
for the PLS model based on the entire CD (near + far-UV) and IR range (900-1700 cm-1) combined (fig. 92, A) 
and for the model based on near-UV and IR amide region combined (fig. 92, B). 
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Figure 92. QC vs. PLS predicted degradation values for CD and IR spectra combined 
A) PLS model results based on CD (near + far-UV) and IR (900-1700 cm-1) combined; B) PLS model results 
based on CD (near-UV) and IR (1500-1700 cm-1) combined 

 

Combining the whole CD and IR spectral range in a single PLS model, the RMSEE values obtained for all the 
degradation forms are lower compared to the values obtained with the PLS model based only on the whole IR 
region, while respect to the whole CD region-based model the combination of the two spectral regions did not 
yield a real improvement of the RMSEE values. Further increase of the quality of the model was obtained 
combining the two spectral regions which gave the best RMSEE values both for CD and IR. Thus, near-UV CD 
region and IR amide region (1500-1700 cm-1) were combined and a single PLS model was generated. The 
RMSEE values obtained (fig. 92, B) clearly show that, combining these spectral regions, yields to a real 
improvement of the PLS model quality, since the RMSEE values for aggregates, oxidized forms and free-Fc 
were lower than the respective values obtained with CD and IR single PLS models. The other PLS models 
generated, combining different parts of the spectra, together with the relative RMSEE values showed in table 6, 
further confirmed that the best quality was achieved by combining only the CD near-UV region with the IR 
amide region  

 

Table 6. RMSEE values of CD and IR combined-based PLS models 

 

To further confirm the improvement of the quality achieved combining the two spectral region in a single PLS 
model, the classical cross validation method already used to validate CD and IR single PLS models, was carried 
out. The obtained RMSEP values for all the PLS models generated are listed in table 7. 

PLS models Aggregates Ox forms Free-Fc
CD (near+far) + IR (all range) 5.75 8.95 3.00
CD (near-UV) + IR (amide bands) 3.70 4.50 1.72
CD (near-UV) + IR (all range) 6.04 8.83 3.15
CD (near+far) + IR (amide bands) 3.22 5.68 1.84

RMSEE values (%)
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Table 7. RMSEP values of CD and IR combined-based PLS models 

 

In figure 93 the RMSEP values obtained with the PLS model based on the whole CD and IR spectral region (fig 
.93, A) and those obtained with the model based only on CD near-UV and IR amide region (fig. 93, B), are 
compared with the values obtained employing CD and IR separately.  

 
Figure 93. RMSEP values of CD and IR combined PLS models 
A) RMSEP values of CD(near + far) and IR(900-1700 cm-1) combined PLS model: B) RMSEP values of CD (near-
UV) and IR (1500-1700 cm-1) combined PLS model. 

 

In the PLS model based on CD (near +far) and IR (900-1700 cm-1) combined data, there is an increase of the 
prediction accuracy for all the three degradation forms as compared to the accuracy obtained with IR-based PLS 
model. In comparison with the CD-based model, the new results can be considered very comparable, with only a 
little improvement of the prediction accuracy.  

Further improvement of prediction was obtained combining near-UV CD region and IR amide region in a single 
model. As shown in fig. 93, panel B, RMSEP values of the combined-PLS model are better not only compared 
with the IR-model results, but also in comparison the CD-based model results, confirming that these two are the 
most useful spectral regions to predict the content of protein degradation forms. As in the previous models, the 
most reliable prediction was obtained for levels of free-Fc, a lower prediction quality was found for aggregate 
levels, while for oxidation levels the RMSEP values ranged from 4,21 to 5.17 %. 

O-PLS model. As for PLS, various O-PLS models were generated based on combinations of different parts of the 
IR and CD spectral range, whose RMSEE values are shown in table 8. 

 

PLS models Aggregates Ox forms Free-Fc
CD (near+far) + IR (all range) 5.25 8.50 2.97
CD (near-UV) + IR (amide bands) 3.15 4.21 1.35
CD (near-UV) + IR (all range) 5.76 8.01 5.09
CD (near+far) + IR (amide bands) 5.29 8.49 2.99

RMSEP values (%)
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Table 8. RMSEE values of CD and IR combined-based O-PLS models 

 

For comparison with PLS, in figure 94 are illustrated the results of O-PLS calibration model based on all CD and 
IR spectral range combined data (fig. 94, A), and on near-UV and IR amide region combined (fig 94, B). 

Figure 94. QC vs. O-PLS predicted degradation values for CD and IR spectra combined 
A) O-PLS model results based on CD (near + far-UV) and IR (900-1700 cm-1) combined; B) O-PLS model 
results based on CD (near-UV) and IR (1500-1700 cm-1) combined. 

 

From the scatter plots of figure 97, A, it can be noted that for the “all range”-based model the results are highly 
comparable with those obtained with the corresponding PLS model. More precisely, values obtained for 
aggregate and free-Fc levels are slightly lower compared with the same PLS values, while for oxidized form 
levels, O-PLS value is lightly higher than the PLS value. We can assess that, for “all range” model, using O-PLS 
instead of PLS doesn’t yield a great advantage, in terms of increasing of prediction accuracy. 

