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Introduction

The direct measurement of the Gravitational Waves (GW) foreseen by
Einstein’s General Theory of Relativity has never been demonstrated and
therefore it is one of the most important challenges of the scientific research.
Currently several large scale experiments are being carried out all over the
world aiming to first perform direct detection of gravitational signals coming
from Space.

The scientific benefits expected from the measurement of GW concern
several fields of theoretical and experimental Physics. First of all, the direct
detection of GW is a primary test for the confirmation of the Einstein’s
theory. Secondly, the measurement of the gravitons will provide an important
contribution to the theory of unification of the fundamental forces.
Furthermore, in the field of Astronomy and Cosmology, the GW
measurement will add new information to the knowledge of the Universe,
that is actually based on the collection of electromagnetic waves and
neutrinos. In particular, as the most of the astronomical bodies are transparent
to gravitational waves due to their very low absorption coefficient, the GW
detection will open a new observational window that is the Gravitational
Wave Astronomy.

It 1s also worth noting that the development of large and sophisticated GW
detectors drives interesting lines of research of Applied Physics and
Engineering which are strongly involved for the implementation of
performing components and subsystems. This is exactly the case of the
present PhD work in Electronical Engineering as we are going to present in
the following.

Two kinds of ground based detectors have been proposed in the last few
decades, but none of them has yet performed the direct measurement of GW.
Detectors based on the Webber bars have been put into operation since 1960,
but due to their limited bandwidth and low sensitivity they do not seem to be
adapt for this purpose. On the contrary, long baseline interferometric
antennas like LIGO in the Unites States and VIRGO in Italy are wideband
and low noise detectors that promise to successfully operate the measurement
of gravitational waves.

The VIRGO Project is an Italian and French collaboration started 20 years
ago and finalized to the realization of a big experiment for the GW detection
on Cascina site (Pisa). The Virgo antenna is a ground based Michelson
interferometer of 3 km long arms with optics suspended by a multistage
pendulum for the seismic isolation. The principle of detection is based on the



assumption that the gravitational perturbation coming from Space induces a
displacement of the suspended terminal mirrors of the Michelson. This
causes a variation of the phase difference of the two beams into the
interferometer and consequently changes the interference fringes pattern at
the output of the Michelson. The intensity variation that is read at the
photodetector surface can be directly connected to the GW measurement.

The extreme weakness of the expected gravitational signal makes very
difficult its detection because in the bandwidth 10 Hz+10 kHz it is necessary

to measure mirror displacements of the order of 10~ m/ \ Hz corresponding

to 107" rad / v Hz variation of the phase difference of the two beams into the

Michelson. Therefore, most of the scientific and technical efforts of the Virgo
Groups have been finalized to carry out a complete noise management of the
antenna, that is the identification of all the possible sources of noise, the
assessment of their effects on the measurement and the investigation of
solutions for noise reduction down to residual values that make the
interferometer able to sense very weak signals. The Virgo sensitivity curve
that has been achieved thanks to the noise management work of the Virgo
Groups is actually the lower limit for GW detection and corresponds to the

detectivity of 10~ m/~/Hz in the central band at 100 Hz. This means that the

first generation of Virgo has a real chance of detecting the GW for the first
time ever.

Nevertheless, further efforts are currently performed by researchers in order
to discover new margins of improvement for the actual antenna as well as for
Advanced Virgo, that is a major upgrade with the goal of increasing the
Virgo sensitivity by about one order of magnitude in the whole detection
band. In fact this result would allow the antenna to see many events every
year thus starting the era of gravitational wave astronomy.

One of the possible improvements that are being investigated in Virgo is the
reduction of the noise that has been demonstrated to origin from the coupling
between the input laser beam jitters and the interferometer asymmetries.

The necessity of containing that kind of noise below the Virgo detectivity
threshold has first induced designers and researchers to impose strict
statements for the alignment of the suspended optics. These requirements are
fulfilled at the best of the present technology using sophisticated control
systems, but serious doubts arise to the possibility of keeping a fine optical
alignment for long term period in a large scale interferometer exposed to the
atmospheric factors. Therefore much attention has also been paid to the
possibility of reducing that noise acting on the suppression of the input laser
beam jitters. In the actual antenna this suppression is already operated using a



passive filtering system named mode cleaner, that is a triangular Fabry-Perot
cavity of Finesse 1000 placed at the input of the detector. The cavity reduces
of three orders of magnitude the jitters of the input laser beam before it enters
the interferometer, but this is not sufficient to relax the statements of optical
alignment neither it permits to significantly improve the sensitivity curve in
view of Advanced Virgo. Therefore other solutions are being explored in
these years to perform an active filtering of the laser in cascade with the
mode cleaner, but up to date no system has yet demonstrated to fit the
constraints for the reduction of the input laser perturbations. Therefore this
argument is still an open issue in the environment of the scientific research of
Virgo.

Starting from this context, the target of the our PhD work has been the
development of an Adaptive Optics (AO) system for the active filtering of
laser beam jitters. We have proposed and designed the system, implemented
an experimental prototype in laboratory and tested it upon different sets of
measures that validate the design and confirm the effectiveness and the
robustness of the proposed AO control system in compliance with the Virgo
requirements.

The present Doctoral Thesis is arranged in five Chapters which present our
R&D work and the results obtained in these last three years.

In Chapter 1 we make a short overview of the Virgo Project starting from the
general principles of GW detection in an interferometric antenna. We present
the main characteristics of the Virgo detector that has been designed for
wideband and high sensitivity operation and has been commissioned on
Cascina site in 2003. The problem of noise into the interferometer is widely
discussed with particular reference to seismic noise, thermal noise and shot
noise, that are the three main noise sources limiting the sensitivity
respectively in the range of low, medium and high frequency of the detection
band. Finally, we analyze the noise originated by the coupling of the input
laser beam jitters with the interferometer asymmetries, discuss the passive
reduction operated by the mode cleaner and then put in evidence the
requirements for an additional active filtering that is needed for the upgrade
of the antenna.

The technology of Adaptive Optics is discussed in Chapter 2, where we
investigate the opportunities offered by current systems and the limitations
exhibited when they operate the dynamical correction of wavefront
aberrations. We begin with a short description of the optical aberrations and
their representation in terms of Zernike polynomials. Successively, we
present the standard configuration of an AO system that is essentially based
on the architecture of a closed loop control where it is well distinguished the



sensor, the actuator and the processing unit. In particular we present the
Shack Hartmann wavefront sensor and the most common models of
actuators, that are two classes of deformable mirrors with segmented or
continuous reflecting surface. We also present the main operative parameters
of the AO systems and the principal applications in the fields of astronomy,
industry and medicine.

Chapter 3 enters the core of our R&D work and presents the Project of the
AO system based on an interferometric technique for the detection of laser
beam jitters. We start with a short description of Gaussian optics concerning
the characteristics and the propagation in air of the laser fundamental mode.
Soon after, we perform the theoretical analysis which demonstrates that laser
beam jitters can be alternatively described with higher order Hermite Gauss
modes perturbing the Gaussian beam or with Zernike polynomials expanding
the laser aberrated wavefront. This correspondence allows to design an AO
system that extracts the error signals in terms of Hermite Gauss coefficients
and generates the correction commands for the deformable mirror in terms of
Zernike modes. We discuss in detail the mode of operation of the proposed
AO system that performs the simultaneous correction of six aberration modes
up to the second order. In particular we present the optical design based on
the Michelson interferometric configuration and the block diagram of the
closed loop control.

The experimental apparatus implemented in the Laboratory of Applied
Physics at the University of Salerno is described in Chapter 4. We show the
scheme of the whole system and the characteristics of the main components.
Specific sections are devoted to the input laser, to the adaptive mirror for the
wavefront correction and to the photodiodes 5x5 array placed at the output of
the Michelson for the error signal extraction. We also present the electronic
boards designed and engineered in our laboratory for the amplification of the
photocurrents emerging from the photodiodes. Chapter 4 ends with a
description of the optical arrangement that we have performed to match the
input laser beam with the interferometer and in particular to control the
position and the diameter of the beam waist on the deformable mirror and on
the photodiodes surface.

In Chapter 5 we report and discuss the three sets of measurements carried out
for the complete characterization of the prototype. We have first measured
the transfer functions of the AO system both at open and closed loop in order
to demonstrate effectiveness and stability of the different controls acting
simultaneously on the six aberration modes of the laser beam. Secondly, we
have directly measured the six error signals representing the perturbation
coefficients and from the analysis of their curves in the time domain as well
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as in the spectral representation we test the reduction operated by the AO
control when the loop is closed. Finally, we have achieved the quality control
of the corrected laser beam by the measurement of its transverse intensity that
is detected at the output of the Michelson and then fitted to the ideal Gaussian
profile.

The present Thesis ends with the Conclusions where we summarize the
results of the R&D work and remark that our AO system fulfils the Virgo
requirements for laser correction and therefore it can be seriously proposed
for application to interferometric GW antennas.
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Chapter 1

Virgo Project: the interferometric detection of
gravitational waves

The Virgo Project is one of the most popular experiments carried out in the
world for the direct measurement of gravitational waves (GW). It was born
from an Italian and French collaboration which allowed the implementation
of a ground based interferometric gravitational wave antenna located in
Cascina, a small Italian municipality near Pisa. The Virgo antenna operates in
correlation with other similar detectors like the two interferometers of LIGO
Project in the United States, and it is expected that it can detect gravitational
waves generated by star masses moving in the Universe.

In this first Chapter we discuss the principle of operation of an
interferometric GW antenna based on the Michelson scheme, and then we
present the Virgo Project with a brief overview about the design and
commissioning. After that, we approach the problem of the weakness of the
gravitational signals and discuss the studies and the arrangements that have
been performed in order to maximize the sensitivity and minimize the noise
that affects the Virgo interferometer. In particular, we analyze the seismic
noise, the thermal noise and the shot noise, that are the three main sources of
disturbance that delimit the lower level of the Virgo detectivity in three
different spectral ranges of the detection bandwidth. Finally, we dedicate a
specific section to the noise generated by the coupling between the
interferometer asymmetries and the input laser beam jitter, which puts serious
open issues for the performing of the actual interferometer and also of the
next generation advanced gravitational antennas. We identify the Virgo
requirements for the reduction of this noise and propose the application of an
Adaptive Optics system in accordance with those statements. The
development of such a system and the demonstration of its efficacy in
accordance with the preliminary statements is the core of our PhD work and
will be presented in the next Chapters.
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1.1 GW detection in interferometric antennas

The gravitational waves are perturbations of the space-time metric that
propagate at the speed of light and modify the distance between two points,
as foreseen by the Einstein’s General Theory of Relativity [1],....,[5]. They
are originated by the movement of any mass, but, due to the weakness of the
signal, it is not possible to produce detectable gravitational waves in
laboratory. So, the only possibility to perform a direct measurement of them
is to collect signals originated by big astronomical objects, such as
Supernovae, Coalescent binaries and Pulsars, which emit gravitational waves
in the frequency band from few Hz to few kHz and can have impulsive,
periodic or stochastic behaviour [6],...,[9].

For this reason, different kinds of very complex and high sensitivity ground
based detectors have been built in the recent years, but up to date the direct
measurement of gravitational waves has not yet been achieved, and therefore
it is still a strong commitment for the researchers involved in the field of the
experimental relativity [10],[11],[12].

The scientific benefits that are expected from the direct GW detection
concern several fields of the theoretical and experimental Physics. First of all,
the measurement of gravitational waves is an important test which confirm
the Einstein’s theory after that other experiments have already been carried
out with success [10]; secondly, in terms of quantum physics, the
measurement of the gravitons can give an important contribution to the
theory of unification of the fundamental forces. Furthermore, in the field of
Astronomy and Cosmology, the GW measurement will add new information
to the knowledge of the Universe, that is actually based on the collection of
electromagnetic waves and neutrinos coming from the Space. In particular, as
the most of the astronomical bodies are transparent to gravitational waves
due to their very low absorption coefficient, the direct measurement of them
will open a new observational window that is the Gravitational Wave
Astronomy. And finally, but not less important, the development of large and
sophisticated GW detectors drives interesting applications of applied physics
and engineering, which contribute to the implementation of very performing
components and subsystems. This is the case of the present PhD work in
Electronical Engineering, where we have developed an Adaptive Optics
system for the laser beam filtering.

The gravitational waves are generated by star masses whose movement is not
spherically symmetric. In this case, the amplitude of the wave is given by the
adimensional parameter 4 as:
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he 4GgTEkm (1.1)

cr

where G is the Newton constant, ¢ is the speed of light in vacuum, 7 is the
distance between the source and the detector, Ej;, is the total kinetic energy
of the source mass and g, (0< g, <1) the fraction of kinetic energy not
spherically symmetric.

The possibility of detecting the gravitational waves depends on the amplitude
hy(t) of the wave generated from the source S, on its frequency distribution,
and on the noise 4, of the detector. If f. is the characteristic frequency of the
signal in the center of the spectral range Af, the signal to noise ratio of the
detector is:

h(¢)
h,(f.)- A"

S
— = 1.2
N (12)

being ;zn ( f ) the power spectral density of the intrinsic noise of the detector,

expressed in units of 1/ ~ Hz . Therefore, if we use low noise detectors, we

can sense weak signals from very far sources, that is we increase the
possibility of detectable gravitational events and then we widen the part of
Universe that we can investigate.

So far, three different kinds of GW detectors have been proposed, that are
respectively the Webber bars, the ground based interferometric antennas and
the space interferometers. Several Webber bars have been built and are
operating since 1960, but they are strictly band limited and not very noiseless

(h=10""Hz™"* at f=1 KHz), and none of them has ever performed a
successful measurement. On the other side, space interferometers could be
very sensitive and low noise, but their implementation and commissioning
would be so costly and difficult that no Project has been financed in the
world. This is why in the past years attention has been moved to ground
based interferometric antennas, which have been built in several big
experiments in the world as they promised to be wideband and high
sensitivity detectors at a reasonable cost of construction [13].

The principle of operation of an interferometric GW antenna based on the
Michelson configuration is easy to understand if we refer to the scheme
shown in figure 1.1.
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Figure 1.1: Scheme of the Michelson interferometer used as antenna and effect of the
gravitational wave h on the test masses corresponding to displacement —Ay and Ax of the
terminal mirrors M; and M, respectively. BS is the beam splitter of the input laser and L is
the arms length. The phase difference induced by the gravitational wave is measured by the
photodiode through the variation of the output intensity. The output The direction of
propagation of the wave is assumed perpendicular to the plane of the paper.

The gravitational wave impinging on the Michelson interferometer,
perpendicularly to the plane of the optical system, is represented by the
perturbation h=h(t) of the space time, and moves the test masses
corresponding to the terminal mirrors M; and M, of the Michelson
interferometer by alternated squeezing and stretching of its arms of length L.
If we assume the ideal case where the two masses could be considered free in
air, their displacements are simply given by:

Ax:—Ay:%hL (1.3)

The displacement of the two mirrors from the equilibrium position changes
the interference condition and therefore the optical paths phase difference of
the two orthogonal beams of the interferometer is:

Agl0) = (s )= 2L () (14
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This last equation shows that the Michelson interferometer behaves like a
linear gravitational antenna, as the phase difference Ag(t), which we can
detect by the interference fringes variation measured by the photodiode, is
proportional to the gravitational signal /().

In the real case, for the seismic isolation, the mirrors are suspended by a
mechanical pendulum of resonance frequency @y and time constant z; and
therefore the displacements Ax and Ay are obtained by the following
differential equations:

d*Ax 1 dAx
—+ o,

+— CAx=——F L
> T odt 2 dt?
(1.5)
2 2
d A2y+l—dAy+a)§Ay:—ld ZhL
di* 1 dt 2 dt

It can be seen that in the Fourier domain, for gravitational waves of
frequencies w>>ay, the solutions of eqs. (1.5) are Ax=-Ay=(1/2)Lhyexp(ict),
and so the phase difference is:

Ap=""Zp e (1.6)

That is, for frequencies @ much higher than the resonance frequency @y of
the pendulum, the mirror behaves like a free-fall mass and hence by
measuring the phase difference A@@#) we can have a proportional
measurement of the wave amplitude 4.

1.2 Design, construction and commissioning of the Virgo
antenna

The Virgo Project was born from an Italian and French collaboration
supported by INFN (Italy) and CNRS (France) and is nowadays one of the
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most important experiments in the world for the interferometric GW
detection [14], [15]. The Virgo antenna is a long baseline Michelson
interferometer with a 3 km long Fabry Perot cavity implemented in each of
the two arms, designed for wideband (10Hz+10kHz) detection of

gravitational waves with sensitivity / ~10%+10221/\Hz, which
corresponds to measure displacements of the test masses of the order of
107" m//Hz . Tt is located at the European Gravitational Observatory (EGO)

close to Cascina (Pisa, Italy) as shown in figure 1.2 and has been
commissioned in 2003-2004. The data collected by Virgo are compared and
correlated with those generated by other similar antennas presently in action
such as LIGO, TAMA and GEO [16], [17], [18], [19].

Figure 1.2: Virgo antenna at Cascina (Pisa)

The Virgo antenna is a Michelson interferometer implemented into a ground
based steel structure of towers and tubes containing all the suspended optics
and all the necessary equipments.

The input source is a 20 W Nd:YAG laser at 1064 nm which is split on the
beam splitter and enters the two 3 km long Fabry Perot cavities. The
suspended optics of the Virgo interferometer are large diameter (350 mm)
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and big mass (20 kg) mirrors and beam splitter, with super polished, very low
absorption and scattering surfaces manufactured by the German company
Heraeus in collaboration with ESPCI (Paris).

The terminal mirrors, used as test masses, are located in an ultra high vacuum
system (from 10® mbar for H, to 107 mbar for hydrocarbon) and suspended
by a sophisticated multistage pendulum for the seismic isolation. This is the
Superattenuator (SA) pictured in figure 1.3, that is a 10 m tall chain of
mechanical filters positioned into each of the two terminal steel towers of the
antenna [20], [21], [22].

Stabilized Platform o
{occelerometers/ coils
magnets-achuators]

i
3

Mimor

and reccll mass

Figure 1.3: Scheme of the Virgo Superattenuator (SA) chain. active control is exerted by
coils and magnets at three stages: inertial damping on the top, local control on the
marionette and locking on the mirror using the reference mass

The SA isolates the test masses from the ground motion. A passive filtering is
provided to the mirror at frequency higher than a few Hz, as the pendulum is
a chain of mechanical filters whose resonance frequencies lay all below 2 Hz.
This passive attenuation is better than 10~ m/ v Hz at 10 Hz. Furthermore, in

order to reduce the low frequency residual motion due to the chain
resonances and achieve the pre-alignment of the interferometer, an active
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control is performed by exerting control forces on three actuation point, that
are respectively the top stage, the marionette and directly the mirror. The
control is carried out by magnetic forces induced by coils on permanent
magnets put on specific points of the suspension chain.

The position of the mirrors is then controlled in real-time through a feed-back
system so to keep the interferometer in the condition of destructive
interference (also called dark-fringe lock in) [23], [24]. The passing of a
gravitational wave, or any other effect which try to move the mirror position,
induces a reaction signal in the feed-back system which represents the signal
of the antenna. Once the interferometer is longitudinally locked, it is
necessary to maintain the mirrors aligned each other and with respect to the
incoming beam with rms accuracy close to 10” rad [25], [26].

Several commissioning runs have been performed since 2003 in order to put
into operation the different subsystems and step by step the ideal sensitivity
curve has been quite well approached [27], [28], [29]. The treatment of all the
engineering that has been necessary for the implementation of this large and
sophisticated detector is of course interesting but overcomes the scope of the
present work, and therefore the reader is referred to the bibliography.

1.3 Noise management and sensitivity curve

Despite of the simplicity of the principle of operation, based on a classic
interferometric sensor, the detection of a gravitational wave is dramatically
difficult, because of the weakness of the waves, which cause very small
variations of the Michelson arms length. In fact, the detection of mirror
displacements of the order of 1077 =107" m/ JHz imposes the
implementation of a very sensitive and low noise sensor, and therefore
several issues have been taken into account in the design and the construction
of the Virgo antenna, and several studies are still being done, in order to
achieve the desired performance.

The first requirement which the detector must fulfil is to maximize the
sensitivity S, derived by eq. (1.4) as:

§=20 (1.7)
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This last expression shows that the antenna sensitivity is proportional to the
length L of the Michelson arms, and therefore it can be increased by
increasing L. That is why long baseline gravitational antennas have been
built, like Virgo interferometer having 3 km long arms. Nevertheless, such a
length is not yet sufficient to guarantee the minimum degree of sensitivity
required for the GW detection, while, on the other side, it is not possible to
build arms of 100 km for obvious reasons of cost and technological
difficulties. The problem has been overcome by increasing the optical path of
the two laser beams before recombining, using two Fabry-Perot cavities
implemented in each interferometer arm as shown in figure 1.4.

M; -

Fabry-Perot
cavities
€----

~

Recycling
mirror

<4-----

______________

|
|
| Mep, M,
|
Photodiode

Figure 1.4: Layout of the Virgo interferometer of arms length L=3 km. The terminal mirrors
M, and M,, which form two Fabry-Perot cavities with Mpp; and Mpp; respectively. BS is the
beam splitter of the input laser, and My is the recycling mirror.

In fact, in this case the detector sensitivity is increased by the factor 2F/zr~
32, being F'=50 the Virgo cavities Finesse, or:

_Ap_4nL2F _daL
h A A

N (1.8)

This also means that the effective arms length changes from L=3 km to
L'=2FL/r=96 km.
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The second requirement of the Virgo antenna is the minimization of all the
possible sources of noise which could limit the detectivity in the sensing
bandwidth. A great part of the scientific and engineering work of the Virgo
Groups has been devoted to this problem, which is a very important issue to
solve for the success of the Project. So, in these last years a typical noise
management has been carried out, where all the forms of noise that could
affect the detector have been identified, assessed and if necessary reduced to
a residual level that stands below the officially accepted lower limit of
detectivity, or Virgo sensitivity curve.

The three main sources of noise in the Virgo antenna are the seismic noise,
the shot noise and the thermal noise, which characterize the sensitivity curve
respectively in the low frequency band, in the high frequency band and in the
central band.

1.3.1 Seismic noise

The seismic vibrations of the ground deform the interferometer arms length,
and hence they introduce a perturbation into the gravitational antenna that is
named seismic noise. The power spectral density of this noise has been
experimentally achieved through direct measurements on the Cascina site,
and the result is well fitted over 0.1 Hz by the following expression:

- NlO’6 m
xs(f): f \/E (1-9)

which, in terms of gravitational detectivity, is:

~~ 2%(f) 07107 1
h‘(f)_L(3km)= f* JHZ (0

This seismic noise would seriously limit the interferometer sensitivity if no
action was made for reduction. For example, at 100 Hz, the value of seismic

noise would be 4 (f=100)=0.7-10""1//Hz , that is vary far from the

desired detectivity & =107 1//Hz .
In order to isolate the interferometer from the seismic noise, all the optics are
suspended to Superattenuators (SA) [30], that act as passive mechanical
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filters and perform, from the top of the chain to the bottom where the mirror
is suspended, an attenuation of the vibration given by:

2
@

n

Alw)= : ocl‘][m (1.11)

being x, the mirror vibration reduced by the chain of N pendula of resonance

frequencies .

We have already said that the design of the SA provides that all the resonance
frequencies are below 2 Hz, and therefore the seismic noise characterizes the
sensitivity curve at low frequency, while in the detection bandwidth over 10
Hz , where w>>wm, V¥ n, the SA damping is 4 oc ® " and the residual
seismic noise transferred to the mirror is absolutely negligible.

1.3.2 Shot noise

The shot noise is the quantum limit to the phase detection due to the statistic
fluctuation of the number of photons collected by the photodiode at the
output of the interferometer.

The laser beam that reaches the photodiode has a number of photons n with
uncertainty An described by the Poisson statistics for coherent light
An=AIn [31]. In addition, the uncertainty in measuring the phase and the
photons number is regulated by the quantum uncertainty relation in
measuring Ag- An > 1. Therefore, the uncertainty on the phase is:

A¢z% (1.12)

Moreover, the energy E collected by the photodiode of quantum efficiency 7
is E=nnhw,, where h is the Planck’s constant and @y the laser angular

frequency. So, if we consider that E=PAt, being P the laser power and Af the
measure time, by simple algebra the phase uncertainty can be rewritten as:

Aj> | h}f’Aot (1.13)
7
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or, in terms of power spectral density:

Ag = AgJAL > /% (1.14)

Finally, from eq. (1.8), the shot noise in the Virgo antenna is:

Py U ( ! j (1.15)
anl'\ nP JHz

From this last result, we see that it is possible to reduce the shot noise by
increasing the laser power inside the interferometer. This is done placing the
recycling mirror in front of the input laser as shown in figure 1.4. In fact, as
we have already discussed, the Virgo interferometer is locked in the
configuration of dark fringe, and this means that the light is almost all
reflected back toward the laser. The recycling mirror reflects back the light
toward the beam splitter, and then it increases the effective power that enters
the interferometer. In practice, the recycling mirror and the whole
interferometer form a new cavity, in which the recycling mirror is the first
mirror and the interferometer is the second one. If the cavity is in resonance
with the input laser, the power that comes on the beam splitter and then
enters the interferometer increases of a factor depending on the Finesse of the
cavity. In the case of Virgo, the Finesse of the recycling cavity is 50, and
therefore the optical power of the input laser is raised from 20 W to 1 kW
inside the interferometer. So, being 95% the quantum efficiency of the
InGaAS photodiode, and remembering that A=1064 nm and L=96 km, the
Virgo shot noise level is:

~ 1
h, =3-107%
sn /HZ

which fulfils the detectivity requirements in the central band at 100 Hz.

