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Abstract

The mathematical description of geometry is of paramount importance in the mod-
eling of systems of all kinds. Standard geometric modeling describes curved objects
through parametric functions as the image of compact domains. Alternatively, as in
algebraic geometry, one may describe curved geometry as the zero-set of polynomi-
als. Geometric modeling of biological systems highlight certain persistent and open
problems more effectively addressed using algebraic geometry.

In this thesis a framework for computer-based geometric representation based on
algebraic geometry is introduced. Several algebraic representation schemes known
as A-splines and A-patches are detailed as a description of geometry, by using a
piecewise continuous gluing of algebraic curves and surfaces. The application of A-
splines and A-patches to biological modeling is discussed in the context of protein
molecular interface modeling. The rationale is to present an algebraic representation
of bio-modeling under an unified point of view. This framework provides a suitable
background for the main contribution of this thesis: the formulation and implemen-
tation of algorithms for Boolean operations (union, intersection, difference, etc.)
on the algebra of curved polyhedra whose boundary is triangulated with A-patches.
Boolean operations on curved geometry are yet an open obstinate research problem
and its exact solution is only definable within the domain of algebraic geometry. The
exact formulation is here used as basis for a geometrically approximate yet topologi-
cally accurate solution, closed in the geometric domain of A-patches. The prototype
implementation has been applied to pairs of molecular models of ligand proteins
in docking configuration. To date, the computational use of algebraic geometry is
still experimental and is far from being a major component of current systems. This
thesis shows an evidence that representation techniques derived from algebraic ge-
ometry have strong potential in bio-medical modeling, still needing much further
research and engineering.
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Chapter 1

Introduction

Computer Aided Design and Engineering is very effective with the design, modeling and
simulation of physical systems with a very large number of components and fine granu-
larity. Its application to natural systems has been found less satisfying especially when
these systems have a degree of intra- and inter- mutual dependance. The mathematical
description of geometry is of paramount importance in the modeling of these systems. In
standard geometric modeling, curved geometry is represented by parametric functions,
that is, a mathematical description on how to generate a certain point set. In mathematics
one may also describe geometry as the geometric loci of points satisfying a set of equa-
tions. This is an important and established branch of mathematics known as algebraic
geometry. Algebraic geometry has been successfully applied to the geometric modeling
and visualization of biological systems. Algebraic geometry is very useful in the geo-
metric and topological reconstruction from bio-medical acquired images. An algebraic
geometric description is also more natural in the geometric description of biological
molecules. To date, techniques and methods from algebraic geometry have been proven
advantageous in both troublesome geometric reconstructions and certain open geomet-
ric modeling problems. In this chapter the algebraic geometry representation schemes
are introduced highlighting their rich mathematical structure, on why they are apt to the
application to biomedical sciences and engineering, and their distinctive mathematical
properties and constructions useful for geometric modeling.

1.1 Algebraic Finite Elements

In Geometric Modeling [Man88, Hof89, Pao03], geometry is represented as a piecewise
gluing (with continuity constraints) of geometric elements. A two dimensional curved
surface element is called “patch”. Each element is described mathematically, and tra-
ditionally, for tractability and computational efficiency, by parametric functions. An

1
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m-dimensional curved geometry embedded in an n-dimensional one is represented as
the image of a compact subset U of Rm by vector valued function f : Rm → Rn (usu-
ally polynomial or rational). On the other hand it is possible to represent each element
implicitly as an algebraic variety, the ideal generated by the zero set of one or more poly-
nomials e : Rn→ R. The image {p = f (u)}u∈U⊆R of a single n-dimensional parametric
function f : R→ Rn will be called a parametric element and geometrically describes
a curve (a trajectory) in the n-dimensional space. A single polynomial function in a
n-dimentional space e : Rn → R describes a scalar field. The zero-set {e(p) = 0}p∈Rn

is called an algebraic hyper-element and geometrically describes a (n−1)-dimensional
hyper-surface in a n-dimensional space. Parametric and algebraic representation are dual
to each other, parametric representation is generative while algebraic representation is
co-generative: the former describes a process on how the geometry is generated; the
later express a constraint in equational form that the geometry must satisfy.

Geometric representation using piecewise parametric rational functions is a well estab-
lished technique [Hof89, Far01, Pao03], used in all major modeling software. There are
general, computationally efficient, and mutually convertible parametric representations
of arbitrary degree and dimensionality, moreover control data usually have an intuitive
geometric meaning [PT96, Gol02]. Computer geometric representation using algebraic
elements is a less explored field [Baj93, Baj90]. The study of algebraic varieties is an
important and established branch of mathematics known as algebraic geometry [Abh90].
The geometric domain of algebraic varieties has a richer mathematical structure and is
a geometric superset of parametric images of polynomial, rational, and irrational func-
tions. An algebraic n-dimensional hyper-element has

(d+n
n

)− 1 degrees of freedom,
where d is the degree. Compare to polynomial parametric or rational parametric ele-
ment with dn+1 and (d +1)n+1 degrees of freedom respectively. It is to be noted that
a d-degree n-dimensional polynomial parametric element may always be converted to a
dn degree algebraic variety. By power-raising (to eliminate roots), distributing the de-
nominator and computing the resultant (to eliminate the parameter) it is always possible
given an irrational parametric function to compute a set of equations that the geometry
will satisfy. Vice versa given a set of equation, in general one cannot formulate the ge-
ometry parametrically, though it is possible to define the set of parameterizable algebraic
equations [AB88] and there are techniques to piecewise approximate an algebraic vari-
ety through parametric functions [BX97]. Algebraic geometry has a richer and intrinsic
topological properties. An algebraic variety F may be disconnected, self intersect at
singular points ∇(F)(p) = 0, have xi-extreme points ∂F(p)/∂xi = 0, and other second
derivative H (F(p)) properties (curvature, flexes, saddles, etc). Due to its richer math-
ematical structure algebraic geometry is regarded as complicated and arcane, Moreover
it is less regular and more fragmentary then the simpler parametric geometry. The task
engineering such results into representation schemes, modeling techniques and operative
algorithms software is yet in a developing phase.

With the term Algebraic Finite Elements one wants to cover all description of geometry
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as a piecewise gluing of compact algebraically defined discrete elements, that is, each el-
ement geometry is the zero set of one or more functions fl(x) = 0, l ∈ [1..n−m], where
x is a generic point of an n-dimensional space. The functions fl(x) are usually polyno-
mial, but sometimes may be formulated in rational or irrational form to highlight certain
parameters, in this case they may (by power-raising and denominator distribution) be
converted to polynomials. While it is possible to model a general closed geometry of
arbitrary genus using a single implicit surface. On one hand, the geometry of such global
surface is difficult to specify, control and polygonize. On the other hand, the defining
functions will be of high degree.
Why is low degree important? The geometric degree of an algebraic surface is the maxi-
mum number of intersections between the surface and a line, counting complex, infinite
and multiple intersections. It is a measure of the ”waviness” of the surface. This geomet-
ric degree is the same as the degree of the defining polynomial f of the algebraic surface
in the implicit definition, but may be as high as n2 for a parametrically defined surface
with rational functions Gi of degree n. The geometric degree of an algebraic space curve
is the maximum number of intersections between the curve and a plane, counting com-
plex, infinite and multiple intersections. A well known theorem of algebraic geometry
(Bezout’s theorem) states that the geometric degree of an algebraic intersection curve
of two algebraic surfaces may be as large as the product of the geometric degrees of
the two surfaces [SR49]. The use of low degree surface patches to construct models
of physical objects thus results in faster computations for subsequent geometric model
manipulation operations such as computer graphics display, animation, and physical ob-
ject simulations, since the time complexity of these manipulations is a direct function
of the degree of the involved curves and surfaces. Furthermore, the number of singu-
larities (sources of numerical ill-conditioning) of a curve of geometric degree m may be
as high as m2 [Wal78]. Keeping the degree low of the curves and surfaces thus leads to
potentially more robust numerical computations.
In an abstract definition, an algebraic finite element is a smooth nonsingular piece of
an algebraic variety delimited by a closed boundary. An A-spline (Algebraic Spline)
is a curve segment in the plane defined by a single equation f (x) = f (x,y) = 0, de-
limited by two points on the curve. An A-patch is a smooth nonsingular surface in a
3-dimensional space defined by a single equation f (x) = f (x,y,z) = 0. The boundary
must be a closed cycle of curve segments on the surface. Recursively one may define
an n-dimensional finite element as an algebraic hyper-element delimited by a closed
boundary of (n− 1)-dimensional finite elements. Other varieties (e.g. a curve in space
a surface in a m-dimensional space) may be defined either supplying more equations,
or, by supplying a rational mapping. These two approaches are equivalent as an alge-
braic variety may always be formulated as a single equation and a rational mapping (by
variable elimination).
Imposing continuity and bounds is more difficult in algebraic geometry thus making the
gluing of algebraic elements problematic. When defining an algebraic finite element
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representation of geometry, there are several constraints one need or wishes to impose:

Regularity The first set of constraint involve the ”sanity” of the algebraic variety en-
closed by the boundary. Algebraic varieties may be disconnected, non-continuous,
have singularities and be multiple sheeted.

Continuity Gluing the various algebraic elements with a desired continuity imposes
inter-patch constraints.

Control One, usually, wants to control the geometric element with control data that
have an intuitive geometric meaning: interpolate and/or approximate points; im-
pose a certain derivative information on certain geometric places; etc.

Though the abstract definition of piecewise geometric representation through algebraic
elements is elegant and general. Due to these constraints, the abstract definition is
not useful for practical purposes. Instead one focuses on sub-classes of A-patches de-
fined by particular construction schemes and polynomials defined in an apropriate poli-
nomial base. These computer based representations of geometry are problem depen-
dent, of fixed degree and of fixed dimensionality. Conversions between representations
tend to be ad-hoc and sometimes approximate. A typology of such representations are
the “A-patches“[Dah89, BCX94, BCX95, BCX95, BX99b, BXHN02, BCX97, Guo92],
smooth algebraic surface patch families, defined using a fixed degree trivariate polyno-
mial within a compact polyhedron domain (also called the patch scaffold). Simple A-
patches use a tetrahedrons, cube, or a triangular and quadrangular prism scaffolds. Com-
mon 2-dimensional scaffolds are triangles (2-simpexes), rectangles, parallelepipeds, and
prisms (general 4-gon). In 3 dimensions tetrahedra, cubes, pyramids and prisms are
used. The polyhedron is defined generatively from geometric data and thus are defined
by low-degree (linear, bilinear, or trilinear) parametric functions. Moreover the scaffold
supplies a local coordinate system on which the algebraic element is defined. The alge-
braic element is usually defined in Berstein-Bézier (B.B.) form in barycentric, tensor or
mixed basis, because of the intuitivety of the control data and, more importantly, due to
the diminishing variation property.

1.2 Bio-medical Modeling

Algebraic patches and other methods from algebraic geometry are particularly useful
for geometric modeling and visualization of biological systems with applications in the
biomedical sciences and engineering. Philosophically speaking, biological systems at
all levels (eg. molecular surfaces, cell walls, biological tissue) have intrinsically curved
geometry and this geometry has usually a predominant co-generative nature, as it tends
to adapt to physical and external constraints. Algebraic geometry richer topological
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structure is a resource when dealing with complex structure and to discriminate inherent
topological characteristics from topological errors introduced by approximation.

Methods from algebraic geometry are apt to reconstruct geometry and topology from
acquired data, eg. electron microscopy (EM), electron tomography (ET), Magnetic
resonance (MRI), X-ray computed tomography (CT), ultrasound, X-raycrystallography
(X-ray), or nuclear magnetic resonance spectroscopy (NMR) [CS04, LB02, BDST04,
BLMP97, BDST04, BCCSX05, ZXB07, ZXB06]. In extreme simplification, imaging
data may be seen as an uniform sampling of a real (single component) valued function
v = I(x). One wants to reconstruct a geometry to elucidate a certain structure. The im-
age is processed using various image manipulation techniques to filter noise and enhance
contrast. With methods derived from Morse theory one can build a hierarchical tree of
critical points, effectively discerning the topology of all level sets and permitting active
contouring methods. Furthermore one may subdivide the domain in a non uniform mesh
and, by resampling, build for each subdivision a local low-degree algebraic variety. Ef-
fectively one constructs a geometric structure to the previously unstructured sampling.
Models using A-patches built using this reconstruction activity will be presented as ex-
amples in this thesis. However the actual techniques are very specific and an interested
reader may refer to the aforementioned literature.

Algebraic varieties are natural in the interface surface modeling of biological molecules.
In this case the objective is to build a piecewise low-degree local approximation of a
level-set of the electron density function [ZnBS05, KOB+04, BYA03]. Geometric Mod-
els are used to approximate the real-world objects. Locating each molecule and mod-
eling the ensemble of an arrangement of atoms is known as Explicit Modeling a.k.a.
Labeled Embedded Graph (”LEG/Bone/Skeleton” or ”Ball-Stick”) Model. Modeling
to analyze density or average distribution of certain species concentration using analyt-
ical functions is known as Implicit Modeling a.k.a. Interface Model a.k.a. Boundary
Representation (”Skin” or ”Spatial Occupancy”) Model. These (geometric) models are
useful not only to visualize, but to do extensive computations. For example, level sets
give the subdomain in which the protein/ion density’ is greater than certain threshold.
This yields an analytical function, which facilitates in visualizing using splines/patches.
The conversion of an Explicit Model to an Implicit Model is known as Mean Field Ap-
proximation. The appropriate model is chosen depending on the context. The interface
between a protein and a water molecule is captured with an interface model. The inter-
face model separates interface of one molecule from another. This model is a continuum
geometric model.The input data for the explicit model is obtained from the Protein Data
Bank (PDB), a repository for 3-D structural data of proteins and nucleic acids. This
data, typically obtained by X-ray crystallography or NMR spectroscopy, is submitted by
biologists and biochemists from around the world, is released into the public domain,
and can be accessed for free.
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1.3 Symbolic Operations

Geometric modeling is not only the construction and representation of geometry but
also the ability to operate and compute on the geometry. Algebraic varieties are symbol-
ically closed under several geometric operations such as intersections, offset, revolution,
blending and convolution:

Intersection The intersection of two varieties is well defined in algebraic geometry as
it is simply the ideal generated by the defining equations. The intersection of two
n-dimensional hyper-elements e1(x) = 0 of degree d1 and e2(x) = 0 of degree d2
is a n−1 dimensional element embedded in a n dimensional space of degree d1d2
defined by the ideal generated by the equations:{

e1(x) = 0
e2(x) = 0

With algebraic methods one may ”move” between the equations in the ideal:
resultant, the elimination of a variable in a system of equations; and; Gröbner
Bases, a ”canonical” basis of the ideal. In particular an n− 1 element embed-
ded in a n dimensional space may be defined by a linear transformation y = Tx,
(y = (y1, . . . ,yn)), an n− 1 hyper-element e((y′) = 0, and a mapping yn = f (p′).
The linear transformation is needed to avoid degenerate cases, without loss of
generality one may consider the identity case (e.g. T = I, x = y). In this case the
intersection of two hyper-elements e1(x) = 0 and e2(x) = 0 may be reduced to:{

e(x) = Resxn,0(e1(x),e2(x)) = 0
xn = Resxn,1(e1(x),e2(x))

Where Resv,n(e1,e2) is the n resultant on variable v between p1 and p2. That is,
the polynomial obtained by the elimination of the variable v until the n term in the
system of equations e1 = 0 and e2 = 0.

Lofting Given a set of curves, each represented by the intersection of two implicit sur-
faces i.e., Ci0≤i≤n : ( fi,gi) where fi and gi are surfaces in irreducible implicit form,
the surface S which Gk interpolates Ci is known as the Gk lofted surface of Ci .
The surface S is defined as

α0 f0 +β0gk+1
0 = α1 f1 +β1gk+1

1 = . . . = αn fn +βngk+1
n

where αi and βi are polynomials of degree ≤ k. Among the two implicit surfaces
to represent a curve Ci , one typically represents the lower degree surface as gi
whereas the other one as fi to obtain the computational efficiency. This definition
can be trivially extended to higher dimensions. Note that if each Ci ∈ Rn−1 the
lofted surface is in Rn.
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Revolution Given a cyclic boundary in the xz-plane defined by f (x,z) = 0 and a pla-
nar curve in xy-plane defined by g(x,y) = 0, the surface g( f (x,z),y) = 0 obtained
in revolving g(x,y) around y-axis along the boundary of f (x,z) is known as the
surface of revolution of g(x,y) around y-axis w.r.t. f (x,z). This definition can be
trivially extended to higher dimensions. Note that if each C ∈ Rn−1 then the sur-
face of revolution is in Rn.

Offset The convolution of an n-dimensional hyper-element e(x) = 0 with a n-sphere
creates a volume. The inner surface of the volume is said the inner offset and the
outer surface of the volume is said outer offset. One may equivalently roll the
n-sphere on both sides of the n-dimensional hyper-element.

In particular the possibility of calculating the intersection of two algebraic varieties is
the fundamental operation to implement boolean operations on geometries described by
algebraic finite elements. Boolean operators [LTH86, Mas93, PSR89, PBCF93] are the
set-theoretical operations (Union, Intersection, Difference, containment, etc) between
the point sets described by two geometric models. Boolean operation between geomet-
rical models have the critical step of computing the intersection of two elements. The
intersection of two varieties is well defined in algebraic geometry as it is simply the ideal
generated by the union of the defining equations. However the exact boolean operator is
often not closed inside the domain of fixed degree A-patches. The reason is simply that
the intersection of two algebraic surfaces of degree d (say cubic) is in general, a space
curve of degree d2. It is possible however to build a piecewise low-degree topologically
correct approximate, in case of tetrahedral and prismatic patches a piecewise linear trac-
ing of the intersection curve[BX97]. This tracing is the starting point of the splitting
of each geometric elements along the approximate intersection and the classification of
each generated sub-element as either belonging to one and/or the other model. The final
step is to assemble the result depending on the wanted operation.

1.4 Guide to the Reader

Topics typical in an undergraduate course in geometric modeling are required for the
comprehension of this thesis though there has been an effort to recall them if needed. In
particular it is required at a least prior exposition to[Pao03]:

• linear algebra, vector spaces, and affine spaces;

• representation of geometric space in both tensor and barycentric coordinate sys-
tems;

• the convection to denote variables as: scalar in lowercase italic (a,λ ,x, . . .), vec-
tors and points in lower case italic bold (v,p,α, . . .), matrix in upper case bold
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(A,T, . . .), and operators and notation are quietly overloaded (when apropriate) to
vectors and matrixes, e.g.

(
p1−q p2−q αv

)
to denote a row of vectors

and thus a matrix (actually a 1-1 tensor);

• representation of polynomial and rational functions in power, Berstein-Bézier and
B-spline basis;

• parametric representation of curves, surfaces, and higher dimensional curved ge-
ometry;

• notation is quietly overloaded for vector polynomials, e.g. ∑
n
i=0 pixi : R→ Rn;

• polynomial tensor product and transfinite blending;

• fundamentals of geometric representation.

An introduction on algebraic geometry certainly would have been useful. However due
to time and space considerations it has been preferred to introduce the needed concepts
as they are needed. Furthermore, literature in algebraic geometry satisfying both math-
ematical soundness and operatively effectiveness under the engineering point of view
is rare. However, in appendix A, several examples of application of symbolical al-
gebraic geometry operations in the context of the PLaSM [Pao03, Pa] language and
the GANITH [BR90b, Por07b] algebraic geometry toolkit are exposed. In this thesis a
thorough full background on algebraic finite elements, A-splines, and A-patches is pre-
sented, it is a very specific field in geometric modeling and it is highly unlikely that a
reader will have any prior knowledge.
This chapter 1 has: introduced bio-medical modeling using algebraically defined geo-
metric elements; given an abstract definition of algebraic finite elements; discussed the
hurdles and advantages of an implicit algebraic definition of geometry in respect to the
more common explicit parametric representation; and presented the problematics for
regularity, continuity and control for a more operative definition. To date no singular
all comprehensive operative definition exists but a spectrum of representation schemes.
In chapter 2 and 3, a thorough overview of these schemes is given and the relevant lit-
erature cited, for the two and three dimensional case respectively. Original sources of
these chapters are Prof. Chandrajit Bajaj course in Geometric Modeling and Visualiza-
tion [Baj07, Baj] as well his articles on A-Spines [BX99a, XBC00a, XBC00b, XBC00c]
and A-patches [BCX95, BCX97, BX99b, XHB01, BX01, XBE02, ZXB07]. These three
chapters are fundamental for the comprehension of this thesis.
In chapter 4 a series of exercise and examples on algebraic varieties and finite algebraic
elements are presented. These examples were worked by the author and Prof. Na Lei
(Inst. of Mathematics, Jilin University, China) for the post graduate course in Geometric
Modeling and Visualization held by professor Chandrajit Bajaj at the University of Texas
at Austin [Baj07]. The rationale is to provide a good overview on the possible operations
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on algebraic finite elements in practical and by example manner, however, it does not
constitute a requisite reading.

The construction algorithm for the construction of molecular models using A-patches
is sketched in chapter 5. A similar algorithm is implemented in TexMol, a molecular
visualization software developed at CVC (Center for Computational Visualization) of
the ICES (Institute of Computational Engineering and Sciences) at the University of
Texas at Austin. Original source of this chapter is an handout from Prof. Chandrajit
Bajaj course in Geometric Modeling and Visualization [Baj07]. This chapter is useful
as an introduction on the models, however it is not strictly a necessary reading.

Then in chapters 6, 7, and 8 three types of algebraic finite elements will be studied
in detail and operational results will be given. Chapter 6, presents a detailed descrip-
tion including the calculation of the defining polynomial coefficients for arbitrary de-
gree polynomial interpolating Gk continuous A-splines on triangular domain. Content
of this chapter has been extracted and constitute a reduced form of [BX99a]. Chap-
ter 7, presents a detailed description, an algorithm for the scaffold construction, and
the calculation of the coefficients for cubic polynomial interpolating A-patches in tetra-
hedral domain. Content of this chapter has been extracted and constitute a reduced
form of [BCX95]. Chapter 8 explains the construction from a triangulation and the
control polynomial coefficients for simple cubic A-patches in a prismatic domain of
both triangular and quadrangular base. Sources of this chapter are from both [ZXB07]
and [BPP+08] as well as other unpublished materials from Chandrajit Bajaj, Na Lei,
Wenqi Zhao and the author. These three chapter give very specific information and are
intended for a reader interested in operational result, however, they are not needed for an
”intuitive” understanding of Algebraic Finite Elements. The techniques presented in the
rest of the thesis may be adapted to any type of algebraic finite elements, however they
will be specifically targeted at the case for cubic interpolating prismatic patches. This
means that only chapter 8 is actually useful while chapters 6 and 7 are optional aimed at
an interested reader.

Chapter 9, explains and discusses the new methods and algorithms for boolean opera-
tions on geometry described by an A-patch boundary representation. It is the principal
contribution of the thesis. The results of the application of these methods and this algo-
rithm to both simple geometry and to complex molecular models will be shown. This
chapter is an expanded and detailed version of [BPP+08]. Needless to say that is a
required reading!

In the concluding chapter 10 a critical assessment on current status of algebraic bio-
modeling is made. The current weak and strong characteristics of the boolean algorithm
and implementation is discussed as well as its possible future improvement and applica-
tion.

In appendix A the current status on the integration of of the Ganith[BR90b, Por07b] al-
gebraic geometry library in the PLaSM [Pao03, Pa] language is described. The rationale
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is to further develop this work by porting and integrating in PLaSM both the visualiza-
tion techniques of Ganith and the A-spline/A-patches techniques described in this thesis
including the boolean operators. This would result in a sophisticated environment and
programming language to manipulate symbolically and numerically both parametric and
algebraic geometry.
This thesis does not include other works of the author during his Ph.D. course such as:
optimization of the PLaSM[Pao03, Pa] geometric functional language for the version 5.1
of the interpreter; study and research in the field of implicit parallelism and application
to the geometric mapping in the PLaSM language[Por07a]; application to the field of
VR visualization and modeling of critical infrastructures[ABG+07].
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Chapter 2

Piecewise Algebraic Curve Segments
(A-Splines)

The possible applications of A-splines range from the traditional interactive design of
curves in computer graphics, to topologically correct piecewise approximation of higher
degree algebraic curves, and most importantly, in the field of biological modeling, to the
fitting curves for image reconstruction. A-splines are the first step in the study of alge-
braic elements as they are the simplest kind of algebraic elements possible. Many con-
cepts are more easily introduced and explained with a specific bi-dimentional example in
mind. Their defining equation is in the form of f (x,y) = 0 thus one may easily visualize
the graph [x,y,w = f (x,y)] of the the function f (x,y) and the intersection with the w = 0
plane. It is easier to visualize problems linked to non-singularity, single-sheetness, conti-
nuity and interpolation. For example in figure (2.1) shows the graph of a function in B.B.
form over a triangle and its controlling coefficients. This chapter constitute a reasoned
synthesis of some current articles on A-splines [BX99a, XBC00a, XBC00b, XBC00c].