As in the previous models, the best quality was obtained combining CD near-UV region with IR amide region. In 
fact, not only the RMSEE values are much lower than those arising from the “all range” model, but the O-PLS 
model quality obtained is even better than that obtained in the corresponding PLS model, for all the degradation 
forms.  

Further confirmation of the usefulness of applying O-PLS regression to CD and IR combined data, was given by 
the usual cross validation process. As for the previous models, cross validation was applied to all the O-PLS 
models generated (see table 9). 

 

O-PLS models Aggregates Ox forms Free-Fc
CD (near+far) + IR (all range) 5.52 9.08 2.69
CD (near-UV) + IR (amide bands) 2.78 2.12 0.89
CD (near-UV) + IR (all range) 6.04 8.83 3.15
CD (near+far) + IR (amide bands) 3.22 5.68 1.84

RMSEE values (%)



Marco Barba Results and discussion 

  

70 

Table 9. RMSEP values of CD and IR combined-based O-PLS models 

 

In figure 95 the RMSEP values obtained with the PLS model based on the whole CD and IR spectral region (fig. 
95, A) and those obtained with the model based only on CD near-UV and IR amide region (fig. 95, B), are 
compared with the values obtained employing CD and IR separately.  

Figure 95. RMSEP values of CD and IR combined O-PLS models 
A) RMSEP values of CD(near + far) and IR(900-1700 cm-1) combined PLS model: B) RMSEP values of CD 
(near-UV) and IR (1500-1700 cm-1) combined PLS model. 

 

As for PLS regression, also O-PLS models of CD and IR data combined yielded to an increase of prediction 
accuracy for all the degradation forms. As we can see from figure 98, this increase was obtained both for the “all 
range” model and for the model based on near-UV and IR amide region. Once again, the lower RMSEP values 
were obtained with near-UV/IR amide region O-PLS model, as for PLS combined model. As expected, the better 
prediction accuracy was obtained for free-Fc levels, with a RMSEP values of 0.92 %. A slightly higher value was 
obtained for aggregates, but still lower than 3 % (2.4%), and for oxidized forms the obtained RMSEP value was 
3.32 %, showing the major improvement compared to the values obtained using CD and IR separately. 

This data further confirm that combining CD and IR data in a single model produce a real increase of the 
prediction accuracy of all the three degradation forms being analyzed and that this improvement is even greater 
when only the CD near-UV region and the IR amide region are combined. Furthermore, employing O-PLS 
instead of PLS further reduce the RMSEP values obtained, improving even more the predictive power of the 
multivariate analysis. 

 

 

 

 

O-PLS models Aggregates Ox forms Free-Fc
CD (near+far) + IR (all range) 4.95 8.29 2.76
CD (near-UV) + IR (amide bands) 2.40 3.32 0.92
CD (near-UV) + IR (all range) 5.56 8.05 2.89
CD (near+far) + IR (amide bands) 3.73 6.98 1.71

RMSEP values (%)
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2.3 ENGINEERING OF METAL-BINDING PROTEINS BASED ON CONOPEPTIDES 
SCAFFOLD 

 
 2.3.1 Design of the metal binding site 

 

Contryphan-Vn was used as a template for the design of a metal binding, disulphide constrained peptide. 
Analysis of the amino acid sequence of Contryphans reveals that amino acids at positions 2, 6 and 8 in the 
Contryphan-Vn sequence are not conserved in other Contryphans, despite a fairly good conservation of the 
overall molecular structure (Eliseo et al., 2004). Thus, residues Asp2, Lys6 and Trp8 were selected to be 
substituted by three histidine residues. Further, an additional His residue was added at the C-terminal end of the 
peptide, outside the disulphide ring, generating the new amino acid sequence shown in Figure 96, B. 

 

 
Figure 96. Amino acid sequence of 
Cupryphans 
Amino acid sequence of Contryphan-Vn (A) 
and of the redesigned peptides 
Cupryphan(B) and Arg-Cupryphan (C). 

 

The feasibility of formation of a copper binding site in the novel peptide, was confirmed by modelling its three-
dimensional structure based on Contryphan-Vn structure (PDB code 1NXN; ) (Eliseo et al., 2004). The side 
chain conformation of the four histidine residues was adjusted to form a metal binding site with tetragonal 
geometry, taking as a reference the copper binding site of bovine superoxide dismutase (PDB code 2SOD), 
(Tainer et al., 1982). Stereochemical compatibility of metal binding site formation was confirmed by energy 
minimization in explicit solvent using CHARMM (Brooks et al., 1983). The final model is shown in Figure 97 A. 
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Figure 97. Energy minimized three-dimensional model of cupryphans 
A) Cupryphan; B) Arg-Cupryphan. The copper ion is represented as a green sphere. 
The figure was prepared using UCSF Chimera (Nicholls et al., 1991) 

 
 

2.3.2 Cupryphan metal binding ability probed by optical and fluorescence spectroscopy 

 

