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Introduction 
 
The direct measurement of the Gravitational Waves (GW) foreseen by 
Einstein’s General Theory of Relativity has never been demonstrated and 
therefore it is one of the most important challenges of the scientific research. 
Currently several large scale experiments are being carried out all over the 
world aiming to first perform direct detection of gravitational signals coming 
from Space. 
The scientific benefits expected from the measurement of GW concern 
several fields of theoretical and experimental Physics. First of all, the direct 
detection of GW is a primary test for the confirmation of the Einstein’s 
theory. Secondly, the measurement of the gravitons will provide an important 
contribution to the theory of unification of the fundamental forces. 
Furthermore, in the field of Astronomy and Cosmology, the GW 
measurement will add new information to the knowledge of the Universe, 
that is actually based on the collection of electromagnetic waves and 
neutrinos. In particular, as the most of the astronomical bodies are transparent 
to gravitational waves due to their very low absorption coefficient, the GW 
detection will open a new observational window that is the Gravitational 
Wave Astronomy. 
It is also worth noting that the development of large and sophisticated GW 
detectors drives interesting lines of research of Applied Physics and 
Engineering which are strongly involved for the implementation of 
performing components and subsystems. This is exactly the case of the 
present PhD work in Electronical Engineering as we are going to present in 
the following. 
Two kinds of ground based detectors have been proposed in the last few 
decades, but none of them has yet performed the direct measurement of GW. 
Detectors based on the Webber bars have been put into operation since 1960, 
but due to their limited bandwidth and low sensitivity they do not seem to be 
adapt for this purpose. On the contrary, long baseline interferometric 
antennas like LIGO in the Unites States and VIRGO in Italy are wideband 
and low noise detectors that promise to successfully operate the measurement 
of gravitational waves. 
The VIRGO Project is an Italian and French collaboration started 20 years 
ago and finalized to the realization of a big experiment for the GW detection 
on Cascina site (Pisa). The Virgo antenna is a ground based Michelson 
interferometer of 3 km long arms with optics suspended by a multistage 
pendulum for the seismic isolation. The principle of detection is based on the 
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assumption that the gravitational perturbation coming from Space induces a 
displacement of the suspended terminal mirrors of the Michelson. This 
causes a variation of the phase difference of the two beams into the 
interferometer and consequently changes the interference fringes pattern at 
the output of the Michelson. The intensity variation that is read at the 
photodetector surface can be directly connected to the GW measurement. 
The extreme weakness of the expected gravitational signal makes very 
difficult its detection because in the bandwidth 10 Hz÷10 kHz it is necessary 
to measure mirror displacements of the order of Hzm1810− corresponding 
to Hzrad1110−  variation of the phase difference of the two beams into the 
Michelson. Therefore, most of the scientific and technical efforts of the Virgo 
Groups have been finalized to carry out a complete noise management of the 
antenna, that is the identification of all the possible sources of noise, the 
assessment of their effects on the measurement and the investigation of 
solutions for noise reduction down to residual values that make the 
interferometer able to sense very weak signals. The Virgo sensitivity curve 
that has been achieved thanks to the noise management work of the Virgo 
Groups is actually the lower limit for GW detection and corresponds to the 
detectivity of Hzm1910− in the central band at 100 Hz. This means that the 
first generation of Virgo has a real chance of detecting the GW for the first 
time ever. 
Nevertheless, further efforts are currently performed by researchers in order 
to discover new margins of improvement for the actual antenna as well as for 
Advanced Virgo, that is a major upgrade with the goal of increasing the 
Virgo sensitivity by about one order of magnitude in the whole detection 
band. In fact this result would allow the antenna to see many events every 
year thus starting the era of gravitational wave astronomy. 
One of the possible improvements that are being investigated in Virgo is the 
reduction of the noise that has been demonstrated to origin from the coupling 
between the input laser beam jitters and the interferometer asymmetries. 
The necessity of containing that kind of noise below the Virgo detectivity 
threshold has first induced designers and researchers to impose strict 
statements for the alignment of the suspended optics. These requirements are 
fulfilled at the best of the present technology using sophisticated control 
systems, but serious doubts arise to the possibility of keeping a fine optical 
alignment for long term period in a large scale interferometer exposed to the 
atmospheric factors. Therefore much attention has also been paid to the 
possibility of reducing that noise acting on the suppression of the input laser 
beam jitters. In the actual antenna this suppression is already operated using a 
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passive filtering system named mode cleaner, that is a triangular Fabry-Perot 
cavity of Finesse 1000 placed at the input of the detector. The cavity reduces 
of three orders of magnitude the jitters of the input laser beam before it enters 
the interferometer, but this is not sufficient to relax the statements of optical 
alignment neither it permits to significantly improve the sensitivity curve in 
view of Advanced Virgo. Therefore other solutions are being explored in 
these years to perform an active filtering of the laser in cascade with the 
mode cleaner, but up to date no system has yet demonstrated to fit the 
constraints for the reduction of the input laser perturbations. Therefore this 
argument is still an open issue in the environment of the scientific research of 
Virgo. 

Starting from this context, the target of the our PhD work has been the 
development of an Adaptive Optics (AO) system for the active filtering of 
laser beam jitters. We have proposed and designed the system, implemented 
an experimental prototype in laboratory and tested it upon different sets of 
measures that validate the design and confirm the effectiveness and the 
robustness of the proposed AO control system in compliance with the Virgo 
requirements. 
The present Doctoral Thesis is arranged in five Chapters which present our 
R&D work and the results obtained in these last three years. 
In Chapter 1 we make a short overview of the Virgo Project starting from the 
general principles of GW detection in an interferometric antenna. We present 
the main characteristics of the Virgo detector that has been designed for 
wideband and high sensitivity operation and has been commissioned on 
Cascina site in 2003. The problem of noise into the interferometer is widely 
discussed with particular reference to seismic noise, thermal noise and shot 
noise, that are the three main noise sources limiting the sensitivity 
respectively in the range of low, medium and high frequency of the detection 
band. Finally, we analyze the noise originated by the coupling of the input 
laser beam jitters with the interferometer asymmetries, discuss the passive 
reduction operated by the mode cleaner and then put in evidence the 
requirements for an additional active filtering that is needed for the upgrade 
of the antenna. 
The technology of Adaptive Optics is discussed in Chapter 2, where we 
investigate the opportunities offered by current systems and the limitations 
exhibited when they operate the dynamical correction of wavefront 
aberrations. We begin with a short description of the optical aberrations and 
their representation in terms of Zernike polynomials. Successively, we 
present the standard configuration of an AO system that is essentially based 
on the architecture of a closed loop control where it is well distinguished the 
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sensor, the actuator and the processing unit. In particular we present the 
Shack Hartmann wavefront sensor and the most common models of 
actuators, that are two classes of deformable mirrors with segmented or 
continuous reflecting surface. We also present the main operative parameters 
of the AO systems and the principal applications in the fields of astronomy, 
industry and medicine. 
Chapter 3 enters the core of our R&D work and presents the Project of the 
AO system based on an interferometric technique for the detection of laser 
beam jitters. We start with a short description of Gaussian optics concerning 
the characteristics and the propagation in air of the laser fundamental mode. 
Soon after, we perform the theoretical analysis which demonstrates that laser 
beam jitters can be alternatively described with higher order Hermite Gauss 
modes perturbing the Gaussian beam or with Zernike polynomials expanding 
the laser aberrated wavefront. This correspondence allows to design an AO 
system that extracts the error signals in terms of Hermite Gauss coefficients 
and generates the correction commands for the deformable mirror in terms of 
Zernike modes. We discuss in detail the mode of operation of the proposed 
AO system that performs the simultaneous correction of six aberration modes 
up to the second order. In particular we present the optical design based on 
the Michelson interferometric configuration and the block diagram of the 
closed loop control. 
The experimental apparatus implemented in the Laboratory of Applied 
Physics at the University of Salerno is described in Chapter 4. We show the 
scheme of the whole system and the characteristics of the main components. 
Specific sections are devoted to the input laser, to the adaptive mirror for the 
wavefront correction and to the photodiodes 5x5 array placed at the output of 
the Michelson for the error signal extraction. We also present the electronic 
boards designed and engineered in our laboratory for the amplification of the 
photocurrents emerging from the photodiodes. Chapter 4 ends with a 
description of the optical arrangement that we have performed to match the 
input laser beam with the interferometer and in particular to control the 
position and the diameter of the beam waist on the deformable mirror and on 
the photodiodes surface. 
In Chapter 5 we report and discuss the three sets of measurements carried out 
for the complete characterization of the prototype. We have first measured 
the transfer functions of the AO system both at open and closed loop in order 
to demonstrate effectiveness and stability of the different controls acting 
simultaneously on the six aberration modes of the laser beam. Secondly, we 
have directly measured the six error signals representing the perturbation 
coefficients and from the analysis of their curves in the time domain as well  
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as in the spectral representation we test the reduction operated by the AO 
control when the loop is closed. Finally, we have achieved the quality control 
of the corrected laser beam by the measurement of its transverse intensity that 
is detected at the output of the Michelson and then fitted to the ideal Gaussian 
profile. 
The present Thesis ends with the Conclusions where we summarize the 
results of the R&D work and remark that our AO system fulfils the Virgo 
requirements for laser correction and therefore it can be seriously proposed 
for application to interferometric GW antennas. 
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Chapter 1 
 

1 Virgo Project: the interferometric detection of 
gravitational waves 
 
The Virgo Project is one of the most popular experiments carried out in the 
world for the direct measurement of gravitational waves (GW). It was born 
from an Italian and French collaboration which allowed the implementation 
of a ground based interferometric gravitational wave antenna located in 
Cascina, a small Italian municipality near Pisa. The Virgo antenna operates in 
correlation with other similar detectors like the two interferometers of LIGO 
Project in the United States, and it is expected that it can detect gravitational 
waves generated by star masses moving in the Universe. 
In this first Chapter we discuss the principle of operation of an 
interferometric GW antenna based on the Michelson scheme, and then we 
present the Virgo Project with a brief overview about the design and 
commissioning. After that, we approach the problem of the weakness of the 
gravitational signals and discuss the studies and the arrangements that have 
been performed in order to maximize the sensitivity and minimize the noise 
that affects the Virgo interferometer. In particular, we analyze the seismic 
noise, the thermal noise and the shot noise, that are the three main sources of 
disturbance that delimit the lower level of the Virgo detectivity in three 
different spectral ranges of the detection bandwidth. Finally, we dedicate a 
specific section to the noise generated by the coupling between the 
interferometer asymmetries and the input laser beam jitter, which puts serious 
open issues for the performing of the actual interferometer and also of the 
next generation advanced gravitational antennas. We identify the Virgo 
requirements for the reduction of this noise and propose the application of an 
Adaptive Optics system in accordance with those statements. The 
development of such a system and the demonstration of its efficacy in 
accordance with the preliminary statements is the core of our PhD work and 
will be presented in the next Chapters. 
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1.1 GW detection in interferometric antennas 
 
The gravitational waves are perturbations of the space-time metric that 
propagate at the speed of light and modify the distance between two points, 
as foreseen by the Einstein’s General Theory of Relativity [1],….,[5]. They 
are originated by the movement of any mass, but, due to the weakness of the 
signal, it is not possible to produce detectable gravitational waves in 
laboratory. So, the only possibility to perform a direct measurement of them 
is to collect signals originated by big astronomical objects, such as 
Supernovae, Coalescent binaries and Pulsars, which emit gravitational waves 
in the frequency band from few Hz to few kHz and can have impulsive, 
periodic or stochastic behaviour [6],…,[9]. 
For this reason, different kinds of very complex and high sensitivity ground 
based detectors have been built in the recent years, but up to date the direct 
measurement of gravitational waves has not yet been achieved, and therefore 
it is still a strong commitment for the researchers involved in the field of the 
experimental relativity [10],[11],[12]. 
The scientific benefits that are expected from the direct GW detection 
concern several fields of the theoretical and experimental Physics. First of all, 
the measurement of gravitational waves is an important test which confirm 
the Einstein’s theory after that other experiments have already been carried 
out with success [10]; secondly, in terms of quantum physics, the 
measurement of the gravitons can give an important contribution to the 
theory of unification of the fundamental forces. Furthermore, in the field of 
Astronomy and Cosmology, the GW measurement will add new information 
to the knowledge of the Universe, that is actually based on the collection of 
electromagnetic waves and neutrinos coming from the Space. In particular, as 
the most of the astronomical bodies are transparent to gravitational waves 
due to their very low absorption coefficient, the direct measurement of them 
will open a new observational window that is the Gravitational Wave 
Astronomy. And finally, but not less important, the development of large and 
sophisticated GW detectors drives interesting applications of applied physics 
and engineering, which contribute to the implementation of very performing 
components and subsystems. This is the case of the present PhD work in 
Electronical Engineering, where we have developed an Adaptive Optics 
system for the laser beam filtering. 
The gravitational waves are generated by star masses whose movement is not 
spherically symmetric. In this case, the amplitude of the wave is given by the 
adimensional parameter h as: 
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where G is the Newton constant, c is the speed of light in vacuum, r is the 
distance between the source and the detector, Ekin is the total kinetic energy 
of the source mass and εns (0≤ εns ≤1) the fraction of kinetic energy not 
spherically symmetric. 
The possibility of detecting the gravitational waves depends on the amplitude 
hs(t) of the wave generated from the source S, on its frequency distribution, 
and on the noise hn of the detector. If fc is the characteristic frequency of the 
signal in the center of the spectral range ∆f, the signal to noise ratio of the 
detector is: 
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being ( )fhn

~  the power spectral density of the intrinsic noise of the detector, 

expressed in units of Hz1 . Therefore, if we use low noise detectors, we 
can sense weak signals from very far sources, that is we increase the 
possibility of detectable gravitational events and then we widen the part of 
Universe that we can investigate. 
So far, three different kinds of GW detectors have been proposed, that are 
respectively the Webber bars, the ground based interferometric antennas and 
the space interferometers. Several Webber bars have been built and are 
operating since 1960, but they are strictly band limited and not very noiseless 
( 211610 /~ −−≅ Hzh  at f=1 KHz), and none of them has ever performed a 
successful measurement. On the other side, space interferometers could be 
very sensitive and low noise, but their implementation and commissioning 
would be so costly and difficult that no Project has been financed in the 
world. This is why in the past years attention has been moved to ground 
based interferometric antennas, which have been built in several big 
experiments in the world as they promised to be wideband and high 
sensitivity detectors at a reasonable cost of construction [13]. 
The principle of operation of an interferometric GW antenna based on the 
Michelson configuration is easy to understand if we refer to the scheme 
shown in figure 1.1. 
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M1

 
Figure 1.1: Scheme of the Michelson interferometer used as antenna and effect of the 
gravitational wave h on the test masses corresponding to displacement –∆y and ∆x of the 
terminal mirrors M1 and M2 respectively. BS is the beam splitter of the input laser and L is 
the arms length. The phase difference induced by the gravitational wave is measured by the 
photodiode through the variation of the output intensity. The output The direction of 
propagation of the wave is assumed perpendicular to the plane of the paper. 
 
The gravitational wave impinging on the Michelson interferometer, 
perpendicularly to the plane of the optical system, is represented by the 
perturbation h=h(t) of the space time, and moves the test masses 
corresponding to the terminal mirrors M1 and M2 of the Michelson 
interferometer by alternated squeezing and stretching of its arms of length L. 
If we assume the ideal case where the two masses could be considered free in 
air, their displacements are simply given by: 
 

hLyx
2
1
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The displacement of the two mirrors from the equilibrium position changes 
the interference condition and therefore the optical paths phase difference of 
the two orthogonal beams of the interferometer is: 
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This last equation shows that the Michelson interfe h a 

near gravitational antenna, as the phase difference ∆φ(t), which we can 

cy ω0 and time constant τ; and 

rometer be aves like 
li
detect by the interference fringes variation measured by the photodiode, is 
proportional to the gravitational signal h(t). 
In the real case, for the seismic isolation, the mirrors are suspended by a 
mechanical pendulum of resonance frequen
therefore the displacements ∆x and ∆y are obtained by the following 
differential equations: 
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r domain, for gravitational waves of 
equencies ω>>ω0, the solutions of eqs. (1.5) are ∆x=-∆y=(1/2)Lh0exp(iωt), 

It can be seen that in the Fourie
fr
and so the phase difference is: 
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That is, for frequencies ω much higher than the resonance frequency ω0 of 

e pendulum, the mirror behaves like a free-fall mass and hence by 

.2 Design, construction and commissioning of the Virgo 
antenna 

The Virgo Project was born from an Italian and French collaboration 
upported by INFN (Italy) and CNRS (France) and is nowadays one of the 

th
measuring the phase difference ∆φ(t) we can have a proportional 
measurement of the wave amplitude h0. 
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most important experiments in the world for the interferometric GW 
detection [14], [15]. The Virgo antenna is a long baseline Michelson 
interferometer with a 3 km long Fabry Perot cavity implemented in each of 
the two arms, designed for wideband (10Hz÷10kHz) detection of 
gravitational waves with sensitivity Hzh 11010 2223 −− ÷≈

~ , which 
corresponds to measure displacements of the test masses of the order of 

Hzm1910− . It is located at the European Gravitational Observatory (EGO) 
close to Cascina (Pisa, Italy) as shown in figure 1.2 and has been 

d in 2003-2004. The data collected by Virgo are compared and 
correlated with those generated by other similar antennas presently in action 
such as LIGO, TAMA and GEO [16], [17], [18], [19]. 
 

commissione

 
 

Figure 1.2: Virgo antenna at Cascina (Pisa) 
 
The Virgo antenna 

ased steel structure of towers and tubes containing all the suspended optics 

o 3 km long Fabry Perot cavities. The 
suspended optics of the Virgo interferometer are large diameter (350 mm) 

is a Michelson interferometer implemented into a ground 
b
and all the necessary equipments. 
The input source is a 20 W Nd:YAG laser at 1064 nm which is split on the 
beam splitter and enters the tw

 17



 

and big mass (20 kg) mirrors and beam splitter, with super polished, very low 
absorption and scattering surfaces manufactured by the German company 
Heraeus in collaboration with ESPCI (Paris). 
The terminal mirrors, used as test masses, are located in an ultra high vacuum 
system (from 10-9 mbar for H2 to 10-14 mbar for hydrocarbon) and suspended 
by a sophisticated multistage pendulum for the seismic isolation. This is the 
Superattenuator (SA) pictured in figure 1.3, that is a 10 m tall chain of 
mechanical filters positioned into each of the two terminal steel towers of the 
antenna [20], [21], [22]. 
 

 
 

Figure 1.3: Scheme of the Virgo Superattenuator (SA) chain: active control is exerted by 
coils and magnets at three stages: inertial damping on the t cal control on the 
marionette and locking on the mirror using the reference m

g is 
 Hz, as the pendulum is 

 chain of mechanical filters whose resonance frequencies lay all below 2 Hz. 

op, lo
ass  

 
The SA isolates the test masses from the ground motion. A passive filterin
provided to the mirror at frequency higher than a few
a
This passive attenuation is better than Hzm1810− at 10 Hz. Furthermore, in 
order to reduce the low frequency residual motion due to the chain 
resonances and achieve the pre-alignment of the interferometer, an active 
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control is performed by exerting contr three actuation point, that 
are respectively the top stage, the marionette and directly the mirror. The 
control is carried out by magnetic forces induced by coils on permanent 
magnets put on specific points of the suspension chain. 
The position of the mirrors is then controlled in real-time through a feed-back 
system so to keep the interferometer in the condition of destructive 
interference (also called dark-fringe lock in) [23], [24]. The passing of a 

ol forces on 

Despite of the simplicity of the principle of operation, based on a classic 
ave is dramatically 

iff ult, because of the weakness of the waves, which cause very small 

gravitational wave, or any other effect which try to move the mirror position, 
induces a reaction signal in the feed-back system which represents the signal 
of the antenna. Once the interferometer is longitudinally locked, it is 
necessary to maintain the mirrors aligned each other and with respect to the 
incoming beam with rms accuracy close to 10-9 rad [25], [26]. 
Several commissioning runs have been performed since 2003 in order to put 
into operation the different subsystems and step by step the ideal sensitivity 
curve has been quite well approached [27], [28], [29]. The treatment of all the 
engineering that has been necessary for the implementation of this large and 
sophisticated detector is of course interesting but overcomes the scope of the 
present work, and therefore the reader is referred to the bibliography. 
 
 

.3 Noise management and sensitivity curve 1
 

interferometric sensor, the detection of a gravitational w
icd

variations of the Michelson arms length. In fact, the detection of mirror 
displacements of the order of Hzm1819 1010 −− ÷  imposes the 
implementation of a very sensitive and low noise sensor, and therefore 
several issues have been taken into account in the design and the construction 
of the Virgo antenna, and several stud one, in order to 
achieve the desired performance. 
The first requirement which the detector must fulfil is to maximize the 
sensitivity S, derived by eq. (1.4) as: 
 

ies are still being d

λ
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h
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This last expression shows that the antenna
length L of the Michelson arms, and th

creasing L. That is why long baseline gravitational antennas have been 

 
FP1 and MFP2 respectively. BS is the 

beam splitter of the input laser, and MR is the recycling mirror. 
 

 sensitivity is proportional to the 
erefore it can be increased by 

in
built, like Virgo interferometer having 3 km long arms. Nevertheless, such a 
length is not yet sufficient to guarantee the minimum degree of sensitivity 
required for the GW detection, while, on the other side, it is not possible to 
build arms of 100 km for obvious reasons of cost and technological 
difficulties. The problem has been overcome by increasing the optical path of 
the two laser beams before recombining, using two Fabry-Perot cavities 
implemented in each interferometer arm as shown in figure 1.4. 

LASER 
BBSS

Photodiode

MR

MFP1

Fabry-Perot 
cavities 

M2MFP2

 
M1

Recycling 
mirror 

 
Figure 1.4: Layout of the Virgo interferometer of arms length L=3 km. The terminal mirrors
M1 and M2, which form two Fabry-Perot cavities with M

In fact, in this case the detector sensitivity is increased by the factor 2F/π ≈ 
32, being F=50 the Virgo cavities Finesse, or: 
 

λ
π

πλ
πφ LFL

h
S

′
==

∆
=

424   (1.8) 

 
This also means that the effective arms length chang   to 
L'=2FL/π ≈96 km. 
 

es from L=3 km
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The second requirement of the Virgo antenna is the minimization of all the 

 part of the scientific and engineering work of the Virgo 
roups has been devoted to this problem, which is a very important issue to 

ic noise 

he seismic vibrations of the ground deform the interferometer arms length, 
and hence they introduce a perturbation into the gravitational antenna that is 

 he power spectral density of this noise has been 
xperimentally achieved through direct measurements on the Cascina site, 

possible sources of noise which could limit the detectivity in the sensing 
bandwidth. A great
G
solve for the success of the Project. So, in these last years a typical noise 
management has been carried out, where all the forms of noise that could 
affect the detector have been identified, assessed and if necessary reduced to 
a residual level that stands below the officially accepted lower limit of 
detectivity, or Virgo sensitivity curve. 
The three main sources of noise in the Virgo antenna are the seismic noise, 
the shot noise and the thermal noise, which characterize the sensitivity curve 
respectively in the low frequency band, in the high frequency band and in the 
central band. 
 
 

1.3.1 Seism
 
T

named seismic noise. T
e
and the result is well fitted over 0.1 Hz by the following expression: 
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which, in terms of gravitational detectivity, is: 
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his seismic noise would seriously limit the interferometer sensitivity if no 
action was made for reduction. For example, at 100 Hz ic 
noise would be 

 
T

, the value of seism
( ) Hzfhs 11070100 13−⋅≅= .~ , that is vary far from the 

desired detectivity Hzh 110 23−=
~ . 

In order to isolate the interferometer from the seismic noise, all the optics are 
suspended to Superattenuators (SA) [30], that act as passive mechanical 
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filters and perform  the bottom where the mirror 
is suspended, an attenuation of the vibration given by: 
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being sx ′

~  the mirror vibration reduced by the chain of N pendula of resonance 
frequencies ωn. 
We have already said that the design of the SA pro

equencies are below 2 Hz, and therefore the seismic noise characterizes the 

n 

he shot noise is the quantum limit to the phase detection due to the statistic 
uctuation of the number of photons collected by the photodiode at the 

ometer. 
s  reaches the photodiode has a number of photons n with 

ncertainty ∆n described by the Poisson statistics for coherent light 

vides that all the resonance 
fr
sensitivity curve at low frequency, while in the detection bandwidth over 10 
Hz , where ω>>ω  ∀ n, the SA damping is NA 2−∝ ω and the residual 
seismic noise transferred to the mirror is absolutely negligible. 
 