(1.16)
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1.3.3 Thermal noise

The thermal noise affects the suspensions and the mirrors of the
interferometer [32], [33], [34]. It is originated by the stochastic thermal
motion of the atoms contained in the mechanical structures: in fact, this
motion produces stochastic forces that excite the resonance modes of the
suspensions and the normal modes of the mirrors. The power spectral density
of those stochastic forces was calculated by Uhlenbeck and Ornstein in the
fluctuation-dissipation theorem and corresponds to:

~ 4K, TM N
F=|—2 1.17
JEaD () 117

where M is the mass, T the temperature, Kz the Boltzmann’s constant and 7
the time constant.

The thermal noise due to the suspension can be calculated using the transfer
function of the pendulum of resonance frequency @y and quality factor Q; in
this case the power spectral density of the mirror displacement is:

£
% pena = M____ AT : (1.18)
. OMo,
—a)2+a)g+l* 0 l_(a)] +i w

r

or, in terms of amplitude:

Fopond = | 45‘{;]; 12 (1.19)
OMao, . w 2 . o 2
@, Qw,

In the detection bandwidth, where @>> w,, the thermal noise reduces to:

~ 4K ,To, 1
Xipend = —QBM ° pes (1.20)

24



and, in terms of gravitational detectivity, it is:

~ 2 2 4K, T,

ho o= -
tPend L(3km) La)Z QM

(1.21)

Using the Virgo parameters 0=10°, =27 rad/s, T=300 K and M = 20 kg for
the mirror mass, we can calculate that the thermal noise of eq. (1.21) is
relevant in the spectral range between 3 Hz and 30 Hz, while it decreases
rapidly for higher frequencies due the term //c’.

The thermal motion of the atoms also excite the normal modes of the mirror
which have resonance frequencies at several kHz, and therefore above the
bandwidth of detection.. In order to calculate the analytical expression of this
thermal noise, we can schematize the mirror as a set of independent harmonic
oscillators of normal frequencies w;, quality factors Q,, time constants z; and
effective masses M.. In this case the amplitude of the mirror displacement has
the following spectral density:

~ 4K, T 1

xtM,-,—Z oM o — - (122
o A N G
[ [a)lj } {Qia’ij

In the detection bandwidth, where @ << V i, this expression reduces to:

Xogr = —4KBT3 (1.23)
OM, o,

~ 2 [4K,T
tMir — L QIM]COE

and hence

(1.24)

where the index / refers to the fundamental normal mode of the mirror. This
value is generally lower than the other noises, except for the range from 30
Hz to 200 Hz, where it is the most relevant and characterizes the lower limit
of the Virgo detectivity.
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1.3.4 Virgo sensitivity curve

The Virgo sensitivity curve is the lower level of spectral detectivity that is
possible to achieve taking into account the contribution of all the possible
noises that affect the interferometer.

In the previous subsections we have discussed only the seismic noise, the
shot noise and the thermal noise, because these are the fundamental
disturbances that characterize the Virgo sensitivity curve in the different
spectral regions. In particular, the seismic noise limits the sensitivity at low

frequency below 3 Hz, the thermal noise characterizes the sensitivity from 3

Hz to 200 Hz, and the shot noise is essentially the upper limit above 200 Hz.

This can be easily seen in figure 1.5, where we report the Virgo sensitivity
curve as officially accepted by the Groups of research of the Virgo Project.

Virgo V10
10-17 1 A P | e s el
Total - - - - Seismic
------ MNewtonian  ——-— tnMir
1 0-18 —r tnPend - ThElastMir
—— tnviol —--— Shot
RadPres ===-Creep
T - Y Acoustic Distorsion
10 X ---=--- reflect ------- Absorption
e ——-— Magnetic

h(f) [1/sqrt(Hz)]

%
) 1? .
1 s
T T T TITT] T

10-24 : =

10

100 1000

10000

Figure 1.5: Virgo sensitivity curve with the limiting noise sources. The most relevant are the
seismic noise at low frequency up to 3 Hz, the thermal noise from 3 Hz to 200 Hz and the

shot noise at higher frequencies
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The graph also shows other several curves of noise, that have been assessed
and/or measured in the recent years by the researchers of the different Virgo
Groups for a complete characterization of the interferometer [35],...,[44].
Today, a strong effort is still being done to investigate the possibility of
reducing some of these noises, not only to improve the performance of the
present antenna, but also to open prospects for the implementation of the new
interferometer that is Advanced Virgo.

In particular, in our work of research, we have put our attention to the phase
noise that is originated in the interferometer by the coupling between the
input laser jitter and the optics misalignments, as we are going to discuss in
the next section of this Chapter. We will see that this noise affects the Virgo
interferometer and imposes very strict statements to the optical alignment,
and also it put serious limits to the improvement of advanced Virgo. Thus,
the scope of our PhD work is to develop and to demonstrate the effectiveness
of a novel control system, based on Adaptive Optics technique, which
promises to solve the problem as it is able to significantly reduce this form of
noise. All the details about this work of research will be discussed in the next
Chapters of the present Thesis.

1.4 Noise from coupling of interferometer asymmetries with
input laser beam jitters

We have seen that the fundamental noises limits the detectivity of Virgo
interferometer and that the expected sensitivity curve reaches levels of about

h=107 1/ v Hz in the central band at 100 Hz. Nonetheless, to reach such

extreme values, other kinds of noise must be assessed and suppressed, and
among them there is the noise generated by the coupling between the
interferometer asymmetries and the input laser beam geometrical
fluctuations, or beam jitters.

The interferometer asymmetries can be interpreted as perturbations of the
fundamental mode in each of the two Fabry Perot cavities put in the arms of
the Michelson. This means that the spatial wave function of each arm is
represented as the sum of the fundamental Gaussian mode TEM), and of the
higher order Hermite-Gauss modes TEM,,, of an ideal cavity In the same
way, the geometrical fluctuations of the input laser beam can be represented
as fluctuations of higher order modes of a pure TEMy, beam perfectly
matched to an ideal interferometer [45].
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In order to understand how these two effects can couple and generate phase
noise at the output of the interferometer, let us make reference to figure 1.6
which represents the scheme of a recycled Michelson interferometer with
Fabry Perot cavities in the two arms.

X Fabry Perot

—— =

|
|
| Cavity 1
|
|
1
1 EOUtl
|
|
|
M : X)
o) F 1 pout2 !
E" Erec I !
PO ECSDRNCY S
\.-': __________ BS_ _______________
- <+ I
Eref I out Fabry Perot
| E Cavity 2
|

Photodiode

Figure 1.6: recycled Michelson interferometer with Fabry-Perot cavities in the two arms. In
this picture we assume that the input laser beam has an angular jitter 9(t) while the two
cavities have a lateral asymmetry x; and x;.

If we assume fixed the position of the recycling mirror and consider the
misalignment as a lateral translation x;, or an angular rotation 6;, of the

optical axis of the two Fabry-Perot cavities 1 and/or 2, the modes ¥; and ¥
inside the cavities are perturbed at first order as:

Yol =W+ &Y, (1.25)

where in the case of translation &;,=x;»Ww, and in the case of rotation
&1,=10; 5(mwy /A), while wy and A are the laser beam waist and wavelength
respectively.

On the other hand, it has been demonstrated that the geometrical fluctuations
of a laser beam can be interpreted as perturbations of the fundamental
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Gaussian mode. So, a laser source of angular frequency ay, affected by jitter,
emits a perturbed beam which at first order can be approximated as:

E" =~ AP, + B(1)Y, ™ (1.26)

being ¥ the fundamental Gaussian mode and ¥; the first order Hermite
Gauss spatial mode. The perturbation coefficient A(#) represents the
geometrical fluctuation of the laser beam, and in particular it is
Lt)= Lit)=I(t)/wy in the case of  lateral beam jitter,
and f(t)= Pu(t)=iOt)(nwy/2) for the angular jitter. In these two last
expressions we have used /(?) and €(z) as the lateral and the angular deviation
of the laser beam from its optical axis.

Let us know consider, without loss of generality, the case when the two
Fabry-Perot cavities are translated by an amount x; and x, and the input beam
has an angular jitter of angular frequency @, that corresponds to [,(1)=
(1/2)ify [exp(iot-exp(-ian)], being Ly=0)nwo/2)

From this last assumption, the incident field of eq. (1.26) can be represented
as a vector of two components, the first one projected on the fundamental
mode ¥, and oscillating at frequency ay, and the second one projected on
the mode ¥, and oscillating at the sideband frequencies wy+ @ and @y - w:

Em _ E(l)n +Elin - A\Poeiwot + A\{]li%(ei(a)oﬂu)t +ei(ﬂ)o—a’)’) (127)

The perturbed incident beam couples with the interferometer misalignment
and then the field inside the recycling cavity is [46]:

E™(w, + ®) = M (w, + ®)E" (0, + ®) (1.28)

where the two dimensional matrix M, calculated as a sum of all the
reflections of the beam going forth and back in the interferometer, is:

1 £ ( 1 e }
M(w)=t, L=ren f(@)e” 2\ 1=rr f(@)e”  1+nr,

& 1 1 1
2\ 1=rr f(@)e?  1+nr, 1+77,
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(1.29)

Here, rof{w)e'? and r; are the reflectivity of the Fabry Perot cavities for the
mode ¥ and ¥ respectively, flw) = [I+(ca/47LF)’ T2, p=4LFa/me, c is
the speed of light and e=¢;+&=(x;+x2)/wy . And also, L is the cavity length,
F the Finesse, rr and #x the reflectivity and the transmittivity of the recycling
mirror.

From eq. (1.28) it is possible to calculate the two fields £/ and E™“
outgoing the cavities and therefore their phase difference 66 at the output of
the Michelson:

5= Re[(el e, )p, 1S (@ 1= ] (1.30)

7, 1+ 77,

which shows that the coupling between the misalignment of the
interferometer &£;-¢&, and the angular jitter of the input laser beam £ generates
an additional phase noise into the system. Similar results can be demonstrated
for the coupling between the angular misalignment of the cavities and the
lateral jitters of the input beam.

1.5 Passive suppression and requirements for active
prefiltering of the laser jitters

The phase noise calculated in eq. (1.30) suggests that if the laser geometrical
fluctuations are not reduced, the necessity of achieving the sensitivity limit
imposes very strict statements to the tolerance of the interferometer
asymmetries. On the other hand, it is not very easy to assure that a large and
complex structure like Virgo antenna, which is exposed to daily variation of
the environmental conditions (wind, temperature, pressure, etc.), could
maintain a perfect alignment for a long term period of several years.
Therefore, since Virgo proposal, the suppression of the input laser beam
jitters has been taken into account and currently it is passively performed by
the mode-cleaner [47], a triangular Fabry-Perot cavity 144 m long with
Finesse 1000 used in transmission between the input laser and the
interferometer, as shown in Figure 1.7.
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Figure 1.7: scheme of the Virgo interferometer and Mode Cleaner for the passive filtering of
the input laser beam jitters.

The input laser beam is cleaned up because its initial jitters are interpreted by
the triangular cavity as not resonant higher order modes and hence reflected
back. The noise is reduced by the same order of magnitude of the cavity
Finesse, that is by a factor 10~. Nevertheless, the residual fluctuations of the
laser beam outgoing the mode-cleaner still impose very strict statements to
the interferometer alignment, which is actually performed at an rms accuracy
close to 10~ rad at the best of the present technology.

The possibility of pre-filtering the laser beam would add a safety factor to the
mode cleaner performances [48], [49], [50], and also would allow to relax the
strict statements of alignment. Furthermore, a system able to better control
the laser beam geometrical fluctuations could be used to correct the expected
thermally induced aberrations in the next generation high power
interferometers, so to assure suitable beam matching with mode cleaner [51].
In Advanced Virgo, where a 200 W laser will be used, the thermal effects are
expected to strongly reduce the power coupled with the passive cavity. The
consequent loss of power is assessed on about 90% , due to distortion caused
by absorbing media in intermediate optics like the Faraday isolator.

A compensation of such effect can be obtained using negative expansion
coefficient materials [52], but residual fluctuations of the low order Gaussian
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modes still impose a further reduction with 40 dB at low frequency (< 1 Hz)
in order to lower the power lost into higher order modes under 1%. This can
be considered the first requirement for the design of a pre-filtering system.

Moreover, the phase noise of eq. (1.30) depends on the product of the
coefficients of asymmetries times the coefficients of the higher order
Gaussian modes of the perturbed input beam. In Virgo, typical values for
asymmetry coefficients are about 10° and the phase detectivity limit

corresponding to the sensitivity curve is g =107 rad//Hz , which means
that the coefficients of the laser Gaussian modes of order 1 and 2 at the input

. o 1
of the interferometer must be less than 10 ——, and therefore less than

JHz

before the mode cleaner with modes suppression factor of 10~.

1
10~
=
This means that the jitters noise reintroduced by the pre-filtering system
before the mode cleaner must respect this upper limitation over the whole
GW measurement band extending from 10 Hz to 10 kHz. In particular, for a
beam waist of 1 mm, considering the TEM;) mode, the condition of a

1 rad
this limitation is generally satisfied by a quite laser beam in the frequency
region above 100 Hz, but not in the tens of hertz, where an order of
magnitude more has been measured [53]. Therefore jitters reduction of more
than 20 dB is necessary in the spectral region up to few tens of Hz, and this
can be considered the second important requirement for the correction of this
kind of noise in interferometric GW antennas.

Several kinds of systems have been proposed to correct the laser perturbation
in accordance to Virgo requirements. In particular, systems based on thermal
deformation of mirrors or lenses have been demonstrated to work [54], but
they need complex optical schemes, auxiliary high power lasers and exhibit
the band limitations typical of any system using thermal processes.
Alternatively, Adaptive Optics techniques have been explored for active pre-
filtering of the laser beam, but the traditional systems based on the Shack-
Hartmann sensor have shown serious limitations for this particular
application where high sensitivity and wideband correction is required [55].
Starting from this context, we have investigated the possibility of
implementing a novel Adaptive Optics system based on the interferometric
detection of the wavefront.

coefficient < 107

corresponds to an angular jitter éx <3107
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Our system is proposed for the active prefiltering of the input laser beam in
cascade with the mode cleaner as shown in figure 1.8.

Mode
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Mirror I
|
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|
|
driver signal . Pixellated
photodiode
CPU error signal

Figure 1.8: scheme of implementation of the proposed AO system in cascade with the mode
cleaner to perform laser active prefiltering in Virgo antenna. The deformable mirror is the
actuator of a typical feedback control where the error signal is extracted on the pixellated
photodiode by the interference of the input laser beam (blue arrow) with the beam reflected
back by the mode cleaner (green arrow) which contains all the higher order modes not
resonant with the cavity. The Central Processing Unit (CPU) receives the error signal and
generates the driver commands for the adaptive mirror.

In this configuration the AO system consists of a deformable mirror acting on
the laser beam before the mode cleaner and of a pixellated photodiode used
to detect the laser perturbation and provide the error signal to the central
processing unit. Here the error signal is converted into the driver command
for the deformable mirror, according to the typical configuration of closed
loop control. The error signal is extracted on the pixellated photodiode by the
interference of the input beam with the beam reflected back by the mode
cleaner containing all the higher order modes not resonant with the cavity.

In the following of the present work, after a short investigation of the
Adaptive Optics technology that is currently available, we present the Project
of our system and demonstrate that it fulfils the Virgo requirements for the
active prefiltering of the input laser beam.
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Chapter 2

Adaptive Optics

In this Chapter, we present the principal properties of the Adaptive Optics
(AO), that is a technology developed in the last thirty years for wavefront
control and light aberrations correction. We start with a short discussion
about the phenomenon of aberration, showing the physical meaning in terms
of geometrical optics and also in the wavelike approach, where aberration is
described as perturbation of the wavefront surface. The aberrated phase
profile can be expanded into a complete set of orthonormal polynomials
named Zernike functions, which represent the fundamental modes of
aberration.

After that, we make an overview of AO, ranging from the first approaches up
to the most recent applications. In particular, we show the standard
configuration of an AO system, the main components and the principle of
operation for the automatic correction of the wavefront aberration. We
discuss the traditional use of AO in astronomy and the novel applications in
the fields of medicine and industry. Furthermore, we show how AO can help
to control the laser optical characteristics, thus widening its possible
application in the fields of telecommunications, remote sensing, industry,
high precision measurements. Finally, we outline the state of the art of the
technology and the future developments in which research is now committed.

2.1 Optical aberration and Zernike polynomials

In the theory of wave optics, diffraction sets an unavoidable limit to the
resolving power of any imaging system, because for its effect a point like
source is spread on the image plane into a finite size spot [56]. In order to
improve the resolution, it is common to design the optical systems with
diaphragms of aperture D very large compared to the wavelength A of the
incoming radiation [57]. In fact these is the only way to minimize the
diffraction parameter A/D which is proportional to the spread of the image,
like in the case of the Airy’s disk [58].
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Nonetheless, in the geometrical model of the light propagation, when very
large values of the transverse dimension D are used, the paraxial
approximation is not valid anymore and this cause another effect of imaging
degradation, that is the optical monochromatic aberration [59]. In fact, skew
rays passing through wide apertures of the optical systems are focused into
different points thus spreading the spot of the image. From an analytical point
of view, the paraxial assumption allows to stop at the first order the power
series expansion of the trigonometrical functions involved into the Snell’s
law [58]. On the contrary, if we consider rays with large divergence a from
the axis, in the equation:

sena=a—a’ /3+a’ /5-a’ | T+...... (2.1)

we need to consider at least the third order term, or sena = a- /3!,

The third order theory brings to much more complicated formulas where the
direction of the rays of light suffers of the five monochromatic primary (or
Seidel) aberrations, that are well known as spherical aberration, coma,
astigmatism, curvature of field and distortion. Higher order aberrations
coming from the higher order terms of eq. (2.1) are usually neglected because
of their very small effects. Optical systems based on refractive surfaces also
suffer for chromatic aberration, due to the dispersion of light. This implies
that the image of a not monochromatic source is focused by the system into
different image points depending on the colour. This is called chromatic
aberration.

In wave optics, aberration is described as the distortion of the light
wavefront. In fact, the geometrical rays are everywhere perpendicular to the
surface of the wavefront, and hence if their direction is modified by
aberration, it is immediate to see that this corresponds to a variation of the
wavefront profile. In figure 2.1 we compare the spherical wave and the plane
wave in the ideal case and in the case of generic aberration.
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Figure 2.1: spherical wave and plane wave in the ideal case a) and with aberration b). It can
be seen the deviation of the rays direction, and the distortion of the wavefront

In particular, the aberrated light wave emerging from the exit pupil of a
convergent optical system has a perturbed wavefront which deviates from the

ideal spherical profile (see figure 2.2).
Exit
y Pupil

Wave Actual Ray
Aberration (normal to Aberrated Wavefront)

- z Wxy) ™ /

Aberrated — % Image
Wavefront Reference Plane
Spherical
Wavefront

Figure 2.2: aberrated wave emerging from a convergent optical system and Wave
Aberration Function
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The perturbation of the wavefront is analytically represented using the Wave
Aberration Function, or Optical Path Difference W(x,y), which is the
difference between the actual and the ideal wavefront in the plane transverse
to the optical axis.

The Wave Aberration Function is represented in different sets of coordinates
and it is expanded in different series of functions, depending on the
symmetry and the geometry of the problem. A standard representation is the
Taylor polynomial expansion in polar coordinates [60]:

W(r,0) = Wy, +Wyyor* +Wis 7> cos @+ W,p,r? cos” @ + Wy, + Wy, 7 cos 0 +...
2.2)

where Wy, are the wave aberration coefficients, » and € are the polar
coordinates in the transverse plane and the different terms correspond to the
primary aberrations (defocus, spherical aberration, coma, astigmatism, field
curvature and distortion respectively). The radial coordinate » is very often
normalized to the radius a of the circular optical aperture (pupil) p=r/a.
Higher order terms are usually neglected. The terms in the Taylor series do
not form an orthogonal set of basis functions and are not recommended for
data fitting of experimental measurements of wave front aberrations.

Instead, Zernike polynomials, so named from the scientist Frits Zernike who
first used them in 1934 [61], form a complete set of functions or modes that
are orthonormal over a circle of unit radius and are convenient for serving as
a set of basis functions. This makes them suitable for accurately describing
wave aberrations as well as for data fitting. They are usually expressed in
polar coordinates, and are readily convertible to Cartesian coordinates. These
polynomials are mutually orthogonal and therefore mathematically
independent. Zernike polynomials Z;,, are normally expressed in polar
coordinates (p ,0) where 0 <p<1 and 0 < 6< 2mn . Figure 2.3 shows the
coordinate system of the unit circle over which they are defined.
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Pupil Coordinate System Normalized Pupil Coordinate System
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x =1 cos(d) x = p cos(H)
y =r sin(6) y = p sin(6)
6 = tan’'(x/y) 6 = tan’'(x/y)
r = (x2+y2)2 p =1/a=(x2+y?)12

Figure 2.3: pupil coordinate system

So, in the two dimensional domain over the circle of unit radius p=r/a, each
continuous function can be expanded as a linear combination of Zernike
polynomials. This means that each phase front profile, whatever complicated,
has a wave aberration function that can be expressed as a weighted sum of
Zernike polynomials through suitable coefficients:

Wip.0)=Y S Wz"(p.6) (2.3)

n=0 m=-n

being k the polynomial order of the expansion and W," the coefficient of the
Z," mode. Table 2.1 shows the mathematical expression of the Zernike
polynomials up to the fourth order, and their physical meaning relative to the
primary aberrations. The order of the polynomial is n, the number is J and m
1s the factor multiplying the angle 6.

The 0 order is a constant, and corresponds to a rigid translation of the wave
front. The first order corresponds to the tip-tilt of the wave front, that is a
rigid rotation around the x and y axis (being z the optical axis). The second
and third order correspond to defocus, astigmatism and coma, while the
fourth order represents spherical aberration and defocus. Figure 2.4 shows the
surfaces of the first polynomials corresponding to basic optical aberrations.
In the real case, the aberrated wavefront is a generic superposition of those
fundamental modes
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n|J | M Zinm Aberration

0 0 0 1 Costant

1 1 -1 2psin@ Tilt y, distortion

1 2 1 2pcos @ Tilt x, distortion
23| 2 V6(p’sin26) Astigmatism +45°

2 4 0 \N32p° = 1) Field Curvature, Defocus
2 5 2 V6(p’cos26) Astigmatism 0°, 90°

3 7 -1 \8(3p® — 2p)sin® Comay

3 8 N8(3p® — 2p)cosO Coma x

4 | 12 0 \5(6p* — 6p” +1) | Spherical aberration, defocus

Table 2.1: Zernike Polynomials

L i

Figure 2.4: wavefront of the basic aberrations
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2.2 Scheme and operation of a standard AO system

The static aberrations that affect the optical systems are nowadays well
corrected by optical designers thanks to techniques of ray tracing simulation
based on powerful software [62], [63]. Skilled technicians very often design
high quality optical systems where the resolving power is close to the lower
limit imposed by diffraction.

Nevertheless, stochastic phase front aberrations occur when light passes
through non homogeneous and non uniform refractive materials, whose index
of refraction randomly depends on space and on time, that is n=n(r,?).

—
R -
~
plane wave n=n(r,t) distorted wavefront

Figure 2.5: plane wave distorted by a non homogeneous refractive medium

Let us consider, for example, the star light which passes through the
atmosphere of the Earth before being collected by the telescopes. Because of
the its turbulence, the index of refraction of the atmosphere has a stochastic
time variation. Hence light coming from the stars, which in the ideal case
should be represented by a perfect transverse plane wave, in the real case
undergoes optical aberrations and reaches the detectors on the ground with
perturbed wavefront.

Such stochastic and time varying aberrations cannot be statically
compensated by the optical designer, but need a dynamical correction of the
wavefront distorted during its optical path from the source to the detector.
This correction is performed using sophisticated techniques developed in the
70’s and called Adaptive Optics (AO) [64],...,[67].

Although several kinds of AO systems have been proposed in the last years,
depending on the available technology, on the cost and on the specific
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application, they are all based on a standard configuration where we
recognize the main components and the fundamental mode of operation.
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Figure 2.6: general scheme of an AO system. The light beam is corrected by AO while
running through its optical path and reaches unperturbed the detector.

With reference to figure. 2.6, the AO system is represented in the dashed line
rectangle and stands between the source and the detector for the wavefront
correction. It is made of three main components that are the wavefront
sensor, the wavefront actuator, and the signal processing unit.