Evidence of Cu2+ binding to the peptide was first obtained by fluorescence quenching experiments. Addition of 
copper quenches the fluorescence emitted by the unique Trp residue of the peptide (DTrp5), as shown in figure 
98 (Vita et al., 1995). Fluorescence quenching is dependent on metal concentration, and reaches a maximum at a 
[Cu2+]/[peptide] ratio higher than 1:1. All of these characteristics are consistent with an energy-transfer 
mechanism from the tryptophan residue to the copper bound at the binding site. The engineered peptide was 
named Cupryphan from the contraction of the words cupreous and Contryphan. Fluorescence quenching due to 
copper binding to Cupryphan was used to determine the binding affinity of Cupryphan for Cu2+. The maxima of 
fluorescence intensity curves at 352 nm as a function of copper concentration were fitted with Scatchard 
transformation (fig. 99), obtaining a copper dissociation constant of 1.3 (± 0.2) × 10-7 M. The good fit of the data 
with a linear function indicated that only one class of copper binding site(s) is present in Cupryphan. In addition, 
fluorescence data indicated the presence of only one binding site per molecule. This is evident from the X-axis 
intercept value (2.06 × 10-5 M) in the Scatchard transformation plot, which represents the total Cu2+ bound at 
infinite Cu2+ concentration (i.e., when [Cu2+]bound/[Cu2+]free=0). In fact, this value correlates well with the total 
peptide concentration value (i.e. 2.1 × 10-5 M). 
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Figure 98. Emission fluorescence spectra of 
Cupryphan in presence of Cu2+ ions 
a) apo Cupryphan (2.1 × 10-5 M); b) a + 
CuCl2 5.5 × 10-6 M; c) a + CuCl2 1.0 × 10-5 
M; d) a + CuCl2 1.5 × 10-5 M; e) a + CuCl2 
2.0 × 10-5 M; f) a + CuCl2 2.5 × 10-5 M.  
 

 

Figure 99. Kd determination of Cu2+ to 
Cupryphan by fluorescence quenching 
experiments 
Is shown the Scatchard transformation of 
fluorescence intensities at 352 nm in the 
presence of increasing amounts of Cu2+ ions. 

 

Further evidence of copper-peptide binding was obtained by optical spectroscopy analysis. Addition of a 
stoichiometric amount of CuCl2 to the peptide (1.0 mM final concentration) induces the appearance of absorption 
bands with maxima at 312 and 580 nm (fig. 100), the first indicative of a Cu2+-histidine charge-transfer (Cupane 
et al., 1994), the second due to electronic transitions of copper d-d orbitals and typical of copper complexes with 
nitrogen ligands (Cupane et al., 1994; Bryce et al., 1965). The maximum and the shape of the absorption band 
centred at 580 nm did not change with pH in the 6.0-9.5 range (data not shown), indicating a high pH stability of 
holo Cupryphan. The calculated molar extinction coefficient of Cupryphan at 580 nm was 50 M-1 cm-1. No 
absorption bands appear in the optical spectrum of Contryphan-Vn after addition of copper ions (data not 
shown), indicating that the natural peptide does not bind copper ions. 
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Figure 100. Optical spectra of Cupryphan 
Apo (ο) and holo (�) Cupryphan (1 mM in 50 mM 
sodium acetate buffer, pH 6.5). The difference spectrum is 
also shown (▼) to evidentiate the appearance of a band at 
312 nm, indicative of a Cu2+-histidine charge-transfer 

 

To investigate the possible competition of other metal ions in the binding to the peptide, tryptophan fluorescence 
quenching experiments by copper ions were carried out in the presence of approx. a 5 fold excess of Zn2+ or 
Mg2+ (ion and peptide concentrations were 100 and 21 µM, respectively). The calculated copper dissociation 
constant was in both cases 1.4 (± 0.1) × 10-7 M, a value very similar to the one determined in the absence of Zn2+ 
or Mg2+. This result indicates that Zn2+ and Mg2+ do not appreciably outcompete copper for binding to 
Cupryphan. In this regard, it must be noted that addition of Zn2+ and Mg2+does not lead to quenching of 
tryptophan fluorescence, thus a direct determination of the dissociation constant of these two ions for Cupryphan 
was not possible using fluorescence spectroscopy.  

 

2.3.3 EPR spectroscopy characterization of Cupryphan 

 

The EPR spectrum of Cupryphan, recorded at liquid nitrogen temperature (fig. 101, A), revealed a homogeneous 
signal, due to the presence of only one copper species bound to the peptide. Coordination geometry appears to be 
axial, with values of the spectroscopic parameters (g|| and A||) typical of hexacoordinate complexes with an axial 
symmetry. Moreover, in the g⊥ region (fig. 101, B) 5 to 7 superhyperfine lines are observed with position and 
coupling constant (≈ 12 G), typical of copper(II) complexes with at least 2 magnetically equivalent histidine 
residues on the coordination plane.  
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Figure 101. EPR spectra of Cupryphan 
A) 9.556 GHz; Power =20 mW; modulation=10 G; T=115 K; B) 9.556 GHz; Power = 20 mW; 
modulation = 4 G; T=115 K. The vertical lines indicate the minimum number of superhyperfine 
lines observable. 

 

The presence of a single class of binding sites per molecule was further corroborated by saturation experiments 
in the 20 to 200 mW power range (not shown). In fact the signal line shape did not change upon increasing the 
power, suggesting that it likely arises from a single copper coordination environment. 