2.1 Notation for Scaffold and Algebraic Equation

A-splines are defined in a compact polyhedron in particular trilaterals (triangles) and
quadrilaterals. Let pi = (xi,yi) ∈ R2, i ∈ [1..k], then [p1 . . .pn] denotes he closed convex
hull. That is, [p1 . . .pn] = {p = ∑

k
i=0 αipi, 0 ≤ αi ≤ 1, ∑

k
i=0 αi = 1}. If k = 3 and p1,

p2 and p3 are affine independent, then [p1p2p3] is a triangle and α = (α1,α2,α3)T are
known as barycentric coordinates which relate to the Cartesian coordinates (x,y)T by

p =

 x
y
z

=

 x1 x2 x3
y1 y2 y3
1 1 1

 α1
α2
α3

=
(

p1 p2 p3
1 1 1

)
α (2.1)

11
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12 CHAPTER 2. PIECEWISE ALGEBRAIC CURVE SEGMENTS (A-SPLINES)

Figure 2.1: Graph of a function in B.B. form over a triangle [Baj].

with |α| = α1 + α2 + α3 = 1. Using this constraint one may write the coordinate
transformation equations (2.1) in three equivalent ways using α1 = 1−α2 + α3, α1 =
1−α2 +α3, and as α3 = 1−α1−α2 (i.e. the last case):

p =

 x
y
z

=
(

x1− x3 x2− x3 x3
y1− y3 y2− y3 y3

) α1
α2
1


=

(
p1−p3 p2−p3 p3

) α1
α2
1


Relation (2.1) may be easily inverted as:

α = (α1α2α3)T =

(∣∣∣∣ p p2 p3
1 1 1

∣∣∣∣ ∣∣∣∣ p1 p p3
1 1 1

∣∣∣∣ ∣∣∣∣ p1 p2 p
1 1 1

∣∣∣∣)T

∣∣∣∣ p1 p2 p3
1 1 1

∣∣∣∣ (2.2)
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or equivalently as(
α1
α2

)
=

1∣∣∣∣ p1 p2 p3
1 1 1

∣∣∣∣
(

y2− y3 x3− x2
y3− y1 x1− x3

)(
x− x3
y− y3

)

On a triangle and using barycentric coordinates an algebraic curve may be defined by
the zero contour of a polynomial in Berstein Bézier (B.B.) form.

Fn(α) = ∑
i+ j+k=n

βi jkBn
i jk(α), with Bn

i jk(α) =
n!

i! j!k!
α

i
1α

j
2α

k
3 (2.3)

The points where the influence of the βi jk coefficents is maximum may be plotted on the
triangle, see figure (2.2 left) for a cubic.
If k = 4 and any three of the pi, (i = 1, . . . ,4) are affine independent then [p1p2p3p4]
is a quadrilateral. One may map the unit square [0,1]× [0,1] in the uv-plane to the
quadrilateral [p1p2p3p4] in global coordinates by

p = p1(1−u)(1− v)+p2(1−u)v+p3u(1− v)+p4uv
= (p1 +p4−p2−p3)uv+(p3−p1)u+(p2−p1)v+p1

(2.4)

If p1 +p4 = p2 +p4, i.e. [p1p2p3p4] is a parallelogram, then (2.4) is linear and inversion
is easy, otherwise the inverse involves solving a quadratic equation. It is common to
specify the quadrilateral in the skew case by two points (p1 and p2) and two normals (n1
and n2) because one wants to interpolate these points with this normal. In this case it is
called prism and one writes:

p = p1(v)(1−u)+p2(v)u, with pi(v) = pi +niv

On a quadrilateral, the algebraic curve is defined by the zero contour of (see figure 2.2
right) of a polynomial in B.B. form in tensor form of degree (n,m).

Gmn(u,v) =
m

∑
i=0

n

∑
j=0

βi jBm
i (u)Bn

j(v), with Bn
i (s) =

n!
i!(n− i)!

si(1− s)n−i (2.5)

2.2 Sufficient Conditions for Regularity

The primary drawback for the widespread use of the implicit algebraic curves is that
the real curve may have singularities (e.g. cuspidal cubic) and may be disconnected
(hyperbola) in a given region of the curve. In most application one surely wants the
curve segment to be connected in all the scaffold and not singular (e.g. ∇ f (p) 6= 0) in
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14 CHAPTER 2. PIECEWISE ALGEBRAIC CURVE SEGMENTS (A-SPLINES)

Figure 2.2: B.B. form coefficients for: (left) cubic over a triangle (right) bicubic over a
quadrilateral. [XBC00a]

(a) (b)

Figure 2.3: Curve fitting: (a) points; (b) curve. [XBC00a]

the interior. For example, if we fit a cluster of points as shown in figure (2.3a) with a
quadratic, one will have the result as shown in figure (2.3b), if no additional conditions
are imposed on the curve.

In attempts to overcome these difficulties, Sedeberg in [SAG85] set conditions on the
coefficients of the BB-form of an implicitly defined bivariate polynomial on a trian-
gle in such a way that if the coefficients on the lines that are parallel to one side,
say L, of the triangle all increase (or decrease) monotonically in the same direction,
then any line parallel to L will intersect the algebraic curve segment at most once (see
Fig. 2.4 left). In [SZZ88], Sederberg, Zhao and Zundel give another similar set of
conditions which guarantees the single-sheeted property of their PAC (piecewise al-
gebraic curves) by requiring that the Bézier coefficients βi0 ≥ 0, that β0i,βm−1,i ≤ 0 ,
and that the directional derivative of PAC with respect to any direction s = αu be non-
zero within the triangle domain. Papers of Paluszny and Patterson [PP92], [PP93] con-
struct G1 and G2 continuous cubic algebraic splines by using the cubic F(α1,α2,α3) =
β201α2

1 α3 + β102α1α2
3 −β120α1α2

2 −β021α2
2 α3 + β111α1α2α3 with β201 > 0, β102 > 0,

β021 > 0, and (α1,α2,α3) being barycentric coordinates (see Fig. 2.4 right). All the
above characterizations dealing with B.B. triangles have been generalized by Bajaj and
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Xu ([BX99a] and chapter 6) in which the coefficients of the B.B. form have a one-time
sign change. For the B.B. form on the quadrilateral, a characterization for the single-
sheeted purpose is given by Patrikalakis and Kriezis [PK89] and is similar to Seder-
berg‘s [SZZ88]. In particular, if the coefficients increase or decrease monotonically in
the x or y direction, then any line that is parallel to the x or y axis will intersect the
curve at most once. Bajaj and Xu [XBC00a][XBC00b][XBC00c] themselves extend
and unify the approach for both the triangle and the quadrilateral with the introduction
of discriminating families. In the later approach the polynomial may be expressed by
a rational equation obtaining a higher degree of continuity with less coefficients then a
degree elevation. Moreover in [BX99a], chapter 6 and [XBC00a][XBC00b][XBC00c],
the single-sheeted property is obtained. Using the single sheeted property one can eas-
ily evaluate the algebraic curve at a point and thus having a dual implicit and explicit
representation.

Figure 2.4: Left: the coefficients on the lines, that parallel to L, increase. Right: Cubic
coefficients, the real dots are positive, shaded are negative, empty are zero. [XBC00a]

Consider the classical one variable C1 function (it is of course defining a smooth curve)
y = g(x), x∈ [a,b]. The smootheness of the curve f (x,y) = y−g(x) = 0 can be tested by
considering if every straight line x = α, α ∈ [a,b], intersects the curve only once. The
essential point behind this observation is that if each line in the set {x = α : α ∈ [a,b]}
intersects the curve only once, then the curve is regular. That is, the family of these lines
can be used to judge the regularity of a curve. In [BX99a] and chapter 6, the lines{

α(t) = (1− t)(β ,1−β ,0)T + t(0,0,1)T , t ∈ [0,1] : β ∈ (0,1)
}

are used. The conclusion obtained is that under certain conditions on the coefficients of
a bivariate polynomial Fn(α), each line in this family will intersect the curve Fn(α) = 0
only once in the triangle and the curve is regular. The concept may be easily extended
with the general definition of discriminating family.

Definition 2.2.1. (From [XBC00a]) For a given triangle or quadrilateral R, let R1 and
R2 be two closed pieces of boundary of R with R1 ∩R2 = 0 (see Fig. 2.5). Let D =
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{As(x,y) = γ(x,y)− sδ (x,y) = 0 : s ∈ [0,1]} be an algebraic curve family with s as a
parameter and δ (x,y) > 0 on R\{R1,R2} such that:

1. Each curve in D passes through R1 and R2;

2. Each curve in D is regular in the interior of R;

3. For all p∈R\{R1,R2}, there exists one and only one s∈ [0,1] such that As(p) = 0.

Then we say D is a discriminating family on R, denoted by D(R,R1,R2).

Figure 2.5: Closed pieces R1 and R2 of the boundaries of a triangle and a quadrilat-
eral [XBC00a].

Intuitively a discriminating family is a family of non intersecting curves from R1 to R2
covering R. In figure (2.6) and (2.7) the following examples of discriminating families
are shown:

D1 ([p1p2p3],p3, [p1p2]) = {α2− s(α1 +α2) = 0;s ∈ [0,1]}
D2 ([p1p2p3],p2,p3) =

{
(1− s)α2α3− sα2

1 = 0;s ∈ [0,1]
}

D3 ([p1p2p3p4], [p1p2], [p3p4]) = {s− v;s ∈ [0,1]}
D4 ([p1p2p3p4],p1,p4) = {(1− s)u(1− v)− s(1−u)v = 0;s ∈ [0,1]}

Definition 2.2.2. (from [XBC00a]) For a given discriminating family D(R,R1,R2), let
f (x,y) be a bivariate polynomial (or a C1 continuous function on R \ {R1,R2}). If the
curve f (x,y) = 0 intersects with each curve in D(R,R1,R2) exactly once in the interior
of R, we say the curve f = 0 is regular with respect to D(R,R1,R2) (concisely stated as
being D(R,R1,R2)-regular).

The next question raised is for given an equation F = 0 on a triangle or a quadrilateral
and a given specific discriminating family D, which condition it imposes on the curve
so that it may be judged regular? In [XBC00a] the details of these kind of proofs for
polynomials in B.B. form for the example discriminating family are detailed. In chapter
6 the case for line in a triangle (e.g. D1) and F polynomial of arbitrary degree in B.B.
form will be worked out.
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(a) (b)

Figure 2.6: Discriminating families: (a) linear D1; (b) quadratic D2. [XBC00a]

(a) (b)

Figure 2.7: Discriminating families: (a) linear D3 ; (b) hyperbolic D4. [XBC00a]

2.3 Curve Control and Continuity

Once the conditions for regularity has been defined, the next logical step is to assign the
remaining degrees of freedom of the coefficients in order to control the curve itself.

Interpolation/Approximation Control the curve by supplying data of geometric mean-
ing. For example, given a set of points {pi} one wants to build the piecewise alge-
braic curve segments in order to interpolate (e.g. fi(pi) = 0) or approximate (e.g.
∃p : fi(p) = 0∧p−pi ≤ ε) said points. One wants also to control first derivative
data ∇ f , this is done in many ways for example by: (1) such as assigning the
normals {ni} at the point explicitly (e.g. ∇ f (pi) = ni), (2) supplying a tangent
dg
dt |t = (tx, ty)T of a parametric curve g(t) at the point pi (e.g. g(t) = pi) and (3)
require the curve to be tangent to a segment (e.g. tangent to qi− p : fi(p) = 0.
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Higher order data are rarely given explicitly as the hessian matrixes at the points
{H ( f )(pi)}

H ( f ) =

(
∂ f
∂ 2x

∂ f
∂x∂y

∂ f
∂y∂x

∂ f
∂ 2y

)

but by either supplying the second derivative d2g
dt2 |t = (cx,cy)T of a parametric

curve g(t) at the point g(t) = pi or other curvature data (e.g. the radii of the
osculating spheroids).

Continuity One wants that two consecutive segments, say fi and fi+1 to meet at a com-
mon border point pi+1 (e.g. fi(pi+1) = fi+1(pi+1) = 0. One may require algebraic
C1 continuity ∇ fi(pi+1) = ∇ fi+1(pi+1). C2 or higher Ck algebraic continuity is
rare, one instead requires geometric continuity Gk, also known as rescaling con-
tinuity. Two algebraic curves f (x,y) = 0 and g(x,y) = 0 meet with Gk-continuity
on a point p if and only if there exists functions α(x,y) and β (x,y) such that all
derivatives upto order k of α f −βg equals to zero in p.

Shape Control Another set of constrains or control data may be defined for finer shape
control. A common shape control constraint is that each segment is convex, that
is, does not contain inflection points. Moreover one often requires the curve to
approximate a lower degree curve (e.g. quadratic precision for a cubic curve).
Shape control data are usually coefficients that control the curve using weighted
least squares approximation from additional points and normals, generated locally
for each scaffold.

Geometric control data, similarly to the parametric curve splines, are given in terms of
a polygonal chain whose points the spline must interpolate or approximate and whose
some of edges describe the tangent of the curve. A polygonal chain is an ordered se-
quence of polygonal line segments, where any three adjacent points are not collinear.
Several geometry processing tasks generate polygonal chains for shape representation
in 2D. Examples include shape or font design, fitting from ’noisy’ data, image contour-
ing, snakes [KWT88] and level set methods [Set96]. Here some of them that have some
attached error or uncertainty are mentioned [XBC00c].

Noisy vertex data The vertex data (position) come from a multi-sampling process with
possible error. The error bound ε is known in advance. Fig. 2.8 shows such a case.
The white circles are the repeatedly sampled points, the black dots are approxi-
mations of the sampled points. The approximation of the point can be computed
as the center of gravity or center of bounding circular fits. The polygonal chain is
obtained by connecting these black dots. The spline curve to be constructed inter-
polates the vertices of the polygonal chain. Hence the error around each vertex is
bounded by ε .
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Figure 2.8: Polygonal chain extracted from over-sampled points [XBC00c].

Noisy curve data Suppose a curve is sampled within some ε error band around the
curve. The sampled point sequence {vi} could be dense. To produce a polygonal
chain to these points, we use a ’strip pasting’ technique. Choose the strip width to
be no less than 2ε . Then use the minimal number of strips to cover the sample
points (see Fig. 2.9). The vertices of the polygonal chain are the intersection
points of two mid-lines of adjacent strips. A computational method for obtaining
the minimal number strips can be found in [BNK93]. A greedy method to obtain
a minimal ”strip pasting” uses an adaptive piecewise linear least square fitting,
starting from one end of the data.

Figure 2.9: Polygonal chain from noisy curve data and using adaptive ”strip pasting”:
The white circles are original sampled points with error, and the black dots are the ver-
tices of an extracted polygonal chain [XBC00c].

Contour from an image A 2D image can be treated as a piecewise C0 bilinear function
interpolating the intensity values at each pixel. A linear isocontour of the function
is a polygonal chain. Of course, such a polygonal chain may be quite dense, hence
a simplification step is often used to obtain coarser or multiresolution representa-
tions. Fig. 2.10 shows an image and an isocontour with two simplified polygonal
chains. The simplification method is established based on geometric error (Eu-
clidean distance) control, that is, a point is removed if the distance of the point to
the line, that interpolates its two neighbor points, is less than a given ε . Hence all
original points are within an ε-neighborhood of the simplified polygonal chain.
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The two simplified polygonal chains in Fig. 2.10 are obtained by taking ε to be
0.05 and 0.25, respectively.

Figure 2.10: From an image to polygonal chains [XBC00c].

Polygonal chain One polygonal chain can be produced from another polygonal chain
by subdivision or corner cutting. Fig. 2.11 shows four polygonal chains obtained
by corner cutting with cutting ratios 0.25 and 0.5, respectively and subdivision.
When the cutting ratio is 0.5, then each edge of the new polygonal chain is convex
if the tangents at the vertices are taken to be the original edges. Smooth approxi-
mations of these polygonal chains are suitable for triangular A-splines ( [BX99a]
and chapter 6). The vertices of the polygonal chain (c) are located away from
the original edge by a specified distance δ . We call this an ”offset corner cut-
ting” scheme. For the same purpose, an interpolatory subdivision scheme (see,
e.g. [War95]) could also be employed (see Fig. 2.11(d)) such as the 4-point rule
with mask ( -1/16, 9/16, 9/16, -1/16) (see [DGL87]).

(a) (b) (c) (d)

Figure 2.11: Polygonal chains (of black vertices) produced from polygonal chains (of
white vertices) [XBC00c]: (a) corner cut with cutting ratio 0.25; (b) corner cut with
cutting ratio 0.5 yielding a convex polygon; (c) offset corner cut with cutting ratio 0.25;
(d) interpolatory subdivision.

Control data are given in a global coordinates system. To build the piecewise algebraic
curves spline one may use both the scaffold construction and the coefficients of the curve
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in the local coordinate system. In the former case the scaffold is built according the
control data and the curve’s control coefficients are assigned for a certain behavior in the
scaffold. In the later case the control data is converted in the local coordinate system and
the coefficients are then calculated to interpolate/approximate this ”localized” control
data.
In the case of triangular splines ([BX99a] and chapter 6) the control polygonal chain
is a sequence of consecutive polygon segments denoted by { ̂pivipi+1}m

i=0. The pi, vi
and pi+1 must be three affine independent points in the xy-plane. One consider the two
line segments [pivi] and [vipi+1] as a segment of a polygon, denoted by ̂pi,vi,pi+1. We
shall consider vi as a controller and pi and pi+1 as interpolation points. A polygon
{ ̂pivipi+1}m

i=0 is said to be type G1 (see figure 2.12) if

(v1−pi+1) = αi(vi+1−pi+1)

One way to construct the polygon from sampled points and normals is to set pi and pi+1
as interpolation points and vi as the intersection point between the (extended) tangents
ti and ti+1 at pi and pi+1. As it’ll be shown, this guarantees G1 continuity with the
imposed normals. In free form A-spline drawing a trivial choice is to ask the user to
insert a vertex per edge in the polygon. In figure 2.13 shows the polygon ̂p0,v0,p1, the
built scaffold, and the B.B. coefficients for a polynomial f (α) of degree n.
The coefficients of the curve are given in order to interpolate the two points p1 and p2 at
the base of the triangle and here tangent to the sides [p1p3] and [p3p2] respectively. By
building the triangular scaffold on these points, these conditions translate in assigning
the bn00 and b0n0 to zero for the interpolation of p1 and p2 respectively. Tangency to
[p1p3] and [p3p2] is obtained by requiring b(n−1)01 = 0 and b0(n−1)1 = 0. Furthermore
assigning b(n−i)0i = 0 (and b0(n−i)i = 0) for i ∈ [0,k] will force the curve to be tangent
in p1 to [p1p3] (and in p2 to [p3p2]) with multiplicity k−1 (e.g. k=2 the point is a flex
point). Higher Gk continuity and control is given in terms of parameters expressed in the
local coordinate system.

P1

P2 P3

V1
V2

P1

P2

P3

V1

V2

Figure 2.12: A (left) C0 and (right) C1 polygon. [BX99a]

In [XBC00b] a different approach is used in order to unify under a common framework
the treatment of regularity and curve control in both trilateral and quadrilateral A-splines.
The framework involves the following steps (see Fig. 2.14):
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bn-i,0,i
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Figure 2.13: Bezier coefficients of the curve over ̂p1,v1,p2.

1. Build a transform M that converts the problem on triangle or quadrilateral in the
xy-plane into a classical rational interpolation or approximation problem on the
strip [0,1]× [−∞,∞] in the st-plane.

2. Solve the interpolation/approximation problem in the common st-plane and assign
the controlling coefficients.

3. Transform the solution in the st-plane back to the xy-plane by the inverse transform
M−1, to get a solution of the original problem.

There are plenty of methods that could be used for solving the interpolation and approx-
imation problem, the main task in these steps is to build the transform M.
Using the definition of discriminating family (2.2.1) the ”orthogonal” concept of traver-
sal family is introduced.

Definition 2.3.1. (from [XBC00b]) Let D(R,R1,R2) be a given discriminating family,
and

T (R,R′1,R
′
2) = {Bt(x,y) = µ(x,y)− tν(x,y) = 0, t ∈ (−∞,∞)}

be an algebraic curve family with t being a linear parameter, µ(x,y) and ν(x,y) are
bivariate polynomials and ν(x,y) > 0 on R\{R1,R2} and R′1 and R′2 being two open (no
end points) pieces of the boundary ∂R of R (see Fig. 2.15). If
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Figure 2.14: The pipeline of solving the problem of interpolation and approximation by
D-regular algebraic curves [XBC00b].

1. ∂R\ (R1∪R2) = R′1∪R′2 and R′1∩R′2 = 0;

2. Each curve in T passes through R′1 and R′2;

3. Each curve in T is D(R,R1,R2)-regular;

4. For ∀p∈ R\{R1,R2}, there exists one and only one t ∈ (−∞,∞) such that Bt(p) =
0

Then T (R,R′1,R
′
2) is a traversal family of D(R,R1,R2).

Figure 2.15: R1 , R2 , R′1, R′2 for a triangle and a quadrilateral [XBC00b].

Intuitively a traversal family is a family of curves that are ”orthogonal” to the ones of a
discriminating family. To further comprehend this concept in figures (2.16) and (2.17)
show the traversal families T1, T2, T3, and T4 for the previously introduced discriminating
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families D1, D2, D3, and D4 (see Fig. (2.6) and (2.7)

T1 ([p1p2p3],(p1p3),(p2p3))
=
{

B2
1(α3)t−B2

2(α3)+B3
0(α3) = 0 : t ∈ (−∞,∞)

}
T2 ([p1p2p3],(p1p2),(p1p3))
=
{
(α2

1 +α2α3)t−α2
3 +α2

2 = 0 : t ∈ (−∞,∞)
}

T3 ([p1p2p3p4],(p1p3),(p2p4))
=
{

B2
1(u)t−B2

2(u)+B2
0(u) = 0 : t ∈ (−∞,∞)

}
T4 ([p1p2p3p4],(p1,p2]∪ [p2p4),(p1,p3]∪ [p3p4))
= {[u(1− v)+(1−u)v]t− (1−u− v) = 0 : t ∈ (−∞,∞)}

Figure 2.16: Discriminating families (real lines) and their transversal families (dotted
lines) [XBC00b].

Figure 2.17: A discriminating family and its transversal family define (s, t)-coordinate
system [XBC00b].

Given a discriminating family D = {As(x,y) = γ(x,y)− sδ (x,y) = 0 : s ∈ [0,1]} and its
traversal family T (R,R′1,R

′
2) = {Bt(x,y) = µ(x,y)− tν(x,y) = 0, t ∈ (−∞,∞)}, one has

in fact a map between R\{R1,R2} in the xy-plane and the strip [0,1]× [−∞,∞] in the st-
plane (see Fig. 2.17). Since s and t are linear parameters in As(x,y) = 0 and Bt(x,y) = 0,
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respectively, they can be written as:

M(D,T ) :

{
s = α(x,y) := γ(x,y)

δ (x,y)

t = β (x,y) := µ(x,y)
ν(x,y)

where α and β are well defined rational functions on R \ {R1,R2}. Often M(Di,Ti) is
denoted as Mi. For completeness and as an example, the explicit forms of the transforms
and their inverses for the pairs of families shown so far are given [XBC00b].

G. Xu et al. / Computer Aided Geometric Design 17 (2000) 503–519 507

Fig. 4. A discriminating family and its transversal family define (s, t)-coordinate system.

Example 2.4. Let

T4
(
[p1p2p3p4], (p1p2] ∪[ p2p4), (p1p3] ∪ [p3p4)

)

= {[u(1− v) + (1− u)v]t − (1− u − v) = 0: t ∈ (−∞,∞)
}
.

Then T4([p1p2p3p4], (p1p2] ∪ [p2p4), (p1p3] ∪[ p3p4)) is a transversal family of

D4([p1p2 p3p4],p1,p4) (see Fig. 3(c)).
Note that T1 and T3 consist of straight lines. One may ask why they should not be

defined linearly by t = α3 or t = u. The reason for using a quadratic is that we require

t ∈ (−∞,∞) for α3 or u in [0,1].

Given a discriminating family D = {As(x, y) = γ (x, y) − sδ(x, y) = 0} and its
transversal family T = {Bt(x, y) = µ(x, y) − tν(x, y) = 0}, we are in fact given a map
between R \ {R1,R2} in xy-plane and the strip [0,1] × (−∞,∞) in the st-plane (see

Fig. 4). Since s and t are linear parameters in As(x, y) = 0 and Bt (x, y) = 0, respectively,

they can be written as

M(D,T ):

{
s = α(x, y) := γ (x, y)/δ(x, y),

t = β(x, y) := µ(x, y)/ν(x, y),
(2.1)

where α and β are well defined rational functions on R \ {R1,R2}. We shall denote
M(Di,Ti) as Mi to simplify the notation. Using these transforms, our interpolation or

approximation problems in xy-planewill be transformed into the st-plane. In the following

examples, we shall give the explicit forms of the transforms for the pairs of families given in

the above examples. Furthermore, the inverse transforms are also provided. These inverse

transforms are as important as the original ones because the results derived in the st-plane

will finally be converted into the xy-plane by them (see Fig. 1).

Example 2.5.

M1:

{
s = α2/(α1 + α2),
t = [B22 (α3) − B20 (α3)]/B21 (α3),

(2.2)

M−1
1 :






α1(s, t) = (1− s)[1− 1/(
√
1+ t2 + 1− t)],

α2(s, t) = s[1− 1/(
√
1+ t2 + 1− t)],

α3(s, t) = 1/(
√
1+ t2 + 1− t).

(2.3)
508 G. Xu et al. / Computer Aided Geometric Design 17 (2000) 503–519

Example 2.6.

M3:
{ s = v,

t = [B22 (u) − B20 (u)]/B21 (u), (2.4)

M−1
3 :

{
u(s, t) = 1/(

√
1+ t2 + 1− t),

v(s, t) = s.
(2.5)

Example 2.7.

M4:

{
s = [u(1− v)]/[u(1− v) + (1− u)v],
t = (1− u − v)/[u(1− v) + (1− u)v], (2.6)

M−1
4 :

{
u(s, t) = 2s/[t + 2s +

√
t2 + 4s(1− s)],

v(s, t) = 2(1− s)/[t + 2(1− s) +
√

t2 + 4s(1− s)],
(2.7)

where (u, v) are defined by the limit when s = 0 or s = 1.