The principle of operation is based on the typical scheme of a closed loop
automatic control.

The incident perturbed beam is corrected by the wavefront actuator and then
sent to the detector, apart from a derivation deviated to the wavefront sensor
for the measurement of the phase front profile necessary for the generation of
the error signal that is supplied to the central unit. Here the signal is
processed and the measured phase profile is interpreted in terms of
superposition of the Seidel aberrations. Usually the signal processing consists
in the calculation of coefficients which best approximate the wave aberration
function to the expansion in Zernike polynomials. Once the Zernike
coefficients are calculated, the driver signal is sent to the actuator, which
deforms the wavefront in such a way to compensate the original aberration.
In fact, the profile forced by the actuator is the conjugate of the incident
aberrated wavefront, obtained by applying weighted primary aberrations
which are exactly the opposite of those measured by the sensor.
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In such a way, AO acts as a feedback control system on several degrees of
freedom for the simultaneous correction of the aberration modes.

2.3 Main components and operative parameters

We have seen that an AO system is made of three main components, which
are required to implement the basic functions of an automatic control.
They are in particular:

1. the sensing element, for the measurement of the wavefront aberration
. the actuating element, for the correction of the wavefront aberration
3. the reconstructor, made of a processing unit which acquires and
processes the error signal from the sensor, and sends driver

commands to the actuator for the phase front reconstruction.

In this section we present the general characteristics of the standard
wavefront sensors and actuators; the processing unit is differently
implemented depending on the typical application, and therefore discussion is
delayed to the Chapter 3 where we present the specific processor designed for
our AO system.

2.3.1 Wavefront Aberration Measurement

The wavefront sensor measures the discrepancy of the actual phase pattern
from the ideal profile, that is the Wave Aberration Function.

The Shack-Hartmann sensor [66],[67],[68] is the standard method for
wavefront sensing in AO, while other are techniques like the shearing
interferometry [66],[67] are rarely used.

A schematic of the Shack-Hartmann system is shown in figure 2.7.
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Figure 2.7: Shack-Hartmann Sensor and Lenses Array

The incident light beam is sent to an array of small identical lenses, and each
one of them collects a part of the total beam and focuses it on the focal plane.
The lenses lay all in the same transverse plane, and therefore the focal plane
i1s the same, and corresponds to the sensitive surface of a light detector,
typically a CCD. If the incident beam is an ideal transverse plane wave, all
the spots focused on the CCD sensitive surface coincide with the ideal array
of the focal points of the lenses, as seen in the case a) of figure 2.7. Instead, if
the incident beam has an aberrated phase profile, the spots focused on the
CCD have a displacement Ax and Ay from the ideal position, as showed in
the case b).

From the measurement of Ax and Ay it is possible to calculate the actual wave
aberration function. In fact, let us consider the centroide C, that is position of
one spot focused on the CCD. The two coordinates (xc, yc) of the centroide

43



are given by the weighted average of the intensities around the ideal

reference position:

Nx Ny Nx Ny
25, 2 20,
== =l el
xC M Ny s yC - Nx N (24)
I i I i

In eq. (2.4) x; and y; are the coordinates of the single pixel of the CCD, I; is
the corresponding intensity and N, and N, are the number of pixels around the
ideal position which we use in the weighted average for the calculation of the
centroide.
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Figure 2.8: local displacement of the spot in a Shack-Hartmann wavefront sensor

The lenses array converts the local sections of the wavefront into focused
spots at the CCD. If the incident wavefront is a perfect plane then the focused
spots are not displaced from the optical axes of the various lenses. Instead, an
aberrated incident wavefront produces a non-zero spot displacement. So for
each lens there is an x-displacement, 4x, and a y-displacement, Ay, as shown
in figure 2.8, where, for the sake of simplicity, we consider only the one
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dimensional displacement Ay at fixed coordinate x;. By simple
trigonometrical considerations, it is easy to see that the displacement divided
by the focal length of the lens is equal to the local slope of the wavefront
function W(x,y), or:

oW (x,y) _Ax(x,y) . OW(xy) _ Av(x.y)
Ox f ’ oy S

(2.5)

Therefore, once the displacement data have been measured by the CCD, we
can integrate the partial derivatives and obtain the Wave Aberration
Function, which can be fit to a Zernike polynomial expansion like:

W@ﬁ:Zm;@w (2.6)

The expansion coefficients WW; are determined by the scalar product of W(x,y)
with the corresponding Zernike polynomials Zj(x,y) and permit to estimate
the total aberration in terms of normal modes.

2.3.2 Actuators for wavefront aberration control

The actuator of the AO system is a transducer for wavefront control. In terms
of geometrical optics, this corresponds to change the optical path of the rays
of light in such a way that some of them are retarded or anticipated in
comparison to the others. This can be achieved using one of the two laws of
refraction or reflection. In fact, by refraction we can modify the speed and the
angle of light propagation, while using reflection we can lengthen or shorten
the path of the rays, and also modify the direction. In both cases, the optical
path is suitably changed in order to correct the phase aberration.

Techniques based on refraction make use of electro optic materials, such as
liquid crystals, where we can change the index of refraction applying
different levels of voltage. In this way, we can retard, in only some parts of
the transverse plane, the rays of light, and therefore we achieve the necessary
wavefront correction. A typical electro optic crystal is made of silicon
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bismuth oxide (Bi;25i02p). Such kind of actuators present spectral absorption
and index of refraction strictly dependent on the wavelength. So, high
intensity monochromatic light can only be corrected using that technique,
which is not commonly adopted.

On the contrary, actuators based on reflection are widely used and we can say
that they are the only kind of transducers used in AO [69]. These actuators
are essentially deformable mirrors, whose profile can be changed according
to suitable geometry. In such a way, by assuming a transverse profile which
is the conjugate of the actual wavefront profile of the incident light, the
earlier rays must run a longer path under their reflection, and therefore the
reflected wavefront is corrected by aberration.

Several technological solutions have been proposed for the implementation
of deformable mirrors. In the current scenario, we find different models,
depending on the cost, on the application and on the expected performances.
A deformable mirror for telescope application, where a diameter of several
meters is required, has different characteristics from a mirror used to
compensate aberrations of a laser spot of few millimetres.

The first large scale mirrors proposed for astronomy had the reflecting
surface made of discrete segments moved by pistons (segmented mirrors). In
the earlier model, each piston moves its own segment ahead and back, while
in more sophisticated systems each reflective part is moved by two or more
pistons and can be tilted. So, it permits to achieve more complex mirror
profiles which better match the requested pattern for correction. But, in any
case, these actuators suffer for a loss of light energy in the gaps between the
segments, and this is a serious limitation when low intensity light must be
corrected.

a) b)

] [ ]

0220

Figure 2.9: segmented a) single piston and b)multi piston deformable mirrors

Recently, small scale deformable mirrors have been built using MEMS
(Micro Electro Mechanical System) technology [70], [71] for novel
applications on micrometer scale such as the correction of the human eye
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retina imaging in ophthalmoscopy. This kind of mirror has millimetric or sub
millimetric reflective elements moved by piezoelectric actuators.

Figure 2.10: MEMS segmented mirror

Another class of deformable mirrors is made of continue reflecting
membrane devices that are widely used in laboratory and industrial
applications. The most common types are the micromachined membrane
deformable mirror (MMDM), the piezoelectric deformable mirror (PZT) and
the bimorph mirror (BM).

The first consists of a micromachined multilayer silicon nitride membrane
covered with a special reflecting coating that is usually aluminium. It is based
on the technology of silicon bulk micromachining and is suspended over an
array of electrodes that locally deform the membrane for capacitive effect.

Si membrane coated with Al

e

electrode

Figure 2.11: micromachined membrane deformable mirror (MMDM)
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The PZT mirror is made of a reflective quartz plate with free edge, deformed
by actuators of piezoelectric material, like lead zirconium titanate, which act
as pistons, as they push or pull the membrane upon voltage application.

quartz reflective plate

/
S ———
electrode \Tl:l I:I I:I I:l l:l‘lv\PzT actuator

2

Figure 2.12: piezoelectric deformable mirror (PZT)

The bimorph mirror is made of two piezoelectric layers of ceramic lead
magnesium niobate (PMN) actuated by electrodes on the back face and the
front face, which induce an electric field into the material. For the presence
of the electrical field, the PMN deforms and the reflecting surface assumes
the desired profile.

around electrode polarized front face electrode

\ N <«4—— PMN material

;V;_ back face electrode

Figure 2.13: bimorph mirror (BM)

2.3.3 Operative parameters and performances of an AO system

Several parameters characterize an AO system in terms of operation and
performance. Most of them have general validity and can be applied to any
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system, while some others strictly refer to AO for telescopes, that for
historical reasons is to date the reference field of that technology.

The Fried parameter, or coherence length ry, is the transverse dimension, at
the input pupil of the imaging system, within which the wavefront is
correlated. Fried’s coherence length is a widely used descriptor of the level of
atmospheric turbulence and depends on the atmospheric seeing conditions.
This parameter is dependent on the wavelength of the incident light,
according to the law )~ 1%°, and usually ranges between 10 and 20 ¢m for
visible light.

The isoplanatic angle 6, in astronomy, is the maximum angle separating two
coherent sources with the same wavefront perturbation. Therefore, in the case
the original source which we want to correct it too weak, we can use a
reference star within the isoplanatic angle to measure the wavefront
aberration.

The number of subapertures N is the minimum quantity of wavefront
samples necessary to obtain a good measurement of the aberration. It depends
on the Fried parameter and on the aperture D of the system, following the
rule N ~ (D/ro)2 )

It is also very important the bandwidth of the automatic control which must
be large enough to correct fast wavefront fluctuations.

In the table below we list typical values for a telescope of aperture D=8
meters.

A (um) 0.5 5 10
Fried parameter: ry (cm) 10 160 360
Time to correction: 7 (s) 0.006 0.095 0.220
Isoplanatic angle: @ (arcseconds) 1.8 30 70
Number of subapertures: N 6400 12 4

Table 2.2: operative parameters of an AO system for a telescope of diameter D=8meters

We see that the correction of visible light (1=0.5 wpm) sets very strict
conditions, while Infrared (IR) and Far Infrared (FIR) (4 = 5+10 um) allow
to relax the statements.

In particular, we remark that for visible light, a bandwidth of the order of /
kHz is required and a large number of subapertures (6400) must be provided
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for the Shack Hartmann wavefront sensor. These two requirements are not
easy to satisfy contemporarily, because if we increase the number of
subapertures the processing unit has to calculate much more data, and this
can result in a significative reduction of the bandwidth of the control speed.
Therefore, a complex design should provided for an optimized system. It is
also worth noting that the isoplanatic angle is very small, which means that
the low intensity of the star light is a critical issue; we will discuss this matter
in the following section, as it refers to the specific case of AO for astronomy.

The characterization of an AO system should also evaluate the residual errors
of the components [64]. In particular, four sources of perturbation affect any
AO system and are respectively the fitting, the temporal, the isoplanatic and
the sensor noise error. The fitting error is due to the technology of the
deformable mirror which cannot exactly match the shape of the distorted
wavefront. The control bandwidth limits the correction of very fast
aberrations and this induces temporal errors. In astronomical applications,
isoplanatic error occurs when the wavefront beacon stands in a position not
completely coherent with the target star. Finally, the sensor noise error is the
intrinsic noise of the wavefront detector.

If we assume that these four errors are uncorrelated and have a Gaussian
distribution, the total error of the AO system is expressed as the variance o”
in units of square radians as:

2 2 2 2 2
Usystem =0 fitting + Utempora/ + Uisoplanatic + Gsensor_noise (2 7)

To evaluate the fitting error, we must consider that the more Zernike modes

are corrected into the deformable mirror, the better the geometry of its

surface matches the conjugate pattern for the wavefront compensation. Thus,

if Nz 1s the number of completely corrected Zernike modes, the rms of the
fitting error is:

D 5/3
0.2944N ;3" LJ

Zern
T

O-ﬁtting = 271_ (28)

being D the aperture diameter and 7, the Fried parameter as usual.

If we plot the fitting error against the number of corrected Zernike modes, we
seen that using the first 10+15 modes is enough to achieve the lowest
possible level of error.
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Figure 2.14. residual fitting error

The temporal error is related to the control bandwidth f;,53 and to the
frequency fj of the aberration according to the following equation:
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Figure 2.15: residual temporal error. f) frequency of the aberration, f;,3 bandwidth of the
control system
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From figure 2.5 we see that if the control bandwidth is higher than 10 times
the perturbation frequency, that is fy/f345<0,1, the residual error drops below
0,1 radians.

The isoplanatic error is related to the distance Ax between the target star and
the reference beacon. If D is the optical aperture and L the distance of the
target from the sensor, the residual error for isoplanatic effect is:

%
D j (2.10)

O-isuplanatic ~ (L _ Ax
The error, as expected, decreases with decreasing Ax, which occurs when the

beacon get closer to the object.
Finally, the Shack Hartmann sensor introduces the following noise:

24
Gsemor noise = 296 225+ Q_D 1 VO > D
R SNR A
2.96 oY (V]
Gsensor noise — 225 T | ' rO < D
- SNR 7, A
2.11)

with SNR Signal to Noise ratio of the sensor, D aperture of the imaging
system, ry Fried parameter, A wavelength and € angular size of the source.
For a coherence length rp=10cm, and a wavelength A=0.5 um, two curves are
plotted in figure 2.16 for two values of the Signal to Noise Ratio
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Figure 2.16: residual noise sensor error

We can see that the error induced by the sensor noise can be lowered using
an high SNR and a subaperture diameter D smaller than the coherence length.
For more details, which clearly overcome the scope of the present work, the
interested reader is addressed to the referred bibliography.

2.4 Fields of application of AO

The first known Adaptive Optics system in the history was made in 212 BC,
during the Syracuse siege, when Archimedes had the idea of using mirrors to
focus the sun light and burned Roman ships. This was also the first use of
Optics for Military applications.

Several centuries later, in 1730, Newton in his work Optiks wrote that
Telescopes could not improve their performance and overcome the limitation
of producing blurred images from astronomical objects, because of the
turbulence of the atmosphere that distorts the wavefront of the light coming
from the stars.

Nevertheless, even if the problem of the atmosphere blurring was know, there
was not any technology able to solve the problem and only two centuries
later, in the middle of 1900, Adaptive Optics was seriously investigated as a
technology effective for the correction of the aberration in imaging systems.
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Babcock first proposed AO in 1953 [72], but much of the technology
remained classified by the Department of Defence of the United States and
only after the declassification in 1991 the scientific research started a
complete investigation.

Astronomy and Telescopes

The first non military application of AO has been in the field of astronomy
and nowadays several large telescopes have been fitted with AO systems
[73],[74].

The atmosphere is a mass of air which envelops the Earth and, due to the
turbulence, is a not uniform and not homogeneous medium of propagation for
light. This means that the index of refraction varies in time and in space
along the path passed by the rays of light running from the stars to the ground
telescopes.

This affects the quality of the image collected by the detectors and then
reduces the resolving power much below the limit of diffraction. So, while in
an ideal telescope the angular limit of detection « is given by the input pupil
diameter, in a realistic uncorrected telescope, atmosphere blurring
dramatically increases « as:

a :1.22%—>1.22£ (2.12)

7o

where ry is the Fried parameter that replaced the diameter D.

This means that, although we spend much money and realize a large scale
telescope with 8 m diameter to get the angular resolution o = 1.5-107
arcseconds given be normal diffraction, the actual value, in the best
atmospheric seeing condition 7p=20cm, is not less than 0,6 arcseconds.

One possibility to overcome this problem is to implement space telescopes
like Hubble which orbit outside from the Earth and therefore are not affected
by atmosphere blurring. But, such kind of telescopes requests high
technology much money for the construction, the commissioning and the
operation.

On the other hand, ground telescopes have widely increased their
performance using Active and Adaptive Optics, and nowadays they reach the
best possible resolution with costs widely lower than those necessary for
space detectors.
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In general, even if a good design avoids most of the static aberrations
discussed in Chapter 1, the quality of the image in terrestrial telescopes is still
affected by two types of problems.

First of all, there are several quasi static disturbances due to the intrinsic
nature of the experimental set up. In fact, perturbation of the image for loss of
the focus, decentralization and deformation of the optical elements can be
caused by mechanical, thermal and optical effects.

Nowadays, a suitable design and construction of the whole system, where
several conditions are strictly respected, assure that the optical performances
are long term maintained against the aging and the environmental
perturbations. In particular, it is important the choice of high quality
components, with high mechanical stiffness and low thermal expansion.
Also, attention must be put in order that components dissipating heat (like
motors and power electronics) must stand far from the optics, and that the
whole system, once aligned, is protected from wind by the use of covers.
Unfortunately, such structural adjustments are very expansive, especially for
the large size telescopes that have been built in these last years, with primary
mirrors of 4 meters necessary to collect as much optical power as possible.
The solution to relax the strict statements of the structure and in the same
time to assure the quality of the image against the quasi static perturbation
has been found by using Active Optics. This technology is based on the idea
of installing into the telescope some optical elements which are
autocorrective, as they can automatically compensate the slow deviation from
the initial optical alignment. The quasi static nature of the perturbation allow
to use elements moving at very low frequencies, typically 0.05Hz or less.
Telescopes using Active Optics are the 3.5 m diameter New Technology
Telescope ESO at La Silla (Cile) since 1989, the 10 m primary mirror Keck
Telescope at Mauna Kea , Hawai since 1992 and the four 8.2 thin mirrors
VLT operating at Paranal (Cile).

In addition, Adaptive Optics has been applied to these telescopes for the
dynamic correction of aberrations induced by the turbulence of the
atmosphere. Figure 2.17 shows the schematic of a typical AO system for
telescope.
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Figure 2.17: schematic of an Adaptive Optics system for telescope

The initially plane wavefront, travelling 20 km through the turbulent
atmosphere, is strongly perturbed and, across the diameter of a large
telescope, the phase error can be several microns large. In a typical case AO
should detect low intensity star light and correct a minimum wavefront
distortion of 1/50 micron in 1 kHz bandwidth. This statements require a very
sophisticated and performing system.

Because of the weakness of the target, it is common to collect light from a
reference star of sufficient intensity, provided that it stands within the
isoplanatic angle. In this case, the light from the reference beacon, usually
named Natural Guide Star (NGS), 1s deviated by a dichroic beam splitter to
the wavefront sensor. The control system sends the deformable mirror the
actuator commands so that the light of the target, although of low intensity,
can reach the detector with a corrected phase profile.

As the isoplanatic angle for visible light is very small, unless the telescope is
directed to a big cluster of stars, the probability of finding a coherent Natural
Guide Star is not more than 0,5%+1%.

Advanced AO systems are promising to overcome this limitation using
artificial reference stars, also referred to as Laser Guide Stars (LGS) [75].
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The proposed method is to direct a pulsed laser beam to the sodium atoms
present in mesosphere, at an altitude of about 90 km, and to collect the back
scattering produced by those atoms as they go into resonance with the laser
light. Alternatively, the laser beam is focused at an altitude of 20 km and
excites molecules and particles located in the low stratosphere; also in this
case back scattering occurs for Rayleigh diffusion and the artificial reference
star is made. Such a method allows to achieve the beacon very close to the
astronomical target, and the scattered light is deviated to the wavefront sensor
to produce the error signals.

The diameter of the deformable mirrors usually does not exceed 20 cm and
the number of actuators (usually piezoelectric pistons) is chosen upon a
trade-off between the precision of the correction and the budget. Difficulties
and costs rapidly increase passing from IR to the visible light. In fact, for an
astronomical object emitting IR radiation, an 8 meters diameter telescope
achieves a near perfect correction with only ten actuators. Instead, for visible
light over 6400 pistons are required, and the same number of subapertures for
the wavefront sensor, which in turn should be very sensitive and low noise in
order to detect the perturbed wavefront of the weak reference beacon.

Also, the processing unit has strict statements which correspond to costly
hardware and software. To get an idea of the high capacity of calculation
required, let us consider that for IR light correction the processor must
elaborate per each millisecond a set of about ten commands to send to the
actuator; the number largely increases for visible light correction, as in this
case in the same meanwhile of one millisecond the processor must elaborate
a set of 6400 commands, which means its computing power must exceed
several billion operations per each millisecond. It is clear to the reader how
difficult and expansive is to realize such performing systems.

Anyway, the use of AO in ground telescopes has been widely diffused in the
recent years, and the quality of the images has reached the limit of diffraction
for IR radiation and is near to for visible light too. Some images from ground
telescope are even better than those collected by space telescopes, as we can
see in figure 2.18, where we see that Keck Telescope with AO produces an
image of Titan, Saturn’s largest moon, with a quality higher that the image
produced by Hubble Space Telescope.
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Conventional Telescope Hubble Space Telescope  Keck Telescope with AD

Figure 2.18: image of Titan, Saturn’s largest Moon, by a) conventional telescope, b) Hubble
Space Telescope and c) Keck Telescope with AO

New fields of application

AO is being investigated for application to new interesting fields, such as
biomedical imaging, industrial processes and laser control [76]. In the recent
years, AO systems have been integrated into commercial products, including
cameras, CD players and large TV screens.

Following is a list of the principal applications that one can find in the current
scenario.

» Medical imaging
- ophthalmoscopy, Vision Science
- oncology
» Consumer goods
» Industrial processes, quality control, metrology
» Laser control for
- communication
- high precision measurements in big experiments like gravitational
wave detection
- environmental monitoring

The detailed discussion of each of these fields is clearly beyond the core of
our work, so stop our attention to some of the applications that our
experimental facility could be proposed to.

Many people are increasing their interest in AO for medical imaging, and in
particular its applications to ophthalmoscopy and Vision Science, where
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important results have already been achieved [77], [78]. Several institutes are
following this field of research and development, especially in U.S., like the
Center for Adaptive Optics at the University of California, the Center for
Visual Science, at the University of Rochester [79], and also at the University
of Huston. Novel ophthalmic instruments equipped with AO have been
demonstrated and are now in use by clinicians.

- \"" L o 97 channel

i wavelront sensor
retinal camera ’

Figure 2.19: experimental AO set up for ophthalmoscopy at the University of Rochester

Two main goals are expected from the application of AO to human eye
sciences: the vision correction and the retina imaging.

Vision Science is committed to the vision improvement. Traditional
technology only operates standard correction on defocus and astigmatism,
while AO systems are expected to achieve higher order aberration reduction
tailored to individuals. Some people say that one day AO will enable “super”
vision, giving eye more capability it has in normal condition [80].

The ability of AO to correct the monochromatic aberrations of the eye has
also induced scientists and clinicians to investigate new opportunities to
image in vivo the normal and diseased retina at unprecedented spatial
resolution [81],...[84]. Currently, in the traditional in vivo retina imaging
performed by ophthalmoscopes (fig. 2.20), it is not possible to achieve a
spatial resolution below 5 gm, and this does not allow to clearly detect the
fundamental elements of the retina, that are rods and cones whose dimensions
are about / um.
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Figure 2.20: ophthalmoscopy of the human eye

The protective outer called cornea is transparent and allows light to enter the
eye through the pupil, the circular opening in the center of the front part,
larger or smaller depending on the light brightness. The probe beam entering
the pupil passes through the /ens and is focused on the retina, which is
innermost layer in the eye. It converts images into electrical impulses that are
sent along the optic nerve to the brain where the images are interpreted. The
retina can be compared to the film of a camera. It is composed of light
sensitive cells known as rods and cones interconnected by a complex mesh of
neurons that provide early stage visual processing. Rod cells are primarily in
the outer retina, do not discriminate colours, have low spatial resolution,
support vision in low light (“night vision”), are sensitive to object movement
and provide peripheral vision. Cone cells are densely packed within the
central visual field, function best in bright light, process acute images and
discriminate colours.

This optical system has a spatial resolution limit of 5 gm set by the law of
diffraction, » = 1.22f /D, being A ~0.5 pm the wavelength of the probe light,
f~ 17mm the focal length and D ~ 2-3 mm the normal aperture of the pupil.
This is also the resolving power of the ophthalmoscope which interrogates
the eye using the back scattered light of the beam focused on the retina. If we
want to minimize the diffraction, we need to force the patient to enlarge the
pupil up to 7 mm. In the ideal case, we would obtain a resolution » = 1.5 um,
small enough to detect the retina’s details. But, in the real case, the
enlargement of the pupil causes the retina imaging to suffer for ocular
aberrations, and also for vibrations of the eye which stands in a not natural
position. This effects limit again the resolution to about 5 um.
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The application of AO to the novel ophthalmic instruments allows to correct
aberration and achieve the spatial resolution of /um. The retina imaging is
largely improved, as shown in the figure below.

Figure 2.21: images of the human retina without (left) and with AO (vight). Photoreceptors
are clearly visible in the corrected image.

Other fields of biomedical imaging like oncology are getting advantage by
application of AO to the diagnostic devices. The improved resolution in the
detection of small details of the human body can help in the early diagnosis
of cancer.