 

1.3.2 Shot noise 
 
T
fl
output of the interfer
The la er beam that
u

nn =∆ [31]. In addition, the uncertainty in measuring the phase and the 
photons number is regulated by the quantum uncertainty relation in 
measuring 1≥∆⋅∆ nφ . Therefore, the uncertainty on the phase is: 
 

n
1

≥∆φ     (1.12) 

 
M
is 

oreover, the energy E collected by the photodiode of quantum efficiency η 
0ωη hnE = , where  is the Planck’s constant and ω  the laser angular 

frequency. So, if we consider that E=P
easure time, by simple algebra the phase uncertainty can be rewritten as: 

h 0

∆t, being P the laser power and ∆t the 
m
 

tP∆
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or, in terms of power spectral density: 
 

Pη
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≥   (1.14) tφφ ∆∆=∆
~

 the Virgo antenna is: 
 
Finally, from eq. (1.8), the shot noise in
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From this last result, we see that it is possible to reduce the shot noise by 

creasing the laser power inside the interferometer. This is done placing the 
recycling mirror in front of the input laser as shown in figure 1.4. In fact, as 
we have already discussed, the Virgo interfero
configuration of dark fringe, and this means that the light is almost all 

flected back toward the laser. The recycling mirror reflects back the light 

in

meter is locked in the 

re
toward the beam splitter, and then it increases the effective power that enters 
the interferometer. In practice, the recycling mirror and the whole 
interferometer form a new cavity, in which the recycling mirror is the first 
mirror and the interferometer is the second one. If the cavity is in resonance 
with the input laser, the power that comes on the beam splitter and then 
enters the interferometer increases of a factor depending on the Finesse of the 
cavity. In the case of Virgo, the Finesse of the recycling cavity is 50, and 
therefore the optical power of the input laser is raised from 20 W to 1 kW 
inside the interferometer. So, being 95% the quantum efficiency of the 
InGaAS photodiode, and remembering that λ=1064 nm and L'=96 km, the 
Virgo shot noise level is: 
 

Hz
hsn

1103 23−⋅≅
~    (1.16) 

 
which fulfils the detectivity requirements in the central band at 100 Hz. 
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1.3.3 Thermal noise 
 
The thermal noise affects the suspensions and the mirrors of the 

terferometer [32], [33], [34]. It is originated by the stochastic thermal 
ntained in the mechanical structures: in fact, this 
tic forces that excite the resonance modes of the 

uspensions and the normal modes of the mirrors. The power spectral density 

in
motion of the atoms co
motion produces stochas
s
of those stochastic forces was calculated by Uhlenbeck and Ornstein in the 
fluctuation-dissipation theorem and corresponds to: 
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where M is the mass, T the temperature, KB the Boltzmann’s constant and τ 
the time constant. 
The thermal noise due to the suspension can be c

ω0 and quality factor Q; in 
is case the power spectral density of the mirror displacement is: 

alculated using the transfer 
function of the pendulum of resonance frequency 
th
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or, in terms of amplitude: 
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In the detection bandwidth, where ω>>ω0 , the thermal no e redu  
 

is ces to:
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and, in terms of gravitational detectivity, it is: 
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sing the Virgo parameters Q=106, ω0=2π rad/s, T=300 K and M = 20 kg for 
the mirror mass, we can calculate that the thermal noise of eq. (1.21) is 
relevant in the spectral range between 3 Hz and 30 H ile ases 

pidly for higher frequencies due the term 1/ω2. 
 

 
U

z, wh it decre
ra
The thermal motion of the atoms also excite the normal modes of the mirror 
which have resonance frequencies at several kHz, and therefore above the 
bandwidth of detection.. In order to calculate the analytical expression of this 
thermal noise, we can schematize the mirror as a set of independent harmonic 
oscillators of normal frequencies ω , quality factoi rs Qi, time constants τi and 
effective masses Mi. In this case the amplitude of the mirror displacement has 
the following spectral density: 
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In the detection bandwidth, where ω <<ωi ∀ i, this expressio
 

n reduces to: 

3
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nd hence 
 

 
a

3
111

42
ωMQ
TK

L
h B

tMir ≅
~    (1.24) 

here the index 1 refers to the fundamental normal mode of the mirror. This 
value is generally lower than the other noises, except for the range from 30 
Hz to 200 Hz, where it is the most relevant and characterizes the lower limit 

 
w

of the Virgo detectivity. 
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1.3.4 Virgo sensitivity curve 
 
The Virgo sensitivity curve is the lower level of spectral detectivity that is 
ossible to achieve taking into account the contribution of all the possible 

ave discussed only the seismic noise, the 
hot noise and the thermal noise, because these are the fundamental 

oise characterizes the sensitivity from 3 

p
noises that affect the interferometer. 
In the previous subsections we h
s
disturbances that characterize the Virgo sensitivity curve in the different 
spectral regions. In particular, the seismic noise limits the sensitivity at low 
frequency below 3 Hz, the thermal n
Hz to 200 Hz, and the shot noise is essentially the upper limit above 200 Hz. 
This can be easily seen in figure 1.5, where we report the Virgo sensitivity 
curve as officially accepted by the Groups of research of the Virgo Project. 
 

 
Figure 1.5: Virgo sensitivity curve with the limiting noise sources. The most relevant are the 
seismic noise at low frequency up to 3 Hz, the thermal noise from 3 Hz to 200 Hz and the 
shot noise at higher frequencies 
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The graph also shows other several curves of noise, that have been assessed 
and/or measured in the recent years by the researchers of the different Virgo 

roups for a complete chG aracterization of the interferometer [35],…,[44]. 

of interferometer asymmetries with 
input laser beam jitters 

 

interf  sensitivity curve reaches levels of about 

Today, a strong effort is still being done to investigate the possibility of 
reducing some of these noises, not only to improve the performance of the 
present antenna, but also to open prospects for the implementation of the new 
interferometer that is Advanced Virgo.  
In particular, in our work of research, we have put our attention to the phase 
noise that is originated in the interferometer by the coupling between the 
input laser jitter and the optics misalignments, as we are going to discuss in 
the next section of this Chapter. We will see that this noise affects the Virgo 
interferometer and imposes very strict statements to the optical alignment, 
and also it put serious limits to the improvement of advanced Virgo. Thus, 
the scope of our PhD work is to develop and to demonstrate the effectiveness 
of a novel control system, based on  Adaptive Optics technique, which 
promises to solve the problem as it is able to significantly reduce this form of 
noise. All the details about this work of research will be discussed in the next 
Chapters of the present Thesis. 
 
 

.4 Noise from coupling 1

We have seen that the fundamental noises limits the detectivity of Virgo 
erometer and that the expected

Hzh 110= 23−~  in the central band at 100 Hz. Nonetheless, to reach such 

interferometer 

extreme values, other kinds of noise must be assessed and suppressed, and 
among them there is the noise generated by the coupling between the 

asymmetries and the input laser beam geometrical 
fluctuations, or beam jitters. 
The interferometer asymmetries can be interpreted as perturbations of the 
fundamental mode in each of the two Fabry Perot cavities put in the arms of 
the Michelson. This means that the spatial wave function of each arm is 
represented as the sum of the fundamental Gaussian mode TEM00 and of the 
higher order Hermite-Gauss modes TEMmn of an ideal cavity In the same 
way, the geometrical fluctuations of the input laser beam can be represented 
as fluctuations of higher order modes of a pure TEM00 beam perfectly 
matched to an ideal interferometer [45]. 
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In order to understand how these two effects can couple and generate phase 
noise at the output of the interferometer, let us make reference to figure 1.6 
which represents the scheme of a recycled Michelson interferometer with 

 
2

 x1,2 or an angular rotation θ1,2 of the 
ptical axis of the two Fabry-Perot cavities 1 and/or 2, the modes Ψ1 and Ψ2 

here in the case of translation εt
1,2=x1,2/w0 and in the case of rotation 

εr
1,2=iθ1,2(πw0 /λ), while w0 and λ are the laser 
spectively. 

o

Fabry Perot cavities in the two arms. 
 

 
Figure 1.6: recycled Michelson interferometer with Fabry-Perot cavities in the two arms. In 
this picture we assume that the input laser beam has an angular jitter θ(t) while the two
cavities have a lateral asymmetry x1 and
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If we assume fixed the position of the recycling mirror and consider the 
misalignment as a lateral translation
o
inside the cavities are perturbed at first order as: 
 

1210
21 Ψ+Ψ≈Ψ rt

tot
,
,

, ε    (1.25) 
 
w

beam waist and wavelength 
re
On the other hand, it has been demonstrated that the geometrical fluctuations 
f a laser beam can be interpreted as perturbations of the fundamental 
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Gaussian mode. So, a laser source of angular frequency ω0, affected by jitter, 
emits a perturbed beam which at first order can be approximated as: 
 

( ) tiin etAE 0
10

ωβ Ψ+Ψ≈ )(   (1.26) 

being Ψ0 the fundamental Gaussian mode and Ψ1 th e 
auss spatial mode. The perturbation coefficient β(t) represents the 

e e u

n amount x1 and x2 and the input beam 

jected on the fundamental 

 
e first order Hermit

G
geometrical fluctuation of the laser beam, and in particular it is 
β(t)= βl(t)=l(t)/w0 in the case of lateral beam jitter, 
and β(t)= βα(t)=iθ(t)(πw0/λ) for the angular jitter. In these two last 
xpressions we hav sed l(t) and θ(t) as the lateral and the angular deviation 

of the laser beam from its optical axis. 
Let us know consider, without loss of generality, the case when the two 
Fabry-Perot cavities are translated by a
has an angular jitter of angular frequency ω, that corresponds to βα(t)= 
(1/2)iβ0 [exp(iωt-exp(-iωt)], being β0=θ0(πw0/λ)  
From this last assumption, the incident field of eq. (1.26) can be represented 
as a vector of two components, the first one pro
mode Ψ0, and oscillating at frequency ω0, and the second one projected on 
the mode Ψ1 and oscillating at the sideband frequencies ω0+ ω and ω0 - ω: 
 

( )tititiininin eeiAeAEEE )()( ωωωωω β −+ +Ψ+Ψ=+= 000 0  (1.27) 
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The perturbed incident beam couples with the interferometer m  
nd then the field inside the recycling cavity is [46]: 

  (1.28) 

where the two dimensional matrix M, calculated as a sum
flections of the beam going forth and back in the interferometer, is: 
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         (1.29) 
 
Here, r0f(ω)eiϕ and r1 are the reflectivity of the Fabry Perot cavities for the 
mode Ψ0 and Ψ1 respectively, f(ω) ≅ [1+(cω/4πLF)2]-1/2, ϕ=4LFω/πc, c is 
the speed of light and ε=ε1+ε2=(x1+x2)/w0 . And also, L is the cavity length, 

e recycling 

rom eq. (1.28) it is possible to calculate the two fields E  and E  

F the Finesse, rR and tR the reflectivity and the transmittivity of th
mirror. 

out1 out2F
outgoing the cavities and therefore their phase difference  δθ at the output of 
the Michelson: 
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which shows that the coupling between the misalignment of the 
nterferometer ε

⎜ + rrr021 1

1-ε2 and the angular jitter of the input laser beam β0 generates 
n additional phase noise into the system. Similar results can be demonstrated 

for the coupling between the angular misalignment of t  cavi  the 
lateral jitters of the input beam. 

he phase noise calculated in eq. (1.30) suggests that if the laser geometrical 
uctuations are not reduced, the necessity of achieving the sensitivity limit 

imposes very strict statements to the tolerance of the interferometer 

comp h is exposed to daily variation of 
e environmental conditions (wind, temperature, pressure, etc.), could 

i
a

he ties and

 
 

1.5 Passive suppression and requirements for active 
prefiltering of the laser jitters 

 
T
fl

asymmetries. On the other hand, it is not very easy to assure that a large and 
lex structure like Virgo antenna, whic

th
maintain a perfect alignment for a long term period of several years. 
Therefore, since Virgo proposal, the suppression of the input laser beam 
jitters has been taken into account and currently it is passively performed by 
the mode-cleaner [47], a triangular Fabry-Perot cavity 144 m long with 
Finesse 1000 used in transmission between the input laser and the 
interferometer, as shown in Figure 1.7. 
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Figure 1.7: scheme of the Virgo interferometer and Mode Cleaner for the passive filtering of 
the input laser beam jitters. 
 
The input laser beam is cleaned up because its initial jitters are interpreted by 
the triangular cavity as not resonant higher order modes and hence reflected 
back. The noise is reduced by the same order of magnitude of the cavity 

-3

e interferometer alignment, which is actually performed at an rms accuracy 

ith mode cleaner [51]. 

Finesse, that is by a factor 10 . Nevertheless, the residual fluctuations of the 
laser beam outgoing the mode-cleaner still impose very strict statements to 
th
close to 10−9 rad at the best of the present technology. 
The possibility of pre-filtering the laser beam would add a safety factor to the 
mode cleaner performances [48], [49], [50], and also would allow to relax the 
strict statements of alignment. Furthermore, a system able to better control 
the laser beam geometrical fluctuations could be used to correct the expected 
thermally induced aberrations in the next generation high power 
interferometers, so to assure suitable beam matching w
In Advanced Virgo, where a 200 W laser will be used, the thermal effects are 
expected to strongly reduce the power coupled with the passive cavity. The 
consequent loss of power is assessed on about 90% , due to distortion caused 
by absorbing media in intermediate optics like the Faraday isolator. 
A compensation of such effect can be obtained using negative expansion 
coefficient materials [52], but residual fluctuations of the low order Gaussian 
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modes still impose a further reduction with 40 dB at low frequency (< 1 Hz) 
in order to lower the power lost into higher order modes under 1%. This can 
be considered the first requirement for the design of a pre-filtering system. 
Moreover, the phase noise of eq. (1.30) depends on the product of the 
coefficients of asymmetries times the coefficients of the higher order 
Gaussian modes of the perturbed input beam. In Virgo, typical values for 
asymmetry coefficients are about 10-3 and the phase detectivity limit 
corresponding to the sensitivity curve is Hzrad1110−≅φδ ~ , which means 
that the coefficients of the laser Gaussian modes of order 1 and 2 at the input 

of the interferometer must be less than 
Hz
110 8− , and therefore less than 

Hz
110 5−  before the mode cleaner wit  modes suppression factor of 10h

before the mode cleaner must respect this upper limitation over the whole 
 Hz to 1

beam waist of 1 mm, considering the TEM10 mode, the condition of a 

coefficien

-3. 

This means that the jitters noise reintroduced by the pre-filtering system 

GW measurement band extending from 10 0 kHz. In particular, for a 

t < 
Hz
110 5−  corresponds to an angular jitter 

Hz
rad

x
9103 −⋅<θ~ ; 

this limitation is generally satisfied by a quite laser beam in the frequency 
region above 100 Hz, but not in the tens of hertz, where an order of 
magnitude more has been measured [53]. Therefore jitters reduction of more 
than 20 dB is necessary in the spectral region up to few tens of Hz, and this 
can be considered the second important requirement for the s 

Several kinds of systems have been proposed to correct the laser perturbation 
in accordance to Virgo requirements. In particular, systems based on thermal 
deformation of mirrors or lenses have been demonstrated to work [54], but 
they need complex optical schemes, auxiliary high power lasers and exhibit 
the band limitations typical of any system using thermal processes. 
Alternatively, Adaptive Optics techniques have

 correction of thi
kind of noise in interferometric GW antennas. 

 been explored for active pre-
filtering of the laser beam, but the traditional systems based on the Shack-
Hartmann sensor have shown serious limitations for this particular 
application where high sensitivity and wideband correction is required [55]. 
Starting from this context, we have investigated the possibility of 
implementing a novel Adaptive Optics system based on the interferometric 
detection of the wavefront. 
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Our system is proposed for the active prefiltering of the input laser beam in 
cascade with the mode cleaner as shown in figure 1.8. 
 

 
Figure 1.8: scheme of implementation of the proposed AO syste de with the mode 
cleaner to perform laser active prefiltering in Virgo antenna. ble mirror is the 
actuator of a typical feedback control where the error signal is extracted on the pixellated 
photodiode by the interference of the input laser beam (  with the beam reflected 
back by the mode cleaner (gr row) which contai gher order modes not 
resonant with the cavity. The Central Processing Unit (CPU) receives the error signal and 

r the deformable mirror, according to the typical configuration of closed 

active prefiltering of the input laser beam. 

error signal 

m in casca
The deforma

blue arrow)
ns all the hieen ar

generates the driver commands for the adaptive mirror. 
 
In this configuration the AO system consists of a deformable mirror acting on 
the laser beam before the mode cleaner and of a pixellated photodiode used 
to detect the laser perturbation and provide the error signal to the central 
processing unit. Here the error signal is converted into the driver command 
fo
loop control. The error signal is extracted on the pixellated photodiode by the 
interference of the input beam with the beam reflected back by the mode 
cleaner containing all the higher order modes not resonant with the cavity. 
In the following of the present work, after a short investigation of the 
Adaptive Optics technology that is currently available, we present the Project 
of our system and demonstrate that it fulfils the Virgo requirements for the 
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Chapter 2 
 

Adaptive Optics 
 

2 

In this Chapter, we present the principal properties of the Adaptive Optics 
(AO), that is a technology developed in the last thirty years for wavefront 
control and light aberrations correction. We start with a short discussion 
about the phenomenon of aberration, showing the physical meaning in terms 
of geometrical optics and also in the wavelike approach, where aberration is 
described as perturbation of the wavefront surface. The aberrated phase 
profile can be expanded into a complete set of orthonormal polynomials 
named Zernike functions, which represent the fundamental modes of 
aberration. 
After that, we make an overview of AO, ranging from the first approaches up 
to the most recent applications. In particular, we show the standard 
configuration of an AO system, the main components and the principle of 
operation for the automatic correction of the wavefront aberration. We 
discuss the traditional use of AO in astronomy and the novel applications in 
the fields of medicine and industry. Furthermore, we show how AO can help 
to control the laser optical characteristics, thus widening its possible 
application in the fields of telecommunications, remote sensing, industry, 
high precision measurements. Finally, we outline the state of the art of the 
technology and the future developments in which research is now committed. 
 
 

2.1 Optical aberration and Zernike polynomials 
 
In the theory of wave optics, diffraction sets an unavoidable limit to the 
resolving power of any imaging system, because for its effect a point like 
source is spread on the image plane into a finite size spot [56]. In order to 
improve the resolution, it is common to design the optical systems with 
diaphragms of aperture D very large compared to the wavelength λ of the 
incoming radiation [57]. In fact these is the only way to minimize the 
diffraction parameter λ/D which is proportional to the spread of the image, 
like in the case of the Airy’s disk [58]. 
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Nonetheless, in
arge values 

 the geometrical model of the light propagation, when very 
of the transverse dimension D are used, the paraxial 

pproximation is not valid anymore and this cause another effect of imaging 
[59]. In fact, skew 

de apertures of the optical systems are focused into 
ifferent points thus spreading the spot of the image. From an analytical point 

urface of the wavefront, and hence if their direction is modified by 
ediate to see that this corresponds to a variation of the 

e and the plane 
 

l
a
degradation, that is the optical monochromatic aberration 
rays passing through wi
d
of view, the paraxial assumption allows to stop at the first order the power 
series expansion of the trigonometrical functions involved into the Snell’s 
law [58]. On the contrary, if we consider rays with large divergence α from 
the axis, in the equation: 
 

........!7/!5/!3/ 753 +−+−= αααααsen  (2.1) 
 
we need to consider at least the third order term, or senα ≅ α-α3/3!. 
The third order theory brings to much more complicated formulas where the 
direction of the rays of light suffers of the five monochromatic primary (or 
Seidel) aberrations, that are well known as spherical aberration, coma, 
astigmatism, curvature of field and distortion. Higher order aberrations 
coming from the higher order terms of eq. (2.1) are usually neglected because 
of their very small effects. Optical systems based on refractive surfaces also 
suffer for chromatic aberration, due to the dispersion of light. This implies 
that the image of a not monochromatic source is focused by the system into 
different image points depending on the colour. This is called chromatic 
aberration. 
In wave optics, aberration is described as the distortion of the light 

avefront. In fact, the geometrical rays are everywhere perpendicular to the w
s
aberration, it is imm
wavefront profile. In figure 2.1 we compare the spherical wav

ave in the ideal case and in the case of generic aberration. w
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Figure 2.1: spherical wave and plane wave in the ideal case a) and with aberration b). It can 
be seen the deviation of the rays direction, and the distortion of the wavefront 
 
In particular, the aberrated light wave emerging from the exit pupil of a 
convergent optical system has a perturbed wavefront which deviates from the 
ideal spherical profile (see figure 2.2). 
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Figure 2.2: aberrated wave emerging from a convergent optical system and Wave 
Aberration Function 
 

a) b)
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The perturbation of the wavefront is analytically represented using the 
Aberration Function, or Optical Path Difference W(x,y), wh
difference between the actual and the ideal wavefront in the plane transv

tical axis.  
ve Aberration Function is represented in different sets of coordinates 

and it is expanded in different series of functions, depending on the 
symmetry and the geometry of the problem. A standard representation is the

ial expansion in polar coordinates [60]: 

Wave 
ich is the 

erse 
to the op
The Wa

 
Taylor polynom
 

         
         (2.2) 
 
where Wklm are the wave aberration coefficients, r and θ are the polar 
coordinates in the transverse plane and the different ter correspond to the 
primary aberrations (defocus, spherical aberration, com atism, field 

pil) ρ=r/a. 
igher order terms are usually neglected. The terms in the Taylor series do 

d from the scientist Frits Zernike who 
 in 1934 [61], form a complete set of functions or modes that 

are orthonormal over a circle of unit radius and are convenient for serving as 
a set of basis functions. This makes them suitable for accurately describing 
wave aberrations as well as for data fitting. They are usually expressed in 
polar coordinates, and are readily convertible to Cartesian coordinates. These 
polynomials are mutually orthogonal and therefore mathematically 
independent. Zernike polynomials ZJ,n,m  are normally expressed in polar 
coordinates (ρ ,θ ) where 0 <

( ) ....coscoscos, 311
2

220
22

222
3

131
4

040
2

020 ++++++= θθθθ rWrWrWrWrWrWrW

ms 
a, astigm

curvature and distortion respectively). The radial coordinate r is very often 
normalized to the radius a of the circular optical aperture (pu
H
not form an orthogonal set of basis functions and are not recommended for 
data fitting of experimental measurements of wave front aberrations. 

nstead, Zernike polynomials, so nameI
first used them

 ρ < 1 and 0 <  θ < 2π . Figure 2.3 shows the 
coordinate system of the unit circle over which they are defined. 
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Figure 2.3: pupil coordinate system 
 
So, in the two dimensional domain over the circle of unit radius ρ=r/a, each 
continuous function can be expanded as a linear combination of Zernike 
polynomials. This means that each phase front profile, whatever complicated, 
has a wave aberration function that can be expressed as a weighted sum of 

he 0 order is a constant, and corresponds to a rigid translation of the wave 
ont. The first order corresponds to the tip-tilt of the wave front, that is a 

rigid rotation around the x and y axis (being z the optical axis). The second 
and third order correspond to defocus, astigmatism and coma, while the 
fourth order represents spherical aberration and defocus. Figure 2.4 shows the 
surfaces of the first polynomials corresponding to basic optical aberrations. 
In the real case, the aberrated wavefront is a generic superposition of those 
fundamental modes 

Zernike polynomials through suitable coefficients: 
 

∑∑
+

−==

=
n

nm

m
n

m
n
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n

ZWW ),(),(
0

θρθρ   (2.3) 

 
being k the polynomial order of the expansion and Wn

m the coefficient of the 
Zn

m mode. Table 2.1 shows the mathematical expression of the Zernike 
polynomials up to the fourth order, and their physical meaning relative to the 
primary aberrations. The order of the polynomial is n, the number is J and m 
is the factor multiplying the angle θ. 
T
fr
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n J M ZJ,n,m Aberration 
0 0 0 1 Costant 
1 1 -1 2ρsinθ Tilt y, distortion 
1 2 1 2ρcosθ Tilt x, distortion 
2 3 -2 √6(ρ2sin2θ) Astigmatism ±45° 
2 4 0 √3(2ρ2 − 1) Field Curvature, Defocus 
2 5 2 √6(ρ2cos2θ) Astigmatism 0°, 90° 
3 7 -1 √8(3ρ3 − 2ρ)sinθ Coma y 
3 8 1 √8(3ρ3 − 2ρ)cosθ Coma x 
4 12 0 √5(6ρ4 − 6ρ2 +1) Spherical aberration, defocus 

 
Table 2.1: Zernike Polynomials 

 
 
 

 
Figure 2.4: wavefront of the basic aberrations 
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2.2 Scheme and operation of a standard AO system 
 
The static be tio  that affect the optical syst  nowadays well 
corrected by optical designers  to techniq imulation 
based on powe l s ware [ ]. Skilled t  often design 
high quality optical system solvin  to the lower 
limit imposed b dif ction
Nevertheless, stochastic phase front aberrati light passes 
through n  ho ogeneous and non uniform ref whose index 
of refraction random de and on tim n=n(r,t). 
 

 
Figure 2.5: plane wave distorted by a non homogeneous refractive medium 

 
Let us consider, for example, the star light which passes through the 
atmosphere of the Earth before being collected by the telescopes. Because of 
the its turbulence, the index of refraction of the atmosphere has a stochastic 
time variation. Hence light coming from the stars, which in the ideal case 
should be represented by a perfect transverse plane wave, in the real case 
undergoes optical aberrations and reaches the detectors on the ground with 
perturbed wavefront. 
Such stochastic and time varying aberrations cannot be statically 
compensated by the optical designer, but need a dynamical correction of the 
wavefront distorted during its optical path from the source to the detector. 
This correction is performed using sophisticated techniques developed in the 
70’s and called Ada

lthough several ki
epending on the available technology, on the cost and on the specific 

 a rra ns ems are
 thanks ues of ray tracing s

rfu oft 62], [63 echnicians very
s where the re g power is close

y fra . 
ons occur when 
racti ials, on m ve mater

e, that is ly pends on space 

ptive Optics (AO) [64],…,[67]. 
nds of AO systems have been proposed in the last years, A

d

 

 

plane wave
distorted wavefront n=n(r,t) 
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appli ation, they are all based on a standard configuration 
g
c where we 

co nize the main components and the fundamental mode of operation. 

 
Figure 2.6: general scheme of an AO syste . The light beam is corrected by AO while 
running through its optical path and reaches unperturbed the detector. 
 