3. Approximating curve classes–reduced form algebraic curves

The reduced form algebraic curves are a special form of regular algebraic curve

segments discussed in (Xu et al., 2000). In this special form, we take most of the BB-form

coefficients to be zero and arrange the nonzero coefficients on three parallel lines (see the

dots in Figs. 5–7). Here, we define three reduced form curve classes: HTm (Horizontal

form on Triangle), V Sm(Vertical form on Square) and DSm (Diagonal form on Square),

where m is a parameter relating to the degree of the BB-form.

A. Horizontal form HTm. This class is a subset of D1([p1p2p3],p3, [p1p2])-regular
curves (see Theorem 4.1 of (Xu et al., 2000)) defined by:

HTm =
{

F(α) = 0: 0< α3 < 1, F = 2

m + 1
m∑

i=0
βiB

m+1
m−i,i,1(α)

− 2

m(m + 1)
m−1∑

i=0
wiB

m+1
m−1−i,i,2(α) +

m+1∑

i=0
w′

iB
m+1
m+1−i,i,0(α),

m−1∑

i=0
wiB

m−1
i > 0; w′

i =
i∑

j=i−2

C
j
n−1C

i−j
2 wj

Ci
n+1

}
,

wherew′
i are given by degree elevation formula so that

∑m−1
i=0 wiB

m−1
i = ∑m+1

i=0 w′
i Bm+1

i .

The functions F in defining HTm have three summations. The first, that has degree m on

α1 and α2, relates to the terms on the middle line of Fig. 5. The second, that has degree

m−1 on α1 and α2, relates to the terms on the top line. The third, that has degreem+1 on
α1 and α2, relates to the terms on the third line. The degree elevation will make the third

have degree m − 1 too, so that we could transform the equation F(α) = 0 into rational

form (5.1). The curves in HTm are between p3 and [p1p2] and away from them (see the
curve in Fig. 5).
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m−1 on α1 and α2, relates to the terms on the top line. The third, that has degreem+1 on
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have degree m − 1 too, so that we could transform the equation F(α) = 0 into rational

form (5.1). The curves in HTm are between p3 and [p1p2] and away from them (see the
curve in Fig. 5).

For the actual solution of the curve control an interested reader may consult [XBC00b].
Hence in [XBC00c] parallelogram (Fig. 2.18) and rectangle (Fig. 2.19) G1 and G2 A-
spline (Fig. 2.20) are introduced that interpolate a given polygon chain of points {pi}
and tangents {ri}.
Though never formalized in any article it is easy to adapt the sides of a prism A-
patches [BX99b, BX01, ZXB07, BPP+08] (see Chapter 8) to prism A-splines. The
advantage of this adaptation is that prism A-splines can be adapted for curves in 3D
space or higher by simply using n-dimentional points and normals. Prism A-splines
come in two forms: simple (single) and shell (double) A-splines:

Simple prism A-splines The control data is a sequence of points {vi} and normals
{ni}. As already mentioned, the scaffold is built for each spline segment [vivi+1]
by building the quadrilateral along the (extended) normals {ni} and {ni+1} by
tensor product of two linear interpolations. The coordinate transformation is ex-
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Figure 2.18: Parallelogram chain [XBC00c].

Figure 2.19: Rectangular chain. The width of the rectangle for edge [vi−1vi] is
2εi [XBC00c].

pressed as (see Fig. 2.21(a)):

p = vi(λ )(1−α2)+vi+1(λ )α2 with vi(λ ) = vi +niλ
= vi +(vi+1−vi)α2 +λ [ni +(ni+1−ni)α2]

=
(

1 λ
)( vi vi+1

ni ni+1

)(
α1
α2

)
with α1 +α2 = 1

The algebraic curve is expressed similarly as a B.B. transfinite blending of poly-
nomials ai j(λ ) (in other words the B.B. coefficients are themselves polynomials)

Fi(α1,α2,λ ) = ∑i+ j=n ai j(λ )Bn
i j(α1,α2)

Fi(α2,λ ) = ∑
n
i=0 ai(λ )Bn

i (α2)

with α1 + α2 = 1 as barycentric coordinates, ai(λ ) = ai(n−i)(λ ) the polynomial
B.B. coefficients, and Bn

i (α2) = Bn
i(n−i)(1−α2,α2) the univariate B.B. basis poly-

nomials. The single sheeted and regularity is imposed by declaring the curve to
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Figure 2.20: (a) G1 a-spline families on parallelograms. (b) G2 a-spline families on
parallelograms. (c) G1 a-spline families on rectangles with ε = 1.0. (d) G1 a-spline
families on rectangles with ε = 0.2 [XBC00c].

be the minimal |λ | such that F(α1,α2,λ ) = 0. In the cubic it is easy to prove that
the curve will interpolate local point (α1 = 1,α2 = 0,λ = 0) (i.e. global point vi)
if a30(λ ) = λ and local point (α1 = 0,α2 = 1,λ = 0) (i.e. global point vi+1) if
a03(λ ) = λ . The normal ni is imposed in pi by

a21(λ ) = λ +
1
3

ni · (vi+1−vi)

Symmetrically one sets a12(λ ) for ni+1.

Shell prism A-splines The objective is to define two curves containing a strip in the
plane (a ”shell”). The control data is specified by two sequences of matched
points {v(0)

i } and {v(1)
i } with attached normals {n(0)

i } and {n(1)
i }. The scaffold

is built using just the point data by building the quadrilateral [v(0)
i v(0)

i+1v(1)
i+1v(1)

i ]
(see Fig. 2.21(b)):

p = vi(λ )(1−α2)+vi+1(λ )α2

=
(

1−λ λ
)( v(0)

i v(0)
i+1

v(1)
i v(1)

i+1

)(
α1
α2

)
with vl(λ )= v(0)

l (1−λ )+v(1)
l λ and α1 +α2 = 1. The two curves will be definined

by the (±1)-set of one function F(α2,λ ). The curve equation is built by transfinite
blending of two Hermitte interpolations such that:

F(v(0)
i ) =−1 F(v(1)

i ) = 1 F(v(0)
i+1) =−1 F(v(1)

i+1) =−1
∇F(v(0)

i ) = n(0)
i ∇F(v(1)

i ) = n(1)
i ∇F(v(0)

i+1) = n(0)
i+1 ∇F(v(1)

i+1) = n(1)
i+1
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P1
P2

N1 N2

V(0)i
V(0)(i+1)

V(1)i V(1)(i+1)

N(1)i

N(1)(i+1)

N(0)i
N(0)(i+1)

(a) (b)

Figure 2.21: Prism scaffold: (a) simple (b) shell

(a) (b)

Figure 2.22: Prism A-spline: (a) A-spline and scaffold; (b) the function F(α2,λ ) as
colored level-sets: red=0, green=-1, blue=1, and shaded in between
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Chapter 3

Piecewise Algebraic Surface Patches
(A-Patches)

Like A-splines, the possible applications of A-patches range from the traditional inter-
active design of surfaces in computer graphics, to topologically correct piecewise ap-
proximation of higher degree algebraic surfaces, and most importantly in the field of bi-
ological modeling to the fitting surfaces for image reconstruction. The defining equation
of an A-patch is in the form f (x,y,z) = 0. Where f is a polynomial in any polynomial
appropriate basis. To visualize the function graph (x,y,z, f (x,y,z)) one possible tech-
nique is to imagine a scalar field as a spectrum of shades in the 3D space and the c-set
surface (the intersection of w = c, usually c = 0) as the iso-colored surfaces of the color
representing c. This chapter constitute a reasoned synthesis of some current articles on
A-patches [Baj, BCX95, BCX97, BX99b, XHB01, BX01, XBE02, ZXB07].

In one of the first definitions, A-patches [BI92b] were defined with the equation in global
coordinates and provided, like in the abstract definition, three delimiting curves. In the
curvlinear-mesh based scheme, Bajaj and Ihm [BI92b] construct low-degree implicit
polynomial spline surfaces by interpolating a mesh of curves in space using the tech-
niques of [Baj92, BI92a, BIW93]. They consider an arbitrary spatial triangulation T
(i.e., T is a set of tetrahedra) consisting of vertices in R3 (or more generally a simpli-
cial polyhedron P when the triangulation is closed) with, possibly, normal vectors at the
vertex points. Their algorithm constructs a G1 continuous mesh of real implicit poly-
nomial surface patches over T or P . The scheme is local (each patch has independent
free parameters) and there is no local splitting. The algorithm first converts the given
triangulation or polyhedron into a curvilinear wireframe with at most cubic parametric
curves which G1 interpolates all the vertices. The curvilinear wireframe is then meshed
to produce a single implicit surface patch of degree at most 7 for each triangular face of
P. If the triangulation is convex then the degree is at most 5. Furthermore, the G1 in-

29
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terpolation scheme is local in that each triangular surface patch has independent degrees
of freedom which may be used to provide local shape control. Extra free parameters
may be adjusted and the shape of the patch controlled by using weighted least squares
approximation from additional points and normals, generated locally for each triangular
patch.

3.1 Notation for Scaffold and Algebraic equation

More recently A-patches have been defined as an equation f = 0 over a simple compact
polyhedron (see figure 3.1). The local coordinates of the polyhedron are then mapped
parametrically to the global coordinate system and thus the zero-set surface is mapped in
space. The patch is thus delimited by the sides of the polyhedron in global coordinates.
There are many elements over which we can define the patches, the simplest compact
domains one considers are (see Fig 3.1 and 3.2):

Cube (tensor domain) (see Fig 3.1(a)) The local coordinates (u,v,w)T are defined over
the interval [0,1] (u ∈ [0,1],v ∈ [0,1],w ∈ [0,1]) (cube domain). This yield a
tensor product Bernstein-Bezier coordinate system for trivariate polynomials. The
mapping to global coordinate is defined as trilinear vector tensor form

p = ∑
1
i=0 ∑

1
j=0 ∑

1
k=0 pijkB1

i (u)B1
j(v)B

1
k(w)

= p000(1−u)(1− v)(1−w)+p100u(1− v)(1−w)
+ p010(1−u)v(1−w)+p110uv(1−w)
+ p001(1−u)(1− v)w+p101u(1− v)w
+ p011(1−u)vw+p111uvw

where pijk are eight points in 3D space. The function f is a polynomial over the
cube (u,v,w) ∈ [0,1]× [0,1]× [0,1] usually defined in B.B. tensor form

f (u,v,w) =
l

∑
i=0

m

∑
j=0

n

∑
k=0

ai jkBl
i(u)Bm

j (v)Bn
k(w)

where ai jk are scalar coefficients and Bn
i (t) = n!

i!(n−i)! t
i(1− t)n−i are the univariate

berstein basis polynomials (see Fig 3.2(a)).

Tetrahedron (see Fig 3.1(b)) The local coordinates (α = α1,α2,α3,α4)T are defined
with the condition: 0≤ αi ≤ 1 and |α|= ∑

4
i αi = 1, with the last equation one of

the αi may always be eliminated as αi = 1− (∑ j 6=i α j
)
. This yields a barycentric

coordinate system for trivariate polynomials. The mapping to global coordinate is
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Figure 2.3: A-patch defined within different domain elements. (a) A-patch within a cube, which is tensor
in 3 dimensions. (b) A-patch within a tetrahedra, which is in barycentric domain. (c) A-patch within a triangular
prism. (d) A-patch within a square pyramid.
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Figure 3.1: A-patch defined within different domain elements[Baj]: (a) A-patch within
a cube, which is tensor in 3 dimensions; (b) A-patch within a tetrahedra, which is in
barycentric domain; (c) A-patch within a triangular prism; (d) A-patch within a square
pyramid.

defined as linear vector barycentric form

p = ∑
4
i piαi

x
y
z
1

 =


p0x p1x p2x p3x
p0y p1y p2y p3y
p0z p1z p2z p3z
1 1 1 1




α1
α2
α3
α4


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where pi are four affine independent points in 3D space. The function f is a
polynomial over the simplex 0 ≤ αi ≤ 1 and |α| = ∑

4
i αi = 1 usually defined in

B.B. barycentric form

f (α) = ∑
i+ j+k+l=n

ai jklBn
i jkl(α)

where ai jkl are scalar coefficients and Bn
i jkl(α) = n!

i! j!k!l! α i
1α

j
2αk

3α l
4 are the trivariate

barycentric Berstein basis polynomials (see Fig 3.2(b)).

Triangular prism (see Fig 3.1(c)) The local coordinates (α = (α1,α2,α3),w)T are now
defined as follows: w is defined over the interval [0,1] (w ∈ [0,1]) and α1,α2,α3
range over 0 ≤ αi ≤ 1 and |α| = ∑

3
i αi = 1, with the last equation one of the αi

may always be eliminated as αi = 1− (∑ j 6=i α j
)
. This yields a mixed coordinate

system and the mapping to the global coordinates is defined as a tensor product
between a barycentric coordinates and the single coordinate w and it is bilinear

p = ∑
3
i=1 p(0)

i αi(1−w)+∑
3
i=1 p(1)

i αiw x
y
z

 =
(

(1−w) w
)( p(0)

1 p(0)
2 p(0)

3
p(1)

1 p(1)
2 p(1)

3

) α1
α2
α3


where p(l)

i are six points. The function f is a polynomial over the prism w ∈ [0,1],
0≤ αi ≤ 1 and |α|= ∑

3
i αi = 1 and may be expressed in mixed B.B. form

f (α,w) = ∑
i+ j+k=n

m

∑
l=0

a(l)
i jkBm

l (w)Bn
i jk(α)

where a(l)
i jk are scalar coefficients, Bm

l (w) = n!
l!(n−l)! wi(1−w)m−l are the univariate

berstein basis polynomials, and Bn
i jk(α) = n!

i! j!k! α i
1α

j
2αk

3 are the bivariate barycen-
tric Berstein basis polynomials (see Fig 3.2(c)).

Square pyramid (see Fig 3.1(d)) The local coordinates (u,v,α)T are defined u and v to
satisfy u ∈ [0,1] and w ∈ [0,1], while α satisfies the condition 0≤ u+ v+α ≤ 1.
This yields a mixed coordinate system and the mapping to the global coordinates
is defined as a barycentric interpolation of a tensor domain and a point q and it is
trilinear.

p = α

[
1

∑
i=0

1

∑
j=0

pijB1
i (u)B1

j(v)

]
+(1−α)q

where pij define a quadrilateral and q is the vertex of the pyramid. The function f
is a polynomial over the pyramid and may be expressed in mixed B.B. form

f (u,v,α1,α2) = ∑
i+ j=n

j

∑
k=0

j

∑
l=0

ai jklBn
i j(α1,α2)B

j
k(u)B j

l (v)
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where a(l)
i jkl (also as ai(n−i)kl as i+ j = n) are scalar coefficients, Bn

i (t)= n!
i!(n−i)! t

i(1−
t)n−i is the univariate berstein basis polynomial, and Bn

i j(α1,α2) is the univariate
barycentric Berstein basis polynomial, and as usual one may rewrite i.e. as α2 = α

and α1 = 1−α . Thus equivalently (as in figure 3.2(d)):

f (u,v,α) =
n

∑
i=0

n−i

∑
k=0

n−i

∑
l=0

aiklBn
i (α)Bi

k(u)Bi
l(v)

3.2 Regularity and Continuity

Similarly to the case of triangular A-splines, regularity of tetrahedral A-patches may be
obtained by enforcing a sign conditions on the coefficients of the polynomial in B.B.
form. This technique is employed in cubic C1 tetrahedral A-patches (see [BCX95] and
chapter 7) and potentially applied to A-patches with different scaffold. Under these
constraints an A-patch is guaranteed to be smooth (non-singular) and functional. Un-
like A-splines, tetrahedral A-patches regularity come into two flavors. In a three-sided
A-patch any line segment passing through an apex (vertex) of the tetrahedron and its
opposite face intersects the surface patch at most once. In a four-sided A-patch any
line segment connecting two points on opposite edges intersects the patch at most once.
The reason for this distinction will be explained shortly. One may notice that the main
reference for cubic A-patches [BCX95] predates the formalization of general degree A-
splines [BX99a]. In fact a general solution for arbitrary degree A-patches doesn’t exist
to date and in the case of C2 tetrahedral quintic patches [BCX97] the sign conditions are
too strong and have been relaxed.

In C1 rational tetrahedral A-patches [XHB01] a technique similar to the discriminating
and traversal families [XBC00a, XBC00b, XBC00c] is employed to define a reduced
form low degree rational function, in this case the requirement of a single-sheeted in the
tetrahedron has been dropped in favor of separating a single sheeted surface piece within
each tetrahedron. The low-degree rational form may be converted to a polynomial, albeit
of higher degree, however, it may be evaluated at a point without requiring root finding
(e.g. may be transformed in a rational form where one αi is linear). Rational C1 A-
patches has been defined also on pyramid scaffold (quadrilateral base) [XBE02]. A
similar technique is employed in prism A-patches [BX99b, BX01, ZXB07, BPP+08]
(see Chapter 8) in this case the surface with minimal height (w.r.t the base) is guaranteed
to be non-singular in the polyhedron. However, in prism A-pathces root finding is still
necessary in order to generate points.

Enforcing continuity in A-patches is complicated by the fact it has to be enforced on the
boundary curves as well as points.
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Figure 3.2: A-patch B.B. coefficients for cubics: (a) cuboid (b) tetrahedron (c) triangular
prism (d) square pyramid.

Definition 3.2.1. Two algebraic surfaces f (x,y,z) = 0 and g(x,y,z) = 0 meet with Gk-
continuity (rescaling continutiy) along a curve C if and only if there exists functions
α(x,y,z) and β (x,y,z) such that all derivatives upto order k of α f −βg equals zero at all
points along C , see for e.g.,[GW91].
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For the specific case of A-patches, G1 continuity between adjacent A-patches reduces to
linear equality (coplanarity of the coefficients in a 4D space) conditions between coefi-
cients on common faces and their neighborhoods (see [Baj92, XB95, XHB01, XBE02]
and chapter 7)

3.3 Surface Control

Control data for A-patches is usually supplied through a linear surface triangulation,
a 2− complex boundary for a 3-dimentional solid. The triangulation may be obtained
by: (1) user input or generative modeling (2) point data of 3D scans (3) iso-surfaces of
volumetric images. To understand exactly what is meant by linear surface triangulation
some definitions are needed [Pao03].

Definition 3.3.1 (Convex and affine hull). Le {p1, . . . ,pd} ∈Rn. Then the convex hull of
these points is defined by [p1, . . . ,pd] = {p ∈ R3 : p = ∑

d
i=1 αipi, αi ≥ 0 , ∑

j
i=1 = 1},

and the affine hull is defined by < p1, . . . ,pd >= {p ∈ R3 : p = ∑
d
i=1 αipi, ∑

j
i=1 = 1}.

The interior of the convex hull is denoted (p1, . . . ,pd) = {p ∈R3 : p = ∑
d
i=1 αipi, αi ≥

0 , ∑
d
i=1 = 1}.

Definition 3.3.2 (d-Simplex). A d-simplex σd ⊂ En, (0 ≤ d ≤ n) may be defined as
the convex hull of d + 1 affine independent points. A d-simplex may be seen as a d-
dimensional triangle: a 0-simplex is a point, a 1 simplex is a segment, a 2-simplex is a
triangle, a 3 simplex is a tetrahedron, and so on.

Definition 3.3.3 (Triangulation and Simplicial d-complex). A set Σ of d-simplices is
called a triangulation. A simplicial complex, often simply called a complex is a triangu-
lation that verifies the following conditions:

1. if σ ∈ Σ, then any face of σ belongs to Σ;

2. if σ ,τ ∈ Σ, then either σ ∩ τ = 0, or σ ∩ τ is a face of both σ and τ .

Sometimes one allows the set Σ to contain elements that are not pure d-simplexes but
convex hulls of m-points (m > d) of which d +1 are affine independent and in this case
it is often called polyhedral d-complex. Notice that this is a practical representation
distinction and as far the mathematical definition goes a polyhedral complex is always
isomorphic to simplicial d-complex (the convex hulls of m-points (m > d) may always
be split in simplexes).

Definition 3.3.4 (Polyhedron). A d-polyhedron [Req77] is any compact set Pd ⊂En that
allows at least one pair (K,h), where K is a m-complex, and h : |K| → P is a homeomor-
phism, where the support space of K, denoted as |K|, is the point-set union of simplices
σ ∈ K.
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An m-polyhedron is said linear if h is the identity function; it is said regular if the
complex K associated with it is pure, i.e. if each simplex is a face of some m-simplex.
Two simplices σ1 and σ2 in a complex K are s-adjacent if they have a common s-face;
they are s-connected if a sequence of simplices in K exists, beginning with σ1 and ending
with σ2 , such that any two successive terms of the sequence are s-adjacent. If any
(d− 1)-simplex in Σ is a face of exactly two d-simplices, then Σ is said to be closed;
otherwise it is said to be open.

Definition 3.3.5 (Surface). We call surface any 2-polyhedron which supports a triangu-
lation (K,h) such that:

1. any 1-simplex in K is a face of at most two 2-simplices in K;

2. for each 0-simplex v ∈ K, the 2-simplicies of K for which v is a face that can be
circularly ordered so that any consecutive pair is 1-adjacent.

Such conditions impose that a surface should be a manifold object, where the neighbour-
hood of each point is homeomorphic to the open disc. If the first condition is strictly
verified, i.e. if each 1-simplex in K is a face of exactly two 2-simplices in K, then the
surface is closed; otherwise it is open. If the surface is closed and orientable, then it is
the boundary of a solid.

Definition 3.3.6 (Boundary). The boundary ∂Pd of a polyhedron Pd is the geometric
carrier of the (d−1) complex whose (d−1)-simplices are faces of exactly one d-simplex
in a complex that triangulates Pd .

Definition 3.3.7 (Shell). A maximal 1-connected component of a closed surface is called
a shell of the surface.

In tetrahedral (see [BCX95, BCX97, XHB01] and chapter 7) and triangular prism patches
(see [ZXB07, BPP+08] and chapter 8) one is given a list of points P = {p1, . . . ,pk} ∈Rn

and a surface triangulation T of these points. In case of mixed or multisided schemes
(see [XBE02, BX01] and chapter 8) the ”triangulation” is allowed to contain quadrilater-
als. In case of shell surfaces [BX99b, BX01] a pair of matched triangulations [T (0),T (1)]
is given. Furthermore additional data is given for each point such as set of normals
N = {n1, . . . ,nk} ∈Rn for C1 interpolation. In [BCX97] C2 interpolation is provided by
suplying the hessian matrix H at each point of the triangulation.

H ( f ) =


∂ f
∂ 2x

∂ f
∂x∂y

∂ f
∂x∂ z

∂ f
∂y∂x

∂ f
∂ 2y

∂ f
∂y∂ z

∂ f
∂ z∂x

∂ f
∂ z∂y

∂ f
∂ 2z


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The objective is to construct a mesh (piecewise gluing) of low degree algebraic sur-
faces (an A-patch) such the composite surface (as A-patch set) is single sheeted, interpo-
lates/aproximates the points, and has a desired continuity. That is to build a topologically
equivalent non-linear surface triangulation defined by algebraic finite elements.
To do so a simplicial hull of T denoted by Σ is built to supply a scaffold for each patch.
Different configurations of vertex ”normals” for edges and faces of T are categorized as
”convex” and ”non-convex”:

Edge (Figure 3.3) Let [pipj] be an edge of T . If (pj− pi)T ni(pi− pj)T nj ≥ 0 and at
least one of (pj−pi)T ni and (pj−pi)T nj is positive, then the edge [pjpi)] is said
negative convex. If both are zero then we say it is zero convex. A positive convex
edge is similarly defined. If (pj−pi)T ni(pi−pj)T nj < 0, then we say the edge is
non convex.

(a) (b) (c)

Pi Pj Pi Pj Pi Pj

Figure 3.3: Edge convexity: (a) positive convex; (b) negative convex; (c) non-convex.

Face (Figure 3.4) Let [pipjpk] be a face of T . If its three edges are nonnegative (positive
or zero) convex and at least one of them is positive convex, then we say the face
[pipjpk] is positive convex. If all of the three edges are zero convex, then we label
the face as zero convex. A negative convex face is similarly defined. All of the
other cases [pipjpk] are labeled as nonconvex.

The edges and faces together with their normals are thus tagged as ”convex” and ”non-
convex”. In polynomial tetrahedral patches and shell prism patches not all triangulations
are apt to build the A-patch set. In this case offending triangles in the triangulation have
to be split. Then along the (new) triangulation T :

Face In tetrahedral A-patches for every face [pipjpk] of T , a face tetrahedra [pipjpkq]
are built by adding a point q over and/or under the face (see figure 3.5a). If the
face is positive convex the point is added over the face, if negative complex the
point is added below the face, and both points are added for the non convex face.
For the actual location of the added point q refer to the relevant chapter (7) or
aforementioned articles. The patch built on face tetrahedra will be three sided. In
mixed and multisided schemes, pyramidal A-patches are built analogously if the
T contains quadrilaterals.
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(a) (b)

Pi

Pj

Pk

Pi

Pj

Pk

Figure 3.4: Face convexity: (a) convex; (b) non-convex.

In prism A-patches (see figure 3.5b) only one prism is built for each face. If the
prism A-patch is simple, then for each face [pipjpk] the prism built will be

[(pi−ni)(pj−nj)(pk−nk)(pi +ni)(pj +nj)(pk +nk)].