 

2.3.4 NMR spectroscopy characterization of Cupryphan 

First of all, the copper interaction with the native Contryphan-Vn peptide was investigated. The assignment of 
the 1H spectrum of Contryphan-Vn is reported elsewhere (Eliseo et al., 2004). The addition of CuCl2 to a 3.1 × 
10-4 M solution of Contryphan-Vn (peptide: Cu ratio 1:0.27) caused a decrease of the intensity of all 1H amino 
acid signals whereas the corresponding linewidths were not significantly changed (fig. 102).  

Figure 102. Titration of Contryphan-Vn with CuCl2 monitored by 1H-NMR 
The molar ratio CuCl2/Contryphan-Vn is reported on the left side of each spectrum. The arrows 
indicates the new signals probably belonging to a Cu2+/peptide complex. A) 7.7-7.0 ppm region 
of 1H spectrum; B) 5.2-2.9 ppm region of 1H spectrum. 
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Only the α-CH2 signal of Gly at 3.78 ppm disappeared due to the large line broadening. The increase of the Cu2+ 
concentration resulted in a further decreasing of amino acid signal intensities along with a partial signal 
broadening (fig 102). Moreover, new signals, well evident at the 1:1.08 petide:Cu2+ ratio appeared together with 
α-CH2 signal of Gly at 3.94 ppm. The new signals probably belong to a Cu2+/peptide complex. Substantial signal 
broadening due to fast paramagnetic relaxation impeded the application of common 2D NMR experiments for 
spectral assignment and structure determination of this Cu2+/peptide complex. The NMR data suggest that the 
interaction between native Contryphan-Vn and Cu2+ is characterized by low affinity since only a partial decrease 
of the native peptide signals was observed even at 1:1 peptide:Cu2+ ratio. 

 

 
 

Table 10. Assignments of 1H and 13C resonances of Cupryphan in D2O at 300K, pH 8.0 

 

The copper interaction with Cupryphan was studied by the addition of different aliquots of CuCl2 to a 2.7 × 10-4 
M solution of Cupryphan. In order to study this interaction a complete NMR assignment of Cupryphan was 
performed. The 1H and 13C NMR spectral assignment of Cupryphan, obtained by means of 2D experiment, is 
reported in table 10. As in the case of Contryphan-Vn (Eliseo et al.,2004) Pro4 residue in Cupryphan has the cis 
conformation, while Pro7 was found in the trans conformation. 

The first CuCl2 addition (peptide:Cu2+ ratio 1:0.25) caused a drastic broadening of Hδ and Hε proton signals of 
the imidazole rings of all four histidine residues: the signal half width increased by factor of four or six 
depending on the signal (fig. 103). On the other hand, signals of Trp and other amino acid residues remained 
unchanged or only slightly broadened. Stepwise addition of CuCl2 led to a further broadening of His signals and 
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to a decrease of the intensity of other 1H amino acid signals without any appreciable broadening, similarly to 
what observed for Contryphan-Vn titration (fig. 102) 

Figure 103. Titration of Cupryphan with CuCl2 monitored by 1H NMR 
The molar ratioCuCl2/Cupryphan is reported on the left side of each spectrum. A) 8.0-6.6 ppm 
region of 1H spectrum; B) 5.2-0.5 ppm region of 1H spectrum. 

 

These results suggest that at low Cu2+:Cupryphan ratios (<1) a peptide-Cu2+ complex is formed with a specific 
interaction between the metal and all the four His residues of the peptide as indicated by the broadening of 
histidine signals. The relatively fast ligand exchange in the copper coordination sphere (Gaggelli et al., 2005) 
allows the interaction between Cu2+ and other amino acid residues especially at high Cu2+:Cupryphan ratios (>1) 
when the specific binding is already saturated. As in the case of Contryphan-Vn, this non-specific interaction is 
manifested by the stepwise intensity decrease of all the amino acid signals upon the addition of CuCl2 to the 
peptide solution . 

The selectivity of Cupryphan for copper was further assessed by NMR titration of the apo form of Cupryphan 
with Zn2+. Stepwise additions of ZnCl2 to a solution of Cupryphan (0.94 mM) give rise to a decrease of 1H NMR 
signals of Cupryphan and a simultaneous increase of a new set of signals that can be ascribed to a Cupryphan-
Zn2+ complex (fig. 104). The 1H and 13C NMR assignment of Cupryphan-Zn complex was obtained by means of 
2D NMR experiments. 
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Figure 104. Titration of Cupryphan with ZnCl2 monitored by 1H NMR 
The molar ratio ZnCl2/Cupryphan is reported on the left side of each spectrum. A) 8.0-5.3 
ppm region of 1H spectrum; B) 5.2-1.0 ppm region of 1H spectrum. 

 

The 1H NMR titration allows an estimation of the Kd, obtained by a non linear fitting of the experimental data 
relative to Cupryphan/Zn-Cupryphan ratios (see Methods) at different total Zn2+ concentrations. A Kd value of 9 
(± 4) × 10-6 M was obtained: almost two orders of magnitude higher than that determined for copper binding to 
Cupryphan (see fluorescence quenching experiments), confirming the selectivity of Cupryphan for copper with 
respect to other divalent cations. 

In order to obtain some structural information on the Cupryphan-Zn2+ complex, a ROESY experiment was 
performed. However, the NH protons signals of all amino acid residues are rather broad due to the relatively high 
exchange rate with H2O/HDO at the experimental pH value and peptide concentration. Consequently, the 
ROESY correlations between NH and side chain protons of amino acids were not observed, making impossible a 
valid structural analysis of peptide conformation based solely on NMR data. 

