
i

i

“main” — 2009/2/24 — 0:26 — page i — #1 i

i

i

i

i

i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Outsourced Storage Services:
Authentication and

Security Visualization

Bernardo Palazzi

i

i

“main” — 2009/2/24 — 0:26 — page ii — #2 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page iii — #3 i

i

i

i

i

i

Outsourced Storage Services: Authentication and

Security Visualization

A thesis presented by
Bernardo Palazzi

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

March 2009

i

i

“main” — 2009/2/24 — 0:26 — page iv — #4 i

i

i

i

i

i

Committee:
Prof. Giuseppe Di Battista

Reviewers:
Prof. Pierangela Samarati
Prof. Roberto Tamassia

i

i

“main” — 2009/2/24 — 0:26 — page v — #5 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page vi — #6 i

i

i

i

i

i

vi

Abstract

We address the problem of authenticating data in outsourced, often un-
trusted, services, when a user stores more or less confidential information in a
remote service such as an online calendar, remote storage, outsourced DBMS,
and others. How can outsourced data be proven authentic?

Data authentication captures the security needs of many computing appli-
cations that save and use sensitive information in hostile remote distributed
environments and its importance increases, given the current trend in modern
system design towards outsourced services with minimal trust assumptions.
Solutions should not only be provably secure, but efficient and easily imple-
mentable.

This dissertation presents an extensive study of data authentication and
introduces a general method, based on a security middleware, external to the
service, that performs authentication operations in parallel with standard ser-
vice functions to minimize the time overhead. We examine the problem for dif-
ferent services, and design efficient new techniques with authenticating general
classes of operations, such as relational primitives, multidimensional queries
and relational join and remote storage management.

Another important issue that we cover in this dissertation is the security
usability of outsourced services. In particular we analyze the information se-
curity visualization techniques and we address the problem of file permissions
visualization. TrACE, a prototype tool based on a treemap is presented with
an extensive user study to show the usability improvement of this tool.

i

i

“main” — 2009/2/24 — 0:26 — page vii — #7 i

i

i

i

i

i

Acknowledgments

I would like to thank my Ph.D. advisor Professor Giuseppe Di Battista for his
patient guidance and training. He taught me how to do research in computer
security, inspired me to think out of the box, and showed me how to keep
always a different point of view in my work. He has also given me much
valuable advice and considerate support for my personal life and my future
career. Most importantly, Pino taught me to keep an open mind so that I
could be able to tackle a broad spectrum of research problems.

Another person who influenced me most during my Ph.D. course is Professor
Roberto Tamassia. He taught me the fundamentals of modern authentication
techniques, which is the foundation of my thesis work. Roberto also showed
me how to write an interesting research paper and give a more interesting
presentation.

I also want to thank Professor Pierangela Samarati for her extensive and
intelligent review on my thesis work.

I feel honored to have been supported by ISCOM as a Ph.D. student and
I wish to thank the Institute of Communication of the Italian Ministry of
Economic Development - Communication and in particular its former Director
Luisa Franchina Ph.D. for some useful discussions.

I would also like to thank Professors Maurizio Patrignani and Maurizio Piz-
zonia for working with me on various security problems. I learned tremendously
from our collaboration. I also want to thank my Italian and American friends
and colleagues: Alex, Babis, Claudio, Fabio, Fabrizio, Francesca, Gabriella,
Giulia, Luca, Max, Nikos, Patrizio, Pier Francesco, Stefano and Tiziana for
making my graduate school life enjoyable and memorable.

I would like to thank my very special English teacher, Laura, for her very
kind help during all my period of stays in Providence.

In particular I would like to thank Norbert, my best friend, for his endless
availability and support, he is the one that continues to have always the right

vii

i

i

“main” — 2009/2/24 — 0:26 — page viii — #8 i

i

i

i

i

i

viii

English words.
Finally, I want to thank my family and in particular my parents, Marina

and Tonino, my brother Tommaso, my aunt Stefania and my uncle Armando
for their patience with me during my graduate studies. This thesis is dedicated
to my grandmothers, Nora and Olimpia, although, unfortunately, they are no
more among us.

i

i

“main” — 2009/2/24 — 0:26 — page ix — #9 i

i

i

i

i

i

Contents

Contents ix

1 Introduction 1
1.1 Outsourced Storage Authentication 3
1.2 Overview of Authenticated Data Structures 4
1.3 Authenticated Skip List . 7
1.4 Overview and Thesis Structure 12

2 Authenticated Relational Tables and Authenticated Skip Lists 15
2.1 Introduction . 15
2.2 The Reference Model . 16
2.3 A Fine Grained Approach . 21
2.4 Exploiting Nested Sets . 22
2.5 Experimental Evaluation . 24
2.6 Conclusions . 27

3 Multi-Column Authentication 29
3.1 Introduction . 29
3.2 The Authentication Problem 31
3.3 Architecture . 36
3.4 Our Approach . 38
3.5 Experimental Evaluation . 47
3.6 Conclusions . 53

4 Network Storage Integrity 55
4.1 Introduction . 55
4.2 Our Approach . 57
4.3 Implementation . 67

ix

i

i

“main” — 2009/2/24 — 0:26 — page x — #10 i

i

i

i

i

i

x CONTENTS

4.4 Experiments . 72
4.5 Conclusions . 78

5 Graph Drawing for Security Visualization 79
5.1 Introduction . 79
5.2 Network Monitoring . 81
5.3 Border Gateway Protocol . 88
5.4 Access Control . 92
5.5 Trust Negotiation . 94
5.6 Attack Graphs . 94
5.7 Conclusions . 95

6 Access-Control Visualization 97
6.1 Introduction . 97
6.2 Preliminaries . 99
6.3 Effective Access Control Visualization 100
6.4 The TrACE (Treemap Access Control Evaluator) Tool. 103
6.5 User Feedback . 106
6.6 Conclusions . 117

Conclusion 119
Summary of Results . 119
Future Directions . 120

Appendices 121

TrACE User Study 123

Bibliography 129

i

i

“main” — 2009/2/24 — 0:26 — page 1 — #11 i

i

i

i

i

i

Chapter 1

Introduction

This dissertation addresses the problem of authentication data that is retrieved
through an outsourced storage service: when the repository of the data is not
managed directly by the end-user, and the manager of data is not completely
trusted, how can data received be proven authentic? This question is the core of
several security-related problems underlying any real-life computing application
that involves storage of data over a communication or computing structure that
can act unreliably. Clearly, data authentication ensuring that received data can
be accurately verified to be in its original form is a fundamental problem in
the area of information security, for information is valuable only when it is
trustworthy.

Data authentication captures some primary security needs of today’s com-
puting reality. In fact, integrity checking of data and data structures has
grown in importance recently due to the expansion of online services, which
have become reliable and scalable, and often have a pay-per-use cost model
with affordable rates.

The architecture analyzed is based on a client-server model see Fig. 1.1.
The client corresponds to a minimal trusted system component and the server
corresponds to an untrusted system device. Stored data is organized according
to storage services of generic form (i.e. a database, a file server, etc.), which are
managed remotely by the client, without the need to use secure communication.
The client constitutes an authentication module that verifies the correctness
of both incoming and outgoing data: any update operation is effectively en-
forced to perform correctly and any query operation is effectively verified to
return valid data. This module achieves verification by keeping minimal system

1

i

i

“main” — 2009/2/24 — 0:26 — page 2 — #12 i

i

i

i

i

i

2 CHAPTER 1. INTRODUCTION

Figure 1.1: The client does not trust the server and verifies each answer (result
of an operation) returned by the server.

state and processing small amounts of information provided by a certification
module at the server, the latter involving minimal or no processing. Thus,
the proposed approach realizes a transparent security layer for authenticated
outsourced storage.

This dissertation presents an extensive study on the data authentication
problem. We examine the problem for structured data that is dynamically
maintained in outsourced storage services. We provide formal problem defi-
nitions that carefully model the notions of security and efficiency in data au-
thentication, and design new efficient techniques for securely authenticating
general classes of query problems, such as queries on multidimensional rela-
tional databases, and integrity checking of untrusted network storage. We also
study the complexity of the problem and the computational and communi-
cation costs that are inherently associated with the authentication of data.
Moreover, in a general computational and data querying model, we provide a
new framework for authenticating any query type over structured and dynamic
data. By decoupling the answer-generation and answer-validation procedures,
this framework can exploit a strong parallelism, where an authenticated query
result can be validated without time overhead if the data result is bigger than a
few dozen bytes. Finally, we address the problem of security usability through
visualization techniques. We start with a survey on graph drawing techniques
for security visualization and we conclude with the application of this technique
to introduce a new approach to visualize storage access control policy.

i

i

“main” — 2009/2/24 — 0:26 — page 3 — #13 i

i

i

i

i

i

1.1. OUTSOURCED STORAGE AUTHENTICATION 3

1.1 The problem of Outsourced Storage Authentication

Corporations and consumers increasingly trust their data to outsourced re-
sources and want to be assured that no one alters or deletes it. Commer-
cial network storage applications are rapidly growing, with services that range
from general file storage to web operating systems. Outsourced storage systems
sometimes also offer services to assure confidentiality (through encryption) and
integrity of data transmission (typically through checksum hashes). However,
they do not provide a solution to the storage integrity problem.

Thus, the client would have to develop its own authentication solution, such
as a cache of the hashes of the data items, in order to verify that data returned
by the storage server has not been tampered with. In the remainder of this
dissertation, we use the term “authentication” to refer to the verification of the
authenticity, or integrity, of data, as opposed to user identity authentication,
which is a separate security issue.

It is sometimes assumed that symmetric encryption may be a solution for
multiple security problems, but in fact, integrity checking and encryption are
orthogonal services (see, e.g., [57]). For example, if we only encrypt files, an
attacker can remove some files without our knowledge since decryption will still
work perfectly on the remaining files. Only an integrity checking service can
detect such an attack.

To deal with these problems, we propose a simple architecture that consists
of three main parties:

• The storage server stores some outsourced data. The storage server is
untrusted and can be any storage service available online.

• The authentication server stores and processes authentication informa-
tion of the outsourced data. The authentication server is also untrusted
and can be an outsourced computational resource.

• The client queries and updates both the storage server and the authen-
tication server and verifies the results returned by them. We assume
that no one can interfere with the state, computation and storage at the
client. Of course, it is possible in the real world for a client to be compro-
mised, but we are only interested in protecting the client against errors
and malicious behavior by the storage server and authentication server.

i

i

“main” — 2009/2/24 — 0:26 — page 4 — #14 i

i

i

i

i

i

4 CHAPTER 1. INTRODUCTION

1.2 Overview of Authenticated Data Structures

Throughout this section, we denote with n the size of the collection S main-
tained by an authenticated data structure.

Early work on authenticated data structures was motivated by the certifi-
cate revocation problem in public key infrastructure and focused on authenti-
cated dictionaries, on which membership queries are performed.

The hash tree scheme introduced by Merkle [64, 66] can be used to imple-
ment a static authenticated dictionary. A hash tree T for a set S stores cryp-
tographic hashes of the elements of S at the leaves of T and a value at each
internal node, which is the result of computing a cryptographic hash function
on the values of its children. The hash tree uses linear space and has O(log n)
proof size, query time and verification time. A dynamic authenticated dictio-
nary based on hash trees that achieves O(log n) update time is described in [74].
A dynamic authenticated dictionary that uses a hierarchical hashing technique
over skip lists is presented in [36]. This data structure also achieves O(log n)
proof size, query time, update time and verification time. Other schemes based
on variations of hash trees have been proposed in [13, 31, 50].

A detailed analysis of the efficiency of authenticated dictionary schemes
based on hierarchical cryptographic hashing is conducted in [99], where precise
measures of the computational overhead due to authentication are introduced.
Using this model, lower bounds on the authentication cost are given, exist-
ing authentication schemes are analyzed and a new authentication scheme is
presented that achieve performance very close to the theoretical optimal.

An alternative approach to the design of authenticated dictionary, based on
the RSA accumulator, is presented in [40]. This technique achieves constant
proof size and verification time and provides a tradeoff between the query and
update times. For example, one can achieve O(

√
n) query time and update

time.
In [3], the notion of a persistent authenticated dictionary is introduced,

where the user can issue historical queries of the type “was element e in set S
at time t”.

A first step towards the design of more general authenticated data struc-
tures (beyond dictionaries) is made in [22] with the authentication of relational
database operations and multidimensional orthogonal range queries.

In [62], a general method for designing authenticated data structures using
hierarchical hashing over a search graph is presented. This technique is applied
to the design of static authenticated data structures for pattern matching in
tries and for orthogonal range searching in a multidimensional set of points.

i

i

“main” — 2009/2/24 — 0:26 — page 5 — #15 i

i

i

i

i

i

1.2. OVERVIEW OF AUTHENTICATED DATA STRUCTURES 5

Efficient authenticated data structures supporting a variety of fundamen-
tal search problems on graphs (e.g., path queries and biconnectivity queries)
and geometric objects (e.g., point location queries and segment intersection
queries) are presented in [42]. This paper also provides a general technique for
authenticating data structures that follow the fractional cascading paradigm.

The software architecture and implementation of an authenticated dictio-
nary based on skip lists is presented in [41]. A distributed system realizing
an authenticated dictionary, is described in [37]. This paper also provides an
empirical analysis of the performance of the system in various deployment sce-
narios. The authentication of distributed data using web services and XML
signatures is investigated in [85]. Prooflets, a scalable architecture for authenti-
cating web content based on authenticated dictionaries, are introduced in [94].

Work related to authenticated data structures includes [14, 20, 38, 58, 59]
In particular there has been a considerable amount of work done on un-

trusted outsourced storage. On problems concerning confidentiality and pri-
vacy preservation, through encryption, in outsourced systems are discussed in
[24, 25] these topics are orthogonal and complementary to our work.

Yumerefendi and Chase [107] propose a solution for authenticated network
storage, using a Merkle tree [66] as the underlying data structure. PKI is used,
however, and the basis (a trusted hash value associated with an authenticated
data structure — see Section 1.3) is outsourced to an external medium, raising
communication and security issues. Oprea and Reiter [81] present a solution
for authenticated storage of files that takes advantage of the entropy of indi-
vidual blocks. The client keeps hash values only for high-entropy blocks that
pass a randomness test. A solution for authenticating an outsourced file system
(hierarchically organized) is presented by Jammalamadaka et al. [46]. However
their processing of updates is computationally expensive. Fu et al. [30] describe
and implement a method for efficiently and securely accessing a read-only file
system that has been distributed to many providers. The Athos architecture,
developed by Goodrich et al. [35], is a solution for efficiently authenticating
operations on an outsourced file system that is related to our approach. The
system that we use and Athos both leverage algorithms described by Papaman-
thou and Tamassia [84] for querying and updating two-party authenticated data
structures.

Untrusted storage where one digital signature for each object is kept is
presented by Goh et al. [33]. The SUNDR system, introduced by Mazières et
al. [55], protects data integrity in a fully distributed setting by digitally signing
every operation and maintaining hash trees. The system requires off-line user
collaboration for protection against replay attacks. Goodrich et al. [38] explore

i

i

“main” — 2009/2/24 — 0:26 — page 6 — #16 i

i

i

i

i

i

6 CHAPTER 1. INTRODUCTION

data integrity for multi-authored dictionaries, where clients can efficiently val-
idate a sequence of updates. A number of works focus on proving retrievability
of outsourced data. Schwarz and Miller [91] propose a scheme that makes
use of algebraic signatures to verify that data in a distributed system, safe-
guarded using erasure coding, is stored correctly. Shacham and Waters [93]
give provably secure schemes for verifying retrievability that use homomorphic
authenticators based on signatures. The model of provable data possession
(PDP) is proposed by Ateniese et al. [5]. The authors specifically target sys-
tems storing very large amounts of data. The client keeps a constant-size digest
of the data and the server can demonstrate the possession of a file or a block
by returning a compact proof of possession. SafeStore, a system devised by
Kotla et al. [52], combines redundancy and hierarchical erasure coding with
auditing protocols for checking retrievability. A method for the authentication
of outsourced databases using a signature scheme appears in papers by Myk-
letun et al. [72] and Narasimha and Tsudik [75]. In this approach, the client’s
computation is computationally expensive. Also, the client has to engage in a
multi-round protocol in order to perform an update.

Buldas, in [12], studies how to extend ADS to perform more complex
queries and uses optimizations on interval queries. In [82, 83] the authors
propose a method to authenticate projection queries using different crypto-
graphic techniques for verifying the completeness of relational queries. While
the papers are quite promising in terms of theoretical bounds and analysis, the
practical efficiency is not demonstrated. Di Battista and Palazzi [23] present
a method for outsourcing a dictionary, where a skip list is stored by the server
into a table of a relational database management system (DBMS) and the client
issues SQL queries to the DBMS to retrieve authentication information. Note
that this method is fully applicable to our framework since the update of the
basis is done at the client’s side, whenever an update occurs. A related solution
is presented by Miklau and Suciu [67], where they proposed to embed into a
relational table an MHT . However, the technique is described only partially
and seems to have some drawbacks. Namely, validating the result of a query
seems to require several distinct queries on the DBMS. This is in contrast with
the typical atomicity requirements of concurrency. Also, the MHTs require
frequent rebalancing for supporting updates and it is unclear how to match
this requirement with the need to have a few updates in the relational table.
Further, the time performance illustrated in the paper are not supported by
a clear description of the experimental platform and show some inconsistency.
For example in one of the tests the time requested for authentication decreases
with the growth of the table.

i

i

“main” — 2009/2/24 — 0:26 — page 7 — #17 i

i

i

i

i

i

1.3. AUTHENTICATED SKIP LIST 7

Maheshwari et al. [56] take a different approach to the authentication of a
database, detailing a new trusted database (TDB) system with built-in sup-
port for integrity checking and encryption, and a performance advantage over
architectures that add a layer of cryptography on top of a typical unsecured
database. A survey for secure distributed storage is presented by Kher and
Kim [49]. The archival storage of signed documents is studied by Maniatis and
Baker [58].

An authenticated data structure three-party model, where the data owner
outsources the data to a server, which answers queries issued by clients on be-
half of the data owner. See [98] for a survey. A solution for the authentication of
outsourced databases in the three-party model, using an authenticated B-tree
for the indices, is presented by Li et al. [53]. Lower bounds on the client stor-
age in the three-party model are given by Tamassia and Triandopoulos [100].
A method for authentication of XML documents is provided by Devanbu et
al. [21].

1.3 Authenticated Skip List

For the purposes of this dissertation we need to provide a description of the skip
lists. The skip list data structure [87] is an efficient tool for storing an ordered
set of elements. It supports the following operations on a set of elements.

• find(x): Determine whether element x is in the set.

• insert(x): Insert element x into the set.

• delete(x): Remove element x from the set.

A skip list S stores a set of elements in a sequence of linked lists S0, S1, . . . , St

called levels. The members of the lists are called nodes. The base list, S0, stores
in its nodes all the elements of S in order, as well as sentinels associated with
the special elements −∞ and +∞. Each list Si+1 stores a subset of the ele-
ments of Si. The method used to define the subset from one level to the next
determines the type of skip list. The default method is simply to choose the
elements of Si+1 at random among the elements of Si with probability 1

2 . One
could also define a deterministic skip list [71], which uses simple rules to guar-
antee that between any two elements in Si there are at least 1 and at most 3
elements of Si+1. In either case, the sentinel elements −∞ and +∞ are always
included in the next level up, and the top level, is maintained to be O(log n).
We distinguish the node of the top list St storing −∞ as the start node s.

i

i

“main” — 2009/2/24 — 0:26 — page 8 — #18 i

i

i

i

i

i

8 CHAPTER 1. INTRODUCTION

An element that is in Si−1 but not in Si is said to be a plateau element of
Si−1. An element that is in both Si−1 and Si is said to be a tower element in
Si−1. Thus, between any two tower elements, there are some plateau elements.
In randomized skip lists, the expected number of plateau elements between
two tower elements is one. The skip list of Fig. 1.2 has 7 elements (including
sentinels). The element 6 is stored in 3 nodes with different level. The overall
number of nodes is 17.

Figure 1.2: Skip List

To perform a search for element x in a skip list, we begin at the start node
s. Let v denote the current node in our search (initially, v = s). The search
proceeds using two actions, hop forward and drop down, which are repeated
one after the other until we terminate the search. See Fig. 1.3.

• Hopforward: We move right along the current list until we find the node
of the current list with largest element less than or equal to x. That is,
while elem(right(v)) < x, we perform v = right(v).

• Dropdown: If down(v) = null, then we are done with our search: node
v stores the largest element in the skip list less than or equal to x. Oth-
erwise, we update v = down(v).

In a deterministic skip list, the above searching process is guaranteed to take
O(log n) time. Even in a randomized skip list, it is fairly straightforward to
show (e.g., see [39]) that the above searching process runs in expected O(log n)
time, for, with high probability, the height t of the randomized skip list is
O(log n) and the expected number of nodes visited on any level is 3.

To insert a new element x, we determine which lists should contain the new
element x by a sequence of simulated random coin flips. Starting with i = 0,
while the coin comes up heads, we use the stack A to trace our way back to

i

i

“main” — 2009/2/24 — 0:26 — page 9 — #19 i

i

i

i

i

i

1.3. AUTHENTICATED SKIP LIST 9

the position of list Si+1 where element x should go, add a new node storing x
to this list, and set i = i + 1. We continue this insertion process until the coin
comes up tails. If we reach the top level with this insertion process, we add a
new top level on top of the current one. The time taken by the above insertion
method is O(log n) with high probability. To delete an existing element x, we
remove all the nodes that contain the element x. This takes time is O(log n)
with high probability.

Figure 1.3: A value searching in a Skip List: search for element 9 in the skip
list of Figure 1.2. The nodes visited and the links traversed are drawn with
thick lines and arrows.

To introduce the Authenticated Skip Lists we need to use the commutative
hash technique [34] developed by Gooodrich and Tamassia. A hash function
h is commutative if h(x; y) = h(y;x), for all x and y. Given a cryptographic
hash function h that is collision resistant in the usual sense, we construct a
candidate commutative cryptographic hash function, h0, as follows [34] :

h0(x, y) = h(min(x, y),max(x, y))
It can be shown that h0 is commutatively collision resistant [34].
The authenticated skip list introduced in [34] consists of a skip list where

each node v stores a label computed accumulating the elements of the set with a
commutatively cryptographic hash function h. For completeness, let us review
how hashing occurs. See [34] for details. For each node v we define label f(v)
in terms of the respective values at nodes w = right(v) and u = down(v). If
right(v) = null, then we define f(v) = 0. The definition of f(v) in the general
case depends on whether u exists or not for this node v.

• u = null, i.e., v is on the base level:

– If w is a tower node, then
f(v) = h(elem(v), elem(w))

i

i

“main” — 2009/2/24 — 0:26 — page 10 — #20 i

i

i

i

i

i

10 CHAPTER 1. INTRODUCTION

– If w is a plateau node, then
f(v) = h(elem(v), f(w)).

• u 6= null, i.e., v is not on the base level:

– If w is a tower node, then
f(v) = f(u).

– If w is a plateau node, then
f(v) = h(f(u), f(w)).

We illustrate the flow of the computation of the hash values labeling the
nodes of a skip list in See Fig. 1.4. Note that the computation flow defines
a directed acyclic graph DAG, not a tree. After performing the update in
the skip list, the hash values must be updated to reflect the change that has
occurred. The additional computational expense needed to update all these
values is expected with high probability to be O(log n). The verification of the
answer to a query is simple, thanks to the use of a commutative hash function.
Recall that the goal is to produce a verification that some element x is or is
not contained in the skip list. In the case when the answer is ”yes”, we verify
the presence of the element itself. Otherwise, we verify the presence of two
elements xa and xb stored at consecutive nodes on the bottom level S0 such
that xa < x < xb. In either case, the answer authentication information is a
single sequence of values, together with the signed, timestamped, label f(s) of
the start node s.

Let P (x) = (v1; ...; vm) be the sequence of nodes that are visited when
searching for element x, in reverse order. In the example of Fig. 1.5, we have
P (9) that needs not only the nodes (9, 6,−∞) with the thick line but also all
the siblings with the stroke dash-dot-dash-dot. Note that by the properties of
a skip list, the size m of sequence P (x) is O(log n) with high probability. We
construct from the node sequence P (x) a sequence Q(x) = (y1; ...; ym) of values
such that:

• ym = f(s), the label of the start node;

• ym = h(ym−1;h(ym−2; h(...; y1)...)))