In shell prism for every pair of matched faces [p(0)
i p(0)

j p(0)
k ] and [p(1)

i p(1)
j p(1)

k ] the
following prism will be built

[p(0)
i p(0)

j p(0)
k p(1)

i p(1)
j p(1)

k ].

In mixed and multisided schemes a quadrilateral prism is built if the ”triangula-
tion” T contains quadrilaterals.

Edge Let [pipjpk] and [p′ipjpk] be two adjacent faces in the triangulation T with edge
[pjpk]. In all prism A-patches no additional complex is built for edges. The
quadrilateral [p(0)

j p(0)
k p(1)

j p(1)
k ] will contain the prism A-spline segment of the

boundary of the resulting curved triangulation. In tetrahedral schemes, two face
tetrahedral will only meet at the common edge [pjpk] thus a joining simplicial
hull (a ”join”) has to be built. If both faces are convex then only one ”join” is
needed, if one is non convex then two ”joins” are needed (one above and one be-
low the triangulation). In polynomial tetrahedral patches each ”join” consists of
two egde tetrahedra [pjpkqq′′] and [pjpkq′q′′] by adding a point q′′ (Fig 3.6a).
Again for the actual location of the added point q′′ refer to the relevant chapter
(7) or aforementioned articles. In rational tetrahedral patches only one tetrahedra
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(a)

Pi

Pj

Pk

q

(b)

Pi

Pj

Pk

Figure 3.5: Face polyhedron: (a) tetrahedra; (b) prism.

[pjpkqq′] per ”join” is needed (Fig 3.6b). In mixed and multisided schemes pyra-
midal A-patches nothing changes as the edge [pjpk] may be in common between
two quadrilaterals/triangles. The patch built on an edge tetrahedra will be four
sided.

(a)

Pi

Pj

Pk

q

P'i

q'

(b)

Pi

Pj

Pk

q

P'i

q'

q''

Figure 3.6: Join of tetrahedra: (a) polynomial A-patch; (b) rational A-patch.

After the scaffolding simplicial hull is built, the coefficients of the algebraic equation
are assigned for interpolation/aproximation, continuity and finer curve control. If the
coefficients an000, a0n00, a00n0, and a00n0 are zero then the patch will interpolate the
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corresponding point on the scaffold, if all four are zero then the curve will be singular.
If, say, a(n−k)k00 = 0 (or any other ”segment” of coefficients) then the surface will be
tangent to the edge (i.e. [pipj]) at the point (i.e pi) k times, if k = n then the surface
will interpolate all the edge (i.e. [pipj]). If a(n−i−k)ik0 = 0, for i ∈ [0,n] and k < n
then the surface will interpolate the edge (i.e. pipj) and here tangent to the face (i.e.
[pipjpk]) k times. The actual assignment will be studied in the next chapters for cubic
polynomial tetrahedral A-patches case (chapter 7), prism cubic A-patches (chapter 8).
For all remaining schemes please refer to the provided literature.
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(a) (b)

(c) (d)

Figure 3.7: A-patches defined by a single change of coefficients in preferred
directions[Baj]. (a) A three sided A-patch interpolating at points B,C,D. Convex vertex
normals. (b) A three sided A-patch defined over a double stack of tetrahedra for a case
of non-convex vertex normals. (c) A four sided A-patch in case of convex vertex nor-
mals. (d) A four sided A-patch defined over a double stack of tetrahedra for a case of
non-convex vertex normals.
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(a) (b)

(c) (d)

Figure 3.8: Two prism patches with different join configurations[Baj]: (a) two convex
patches; (b) convex patch and a non-convex patch; (c) two non-convex patches; (d) zero-
convex (triangle) patch and a non-convex patch.
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Chapter 4

Operations on algebraic finite elements

In this chapter a series of exercise and examples on algebraic varieties and finite alge-
braic elements are presented. These examples were worked by the author and Prof. Na
Lei (Inst. of Mathematics, Jilin University, China) for the post graduate course in Geo-
metric Modeling and Visualization held by professor Chandrajit Bajaj at the University
of Texas at Austin. The rationale is to provide a good overview on the possible opera-
tions on algebraic finite elements in practical and by example manner. The definition of
algebraic finite element used is quite free. The point is, to define the characteristics that
an algebraic finite element scheme should have in order to solve a problem or define an
algorithm for a certain operation. They are long away from being complete applications,
however, they highlight well the problematics, sketch quite well the general solution and
have an excellent explanatory value. The examples on the computation of the surface of
an union of spheres and of the offset surfaces of said union of spheres introduce and pro-
vide a ”human executable” operative detail (vs ”computer executable”) on the algorithm
presented in Chapter 5 to build surface representation of molecular surfaces. Similarly,
all the examples on the intersection between algebraic varieties and their use to build an
algebraic finite elements description by assembly of these varieties, constitute an intro-
duction and, again, a ”human executable” detail to the algorithm for boolean operations
provided in Chapter 9.

4.1 Intersection and Assembly

Surface to Space Curve Intersection

An algebraic space curve curve and can be represented by the intersection of two alge-
braic surfaces. An algebraic curve segment is also provided with two boundary vertices
(points on the curve), and a direction indicator for the starting and ending point. Com-

43
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pute the intersection of the surface S : x2 + y2 + z2−1 = 0 and the space curve segment
C : (x2 + y2− z = 0,x = 0) with starting vertex (0,2,4) and ending vertex (0,−2,4).

Surface S: x2 + y2 + z2−1 = 0, a sphere with center C = (0,0,0) and radius r = 1).

Curve C: (x2 + y2− z = 0,x = 0) (plane x = 0 ∩ conicoid along z axis)

First of all the curve is easily parameterizable by first parameterizing the plane x = 0
as (x = 0,y = s,z = t) and then substituting these functions in the conicoid equation:
(t = s2) and then back in the plane equation:

x = 0
y = s
z = s2

Points v1 = (0,2,4) and v2 = (0,−2,4) are interpolated for s = 2 and s =−2. Deriving
the plane curve in s: ( dx

ds = 0, dy
ds = 1, dz

ds = 2s) the tangent t1 = (0,1,−4) is satisfied for
s = 2 and ds =−1. This means the segment defined by s decreasing from v1 to v2 . Thus
the segment is defined in s ∈ [2 . . .− 2] passing through 0. One could reparameterize
these functions (e.g. s′ ∈ [0 . . .1] and s =−4s′+2) but it is not needed.
To intersect one substitutes the parametric functions in the surface equation S having
s2 + s4− 1 = 0, solving one has s2 = t = −1±√5

2 , excluding imaginary points one has

s =±
√
−1+

√
5

2 (inside the range of s). The intesection points are (figure 4.1):

x = 0

y = ±
√
−1+

√
5

2 w ±0.7861

z = −1+
√

5
2 w 0.6180

Surface to Surface Intersection

A surface patch is a surface with a closed boundary. An algebraic surface patch can
be represented by a single polynomial equation for the surface and a closed cycle of
curve segments on the surface. Compute the intersection of the spherical surface patch
[ Surface: x2 + y2 + z2−1 = 0, Curve segment: x2 + y2−1 = 0 with a cycle of vertices
(1,0,0), (0,−1,0), (−1,0,0), (0,1,0) defining the cycle of ordered curve segments],
with (a) the plane y = z, and, with (b) the surface y2 + z2−1 = 0.
Surface patch S is described by equation: x2 + y2 + z2 − 1 = 0, a sphere of center
C = (0,0,0) and radius r = 1; it is delimited, by Sc : x2 + y2 − 1 = 0, a circumfer-
ence centered in C and with radius r on xy plane, and, by the series of ordered vertices
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Figure 4.1: Intersection between sphere S and curve C. Image generated by the author
using GANITH [BR90a].

(1,0,0),(0,−1,0), (−1,0,0), (0,1,0). Plane Sa:y=z is the plane bisecting y− z axis and
Sb : x2 + z2− 1 = 0 is a cylinder centered in O, with radius r lying on xz plane, and
expanding along y. By elimination between S and Sc one obtains z = 0. This means that
this equation and any one of the equations Sc or S describes the patch delimiting curve.
It means also that the curve lies on the z = 0 plane. By the ordering of the vertex one
obtains the patch is the half sphere pointing towards negative z axis.

(a) SP∩Sa: The curve equations describing the intersection is already fully described
by S and Sa. However if one wants to compute another surface, containing the
curve, which intersected with either Sa or S will describe the curve, one may use
the y = z equation to obtain either: Res0,z(S,Sa) : x2 +2y2−1 = 0 or Res0,y(S,Sa) :
x2 + 2z2− 1 = 0. The may be useful to find another vertex on curve segment for
example when x = 0 one has z = y = 1√

2
=
√

2
2 = sin(π/4) = cos(π/4).

To compute the extreme vertex of the curve segment one must check the inter-
section S∩ Sc ∩ Sa . Alternatively one may intersect Sa,y = z, and S. Obtaining
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(x =±1,y = 0,z = 0)

To sum up SP∩Sa is the curve segment described by the intersections of any two
of the following equations Sa, S, Res0,z(S,Sa),Res0,y(S,Sa). A conventional choice
is:

Res0,z(S,Sa) : x2 +2y2−1 = 0
Res1,z(S,Sa) : x− z = 0

The delimiting points are (1,0,0) and (−1,0,0) and the tangent at (1,0,0) is
(0,−

√
2

2 ,−
√

2
2 ).

(b) SP∩Sb: The curve equations describing the intersection is already fully described
by S and Sb. However in this case it is much better to eliminate x and y, thus
obtaining z = 0:

x2 + y2 + z2 − 1 = 0
x2 + y2 − 1 = 0

z2 = 0

To compute the extreme vertex of the curve segment on must check the intersec-
tion S∩Sc ∩ Sb . Alternatively one may intersect z = 0,y = z, and S. Obtaining
(x =±1,y = 0,z = 0)

To sum up the intersection curve is described by any two of Sb, S, z = 0. The
delimiting points are (1,0,0) and (−1,0,0) and the tangent at (1,0,0) is (0,0,−1).

Union of Spheres

Consider an arrangement of spheres of varying radii in R3 (e.g. atoms of a molecule)
as described by a 4-tuples (center-coordinates, radius). Given an arrangement of four
spheres

[c =(0,0,0),r = 1], [c =(0,0,1),r = 0.75], [c =(0,1,0),r = 0.75], [c =(1,0,0),r = 0.25]

compute a boundary representation of the union of the arrangement (e.g. spacial de-
scription of the molecule). [Hint: All pairwise spheres and triple sphere intersections
must be computed].
The equations of the spheres (see Figure 4.2)

S1 = [c = (0,0,0),r = 1] S2 = [c = (0,0,1),r = 0.75]
S3 = [c = (0,1,0),r = 0.75] S4 = [c = (1,0,0),r = 0.25]

are:
S1 : x2 + y2 + z2−1 = x2 + y2 + z2−1 = 0
S2 : x2 + y2 +(z−1)2−3/4 = x2 + y2 + z2−2z+7/16 = 0
S3 : x2 +(y−1)2 + z2−3/4 = x2 + y2 + z2−2y+7/16 = 0
S4 : (x−1)2 + y2 + z2−1/4 = x2 + y2 + z2−2x+3/4 = 0
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C12 = S1∩S2:

x2 + y2 + z2 − 1 = 0
x2 + y2 + z2 − 2z + 7/16 = 0

2z − 23/16 = 0

Thus the intersection plane is z = 23/32 and substituting in S1 the intersection
circle is C12 : x2 + y2 +529/1024−1 = x2 + y2−495/1024 = 0

C13 = S1∩S3:

x2 + y2 + z2 − 1 = 0
x2 + y2 + z2 − 2y + 7/16 = 0

2y − 23/16 = 0

Thus the intersection plane is y = 23/32 and substituting in S2 the intersection
circle is C13 : x2 + z2−495/1024 = 0

C14 = S1∩S4:
x2 + y2 + z2 − 1 = 0
x2 + y2 + z2 − 2x + 3/4 = 0

2x − 7/4 = 0

Thus the intersection plane is x = 7/8 and substituting in S3 the intersection circle
is C14 : 49/64+ y2 + z2−1 = y2 + z2−15/6 = 0

C23 = S2∩S3:

x2 + y2 + z2 − 2z + 7/16 = 0
x2 + y2 + z2 − 2y + 7/16 = 0

2y−2z − 0 = 0

Thus the intersection plane is z = y and substituting in either S2 or S3 the intersec-
tion circle is C23 : 2y2−2y+ x2 +7/16

C24 = S2∩S4:

x2 + y2 + z2 − 2z + 7/16 = 0
x2 + y2 + z2 − 2x + 3/4 = 0

2x−2z − 5
16 = 0

Thus the intersection plane is x− z− 5
32 = 0 (z = x−5/32) and substituting in S4

one has 2x2 + y2−37x/16 + 793/1024. Factoring the polynomial in the variable
x and checking the discriminant one has (− 37

16 )2− 8(y2 + 793/1024) ' −8y2 +
5.347−6.195 and is always negative for any y. The intersection is empty, C24 = 0.
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C34 = S3∩S4:

x2 + y2 + z2 − 2y + 7/16 = 0
x2 + y2 + z2 − 2x + 3/4 = 0

2x−2y − 5
16 = 0

Thus the intersection plane is x− y+ 5
32 = 0 (y = x−5/32) and substituting in S4

one has 2x2 + z2− 37x/16 + 793/1024. The discriminant is always negative and
the intersection is empty, C34 = 0.

{P123}= C12∩C23 = S1∩ (y = 23/32)∩ (z = 23/32) = ∅:
Substituting in S1 : X2 + 529/1024 + 529/1024− 1 one has only complex solu-
tions.

{P234}= C23∩C34 = ∅ (C34 = ∅)

{P134}= C13∩C34 = ∅ (C34 = ∅)

{P124}= C12∩C24 = ∅ (C24 = ∅)

To sum up the intersection may be described by the following surface patches. Tangent
vectors, giving the direction on the curves, are sometimes given up to positive constants
(eg: give the general direction):

1. Surface S2 delimited by the curve segments consisting of

a) C12 curve, delimited by p0 = (0,−3/4,23/32), p1 = (0,3/4,23/32), v0 =
(1,0,0)

b) C12 curve, delimited by p0 = (0,3/4,23/32), p1 = (0,−3/4,23/32), v0 =
(−1,0,0)

2. Surface S3 delimited by the curve segments consisting of

a) C13 curve, delimited by p0 = (−3/4,23/32,0), p1 = (3/4,23/32,0), v0 =
(0,0,1)

b) C13 curve, delimited by p0 = (3/4,23/32,0), p1 = (−3/4,23/32,0), v0 =
(0,0,−1)

3. Surface S4 delimited by the curve segments consisting of

a) C14 curve, delimited by p0 =(7/8,−1/4,0), p1 =(7/8,1/4,0), v0 =(0,0,1)

b) C14 curve, delimited by p0 =(7/8,1/4,0), p1 =(7/8,−1/4,0), v0 =(0,0,−1)
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4. Surface S1 delimited by the curve segments :

a) x2 + y2−1∩ z = 0, p0 = (7/8,1/4,0), p1 = (3/4,23/32,0),
v0 = (cos(α),sin(α),0) α ∈ (π/2,π)

b) C12 , delimited by p0 = (3/4,23/32,0), p1 = (0,23/32,3/4), v0 = (0,0,1)

c) y2 +z2−1∩x = 0, p0 =(0,23/32,3/4), p1 =(0,3/4,23/32), v0 =(0,−y,+z)

d) C13, delimited by p0 =(0,3/4,23/32), p1 =(0,−3/4,23/32), v0 =(+x,−y,0)

e) y2 + z2−1∩x = 0, p0 = (0,−3/4,23/32), p1 = (0,−1,0), v0 = (0,−y,−z)

f) x2 + y2−1∩ z = 0, p0 = (0,−1,0), p1 = (7/8,−1/4,0), v0 = (−1,0,0)

g) C14, delimited by p0 = (7/8,−1/4,0),p1 = (7/8,1/4,0), v0 = (0,0,1)

5. Surface S1 delimited by similar curve segments for the other part of the surface:

An automatic computational method will easily compute the various border surface and
curves. The arrangement of the various parts in a new patch will require a degree of
combinatory logic. In chapter 5 a solution for molecular models will be presented.

4.2 Surface of Revolution

Given a cyclic boundary in the xz-plane defined by f (x,z) = 0 and a planar curve in
xy-plane defined by g(x,y) = 0, the surface g( f (x,z),y) = 0 obtained in revolving g(x,y)
around y-axis along the boundary of f (x,z) is known as the surface of revolution of
g(x,y) around y-axis w.r.t. f (x,z). This definition can be trivially extended to higher
dimensions. Note that if each C ∈ Rn−1 then the surface of revolution is in Rn.

A-patch from Revolution of Quadratic A-spline

Consider a C1-interpolatory quadratic A-spline, D, defined in the x = 0 plane (i.e., Y-Z
plane) with none of the vertices

−→
P0 ,
−→
P1 , . . . ,

−→
Pn incident on the z-axis.

1. Describe a square pyramidal A-patch data structure that represents the spline sur-
face of revolution generated when D is revolved about the Z-axis.

2. What is the degree of the spline surface?

3. What property of the A-spline would yield a lower degree spline surface of revo-
lution?

4. Convert the square-pyramidal representation to a tetrahedral A-patch representa-
tion.
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Figure 4.2: Spheres S1, S2, S3, S4 and their intersections. Image generated by the author
using GANITH [BR90a].

The surface of revolution of an algebraic plane curve f (y,z) = 0 about the Z axis, can be
described by the implicit equation algebraic given by f (r,z) = f (

√
x2 + y2,z) = 0, since

the circle of revolution is x2 +y2 = r2, and r = y, when x = 0 and r doesn’t change. The
single square root can be easily removed by separating all terms involving the square-
root on one-side of the equation, and the rest of the terms on the other, and then powering
both sides without changing the resulting zero-set of the surface equation. If the plane
curve is of degree d, and has y-terms with only even exponents ,y2i, 0 ≤ i ≤ d, then the
square root is already eliminated, and the resulting degree of the surface of revolution is
not doubled. A plane curve whose equation has y-terms with only even exponents means
it is even in y, alas symmetric to the z axis.

The spline curve in the Y −Z plane, may be constructed, using any kind of A-spline. For
example, let the spline be described by a rectangular quadratic A-spline, the equation of
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each segment will be:

f (α1,α2) =
2

∑
i=0

2

∑
j=0

bi j

(
n
i

)
α

i
1(1−α1)2−i

(
n
j

)
α

j
2(1−α2)2− j = 0

Where the α are the local coordinates in the scaffolding rectangle (p0, p1, p2, p3) of the
segment, related to the (r,z) coordinates by: r

z
1

=

 (p1,r− p2,r) (p1,r− p3,r) p1,r
(p1,z− p2,z) (p1,z− p3,z) p1,z

1 1 1

 α1
α2
1


Inverting said relation one has: α1

α2
1

=

 (p1,r− p2,r) (p1,r− p3,r) p1,r
(p1,z− p2,z) (p1,z− p3,z) p1,z

1 1 1

 r
z
1


Substituting the α = α(r,z) in f one has a form f (r,z) = 0, thus effectively transforming
the equation in power basis. Alternatively one could have set up the basis transformation
matrix. Applying the rotation one has the surface f (r,y,z) = f (x,y,z) = 0 in the current
coordinate system.
At this point one has to define a new A-patch scaffold and transform the surface equation
into the new scaffold coordinate system. An octree partition of the space will be used.
Let v0 = (y0,z0) and v1 = (y1,z1) be the original extreme points of the curve segment.
Let py = (yy,zy) and pz = (yz,zz) be the eventually x and y extreme points of the curve
segment (being quadratic there are a maximum of one, in general these will be a set of
points). The planes partitioning the octree will be (where ∈ {0,1,y,z}:

x = y
y = y
z = z

At this point one has to convert back into tensorial form for the rectangular patches:

f (α1,α2) =

∑
2
i=0 ∑

2
j=0 ∑

2
k=0 bi j

(
n
i

)
α i

1(1−α1)2−i
(

n
j

)
α

j
2(1−α2)2− j

(
n
k

)
αk

3(1−α3)2−k

from the coordinate conversion matrix. Let the generic cuboid with corner q = (xq,yq,zq)
and side lengths (a,b,c), the coordinate transformation is :

x
y
z
1

=


a 0 0 xq
0 b 0 yq
0 0 c zq
0 0 0 1




α1
α2
α3
1


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To build the square pyramidal A-patch one may split the cuboid in four pyramids at the
barycentric point b = (xb,yb,zb) = (xq +a/2,yq +b/2,zq +b/2).
The mixed tensor barycentric form for the pyramidal patch is:

f (α1,α2) =
2

∑
i=0

2

∑
j=0

2

∑
k=0

bi j

(
n
i

)
α

i
1(1−α1)2−i

(
n
j

)
α

j
2(1−α2)2− j

(
n
k

)
α

k
3 = 0

Where coordinates conversion depend slightly on which pyramid, for example in the
bottom one: 

x
y
z
1

=


a 0 xb xq
0 b yb yq
0 0 zb zq
0 0 1 1




α1
α2
α3
1


In any case the resulting surface will be bi-quadratic.

4.3 Curve Lofting

Given a set of curves, each represented by the intersection of two implicit surfaces i.e.,
Ci0≤i≤n : ( fi,gi) where fi and gi are surfaces in irreducible implicit form, the surface
S which Gk interpolates Ci is known as the Gk lofted surface of Ci . The surface S is
defined as

α0 f0 +β0gk+1
0 = α1 f1 +β1gk+1

1 = . . . = αn fn +βngk+1
n

where αi and βi are polynomials of degree ≤ k. Among the two implicit surfaces to
represent a curve Ci , one typically represents the lower degree surface as gi whereas the
other one as fi to obtain the computational efficiency. This definition can be trivially
extended to higher dimensions. Note that if each Ci ∈ Rn−1 the lofted surface is in Rn.

Interpolation of Two Circles

Consider two circles in R3, of radii 1 and 1, lying on the x = 1 and y = 4 planes, and
with their centers on the x and y axis respectively.

(a) Compute A-spline representation of each circle.

(b) Compute a joining surface that interpolates the circles and contains the origin.
Give your answer as an A-patch representation.

(c) Is your solution the lowest degree algebraic surface and with the fewest number
of A-patches?
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(a) One constructs a scaffold T S around the circle in the following way. Consider the
unit circle C1 whose centre is located at x = 1. Choose the bivariate triangle scaffold
around each quarter circle defined w.r.t. y and z axes such that the ∠a020a200a002 = π

2
and the scaffold is coplanar with C1. As a circle is quadratic, there are 3 (including the
vertices) equi-spaced control points along each side of T S.

One associates weights to points a020,a011,a002,a101,a200,a110. Since C1 need to in-
terpolate a020 and a002, we set w020 = w002 = 0. Since the line segments a020a110 and
a002a101 are tangents to C1, we set w110 = w101 = 0. Consider the line segment a200a011
and let the point of intersection of the circle embedded in the triangle with this line
segment be p. From the basic geometry one has, | pa200

pa011
| = w011

w200
⇒ |

√
2−1

1− 1√
2

| = w011
w200
⇒

| 1√
2
| = w011

w200
. Choose w011 = −1 and w200 =

√
2 to satisfy this equality. This scaffold

is guaranteed to yield the one quarter of the circle. The scaffolds for circle quarters in
the other quadrants can be constructed symmetrically. For one of these scaffolds, say
a′020a′002a′200, distinct from T S, since ∠a020a200a002 = ∠a′020a′200a′002 = π

2 , a′200a′020 is
collinear with either a200a002 or a020a200. This helps in keeping the C1 continuity of the
circle segments at the joining points of the generated A-splines.

The A-spline representation of the circle C2 located in y = 4 is symmetric to above ex-
cept that the scaffolds are constructed in the xz-plane.

(b) The circle C1 can be represented as an intersection of two implicit surface equa-
tions, f0 : y2 + z2− 1 = 0 and g0 : x− 1 = 0. The circle C2 can be represented as an
intersection of two implicit surface equations, f1 : x2 + z2− 1 = 0 and g1 : y− 4 = 0.
Then the lofted surface S which interpolates (i.e., with C0 continutity) the circles C1
and C2 is given by, α0 f0 + β0g0+1

0 = α1 f1 + β1g0+1
1 ⇒ α0(y2 + z2− 1) + β0(x− 1) =

α1(x2 + z2− 1)+ β1(y− 4), where α0,β0,α1,β1 are chosen to be constants to have the
lowest degree algebraic surface. Take any four points on the circles C1 and C2 to find
these constants, ex. (1,4,0),(0,4,1),(1,1,0),(1,0,1). The additional constraint is given
by the fact that the origin (0,0,0) need to be interior to the surface. This can be imposed
by ∂S

∂y < 0 at (1,4,0).

For example, to define A-patches in tensor domain, consider the smallest cuboid H en-
closing the surface S such that S with the planes containing C1 and C2 together contain
the origin. This can be precisely defined with the intersection of planes on which C1
and C2 reside. One partitions H with a set R of hexahedrons such that any line segment
joining vertices of any chosen hexahedron in R does not intersect S more than once, and,
|R| is the smallest among all possible such sets. For example, this can be achieved by
partitioning H with xz− and yz−planes, such that to obtain |R|= 4. Since S is quadratic,
each side of any hexahedron r ∈ R consists of three control points (including the ver-
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tices). Similar to part (a), one associates weights to these control points to construct
A-patch within each such r. To maintain C2 continuity, between adjacent A-patches,
one imposes additional constraints.

(c) The equation representing the family of surfaces which Gk continuously interpo-
lates the curves C1 and C2 is α0 f0 + β0gk+1

0 = α1 f1 + β1gk+1
1 . Since one is asked to

interpolate C1 and C2, k = 0 has been chosen, which in turn yielded the lowest degree
algebraic surface. Since S is of lowest degree and |R| is of smallest size, this solution is
the one with the minimum number of A-patches.