With reference to figure. 2.6, the AO system is represented in the dashed line 
rectangle a between the nd the wavefront 
correction. It is made of three main components that are the wavefront 
sensor,

he principle of operation is based on the typical scheme of a closed loop 

eidel aberrations. Usually the signal processing consists 

conjugate of the incident 

re
 

m

nd stands source a  the detector for 

 the wavefront actuator, and the signal processing unit. 
T
automatic control. 
The incident perturbed beam is corrected by the wavefront actuator and then 
sent to the detector, apart from a derivation deviated to the wavefront sensor 
for the measurement of the phase front profile necessary for the generation of 
the error signal that is supplied to the central unit. Here the signal is 
processed and the measured phase profile is interpreted in terms of 
superposition of the S
in the calculation of coefficients which best approximate the wave aberration 
function to the expansion in Zernike polynomials. Once the Zernike 
coefficients are calculated, the driver signal is sent to the actuator, which 
deforms the wavefront in such a way to compensate the original aberration. 
In fact, the profile forced by the actuator is the 
aberrated wavefront, obtained by applying weighted primary aberrations 
which are exactly the opposite of those measured by the sensor. 

Source 

Wavefront 
sensor 

perturbation 

aberrated 
beam Wavefront 

actuator 

driver 

corrected 
beam 

error 
nal 

signal 

sig

Detector 

Signal 
Processing 

Unit 
Adaptive 
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In such a way, AO acts as a feedback control system on several degrees of 
freedom for the simultaneous correction of the aberration modes. 
 
 

2.3 omponents and operative parameters 
 
We have seen that an A  is made of three main components, which 
are required to implement the basic functions of an automatic control. 
They are in particular: 
 

1. the sensing elem easurement of the wavefront aberration 
2. the actuating element, for the avefront aberration 
3. the reconstructo of ce it which acquires and 

processes the error signal from the sensor, and sends driver 
commands to the actuator for the phase front reconstruction.  

 
In this section we present the general characteristics of the standard 

ently 
fore discussion is 

Main c

O system

ent, for the m
correction of the w
a pror, made ssing un

wavefront sensors and actuators; the processing unit is differ
mplemented depending on the typical application, and therei

delayed to the Chapter 3 where we present the specific processor designed for 
our AO system. 
 
 

2.3.1 Wavefront Aberration Measurement 
 
The wavefront sensor measures the discrepancy of the actual phase pattern 
from the ideal profile, that is the Wave Aberration Function. 
The Shack-Hartmann sensor [66],[67],[68] is the standard method for 
wavefront sensing in AO, while other are techniques like the shearing 
interferometry [66],[67] are rarely used. 
A schematic of the Shack-Hartmann system is shown in figure 2.7. 
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Figure 2.7: Shack-Hartmann Sensor and Lenses Array 

he incident light beam is sent to an array of small identical lenses, and each 

Instead, if 

lacement ∆x and ∆y from the ideal position, as showed in 
e case b). 

easurement of ∆x and ∆y it is possible to calculate the actual wave 
berration function. In fact, let us consider the centroide C, that is position of 
ne spot focused on the CCD. The two coordinates (xC , yC) of the centroide 

 

T
one of them collects a part of the total beam and focuses it on the focal plane. 
The lenses lay all in the same transverse plane, and therefore the focal plane 
is the same, and corresponds to the sensitive surface of a light detector, 
typically a CCD. If the incident beam is an ideal transverse plane wave, all 
the spots focused on the CCD sensitive surface coincide with the ideal array 
of the focal points of the lenses, as seen in the case a) of figure 2.7. 

e incident beam has an aberrated phase profile, the spots focused on the th
CCD have a disp
th

From the m
a
o

b) 

focal length f 

a) 

CCD detector 

lenses array array of spots focused on the CCD 

lenses array 

CCD detector 

focal length f aberrated wavefront 

ideal wavefront 

displaced spots focused on the CCD 

x 
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are given by the weighted average of the intensities around the ideal 
reference position: 
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In eq. (2.4 i i re inates of the single xel of the CCD, Iij is 
the corresponding intensity and Nx and Ny are the number of pixels around the 
ideal position which w the weighted n of the 
centroide. 
 

) x  and y  a the coord pi

e use in average for the calculatio
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Figure 2.8: local displacement of the spot in a Shack-Hartmann wavefront sensor 

 

The lenses array converts the local sections of the wavefront into focused 
spots at the CCD. If the incident wavefront is a perfect plane then the focused 
spots are not displaced from the optical axes of the various lenses. Instead, an 
aberrated incident wavefront produces a non-zero spot displacement. So for 
each lens there is an x-displacement, ∆x, and a y-displacement, ∆y, as shown 
in figure 2.8, where, for the sake of simplicity, we consider only the one 
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dimensional displacement ∆y at fixed coordinate x1. By simple 
trigonometrical considerations, it is easy to see that the displacement divided 
y the focal length of the lens is equal to the local slope of the wavefront 

W(x,y), or: 

 

b
function 

f
yxx

x
yxW ),(),( ∆

=
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yxy
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∂
∂   

 

(2.5) 

Therefore, once the displacement data have been measured by the CCD, we 
can integrate the partial derivatives and obtain the Wave Aberration 
Function, which can be fit to a Zernike polynomial expansion like: 

 

∑=
j

jj yxZWyxW ),(),(    (2.6) 

 

The expansion coefficients Wj are determined by the scalar product of W(x,y) 
with the corresponding Zernike polynomials Zj(x,y) and permit to estimate 
the total aberration in terms of normal modes. 

 

 

2.3.2 Actuators for wavefront aberration control 
 
The actuator of the AO system is a transducer for wavefront control. In terms 
of geometrical optics, this corresponds to change the optical path of the rays 
of light in such a way that some of them are retarded or anticipated in 
comparison to the others. This can be achieved using one of the two laws of 
refra  the 
angl rten 

e path of the rays, and also modify the direction. In both cases, the optical 

ction or reflection. In fact, by refraction we can modify the speed and
e of light propagation, while using reflection we can lengthen or sho

th
path is suitably changed in order to correct the phase aberration. 
Techniques based on refraction make use of electro optic materials, such as 
liquid crystals, where we can change the index of refraction applying 
different levels of voltage. In this way, we can retard, in only some parts of 
the transverse plane, the rays of light, and therefore we achieve the necessary 
wavefront correction. A typical electro optic crystal is made of silicon 
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bismuth oxide (Bi12SiO20). Such kind of actuators present spectral absorption 
and index of refraction strictly dependent on the wavelength. So, high 
intensity monochromatic light can only be corrected using that technique, 
which is not commonly adopted. 

n the contrary, actuators based on reflection are widely used and we can say 
at they are the only kind of transducers used in AO [69]. These actuators 

are essentially deformable m rs, whose profile can be anged according 
to suitable geometry. In such a way, by assuming a transverse profile which 

 the conjugate of the actual wavefront profile of the incident light, the 

t models, 
epending on the cost, on the application and on the expected performances. 

A deformable mirror for telescope application, where a diameter of several 
meters is required, has different characteri

pensate aberrations of a laser spot of few millimetres. 
he first large scale mirrors proposed for astronomy had the reflecting 

part is moved by two or more 
istons and can be tilted. So, it permits to achieve more complex mirror 
rofiles which better match the requested pattern for correction. But, in any 
ase, these actuators suffer for a loss of light energy in the gaps between the 

segments, and this is a serious limitation when low intensity light must be 

O
th

irro  ch

is
earlier rays must run a longer path under their reflection, and therefore the 
reflected wavefront is corrected by aberration. 
Several technological solutions have been proposed for the implementation 
of deformable mirrors. In the current scenario, we find differen
d

stics from a mirror used to 
com
T
surface made of discrete segments moved by pistons (segmented mirrors). In 
the earlier model, each piston moves its own segment ahead and back, while 
in more sophisticated systems each reflective 
p
p
c

corrected. 
 

 
Figure 2.9: segmented a) single piston and b)multi piston deformable mirrors 

 
Recently, small scale deformable mirrors have been built using MEMS 
(Micro Electro Mechanical System) technology [70], [71] for novel 
applications on micrometer scale such as the correction of the human eye 

a) b) 
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retina imaging in ophthalmoscopy. This kind of mirror has millimetric or sub 
millimetric reflective elements moved by piezoelectric actuators. 
 

 
Figure 2.10: MEMS segmented mirror 

 

Another class of deformable mirrors is made of continue reflecting 
membrane devices that are widely used in laboratory and industrial 
applications. The most common types are the micromachined membrane 
deformable mirror (MMDM), the piezoelectric deformable mirror (PZT) and 
the bimorph mirror (BM). 
The first consists of a micromachined multilayer silicon nitride membrane 
covered with a special reflecting coating that is usually aluminium. It is based 
on the technology of silicon bulk micromachining and is suspended over an 
rray of electrodes that locally deform the membrane for capacitive effect. 

 

 

a

Figure 2.11: micromachined membrane deformable mirror (MMDM) 

 

Si membrane coated with Al 

electrode 
V
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The PZT mirror is made of a reflective quartz plate with free edge, deformed 
by actuators of piezoelectric material, like lead zirconium titanate, which act 
s pistons, as they push or pull the membrane upon voltage application. 

 

 
Figure 2.12: piezoelectric deformable mirror (PZT) 

 
The bimorph mirror yers of ceramic lead 

agnesium niobate (PMN) actuated by electrodes on the back face and the 

 
Figure 2.13: bimorph mirror (BM) 

 
 

2.3.3 Operative parameters and performances of an AO system 
 
Several p tion and 
erformance. Most of them have general validity and can be applied to any 

a

is made of two piezoelectric la
m
front face, which induce an electric field into the material. For the presence 
of the electrical field, the PMN deforms and the reflecting surface assumes 
the desired profile. 
 

arameters characterize an AO system in terms of opera
p

quartz reflective plate 

PZT actuator 
electrode

V 

polarized front face electrode 

back face electrode 
V 

ground electrode 

PMN material 
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system, while some others strictly refer to AO for telescopes, that for 
historical reasons is to date the reference field of that technology. 
The Fried parameter, or coherence length r0, is the transverse dimension, at 
the input pupil of the imaging system, within which the wavefront is 
correlated. Fried’s coherence length is a widely used descriptor of the level of 
atmospheric turbulence and depends on the atmospheric seeing conditions. 
This parameter is dependent on the wavelength of the incident light, 
according to the law r0 ~ λ6/5, and usually ranges between 10 and 20 cm for 
visible light. 
The isoplanatic angle θ, in astronomy, is the maximum angle separating two 
coherent sources with the same wavefront perturbation. Therefore, in the case 
the original source which we want to correct it too weak, we can use a 
reference star within the isoplanatic angle to measure the wavefront 
aberration. 

number of subapertures N is the minimum quantity of wavefront 

e list typical values for a telescope of aperture D=8 
eters. 

 

λ (µm) 0.5 5 

The 
samples necessary to obtain a good measurement of the aberration. It depends 
on the Fried parameter and on the aperture D of the system, following the 
rule N ~ (D/r0)2. 
It is also very important the bandwidth of the automatic control which must 
be large enough to correct fast wavefront fluctuations. 
In the table below w
m

10 

Fried parameter: r0 (cm) 10 160 360 

Time to correction: τ (s) 0.006 0.095 0.220 

Isoplanatic angle: θ (arcseconds) 1.8 30 70 

Number of subapertures: N 6400 12 4 
 

Table 2.2: operative parameters of an AO system for a telescope of diameter D=8meters 

ict 
onditions, while Infrared (IR) and Far Infrared (FIR) (λ = 5÷10 µm) allow 

 

We see that the correction of visible light (λ=0.5 µm) sets very str
c
to relax the statements. 
In particular, we remark that for visible light, a bandwidth of the order of 1 
kHz is required and a large number of subapertures (6400) must be provided 
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for the Shack Hartmann wavefront sensor. These two requirements are not 
easy to satisfy contemporarily, because if we increase the number of 

ization of an AO system should also evaluate the residual errors 

The control bandwidth limits the correction of very fast 

the wavefront detector. 

sed as the variance σ  

  (2.7) 
 
To evaluate the fitting error, we must consider that the more Zernike modes 
are co le mirror, the better the geometry of its 
surface ttern fo vefron ensat us, 
if NZern tely corre rnike m
fit
 

subapertures the processing unit has to calculate much more data, and this 
can result in a significative reduction of the bandwidth of the control speed. 
Therefore, a complex design should provided for an optimized system. It is 
also worth noting that the isoplanatic angle is very small, which means that 
the low intensity of the star light is a critical issue; we will discuss this matter 
in the following section, as it refers to the specific case of AO for astronomy. 
The character
of the components [64]. In particular, four sources of perturbation affect any 
AO system and are respectively the fitting, the temporal, the isoplanatic and 
the sensor noise error. The fitting error is due to the technology of the 
deformable mirror which cannot exactly match the shape of the distorted 
wavefront. 
aberrations and this induces temporal errors. In astronomical applications, 
isoplanatic error occurs when the wavefront beacon stands in a position not 
completely coherent with the target star. Finally, the sensor noise error is the 
intrinsic noise of 
If we assume that these four errors are uncorrelated and have a Gaussian 
distribution, the total error of the AO system is expres 2

in units of square radians as: 
 

22222
noisesensorcisoplanatitemporalfittingsystem _σσσσσ +++=

rrected into the deformab
 matches the conjugate pa r the wa

cted Ze
t comp

odes, the rm
ion. Th

s of the  is the number of comple
ting error is: 

π
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29440
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rZern
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⎞− DN

fitting

.
   (2.8) 

r against the number of corrected Zernike modes, we 

⎜
⎛

 
being D the aperture diameter and r0 the Fried parameter as usual. 
If we plot the fitting erro
seen that using the first 10÷15 modes is enough to achieve the lowest 
possible level of error. 
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Figure 2.14: residual fitting error 

 
The temporal error is related to the control bandwidth f3dB and to the 
frequency f0 of the aberration according to the following equation: 
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es 

ror drops below 
0,1 radians
The isoplan  
the referen  L the distance of the 
target from the sensor, the residual error for isoplanatic effect is: 
 

   

From figure 2.5 we see that if the control bandwidth is higher than 10 tim
the perturbation frequency, that is f0/f3dB<0,1, the residual er

. 
atic error is related to the distance ∆x between the target star and

ce beacon. If D is the optical aperture and

6
5

⎟
⎠
⎞

⎜
⎝
⎛

∆−
≈

xL
D

cisoplanatiσ    (2.10) 

 
The error, as ex cted, d eases w h decreasing ∆x hich o rs when the 
beacon get closer to the object. 
Finally, the Shack Hartmann sensor introduces the following noise: 
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with SNR Signal to Noise ratio of the sensor, D aperture of the imaging 
system, r0 Fried parameter, λ wavelength and θ angular size of the source. 
For a coherence length r0=10cm, and a wavelength λ=0.5 µm, two curves are 
plotted in figure 2.16 for two values of the Signal to Noise Ratio 
 

2
1
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Figure 2.16: residual noise sensor error 

 
We can see that the error induced by the sensor noise can be lowered using 
an high SNR and a subaperture diameter D smaller than the coherence length. 
For more details, which clearly overcome the scope of the present work, the 
interested reader is addressed to the referred bibliography. 
 
 

2.4 Fields of application of AO 
 
The first known Adaptive Optics system in the history was made in 212 BC, 

uring the Syracuse siege, when Archimedes had the idea of using mirrors to 

 the 
f the atmosphere that distorts the wavefront of the light coming 

from the stars. 
Nevertheless, even if the problem of the atmosphere blurring was know, there 
was not any technology able to solve the problem and only two centuries 
later, in the middle of 1900, Adaptive Optics was seriously investigated as a 
technology effective for the correction of the aberration in imaging systems. 

d
focus the sun light and burned Roman ships. This was also the first use of 
Optics for Military applications. 
Several centuries later, in 1730, Newton in his work Optiks wrote that 
Telescopes could not improve their performance and overcome the limitation 

f producing blurred images from astronomical objects, because ofo
turbulence o
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Babcock first proposed AO in 1953 [72], but much of the technology 
ined classified by the Department of Defence of the United States and 

only after the declassification in 1991 the scientific research started a
lete investigation. 

Astronomy and Telescopes 

 n

rema
 

comp
 

The first military application of AO has been in the field of astronomy 
and nowadays several large telescopes have been fitted with AO systems 
[73],[74]. 
The atmosphere is a mass of air which envelops the Earth and, due to the 
turbulence, is a not uniform and not homogeneous medium of propagation for 
light. This m f refraction varies e and in space 
along the path passed by the rays g from the stars to the ground 
telescopes. 

his affects the quality tectors and then 

on 

eans that the index o  in tim
 of light runnin

T  of the image collected by the de
reduces the resolving power much below the limit of diffraction. So, while in 
an ideal telescope the angular limit of detection α is given by the input pupil 
diameter, in a realistic uncorrected telescope, atmosphere blurring 
dramatically increases α as: 
 

0

221221
rD
λλα .. →=   (2.12) 

here r0 is the Fried parameter that replaced the diameter D. 

20cm, is not less than 0,6 arcseconds. 

 
w
This means that, although we spend much money and realize a large scale 
telescope with 8 m diameter to get the angular resolution α = 1.5·10-2 
arcseconds given be normal diffraction, the actual value, in the best 
atmospheric seeing condition r0=
One possibility to overcome this problem is to implement space telescopes 
like Hubble which orbit outside from the Earth and therefore are not affected 
by atmosphere blurring. But, such kind of telescopes requests high 
technology much money for the construction, the commissioning and the 
operation. 
On the other hand, ground telescopes have widely increased their 
performance using Active and Adaptive Optics, and nowadays they reach the 
best possible resolution with costs widely lower than those necessary for 
space detectors. 
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In general, even if a good design avoids most of the static aberrations 
discussed in Chapter 1, the quality of the image in terrestrial telescopes is still 
affected by two types of problems. 
First of all, there are several quasi static disturbances due to the intrinsic 

ature of the experimental set up. In fact, perturbation of the image for loss of 
and deformation of the optical elements can be 
al and optical effects. 

term maintained against the aging and the environmental 

m, once aligned, is protected from wind by the use of covers. 

 the image against the quasi static perturbation 
as been found by using Active Optics. This technology is based on the idea 

of installing into the telescope some optica
autocorrective, as they can automatically compensa

e initial optical alignment. The quasi static nature of the perturbation allow 
Hz or less. 

n
the focus, decentralization 
caused by mechanical, therm
Nowadays, a suitable design and construction of the whole system, where 
several conditions are strictly respected, assure that the optical performances 
are long 
perturbations. In particular, it is important the choice of high quality 
components, with high mechanical stiffness and low thermal expansion. 
Also, attention must be put in order that components dissipating heat (like 
motors and power electronics) must stand far from the optics, and that the 
whole syste
Unfortunately, such structural adjustments are very expansive, especially for 
the large size telescopes that have been built in these last years, with primary 
mirrors of 4 meters necessary to collect as much optical power as possible. 
The solution to relax the strict statements of the structure and in the same 
time to assure the quality of
h

l elements which are 
te the slow deviation from 

th
to use elements moving at very low frequencies, typically 0.05
Telescopes using Active Optics are the 3.5 m diameter New Technology 
Telescope ESO at La Silla (Cile) since 1989, the 10 m primary mirror Keck 
Telescope at Mauna Kea , Hawai since 1992 and the four 8.2 thin mirrors 
VLT operating at Paranal (Cile). 
In addition, Adaptive Optics has been applied to these telescopes for the 
dynamic correction of aberrations induced by the turbulence of the 
atmosphere. Figure 2.17 shows the schematic of a typical AO system for 
telescope. 
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Figure 2.17: schematic of an Adaptive Optics system for telescope 

 

The initially plane wavefront, travelling 20 km through the turbulent 
atmosphere, is strongly perturbed and, across the diameter of a large 
telescope, the phase error can be several microns large. In a typical case AO 

arget, it is common to collect light from a 

ont sensor. The control system sends the deformable mirror the 
ctuator commands so that the light of the target, although of low intensity, 

can reach the detector with a corrected phase profile. 
As the isoplanatic angle for visible light is very small, unless the telescope is 
directed to a big cluster of stars, the probability of finding a coherent Natural 
Guide Star is not more than 0,5%÷1%. 
Advanced AO systems are promising to overcome this limitation using 
artificial reference stars, also referred to as Laser Guide Stars (LGS) [75]. 

should detect low intensity star light and correct a minimum wavefront 
distortion of 1/50 micron in 1 kHz bandwidth. This statements require a very 
sophisticated and performing system. 
Because of the weakness of the t
reference star of sufficient intensity, provided that it stands within the 
isoplanatic angle. In this case, the light from the reference beacon, usually 
named Natural Guide Star (NGS), is deviated by a dichroic beam splitter to 
the wavefr
a
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The proposed method is to direct a pulsed laser beam to the sodium atoms 
present in mesosphere, at an altitude of about 90 km, and to collect the back 
scattering produced by those atoms as they go into resonance with the laser 
light. Alternatively, the laser beam is focused at an altitude of 20 km and 
excites molecules and particles located in the low stratosphere; also in this 
case back scattering occurs for Rayleigh diffusion and the artificial reference 
star is made. Such a method allows to achieve the beacon very close to the 
astronomical target, and the scattered light is deviated to the wavefront sensor 
to produce the error signals. 
The diameter of the deformable mirrors usually does not exceed 20 cm and 
the number of actuators (usually piezoelectric pistons) is chosen upon a 
trade-off between the precision of the correction and the budget. Difficulties 
and costs rapidly increase passing from IR to the visible light. In fact, for an 
astronomical object emitting IR radiation, an 8 meters diameter telescope 
achieves a near perfect correction with only ten actuators. Instead, for visible 
light over 6400 pistons are required, and the same number of subapertures for 
the wavefront sensor, which in turn should be very sensitive and low noise in 
order to detect the perturbed wavefront of the weak reference beacon. 
Also, the processing unit has strict statements which correspond to costly 
hardware a alculation 

quired, let us consider that for IR light correction the processor must 
illisecond a set of about ten commands to send to the 

scopes has been widely diffused in the 

nd software. To get an idea of the high capacity of c
re
elaborate per each m
actuator; the number largely increases for visible light correction, as in this 
case in the same meanwhile of one millisecond the processor must elaborate 
a set of 6400 commands, which means its computing power must exceed 
several billion operations per each millisecond. It is clear to the reader how 
difficult and expansive is to realize such performing systems. 
Anyway, the use of AO in ground tele
recent years, and the quality of the images has reached the limit of diffraction 
for IR radiation and is near to for visible light too. Some images from ground 
telescope are even better than those collected by space telescopes, as we can 
see in figure 2.18, where we see that Keck Telescope with AO produces an 
image of Titan, Saturn’s largest moon, with a quality higher that the image 
produced by Hubble Space Telescope. 
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Figure 2.18: image of Titan, Saturn’s largest Moon, by a) conventional telescope, b) Hubble 
Space Telescope and c) Keck Telescope with AO 
 
 
New fields of application 

AO is being investigated for application to new interesting fields, such as 
biomedical imaging, industrial processes and laser control [76]. In the recent 
years, AO systems have been integrated into commercial products, including 
cameras, CD players and large TV screens. 
Following is a list of the principal applications that one can find in the current 
scenario. 
 

 Medical imaging 
- ophthalmoscopy, Vision Science 
- oncology 

 Consumer goods 
 Industrial processes, quality control, metrology 
 Laser control for 

- communication 
- high precision measurements in big experiments like gravitational 

wave detection 
- environmental monitoring 

 
The detailed discussion of each of these fields is clearly beyond the core of 
our work, so stop our attention to some of the applications that our 
experimental facility could be proposed to.  
Many people are increasing their interest in AO for medical imaging, and in 
particular its applications to ophthalmoscopy and Vision Science, where 
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al AO set up for ophthalmoscopy at the University of Rochester 

Two m  application of AO to human eye 
rrection and the retina imaging. 

provement. Traditional 
efocus and astigmatism, 

i xpected to achieve higher order aberration reduction 
tailo d
visi , 
The onochromatic aberrations of the eye has 
lso ians to investigate new opportunities to 

portant results have already been achieved [77], [78]. Several institutes are
llowing this field of research and development, especially in U.S., lik

Center for Adaptive Optics at the University of California, the Center f
Visual Science, at the University of Rochester [79], and also at the University 
of Huston. Novel ophthalmic instruments equipped with AO have been 
demonstrated and are now in use by clinicians. 

Figure 2.19: experiment
 

ain goals are expected from the
sciences: the vision co
Vision Science is committed to the vision im

rates standard correction on dtechnology only ope
wh Ale O systems are e

re  to individuals. Some people say that one day AO will enable “super” 
on giving eye more capability it has in normal condition [80]. 
 ability of AO to correct the m
 induced scientists and clinica

image in vivo the normal and diseased retina at unprecedented spatial 
resolution [81],…[84]. Currently, in the traditional in vivo retina imaging 
performed by ophthalmoscopes (fig. 2.20), it is not possible to achieve a 
spatial resolution below 5 µm, and this does not allow to clearly detect the 
fundamental elements of the retina, that are rods and cones whose dimensions 
are about 1 µm. 



 

 

 
Figure 2.20: ophthalmoscopy of the human eye 

 
The protective outer called cornea is transparent and allows light to enter the 
eye through the pupil, the circular opening in the center of the front part, 
larger or smaller depending on the light brightness. The probe beam entering 
the pupil passes through the lens and is focused on the retina, which is 
innermost layer in the eye. It converts images into electrical impulses that are 
sent along the optic nerve to the brain where the images are interpreted. The 
retina can be compared to the film of a camera. It is composed of light 
sensitive cells known as rods and cones interconnected by a complex mesh of 
neurons that provide early stage visual processing. Rod cells are primarily in 
the outer retina, do not discriminate colours, have low spatial res
support vision in low light (“night vision”), are sensitive to object mo ment 
an e 
entral visual field, function best in bright light, process acute images and 

 µm set by the law of 

enlarge the 

olution, 
ve

d provide peripheral vision. Cone cells are densely packed within th
c
discriminate colours. 
This optical system has a spatial resolution limit of 5
diffraction, r = 1.22f λ/D, being λ ~0.5 µm the wavelength of the probe light, 
f ~ 17mm the focal length and D ~ 2-3 mm the normal aperture of the pupil. 
This is also the resolving power of the ophthalmoscope which interrogates 
the eye using the back scattered light of the beam focused on the retina. If we 
want to minimize the diffraction, we need to force the patient to 
pupil up to 7 mm. In the ideal case, we would obtain a resolution r ≅ 1.5 µm, 
small enough to detect the retina’s details. But, in the real case, the 
enlargement of the pupil causes the retina imaging to suffer for ocular 
aberrations, and also for vibrations of the eye which stands in a not natural 
position. This effects limit again the resolution to about 5 µm. 