The user verifies the answer for element x by simply hashing the values of the
sequence P (x) in the given order, and comparing the result with the signed
value f(s), where s is the start node of the skip list. If the two values agree,

i

i

“main” — 2009/2/24 — 0:26 — page 11 — #21 i

i

i

i

i

i

1.3. AUTHENTICATED SKIP LIST 11

Figure 1.4: Authenticated Skip List: Flow of the computation of the hash
values labeling the nodes of the skip list of Fig.1.2. Nodes where hash func-
tions are computed are drawn with thick lines. The arrows denote the flow of
information, not links in the data structure.

Figure 1.5: Values needed to authenticate the result of a query.

i

i

“main” — 2009/2/24 — 0:26 — page 12 — #22 i

i

i

i

i

i

12 CHAPTER 1. INTRODUCTION

then the user is assured of the validity of the answer at the time given by the
timestamp.

Authenticated Data Structures, and in particular Authenticated Skip Lists,
could be used to answer dictionary-based (or membership) queries, as well as
more advanced queries such as in relational databases or graph queries. For the
former, it has been used to design efficient public-key revocation system. For
the latter, graph and geometric searching applications use this datastructure
as the fundamental component.

1.4 Overview and Thesis Structure

In Chapter 2, we introduce a general method, based on the usage of typical
DBMS primitives, for maintaining authenticated relational tables. The au-
thentication process is managed by an application external to the DBMS, that
stores just one hash information of the authentication structure. The method
exploits techniques to represent hierarchical data structures into relational ta-
bles and queries that allow an efficient selection of the elements needed for
authentication. In Chapter 3, we present an extension of the techniques intro-
duced in the previous chapter to authenticate the integrity and completeness
of query results on relational tables with conditions on different fields at the
same time. The method exploits concurrent processing techniques that allow to
bind the complexity to the most selective field in the query. Also, this method
allows to save storage space because it stores just an authenticated index for
each field in the table instead of a different index for each possible combination
of the fields without add any restrictive condition on the query. Further, this
approach allows to perform authenticated join operation in a more efficient
way as we show in an extensive set of test. In Chapter 4, we present a general
method and a practical prototype application for verifying the integrity of files
in an untrusted network storage service. The verification process is managed
by an application running in a trusted environment (typically on the client)
that stores just one cryptographic hash value of constant size, corresponding
to the digest of an authenticated data structure. The proposed service can sit
on top of any storage service since it is transparent to the storage technology
used. Experimental results show our integrity verification method is efficient
and practical for network storage systems. In Chapter 5, we give a prelimi-
nary survey of approaches to the visualization of computer security concepts
that use graph drawing techniques. This chapter In Chapter 6, we present a
visual representation of access control permissions in a standard hierarchical

i

i

“main” — 2009/2/24 — 0:26 — page 13 — #23 i

i

i

i

i

i

1.4. OVERVIEW AND THESIS STRUCTURE 13

file system. Our visualization of file permissions leverages treemaps, a popular
graphical representation of hierarchical data. In particular, we present a visu-
alization of access control for the NTFS file system that can help a non-expert
user understand and manipulate file system permissions in a simple and effec-
tive way. While our examples are based on NTFS, our approach can be used
for many other hierarchical file systems as well. Parts of this dissertation have
previously appeared as [23, 43, 44, 97] or have been submitted for publication
in conferences or journals.

i

i

“main” — 2009/2/24 — 0:26 — page 14 — #24 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page 15 — #25 i

i

i

i

i

i

Chapter 2

Authenticated Relational Tables
and Authenticated Skip Lists

2.1 Introduction

We consider the following scenario. A user needs to store data in a relational
database, where the Data Base Management System (DBMS) is shared with
other users. For example, the DBMS is available on-line through the Web, and
anybody in the Internet can store and access data on it. Nowadays, there are
many sites providing services of this type [8, 80, 86, 108] and the literature
refers to such facilities as to outsourced databases [54, 73, 95].

When the database is accessed, the user wants to be sure on the integrity
of her/his data, and wants to have the proof that nobody altered them.

Of course, accessing the DBMS is subject to authentication restrictions, and
the users must provide credentials to enter. However, the user might not trust
the DBMS manager, or the site that provides the service, or even the DBMS
software. Extending the argument, the same problem can be formulated even in
terms of a traditional database. Also in this case, with the current technologies,
although DBMSes put at disposal logs of the performed transactions and other
security features, for a user it is somehow impossible to be completely sure that
nobody altered the data.

A first attempt for the user to be sure of the authenticity of the data is to
put a signature on each t-uple of each relational table of the database. Unfor-
tunately, this technique does not provide enough security. In fact, adversaries
could remove some t-uples and the user would not have any evidence of this.

15

i

i

“main” — 2009/2/24 — 0:26 — page 16 — #26 i

i

i

i

i

i

16
CHAPTER 2. AUTHENTICATED RELATIONAL TABLES AND

AUTHENTICATED SKIP LISTS

Another straightforward possibility would be to sign each table as a whole.
However, this does not scale-up, and even mid-size tables would be impossible
to authenticate.

We propose a method and a prototype for solving the above mentioned
problem. Namely, for each relational table R of the user we propose to store
in an extra relational table S(R) (in the following security table) of the DBMS
a special version of authenticated data structure that allows to verify the au-
thenticity of R.

With this approach, if the user wants to have the proof of authenticity of
R, it is sufficient to check the values of a few elements stored in S(R). On the
other hand, if the user updates R, only a few variations on S(R) are needed
to preserve the proof of authenticity. We also propose efficient techniques to
manage and to query S(R) and show the practical feasibility of the approach.

Observe that the proposed approach is completely independent on the spe-
cific adopted DBMS and can be implemented into an extra software layer or
either a plug-in, under the sole responsibility of the user. The authentication
process is managed by an application external to the DBMS that stores just a
constant size (O(1) with respect to the size of R) secret. The method does not
require trust in the DB manager or DBMS.

2.2 The Reference Model

A user stores a relational table R into a DBMS. The user would like to perform
the usual relational operations on R, namely, would like to select a set of t-
uples, to insert elements, and to delete elements. The user wants to verify
that a query result is authentic. The amount of information that the user has
to maintain in a secure environment to be certain of the authenticity of the
answer should be kept small (ideally constant size) with respect to the size of
R.

We propose to equip R with an authenticated skip list A to guarantee its
integrity. Of course, there are at least two approaches for implementing A.
Either A is stored in main memory within an application controlled by the
user, or A is stored into the same DBMS storing R. We follow the second
approach. Namely, we investigate how to efficiently store A into a further
relational table S(R), called security table, used only for that purpose. Fig. 2.1
shows a relational table, an authenticated skip list for its elements, and the
implementation of the skip-list into a second relational table.

There are two options. We call them the coarse-grained and the fine-grained

i

i

“main” — 2009/2/24 — 0:26 — page 17 — #27 i

i

i

i

i

i

2.2. THE REFERENCE MODEL 17

Figure 2.1: A relational table and its security table.

approach.
What we call coarse-grained approach is probably the most natural way to

represent an authenticated skip list S inside a relational table S(R). Namely,
it consists of storing each element of S inside a specific record of S(R). On the
other hand, the fine-grained approach shifts the attention on a smaller element
of S. It consists of storing each level of an element of S inside a record of S(R).

In order to visualize the coarse-grained approach, it is effective to think at
S in terms of a “quarter clockwise rotation”. As an example, Table 2.1 is a
coarse-grained representation of the authenticated skip list of Fig. 2.2.

More precisely, the fields of Table 2.1 have the following meaning.

• Key: The value of an element of S. It can be any type of value, not
only a number, but on such a type a total ordered must be defined.

• Prv n - Nxt n: Pointers to the previous and to the next element in S,
for each level n.

• Hash n: Information needed to authenticate S, stored at each level n.

i

i

“main” — 2009/2/24 — 0:26 — page 18 — #28 i

i

i

i

i

i

18
CHAPTER 2. AUTHENTICATED RELATIONAL TABLES AND

AUTHENTICATED SKIP LISTS

Each element of S has a height, that is, the number of nodes with the same
value of key that constitute an element of S, that is randomly determined.
This is the main trade-off of this technique, because on one hand this kind of
representation has the property to maintain the identity between the number
of records in S(R) and the elements present in S, but on the other hand it has
an overhead in the size of the table, because each record has a number of fields
equal to the highest S in A. This is necessary because we do not know the
height of a new S and then we have to arrange S(R) for worst cases, when an
S is at the highest level. So, we must pad with ”null” values the fields that do
not reach the highest level.

- ∞∞∞∞ 109865 + ∞∞∞∞

S2

S 1

S 0

10

10

+ ∞∞∞∞

+ ∞∞∞∞

96

6

5- ∞∞∞∞

- ∞∞∞∞

Figure 2.2: Storing a Skip List inside a Relational Table.

Once stated how to represent S inside the security table S(R), we developed
methods to perform in S a set of authenticated relational operations, without
the need to load in main memory the whole S(R). Performing authenticated
operations on R requires the usage of queries that retrieve all the elements that
are needed to compute the authentication path. Such elements are spread on
all S(R). The main requirements in devising such queries are:

• The need to build queries that retrieve only the authentication elements
that are strictly necessary, to reduce, as much as possible, the amount of
required memory.

• The need of fast queries that allow to authenticate a result with a small
time overhead. In this respect it is meaningful to minimize the number
of used queries.

It is important to perform such queries using only standard SQL. In fact,
our model does not allow any modification of the DBMS engine. Also, think-

i

i

“main” — 2009/2/24 — 0:26 — page 19 — #29 i

i

i

i

i

i

2.2. THE REFERENCE MODEL 19

K
e
y

H
a
s
h

0
P

r
v

0
N

x
t

0
H

a
s
h

1
P

r
v

1
N

x
t

1
H

a
s
h

2
P

r
v

2
N

x
t

2

-
∞

f(
−
∞

,
5
)

n
u

ll
5

f(
f(
−
∞

)
,
f(

5
)
)

n
u

ll
5

f(
f(
−
∞

)
,f
(
6
)
)

n
u

ll
6

5
f(

5
,
6
)

−
∞

6
f(

f(
5
),

f(
6
))

−
∞

6
n

u
ll

n
u

ll
n

u
ll

6
f(

6
,
f(

8
)
)

5
8

f(
f(

6
)
,
f(

9
)
)

5
9

f
(f

(6
),

f
(1

0
))

1
0

−
∞

8
f(

9
,6

)
9

6
n

u
ll

n
u

ll
n

u
ll

n
u

ll
n

u
ll

n
u

ll
9

f(
9
,
1
0
)

8
1
0

f(
9
,
1
0
)

6
1
0

n
u

ll
n

u
ll

n
u

ll
1
0

f(
1
0
,
f(

+
∞

))
9

+
∞

f(
f(

1
0
)
,
f(

+
∞

)
)

9
+
∞

f(
f(

1
0
)
,
f(

+
∞

)
)

6
+
∞

T
ab

le
2.

1:
A

co
ar

se
-g

ra
in

re
pr

es
en

ta
ti

on
of

an
au

th
en

ti
ca

te
d

sk
ip

lis
t

in
to

a
re

la
ti

on
al

ta
bl

e.
In

bo
ld

fa
ce

th
e

el
em

en
ts

ne
ce

ss
ar

y
to

au
th

en
ti

ca
te

el
em

en
t

9.

i

i

“main” — 2009/2/24 — 0:26 — page 20 — #30 i

i

i

i

i

i

20
CHAPTER 2. AUTHENTICATED RELATIONAL TABLES AND

AUTHENTICATED SKIP LISTS

ing in terms of SQL allows the identification of a precise interface between an
authentication tool based on our techniques and the DBMS, allowing its im-
plementation in terms of a plug-in. The main idea here is to use an algorithm
that retrieves the authentication elements, starting from the knowledge of the
value K to authenticate:

1. We perform a query that loads in memory all the records that are not
null at top level and that have a value smaller than K.

2. We select the greatest element in the query result (that is the predecessor
of K at the top level).

3. We perform an interval query on the elements (that are not null) at
the immediately lower level, with the following range: from the element
retrieved in the previous step to the element stored in its field next to
the top level.

4. We repeat the steps 2− 3 until we reach level 0.

In order to understand which elements are loaded in main memory by
queries of the algorithm, it is effective to think at a shape like a ”funnel”
that has its stem on K. See Fig. 2.3. The loaded elements are those that
“touch” the funnel.

Figure 2.3: Loaded elements in an authentication query.

Note that the number of queries that is needed to retrieve the authentication
root path is proportional to the number of levels in S, that is logarithmic in
the number of elements that are currently present in S.

i

i

“main” — 2009/2/24 — 0:26 — page 21 — #31 i

i

i

i

i

i

2.3. A FINE GRAINED APPROACH 21

2.3 A Fine Grained Approach

This approach stores inside each record a node instead of an element of S. A
node is an invariant-size component in S. Hence, it can be stored in a record
with a fixed number of fields, independently on the number of elements stored
in S. More precisely, in this case the fields of S(R) have the following meaning:

• Key: value of an element of S;

• Level: height of an element of S, that is the number of the lists that
the element belongs to;

• prvKey-nxtKey: pointers to the previous and to the next element of
S at the same level;

• parentLvl-parentKey: pointer to the parent element in the path of
authentication; it is needed to allow the retrieval of the root path;

• Hash: information needed for the authentication, performed with the
method used in S [34].

The direct storage of S nodes significantly reduces the space overhead, that
it is typical of the coarse grain approach. In fact, in this case there is no need
to store null values.

This approach allows the usage of very efficient techniques to manage S(R)
dynamically and securely. The method we adopt is based on the nested set
method for storing hierarchical data structures inside adjacency lists, that in
turn fit well into relational tables [16] See Fig. 2.4 and Tab. 2.2.

Figure 2.4: Storing a Skip List inside a Relational Table. A Fine Grained
Approach

i

i

“main” — 2009/2/24 — 0:26 — page 22 — #32 i

i

i

i

i

i

22
CHAPTER 2. AUTHENTICATED RELATIONAL TABLES AND

AUTHENTICATED SKIP LISTS

Key Level prvKey nxtKey parentLvl parentKey Hash

−∞ 2 null 6 null null f(f(−∞), f(6))
−∞ 1 null 5 2 −∞ f(f(−∞), f(5))
−∞ 0 null 5 1 −∞ f(f(−∞), 5)
5 1 −∞ 6 1 −∞ f(5,6)
5 0 −∞ 6 1 5 f(5, 6)
6 2 −∞ 10 2 −∞ f (f(6),f(10))
6 1 5 9 2 6 f(f(6),f(9))
6 0 5 8 1 6 f(6, f(8))
8 0 6 9 0 6 f(8, 10)
9 1 6 10 1 6 f(9, 10)
9 0 8 10 1 9 f(9, 10)
10 2 6 +∞ 2 6 f(10,f(+∞))
10 1 9 +∞ 2 10 f(10,f(+∞))
10 0 9 +∞ 2 10 f(10,f(+∞))

Table 2.2: A fine grain representation of an authenticated skip list into a
relational table. In bold the elements necessary to authenticate element 9

2.4 Exploiting Nested Sets

The problem of storing hierarchical data structures inside relational tables has
been already studied in database theory [19, 63]. The solution that we exploit
is due to Celko [16], that shows a method to store a tree inside a relational
table. Such a method is based on augmenting the table with two extra fields.

In order to understand what is a nested set, it is effective to think at the
nodes of the tree as circles and to imagine that the circles of the children are
nested inside their parent. The root of the tree is the largest circle and contains
all the other nodes. The leaf nodes are the innermost circles, with nothing else
inside them. The nesting shows the hierarchical relationship.

The two extra fields have the role of left and right boundaries of the circle
and allow to represent the nesting of the hierarchy.

Unfortunately, skip lists are not trees but a directed acyclic graph. Hence,
we have to extend the nested set method to this different setting. Table 2.3
illustrates how the fine-grained approach can be equipped with nested-sets
features. Observe the Left and Right fields that represent the boundaries of
the “circles”. Fig. 2.5 shows the correspondence between boundaries and nodes
of the skip-list. The figure shows also a root path.

Now we show one of the features of the proposed approach. Namely, we
argue that, in order to authenticate an element of a relational table R, we need

i

i

“main” — 2009/2/24 — 0:26 — page 23 — #33 i

i

i

i

i

i

2.4. EXPLOITING NESTED SETS 23

Figure 2.5: An ADS and its Nested Set. Thick lines show the authentication
root path for element 9.

just one query on S(R). Such a query is used to retrieve the complete root-path
and all its sibling elements. Observe that, authenticating an element in an ADS
requires a number of steps that is logarithmic (worst case or average case) in
the number of the elements while this logarithmic dependence does not yield
a logarithmic number of queries in our case but a constant number of queries.
We make the argument using an example. The following query uses directly

Key Level prvKey nxtKey parentLvl parentKey Left Right

−∞ 2 null 6 null null 1 28
−∞ 1 null 5 2 −∞ 2 9
−∞ 0 null 5 1 −∞ 3 4
5 1 −∞ 6 1 −∞ 5 8
5 0 −∞ 6 1 5 6 7
6 2 −∞ 10 2 −∞ 10 27
6 1 5 9 2 6 11 20
6 0 5 8 1 6 12 15
8 0 6 9 0 6 13 14
9 1 6 10 1 6 16 19
9 0 8 10 1 9 17 18
10 2 6 +∞ 2 6 21 26
10 1 9 +∞ 2 10 22 25
10 0 9 +∞ 2 10 23 24

Table 2.3: A representation of an authenticated skip list into a relational table
using nested set. In bold the key value and the left and right fields. The 2
extra fields added are needed for fast queries.

the value of the element to authenticate. The example is for the authentication

i

i

“main” — 2009/2/24 — 0:26 — page 24 — #34 i

i

i

i

i

i

24
CHAPTER 2. AUTHENTICATED RELATIONAL TABLES AND

AUTHENTICATED SKIP LISTS

of element 9.

SELECT *
FROM skiplist
WHERE Left <= (SELECT Left

FROM skiplist
WHERE key = 9 AND level = 0)

AND Right >= (
SELECT Right
FROM skiplist
WHERE key = 9 AND level = 0);

The above query retrieves only the authentication root-path starting from
9. To validate 9 we have to retrieve also all sibling nodes of the root-path. This
is possible by using two subqueries that retrieve all elements that are:

• in the fields nxtKey of the root-path;

• on the level below and with the same key of the root-path.

Using this method we built a quick algorithm to get the complete authenti-
cation path needed to validate a table interrogation, using only one query, that
is that all concurrency problems related to selection queries will be managed
by the DBMS. Also, it is possible to modify the query in order to retrieve all
the information needed to authenticate all the t-uples obtained by a Select with
just one query.

2.5 Experimental Evaluation

This section shows the experimental results obtained using a prototype imple-
mentation of the techniques presented in the previous sections. The Hardware
architecture where tests have been performed consists of quite common laptop
with following features:

• cpu intel c©centrinoTMduo T2300 (1.66 GHz, 667 FSB);

• RAM 1.5 Gb DDR2

• HDD 5,400 rpm Serial ATA

The Software architecture consists of following elements:

i

i

“main” — 2009/2/24 — 0:26 — page 25 — #35 i

i

i

i

i

i

2.5. EXPERIMENTAL EVALUATION 25

• Microsoft c©WindowsTMXP Tablet edition 2005;

• JavaTMversion 1.5

• MySql JDBC Connector Java-bean 5.03

• MySql DBMS version 4.1

The data sets for tests have been chosen with a scale from 10, 000 to
1, 000, 000 of elements. Such elements were sampled at random from a set
10 times larger. All values presented in this section have been computed as
average of the results of 5 different tests. The elements in each test are a sam-
ple, randomly selected, composed of 1

1000 of the entire set. All times are in
milliseconds. All tests show the clock-wall time.

The first test is about the authentication of a single value inside a relational
table. Table 2.4 shows the results of the authentication of a single element in-
side different size authenticated tables, stressing the differences between coarse
grain and fine grain approaches. Tests are about the following measures:

• RAM: the time to validate a value in main memory;

• DB → RAM: the time to load in main memory from a secondary
memory storage system (e.g., a hard disk), the elements necessary to
validation;

• NODES: the numbers of elements loaded from the database in main
memory;

• STEPS: the numbers of elements actually used in the authentication
process, the difference between NODES value and this value shows the
overhead of the elements loaded in main memory.

The results showed above are very similar to those obtained from the au-
thentication of an element not-present in the table. In fact it is sufficient to
check the previous and the next element of the value that is not present to
proof the element lack.

The second test is about the insertion of a single value inside an authen-
ticated relational table. The table 2.5 shows the results of the insertion of a
single element inside different size authenticated tables using only coarse grain
approach. Tests concern the following measures:

• RAM: the time to insert in main memory a value;

i

i

“main” — 2009/2/24 — 0:26 — page 26 — #36 i

i

i

i

i

i

26
CHAPTER 2. AUTHENTICATED RELATIONAL TABLES AND

AUTHENTICATED SKIP LISTS

10, 000 100, 000 1, 000, 000
CHECK Coarse Fine Coarse Fine Coarse Fine

RAM 0 0 0 0 0 0
DB → RAM 36 11 252 42 2680 377

NODES 35 27 44 31 57 43
STEPS 25 27 33 30 39 41

Table 2.4: Test results for validation of an element inside different size tables.
All the results are in ms. Times for fine- and coarse-grained approaches.

• DB → RAM: the time to load in main memory from a secondary
memory storage system (e.g., a hard disk), the elements necessary to
insertion;

• RAM → DB: the time to store in secondary memory the elements
updated in main memory;

INSERT 10, 000 100, 000 1, 000, 000
RAM 0 0 0

DB → RAM 32 260 2605
RAM → DB 14 26 26
Tot. Time 46 286 2631

Table 2.5: Test results for insertion of an element inside a different size tables.
Using coarse grain approach. All results are in ms.

Methods that allow to delete and modify an element inside an authenticated
table are similar to times showed for insertion operation.

The obtained experimental results put in evidence the feasibility of the
approach. In fact, the time for answering a query is comparable to the one
obtained in a non authenticated setting. The fine-grained approach, based on
Celko techniques, shows much better performance with respect to the coarse-
grained one.

i

i

“main” — 2009/2/24 — 0:26 — page 27 — #37 i

i

i

i

i

i

2.6. CONCLUSIONS 27

2.6 Conclusions

We have described methods that allow a user to verify the authenticity and
completeness of simple queries results, even if the database system is not
trusted. The overhead for the user is limited at storing only a single hash
value. Our work is the first to design and evaluate techniques for authenti-
cated skip list that are appropriate to a relational database, and the first to
prove the feasibility of authenticated skip list for integrity of databases.

The security of the presented method is based on the reliability of ADSes.
There are many works [12, 34, 51, 65] in the literature that demonstrate that
the security of ADS is based on the difficulty to find useful collisions in a
cryptographic hash function. So all the security relies on the effectiveness
of hash functions. The prototype used for the experiments uses commutative
hashing. In [34] it is demonstrated that commutative hashing does not augment
the possibility to find a collision in the used hash function.

i

i

“main” — 2009/2/24 — 0:26 — page 28 — #38 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page 29 — #39 i

i

i

i

i

i

Chapter 3

Multi-Column Relational Query
Results Authentication

3.1 Introduction

Advances in networking technologies and continued spread of the Internet
jointly with cost-effective offers have triggered a trend towards outsourcing data
management and information technology needs to external service providers.
Database outsourcing is a known evidence of this trend. The outsourced
database (ODB) users rely on the infrastructure of the provider, which in-
clude hardware, software and manpower, for the storage, maintenance, and
retrieval of their data. That is, a company stores all its data, included confi-
dential information, at an external service provider, that is generally not fully
trusted. The final goal for the user is to use the ODB service as an in-house
database, without taking care of the untrusted server at the provider’s side.
Actually, this approach involves several security issues that range from confi-
dentiality preservation to integrity verification. This chapter studies protocols
for authenticating the integrity of ODB in ways that achieve high security and
efficiency level. Our approach exploits the technique described in [23] that al-
lows the user to have the proof of authenticity of a query result by checking only
a few of elements stored in an authenticated answer with a complexity O(log n)
with n the number of records in the original table. At the best of our knowledge
the existing techniques [23, 12, 68, 82] allow to authenticate one-dimensional
range search queries, that is, ask the database to report those records having
values of a certain field within given bounds. Instead our goal is to design se-

29

i

i

“main” — 2009/2/24 — 0:26 — page 30 — #40 i

i

i

i

i

i

30 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

curity protocol that allows to efficiently authenticate multi-dimensional range
search queries, that is to say, ask the database to report those records having
values on more than one field within given values.