4.4 Surface Offset

Offset of a Quadratic Tetrahedral Patch

Consider the normal r-offset surfaces Qouter and Qinner of an algebraic surface patch P
inside a tetrahedron, where Qouter is the offset in the positive surface normal direction
and Qinner is the offset in the negative surface normal direction by r. If patch P is defined
by a quadratic trivariate polynomial equation, give the equation of the Qouter and Qinner
surfaces and the patch boundaries within a r-offset (or r-scaled) tetrahedron.

Say, patch P be defined by
P : F(x,y,z) = 0 (4.1)

then the normal of P at point (x,y,z) is

~n = (nx,ny,nz)T = (
∂F
∂x

,
∂F
∂y

,
∂F
∂ z

)T

Denote
|~n |=

√
n2

x +n2
y +n2

z .

Let (x′,y′,z′) be the point on Qouter, then one has
x′ = x+ r

nx

|~n |
y′ = y+ r

ny

|~n |
z′ = z+ r

nz

|~n |

(4.2)

Eliminate x,y,z from (4.2) and (4.1) to get an equation about x′,y′,z′. It is the equation
of Qouter.
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Let (x̃, ỹ, z̃) be the point on Qinner, then
x̃ = x− r

nx

|~n |
ỹ = y− r

ny

|~n |
z̃ = z− r

nz

|~n |

(4.3)

Eliminate x,y,z from (4.3) and (4.1) to get an equation about x̃, ỹ, z̃. It is the equation of
Qinner.

Now an example on how to get the equation about x′,y′,z′ is shown.

Let F(x,y,z) = x2 + y2 + z2−1, then

~n = (nx,ny,nz)T = (
∂F
∂x

,
∂F
∂y

,
∂F
∂ z

)T = (2x,2y,2z)T

|~n |=
√

n2
x +n2

y +n2
z = 2

√
x2 + y2 + z2 = 2.

Then 
x′ = x+ r

nx

|~n | = x+ r
2x
2

= (1+ r)x

y′ = y+ r
ny

|~n | = y+ r
2y
2

= (1+ r)y

z′ = z+ r
nz

|~n | = z+ r
2z
2

= (1+ r)z

(4.4)

So
x = x′/(1+ r),y = y′/(1+ r),z = z′/(1+ r).

Substitute is to F(x,y,z) = x2 + y2 + z1−1 = 0, one gets

F ′(x′,y′,z′) = (x′2 + y′2+ z′2)/(1+ r)2−1 = 0

which is the equation of Qouter.

Similarly we can get the equation of Qinner:

F̃(x̃, ỹ, z̃) = (x̃2 + ỹ2 + z̃2)/(1− r)2−1 = 0

Let the patch P be defined in the tetrahedron T : (p1, p2, p3, p4), where p1 =(x1,y1,z1), p2 =
(x2,y2,z2), p3 = (x3,y3,z3), p4 = (x4,y4,z4). Notice that p1, p2, p3 are on the surface
Qouter, then

x2
1 + y2

1 + z2
1 = (1+ r)2,x2

2 + y2
2 + z2

2 = (1+ r)2,x2
3 + y2

3 + z2
3 = (1+ r)2.
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The relationship of the barycentric coordinates (α1,α2,α3,α4) and (x,y,z) is:
x
y
z
1

= M


α1
α2
α3
α4

=


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1




α1
α2
α3
α4


Substitute the above equation into F ′(x′,y′,z′) = 0 and one gets the equation about the
barycentric coordinates

G′(α1,α2,α3,α4) =
(
x1

2 + z1
2 + y1

2
)

α1
2 +(2y2 y1 +2x2 x1 +2z2 z1)α1 α2

+(2 (y3 + y4)y1 +2 (x3 + x4)x1 +2 (z3 + z4)z1)α3 α1
+(2 (x3 + x4)x2 +2 (z3 + z4)z2 +2 (y3 + y4)y2)α3 α2

+
(
(x3 + x4)

2 +(z3 + z4)
2 +(y3 + y4)

2
)

α3
2− (1+ r)2

+
(
x2

2 + z2
2 + y2

2
)

α2
2

= (1+ r)2
α1

2 +(2y2 y1 +2x2 x1 +2z2 z1)α1 α2
+(2 (y3 + y4)y1 +2 (x3 + x4)x1 +2 (z3 + z4)z1)α3 α1
+(2 (x3 + x4)x2 +2 (z3 + z4)z2 +2 (y3 + y4)y2)α3 α2
+
(
(1+ r)2 +2x3x4 +2z3z4 +2y3y4 + x2

4 + y2
4 + z2

4
)

α3
2

−(1+ r)2 +(1+ r)2
α2

2

In many applications not only the surface equation must be offset but also the boundary
curve and boundary point. When offsetting surface patches that are not C1 continuous
the newly created surfaces will join the offset surfaces. The offset of a curve is obtained
by moving a sphere on the curve and it is a surface (a ”toroid”). Equivalently one moves
a circumference on a plane perpendicular to the tangent of the curve. A curve in space
is defined as the intersection of two surfaces. The boundary curves in A-patches are the
intersection of the surface equation and the planes containing the faces of the scaffolding
tetrahedron. The offset of a tetrahedral patch and the offset of its boundary curves and
points is shown in brown in Figure 4.3, and the constructing elements are:

Surface: f (x,y,z) = 0 and boundary curves on the tetrahedron (in dark green).

Delimiting planes: P : ax+by+ cz+d = 0 (in blue outline).

Normal to surfaces: −→n f := ∇ f = ( fx, fy, fz)T and n̂ f = ∇ f
|∇ f | (shown in red at curve seg-

ment delimiting points).

Normal to plane: −→nP = (a,b,c) and n̂P = (a,b,c)√
a2+b2+c2

.

Tangent to boundary curve: t̂ = n̂ f × n̂p. For any α,β one has (α n̂ f + β n̂P) · t̂ = 0.
The circumference will lay on the plane spanned by these two vectors. In particu-
lar the binormal is b̂ = n̂ f × t̂ (shown in green at delimiting point)
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Figure 4.3: Offset of a tetrahedral A-patch. Image created by the author for [Baj07].

To build the scaffold (see figure 4.4) for the offset surface and the offset of the delimiting
curve and points for simplicity one will focus on the original A-patch interpolating three
points on the tetrahedron. The most natural scaffold is a prismatic scaffold, then one
may add a barycentric point in each prism to divide it in 6 tetrahedrons. The main
surface positive offset surface Qouter scaffold is build by taking the normal versor n̂ at
the boundary points and multiply it by two times the offset radius 2r. Join the other
extreme of 2rn̂ obtaining a prism skew in one direction. The offset surface will pass at
the boundary edge exactly at rn̂. Similarly one builds the prism for Qinner by inverting the
normals (red in figure). The scaffold offset of the boundary curve is obtained by taking
the binormal versor b̂ = n̂ f × t̂, multiplying it by 2r and applying at the original boundary
point and the boundary point at the end of 2rn̂. (green in figure) The scaffold for the
offset of the delimiting point is obtained by building an hexahedron on the extended
points on the bi-normals. (purple in figure)

Offset of Union of Spheres

Given a union M of n spheres (simple geometric model of a molecule), give an efficient
algorithm to generate the r-offset M+

r and M−r models of M where again M+
r is the outer

offset and M−r the inner offset. What is the relationship of the inner r-offset (M+
r )−r of

M+
r with M? Provide an algorithm to generate a model of (M+

r )−r , that is, the inner offset
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Figure 4.4: Scaffold construction for an A-patches description of tetrahedral A- patch
offset. Image created by the author for [Baj07].

of the outer offset of the original union of spheres.
A surface patch decomposition M of a union of n spheres centered at different points
(p0 = (x0,y0,x0), p1 = (x1,y1,x1), . . . pn−1 = (xn−1,yn−1,xn−1)) and with different radii
(r0,r1, . . . ,rn−1) is composed of patches whose components are:

1. Spherical surfaces: Si : (x− xi)2 +(y− yi)2 +(z− zi)2− r2
i = 0

2. Boundary curves: these are defined implicitly as the intersection of the spheres
Ci j : Si∩S j if not empty, but are usually simplified to a plane Pi j and a circumfer-
ence ci j on that plane.

a) Without loss of generality consider the coordinate system centered in pi cen-
ter of the first sphere and the x axis pointing to p j center of the second sphere.
Let di j be the distance between the two centers. vector.

b) One has:
x2 + y2 + z2− r2

i = 0
(x−di j)2 + y2 + z2− r2

j = 0
−2di jx+d2

i j +(r2
j − r2

i ) = 0
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c) Thus the plane (in the local system) is

x = h′i j =
d2

i j +(r2
j − r2

i )
2di j

d) Substituting the plane equation in the sphere equation one has the equation
of the circumference and its radius:

y2 + z2− ri j2 = 0

r′2i j = r2
i −h′2i j = r2

i −
(

d2
i j+r2

j−r2
i

2di j

)2

3. Intersection points of three spheres is a point pi jk = Si∩S j ∩Sk, equivalently one
may easily intersect the planes of the boundary curves: pi jk = Pi∩Pj ∩Pk.

Once the intersection planes, circumferences and points are calculated one may assemble
the surface patch for M (see Figure 4.5).

To calculate an offset one has to r offset each component of the surface patch in the
space [BK88][BK90]:

1. The r offset of spherical surface is very simple. The normal to a sphere is always
pointing in the direction of the radius, thus, the offset is just the original surface
equation with the the added radius:

(S+
r )i : (x− xi)2 +(y− yi)2 +(z− zi)2− (r + ri)2 = 0

2. The r offset of a boundary circumference Ci j will become torii TCi j with outer
radius the same as the boundary circumference r′i j and the inner radius the offset r.
It may obtained by rotating on the x’ axis the circle (x′−h′i j)

2 +(y′−r′i j)
2−r2 = 0

of radius r centered at (h′i j,r
′
i j):

(x−h′i j)
2 +(

√
y2 + z2− r′)2− r2 = 0

((x−h′i j)
2 + y2 + z2− r2)2 +4h′2i j(z

2 + y2)

3. The r offset of a boundary point will be a sphere centered at the point pi jk and
radius r: Spi jk

When calculating the outer offset of the union of spheres M+
r the offset of the spherical

surfaces will dominate in respect to the torii around the intersection circumference and
the sphere centered on the intersection points (See Figure 4.6).
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Figure 4.5: Three spheres and intersections. Image generated using GANITH [BR90a].

At this point one has to compute all the components of the outer offset M+
r . The bound-

ary circles of the surface patch of M+
r not only have changed but new intersections may

be created. Operating similarly to the original patch, the intersection plane will be:

x′ = h′′i j =
d2

i j +((r j + r)2− (ri + r)2)
2di j

The new intersection circumference (C+
r )i j will have radius:

r′′i j = (ri + r)2−h′′2i j = (ri + r)2−
(

d2
i j +(r j + r)2− (ri + r)2

2di j

)2

Similarly the intersection points must be recalculated as (p+
r )i jk.
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Figure 4.6: Outer offset components of two spheres. Images created by the author
for [Baj07], first two using GANITH [BR90a].

When calculating the inner offset (M+
r )−r , the inner surface of the torii T(C+

r )i j
created by

the boundary circles (r′′i j,h
′′
i j) of the outer offset surface M+

r will not be hidden but have
the role of “smoothing” out the spheres (See Figure 4.7).
The boundary between a spherical surfaces ((S+

r )−r )i and the joining torus T(C+
r )i j

will be
a circumference (See Figure 4.8). One may calculate the containing plane and its radius

r̂i j =
rir′′i j

ri + r

x = ĥi j =
rih′′i j

ri + r

Figure 4.7: Inner offset components of two spheres. Images created by the author
for [Baj07], first two using GANITH [BR90a].

Similarly the spheres at the intersection points (p+
r )i jk will join smoothly the torii (See

Figure 4.9).
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Figure 4.8: Inner offset of two spheres. Images created by the author for [Baj07] using
GANITH [BR90a].

Figure 4.9: Inner offset of four spheres. Images created by the author for [Baj07] using
GANITH [BR90a].
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Chapter 5

Protein Modeling

In Chapter 4, two examples have been shown on how to compute the union of spheres
and then their inner offset of the outer offset. These examples give insight on how to
build a molecular model made of spheres, each sphere of radius equal to the Van de Wall
(VDW) radius. Then on this model the inner offset surface of the outer offset surface
of the original model is computed to build the Lee Richard (L-R) model of the solvent
contact surface. The input data is the LEG (Labelled Embedded Graph) representation of
a molecule, which is simply an annotated graph representation of the chemical structure
of the molecule, in which each node represents an atom and each edge a chemical bond.
Each atom may be annotated by its symbol and the VDW radius, each edge may be
annotated by the length of the corresponding chemical bond and possibly a dihedral
angle, and each pair of consecutive edges by a bond angle. Original source of this
chapter is an handout from Prof. Chandrajit Bajaj course in Geometric Modeling and
Visualization [Baj07].

Geometric Models are used to approximate real-world objects. Locating each molecule
and modeling the ensemble of an arrangement of atoms is known as Explicit Modeling
a.k.a. Labeled Embedded Graph (”LEG/Bone/Skeleton” or ”Ball-Stick”) Model. Mod-
eling to analyze density or average distribution of certain species concentration using
analytical functions is known as Implicit Modeling a.k.a. Interface Model a.k.a. Bound-
ary Representation (”Skin” or ”Spatial Occupancy”) Model. These (geometric) models
are useful not only to visualize, but to do extensive computations. For example, level sets
give the subdomain in which the protein/ion density’ is greater than certain threshold.
This yields an analytical function, which facilitates in visualizing using splines/patches.
The conversion of an Explicit Model to an Implicit Model is known as Mean Field Ap-
proximation. The appropriate model is chosen depending on the context.

63
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Labeled Embedded Graph Model

The LEG model captures secondary, tertiary, quaternary structures from the input pri-
mary structure. This model is a discrete/combinatorial model. In this model, the ge-
ometric molecule of the structure is represented as a graph, G(V,E,F). Here the set
V represents the set of discrete points (vertices) on the surface/volume such that the
points in V are interpolated by the geometric model. The set E represents the set of
edges/curves joining any two vertices belonging to V . The set F represents the two
dimensional regions with boundaries, wherein the boundaries belong to E. Note that the
faces F require to be precisely (unambiguously) defined, especially whenever E com-
prise curves.

The Protein Data Bank (PDB) is a repository for 3-D structural data of proteins and nu-
cleic acids. This data, typically obtained by X-ray crystallography or NMR spectroscopy,
is submitted by biologists and biochemists from around the world, is released into the
public domain, and can be accessed for free. The database stores information about the
exact location of all atoms in a large biomolecule, type of each atom, and the error bound
associated with the location information. Typically, the information about the primary
structure of a protein (or a nucleic acid, or a saccharine) is obtained from PDB, and, then
the geometric models are constructed.

The X-ray crystallography is used to determine the 3-D structure of biological entities. It
determines the arrangement of atoms within a crystal from the manner in which a beam
of X-rays are scattered/diffracted from the electrons within the crystal. The method pro-
duces a three-dimensional picture of the density of electrons within the crystal, from
which the mean atomic positions, their chemical bonds, their disorder and several other
information is derived in terms of the intensity (or grayscale) of pixels of the volumetric
image. As the derivatives exist at these pixels, we can fit splines (ex. bilinear) with
C1-continuity and visualize the 3-D structure. The computational and experimental dif-
ficulties are the major bottlenecks for the X-ray crystallography. The Fourier transform
decomposes a function into a continuous spectrum of its frequency components, and the
inverse transform synthesizes a function from its spectrum of frequency components.
These transforms are used in the reconstruction of the model from the image ex. to filter
the noise in the X-ray crystallography. A 3D-image Fourier transform can be deter-
mined from a sequence of 2D-image Fourier transforms, whose inverse in turn produces
the image in 3D-space.

The nuclear magnetic resonance (NMR) refers to a family of scientific methods that
exploit nuclear resonance to study molecules. The NMR spectroscopy is used in under-
standing the protein and nucleic acid structure and function at an atomic resolution. This
technique is applicable to a wide variety of samples, both in the solution and the solid
state; however, the technique is limited to small structures.
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Interface Model

The H2O, Na+, Cl−, Ca2+ are ions imperative for the survival of animals and they
typically exist in the native environment. For example, Na+, Cl− exist because NaCl
dissolves easily as we increase the temperature. The solvation is the attraction and asso-
ciation of molecules of a solvent with molecules or ions of a solute. As ions dissolve in
a solvent they spread out and become surrounded by solvent molecules. The bigger the
ion, the more solvent molecules are able to surround it and the more it becomes solvated.
The interface between a protein and a water molecule is captured with an interface model
(Fig. 5.1). The interface model separates interface of one molecule from another. This
model is a continuum geometric model. The convolution of a sphere representing a wa-
ter molecule W with the boundary of the union of the arrangement of soluble molecules,
known as CPK, results in the outer envelope a.k.a. Solvent Accessible Surface (SAS)
a.k.a +ve offset of W w.r.t. CPK, which is the locus of the W around CPK. This enve-
lope is known as outer envelope, because it is exterior to CPK. Similarly, inner envelope
a.k.a. Solvent Excluded/Contact Surface (SES/SCS) a.k.a. -ve offset of W w.r.t. CPK is
the envelope interior to CPK, wherein it is obtained by rolling W along the CPK. The en-
velope CPK is known as van der Walls surface (VDW) (this is because spheres of soluble
molecules are approximated with van der Walls radii). The model of molecules which
does not consider the environment in which those molecules are embedded is known
as the Face Occupancy Model a.k.a. CPK model, whereas the solvent environment is
modeled with the Lee-Richard (LR) model (Fig. 5.2). Offsets of interface model may
contain singularities. For example, two water molecules in a solvent environment may
protrude between two molecules of a solvent to cause a singularity.

Figure 1: Molecules in Solvent

Figure 2: LR-Model

Additional Information

More information can be found from [5], [4], [3], [2], [1], [6].
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Figure 5.1: Molecules in solvent [Baj07].

The Hard-Sphere kernel represents each atom by a sphere. This model considers that
the electron density at a point p is unity as long as p is within the sphere defined by the
union of electron clouds of that atom. Instead of representing the probability of finding
an electron within a unit sphere as one as in Hard-Sphere kernel, the Gaussian kernels
and cardinal B-spline kernels model the real-world situations more aptly. For a molecule
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Figure 1: Molecules in Solvent

Figure 2: LR-Model

Additional Information

More information can be found from [5], [4], [3], [2], [1], [6].
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Figure 5.2: Lee Richard (LR) Model [Baj07].

with M atoms, we can define a synthetic electron density function as

f (x) =
M

∑
i=1

Gi(x), x ∈ R3

Molecular surface for linear decay kernels is

f (x) =
M

∑
i=1

e
β+ β

r2
i
(x−xi)2

δ (x−xi)

Molecular surface for quadratic decay kernels is

f (x) =
M

∑
i=1

eβ (ri+|x=xi|)δ (x−xi)

Note that in these kernel functions, when x = xi , the influence of other atoms is nullified.
Radial basis spline kernel is obtained by the surface of revolution of a smooth B-spline
curve such that. the x-axis is a tangent to that curve at x = 1. Radial basis spline kernel
has advantages over the Gaussian kernel because of its decay pattern i.e., the Gaussian
kernel meets x-axis at infinity whereas the radial basis spline meets x-axis at a finite dis-
tance. These models are particularly useful in modeling the electron density functions,
which has natural decay (See Fig. 5.3). The surface of an LR model of SES/SCS con-
sists of convex spherical, toroidal, and concave spherical patches, which are represented
with either A-patches or NURBS.

Summary

Given a LEG representation of a protein P, this chapter will, in the respective sections:
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Figure 3: Hard-Sphere/Gaussian/Radial basis spline kernels

Figure 4: Significance of Voronoi Diagrams

5

Figure 5.3: Hard-Sphere/Gaussian/Radial basis spline kernels [Baj07].

(1) Key mathematical properties of a molecule.

(2) Describe an algorithm to compute the VDW (union-of-hard-spheres) surface of P
.

(3) Describe how to construct the L-R molecular surface of the protein P. To do so an
algorithm is needed to detect all solvent exposed atoms of P and to detect where
two or three of these exposed atoms intersect. To ensure the quality of the model
a method is needed to detect where if at all, the L-R surface, self intersects.

The overall algorithm will have a time complexity of O(n log(n)) time, where n is the
number of atoms in the protein. A similar algorithm is implemented in TexMol, a molec-
ular visualization software developed at CVC (Center for Computational Visualization)
of the ICES (Institute of Computational Engineering and Sciences) at the University of
Texas at Austin. This is the software used to create the surface models using prism
A-patches of Chapter 8 on which the boolean operators will be tested in Chapter 9.

5.1 Properties

A couple of properties of a molecule (described in [HO94]) will be exploited to design
efficient algorithms for manipulating the ”union-of-sphere” model of the molecule (e.g.,
for computing the molecular surface). In the worst case, the arrangement defined by n
balls in 3-space (i.e., the subdivision of 3-space into cells of dimensions 0, 1, 2, and 3,
defined by the balls) may have O(n3) combinatorial complexity, the boundary defined
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by their union may have complexity O(n2). However, the balls defining the atoms in the
”union-of-sphere” model of a molecule have the following two properties which allows
for more efficient and simpler algorithms for manipulating them:

• The centers of two balls cannot get too close to each other.

• The range of radii of the balls is fairly restricted (e.g., see Table 5.1 below).

Table 5.1: Radii of balls used to represent different types of atoms [HO94].

C Cal H N O P S

1.52
◦
A 3.48

◦
A 0.70

◦
A 1.36

◦
A 1.28

◦
A 2.18

◦
A 2.10

◦
A

The following theorem, proved in [HO94], gives a couple of useful consequences of the
two properties listed above.

Theorem 5.1.1. (Theorem 2.1 in [HO94]). Let M = {B1, ...,Bn} be a collection of n
balls in 3-space with radii r1, ...,rn and centers at c1, ...,cn . Let rmin = mini{ri} and let
rmax = maxi{ri}. Also let S = {S1, ...,Sn} be the collection of spheres such that Si is the
boundary surface of Bi. If there are positive constants k,ρ such that rmax

rmin
< k and for

each Bi the ball with radius ρri and concentric with Bi does not contain the center of
any other ball in M (besides ci), then:

(i) For each Bi ∈M , the maximum number of balls in M that intersect it is bounded
by a constant.

(ii) The maximum combinatorial complexity of the boundary of the union of the balls
in M is O(n).

Table 5.2 lists the values of k, ρ and the maximum and average number of balls inter-
secting any given ball in various molecules [HO94]. As the table shows, k is quite small
and ρ is closer to 1 than 0, resulting in a small number of intersections per ball.

Given a ”union-of-ball” representation of a molecule, Theorem 5.1.1 can now be used to
design an efficient data structure that can answer intersection queries with either a point
or with a ball whose radius is bounded by a rmax .
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Table 5.2: Values of k, ρ and the maximum and average number of balls intersecting a
single ball in various molecules [HO94].

positive constants k, ρ such that rmax
rmin

< k and for each Bi the ball with radius ρ · ri and concentric
with Bi does not contain the center of any other ball in M (besides ci), then:

(i) For each Bi ∈ M , the maximum number of balls in M that intersect it is bounded by a
constant.

(ii) The maximum combinatorial complexity of the boundary of the union of the balls in M is
O (n).

Table 5 lists the values of k, ρ and the maximum and average number of balls intersecting any
given ball in various molecules [5]. As the table shows, k is quite small and ρ is quite close to 1,
resulting in a small number of insersections per ball.

molecule k ρ
maximum number of balls

intersecting a given ball

avgerage number of balls

intersecting a given ball

caffine 2.17 0.71 10 4.5

acetyl 3.11 0.67 16 5.4

crambin 1.64 0.78 10 5.5

felix 1.64 0.81 9 4.9

SuperOxide Dismutase 1.95 0.76 16 5.5

Table 5: Values of k, ρ and the maximum and average number of balls intersecting a single ball in
various molecules [5].

Given a “union-of-ball” representation of a molecule, Theorem 1 can now be used to design an
efficient data structure that can answer insersection queries with either a point or with a ball whose
radius is bounded by a rmax. We will use this data structure in parts 3(a) – 3(f).

An Efficient Intersection Query Data Structure (from [5]). Let M be the set of n balls
as defined in Theorem 1. We subdivide the entire 3-space into axis-parallel cubes of size 2rmax ×
2rmax × 2rmax each. For each B ∈ M , we compute the grid cubes that B intersects. Let C be the
set of non-empty grid cubes. Since each ball can intersect at most 8 grid cubes, the size of C is
bounded by O (n). Also observe that according to Theorem 1, each cube can be intersected by at
most a constant number of balls. We store the cubes in C in a balanced binary search tree ordered
lexicographically by the bottom-left-front vertices of the cubes. With each cube we store the list
of O (1) balls of M that intersects it.

Now given a query ball Q, we compute all (at most 8) grid cubes it intersects, and search for
each of these cubes in the binary search tree. For each such cube that exists in the search tree, we
check the balls stored in it for intersection with Q. Each search will take O (log n) time, and the
total number of balls tested will be O (1). Hence, we have the following theorem.

Theorem 2 (Theorem 3.1 in [5]). Given a collection M of n balls as defined in Theorem 1, one
can construct a data structure using O (n) space and O (n log n) preprocessing time, to answer
intersection queries for balls whose radii are not greater than rmax, in time O (log n).