Interesting applications of AO have been demonstrated in the field of
industry, especially for metrology and quality control. AO techniques have
been adopted to measure the flatness of silicon wafers through the
measurement of the wavefront distortion of the light beam reflected back by
the wafer surface. The same method could be used for dynamic
measurements of vibrating surfaces, provided that the bandwidth of the
system is wide enough to follow the fast variations of the vibrating profile.
The quality control can also be extended to the environmental monitoring,
where AO has been proposed to measure flows of particles, gases and heat,
detected by the variation of the index of refraction that they produce in air.
AO is also applied to free space optical communications, where lasers are
used in air between two optical fiber networks [85]. In fact lasercom systems
for distances of several km are affected by beam spreading and scintillations
induced by the atmospheric turbulence. Such problem cannot be compensated
increasing the optical power because of eye safety and power consumption
limitations, while considerable improvement is expected using AO
correction.
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Laser shaping is also performed by AO techniques, to improve the beam
collimation and reduce the geometrical aberrations. This can help in
industrial fields where high power lasers are used for cutting, welding and
fusion.

2.5 State of the art and future outlooks of the AO technology

So far, we have presented an overview of the current technology of AO,
showing the principle of operation, the main components, the classical use
for astronomy and the new fields of applications.

We like now to finish this chapter with a summarize of the future expected
advances, which promise to be very interesting in the next years, as they
involve not only the basis research in Physics, but also the technological
development and the industrialization where Engineering is committed.

Many technological challenges regard the AO for astronomy, where the main
problems as seen before concern with the low brightness of the target star, the
necessity of small phase correction (1/50 micron), the rapid variation of the
wavefront due to the speed of the atmosphere turbulence (t < 1 ms), the small
percentage of the sky covered by the isoplanatic angle at visible wavelength
and the large dimensions of the mechanical structures in Very Large
Telescopes (VLT) which require primary mirrors exceeding 8 m, big and
costly hardware components, and powerful processing units.

R&D has undertaken to develop fast and low noise detectors in order to sense
faint reference stars and very fast processors exceeding 10°+10'® operations
per each millisecond.

Particular attention is dedicated to the improvement of the Deformable
Mirror of large diameter over 30 cm and driven by thousands of actuators. It
is clear that at the best of the present technology the speed of response of the
deformable mirror is the principal limit to the bandwidth of the whole control
system, as the sensor transfer function can be considered absolutely flat over
10kHz, and big improvements have already been obtained in the velocity of
the processing unit. The new generation of mirrors promises to reach
bandwidths of several kilohertz.

As concerns the methods for artificial reference beacons, LGS technology is
now operating with high power reliable sodium lasers at a number of
Observatories, but routine demonstration of their potential for getting very
high sky coverage has not yet been achieved. A new advanced technique,
called Multi-Conjugate Adaptive Optics (MCAQO), which would permit to
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obtain in the same time 3D data (2D spatial and 1D spectral information) is
still in its initial experimentation.

At the University of Durham, it has been started a project of research called
FAOS-Future Adaptive Optics Systems which is a collection of initiatives
investigating the possibility of hardware improvement for AO systems. In
fact, they consider that the requirement of evolution in CPU power for future
AO systems surpasses the CPU scaling predicted in the ordinary HW/SW
technology, and therefore they want to match the traditional software AO
control loops with dedicated hardware acceleration to improve price,
performance and physical size tradeoffs. They assess high speed (10kHz),
compact and highly embedded AO systems.

AO techniques have allowed remarkable results in Vision Science for high
resolution imaging of the human eye, and in particular to obtain in vivo
images on the micrometer scale for earlier diagnosis and treatment of retina
diseases. The key component of AO for Vision Science is the adaptive
mirror, which must have operative parameters, size and cost very different
from those traditionally implemented for telescopes. In particular, deformable
mirrors for astronomy are expensive, costing $ 100.000 for a 100 channel
system, and have large apertures of the order of 10+30cm. Moreover, they
have a maximum central deflection of about 5 um, which is usually sufficient
for the wavefront correction of the star light. On the contrary, deformable
mirrors for Vision Science should have an aperture comparable with the
eye’s pupil (~ several millimetres), should be compact, low cost, and capable
of moving at least 12 um to correct the defocus of the eye which can reach
peak to valley wavefront errors of up to 25 um (the effect of correction is
doubled on reflection). In order to fulfil these strict statements, recently it has
been proposed to make use of the MEMS — Micro Electro Mechanical
Systems technology, which promises very low cost, high reliability,
integrated into chips and performing mirrors. Texas Instruments has realized
a digital micromirror device comprising 1 million mirror segments; it is a
high technology microsystem, used for high quality displays, but cannot be
used for AO because of its bistable nature. Indeed OKO-Flexible Technology
manufactures a family of Micromachined Membrane Deformable Mirror
(MMDM) [86], [87] based on the silicon bulk micromachining technology
[88], [89]. It has a membrane electrostatically driven by an array of actuators
and is suitable for AO application to Vision Science, because it has a
diameter of the order of 1 cm , reaches central deflections of the order of
10+15um and has a bandwidth up to 500 Hz. We will come back to this
argument in the following, as we have adopted one of MMDM mirrors
produced by OKO in our experimental prototype. Liquid Crystal Devices
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[90] are also investigated for wavefront actuator implementation, as they
perform very high spatial resolution and then permit to correct higher order
aberration modes.

Many AO applications are being also explored in the field of consumer
goods, such as display and data storage devices, as well as in the field of
quality control of industrial processes (metrology, imaging through turbulent
media, etc). Clearly in this case the strong effort is not only devoted to
improve the operative performances, which are usually sufficient, but also
and mainly to realize a low cost, compact and reliable device within a reliable
supply chain, in accordance with typical concepts of industrial engineering.

In Table 2.3 we summarize the main issues here discussed per each field of
application.
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Field of
application

Current issues and expected advances

Astronomy

VVV ¥V V VY

big and costly structures, powerful CPU

fast and very low noise detectors for fainter reference
stars.
very fast processors exceeding 10°<10'" operations per
each millisecond.

Deformable Mirror of 30cm diameter, 10° actuators,
bandwidth over 1kHz.

Laser Guide Star (LGS) for very high sky coverage
Multi-Conjugate Adaptive Optics (MCAO) for 3D data
FAOS-Future Adaptive Optics Systems Project at the
University of Durham

Vision
Science

YVVVY V 'V

deformable mirrors traditionally developed for large
telescopes

aperture comparable with the eye’s pupil (~ several
millimetres)

compact, low cost

maximum deflection over 12 pm

MEMS technology

Liquid Crystal Devices: high resolution, spectral
absorption

Consumer
goods and
industrial
processes

Y VY

low cost, compact and reliable devices
reliable supply chain

Laser beam
control

manipulating the shape of high power lasers for industrial
processes

lasers for communication systems

reduction of laser jitter noise in the Virgo detection
bandwidth 10Hz +10kHz.

Table 2.3: future developments of Adaptive Optics
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Chapter 3

Project of the Adaptive Optics system based on
interferometric techniques for the automatic control
of laser beam jitters in air

We have seen that the applications of AO in the recent years have gone
beyond the classical use of astronomy and have entered several fields of
science and technology, giving significative benefits to imaging systems
where optical quality is a strict statement. We have also seen that interesting
outlooks are expected from the implementation of AO to the laser control, as
the possibility of manipulating the intensity profile will open new scenarios
in the field of high power lasers for industrial processes and in the field of
laser based communications.

Nevertheless, even if performing AO systems have already been achieved
and new ones are promised to be developed in the next future, none of them
seems to be suitable for Virgo application, where wideband and low noise
control of the laser beam jitters is required.

From the scenario explored in Chapter 2, it appears that all the efforts for the
development of AO technology have been focused to implement performing
actuators and processing units, while no attention has been paid to the
wavefront sensor, because the standard Shack Hartmann system is commonly
accepted as the best solution. On the contrary, we have previously said that
the usual Shack Hartmann technique is quite unlikely to be used in the field
of GW interferometric antennas because low sensitivity and band limitations
are difficult to overcome. For example, even considering a reasonable
upgrade of the state of the art, the Shack Hartmann sensor used for the
measurement of wavefront global tilt has a residual noise in the region of the

tens of Hz of the order of 10~ rad / v Hz [76], which corresponds to the same

order of magnitude of the jitters measured in a free laser operating in quiet
laboratory conditions [53].

Starting from this considerations, we have developed an Adaptive Optics
system where the phase front detection is performed using an interferometric
technique alternative to the Shack Hartmann method. Our Project consists in
the design of the system, the implementation of an experimental prototype
and the characterization of it in order to validate the theoretical model and to
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demonstrate the effectiveness of the AO control in compliance to Virgo
requirements [91], [92], [93].

In this Chapter, we present the design of the interferometric AO system based
on the Michelson configuration.

A small section is devoted to recall the basic concepts of Gaussian Optics,
from the laser beam properties to the laws of propagation in air.

After that, starting from the supposition that small jitters can be described as
perturbations of the fundamental Gaussian mode, we demonstrate a
correspondence between the higher order Hermite Gauss modes and the
Zernike polynomials that expand the phase profile. That is, a laser beam
affected by jitters can also be interpreted as a light wave with aberrated
wavefront. This allows to design an AO system which measures the laser
beam perturbations in terms of higher order Hermite Gauss modes and
calculates the commands for wavefront correction in terms of Zernike
polynomials.

We present the optical design of the proposed AO system and in particular
the interferometric technique for wavefront detection. This technique is based
on the interference of the two beams of the Michelson locked on the middle
fringe working point. The intensity at the output of the interferometer is read
by a pixellated photodiode which produces a set of photocurrents that are
proportional to the phase difference of the two beams in a specific portion of
wave front area. These photocurrents are amplified and linearly combined so
that they provide signals corresponding to coefficients of the Hermite Gauss
modes that perturb the laser beam. These coefficients are used as error
signals and fed back to the AO control for the generation of the correction
commands supplied to the deformable mirror.

We also present the design of the feedback control system operating on six
degrees of freedom and in particular the scheme of the block diagram where
the regulator and the controlled system are highlighted, as well as the
manipulated and the controlled variables. In particular, we present the
technique for the extraction of the error signals from the controlled system
and the diagonalization of the transfer matrix for the simultaneous control of
six modes of aberration.
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3.1 Gaussian Optics and higher order Hermite Gauss modes

The electric and magnetic field of a laser beam of wavelength A is given by
the solution of the Helmotz scalar wave equation [94]:

Viu+k*u=0 (3.1)

where k=27/A.

This equation is usually solved in free space to obtain the simple solutions of
plane and spherical waves.

In Cartesian coordinates, being x and y the transverse axes and z the
longitudinal direction of propagation, if we suppose a solution like:

u="Y(x,y,z)e’* (3.2)

and assume that the variation of ¥ with z is small compared to the
dependence on x and y, we can write:

2 2
a\eraT—ija—‘P:O (3.3)
Ox oy 0z
o’

where we have neglected the term —-.
z

This is the paraxial approximation which can be correctly used in the case of
a Gaussian beam, because it has a finite transverse size (few millimetres) and
a privileged direction of propagation with small divergence (6 < 0.5 rad).

The solution of eq. (3.3) has the form:

)

W, (r,z) = A(z)e (3.4)
where we have used the radial coordinate » = (x’+)°)’ 2,

The function ¥,,, which represents the spatial distribution of the EM wave,
exhibits a transverse Gaussian profile with respect to the distance » from the
axis. It is also worth noting that this expression is formally identical to the
solution of the spherical wave, where the radius of curvature is replaced by
the complex Gaussian parameter g(z), which is calculated reintroducing eq.
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(3.4) into (3.3). In particular, if we fix the origin of the axis zy where the
Gaussian beam has its minimum transverse size of radius wy, named spot or
beam waist, the following relations hold:

q:q0+2:jﬂ:0 +z (35)

and

1 1 A
—= -7 3.6
g R@) o) G0

We have here introduced the beam radius w(z) and the radius of curvature
R(z) which depend on the longitudinal coordinate z as:

W(Z)W{H[LJ ] ; R(z)zz{l{z—f*j } (3.7)

2
The term z, = 2% s usually referred to as Rayleigh range and it
)

1/2

corresponds to the distance from the beam waist at which the spot size
increases by a factor /2 from its initial value.

The complex term A(z) is also calculated as A(z) = A(O)%ej % being A(0)
w(z
and €’ the initial amplitude and phase respectively. The term ¢ is a phase

shift difference between the laser mode and the ideal plane wave.
We can finally rewritten the wave solution of eq. (3.2) as:

r? 72
W, J[%} Gk
u(r,z) =¥, e ™ = A(O)Woz)e HEp @i 5 gy

In order to normalize this expression, so that J.|u|2 2mrdr = |A ? , We obtain:
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2 jl:%_zf;(zz):l _2}’72 )
u(r,z)=A4 |—5—e e "Wk (3.9)
w*(z)

where we have redefined 4(0)=A.

We can now understand the physical meaning of the introduced parameters.
In fact, we see that R(z) is the radius of curvature of the wavefront and that
w(z) is the beam radius, or the distance from the axis where the transverse
Gaussian profile of the beam is //e reduced from the peak. The beam radius
represents the spot size of the Gaussian beam.

Ry

*o Yo

Beam Waist
{z=0)

Figure 3.1: propagation of the Gaussian beam. The beam has its origin in the beam waist wy
and propagates with asymptotic divergence 6=1/7w,.

It is worth noting that in the Gaussian beam the waist w(z)/wy increases

12 6

w/wg

01 1 1,9 2,8 3,7 0 1 2 3 4 5
zlzg zlzr

Figure 3.2: radius of curvature R/zgx and beam radius w/w, against the coordinate z
normalized to the Rayleigh range zy
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while the radius of curvature R(z), initially infinite in the origin, has a
minimum in z=zy (figure 3.2) and then tends again to infinite at large
distance, where the wavefront is plane and the beam has a far field diffraction
angle given by:

o= (3.10)
g,

The intensity distribution of the Gaussian beam is:

272

I(r)y=1e"® G.11)

and drops to / /e’ times its initial value at a distance wy from the axis.

The Gaussian mode is only one of the infinite solutions of the Helmotz
equation in a laser cavity. There are other similar functions that solve eq.
(3.3) and form a complete and orthogonal set of modes of propagation.
Therefore, every arbitrary distribution of monochromatic light can be
expanded in terms of these modes.

It is demonstrated [94] that these solutions are equal to:

W (6,3, 2) = Yoo (v, 3, Z)Hn[\/a al me(ﬁL]e.i(”Hn)%
w(z) w(z)

(3.12)

where H, and H,, are respectively the Hermite polynomials of order n and m,
and an additional phase shift difference proportional to m+n is introduced
into the Gaussian mode ¥jy. These are called Hermite Gauss modes and
correspond to the Gaussian mode when n=m=0.

It is worth noting that the parameters w(z) and R(z) are the same for all
modes. This means that they have the same transverse amplitude scaling and
the same phase front curvature along the axis.

A generic laser beam can be represented as a superposition of Hermite Gauss
modes through coefficients c,,:

Y(x,y,z)= icnm‘l’nm(x,y,z) (3.13)

n,m=0
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where usually the coefficient ¢y of the Gaussian mode is extremely large
compared with the coefficients c,,, of the higher order polynomials.

3.2 Wavefront analysis of the perturbed Gaussian beam:
correspondence between Hermite Gauss modes and
Zernike polynomials

Let us consider a generic laser beam perturbed in the waist position by
defocus and astigmatism [59]. If x” and y’ are the two principal astigmatic

axes rotated by the angle 6 (see figure 3.3),

ol /

Figure 3.3: principal axes of astigmatism rotated by the angle 6

the following change of coordinates holds:

x'= xcos«5+ysin5
T _ (3.14)
y'=xsin@ - ycosé

These two axes correspond to the maximum and minimum curvature radii R,
and R,. Hence, from eq. (3.9) we can rewrite the perturbed wave function
Yx'y’) as:

A 2 x|2+yl2 7ZW2 x|2 7ZW2 yl2
Y(x', y')=—.—exp| — - ;0 3.15
(") w \/; p{ wa jin. wg j/IRy. wg ( )
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Now we define the mean radius expressing the defocus:

iyttt (3.16)
R 2\R. R,

y

and the astigmatic factor [59]:

Ny 111
5(EJZE(E_R_yJ (3.17)

and therefore the following relations apply:

L:l+5[lj (3.18)
R. R \R
and
L:l_é‘(lj (3.19)
R. R R

y

By substituting (3.18) and (3.19) into eq. (3.15), the expression of the

perturbed field changes as:

A |2 x+y? w1 (1j x? (1
Y(x' y')=—,/—exp| - —j—2 =+ — —j= ==
(y)wo\/;p{ W, 2 \R Rw(f]/IR

(3.20)

and then:

4 |2 x4y g [ x4y g [ 1) x?—y
P(x',y') =, |~ exp| - —j— —-j—=26| —
() wy \ 7 p{ we / AR we / A R we

(3.21)
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By using the fact that:

{x.2+y-2 _ xz +y2

2 2 2 .2 2__ . 2 - . = (3.22)
X" =y =(x"—y7)(cos” @—sin” @) + 4xycosgsin &

we can write:

A |2 x4+ y° oy (X7 +y?
W(x,y)=—,—exp| — — =2 +
() W, \/; p{ Wy / AR we

2 2 .2 _ o 2 _ _
— §(l il (cos2 6 —sin’ 9)—jﬂw0 5 lj 4)?/ sin@cos 6
A R A R

Wo

(3.23)

and therefore:
2 2 2 2 2 2
‘P(x,y):i\/zexp = +2y _jﬂwo 2x +2y -1 _j%"'
wy V7 Wy 2AR Wy 2R

2 2 2 _ 2 _
—jﬂwo 5(lj al 2y coszé?—jﬂw0 (ljzifsinze
A R W, A \R)w,

(3.24)

In this last equation we have used the well known trigonometric formulas:

cos® @ —sin? @ = cos 26
(3.25)

2sin6cosé =sin 26

If we expand the exponential to first order, eq. (3.24) changes to:
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x4y
W(x y)ziﬁe[ " ] l_j;zwg _jﬂwoz 2x2+y2 e
) w, \ 7 2AR 7 2JR w2

2 2.2 _ 2 _
R 5(1}[’5 R jcosze—jﬂw‘) 5(lj 2)?/ sin 26’}
A R

Wo Wo

(3.26)

and using the expression of the Hermite Gauss modes ¥, [94], [95], we can
finally write the field as a perturbation to the second order of the fundamental
mode:

2

W(x,y) ~ AKl—j i

2
w1
Ly i (Y O+, )+
ZZR] 00 JZZR /—2( 20 02)

2 _ 2 _
—j mj{(’ (%)coszei(%o —‘Poz)—j%a(%}inze-‘lql

V2
(3.27)
On the other hand, using the coordinates p°=(x’+y°)/w,’ and 6=tg™'y/x, from

eq. (3.24) we can extract the imaginary part of the field ¥ which represents
the phase front function @:

m? o w? m? 1 —
D(p,0)~ =L+ (2% —1)+=L5| — |c0s26p° c0S26 +
(,0 ) 2AR 2/IR( P ) A R P

(3.28)
+

2 pe—
il §£ljsin 20p*sin26
A R

Using the definitions of real Zernike polynomials Z,” and formally restricting
the analysis on the circle of radius equal to the beam waist, the wavefront can
be rewritten as:

2 2 2 _ 2 _
D(p,0)~ ;ZWT;’QZS + ZV% A 7”; 0 5&] C0S20Z> + ”;” 0 5&)% 202,
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(3.29)

From egs. (3.27) and (3.29) we see that, if the wavefront is analysed on the
waist surface, there is a direct correspondence between Hermite-Gauss modes
of the perturbed beam and wavefront Zernike polynomials. This allows for an
easy evaluation of the higher-order Hermite-Gauss modes by the scalar
product of the wavefront with the corresponding Zernike mode. For example,

. 1 .,
the coefficient of the mode —(‘P20 + ‘Poz) is ;ZWT;? and corresponds to the

V2

coefficient of the Zernike polynomial Z) representing defocus. The

2
W,

5(lj c0s26 and corresponds
A R

coefficient of the mode L(‘1’20 - ‘Poz) is

V2
to the coefficient of the Zernike polynomial Z; representing astigmatism 90.

2
W,

The coefficient of the mode ‘¥, is P 5(%}“1 260 and corresponds to the

coefficient of the Zernike polynomial Z,> representing astigmatism 45.

Consequently, a closed loop control system can be made generating driving
commands for the deformable mirror in terms of Zernike polynomials while
the estimate of efficiency of the feedback can be done directly in terms of
Hermite-Gauss modes.

The present analysis is carried out for Hermite-Gauss modes up to the second
order which fulfils the requirements for noise reduction in gravitational wave
interferometers.
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3.3 Optical design of the interferometric AO system

The AO system that we propose for Virgo application is based on the
Michelson interferometric scheme as shown in figure 3.4. The input laser is
introduced into the interferometer and its fluctuations are detected in terms of
Hermite Gauss coefficients by the measurement of the interference produced
on the 5x5 pixellated photodiode placed at the output of the interferometer. In
our model one of the two beams of the Michelson is the unperturbed
reference and the other is the aberrated beam that we want to correct.

piezoelectric
mirror

reference beam | Tl 1o/2
|

I
0 | perturbed beam adaptive
- - - - === + _________ mirror
I BS < >
o= | ; lo/2
lo(1+cosd)2 ¥

5x5 PD Array

Figure 3.4: scheme of the AO system in the typical Michelson interferometric configuration

The variation of the output intensity /,,, in the Michelson is [58]:

I, = [—20(1 +C0s6) (3.30)

where the average phase difference 6 of the two beams is given by

o :477[(L1 —Lz), being L; and L, the length of the first and the second arm

respectively.
Using a piezoelectric mirror in the arm of the reference beam, the
interferometer is locked on the middle fringe working point in order to fix the
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average phase difference to 0 = 772. In this position the output intensity curve
has its maximum slope as the derivative:

out

] I, .
d—:——osm5 (3.31)
do 2

reaches its minimum -/, /2 and then provides high sensitivity phase
detection, as shown in figure 3.5.

N I I
\ | | . .
N | | |—actual intensity
N : : ==-linearized intensity
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Figure 3.5: normalized output intensity plotted versus the phase difference 0. The actual
I 1, (blue dashed

line). The interferometer is locked on the working point corresponding to 6 = /2.

signal is 1,,/1y (black continuous line) and the linearized signal is Iohl:'t

Furthermore, for small phase variations it is possible to approximate the

actual output /,,, with a linearized function I;m, given by the expansion to
first order of the Taylor series:

in T d]ou
1 0) = 150) =1 5 |+ s

T
. -(5 - E] (3.32)

In this optical scheme the typically small laser perturbations do not introduce
2 ambiguities in the wavefront and the intensity signal on each pixel of the
photodiodes array is directly proportional to the phase difference of the
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beams in that wavefront area. This corresponds to a linear response of the
system and allows to describe the automatic control through a linear
dynamical model.

The reconstruction of the wavefront profile, or more precisely of the phase
difference of the two beams, could be made directly by a point-to-point
measurement of the intensity from the 25 photodiodes of the array. But in this
case one should achieve the error signals by the scalar product of the
measured wavefront function times the Zernike polynomials and therefore
this method, even if more sensitive, would not solve the bandwidth limitation
exhibited by AO systems based on the Shack Hartmann sensor.

Conversely, we have chosen a more elegant and faster modal feed backing
where the 25 signals are projected on the first and second order Hermite
Gauss modes and, thanks to the analysis previously carried out, directly used
as error signals for the generation of commands in terms of Zernike modes.
The Hermite Gauss coefficients are calculated by suitable linear
combinations of the 25 intensity signals coming from the photodiodes array,
according to the description detailed in Section 3.5.

For the moment, we remark the difference that stands between the classic AO
system and our AO control based on interferometric techniques. With
reference to Subsection 2.3.1, the classical AO scheme needs at least five
different steps for the wavefront correction, that are:

image acquisition by CCD

centroide calculation

wavefront reconstruction by numerical integration of measured derivatives
scalar products of wave aberration function and Zernike polynomials for
the calculation of aberration coefficients to use as error signals

5. error signals process and generation of commands for the deformable
mirror

i S

The ensemble of all these operations, even if at the best of the present
technology, limits the control bandwidth below few tens of Hz.

Instead, in our scheme the 25 intensity signals are directly transformed into
Hermite Gauss coefficients of first and second order. This means that in only
one step we obtain the same result that is obtained in four steps using the
classical Shack Hartmann sensor. This allows a considerable increase of the
speed of the system.
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3.4 Design of the feedback control system

We have implemented two different feedback controls: one for the lock in of
the interferometer on the middle fringe working point and one more
complicated for the automatic correction of the laser beam aberrations.

The design of these two control systems is based on the typical closed loop
architecture described by linear dynamical mathematical models [96].

Let us shortly remind that a generic stationary system, with output signal c(?)
linearly depending on the input signal m(?), is described by the simple
scheme below where the parameter K represents the constant of
proportionality between c(?) and m(z).

t
m(t) K c(t)

Figure 3.6: scheme of a linear dynamical system.