Pupil  
D diameter 

cornea 

lens retina 

f

ophthalmoscope 
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The application of AO to the novel ophthalmic instruments allows to correct 
aberration and achieve the spatial resolution of 1µm. The retina imaging is 
largely improved, as shown in the figure below. 
 

 
Figure 2.21: images of the human retina without (left) and with AO (right). Photoreceptors 
are clearly visible in the corrected image. 
 
Other fields of biomedical imaging like oncology are getting advantage by 
application of AO to the diagnostic devices. The improved resolution in the 
detection of small details of the human body can help in the early diagnosis 
of cancer. 
Interesting applications of AO have been demonstrated in the field of 
industry, especially for metrology and quality control. AO techniques have 
been adopted to measure the flatness of silicon wafers through the 
measurement of the wavefront distortion of the light beam reflected back by 
the wafer surface. The same method could be used for dynamic 
measurements of vibrating surfaces, provided that the bandwidth of the 
system is wide enough to follow the fast variations of the vibrating profile. 
The quality control can also be extended to the environmental monitoring, 
where AO has been proposed to measure flows of particles, gases and heat, 
detected by the variation of the index of refraction that they produce in air. 
AO is also applied to free space optical communications, where lasers are 
used in air between two optical fiber networks [85]. In fact lasercom systems 
for distances of several km are affected by beam spreading and scintillations 
induced by the atmospheric turbulence. Such problem cannot be compensated 
increasing the optical power because of eye safety and power consumption 
limitations, while considerable improvement is expected using AO 
correction. 
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Laser shaping is also performed by AO techniques, to improve the beam 
collimation and reduce the geometrical aberrations. This can help in 
industrial fields where high power lasers are used for cutting, welding and 

sion. 
 
 

2.5 State of the art and future outlooks of the AO technology 
 
So far, we have presented an overview of the current technology of AO, 
showing the principle of operation, the main components, the classical use 
for astronomy and the new fields of applications.  
We like now to finish this chapter with a summarize of the future expected 
advances, which promise to be very interesting in the next years, as they 
involve not only the basis research in Physics, but also the technological 

rd the AO for astronomy, where the main 

verage has not yet been achieved. A new advanced technique, 
called Multi-Conjugate Adaptive Optics (MCAO), which would permit to 

fu

development and the industrialization where Engineering is committed. 
Many technological challenges rega
problems as seen before concern with the low brightness of the target star, the 
necessity of small phase correction (1/50 micron), the rapid variation of the 
wavefront due to the speed of the atmosphere turbulence (τ < 1 ms), the small 
percentage of the sky covered by the isoplanatic angle at visible wavelength 
and the large dimensions of the mechanical structures in Very Large 
Telescopes (VLT) which require primary mirrors exceeding 8 m, big and 
costly hardware components, and powerful processing units. 
R&D has undertaken to develop fast and low noise detectors in order to sense 
faint reference stars and very fast processors exceeding 109÷1010 operations 
per each millisecond. 
Particular attention is dedicated to the improvement of the Deformable 
Mirror of large diameter over 30 cm and driven by thousands of actuators. It 
is clear that at the best of the present technology the speed of response of the 
deformable mirror is the principal limit to the bandwidth of the whole control 
system, as the sensor transfer function can be considered absolutely flat over 
10kHz, and big improvements have already been obtained in the velocity of 
the processing unit. The new generation of mirrors promises to reach 
bandwidths of several kilohertz. 
As concerns the methods for artificial reference beacons, LGS technology is 
now operating with high power reliable sodium lasers at a number of 
Observatories, but routine demonstration of their potential for getting very 
high sky co
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obtain in the same time 3D data (2D spatial and 1D spectral information) is 
still in its initial experimentation. 
At the University of Durham, it has been started a project of research called 
FAOS-Future Adaptive Optics Systems which is a collection of initiatives 

vestigating the possibility of hardware improvement for AO systems. In 
ct, they consider that the requirement of evolution in CPU power for future 

AO systems surpasses the CPU scaling predicted in the ordinary HW/SW 
 

ontrol loops with dedicated hardware acceleration to improve price, 

erent 

hich can reach 

ke use of the MEMS – Micro Electro Mechanical 

ctrostatically driven by an array of actuators 

in
fa

technology, and therefore they want to match the traditional software AO
c
performance and physical size tradeoffs. They assess high speed (10kHz), 
compact and highly embedded AO systems. 
AO techniques have allowed remarkable results in Vision Science for high 
resolution imaging of the human eye, and in particular to obtain in vivo 
images on the micrometer scale for earlier diagnosis and treatment of retina 
diseases. The key component of AO for Vision Science is the adaptive 
mirror, which must have operative parameters, size and cost very diff
from those traditionally implemented for telescopes. In particular, deformable 
mirrors for astronomy are expensive, costing $ 100.000 for a 100 channel 
system, and have large apertures of the order of 10÷30cm. Moreover, they 
have a maximum central deflection of about 5 µm, which is usually sufficient 
for the wavefront correction of the star light. On the contrary, deformable 
mirrors for Vision Science should have an aperture comparable with the 
eye’s pupil (~ several millimetres), should be compact, low cost, and capable 
of moving at least 12 µm to correct the defocus of the eye w
peak to valley wavefront errors of up to 25 µm (the effect of correction is 
doubled on reflection). In order to fulfil these strict statements, recently it has 
been proposed to ma
Systems technology, which promises very low cost, high reliability, 
integrated into chips and performing mirrors. Texas Instruments has realized 
a digital micromirror device comprising 1 million mirror segments; it is a 
high technology microsystem, used for high quality displays, but cannot be 
used for AO because of its bistable nature. Indeed OKO-Flexible Technology 
manufactures a family of Micromachined Membrane Deformable Mirror 
(MMDM) [86], [87] based on the silicon bulk micromachining technology 
[88], [89]. It has a membrane ele
and is suitable for AO application to Vision Science, because it has a 
diameter of the order of 1 cm , reaches central deflections of the order of 
10÷15µm and has a bandwidth up to 500 Hz. We will come back to this 
argument in the following, as we have adopted one of MMDM mirrors 
produced by OKO in our experimental prototype. Liquid Crystal Devices 
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[90] are also investigated for wavefront actuator implementation, as they 
perform very high spatial resolution and then permit to correct higher order 

here discussed per each field of 

aberration modes. 
Many AO applications are being also explored in the field of consumer 
goods, such as display and data storage devices, as well as in the field of 
quality control of industrial processes (metrology, imaging through turbulent 
media, etc). Clearly in this case the strong effort is not only devoted to 
improve the operative performances, which are usually sufficient, but also 
and mainly to realize a low cost, compact and reliable device within a reliable 
supply chain, in accordance with typical concepts of industrial engineering. 
In Table 2.3 we summarize the main issues 
application. 

 64



 

 
Field of 

application Current issues and expected advances 

Astronomy 

 big and costly structures, powerful CPU 
 fast and very low noise detectors for fainter reference 

stars. 
 very fast processors exceeding 109÷1010 operations per 

each millisecond. 
 Deformable Mirror of 30cm diameter, 103 actuators, 

bandwidth over 1kHz. 
  Laser Guide Star (LGS) for very high sky coverage 
 Multi-Conjugate Adaptive Optics (MCAO) for 3D data  
 FAOS-Future Adaptive Optics Systems Project at the 

University of Durham  

Vision 
Science 

 deformable mirrors traditionally developed for large 
telescopes 

 aperture comparable with the eye’s pupil (~ several 
millimetres) 

 compact, low cost 
 maximum deflection over 12 µm 
 MEMS technology 
 Liquid Crystal Devices: high resolution, spectral 

absorption 

Consumer 
goods and 
industrial 
processes 

 low cost, compact and reliable devices 
 reliable supply chain  

Laser beam 
control 

 manipulating the shape of high power lasers for industrial 
processes 

 lasers for communication systems 
 reduction of laser jitter noise in the Virgo detection 

bandwidth 10Hz ÷10kHz. 
 

Table 2.3: future developments of Adaptive Optics 
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Chapter 3 

3 Project o
interferom
of laser beam  

We have seen h e gone 
beyond the c  of 
science and 
where optical
outlooks are expe tation of AO to the laser control, as 
the possibility  
in the field of h g sers for industrial processes and in the field of 
laser based comm
Ne ess, eve ng AO systems have already been achieved 
an nes eloped in the next future, none of them 
se e s wideband and low noise 
control of the lase
From the scen
development of AO technology have been focused to im
actuators and processing units, while no attention has been paid to the 
wavefront sensor, because the standard Shack Hartmann system is commonly 
a th previously said that 
t a quite unlikely to be used in the field 
o ferometric antennas because low sensitivity and band limitations 
are difficult 
upgrade of th

 w
te of o

 

f the Adaptive Optics system based on 
etric techniques for the automatic control 

 jitters in air
 

 t AO in the recent years hav
lassical use of astronomy and have entered several fie

at the applications of 
lds

technology, giving significative benefits to imaging systems 
 quality is a strict statement. We have also seen that interesting 

cted from the implemen
 of manipulating the intensity profile will open new scenarios 

i h power la
unications. 
n if performiverthel

d new o
ems to b

 are promised to be dev
uitable for Virgo application, where 

ired. r beam jitters is requ
ario explored in Chapter 2, it appears that all the efforts for the 

plement performing 

ccepted as 
he usual Sh
f GW inter

e best solution. On the contrary, we have 
ck Hartmann technique is 

to overcome. For example, even considering a reasonable 
e state of the art, the Shack Hartmann sensor used for the 

avefront gmeasurement
ns of Hz 

of lobal tilt has a residual noise in the region of the 
the rder of Hzrad10  [76], which corresponds to the same 

ude of the jitters measured i

8−

order of magnit n a free laser operating in quiet 
boratory conditions [53]. 

Starting from thi Adaptive Optics 
ystem where the phase front detection is performed using an interferometric 

technique alternative to the Shack Hartmann method. Our Project consists in 
the design of the system, the implementation of an experimental prototype 
and the characterization of it in order to validate the theoretical model and to 

la
s considerations, we have developed an 

s
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demonstrate th
equirements [9

e effectiveness of the AO control in compliance to Virgo 
1], [92], [93]. 

 this Chapter, we present the design of the interferometric AO system based 
on the Michelson configuration. 

Gaussian mode, we demonstrate a 
orrespondence between the higher order Hermite Gauss modes and the 

r
In

A small section is devoted to recall the basic concepts of Gaussian Optics, 
from the laser beam properties to the laws of propagation in air. 
After that, starting from the supposition that small jitters can be described as 
perturbations of the fundamental 
c
Zernike polynomials that expand the phase profile. That is, a laser beam 
affected by jitters can also be interpreted as a light wave with aberrated 
wavefront. This allows to design an AO system which measures the laser 
beam perturbations in terms of higher order Hermite Gauss modes and 
calculates the commands for wavefront correction in terms of Zernike 
polynomials. 
We present the optical design of the proposed AO system and in particular 
the interferometric technique for wavefront detection. This technique is based 
on the interference of the two beams of the Michelson locked on the middle 
fringe working point. The intensity at the output of the interferometer is read 
by a pixellated photodiode which produces a set of photocurrents that are 
proportional to the phase difference of the two beams in a specific portion of 
wave front area. These photocurrents are amplified and linearly combined so 
that they provide signals corresponding to coefficients of the Hermite Gauss 
modes that perturb the laser beam. These coefficients are used as error 
signals and fed back to the AO control for the generation of the correction 
commands supplied to the deformable mirror. 
We also present the design of the feedback control system operating on six 
degrees of freedom and in particular the scheme of the block diagram where 
the regulator and the controlled system are highlighted, as well as the 
manipulated and the controlled variables. In particular, we present the 
technique for the extraction of the error signals from the controlled system 
and the diagonalization of the transfer matrix for the simultaneous control of 
six modes of aberration. 
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3.1 Gaussian Optics and higher order Hermite Gauss modes 
 
The electric and magnetic field of a laser beam of wavelength λ is given by 
the solution of the Helmotz scalar wave equation [94]: 
 

22 0=+∇ uku    (3.1) 
 
where k=2π/λ. 
This equation is usually solved in free space to obtain the simple solutions of 
plane and spherical waves. 
In Cartesian coordinates, being x and y the transverse axes and z the 
longitudinal direction of propagation, if we suppose a solution like: 
 

jkz−ezyxu Ψ= ),,(    (3.2) 
 
and assume that the variation of Ψ with z is small compared to the 
dependence on x and y, we can write: 
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where we have neglected the term 2

2

z∂
Ψ∂ . 

This is the paraxial approximation which can be correctly used in the case of 
a Gaussian beam, because it has a finite transverse size (few millimetres) and 
a privileged direction of propagation with small divergence (θ ≤ 0.5 rad). 
The solution of eq. (3.3) has the form: 
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where we have used the radial coordinate r = (x2+y2)1/2. 

he functionT  00Ψ , which represents the spatial distribution of the EM wave, 
xhibits a transverse Gaussian profile with respect to the distance r from the 
xis. It is also worth noting that this expression is formally identical to the 

solution of the spherical wave, where the radius of curvature is replaced by 
the complex Gaussian parameter q(z), which is calculated reintroducing eq. 

e
a
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(3.4) into (3.3). In particular, if we fix the origin of the axis z0 where the
s

 
au sian beam has its minimum transverse size of radius w0, named spot or G

beam waist, the following relations hold: 
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We have here introduced the beam radius w(z) and the radius of curvature 
R(z) which depend on the longitudinal coordinate z as: 
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 The term
λ

π 2
0w

zR =

corresponds to the distance from the 

 is usually referred to as Rayleigh range and it 

beam waist at which the spot size 
increases by a factor 2 from its initial value. 

The complex term A(z) is also calculated as 000 φje
zw

wAzA
)(

)()( = , being A(0) 

0φj
e respectively. The term φ  is a phase and e the initial amplitude and phas

hift difference between the laser mode and the ideal p
0

lane wave. 
e can finally rewritten the wave solution of eq. (3.2) as: 
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In order to normalize this expression, so that ∫ =

22 2 Ardru π , we obtain: 
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where we have redefined A(0)=A. 
We can now understand the physical meaning of th  

 fact, we see that R(z) is the radius of curvature of the wavefront and that 
is the beam radius, or the distance from the axis where the transverse 

aussian profile of the beam is 1/e reduced from the peak. The beam radius 
represents the spot size of the Gaussian beam. 
 

e introduced parameters.
In
w(z) 
G

 
 

Figure 3.1: pr  the Gaussian beam. The beam has its origin in the beam waist w0 
and propagates with asymptotic divergence θ=λ/πw

opagation of

w(z)/w0 increases 

0. 
 
It is worth noting that in the Gaussian beam the waist 
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while the radius of curvature R(z), initially infinite in the origin, has a 
minimum in z=zR (figure 3.2) and then tends again 
distance, where the wavefront is plane and the beam has a far field diffraction 
ngle given by: 

to infinite at large 

a
 

0wπ
λθ =    (3.10) 

 
The intensity distribution of the Gaussian beam is: 
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and drops to 1/e2 times its initial value at a distance w0 from the axis. 
The Gaussian mode is only one of the infinite solutions of the Helmotz 
equation in a laser cavity. There are other similar functions that solve eq. 
(3.3) and form a complete and orthogonal set of modes of propagation. 
Therefore, every arbitrary distribution of monochromatic light can be 
expanded in terms of these modes. 
It is demonstrated [94] that these solutions are equal to: 
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where Hn and Hm are respectively the Hermite polynomials of order n and m, 
and an additional phase shift difference proportional to m+n is introduced 
into the Gaussian mode Ψ00. These are called Hermite Gauss modes and 
correspond to the Gaussian mode when n=m=0. 
It is worth noting that the parameters w(z) and R(z) are the same for all 
modes. This means that they have the same transverse amplitude scaling and 
the same phase front curvature along the axis. 

 can be represented as a superposition of Hermite Gauss 

  (3.13) 
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A generic laser beam
modes through coefficients cnm: 
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where usually the coefficient c00 of the Gaussian mode is extremely large 
compared with the coefficients cnm of the higher order polynomials. 
 
 

3.2 Wavefront analysis of the pe
correspondence between Hermite Gauss modes and 

Let us consider a generic laser beam perturbed in the waist position by 
defocus and astigmatism [59]. If x’ and y’ are
xes rotated by the angle

rturbed Gaussian beam: 

Zernike polynomials 
 

 the two principal astigmatic 
a  θ  (see figure 3.3), 

 
Figure 3.3: principal axes of astigmatism rotated by the angle 
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the following change of coordinates holds: 
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These two axes correspond to the maximum and minimum curvature radii Rx’ 
and Ry’. Hence, from eq. (3.9)  we can rewrite the perturbed wave function 
Ψ(x’,y’) as: 
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Now we define the mean radius expressing the defocus: 
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and the astigmatic factor [59]: 
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and therefore the following relations apply: 
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By substitu s on of the 

erturbed fi
ting (3.18) and (3.19) into eq. (3.15), the expre si
eld changes as: p
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By using the fact that: 
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e can write: 
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herefore: 
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 this last equation we have used the well known trigonometric formulas: 
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If we expand the exponential to first order, eq. (3.24) changes to: 
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(3.26) 

and using the expression of the Hermite Gauss modes Ψmn [94], [95], we can 
finally write the field as a perturbation to the second order of the fundamental 
mode: 
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On the other hand, using the coordinates ρ2=(x2+y2)/w0

2 and θ=tg-1

eq. (3.24) we can extract the imaginary part of the field Ψ  which represents 
the phase front function Φ: 
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Using the definitions of real Zernike polynomials Zn  and formally restricting 

e analysis on the circle of radius equal to the beam waist, the wavefront can 
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(3.29) 
 
From eqs. (3.27) and (3.29) we see that, if the wavefront is analysed on the 
waist surface, there is a direct correspondence between Hermite-Gauss modes 
of the perturbed beam and wavefront Zernike polynomials. This allows for an 
easy evaluation of the higher-order Hermite-Gauss modes by the scalar 
product of the wavefront with the corresponding Zernike mode. For example, 
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 and corresponds to the 

coefficient of the Zernike polynom atism 45. 
Consequently, a closed loop control system can be made generating driving 
comma

e estimate of efficiency of the feedback can be done directly in terms of 

 
 
 
 

 
 

nds for the deformable mirror in terms of Zernike polynomials while 
th
Hermite-Gauss modes. 
The present analysis is carried out for Hermite-Gauss modes up to the second 
order which fulfils the requirements for noise reduction in gravitational wave 
nterferometers. i
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3.3 Optical design of the interferometric AO system

beams of the chel
ted beam

 of the AO system in the typical Michelson interferometric configuration 

he variation of the output intensity Iout in the Michelson is [58]: 

  
 
The AO system that we propose for Virgo application is based on the 
Michelson interferometric scheme as shown in figure 3.4. The input laser is 
introduced into the interferometer and its fluctuations are detected in terms of 
Hermite Gauss coefficients by the measurement of the interference produced 
on the 5x5 pixellated photodiode placed at the output of the interferometer. In 
our model one of the two  Mi son is the unperturbed 
reference and the other is the aberra  that we want to correct. 
 

 
Figure 3.4: scheme
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here the average phase difference δ of the two beams is given by 
 
w

( )21
4 LL −=
λ
πδ , being L1 and L2 the length of the first and the second arm 

spectively. 
sing a piezoelectric mirror in the arm of the reference beam, the 

interferometer is locked on the middle fringe working point in order to fix the 
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average phase difference to δ = π/2. In this position the output intensity curve 
as its maximum slope as the derivative: h
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d
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reaches its minimum –I0 /2 and then provides high sensitivity phase 
detection, as shown in figure 3.5. 
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F  

gnal is Iout/I0 (black continuous line) and the linearized signal is blue dashed 
/2. 

urthermore, for small phase variations it is possible to approximate the 
actual output Iout with a linearized function 

rst order of the Taylor series: 

igure 3.5: normalized output intensity plotted versus the phase difference δ. The actual
si 0II lin

out / (
line). The interferometer is locked on the working point corresponding to δ = π
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outI , given by the expansion to 
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2

I

photodiodes array is directly proportional to the phase difference of the 

In this optical scheme the typically small laser perturbations do not introduce 
2π ambiguities in the wavefront and the intensity signal on each pixel of the 

 78



 

beams in that wavefront area. This corresponds to a linear response of the 
system and allows to describe the automatic control through a linear 
ynamical model. 

The reconstruction of the wavefront profile, or m
difference of the two beams, could be mad

easurement of the intensity from the 25 photodiodes of the array. But in this 

would not solve the bandwidth limitation 
s based on the Shack Hartmann sensor. 

Conversely, we have chosen a more elegant and faster modal feed backing 
where the 25 signals are projected on the first and second order Hermite 
Gauss modes and, thanks to the analysis previously carried out, directly used 
as error signals for the generation of commands in terms of Zernike modes. 
The Hermite Gauss coefficients are calculated by suitable linear 
combinations of the 25 intensity signals coming from the photodiodes array, 
according to the description detailed in Section 3.5. 
For the moment, we remark the difference that stands between the classic AO 
system and our AO control based on interferometric techniques. With 
reference to Subsection 2.3.1, the classical AO scheme needs at least five 
different steps for the wavefront correction, that are: 
 
1. image acquisition by CCD 
2. centroide calculation 

ignals 
ormable 

mirror 

ndwidth below few tens of Hz. 
stead, in our scheme the 25 intensity signals are directly transformed into 

Hermite Gauss coefficients of first and second order. This means that in only 
one step we obtain the same result that is obtained in four steps using the 
classical Shack Hartmann sensor. This allows a considerable increase of the 
peed of the system. 

d
ore precisely of the phase 

e directly by a point-to-point 
m
case one should achieve the error signals by the scalar product of the 
measured wavefront function times the Zernike polynomials and therefore 

is method, even if more sensitive, th
exhibited by AO system

3. wavefront reconstruction by numerical integration of measured derivatives 
4. scalar products of wave aberration function and Zernike polynomials for 

the calculation of aberration coefficients to use as error s
5. error signals process and generation of commands for the def

 
The ensemble of all these operations, even if at the best of the present 
technology, limits the control ba
In

s
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3.4 Design of the feedback control system 
 
We have implemented two different feedback controls: one for the lock in of 
the interferometer on the middle fringe working point and one more 
complicated for the automatic correction of the laser beam aberrations. 
The design of these two control systems is based on the typical closed loop 
architecture described by linear dynamical mathematical models [96]. 
Let us shortly remind that a generic stationary system, with output signal c(t) 
linearly depending on the input signal m(t), is described by the simple 
scheme below where the parameter K represents the constant of 
proportionality between c(t) and m(t). 
 

 

complex function K(s) 
l sfer function, which converts 

input signal into the Laplace transform of the 

n

Figure 3.6: scheme of a linear dynamical system. 
 
If K is simply a constant, the system is algebraic. Otherwise, its dynamical 
behaviour is described by linear differential equations with constant 
coefficients and the parameter K is replaced by a 
ca led transfer function of the system. The tran
the Laplace transform of the 
output signal, is strictly correlated with the frequency response necessary for 
the Fourier analysis of the system. 
Without loss of generality, let us consider the algebraic case. In the ideal 

dition, the output of the system should each time obey theco  following 
expression: 
 

)()( tKmtc =     (3.33) 
 
but unfortunately in real cases the system is affected by several perturbations 
(external disturbances, non linearity effects and variations of K) which cause 
eq. (3.33) to be modified into: 
 

)()()( tctKmtc ∆±=    (3.34) 
 
The term ∆c(t) indicates the output fluctuations induced by the system 
perturbations. 

K 
c(t) m(t) 
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In order to reduce such fluctuations ∆c(t), we can use a feedback control 
ystem of the type schematized in figure 3.7. 

f a feedback control system 

The output controlled signal c(t) is fed back to the input by the transducer H 
which converts it into a  that is compa  with reference r(t). The 
difference of r(t) with the feedback ves th l e(t), which is 
introduced into the cascade of amplifier and actuator represented by A. The 
output of A drive to fix c(t) at the 
esired value. 

s
 

 
Figure 3.7: block diagram o

 

 form rable
e error signa gi

s the manipulable variable m(t) in order 
d
This closed loop configuration allows to reduce the output fluctuations. In 
fact, the system is now described by the equations: 
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from which we obtain: 
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eing G=AK. 
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b
The parameter GH is named open loop gain and it determines robustness and 
efficiency of the system in lowering the output signal fluctuations ∆c(t) in the 
stationary state. In fact, if we assume that GH>>1, eq. (3.36) at regime state 
educes to: r
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where the output c(t) is proportional to the reference signal r(t) and the 

esidual noise is strongly decreased, as r )()(tc tc
GH

∆<<
∆ . 