7

An Efficient Intersection Query Data Structure (from [HO94]). Let M be the set of
n balls as defined in Theorem 5.1.1. We subdivide the entire 3-space into axis-parallel
cubes of size 2rmax×2rmax2rmax each. For each B ∈M, we compute the grid cubes that
B intersects. Let C be the set of non-empty grid cubes. Since each ball can intersect
at most 8 grid cubes, the size of C is bounded by O(n). Also observe that according to
Theorem 5.1.1, each cube can be intersected by at most a constant number of balls. The
cubes in C are stored in a balanced binary search tree ordered lexicographically by the
bottom-left-front vertices of the cubes. With each cube we store the list of O(1) balls of
M that intersects it.

Now given a query ball Q, one computes all (at most 8) grid cubes it intersects, and
search for each of these cubes in the binary search tree. For each such cube that exists in
the search tree, we check the balls stored in it for intersection with Q. Each search will
take O(log(n)) time, and the total number of balls tested will be O(1). Hence, one has
the following theorem.

Theorem 5.1.2. (Theorem 3.1 in [HO94]). Given a collection M of n balls as defined
in Theorem 5.1.1, one can construct a data structure using O(n) space and O(n log(n))
preprocessing time, to answer intersection queries for balls whose radii are not greater
than rmax, in time O(log(n)).

5.2 VDW Molecular Surface

One first convert the LEG representation of P to the ”union-of-spheres” representation,
and then compute its boundary surface.
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LEG to ”Union-of-Spheres” Conversion.

For each ball Bi in the union we need to compute its center ci and radius ri. The ri
value is simply the van der Waals (VDW) radius of the atom, and can be obtained from
various sources (e.g., [GG99], see also Table 5.1). The LEG representation itself might
be annotated with the VDW radius of each atom, However, since VDW radii are not
standardized, values obtained from different sources might differ slightly. The ci values
can be computed easily using the internal coordinates (i.e., bond lengths, bond angles
and dihedral angles) specified in the LEG representation. For example, we can choose
the N atom on an arbitrary peptide plane (see Figure 5.4) of the protein, and put the atom
(i.e., its center) at the origin. The Cα atom connected to the N atom is placed at distance

1.45
◦
A from the origin along the positive x-axis. The H atom connected to the N atom

is then placed on the xy plane using the bond length N−H = 1
◦
A and the bond angle

Cα −N−H = 118.2◦. After the peptide plane containing these three atoms is fixed, it
is straight-forward to compute the coordinates of the remaining atom centers using the
given internal coordinates.

Figure 5: A peptide plane with all bond lengths and bond angles shown [4].

Part 3(a): We first convert the LEG representation of P to the “union-of-spheres” representation,
and then compute its boundary surface.

LEG to “Union-of-Spheres” Conversion. For each ball Bi in the union we need to compute its
center ci and radius ri. The ri value is simply the van der Waals (vdW) radius of the atom, and can
be obtained from various sources (e.g., [2], see also Table 4). The LEG representation itself might
be annotated with the vdW radius of each atom, However, since vdW radii are not standardized,
values obtained from different sources might differ slightly. The ci values can be computed easily
using the internal coordinates (i.e., bond lengths, bond angles and dihedral angles) specified in the
LEG representation. For example, we can choose the N atom on an arbitrary peptide plane (see
Figure 5) of the protein, and put the atom (i.e., its center) at the origin. The Cα atom connected
to the N atom is placed at distance 1.45 Å from the origin along the positive x-axis. The H atom
connected to the N atom is then placed on the xy plane using the bond length N -H = 1 Å and the
bond angle Cα-N -H = 118.2◦. After the peptide plane containing these three atoms are fixed, it is
straight-forward to compute the coordinates of the remaining atom centers using the given internal
coordinates.

Computing the vdW Surface [5]. Given a collection M of balls as defined in Theorem 1, the
algorithm proceeds in the following three steps:

1. For each B ∈ M , compute the balls in M \ {B} intersecting it.

2. Using the information generated in step 1, compute the (potentially null) contribution of each
ball B ∈ M to the union boundary.

3. Transform the local information generated in step 2 into global structures describing the
required connected component of the union boundary.

Each step is described in more details below.

8

Figure 5.4: A peptide plane with all bond lengths and bond angles shown [GG99].
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Computing the VDW Surface [HO94].

Given a collection M of balls as defined in Theorem 5.1.1, the algorithm proceeds in the
following three steps:

(1) For each B ∈M , compute the balls in M \{B} intersecting it.

(2) Using the information generated in step 1, compute the (potentially null) contri-
bution of each ball B ∈M to the union boundary.

(3) Transform the local information generated in step 2 into global structures describ-
ing the required connected component of the union boundary.

Each step is described in more details below.

Step 1 The intersection query data structure described earlier is used (Theorem 5.1.2).
Each intersection query takes O(log(n)) time, and hence the total cost of this step is
O(n logn).

Step 2 Let Bi be a ball, and one wants to compute its contribution to the union bound-
ary. It is know from Theorem 5.1.1 that at most a constant number of other balls intersect
Bi. Let B j be such a ball, if any. Consider the following three cases:

(i) If B j fully contains Bi, stop processing Bi as it cannot contribute to the union
boundary.

(ii) If Bi fully contains B j , simply ignore B j.

(iii) If neither of the two cases above holds, compute the intersection between Si and
S j, which is a circle Ci j on Si (and S j ). This circle splits Si into two parts: one
part is completely contained within S j and hence cannot contribute to the union
boundary, and the other part which is called the free part of S, may actually appear
on the union boundary.

After the process above is repeated for every ball intersecting Bi, one gets a collection of
circles on Si. These circles form a 2D arrangement Ai on Si. A face of Ai belongs to the
union boundary iff it is on the free part defined by each such circle. Since the number
of such circles is O(1), Ai can be computed in O(1) time using brute force. Within the
same bound one can mark each face on Ai as free or not free. A free face is guaranteed
to appear on the union boundary. Since the above procedure for Bi takes O(1) time, the
total time complexity of this step is O(n).
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Step 3: In this step, the outer connected component of the union boundary of M is
represented using a graph data structure. In order to do so, each arrangement Ai is
augmented slightly as follows. If Ai is the whole sphere Si, it is split into two parts using
some circle. Next, if a boundary component of Ai is a simple circle C, then C is split into
two arcs by adding two new vertices. If C belongs to two arrangements Ai and A j, the
same two vertices are added to both arrangements. Finally, if a free face of Ai contains
holes, the face is split into (sub)faces by adding extra arcs so that none of (sub)faces
contains any holes in it. All these additions are made canonical by fixing a direction
d, and adding all extra edges along great circles that are intersections of Si with planes
parallel to the direction d. This step can easily be performed in O(n) time, and after
this step the union boundary will consist of only simple faces that are bounded by at
least two edges, and each edge will be shared by exactly two faces (assuming general
position). Now one computes the VDW surface (i.e., the outer union boundary) of M
and store it as a graph G = (V,E) (which is initially empty) as follows. First, find the
ball Bmax ∈ M with the point having the largest z-coordinate. Let fmax be the face of
Bmax that contains this point. Then clearly fmax belongs to the outer union boundary of
M. Now starting from this face fmax traverse the entire connected component containing
fmax using depth-first search. Each free face f encountered during this traversal will be
made a vertex v f ∈V , and each arc shared by two such faces f1 and f2 will be made an
edge (v f1 ,v f2) ∈ E. Every time one encounters a free face f which has not been visited
before, one must determine its boundary (i.e., the edges bounding this face), which can
be done in O(1) time. For each such edge e of f , one can find the face f ′ that shares e in
O(1) time. If f ′ is a free face and has not been visited before, recursively visit f ′. After
one has visited each free face reachable from fmax once, G contains the VDW surface of
M . Clearly, this traversal takes O(1) time.
Hence, the following theorem follows.

Theorem 5.2.1. (Theorem 4.1 in [HO94]). The VDW surface of the union of a con-
nected collection of balls as defined in Theorem 5.1.1 can be computed in O(n log(n))
time and O(n) space.

5.3 L-R Molecular Surface

Solvent Exposed Atoms

Increase the radius of each atom in P by rs , where rs is the radius of a solvent atom.
Clearly, the collection of these enlarged atoms still satisfies the requirements of Theo-
rem 5.1.1, and the theorem holds. Hence, one can find all atoms in this collection that
contribute to the outer union boundary in O(n logn) time and O(n) space using the same
algorithm as in previous section. This gives an algorithm to construct the intersection
query data structure described earlier for the set of enlarged atoms in P . If P contains n



i
i

“main” — 2008/10/19 — 20:00 — page 73 — #91 i
i

i
i

i
i

5.3. L-R MOLECULAR SURFACE 73

atoms, this construction takes O(n logn) time and uses O(n) space. The algorithm also
identifies all solvent exposed atoms. Now, for any ball Bi representing a solvent exposed
atom in P , one can find the set Ti of O(1) other solvent exposed atoms that intersects it
in O(log(n)) time. Since the size of the set Ti∪{Bi} is bounded by a constant, one can
detect in O(1) time where two or three of the atoms in this set intersect. One can identify
all such intersections in O(n log(n)) time and O(n) space by using the same process as
above for each solvent exposed atoms in P .

L-R Surface

The L-R surface of a molecule M with respect to a solvent atom B of radius r is the inner
envelope of the region described by B rolling on the VDW surface B of M in all possible
directions [BLMP97]. This surface can be decomposed into a collection of three kinds
of patches: convex spherical, toroidal and concave spherical (see Figure 5.5).

Part 3(b): We increase the radius of each atom in P by rs, where rs is the radius of a solvent
atom. Clearly, the collection of these enlarged atoms still satisfies the requirements of Theorem 1,
and the theorem holds. Hence, we can find all atoms in this collection that contribute to the outer
union boundary in O (n log n) time and O (n) space using the same algorithm as in part 3(a).

Part 3(c): The algorithm in part 3(b) already constructs the intersection query data structure
described earlier for the set of enlarged atoms in P . If P contains n atoms, this construction takes
O (n log n) time and uses O (n) space. The algorithm also identifies all solvent exposed atoms.
Now, for any ball Bi representing a solvent exposed atom in P , we can find the set Ti of O (1)
other solvent exposed atoms that intersects it in O (log n) time. Since the size of the set Ti ∪ {Bi}
is bounded by a constant, we can detect in O (1) time where two or three of the atoms in this set
intersect. We can identify all such intersections in O (n log n) time and O (n) space by using the
same process as above for each solvent exposed atoms in P .

Figure 6: 3D image showing the decomposition of the L-R surface into three different kinds of
patches: convex spherical, toroidal and concave spherical.

Part 3(d): The L-R surface of a molecule M with respect to a solvent atom B of radius r is the
inner envelope of the region described by B rolling on the vdW surface B of M in all possible
directions [1]. This surface can be decomposed into a collection of three kinds of patches: convex
spherical, toroidal and concave spherical (see Figure 6).

We can detect the locations of these patches using the information generated in parts 3(b) and
3(c), and thus construct the entire L-R surface.

Convex Spherical Patches. A convex spherical patch is formed when the rolling solvent atom
B is in contact with only one atom Bi ∈ M , and it is the maximal connected set of points on
the spherical surface Si of Bi that B touches in this manner. In order to find the extent of the
spherical patch on Si that belongs to the L-R surface, we simply increase the radius of all balls
within distance 2rmax + r of Bi by r (by Theorem 1 there are only a constant number of them),
and use the method in step 2 of part 3(a).

Toroidal Patches. A toroidal patch is formed when the rolling solvent atom B (of radius r) is in
touch with the spherical surfaces S1 and S2 of two solute atoms. We increase the radius of S1 by
r and compute its intersection circle l2 with S2, and similarly increase the radius of S2 by r and
compute its intersection l1 with S1. Now if we move B along the intersection of S1 and S2, it will

10

Figure 5.5: 3D image showing the decomposition of the L-R surface into three different
kinds of patches: convex spherical, toroidal and concave spherical [Baj07].

Convex Spherical Patches. A convex spherical patch is formed when the rolling sol-
vent atom B is in contact with only one atom Bi ∈ M , and it is the maximal
connected set of points on the spherical surface Si of Bi that B touches in this
manner. In order to find the extent of the spherical patch on Si that belongs to the
L-R surface, simply increase the radius of all balls within distance 2rmax + r of Bi
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by r (by Theorem 5.1.1 there are only a constant number of them), and use the
method in step 2 of previous section.

Toroidal Patches. A toroidal patch is formed when the rolling solvent atom B (of radius
r) is in touch with the spherical surfaces S1 and S2 of two solute atoms. First one
needs to increase the radius of S1 by r and compute its intersection circle l2 with
S2 , and similarly increase the radius of S2 by r and compute its intersection l1
with S1. Then, by moving B along the intersection of S1 and S2 , it will keep in
touch with the two spheres along l1 and l2, respectively, and the inward facing arc
of B will sweep a torus (see figure 5.6). Other atoms intersecting with S1 and S2
may split this torus into several toroidal patches.

Figure 7: The solvent atom of radius r sweeps a torus if it is moved in such a way that it is always
in touch with the spheres S1 and S2. The line l1 (l1) along which it keeps in touch with S1 (resp.
S2) can be found by increasing the radius of S2 (resp. S1) by r and computing its intersection with
S1 (resp. S2).

keep in touch with the two spheres along l1 and l2, respectively, and the inward facing arc of B will
sweep a torus (see Figure 7). Other atoms intersecting with S1 and S2 may split this torus into
several toroidal patches.

Concave Spherical Patches. A concave spherical (triangular) patch is formed when the rolling
solvent atom B simultaneously touches three atoms. The three contact points define a spherical
triangle on the surface S of B whose edges are arcs of great circles on S. This triangle is a concave
spherical patch on the L-R surface.

Part 3(e): We describe below how the three different types of patches (i.e., convex spherical,
toroidal and concave spherical) on an L-R surface can intersect one another, and how to detect
them.

Convex Spherical Patches. It has been shown in [1] (see Lemma 3 in [1]) that the convex
spherical patches cannot intersect any other part of the L-R surface.

Toroidal Patches. It has been shown in [1] that two different toroidal patches cannot inter-
sect each other (see Lemma 4 in [1]), and also that a toroidal patch cannot intersect another
convex/concave spherical patch (see Lemma 5 in [1]).

A toroidal can only intersect itself. As shown in Figure 8, a toroidal patch intersects itself when
it can be constructed as a rotational surface of an arc of a circle around an axis that intersects the
arc.

Concave Spherical Patches. It has been shown in [1] that a concave spherical patch cannot
intersect itself (see Lemma 6 in [1]), or another concave patch (see Lemma 7 in [1]), or a toroidal
patch (see Lemma 5 in [1]).

As shown in Figure 9 two distinct concave patches can intersect each other. Since each concave
patch is a part of a sphere, we can detect this type of intersections easily by solving sphere-sphere
intersection problems.

Part 3(f): The algorithms in parts 3(b) and 3(c) already run in O (n log n) time.

11

Figure 5.6: The solvent atom of radius r sweeps a torus if it is moved in such a way that
it is always in touch with the spheres S1 and S2 . The line l1 (l1) along which it keeps in
touch with S1 (resp. S2) can be found by increasing the radius of S2 (resp. S1) by r and
computing its intersection with S1 (resp. S2) [Baj07].

Concave Spherical Patches. A concave spherical (triangular) patch is formed when the
rolling solvent atom B simultaneously touches three atoms. The three contact
points define a spherical triangle on the surface S of B whose edges are arcs of
great circles on S. This triangle is a concave spherical patch on the L-R surface.

Self Intersection

To ensure the quality of the surface model one must know how the three different types
of patches (i.e., convex spherical, toroidal and concave spherical) on an L-R surface can
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intersect one another, and how to detect them.

Convex Spherical Patches. It has been shown in [BLMP97] (see Lemma 3) that the
convex spherical patches cannot intersect any other part of the L-R surface.

Toroidal Patches. It has been shown in [BLMP97] that two different toroidal patches
cannot intersect each other (see Lemma 4 in [BLMP97]), and also that a toroidal
patch cannot intersect another convex/concave spherical patch (see Lemma 5 in
[BLMP97]).

A toroidal can only intersect itself. As shown in Figure 5.7, a toroidal patch inter-
sects itself when it can be constructed as a rotational surface of an arc of a circle
around an axis that intersects the arc.

Concave Spherical Patches. It has been shown in [BLMP97] that a concave spheri-
cal patch cannot intersect itself (see Lemma 6 in [BLMP97]), or another concave
patch (see Lemma 7 in [BLMP97]), or a toroidal patch (see Lemma 5 in [BLMP97]).

As shown in Figure 5.8 two distinct concave patches can intersect each other.
Since each concave patch is a part of a sphere, we can detect this type of intersec-
tions easily by solving sphere-sphere intersection problems.
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a

l

a′

l

(a)

(b)

a′

Figure 8: (a) The arc a rotating around the axes l describes a self intersection portion of torus. (b)
The arc a′ rotating around the axes l describes portion of torus with no self intersection.
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Figure 5.7: (a) The arc a rotating around the axes l describes a self intersection portion
of torus. (b) The arc a′ rotating around the axes l describes portion of torus with no self
intersection [Baj07].
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Figure 5.8: Three possible self-intersecting L-R surfaces for different radii of the sol-
vent and molecule atoms. On the left the self-intersecting L-R surfaces are shown.
On the right the corresponding solvent contact surfaces are shown (without self-
intersections) [Baj07].
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Chapter 6

Gk-continuous A-Splines in a
Triangular Domain

In this chapter a detailed description including the calculation of the defining polynomial
coefficients for arbitrary degree polynomial interpolating A-splines on triangular domain
are given. Content of this chapter has been extracted and constitute a reduced form
of [BX99a]. The chapter is structured in section: (1) main definitions are recalled and the
notation homogenized; (2) sufficient conditions for regularity and conditions for C0 and
C1 interpolation are given; (3) general conditions are worked out for G2n−3 continuity
of degree n A-splines; (4) as an example the case of G3 continuity for cubic A-splines is
fully developed.

6.1 Notation

Let f (x,y) be a bivariate polynomial of degree n with real coefficients, and p1,p2,v1 be
three affine independent points in the xy-plane. Then the transform x

y
z

=
(

p1 p2 p3
1 1 1

) α1
α2
α3

 (6.1)

maps f (x,y) into its barycentric form F(α1,α2,α3) = f (x,y) on the triangle [p1p2v1],
where 0≤αi≤ 1 and α1 +α2 +α3 = 1. In the barycentric coordinate system, F(α1,α2,α3)
can be expressed in B.B. form [Far01, Gol02] (see figure 6.1(right))

F(α1,α2,α3) = ∑
i+ j+k=n

bi jkBi jk(α1,α2,α3), (6.2)

79
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where

Bi jk(α1,α2,α3) =
n!

i! j!k!
α

i
1α

j
2α

k
3 (6.3)

Let p1, v1 and p2 be three affine independent points in the xy-plane (see figure 6.1(left))
Then we consider the two line segments [p1v1] and [v1p2] as a segment of a polygon,
denoted by ̂p1,v1,p2. We shall consider v1 as a controller and p1 and p2 as interpola-
tion points. An arbitrary polygon chain consists of a sequence of consecutive polygon
segments denoted by {p̂ivivi+1}m

i=0. A polygon {p̂ivivi+1}m
i=0 is said to be type G1 (see

figure 6.1(left)) if
(v1−pi+1) = αi(vi+1−pi+1)

One way to construct the polygon from sampled points and normals is to set p1 and p2 as
interpolation points and v1 as the intersection point between the (extended) tangents t1
and t2 at p1 and p2. As it’ll be shown this will guarantee G1 continuity with the imposed
tangents. In free form A-spline drawing a trivial choice is to ask the user to insert a
vertex per edge in the polygon.
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(a) (b)

Fig. 1. (a) A G1 polygon; (b) Bézier coefficients of cubic.




x

y

1



 =
[

p1 p2 v1
1 1 1

]


α1

α2

α3



 (2.1)

maps f (x, y) into its barycentric coordinate form F(α1,α2,α3) = f (x, y) on the triangle
[p1p2v1], where 0! αi ! 1 and α1 + α2 + α3 = 1. In the barycentric coordinate system,

F(α1,α2,α3) can be expressed in BB form (see (Farin, 1990)).

F(α1,α2,α3) =
∑

i+j+k=n

bijkB
n
ijk(α1,α2,α3), (2.2)

where

Bn
ijk(α1,α2,α3) = n!

i!j !k!α
i
1α

j
2α

k
3 .

Let p1, v1 and p2 be three affine independent points in the xy-plane (see Fig. 1(a)). Then
we consider the two line segments [p1v1] and [v1p2] as a segment of a polygon, denoted
by p̂1v1p2. We shall consider v1 as a controller and p1 and p2 as interpolation points.
An arbitrary polygon chain(or polygon for brevity) consists of a sequence of consecutive

polygon segments denoted by {piv̂ipi+1}mi=0. A polygon {piv̂ipi+1}mi=0 is said to be of
typeG1(see Fig. 1(a)) if

(vi − pi+1) = αi (vi+1 − pi+1), αi < 0, for i = 0, . . . ,m.

If p0 = pm+1, then the polygon is closed. Note that a G1 polygon can be trivially

constructed from an arbitrary polygon by inserting one vertex per edge of the polygon.

3. A sufficient condition of A-splines

Let F(α1,α2,α3) be defined as (2.2) on the triangle [p1p2v1]. Since there is constant
multiplier to the equation F(α1,α2,α3) = 0, we may assume b00n = −1 if b00n "= 0.

Theorem 3.1. For the given polynomial F(α1,α2,α3) defined as (2.2), if there exists an
integerK(0< K < n) such that (see Fig. 1(b) for n = 3 and K = 1)

bijk " 0 for j = 0,1, . . . , n − k; k = 0,1, . . . ,K − 1, (3.1)

bn-i,0,i

P1 P2

V1
b0,0,n

b1,0,n-1 b0,1,n-1

b0,2,n-2b2,0,n-2

b1,1,n-2

b0,n-i,i

bn,0,0 bn-1,1,0 bn-2,2,0 b2,n-2,0 b1,n-1,0 b0,n,0bn-i,i,0

bn-1,0,1

bn-2,0,2

bn-2,1,1 b0,n-1,1

b0,n-2,2

b1,n-2,1

Figure 6.1: Left: a G1 polygon [BX99a]. Right: Bézier coefficients.

6.2 Regularity, Single Sheet-ness, G0 and G1 Continuity

Let F(α1,α2,α3) be defined as (6.2) on the triangle [p1p2v1]. Since there is a constant
multiplier to the equation F(α1,α2,α3) = 0, one may assume b00n = −1 if b00n 6= 0.
Theorems in this section are from [BX99a].

Theorem 6.2.1. For the given polynomial F(α1,α2,α3) defined as (6.2), if there exists
an integer K (0≤ K ≤ n) such that (see figure 6.1(right))

bi jk ≥ 0 f or j ∈ [0, . . . ,n− k];k ∈ {0, . . . ,K−1},
bi jk ≤ 0 f or j ∈ [0, . . . ,n− k];k ∈ {K +1, . . . ,n} (6.4)
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and
n

∑
j=0

bn− j, j,0 > 0 ,
n−k

∑
j=0

bn− j−k, j,0 < 0

for at least one k (K < k ≤ n), then for any β that 0 < β < 1 the straight line

(α1,α2,α3)(t) = (1− t)(β ,1−β ,0)+ t(0,0,1) (6.5)

that passes through v1 and βp1 +(1−βp2), intersects the curve F(α1,α2,α3) = 0 one
and only one time in the interior of the triangle [p1p2v1].

Proof of this theorem is a simple application of the variation diminishing property poly-
nomials in B.B. form. [Far01]. Detailed proof of this and other theorems in this chapter
may be found in [BX99a]. This theorem guarantees that there is one and only one curve
segment of F(α1,α2,α3) = 0 within the triangle. Notice that substituting (6.5) into
F(α1,α2,α3) = 0 one has an expression F(t,β ) = 0. For each given β (a coordinate
on the base [p1p2] of the triangle [p1p2v1]), one may solve the equation Fβ (t) = 0, and
compute the corresponding point on the curve.
Furthermore, if bn00 = 0,b0n0 = 0,b00n = 0 then the curve will pass through p1,p2,v1
respectively. We are interested in interpolating p1 and p2 while one sets conventionally
b00n = −1. The next theorem further describe the properties on the boundary of the
triangle and the smoothness of the curve F(α1,α2,α3) = 0.

Theorem 6.2.2. Let F(α1,α2,α3) be defined as in theorem 6.2.1, then

i The curve F(α1,α2,α3) = 0 is smooth in the interior of the triangle [p1p2v1].

ii If one further assumes bn−k,0,k = 0 for k ∈ {0, . . . ,K}, bn−(K−1),0,K+1 < 0, and
bn−1,1,0 > 0, then the curve in the triangle passes through p1, tangent with the
line α2 = 0 with multiplicity K +1 at p1 and no other intersection for α2 = 0 for
α1 > 0 and α3 > 0. Similarly if b0,n−k,k = 0 for k ∈ {0, . . . ,K}, b0,n−(K+1),K+1 < 0,
and b1,n−1,0 > 0, then the curve passes through p2, tangent with the line α1 = 0
with multiplicity K +1 at p2 and no other intersection for α1 = 0 for α2 > 0 and
α3 > 0.

iii If bn,0,0 = bn−1,0,1 = bn−1,1,0 = 0, then p1 is a singular point of the curve. Simi-
larly, if b0,n,0 = b1,n−1,0 = b0,n−1,1 = 0, then p2 is a singular point of the curve.

In the general case for n≥ 4 the convexity of the curve is an open problem. However in
the cubic case with the curve segment tangent to the sides of the triangle at p1 and p2
(i.e. a G1 spline as in theorem 6.2.2), then it is convex.