If K is simply a constant, the system is algebraic. Otherwise, its dynamical
behaviour is described by linear differential equations with constant
coefficients and the parameter K is replaced by a complex function K(s)
called transfer function of the system. The transfer function, which converts
the Laplace transform of the input signal into the Laplace transform of the
output signal, is strictly correlated with the frequency response necessary for
the Fourier analysis of the system.

Without loss of generality, let us consider the algebraic case. In the ideal
condition, the output of the system should each time obey the following
expression:

c(t) = Km(t) (3.33)
but unfortunately in real cases the system is affected by several perturbations
(external disturbances, non linearity effects and variations of K) which cause

eq. (3.33) to be modified into:

c(t) = Km(t) £ Ac(t) (3.34)

The term Ac(t) indicates the output fluctuations induced by the system
perturbations.
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In order to reduce such fluctuations Ac(?), we can use a feedback control
system of the type schematized in figure 3.7.

r(t) + e(t) A m(t)= K c(t) R

A

H

Figure 3.7: block diagram of a feedback control system

The output controlled signal c(z) is fed back to the input by the transducer H
which converts it into a form that is comparable with reference »(?). The
difference of r(¢) with the feedback gives the error signal e(?), which is
introduced into the cascade of amplifier and actuator represented by 4. The
output of 4 drives the manipulable variable m(?) in order to fix c(?) at the
desired value.

This closed loop configuration allows to reduce the output fluctuations. In
fact, the system is now described by the equations:

{c(t) =Ge(t) £ Ac(t) (3.35)
e(t) =r(t)— He(t)
from which we obtain:
G Ac(t)
c(t) = o cH r(t) = 20l (3.36)

being G=A4K.

The parameter GH is named open loop gain and it determines robustness and
efficiency of the system in lowering the output signal fluctuations Ac(z) in the
stationary state. In fact, if we assume that GH>>1, eq. (3.36) at regime state
reduces to:

Ac(t)

VTa (3.37)

c@)z?gro)i
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where the output c¢(?) is proportional to the reference signal r(z) and the
residual noise is strongly decreased, as AGC—IS) << Ac(t).

It is worth noting that high values of the open loop gain have a negative
impact on the transient behaviour of the system, as the correction operated by
the feedback often induces unpleasant oscillations before the new stationary
state is reached. If the gain is very high, it is possible that the system
oscillates indefinitely and exhibits an unstable behaviour. In order to correct
this effect it is common to provide into the loop a correcting network that
both improves the system dynamical behaviour and keeps save the high level
of static gain, or the value of GH at low frequency.

The general scheme of an efficient and stable feedback control system can
represented as in figure 3.8, where we can distinguish three principal blocks,
or the Controlled System, the Transducer and the Regulator.

! ! I !
__________________________________ diy doy d3; dy,
l Rerul : R
: cgulator : YyVYVY V¥
r(t e(t) | '
_(): o Filter || Amplifier [ Actuator :m(t)# Controlled C(t)>
! system
|
1

Transducer <

Figure 3.8: block diagram of a stabilized feedback control system

The Controlled System is characterized by the output c(#) which is the
variable that we want to control against the disturbances dj,..,d, by
manipulating the variable m(?).

The Transducer converts the output ¢(?) and feeds it back into the comparator
where it is subtracted from the reference signal r(?).

The Regulator receives the error signal e(z) and, after filtering for stability,
amplifies and sends driver commands to the actuator for m(z) manipulation.
The target of the closed loop control system is to maintain each time the
controlled variable ¢(?) proportional to the reference signal r(z).
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3.4.1 Control system for the interferometer lock in

The first feedback control has been designed to lock the interferometer on the
half fringe working point.

We start from the definition of the controlled variable that is the total sum of
the 25 optical intensities emerging in form of photocurrents from the 5x5
array of photodiodes.

Provided that these 25 photocurrents are amplified and converted into 25
voltage signals V; (in the next Chapter we present the experimental set up in
detail), we have added all these signals in order to obtain the total voltage:

25

Ve =2V, (3.38)

i=1

which is exactly our controlled variable.

The actuator is a flat piezoelectric mirror placed in one of the two arms of the
interferometer, as pictured in figure 3.4. It is driven by a voltage amplifier
and moves longitudinally along the optical axis, lengthening or shortening
the interferometer arm of length L;. So the optical path difference AL=L;-L;
(L; and L; are the length of the first and the second arm of the Michelson) is
changed and this induces the variation of the average phase difference o of
the two beams, given by:

5(t) = 47”@1 L) (3.39)

This is the manipulable variable of the controlled system.

We have first calibrated the interferometer by measuring the two output
voltage levels Vi and Vi, corresponding respectively to maximum and
minimum of the interference curve of eq. (3.30); secondly, we have
calculated their medium value and used it as reference set point
V. = (Vmax +Vin )/ 2 that must be supplied to the piezoelectric mirror for the
interferometer locking on the middle fringe working point of figure 3.5.

The error signal e, corresponding each time to the difference V-V, is sent to
the correcting filter and then to the amplifier of the piezo which is
automatically moved back or forth in order to correct the small phase
fluctuations and keep the interferometer on the working point. In our scheme
the reference V, and the output V,, are both voltage signals and then the
transducer is simply a connection between the output and the comparator.
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Figure 3.9 shows the block diagram of the system with clearly identified the
regulator, the controlled system, the transducer and the relative variables.

Labview on PC

i Regulator :

Vi(t ORI — : : I
_()>®£;_> Filter |-p| DAC || Amplifier [ 3| Piezo Mirror : A

+ K- | |
Controlled system !
Viet(t) 1
VI Photodiodes |

1
|
1
i A
~- Combinator [ D [¢ Amplifier ¢ array 4 Interferometer [€—
i (@
1
1
1

Figure 3.9: block diagram of the feedback control system for the lock in of the
interferometer. The phase difference &t) between the two beams of the interferometer is the
manipulable variable, the total voltage Vix(t) corresponding to the sum of the 25 intensities
collected by the pixellated photodiode is the controlled variable. The piezoelectric mirror
manipulates &t) by changing the optical path length of one arm. The data processing from
the output of the Analogical Digital Converter (ADC) to the input of the Digital Analogical
Converter (DAC) is performed by a Labview Virtual Instrument running on a standard PC.

In particular, we remark that the 25 voltage signals emerging from the
photodiode amplifiers are first converted into digital form by an ADC board
and then added to form the total voltage Vi Similarly, the driver signal
emerging from the filter is converted into analogical form by a DAC board
before entering the piezoelectric amplifier. All the operations of data
processing from the output of the ADC to the input of the DAC are
implemented by a Labview Virtual Instrument running on PC.

The control system dynamics is well described by the following equation:

Vtot: © Vr+ 1
1+G 1+G

AV (3.40)

tot

being G the open loop gain of the system.
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3.4.2 Control system for the correction of laser beam aberrations

The second feedback control that we have designed is the AO system for the
correction of small laser beam fluctuations.

In this case the design is more complicated because we have to control
several variables simultaneously. This means that each subsystem of the
block diagram that represents the control is characterized by a matrix of
transfer functions whose dimension depends on the number of input and
output variables. We have designed the control system for the simultaneous
correction of 6 modes of aberration that are respectively longitudinal mode,
TiltX, TiltY, Astigmatism45, Astigmatism90 and Defocus. This means that
we have to deal with 6 degrees of freedom. Furthermore, we have 25 signals
emerging from the photodiodes array and 59 channels for the driver of the
adaptive mirror. Therefore the different matrices that we have designed can
have row and column indices equal to 6, 25 or 59.

The first step for the design of the control system is again the identification of
the controlled and the manipulable variables. In this case, by suitably
combining the 25 signals of the pixellated photodiode, we expect to achieve 6
voltage signals that linearly depend on the 6 aberration coefficients relative to
first and second order Hermite Gauss modes. These voltage signals, which
we define as S;, i=1,..,6, form a 6x1 column vector

R

w

S(@t) = (3.41)

w

“a ! !la t”h ”

and represent the output controlled variables.

The manipulable variables are the six adimensional signals corresponding to
longitudinal mode ¢, TiltX a,, the TiltY a,, the Astigmatism45 ays, the
Astigmatism90 agp and the Defocus ap. They represent the geometrical
distortion of the ideal wavefront and arranged into a 6x1 column vector M of
form:
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M(@)=| ~ (3.42)

The reference set point R is the 6x1 column vector of voltages R;, i=1,..,6:

R

w

R(t) = (3.43)

~

W

= IV~ V- VR~

(=)}

which must be compared with the controlled variable S; to generate the error
signal. For the purpose of jitters suppression the reference signal is set to zero
except for the first component (R;=V,, R;=0 Vi=2,..,6) that is fixed at the
middle fringe value when the piezo is switched off. It is worth noting that by
suitably changing the set point components R; it is possible to manipulate the
laser wavefront and generate artificial profiles that could be adopted for
specific applications like sensing systems or industrial processes. This
perspective is interesting upgrade of our system, but at the moment goes
beyond the scope of the present work.

The architecture of control system is schematized in the block diagram of
figure 3.10 where we recognize the three main blocks corresponding to
Controlled system, Transducer and Regulator.
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Figure 3.10: block diagram of the Adaptive Optics feedback control system for the laser
beam correction. The aberration vector M(t) is the manipulable variable, the vector S(t)
corresponding to 6 different combinations of 25 voltage signals generated by the pixellated
photodiode is the controlled variable. The error signal E(t) given by the difference between
the reference R(t) and S(t) is converted into a set of 59 driver commands sent to the
deformable mirror (DM) which corrects the aberrations by changing the geometrical pattern
of its adaptive surface. The data processing from the output of the ADC to the input of the
DAC is performed by a Labview Virtual Instrument running on a standard PC.

The Controlled system is constituted by the entire interferometer, the
pixellated photodiode, the amplifiers, the ADC board and the Combinator 1.
It is described by a 6x6 matrix of transfer functions which converts the 6x1
manipulable vector M(t) of eq. (3.42) into the 6x1 controlled vector S(t) of
eg. (3.41). In detail, the 6 geometrical aberration signals are transformed by
the interferometer into 6 different interference patterns which in turn are
converted into a set of 25 photocurrents by the pixellated photodiode. After
that, the amplifiers transform the 25 photocurrents into 25 amplified voltages
and the ADC board converts them into digital form. Finally, the Combinator
1 is a 6x25 matrix that collects the 25 voltages and gives out the 6x1 column
vector corresponding to the controlled variable S.

The vector S is directly compared with the set point R also expressed in terms
of voltage; this means that the Transducer is simply a 6x6 identity matrix.
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The error signal E=R-S§ is sent from the comparator to the Regulator, made of
the correcting filter, the Combinator 2, the DAC, the amplifiers and the
Deformable Mirror that is the actuator of the system.

The Regulator is described by a 6x6 matrix of transfer functions. In fact, it is
entered by the 6x1 vector £ which, after passing through the filter is sent to
the 59x6 Combinator 2 for the generation of the 59x1 column vector of
commands provided to the actuator. The 59 commands are transformed into
analogical form by the DAC and amplified for the electrostatic actuators of
the deformable mirror. Finally the mirror, described by a 6x59 matrix,
converts the 59 amplified voltages into 6 different geometrical profiles of its
deformable surface for the manipulation of the vector M(z).

Figure 3.11 represents the synthetic block diagram of the AO system. In the
top Regulator and Controlled system have transfer matrices 4 and K
respectively. In the bottom we see only one block representing the open loop
system of transfer matrix G=KA. The loop is closed by the transducer that is
simply a connection between the output and the comparator.

R(t) E(t) M(t) S(t)
6x1 6x1 Regulator 6x1 Controlled system 6x1
+ A (6x6) K (6x6)

A 4
v

R(t)

S(t)
Open loop system 6x1

G=K-A (6x6)

v

CLOSED LOOP SYSTEM
F=(1+G)™-G (6x6)

Figure 3.11: synthetic block diagram of the Adaptive Optics control system. The open loop
6x6 transfer matrix is G, the closed loop 6x6 transfer matrix is F=(1+G)"-G.
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Using the scheme of figure 3.11 we can analyse the mathematical model that
describes the stationary state of the system, based on matrix equations as:

S(t)=K-A-E(t)£AS(¢)
(3.44)
E(@t)=R(t)-S(2)

from which:
S@)=1+G)"-G-R@)x(1+G)" - AS(2) (3.45)

This last matrix equation describes the dynamical behaviour of the closed
loop AO system that we have designed to clean up laser beam jitters into the
Michelson interferometer shown in figure 3.4.

Let us observe that the 6x6 matrix G:

G=K-A=S-E" (3.406)
is the open loop gain, while the 6x6 matrix F:
F=(1+G)"-G (3.47)

is the transfer function at closed loop.

In the ideal case we would like to have a completely diagonal matrix G
because this would mean that the variables are all decoupled one with
another.

In the real case G has non null off diagonal elements because there are
coupling effects due to the sensing subsystem and to the actuator.

This condition could compromise effectiveness and stability of the control.
Nevertheless, we have arranged methods to suppress the coupling effects and
to bring the off diagonal elements to acceptable residual values.

In the next two sections we show the calculation and the diagonalization of
the 6x6 transfer matrix K relative to the sensing subsystem and of the 6x6
transfer matrix 4 of the Regulator.
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3.5 Error signals extraction from the Controlled System and
diagonalization of the 6x6 transfer matrix K

We have designed the AO system for the simultaneous correction of 6
aberration modes of the laser beam in air. In particular we have shown the
block diagram of the feedback control in figure 3.10 and calculated the
dynamics in eq. (3.45).

Now we need to investigate the method for the extraction of error signals
from the Controlled System. This corresponds to determine the 6x25 transfer
matrix of the Combinator 1 that converts the 25 voltages emerging from the
amplified photodiodes into 6 voltage signals linearly depending on first and
second order Hermite Gauss coefficients (also corresponding to longitudinal
translation, TiltX, TiltY, Astigmatism45, Astigmatism90 and Defocus).

Let us consider the two beams of the Michelson interferometer of figure 3.4
and assume that E; is the field of the unperturbed beam in the first arm while
E; is the field of the aberrated beam in the second arm. The field £; has 7/2
phase difference with respect to E», due to the interferometer middle fringe
lock in, and therefore it can be written as:

E = A¢ 2%, = 4j¥,, (3.48)

On the other hand, using the results of Section 3.2, the aberrated field £, is
given by:

"on - lI102 )

E, = A[(l + j¢)‘£’oo +a, ¥, + ay\POI +a,sY,
(3.49)

1
+dy, E(
1
+ap E(Tzo +'¥, )}

where ¢ represents the instantaneous longitudinal translation of the two
wavefronts and a; are complex coefficients of the basic aberrations
corresponding to perturbations of the fundamental Gaussian mode up to the
second order.

The total normalized intensity at the output of the interferometer is given by:
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B[ EES

o9 42 24>

1

, — _ .
= (1 + ¢X\P00| +a VYo +a, VoW +a,¥,Y, +

PR %(\on - \Poz)+ ap¥y %(\on + \Poz)
(3.50)
being a, = Rea, + Ima, and neglecting terms higher than first order.
Using eq. (3.50) we can now demonstrate that the 25 signals emerging from
the photodiodes can be transformed into 6 signals linearly depending on the
aberration coefficients ¢ and a; and therefore they can reintroduced as error

signals into the system for the modal control of the laser beam.
Let us consider the 5x5 photodiodes array as schematized in figure 3.12.

Ay

I

1

i
1l2|%]4a]ls

1
6|78 9|10

! X
11 | 12 | 184-t4-F35f - >

16 |17 |1 18| 19 | 20

2112223 (24|25

-5L/2 -3L/2 -L/2 L/2 3L/2 5L/2
<>
L

Figure 3.12: 5x5 array of photodiodes collecting the output intensity of the interferometer

Each single photodiode of area LxL collects only a part /,, of the total
intensity that is:

1= & i, (3.51)

with:

n=-2,-1,012 ; m=-2,-1,0 1,2

and
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Combining the 25 intensity signals 7, it is possible to obtain 6 signals S;
linearly corresponding to the aberration coefficients.

In other words, our goal is to characterize the Controlled System through the
following matrix equation:

S=K-M+H
g (3.52)
S, ki ko ks kg ks kg ﬁ H,
S, by hy ko ko kys o kg a. H,
S; _ by ks ko ks ks ks 4a, + Hy
Sy kg kp kg kg ks kg Gys H,
Ss ks ks ks ks ks kg ) H;
S ko ke ke ke ke ke ) \ap Hg

where k; are transfer functions for each degree of freedom and H; are
constants related to the geometry of the system.

This result can be achieved using the correspondence of 6 analytical integrals
of 1,,, with 6 linear combinations of /,, ,, as shown below.

In fact, from eq. (3.50) the intensity /,,, is expressed in terms of Hermite
Gauss modes which in turn are even or odd functions in the square domain x,

y with x e(—%L,%LJ and ye [—%L,%LJ. So, if we integrate /,,, over

that domain, changing each time the sign of integration in parts of it, we
obtain that the contribution of some Hermite Gauss modes is null and
therefore the total integral is only proportional to one of the six aberration
coefficients. On the other hand, the integral analytically obtained can be put
in correspondence with a specific linear combination of the 25 signals 7, ,
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and thus we find the desired connection between this linear combination and
the aberration coefficient.
Let us start from the integral of /,,, over the whole domain where only the

contribution of the even terms |‘P00|2 and ¥, (‘I’20 + \POZ) is non null.
This is clear if we look at figures 3.13 and 3.14 which report the 3D plot of

the two functions.
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Hence the integral is:

+§L +§L +§L +§L 2
S, = BL dx[ 2y, = (1+g)] 2 dx [ 2|y +
2 2 2

3
2

5
+2
2

5
_ ®l 1 _
+ aD_[ 5 de_[ ZLLdJ’EIPoo (Lon + \Poz): kll(L7 Wo )(1 + ¢)+ km(l" Wo )aD

BEF R )
2 2

(3.53)

where k;; and k;s are non null integrals depending on the length L of the
single photodiode and on the beam waist wy.

On the other hand, the same result S; can be achieved by the numerical sum
of 25 measured intensities as:

+2
S=>1,, (3.54)
=-2

Therefore, from eqs. (3.53) and (3.54) we can affirm that the signal produced
by the sum of all the 25 intensities is a linear function of the two aberration
coefficients ¢ and ap. This is exactly what we have assumed before and
allows to fill the first row of the matrix equation (3.52)

We find similar relationships between other linear combinations of /,, and
other aberration coefficients, playing with the even and odd Hermite Gauss
functions.

The integral of 1,,, over the half plane were x>0 less the integral of 1,,, over
the half plane where x<0 is null for all the Hermite Gauss functions apart
from the term ‘¥,'¥,,, as can be seen in figure 3.15.
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Figure 3.15: profile of W ,\¥,, in the square domain of the photodiodes array

Therefore the integral S, corresponds to the aberration coefficient a,:

+%Ld +%L d 0 d
SZ - J:;L 3 '[0 xlout - —%L xjaut -
(3.55)

P .
ax'[zzL dy{[] 2 dx¥, 'Y, - J.ZL dx\Poo‘Plo} = ky (L1W0)' a,

The same value is given by the numerical sum of the /,, in the plane x>0
less the sum of the 7,, in the plane x<(0. Referring to figure 3.12, the
photodiodes 3, 8, 13, 18, 23 which stand across the y axis belong for their left
half part to the plane x<O and for their right half part to the plane x>0.
Therefore the corresponding intensities are half added and half subtracted and
the total contribution is null. This allows to neglect the terms 7, ,, with n=0.
Then the signal S, is given by:

n=1,2 n=-2,-1

S= D l.— 2., (3.56)

m=-2,-1,0,1,2 m=-2,-1,0,1,2

and we can say that, if we sum all the intensities from the photodiodes on the
right side of the array and subtract all the intensities from the photodiodes on
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the left side of the array, we have a signal proportional to the TiltX
coefficient.

The signal proportional to the TiltY coefficient is obtained with an identical
calculation. In fact, the integral of /,,, over the half plane where y>0 less the
integral of 1,,,, over the half plane where y<0 is null for all the Hermite Gauss
functions apart from the term ¥ \¥;,, as can be seen in figure 3.16.

0.3
0.2

0.1

-0.1
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Figure 3.16: profile of W ,\¥, in the square domain of the photodiodes array

Therefore the integral S corresponds to the aberration coefficient a,:

S3 = I+§;dx|:IO+ZL dy]out B JlOEL dy[out :| =
2 2

(3.57)
— +§L +§L 0 —
2 APy | s dvPo Py, | = ks (Lwy)-
ayJ._ide J.o Y oo Loy '[_EL Y Lo Loy n\LaWy ) a,
and is equal to the sum:
m=1,2 m=-2,-1
S3 = zln,m - zln,m (358)

n=-2,-1,0,1,2 n=-2,-1,0,1,2
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Similarly, the integral corresponding to the coefficient of Astigmatism45 is
calculated using the symmetry of the function ‘¥,\¥,, plotted in figure 3.17.
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0.1

0.05
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-0.1

5L/2

Figure 3.17: profile of ¥ ,\Y,, in the square domain of the photodiodes array

If we integrate the intensity /,,, over first and third quadrant of the square
domain and subtract the integrals over second and fourth quadrant, we get a
signal proportional to ays:

S, = j(:;L de:ZL dyl,, +['s ax[s dvi,, - j(:;L dx['s dyl,, +
S 2 (3.59)

> 2 el
- J.OzL de.O 2! dyl,, = ay;s '4J.0 2deJ'0 2Ldyl{’ooq’n =Ky (L1 Wo ) Ays

The result is equal to the sum of intensities from photodiodes of the first and
third quadrant less the sum of intensities from photodiodes of the second and
fourth quadrant..

m=1,2 m=-2,—1 m=-2,—1 m=1,2
S4 = In,m + zln,m - zln,m - Zln,m (360)
n=l1,2 n=-2,-1 n=l1,2 n=-2,-1

The contribution of the photodiodes across the x and y axes, that is 7, , at n=0
or m=0), is null for considerations analogue to what discussed before
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The coefficient of Astigmatism90 is related to the function

v, %(\1’20 —¥,,) plotted in figure 3.18.

1
Figure 3.18: profile of ‘¥, ﬁ(quo - \Poz) in the square domain of the photodiodes

array

The integral where we get the coefficient ayy is:

.- ffjdxfffdy +f:§§dxf§5dy—fffdxf:ffdy [ v -

a90 4I 3 dxj ; dy\Poo \/—(‘"on \Poz) kss(L’Wo)'af)o
(3.61)

The corresponding signal is extracted from the following sum of intensities:

m=—1,0,1 m=-—1,0,1 m=2 m=—2
Dlint 2l 2w 2l (362)
n=2 n=-2 n=-1,0,1 n=-1,0,1
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Finally, the coefficient of Defocus is due to the contribution of

Yoo %(‘PZO +%¥,,) whose surface on the square domain of the photodiodes

has already been plotted in figure 3.14.
The contribution of the Defocus can be obtained by:

S, = Uj;dxfgjdy + J.jgjdxj:gjdy + E;;dxfgjdy +

—EL +EL +§L +3L _ 1
SRR [T TN TS| B

= kél(L’WO)'(l+¢)+k66(l”w0)'£

(3.63)
corresponding to:
m=2 m=-1,0,1 —1,0,1 m= 0 1
S6: In,m+ Zlnm+ zlnm—"— zlnm nm
n=-2,-1,0,1,2 n=-2,-1,0,1,2 n=-1,0,1
(3.64)

In conclusion, using the 6 correspondences shown above, we can calculate
the 6 error signals (S;..Ss) of eq. (3.52) by suitable combinations of the
measured intensities /,,,, , as summarized in the following table 3.1.
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Combination of the 25

Abe-rratlon Theoretical estimate intensities
Signal . ]
Longitudinal —
gS1 kn(L'Wo)(l+¢)+k16(L'W0)aD
TiltX —
S, kzz(L’Wo)'ax
T lSle k(L) a,
Astigmatism45 — ]
S Ky (L W ) Qys
)
Astiematism90 —
& S; kss (L’ Wo)' Ay
Defocus —
];6 kél(L’Wo)'(1+¢)+k66(L'Wo)'aD

Table 3.1: signal extraction of the six aberration coefficients from the combination of the 25
intensities 1I,, emerging from the photodiodes array (green represents addition and red
subtraction). S; are the error signals reintroduced into the feedback control.
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The 6x6 matrix equation (3.52) reduces to:

S) (ki 00 0 0 kg)(¢) (A
S| |0 k 0 0 0 0f|a |0
Si|_[0 0 ks 0 0 0 i 0
S| 10 0 0 k, 0 0|las]|0]| @365
S 10 0 0 0 ki 0|a| |0
Ss ko 00 0 0 K a_D ki

and still exhibits non null off diagonal elements that are the coefficients k;4
and ks; due to the coupling between longitudinal mode ¢ and Defocus ap.
The other four modes are completely decoupled.

The coefficients k;; correspond to scalar products of Hermite Gauss functions
over the domain of the photodiodes array and depend on the ratio wy/L. By
suitably manipulating this ratio, we can reduce the off diagonal elements and
in the same time maintain non null values for the diagonal terms.