It is worth noting that high values of the open loop gain have a negative 
impac  t tran t behaviour of the system, he cor ion operated by 
the feedback often induces unpleasant oscillations before the new stationary 
state is reached. If the gain is very high, it is possible that the system 
oscillates indefinitely and exhibits an unstable behaviour. In order to correct 
this effect it is common to provide i the loop a correcting network that 
both improves the system dynamical behaviour and keeps save the high level 
of static gain, o

he general scheme of an efficient and stable feedback control system can 

 
iagram of a stabilized feedback control system 

The Controlled System is characterized by the
le that we want to control against the disturbances d1,..,dn by 

m(t). 

f the closed loop control system is to maintain each time the 
ontrolled variable c(t) proportional to the reference signal r(t). 

 
 

t on he sien  as t rect

nto 

r the value of GH at low frequency. 
T
represented as in figure 3.8, where we can distinguish three principal blocks, 
or the Controlled System, the Transducer and the Regulator. 
 

Figure 3.8: block d
 

 output c(t) which is the 
variab
manipulating the variable 
The Transducer converts the output c(t) and feeds it back into the comparator 
where it is subtracted from the reference signal r(t). 
The Regulator receives the error signal e(t) and, after filtering for stability, 
amplifies and sends driver commands to the actuator for m(t) manipulation. 
The target o
c

Controlled 
system 

c(t) m(t) Amplifier 

Transducer 

- 

+ e(t) r(t) 

d1 d2 d3 dn

Actuator Filter
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3.4.1 Control system for the interferometer lock in 
 
The first feedback control has been designed to lock the interferometer on the 
half fringe working point. 
We start from the definition of the controlled variable that is the total sum of 
the 25 optical intensities emerging in form of photocurrents from the 5x5 
array of photodiodes. 
Provided that these 25 photocurrents are amplified and converted into 25 
voltage signals Vi (in the next Chapter we present the experimental set up in 
detail), we have added all these signals in order to obtain the total voltage: 
 

∑
=

hich is exactly our controlled variable. 
The actuator is a flat piezoelectric mirror placed in one of the two arms of the 
interferometer, as pictu gure 3.4. It is driven by a voltage amplifier 
and moves longitudinally along the opti
the interferom arm o L1. So the optical path d ce ∆L=L1-L2 
(L1 and L2 are the length of the first and the second arm of the Michelson) is 
changed and this induces the variation of the average phase difference δ of 
the two beams, given by: 
 

=
25

1i
itot VV     (3.38) 

 
w

red in fi
cal axis, lengthening or shortening 

eter f length ifferen

)()( 21
4 LLt −=
λ
πδ    (3.39) 

 
This is the manipulable variable of the controlled system. 
We have first calibrated the interferometer by measuring the two output 
voltage levels Vmax and Vmin corresponding respectively to maximum and 
minimum of the interference curve of eq. (3.30); secondly, we have 
calculated their medium value and used it as reference set point 

( ) 2minmax VVVr +=  that must be supplied to the piezoelectric mirror for the 
interferometer locking on the middle fringe working point of figure 3.5. 
The error signal e, corresponding each time to the difference Vr-Vtot, is sent to 
the correcting filter and then to the amplifier of the piezo which is 
utomatically moved back or forth in order to correct the small phase 
uctuations and keep the interferometer on the working point. In our scheme 

the reference Vr and the output Vtot are both voltage signals and then the 
transducer is simply a connection between the output and the comparator. 

a
fl
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Figure 3.9 shows the block diagram of the system with clearly identified the 
regulator, the controlled system, the transducer and the relative variables. 
 

Labview on PC 

 
Figure 3.9: block diagram of the feedback control system for the lock in of the 
interferometer. The phase difference δ(t) between the two beams of the interferometer is the 
manipulable variable, the total voltage Vtot(t) corresponding to the sum of the 25 intensities 
collected by the pixellated photodiode is the controlled variable. The piezoelectric mirror 
manipulates δ(t) by changing the optical path length of one arm. The data processing from 
the output of the Analogical Digital Converter (ADC) to the input of the Digital Analogical 
Converter (DAC) is performed by a Labview Virtual Instrument running on a standard PC. 
 
In particular, we remark that the 25 voltage signals emerging from the 
photodiode amplifiers are first converted into digital form by an ADC board 
and then added to form the total voltage Vtot. Similarly, the driver signal 
emerging from the filter is converted into analogical form by a DAC board 
before entering the piezoelectric amplifier. All the operations of data 
processing from the output of the ADC to the input of the DAC are 
implemented by a Labview Virtual Instrument running on PC. 
The control system dynamics is well described by the following equation: 
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being G the open loop gain of the system. 
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3.4.2 Control system for the correction of laser beam aberrations 
 
The second feedback control that we have designed is the AO system for the 
corre r beam fluctuations. 
In t esign is more complicated because we have to control 
several variables simultaneously ans that each subsystem of the 
block diagram that represents the cont haracterized by a ma
tr r f tion ose sion s on t  of inp and 
output variables. We have designed the control system for the simultaneous 
correction of 6 modes of aberration that are respectively longitudinal mode, 
TiltX, TiltY, Astigmatism45, Astigmatism90 and Defocus. This means that 
we have to deal with 6 degrees of freedom. Furthermore, we have 25 signals 
emerging from the photodiodes array and 59 channels for the driver of the 
adaptiv irror. Therefore the that we have designed can 
have row and column in es equ  6, 25 
The first step for the design of the control system is again the identification of 
the controlled and the manipulable variables. In this case, by suitably 
combining the 25 signals of the pixellated photodiode, we expect to achieve 6 
voltage signals that linearly depend on the 6 aberration coefficients relative to  

⎜=tS )(

rresponding to 
the 

stigmatism90 a90 and the Defocus aD. They represent the geometrical 
distortion of the ideal wavefront and arranged int
form: 

ction of small lase
his case the d

. This me
rol is c trix of 

ut ansfe unc s wh dimen  depend he number

e m different matrices 
dic al to or 59. 

first and second order Hermite Gauss modes. These voltage signals, which 
we define as Si, i=1,..,6, form a 6x1 column vector  
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and represent the output controlled variables. 
The manipulable variables are the six adimensional signals co

⎟

longitudinal mode φ, TiltX ax, the TiltY ay, the Astigmatism45 a45, 
A

o a 6x1 column vector M of 
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The reference set point R is the 6x1 column vector of voltages R
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which must be compared with the controlled variable Si to generate the error 
signal. For the purpose of jitters suppression the reference signal is set to zero 
except for the first component (R1=Vr, Ri=0 i∀ =2,..,6) that is fixed at the 
middle fringe value when the piezo is switched off. It is worth noting that by 
suitably changing the set point components Ri it is possible to manipulate the 
laser wavefront and generate artificial p
specific applications like sensing systems or industrial processes. This 
perspective is interesting upgrade of our system, but at the moment goes 
beyond the scope of the present work. 
The architecture of control system is schematized in the block diagram of 

gure 3.10 where we recognize the three main blocks corresponding to 
 

rofiles that could be adopted for 

fi
Controlled system, Transducer and Regulator.
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Labview on PC 

Regulator (6x6) 
R(t) E(t) 

 
Figure 3.10: block diagram of the Adaptive Optics feedback control system for the laser 
beam correction. The aberration vector M(t) is the manipulable variable, the vector S(t) 
corresponding to 6 different combinations of 25 voltage signals generated by the pixellated 
photodiode is the  controlled variable. The error signal E(t) given by the difference between 
the reference R(t) and S(t) is converted into a set of 59 driver commands sent to the 
deformable mirror (DM) which corrects the aberrations by changing the geometrical pattern 
of its adaptive surface. The data processing from the output of the ADC to the input of the 
DAC is performed by a Labview Virtual Instrument running on a standard PC. 
 
The Controlled system is constituted by the entire interferometer, the 
pixellated photodiode, the amplifiers, the ADC board and the Combinator 1. 
It is described by a 6x6 matrix of transfer functions which converts the 6x1 
manipulable vector M(t) of eq. (3.42) into the 6x1 controlled vector S(t) of 
eq. (3.41). In detail, the 6 geometrical aberration signals are transformed by 
the interferometer into 6 different interference patterns which in turn are 
converted into a set of 25 photocurrents by the pixellated photodiode. After 
that, the amplifiers transform the 25 photocurrents into 25 amplified voltages 
and the ADC board converts them into digital form. Finally, the Combinator 
1 is a 6x25 matrix that collects the 25 voltages and gives out the 6x1 column 
vector corresponding to the controlled variable S. 
The vector S is directly compared with the set point R also expressed in terms 
of voltage; this means that the Transducer is simply a 6x6 identity matrix. 

Controlled system (6x6) 
S(t) 
(6x1) 

Μ(t) 
(6x1) AMP 

 
59x59 - + 
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V/I AMP 
 

25x25 

ADC 
 

25x25 

DAC 
 

59x59 

Comb 1 
 

6x25 

Comb 2 
 

59x6 

Transducer 
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The error signal E=R-S is sent from the comparator to the Regulator, made of 
the cor  the Combinator 2, the DAC, the amplifiers and the 
Def r that is the actuator of the system. 
The Regulator is described by  transfer functions. In fact, it is 
entered by the 6x1 vector E which, after passing through the filter is sent to 
th x6 b r 2  ge on o  59x1 lum ctor of 
com n  provi  to the uator. 59 c nds a ansformed into 
analogical form by the DAC and amplified for the electrostatic actuators of 
the deformable mirror. Finally the mirror, described by a 6x59 matrix, 
converts the 59 amplified voltages into 6 different geometrical profiles of its 
deform le surface for the manipulation of the vector M(t). 
Figure 3.11 represents the synthetic block diagram of the AO system. In the 
top Regulator and Contro nsfer matrices A and K 
respectively. In the bottom we see on
system of transfer matri . The loop is closed by the transducer that is 
simply a connection be parator. 
 

recting filter,
ormable Mirro

a 6x6 matrix of

e 59  Com inato for the nerati f the  co n ve
ma ds ded  act  The omma re tr

ab

lled system have tra
ly one block representing the open loop 

x G=KA
tween the output and the com

Controlled system 
K (6x6) 

S(t) 
6x1 

M(t) 
6x1 Regulator 

A (6x6) 
- 

+ 

E(t) 
6x1 

R(t) 
6x1 

 
Figure 3.11: synthetic block diagram of the Adaptive Optics control system. The open loop 
6x6 transfer matrix is G, the closed loop 6x6 transfer matrix is F=(1+G)-1·G. 
 

Open loop system 
G=K·A (6x6) 

S(t) 
6x1 

- 
+

E(t) 
6x1 

R(t) 
6x1 

CLOSED LOOP SYSTEM 
F=(1+G)-1·G (6x6) 
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Using the scheme of figure 3.11 we can analyse the mathematical model that 
describes the stationary state of the system, based on matrix equations as: 
 

⎪
⎩

⎪
⎨

⎧

−=

∆±⋅⋅=

)()()(

)()()(

tStRtE

tStEAKtS
   (3.44) 

 
from which: 
 

( ) ( ) )()()( tSGtRGGtS ∆⋅+±⋅⋅+= −− 11 11   (3.45) 
 
This last matrix equation describes the dynamical behaviour of the closed 
loop AO system that we have designed to clean up laser beam jitters into the 
Michelson interferometer shown in figure 3.4. 

et us observe that the 6x6 matrix G: L
 

1−⋅=⋅K= ESAG    (3.46) 
 
is the open loop gain, while the 6x6 matrix F:
 

   (3.47) 
 
is the transfer function at closed loop. 
In the ideal case we would like to have a completely diagonal matrix G 
because this would mean that the variables are all decoupled one with 
another. 
In the real case G ha n n al elements because there are 
coupling effects due to the sensing subsystem and to the actuator. 
This condition could compromise effectiveness and stability of the control. 
Nevertheless, we have arranged methods to suppress the coupling effects and 
to bring the off diagonal elements to acceptable residual values.  
In the next two sections we show the calculation and the diagonalization of 
the 6x6 transfer matrix K ng subsystem and of the 6x6 
transfer matrix A of the Regu

 

( ) GGF ⋅+= −11

s no ull off diagon

 relative to the sensi
lator. 
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3.5 Error signals extraction from the Controlled System and 
diagonalization of the 6x6 transfer matrix K 

 
We have designed the AO system for the simultaneous correction of 6 
aberration modes of the laser beam in air. In pa
block diagram of the feedback control in figure 3.10 and calculated the 

ynamics in eq. (3.45). 
d to investigate the method for the extraction of error signals 
trolled System. This corresponds to determine the 6x25 transfer 

atrix of the Combinator 1 that converts the 25 voltages em
amplified photodiodes into 6 voltage signals linearly de
econd order Hermite Gauss coefficients (also corresponding to longitudinal 

ed beam in the first arm while 
n the second arm. The field E1 has π/2 

hase difference with respect to E2, due to the interferometer middle fringe 
lock in, and therefore it can be written as: 

rticular we have shown the 

d
Now we nee
rom the Conf

m erging from the 
pending on first and 

s
translation, TiltX, TiltY, Astigmatism45, Astigmatism90 and Defocus). 
Let us consider the two beams of the Michelson interferometer of figure 3.4 
and assume that E1 is the field of the unperturb
E2 is the field of the aberrated beam i
p

 

0000
2

1 Ψ=Ψ= AjAeE
jπ

   (3.48) 
 

n the other hand, using the results of Section 3.2, the aberrated field E2 is O
given by: 
 

( ) ( )

( )⎤Ψ+Ψ+
1a

(3.49) 

⎥
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02202D

⎢
⎣

⎡
Ψ−Ψ+Ψ+Ψ+Ψ+Ψ+=2

11 aaaajAE φ 0220901145011000 2yx

of the two 

he total normalized intensity at the output of the interferometer is given by: 

 
where φ represents the instantaneous longitudinal translation 
wavefronts and ai are complex coefficients of the basic aberrations 
corresponding to perturbations of the fundamental Gaussian mode up to the 
second order. 
T
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being iii aaa ImRe +=  and neglecting terms higher than first order. 
Using eq. (3.50) we can now demonstrate that the 25 signals emerging from 
the photodiodes can be transformed into 6 signals linearly depending on the 
aberration coefficients φ and ai and therefore they can reintroduced as error 
signals into the system for the modal control of the laser beam. 
Let us consider the 5x5 photodiodes array as schematized in figure 3.12. 
 

1 32 4 5

6 87 9 10

11 1312 14 15

16 1817 19 20

21 2322 24 25

x

y

L

L/2 3L/2 5L/2-3L/2-5L/2 -L/2

 
Figure 3.12: 5x5 array of photodiodes collecting the output intensity of the interferometer 

 
Each single photodiode of area LxL collects only a part In,m of the total 
intensity that is: 
 

x ββ

and 

outmn IdydxI
yx

∫∫=
αα,    (3.51) 

 
with: 

y

 
n = -2, -1, 0, 1, 2 ; m= -2, -1, 0, 1, 2 
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Combining the 25 intensity signals In,m it is possible to obtain 6 signals Si 
linearly corresponding to the aberration coefficients. 
In other words, our goal is to characterize the Controlled System through the 
following matrix equation: 
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w  
onstants related to the geometry of the system. 

n,m
Iout  is expressed in terms of Hermite 

odes which in turn are even or odd functions in the square domain x, 

y with 

here kij are transfer functions for each degree of freedom and Hi are
c
This result can be achieved using the correspondence of 6 analytical integrals 
of Iout with 6 linear combinations of I  as shown below. 

 fact, from eq. (3.50) the intensity In
Gauss m
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2
5 ,  and ⎟

⎠
⎞ . So, if we integrate I  over ⎜
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⎛−∈ LLy

2
5

2
5 , out

omain, changing each time the sign of integration in parts of it, we 
btain that the contribution of some Hermite Gauss modes is null and 

therefore the ly p porti  six aberration 
oefficients. On the other hand, the integral analytically obtained can be put 

rrespondence with a specific linear combination of the 25 signals In,m 

that d
o

total integral is on ro onal to one of the
c
in co
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and thus we find the desired connection between this linear combination and 
the aberration coefficient. 
Let us start from the integral of I  over the whole domain where only the 
contribution of the even

out

 terms 2  and 00Ψ ( )022000 Ψ+ΨΨ  is non null. 
This is clear if we look at figures 3.13 and 3.14 which report the 3D plot of 
the two functions. 

-5L/2
-3L/2

-L/2
L/2

3L/2
5L/2

5L/2
3L/2

L/2
-L/2

-3L/2
-5L/2

0

0.2

0.4

0.6

0.8

1

x
y

 
 

Figure 3.13:  profile of 
2

00Ψ  in the square domain of the photodiodes array 
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Figure 3.14: profile of ( )022000 2
1

Ψ+ΨΨ  in the square domain of the photodiodes 

array  

 93



 

 
Hence the integral is: 
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where k11 and k16 are non null integrals depending on the length L of the 
single photodiode and on the beam waist w0. 
On the other hand, the same result S1 can be achieved by the numerical sum 
of 25 measured intensities as: 
 

    (3.54) 

 
Therefore, from eqs. (3.53) and (3.54) we can affirm that the signal produced 
by the sum of all the 25 intensities is  linear function of the two aberration 
coeffi  and 
allows to fill the first row of the matrix equation (3.52) 
We find similar relationships between other linear combinations of In,m  and 
other aberration coefficients, playing with the even and odd Hermite Gauss 
functions. 
The integral of Iout over the half plane were x>0 less the integral of Iout  over 
the half plane where x<0 is null for all the Hermite Gauss functions apart 
from the term
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cients φ and aD. This is exactly what we have assumed before

 1000ΨΨ , as can be seen in figure 3.15. 
 

 94



 

-5L/2
-3L/2

-L/2
L/2

-3L/2
-L/2

L/2
3L/2

5L/2

-0.2

3L/2
5L/2

-5L/2

-0.1

0

0.1

0.2

0.3

x

y

 
Figure 3.15:  profile of 1000ΨΨ  in the square domain of the photodiodes array 

 
e integral S2 corresponds to the aberration coefficient ax: Therefore th
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The same value is given by the numerical sum of the In,m in the plane x>0 
less the sum of the In,m in the plane x<0. Referring to figure 3.12, the 
photodiodes 3, 8, 13, 18, 23 which stand across the y axis belong for their left 

alf part to the plane x<0 and for their right half part to the plane x>0. 
Therefore the corresponding intensities are half added and half subtracted and 
the total contribution is null. This allows to neglect the terms In,m with n=0. 
Then the signal S2 is given by: 
 

   (3.56) 

 
and we can say that, if we sum all the intensities from the photodiodes on the 
right side of the array and subtract all the intensities from the photodiodes on 
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the left side of the array, we have a signal proportional to the TiltX 
coefficient. 
The signal proportional to the TiltY coefficient is obtained with an identical 
calculation. In fact, the integral of Iout over the half plane where y>0 less the 
integral of Iout  over the half plane where y<0 is null for all the Hermite Gauss 
functions apart from the term , as can be seen in figure 3.16. 
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Figure 3.16: profile of 0100ΨΨ  in the square domain of the photodiodes array 
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and is equal to the sum: 
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Similarly, the integral corresponding to the coefficient of Astigmatism45 is 
calculated using the symmetry of the function 1100ΨΨ  plotted in figure 3.17. 
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Figure 3.17: profile of 1100ΨΨ  in the square domain of the photodiodes array 

 
If we integrate the intensity Iout over first and third quadrant of the square 
domain and subtract the integrals over second and fourth quadrant, we get a 
signal proportional to a : 
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The result is equal to the sum of intensities from photodiodes of the first and 
third quadrant less the sum of intensities from photodiodes of the second and 

urth quadrant.. 
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he contribution of the photodiodes across the x and y axes, that is In,m at n=0 
r m=0, is null for considerations analogue to what discussed before 
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The coefficient of Astigmatism90 is related to the function 

( )1
Ψ−ΨΨ  plotted in figure 3.18. 022000 2
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Figure 3.18: profile of ( )022000 2

Ψ−ΨΨ  in the square domain of the photodiodes 

array 
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 signal is extracted from the following sum of intensities: 
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Finally, the coefficient of Defocus is due to the contribution of 

( 022000 2
1

Ψ+ΨΨ ) quare domain of the photodiodes 

has already been plotted in figure 3.14. 
The contribution of the Defocus can be obtained by: 
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corresponding to: 
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s wn above, we can calculate 
uitable combinations of the 

easured intensities In,m , as summarized in the following table 3.1. 
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In conclusion, using the 6 correspondence  sho
the 6 error signals (S1..S6) of eq. (3.52) by s
m
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Signal Theoretical estimate 
Combination of the 25 

intensities Aberration 
+    -  

Longitudinal 
S1

( )( ) ( ) DawLkwLk 016011 1 ,, ++ φ  

 
1 32 4 5

6 87 9 10

11 1312 14 15

16 1817 19 20

21 2322 24 25  
 

TiltX 
S2

( ) xawLk ⋅022 ,  

 
1 32 4 5

6 87 9 10

11 1312 14 15

16 1817 19 20

21 2322 24 25  
 

TiltY ( ) yawLk ⋅033 ,  

 
1 32 4 5

6 87 9 10

11 1312 14 15

16 1817 19 20

21 2322

S3
24 25  

 

Astigmatism45 
S4

( ) 45044 awLk ⋅,  

 
1 32 4 5

6 87 9 10

11 1312 14 15

16 1817 19 20

21 2322 24 25  
 

Astigmatism90 ( ) 90055 awLk ⋅,  

 
1 32 4 5

6 87 9 10

11 1312 14 15

16 1817 19 20

21 2322 24 25  
S5

 

Defocus 
S6

( ) ( ) ( ) DawLkwLk ⋅++⋅ 066061 1 ,, φ

 
1 32 4 5

6 87 9 10

11 1312 14 15

16 1817 19 20

21 2322 24 25  
 

 
Table 3.1: signal extraction of the six aberration coefficients from the combination of the 25 

tensities In,m  emerging from the photodiodes array (green represents addition and red 
btraction). Si are the error signals reintroduced into the feedback control. 

in
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The 6x6 m
 

atrix equation (3.52) reduces to: 
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 (3.65) 

 
and still exhibits non null off diagonal elements that are the coefficients k16 
and k61 due to the coupling between longitudinal mode φ and Defocus aD. 
The other four modes are completely decoupled. 
The coefficients kij correspond to scalar products of Hermite Gauss functions 
over the domain of the photodiodes array and depend on the ratio w0/L. By 
suitably manipulating this ratio, we can reduce the off diagonal elements and 
in the same time maintain non null values for the diagonal terms. 
In particular, if w0/L tends to infinite (from a mathematical point of view this 

tegrate over a null range and from a physical point of view it 
means that the photodiodes have zero sensing area) all the coefficients are 
null and no measurement of aberration can be done. Therefore thi
should be avoided. 
On the contrary, let us consider the case when w0/L tends to zero. From a 
m eans that the range of integration is 

al meaning is that the beam is focused at the center of the 
matrix on the pixel no.13. We can see that the coefficients k11, k22, k33 and k44 
have non null and constant values while the off diagonal element 16 te ds to 

zero in accordance with the fact that the functions 

⎞⎛S

⎜
⎝ 6S

a

corresponds to in

s case 

athematical point of view it m
while the physic

],[ +∞−∞  

 k n

00Ψ  and ( )02202
1

Ψ+Ψ  

],[ +∞−∞are al in the range  ort gonho . But, the coefficients k55 and k66 are null 
and k61 ation about Astigmatism9
Defocus and have a high off diagonal element. Therefore the case w0 →0 
hould be avoided too. 

 tends to -1. So, we lose any inform 0 and 
/L

s
We have found a trade off between the two extreme conditions and achieved 
large and stable diagonal elements and small off diagonal terms. 
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Coefficient w0/L→∞ w0/L→0 1.4< w0/L<1.6 

k11 0 1 0.99 
k22 0 0.8 0.78 
k33 0 0.8 0.78 
k44 0 0.64 0.6 
k55 0 0 0.4 
k66 0 0 0.65 
k16 0 0 -0.1 
k61 0 -1 -0.3 

 
Table 3.2: coefficients kij in the extreme cases w0/L→ ∞  and w0/L→0 and at the trade off 
1.4< w0/L<1.6 
 
The trade off value is chosen in the range 1.4< w0/L<1.6 : in fact, in this 
region all the coefficients kii are near their maxima and vary slowly with 
w0/L, the coefficient k61 is negligible and k16 has a relative amplitude of 30% 
(see table 3.2). 
In this condition the Controlled System is characterized and the transfer 
matrix K is diagonalized. 
 
 

3.6 Calculation of the 6x6 transfer matrix A of the Regulator 
and diagonalization of the 6x6 matrix G relative  
open loop system 

 
In order to complete design and characterization of our system, we need to 
investigate the matrix A of the Regulator from which we get the open loop 
gain G=KA. 
To do that, we have initiall  the interferometer on the middle fringe 
state by closing the loop of the piezoelectric mirror as shown in figure 3.19. 
Successively, we have measured the AO system response S(t) to the reference 
signal R(t) per each of the six degrees of freedom. 
 

 to the

y locked
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cul

eference to figure 3.10, the first step has been the 
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  (3.66) 

e
and d
he la he mirror is modulated and after reflection it is 
escribed by the aberration vector M(t) in accordance with the equation 

e geometry of the electrostatic actuators placed on the rear 

t 

Figure 3.19: block diagram of the control system for cal ation and diagonalization of G 
 
n particular, with rI

calculation of the 59x6 matrix U of the Combinator 2 that transforms the 6 
reference signals into a set of 59 voltages Vh , h=1,2,…59, according to: 
 

⎟⎟
⎟
⎟
⎟
⎟

⎜
⎜

⎟
⎟

⎜
⎜

⎟
⎟

⎜
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⎜ .......

.

.