Cod. Student Homework Grade
203 White Anne 02/01/08 A
574 Brown Jake 02/01/08 A
461 Brown Luke 02/04/08 B
530 White Mark NULL C
405 Black Lucy 02/01/08 E
501 Smith Joe NULL NULL
224 Ferley Peter 03/05/08 D
525 Cornwell Sharon NULL NULL
416 Baxter Frank 02/04/08 A
489 Moore Mark NULL NULL

Table 3.1: Scores, the original table with exam results.

An existing approach to solve this problem in one-dimension is to store,
for each relational table R of the user, an extra relational table S(R) (in the
following security table) is a special type of authenticated data structure that
allows to verify the authenticity of R, see as an example table 3.1. A straight-
forward extension to the multi-dimensional case would be to authenticate all
the combinations O(2n) of the n table fields, namely for the table 3.1 it is the
power set of the table fields.

P(Cod., Student,Homework,Grade) =
{{Cod.}, {Student}, {Homework}, {Grade},
{Cod., Student}, {Cod., Homework}, {Cod.,Grade},
{Student, Homework}, {Student,Grade}, {Homework, Grade},
{Cod., Student,Homework}, {Cod., Student,Grade},
{Cod., Homework, Grade}, {Student, Homework,Grade},
{Cod., Student,Homework,Grade}}

Unfortunately, this does not scale-up, and even tables with a few attributes
would be impossible to authenticate. We propose a method and a prototype for
solving the above mentioned problem. Namely, for each dimension (field) of a
relational table R of the user we propose to store only one security table. With
the proposed approach, if the user wants the proof of authenticity of a query
with conditions on different fields of R it is sufficient to check the values of a

i

i

“main” — 2009/2/24 — 0:26 — page 31 — #41 i

i

i

i

i

i

3.2. THE AUTHENTICATION PROBLEM 31

few elements stored in S(R) of just the most selective attribute of the query.
On the other hand, if the user updates R, the variations needed to preserve the
proof of authenticity on the S(R) of each fields can be performed with a strong
parallelism. So we obtain a negligible time overhead in comparison with the one
dimension approach. Further, the authentication mechanism introduced into
this chapter allows to efficiently authenticate join operations. Observe that the
proposed approach is completely independent on the specific adopted DBMS
and can be implemented into an extra software layer or either a plug-in, under
the sole responsibility of the user. The authentication process is managed by
an application external to the DBMS that stores just a secret string of constant
size (O(1) with respect to the size of R). The method does not require trust
in the DB manager or DBMS.

3.2 The Authentication Problem

A professor stores student scores of his course inside a digital table (e.g. re-
lational table, flow chart) hosted in the department computer server. The
professor would like to use this information to record the exam grade for each
student. So, he queries the table and trusts obtained scores as if they came
from the original table. Actually, if you trust the scores as a consequence you
have to trust the entire chain that manages his data, in example: software
used, department network, university technical staff, etc. So each ring of the
chain could be a potential weakness point and we can consider following threats
for exam scores.

• integrity: a rogue student could modify his exam grade in the table
and the professor does not have any tool to realize that the grade is no
longer the same that was on the original table.

• completeness: the professor prints a blacklist with the students that
did not submit the homework properly. So, they can not take the exam.
What happens if he get a list incomplete, probably some rogue students
can take the exam. Unfortunately in this case too he does not have any
tool to check that the table has the same number of elements of the
original one.

• multi dimensional query: the professor wants to check if there are
some mistakes. So he queries the table to verify if there are students that
did not submit the homework properly and that have passed the exam.
In this case too the professor has to check integrity and completeness

i

i

“main” — 2009/2/24 — 0:26 — page 32 — #42 i

i

i

i

i

i

32 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

with conditions that have to be verified on different fields at the same
time.

• join query: the professor normalizes Scores table and obtains two
different tables JScores and Students. He would like to make a phone
call to the students that have received a score less than C. To retrieve
this information he performs a query with a join on both tables and the
condition on the grade field. Also in this case the professor has to check
integrity and completeness of the resulting table because for instance he
can receive a partial number of records from the join.

The goal of our work is to devise a solution for checking the correctness of
query answers on multi-dimensional datasets.
To be more precise, we can use as reference the exam scores table and we can
imagine that the professor performs some queries on it. The professor would
have a validation function that allows to check correctness of the query result,
namely to check if the result is the same that he would obtain performing the
same query on the original table. Original table means a not tampered version
of the table. In the following we show some examples performed on Table 3.1
of how our model works.

• Query 1: The professor obtains the list of exam scores to publish.

SELECT *
FROM scores
WHERE Grade = ’A’ OR Grade = ’B’ OR Grade = ’C’;

In this scenario we have a different result between query performed on the
original table and the same one performed on a tampered table. It is easy
to notice this change by comparing query results, because you know the
result from the original table. In our approach we validate directly query
result: the professor, if the validation process result is affirmative, is sure
that what he publishes are the correct exam scores. So the professor
can notice that student White Mark tampered the exam scores table by
changing his grade from C to A. Further, if another student changes his
grade from E to D the professor does not get any error and that is right
because with query 1 he does not care about the insufficient grades.

• Query 2: The professor obtains the list of students that did not submit
the homework properly.

i

i

“main” — 2009/2/24 — 0:26 — page 33 — #43 i

i

i

i

i

i

3.2. THE AUTHENTICATION PROBLEM 33

[Correct scores list.]

Cod. Student Homework Grade
203 White Anne 02/01/08 A
574 Brown Jake 02/04/08 A
461 Brown Luke 02/04/08 B
530 White Mark NULL C
416 Baxter Frank 02/04/08 A

[Rogue scores list.]

Cod. Student Homework Grade
203 White Anne 02/01/08 A
574 Brown Jake 02/04/08 A
461 Brown Luke 02/04/08 B
530 White Mark NULL A
416 Baxter Frank 02/04/08 A

Table 3.2: integrity problem

SELECT Cod., Student, Homework
FROM scores
WHERE Homework IS NULL ;

[Correct Blacklist.]

Cod. Students Homework
530 White Mark NULL
501 Smith Joe NULL
525 Cornwell Sharon NULL
489 Moore Mark NULL

[Rogue Blacklist.]

Cod. Students Homework
501 Smith Joe NULL
525 Cornwell Sharon NULL
489 Moore Mark NULL

Table 3.3: completeness problem

In this scenario too we have different query results between the original

i

i

“main” — 2009/2/24 — 0:26 — page 34 — #44 i

i

i

i

i

i

34 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

table and tampered one. It is easy to verify this change by comparing
query results, because one record is missing. This query concerns the
completeness checking problem of the result. In our approach we check
directly query result: if the professor does not receive any error is sure
that no record misses in the student blacklist that can not take the exam.
So the professor can notice that student White Mark removed his record
from the blacklist table. Moreover, if there is any change in the grade
field, the professor does not get any error and that is right, because with
query 2 he is not interested in this field.

• Query 3: The professor would like to check if for instance there are
some problems in the last exam scores before to record final scores.

SELECT *
FROM scores
WHERE Homework is NULL and Grade IS NOT NULL;

[Correct Multidimensional Query]
Cod. Student Homework Grade
530 White Mark NULL C

[Rogue Multidimensional Query]
Cod. Student Homework Grade

Table 3.4: multidimensional problem

This example also shows a different query result between the query per-
formed on the original table and the same query performed on a tampered
table. In this case we have conditions on more than one field to verify
at the same time. This is the multi dimension query problem. The pro-
fessor, if does not receive any error, is sure that he can find all existent
inconsistencies (if any). So the professor can notice that student White
Mark cheated at the exam. Besides, this method allows to verify also the
soundness of an empty result.

• Query 4: The professor would like to make a phone call to the students
that have received a score less than C.

i

i

“main” — 2009/2/24 — 0:26 — page 35 — #45 i

i

i

i

i

i

3.2. THE AUTHENTICATION PROBLEM 35

Cod. Homework Grade
203 02/01/08 A
405 02/01/08 E
224 03/05/08 D

Table 3.5: Jscores, the table with exam results.

Cod. Student Phone
203 White Anne 555-123-1234
405 Black Lucy 555-456-2348
224 Ferley Peter 555-768-3457

Table 3.6: Students, the table with student phone number.

SELECT *
FROM Jscores NATURAL JOIN Students
WHERE Grade > ’C’

[Correct Natural Join Table.]
Cod. Student Phone Homework Grade
405 Black Lucy 555-456-2348 02/01/08 E
224 Ferley Peter 555-768-3457 03/05/08 D

[Rogue Natural Join Table.]
Cod. Student Phone Homework Grade
405 Black Lucy 555-456-2348 02/01/08 E

Table 3.7: Join Table, Natural Join Table result between Table 3.6 and Table
3.5.

In this scenario we have different query results because the Natural Join
result between Table 3.6 and Table 3.5 does not work correctly. It is
easy to verify this change by comparing the results in Table 3.7 because
one record is missing. This query concerns the completeness checking

i

i

“main” — 2009/2/24 — 0:26 — page 36 — #46 i

i

i

i

i

i

36 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

problem of the Join result. In our approach we check directly query
result: if the professor does not receive any error is sure that no record
misses in the student blacklist that are not allowed take the exam. So the
professor can notice that student Ferley Peter removed his record from
the join result table.

The model that we describe in this chapter allows to authenticate, beyond
selection, insertion and deletion queries and moreover we developed an algo-
rithm to verify set theory operations on a relational table, namely: union,
intersection and difference. It is also available a method to check authenticity
of max and min of a query result. The well known join operation authentica-
tion takes advantage of this method.

3.3 Architecture

During the technical architecture development we followed the model intro-
duced in [23]. Namely, a user stores data in a relational table R and he would
verify the authenticity of a query result performed on R. The main idea in
[23] is: considering R as a table whose records are sorted by its attribute A, is
possible to create an authenticated skiplist structure, which can be stored in
the same or in a different DBMS, whose purpose is to authenticate records in
R under the condition they are sorted by A. This approach allows to authen-
ticate only mono dimensional queries performed on A. Our approach extend
the previous one to multidimensional queries. Namely, we authenticate the
result of queries with conditions that can be true on every attribute or possible
combination of attributes on R.

Key rowhash Hash 0 k Prv0 rh Prv0 k Nxt0 rh Nxt0

224 h(r7) h(h(224, h(r4)), h(416, h(r9))) 203 h(r1) 416 h(r9)
416 h(r9) h(h(416, h(r9)), f(461, h(r3))) 224 h(r7) 461 h(r3)
461 h(r3) h(h(461, h(r3)), h(489, h(r7))) 416 h(r9) 489 h(r10)

Table 3.8: Skiplist table with rowhash

To solve the problem in a multidimensional environment we add one verti-
cal dimension to ensure completeness and one horizontal dimension to ensure
integrity.

i

i

“main” — 2009/2/24 — 0:26 — page 37 — #47 i

i

i

i

i

i

3.3. ARCHITECTURE 37

• vertical dimension: we introduce it to address the completeness (query
2) check problem for each column of R. A user executes a selection query
on different fields of R. The query result can be checked by using a dif-
ferent authenticated skiplist for each table column. This method stores
each skiplist in a different relational table.

• horizontal dimension: we introduce it to address the integrity (query
1) check problem for each row of R. We can verify the row integrity
using a hash value that we call rowhash. This value is calculated using
the projection technique introduced in [82].

We use two dimensions to authenticate the entire table because they allow
to verify the correctness with granularity of a single element. We introduce
a multidimensional extension of the authenticated skip list, that consists in
storing the rowhash value inside the authenticated skiplist. The new authenti-
cation algorithm stores, for each element v inside a record r, a label computed
accumulating the elements of the set using a commutatively cryptographic hash
function h. That is, h(a, b) = h(b, a), this function obtains the same security
level of standard hash function used (e.g.: md5, sha 1, sha 256, etc.) see
[34] for details. h(r) is the rowhash of the record r. For each element v in-
side a record rv we define label f(v, h(rv)) in terms of the respective values
at nodes w = right(v) and u = down(v). If right(v) = null, then we define
f(v, h(rv)) = 0. The definition of f(v, h(rv)) in the general case depends on
whether u exists or not for this node v.

• u = null, i.e., v is on the base level:

– If w is a tower node, then
f(v, h(rv)) = h(h(elem(v), h(rv)),
h(elem(w), h(rw)))

– If w is a plateau node, then
f(v, h(rv)) = h(h(elem(v), h(rv)), f(w, h(rw))).

• u 6= null, i.e., v is not on the base level:

– If w is a tower node, then f(v, h(rv)) = f(u, h(ru))

– If w is a plateau node, then
f(v, h(rv)) = h(f(u, h(ru)), f(w, h(rw))).

i

i

“main” — 2009/2/24 — 0:26 — page 38 — #48 i

i

i

i

i

i

38 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

Multidimensional extension of authenticated skiplist allows to retrieve the
security information concerning rowhash directly during the verification of the
vertical dimension. That is to say that each element of the table knows the
rowhash of the record it belongs to. See Fig. 3.1

Cod Student Homework Grade

203 White Anne 02/01/08 A

574 Brown Jake 02/01/08 A

461 Brown Luke 02/04/08 B

530 White Mark NULL C

405 Black Lucy 02/01/08 E

501 Smith Joe NULL NULL

224 Ferley Peter 03/05/08 D

525 Cornwell Sharon NULL NULL

416 Baxter Frank 02/04/07 A

489 Monroe Mark NULL NULL489 Monroe Mark NULL NULL

�

Grade
Hash(r1)

Hash(r2)

Hash(r3)

Hash(r4)

Hash(r5)

Hash(r6)

Hash(r7)

Hash(r8)

Hash(r9)

Hash(r10)

�
Hash(r10)

Figure 3.1: A relational table and its security table.

3.4 Our Approach

Our approach exploits the developed architecture described in the previous
section, that is composed by a multidimensional authenticated skiplist stored
in one table like table 3.8 for each column of the original table to authenticate.

i

i

“main” — 2009/2/24 — 0:26 — page 39 — #49 i

i

i

i

i

i

3.4. OUR APPROACH 39

The user obviously can choose which column to authenticate and this does not
change our model. As a consequence he will have to generate only authenticated
structure for selected columns.

The proposed algorithm to execute a multidimensional query Q (on more
than one field at the same time) is composed by four steps, see fig. 3.2.

• STEP 1: factorizing Q to retrieve different queries to apply at each field
individually

• STEP 2: performing concurrently all queries factorized in STEP 1, us-
ing the first result obtained, the fastest one, and stopping all the other
concurrent queries

• STEP 3: creating a view of the entire table filtered using the condition
retrieved in step 2

• STEP 4: calculating the rowhash for each record presents inside the
view in STEP 3 and then checking the completeness of the range query
performed on the field selected in STEP 2

SELECT operation

The first approach for the select operation consists in decomposing a com-
plex multidimensional query in several simpler mono-dimensional queries. The
main table is then queried in parallel. That is, each column returns its query
results, actually a set of records. Each result will be validated with its authen-
tication skiplist column. The intersection among all column results will be the
authenticated select query result. This approach is not only straightforward,
but it is dependent on the slowest query. Further you must interrogate all
authentication skiplists involved in the conditions of the selection query.

To introduce our algorithm we use an example and we suppose to execute
Query 3.

In Step 1 we analyze the query and then we decompose in many queries as
the conditions expressed on each column. We will obtain then two queries:

• Query 3.1:

SELECT *
FROM scores
WHERE Homework IS NULL;

i

i

“main” — 2009/2/24 — 0:26 — page 40 — #50 i

i

i

i

i

i

40 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

Figure 3.2: Multi Dimensional Authentication Algorithm: the four steps algo-
rithm. Step 1 parsing the original query to retrieve queries on individual fields.
Step 2 performing concurrently all queries obtained in STEP 1, using the first
result obtained, the fastest one, and stopping all the other concurrent queries.
Step 3 showing the result of the previous Step in a view. Step 4 calculating the
rowhash for each record presents inside the view in STEP 3 and then checking
the completeness of the range query performed on the field selected in STEP
2.

• Query 3.2:

SELECT *
FROM scores
WHERE Grade IS NOT NULL;

The multidimensional problem is then decomposed in two simpler mono-
dimensional queries. The Step 2 allows the algorithm to individuate the column
where the fastest condition is defined. So the query that has answered in less

i

i

“main” — 2009/2/24 — 0:26 — page 41 — #51 i

i

i

i

i

i

3.4. OUR APPROACH 41

time is detected. The individuated column takes the name of First Column
Returned FCR. Our approach assumes that probably the view with the first
query result returns less records than the others.

Table 3.9 shows that Query 3.1 contains only 4 records, whereas Table 3.10
shows that Query 3.2 has 7 records.

Cod. Student Homework Grade
530 White Mark NULL C
501 Smith Joe NULL NULL
525 Cornwell Sharon NULL NULL
489 Moore Mark NULL NULL

Table 3.9: Step 2 : Resulting Table of query 3.1

Cod. Student Homework Grade
203 White Anne 02/01/07 A
574 Brown Jake 02/01/07 A
461 Brown Luke 02/04/07 B
530 White Mark NULL C
405 Black Lucy 02/01/07 E
224 Ferley Peter 03/05/07 D
416 Baxter Frank 02/04/07 A

Table 3.10: Step 2 : Resulting Table of query 3.2

Step 3 uses the FCR that was found in the previous step. The executed
query on FCR contains an unauthenticated set of records, that is a superset of
the result of the original query Q. Only a subset of them satisfies all the con-
ditions simultaneously. So we must individuate which records will be returned
as result of Q. Then we start from a view of the main table produced by the
query 3.1. At this point you can filter the obtained view (that is already in
main memory) with the other conditions indicated in Q on the other fields of
the table. So two sets are built: the YesSet and NoSet. The first group contains
the YesSet where there are all the records that satisfy the multidimensional
conditions on Q. The second group contains the NoSet where at least one field
does not meet all the conditions on different fields. Further for each record will

i

i

“main” — 2009/2/24 — 0:26 — page 42 — #52 i

i

i

i

i

i

42 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

also calculate the rowhash in order to authenticate the content of the entire
view for each item: (key, rowhash). See table 3.11.

Cod. Student Homework Grade Set Rowhash
530 White Mark NULL C YESset h(r4)
501 Smith Joe NULL NULL NOset h(r6)
525 Cornwell Sharon NULL NULL NOset h(r8)
489 Moore Mark NULL NULL NOset h(r10)

Table 3.11: Step 3 : tuples that result from query 3.1 and 3.2 that belong to
Y ESset. The other are tagged with NOset. Further we calculate the rowhash
for each record.

The advantage of this approach is the possibility to perform concurrent
queries on the scores table (in an unauthenticated way) and then validate it
using only one authenticated skiplist. The Step 4 validates the query result.
The validation uses only the first column skiplist returned. A column is suffi-
cient to validate the entire table, because is possible to verify:

• the integrity for each record of table scores using just a single field of it,
because each node of the authenticated skiplist contains a pair (x, h(rx))
where x is the value in the table field and h(rx) is the rowhash of the
entire record, that is the hash of all the fields belonging to it

• the completeness of the result of Q because we verify the FCR that is a
superset of the final result and then we filter with the conditions on the
other fields

If the validation is successful then the Y esSet shows the result of multidimen-
sional query Q. The result of the query is visible in the table

Join

The join is one of the most problematic relational primitives to authenticate,
the main problem is to authenticate the completeness at the best of our knowl-
edge the only solution available in literature [61] is to perform the Cartesian
product of the entire tables and then to verify that the join result is contained
in it.

To perform an authenticated join between two authenticate tables we use
the merge scan technique [92] that is a standard in modern DBMS because
we exploit the necessary order to maintain an authenticated skiplist. The two

i

i

“main” — 2009/2/24 — 0:26 — page 43 — #53 i

i

i

i

i

i

3.4. OUR APPROACH 43

input tables create two independent processes. Each one of these two processes
authenticate the join table using the algorithm FCR. For instance we use the
Query 4 in section 3.2 that is divided in two sub-queries, one for each table.
We use algorithm FCR.

• SELECT *
FROM Jscore
WHERE Grade > ’C’

• SELECT *
FROM Students

The output of this step are two authentication tables. The join between
two tables authenticate is realized using the mergescan join algorithm. Since
both of these tables are ordered following the join attribute, all the conditions
for the merge scan execution are met.

Figure 3.3: Authenticated Join Algorithm.

Fig. 3.3 shows the comparison process among the elements of the two
tables. During the concurrent scan we compare two tuples searching for pairs

i

i

“main” — 2009/2/24 — 0:26 — page 44 — #54 i

i

i

i

i

i

44 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

that match. The concurrent scan proceeds leaping from a table to the other,
looking for elements equal, in detail you can see the following algorithm.

while (elemA != NULL or elemB != NULL)
{

if (elemA = elemB) {
createJoinTuple(elemA, elemB);
elemA = elemA.next;
elemB = elemB.next;

}
else if(elemA < elemB) {

while(elemA < elemB)
elemA = elemA.next;

}
else {

while(elemB < elemA)
elemB = elemB.next;

}
}
where elemA and elemB are element of the tables.

Set Operations

The Set Operations for this section is considered as operations on different
fields of the same table.

Union

operator is managed as a merge between query results from different conditions
on more fields of the same table. Each condition belongs to a different task,
which can be executed in parallel. Each condition is transformed in a simple
select query so we can exploit the same method showed for the standard select
operation. So we check integrity and completeness for each component of the
union operator and the merge among all yesSet of each condition is the result
set for union. In fact only if all queries finish successful, the integrity will be
guaranteed.

i

i

“main” — 2009/2/24 — 0:26 — page 45 — #55 i

i

i

i

i

i

3.4. OUR APPROACH 45

Intersection

operator is managed as we managed the select operation. Therefore, intersec-
tion between two different condition is the same of a select with two conditions.

Difference

operator is based on the select query process, too. We apply the algorithm
proposed for the select operation directly on the first member of the difference
operation. The output of that operation is the yesSet in which the client can
filter the elements that belong the first condition and does not belong to the
others. We use the same multidimensional authentication algorithm to ensure
integrity and completeness properties.

Algebraic Operations

The proposed algorithm allows to authenticate only algebraic operations that
do not need aggregation and in articular we can verify min or max.

Min and Max

operators can be implemented by our proposed approach by exploiting the
ordered requirement of ADS. Therefore, we can know which is the first element
or the last element in a set of data. ADSes maintain a sorted set of data and
it is possible to use any order, that it is to say if we need to know the first or
last element of a set that is ordered in two different ways we need two different
ordered ADSes. So retrieve min or max element over a range is very easy. We
can distinguish three cases of min or max:

• only one condition on the same attribute of min or max.

• more conditions on the same attribute of min or max.

• more conditions except the attribute of min or max.

The first case can be managed as a simple select query, because there are no
more conditions and the yesSet is already sorted. So we get the first element
for min (the last for max). The second case is analogous to the first case.
There are some conditions, but there is a condition expresses over the column
which belong the min (max) attribute. So, according to the difference operator,
we force FCR: the task with the min condition will be the first task to finish.

i

i

“main” — 2009/2/24 — 0:26 — page 46 — #56 i

i

i

i

i

i

46 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

The related yesSet belongs to this column and then we retrieve first element
for min (last for max). The third case is more complex, it requests two skiplists
to assure integrity an completeness. The result of the select query, will match
the yesSet through the min or max condition and then retrieve the result.
Then this value must be tested on the related skiplist to ensure the integrity
and completeness of this untrusted operation.

Range optimization

To validate a set of data in a contiguous range a straightforward solution is
to validate every set element individually. In this way we do not exploit the
order of the element. In fact we can exploit the authentication semi-path as
for example on elements 6, 12, 13 and 16 in Fig. 3.4.

Figure 3.4: Authentication shared paths. The four elements 6, 12, 13 and 16
are contiguous. So, if we consider them individually we obtain different paths
(the one way arrows) but if we exploit that these elements are contiguous we
can notice that they have several intermediate nodes in common (starting form
element 6 at level S1 we have three paths together).