In particular, if wy/L tends to infinite (from a mathematical point of view this
corresponds to integrate over a null range and from a physical point of view it
means that the photodiodes have zero sensing area) all the coefficients are
null and no measurement of aberration can be done. Therefore this case
should be avoided.

On the contrary, let us consider the case when wy/L tends to zero. From a
mathematical point of view it means that the range of integration is [—o0,+o0]
while the physical meaning is that the beam is focused at the center of the
matrix on the pixel no.13. We can see that the coefficients k;;, k2,, k33 and kyy
have non null and constant values while the off diagonal element &;4 tends to

. . . 1
zero in accordance with the fact that the functions ¥,, and —(%¥,, + ¥,,)

V2
are orthogonal in the range [—o0,+]. But, the coefficients kss and kg4 are null
and k4, tends to -1. So, we lose any information about Astigmatism90 and
Defocus and have a high off diagonal element. Therefore the case wy/L—0
should be avoided too.
We have found a trade off between the two extreme conditions and achieved
large and stable diagonal elements and small off diagonal terms.
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Coefficient | wyL—x | wyL—>0 | 1.4<wyL<l.6
ki 0 1 0.99
ka2 0 0.8 0.78
k33 0 0.8 0.78
kuq 0 0.64 0.6
kss 0 0 0.4
kes 0 0 0.65
kis 0 0 -0.1
ko1 0 -1 -0.3

Table 3.2: coefficients k; in the extreme cases wyL—>00 and wy/L—>0 and at the trade off
1.4<wyL<l1.6

The trade off value is chosen in the range /.4< wy/L<I.6 : in fact, in this
region all the coefficients k; are near their maxima and vary slowly with
wy/L, the coefficient ks, 1s negligible and k¢ has a relative amplitude of 30%
(see table 3.2).

In this condition the Controlled System is characterized and the transfer
matrix K is diagonalized.

3.6 Calculation of the 6x6 transfer matrix 4 of the Regulator
and diagonalization of the 6x6 matrix G relative to the
open loop system

In order to complete design and characterization of our system, we need to
investigate the matrix 4 of the Regulator from which we get the open loop
gain G=KA.

To do that, we have initially locked the interferometer on the middle fringe
state by closing the loop of the piezoelectric mirror as shown in figure 3.19.
Successively, we have measured the AO system response S(?) to the reference
signal R(?) per each of the six degrees of freedom.
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Figure 3.19: block diagram of the control system for calculation and diagonalization of G

In particular, with reference to figure 3.10, the first step has been the
calculation of the 59x6 matrix U of the Combinator 2 that transforms the 6
reference signals into a set of 59 voltages V;,, h=1,2,...59, according to:

4 Uy e U R,
=| . A Y (3.66)
Vso Usgp v Usgs R,

These voltages are applied to the electrostatic actuators of the adaptive mirror
and deform its reflective surface due to attractive force. So, the wavefront of
the laser beam incident on the mirror is modulated and after reflection it is
described by the aberration vector M(#) in accordance with the equation
M(t)=AR(1).

If we want to calculate the terms of the matrix U of the Combinator 2 we
have to consider the geometry of the electrostatic actuators placed on the rear
side of the mirror deformable membrane. Let us assume that the actuators
array is centred on the x,y plane and that each electrode has its midpoint at
the coordinates (xu,vi), h=1,2,...,59, as shown in figure 3.20.
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Figure 3.20: schematic of the actuators array (top view on the left) and deformable
membrane (side view on the right). The actuators are placed below the reflecting surface
that is moved by electrostatic forces

The electrostatic force is supposed to act as it was exactly concentrated in the
center of each of the 59 actuators. We also assume that in each point the
applied voltage causes the proportional displacement of that portion of
surface (at first approximation we neglect non linearity effects of the
membrane bond at its boundary). Then, if Az, (h=1,2,...59) is in each point
the displacement from the equilibrium position, we can achieve the desired
pattern of the membrane by applying a set of voltages that are point by point
proportional to the corresponding value of Az,.

For each degree of freedom the deformable surface should match one of the
six geometrical configurations represented by the six Zernike polynomials.
So, each of these six polynomials is calculated in the 59 positions (x,)5) and
the values are exactly the voltages that must be applied to get the
corresponding configuration of the mirror membrane.

For example, if we want to find the set of 59 voltages corresponding to
aberration a, which is the third degree of freedom in our system, we calculate

the Zernike polynomial Z,' in each of the 59 centres (x;,y;) of the actuators.

The 59 values are exactly the 59 voltages that must be applied to the
actuators and therefore they correspond to the third column w3 (h=1,2,...59)
of the matrix U. Similarly we can calculate the other columns of U using the
other Zernike polynomials until the transfer matrix of the Combinator 2 is
completely defined.

After that, we determine the coefficients g;; of the 6x6 matrix G relative to the
open loop system of figure 3.19 which is described by the matrix equation:
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S, i 8 8z 8 &is & R,
S, 81 8» &» 8u &5 &x||R
S, _| 8 8n 8n 8u 8k & | R, (3.67)
Sy 8 8n 8u 8u & 8u||Ry
Ss 81 8 &8s 8u &s &8s | | R
Se 8 8o &z 8 & &) \ K

where R;(?) are reference input signals that we introduce into the Regulator to
directly measure the response of the system.

In particular, if we apply input signals to only one of the 6 degrees of
freedom, for example R; which corresponds to TiltY, eq. (3.67) reduces to:

S| g 8 8 8uu 8is Sis 0 813k,
S, En 82 8xn 8u 8L & 0 gxnhR;
S; _ |8 8n 8n 8u 8 8 | R, _ guky (3.68)
Sy En Bu 8u 8Bu s Eue 0 gukR;
Ss 851 82 855 8sa 855 Eso 0 g5k,
Ss Ea 8o 86 8o o5 oo 0 8aks

Thus, by measurement of the six output signals S; we calculate the
coefficients g;; (i=1,2,...6) representing the third column of the matrix G.
Similarly, if we send the reference input signal R; per each degree of
freedom, we measure all the columns of G. It is worth noting that the
coefficients g; are transfer functions and therefore their measurement consists
into the complete characterization of gj(®) in terms of amplitude and phase
as it is widely discussed in Chapter 5.

For the system efficiency and stability it is strongly recommended that the
matrix G is diagonal and therefore we need to check per each column if the
off diagonal elements gj; (i#j) are null or at least very small compared with
the diagonal terms g;;.

If this condition is fulfilled the system is ready to operate. If not, and this is
commonly the case due to coupling effects, we must find a procedure for the
diagonalization.

The method that we adopt is based on the manipulation of the matrix U by
suitably changing one or more of its columns till reaching the diagonalization
of G. In detail, let us consider to introduce into the system an input signal
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R;(?) for a certain degree of freedom and measure the corresponding column
of the matrix G. If one off diagonal element associated to the degree of
freedom j= is comparable with the diagonal term associated to /, we change
the set of 59 voltages of the matrix U (associated to i) by subtracting at each
actuator a voltage proportional to the value used to generate the deformation
associated with j. The physical meaning is clearly understood: if we excite
the mirror on one degree of freedom and it responds exciting also a second
degree of freedom for coupling effects, we can compensate by subtracting to
the input excitation a signal that is proportional to the excitation on the
second undesired mode. This method can be iteratively performed until the
off diagonal term is acceptably lower than the diagonal coefficient.

We can analytically demonstrate this method using the matrix equations of
the system.

The matrix A of the Regulator can be detailed as:

dm,, .. dm Uy e U

A(6x6)=| . . 4. : (3.69)

dmg .. a’m6]59 Usg  wen Usgg

where dm;; (i=1,...,6 and j=1,...,59) is the transfer matrix of the deformable
mirror that transforms the set of 59 voltages into 6 different geometrical
configurations of the membrane. In this equation, for the sake of simplicity,
we have neglected the matrices of the filter, the DAC and the amplifier, that
are diagonal and do not influence the present demonstration.

The matrix G of the system is given by:
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k, O
0 k&,
0 0
G(6x6)=K-A4=
0 0
0 0
kg O
dm,, dm, s
X
dmg, dmg s

0 0 0 0

0 0 0 0
ky, O 0 0

X

0 k, O 0

0 0 ks O

0 0 0 kg

Uy Ug

(3.70)

Usg Usg s

neglecting the term k4 as stated in the previous Section.

Let us assume that in the third column corresponding to TiltY the term g;;3
associated to longitudinal mode is comparable with g3;. This physically
means that if we induce on the mirror rigid rotation around Y axis with
command R; we also induce for coupling effect the partial longitudinal
translation as if the mirror was excited by the command R;. We can
compensate this undesired effect subtracting from the mode R; a signal
proportional to the longitudinal mode. To do that, we modify the third
column of U, given by the coefficients u;;, subtracting per each i the
corresponding term —au;; , being a a real constant suitably chosen.

We rewrite eq. (3.70) in the form:

59
ki, delhuhl

h=1

59
ks Z dmsy,u,,

h=1

k332dm3huh3 ---------- (3.71)
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where attention is paid to terms g;;, g;3, g3, and g33 which are involved in our
demonstration.

From simple algebra we see that, if the coefficients u;; are reduced by —au;;,
the matrix gj is transformed into:

g - iz e

g;: I R (3.72)

where the apical label 1 refers to the first step of iteration.
In particular, the coefficients of the third column are:

{&13 = &3 — gy (3.73)

g;3 =83 — gy

Under the assumption that g;; is big compared with g;;, this last equation
provides that g/, is strongly reduced in comparison with g.,. Clearly in the
opposite case, if g;;< g3;, we can change the sign of « and obtain that g,
increases much more than g/,. In both cases, we maximize the diagonal term

with respect to the off diagonal elements.
If necessary, we can iteratively repeat the operations until the coefficients at
the step » fulfil our requirements

{gg = g3 —nagy, (3.74)

n _
833 = &33 — gy,

Usually the diagonalization is quite well achieved after few iterations.
At the end of this procedure the residual off diagonal terms of matrix G can
be neglected and eq. (3.67) transforms to:
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SY (g, 0 0 0 0 0)(R
S| [0 g, 0 0 0 0/|]|R,
S| 0 0 g 0 0 0fIRY) o
S,/ o 0o 0o g, 0 o0/||R,
S| [0 0 0 0 g, O0]||R
s;)Jlo o o o o g.)\R

which describes the dynamics of the AO control system at open loop.
Similarly, the dynamics of the AO control at closed loop is described by:

SY (f, 0 0 0 0 0)(R
S| 10 £, 0 0 0 0]|]|R,
S{_|o 0 s o0 0 0]f|R (3.76)
S, 1o 0o 0 f, 0 0]|]|R,
S| 10 0 0 0 fi 0]|R,
S) Lo 0 0 0 0 f.)\R

where the transfer functions f; belong to matrix F of eq. (3.47) and are related
to the terms g; as:

fy=Si (3.77)
l+g;

This last equation expresses per each degree of freedom the relationship
between the open loop gain and the closed loop response of the control
system.
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Chapter 4

Implementation of the Prototype

Our Doctoral Thesis has started from the presentation of the Virgo Project for
the detection of gravitational waves. We have shortly discussed the problem
of noise reduction in the Virgo antenna and in particular we have focused our
attention to the noise originated by the coupling between the interferometer
asymmetries and the input laser beam jitters. The reduction of this kind of
noise is still an open issue in actual GW interferometric detectors as well as
in the advanced antennas that are going to be implemented in the next future.
In fact, none of the techniques up to date proposed has yet demonstrated to
fulfil the specific requirements for the reduction of laser beam jitters.

We have investigated the wide scenario of the Adaptive Optics technology,
the state of the art and the current applications in the fields of Astronomy,
Industry and Medicine. This research has allowed us to see that actual AO
systems, although very performing for their specific applications, do not
satisfy the statements of wideband and high sensitivity laser jitters reduction
requested for GW detectors.

Starting from this context. we have proposed a novel AO system based on the
interferometric detection of the perturbed wavefront, upon the persuasion that
our system could meet the Virgo requirements. In particular, we have
developed the theoretical model that predicts the dynamical behaviour of the
system and designed the architecture of the optical scheme and of the
adaptive control.

The following of our PhD work has consisted in the implementation of the
first prototype for the characterization and the validation of the Project.

In this fourth Chapter we present the scheme of the AO system Prototype that
we have put into operation in the laboratory of Applied Optics at the
University of Salerno. We detail the geometry of the Michelson configuration
and the characteristics of the main components. Whenever necessary
attention is paid to put in evidence that the experimental setup has been built
in strict compliance with the statements of the design, because this is the first
condition for the success of the Project.

We present the He Ne Laser Source that has been introduced into the
interferometer for the correction of the jitters, reporting the technical data and
the characteristics given by the manufacturer Melles Griot. We also show the
characteristics of the Adaptive Mirror produced by OKO on Micromachined
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Deformable Membrane technology and driven by its own electronics. The
overview of the main components is ended with the description of the array
of photodiodes made by Hamamatsu and amplified by electrical boards that
we have designed and made for that purpose.

A short section is devoted to the mode matching between the input laser
beam and the interferometer; in particular we show the optical arrangement
for the positioning of the beam waist on the adaptive mirror and on the
pixellated array of photodiodes.

Finally, we describe the data processor of the closed loop control and the

blocks of operative functions that we have performed using LabView on a
standard PC.

4.1 Architecture of the AO interferometric system

We have implemented the Prototype of the AO system in the Applied Physics
laboratory led by Professor Fabrizio Barone at the University of Salerno.

The optical configuration is based on the typical scheme of the Michelson
interferometer as shown in figure 4.1. In order to test the technique of
wavefront control, we assume that arm 1 is passed through by the reference
unperturbed beam and arm 2 is passed through by the aberrated beam that we
want to clean up. In fact, the two beams that recombine at the output of the
Michelson form an interference figure that is used to generate 6 signals
proportional to the six aberration modes as discussed in detail in Chapter 3.
These signals are subtracted from the reference set point to produce the error
signals sent to the deformable mirror.

The experimental control loop has been closed using a LabView Virtual
Instrument running on standard PC for the data processing from the sensing
element to the actuator.
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Figure 4.1. Optical Scheme of the Adaptive Optics System Prototype. My mirror for TiltX and
TiltY alignment, L; convergent lens for the mode matching with the adaptive mirror M,, L,
convergent lens for the mode matching with the 5x5 PD-Photodiodes Array. BS is the beam
splitter and M, the piezoelectric mirror for the middle fringe lock in. The 25 voltage output
signals emerging from the photodiodes are collected by the ADC board and sent to the PC
where the Labview Virtual Instrument processes the data and generates the command
signals. These are converted by the DAC into analogical form and sent through dedicated
bus to the Piezo and to the Adaptive mirrors for the lock in and the wavefront control
respectively. The equipment is installed on a seismically isolated bench.

voltage signal

The source of the input beam is a stabilized Laser He-Ne, A=632.8 nm, P=1
mW, made by Melles Griot, which is passed through a Faraday cell to avoid
disturbances due to light back reflected by the interferometer. The mirror My
is used for the first optical adjustment as it allows to correct macroscopic
TiltX and TiltY misalignments.
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The spot size is matched to the adaptive mirror and to the photodiodes array
using the lenses L; and L, respectively, as we describe in the following.

The input beam is split into two half intensity parts by the beam splitter BS.
One half beam runs in arm 1 and is used for the lock in of the interferometer
on the half fringe working point using the piezoelectric mirror M;. The other
beam passes through the arm 2 and is corrected by the Adaptive mirror M.
The interference fringe pattern at the output of the Michelson is collected by
the 5x5 rectangular array of photodiodes that generate 25 voltage signals sent
to the ADC board for the digital conversion.

The closed loop control for the lock in and the adaptive correction is
performed using the Labview programmed PC that processes the data coming
from the photodiodes and generates the command signals for the actuators.
From the scheme of figure 4.1 we see that a part of commands is generated
for the piezoelectric actuator and another set of voltages is produced for the
adaptive mirror. In both cases the voltage signals are first converted by the
DAC into analogical form and then sent to the actuators through dedicated
bus lines. All the equipments are installed on a seismically isolated bench
manufactured by Newport.

F

Figure 4.2: Picture of the Adaptive Optics System Prototype implemented at the University
of Salerno in the laboratory of Applied Optics led by Professor Fabrizio Barone

Figure 4.2 shows the picture of the experimental setup implemented in our
laboratory for the tests of characterization.
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4.2 Laser Source

The Laser source is a stabilized Laser He-Ne, A=632.8 nm, P=ImW, made by
Melles Griot [97].

Figure 4.3: picture of the stabilized Helium Neon laser used in the experimental setup
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Figure 4.4: scheme of the laser manufactured by Melles Griot. The product we have used is
the code 25 STP 912

It is ideal for such applications as interferometry which require a single,
invariant frequency with large coherence length. In fact, it oscillates on a
single-longitudinal-mode and has a coherence length measured in kilometres.
It also exhibits excellent power stability for long periods of time (<0.2%
power fluctuation over 8 hours), while the frequency stability is 1 MHz at
nominal frequency 473.61254 THz
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Figure 4.5: helium neon gain curve showing two orthogonally polarized modes. Only one of
them is allowed to exit the system

INTENSITY

The laser system produces two orthogonally polarized longitudinal modes as
shown in figure 4.5. The two modes are separated into two beams by
polarization components and their amplitudes are compared electronically.
The cavity length is then adjusted to maintain the proper relationship between
the modes. Only one beam is allowed to exit the system.

The transverse mode is the fundamental Gaussian TEM,, with beam diameter
(1/¢%) equal to 0.54 mm and full cone beam divergence of 1.5 mrad [98]. This
corresponds to the beam waist wy=0.27 mm and the far field diffraction angle

0= A =(.75 mrad, according to the geometry pictured in figure 4.6.
4

1/’ intensity surface

Cavity length

Figure 4.6: propagation of the laser beam from waist plane to far field
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4.3 Adaptive mirror

The adaptive mirror used as actuator for the wavefront correction is a
Micromachined Membrane Deformable Mirror (MMDM) manufactured by
OKO Technologies Flexible Optical B.V. and driven by proprietary
electronics. It is produced on the technology of silicon bulk micromachining
widely diffused in the field of the Micro Electro Mechanical Systems
(MEMS) [99].

Figure 4.7: front side and back side of the deformable mirror manufactured by OKO

The device is made of a silicon chip mounted over a concentric electrostatic
electrode structure. The chip contains the multilayer silicon nitride membrane
specially coated on the front side for the realization of the mirror reflecting
surface. The control electrode structure is contained in the PCB.

The scheme of the system is illustrated in figure 4.8.
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Figure 4.8: schematic section of the micromachined adaptive mirror

The reflective membrane has a circular shape of 30 mm diameter and its
initial profile can be adjusted using 8 micrometric screws placed on the back
side of the mirror mount. After, the attractive force applied by the actuators
induces deformation of the membrane with maximum deflection at the center
of 15 pm on bandwidth of 500 Hz, that at the state of the present technology
sets the upper limit to the frequency response of the whole control system.

The array of 59 actuators under the membrane is formed by electrodes

printed on the basis of the PCB to form a circular structure of 20 mm
diameter.
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Figure 4.9: array of 59 electrodes disposed on the PCB in circular form with 20 mm total
diameter

The electrodes are addressed to 59 channels grouped into three sets of
voltages generated by three 24ch 8 bit PCI DAC boards [100] in cascade with
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three high voltage driver boards. Each of the three amplifiers contains 20
non-inverting DC amplifiers with gain 59 that raise the voltage up to 300V
for the electrodes. The electrical scheme of the DC amplifier is shown in the
figure below.

| High |

| Voltage |

— VN out

}\KPS 42
R2 R5
47K 47K

Figure 4.10: electrical scheme of the DC amplifier driving the electrode actuator of the
deformable membrane (OKO proprietary electronics)

4.4 Array of photodiodes

The sensor at the output of the Michelson is an array of 25 of photodiodes
manufactured on a 28 pin chip by Hamamatsu Photonics [101].

l

TITLIRL
EILELELT

Figure 4.11: 28 pin chip Hamamatsu containing the 5x5 photodiodes array
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The 2-D array is arranged in a 5x5 square matrix with active area of total
dimension 7.3x7.3 mm”. In particular each single pixel has an active area of
1.3x1.3 mm’ and a spacing distance of 0.2 mm from the next one. Therefore
the element pitch (center to center spacing) is 1.5 mm both in the X and Y
direction. The array is encapsulated into a window of flat glass.

Each photodiode can be inversely polarized by the maximum reverse voltage
of 15 V' and operates in the temperature range from -20 to 60 °C.
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Figure 4.12: dimensional outline of the photodiodes array (unit: mm)

Concerning electrical and optical characteristics, the spectral response ranges
from A=320 nm to A=1000 nm with peak sensitivity wavelength A,=800 nm
where the photosensitivity curve of the photodiode reaches 0.5 A/W.

The sensor bandwidth is 170 MHz and therefore it can be considered flat over
the range of interest that does not overcome few kHz.
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Figure 4.13: spectral response of the photodiodes

The signal conditioning of the photocurrents emerging from the 25
photodiodes is performed by electronics that we have properly designed and
engineered for the operation of our system. In particular, we have
implemented 25 small electronic boards allocated in groups of 5 into suitable
cases which also provide for the supply (see figure 4.14). Each circuit
receives one the 25 photocurrents, converts into voltage form and amplifies
the signal before it is transformed into digital form by the ADC.

Figure 4.14: picture of the 25 photodiode amplifier allocated into the cases and connected to
rest of the system
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The block diagram of the amplifier is shown in figure 4.15. It is a DC
coupled analogical circuit based on the technology of operational amplifiers
with feedback impedance [102], [103].
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Figure 4.15: block diagram of the photodiode amplifier based on the operational OP27

We have used the operational OP27 manufactured by Analog Devices [104]
into three different stages.

The Stage A is the current voltage converter that collects the photocurrent of
the inversely biased photodiode and produces the proportional voltage. If we
consider the photodiode as ideal generator of current Ipp, we can calculate the
voltage at the input of the Stage A using the Thévenin equivalent circuit of
the photodiode in series with the resistor R; as in figure 4.16. In this case we
have the voltage generator Vy,=Ipp'R; in series with the impedance Rx=R;.
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Figure 4.16: Thevenin equivalent circuit of the photodiode circuit. V=R Ipp and R,;=R;
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Therefore, from the theory of the operational amplifiers with feedback
impedance, the voltage at the output of Stage A is given by:

R R
VoA :__2Vzh :_#IPDRI :_RZIPD 4.1)

1 1

The capacitor C; is used to limit the high frequency noise.
The Stage B is an inverter with amplification factor -1 whose task it to
change the sign of the signal, according to:

vE = —% Vi =-1-V =+R,,, (4.2)

3

Finally, the Stage C is the output buffer that sets the output impedance of the
amplifier at low level. In our case we have chosen the DC voltage follower
configuration which provides the circuit an output impedance of about 0,75
Ohm [102].

The output signal of the voltage follower, which is also the output of the
whole circuit, is not changed, so we have:

14

out = Voc =+R, 1), (4.3)
Therefore the voltage signal at the output of the photodiode amplifier is
proportional to the photocurrent and the amplification factor is exactly the
value of the resistor R,.

In our circuit we have used the value R,=50K which corresponds to
conversion from input photocurrent to output voltage of 20 u4 —1 V. We
have illuminated the photodiode and measured with an amperometer in series
to the photodiode [105] the value of 18.5u4 for corresponding output of 1 V.
This can be acceptable within the experimental tolerance.

45 Optical arrangement for mode matching of the laser
beam with the interferometer

The design of the AO system that we have presented in the previous Chapter
is based on several assumptions that need to be strictly satisfied in our
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experimental prototype if we want to perform a good and reliable
characterization.

One of the most important requirements that the setup must fulfil is that the
laser beam is correctly matched with the interferometer and in particular with
the deformable mirror and with the pixellated photodiode.

In fact, the laser beam diameter at the plane of the adaptive mirror must be
small compared with the diameter of the deformable membrane in order to
avoid non linearity effects that are more evident in the boundary region
where the membrane is bonded. But, in the same time the laser spot needs to
be large enough for aberrations like astigmatism which would not be
effectively corrected if the beam was strongly focused around the axis.
Furthermore, in our model the analysis of the Gaussian beam perturbation has
been carried out on the waist plane which must coincide with the plane of the
photodiodes array. Here the waist must also fulfil the condition
1.4<wy/L<1.6 (L= length of the single pixel) for a good decoupling of the 6
degrees of freedom.

The problem of controlling position and diameter of the beam waist in
Gaussian Optics is commonly named mode matching and can be solved using
a thin lens and the ABCD law for light propagation [95]. The Gaussian beam
propagation follows the ABCD law in paraxial approximation as:

_Ag, +B

= 4.4
Cq,+D “4)

2

in analogy with spherical waves, where the curvature radius R is now
replaced by the complex parameter g.