 
Thes  voltages are applied to the electrostatic actuators of the adaptive mirror 

eform its reflective surface due to attractive force. So, the wavefront of 
ser beam incident on tt

d
M(t)=AR(t). 
If we want to calculate the terms of the matrix U of the Combinator 2 we 
have to consider th
side of the mirror deformable membrane. Let us assume that the actuators 
array is centred on the x,y plane and that each electrode has its midpoint a
the coordinates (xh,yh), h=1,2,…,59, as shown in figure 3.20. 
 

Piezo 
r Regulato

Controlled 
stem 
K 

Sy
Adaptive 
Regulator 

A 

-
+

R(t) M(t) S(t) 

G=K·A 
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Figure 3.20: schematic of the actuators array (top view on the left) and deformable 
membrane (side view on the right). The actuators are  below the reflecting surface 
that is moved by electrostatic forces 
 
The electrostatic force is supposed to act as it was exactly concentrated in the 

 

rresponding value of ∆zh. 
For each degree of freedom the deformable surface should match one of the 
six geometrical configurations represented by the six Zernike polynomials. 
So, each of these six polynomials is calculated in the n d 
the values are exactly the voltages that must be applied to get the 
corresponding configuration of the mirror membrane. 

or example, if we want to find the set of 59 voltages corresponding to 

U. Similarly we can calculate the other columns of U using the 

Si membrane 

actuator h

x 

y 

array of actuators 

(xh,yh) 

∆zh

zh

 placed

center of each of the 59 actuators. We also assume that in each point th
pplied voltage causes the proportional displacement of that portion of 

e
a
surface (at first approximation we neglect non linearity effects of the 
membrane bond at its boundary). Then, if ∆zh (h=1,2,…59) is in each point 
the displacement from the equilibrium position, we can achieve the desired 

attern of the membrane by applying a set of voltages that are point by point p
proportional to the co

59 positio s (xh,yh) an

F
aberration ay which is the third degree of freedom in our system, we calculate 
the Zernike polynomial 1

1
−Z  in each of the 59 centres (xh,yh) of the actuators. 

The 59 values are exactly the 59 voltages that must be applied to the 
actuators and therefore they correspond to the third column uh3 (h=1,2,…59) 
of the matrix 
other Zernike polynomials until the transfer matrix of the Combinator 2 is 
completely defined. 
After that, we determine the coefficients gij of the 6x6 matrix G relative to the 
open loop system of figure 3.19 which is described by the matrix equation: 
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 (3.67) 

f the system. 
 particular, if we apply input signals to only one of the 6 degrees of 

⎜⎟⎜⎟

umn of the matrix G. 

r f

s gij (i≠j) are null or at least very small compared with 

is 
ommonly the case due to coupling effects, we must find a procedure for the 

diagonalization. 
The method that we adopt is based on the manipulation of the matrix U by 
suitably changing one or more of its columns till reaching the diagonalization 
of G. In detail, let us consider to introduce into the system an input signal 

⎜
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S
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⎜ g
⎜ 21g
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⎜ 5

S 65 gg
 
where Ri(t) are reference input signals that we introduce into the Regulator to 
directly measure the response o
In
freedom, for example R3 which corresponds to TiltY, eq. (3.67) reduces to: 
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Thus, by measurement of the six output signals S

⎟

i we calculate the 
coefficients gi3 (i=1,2,…6) representing the third col
Similarly, if we send the reference input signal Ri per each degree of 
freedom, we measure all the columns of G. It is worth noting that the 
coefficients gij are transfe unctions and therefore their measurement consists 
into the complete characterization of gij(ω) in terms of amplitude and phase 
as it is widely discussed in Chapter 5. 
For the system efficiency and stability it is strongly recommended that the 
matrix G is diagonal and therefore we need to check per each column if the 
off diagonal element
the diagonal terms gii. 
If this condition is fulfilled the system is ready to operate. If not, and this 
c
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Ri(t) for a certain degree of freedom and measure the corresponding column 
of the matrix G. If one off diagonal element associated to the degree of 
freedom j≠i is comparable with the diagonal term associated to I, we change 
the set of 59 voltages of the matrix U (associated to i) by sub h 
actuator a voltage proportional to the value used to generate the def  
associated with j. The physical meaning is clearly understood: if we excite 
the mirror on one degree of freedom and it responds exciting also a second 
degree of freedom for coupling effects, we can compensate by subtracting to 

e input excitation a signal that is proportional to the excitation on the 

 diagonal coefficient. 

he matrix A of the Regulator can be detailed as: 
 

 (3.69) 

tracting at eac
ormation

th
second undesired mode. This method can be iteratively performed until the 
off diagonal term is acceptably lower than the
We can analytically demonstrate this method using the matrix equations of 
the system. 
T
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where dmij (i=1,…,6 and j=1,…,59) is the transfer matrix of the deformable 
mirror that transforms the set of 59 voltages into 6 different geometrical 
configurations of the membrane. In this equation, for the sake of simplicity, 
we have neglected the matrices of the filter, the DAC and the amplifier, that 
are diagonal and do not influence the present demonstration. 
The matrix G of the system is given by: 
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neglecting the term k16 as stated in the previous Section. 
Let us assume that in the third column corresponding to TiltY the term g13 
associated to longitudinal mode is comparable with g33. This physically 

eans that if we induce on the mirror rigid rotation around Y axis with 

osen. 

  (3.71) 

m
command R3 we also induce for coupling effect the partial longitudinal 
translation as if the mirror was excited by the command R1. We can 
compensate this undesired effect subtracting from the mode R3 a signal 
proportional to the longitudinal mode. To do that, we modify the third 
column of U, given by the coefficients ui3, subtracting per each i the 

l constant suitably chcorresponding term –αui1 , being α a rea
e rewrite eq. (3.70) in the form: W
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where attention is paid to terms g11, g13, g31 and g33 which are involved in our 
demonstration. 
From simple algebra we see that, if the coefficients ui3 are reduced by –αui1, 
the matrix gij  is transformed into: 
 

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

........

..........

..........

.

.

.

.

.

.

.

.

.
...........
.............
...........

1
3331

1
1311

1 gg

gg

gij    (3.72) 

 
where the apical label 1 refers to the first step of iteration. 
In particular, the coefficients of the third column are: 
 

 (3.73) 

eat the operations until the coefficients at 
e step n fulfil our requirements 

 

   (3.74) 

 
Usually the diagonalization is quite well achieved after fe tions. 
At the end of this procedure the residual off diagonal terms of matrix G can 
be neglected and eq. (3.67) transforms to: 
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11 is big compared with g31, this last equation 
provides that 1

13g  is strongly reduced in comparison with 1
33g . Clearly in the 

opposite case, if g11< g31, we can change the sign of α and obtain that 1
33g  

increases much more than 1
13g . In both cases, we maximize the diagonal term 

with respect to the off diagonal elements. 
If necessary, we can iteratively rep
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which describes the dynamics of the AO control sy
Similarly, the dynamics of the AO control at closed loop is described by: 
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here the transfer functions fii belong to matrix F of eq. (3.47) and are related 

stem at open loop. 
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    (3.77) 

 
This last equation expresses per each degree of freedom the relationship 
between the open loop gain and the closed loop response of the control 
system. 
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Chapter 4 
 

4 Implementation of the Prototype 
 
Our Doctoral Thesis has started from the presentation of the Virgo Project for 
the detection of gravitational waves. We have shortly discussed the problem 

f noise reduction in the Virgo antenna and in particular we have focused our 
ometer 

 of 
oise is still an open issue in actual GW interferometric detectors as well as 

in the advanced antennas that are going to be implemented in the next future. 
In fact, none of the techniques up to date proposed has yet demonstrated to 
fulfil the specific requirements for the reduction of laser beam jitters. 
We have investigated the wide scenario of the Adaptive Optics technology, 
the state of the art and the current applications in the fields y, 
Industry and Medicine. This research has allowed us to see that actual AO 
systems, although very performing for their specific applications, do not 
satisfy the statements of wideband and high sensitivity laser jitters reduction 

quested for GW detectors. 

ction of the perturbed wavefront, upon the persuasion that 
ur system could meet the Virgo requirements. In particular, we have 

developed the theoretical model that pre
system and designed the architecture 
daptive control. 

ration in the laboratory of Applied Optics at the 
University of Salerno. We detail the geometry of the Michelson configuration 
and the characteristics of the main components. Whenever necessary 
attention is paid to put in evidence that the experimental setup has been built 
in strict compliance with the statements of the design, because this is the first 
condition for the success of the Project. 
We present the He Ne Laser Source that has been introduced into the 
interferometer for the correction of the jitters, reporting the technical data and 
the characteristics given by the manufacturer Melles Griot. We also show the 
characteristics of the Adaptive Mirror produced by OKO on Micromachined 

o
attention to the noise originated by the coupling between the interfer
asymmetries and the input laser beam jitters. The reduction of this kind
n

 of Astronom

re
Starting from this context. we have proposed a novel AO system based on the 
interferometric dete
o

dicts the dynamical behaviour of the 
of the optical scheme and of the 

a
The following of our PhD work has consisted in the implementation of the 
first prototype for the characterization and the validation of the Project. 
In this fourth Chapter we present the scheme of the AO system Prototype that 
we have put into ope
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Deformable M
verview of th

embrane technology and driven by its own electronics. The 
e main components is ended with the description of the array 

f photodiodes made by Hamamatsu and amplified by electrical boards that 

hing between the input laser 
eam and the interferometer; in particular we show the optical arrangement 

e that arm 1 is passed through by the reference 

 deformable mirror. 

nsing 

o
o
we have designed and made for that purpose. 
A short section is devoted to the mode matc
b
for the positioning of the beam waist on the adaptive mirror and on the 
pixellated array of photodiodes. 
Finally, we describe the data processor of the closed loop control and the 
blocks of operative functions that we have performed using LabView on a 
standard PC. 
 
 

4.1 Architecture of the AO interferometric system 
 
We have implemented the Prototype of the AO system in the Applied Physics 
laboratory led by Professor Fabrizio Barone at the University of Salerno. 
The optical configuration is based on the typical scheme of the Michelson 
interferometer as shown in figure 4.1. In order to test the technique of 
wavefront control, we assum
unperturbed beam and arm 2 is passed through by the aberrated beam that we 
want to clean up. In fact, the two beams that recombine at the output of the 
Michelson form an interference figure that is used to generate 6 signals 
proportional to the six aberration modes as discussed in detail in Chapter 3. 
These signals are subtracted from the reference set point to produce the error 
signals sent to the
The experimental control loop has been closed using a LabView Virtual 
Instrument running on standard PC for the data processing from the se
element to the actuator. 
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Figure 4.1. Optical Scheme of the Adaptive Optics System Prototype. M0 mirror for TiltX and 
TiltY alignment, L  convergent lens for the m1 ode matching with the adaptive mirror M , L  

otodiodes are collected by the ADC board and sent to the PC 
rument processes the data and generates the command 

gnals. These are converted by the DAC into analogical form and sent through dedicated 
bus to the Piezo and to the Adaptive mirrors for the lock in and the wavefront control 
respectively. The equipment is installed on a seismically isolated bench. 
 
The source of the input beam is a stabilized Laser He-Ne, λ=632.8 nm, P=1 
mW, made by Melles Griot, which is passed through a Faraday cell to avoid 
disturbances due to light back reflected by the interferometer. The mirror M0 
is used for the first optical adjustment as it allows to correct macroscopic 
TiltX and TiltY misalignments. 

2 2
convergent lens for the mode matching with the 5x5 PD-Photodiodes Array. BS is the beam 
splitter and M1 the piezoelectric mirror for the middle fringe lock in. The 25 voltage output 
signals emerging from the ph

here the Labview Virtual Instw
si

BBSS 

5x5 
PD Array 

error signals

driver signals

 
LASER 
 

Faraday 
Cell 

M0
L1

L2

M1

M2

wavefront 
 control 

half fringe 
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arm 1
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The spot size is matched to the adaptive mirror and to the photodiodes array 
using the lenses L1 and L2 respectively, as we describe in the following. 
The input beam is split into two half intensity parts by t plitter BS. 
One half beam runs in arm 1 and is used r the lock in o erferometer 
on the half fringe working point using the piezoelectric mirror M1. The other 
beam passes through the arm 2 and is y the Adaptive mirror M2. 
The interference fringe pattern at the output of the Michelson is collected by 
the 5x5 rectangular array of photodiodes that generate 25 voltage signals sent 
to the ADC board for the digital conversion. 
The closed loop control for the lo in and the adaptive correction is 
performed using the Labview programmed PC that processes the data coming 
from the photodiodes and generates the command signals for the actuators. 
From the scheme of figure 4.1 we see that a part of commands is generated 
for the piezoelectric actuator and an r set of voltages is produced for the 
adaptive mirror. In both cases th e signals are first converted by the 
DAC into analogical form and then sent to the actuators through dedicated 
bus li ll the equipments are install ismically isolated bench 
manufactured by Newport. 
 

he beam s
 fo f the int

corrected b

ck 

othe
e voltag

nes. A ed on a se

 
 

Figure 4.2: Picture of the Adaptive Optics System Prototype implemented at the University 
of Salerno in the laboratory of Applied Optics led by Professor Fabrizio Barone 
 
Figure 4.2 shows the picture of the experimental setup implemented in our 
laboratory for the tests of characterization. 
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4.2 Laser Source 
 
The Laser source is a stabilized Laser He-Ne, λ=632.8 nm, P=1mW, made by 
Melles Griot [97]. 
 

 
Figure 4.3: picture of the stabilized Helium Neon laser used in the experimental setup 

 
 

 
Figure 4.4: scheme of the laser manufactured by Melles Griot. The product we have used is 
the code 25 STP 912 
 
It is ideal for such applications as interferometry which require a single, 

lometres. 
 also exhibits excellent power stability for long periods of time (<0.2% 

Power supply Laser cavity 
SFA 
Adapter 

invariant frequency with large coherence length. In fact, it oscillates on a 
single-longitudinal-mode and has a coherence length measured in ki
It
power fluctuation over 8 hours), while the frequency stability is 1 MHz at 
nominal frequency 473.61254 THz 
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Figure 4.5: helium neon gain curve showing two orthogonally polarized modes. Only one of 
them is allowed to exit the system 
 
The laser system produces two orthogonally polarized longitudinal modes as 
shown in figure 4.5. The two modes are separated into two beams by 
polarization components and their amplitudes are compared electronically. 
The cavity length is then adjusted to maintain the proper relationship between 
the modes. Only one beam is allowed to exit the system. 
The transverse mode is the fundamental Gaussian TEM00 with beam diameter 
(1/e2) equal to 0.54 mm and full cone beam divergence of 1.5 mrad [98]. This 
correspond le s to the beam waist w0=0.27 mm and the far fiel diffraction angd 

==
0wπ

λθ 0.75 mrad, according to the geometry pictured in figure 4.6. 

 

 

z=0 

w0 0wπ
λθ =  

z 

1/e2 intensity surface 

asymptotic cone 

Cavity length 

Figure 4.6: propagation of the laser beam from waist plane to far field 
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4.3 Adaptive mirror 
 
The adaptive mirror used as actuator for the wavefront correction is a 
Micromachined Membrane Deformable Mirror (MMDM) manufactured by 
OKO Technologies Flexible Optical B.V. and driven by proprietary 
electronics. It is produced on the technology of silicon bulk micromachining 
widely diffused in the field of the Micro Electro Mechanical Systems 
(MEMS) [99]. 
 

 
 

Figure 4.7: front side and back side of the deformable mirror manufactured by OKO 
 
The devi tros tic 
lectrode structure. The chip contains the multilayer silicon nitride membrane 
pecially coated on the front side for the realization of the mirror reflecting 
urface. The control electrode structure is contained in the PCB. 

The scheme of the system is illustrated in figure 4.8. 
 

ce is made of a silicon chip mounted over a concentric elec ta
e
s
s
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Figure 4.8: schematic section of the micromachined adaptive mirror 

 
The reflective membrane has a circular shape of 30 mm diameter and its 
initial profile can be adjusted using 8 micrometric screws placed on the back 
side of the mirror mount. After, the attractive force applied by the actuators 
induces deformation of the membrane with maximum deflection at the center 
of 15 µm on bandwidth of 500 Hz, that at the state of the present technology 
sets the upper limit to the frequency response of the whole control system. 
The array of 59 actuators under the membrane is formed by electrodes 
printed on the basis of the PCB to form a circular structure of 20 mm 
diameter. 
 

 
 

Figure 4.9: array of 59 electrodes disposed on the PCB in circular form with 20 mm total 
diameter 
 

he electrodes are addressed to 59 channels grouT
v

ped into three sets of 
oltages generated by three 24ch 8 bit PCI DAC boards [100] in cascade with 
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three high voltage driver boards. Each of the three amplifiers contains 20 
non-inverting DC amplifiers with gain 59 that raise the voltage up to 300V 
for the electrodes. The electrical scheme of the DC amplifier is shown in the 
figure below. 
 

-
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Figure 4.10: electrical scheme of the DC amplifier driving the electrode actuator of the 
deformable membrane (OKO proprietary electronics) 
 
 

4.4 Array of photodiodes 
 
The sensor at the output of the Michelson is an array of 25 of photodiodes 
manufactured on a 28 pin chip by Hamamatsu Photonics [101]. 
 

 
 

Figure 4.11: 28 pin chip Hamamatsu containing the 5x5 photodiodes array 
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The 2-D array is arranged in a 5x5 square matrix with active area of total 
dimension 7.3x7.3 mm2. In particular each single pixel has an active area of 
1.3x1.3 mm2 and a spacing distance of 0.2 mm from the next one. Therefore 
the element pitch (center to center spacing) is 1.5 mm both in the X and Y 

irection. The array is encapsulated into a window of flat glass. 
Each photodiode can be inversely polarized by the maximum reverse voltage 
of 15 V and operates in the temperature range from -20 to 60 °C. 
 

d

 
 

Figure 4.12: dimensional outline of the photodiodes array (unit: mm) 

Concerning electrical and optical characteristics, the spectral response ranges 
from λ=320 nm to λ=1000 nm with peak sensitivity wavelength λp=800 nm 
where the photosensitivity curve of the photodiode reaches 0.5 A/W. 
The sensor bandwidth is 170 MHz and therefore it can be considered flat over 
the range of interest that does not overcome few kHz. 
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Figure 4.13: spectral response of the photodiodes 
 
The signal conditioning of the photocurrents emerging from the 25 
photodiodes is performed by electronics that we have properly designed and 
engineered for the operation of our system. In particular, we have 
implemented 25 small electronic boards allocated in groups of 5 into suitable 
cases which also provide for the supply (see figure 4.14). Each circuit 
receives one the 25 photocurrents, converts into voltage form and amplifies 
the signal before it is transformed into digital form by the ADC. 
 

 
 

Figure 4.14: picture of the 25 photodiode amplifier allocated into the cases and connected to 
rest of the system 
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The block diagram of the amplifier is shown in figure 4.15. It is a DC 
coupled analogical circuit based on the technology of operational amplifiers 
with feedback impedance [102], [103]. 
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oltage. If we 
onsider the photodiode as ideal generator of current IPD, we can calculate the 

voltage at the input of the Stage A using the Thévenin equivalent circuit of 
the photodiode in series with the resistor R1 as in figure 4.16. In this case we 
have the voltage generator Vth=IPD·R1 in series with the impedance Rth=R1. 
 

 
Figure 4.15: block diagram of the photodiode amplifier based on the operational OP27 

 
We have used the operational OP27 manufactured by Analog Devices [104] 
into three different stages. 
The Stage A is the current voltage converter that collects the photocurrent of 
the inversely biased photodiode and produces the proportional v
c

+15V

R1
5K

Photodiode

IPD

Vth

Rth
Vin

Vin

 
 

Figure 4.16: Thévenin equivalent circuit of the photodiode circuit. Vth=R1IPD and Rth=R1
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Therefore, from the theory of the operational amplifiers with feedback 
impedance, the voltage at the output of Stage A is given by: 
 

PDPDth
A IRRI

R
RV

R
RV 21

1

2

1

2
0 −=−=−=   (4.1) 

 
The capacitor C1 is used to limit the high frequency noise. 
The Stage B is an inverter with amplification factor -1 whose task it to 
change the sign of the signal, according to: 
 

PD
AAB IRVV

R
RV 200

3

4
0 1 +=⋅−=−=    (4.2) 

 
Finally, the Stage C is the output buffer that sets the output impedance of the 
amplifier at low level. In our case we have chosen the DC voltage follower
onfiguration which provides the circuit an output impedance of about 0,75 

Ω
he output signal of the voltage follower, which is also the output of the 

to 
onversion from input photocurrent to output voltage of 20 µA →1 V. We 

have illuminated the photodiode and measured with an amperometer in series 
to the photodiode [105] the value of 18.5µA for corresponding output of 1 V. 
This can be acceptable within the experimental tolerance. 
 

4.5 Optical arrangement for mode matching of the laser 
beam with the interferometer 

 
The design of the AO system that we have presented in the previous Chapter 

 our 

 
c

hm [102]. 
T
whole circuit, is not changed, so we have: 
 

PD
C

oout IRVV 2+==     (4.3) 
 
Therefore the voltage signal at the output of the photodiode amplifier is 
proportional to the photocurrent and the amplification factor is exactly the 
value of the resistor R2. 
In our circuit we have used the value R2=50K which corresponds 
c

is based on several assumptions that need to be strictly satisfied in
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experimental prototype if we want to perform a good and reliable 

 fulfil is that the 
ser beam is correctly matched with the interferometer and in particular with 

the deformable mirror and with the pixellated photo
In fact, the laser beam diameter at the plane of the  
mall compared with the diameter of the deformable membrane in order to 

 boundary region 

ly focused around the axis. 
urthermore, in our model the analysis of the Gaussian beam perturbation has 

been carried out on the waist plane which must c
photodiodes array. Here the waist must also fulfil the condition 
.4<w /L<1.6 (L= length of the single pixel) for a good decoupling of the 6 

a d the ABCD law for light propagation [95]. The Gaussian beam 

   

characterization. 
One of the most important requirements that the setup must
la

diode. 
 adaptive mirror must be

s
avoid non linearity effects that are more evident in the
where the membrane is bonded. But, in the same time the laser spot needs to 
be large enough for aberrations like astigmatism which would not be 
ffectively corrected if the beam was stronge

F
oincide with the plane of the 

1 0
degrees of freedom. 
The problem of controlling position and diameter of the beam waist in 
Gaussian Optics is commonly named mode matching and can be solved using 
 thin lens an

propagation follows the ABCD law in paraxial approximation as: 
 

 
DCq
BAqq

+
+

=
1

1
2     (4.4) 

 
in analogy with spherical waves, where the curvature radius R is now 
replaced by the complex parameter q. 
Using the ABCD matrix of the thin lens of focal length f, the complex 
parameter q1 at the input transforms into the parameter q2 at output according 
to: 
 

fqq
111

12

−=     (4.5) 

 
If q1 and q2 are respectively at distances d1 and d2 from the lens, as pictured 
in figure 4.17, the relationship between them is given by: 
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t w1, after
e new waist w

e behaviour is similar to that observed for a spherical wave in the 

 size geometrical point. So the law of the conjugate points is modified 
to: 

 

⎟
⎞

⎜
⎛

−++⎟
⎞

⎜
⎛

−
ddddqd 2111

 
as can be seen using the ABCD matrix of the system made by the sequence 
of distance d1, thin lens f and distance d2. 
 

 
Figure 4.17: schematic of the Gaussian beam propagation through the th

 
The input beam of initial wais  passing through the thin lens at 
distance d1, is focused into th 2 at distance d2. We can note that 
th
geometrical paraxial approximation. In fact, in that case the light emerging 
from a point like source at distance d1 is focused by the thin lens into an 
image point at distance d  according2  to the law of conjugate points. In 
Gaussian optics the ideal point of focalization is replaced by a finite size spot 
as the transverse dimension of the Gaussian beam cannot ever collapse into a 

ulln
in

22
1

2
1

2

1

1

⎟⎟
⎞

⎜⎜
⎛

+⎟⎟
⎞

⎜⎜
⎛

−

=⎟⎟
⎠

⎜⎜
⎝

−
wdf π

  (4.7) 

11

⎠⎝⎠⎝

−
⎞⎛

ff

f
d

d

λ
 
which provides that the distance of the image d2 never diverges to infinite. It 
is worth noting that eq. (4.7) reduces to the law of conjugate points in 

f 

w1 w2

d1 d2



 

geometrical optics if w1→0. The difference between geometrical optics and 
Gaussian optics is well represented in figure 4.18, where we picture the law 
of conjugate points of the thin lens for geometri
optics. 

cal optics and for Gaussian 
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Figure 4.18: law of conjugate points of the thin lens for geometrical optics (dashed blue lin ) 
and fo

e
r Gaussian optics (continue black line). 

 
Hence, if we assume that at distances d1 and d2 the beam waists have flat 
wavefront, it holds: 
 

λ
π

λ
π 2

2
2

2
1

1
wjqwjq == ;    (4.8) 

 
that, substituted into eq. (4.6), gives the following two equations from the 
real and the imaginary part respectively: 
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and 
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being f0 the  coherence length: 
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By combining eq. (4.9) and eq. (4.10), we can derive: 
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where plus or minus signs can be alternatively used. 
This means that, if we fix the desired ratio w2/w1 and choose the suitable lens 
with f>f0 , we can calculate the distances d1 and d2 where the beam waists are 
formed. 

vely to the plane of the pixellated 

 
tical system 

 matches the in
he adaptive mirror plane, while the lens L2 matches the beam waist w1 to the waist w2 on 

e plane of the photodiodes array. 

We have used these two final equations for the arrangement of the 
experimental setup, in order to match the beam waist of the input laser to the 

lane of the deformable mirror and successip
photodiodes. In particular, as we had to match twice the beam, we have 
considered the more complicated optical structure shown in the figure below. 
 