In details the skiplist element in position v has an authentication path that
arrives up to basis that is at the top level (-∞,S3). See Fig. 3.4. For a
node in position v the authentication path starting from node in position v is
partially overlapped with the path of the node in position v − 1. In a range
of elements starting from position vmin to position vmax, the authentication
path of all elements is completely inside the range, that we call the result
path. We observe that all nodes in the range are partially overlapped with
the path of the greatest node in position vmax. Therefore, the result path is
mainly overlapped with the path of the greatest node in position vmax. The

i

i

“main” — 2009/2/24 — 0:26 — page 47 — #57 i

i

i

i

i

i

3.5. EXPERIMENTAL EVALUATION 47

remaining nodes contribute to the result path, by adding the missing parts.
That is, the authentication path of node in position vmax is the backbone path
and the previous nodes contribute for the semi-paths in the range [vmin, vmax].
Each element in the backbone path we call pivot, for instance, referring to
the fig. 3.4, if the element with label 13 is in position vmax, each element
in its authentication path with label: 13, 6, 3, 2,-∞, is a pivot. In order to
find all semi-paths in the range, we divide the result path in some areas, each
bounded by two pivots, that we locate in the backbone path. See fig. 3.5. Each
area contains elements which are authenticated using the techniques described
below. Our approach exploits the authenticated skiplist as described in [34] in
which any skiplist element authentication path refers to the basis. The main
idea is to define for any pivot a list of new local basis. This list evolves during
each iteration of range algorithm, as we show in Fig. 3.5. For each iteration we
authenticate the first element next to the left basis-list. After authentication
we add this authenticated element in the local basis-list and we continue until
we authenticate the element at the right basis-list. This algorithm allows to
shorten at every step the authentication path of the element to authenticate.

3.5 Experimental Evaluation

Setup

This section shows the experimental results obtained using a prototype imple-
mentation of the techniques presented in the previous sections.
The Hardware architecture where tests have been performed consists of a stan-
dard laptop with following features:

• cpu Intel(R) Core(TM)2 Duo CPU T8100 2.10GHz

• RAM 4 Gb DDR2

• HDD 5,400 rpm Serial ATA

The Software architecture consists of following elements:

• LinuxTM2.6.24-16-generic on UbuntuTM8.04
(hardy) 32bit;

• JavaTMJDK version 1.6.0 update 6

• MySql JDBC Connector Java-bean 5.1.15

i

i

“main” — 2009/2/24 — 0:26 — page 48 — #58 i

i

i

i

i

i

48 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

Figure 3.5: Basis-list update. In the first step the basis-list of the node 3 is the
node 2 at level 1. In the second step the basis-list of the node 4 is the node 3
at level 0. In the third step the basis-list of the node 5 is the node 3 at level 1.
The algorithm stops when we reach the next pivot element 6.

i

i

“main” — 2009/2/24 — 0:26 — page 49 — #59 i

i

i

i

i

i

3.5. EXPERIMENTAL EVALUATION 49

• MySql DBMS version 5.0.45

• NetBeans IDE 6.0 (Build 200711261600)

The JAVA virtual machine was launched with -Xmx1500m parameters, that
is 1,5 Giga Bytes of RAM. Furthermore, all tests used NetBeans during normal
computer operations. For the setup of these experiments we used two different
sets of data.

• The first group is an artificial set of data randomly built. We created
different tables with the number of records that ranges from 10, 000 to
1, 000, 000 of elements and with the numbers of columns that ranges from
1 to 100 fields. To raise the randomness of the tests we decided to rebuild
the entire set of the test table. Also the authenticated data structures
were computed each time starting from a different main table. All the
elements contained into the table have the type string.

• The second group is a set of real data, made freely available online by the
University of Irvine (California) for testing on Data Mining and Machine
Learning [4]. A detailed description of this set is given in section 3.5.

All values presented in this section have been computed as average of the
results of 10 different tests. All times are in milliseconds. All tests show the
clock-wall time.

Case study on artificial data set

In this section we show some example queries to authenticate. We execute on
an artificial random data set. The data type for all data stored on the database
is String (VARCHAR). The results of artificial data set experiments range from
Table 12 to Table 19.

1 10 100
insert 63 439 4373
delete 63 426 5748
select 42 44 60

Table 3.12: Queries performed on a single table element with 10, 000 records
with the columns that range from 1 to 100.

i

i

“main” — 2009/2/24 — 0:26 — page 50 — #60 i

i

i

i

i

i

50 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

10,000 100,000 1,000,000
insert 439 3108 7387
delete 426 3066 7532
select 42 54 65

Table 3.13: Queries performed on a single table element with 10 columns with
the records that range from 10, 000 to 1, 000, 000.

1 10 100
select 556 629 3847

Table 3.14: Queries performed for all elements belonging to a single column to
authenticate the entire table with a variable number of fields. In a table with
10, 000 records and with the fields that range from 1 to 100.

10,000 100,000 1,000,000
select 626 7910 195039

Table 3.15: Queries performed for all elements belonging to a single column
to authenticate the entire table with a variable number of records. In a table
with 10 fields and with the records that range from 10, 000 to 1, 000, 000.

Case Study on Real Data

In this section we propose authenticated queries performed on real data and
no more on artificial data as in the previous section.

This set is publicly available from University of California Irvine, through
the UCI Machine Learning Repository [4]. We have chosen for our test the
Adult Data Set 1. The extraction of the original data was made by Barry
Becker [4] from the 1994 Census database, where he filtered some information
from the database, for instance he removed the record where the age is less
than 16 years. The data contained in the database Adult are divided in two
categories of people who earn more than 50,000$ a year and those who earn

1This database is available at this address http://archive.ics.uci.edu/ml/datasets/

Adult Data are stored in file adult.data

i

i

“main” — 2009/2/24 — 0:26 — page 51 — #61 i

i

i

i

i

i

3.5. EXPERIMENTAL EVALUATION 51

1 10 100
join AUTH 4250 4390 22802

join NOT AUTH 3696 4160 13438
join CART OutMem OutMem OutMem

Table 3.16: Self Join Query to authenticate the table with 10, 000 records and
with the number of columns that ranges from 1 to 100. The line join AUTH
shows the join authentication time. The line join NOT AUTH shows the time
that takes the same query performed with a classic join, without checking value
integrity and completeness in the ADSes structures. The line join CART shows
the join that we implemented as a Cross join (Cartesian product of two tables)
the only other technique available in literature. This type of implementation
is faster than other two type, only with a few element. For a table with only
10, 000 element Join Prod required more than 2,0GB of RAM, so we have an
Out Of Memory Exception thrown by Java virtual machine. We show the gap
between join AUTH and join NOT AUTH is of the same size.

Table A Table B Auth Not Auth
10,000*10 10,000*10 - -

Tuples 976 1833 1315

Table 3.17: We show the gap between join AUTH query and join NOT AUTH
query over two different tables with the same size: 10, 000 records and 10
columns.

Table A Table B Auth Not Auth
100,000*10 100,000*10 - -

Tuples 9425 162897 159675

Table 3.18: We show the gap between join AUTH query and join NOT AUTH
query over two different tables with the same size: 100, 000 records and 10
columns.

less.
The first group of people represents 23.93% of the total, those of the second

i

i

“main” — 2009/2/24 — 0:26 — page 52 — #62 i

i

i

i

i

i

52 CHAPTER 3. MULTI-COLUMN AUTHENTICATION

Table A Table B Auth Not Auth
10,000*10 100,000*10 - -

Tuples 936 38921 24290

Table 3.19: We show the gap between join AUTH query and join NOT AUTH
query over two different table with size: the first has 10, 000 records and 10
columns, the second has 100, 000 records and 10 columns

are the 76.07%. People of both groups have an age that ranges from 17 to 90
years. The table has a size of 15 columns for about 32,000 records.

The fields describe for each person: age, workclass, education, marital-
status, occupation, sex, hours for week, native-country, capital gain, etc.

Query 1

Determine how many young people who earn more than 50k$?

SELECT *
FROM adult
WHERE makemoney = ’>50K’
AND age BETWEEN ’17’ AND ’25’;

returned records 114
involved columns 2

authentication time 1363 ms
records in the view 6411

Query 2

Determine how many young people of “Amer-Indian-Eskimo” race that earn
more than 50k$?

SELECT *
FROM adult
WHERE makemoney = ’>50K’
AND age BETWEEN ’17’ AND ’25’

i

i

“main” — 2009/2/24 — 0:26 — page 53 — #63 i

i

i

i

i

i

3.6. CONCLUSIONS 53

AND race = ’Amer-Indian-Eskimo’;

returned records 2
involved columns 3

authentication time 392 ms
records in the view 311

Query 3

Determine how many men, born in the U.S., earn more than 50k and work in
the private sector?

SELECT *
FROM adult
WHERE makemoney = ’>50K’
AND workclass = ’Private’
AND nativecountry = ’United-States’
AND sex = ’Male’;

returned records 3879
involved columns 4

authentication time 14543 ms
records in the view 7841

3.6 Conclusions

In this chapter we presented an extension of the techniques in [23] to authen-
ticate the integrity and completeness of query results on relational tables with
conditions on different fields at the same time. The method exploits concurrent
processing techniques that allow to bind the complexity to the most selective
field in the query. This approach allows to authenticate efficiently the relational
join operation.

i

i

“main” — 2009/2/24 — 0:26 — page 54 — #64 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page 55 — #65 i

i

i

i

i

i

Chapter 4

Efficient Integrity Checking of
Unstrusted Network Storage

4.1 Introduction

Outsourced storage has become more and more practical in recent years. Users
can now store large amounts of data in multiple servers at a relatively low
price. An important issue for outsourced storage systems is to design an effi-
cient scheme to assure users that their data stored in remote servers has not
been tampered with. This chapter presents a general method and a practical
prototype application for verifying the integrity of files in an untrusted net-
work storage service. The verification process is managed by an application
running in a trusted environment (typically on the client) that stores just one
cryptographic hash value of constant size, corresponding to the “digest” of an
authenticated data structure. The proposed integrity verification service can
work with any storage service since it is transparent to the storage technology
used. Experimental results show that our integrity verification method is effi-
cient and practical for network storage systems. In this chapter, we propose an
efficient and secure technique that allows the client to verify the integrity and
completeness of network storage without having to trust the network storage
system.

Our Contributions

The main contributions of this chapter are the following:

55

i

i

“main” — 2009/2/24 — 0:26 — page 56 — #66 i

i

i

i

i

i

56 CHAPTER 4. NETWORK STORAGE INTEGRITY

1. We propose an architecture for verifying the integrity of untrusted out-
sourced storage. For our method to work, no trust is needed at either
the storage server or the authentication server (see the definitions above).
Our integrity verification service is independent from the storage service
and works with any existing storage technology. Note that our solution
addresses only the problem of integrity checking. Other security services,
e.g., user authentication and data encryption, are orthogonal to and com-
patible with our service and are not addressed in this dissertation.

2. We provide efficient algorithms and protocols (of logarithmic complexity)
for checking the integrity of data stored at an untrusted storage server
using only O(1) space at the client. Namely, suppose that the storage
server keeps a file system with n files. The client can verify the integrity
of a file downloaded from the storage server in O(log n) time. Also, the
client can verify the correctness and completeness of the list of k file
names matching a given path prefix returned by the storage server in
O(k + log n) time.

3. We implement a prototype of our integrity verification system that works
with Amazon’s Simple Storage Service (S3) [1].

4. We present the results of experiments on the performance of our proto-
type, focusing on the communication and processing overhead incurred
on top that of Amazon S3. The experiments show that our system pro-
vides integrity checking while adding minimal overhead to the normal
operations of Amazon S3.

Our architecture has several advantages over many previous methods. Our
system requires only constant amount of storage (a single cryptographic hash
value) on the client side, irrespective of the amount of outsourced data. In-
tegrity checking is achieved efficiently, with virtually no observable overhead
for file systems with hundreds of thousands of files. We maintain authenti-
cation information using an authenticated skip list (see Section 1.3), which
supports simple and fast updates. Unlike some of the previous approaches, the
security of our scheme is independent from probabilistic assumptions about
the extent of data corruption. Instead, our system is as secure as the crypto-
graphic hash function used. We do not assume that any component of either
the storage server or the authentication server is trusted, therefore any attack
on either server will be detected, even if the two collude in an attack. Thus,
the authentication server itself can be an outsourced computational resource.

i

i

“main” — 2009/2/24 — 0:26 — page 57 — #67 i

i

i

i

i

i

4.2. OUR APPROACH 57

Another major characteristic of our architecture is that it operates in the
single-client setting, unlike other approaches such as SUNDR [55] which sup-
ports an authenticated file system in a multi-client setting, but achieves a
weaker notion of consistency. This form of consistency is called fork-consistency
and disallows anything more than the forking attack, where two clients can have
a different view of the file system. In our case, full consistency of the file system
in a multi-client setting can be provided either by serializing operations from
different clients through a common trusted client (e.g., this can be the kernel
of the file system), or by requiring each client to communicate its fresh state to
all other clients after an update. The latter approach requires additional Ω(c)
communication for c clients.

Our model also differs from data retrievability models such as PDP [5] in
a number of ways. Our goal is not to detect corruption of data stored on
the server, but to verify that the server’s responses to the client’s queries are
consistent with the updates that the client has performed in the past. Thus,
integrity checks are performed only when a file or list of files is requested from
the storage server. The full response can then be used to verify integrity.
Also, we do not require the client to keep any secret information such as a
private key, an important distinction in situations where users would like to
collaborate without fully trusting each other. Additionally, we are able to verify
the completeness and correctness of lists returned from the server as well as
the data itself. Finally, no cooperation between the client and storage server
beyond the normal, unauthenticated case, is necessary. As a consequence, our
integrity checking system can sit on top any existing storage service without
the knowledge and cooperation of the storage server.

4.2 Our Approach

We present a method that allows the client to manage and verify the integrity
of content hosted on a remote storage server. Our method uses only a small,
constant amount of storage on the client’s computer, while the rest of the data
needed for integrity checking is hosted on a separate authentication server
(see Figure 4.1). Our technique assumes that both the storage server and the
authentication server are untrusted. We can detect any data corruption on
either server, even if the two cooperate in an attack. Our authentication server
stores authentication information in an authenticated skip list, a data structure
described in Section 1.3 that supports efficient updates and queries.

i

i

“main” — 2009/2/24 — 0:26 — page 58 — #68 i

i

i

i

i

i

58 CHAPTER 4. NETWORK STORAGE INTEGRITY

Client

Authentication

Server

Storage

Server

Client Side Server Side

38664e34f94f94375882791e78

Basis

Figure 4.1: Reference model: The client stores only one hash value (the basis)
to verify the integrity of all content on the network storage system.

Problem Definition

The problem we address involves two parties: an untrusted server component
consisting of the storage and authentication servers, and a client. Even if the
standard user identification scheme (Kerberos, for example) used by the stor-
age server protects the client’s data from outside attackers, there is still the
possibility of a threat from an attacker within the storage server, for example
from someone that has unrestricted access to the client’s authentication infor-
mation and account. How can the client be assured that his data will not be
tampered with? We need to be able to detect such tampering in the following
cases:

• The client requests a list of all of the objects with a given prefix that have
been stored in the server, and the response is incomplete or incorrect.

• The client downloads an object from the untrusted storage server, and
the content of that object has changed since the client uploaded it.

As an artifact of our architecture, we additionally must detect the case where
an operation requiring authentication is performed (a list, download, upload,
or deletion) and the portion of the data stored on the authentication server
that is needed to authenticate the operation has been corrupted.

i

i

“main” — 2009/2/24 — 0:26 — page 59 — #69 i

i

i

i

i

i

4.2. OUR APPROACH 59

General Architecture

We have designed a general object-oriented software architecture for authenti-
cated network storage services and we have implemented it in Java. A high-level
view of the software architecture is shown in Figure 2.1. In our architecture,
there are three entities, the first two of which reside on the server side, and the
last of which resides on the client side:

• The storage server, which can be any storage service available online.
The storage server is untrusted.

• The authentication server, which manages all of the authentication infor-
mation. We run software on this server which is capable of building and
maintaining an authenticated skip list structure in response to update
requests received from the client, as well as responding to the client’s
queries about the integrity of outsourced data with proofs of authenticity
or corruption. A proof consists of an ordered collection of hashes (a hash
chain) and some information about the structure of the authenticated
skip list. The authentication server is also untrusted.

• The client, who can query both the storage and authentication servers
remotely and verifies the answers given to it. Verification is achieved
through comparisons to a hash value stored by the client, the basis of the
authenticated skip list on the authentication server. This hash (along
with the software itself) is the only data which must be stored on the
client, and it has constant size dependent only on the cryptographic hash
function used. We assume that data stored, and operations performed
on the client are entirely trusted, and as this hash value is computed and
stored directly by the user when he performs an update, it is trusted.
In fact, it is the only trusted value in the entire proposed solution. We
run software on the client that makes use of the authentication server
to authenticate the client’s queries to the storage server. It is worth
noting that in the most general case, this authentication software will
simply provide an interface that any unauthenticated system can plug in
to. Such an API has not been implemented as of now, however, and the
implementation presented in this section is more specific to the particular
storage service used.

To illustrate how this architecture functions, we describe the sequences
of actions triggered by some common user requests. Suppose that a user

i

i

“main” — 2009/2/24 — 0:26 — page 60 — #70 i

i

i

i

i

i

60 CHAPTER 4. NETWORK STORAGE INTEGRITY

would like to store a file in the storage server and wants to authenticate
the PUT operation (see Figure 4.2). The following steps are performed:

1. The user selects the file to upload

2. Our client side software sends two different update queries, one to
the storage server and the other to the authentication server.

– The storage server query adds the user’s file to the server.
– The authentication server query, which contains the hash of

the file, updates the authenticated skip list on the server and
retrieves a proof which allows the client to compute the correct
new basis.

At a later time, the user would like to retrieve the file and wants to
authenticate the GET operation (see Figure 4.3). Then the following
steps are performed:

1. The user selects the file to download.

2. Our client side software sends two different queries, one to the stor-
age server and the other to the authentication server.

– The storage server query retrieves the user’s file.
– The authentication server query retrieves the proof of integrity

3. When the client receives both answers, it can verify the integrity of
the file (see more details in the next section).

Algorithms and Complexity

In this section we describe the technical details of our architecture. Suppose
a client stores n files (in fact, keyed data blocks of any size can be used) in a
storage server, and maintains a corresponding authenticated skip list structure
(refer to Section 1.3) at an authentication server. For each file in the storage
server (ki, fi), a tuple (ki, h(fi)) is stored in the skip list, where ki is the key
(name) of the file with content fi, and h(fi) is a cryptographic hash of fi.
The storage server and the authentication server are synchronized so that they
contain the same elements. The basis of the authenticated skip list is stored
locally by the client. The client now can issue four main operations which we
describe and analyze below. For each of these operations, the main measures
of complexity that we are interested in are the following:

i

i

“main” — 2009/2/24 — 0:26 — page 61 — #71 i

i

i

i

i

i

4.2. OUR APPROACH 61

USER

Auth_Put(x) Put(Obj(x))

Test
Basis

Update
Basis

Proof adjacents

Storage
Server

Authentication
Server

Figure 4.2: Authenticated PUT for a file with key = x.

Authentication
Server USER Storage

Server

Auth_Get(x)

Get_Proof()

Obj (x)

Get(Obj(x))

Test
Basis

H(Obj)

H(Proof())

Figure 4.3: Authenticated GET for a file with key = x.

1. Query Complexity. The time needed for the authentication server to
construct the proof in response to a query (either a GET or a LIST or a
PUT or a DELETE query).

2. Verification Complexity. The time needed for the client to process
the proof in order either to verify a GET or LIST query or to update the

i

i

“main” — 2009/2/24 — 0:26 — page 62 — #72 i

i

i

i

i

i

62 CHAPTER 4. NETWORK STORAGE INTEGRITY

basis after a PUT or a DELETE query.

3. Update Complexity. The time needed for the authentication server
to perform an update (either an authenticated PUT or an authenticated
DELETE).

4. Communication Complexity. The size of the proof (previously re-
ferred to as p or p′) that must be sent over the network in response to a
query.

5. Hashing Complexity. The number of hash computations executed
during a verification or an update.

Authenticated PUT(k, f) The client wants to upload to the storage server
a file f named k. He sends the request to both servers. The authentication
server adds a new entry k associated with the element h(f). At that point it
also sends a proof p′ back to the client (see Figure 4.2). In this case p′ contains
information that allows the client to compute the new basis. Referring to
Figure 1.4, one can see that if we insert a node with k = ”D”, the only nodes
in the skip list whose hash values will change are the rounded ones - the search
path for k. To recompute the hash values of these nodes, we need only the
hash values of the nodes bordering this search path (nodes whose arrows end
at a shaded node), therefore, the proof will contain those hash values. The
length of the search path is log n with high probability (w.h.p). It follows that
the complexity of this operation in all five of the above categories is O(log n)
with high probability. Before computing the new basis, the client validates the
proof against the current basis. In this way the client is assured that the new
basis he computes is correct.

Authenticated DELETE(k) The client wants to delete a file from the storage
server with name k. This procedure is similar to the procedure PUT(k, f). The
complexity of this operation is also O(log n) with high probability.

Authenticated GET(k) The client wants to retrieve from the storage server
the file contents of the file with name k. The hash of the file h(f) is stored at
a leaf of the authenticated skip list on the authentication server. The client
makes a query to the authentication server that returns h(f) along with a proof
of the integrity of h(f). Once again, this proof consists of information from the
nodes bordering the search path, so the complexity of the operation in each of

i

i

“main” — 2009/2/24 — 0:26 — page 63 — #73 i

i

i

i

i

i

4.2. OUR APPROACH 63

the applicable categories is also O(log n) with high probability. The proof can
be verified against the client’s stored basis, and if the verification succeeds, the
client can check to see that the hash of the file received from the storage server
equals h(f) (see Figure 4.3).

Authenticated LIST(prefix) The client wants to retrieve the names (but not
the contents) of all the files whose name begins with prefix. We have developed
a method for efficiently authenticating a list of k elements taken from a server
containing n elements. We obtain a proof from the authentication server that
includes the hashes of each of the k elements (the list body), and parts of
the proofs for GET operations performed on the prefix and the last list body
element (see Figure 1.4). Additionally, the proof contains the heights of the
towers associated with each of the above nodes. We will show that the query
and communication, hashing, and verification complexity of this operation is
O(k + log n) with high probability.

To determine the construction time, we assume that the only time-relevant
operation is a comparison, and that this operation takes O(1) time. Referring
to Figure 1.4, one can see that the proof for a LIST operation includes elements
from the proofs for GET operations on the prefix and the last element in the
list. The number of comparisons performed on the server for a GET operation
is O(log n) (the height of the skip list). Additionally, the proof contains in-
formation about each of the k elements making up the body of the list. The
query we make for the list body portion of the proof has two steps. First we
search for the prefix - this is O(log n) as well. Second, we move to the right
until we reach the end of the list - an additional O(k) comparisons. Summing
all of the portions of the proof construction process, we see that the number of
comparisons (the query time for LIST operation) is O(k + log n). As a result,
the size of the proof must also be O(k+log n), since the size of the proof cannot
exceed the number of elements considered during its construction.

After the proof for a LIST query has been built and sent to the client, the
client has to run a verification algorithm in order to recompute the basis (which
he maintains locally) from the proof. We start with a pointer to the rightmost
proof element and and maintain a stack S of proof elements as we proceed to
the left. While the height of the current proof element is greater than or equal
to that of the stack top, we pop the stack top and absorb its hash value into the
current element using a commutative cryptographic hash function. Otherwise,
we push the current element onto S, and move the pointer to the left. This
verification algorithm processes a proof of size O(k + log n), and one can see

i

i

“main” — 2009/2/24 — 0:26 — page 64 — #74 i

i

i

i

i

i

64 CHAPTER 4. NETWORK STORAGE INTEGRITY

that each element of the proof is passed in to the hash function exactly once.
Since the computation of the hash function takes O(1) time, it follows that the
verification algorithm takes time O(k + log n).