Using the ABCD matrix of the thin lens of focal length f, the complex
parameter ¢; at the input transforms into the parameter ¢, at output according
to:

— = (4.5)

If g; and ¢, are respectively at distances d; and d, from the lens, as pictured
in figure 4.17, the relationship between them is given by:
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[l—leql +(d1 +d, - dldzj
q, = / / (4.6)
1 d,
——q | 1-—
Foe{-)

as can be seen using the ABCD matrix of the system made by the sequence
of distance d, thin lens fand distance d>.

dl d2

k3
E

f

Figure 4.17: schematic of the Gaussian beam propagation through the thin lens

The input beam of initial waist w;, after passing through the thin lens at
distance d;, is focused into the new waist w; at distance d>. We can note that
the behaviour is similar to that observed for a spherical wave in the
geometrical paraxial approximation. In fact, in that case the light emerging
from a point like source at distance d; is focused by the thin lens into an
image point at distance d, according to the law of conjugate points. In
Gaussian optics the ideal point of focalization is replaced by a finite size spot
as the transverse dimension of the Gaussian beam cannot ever collapse into a
null size geometrical point. So the law of the conjugate points is modified
into:

d, /
l-—|= 4.7
I-——| +

f Za

which provides that the distance of the image d» never diverges to infinite. It
1s worth noting that eq. (4.7) reduces to the law of conjugate points in
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geometrical optics if w;—0. The difference between geometrical optics and
Gaussian optics is well represented in figure 4.18, where we picture the law
of conjugate points of the thin lens for geometrical optics and for Gaussian
optics.

2
T =)
L L

||= = rgeometrical optics | Ny
gaussian optics

doff

dq/f

Figure 4.18: law of conjugate points of the thin lens for geometrical optics (dashed blue line)
and for Gaussian optics (continue black line).

Hence, if we assume that at distances d; and d> the beam waists have flat
wavefront, it holds:

9, =] 1 4y, =] 1

(4.8)

that, substituted into eq. (4.6), gives the following two equations from the
real and the imaginary part respectively:

(d, = fNdy=1f)= 1" 1 (4.9)
and
dl — f _ W_12
i (4.10)

being f) the coherence length:
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_ W,

4.11
fo I (4.11)
By combining eq. (4.9) and eq. (4.10), we can derive:
w
dl :fiw_l\/fz _f02
2
(4.12)

d, :fi%m

where plus or minus signs can be alternatively used.

This means that, if we fix the desired ratio w,/w; and choose the suitable lens
with f>f, , we can calculate the distances d; and d> where the beam waists are
formed.

We have used these two final equations for the arrangement of the
experimental setup, in order to match the beam waist of the input laser to the
plane of the deformable mirror and successively to the plane of the pixellated
photodiodes. In particular, as we had to match twice the beam, we have
considered the more complicated optical structure shown in the figure below.

di e & ds . d

»-

L

Laser source ¢ Mirrors ¢ Photodiodes
! 2 array

Figure 4.19: schematic of the optical system based on two thin lenses used in our
experimental prototype. The lens L; matches the input beam waist wy with the beam waist w;
on the adaptive mirror plane, while the lens L, matches the beam waist w; to the waist w; on
the plane of the photodiodes array.
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With reference to the experimental setup schematized in figure 4.1, the first
distance d; corresponds to the path from the initial waist position to the lens
L,; the distance d, corresponds to the path between L; and the mirrors (the
optical path is the same for the adaptive and the piezo mirror). The waist w;
at the deformable mirror is chosen equal to 3 mm so the laser spot of diameter
2w;=6mm covers completely the central electrode and half of the first ring of
lateral actuators and in the same time it is small enough with respect to the
membrane diameter of 30 mm.

Figure 4.20: mode matching of the laser beam with the deformable mirror. The spot covers
the central electrode and half of the first ring of lateral electrodes.

The distance ds of figure 4.19 corresponds to the path that each of the two
half beams runs from the mirror to the lens L, separated by distance d, from
the pixellated photodiode. Here the two beams interfere and form the waist
w, which must comply with the requirement 1.4<w,/L<1.6, being L=1.3mm
the length of one pixel. We have chosen w,=2mm, so w,/L=1.54 and the spot
2w,=4mm covers the central pixel and part of the first pixels around.

P1.5 = 4
P15 0.2

ooz oo} |
b1][b2] v
|cw [ m 5

(o 1-31.-' DETAILS OF ACTIVE AREA

2W,=4mm

Figure 4.21: mode matching of the laser beam with the pixellated array of photodiodes
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4.6 Data processor

The digital signal processing of the data collected by the ADC is made of
several operations foreseen by the design of the control system (figures 3.9
and 3.10) and necessary to generate correction signals for the actuators.

In figure 4.22 we show the scheme of the operations that we need to carry out
using the data processor for the lock in control and for the adaptive wavefront
correction.

Data processor
Labview on PC

1 1
1 1
1 1
1 1
: ! ! Regulator
| 20 ¥
_________ | P
Controlled :r: Vier(t) +¢ e(t) "'l lockin
system 11 »| Comb —>®—; Filter — >
' ¥
1 | :
ADC |} !
1 1 g
e [T R(Y i
: i (6x1) 1 !
i i Comb 1 Transd | + Filter Comb 2 i ' \é\g\;:g?;;
[ —> —’ —’ |
: : 6x25 6x6 6x6 59x6 : h
[ S(t) E(t) 1 :
1 1
————————— J : (GXl) (6X1) ! !
1 1
— _/
—

Figure 4.22: block diagram of the data processor implemented on Labview programmed PC

We have performed the data processing unit using the Labview Virtual
Instrument properly designed on a standard PC [106], [107].

In fact, Labview is a graphical programming language that permits to create
block diagrams of Virtual Instruments and execute lots of operations on
digital signals. A front panel can be created as user/machine interface where
we can manipulate the parameters of the Virtual Instruments as if we were
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using real physical instruments. We can operate the Virtual Instrument
through knobs, pushbuttons, dials and other input devices, and we can see
indicators such as graphs, leds and other displays.

In our Prototype we have simulated the blocks corresponding to the
combinators using the transfer matrices designed in Chapter 3, while low
pass filters at 0.1 Hz have been chosen as correcting networks for the stability
of the controls.

In the following two figures we show two examples respectively of the block
diagram and of the front panel that we have used in our work.

B ACOT rev 11 luglo2000 - writing. vl Block Diapram =
Ble C Yow Propct (porate Jook Windew fick

D[] 8] [F] [22] [wafm] o2 [ 136 Appicatan Fore .]|EE|

Interfererca

4 start /= 8 G [ " Dico rimovitaa {1} B Dol ormatinblaror b AEGT reve 1 hughaT00. . ~ ACGT rev | hughod00., T e cigranmaln....

Figure 4.23: block diagram of the Virtual Instrument simulated on Labview to perform the
required operations of the data processor. The blocks and the data flow are properly
designed in compliance with the scheme of fig. 4.22
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Figure 4.24: front panel of the Virtual Instrument. In the dials on the top we can see the
transient of the interference signal that is reaching the regime stationary condition (left side)
thanks to the lock in carried out by the driver signal (right side). In the bottom, on the left the
5x5 coloured matrix that simulates the array of photodiodes (the colour changes from black
to white for increasing intensity on the photodiode). On the right side we can see some
indicators and the red lever that we use to activate the control.
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Chapter 5

Test of the prototype, results and discussion

So far we have presented the Project of the AO system for the correction of
laser beam jitters in interferometric GW detectors. In particular, starting from
the presentation of the Virgo Experiment and after investigating the state of
the art of the available AO technology, we have developed the design of a
new AO system where the phase front reconstruction is performed using an
interferometric technique more sensitive and faster than the usual Shack
Hartmann sensor. Successively, we have described the arrangement of the
experimental Prototype implemented in our laboratory to perform the
simultaneous control of six aberration modes of the laser wavefront in
compliance with the design statements.

In this final Chapter we report the tests we have carried out for the
characterization of the Prototype and the results obtained for the validation of
the Project. Our goal is to check effectiveness and stability of the control in
the band up to 1 kHz and to demonstrate that our AO system fulfils the
requirements for laser noise reduction in the Virgo antenna.

We have performed several measurements and all the data that we here
present are statistically processed and reported in form of graphs, curves,
surfaces, tables and histograms in such a way to provide the reader a good
understanding of the behaviour and the performances of the system in
comparison with the theoretical prediction.

The measurements are divided into three groups and for each one we provide
a short remind about the theoretical aspects and the methodology followed
for their execution.

First of all we have characterized the two control systems implemented
respectively for the lock in of the interferometer and for the adaptive
correction of the perturbed wavefront. To do that, we have measured the
frequency response functions and here report the Bode diagrams of modulus
and phase which give us information about bandwidth and stability.
Secondly, we have measured the coefficients of the aberration modes under
the condition of open loop and of closed loop control. The curves of such
coefficients in the time domain give evidence of the strong reduction of the
RMS values when the loop is closed. The same data converted in spectral
curves demonstrate that the residual noise is significantly reduced in the
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region of low frequency below 200 Hz, in good accordance with the Virgo
requirements.

The third set of measurements is the laser beam quality control that we have
performed to check whether our AO system is really able to clean up the
jitters due to first and second order Hermite Gauss terms perturbing the
fundamental Gaussian mode. In particular, we show that when we close the
loop of the AO control the total intensity profile of the two beams interfering
at the photodiodes array matches with good precision the ideal Gaussian
curve that is expected on the interference plane of two unperturbed laser
beams. This result gives us direct evidence of the jitters suppression operated
by our AO system.

5.1 Measurement of the frequency response function of the
control system

We briefly remind the basic theoretical principles for the characterization of
control systems and explain the experimental methodology that we used to
test our Prototype.

Then, we present the measurements and discuss the results achieved for the
lock in of the interferometer and for the AO control that has been
implemented to simultaneously correct six aberration modes of the laser
beam.

5.1.1 Some theoretical principles

The study of control systems is based on the use of dynamical mathematical

models that usually are considered linear within a certain range of variation
of the variables [96].

X(t) (1) y(t)

Figure 5.1: block diagram of a system with input variable x(t), output variable y(t) and pulse
response g(t)
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In figure 5.1 we see that a linear stationary system is generally an operator
that transforms the input signal x(z) into the output signal y(z) according to a
specific law obtained by solving the differential equation of type:

dny dn—ly dmx dm—lx
a +a +..+a,y=b, —+b,  ——+..+b,x 5.1
n dtn n—1 dt’Fl Oy m dtm m—1 dtm71 0 ( )

where the coefficients a, and b,, are constants and n>m.

In order to characterize the system in the time domain, we need to
analytically solve that differential equation and thus obtain the dependence of
y(t) on x(t). In particular, if we know the response g(?) of the system to the
Dirac pulse function J(z), we have all the necessary information as each input
signal transforms into output through the following integral of convolution:

50 = [ et~ )ar 52

On the other hand, as the analytical solution of the differential equation (5.1)
is quite difficult to calculate except for simple cases, it is common to study
dynamical systems using the method of the Laplace transform. This is an
operator associating any function f{z) defined in the time domain of variable ¢
to the corresponding complex function F(s) defined in the domain of variable
s=o0+jm, according to:

F(s)= Tf(t)e“dt

(5.3)

l o+ j°
- F st
@) > Ln_,w (s)e”ds

The method of Laplace is very useful because it allows to transform the
differential equation (5.1) into the simple algebraic equation:

Y(s)=G(s)X(s) (5.4)

where X(s) and Y(s) are Laplace transforms of x(z) and y(?) respectively, and :
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X(S) ’zl a,.si
i=0

G(s)

is the transfer function of the system, expressed in form of ratio between two
polynomials of variable s given by the application of the Laplace operator to
the two terms of eq. (5.1). This last result, which holds when the system is
initially quiet, allows to calculate the Laplace transform Y(s) by the product
of X(s) times G(s) and then to obtain the signal y(z) by the inverse transform
operator indicated in the second row of eq. (5.3).

The transfer function G(s) is the Laplace transform of the pulse response g(?)
and permits to calculate the system response Y(s) to any input X(s). Hence,
the system dynamics is completely characterized from g(¢) in the time
domain or alternatively from G(s) in the Laplace domain.

X(s) Y(s)
— G(s) — >

Figure 5.2: block diagram of a system represented in the complex domain of Laplace. X(s) is
the input signal, Y(s) the output signal and G(s) is the transfer function.

The dynamical behaviour of any system depends on the number and the kind
of poles of G(s), or the zeros of the equation:

Zn: as =0 (5.6)
i=0

In particular, if eq. (5.6) has only real solutions then the system is of the first
order and it responses to an instantaneous variation of the input signal with
the typical delay time 7 before reaching the stationary regime. In the case of
complex conjugate solutions with negative real part, the system is of the
second order and its response to an instantaneous variation of the input signal
is characterized by the rise time 7 and several dumped oscillations before
reaching the stationary state. This kind of second order system is stable and
has proper frequency @, and damping coefficient 6. On the contrary, if the
real part of the complex conjugate poles is positive, the oscillations increase
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and the output signal diverges. In this case the system is unstable and do not
ever reach the stationary regime.
Figure 5.3 shows typical step responses of first and second order systems.

2

x(1) y(t)
1 preemmemmenesng 16 y(t) inStable
;/stable N

0.8 [P

0.6 \ ......................
y(t) 0.8

0.4 ]

02 0.4

01 2 345678 910 % 5 4 6 8§ 10

t/t t/t

a) b)

Figure 5.3: typical step response y(t) of a system of the first order a) and of the second order
b) in case of stability and of instability. The x axis is the time t normalized to the
characteristic rise time .

Stationary linear systems can be also described using the Fourier
representation based on the study of the frequency response function G(jw)
given by the transfer function G(s) when s=jo and related to the pulse
response g(t) through the Fourier transform operator:

G(jw) = [ g(t)e™ dt
(5.7)

_ 1 T . j ot
g(t)—g jw G(jw)e’dw

In fact, we can represent any system using the frequency response function
that converts the Fourier transform of the input signal X(®) into the Fourier
transform of the output signal Y(@) according to:

Y(0)=|G(jw)e” X (w) (5.8)

In this last equation we have remarked that G(jw) is a complex function that
introduces the phase difference ¢(w)between input and output.
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The Fourier representation is often preferred because it can be experimentally

tested by direct measurements of the frequency response function.
The most popular method to represent G(jw) is the Bode diagram composed

of two graphs named respectively amplitude diagram « and phase diagram
p. The first one is the logarithm of G(jw) modulus plotted against the

logarithm of @ and the second one is the phase ¢(@)against the logarithm of

w. In the following figure we show typical Bode diagrams for a system of the
first order and for a stable system of the second order. The scale is

Figure 5.4: block diagram of a system represented in the Fourier domain. X(®) is the input
logarithmic for the & diagram and half logarithmic for f.

signal, Y(w) the output signal and G(jw) is frequency response function.

phase (rad)
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Figure 5.5: Bode diagram of a system a) of the first order (cut off frequency 100 Hz) and b)
of the second order (proper frequency 100 Hz, damping coefficient 0.1)



The amplitude can also be plotted in half logarithmic scale in terms of
decibel (dB) given by 20 IOglo|G( ja)x as scale unit on the y axis.

The most relevant parameter of the first order system is the bandwidth
measured from zero up to the higher cut off frequency wy =1/7 where the a

diagram drops down to 1/+/2 of its static value corresponding to -3dB.

In second order systems we notice the resonance frequency @, where the
amplitude exhibits a peak whose shape depends on the damping term o.

The models so far discussed can be applied to describe all the linear systems
including the closed loop controls that are of particular interest in our work.
Therefore, using the same formalism, we schematize the feedback control of
figure 5.6 where we assume that the transducer is 1.

R(s) E(s) C(s)
G(s) >
+
a)
R(s) Gs) C(s) b
—» F(s)= a >
1+ G(s)

Figure 5.6. block diagram of the feedback control system a) and synthetic representation b).
The transducer is assumed to be unitary.

In this case we have to deal with two different transfer functions that are G(s)
for open loop and F(s)=G(s)/[1+G(s)] for closed loop system.

The characterization of that control is based on information about the
following three aspects:

1. Robustness and effectiveness
2. Response time and bandwidth
3. Stability

The system robustness against disturbances, non linearity effects and
parameters variation is proportional to the amplitude of the open loop gain G
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in the bandwidth of interest. This means that if the condition |G( ja))| >>1 is

fulfilled, the feedback system is robust and effective in maintaining the
controlled system on the working point set by the reference signal.

Response time and bandwidth at closed loop concern the system capability to
follow fast reference signal variations. As the closed loop system is DC
coupled, the bandwidth of F(jw) is defined from zero to -3dB cut off
frequency.

Stability indicates the system aptitude to reach the regime state after the
excitation induced by the input signal. In feedback control systems the
stability is estimated using the Nyquist criterion that involves the analysis of
the frequency response of the open loop gain G(jw). In particular, two
parameters are defined, named stability margins, which measure the quality
of the dynamical behaviour of the closed loop control system. The amplitude
margin M is the inverse of the modulus | G(liw) | calculated in the frequency
o where the phase is ¢(w)=-m The phase margin Mpy 1s the angle that it is
necessary to subtract to ¢(w) calculated in the frequency @ where the
modulus is 1, to reach the value —z Typical values for the stability of the
closed loop system are M, from 4 to 6 (from /2 dB to 16 dB) and Mpy from
45° to 60° (from 0.78 rad to 1.05 rad).

In conclusion, a closed loop control system is completely characterized if all
the parameters here discussed are know. Therefore, in order to test our
experimental Prototype, we have carried out measurements of the frequency
response function at open loop and at closed loop. From the open loop gain
we get information about robustness, effectiveness and stability, while from
the closed loop response we measure the bandwidth of feedback control.

5.1.2 Methodology of measurement

The measurement of frequency response functions has been operated using
the Virtual Spectrum Analyzer implemented on Labview. This instrument
generates the oscillating sinusoidal signal at variable frequency that is
introduced into the system under test and in the same time it measures and
processes the system output. So it is possible to reconstruct the amplitude and
phase diagram of the system frequency response over the whole spectral
range from 0 to co.

The process of measurement implemented on the Virtual Analyzer is shown
in the block diagram of figure 5.7.
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frequency >
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Filter
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1
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i I
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Figure 5.7: block diagram of the process implemented on the Virtual Spectrum Analyzer for
the measurement of frequency response functions

The variable frequency oscillator generates the signal Xsinaor that is
introduced into the system under test. The output of the system is the
sinusoidal signal of amplitude Y and phase difference ¢ given by:

Y sin(wt + ¢) = Y (sin wt cos ¢ + cos ot Sin @) (5.9)

That output is reintroduced into two multipliers where it is respectively
multiplied times the input signal and its derivative, giving:

z,(t) = XY(sin2 @t COS @ + Sin @t COS wt Sin go)
(5.10)
z,(t) = XY(cos2 ot Sin @ + sin et CoS wt Sin (/))
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Successively, these two signals z;(?) and z,(?) are integrated over m times the
period T=27/w:

T
+m—

1 Xy X*
e t)dt =——cosp =—R(w
o7 | A0 == c0sp == R()

—m—

2

(5.11)
+m£

1 ¢ XY . X2
— z. ()dt =—sinp=—I1(w
7 | 20d="sing == 1(w)

and finally by the product with the term 2/X° we achieve real part R(w) and
imaginary part /(@) of G(jw).
These are used to calculate amplitude and phase of the Bode diagrams.

5.1.3 Results and discussion

5.1.3.1 Frequency response function of the lock in control system

We have initially measured the frequency response at open loop and at closed
loop of the feedback control implemented with the piezo electric mirror to
lock the interferometer on the middle fringe working point.

The following figures report the amplitude and phase Bode diagrams of the

measured G(jw) and F(jw).
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Figure 5.8: Bode diagram of the frequency response function G(j®) of the piezo control at

open loop
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Figure 5.9: Bode diagram of the frequency response function F(jw) of the piezo control at

closed loop
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From figure 5.8, which reports the frequency response function G(jw) of the
piezo control system at open loop, we see that the static gain measured at
0.01 Hz is 60 dB (corresponding to 10°) and that it decreases to 0 dB (or 1) at
91 Hz. This last is the so called unitary gain frequency or the upper limit for
robustness and effectiveness of the control.

The Bode diagram relative to the open loop frequency response gives also
information about the stability. In fact, the amplitude margin is 13.8 dB and
the phase margin is 0.99 rad and therefore from the Nyquist theorem we can
affirm that the system is stable.

From figure 5.9, we see that the closed loop control exhibits the dynamical
behaviour similar to second order systems with resonance frequency at 450
Hz and bandwidth of 535 Hz.

5.1.3.2 Frequency response functions of the AO control system

The piezo control has been used only in the first step of our experiment to
lock the interferometer and operate the procedure of diagonalization of the
deformable mirror transfer matrix.

After that, the piezo actuator has been switched off and simply used as static
flat mirror in one of the two arms of the Michelson.

On the contrary, the adaptive control has been put into operation to perform
wavefront correction using the deformable mirror placed in the second arm of
the interferometer.

Thanks to the diagonalization which allows to consider the six degrees of
freedom decoupled one with another, we have independently measured the
frequency responses g;;, i=1,..,6 (see eq. (3.75)) of the single controls acting
at open loop respectively on longitudinal mode, TiltX, TiltY, Astigm45,
Astigm90 and Defocus and the frequency responses f;, i=1,..,6 (see eq.
(3.76)) of the same controls at closed loop.

The set of 12 Bode diagrams that we present in the following gives the
complete characterization of our AO control.
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Figure 5.10: Bode diagram of the frequency response function g;;(jw) of the longitudinal

control at open loop
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TiltY Open loop
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Astig45 Open loop
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These measures permit to identify the parameters characterizing the adaptive
control system. In particular, from the diagrams of the frequency responses at
open loop we see that each control exhibits static gain of the order of 60+70
dB which decreases with slope of -20 dB/decade beyond the cut off
frequency of 0.1 Hz set by the low pass filter used as correcting network for
the stability. This implies that these six curves reach the unitary gain at about
200 Hz. Therefore the wavefront correction on the six modes is expected to
be robust and effective in the band of few hundreds of Hz which is
particularly interesting for Virgo application. Furthermore, amplitude and
phase margins lay all within the range 12 dB + 16 dB and 0.78 rad +~ 1.05 rad
respectively and therefore the Nyquist stability is fulfilled. Finally, the
frequency response diagrams of the closed loop controls show the typical
behaviour of second order systems with resonance frequencies ranging from
400 Hz to 500 Hz and bandwidth of about 600 Hz.

The values of the referred parameters are all listed in the following table 5.1.

Open loop Closed loop

Mode 0.01Hz
dB Hz dB rad Hz Hz
Longitudinal 66 235 15,2 0,86 480 601
TiltX 64 230 14,9 0,87 520 595
Tilty 67 220 15,9 0,88 530 610
Astig45 63 188 15,9 0,96 470 600
Astig90 61 205 15,8 0,9 490 590
Defocus 56 130 14,7 1,04 480 570

Table 5.1: operative parameters of the six feedback controls measured for the
characterization of the Adaptive Optics Prototype implemented in laboratory

With reference to figures 5.22 and 5.23, where we have respectively plotted
static gain and unitary gain of the six modes, we see that TiltY control has the
maximum static gain equal to 67 dB while longitudinal control exhibits the
largest unitary gain frequency of 235 Hz.

More generally, the correction of the first three modes (longitudinal, TiltX
and TiltY) is more robust and wideband than the correction of the second
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three modes (Astigm45, Astig90 and Defocus) and this appears reasonable to
the author because these last modes correspond to second order Zernike
polynomials and then require patterns of deformation for the adaptive mirror
that are more difficult to achieve in real actuators.

Static Gain
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64 -

62 + -

60 1 -
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Figure 5.22: measured static gain of the six controls of the AO system
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Figure 5.23: measured unitary gain of the six controls of the AO system
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5.2 Measurement of residual noise in the controlled laser
beam

We have directly tested the laser beam jitters suppression performed by our
Adaptive Optics Prototype. The results demonstrate the compliance with
Virgo requirements as stated in Chapter 1, which provide for 40 dB noise
reduction at low frequency below 1 Hz and 20 dB below few tens of Hz.

To execute the test we have put into operation the Prototype and measured
the six aberration coefficients of the controlled laser beam with the adaptive
control firstly at open loop and secondly at closed loop. By comparing the
values of the coefficients in the two cases, we have checked the actual noise
reduction and measured the gap between free laser original noise and residual
noise of the controlled beam. The reduction that we have simultaneously
measured on the six aberration coefficients when the AO control loop is
closed demonstrates the good performance of our system.

In the following, we shortly discuss the statistical processing techniques that
we have used to analyze the measured noise. After that, we talk about the
methodology of measurement based on the collection of digital data with
sampling frequency chosen upon the Nyquist Shannon theorem. Finally, we
present the measures of the six aberration coefficients and discuss the
difference between free noise at open loop and residual noise at closed loop.
In particular, we report the time variation of the six coefficients and calculate
their RMS residual values The same data are also processed in terms of
Power Spectral Density curves and the noise reduction is reported in the
different spectral ranges for comparison with Virgo requirements.

5.2.1 Some theoretical principles

Let us consider the time evolution of the physical parameter x that in each
instant ¢ has the probability of assuming a certain value. This is called
stochastic process x(t) and is characterized by the function of probability
distribution of the first order f{x,z) [108], [109].