Figure 4.19: schematic of the op based on two thin lenses used in our 
experimental prototype. The lens L1 put beam waist w0 with the beam waist w1 
on t
th
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With reference to the experimental setup schematized in figure 4.1, the first 
distance d1 corresponds to the path from the initial waist position to the lens 
L1; the distance d2 corresponds to the path between L1 and the mirrors (the 
optical path is the same for the adaptive and the piezo mirror). The waist w1 
at the deformable mirror is chosen equal to 3 mm so the laser spot of diameter 
2w1=6mm covers completely the central electrode and half of the first ring of 
lateral actuators and in the same time it is small enough with respect to the 
membrane diameter of 30 mm. 
 

2w1=6mm 

 
Figure 4.20: mode matching of the laser beam with the deformable mirror. The spot covers 
the central electrode and half of the first ring of lateral electrodes. 
 
The distance d3 of figure 4.19 corresponds to the path that each of the two 
half beams runs from the mirror to the lens L2 separated by distance d4 from 
the pixellated photodiode. Here the two beams interfere and form the waist 
w2 which must comply with the requirement 1.4<w2/L<1.6, being L=1.3mm 
the length of one pixel. We have chosen w2=2mm, so w2/L=1.54 and the spot 
2w2=4mm covers the central pixel and part of the first pixels around. 
 

2w2=4mm 

 
 

Figure 4.21: mode matching of the laser beam with the pixellated array of photodiodes 
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4.6 Data processor 
 
The digital signal processing of the data collected by the ADC is made of 
several operations foreseen by the design of the control system (figures 3.9 
and 3.10) and necessary to generate correction signals for the actuators. 
In figure 4.22 we show the scheme of the operations that we need to carry out 
using the data processor for the lock in control and for the adaptive wavefront 
correction. 
 

Data processor 
Labview on PC

 
Figure 4.22: block diagram of the data processor implemented on Labview programmed PC 
 
We have performed the data processing unit using the Labview Virtual 
Instrument properly designed on a standard PC [106], [107]. 
In fact, Labview is a graphical programming language that permits to create 
block diagrams of Virtual Instruments and execute lots of operations on 
digital signals. A front panel can be created as user/machine interface where 
we can manipulate the parameters of the Virtual Instruments as if we were  
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using real physical instr
u

uments. We can operate the Virtual Instrument 
ro gh knobs, pushbuttons, dials and other input devices, and we can see 

e have used in our work. 

th
indicators such as graphs, leds and other displays. 
In our Prototype we have simulated the blocks corresponding to the 
combinators using the transfer matrices designed in Chapter 3, while low 
pass filters at 0.1 Hz have been chosen as correcting networks for the stability 
of the controls. 
In the following two figures we show two examples respectively of the block 
iagram and of the front panel that wd

 

 
 

Figure 4.23: block diagram of the Virtual Instrument simulated on Labview to perform the 
required operations of the data processor. The blocks and the data flow are properly 
designed in compliance with the scheme of fig. 4.22 
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Figure 4.24: front panel of the Virtual Instrument. In the dials on the top we can see the 
transient of the interference signal that is reaching the regime stationary condition (left side) 
thanks to the lock in carried out by the driver signal (right side). In the bottom, on the left the 
5x5 coloured matrix that simulates the array of photodiodes (the colour changes from black 
to white for increasing intensity on the photodiode). On the right side we can see some 
indicators and the red lever that we use to activate the control. 
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Chapter 5 
 

5 Test of the prototype, results and discussion 
 
So far we have presented the Project of the AO system for the correction of 
laser beam jitters in interferometric GW detectors. In particular, starting from 
the presentation of the Virgo Experiment and after investigating the state of 
the art of the available AO technology, we have developed the design of a 
new AO system where the phase front reconstruction is performed using an 
interferometric technique more sensitive and faster than the usual Shack 
Hartmann sensor. Successively, we have described the arrangement of the 
experimental Prototype implemented in our laboratory to perform the 
simultaneous control of six aberration modes of the laser wavefront in 
compliance with the design statements. 
In this final Chapter we report the tests we have carried out for the 
characterization of the Prototype and the results obtained for the validation of 
the Project. Our goal is to check effectiveness and stability of the contr l in 
the band up to 1 kHz and to demonstrate that our AO system fulfils the 

nces of the system in 
omparison with the theoretical prediction. 

The measurements are divided into three groups and for each one we provide 
a short remind about the theoretical aspects and the methodology followed 
for their execution. 
First of all we have characterized the two control systems implemented 
respectively for the lock in of the interferometer and for the adaptive 
correction of the perturbed wavefront. To do that, we have measured the 
frequency response functions and here report the Bode diagrams of modulus 
and phase which give us information about bandwidth and stability. 
Secondly, we have measured the coefficients of the aberration modes under 
the condition of open loop and of closed loop control. The curves of such 
coefficients in the time domain give evidence of the strong reduction of the 
RMS values when the loop is closed. The same data converted in spectral 
curves demonstrate that the residual noise is significantly reduced in the 

o

requirements for laser noise reduction in the Virgo antenna. 
We have performed several measurements and all the data that we here 
present are statistically processed and reported in form of graphs, curves, 
surfaces, tables and histograms in such a way to provide the reader a good 
understanding of the behaviour and the performa
c
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region of low 
equirements. 

frequency below 200 Hz, in good accordance with the Virgo 

he third set of measurements is the laser beam quality control that we have 
o clean up the 
perturbing the 

ndamental Gaussian mode. In particular, we show that when we close the 

r
T
performed to check whether our AO system is really able t
jitters due to first and second order Hermite Gauss terms 
fu
loop of the AO control the total intensity profile of the two beams interfering 
at the photodiodes array matches with good precision the ideal Gaussian 
curve that is expected on the interference plane of two unperturbed laser 
beams. This result gives us direct evidence of the jitters suppression operated 
by our AO system. 
 
 

5.1 Measurement of the frequency response function of the 
control system 

 
We briefly remind the basic theoretical principles for the characterization of 
control systems and explain the experimental methodology that we used to 
test our Prototype. 
Then, we present the measurements and discuss the results achieved for the 
lock in of the interferometer and for the AO control that has been 
implemented to simultaneously correct six aberration modes of the laser 
beam. 
 

5.1.1 Some theoretical principles 
 
The study of control systems is based on the use of dynamical mathematical 
models that usually are considered linear within a certain range of variation 
of the variables [96]. 
 

 
Figure 5.1: block diagram of a system with input variable x(t), output variable y(t) and pulse 
response g(t) 
 

 
g(t) 

y(t)x(t)
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In figure 5.1 we see that a linear stationary system is generally an operator 
that transforms the input signal x(t) into the output signal y(t) according to a 
specific law obtained by solving the differential equation of type: 
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where the coefficients an and bm are constants and n≥m. 
In order to characterize the system in the time domain, we need to 
analytically solve that differential equation and thus obtain the dependence of 
(t) on x(t). In partiy cular, if we know the response g(t) of the system to the 
irac pulse function δ(t), we have all the necessary information as each input 

ignal transforms into output through the following integral of convolution: 
D
s
 

∫ −=
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')'()'()( dtttxtgty
∞

  (5.2) 

calculate except for simple cases, it is common to study 

ω, according to: 

 
On the other hand, as the analytical solution of the differential equation (5.1) 
is quite difficult to 
dynamical systems using the method of the Laplace transform. This is an 
operator associating any function f(t) defined in the time domain of variable t 
to the corresponding complex function F(s) defined in the domain of variable 
s=σ+j
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The method of Laplace is very useful beca it allows to transform the 
differential equation (5.1) into the aic equation: 
 

here X(s) and Y(s) are Laplace transforms of x(t) and y(t) respectively, and : 
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transfer function of the system, expressed in form of ratio between two 

e Laplace operator to 

, 
e system dynamics is completely characterized from g(t) in the time 

domain or alternatively from G(s) in the Laplace dom
 

ur of any system depends on the number and the kind 
p s : 

    (5.6) 

 
In particular, if eq. (5.6) has only real solutions then the system is of the first 
order and it responses to an instantaneous variation of the input signal with 

al delay time τ before reaching the stationary regime. In the case of 

 
aching the stationary state. This kind of secon

ωn and damping coeffic
al pa  the plex conjugate poles is po cillations increase 

is the 
polynomials of variable s given by the application of th
the two terms of eq. (5.1). This last result, which holds when the system is 
initially quiet, allows to calculate the Laplace transform Y(s) by the product 
of X(s) times G(s) and then to obtain the signal y(t) by the inverse transform 
operator indicated in the second row of eq. (5.3). 
The transfer function G(s) is the Laplace transform of the pulse response g(t) 
and permits to calculate the system response Y(s) to any input X(s). Hence
th

ain. 

 
Figure 5.2: block diagram of a system represented in the complex domain of Laplace. X(s) is 
the input signal, Y(s) the output signal and G(s) is the transfer function. 
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f ole  of G(s), or the zeros of the equationo
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complex conjugate solutions with negative real part, the system is of the 
second order and its response to an instantaneous variation of the input signal 
is characterized by the rise time τ and several dumped oscillations before
re d order system is stable and 

ient δ. On the contrary, if the has proper frequency 
re rt of com sitive, the os
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and the output signal diverges. In this case the system is unstable and do not 
ever reach the stationary regime. 
Figure 5.3 shows typical step responses of fir
 

nd of the second order 
) in case of stability and of instability. The x axis is the time t normalized to the 

characteristic rise time τ. 
 
Stationary linear systems can be also described using the Fourier 

st and second order systems. 

 
Figure 5.3: typical step response y(t) of a system of the first order a) a
b

representation based on the study of the frequency response function G(jω) 
given by the transfer function G(s) when s=jω and related to the pulse 

sponse g(t) through the Fourier transform operator: re
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In fact, we can represent any system using the frequency response function 
that converts the Fourier transform of the input signal X(ω) into the Fourier 
transform of the output signal Y(ω) according to: 
 

( )

  (5.7) 

( ) ( ) ( )ωωω ωϕ XejGY j=   (5.8) 
 
In this last equation we have remarked that G(jω) is a complex function that 
introduces the phase difference ϕ(ω) between input and output. 
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Figure ock diagram of a system represented in the Fourier domain. X(ω) is the input 
sign ω) the output signal and G(jω) is frequency response function. 
 
The Fourier representation is often preferred because it can be experimentally 
tested by direct m ents of the frequency response function. 
Th ost popular method to represent G(jω) is the Bode diagram composed 
of two graphs named respectively amplitude  diagram α and phase diagram 
β. The first one is the logarithm of G(jω) modulus plotted against the 
logari m o  e  the phase ϕ(ω) against the logarithm of 
ω. In the following figure we show typical Bode diagrams for a system of the 

5.4: bl
al, Y(

easurem
e m

th  f ω and th  second one is

first order and for a stable system of the second order. The scale is 
logarithmic for the α diagram and half logarithmic for β. 
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Figure 5.5: Bode diagram of a system a) of the first order (cut off frequency 100 Hz) and b) 
of the second order (proper frequency 100 Hz, damping coefficient 0.1)  
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The amplitude can also be plotted in half logarithmic scale in terms of 
decibel (dB) given by ( )ωjG10log

me
20  as scale un e y axis. 

The most relevant para ter of t  orde  is the bandwidth 
measured from zero up to the higher cut off frequency ωH =1/τ where the α 

it on th
r systemhe first

diagram drops down to 21 /  of its static value corresponding to -3dB. 
In second order systems we notice the resonance frequency ωn where the 
mplitude exhibits a peak whose shape depends on the damping term δ. 

 our work. 

 

 
Figure 5.6: block diagram of the feedback control system a) and synthetic representation b). 
The transducer is assumed to be unitary. 
 
In this case we have to deal with two different transfer functions that are G(s) 
for open loop and F(s)=G(s)/[1+G(s)] for closed loop system. 
The characterization of that control is based on information about the 
following three aspects: 
 

1. Robustness and effectiveness 
2. Response time and bandwidth 
3. Stability 

 

a
The models so far discussed can be applied to describe all the linear systems 
including the closed loop controls that are of particular interest in
Therefore, using the same formalism, we schematize the feedback control of 
figure 5.6 where we assume that the transducer is 1. 

The system robustness against disturbances, non linearity effects and 
parameters variation is proportional to the amplitude of the open loop gain G 
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in the bandwidth of interest. This means that if the condition 1>>)( ωjG  is 
fulfilled, the feedback bust and effective in main system is ro taining the 

s DC 

easure the quality 
mical behaviour of the closed loop control system. The amplitude 

margin MA is the inverse he odulus │G(jω)│ calculated in the frequency 
ω where the phase is ϕ(ω)=−π. The  MPH is the angle that it is 
necessary to subtract to ϕ(ω) calculated in the frequency 
modulus is 1, to reach the value −π. Typical values for the stability of the 
closed loop system are MA from 4 to 6 (from 12 dB to 16 dB) and MPH from 
45° to 60° (from 0.78 rad to 1.05 rad). 
In conclusion, a closed loop control system is completely characterized if all 
the parameters here discussed are know. Therefore, in order to test our 
experimental Prototype, we have carri easurements of the frequency 
response function at open loop and at closed loop. From the open loop gain 
we get information about robustness, effectiveness and stability, while from 
the closed loop response we measure the bandwidth of feedback control. 

.1.2 Methodology of measurement 

 sinusoidal signal at variable frequency that is 
tr e same time it measures and 

pro ssible to reconstruct the amplitude and 
pha cy response over the whole spectral 

n . 

controlled system on the working point set by the reference signal. 
Response time and bandwidth at closed loop concern the system capability to 
follow fast reference signal variations. As the closed loop system i
coupled, the bandwidth of F(jω) is defined from zero to -3dB cut off 
frequency. 
Stability indicates the system aptitude to reach the regime state after the 
excitation induced by the input signal. In feedback control systems the 
stability is estimated using the Nyquist criterion that involves the analysis of 
the frequency response of the open loop gain G(jω). In particular, two 
arameters are defined, named stability margins, which mp

of the dyna
 of t  m

 phase margin
ω where the 

ed out m

 

5
 
The measurement of frequency response functions has been operated using 
the Virtual Spectrum Analyzer implemented on Labview. This instrument 
generates the oscillating
in oduced into the system under test and in th

cesses the system output. So it is po
se diagram of the system frequen

ra
T

ge from 0 to ∞
he process of measurement implemented on the Virtual Analyzer is shown 

in the block diagram of figure 5.7. 
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Figure 5.7: block diagram of the process implemented on the Virtual Spectrum Analyzer for 
the measurement of frequency response functions 
 
The variable frequency oscillator generates the signal Xsinωt that is 

he output of the system is the 
difference ϕ  given by: 

introduced into the system under test. T
sinusoidal signal of amplitude Y and phase 
 

( ) )sincoscos(sinsin ϕωϕωϕω ttYtY +=+  (5.9) 
 
That output is reintroduced into two multipliers where it is respectively 
multiplied times the input signal and its derivative, giving: 
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Successively, these two signals z1(t) and z2(t) are integrated over m times the 
period T=2π/ω: 
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and finally by the product with the term 2/X2 we achieve real part R(ω) and 
imaginary part I(ω) of G(jω). 
These are used to calculate amplitude and phase of the Bode diagrams. 
 
 

5.1.3 Results and discussion 
 

he following figures report the amplitude and phase Bode diagrams of the 

measured G(jω) and F(jω). 

5.1.3.1 Frequency response function of the lock in control system 
 
We have initially measured the frequency response at open loop and at closed 
loop of the feedback control implemented with the piezo electric mirror to 
lock the interferometer on the middle fringe working point. 
T

 140



 

Piezo Open loop 

magnitude (dB)

-20

-10

0

10

20

30

40

50

60

frequency (Hz)
 

70

0,01 0,1 1 10 100 1000

phase (rad)

-3,50

-3,00

-2,50

-2,00

-1,50

0,00

-1,00

-0,50

0,01 0,1 1 10 100 1000

frequency (Hz)
 

 

Figure 5.8: Bode diagram of the frequency response function G(jω) of the piezo control at 

open loop 
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Piezo Closed loop 
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Figure 5.9: Bode diagram of the frequency response function F(jω) of the piezo control at 

closed loop 
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From figure 5.8, which reports the frequency response function G(jω) of the 
piezo control system at open loop, we see that the static gain measured at 
0.01 Hz is 60 dB (corresponding to 103) and that it decreases to 0 dB (or 1) at 
91 Hz. This last is the so called unitary gain frequency or the upper limit for 
robustness and effectiveness of the control. 
The Bode diagram relative to the open loop frequency response gives also 
information about the stability. In fact, the amplitude margin is 13.8 dB and 
the phase margin is 0.99 rad and therefore from the Nyquist theorem we can 
affirm that the system is stable. 
From figure 5.9, we see that the closed loop control exhibits the dynamical 
behaviour similar to second order systems with resonance frequency at 450 
Hz and bandwidth of 535 Hz. 
 

5.1.3.2 Frequency response functions of the AO control system 
 
The piezo control has been used only in the first step of our experiment to 
lock the interferometer and operate the procedure of diagonalization of the 
deformable mirror transfer matrix. 
After that, the piezo actuator has been switched off and simply used a
flat mirror in one of the two arms of the Michelson. 
On the contrary, the adaptive control has been put into operation to perform 
wavefront correction using the deformable mirror placed in the second arm of 
the interferometer. 
Thanks to the diagonalization which allows to consider the six degrees of 
freedom decoupled one with another, we have independently measured the 
frequency responses gii, i=1,..,6 (see eq. (3.75)) of the single controls acting 
at open loop respectively on longitudinal mode, TiltX, TiltY, Astigm45, 
Astigm90 and Defocus and the frequency responses fii, i=1,..,6 (see eq. 
(3.76)) of the same controls at closed loop. 
The set of 12 Bode diagrams that we present in the following gives the 
complete characterization of our AO control. 
 

s static 
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Figure 5.10: Bode diagram of the frequency response function g11(jω) of the longitudinal 

control at open loop 

-2,50

-2,00

-1,50

-1,00

-0,50

 144



 

Longitudinal Closed loop 
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Figure 5.11: Bode diagram of the frequency response function f11(jω) of the longitudinal 

control at closed loop 
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TiltX Open loop 
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Figure 5.12: Bode diagram of the frequency response function g22(jω) of the TiltX control at 

open loop 
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Figure 5.13: Bode diagram of the frequency response function f22(jω) of the TiltX c ntrol at o

closed loop 
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TiltY Open loop 
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Figure 5.14: Bode diagram of the frequency response function g33(jω) of the TiltY control at 

open loop 
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TiltY Closed loop 
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Figure 5.15: Bode diagram of the frequency response function f33(jω) of the TiltY control at 

closed loop 
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Astig45 Open loop 
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Figure 5.16: Bode diagram of the frequency response function g44(jω) of the Astig45 control 

at open loop 
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Astig45 Closed loop 
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Figure 5.17: Bode diagram of the frequency response function f44(jω) of the Astig45 control 

at closed loop 
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Astig90 Open loop 
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Figure 5.18: Bode diagram of the frequency response function g55(jω) of the Astig90 control 

at open loop 
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Astig90 Closed loop 
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Figure 5.19: Bode diagram of the frequency response function f55(j ) of the Astig90 l 

at closed loop 

ω  contro
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Defocus Open loop 
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Figure 5.20: Bode diagram of the frequency response function g66(jω) of the Defocus control 

at open loop 
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Figure 5.21: Bode diagram of the frequency response function f66(jω) of the Defocus control 

at closed loop 
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These measures permit to identify the parameters characterizing the adaptive 
control system. In particular, from the diagrams of the frequency responses at 
open loop we see that each control exhibits static gain of the order of 60÷70 
dB which decreases with slope of -20 dB/decade beyond the cut off 
frequency of 0.1 Hz set by the low pass filter used as correcting network for 
the stability. This implies that these six curves reach the unitary gain at about 
200 Hz. Therefore the wavefront correction on the six modes is expected to 
be robust and effective in the band of few hundreds of Hz which is 
particularly interesting for Virgo application. Furthermore, amplitude and 
phase margins lay all within the range 12 dB ÷ 16 dB and 0.78 rad ÷ 1.05 rad 
respectively and therefore the Nyquist stability is fulfilled. Finally, the 
frequency response diagrams of the closed loop controls show the typical 
behaviour of second order systems with resonance frequencies ranging from 
400 Hz to 500 Hz and bandwidth of about 600 Hz. 
The values of the referred parameters are all listed in the following table 5.1. 
 

 Open loop  Closed loop 

Static 
Gain at 
0.01Hz 

Unitary 
Gain 

Amplitude 
Margin 

Phase 
margin

Resonance 
frequency Bandwidth 

Mode 

dB Hz dB rad Hz Hz 

Longitudinal 66 235 15,2 0,86 480 601 

TiltX 64 230 14,9 0,87 520 595 

TiltY 67 220 15,9 0,88 530 610 

Astig45 63 188 15,9 0,96 470 600 

Astig90 61 205 15,8 0,9 490 590 

Defocus 56 130 14,7 1,04 480 570 
 
Table 5.1: operative parameters of the six feedback controls measured for the 
characterization of the Adaptive Optics Prototype implemented in laboratory 
 
With reference to figures 5.22 and 5.23, where we have respectively plotted 
static gain and unitary gain of the six modes, we see that TiltY control has the 
maximum static gain equal to 67 dB while longitudinal control exhibits the 

s more robust and wideband than the correction of the second 

largest unitary gain frequency of 235 Hz. 
More generally, the correction of the first three modes (longitudinal, TiltX 
and TiltY) i
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three modes (Astigm45, Astig90 and Defocus) and this appears reasonable to 
the author because these last modes correspond to second order Zernike 
polynomials and then require patterns of deformation for the adaptive mirror 
that are more difficult to achieve in real actuators. 
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Figure 5.23: measured unitary gain of the six controls of the AO system 
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5.2 Measurement of residual noise in the controlled laser 
beam 

 
We have directly tested the laser beam jitters suppression performed by our 
Adaptive Optics Prototype. The results demonstrate the compliance with 
Virgo requirements as stated in Chapter 1, which provide for 40 dB noise 
reduction at low frequency below 1 Hz and 20 dB below few tens of Hz. 
To execute the test we have put into operation the Prototype and measured 
the six aberration coefficients of the controlled laser beam with the adaptive 
control firstly at open loop and secondly at closed loop. By comparing the 
values of the coefficients in the two cases, we have checked the actual noise 
reduction and measured the gap between free laser original noise and residual 
noise of the controlled beam. The reduction that we have simultaneously 
measured on the six aberration coefficients when the AO control loop is 
closed demonstrates the good performance of our system. 
In the following, we shortly discuss the statistical processing techniques that 
we have used to analyze the measured noise. After that, we talk about the 
methodology of measurement based on the collection of digital data with 
sampling frequency chosen upon the Nyquist Shannon theorem. Finally, we 
present t cuss the 

 
 particular, we report the time variation of the six coefficients and calculate 

their RMS residual values The same data are also processed in terms of 
Power Spectral Density curves and the noise reduction is reported in the 
different spectral ranges for comparison with Virgo requirements. 
 

5.2.1 Some theoretical principles 
 
Let us consider the time evolution of the physical parameter x that in each 
instant t has the probability of assuming a certain value. This is called 
stochastic process x(t) and is characterized by the function of probability 
distribution of the first order f(x,t) [108], [109]. 
The mean value of x(t) is the time dependent function given by: 
 

== dxtxxftxEt ),()(η    (5.12) 

which re

he measures of the six aberration coefficients and dis
oop and residual noise at closed loop.difference between free noise at open l

In

( )[ ] ∫
+∞

∞−

presents the expected value of the variable. 
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It is also defined the statistical parameter named autocorrelation function: 

== 212121212121 dxdxttxxfxxtxtxE ,,,   (5.13) 

 

( ttR , ) ( ) ( )[ ] ( )∫
+∞

∞−

 
where x1 and x2 are the variable values at instants t1 and t2, and f(x1,x2,t1,t2) is 
the function of probability distribution of the second order. 
The stochastic process is stationary if, for each real value ε∈ℜ, the two 
variables x(t) and x(t+ε) have the same statistics. This implies that the 
function of probability distribution of the first order is constant, or: 
 

)(),( xftxf =    (5.14) 
 
and that the function of probability distribution of the second order depends 
on the time difference τ = t1-t2, or: 
 

),,(),,,( τ212121 xxfttxxf =    (5.15) 
 
The mean value is then time independent: 
 

( )[ ] constdxxxftxE === ∫
+∞

∞−

)(η   (5.16) 

 
and the autocorrelation function is only dependent on τ: 
 

( ) ( ) ( )[ ] ∫
∞−

=+= txtxER ττ ( )
+∞

212121 dxdxxxfxx τ,,  (5.17) 

 
The process x(t) is ergodic when the mean of ensemble of eq. (5.16) and the 
autocorrelation function of eq. (5.17) can be replaced by time averages, as: 
 

∫∫ >>∞→
≅≡

TT
dttx

T
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T
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η    
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−− TT

(5.18) 

 
and 
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The Power Spectrum S(ω) or Power Spectral Density (PSD) of the process 
(t) is defined as the Fourier transform of the autocorrelation function, that is: x

 
+∞

( ) ( )∫
∞−

−= ττω ωτ deRS j    (5.20) 

 
ith the inverse: w

 

( ) ( )∫
+∞

∞−π2
 

= ωωτ ωτ deSR j1   (5.21) 

 we calculate R(τ) in τ=0 and use eq. (5.19), we have: 
 
If

( ) ( ) [ ]211 )(txEt
T

=
++∞

  (5.22) 

The PSD is of particular interest in experiments wh  
required because the area of the function S(ω)/2π over the whole spectral 

nge is the mean power of the process x(t). It is usually preferred to use the 

2

22
0 )( dtx

T
dSR

T

== ∫∫
−∞−

ωω
π

 
ere signal processing is

ra
square root of the PSD ( ) πω 2/S , whose integral over the spectral range 

presents the RMS of the process x(t). The unit of measure of the square root 
of the PSD is equal to 
re

HzA , being A the unit of measure of the process 
x(t). In the following we will speak only of PSD, even if meaning its square 

ot, for the sake of simplicity. ro
A linear system of frequency response G(jω) transforms the PSD ( )ωxS  of 

( )the input  x(t) into the PSD ωyS  of the output y(t) according to: 
 

( ) ( ) ( )ωωω xy SjGS =  

f we want to suppress stochastic noise of a given signal in a selected 
equency range, we can use a filtering system of suitable frequency response 

that suppresses the input noise exactly in that spectral interval. 