Security

Our service provides protection against a wide range of attacks. An attacker
may gain access to our storage server and damage or delete some of our files, or
gain access to our authentication server and alter some authentication data, or
do both simultaneously in order to try to deceive the client. An attacker may
also intercept network communication from the client to one or both servers
and change the message contents. The computations performed on the au-
thentication server to update the authenticated skip list may also be controlled
by an attacker, resulting in corrupted authentication information. In this sec-
tion we will show that as long as the client itself is not compromised and the
attacker is computationally bounded, the probability that any attack on the
untrusted portion of the service will not be detected is negligible (see definition
of negligible function below).

Here we give a definition of security for our protocol. We recall that a
negligible function ν(k) is a function that decreases faster than any inverse
polynomial p(k) as k increases (k is the security parameter, in our case the
length of the output of the collision-resistance/cryptographic hash function we
use). We also recall that for the specific cryptographic primitive we use, i.e.,
the collision-resistant hash function, the probability that a computationally
bounded adversary can find a collision is ν(k).

Definition 1 (Security) Given a storage server S, an authentication server
A and a client C that stores n files on S, we say that an integrity checking
protocol is secure if:

• For a file f ′ named x stored in S, the probability is negligible that after
a GET(x) query, A computes a proof p and S sends f ′ such that (p, f ′)
passes the verification test, when in fact, the data in f is corrupted.

• For a list Y ′ of names with prefix y of files stored in S, the probability is
negligible that after a LIST(y) query, A computes a proof p and S sends
Y ′ such that (p, Y ′) passes the verification test, when in fact, Y ′ is either
incorrect or incomplete.

We can now prove that our protocol is secure according to Definition 1.
Suppose in the beginning (when the data structure contains one element, for

i

i

“main” — 2009/2/24 — 0:26 — page 65 — #75 i

i

i

i

i

i

4.2. OUR APPROACH 65

example) the client possesses the correct basis. Suppose he issues a GET(x)
query. The server needs to hide the fact that it has tampered with the data
of the file named x. In order for the server to do that, it must either find
another file f ′ that has the same hash as the original file and send the correct
hash and the incorrect file, or find another hash (for the incorrect file f ′) that
will produce the same basis if included in the hashing scheme of the skip list.
Neither task can be accomplished with non-negligible probability since both
require finding a collision in a collision resistant hash function - in the former
case, the function used to store the files in the leaves of the skip list, and in
the latter case, the function used for the hashing scheme within the skip list.
This argument can be applied for the LIST query as well.

However, the above is true only if the client always maintains the correct
basis, even after updates take place. Indeed, for every update (either PUT or
DELETE) the client runs an algorithm that takes as input the proof p′ created
by the authentication server, some necessary structural information which is
included in the hashing scheme, and the existing basis, and outputs the new
basis corresponding to the correct authenticated data structure after the update
has taken place (See Figure 4.2). This technique ensures that the basis stored
by the client is equal to the hash of the head node of the correct authenticated
skip list at all times. One important result is that if an attack is made on the
authentication server, altering the skip list stored there, the client will know,
because the client’s basis corresponds to the correct skip list, and the one on
the server is now incorrect. This and other practical examples of attacks are
discussed below.

Unlike some other security schemes that detect data corruption with some
variable uncertainty [5], which basically solve a different problem, our ap-
proach guarantees that such corruption will always be detected (negligible
uncertainty). We accomplish this high level of security by maintaining the
correct basis on the only trusted component of the system, the client. When
an update is made and the basis needs to be changed, all of the relevant compu-
tations are also performed on the client, and their correctness is verified against
the old basis. In this way, we ensure that the basis will be updated correctly
on the client, even if update operation on the server is compromised by an
attacker. The possession of this basis allows us to protect against all of the
types of attacks mentioned earlier. Even if there is some malicious cooperation
between the authentication and storage servers, the attack will be detected -
either the proof provided by the authentication server will not agree with the
data from the storage server, or it will not agree with the trusted basis on the
client, and in either case the client will know there is a problem. Also, note

i

i

“main” — 2009/2/24 — 0:26 — page 66 — #76 i

i

i

i

i

i

66 CHAPTER 4. NETWORK STORAGE INTEGRITY

that from the client’s perspective the cases for which an attacker intercepts and
alters network traffic between client and server are identical to those for which
the actual data stored on the servers is altered, therefore our security model is
equally adept at detecting them. It is worth pointing out that once we detect
an attack, we will not always be able to determine which portion of the system
was attacked. If an attacker manages to alter some data on the authentication
server, the server may not be able to provide a correct proof of integrity to
the client, and the client will be unable to determine whether or not an attack
on the storage server has occurred as well. For clarity, we summarize these
concepts by distinguishing the following cases:

1. No attack is made on either the authentication or storage servers. Result:
The client can verify that integrity is preserved.

2. An attack is made on the storage server, but not the authentication
server. Result: the attack is detected, and the client determines that the
integrity of the data on the storage server has been compromised.

3. An attack is made on the authentication server. Result: the attack is
detected, but it may not be possible for the client to determine whether
or not the data on the storage server has been corrupted as well.

From a practical perspective, we view the authentication server and the storage
server as a single untrusted entity, and although it would be useful to be able
to determine the status of the data on the storage server even if the authenti-
cation server has been attacked, the only crucial point is that the probability
that any attack on the untrusted portion of the service will not be detected
is negligible. The only practical disadvantage of separating the untrusted au-
thentication and storage components is two servers instead of one are exposed
to attacks. The security of the servers themselves, however, is a topic outside
the scope of this work.

Based on the efficiency of the skip list data structure (main operations run
in expected time O(log n) with high probability (w.h.p)), the results for the
LIST implementation we derived before, and the proof of security above, we
can summarize the main complexity and security results of this section:

Theorem 1 Assume the existence of a collision-resistant hash function. The
presented protocol for checking the integrity of n files that reside on the storage
server supports authenticated updates PUT() and DELETE() and authenticated
queries GET() and LIST() and has the following properties:

i

i

“main” — 2009/2/24 — 0:26 — page 67 — #77 i

i

i

i

i

i

4.3. IMPLEMENTATION 67

1. The protocol is secure according to Definition 1;

2. The expected running time, communication complexity and hashing com-
plexity of PUT(), DELETE() and GET() is O(log n) at the server and at
the client with high probability;

3. The expected running time, communication complexity and hashing com-
plexity of LIST() is O(k + log n) at the server and at the client with high
probability, where k is the size of the returned list;

4. The client uses space O(1); and

5. The server uses expected space O(n) with high probability.

Taking into account constant factors (see the definitions in [100]), the commu-
nication and hashing complexity can be shown to have an upper bound with
high probability of 1.5 log n.

4.3 Implementation

To validate our software architecture for online storage authentication, we have
implemented a prototype of an authenticated network storage service. Our pro-
totype utilizes three pre-existing services/applications: Amazon Simple Storage
Service is the untrusted data storage server, Amazon Elastic Compute Cloud
provides our untrusted authentication server, and the prototype is built on
top of an existing open source project called Jets3t Cockpit. In this section,
we present some details about these three components, and then proceed to
discuss the architecture of our implementation.

Amazon S3 and EC2

Amazon Simple Storage Service (S3) is a scalable, pay-per-use online storage
service. Clients can store a virtually unlimited amount of data, paying for only
the storage space and bandwidth that they use, with no initial start-up fee. The
basic data unit in S3 is an object. Objects contain both data and meta-data.
Only the meta-data portion is used by S3. The basic container for objects in
S3 is called a bucket. Buckets are flat, as opposed to hierarchical; they cannot
contain other buckets, only data in the form of objects. Each bucket in S3 has
a unique name, and each object has a key that identifies the object within its
bucket. A single object has a size limit of 5 GB, but there is no limit on the

i

i

“main” — 2009/2/24 — 0:26 — page 68 — #78 i

i

i

i

i

i

68 CHAPTER 4. NETWORK STORAGE INTEGRITY

number of objects per bucket. Each client is limited to 100 buckets. Despite the
flat storage scheme, it is possible to simulate hierarchical relationships through
either special naming conventions (use of ”/” or ”.” to denote directories) or
use of customized object meta-data (pointers to associated files, for example).
S3 supports both SOAP and REST requests.

Amazon Elastic Compute Cloud (EC2) is a pay-per-use service that pro-
vides online computing resources. A client can start a virtual machine (in-
stance) on EC2 using any complete image of a machine. EC2 makes a number
of public images available for running servers, database management systems,
development environments, and so on. Clients can also run customized images.

Jets3t Cockpit

Cockpit is a subset of the open source project Jets3t. It is written in Java.
It provides a graphical front-end for managing content stored on S3. The
original functionality of Cockpit included support for LIST (with the option
of specifying a prefix and/or delimiter) and download (GET) queries, as well
as upload (PUT) and delete (DELETE) operations. Additionally, the software
provides optional encryption of uploaded data and more advanced features such
as generation of public URLs that allow general access to a bucket in S3 for a
limited time [2].

Software Architecture

We have added integrity checking to the four basic operations of Amazon S3:
the LIST, GET, PUT and DELETE. Note that these four operations form the
core of any storage service. When the client triggers one of these operations,
a new call is made in parallel with the original call to S3 (which is left un-
changed), to an integrity checker that talks to EC2, where our authentication
server resides (see Figure 4.4). The GUI of Cockpit has been modified to
accommodate the additional authentication information.

An abstract class IntegrityChecker (see Figure 4.5) provides the template
for any integrity-checking service. It specifies four abstract methods, corre-
sponding to the authentication of LIST, GET, PUT and DELETE operations,
which must be implemented by any child class. Currently, the only implement-
ing class is STMSIntegrityService, which delegates the authentication tasks to
a service that stores and retrieves authentication data in main memory on an
EC2 instance through Java Remote Method Invocation (RMI). Another ser-
vice based on a database management system (DBMS) is in development and

i

i

“main” — 2009/2/24 — 0:26 — page 69 — #79 i

i

i

i

i

i

4.3. IMPLEMENTATION 69�� ��� �� � �� � �
	
� �
 �� �� � � �� �� �� � ��� �� �� ��� � � � �� �� �� � � � �� � � ! "#$%&'

�() *+ ,-.+ +/ 01 - 23 4 , - 5� 6 2) * 2 4�7 �� � 89: 9 �;<
� � � � �� ��� � � � �� �� � � � �� ��� � � � �� �

! " # = &> ? @ # A %BCD & "E F %G D @ & F H= &> $B "E @ G' # I G $G' J G'
Figure 4.4: Software interaction architecture.

will provide identical functionality, though performance will undoubtedly dif-
fer. In fact, any integrity-checking service that can authenticate those four
basic operations can easily plug-in to our prototype simply by extending In-
tegrityChecker. Information is passed between the GUI application and the
integrity checker through objects implementing the Authenticatable (see Figure
4.5) interface. Implementing classes must be able to store and provide informa-
tion about the authentication state of their objects’ contents, as well as their
objects’ presence in a list.

While the authentication times for the four main operations are not in-
significant compared to the time to complete the unauthenticated versions of
these operations, the practical authentication time overhead depends to a large
extent on the level of parallelism utilized in the implementation. To this effect,
the authentication algorithms used in this prototype allow the network queries
and computational operations for authentication to be conducted at the same
time that data is being retrieved from S3. The approach to parallelization
differs for each of the four operations:

The PUT and DELETE operations An important distinction to make with
respect to operations that update, rather than retrieve information, is that a

i

i

“main” — 2009/2/24 — 0:26 — page 70 — #80 i

i

i

i

i

i

70 CHAPTER 4. NETWORK STORAGE INTEGRITY

public abstract class IntegrityChecker
/** gets the authenticated hash of the contents of the object with the given key.
* return a String, the correct hash, or null, if the proof returned from EC2 is incorrect. */

protected abstract String getAuthenticatedFileHash(String key);
/** retrieves from EC2 the correct results of a list operation with the given prefix,
* starting point priorLastKey, and ending point lastKey.
* return the correct listing. */

protected abstract String[] getAuthenticatedList(String prefix, String priorLastKey, String lastKey);
/** checks the integrity of the elements adjacent to the object with the given key
* and digest, updates EC2 to include that object’s information, and stores the new basis. 10

* return true if the the correctness of the new basis is assured, false otherwise. */
protected abstract boolean performPutUpdate(String key, String fileDigest);
/** checks the integrity of the elements adjacent to the object with the given key
* updates EC2 to remove that object’s information, and stores the new basis.
* return true if the the correctness of the new basis is assured, false otherwise. */

protected abstract boolean performDeleteUpdate(String key);
}

public interface Authenticatable extends Comparable<Authenticatable>
/** return an integer which should indicate the authentication state of this object’s content, 20

* namely whether its integrity is intact, corrupted, or unchecked. */
public int getContentAuthenticationStatus();
/** sets the authentication state of this object’s content.*/
public void setContentAuthenticationStatus(int status);
/** return an integer which should indicate the authentication state of this object’s presence
* in a list. If the object is present in the list, this state should indicate whether or
* not its presence is authorized, and if it is not present, should indicate whether or not it should be. */

public int getPresenceAuthenticationStatus();
/** sets the authentication state of this object’s presence. */
public void setPresenceAuthenticationStatus(int status); 30

/** return the string that is the name of the file or object that will be/has been authenticated. */
public String getKey();
/** sets the string that is the name of the file or object that will be/has been authenticated. */
public void setKey(String key);

}

Figure 4.5: IntegrityChecker abstract class and Authenticatable interface.

i

i

“main” — 2009/2/24 — 0:26 — page 71 — #81 i

i

i

i

i

i

4.3. IMPLEMENTATION 71

positive authentication result does not guarantee that the state of the relevant
files on the storage server is correct. Rather, the only guarantee is that the
updated basis stored on the client corresponds to the authenticated data struc-
ture in the correct updated state. In other words, to actually authenticate the
contents or presence of files on the storage server, the client must make either
a GET or a LIST query, respectively. The function of the authenticated update
operations is simply to be sure that the stored basis is correct. The update
of the storage server and the update of the authentication server are entirely
separate. This fact means that it is easy to conduct both updates in parallel,
simply by sending the two network requests at the same time. No comparison
of results is necessary in this case.

The GET operation There are two components of the authenticated GET
operation that could potentially introduce a noticeable overhead. Our first
concern is that the client requests a download of a very large file (1+ GB),
in which case simply computing the hash of the file’s contents after the down-
load is complete will take a considerable amount of time. To overcome this
difficulty we do not wait for the entire file to be downloaded. The hash of the
file is computed in pieces while the file is being downloaded, a process which
effectively does not add any authentication overhead. Our second concern is
that retrieving a proof for a GET operation from the authentication server
may, again, take a significant amount of time. Therefore, rather than waiting
for a file downloaded from S3 to be available, and subsequently computing
its hash value and proving its correctness, we retrieve the correct hash of the
given file from the integrity checker while the file is being downloaded from S3.
When this approach is combined with the hashing scheme described above,
the only work left to do after the download is complete (and theoretically the
only operation contributing to the time overhead) is a simple comparison of
the calculated hash and the one retrieved from the integrity checker.

The LIST operation For the LIST operation, rather than waiting for the
results to be returned from the storage server and then authenticating them
with the integrity checker, we request from the integrity checker the list that is
guaranteed to be correct, and make a parallel request for the unauthenticated
list. Once again, all that is left to do is compare the two lists and keep track
of any discrepancies.

In this case, however, there is the additional difficulty that lists may be
very large. If we attempt to download authenticated and unauthenticated

i

i

“main” — 2009/2/24 — 0:26 — page 72 — #82 i

i

i

i

i

i

72 CHAPTER 4. NETWORK STORAGE INTEGRITY

lists tens of thousands of elements long, we must wait a considerable amount
of time before we can even begin the comparison. In the interest of giving
the client more immediate feedback, we retrieve both the authenticated and
unauthenticated lists in smaller blocks of 1,000 elements. This approach slightly
increases the total time to perform large LIST operations, but gives more regular
feedback, and eliminates the possibility that we run out of memory maintaining
information on tens of thousands of files.

4.4 Experiments

In this section, we present preliminary experiments conducted with Amazon
S3 and EC2. We show that the time overhead that is added due to the au-
thentication service is negligible. We also demonstrate the scalability of our
service.

��������
������ 	
� �

��� ��

����� ���������� � ���! ��� ��"��#��� �� ��$ �$%� ��#��� �� ��$ &'�� � ���()*+,-./*-01+-/23,-./*-01+-/2 4 567-8 39:3,-./*-01+-/2 4 ��;��� 0* 39:3,-./*-01+-/2 4 <�;��� 0* 39:
� =,- >/- ?0@- AB/C 3DEFG0-.6H 9/D/-/

Figure 4.6: Comparison of non-authenticated and authenticated GET, LIST,
PUT, and DELETE operations performed on a workload of 1,000 1K files, and
with n = 0, 40,000, and 80,000, averaging over 50 trials. Our new, efficient
LIST implementation is used.

i

i

“main” — 2009/2/24 — 0:26 — page 73 — #83 i

i

i

i

i

i

4.4. EXPERIMENTS 73

Setup

We have implemented the authentication service in Java 1.5. Since we were
not able to run the client on the same machine for all of the tests, two different
machines were used. Machine 1 runs Linux, has 2G RAM, and an AMD Athlon
X2 Dual Core 3800+ Processor. Machine 2 runs Windows XP, has 2G RAM
and 2.16 GHz Intel Core Duo processor. The authentication server runs on a
virtual machine (hosted by EC2) equivalent to a computer with a 1.0-1.2 GHz
2007 Opteron or 2007 Xeon processor, 1.7 GB of RAM, 160 GB of disk space,
and 250 MB/sec of network bandwidth. The ping time from the client to the
server on EC2 is roughly 13.72 ms for machine 1, and 40.25 ms for machine
2 (average of 10 trials). We denote with n the number of elements in the
authentication and storage servers. We define the workload of the experiments
to be the number of files whose content and/or authentication data is requested
by the client, denoted with k, together with the size of the files when their
content is requested. When reviewing these results, we must keep in mind that
the vast majority of the run time is attributed to network communication,
making them highly susceptible to variations in network speed.

Overhead Experiments

Figures 4.6 and 4.7 show the overhead added to the GET, LIST, PUT, and
DELETE operations by our authentication service. We compare the comple-
tion times of the four unauthenticated operations with with those of the four
authenticated operations as we vary n. The workload is 1,000 1K files. Figure
4.6 displays the results of the test when run on machine 1. To demonstrate
the efficiency of our LIST algorithm, we ran the same test on machine 2 using
an older LIST implementation, the results of which are displayed in Figure 4.7.
The procedure used to obtain the data in these figures was as follows: begin-
ning with the original, unauthenticated version of Cockpit, a few lines of code
were added to log the system time at the beginning and the end of each oper-
ation. A workload of 1,000 files of size 1K was uploaded to S3, a list of those
elements was requested, the files were downloaded, and finally, the files were
deleted. These PUT, LIST, GET and DELETE operations leave our S3 space in
its original state, and we obtain the unauthenticated times for each operation.
We repeat until we have the desired number of trials. Next, we run through the
same procedure using our authenticated Cockpit, beginning with an empty au-
thentication and storage servers. To show some degree of scalability, we repeat
again with different values of n. The results in shown in Figures 4.6 and 4.7

i

i

“main” — 2009/2/24 — 0:26 — page 74 — #84 i

i

i

i

i

i

74 CHAPTER 4. NETWORK STORAGE INTEGRITY

��������
������ 	
� �

��� ��

������� �������� � ���! ��� ��"��#��� �� ��$ �$%� �#��� �� ��$ &'� � � ���()*+,-./*-01+-/23,-./*-01+-/2 4 567-8 39:3,-./*-01+-/2 4 ��;��� 0* 39:3,-./*-01+-/2 4 <�;��� 0* 39:
��� =,- >/- ?0@- ABC2 3CDEF0-.6G 9/C/-/

Figure 4.7: Comparison of non-authenticated and authenticated GET, LIST,
PUT, and DELETE operations performed on a workload of 1,000 1K files, and
with n = 0, 50,000, and 90,000, averaging over 50 trials. An old, LIST imple-
mentation is used.

indicate that the time to execute the authenticated operations PUT, GET and
DELETE differs by less than two seconds in each case from the time to execute
the non-authenticated operations. Because of the uncertainty introduced by
varying network conditions, it is difficult to say how much the authentication
process contributes to the total operation time. As evidence, the authenticated
time for many of the operations is actually smaller than the unauthenticated
time, a result which can only be explained by variations in communication
speeds. We can therefore say that within the precision range of our experi-
ments, there is no time overhead for these operations. These results are a first
indication that our service scales well (a topic that we will discuss further in
Section 4.4). We would also like to highlight the improved efficiency of the LIST
operation. The differences in the run conditions of the tests yielding the two
graphs mean that they are not directly comparable. We can, however, com-
pare the LIST times to the GET, PUT, and DELETE times in each individual
figure. There are two main points of difference. Firstly, the new LIST com-
pletes drastically faster than the old compared to the other operations, even
in the unauthenticated case. The primary cause of this change is that the new

i

i

“main” — 2009/2/24 — 0:26 — page 75 — #85 i

i

i

i

i

i

4.4. EXPERIMENTS 75

implementation has allowed us to increase the size of the list blocks from 100
to 1,000. Secondly, the older implementation of the LIST operation introduced
significant authentication overhead, while our implementation appears to add
no overhead at all. This result is not surprising, because as we discussed in
Section 4.2, the computational and communication time for the new operation
are both O(k + log n), a significant improvement over the O(k log n) bound on
the older operation.

Scalability Experiments

Figures 4.8, 4.9, 4.10, and 4.11, show how varying n affects the performance
of our authentication service for the LIST, PUT, and DELETE operations. Fig-
ure 4.8 was obtained through tests on machine 1 with a workload of 1,000 1K
files, varying n from 20,000 through 400,000 at increments of 20,000, while
Figures 4.9, 4.10, and 4.11 are results of tests run machine 2, with a work-
load of 100 1K files, varying n from 10,000 through 200,000, at increments of
10,000. Figures 4.8 and 4.9 describe the scalability of the new and old LIST
implementations respectively.

���������������	
�
�
����� ���������� ���� ��
� �� � ���� ��
 ��� ���� !"#$%& '!()*&+,#(-!.(/0%(/*. '!()*&+
���1��2��3 � ����� 1����� 1����� 2����� 2����� 3����� 3����� ������4567897� :;<=<>?@ A> B<CD<C

Figure 4.8: Authentication and regular network communication times for our
new, efficiently authenticated LIST operation, varying n with a workload of
1,000 elements.

i

i

“main” — 2009/2/24 — 0:26 — page 76 — #86 i

i

i

i

i

i

76 CHAPTER 4. NETWORK STORAGE INTEGRITY

����������� �	

��
��� ���������� ���� ���� �� � ���� ��� ��� ���� �� !"#$ %�&'($)*!&+�,&-.#&-(, %�&'($)
//��� / �//// �///// ��//// �/////0123453� 67898:;< =: >8?@8?

Figure 4.9: Authentication and regular network communication times for an
old authenticated LIST operation, varying n, with a workload of 100 elements.

The procedure used to obtain these figures was as follows: We began with
an empty authentication and storage servers. We wanted to time the operation
varying n at intervals of i. For a workload k, we first uploaded k elements, then
i−k elements. This step increases n by i. Next, we listed and then downloaded
k elements. We repeated this operation for the desired range of n. We then
deleted k elements, and then i−k elements, repeating until the authentication
and storage servers are empty again. We separated each of the operations
(LIST, PUT, and DELETE) into four parts: regular network (retrieval of the
data from S3), authentication network (retrieval of the proof from EC2), query
response (processing of query on EC2), and verification (processing of the proof
on the client side). While the prototype is designed to maximize parallelism,
performing the regular and authentication network queries concurrently, for
these tests we separated the two components so that they run sequentially,
allowing us to time them individually. During the operations, the Java garbage
collector (GC) runs periodically. We have collected the GC run times and
subtracted them from the times displayed in Figures 4.9, 4.10, and 4.11; Figure
4.8 is preliminary and does not take the GC into account.