Theorem 6.2.3. The cubic A-spline defined as 6.2.2(ii) has no inflection point inside its
reference triangle.
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6.3 Gk Continuity

In this section it will be assumed that the A-spline control data is given as a poly-
gon {p̂ivivi+1}m

i=0 in the plane in order to achieve G1 continuity. The Gk continuity
is achieved by: (1) computing the first k terms of the local power series expansion at
the join points pi; (2) determining the coefficients bi jk such that F=0 has the same first k
terms of the local power series at the join points. This will give a reoccurrence formula
to compute the coefficients bi jk from the coefficients of power series. The algorithm
presented in this section is from [BX99a].
The coefficients of the power series may be in turn be given as a discrete data or com-
puted from a parametric or implicit curve to be approximated. Often, these, have to
be converted from the global coordinate system to the barycentric coordinates in the
triangle.
Consider a two segment A-spline curve

Fl(α1,α2,α3) = ∑
i+ j+k=n

b(l)
i jkBi jk(α1,α2,α3) = b̃(l)

i jkα
i
1,α

j
2α

k
3 = 0

On triangles [p(l)
1 p(l)

2 v(l)
1 ] for l = 1,2 with p(1)

1 = p(2)
2 as join point (see figure 6.2), where

b̃(l)
i jk = n!

i! j!k! b(l)
i jk.

C.L. Bajaj, G. Xu / Computer Aided Geometric Design 16 (1999) 557–578 563

Fig. 2. The two different cases of G1 join polygon segments.

with a
(1)
0 = a

(1)
0 (p

(1)
1 ) = 0, where we relate the coefficients a

(1)
i to p

(1)
1 to emphasize

that the expansion is performed at p
(1)
1 . Similarly, F2(α1,1 − α1 − α3,α3) = 0 can be

represented as

α1 =
∞∑

i=0
a

(2)
i αi

3 =
∞∑

i=0
a

(2)
i

(
p

(2)
2

)
αi
3, α2 = 1− α1 − α3, (4.2)

at p
(2)
2 with a

(2)
0 = 0. It follows from Theorem 3.2 that the curve F1 = 0 is tangent with

[p(1)
1 v

(1)
1 ] n − 2 times at p(1)

1 if and only if

b
(1)
n−k,0,k = 0, for k = 0,1, . . . , n − 2, (4.3)

or if and only if a
(1)
k = 0, for k = 0,1, . . . , n − 2. The same is true for the curve F2 = 0 at

p
(2)
2 , that is, the curve is tangent with [p(2)

2 v
(2)
1 ] at p(2)

2 n − 2 times if and only if

b
(2)
0,n−k,k = 0, for k = 0, . . . , n − 2. (4.4)

Now we assume (4.3) and (4.4) hold. Hence (4.1) and (4.2) become

α2 =
∞∑

i=n−1
a

(1)
i αi

3, α1 = 1− α2 − α3, (4.5)

α1 =
∞∑

i=n−1
a

(2)
i αi

3, α2 = 1− α1 − α3, (4.6)

respectively. Substitute (4.5) into F1(1− α2 − α3,α2,α3) = 0, we get

F1 (1− α2(α3) − α3,α2(α3),α3) =
∞∑

i=n−1
g

(1)
i αi

3 = 0.

From g
(1)
i = 0 for i = n − 1, . . . ,2n − 3, we derive

b̃
(1)
n−1,10 = −

b̃
(1)
10,n−1
a

(1)
n−1

, (4.7)

b̃
(1)
n−2,11 = −

−b̃
(1)
10n−1 + b̃

(1)
00n + b̃

(1)
n−1,10[a

(1)
n − (n − 1)a(1)

n−1]
a

(1)
n−1

, (4.8)

Figure 6.2: The two different cases of G1 join polygon segments [BX99a].

Assuming b(1)
n−1,1,0 > 0 and b(2)

1,n−1,0 > 0, then the curves are regular in p(1)
1 . In triangle

[p(1)
1 p(1)

2 v(1)
1 ] it is required that the A-spline to pass through p(1)

1 and here tangent with

the line [p(1)
1 v(1)

1 ]. Therefore, the curve F1(1−α2−α3,α2,α3) = 0 can be represented

as a power series at p(1)
1

α2(α3) =
∞

∑
i=0

a(1)
i α

i
3 (6.6)

with a(1)
0 = 0. Similarly, F2(1−α2−α3,α2,α3) = 0 at p(2)

2

α1(α3) =
∞

∑
i=0

a(2)
i α

i
3 (6.7)
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with a(2)
0 = 0.

It follows from theorem 6.2.2 that the curve F1 = 0 is tangent with [p(1)
1 v(1)

1 ] n−2 times

at p(1)
1 if and only if

b(1)
n−k,0,k = 0, f or k = 0,1, . . . ,n−2 (6.8)

Symmetrically, F2 = 0 is tangent with [p(2)
2 v(2)

1 ] n−2 times at p(2)
2 if and only if

b(2)
0,n−k,k = 0, f or k = 0,1, . . . ,n−2 (6.9)

Assuming (6.8) and (6.9) hold, the power series (6.6) and (6.7) become

α2(α3) =
∞

∑
i=n−1

a(1)
i α

i
3 (6.10)

α1(α3) =
∞

∑
i=n−1

a(2)
i α

i
3 (6.11)

Substitute (6.6) and (6.7) in F1(1−α2−α3,α2,α3) = 0 and F2(1−α2−α3,α2,α3) = 0
respectively

F1(1−α2(α3)−α3,α2(α3),α3) =
∞

∑
i=n−1

g(1)
i α

i
3 = 0 (6.12)

F2(α1(α3),1−α1(α3)−α3,α3) =
∞

∑
i=n−1

g(2)
i α

i
3 = 0 (6.13)

From g(1)
i = 0 for i = n−1, . . . ,2n−3, one derives:

b̃(1)
n−1,1,0 = − b̃(1)

1,0,n−1

a(1)
n−1

· · · = · · ·
b̃(1)

n−i−2,1,i+1 = −∑
i
j=0 b̃(1)

n−1− j,1, j ∑
n−1− j
l=0 (−1)lCl

n−1− ja
(1)
n+1−l− j

a(1)
n−1

(6.14)

for i = 1,2, . . . ,n−3, where Ck
n = n!

k!(n−k)! , a(1)
j = 0 if j < n−1. That is the coefficients

determined by 6.14 will lead to the curve F1(α1,α2,α3) = 0 matching the power series
6.10 up to the first 2n− 3 terms. It is noted that, each of the formulas 6.14 determines
one of the coefficients bs, and introduces one of the coefficients as. Among all the coef-
ficients bs, there is one degree of freedom. Since b(1)

n−1,1,0 > 0 and b(1)
1,0,n−1 < 0 implies

a(1)
n−1 > 0. The correct sign of b(1)

n−1−k,1,k can be obtained by giving a(1)
n+k−1 properly.
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Similarly for the curve F2 = 0 at p(2)
2 one has for i = 1,2, . . . ,2n−3

b̃(2)
1,n−1,0 = − b̃(2)

0,1,n−1

a(2)
n−1

· · · = · · ·
b̃(2)

1,n−i−2,i+1 = −∑
i
j=0 b̃(2)

1,n−1− j, j ∑
n−1− j
l=0 (−1)lCl

n−1− ja
(1)
n+1−l− j

a(2)
n−1

(6.15)

If we further assume (the reason for this will be shown shortly)

a(1)
n−1 = b(1)

1,0,n−1 = 0 and a(2)
n−1 = b(2)

0,1,n−1 = 0

Then, with a similar development, one has for i = 1,2, . . . ,n−2

b̃(1)
n−1,1,0 = − b̃(1)

0,0,n

a(1)
n· · · = · · ·

b̃(1)
n−i−1,1,i = −∑

i−1
j=0 b̃(1)

n−1− j,1, j ∑
n−1− j
l=0 (−1)lCl

n−1− ja
(1)
n+1−l− j

a(1)
n

(6.16)

b̃(2)
1,n−1,0 = − b̃(2)

0,0,n

a(2)
n· · · = · · ·

b̃(2)
1,n−i−1,i = −∑

i
j=0 b̃(2)

1,n−1− j, j ∑
n−1− j
l=0 (−1)lCl

n−1− ja
(1)
n+1−l− j

a(2)
n

(6.17)

Formulas 6.16 and 6.17 match the power series up to the first 2n− 2 terms. If we only
fit the first 2n− 3 terms, b(l)

1,1,n−2 could be free. For the G3 fitting with cubics in next
section, it is chosen to be zero.

Now it is explained why both the cases of a(l)
n−1 > 0 and a(l)

n−1 = 0 has been considered.

Let [p(1)
1 p(1)

2 v(1)
1 ] and [p(2)

1 p(2)
2 v(2)

1 ] two segments of the polygon. If they join at p(1)
1 =

p(2)
2 , then there are two join configurations (see figure 6.2): nonconvex and convex join.

In the nonconvex join p(1)
2 and p(2)

1 lie on different sides of the line [v(1)
1 v(2)

2 ], while in the

convex join, p(1)
2 and p(2)

1 lie on the same side of the line [v(1)
1 v(2)

2 ]. Since the A-splines

are always contained within the triangles considered, if p(1)
1 is of a nonconvex join, then

the curve will be tangent with the line [v(1)
1 v(2)

2 ] an odd number of times, otherwise, it

will be tangent with the line [v(1)
1 v(2)

2 ] an even number of times. Therefore,

• If p(1)
1 is of a nonconvex join and n is an even number, then a(l)

n−1 > 0; vice versa

if n is an odd number a(l)
n−1 = 0.
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• If p(1)
1 is of a nonconvex join and n is an even number, then a(l)

n−1 = 0; vice versa

if n is an odd number a(l)
n−1 > 0.

Theorem 6.3.1. The degree n A-spline can achieve G2n−3 continuity by fitting locally
the given derivative data at the join points. If n is an odd/even number and all the join
point are nonconvex/convex then G2n−2 continuity is achievable.

Notice that if n > 3 the coefficients bi jk are free for i > 1 and j > 1. These ((n−2)(n−
3)/2) degrees of freedom can be used for a finer control of the curve.

6.4 Cubic G3 A-splines

For clarity, consider as an applied example the cubic case (n = 3) [BX99a]. According
to theorem 6.3.1 we should be able to achieve G3 continuity. In this case the B.B. form
of F(α1,α2,α3)

F(α1,α2,α3) = ∑
i+ j+k=3

bi jkBi jk(α1,α2,α3),

will have
(n+2

2

)
= (n+2)(n+1)/2 coefficients (see figure 6.3). Since there is a constant

b300=0 b030=0

b003=-1

b201=0

b102<0
b012<0

b021=0

b210>0 b120>0

b111=0

P1 P2

V1

b300=0 b030=0

b003=-1

b201=0

b102=0
b012=0

b021=0

b210>0 b120>0

b111=0

P1 P2

V1

Figure 6.3: Cubic Beziér coefficients (a) a(1)
2 > 0 (b) a(1)

2 = 0. [BX99a]

multiplier to the equation F(α1,α2,α3) = 0 one sets conventionally b003 =−1. Accord-
ing to theorem 6.2.2, imposing G0 and G1 continuity will have b201 = 0 and b102 = 0
(and also a(1)

1 = 0). Then depending on the join type at p1 one has:

p1 non-convex join (see figure 6.3b) One has a(1)
2 = 0, as p1 is a flex point and the

second derivative must be zero, furthermore this imposes b102 = 0. According to
6.16 one has

b̃(1)
210 = 1

a(1)
3

, with a(1)
3 > 0

b̃(1)
111 =− a(1)

4 −2a(1)
3

[a(1)
3 ]2
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where a(1)
3 is the third derivative at the point and must be greater then zero in

order for the curve to be inside the triangle.The coefficient b(1)
111 is free but shared

by both join points p1 and p2. If both are non-convex it can be used to achieve
G4 continuity, otherwise it is set to b(1)

111 = 0. Symmetrically the join point at p2
determines the coefficients b012 and b120.

p1 convex join (see figure 6.3a) in this case a(1)
2 > 0 in order for the curve to be inside

the triangle. According to 6.14

b̃(1)
210 = b̃(1)

102

a(1)
3

b̃(1)
111 =− b̃(1)

102[a(1)
3 −a(1)

2 ]+a(1)
2

[a(1)
3 ]2

and with the convection b(1)
111 = 0 it follows that

b̃(1)
102 =− a(1)

2

a(1)
3 −a(1)

2

Symmetrically the join point at p2 determines the coefficients b012 and b120.

6.5 Examples

Gk continuous triangular A-splines are implemented in the Ganith Algebraic Toolkit. In
this software the user may interactively define the control polygon or load it from file.
Quadratic, cubic and quartic splines are supported with varying degrees of continuity.
The user may define the eventual additional degrees of freedom for finer control. It
allows the user to draw A-spline curves, sweep or rotate an A-spline curve, subgroup the
curve data by A–splines to lead to smooth piecewise approximation, smooth blending
A–spline curves, and interpolate quadratic curves by surfaces.
In figure 6.4 the same closed control polygon is used to generate: (a) G1 quadratic, (b)
G2 cubic, (c) G3 cubic and (d) G5 quartic A-splines. As an application of A-splines in
Fig. 6.5, a stack of iso-contour slices reconstructions of a human head from volume MRI
(Magnetic Resonance Imaging) data, is built using G3 cubic A-splines. Fig. 6.6 shows
G3 cubic A-splines approximations of degree six and degree four algebraic plane curves:

(a) (x2 + y2)3−4x2y2 = 0 (b) x3−3x− (1/9)(y4−12y2 +18)
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(a) (b)

(c) (d)

Figure 6.4: A-spline on a closed control polygon: (a) G1 quadratic, (b) G2 cu-
bic, (c) G3 cubic and (d) G5 quartic. Images created using the A-Spline module of
GANITH [BR90a]
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Fig. 5. G3 cubic A-splines approximation of a stack of Magnetic Resonance Imaging volumetric

cross-sectional data.

Fig. 6. A-spline approximation of implicit algebraic curves: (a) (x2 + y2)3 − 4x2y2 = 0;

(b) x3 − 3x − (1/9)(y4 − 12y2 + 18). The curve segments between consecutive vertices (dots) are

all cubic degree and withG3 continuity at the vertices.

The break points on the curves are generated by the tracing scheme in (Bajaj and Xu,

1997).

Several open problems remain. One, the faster and robust methods of A-splines dis-

play based on subdivision or integer forward differencing need to be developed. Second,

applications of these A-splines with comparison to parametric B-splines, to problems in

image processing, computer graphics, animation and geometric modeling need to be fully

explored.

Figure 6.5: G3 cubic A-splines approximation of a stack of Magnetic Resonance Imag-
ing volumetric cross-sectional data [BX99a].

C.L. Bajaj, G. Xu / Computer Aided Geometric Design 16 (1999) 557–578 573

Fig. 5. G3 cubic A-splines approximation of a stack of Magnetic Resonance Imaging volumetric

cross-sectional data.

Fig. 6. A-spline approximation of implicit algebraic curves: (a) (x2 + y2)3 − 4x2y2 = 0;

(b) x3 − 3x − (1/9)(y4 − 12y2 + 18). The curve segments between consecutive vertices (dots) are

all cubic degree and withG3 continuity at the vertices.

The break points on the curves are generated by the tracing scheme in (Bajaj and Xu,

1997).

Several open problems remain. One, the faster and robust methods of A-splines dis-

play based on subdivision or integer forward differencing need to be developed. Second,

applications of these A-splines with comparison to parametric B-splines, to problems in

image processing, computer graphics, animation and geometric modeling need to be fully

explored.

Figure 6.6: A-spline approximation of implicit algebraic curves: (a) (x2 +y2)3−4x2y2 =
0 and (b) x3− 3x− (1/9)(y4− 12y2 + 18) . The curve segments between consecutive
vertices (dots) are all cubic degree and with G3 continuity at the vertices [BX99a].
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Chapter 7

Tetrahedral C1 Cubic A-Patches

In this chapter a detailed description including the calculation of the defining polynomial
coefficients of cubic polynomial interpolating A-patches in tetrahedral domain are given.
Content of this chapter has been extracted and constitute a reduced form of [BCX95].The
chapter is structured in section: (1) main definitions are recalled, the notation homoge-
nized and some fundamental facts introduced; (2) three and four-sided patches are intro-
duced, sufficient conditions for regularity given, and main properties introduced; (3) it is
shown the construction from a surface triangulation of the simplicial hull, providing the
supporting scaffolds for each patch; (4) general conditions on the coefficients of each
patch are worked out for C1 continuity.

7.1 Notation

Convex and affine hulls Let {p1, . . . ,pj} ∈ R3 with j < 4. Then the convex hull of
these points is defined by [p1, . . . ,pj] = {p ∈ R3 : p = ∑

j
i=1 αipi, αi ≥ 0 , ∑

j
i=1 = 1},

and the affine hull is defined by < p1, . . . ,pj >= {p ∈ R3 : p = ∑
j
i=1 αipi, ∑

j
i=1 = 1}.

The interior of the convex hull is denoted (p1, . . . ,pj) = {p ∈ R3 : p = ∑
j
i=1 αipi, αi ≥

0 , ∑
j
i=1 = 1}.

Barycentric coordinates Let p1,p2,p3,p4 ∈R3 be affine independent. Then the tetra-
hedron with vertices p1,p2,p3, and p4 is V = V = [p1,p2,p3,p4]. For any p = ∑

4
i=1 αipi, α =

[α1,α2,α3,α4]T is the barycentric coordinates of p. Let p = (x,y,z)T and pi = (xi,yi,zi)T

then the barycentric coordinates relate to the Cartesian coordinates via the following re-

89
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lation: 
x
y
z
1

=


x1 x2 x3 x4
y1 y2 y3 y4
z1 z2 z3 z4
1 1 1 1




α1
α2
α3
α4

 (7.1)

Berstein-Beziér (BB) form Any polynomial f (p) of degree n can be expressed as BB
form over V as

f (p) = ∑
|λ|=n

bλBn
λ(α), λ ∈ Z4

+

where
Bn

λ(α) =
n!

λ1!λ2!λ3!λ4
α

λ1
1 α

λ2
2 α

λ3
3 α

λ4
4

is the Berstein basis polynomial, |λ| = ∑
4
i=1 λi with λ = (λ1λ2λ3λ4)T ∈ Z4

+, the α =
(α1,α2,α3,α4)T = ∑

4
i=1 αiei is a barycentric coordinate of p, bλ are the control points,

Z4
+ stands for the set of all four-dimentional vectors with nonnegative integer compo-

nents, and ei stands for the i-th basis vector of Z4
+ (e.g. e3 = 0010).

The following facts of polynomials in BB forms will be used. Details and dimonstation
may be found in [Far01]. The first is derived from the directional derivative formulas:

Lemma 7.1.1. If f (p) = ∑|λ|=n bλBn
λ(α), then

b(n−1)ei+e j = bnei +
1
n
(pj−pi)T

∇ f (pi), j = 1 . . .4, j 6= i

where ∇ f (p) = [ ∂ f (p)
∂α1

, ∂ f (p)
∂α2

, ∂ f (p)
∂α3

]T

Lemma 7.1.2. Let f (p) = ∑|λ|=n aλBn
λ(α) and g(p) = ∑|λ|=n bλBn

λ(α) two polynomi-
als defined on two tetrahedra [p1,p2,p3,p4] and [q1,q2,q3,q4]. Then

i f and g are C0 continuous at the common face [p2p3p4] if and only if (iff)

aλ = aλ, f or any λ = 0λ2λ3λ4, |λ|= n. (7.2)

ii f and g are C1 continuous at the common face [p2p3p4] iff (7.2) holds and

b1λ2λ3λ4 = β1a1λ2λ3λ4 +β2a0(λ2+1)λ3λ4 +β3a0λ2(λ3+1)λ4 +β4a0λ2λ3(λ4+1) (7.3)

where β = (β1β2β3β4)T are defined by the relation p′1 = β1p1β2p2β3p3β4p4,
|β|= 1.

Relation (7.3) will be called coplanar condition [BCX95].



i
i

“main” — 2008/10/19 — 20:00 — page 91 — #109 i
i

i
i

i
i

7.2. SUFFICIENT CONDITIONS 91

Degree Elevation The polynomial f (p) = ∑|λ|=n bλBn
λ(α) can be written as one of

degree n+1: f (p) = ∑|λ|=n+1(Ebλ)Bn+1
λ (α), where (Ebλ) = 1

n+1 ∑
4
i=1 λibλ−ei .

Variation Diminishing Property Let y(t) = ∑
n
i=0 biBn

i (t) ; then y(t) has no more in-
tersections (counting the multiplicities) with any line than does the polygon {i/n,bi}n

i in
[0,1].

Transformation since ∑
4
i=1 αi = 1, from (7.1) one has x

y
z

=

 x1− x4 x2− x4 x3− x4
y1− y4 y2− y4 y3− y4
z1− z4 z2− z4 z3− z4

 α1
α2
α3

+

 x4
y4
z4

= A

 α1
α2
α3

+

 x4
y4
z4


(7.4)

Let f (x,y,z) = g(α1,α2,α3). Then it is easy to check that

∇ f (x,y,z) = (A−1)T
∇g(α1,α2,α3) (7.5)

Therefore, the surface f (x,y,z) = 0 is smooth (i.e. ∇ f (x,y,z) 6= 0) if only if the surface
g(α1,α2,α3) = 0 is smooth (i.e. ∇g(α1,α2,α3) = 0). This means that the smoothness
problem of the surface f (x,y,z) = 0 can be treated directly in its barycentric form.

7.2 Sufficient Conditions

Let F(α) = ∑|λ|=n bλBn
λ(α) be a given polynomial of degree n over the 3-dimentional

simplex S = {α = (α1,α2,α3,α4)T ∈ R4 : ∑
4
i=0 αi = 1, αi ≥ 0}. The surface patch

within the complex is defined by SF ⊂ S : F(α) = 0 the following two condition on the
trivariate BB-form will be used.

Smooth vertices condition For each i∈{1 . . .4} there is at least one non-zero bλ1λ2λ3λ4
for λi ≥ n−1.

Smooth edges condition For each pair (i, j) ∈ {1 . . .4}×{1 . . .4}, i 6= j, there is at
least one non-zero bmei+(n−m)e j for m = {0 . . .n}, or the polynomials

n−1

∑
m=0

bmei+(n−m−1)e j+ek
Bn−1

m (t)

and
n−1

∑
m=0

bmei+(n−m−1)e j+el
Bn−1

m (t)
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have no common zero in [0,1], for distinct i, j,k, l.
If the surface SF contains a vertex/edge, then by the formulas of directional derivatives
(see [Far01]), it is easy to show that the surface is smooth there if the smooth vertex/edge
conditions above are satisfied.

Definition 7.2.1. Three-sided patch. Let the surface patch SF , be smooth on the bound-
ary of the tetrahedron S. If any open line segment (e j,α

∗) with α∗ ∈ S j = {α =
(α1,α2,α3,α4)T : α j = 0, αi > 0, ∑

4
i 6= j αi = 1, αi ≥ 0} (e.g. segment from vertex

j to the opposing base) intersects SF at most once (counting multiplicities), then SF is
called a three sided j-patch patch (see figure 7.1(a)(b)(c)(d)).

Definition 7.2.2. Four-sided patch. Let the surface patch SF , be smooth on the boundary
of the tetrahedron S. Let (i, j,k, l) be a permutation of (1,2,3,4). If any open line
segment (α∗,β∗), with α∗ ∈ (eie j) and β∗ ∈ (ekel) (e.g. a segment between opposing
edges) intersects SF at most once (counting multiplicities), then SF is called a a four
sided i j− kl-patch (see figure 7.1(e)(f)).

108 . C. L. Bajaj et al. 

Fig. 1. Three-sided (a, b, c and d) and four-sided patches (e and f). Some of them are 

disonnected. The filled vertices mark the boundaries of the patches. 

Definition 3.1 Three-sided patch. Let the surface patch S, be smooth on 

the boundary of the tetrahedron S. If any open line segment (ej, a*) with 

(Y* E Sj = {(ai, (Ye, c+, a,>r: ffj = 0, q > 0, Cizj q = 1) intersects S, at 

most once (counting multiplicities), then we call S, a three-sided j-patch (see 

Figure 1). 

Definition 3.2 Four-sided patch. Let the surface patch S, be smooth on 

the boundary of the tetrahedron S. Let (i, j, k, I) be a permutation of (1,2, 3, 

4). If any open line segment (a*, /3*) with cy* E (e,ej) and /3* E (eke,) 

intersects S, at most once (counting multiplicities), then we call S, a 

four-sided ij-k&patch (see Figure 1). 

It is easy to see that, if S, is a four-sided ij-kl-patch, it is then also a 

ji-lk-patch, a lk-ji-patch, and so on. The Appendix contains proofs of the 

following lemmas and theorems: 

LEMMA 3.1. The three-sided j-patch and the four-sided ij-kl-patch are 

smooth (nonsingular). 

THEOREM 3.2. Let F(a) = CIA,=, b,B,“(a) satisfy the smooth uertex and 

smooth edge conditions and j(1 I j I 4) be a given integer. If there exists an 

integer k(0 I k < n) such that 

b h,A,A,A, 2 07 Aj=O,l ,..., k- 1, (3.1) 

b h,h,h,A, S ‘3 Aj = k + l,...,n, (3.2) 

ACM Transactions on Graphics, Vol. 14, No. 2, April 1995. 

Figure 7.1: Three-sided (a, b, c and d) and four-sided patches (e and f). Some are
disconnected. The filled vertices mark the boundaries of the patches [BCX95].