 

2.3.5 Design and characterization of the Arg-Cupryphan variant 

 

In the attempt to improve the metal binding affinity of Cupryphan, a second variant was designed in which an 
Arg residue was inserted between Cys9 and His10 residues of Cupryphan (fig. 96, C). The rationale behind this 
choice was to confer higher flexibility to the C-terminal portion of the peptide allowing an easier access of His10 
to the copper site while lowering at the same time the pKa values of the His residues by a general electrostatic 
effect of the Arg guanidinium group. The three-dimensional structure of this second peptide was also modelled 
and the stability of the copper binding site confirmed by energy minimization (fig. 97, B). 

The novel peptide, named Arg-Cupryphan, was characterized by fluorescence and NMR spectroscopy. In detail, 
fluorescence quenching experiments confirmed binding of copper with a 1:1 stoichiometry and a Kd = 1.0 (± 0.4) 
× 10-7 M, a value slightly lower than that determined for Cupryphan. A slightly different copper coordination 
environment of Arg-Cupryphan with respect to Cupryphan was also confirmed by a 20 nm blue shift of the 
optical absorption peak in the visible region (centred at 560 nm as compared to 580 nm for Cupryphan) and by a 
two-fold increase of the molar extinction coefficient (ε560 = 100 M-1cm-1 as compared to ε580 = 50 M-1cm-1 for 
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Cupryphan). The 1H NMR experiments performed on Arg-Cupryphan (6.8 × 10-4 M) upon addition of different 
aliquots of CuCl2 showed the same changes observed for Cupryphan, i.e. a significant broadening of Hδ and Hε 
signals of all four histidine residues and a progressive decrease of the intensity of the other 1H amino acid signals 
(data not shown). 

 

2.3.6 Determination of superoxide dismutase activity of Cupryphans 

 

The possibility that the copper ion bound to Cupryphans could be reversibly reduced, a prerequisite for any 
copper mediated catalytic activity, was tested by assaying the ability of Cupryphan to dismutate superoxide 
anions. Superoxide dismutase activity of Cupryphans was determined using the pyrogallol enzymatic assay. A 
solution of superoxide dismutase 0.1 µM in 20 mM Tris HCl buffer pH 8.2 was used as a standard, and a solution 
of Cupryphan or Arg-Cupryphan 6.8 × 10-4 M in 50 mM sodium acetate buffer pH 6.5 was used to determine 
Cupryphans superoxide dismutase activity. 

The rate of autoxidation of pyrogallol was recorded in the presence of superoxide dismutase, reaching a 50% 
inhibition of the reaction rate after addition of superoxide dismutase 2.15 × 10-9 M. The same experiment was 
performed in the presence of Cupryphan, reaching 50% inhibition 

at a peptide concentration of 8.5 × 10-5 M. Taking as a reference the enzymatic activity of superoxide dismutase 
(3.92 × 109 M-1 s-1) (Rotilio et al., 1972), and from the concentration of Cupryphan required to attain 50% 
inhibition of pyrogallol autoxidation, a superoxide dismutase activity rate for Cupryphan of approx. 1 × 105 M-1 
s-1 was calculated (table 11). Surprisingly, Arg-Cupryphan superoxide dismutase activity was much lower than 
that of Cupryphan (approx. one order of magnitude lower (table 11). A possible explanation is that Arg10 exerts 
a “disturbing” effect on the electrostatic field generated by the copper ion, which leads to a lower productivity of 
the superoxide-copper encounter rate, a position specific effect well known to occur in superoxide dismutase 
charge mutants (Polticelli et al., 1995, 1998). Nonetheless both peptides were found to be redox active, 
highlighting the ability of the engineered copper sites to reversibly cycle between oxidized and reduced redox 
states.. 

 

Table 11 Superoxide dismutase activity of Cupryphans 
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3 CONCLUSIONS 

 

3.1 MULTISPECTROSCOPIC CHARACTERIZATION OF DRUG SUBSTANCE 

 

The primary aim of this study was not to investigate the drug substance per se,  but rather to develop a database 
of spectra upon which correlations and SuperSpectra (combining all spectroscopic techniques) could be built. 
Nonetheless, given the huge amount of data collected, it is worthwhile reflect on the properties of the drug 
substance observed. 

 

3.1.1 Concentrated stock solutions 

 

Firstly, the batch to batch variance of the original concentrated stock solutions was very small, other than 
concentrations difference. Beyond these concentration difference, each of the spectroscopic employed showed 
the batches to be very similar to each other. Potentially, the most significant results is the observation of 
anomalous absorption in the visible wavelength region, which correlate with the batch production date and 
changes in hydrolysates used. Anomalous fluorescence in the visible wavelength region was also observed, 
which too clustered according the production date and hydrolysates. Substantial fluorescence was also observed 
during Raman scattering spectroscopy, which varied across samples, that also cluster according to production 
date and hydrolysates. 