We display only the regular and authentication network times for the LIST,
PUT, and DELETE operations. We were unable to obtain reliable results for

i

i

“main” — 2009/2/24 — 0:26 — page 77 — #87 i

i

i

i

i

i

4.4. EXPERIMENTS 77

�������� �	

��
��� ���������� ���� ���� �� � ������ ��� ��� ���� !"#$%& '!()*&+,#(-!.(/0%(/*. '!()*&+
1234 1 �1111 211111 2�1111 31111156789:8� ;<=>=?@A B? C=DE=D

Figure 4.10: Times for the authentication and regular network components
of an authenticated PUT operation, varying the number of elements. The
workload in these experiments is 100 1K elements.

the GET operation because of the complicated interaction of threads during au-
thentication, and the query and verification times account for only around one
percent of the total time of each operation, making them somewhat irrelevant
when considering the performance of the service. Ignoring the few outliers, and
assuming that the odd peak in Figure 4.11 is caused by a spike in network traf-
fic, one can see that the overall indication of these plots is that neither the reg-
ular or the authentication network operation time for LIST, PUT, or DELETE
operations is affected significantly by the number of elements stored with our
service. In other words, the service seems to scale extremely well. We can
compare these plots to Figures 4.6 and 4.7 and see that the total times for each
operation are very close to the larger of the authenticated and regular network
operation times (the workloads vary, so we are actually comparing the time per
element in k). For the PUT and DELETE, and new LIST operations (Figures
4.8, 4.10, and 4.11), the regular network time is larger than the authentication
network time, so we expect that when the regular and authentication network
queries are performed in parallel, there will be no authentication overhead. In
contrast, for the old LIST operation (Figure 4.9) the authentication network
time is larger, so we expect some authentication overhead — once again the

i

i

“main” — 2009/2/24 — 0:26 — page 78 — #88 i

i

i

i

i

i

78 CHAPTER 4. NETWORK STORAGE INTEGRITY

�������� �	

��
��� ���������� ���� ���� �� � �� ���� ��� ��� ���� � !"#$% & '()%*+"', -'./$'.)- & '()%*
0123 0 �0000 100000 1�0000 2000004567897� :;<=<>?@ A> B<CD<C

Figure 4.11: Times for the authentication and regular network components of
an authenticated DELETE operation, varying the number of elements. The
workload in these experiments is 100 elements.

improved efficiency of the new LIST implementation is evident.

4.5 Conclusions

This chapter presents the architecture and implementation of an integrity
checking service that extends any existing online storage service. Our archi-
tecture is both space-efficient (the user stores only a single hash value) and
time efficient (a very small overhead is added to the operations of the storage
service). Our implementation is built on top of Amazon’s S3 and EC2 services.
The experimental results confirm the negligible time overhead and scalability
of our service.

i

i

“main” — 2009/2/24 — 0:26 — page 79 — #89 i

i

i

i

i

i

Chapter 5

Graph Drawing for Security
Visualization

5.1 Introduction

As an increasing number of software applications are web-based or web-connected,
security and privacy have become critical issues for everyday computing. Com-
puter systems are constantly being threatened by attackers that want to com-
promise the privacy of transactions (e.g., steal credit card numbers) and the
integrity of data (e.g., return a a corrupted file to a client). Therefore, computer
security experts are continuously developing methods and associated protocols
to defend against a growing number and variety of attacks. The development of
security tools is an ongoing process that keeps on reacting to newly discovered
vulnerabilities of existing software and newly deployed technologies.

Both the discovery of vulnerabilities and the development of security pro-
tocols can be greatly aided by visualization. For example, a graphical repre-
sentation of a complex multi-party security protocol can give experts better
intuition of its execution and security properties. In current practice, however,
computer security analysts read through large logs produced by applications,
operating systems, and network devices. The visual inspection of such logs is
quite cumbersome and often unwieldy, even for experts. Motivated by the grow-
ing need for automated visualization methods and tools for computer security,
the field of security visualization has recently emerged as an interdisciplinary
community of researchers with its own annual meeting (VizSec).

In this chapter, we give a survey of security visualization systems that use

79

i

i

“main” — 2009/2/24 — 0:26 — page 80 — #90 i

i

i

i

i

i

80 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

graph drawing methods. Thanks to their versatility, graph drawing techniques
are one of main approaches employed in security visualization. Indeed, not only
computer networks are naturally modeled as graphs, but also data organization
(e.g., file systems) and vulnerability models (e.g., attack trees) can be effectively
represented by graphs. In the rest of this paper, we specifically overview graph
drawing approaches for the visualization of the following selected computer
security concepts:

1. Network Monitoring. Monitoring network activity and identifying anoma-
lous behavior, such as unusually high traffic to/from certain hosts, helps
identifying several types of attacks, such as intrusion attempts, scans,
worm outbreaks, and denial of service.

2. Border Gateway Protocol (BGP). BGP manages reachability between
hosts in different autonomous systems, i.e., networks under the adminis-
trative control of different Internet Service Providers. Understanding the
evolution of BGP routing patterns over time is very important to detect
and correct disruptions in Internet traffic caused by router configuration
errors or malicious attacks.

3. Access Control. Access to resources on a computer system or network is
regulated by policies and enforced through authentication and authoriza-
tion mechanisms. It is critical to protect systems not only from unau-
thorized access by outside attackers but also from accidental disclosure
of private information to legitimate users. Access control systems and
their associated protocols can be very complex to manage and under-
stand. Thus, it is important to have tools for analyzing and specifying
policies, identifying the possibility of unauthorized access, and updating
permissions according to desired goals.

4. Trust Negotiation. Using a web service requires an initial setup phase
where the client and server enter into a negotiation to determine the ser-
vice parameters and cost by exchanging credentials and policies. Trust
negotiation is a protocol that protects the privacy of the client and server
by enabling the incremental disclosure of credentials and policies. Plan-
ning and executing an effective trust negotiation strategy can be greatly
aided by tools that explore alternative scenarios and show the conse-
quences of possible moves.

5. Attack Graphs. A typical strategy employed by an attacker to compro-
mise a system is to follow a path in a directed graph that models vul-

i

i

“main” — 2009/2/24 — 0:26 — page 81 — #91 i

i

i

i

i

i

5.2. NETWORK MONITORING 81

Table 5.1: Graph drawing methods used in the security visualization systems
surveyed in this chapter.

Force-Directed Layered Bipartite Circular 3D

Network Monitoring [32, 60, 70, 103] [6, 18, 106] [102]
BGP [101] [101] [79]

Access Control [69]
Trust Negotiation [105]

Attack Graphs [77, 78]

nerabilities and their dependencies. After an initial successful attack to
a part of a system, an attacker can exploit one vulnerability after the
other and reach the desired goal. Tools for building and analyzing attack
graphs help computer security analysts identify and fix vulnerabilities.

In Table 5.1, we show the graph drawing methods used by the systems surveyed
in this paper.

5.2 Network Monitoring

Supporting Intrusion Detection by Graph Clustering and Graph
Drawing [103]. In this paper, the authors use a combination of force-directed
drawing, graph clustering, and regression-based learning in a system for intru-
sion detection (see Figure 5.1). The system consists of modules for the following
functions: packet collection, graph construction and clustering, graph layout,
regression-based learning, and event generation.

The authors model the computer network with a graph where the nodes are
computers and the edges are communication links with weight proportional to
the network traffic on that link. The clustering of the graph is performed with
a simple iterative method. Initially, every node forms its own cluster. Next,
nodes join clusters that already have most of their neighbors. The spring
embedder algorithm [26] is used to draw the clusters and nodes within the
clusters. Since forces are proportional to the weights of the edges, if there is a
lot of communication between two hosts, their nodes are placed close to each
other. Also, in the graph of clusters, there is an edge between clusters A and B
if there is at least one edge between some node of cluster A and some node of
cluster B. The layout of the graph of clusters and of each cluster are computed
using the classic force-directed spring embedder method.

Various features of the clustered graph (including statistics on the node
degrees, number of clusters, and internal/external connectivity of clusters) are

i

i

“main” — 2009/2/24 — 0:26 — page 82 — #92 i

i

i

i

i

i

82 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

used to describe the current state of network traffic and are summarized by
a feature vector. Using test traffic samples and a regression-based learning
strategy, the system learns how to map feature vectors to intrusion detection
events. The security analyst is helped by the visualization of the clustered
graph in assessing the severity of the intrusion detection events generated by
the system.

Figure 5.1: Force-directed clustered drawing for intrusion detection (thumbnail
of image from [103])

Visualization of Host Behavior for Network Security [60]. In this
paper, the authors show how to visualize the evolution over time of the volume
and type of network traffic using force-directed graph drawing techniques (see
Figure 5.2). Since there are different types of traffic protocols (HTTP, FTP,
SMTP, SSH, etc.) and multiple time periods, this multi-dimensional data set is
modeled by a graph with two types of nodes: dimension nodes that represent
traffic protocols and observation nodes that represent the state of a certain
host in a given time interval. Edges are also of two types: trace edges that link

i

i

“main” — 2009/2/24 — 0:26 — page 83 — #93 i

i

i

i

i

i

5.2. NETWORK MONITORING 83

Figure 5.2: Evolution of network traffic over time (thumbnail of image
from [60]): dimension nodes represent types of traffic and observation nodes
represent the state of a host at a given time.

consecutive observation nodes and attraction edges that link observation nodes
with dimension nodes and have weight proportional to the traffic of that type.

The layout is computed starting with a fixed placement of the dimension
nodes and using a modified version of the Frucheterman-Reingold force-directed
algorithm [29] that aims at achieving uniform edge lengths. The authors show
how intrusion detection alerts can be associated with visual patterns in the
layout.

A Visual Approach for Monitoring Logs [32]. This paper (see Fig-
ure 5.3) presents a technique to visualize log entries obtained by monitoring
network traffic. The log entries are basically vectors whose elements correspond
to features of the network traffic, including origin IP, destination IP, and traffic
volume. The authors build a weighted similarity graph for the log entries using
a simple distance metric for two entries given by the sum of the differences of
the respective elements. The force-directed drawing algorithm of [17] is used

i

i

“main” — 2009/2/24 — 0:26 — page 84 — #94 i

i

i

i

i

i

84 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

to compute a drawing of the similarity graph of the entries.

Figure 5.3: Similarity graph of log entries (thumbnail of image from [32])

A Visualization Methodology for Characterization of Network Scans [70].
This work considers network scans, often used as the preliminary phase of an
attack. The authors develop a visualization system that shows the relation-
ships between different network scans (see Figure 5.4. The authors set up a
graph where each node represents a scan and the connection between them is
weighted according to some metric (similarity measure) that is defined for the
two scans. Some of the features taken into consideration for the definition of
the similarity measure are the origin IP, the destination IP and the time of
the connection. To avoid displaying a complete graph, the authors define a
minimum weight threshold below which edges are removed. The LinLog force
directed layout method [76] is used for the visualization of this graph. In the
drawing produced, sets of similar scans are grouped together, thus facilitating
the identification of malicious scans.

VisFlowConnect: NetFlow Visualizations of Link Relationships for
Security Situational Awareness [106]. In this work, the authors apply

i

i

“main” — 2009/2/24 — 0:26 — page 85 — #95 i

i

i

i

i

i

5.2. NETWORK MONITORING 85

Figure 5.4: Similarity graph of network scans (thumbnail of image from [70]).

a simple bipartite drawing technique to provide a visualization solution for
network monitoring and intrusion detection (see Figure 5.5). The nodes, rep-
resenting internal hosts and external domains, are placed one three vertical
lines. The external domains that send traffic to some internal host are placed
on the left line. The domains of the internal hosts are placed on the middle
line. The external domains that receive traffic from some internal host are
placed on the right line. Each edge represents a network flow, which is a se-
quence of related packets transmitted from one host to another host (e.g., a
TCP packet stream). Basically, the layout represents a tripartite graph. The
vertical ordering of the domains along each line is computed by the drawing
algorithm with the goal of minimizing crossings.

i

i

“main” — 2009/2/24 — 0:26 — page 86 — #96 i

i

i

i

i

i

86 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

The tool uses a slider to display network flows at various time intervals
and provides three views. In the global view, the entire tripartite graph is
displayed to show all the communication between internal and external hosts.
In the internal view and domain view, the tool isolates certain parts of the
network, such as internal senders and internal receivers, and correspondingly
displays a bipartite graph. The domain view and internal view are easier to
analyze and provide more details on the network activity being visualized but
on the other hand, the global view produces a high level overview of the network
flows. The authors apply the tool in various security-related scenarios, such as
virus outbreaks and denial-of-service attacks.

Figure 5.5: Global view of network flows using a tripartite graph layout: nodes
represent external domains (on the left and right) and internal domains (in the
middle) and edges represent network flows (packet streams) between domains
(thumbnail of image from [106])

Home-Centric Visualization of Network Traffic for Security Admin-
istration [6]. In this paper the authors use a matrix display combined with a
simple graph drawing method in order to visualize the traffic between domains
in network and external domains (see Figure 5.6). To visualize the internal net-

i

i

“main” — 2009/2/24 — 0:26 — page 87 — #97 i

i

i

i

i

i

5.2. NETWORK MONITORING 87

Figure 5.6: Visualization of internal vs external hosts using a matrix combined
with a straight-line drawing. Internal hosts correspond to entries of the matrix
while external hosts are drawn as squares placed around the matrix. The size
of a the square for an external host is proportional to the amount of traffic
from/to that host (thumbnail of image from [6]).

i

i

“main” — 2009/2/24 — 0:26 — page 88 — #98 i

i

i

i

i

i

88 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

work, the authors use a square matrix: each entry of the matrix corresponds
to a host of the internal network. External hosts are represented by squares
placed outside the matrix with size proportional to the traffic sent or received.
Straight-line edges represent traffic between internal and external hosts and
can be colored to denote the predominant direction of the traffic (outgoing,
incoming, or bidirectional). The placement of the squares arranges hosts of
the same class A, B or C network along the same vertical line and attempts to
reduce the number of edge crossings. Further details on the type of traffic can
be also displayed in this tool. For example, vertical lines inside each square
are used to indicate ports with active traffic. This system can be used to vi-
sually identify traffic patterns associated with common attacks, such as virus
outbreaks and network scans.

EtherApe: A Live Graphical Network Monitor [102]. This tool shows
traffic captured on the network interface (in a dynamic fashion) or optionally
reads log files like PCAP (Figure 5.7). A simple circular layout places the
hosts in a circular shape and highlights network traffic between hosts by edges
between them. Each protocol is distinguished by a different color and the width
of the edges show the amount of traffic. This tool allows to quickly understand
the role of a host in the network and the changes in traffic patterns during
time. Beyond the graphical representation it is also possible to show detailed
traffic statistics of active ports.

Rumint: A Graphical Network Monitor [18]. Rumint (Figure 5.8) is
a free tool available at http://www.rumint.org/. It takes captured traffic as
input and visualizes it in various unconventional ways. The most interesting
visualization related to graph drawing is the parallel plot that allows one to
see at one glance how multiple packet fields are related. An animation feature
allows to analyze various trends over time.

5.3 Border Gateway Protocol

BGP eye: A New Visualization Tool for Real-Time Detection and
Analysis of BGP Anomalies [101]. In this paper, the authors propose to
use a new visualization tool, called BGP Eye, that provides a real-time status
of BGP activity with easy-to-read layouts. BGP eye is a tool for root-cause
analysis of BGP anomalies. Its main objective is to track the healthiness of
BGP activity, raise an alert when an anomaly is detected, and indicate its

i

i

“main” — 2009/2/24 — 0:26 — page 89 — #99 i

i

i

i

i

i

5.3. BORDER GATEWAY PROTOCOL 89

Figure 5.7: Traffic monitoring with Etherape (thumbnail of image from [102]).

most probable cause. BGP Eye allows two different types of BGP dynamics
visualization: internet-centric view see Figure 5.9 and home-centric view, see
Figure 5.10. The internet-centric view studies the activity among ASes (au-
tonomous systems) in terms of BGP events exchanged. The home-centric view
has been designed to understand the BGP behavior from the perspective of a
specific AS. The inner ring contains the routers of the customer-AS and the
outer ring contains their peer routers, belonging to other ASes. In the outer
layer, the layout method groups routers belonging to the same AS together
and uses a placement algorithm for the nodes to reduce the distance between
connected nodes.

VAST: Visualizing Autonomous System Topology [79]. This tool (Fig-
ure 5.11) uses 3D straight-line drawings to display the BGP interconnection
topology of ASes with the goal of allowing security researchers to extract
quickly relevant information from raw routing datasets. VAST employs a
quad-tree to show per-AS information and an octo-tree to represent relation-
ship between multiple ASes. Routing anomalies and sensitive points can be
quickly detected, including route leakage events, critical Internet infrastruc-

i

i

“main” — 2009/2/24 — 0:26 — page 90 — #100 i

i

i

i

i

i

90 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

Figure 5.8: Visualization of an NMAP scan with Rumint (thumbnail of image
from [18]).

ture and space hijacking incidents. The authors also developed another tool,
called Flamingo, that uses the same graphical engine as VAST but is used for
real-time visualization of network traffic.

BGPlay and iBGPlay [9]. BGPlay and iBGPlay (Figure 5.12) provide
animated graphs of the BGP routing announcements for a certain IP prefix
within a specified time interval. Both visualization tools are targeted to Inter-
net service providers. Nodes represent an AS and paths are used to indicate
the sequence of ASes needed to be traversed to reach a given destination. BG-
Play shows paths traversed by IP packets from a several probes spread over the
Internet to the chosen destination (prefix). iBGPlay shows data privately col-

i

i

“main” — 2009/2/24 — 0:26 — page 91 — #101 i

i

i

i

i

i

5.3. BORDER GATEWAY PROTOCOL 91

Figure 5.9: Internet-centric view view in BGP Eye (thumbnails of images
from [101]).

Figure 5.10: Home-centric view in BGP Eye (thumbnails of images from [101]).

i

i

“main” — 2009/2/24 — 0:26 — page 92 — #102 i

i

i

i

i

i

92 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

Figure 5.11: Largest autonomous systems in the internet visualized with VAST
(thumbnail of image from [79]).

lected by one ISP. The ISP can obtain from iBGPlay visualizations of outgoing
paths from itself to any destination. The drawing algorithm is a modification
of the force-directed approach that aims optimizing the layout of the paths.

5.4 Access Control

Information Visualization for Rule-based Resource Access Control [69].
In this paper, the authors provide a visualization solution for managing and
querying rule-based access control systems. They develop a tool, called RubaViz,
which makes it easy to answer questions like “What group has access to which
files during what time duration?”. RubaViz constructs a graphs whose nodes
are subjects (people or processes), groups, resources, and rules. Directed edges
go from subjects/groups to rules and from rules to resources to display allowed
accesses. The layout is straight-line and upward.

i

i

“main” — 2009/2/24 — 0:26 — page 93 — #103 i

i

i

i

i

i

5.4. ACCESS CONTROL 93

Figure 5.12: In BGPlay, nodes represent autonomous systems and paths are
sequences of autonomous systems to be traversed to reach the destination
(thumbnail of image from [9]).

Figure 5.13: Drawing of the trust-target graph generated by a trust negotiation
session (thumbnail of image from [105]).

i

i

“main” — 2009/2/24 — 0:26 — page 94 — #104 i

i

i

i

i

i

94 CHAPTER 5. GRAPH DRAWING FOR SECURITY VISUALIZATION

5.5 Trust Negotiation

Visualization of Automated Trust Negotiation [105]. In this paper, the
authors use a layered upward drawing to visualize automated trust negotiation
(ATN) (Figure 5.13). In a typical ATN session, the client and server engage
in a protocol that results in the collaborative and incremental construction of
a directed acyclic graph, called trust-target graph, that represents credentials
(e.g., a proof that a party has a certain role in an organization) and policies
indicating that the disclosure of a credential by one party is subject to the
prior disclosure of a set of credentials by the other party. A tool based the
Grappa system [7], a Java port of Graphviz [27], is used to construct successive
drawings of the trust-target graph being constructed in an ATN sessions.

Figure 5.14: Visualization of an attack graph (thumbnail of image from [77]).

5.6 Attack Graphs

Multiple Coordinated Views for Network Attack Graphs [77] This
paper describes a tool for visualizing attack graphs (Figure 5.14). Given a
network and a database of known vulnerabilities that apply to certain machines
of the network, one can construct a directed graph where each node is a machine
(or group of machines) and an edge denotes how a successful attack on the

i

i

“main” — 2009/2/24 — 0:26 — page 95 — #105 i

i

i

i

i

i

5.7. CONCLUSIONS 95

source machine allows to exploit a vulnerability on the destination machine.
Since attack graphs can be rather large and complex, it is essential to use
automated tools to analyze them. The tool presented in this paper clusters
machines in order to reduce the complexity of the attack graph (e.g., machines
that belong to the same subnet may be susceptible to the same attack). The
Graphviz tool [27] is used to produce a layered drawing of the clustered attack
graph. Similar layered drawings for attack graphs are proposed in [78].

5.7 Conclusions

In this chapter, we have presented a survey of security visualization methods
that use graph drawing techniques. The growing field of security and privacy
offers many opportunities to graph drawing researchers to develop new drawing
methods and tools. In computer and network security applications, the input
to the visualization system is often a large multidimensional and temporal
data set. Moreover, the layout needs to support color, labels, variable node
shape/size and edge thickness. In most of the security visualization papers we
have reviewed, either simple layout algorithms have been implemented (e.g.,
spring embedders) or open-source software has been used (e.g., Graphviz).
In order to make a larger collection of sophisticated graph drawing techniques
available to computer security researchers, it is important for the graph drawing
community to develop and distribute reliable software implementations.

i

i

“main” — 2009/2/24 — 0:26 — page 96 — #106 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page 97 — #107 i

i

i

i

i

i

Chapter 6

Effective Visualization of File
System Access-Control

6.1 Introduction

Access-control configuration for computer systems is a critical task. Users ex-
pect to be given tools for protecting sensitive data stored in files and folders
from unauthorized access. For example, a user A should not be able to perform
an operation (e.g., read, write) on the files of a user B unless appropriate au-
thorization was given by user B. Languages for expressing access control rules
and policies and mechanisms for determining and enforcing the permissions a
user has to access a given resource are fundamental problems that have been
extensively studied.

The access control model employed by current-generation file systems, such
as Microsoft Windows XP and Vista, is rather complex and often insufficiently
documented. In a large file system with multiple users, it is rather tricky to
understand which users/groups can access which files and with which permis-
sions. Also, the effect of simple operations (such as copy and move) on the
permissions of a file are difficult to anticipate and sometimes unintuitive. For
example, consider a Windows user who changes the permissions of a certain
file to make it not readable by others and later moves this file to another folder
where the read permission is inherited from the parent folder. The user is un-
likely to realize that after the move, the file is no longer protected. This is due
to the fact that in a Windows NTFS file system, there are three types of per-
missions associated with a file: the local permissions for the file, the inherited

97

i

i

“main” — 2009/2/24 — 0:26 — page 98 — #108 i

i

i

i

i

i

98 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

permissions derived from the permissions of the parent folder, and the effective
permissions, obtained as the union of the local permissions and the inherited
permissions.

Inherited permissions have many advantages and have been adopted by
several file systems. For example, suppose all files and folders are set to inherit
from their parent folder. If one wants to make readable a folder f and all its
descendant files and folders, it is sufficient to apply the read permission only
to f . The read permission is then recursively inherited by its descendants.
However, inheritance can be tricky when copying and moving files, as a file
can inherit new permissions that were not intended for the file. Hence, it is
important to clearly show users which folders inherit from their parent folder
and where inheritance is interrupted instead.

Also, as pointed out by Montemayor et al. [69], inherited permissions and
other features of access control mechanisms can make answering questions such
as “What group has access to which files during what time duration?” or “If
I implement this policy, what conflicts this result?” very difficult.

Understanding file permissions and setting them to achieve desired file shar-
ing and protection goals can be a daunting task for non-expert users and is
non-trivial even for experts. A tool that helps users to understand how access-
control permissions are determined and the effect of file system operations on
file permissions would be extremely useful for both regular users and adminis-
trators.

We believe that an effective way to overcome difficulties of understanding
file permissions is through visualization. Therefore, in this chapter, we present
our preliminary design of a visualization tool that displays access-control infor-
mation in a way that is easily understandable and helps the user set the correct
permissions to achieve file sharing and protection goals. Our visualization tool
uses treemaps [47], a popular graphical representation of hierarchical structures
based on a recursive decomposition of rectangles into sub-rectangles.