  (5.23) 
 
So, i
fr

 160



 

In our experiment we have designed an AO system based on the scheme of 
closed loop automatic control in order to perform active 

 stochastic jitters. For each of the six degrees of freedom xi (i=1,..,6) 
n

filtering of laser 
beam
corresponding to first and seco d order jitters, we expect PSD reduction as: 
 

( ) ( ) ( )ω
ω

ω
ii x

ii
y S

jg
S

+
=

1
1   (5.24) 

 
in accordance with the theory of automatic controls, being gii the open loop 

ain of the control acting of the ith mode, Sxi(ω) the initial spectral power and 
pectral density after correction. The measures presented in 

e following demonstrate the success of that prediction. 
 

.2.2 Methodology of measurement 

trol effectiveness. To 
easured the aberration signals Si(t) at open loop and at 

closed loop and compared the two results to test the act
We have directly measured the 25 voltages emerging from the photodiode 
mplifiers and converted into digital form by the ADC board. Each voltage is 

 f  and

gnal spectral analysis in the bandwidth 
iance w

. 
: 

g
Syi(ω) the jitters s
th

5
 

he target of our measurement is to demonstrate the conT
do that, we have m

ual noise reduction. 

a
sampled and saved in the form of a string of data on the hard disk of the PC. 
This procedure allows us to process off line the data of the 25 channels and 
then to extract the aberration coefficients Si(t) using the combinations of table 
3.1. The strings of data corresponding to the time variation of Si(t) have been 
statistically processed with the commercial software Matlab [110] to 
calculate RMS and Power Spectral Density. 
The sampling frequency s  the period Τ for string data collection have 
been chosen in accordance with the theory of digital data processing [111]. 
In particular, as we are interested to si
of 1 kHz, we have set the sampling frequency on 2 kHz in compl ith 
the Nyquist-Shannon theorem
The period T of data collection has been calculated from the equation
 

f
T

δ
10

=     (5.25) 

 
that is 10 times the inverse of the minimum resolution δf required for the 
spectral analysis. 

 161



 

We have used the value δf=0.1 Hz and then the minimum period T for data 
collection is 1 minute and 40 seconds. We have programmed the Labview 
Instrument for data collection on a period T of 2 minutes. 
We have carried out five sets of measurements to collect 25 voltage signals 
f the photodiodes respectively under the following operative conditions: 

 
No. Operative condition on the photodiodes surface 

o

Adaptive Control 

1 Dark. No laser beam. Open loop 

2 Laser beam from the arm of the piezo. 
Beam from the arm of the adaptive mirror screened. Open loop 

3 Laser beam from the arm of the adaptive mirror. 
Beam from the arm of the piezo screened. Open loop 

4 Interference of the two beams Open loop 

5 Interference of the two beams Closed loop 
Table 5.2: operative conditions for the five sets of 

l 
measurements carried out to test the AO 

ontro

 noise, 
al noise at closed loop of the specific 

degree of freedom. The compariso
below. 

c
 
The first set is necessary to measure the dark noise of the system. 
Measurements 2 and 3 allow to calibrate the Gaussian profile on the 
photodiodes plane and to check the mode matching providing for w2=2mm. 
From measurement no. 4 we extract error signals at open loop compared with 
error signals at closed loop achieved from measurement no. 5. 
 

5.2.3 Results and discussion 
 
We report 12 graphs representing time variation and Power Spectral Density 
of the six aberration coefficients. 
The signals in the time domain are reported in Volts as measured at the 
output of the photodiode amplifiers and plotted from 0 to 120 seconds; on the 
contrary, in the frequency range from 0,1 Hz to 1 kHz we make the spectral 
analysis of the adimensional coefficients normalized to the maximum value 
measured at open loop as we are interested to the relative correction. 

ach graph includes three curves corresponding respectively to darkE
free noise at open loop and residu

n of these curves is widely discussed 

 162



 

 
Figure 5.24: time variation of the coefficient relative to longitudinal mode 

 

 
Figure 5.25: Power Spectral Density of the coefficient relative to longitudinal mode 
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Figure 5.26: time variation of the coefficient relative to TiltX mode 

 

 
Figure 5.27: Power Spectral Density of the coefficient relative to TiltX mode 
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Figure 5.28: time variation of the coefficient relative to TiltY mode 
 

 
Figure 5.29: Power Spectral Density of the coefficient relative to TiltY mode 
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F  igure 5.30: time variation of the coefficient relative to Astig45 mode
 

 

F  igure 5.31: Power Spectral Density of the coefficient relative to Astig45 mode
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Figure 5.32: time variation of the coefficient relative to Astig90 mode 

 

 
Figure 5.33: Power Spectral Density of the coefficient relative to Astig90 mode 

 167



 

 

Figure 5.34: time variation of the coefficient relative to Defocus mode 
 

 
Figure 5.35: Power Spectral Density of the coefficient relative to Defocus mode 
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From the curves of time variation we see that the laser beam undergoes 
important reduction of its geometrical fluctuations when the adaptive control 
loop is closed. In fact such curves exhibit large RMS reduction on the y scale.  
In table 5.3 all the RMS values are listed for the complete comparison of the 
coefficients at open loop and closed loop. 
 

RMS (Volts) 
Mode 

open loop closed loop 

Longitudinal 8,5 7,07 

TiltX 0,15 0,02 

TiltY 0,62 0,16 

Astig45 0,09 0,005 

Astig90 0,33 0,19 

Defocus 3,72 1,62 
 

Table 5.3: RMS values of the aberration coefficients at open loop and at closet loop 
 
The Longitu ng to 
the half fringe lock in of the interferometer (the contrast of the Michelson 
previously investigated with the piezo mirror ranges from 0 to 14 Volts). The 
Defocus term presents non null RMS value of 1.6 Volts due to residual 
coupling effects with the Longitudinal mode originated by deformable mirror 
and sensing system. The other coefficients have evident RMS reduction 
which demonstrates the effectiveness of the control. 
The Fourier analysis of the noise reduction can be carried out from the Power 
Spectral Density curves where we distinguish three different spectral ranges. 
In the low frequency band up to 10 Hz, the control is much robust and 
effective as expected for the high value of open loop gain exhibited in the 
corresponding Bode diagrams. In this region the noise reduction changes 
progressively from three to two orders of magnitude (from 60 dB to 40 dB) in 
good compliance with the Virgo requirements stated before. 
In the central band 10 Hz ÷100 Hz the control still performs, but the loop gain 
decreases and the noise reduction drops down to 20 dB. Nevertheless this 
value fits again the Virgo requirements for frequencies of few tens of Hz. 
Finally, in the upper band beyond 100 Hz the control does not work as the it 
reaches its unitary gain frequency that for all the degrees of freedom stands 
around 200 Hz. Over this limit free noise at open loop and residual noise at 
close

dinal mode is stabilized on the value of 7 Volts correspondi

d loop coincide. 
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We note that the residual noise is often close to the dark noise and therefore 
for further improvements more performing components are necessary. 
In the table below we list the aberration reduction at three typical frequencies 
corresponding to 1 Hz, 10 Hz and 100 Hz. 
 

Noise reduction 
Mode 

1 Hz 100 Hz 10 Hz 

Longitudinal 1.7·1 -30-3 7·10 1.5·10-1

TiltX 3.8·10-3 3.6·10-2 4·10-1

T 2.7·10-3 3·10-2 4 -1iltY .4·10

Ast 6·10-3 8.7·10-2 4 -1ig45 .5·10

A 7·10-3 4.5·10-2stig90 4.1·10-1

De 9·10-3 5.2·10-2focus 4·10-1

 
Table 5.4: measured data of noise red tion of the six aberration coefficients 

 
 is also useful to see figure 5.36 where we have an immediate outlook of 

uc

It
noise reduction expressed in dB for the six degrees of freedom in the three 
main frequencies of interest. 
 

Noise reduction
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0
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Figure 5.36: noise reduction of the six aberration modes expressed in dB 
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The fulfilment of Virgo requirements is demonstrated: in fact the six 
coefficients corresponding to first and second order Hermite Gauss modes 

op is closed. 

 

5.3 Quality control of the Gaussian beam 
 
We have com d our ex tal w carry t the quality 
control of the Gaussian beam vefron ction.
According to the quality procedures based natio dards such as 
ISO 9001, we have defined a rical in whic resentative of 
the quality o ssian bea ore we h easured that parameter 
for the laser fore and after the AO correction in order to check the 
xpected improvements performed at closed loop. 

In this f the 

inciples 

We have assumed that in our Michelson interferometer one arm is passed 
through by the reference Gaussian beam while the other arm contains the 
laser beam perturbed by higher order Hermite Gauss modes. In the previous 
Section we have demonstrated that our AO system performs the suppression 
of the Hermite Gauss perturbations up to the second order and this allows to 
consider the corrected laser beam with good approximation similar to the 
fundamental Gaussian beam of the reference arm. 
In order to check the quality of the laser beam cleaned up from the initial 
jitters, we have directly measured the transverse intensity profile originated at 
the photodiodes array by the interference of the reference beam with the 
beam under test. The experimental data collected on the photodiodes are then 
compared with the ideal Gaussian profile expected if the two beams were 
perfectly matching on the fundamental mode. The discrepancy of the actual 
data from the ideal curve is key indicator of the laser beam quality. 
In fact, provided that the Michelson is locked on the middle fringe working 
point, two ideal interfering beams would have phase fronts perfectly parallel 

exhibit simultaneous suppression of more than 40 dB at 1 Hz and of more 
than 20 dB at 10 Hz when the AO control lo
 

plete perimen ork by ing ou
 after wa t corre  

 on inter nal stan
 nume
m; theref

dicator 
a

h is rep
f the Gau ve m
 beam be

e
 section, after the description of theoretical principles and o

methodology of measurement, we present and discuss the obtained results. 
 

5.3.1 Some theoretical pr
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and shifted by the phase factor δ=π/2. Therefore the intensity at the output of 
the Michelson should correspond point by point to the ideal Gaussian profile: 
 

( )
2

⎟⎟
⎞

⎜⎜
⎛

−
r

I 2

2
0 ⎠⎝= wideal

out erI    (5.26) 

 
istance from the optical 

xis and w2 the beam waist matched on the photodiodes array (figure 5.37). 
being I0 the input laser beam intensity, r the radial d
a
 

 
 
Figure 5.37: laser spot of diameter 2w2 covering the photodiodes array and projection of the 
corresponding 2D intensity profile. In the ideal case this profile is perfectly Gaussian and 
centred on the central pixel n. 13 
 
On the contrary, in the real case one of the two beams is perturbed and 
therefore the two wavefronts do not overlap due to instantaneous variations 
induced by jitters. This means that the phase difference δ of the two beams is 
not perfectly fixed on π/2 but has small time and position fluctuations, or 
δ=δ(r,t). 
Thus the intensity at the output of the Michelson, given by: 
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2
 
exhibits a variance from the ideal case of eq. (5.2
 

6) as shown in figure below 

 
 

Figure 5.38: laser spot of diameter 2w2 covering the photodiodes array and projection of the 
corresponding 2D intensity profile. In the real case this profile ha  a variance from the 

an curve 

ull if the beam is perfectly Gaussian and increases with the laser jitters. 

T
e χ2 test [112] as 

s
perfect Gaussi
 
The variance of the real curve of eq. (5.27) from the ideal curve of eq. (5.26) 
represents the degree of perturbation of the laser beam under test: in fact it is 
n
Our AO control system is expected to reduce the laser beam perturbation and 
increase its quality towards the limit of perfect Gaussian profile 
corresponding to null variance of the curve (5.27) from the ideal limit (5.26). 
The method that we have used to measure the quality of the beam is then to 
calculate that variance. his is made by fitting the intensity data collected at 
the photodiodes with the ideal curve of eq. (5.26) using th

umerical indicator of the degree of compliance. n
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Usually, if we want to fit N measured variables yk of standard deviation 
kyσ  

to the theoretical curve y=f(x), the χ2 parameter is defined as: 
 

( )∑
=

−N
kk xfy 2

2 )(
=

k yk1
2σ

χ   (5.28) 

 
In this form, the parameter χ2 is null if each measure yk corresponds exactly 
to the theoretical value f(xk) and diverges if the experimental data do not fit 
the ideal curve. 
In our case we measure the five intensities Ik corresponding to the central 
points xk of the photodiodes k=11, 12, 13, 14, 15 of figure 5.38. In order to 
have a parameter proportional to the compliance of the measures with the 
ideal Gaussian profile I=G(x), we have used the following indicator: 
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cal parameter that we need to represent the quality of the 
ser beam under test. 

 
which ranges from 100% (total compliance) to 0% (no compliance) and is 
therefore the numeri
la
 
 

5.3.2 Methodology of measurement 
 
We have first measured the intensity curve produced on the photodiodes 
array by a single laser beam of the Michelson when the other is screened. 
This permits to calibrate the reference Gaussian curve with the measure of 
the central peak on the photodiode no. 13 and to check the beam waist 
w2=2mm arranged with the mode matching. 
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After that, we have measured the intensity profile of the interference figur  
open loop and at closed loop, and compared the two sets o
deal Gaussian profile of beam waist w

e at
f data with the 
lculated in the 

o cases confirms the improvement of the laser beam quality when the 
adaptive control loop is closed. 
The intensity data are sampled on the ADC board
and sent to the Labview Virtual Instrument programmed for the collection of 
trings of period Τ=120 seconds. This means that each string contains 

i
tw

2=2mm. The χ2(%) ca

 with frequency of 2 KHz 

s
N=240.000 samples, which can be considered a sufficient number of 
measures for a good statistical processing [113]. 

In particular, we have calculated the mean value ∑=
N

=

1
i

ikk I
N

I
1

and the 

standard deviation ( )∑
=

lotted these five intensities with the error bar (

−
−

=∆
N

i
kikk II

N
I

1

2

1
1  (k=11, 12,…,15) and therefore 

p kk II ∆± ) against the 
corresponding xk coordinate. 
Using the χ2(%) as defined in eq. (5.29), we have fitted the experimental data 
with the theoretical curve of eq. (5.26) and the results that we have obtained 
are shown in the following Subsection. 
 

5.3.3 Results and discussion 

we have used the conversion factor 1V/20µA which 
ansforms the photocurrents emerging from the photodiodes as discussed in 

nts are converted into optical power by the factor 
e of the photodiodes provided by 

a ity can be 
2

he 1/e2 beam waist of 2 mm as 
expected. 

 
All the intensity measures are here reported in terms of W/m2 and this has 
been possible because we have completely characterized the experimental set 
up. In particular, starting from the voltage signals read at the output of the 

hotodiode amplifier, p
tr
Section 4.4. The photocurre
0.45 A/W extracted by the sensitivity curv

e m nufacturer Hamamatsu. And finally, the optical intensth
calculated from the optical power on the area of 1.3x1.3 mm  of the single 
photodiode. 
The first graph in figure 5.39 shows the measured intensity produced by the 
single beam coming from one arm of the interferometer. The five 
experimental data permit to calibrate the ideal Gaussian profile which 
exhibits the central peak of 59 W/m2 and t
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Figure 5.39: measured intensity of half beam from one arm of the interferometer and 

 χ2(%) =99% with the intensity data 
f the single beam is the reference curve that we use for the following two 

f the intensity produced by the interference 

calibration of the ideal Gaussian profile. The central maximum is 59 W/m2 and decreases to 
1/e2 at 2mm from the center as predicted by the mode matching arrangement 
 

his Gaussian profile which matches atT
o
graphs. 
We report the experimental data o
of the two beams of the Michelson, respectively when the AO control is at 
open loop and at closed loop. The two sets of data are compared with the 
same calibrated Gaussian profile. 
We can see that when the interferometer is not controlled by the AO system 
(figure 5.40), the five experimental data of the output intensity fit the ideal 
curve with factor χ2(%)=84%. 
On the contrary, when the adaptive control loop is closed (figure 5.41), we 
observe good compliance of the data, as the factor χ2(%) raises to 96%. 
This observation is an evident improvement of the laser beam quality that can 
be with no doubt ascribed to the operation of our AO system. 
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Figure 5.40: comparison between ideal Gaussian profile and measured intensity at open 
loop 
 

Closed loop
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Figure 5.41: comparison between ideal Gaussian profile and measured intensity at closed 
loop 
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Conclusions 
 
The Doctoral Work that we have carried out during these last three years has 
been finalized to develop and test an Adaptive Optics system that performs 
the effective suppression of the jitters affecting laser beams in air. Our target 
is to demonstrate the possible application of such system to interferometric 
gravitational antennas for the reduction of the intrinsic noise and the 
improvement of the sensitivity curve. The main researches and the results 
that we have achieved are reported in the present Thesis arranged in five 
Chapters. 
In the first part of this paper we have discussed the principal aspects of the 
gravitational wave detection remarking the big difficulty due to the weakness 
of the signals expected from astronomical bodies. We have said that large 
scale ground based interferometers are the most promising GW antennas as 
they perform high sensitivity and wideband detection based on the movement 

rtant experiments that are currently being carried out all over the world, 
e have presented the Virgo Project and the characteristics of the GW 

antenna now operating on Cascina site. The Virgo antenna is a ground based 
Michelson interferometer of 3 km long arms designed for wideband GW 
detection (10Hz÷10kHz) with sensitivity of 

of suspended masses in the typical Michelson configuration. Among the most 
impo
w

Hzh 110 23−≈
~  at central 

frequency of 100 Hz. This value, which represents the lower limit of 
detectivity at the best of the present technology, has been gained thanks to 
sophisticated solutions implemented to reduce the different sources of noise 
that could affect the detector. Actually, the Virgo sensitivity is limited at low 
frequency by the seismic noise, at central band by the thermal noise and at 
high frequency by the shot noise. 
The request for further improvements of the sensitivity curve for the Project 
of Virgo Upgrade and especially for Advanced Virgo, where the noise 
reduction of one order of magnitude is expected over the whole detection 
bandwidth, has given new impulse to research for the analysis and the 
reduction of noise. In particular, much attention is currently paid to the noise 
originated by the coupling between interferometer misalignments and input 
laser beam jitters. In fact, the passive filtering of the laser beam aberrations 
actually performed in the Virgo antenna by the mode cleaner put at the enter 

em, as the residual laser fluctuations still impose strict limitations to the 
lignment of the suspended optics. Therefore the definitive suppression of 

of the beam splitter is a partial solution that does not solve completely the 
probl
a
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free laser beam jitters is still an open issue that could be solved using a pre 
fore the mode cleaner. This idea has driven the start up of 
ased on the Virgo requirements which correspond to jitters 

filtering system be
ur Ph.D. Work, bo

reduction of at least 40 dB at low frequency f<1Hz and of 20 dB in the region 
of tens of Hz. 
The second part of the Thesis has been devoted to investigate the modern 
techniques of Adaptive Optics which offer the possibility of elegant solutions 
for the active filtering of optical aberrations. After a short description of the 
aberrated wavefront and its expansion in series of Zernike polynomials, we 
have presented the general principles of standard AO systems and their mode 
of operation based on the automatic correction of the perturbed wavefront. 
Specific notice has been devoted to the description of the Shack Hartmann 
sensor for the measurement of the Wave Aberration Function and also to the 
most common kinds of wavefront actuators that are the deformable mirrors at 
continuous or segmented surface. Our overview of the AO technology has 
been completed with an accurate examination of the principal operative 
parameters and the main applications in the fields of astronomy, industry and 
medicine. From that analysis we have concluded that standard AO 
techniques, although very advanced for the different applications, are not 
compliant with the requirements of jitters reduction necessary in 
interferometric antennas. In fact, we have seen that the Shack Hartmann 
wavefront sensor, commonly adopted in AO systems, exhibits a residual 
noise of Hzrad810−  which is comparable with the jitters measured in a 
free laser under quiet laboratory conditions. 
The third part of the present Thesis enters the core of our R&D work and 
presents the design of the AO system that we have developed in order to 
overcome the serious limitations exhibited by adaptive controls based on the 
Shack Hartmann sensor. In the system that we propose the wavefront 
detection is performed by a fast and low noise interferometric technique 
discovered from the analysis of the perturbed laser beam, in which we have 
demonstrated that jitters can be alternatively represented in terms of Hermite 
Gauss modes perturbing the Gaussian fundamental mode or in terms of 
Zernike polynomials expanding the aberrated wavefront. This 
correspondence has allowed us to design an AO system where laser 
fluctuations are interferometrically detected in terms of Hermite Gauss 
coefficients while wavefront correction is performed through driver 
commands sent to the deformable mirror in terms of Zernike modes. 
We have reported the optical design of the AO system arranged in the 
configuration of the Michelson interferometer with the piezo mirror put at the 
end of reference arm and the adaptive mirror put at the end of the second arm 
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containing the perturbed beam that we need to correct. Using the piezo 
mirror, the interferometer is locked on the middle fringe working point where 
the sensitivity is maximum and the output intensity is directly proportional to 
the small phase variations of the two beams. A 5x5 pixellated photodiode 
collects the interference fringes at the output of the Michelson and generates 

 have been supplied by specific 

25 photocurrents that we suitably combine to extract 6 signals corresponding 
to the first and second order Hermite Gauss coefficients of the perturbed 
beam. These are used as error signals and converted into Zernike commands 
when we close the adaptive control and perform the simultaneous correction 
of the 6 aberration modes. We have also presented the design of the closed 
loop automatic controls used for the lock in and the adaptive correction. In 
both the block diagrams that represent the control schemes we assume the 
interferometer as controlled system disturbed by the aberrations while the 
piezo mirror and the deformable mirror are respectively the regulators for the 
lock in and the adaptive correction. The matrix formalism has been adopted 
to represent the transfer functions of the six modes that are simultaneously 
controlled. They are treated like six independent degrees of freedom thanks 
to the procedure of matrix diagonalization that is widely discussed. 
In order to validate the design of our AO system we have implemented the 
Prototype on the seismically isolated bench of the Laboratory of Applied 
Physics led by Professor Fabrizio Barone at the University of Salerno. The 
experimental apparatus is described in the forth part of our Thesis where we 
have detailed the geometry of the Michelson configuration and the 
characteristics of the main components that
manufacturers that are leader of the market, such as Melles Griot for the He 
Ne laser, OKO Technologies for the Deformable Mirror and Hamamatsu for 
the 5x5 pixellated photodiode. We have also described the block diagram of 
operators that perform the processing unit and that we have implemented 
using the Labview Virtual Instrument programmed on a standard PC. Finally, 
we have shown the mode matching arranged for the positioning of the beam 
waist on the surface of the adaptive mirror and of the photodiodes array. 
The last part of this work contains the measures and the results that we have 
achieved from the test of the Prototype. We have presented three sets of 
measurements that give the complete characterization of the Prototype and 
demonstrate its effectiveness in the suppression of laser beam jitters in air in 
compliance with the Virgo requirements. We have first reported the Bode 
diagrams of the frequency response functions measured on each of the six 
automatic controls implemented for the adaptive correction of the laser beam. 
The diagrams measured at open loop have demonstrated robustness and 
stability of the controls in the band of interest. In fact the open loop gain at 
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low frequency is over 60 dB and decreases to unity at about 200 Hz with 
slope of -20 dB/decade. The cut off frequency is set at 0.1 Hz using a low 
pass filter as correcting network for the stability. On the contrary, the Bode 
diagrams of the frequency response functions measured at closed loop show 
the typical behaviour of a second order system with resonance frequency at 
450 Hz and cut off at about 500 Hz. This is the limit to the band of the control 
and is set by the deformable mirror as actually manufactured by OKO. The 
second group of measurements that we have reported concern the direct test 
that we have performed on the Prototype in order to check its capability of 
reducing the laser jitters. In fact, we have put the system into operation and 
measured the error signals that indicate the perturbation of the beam. The 
curves of the aberration coefficients represented in the time domain and in 
the Fourier domain clearly show that the residual noise measured when the 
adaptive control loop is closed is strongly suppressed in comparison with the 
free noise detected when the loop is open. In particular the spectral analysis 
has allowed to check that reduction of more than 60 dB is reached below 1 
Hz and of 20 dB for frequencies up to 100 Hz. This means that our AO 
system fulfils the strict requirements for the laser beam jitters reduction in the 

r the 

Virgo antenna. We have ended the experimental work with a third group of 
measurements for the quality control of the laser after the adaptive correction. 
To do that, we have defined a numerical parameter derived from the χ2 test 
and have used it as indicator for the quality of the beam. In fact, using the 
optical theory of interference applied to our Michelson geometry, we have 
demonstrated that this indicator is equal to 100% if the laser beam under test 
is perfectly Gaussian and tends to 0% if it is very perturbed with respect to 
the reference beam. The measures show that when the control loop is open 
the quality indicator of the free laser is 84% while if adaptive correction is 
switched on then the same indicator raises to 96%. This is a clear evidence of 
the improved optical quality of the laser beam performed by the AO system. 
The results achieved in our Doctoral work allow to say that the AO system 
we have designed and implemented can be considered a good solution fo
reduction of the laser beam jitters in air and therefore can be seriously 
proposed for application to Virgo upgrade and to Advanced Virgo. 
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