Consequently, at least three of the spectroscopic techniques used gave spectra that correlate with the history of 
the batches. The anomalous absorption and fluorescence signals would appear to derive from more than one 
moiety and may be related to chromophoric impurities, post-translational modifications (PTM) or post-PTM 
transformations yielding chromophoric components. In addition, NUV Circular Dichroism and FTIR ATR 
spectroscopies gave indications that there may be a subtle variations in the aromatic residue environment,  
disulphide geometry and/or structure. It is to be stressed that all the variations observed were small in magnitude, 
although detectable with high quality instrumentation. 

 

3.1.2 Ambient stored diluted solutions. 

 

The diluted solutions were deliberately prepared to encourage deterioration in the samples, although each 
solution was handled and prepared identically in so doing, a goal that was achieved. 

The main outcomes were the increase in the pH on dilution and subsequent storage which, in part, led to a change 
in the spectra of the solutions compared to the concentrated stock they derived from. Evidence of scattering from 
aggregates was obtained from many of the spectroscopies. Likewise, many of the techniques indicated a variance 
in the quantity of protein present. Notably, for all excepting batch A87G2016, UV absorption spectra clustered 
according to the history of the batch in terms of production date and hydrolysates used. It is therefore feasible 
that the deteriorations of diluted samples at ambient temperature may be linked in part to the subtle differences of 
the original batches. Again, NUV Circular Dichroism indicated that there may be a subtle variations in the 
aromatic and disulphide environments between samples. 
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3.1.3 Individual spectroscopies 

 

All the spectroscopies performed as might be expected, with their own well known advantages and 
disadvantages. All gave some useful information regarding the nature and variability of the batches. 

Near-UV Absorption. Near-UV absorption proved a useful means of assessing concentration, providing the 
samples had maintained integrity, otherwise the absorbance is misleading. The ability to obtain reliable UV-
absorption spectra on protein concentrations of ca. 200 mg/ml concentration, while challenging was achieved 
with consistency. The subtle differences in spectral shape as well as magnitude identified by UV-Absorbance 
spectroscopy, while apparently real and reproducible, are small and may not well-determined by spectrometers of 
lesser performance than that employed here. Nonetheless, it is potentially able to assess the role of hydrolysates 
in the follow-through PTM’s, impurities and extraneous chromophores. 

Visible Absorption. Visible absorption would normally be expected to reveal little for pure (glyco)proteins as, in 
principle, they should have no visible chromophores. However, the appearance of a “yellow protein” 
phenomenon is common in biotechnology products, especially at high concentrations. The source of this 
colouration is many–fold and no one contributing factor can be assigned to it. However, it is clear that visible 
absorption spectroscopy has identified components that are visible chromophores and are able to contribute to 
this phenomenon. Moreover, for the batches studied, the visible chromophoric components appear to correlate 
with the production date and change in hydrolysates used. Again, the subtle differences in spectral shape as well 
as magnitude identified by UV-Absorbance spectroscopy, while apparently real and reproducible, are small and 
may not well-determined by spectrometers of lesser performance than that employed here. 

Near-IR Absorption. NIR absorption proved to be intriguing. The presence of water in the solutions masks much 
of the NIR wavelength region due to its massive absorption, thus limiting the use of this technique. However, a 
series of small features were apparent when the drug substance was present, but not otherwise, although they 
were of similar absolute magnitude irrespective of whether drug substance was concentrated or diluted. 
Moreover, these varied with whether or not the samples had already been exposed to UV-Vis-NIR light for dilute 
drug substance. The nature of these features is under further investigation to establish if they are artefacts or of 
true molecular origin.  

Far-UV circular dichroism. Far-UV CD demonstrated the consistency of the secondary structure of drug 
substance in dilute solution, even if hindered by the excessive absorbance of the buffer at wavelengths below 200 
nm. For the purpose of this study, spectra were acquired to illustrate instrumental factors as noise, which was 
indeed evident in the spectra. With more accumulations, or appropriate smoothing, the signal-to-noise ratio could 
be improved, but the wavelength limitation would remain. Due to the massive absorbance of the peptidic 
backbone in solution of greater than 200 mg/ml, far-UV CD was not an option for the original concentrated stock 
solutions. 

Near-UV Circular dichroism. Near-UV CD was, however, achievable on both concentrated and diluted solutions. 
Reproducible spectra were obtained in both cases. The technique is capable to identifying subtle changes in the 
environments of aromatic residues and disulphide linkages within a protein. 

FT-IR Attenuated Total Reflection. FTIR-ATR is potentially an information rich technique which is sensitive to 
virtually all molecules entities of interest in biopharmaceuticals, including both peptidic and carbohydrate 
components of glycoproteins. As expected, due to the excessive absorption of water, portions of the wavenumber 
range are nonetheless inaccessible. However, considerable detail in the Amide I and II regions were accessible. 
These regions potentially indicated subtle differences between batches. In addition, FTIR-ATR is sensitive to 
surface phenomena, such as binding of protein on the ATR crystal; variation in this was observed for the batches, 
suggesting that not all batches interact with their surrounding equivalently. 

Fluorescence mapping. Fluorescence mapping proved to be an extremely powerful technique, both for 
concentrated and dilute solutions. For concentrated solutions, visible fluorescence mapping was able to establish 
the presence of visible fluorescence components that varied across the batches and was correlated with the 
history of the batch. Due to self-masking effects of concentrated solutions, the study of near-UV tryptophan 
fluorescence for concentrated solutions is not feasible. However, for dilute solutions, near-UV fluorescence 
characterised variations in tryptophan emissions which, in turn may be related to structural change and 
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accessibility of the protein. By taking advantage of the second-order scattering sensitivity of fluorescence 
mapping, the Rayleigh and Raman scattering of dilute solutions was amenable to characterisation. 