The main related work is as follows. In Windows, advanced file system
permissions are displayed as a list. Reeder et al. [89] propose using a square
matrix to visualize the permissions of a file system and presents an example
with changes of groups and users permissions. Montemayor et al. [69] present a
solution for access control visualization based on representing the connections
between groups, users, and resources, with a graph. The complexity of access
control safety and the administrator’s difficulty in dealing with it (which makes
visualization of access control very important) is analyzed in [45]. The usability
of access control systems is discussed in [15]. Some visualization solutions for
access-control and file-sharing policies are presented in [88].

i

i

“main” — 2009/2/24 — 0:26 — page 99 — #109 i

i

i

i

i

i

6.2. PRELIMINARIES 99

Treemaps were introduced in 1991 [47] as a method of representing a com-
plex hierarchy in a compact space. Bladh et. al [10] provide a file system
visualization based on treemaps in the 3D space. Interactive ways to explore
a file system through visualization are presented in [28]. Stasko [96] gives an
evaluation of different compact ways to represent hierarchical structures. The
visualization of dynamic hierarchies is presented in [104]. Finally, in 1971, a
method using a nested rectangle representation (that resembles treemaps but
though not formally defined) to visualize program execution was presented [48].

6.2 Preliminaries

In this section we introduce some preliminaries about the security aspect of
our work (access control) and the visualization aspect of our work (treemaps).

NTFS Access Control Management

In this part, we focus on the access control list (ACL) implemented in the
Windows NTFS (New Technology File System). NTFS [90] allows to define
access control information for each file system object. Using different security
policies it is possible to allow or deny access to files and folders for determined
users or groups. The file system driver manages all file system requests (i.e.,
create new files, open existing files, write to files. etc.) as the intermediary
between the operating system and the storage device drivers.

The NTFS driver manages access to the file system according to defined
permissions that are expressed by the ACL.

NTFS ACLs are composed of access control entries (ACEs). Each ACE
allows or denies specific permissions (i.e., by a user or a group) to or from an
object.

Starting with Windows 2000, NTFS allows to dynamically manage per-
mission inheritance. That is, when you create a subfolder or a file in a NTFS
folder, the child object not only inherits the parent’s permissions but maintains
a kind of link with its parent. Furthermore, parent’s permissions are stored
separately from any local permissions that are directly stored on the child. So
for any changes performed on the parent folder, this method allows the child
objects to automatically inherit the changes from their parents and to prevent
from overwriting all the local permissions.

This approach allows an administrator or a user to manage a hierarchical
tree of permissions that matches the directory tree. Since each child inherits

i

i

“main” — 2009/2/24 — 0:26 — page 100 — #110 i

i

i

i

i

i

100 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

permissions recursively from its parent. So it is possible to perform changes of
permissions with little effort.

The main downside of dynamic inheritance is the increase of complexity
and the possibility to have conflicting ACEs. The NTFS security module com-
bines the specified permissions (i.e. local and inherited ACEs, allows or explicit
denies) and decides whether to grant or deny the access to a user, a group, or
other security entities. Microsoft introduced in Windows XP the effective per-
missions tab to help the administrator in the quite tricky task of understanding
the effective permission for a user or a group on a specific file system object.

Treemaps

Treemaps (see, e.g., [11, 47]) were introduced in 1991 as a way to represent
large hierarchical structures in a compact way. The main idea of creating a
treemap can recursively be described as follows: Given a tree T with root r,
assign a rectangle A to represent T . Then, for all the subtrees T1, T2, . . . , Tk

of r, partition A into k rectangles A1, A2, . . . , Ak and assign A1, A2, . . . , Ak

to T1, T2, . . . , Tk. This process continues until it reaches the leaves, where it
assigns distinct rectangles for every leaf of the tree. Given a tree with n nodes,
a treemap can be constructed in O(n) time using a bottom-up traversal.

Several algorithms have been proposed for assigning rectangles to subtrees.
The standard method is based on the “slice-and-dice” algorithm, originally
introduced in [47], which uses parallel lines to divide the rectangle assigned
to a subtree T into smaller areas that correspond to the subtrees of T . It
also alternates the direction of the parallel lines (horizontal/vertical) from one
level the next, so that the change of levels is displayed. The standard treemap
method often gives thin, elongated rectangles. A new method—the “squarified”
algorithm— is presented in [11] to generate layouts in which the rectangles
approximate squares.

6.3 Effective Access Control Visualization

In this section, we present the main features of the tool we have designed to
assist administrators and users in better understanding and managing access-
control of a hierarchical file system. The tool employs treemaps to visualize
the file system tree. We use colors to distinguish the permissions of files and
folders, and we indicate where a break of inheritance occurs with a special
border around the relevant node in the treemap. The input to our tool consists
of two items:

i

i

“main” — 2009/2/24 — 0:26 — page 101 — #111 i

i

i

i

i

i

6.3. EFFECTIVE ACCESS CONTROL VISUALIZATION 101

1. The “user” input, which indicates the user or group whose permissions we
are interested in. In Figure 6.1, this is indicated with the label “name”.

2. The “baseline” input, which basically indicates a certain combination of
permissions upon which the color scheme of our visualization is based.
In Figure 6.1, this is indicated with the label ”permission”.

Figure 6.1: The user interface of our visualization tool. The main screen
consists of the ”user” input and the ”baseline” input.

In the current design, the baseline”input can take four values, namely the
values no access, read, read&write, full control. These are sorted in
”increasing permission” order. The user can also propose (and insert into the
drop-down menu) another combination of permissions (e.g., read&execute)
and the administrator is responsible for putting the new feature in the correct
order (see Figure 6.1). The visualization tool reads this value and parses the
file system tree, building the treemap using the slice-and-dice algorithm. For
every file encountered, the associated node in the treemap is painted green,
red, or gray, if the file’s permissions are weaker (more restrictive), stronger (less
restrictive), or the same as those specified by the baseline, respectively. The
tool could potentially use different shades of the same color to declare intensity
of permissions. Finally, the tool draws an orange border around treemap nodes
associated with files or folders where inheritance is broken.

i

i

“main” — 2009/2/24 — 0:26 — page 102 — #112 i

i

i

i

i

i

102 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

folder N.A. R R&W F.C. I
USER X

Desktop X
AMERICA X

North America X X
USA X

Rhode Island X X
Providence X X

Brown University X X
CS Department X

EUROPE X X
Greece X X

Thessaloniki X X
Athens X X
Italy X
Milan X X
Rome X
Turin X X

Figure 6.2: The directory tree that we are going to visualize with our tool, as
visualized by Windows explorer. Beside the tree, we also show the effective
permissions of each folder of the tree. N.A. stands for “no access“, R stands
for ”read”, R&W stands for “read and write“, F.C. stands for ”full control”
and I stands for “inheritance“.

We believe that this scheme makes it is easy to gain a general sense of
current permissions of the file system as far a certain user is concerned. Fur-
thermore, a more detailed understanding can be achieved simply by exploring
the treemap more thoroughly. For example suppose that a file is moved from
a folder that has weaker permissions than the baseline to a folder that has
stronger permissions than the baseline. The administrator, by using our tool,
will be able to notice that difference (since a small green area will appear in
a greater red area). There is no longer a need to manually (by exploring the
directory with cd commands) find files with changed permissions, a task that
quickly becomes arduous as more users and other commands such as copy or
cacls are taken into consideration.

Example

We show examples of using our tool to visualize the permissions of the direc-
tory tree of Figure 6.2. Figure 6.2 shows a directory tree and the effective
permissions of every folder contained in this tree. We show in the table of
Figure 6.2 four kinds of permissions, namely the permissions no access, read,
read&write, full control. Also in the table of Figure 6.2 we have a column
that indicates whether the certain folder inherits the permissions or not (the

i

i

“main” — 2009/2/24 — 0:26 — page 103 — #113 i

i

i

i

i

i

6.4. THE TRACE (TREEMAP ACCESS CONTROL EVALUATOR)
TOOL. 103

last column).
In Figure 6.3(a) we see the representation of our file system with the

treemap colored with colors according to permissions, as defined before. In Fig-
ure 6.3(b) we see the treemap layout of the file system after moving a file into
a directory that has different permissions from the file. Also, in Figure 6.4(a)
we see the treemap layout of a copy operation and in Figure 6.4(b) we see the
treemap layout of the file system where the permissions of the root node of the
directory have changed. Also note that in the presented visualizations we dis-
tinguish between the local and effective permissions. Namely, if the local and
effective permissions coincide the tiles are painted with only one color. When
this is not the case, we use the upper right corner to indicate the inherited per-
missions and the bottom left corner to indicate the local permissions. In this
way we have a good overview of the permissions that correspond to a file. Note
that the figures do not present the break of inheritance of a file since this will
clutter up the space. The frames have been produced with the software from
University of Maryland (http://treemap.sourceforge.net/), where we use
the slice-and-dice algorithm for the layout and the increased border option to
better display the directory structure.

6.4 The TrACE (Treemap Access Control Evaluator)
Tool.

The main goal of TrACE is to assist administrators and users in better under-
standing and managing access-control of a hierarchical file system. The tool
employs treemaps to visualize the file system tree. A snapshot of TrACE is
shown in Figure 6.5. TrACE indicates where a break of inheritance occurs
with a special border around the relevant node in the treemap. We use col-
ors to distinguish the permissions of files and folders. The background color
of the rectangle associated with a file system object represents the object’s
effective permissions, while a small colored square and circle in the top right
corner of each rectangle indicate the contributions of the inherited and explicit
permissions, respectively.

We provide two different coloring schemes. In the “full spectrum” scheme,
each permission level is statically mapped to a single color. In the “baseline”
scheme, a specific combination of permissions is dynamically chosen by the
user to be the baseline, and the color assigned to other permission levels is
determined by their strengths relative to that baseline. Finally, in order to
highlight the most relevant areas of the file system, we adjust the size of each

i

i

“main” — 2009/2/24 — 0:26 — page 104 — #114 i

i

i

i

i

i

104 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

Figure 6.3: Treemap (a) shows the access control permissions for user admin-
istrator. User administrator has permission R on file AZ7 because the color is
light green, indicating a weaker permission compared with the baseline R&W.
One can see that these permissions were inherited by CS Department because
it is the first orange parent folder, indicating a break of inheritance. Treemap
(b) illustrates the result of moving file AZ7 from the CS Department folder to
the Rome folder. The permissions of this file, indicated by the light green color,
are preserved after the move. Furthermore, the size of the rectangle associated
with the moved file increases to accentuate the move. Also, the color of the
top right corner (the inherited permissions) of file AZ7 is light green because
after the move there is no inheritance from the parent.

i

i

“main” — 2009/2/24 — 0:26 — page 105 — #115 i

i

i

i

i

i

6.4. THE TRACE (TREEMAP ACCESS CONTROL EVALUATOR)
TOOL. 105

Figure 6.4: Treemap (a) shows the result of copying file AZ7 from the CS
Department folder to the Rome folder. The permissions of the file change, as
indicated by the light red color, because of the inheritance from the destina-
tion folder. Treemap (b) shows the result of changing the permissions of the
USER folder from R&W to R. This change propagates down to descendant
files and folders until there is a break of inheritance. Note that file CZ3 in the
Thessaloniki folder changes its color from grey to light green because the local
permission (left bottom corner) has a level that is lower than that of the inher-
ited permission (top right corner). It is possible to see the opposite behavior
in file CZ3 in the Athens folder, where the inherited permission changes from
grey to light green but the color of the rectangle remains light red because the
level of the local permission is greater than that of the inherited permission.

i

i

“main” — 2009/2/24 — 0:26 — page 106 — #116 i

i

i

i

i

i

106 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

file or folder in the treemap by counting the number of access control changes
on the file or on the subtree of the folder. Thus, if the all the items in a folder
have the same permissions, that folder will be very small in our visualization,
but if many of the items in the folder have different permissions than their
parents, then the folder will be large, allowing the user to detect the changes
more easily. We can control the tool by specifying the following properties:

1. The user or group whose permissions we are interested in.

2. The folder whose sub-tree we would like to visualize.

3. The style—which coloring scheme to use. If the baseline coloring scheme
is used, the user must also select the baseline.

Figure 6.5: Snapshot of TrACE, illustrating how the tool emphasizes areas of
interest within large file system trees.

6.5 User Feedback

In this section we present the results of a survey designed to test the effective-
ness of TrACE in aiding users to identify important access control information

i

i

“main” — 2009/2/24 — 0:26 — page 107 — #117 i

i

i

i

i

i

6.5. USER FEEDBACK 107

in Windows.

Survey Details

Participants in the study included attendees of the vizSec/RAID 2008 and
SMAU Milano 2008 conferences, as well as PhD students and faculties from
the Roma Tre DIA network lab, undergraduates in the Brown University de-
partment of computer science CS 167/9 operating system class and graduates
students in the Roma Tre University class of computer security. Participants
were asked to fill out a questionnaire, a copy is present in the appendix, which
included questions in three different categories:

• First category contained background questions designed to gauge levels
of practical and theoretical familiarity in general with file permissions
and in particular with NTFS access control.

• Questions in the second category required participants to use a screen
snapshot, a copy of this is also available in the appendix) of a TrACE
visualization of a directory tree to determine access control status of
certain folders and files. This usage section of the survey focussed on
analysis of permissions inheritance, as this is one of the main focuses of
TrACE.

• Third category contained questions about User Interaction design choices,
probable usage patterns, and general feedback.

Before being asked to fill out this survey, participants listened to presentations
and demonstrations (10 - 20 minutes in conferences, 50 minutes in classes)
about NTFS access control and TrACE. We provided clarification of general
concepts in NTFS access control on request during the survey, but no help
directly applicable to the problems in the second category was given, ensuring
that the participants answers were their own.

Results

The results for questionnaire answers are showed in bar chart graph in which
each bar indicates a different conference. Each bar represents 100% of the
amounts for that category. All the bars are stacked to analyze distributions
within a single user study, and at the same time to compare the differences
between more user studies in: conferences, demos, posters, lessons, and etc.

i

i

“main” — 2009/2/24 — 0:26 — page 108 — #118 i

i

i

i

i

i

108 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

The results show only when there is an answer and they do not show when all
the check boxes in a question were left empty.

Background User Study

We used four questions to identify the background of the users and to under-
stand which is the knowledge of how the file permissions work in an operating
system. The first question (see Fig. 6.5) shows the different operating systems
used by persons that answered to the questionnaire, it is interesting to see that
Windows operating system is by far the most used in commercial environment
like SMAU and graduate university class in Italy, while in research environment
and in undergraduate American university Linux and MacOS are used more.

Figure 6.6: Question: Which operating system do you use primarily?

The second and third question (see Fig. 6.5 and Fig.6.5) show how often
participants check and modify file permissions on their systems. As we expected
users check permissions more often when they want to modify them and also a
commercial or high research user is more careful about permission change. The
fact that all the students in CS 167-9 course have tried to change permission at
least once is probably because they were following an operating system course.

The last question (see Fig. 6.5) is the more interesting for the purpose of
the user study because it asks directly the level of knowledge of NTFS to each

i

i

“main” — 2009/2/24 — 0:26 — page 109 — #119 i

i

i

i

i

i

6.5. USER FEEDBACK 109

Figure 6.7: Question: How often do you inspect file permissions?

Figure 6.8: Question: How often do you change file permissions?

user. So this information it is very useful to rate if our tool is easier for a novice
to NTFS or for an experienced user.

i

i

“main” — 2009/2/24 — 0:26 — page 110 — #120 i

i

i

i

i

i

110 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

Figure 6.9: Question: How familiar are you with the NTFS access control
schema?

Usage User Study

We used four questions to understand how much TrACE is easy to use. These
questions concern the inherit and explicit permissions rules in NTFS file sys-
tems. The results show the success percentage to practical questions in which
we used a TrACE snapshot and we asked if they were able to understand some
particular permissions on particular files or directories. It is important to say
that the tool explanation usually did not take more than 20 minutes during
class lesson and 10 minutes during conferences.

The first question (see Fig. 6.10) concerned specifically the problem of
inheritance form a folder in particular a user should understand if permissions
on a file were inherited or not. It is interesting to note that almost each group
answered correctly with a rate higher than 50% this is very encouraging if less
than 10% knew very well NTFS permissions.

The second question (see Fig. 6.11) concerned the problem of permission
hierarchy. So we asked where is the origin of a particular permission. Es-
sentially the participant should have understood the hierarchical algorithm to
check effective permission. It is interesting to note that the percentage of suc-
cess is higher than in previous question, probably because also the users that
change permissions just sometimes are more sensitive to understand the origin
of a permission that complex mechanisms of inheritance.

i

i

“main” — 2009/2/24 — 0:26 — page 111 — #121 i

i

i

i

i

i

6.5. USER FEEDBACK 111

Figure 6.10: Question: Is a particular permission of a certain file in a defined
folder inherited?.

The third question (see Fig. 6.12) concerned the problem of propagation
of permission changes. So we asked what happens to all the files and subdi-
rectory if we change a permission in the directory where they are contained.
It is interesting to note that the percentage of success is higher in research
level users but standard users have more difficult and the results are worst,
probably because the propagation of changes is more a research problem than
an everyday issue.

The fourth question (see Fig. 6.13) concerned the task of understanding
the meaning of a difference of color between a file and its parent folder. The
problem was about the explicit permissions. The trend of previous question is
confirmed also if the VizSEC and RAID conference participants obtained the
worst score.

What we understood from this section was that probably the TrACE tool
is more suitable for a user with an academic background and this moves us to
confront more with the industry to better understand what elements are more
easily understandable, in this case, the low result obtained in SMAU conference
is particularly relevant.

i

i

“main” — 2009/2/24 — 0:26 — page 112 — #122 i

i

i

i

i

i

112 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

Figure 6.11: Question: Where did the permission for a particular file or folder
originate?

Figure 6.12: Question: If we change the permissions on a defined folder from
a permission to another with more privileges, the permissions on a particular
file will change?

Design User Study

The last section of the user study asks to the user what do they think about the
design choices in TrACE. The first two questions (see Fig. 6.14 and Fig.6.15)

i

i

“main” — 2009/2/24 — 0:26 — page 113 — #123 i

i

i

i

i

i

6.5. USER FEEDBACK 113

Figure 6.13: Question: Why does a particular file have a different color than
its parent folder?

concern the color used to indicate more file permissions rights between the green
and the red colors. Essentially, from the point of view of an administrator is
more natural to figure out that red color is something dangerous so probably it
has more privileges. At the opposite a user could imagine that red color shows
something that is forbidden like traffic lighter. Unfortunately the user study
did not help very much to understand this problem, because we did not have
a one way decision. So essentially we obtained a slight advantage in the user
point of view, but it is not enough and so we decided to put in the new version
an option to switch colors. So any user can choose.

Next three questions (see Fig. 6.16, Fig. 6.17 and Fig.6.18) asked about
what tool is easier and more preferred to use between Full Spectrum and Base-
line visualization. So, what we understood is that Full Spectrum is easier for
a novice and then we decided to use this visualization as starting screen. Last
question concerns the usefulness of researching a new method to visualize file
permissions in WIndows NTFS file system and also if it would be useful inside
Window File Explorer. The result of this question is strongly encouraging to
continue this research and even more because it is the only result that all the
different communities which we proposed this questionnaire agree.

i

i

“main” — 2009/2/24 — 0:26 — page 114 — #124 i

i

i

i

i

i

114 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

Figure 6.14: Question: The color green is a good choice to indicate fewer
privileges, because it is safer for the administrator.

Figure 6.15: Question: The color red is a good choice to indicate fewer privi-
leges, because it is more restrictive for the user.

i

i

“main” — 2009/2/24 — 0:26 — page 115 — #125 i

i

i

i

i

i

6.5. USER FEEDBACK 115

Figure 6.16: Question: The ”baseline” display scheme is intuitive.

Figure 6.17: Question: The ”full spectrum” display is more useful than ”base-
line” in locating incorrect access control configurations.

i

i

“main” — 2009/2/24 — 0:26 — page 116 — #126 i

i

i

i

i

i

116 CHAPTER 6. ACCESS-CONTROL VISUALIZATION

Figure 6.18: Question: Which of the two display schemes - ”full spectrum” or
”baseline” - would you be likely to use most often?

Figure 6.19: Question: If a visualization feature like TrACE was integrated
into Windows File Explorer, a user could better understand and manage file
system permissions.

i

i

“main” — 2009/2/24 — 0:26 — page 117 — #127 i

i

i

i

i

i

6.6. CONCLUSIONS 117

The questionnaire left some lines to leave some free comments or sugges-
tions on TrACE tool, as usual, we received just a few of answers. Essentially
the suggestions were focused on changing the number of colors used by us-
ing a rainbow instead of just red and green colors, further we received some
suggestions to use a different treemap algorithm.

6.6 Conclusions

TrACE is a prototype tool for visualizing access control information for the
Windows NTFS file system. Moving forward, we plan to develop further varia-
tions of the treemap layout which can display additional file permission in-
formation, to add functionality to manage permissions rather than simply
analyzing them, and to support different file system types. The user study
was very useful to understand that the tools that are available to inspect and
change file permission in NTFS file system by default do not satisfy user needs
completely. So, on the behalf of the user study we think that the use of vi-
sualization techniques could greatly help to build more usable tools for file
permission administration.

i

i

“main” — 2009/2/24 — 0:26 — page 118 — #128 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page 119 — #129 i

i

i

i

i

i

Conclusion

Summary of Results

In this dissertation we presented an extensive study of data authentication
and introduces a general method, based on a security middleware, external to
the service, that performs authentication operations in parallel with standard
service functions to minimize the time overhead. We examined the problem for
different services, and designed efficient new techniques with authenticating
general classes of operations, such as relational primitives, multidimensional
queries and relational join and remote storage management. In particular, we
addressed the problem of authenticating data in outsourced services, when a
user stores more or less confidential information in a remote service such as an
online calendar, remote storage, outsourced DBMS, and others.

We proposed an architecture and an implementation of an integrity checking
service that extends any existing on- line storage service. The architecture
presented is both space-efficient (the user stores only a single hash value) and
time efficient (a very small overhead is added to the operations of the stor-
age service). The implementation was built on top of Amazons S3 and EC2
services. The experimental results confirm the negligible time overhead and
scalability of our service.

Another important issue covered in this dissertation was the security usabil-
ity of outsourced services. We have presented an effective method to visualize
file system access control.We have outlined the design of a tool that visualizes
both effective and local permissions and inheritance interruption for the Win-
dows NTFS file system. An extensive user study was presented that showed
the usability improvement of this tool in respect to Windows standard tool.

119

i

i

“main” — 2009/2/24 — 0:26 — page 120 — #130 i

i

i

i

i

i

120 CONCLUSION

Future Directions

In the future we would like to investigate how to authenticate more complex
queries making use of a larger set of relational operations. Further, we would
like to study models to build integrity verification services for collaborative en-
vironments like Wikipedia. In particular we are interested in the authentication
of aggregation queries like sum, average, max, min and others.

We would like also to investigate the possibility to apply the authentication
techniques proper of the Authenticated Data Structures to tags that allow the
identification through Radio Frequency, the RFID technology. In particular
we would like to authenticate the supply chain of objects at different level of
aggregation for instance: the single item, an entire pallet and the container.

On the visualization topic work already in progress is the implementation
of a full prototype of our system and to perform more user studies to evaluate
our approach. As future work, we plan to develop further variations of the
treemap layout to display additional file permission information also in network
file system.

i

i

“main” — 2009/2/24 — 0:26 — page 121 — #131 i

i

i

i

i

i

Appendices

121

i

i

“main” — 2009/2/24 — 0:26 — page 122 — #132 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 0:26 — page 123 — #133 i

i

i

i

i

i

TrACE User Study

The user study was conducted using the questionnaire that is reported inte-
grally in the next two pages of this section together with a snapshot of TrACE
tool that is required to answer questions in usage section.

Further, this survey was authorized by Brown University Institutional Re-
view Board (IRB) on behalf of our protocol that follows the Brown University
Research Privacy Policy. The full protocol is reported in this section, too.

123

i

i

“main” — 2009/2/24 — 0:26 — page 124 — #134 i

i

i

i

i

i

124 TRACE USER STUDY

i

i

“main” — 2009/2/24 — 0:26 — page 125 — #135 i

i

i

i

i

i

125

i

i

“main” — 2009/2/24 — 0:26 — page 126 — #136 i

i

i

i

i

i

126 TRACE USER STUDY

i

i

“main” — 2009/2/24 — 0:26 — page 127 — #137 i

i

i

i

i

i

127

i

i

“main” — 2009/2/24 — 0:26 — page 128 — #138 i

i

i

i

i

i

128 TRACE USER STUDY

i

i

“main” — 2009/2/24 — 0:26 — page 129 — #139 i

i

i

i

i

i

Bibliography

[1] Amazon S3 (simple storage service). http://aws.amazon.com/s3.