The mean value of x(t) is the time dependent function given by:

n(t) = E[x(t)] = fxf(x, t)dx (5.12)

which represents the expected value of the variable.
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It is also defined the statistical parameter named autocorrelation function:
Rt 8,) = Ex(e (e, )] = [, (x,x6,. 4,8, vy, (5.13)

where x; and x; are the variable values at instants ¢; and #,, and f{x;,x,,,,1;) is
the function of probability distribution of the second order.

The stochastic process is stationary if, for each real value s, the two
variables x(¢2) and x(t+¢) have the same statistics. This implies that the
function of probability distribution of the first order is constant, or:

f(x,0) = f(x) (5.14)

and that the function of probability distribution of the second order depends
on the time difference 7 = ¢;-1, or:

S x,,8,8,) = f(x,x,,7) (5.15)

The mean value is then time independent:
n= E[x(t)] = Ixf(x)dx = const (5.16)

and the autocorrelation function is only dependent on =
+00

R(Z’) = E[x(t + r)x(t)] = _[xlxzf(xl ) Xy, r)d)cld)c2 (5.17)

—00

The process x(?) is ergodic when the mean of ensemble of eq. (5.16) and the
autocorrelation function of eq. (5.17) can be replaced by time averages, as:

) 1 +T 1 +T
n=lim— [ x(e)a T;E_jrx(t)dr (5.18)

-T

and
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+T

R(r)=lim % [+ 2)x(e)ae = I%J]Tx(t fOx()d (5.19)

The Power Spectrum S(w) or Power Spectral Density (PSD) of the process
x(t) is defined as the Fourier transform of the autocorrelation function, that is:

S(w)= [R(z)e " dr (5.20)
with the inverse:
R(r)=—- [S(@)e’ do (5.21)
2

If we calculate R(7) in 7=0 and use eq. (5.19), we have:

R(0)= i wS(a))da) = % j|x(z)|2dz = Eﬂx(t)|2] (5.22)

The PSD is of particular interest in experiments where signal processing is
required because the area of the function S(w)2x over the whole spectral
range is the mean power of the process x(?). It is usually preferred to use the

square root of the PSD 1/S(a))/ 27 , whose integral over the spectral range
represents the RMS of the process x(?). The unit of measure of the square root
of the PSD is equal to A/ v Hz , being 4 the unit of measure of the process

x(t). In the following we will speak only of PSD, even if meaning its square
root, for the sake of simplicity.

A linear system of frequency response G(jw) transforms the PSD JSxia)i of
the input x(z) into the PSD ./ Syia)i of the output y(?) according to:

S (@)= G(jo)s, (@ (5.23)

y
So, if we want to suppress stochastic noise of a given signal in a selected

frequency range, we can use a filtering system of suitable frequency response
that suppresses the input noise exactly in that spectral interval.
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In our experiment we have designed an AO system based on the scheme of
closed loop automatic control in order to perform active filtering of laser
beam stochastic jitters. For each of the six degrees of freedom x; (i=1,..,6)
corresponding to first and second order jitters, we expect PSD reduction as:

1

P P N
1+g,(jo)

Yi

S (o (5.24)

Xi

in accordance with the theory of automatic controls, being g; the open loop
gain of the control acting of the i" mode, Syi(w) the initial spectral power and
S,i(w) the jitters spectral density after correction. The measures presented in
the following demonstrate the success of that prediction.

5.2.2 Methodology of measurement

The target of our measurement is to demonstrate the control effectiveness. To
do that, we have measured the aberration signals S;(z) at open loop and at
closed loop and compared the two results to test the actual noise reduction.
We have directly measured the 25 voltages emerging from the photodiode
amplifiers and converted into digital form by the ADC board. Each voltage is
sampled and saved in the form of a string of data on the hard disk of the PC.
This procedure allows us to process off line the data of the 25 channels and
then to extract the aberration coefficients S;(?) using the combinations of table
3.1. The strings of data corresponding to the time variation of S;(z) have been
statistically processed with the commercial software Matlab [110] to
calculate RMS and Power Spectral Density.

The sampling frequency f; and the period 7 for string data collection have
been chosen in accordance with the theory of digital data processing [111].

In particular, as we are interested to signal spectral analysis in the bandwidth
of 1 kHz, we have set the sampling frequency on 2 kHz in compliance with
the Nyquist-Shannon theorem.

The period T of data collection has been calculated from the equation:

_10
J

T (5.25)

that is 10 times the inverse of the minimum resolution ¢f required for the
spectral analysis.
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We have used the value J=0./ Hz and then the minimum period 7 for data
collection is 1 minute and 40 seconds. We have programmed the Labview
Instrument for data collection on a period 7 of 2 minutes.

We have carried out five sets of measurements to collect 25 voltage signals
of the photodiodes respectively under the following operative conditions:

No. Operative condition on the photodiodes surface Adaptive Control
1 Dark. No laser beam. Open loop
) Laser beam from the arm of the piezo. Open 1
Beam from the arm of the adaptive mirror screened. pen foop
3 Laser beam from the arm of the adaptive mirror. Open 1
Beam from the arm of the piezo screened. pen foop
4 Interference of the two beams Open loop
5 Interference of the two beams Closed loop

Table 5.2: operative conditions for the five sets of measurements carried out to test the AO
control

The first set is necessary to measure the dark noise of the system.
Measurements 2 and 3 allow to calibrate the Gaussian profile on the
photodiodes plane and to check the mode matching providing for w,=2mm.
From measurement no. 4 we extract error signals at open loop compared with
error signals at closed loop achieved from measurement no. 5.

5.2.3 Results and discussion

We report 12 graphs representing time variation and Power Spectral Density
of the six aberration coefficients.

The signals in the time domain are reported in Volts as measured at the
output of the photodiode amplifiers and plotted from 0 to 120 seconds; on the
contrary, in the frequency range from 0,1 Hz to / kHz we make the spectral
analysis of the adimensional coefficients normalized to the maximum value
measured at open loop as we are interested to the relative correction.

Each graph includes three curves corresponding respectively to dark noise,
free noise at open loop and residual noise at closed loop of the specific
degree of freedom. The comparison of these curves is widely discussed
below.
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Figure 5.33: Power Spectral Density of the coefficient relative to Astig90 mode
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Figure 5.34: time variation of the coefficient relative to Defocus mode
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Figure 5.35: Power Spectral Density of the coefficient relative to Defocus mode
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From the curves of time variation we see that the laser beam undergoes
important reduction of its geometrical fluctuations when the adaptive control
loop is closed. In fact such curves exhibit large RMS reduction on the y scale.
In table 5.3 all the RMS values are listed for the complete comparison of the
coefficients at open loop and closed loop.

Mode RMS (Volts)
open loop closed loop

Longitudinal 8,5 7,07
TiltX 0,15 0,02
Tilty 0,62 0,16
Astig45 0,09 0,005
Astig90 0,33 0,19
Defocus 3,72 1,62

Table 5.3: RMS values of the aberration coefficients at open loop and at closet loop

The Longitudinal mode is stabilized on the value of 7 Volts corresponding to
the half fringe lock in of the interferometer (the contrast of the Michelson
previously investigated with the piezo mirror ranges from 0 to 14 Volts). The
Defocus term presents non null RMS value of 1.6 Volts due to residual
coupling effects with the Longitudinal mode originated by deformable mirror
and sensing system. The other coefficients have evident RMS reduction
which demonstrates the effectiveness of the control.

The Fourier analysis of the noise reduction can be carried out from the Power
Spectral Density curves where we distinguish three different spectral ranges.
In the low frequency band up to 10 Hz, the control is much robust and
effective as expected for the high value of open loop gain exhibited in the
corresponding Bode diagrams. In this region the noise reduction changes
progressively from three to two orders of magnitude (from 60 dB to 40 dB) in
good compliance with the Virgo requirements stated before.

In the central band 10 Hz +100 Hz the control still performs, but the loop gain
decreases and the noise reduction drops down to 20 dB. Nevertheless this
value fits again the Virgo requirements for frequencies of few tens of Hz.
Finally, in the upper band beyond 100 Hz the control does not work as the it
reaches its unitary gain frequency that for all the degrees of freedom stands
around 200 Hz. Over this limit free noise at open loop and residual noise at
closed loop coincide.
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We note that the residual noise is often close to the dark noise and therefore
for further improvements more performing components are necessary.

In the table below we list the aberration reduction at three typical frequencies
corresponding to 1 Hz, 10 Hz and 100 Hz.

Noise reduction

Mode
1 Hz 10 Hz 100 Hz
Longitudinal 1.7-10° 7.10° 1.5-10"
TiltX 3.8-10° 3.6-107 410"
Tilty 2.7-10° 3.10° 4.4.10"
Astig45 6-10° 8.7:10° 45.10"
Astig90 7.10° 4.5-10° 4.1-10"
Defocus 9.10° 5.2:107 4.10"

Table 5.4: measured data of noise reduction of the six aberration coefficients

It is also useful to see figure 5.36 where we have an immediate outlook of
noise reduction expressed in dB for the six degrees of freedom in the three

main frequencies of interest.
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Figure 5.36. noise reduction of the six aberration modes expressed in dB
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The fulfilment of Virgo requirements is demonstrated: in fact the six
coefficients corresponding to first and second order Hermite Gauss modes
exhibit simultaneous suppression of more than 40 dB at 1 Hz and of more
than 20 dB at 10 Hz when the AO control loop is closed.

5.3 Quality control of the Gaussian beam

We have completed our experimental work by carrying out the quality
control of the Gaussian beam after wavefront correction.

According to the quality procedures based on international standards such as
1SO 9001, we have defined a numerical indicator which is representative of
the quality of the Gaussian beam; therefore we have measured that parameter
for the laser beam before and after the AO correction in order to check the
expected improvements performed at closed loop.

In this section, after the description of theoretical principles and of the
methodology of measurement, we present and discuss the obtained results.

5.3.1 Some theoretical principles

We have assumed that in our Michelson interferometer one arm is passed
through by the reference Gaussian beam while the other arm contains the
laser beam perturbed by higher order Hermite Gauss modes. In the previous
Section we have demonstrated that our AO system performs the suppression
of the Hermite Gauss perturbations up to the second order and this allows to
consider the corrected laser beam with good approximation similar to the
fundamental Gaussian beam of the reference arm.

In order to check the quality of the laser beam cleaned up from the initial
jitters, we have directly measured the transverse intensity profile originated at
the photodiodes array by the interference of the reference beam with the
beam under test. The experimental data collected on the photodiodes are then
compared with the ideal Gaussian profile expected if the two beams were
perfectly matching on the fundamental mode. The discrepancy of the actual
data from the ideal curve is key indicator of the laser beam quality.

In fact, provided that the Michelson is locked on the middle fringe working
point, two ideal interfering beams would have phase fronts perfectly parallel
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and shifted by the phase factor 6=772. Therefore the intensity at the output of
the Michelson should correspond point by point to the ideal Gaussian profile:

[ () = %o eU (5.26)

being Iy the input laser beam intensity, » the radial distance from the optical
axis and w; the beam waist matched on the photodiodes array (figure 5.37).
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Figure 5.37: laser spot of diameter 2w, covering the photodiodes array and projection of the
corresponding 2D intensity profile. In the ideal case this profile is perfectly Gaussian and
centred on the central pixel n. 13

On the contrary, in the real case one of the two beams is perturbed and
therefore the two wavefronts do not overlap due to instantaneous variations
induced by jitters. This means that the phase difference 6 of the two beams is
not perfectly fixed on 772 but has small time and position fluctuations, or
O0=d(1,1).

Thus the intensity at the output of the Michelson, given by:
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V5 (r) = 3 (1 + COS 5(r, t)) e(%] (5.27)

out

exhibits a variance from the ideal case of eq. (5.26) as shown in figure below
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Figure 5.38: laser spot of diameter 2w, covering the photodiodes array and projection of the
corresponding 2D intensity profile. In the real case this profile has a variance from the
perfect Gaussian curve

The variance of the real curve of eq. (5.27) from the ideal curve of eq. (5.26)
represents the degree of perturbation of the laser beam under test: in fact it is
null if the beam is perfectly Gaussian and increases with the laser jitters.

Our AO control system is expected to reduce the laser beam perturbation and
increase its quality towards the limit of perfect Gaussian profile
corresponding to null variance of the curve (5.27) from the ideal limit (5.26).
The method that we have used to measure the quality of the beam is then to
calculate that variance. This is made by fitting the intensity data collected at
the photodiodes with the ideal curve of eq. (5.26) using the y° test [112] as
numerical indicator of the degree of compliance.
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Usually, if we want to fit N measured variables y; of standard deviation o,

to the theoretical curve y=f{x), the 5’ parameter is defined as:

X (5.28)

i ( (xk))

yk

In this form, the parameter 5’ is null if each measure y; corresponds exactly
to the theoretical value f{x;) and diverges if the experimental data do not fit
the ideal curve.

In our case we measure the five intensities /; corresponding to the central
points x; of the photodiodes k=11, 12, 13, 14, 15 of figure 5.38. In order to
have a parameter proportional to the compliance of the measures with the
ideal Gaussian profile /=G(x), we have used the following indicator:

i 1 I_k_G(xk)
~ Al G(x
7 (%) =| 1-——"= 0D ) 100
Zl (5.29)
Al

k=11

which ranges from 100% (total compliance) to 0% (no compliance) and is
therefore the numerical parameter that we need to represent the quality of the
laser beam under test.

5.3.2 Methodology of measurement

We have first measured the intensity curve produced on the photodiodes
array by a single laser beam of the Michelson when the other is screened.
This permits to calibrate the reference Gaussian curve with the measure of
the central peak on the photodiode no. 13 and to check the beam waist
wy=2mm arranged with the mode matching,
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After that, we have measured the intensity profile of the interference figure at
open loop and at closed loop, and compared the two sets of data with the
ideal Gaussian profile of beam waist w,=2mm. The 7’(%) calculated in the
two cases confirms the improvement of the laser beam quality when the
adaptive control loop is closed.

The intensity data are sampled on the ADC board with frequency of 2 KHz
and sent to the Labview Virtual Instrument programmed for the collection of
strings of period 7=120 seconds. This means that each string contains
N=240.000 samples, which can be considered a sufficient number of
measures for a good statistical processing [113].

: — 1<
In particular, we have calculated the mean value I, =—Z],.k and the
i=1

N —
standard deviation A/, = \/ﬁZ([% -1, )2 (k=11, 12,...,15) and therefore
L=l

plotted these five intensities with the error bar (EiAI ) against the

corresponding x; coordinate.

Using the 7°(%) as defined in eq. (5.29), we have fitted the experimental data
with the theoretical curve of eq. (5.26) and the results that we have obtained
are shown in the following Subsection.

5.3.3 Results and discussion

All the intensity measures are here reported in terms of W/m’ and this has
been possible because we have completely characterized the experimental set
up. In particular, starting from the voltage signals read at the output of the
photodiode amplifier, we have used the conversion factor /V/20u4 which
transforms the photocurrents emerging from the photodiodes as discussed in
Section 4.4. The photocurrents are converted into optical power by the factor
0.45 A/W extracted by the sensitivity curve of the photodiodes provided by
the manufacturer Hamamatsu. And finally, the optical intensity can be
calculated from the optical power on the area of 1.3x1.3 mm’ of the single
photodiode.

The first graph in figure 5.39 shows the measured intensity produced by the
single beam coming from one arm of the interferometer. The five
experimental data permit to calibrate the ideal Gaussian profile which
exhibits the central peak of 59 W/m’ and the 1/¢’ beam waist of 2 mm as
expected.
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Figure 5.39: measured intensity of half beam from one arm of the interferometer and
calibration of the ideal Gaussian profile. The central maximum is 59 W/m’ and decreases to
1/&° at 2mm from the center as predicted by the mode matching arrangement

This Gaussian profile which matches at »°(%) =99% with the intensity data
of the single beam is the reference curve that we use for the following two
graphs.

We report the experimental data of the intensity produced by the interference
of the two beams of the Michelson, respectively when the AO control is at
open loop and at closed loop. The two sets of data are compared with the
same calibrated Gaussian profile.

We can see that when the interferometer is not controlled by the AO system
(figure 5.40), the five experimental data of the output intensity fit the ideal
curve with factor y*(%)=84%.

On the contrary, when the adaptive control loop is closed (figure 5.41), we
observe good compliance of the data, as the factor y°(%) raises to 96%.

This observation is an evident improvement of the laser beam quality that can
be with no doubt ascribed to the operation of our AO system.
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Figure 5.40: comparison between ideal Gaussian profile and measured intensity at open
loop
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Figure 5.41: comparison between ideal Gaussian profile and measured intensity at closed
loop
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Conclusions

The Doctoral Work that we have carried out during these last three years has
been finalized to develop and test an Adaptive Optics system that performs
the effective suppression of the jitters affecting laser beams in air. Our target
i1s to demonstrate the possible application of such system to interferometric
gravitational antennas for the reduction of the intrinsic noise and the
improvement of the sensitivity curve. The main researches and the results
that we have achieved are reported in the present Thesis arranged in five
Chapters.

In the first part of this paper we have discussed the principal aspects of the
gravitational wave detection remarking the big difficulty due to the weakness
of the signals expected from astronomical bodies. We have said that large
scale ground based interferometers are the most promising GW antennas as
they perform high sensitivity and wideband detection based on the movement
of suspended masses in the typical Michelson configuration. Among the most
important experiments that are currently being carried out all over the world,
we have presented the Virgo Project and the characteristics of the GW
antenna now operating on Cascina site. The Virgo antenna is a ground based
Michelson interferometer of 3 km long arms designed for wideband GW

detection (10Hz+10kHz) with sensitivity of 4 ~1071/YHz at central

frequency of 100 Hz. This value, which represents the lower limit of
detectivity at the best of the present technology, has been gained thanks to
sophisticated solutions implemented to reduce the different sources of noise
that could affect the detector. Actually, the Virgo sensitivity is limited at low
frequency by the seismic noise, at central band by the thermal noise and at
high frequency by the shot noise.

The request for further improvements of the sensitivity curve for the Project
of Virgo Upgrade and especially for Advanced Virgo, where the noise
reduction of one order of magnitude is expected over the whole detection
bandwidth, has given new impulse to research for the analysis and the
reduction of noise. In particular, much attention is currently paid to the noise
originated by the coupling between interferometer misalignments and input
laser beam jitters. In fact, the passive filtering of the laser beam aberrations
actually performed in the Virgo antenna by the mode cleaner put at the enter
of the beam splitter is a partial solution that does not solve completely the
problem, as the residual laser fluctuations still impose strict limitations to the
alignment of the suspended optics. Therefore the definitive suppression of
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free laser beam jitters is still an open issue that could be solved using a pre
filtering system before the mode cleaner. This idea has driven the start up of
our Ph.D. Work, based on the Virgo requirements which correspond to jitters
reduction of at least 40 dB at low frequency f<1Hz and of 20 dB in the region
of tens of Hz.

The second part of the Thesis has been devoted to investigate the modern
techniques of Adaptive Optics which offer the possibility of elegant solutions
for the active filtering of optical aberrations. After a short description of the
aberrated wavefront and its expansion in series of Zernike polynomials, we
have presented the general principles of standard AO systems and their mode
of operation based on the automatic correction of the perturbed wavefront.
Specific notice has been devoted to the description of the Shack Hartmann
sensor for the measurement of the Wave Aberration Function and also to the
most common kinds of wavefront actuators that are the deformable mirrors at
continuous or segmented surface. Our overview of the AO technology has
been completed with an accurate examination of the principal operative
parameters and the main applications in the fields of astronomy, industry and
medicine. From that analysis we have concluded that standard AO
techniques, although very advanced for the different applications, are not
compliant with the requirements of jitters reduction necessary in
interferometric antennas. In fact, we have seen that the Shack Hartmann
wavefront sensor, commonly adopted in AO systems, exhibits a residual

noise of 107 rad/ v Hz which is comparable with the jitters measured in a

free laser under quiet laboratory conditions.

The third part of the present Thesis enters the core of our R&D work and
presents the design of the AO system that we have developed in order to
overcome the serious limitations exhibited by adaptive controls based on the
Shack Hartmann sensor. In the system that we propose the wavefront
detection is performed by a fast and low noise interferometric technique
discovered from the analysis of the perturbed laser beam, in which we have
demonstrated that jitters can be alternatively represented in terms of Hermite
Gauss modes perturbing the Gaussian fundamental mode or in terms of
Zernike polynomials expanding the aberrated wavefront. This
correspondence has allowed us to design an AO system where laser
fluctuations are interferometrically detected in terms of Hermite Gauss
coefficients while wavefront correction is performed through driver
commands sent to the deformable mirror in terms of Zernike modes.

We have reported the optical design of the AO system arranged in the
configuration of the Michelson interferometer with the piezo mirror put at the
end of reference arm and the adaptive mirror put at the end of the second arm
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containing the perturbed beam that we need to correct. Using the piezo
mirror, the interferometer is locked on the middle fringe working point where
the sensitivity is maximum and the output intensity is directly proportional to
the small phase variations of the two beams. A 5x5 pixellated photodiode
collects the interference fringes at the output of the Michelson and generates
25 photocurrents that we suitably combine to extract 6 signals corresponding
to the first and second order Hermite Gauss coefficients of the perturbed
beam. These are used as error signals and converted into Zernike commands
when we close the adaptive control and perform the simultaneous correction
of the 6 aberration modes. We have also presented the design of the closed
loop automatic controls used for the lock in and the adaptive correction. In
both the block diagrams that represent the control schemes we assume the
interferometer as controlled system disturbed by the aberrations while the
piezo mirror and the deformable mirror are respectively the regulators for the
lock in and the adaptive correction. The matrix formalism has been adopted
to represent the transfer functions of the six modes that are simultaneously
controlled. They are treated like six independent degrees of freedom thanks
to the procedure of matrix diagonalization that is widely discussed.

In order to validate the design of our AO system we have implemented the
Prototype on the seismically isolated bench of the Laboratory of Applied
Physics led by Professor Fabrizio Barone at the University of Salerno. The
experimental apparatus is described in the forth part of our Thesis where we
have detailed the geometry of the Michelson configuration and the
characteristics of the main components that have been supplied by specific
manufacturers that are leader of the market, such as Melles Griot for the He
Ne laser, OKO Technologies for the Deformable Mirror and Hamamatsu for
the 5x5 pixellated photodiode. We have also described the block diagram of
operators that perform the processing unit and that we have implemented
using the Labview Virtual Instrument programmed on a standard PC. Finally,
we have shown the mode matching arranged for the positioning of the beam
waist on the surface of the adaptive mirror and of the photodiodes array.

The last part of this work contains the measures and the results that we have
achieved from the test of the Prototype. We have presented three sets of
measurements that give the complete characterization of the Prototype and
demonstrate its effectiveness in the suppression of laser beam jitters in air in
compliance with the Virgo requirements. We have first reported the Bode
diagrams of the frequency response functions measured on each of the six
automatic controls implemented for the adaptive correction of the laser beam.
The diagrams measured at open loop have demonstrated robustness and
stability of the controls in the band of interest. In fact the open loop gain at
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low frequency is over 60 dB and decreases to unity at about 200 Hz with
slope of -20 dB/decade. The cut off frequency is set at 0.1 Hz using a low
pass filter as correcting network for the stability. On the contrary, the Bode
diagrams of the frequency response functions measured at closed loop show
the typical behaviour of a second order system with resonance frequency at
450 Hz and cut off at about 500 Hz. This is the limit to the band of the control
and is set by the deformable mirror as actually manufactured by OKO. The
second group of measurements that we have reported concern the direct test
that we have performed on the Prototype in order to check its capability of
reducing the laser jitters. In fact, we have put the system into operation and
measured the error signals that indicate the perturbation of the beam. The
curves of the aberration coefficients represented in the time domain and in
the Fourier domain clearly show that the residual noise measured when the
adaptive control loop is closed is strongly suppressed in comparison with the
free noise detected when the loop is open. In particular the spectral analysis
has allowed to check that reduction of more than 60 dB is reached below 1
Hz and of 20 dB for frequencies up to 100 Hz. This means that our AO
system fulfils the strict requirements for the laser beam jitters reduction in the
Virgo antenna. We have ended the experimental work with a third group of
measurements for the quality control of the laser after the adaptive correction.
To do that, we have defined a numerical parameter derived from the ° test
and have used it as indicator for the quality of the beam. In fact, using the
optical theory of interference applied to our Michelson geometry, we have
demonstrated that this indicator is equal to 100% if the laser beam under test
is perfectly Gaussian and tends to 0% if it is very perturbed with respect to
the reference beam. The measures show that when the control loop is open
the quality indicator of the free laser is 84% while if adaptive correction is
switched on then the same indicator raises to 96%. This is a clear evidence of
the improved optical quality of the laser beam performed by the AO system.
The results achieved in our Doctoral work allow to say that the AO system
we have designed and implemented can be considered a good solution for the
reduction of the laser beam jitters in air and therefore can be seriously
proposed for application to Virgo upgrade and to Advanced Virgo.
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