Raman scattering. Raman scattering was hindered by massive fluorescence background from the original 
concentrated stock solutions. However, spectra were acquired on evaporated samples. These still exhibited 
massive fluorescence, which was found to vary with batches. Correcting for this fluorescence, Raman may be a 
potentially powerful technique for samples where fluorescence can be ameliorated. 

Concluding, the database of spectra collected, using a variety of techniques, provides an extensive catalogue of 
information on which to base further SuperSpectra development. Some twelve variants of five spectroscopies 
have been employed, covering the complete range from far-ultra violet to infrared and involving phenomena 
including absorption, fluorescence, Raman scattering, Rayleigh scattering and circular dichroism. In total, 1533 
spectra have been acquired on this study, amounting to some 750000 data points for multivariate data analysis. 
Both concentrated (ca. 200 mg/ml) stock and deliberately deteriorated dilute (ca. 0.6 mg/ml) solutions were 
investigated. All of the techniques employed have yielded useful data of some form in terms of identifying 
variance in the batches and are potentially complementary and cross-supporting. 

Each set of spectra was subjected to multivariate data analysis, primarily Principal Components Analysis, to 
highlight patterns and differences between batches. such analysis highlighted an apparent connection between the 
spectra and the history of the batch regarding production date and /or hydrolysate used. In particular, a series of 
anomalous absorptions in the visible region, together with potentially related fluorescent species, were identified. 
These may derive from contaminants, post translational modifications (PTM) or post-PTM transformations 
dependent on production conditions.  

 

3.2 QUANTIFICATION OF DEGRADATION PRODUCTS BY USING CD AND IR IN 
COMBINATION WITH MVDA 

 

The feasibility of employing PLS/O-PLS analysis to extract quantitative data for common protein degradation 
forms was successfully demonstrated for an Fc fusion protein. Although both CD and IR spectra contained the 
relevant information, CD-based models achieved a higher accuracy compared to that of IR-based models for 
predicting aggregate and oxidation levels, while the accuracy for free Fc levels could be equally well predicted. 
Combining CD and IR data improved the accuracy of the prediction for all degradation forms.  

CD analysis. We have demonstrated that CD can be used to predict some protein degradation forms in 
combination with multivariate analysis. In fact, PLS model based on near-UV region, gave, for all the three 
degradation forms lower RMSEP values, so a better prediction, than those obtained using PLS model based on 
near and far-UV region combined or on far-UV region. Furthermore, these prediction values have been further 
improved by applying O-PLS regression to the spectra. As for PLS analysis, using only the near-UV region, we 
obtained, for all the three degradation forms, lower RMSEP values than those obtained using near and far-UV 
region combined. Furthermore, comparing the lower RMSEP values obtained with the PLS and O-PLS models 
(fig 90, B), it’s clear how using O-PLS we obtained an increasing of the predictive power of the model. These 
data suggest that, in the determination of all the three degradation forms, near-UV based models perform better 
than near/far-UV combined based model. 

FT-IR analysis. Also FT-IR spectra were subjected to PLS/O-PLS analysis. Were generated two different PLS/O-
PLS models, one using the 1700-900 cm-1 IR region, the other generated using only the so-called “Amide region” 
from 1700 to 1500 cm-1 . Regarding PLS, the RMSEP values for the two models generated indicated that the 
amide region-based model yielded to a slightly better prediction for all the three degradation forms compared to 
those obtained with the whole region-based model. As in CD based models, the better prediction was obtained, 
for levels of free-Fc, a lower prediction accuracy for aggregates, while for oxidation levels the RMSEP values 
are higher. In general, it can be affirmed that the prediction values of the two IR-based PLS model are all quite 
comparable.  
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The RMSEP values for the O-PLS models showed that, as in the PLS models, the amide region-based model 
yielded to a lightly better prediction for all the three degradation forms compared to the whole region-based 
models. As in CD based models, the better prediction was obtained, for levels of free-Fc, a lower prediction 
accuracy for aggregates, while for oxidation levels RMSEP values are much higher respect to the others. 
Comparing the PLS and O-PLS models based on the amide region we can see that the results are quite 
comparable. In conclusion, in the prediction of all the three degradation forms, the amide region based PLS/O-
PLS models perform better than the model based on the whole spectral region. However, applying O-PLS instead 
of PLS to the IR spectra doesn’t yield to a great advantage in terms of quality of the prediction as when it has 
been applied to the CD-based models. Furthermore, in the determination of the degradation forms studied, the 
obtained accuracy of CD-based O-PLS models was higher than the accuracy obtained with IR-based O-PLS 
models. 