[2] JetS3t, an open source java toolkit for amazon s3. http://jets3t.s3.
amazonaws.com/index.html.

[3] Aris Anagnostopoulos, Michael T. Goodrich, and Roberto Tamassia. Per-
sistent authenticated dictionaries and their applications. In Proc. Infor-
mation Security Conference (ISC 2001), volume 2200 of LNCS, pages
379–393. Springer-Verlag, 2001.

[4] A. Asuncion and D.J. Newman. UCI machine learning repository, Univer-
sity of California, Irvine, School of Information and Computer Sciences,
2007.

[5] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea
Kissner, Zachary Peterson, and Dawn Song. Provable data possession
at untrusted stores. In Proc. Computer and Communication Security
(CCS), 2007.

[6] Robert Ball, Glenn A. Fink, and Chris North. Home-centric visualization
of network traffic for security administration. In VizSEC/DMSEC ’04:
Proceedings of the 2004 ACM workshop on Visualization and data mining
for computer security, pages 55–64, New York, NY, USA, 2004. ACM.

[7] Naser S. Barghouti, John Mocenigo, and Wenke Lee. Grappa: A GRAPh
PAckage in Java. In G. Di Battista, editor, Graph Drawing (Proc.
GD ’97), volume 1353 of Lecture Notes Comput. Sci., pages 336–343.
Springer-Verlag, 1997.

[8] Web based Database Software Solutions On-Demand.
http://www.teamdesk.net.

129

i

i

“main” — 2009/2/24 — 0:26 — page 130 — #140 i

i

i

i

i

i

130 BIBLIOGRAPHY

[9] Giuseppe Di Battista, Federico Mariani, Maurizio Patrignani, and Mau-
rizio Pizzonia. Bgplay: A system for visualizing the interdomain routing
evolution. In Graph Drawing, pages 295–306, 2003.

[10] Thomas Bladh, David A. Carr, and Jeremiah Scholl. Extending tree-
maps to three dimensions: A comparative study. In Proc. Int. Conf. on
Human Computer Interaction (HCI), pages 50–59, 2004.

[11] M. Bruls, K. Huizing, and J. van Wijk. Squarified treemaps. In Proc. of
Joint Eurographics and IEEE TCVG Symp. on Visualization (TCVG),
pages 33–42, 2000.

[12] A. Buldas, M. Roos, and J. Willemson. Undeniable replies for database
queries. In In Proceedings of the Fifth International Baltic Conference
on DB and IS, volume 2, pages 215-226, 2002., 2002.

[13] Ahto Buldas, Peeter Laud, and Helger Lipmaa. Accountable certificate
management using undeniable attestations. In CCS ’00: Proceedings
of the 7th ACM conference on Computer and communications security,
pages 9–17, New York, NY, USA, 2000. ACM.

[14] Jan Camenisch and Anna Lysyanskaya. Dynamic accumulators and
application to efficient revocation of anonymous credentials. In Proc.
CRYPTO, 2002.

[15] Xiang Cao and Lee Iverson. Intentional access management: making
access control usable for end-users. In Proc. of Int. Symposium on Usable
Privacy and Security (SOUPS), pages 20–31, 2006.

[16] Joe Celko. Joe Celko’s Trees and hierarchiesin SQL for smarties.
Morgan-Kaufmann, 2004.

[17] Matthew Chalmers. A linear iteration time layout algorithm for visualis-
ing high-dimensional data. In VIS ’96: Proceedings of the 7th conference
on Visualization ’96, pages 127–ff., Los Alamitos, CA, USA, 1996. IEEE
Computer Society Press.

[18] Greg Conti. Security Data Visualization. No Starch Press, San Francisco,
CA, USA, 2007.

[19] C.J. Date. Why is it so difficult to provide a relational interface to ims. In
Relational Database– Selected Writings, pages 241–257. Addison-Wesley,
1986.

i

i

“main” — 2009/2/24 — 0:26 — page 131 — #141 i

i

i

i

i

i

BIBLIOGRAPHY 131

[20] Prem Devanbu, Michael Gertz, April Kwong, Chip Martel, Glen Nuck-
olls, and Stuart G. Stubblebine. Abstract flexible authentication of xml
documents.

[21] Premkumar Devanbu, Michael Gertz, April Kwong, Chip Martel, Glen
Nuckolls, and Stuart Stubblebine. Flexible authentication of XML doc-
uments. Journal of Computer Security, 6:841–864, 2004.

[22] Premkumar Devanbu, Michael Gertz, Chip Martel, and Stuart G. Stub-
blebine. Authentic third-party data publication. In Fourteenth IFIP 11.3
Conference on Database Security, 2000.

[23] Giuseppe Di Battista and Bernardo Palazzi. Authenticated relational
tables and authenticated skip lists. In Proc. Working Conf. on Data and
Applications Security (DBSEC), pages 31–46, 2007.

[24] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano
Paraboschi, Gerardo Pelosi, and Pierangela Samarati. Preserving confi-
dentiality of security policies in data outsourcing. In WPES ’08: Pro-
ceedings of the 7th ACM workshop on Privacy in the electronic society,
pages 75–84, New York, NY, USA, 2008. ACM.

[25] Sabrina De Capitani di Vimercati, Sara Foresti, Sushil Jajodia, Stefano
Paraboschi, and Pierangela Samarati. A data outsourcing architecture
combining cryptography and access control. In CSAW ’07: Proceedings of
the 2007 ACM workshop on Computer security architecture, pages 63–69,
New York, NY, USA, 2007. ACM.

[26] P. Eades. A heuristic for graph drawing. Congr. Numer., 42:149–160,
1984.

[27] J. Ellson, E. R. Gansner, L. Koutsofios, S. C. North, and G. Wood-
hull. Graphviz and dynagraph - static and dynamic graph drawing tools.
Graph Drawing Software, 2003.

[28] Joshua Foster, Kalpathi Subramanian, Robert Herring, and Gail Ahn.
Interactive exploration of the AFS file system. In Proc. of the IEEE
Symposium on Information Visualization (INFOVIS), page 215, 2004.

[29] T. Fruchterman and E. Reingold. Graph drawing by force-directed place-
ment. Softw. – Pract. Exp., 21(11):1129–1164, 1991.

i

i

“main” — 2009/2/24 — 0:26 — page 132 — #142 i

i

i

i

i

i

132 BIBLIOGRAPHY

[30] Kevin Fu, M. Frans Kaashoek, and David Mazieres. Fast and secure
distributed read-only file system. Computer Systems, 20(1):1–24, 2002.

[31] Irene Gassko, Peter S. Gemmell, and Philip MacKenzie. Efficient and
fresh certification. In Int. Workshop on Practice and Theory in Public
Key Cryptography (PKC ’2000), volume 1751 of LNCS, pages 342–353.
Springer-Verlag, 2000.

[32] Luc Girardin and Dominique Brodbeck. A visual approach for monitoring
logs. In LISA ’98: Proceedings of the 12th USENIX conference on Sys-
tem administration, pages 299–308, Berkeley, CA, USA, 1998. USENIX
Association.

[33] Eu-Jin Goh, Hovav Shacham, Nagendra Modadugu, and Dan Boneh.
SiRiUS: securing remote untrusted storage. In Proc. Network and Dis-
tributed System Security Symp. (NDSS), pages 131–145, 2003.

[34] M. Goodrich and R. Tamassia. Efficient authenticated dictionaries with
skip lists and commutative hashing. Technical report, Johns Hopkins
Information, 2000.

[35] M. T. Goodrich, C. Papamanthou, R. Tamassia, and N. Triandopou-
los. Athos: Efficient authentication of outsourced file systems. In Proc.
Information Security Conference, LNCS, pages 80–96. Springer, 2008.

[36] M. T. Goodrich and R. Tamassia. Efficient authenticated dictionaries
with skip lists and commutative hashing. Technical report, Johns Hopkins
Information Security Institute, 2000. Available from http://www.cs.
brown.edu/cgc/stms/papers/hashskip.pdf.

[37] Michael T. Goodrich, James Lentini, Michael Shin, Roberto Tamas-
sia, and Robert Cohen. Design and implementation of a distributed
authenticated dictionary and its applications. Technical report, Cen-
ter for Geometric Computing, Brown University, 2002. Available from
http://www.cs.brown.edu/cgc/stms/papers/stms.pdf.

[38] Michael T. Goodrich, Michael Shin, Roberto Tamassia, and William H.
Winsborough. Authenticated dictionaries for fresh attribute credentials.
In Proc. Trust Management Conference, volume 2692 of LNCS, pages
332–347. Springer, 2003.

i

i

“main” — 2009/2/24 — 0:26 — page 133 — #143 i

i

i

i

i

i

BIBLIOGRAPHY 133

[39] Michael T. Goodrich and Roberto Tamassia. Data Structures and Algo-
rithms in Java. John Wiley & Sons, Inc., New York, NY, USA, 2000.

[40] Michael T. Goodrich, Roberto Tamassia, and Jasminka Hasic. An effi-
cient dynamic and distributed cryptographic accumulator. In Proc. of
Information Security Conference (ISC), volume 2433 of LNCS, pages
372–388. Springer-Verlag, 2002.

[41] Michael T. Goodrich, Roberto Tamassia, and Andrew Schwerin. Imple-
mentation of an authenticated dictionary with skip lists and commutative
hashing. In Proc. 2001 DARPA Information Survivability Conference and
Exposition, volume 2, pages 68–82, 2001.

[42] Michael T. Goodrich, Roberto Tamassia, Nikos Tri, and Opoulos Robert
Cohen. Authenticated data structures for graph and geometric searching.
In in CT-RSA, pages 295–313. Springer, LNCS, 2003.

[43] A. Heitzmann, B. Palazzi, C. Papamanthou, and R. Tamassia. Effective
visualization of file system access-control. In Proc. Int. Workshop on
Visualization for Cyber Security (VizSec), volume 5210 of LNCS, pages
18–25. Springer, 2008.

[44] Alexander Heitzmann, Bernardo Palazzi, Charalampos Papamanthou,
and Roberto Tamassia. Efficient integrity checking of untrusted network
storage. In StorageSS ’08: Proceedings of the 4th ACM international
workshop on Storage security and survivability, pages 43–54, New York,
NY, USA, 2008. ACM.

[45] Trent Jaeger and Jonathon E. Tidswell. Practical safety in flexible access
control models. ACM Trans. Information Systems Security, 4(2):158–
190, 2001.

[46] Ravi Chandra Jammalamadaka, Roberto Gamboni, Sharad Mehrotra,
Kent E. Seamons, and Nalini Venkatasubramanian. gVault: A gmail
based cryptographic network file system. In Proc. Working Conf. on
Data and Applications Security (DBSEC), pages 161–176, 2007.

[47] B. Johnson and Ben Shneiderman. Tree maps: A space-filling approach
to the visualization of hierarchical information structures. In Proc. IEEE
Visualization, pages 284–291, 1991.

i

i

“main” — 2009/2/24 — 0:26 — page 134 — #144 i

i

i

i

i

i

134 BIBLIOGRAPHY

[48] John B. Johnston. The contour model of block structured processes.
SIGPLAN Not., 6(2):55–82, 1971.

[49] Vishal Kher and Yongdae Kim. Securing distributed storage: challenges,
techniques, and systems. In Proc. ACM Workshop on Storage Security
and Survivability, pages 9–25, 2005.

[50] P. C. Kocher. On certificate revocation and validation. In Proc. Int. Conf.
on Financial Cryptography, volume 1465 of LNCS. Springer-Verlag, 1998.

[51] Paul C. Kocher. On certificate revocation and validation. In FC ’98:
Proceedings of the Second International Conference on Financial Cryp-
tography, pages 172–177, London, UK, 1998. Springer-Verlag.

[52] Ramakrishna Kotla, Lorenzo Alvisi, and Michael Dahlin. Safestore: A
durable and practical storage system. In USENIX Annual Technical Con-
ference, pages 129–142. USENIX, 2007.

[53] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenti-
cated index structures for outsourced databases. In Proc. of ACM SIG-
MOD International Conference on Management of Data, pages 121–132,
2006.

[54] F. Li, M. Hadjieleftheriou, G. Kollios, and L. Reyzin. Dynamic authenti-
cated index structures for outsourced databases. In SIGMOD ’06: Pro-
ceedings of the 2006 ACM SIGMOD international conference on Man-
agement of data, pages 121–132, New York, NY, USA, 2006. ACM Press.

[55] Jinyuan Li, Maxwell N. Krohn, David Mazières, and Dennis Shasha.
Secure untrusted data repository (SUNDR). In OSDI, pages 121–136,
2004.

[56] Umesh Maheshwari, Radek Vingralek, and William Shapiro. How to
build a trusted database system on untrusted storage. In Proc. USENIX
Symp. on Operating Systems Design and Implementation, 2000.

[57] James Manger. Response on Jungle Disk Blog. http://blog.
jungledisk.com/2006/06/06/encryption/#comment-26.

[58] Petros Maniatis and Mary Baker. Enabling the archival storage of signed
documents. In Proc. USENIX Conf. on File and Storage Technologies
(FAST 2002), Monterey, CA, USA, 2002.

i

i

“main” — 2009/2/24 — 0:26 — page 135 — #145 i

i

i

i

i

i

BIBLIOGRAPHY 135

[59] Petros Maniatis and Mary Baker. Secure history preservation through
timeline entanglement. In Proc. USENIX Security Symposium, 2002.

[60] Florian Mansmann, Lorenz Meier, and Daniel Keim. Graph-based mon-
itoring of host behavior for network security. In Proc. Workshop on
Visualization for Computer Security (VizSec), 2007.

[61] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, and S. G.
Stubblebine. A general model for authenticated data structures. Algo-
rithmica, 39(1):21–41, 2004.

[62] Chip Martel, Glen Nuckolls, Premkumar Devanbu, Michael Gertz, April
Kwong, and Stuart Stubblebine. A general model for authentic data pub-
lication, 2001. Available from http://www.cs.ucdavis.edu/~devanbu/
files/model-paper.pdf.

[63] A. Meier, R. Dippold, J. Mercerat, A. Muriset, J. Untersinger, R. Ecker-
lin, and F. Ferrara. Hierarchical to relational database migration. IEEE
Softw., 11(3):21–27, 1994.

[64] R. C. Merkle. Protocols for public key cryptosystems. In Proc. Symp.
on Security and Privacy, pages 122–134. IEEE Computer Society Press,
1980.

[65] R. C. Merkle. A certified digital signature. Advances in Cryptology-
Crypto’89, 435:218–238, 1989.

[66] Ralph C. Merkle. A certified digital signature. In G. Brassard, edi-
tor, Proc. CRYPTO ’89, volume 435 of LNCS, pages 218–238. Springer-
Verlag, 1989.

[67] Gerome Miklau and Dan Suciu. Implementing a tamper-evident database
system. In Data Management on the Web, Proc. Asian Computing Sci-
ence Conf., volume 3818 of LNCS, pages 28–48. Springer, 2005.

[68] Gerome Miklau and Dan Suciu. Implementing a tamper-evident database
system. In ASIAN: 10th Asian Computing Science Conference, pages 28–
48, 2005.

[69] Jaime Montemayor, Andrew Freeman, John Gersh, Thomas Llanso, and
Dennis Patrone. Information visualization for rule-based resource access
control. In Proc. of Int. Symposium on Usable Privacy and Security
(SOUPS), 2006.

i

i

“main” — 2009/2/24 — 0:26 — page 136 — #146 i

i

i

i

i

i

136 BIBLIOGRAPHY

[70] Chris Muelder, Kwan-Liu Ma, and Tony Bartoletti. A visualization
methodology for characterization of network scans. In VIZSEC ’05: Pro-
ceedings of the IEEE Workshops on Visualization for Computer Security,
page 4, Washington, DC, USA, 2005. IEEE Computer Society.

[71] J. Ian Munro, T. Papadakis, and R. Sedgewick. Deterministic skip lists.
In SODA ’92: Proceedings of the third annual ACM-SIAM symposium
on Discrete algorithms, pages 367–375, Philadelphia, PA, USA, 1992.

[72] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentica-
tion and integrity in outsourced databases. Trans. Storage, 2(2):107–138,
2006.

[73] Einar Mykletun, Maithili Narasimha, and Gene Tsudik. Authentica-
tion and integrity in outsourced databases. Trans. Storage, 2(2):107–138,
2006.

[74] Moni Naor and Kobbi Nissim. Certificate revocation and certificate up-
date. In Proc. 7th USENIX Security Symposium, pages 217–228, Berke-
ley, 1998.

[75] Maithili Narasimha and Gene Tsudik. Authentication of outsourced
databases using signature aggregation and chaining. In In International
Conference on Database Systems for Advanced Applications (DASFAA).
DASFAA, 2006.

[76] A. Noack. An energy model for visual graph clustering. 2003.

[77] S. Noel, M. Jacobs, P. Kalapa, and S. Jajodia. Multiple coordinated views
for network attack graphs. In Proc. IEEE Workshop on Visualization for
Computer Security (VizSEC), pages 99–106, 2005.

[78] Steven Noel and Sushil Jajodia. Managing attack graph complexity
through visual hierarchical aggregation. In CCS Workshop on Visual-
ization and Data Mining for Computer Security, 2004.

[79] Jon Oberheide, Manish Karir, and Dionysus Blazakis. Vast: visualizing
autonomous system topology. In VizSEC ’06: Proceedings of the 3rd
international workshop on Visualization for computer security, pages 71–
80, New York, NY, USA, 2006. ACM.

[80] Caspio Bridge online database. http://www.caspio.com.

i

i

“main” — 2009/2/24 — 0:26 — page 137 — #147 i

i

i

i

i

i

BIBLIOGRAPHY 137

[81] Alina Oprea and Micheal K. Reiter. Integrity checking in cryprographic
file systems with constant trusted storage. In Proc. USENIX Security
Symposium (USENIX), pages 183–198, 2007.

[82] H. Pang, A. Jain, K. Ramamritham, and K. Tan. Verifying completeness
of relational query results in data publishing. In SIGMOD Conference,
pages 407–418, 2005.

[83] H. Pang and K. Tan. Authenticating query results in edge computing.
In ICDE ’04: Proceedings of the 20th International Conference on Data
Engineering, page 560, Washington, DC, USA, 2004. IEEE Computer
Society.

[84] C. Papamanthou and R. Tamassia. Time and space efficient algorithms
for two-party authenticated data structures., 2007.

[85] Daniel J. Polivy and Roberto Tamassia. Authenticating distributed data
using Web services and XML signatures. In Proc. ACM Workshop on
XML Security, 2002.

[86] Livebase project Blog on Web-based db.
http://livebase.blog.com/1142527/.

[87] William Pugh. Skip lists: A probabilistic alternative to balanced trees.
In Workshop on Algorithms and Data Structures, pages 437–449, 1989.

[88] Jennifer Rode Carolina Johansson Paul DiGioia Roberto Silveira Silva
Filho Kari Nies David H. Nguyen Jie Ren Paul Dourish David F. Red-
miles. Seeing further: extending visualization as a basis for usable secu-
rity. In SOUPS, pages 145–155, 2006.

[89] R.W Reeder, L. Bauer, L.F. Cranor, M.K. Reiter, K. Bacon, K. How,
and H. Strong. Expandable grids for visualizing and authoring computer
security policies. In Proc. ACM Conf. on Human Factors in Computing
Systems (CHI), pages 1473–1482, 2008.

[90] Mark E. Russinovich and David A. Solomon. Microsoft Windows Inter-
nals, Fourth Edition: Microsoft Windows Server TM2003, Windows XP,
and Windows 2000 (Pro-Developer). Microsoft Press, Redmond, WA,
USA, 2004.

i

i

“main” — 2009/2/24 — 0:26 — page 138 — #148 i

i

i

i

i

i

138 BIBLIOGRAPHY

[91] Thomas S. J. Schwarz and Ethan L. Miller. Store, forget, and check:
Using algebraic signatures to check remotely administered storage. In
ICDCS ’06: IEEE Int. Conf. on Distributed Computing Systems, page 12,
2006.

[92] P. Griffiths Selinger, M. M. Astrahan, D. D. Chamberlin, R. A. Lorie, and
T. G. Price. Access path selection in a relational database management
system. In SIGMOD ’79: Proceedings of the 1979 ACM SIGMOD in-
ternational conference on Management of data, pages 23–34, New York,
NY, USA, 1979. ACM.

[93] Hovav Shacham and Brent Waters. Compact proofs of retrievability.
Cryptology ePrint Archive, 08/073, 2008.

[94] Michael Shin, Christian Straub, Roberto Tamassia, and Daniel J. Polivy.
Authenticating Web content with prooflets. Technical report, Center for
Geometric Computing, Brown University, 2002. http://www.cs.brown.
edu/cgc/stms/papers/prooflets.pdf.

[95] R. Sion. Query execution assurance for outsourced databases. In VLDB
’05, pages 601–612. VLDB Endowment, 2005.

[96] John Stasko. An evaluation of space-filling information visualizations for
depicting hierarchical structures. Int. J. Hum.-Comput. Stud., 53(5):663–
694, 2000.

[97] R. Tamassia, B. Palazzi, and C. Papamanthou. Graph drawing for secu-
rity visualization. In Maurizio Patrignani, editor, Graph Drawing (Proc.
GD ’08), Lecture Notes Comput. Sci. Springer-Verlag, 2008.

[98] Roberto Tamassia. Authenticated data structures. In Proc. European
Symp. on Algorithms, volume 2832 of LNCS, pages 2–5. Springer-Verlag,
2003.

[99] Roberto Tamassia and Nikos Triandopoulos. On the cost of authen-
ticated data structures. Technical report, Center for Geometric Com-
puting, Brown University, 2003. Available from http://www.cs.brown.
edu/cgc/stms/papers/costauth.pdf.

[100] Roberto Tamassia and Nikos Triandopoulos. Computational bounds on
hierarchical data processing with applications to information security.
In Proc. Int. Colloquium on Automata, Languages and Programming
(ICALP), volume 3580 of LNCS, pages 153–165. Springer-Verlag, 2005.

i

i

“main” — 2009/2/24 — 0:26 — page 139 — #149 i

i

i

i

i

i

BIBLIOGRAPHY 139

[101] Soon Tee Teoh, Supranamaya Ranjan, Antonio Nucci, and Chen-Nee
Chuah. Bgp eye: a new visualization tool for real-time detection and
analysis of bgp anomalies. In VizSEC ’06: Proceedings of the 3rd inter-
national workshop on Visualization for computer security, pages 81–90,
New York, NY, USA, 2006. ACM.

[102] Juan Toledo. Etherape a live graphical network monitor tool.
http://etherape.sourceforge.net/.

[103] Jens Tölle and Oliver Niggermann. Supporting intrusion detection by
graph clustering and graph drawing. In Proc. of Third International
Workshop on Recent Advances in Intrusion Detection (RAID 2000),
Toulouse, France, 2000.

[104] Richard M. Wilson and R. Daniel Bergeron. Dynamic hierarchy specifica-
tion and visualization. In Proc. of the IEEE Symposium on Information
Visualization (INFOVIS), page 65, 1999.

[105] Danfeng Yao, Michael Shin, Roberto Tamassia, and William H. Wins-
borough. Visualization of automated trust negotiation. In VIZSEC ’05:
Proceedings of the IEEE Workshops on Visualization for Computer Se-
curity, page 8, Washington, DC, USA, 2005. IEEE Computer Society.

[106] Xiaoxin Yin, William Yurcik, Michael Treaster, Yifan Li, and Kiran
Lakkaraju. VisFlowConnect: Netflow visualizations of link relationships
for security situational awareness. In Proc. ACM Workshop on Visualiza-
tion and Data Mining for Computer Security (VizSEC/DMSEC), pages
26–34, New York, NY, USA, 2004. ACM Press.

[107] Aydan Y. Yumerefendi and Jeffrey S. Chase. Strong accountability for
network storage. In Proc. Conference on File and Storage Technologies
(FAST), pages 77–92, 2007.

[108] online database Zoho Creator. http://creator.zoho.com.