CD and IR combined. As already mentioned, in addition to the PLS/O-PLS models generated using CD and IR 
spectra separately, models based on CD and IR data combined were generated, in order to enrich the information 
content of the (combined) spectrum by combining signals that were generated from measuring different physical 
parameters, and hence increase the accuracy of prediction. Both for PLS and O-PLS models, were used different 
combinations of the IR and CD spectral range and for each of these combination were generated s PLS/O-PLS 
model. In the PLS model based on CD (near +far) and IR (900-1700 cm-1) combined data, we had an increase of 
the prediction accuracy for all the three degradation forms compared to the accuracy obtained with IR-based PLS 
model, while in comparison with the CD-based model, the new results can be considered very comparable, with a 
little improvement of prediction accuracy. 

Further improvement of prediction was obtained combining near-UV CD region and IR amide region in a single 
model. RMSEP values of this new-PLS model are better not only compared with the IR-model results, but also in 
comparison with RMSEP values of CD-based model, confirming that these two are the most useful spectral 
region to predict the content of protein degradation forms. As in the previous models, the most reliable prediction 
was obtained for levels of free-Fc, a lower prediction quality was found for aggregate levels, while for oxidation 
levels the RMSEP values ranged from 4,21 to 5.17 %. 

As for PLS regression, also the O-PLS models of CD and IR data combined yielded to an increase of prediction 
accuracy for all the degradation forms comparing to the results obtained with the single models. This increase 
was obtained both for the “all range” model and for the model based on near-UV and IR amide region combined. 
Once again, the lower RMSEP values were obtained with near-UV/IR amide region O-PLS model, as for PLS 
combined model. As expected, the better prediction accuracy was obtained for free-Fc levels, with a RMSEP 
values of 0.92 %. A slightly higher value was obtained for aggregates, but still lower than 3 % (2.4%), and for 
oxidized forms the obtained RMSEP value was 3.32 %, showing the major improvement compared to the values 
obtained using CD and IR separately. This data further confirm that combining CD and IR data in a single model 
produce a real increase of the prediction accuracy of all the three degradation forms being analyzed and that this 
improvement is even greater when are combined not the all spectral range of each technique, but only the CD 
near-UV region and the IR amide region. Furthermore, employing O-PLS instead of PLS further reduce the 
RMSEP values obtained, improving even more the predictive power of the multivariate analysis. 

Compared to conventional, discretely performed chromatographic assays, the proposed approach has the 
potential to considerably shorten the duration required to obtain information about product degradation even 
though the accuracies obtained during this preliminary study are inferior compared to those commonly achieved 
by chromatographic QC assays. Nevertheless, the required accuracy of an assay depends on the intended 
application. For example, in a process setting (development or control), speed and indications about trends may 
be more important and therefore the requirements in terms of accuracy may not be as demanding as for a final 
product release assay.  

With regard to PAT, the proposed concept represents still a lower level of sophistication characterized by at-line 
measurements with sampling and manual intervention. Further work will aim at the refinement of the PLS model, 
so as to increase the accuracy of the prediction. This may be achieved by focusing on the most significant, i.e. the 
most predictive, regions of the spectra, which may in turn also shorten the time required for spectra acquisition 
or, in addition, may lead to the design of online sensors. Furthermore, appending additional spectral data, e.g. 
Raman or Raman optical activity, may further enhance the obtained specificity and accuracy.  
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3.3 ENGINEERING OF METAL-BINDING PROTEINS BASED ON CONOPEPTIDES 
SCAFFOLD 

 

The increasing knowledge of the principles underlying protein structure and function and the need of novel 
environment friendly biocatalysts for biotechnological purposes has fuelled in the last few years the search for 
stable scaffolds that can be engineered to obtain (macro)molecules with given structural and/or functional 
properties. In this regard, conopeptides represent robust scaffolds highly tolerant to sequence mutation, as they 
have been developed by Conus species through a sort of combinatorial chemistry in order to target in highly 
specific and efficient manner the ion channels and receptors of their natural prey. In fact conopeptide scaffolds 
are rigid and stable, in order to bind with high affinity complementary molecular surfaces on their targets, and are 
tolerant to multiple sequence mutations, as they have been adapted during cone snails evolution to tolerate 
hypervariability of the intercysteine loops in order to bind with high specificity a huge variety ofdifferent 
functional targets. 

We tested the potential of conopeptides as scaffolds for the engineering of novel, metal based, biocatalysts 
starting from the simplest prototype of disulphide constrained conopeptides: the Contryphans. The results of the 
present work indicate that indeed this class of peptides can be successfully exploited to engineer novel, stable and 
redox active macromolecules. In fact, Cupryphans bind copper in a stable manner and with a fairly low 
dissociation constant. In addition, the engineered metal center is able to catalyze redox reactions, as demonstrated 
by Cupryphans superoxide dismutase activity. A point that deserves further investigation is represented by the 
determination of the precise copper coordination environment at an atomic level. NMR data indicate that all the 
four His residues of the peptides coordinate the copper ion. However, the paramagnetic nature of copper doesn’t 
allow the determination of the structure of Cupryphans in solution, which would greatly help in designing 
derivatives with increased metal affinity. Further, use of a zinc derivative of Cupryphan in NMR ROESY 
experiments did not yield the cross-peaks required for solution structure determination, making X-ray analysis 
the only choice for the atomic structure determination of Cupryphan. 

As a final remark, the peptidic nature of Cupryphan, together with the ease of chemical synthesis makes it a 
promising starting point for the development of more efficient superoxidedismutase mimics and antioxidant 
molecules as a natural follow up of the present work. 
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