Lemma 7.2.3. The three-sided j-patch and the four-sided i j−kl-patch are smooth (non-
singular).
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Theorem 7.2.4. Let F(α) = ∑|λ|=n bλBn
λ(α) satisfy the smooth vertex and smooth edge

conditions and j ∈ [1..4] be a given integer. If there exists an integer k ∈ [0..n] such that

bλ1λ2λ3λ4 ≥ 0 λ j ∈ [0..k−1]
bλ1λ2λ3λ4 ≤ 0 λ j ∈ [k +1..n]

and ∑|λ|=n, λ j=0 bλ > 0 if k > 0, ∑|λ|=n, λ j=m bλ < 0 if k > 0 for at least one m ∈ [k +
1..n], then SF is a three-sided j-patch.

Theorem 7.2.5. Let F(α) = ∑|λ|=n bλBn
λ(α) satisfy the smooth vertex and smooth edge

conditions and (i, j,kl) be a permutation of (1,2,3,4). If there exists an integer k ∈ [0..n]
such that

bλ1λ2λ3λ4 ≥ 0 λi +λ j ∈ [0..k−1]
bλ1λ2λ3λ4 > 0 λi +λ j ∈ [k +1..n]

and ∑|λ|=n, λi+λ j=0 bλ > 0 if k > 0, ∑|λ|=n, λi+λ j=m bλ < 0 for at least one m ∈ [k+1..n]
then SF is a four-sided i j− kl-patch.

Note that the conditions on the coefficients bλ in Theorems 7.2.4 and 7.2.5 are sufficient
but not necessary.

Some properties of A-patches

1. For a three sided j-patch, if bλ = 0 for λ = (n− l)em + le j, l ∈ [0..k], m 6= j, k < n,
and bλ 6= 0 for λ = (n−1)em + es, s 6= j then the edge [e jem] is tangent with SF
at em with multiplicities k. See figure 7.2(a).

2. For a four sided i j−kl-patch, if bλ = 0 for λ = (n−q1−b2)ek +q1ei +q2e j, q1 +
q2 ∈ [0..s], and bλ 6= 0 for λ = (n−1)ek +el , then SF is tangent s times with face
[eie jek] at ek with multiplicities k. See figure 7.2(b).

3. For a three sided j-patch, if bλ = 0 for λ = (n−m)ei + mek, m ∈ [0..n] then SF
contains the edge [eiek]. If further, bλ = 0 for λ = (n−m−1)ei +mek + e j, m ∈
[0..n−1], then SF is tangent with face [eie jek]. See figure 7.3.

4. For a three sided j-patch, any point p ∈ SF can be mapped to a triple (αi,αk,αl),
αi +αk +αl = 1, αi,αk,αl ≥ 0 or a point α∗ ∈ S j = {(α1,α2,α3,α4)T : α j = 0},
Furthermore, there exists a one to one mapping between SF and S′j = {α∗ : α∗ ∈
S j,F(ej)Ḟ(α∗)≤ 0}.

5. For a four-sided i j−kl-patch, and point p ∈ SF can be mapped to a tuple (αi,αk),
0 ≤ αi ≤ 1, 0 ≤ αk ≤ 1, or two points α∗ ∈ {(eiej) = {(α1,α2,α3,α4)T : αk =
αl = 0} and β∗ ∈ {(ekel) = {(α1,α2,α3,α4)T : αi = α j = 0}. Furthermore there
exists a one-to-one mapping between SF and {(αi,β j)T : F(α∗)Ḟ(β∗) ≤ 0}. If
F(α∗) = 0, SF is degenerate and all the points with same αk collapse into one
point.
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Hence a three-sided patch can be mapped into a triangular domain while a four-sided
patch can be mapped into a quadrilateral domain. This observation gives rise to the
terms three-sided patch and four-sided patch. Note that smooth three-sided or smooth
four-sided patches are not necessarily connected within a single tetrahedron. Figure
7.1 shows some examples. Subsequent sections detail how a combination of smooth
A-patches are pieced together to form a C1 smooth global surface.

(a) (b)

Figure 7.2: (a) Three-sided patch tangent at p1,p2,p3. (b) Degenerate four-sided patch
tangent to face [p1p2p4] at p3 and to face [p1p3p4] at p3. [BCX95]

(a) (b)

Figure 7.3: (a) Three-sided patch interpolating edge [p1p3]. (b) Three-sided patch inter-
polating edges [p2p3] and[p1p3]. [BCX95]

Note that a four-sided patch may degenerate into a two-sided patch; see Figure 7.2(b).
However, there is no need to treat the degenerate patches any different, but consider it to
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be a special four-sided patch.

7.3 Scaffold Construction

Given point set P = {p1, ...,pk} ∈ R3 and their surface triangulation T , a normal set
N = {n1, ...,nk} ∈R4 for P, that is a normal ni for each point pi. One wants to construct
a patch set to interpolate points pi and therein normal to ni for i ∈ [1, ...,k].
Without loss of generality, we assume that the assigned normals all point to the same side
of T . If T is a closed surface triangulation (a simplicial polyhedron), then we assume
that the normals all point to the exterior.

Definition 7.3.1. Convex edge and nonconvex edge. Let [pipj] be an edge of T . If
(pj−pi)T ni(pi−pj)T nj ≥ 0 and at least one of (pj−pi)T ni and (pj−pi)T nj is positive,
then the edge [pjpi)] is said negative convex. If both are zero then we say it is zero
convex. A positive convex edge is similarly defined. If (pj− pi)T ni(pi− pj)T nj < 0,
then we say the edge is non convex.

Definition 7.3.2. Convex face and nonconvex face. Let [pipjpk] be a face of T . If its
three edges are nonnegative (positive or zero) convex and at least one of them is positive
convex, then we say the face [pipjpk] is positive convex. If all of the three edges are
zero convex, then we label the face as zero convex. A negative convex face is similarly
defined. All of the other cases face [pipjpk] is labeled as nonconvex.

Note that here we are overloading the term convex to characterize the relations between
the normals and edges of faces. We distinguish between convex and non-convex faces in
the simplicial hull below, where we build one tetrahedron for convex faces and double
tetrahedral for nonconvex faces.

Definition 7.3.3. Simplicial hull. A simplicial hull of T , denoted by Σ, is a collection of
non-degenerate tetrahedra that satisfies:

1. Each tetrahedron in Σ has either a single edge of T (then it is called an edge
tetrahedron) or a single face of T (then it is called a face tetrahedron).

2. For each face of T , there is (are) only one or two face tetrahedral in Σ if the face
is convex or non-convex respectively.

3. Two face tetrahedra that share a common edge do not intersect anywhere else.
This condition is referred to as non intersection.

4. For each edge, there is (are) only one or two pair(s) of common face sharing edge
tetrahedra in Σ if the edge is convex or nonconvex such that the pair(s) fill the
region between the two adjacent face tetrahedral in the same side of T.
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5. For each vertex, the tangent plane defined by the vertex normal is contained in
all of the tetrahedral containing the vertex. This condition is called tangent plane
containment.

Note that, for a given surface triangulation with normal assignments, T . there may exist
infinitely many simplicial hulls, or no simplicial hull may exist. Now a scheme is given
for the construction of a simplicial hull for the surface triangulation T and prescribed
vertex normal assignment. Exceptional configurations where the construction simplicial
hull of T is difficult are enumerated. In this case the original triangle must be split and
then construct the simplicial hull for the locally modified triangulation T.

(1) Face tetrahedra construction For each face F = [p1p2p3] of T , let L be a straight
line that is perpendicular to the face F and that passes through the center of the inscribed
circle of F . Then choose points p4 and/or q4 off each side of F to be the furthermost
intersection points between L and the tangent planes of the vertices of the face. If F is
a non-convex face, two face tetrahedral [p1p2p3p4] and [p1p2p3q4] are formed (double
tetrahedral). If F is positive convex, then p4 is chosen on the same side as the direction
of the normals, and a single face tetrahedron [p1p2p3p4] is formed. If F is negative
convex, then q4 is chosen on the opposite side of the normals, and again a single face
tetrahedron [p1p2p3q4] is formed. Figure 7.4 shows the cases where both faces are
convex, and Figure 7.5 shows the case where at least one of the two adjacent faces is
non-convex.

p

p

pp
p

p p

1

2

3

44

1

’

’’

’

1

Figure 5: The Construction of Tetrahedra for Adjacent

Convex/Convex Faces

A simplicial hull of , denoted by , is a collection

of non-degenerate tetrahedra which satisfies:

(1) Each tetrahedron in has either a single edge of

(then it will be called an edge tetrahedron) or a single

face of (then it will be called a face tetrahedron).

(2) For each face of there is/are only one/two face

tetrahedron/tetrahedra in if the face is convex/non-

convex.

(3) Two face tetrahedra that share a common edge do not

intersect anywhere else. This condition is referred to in

this paper as non-intersection.

(4) For each edge there is/are only one/two pair/pairs of

common face sharing edge tetrahedra in if the edge

is convex/non-convex such that the pair/pairs fill(s) the

region between the two adjacent face tetrahedra in the

same side of .

(5) For each vertex, the tangent plane defined by the ver-

tex normal is contained in all the tetrahedra containing

the vertex. This condition is called tangent plane con-

tainment.

It should be noted that, for a given surface triangula-

tion and normal assignment , there may exist infinitely

many simplicial hulls or no simplicial hull at all. We now

describe a scheme for constructing a simplicial hull for

the surface triangulation and prescribed vertex normal

assignment. In the full version of the paper [3] we also

enumerate the exceptional configurationswhere a simpli-

cial hull of is not possible and then provide a solution

for constructing the simplicial hull for a locally modified

.

1. Build Face Tetrahedra. For each face 1 2 3

of , let be a straight line that is perpendicular to

the face and passes through the center of the inscribed

circle of . Then choose points 4 and/or 4 off each side

of to be the farthermost intersection points between

and the tangent planes of the vertices of the face. If

is a non-convex face, two face tetrahedra 1 2 3 4 and

1 2 3 4 are formed. If is positive convex, then 4 is

chosenon the sideopposite to thedirectionof thenormals,

and a single face tetrahedron 1 2 3 4 is formed. If is

(a) (b)

Figure 6: (a) No Tangent Plane Containment (b) Self-

Intersecting Tetrahedra

negative convex, then 4 is chosen on the same side as the

normals and again the single face tetrahedron 1 2 3 4

is formed. Figure 5 shows the case where both faces are

convex and Figure 4 shows the cases where at least one

of the two adjacent faces is non-convex.

A sufficient condition for constructing face tetrahedra

with tangent plane containment is that the angle of the

assigned normal at each vertex with each of the sur-

rounding face’s normals is less than 2. If this condition

is not met then an exception may occur and we term the

vertex as sharp. See Figure 6 (a).

A sufficient condition for adjacent face tetrahedra to

be non-intersecting is as follows. For two adjacent faces

1 2 3 and
1 2 3 , the angle between

them, denoted as , is defined as the outer dihedral

angle if the edge between and is negatively con-

vex or inner dihedral angle otherwise. For 2 3 , the

common edge between and , let 1 2 3 4 and

1 2 3 4
be the face tetrahedra respectively. Then

the two tetrahedra are non-intersecting if the angles

4 2 3 1 2 3
1

2
and

4 2 3 1 2 3

1

2
. If this condition is not met then an exception

may occur andwe term the common edge 2 3 as sharp.

See Figure 6 (b).

A heuristic strategy rectifies the sharp edge and sharp

vertex configurations is a local retriangulationof the orig-

inal surface triangulation . This strategy has worked

well in several of the smoothing examples we have per-

formed [3]

2. Build Edge Tetrahedra. Let 2 3 be an edge

of and 1 2 3 and
1 2 3 be the two adjacent

faces. Let 1 2 3 4 and/or 1 2 3 4 , and 1 2 3 4

and/or
1 2 3 4

be the face tetrahedra built for the faces

1 2 3 and
1 2 3 , respectively. Then if the edge

2 3 is non-convex, two pairs of tetrahedra need to be

constructed. The first pair
1 2 3 4 and

1 2 3 4

are between
1 2 3 4

and 1 2 3 4 . The second pair

1 2 3 4 and
1 2 3 4

are between
1 2 3 4

and

1 2 3 4 . Here 1 4 4
or is above 4 4

, say

1

1

2
2 3

2 4 4 1

5

Figure 7.4: The Construction of Tetrahedra for Adjacent Convex/Convex Faces Inter-
secting Tetrahedra. [BCX95]

A sufficient condition for constructing face tetrahedral with tangent plane containment
is that the angle of the assigned normal n, at each vertex p, with each of the surrounding
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Figure 3: (a) A Three Sided Patch Interpolating the Edge

2 3 (b) A Three Sided Patch InterpolatingEdges 2 3

and 1 3

if we want some 0, it is not necessary to let every

0, for 4 .

Some properties of -patches.

a. For a three-sided -patch, if 0 for

, 0 1 , and

0 for 1 , , then the edge

is tangentwith at withmultiplicities . See

also Figure 2 (a).

b. For a four-sided - -patch, if 0 for

1 2 1 2 1 2 0 1 ;

and 0 for 1 , then is tangent

times with face at .

Note that a four sided patch may degenerate into a two

sided patch. See Figure 2 (b). However, we do not need

to treat the degenerate patches any different and consider

it to be a special four sided patch.

c. For a three-sided -patch, if 0 for

, 0 1 , then contains the edge

. If further, 0, for 1

, 0 1 1, then the is tangent

with the face . See also Figure 3 (a), (b).

4 Normals and the Simplicial Hull

For the given point set 1
3 and

their surface triangulation , we first construct a normal
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Figure 4: The Construction of Tetrahedra for Adja-

cent Non-Convex/Non-Convex Faces and Convex/Non-

Convex Faces

set 1
3 for . That is, for each

point , we associate a normal . We will force the

constructed surface to interpolate points and at each

point have a normal for 1 . These normals

therefore also provide a mechanism to control the shape

of the 1 interpolating surface. Common approaches

to construct these normals at a point include (a) an

average of the face normals of the incident faces (b) the

gradient of a local spherical fit to the surface triangulation

at each vertex. Computing an optimal normal assignment

is yet an unsolved problem and we are experimenting

with different local and global normal selections schemes

[1, 15, 13]. Of course at times the data set can have

prespecified normals and this too can be the input of the
1 fitting algorithm.

Without loss of generality we assume that the assigned

normals all point to the same side of . If is a closed

surface triangulation (a simplicial polyhedron) then we

assume the normals all point to the exterior.

Definition 4.1. Convex edge, non-convex edge.

Let be an edge of . If

0 and at least one of and

is positive, then we say the edge is positive

convex. If both the numbers are zero then we say it is

zero convex. A negative convex edge is similarly defined.

If 0, then we say the edge

is non-convex.

Definition 4.2. Convex face, non-convex face.

Let be a face of . If its three edges are

nonnegative (positive or zero) convex and at least one of

them is positive convex, then we say the face is

positive convex. If all the three edges are zero convex

then we label the face as zero convex. A negative convex

face is similarly defined. All the other cases are

labeled as non-convex.

Note, that here we are overloading the term convex

to characterize the relations between the normals and

edges of faces. We distinguish between convex and non-

convex faces in the simplicial hull below where we build

one tetrahedron for convex faces and double tetrahedra

for non-convex faces.

Definition 4.3. Simplicial hull.

4

Figure 7.5: The construction of tetrahedra for (left) adjacent non-convex/non-convex
faces and (right) convex/non-convex faces. [BCX95]

face’s normals is less than π/2. If this condition is not met, then an exception occurs
and the triangle must be split. See Figure 7.6.

A sufficient condition for adjacent face tetrahedral to be nonintersecting is as follows:
For two adjacent faces F = [p1p2p3] and F ′ = [p′1p2p3], the angle between them, de-
noted as ∠FF ′, is defined as the outer dihedral angle if the edge between F and F ′
is negative convex and inner dihedral angle otherwise. For [p2p3] the common edge
between F and F ′, let [p1p2p3p4] and [p′1p2p3p′4] be the face tetrahedral, respectively.
Then the two tetrahedral are nonintersecting if the angles ∠[p4p2p3][p1p2p3] < 1

2∠FF ′

and ∠[p′4p2p3][p′1p2p3] < 1
2∠FF ′. If this condition is not met, then an exception occurs

and the triangle must be split. See Figure 7.6.

p

p

pp
p

p p

1

2

3

44

1

’

’’

’

1

Figure 5: The Construction of Tetrahedra for Adjacent

Convex/Convex Faces

A simplicial hull of , denoted by , is a collection

of non-degenerate tetrahedra which satisfies:

(1) Each tetrahedron in has either a single edge of

(then it will be called an edge tetrahedron) or a single

face of (then it will be called a face tetrahedron).

(2) For each face of there is/are only one/two face

tetrahedron/tetrahedra in if the face is convex/non-

convex.

(3) Two face tetrahedra that share a common edge do not

intersect anywhere else. This condition is referred to in

this paper as non-intersection.

(4) For each edge there is/are only one/two pair/pairs of

common face sharing edge tetrahedra in if the edge

is convex/non-convex such that the pair/pairs fill(s) the

region between the two adjacent face tetrahedra in the

same side of .

(5) For each vertex, the tangent plane defined by the ver-

tex normal is contained in all the tetrahedra containing

the vertex. This condition is called tangent plane con-

tainment.

It should be noted that, for a given surface triangula-

tion and normal assignment , there may exist infinitely

many simplicial hulls or no simplicial hull at all. We now

describe a scheme for constructing a simplicial hull for

the surface triangulation and prescribed vertex normal

assignment. In the full version of the paper [3] we also

enumerate the exceptional configurationswhere a simpli-

cial hull of is not possible and then provide a solution

for constructing the simplicial hull for a locally modified

.

1. Build Face Tetrahedra. For each face 1 2 3

of , let be a straight line that is perpendicular to

the face and passes through the center of the inscribed

circle of . Then choose points 4 and/or 4 off each side

of to be the farthermost intersection points between

and the tangent planes of the vertices of the face. If

is a non-convex face, two face tetrahedra 1 2 3 4 and

1 2 3 4 are formed. If is positive convex, then 4 is

chosenon the sideopposite to thedirectionof thenormals,

and a single face tetrahedron 1 2 3 4 is formed. If is

(a) (b)

Figure 6: (a) No Tangent Plane Containment (b) Self-

Intersecting Tetrahedra

negative convex, then 4 is chosen on the same side as the

normals and again the single face tetrahedron 1 2 3 4

is formed. Figure 5 shows the case where both faces are

convex and Figure 4 shows the cases where at least one

of the two adjacent faces is non-convex.

A sufficient condition for constructing face tetrahedra

with tangent plane containment is that the angle of the

assigned normal at each vertex with each of the sur-

rounding face’s normals is less than 2. If this condition

is not met then an exception may occur and we term the

vertex as sharp. See Figure 6 (a).

A sufficient condition for adjacent face tetrahedra to

be non-intersecting is as follows. For two adjacent faces

1 2 3 and
1 2 3 , the angle between

them, denoted as , is defined as the outer dihedral

angle if the edge between and is negatively con-

vex or inner dihedral angle otherwise. For 2 3 , the

common edge between and , let 1 2 3 4 and

1 2 3 4
be the face tetrahedra respectively. Then

the two tetrahedra are non-intersecting if the angles

4 2 3 1 2 3
1

2
and

4 2 3 1 2 3

1

2
. If this condition is not met then an exception

may occur andwe term the common edge 2 3 as sharp.

See Figure 6 (b).

A heuristic strategy rectifies the sharp edge and sharp

vertex configurations is a local retriangulationof the orig-

inal surface triangulation . This strategy has worked

well in several of the smoothing examples we have per-

formed [3]

2. Build Edge Tetrahedra. Let 2 3 be an edge

of and 1 2 3 and
1 2 3 be the two adjacent

faces. Let 1 2 3 4 and/or 1 2 3 4 , and 1 2 3 4

and/or
1 2 3 4

be the face tetrahedra built for the faces

1 2 3 and
1 2 3 , respectively. Then if the edge

2 3 is non-convex, two pairs of tetrahedra need to be

constructed. The first pair
1 2 3 4 and

1 2 3 4

are between
1 2 3 4

and 1 2 3 4 . The second pair

1 2 3 4 and
1 2 3 4

are between
1 2 3 4

and

1 2 3 4 . Here 1 4 4
or is above 4 4

, say

1

1

2
2 3

2 4 4 1

5

Figure 7.6: Degenerate cases (a)no tangent plane containment.(b) self-intersecting tetra-
hedra. [BCX95]

(2) Edge tetrahedra construction Let E = [p2p3] be an edge of T , and let F =
[p1p2p3] and F ′ = [p′1p2p3] be the two adjacent faces. Let V+ = [p1p2p3p4] and/or
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V− = [p1p2p3q4], and V ′+ = [p′1p2p3p′4] and/or V ′− = [p′1p2p3p′4] be the face tetrahedral
built for the faces F and F ′, respectively. Then, if edge E is non-convex, two pairs of
tetrahedral need to be constructed. The first pair [p′′1p2p3p4] and [p′′1p2p3p′4] is between
V+ and V ′+. The second pair [q′′1p2p3q4]and [q′′1p2p3q′4] is between V− and V ′−. Set p′′1 to
be on or above [p4p′4]:

p′′1 =
1− t

2
(p2 +p3)+

t
2
(p4 +p′4), t ≥ 1

so that p′′i is above plane of T and plane of T ′. Similarly, set q′′i to be on or above [q4q′4]:

q′′1 =
1− t

2
(p2 +p3)+

t
2
(q4 +q′4), t ≥ 1

so that q′′i is below plane of T and plane of T ′. If edge E is positive/negative convex,
only the first/second pair above is needed. If the edge E is zero convex, no tetrahedron
is needed here. It should be noted that p4 and p′4 (q4 and q′4 ) are always visible.

7.4 Cubic C1 Continuous A-patches

Having established a simplicial hull Σ for the given surface triangulation T and a set of
vertex normals N, we now construct a piecewise C1 function f on the hull Σ such that

f (pl) = 0, ∇ f (pl) = ni, l ∈ [1..k] (7.6)

and the zero contour of f within Σ forms a C1 continuous single-sheeted surface with
the same topology as T .

The construction of a piecewise C1 cubic function

The construction of the function f over two adjacent faces of T is divided into the fol-
lowing three cases:

(a) Both faces are nonconvex.

(b) Both faces are convex.

(c) One of them is convex, and the other is nonconvex.
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(a) Both faces are nonconvex.

Let F = [p1p2p3] and F ′ = [p1p2p′3] be two adjacent nonconvex faces. Then we have
double tetrahedra [p1p2p3p4] and/or [p1p2p3q4] for F , and double tetrahedral [p1p2p3p′4]
and/or [p1p2p3q′3] for F ′ (see figure 7.7). Let

V1 = [p1p2p3p4] V2 = [p1p2p3p′4]
V ′1 = [p1p2p3q4] V ′2 = [p1p2p3q′4]
W1 = [p′′1p2p3p4] W2 = [p′′1p2p3p′4]
W ′1 = [p′′1p2p3q4] W ′2 = [p′′1p2p3q′4]
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Figure 7: Adjacent Tetrahedra, Functions and Control

Points for Two Non-Convex Adjacent Faces

so that
1
is above plane 1 2 3 and plane

1 2 3 .

Similarly,
1 4 4

or is below 4 4
, say

1

1

2
2 3

2 4 4 1

so that
1
is below plane 1 2 3 and plane

1 2 3 .

If the edge 2 3 is positive/negative convex, only the

first/second pair above are needed. If the edge 2 3 is

zero convex, no tetrahedron is needed here. It should be

noted that 4 and 4
( 4 and 4

) are always visible.

5 Construction of a 1 Interpolatory

Surface

Having established a simplicial hull for the given

surface triangulation and a set of vertex normals ,

we now construct a 1 function on the hull such

that

0 1 2 9

and the zero contour of within forms a 1 continuous

single sheeted surface with the same topology as .

The construction of the function over two adjacent

faces of is divided into the following four cases:

(a). Adjacent faces are non-convex;

(b). Adjacent faces are convex;

(c). One face is convex and the other is non-convex;

(d). Adjacent faces are coplanar.

A detailed listing of the specific 1-conditions and

the proofs of solvability of the related linear systems for

each of the above cases are given in the full version of

the paper [3].

Having built 1 cubics with some free control points,

we now illustrate how to determine these free control

points such that the zero-contours are three-sided or four-

sided A-patches (smooth and single sheeted).

We assume (without loss of generality) that all the

normals point to the same side of the surface triangulation

. That is the side on which 4 and 4
lie(see Figure

7). Under this assumption, it follows from Definition

4.1 and equations (2) and (9) that, the control points on

the edge, say
0210 0120

on edge 2 3 (see Figure 7),

are non-negative if the edge is non-negative convex, and

non-positive if the edge is non-positive convex. Now

we can divide all the control points into 7 groups called

layers. The 0-th layer consists of the control points that

are “on" the faces of . The 1st layer is next to the 0-th

layer but opposite to the normal direction, followed by

the 2nd and 3rd layers. Next to the 0-th layer and on the

same side as the normal, is the 1st layer, then the 2nd

and 3rd layers. Now we show that, we can set all the

control points on the 2nd and 3rd layer negative and the

control points on the 2nd and 3rd layers positive.

For the face-tetrahedra, it is always possible to make

the 2nd and 3rd layers control points negative, because

these control points are free under the 0 condition. For

the control points on the edge-tetrahedra, it follows from

(4) that the 2nd and 3rd layers control points can be neg-

ative only if the 2nd layer control points on the neighbor

face-tetrahedra are small enough. (See [3] for details.)

Similarly, the control points on the 2nd and 3rd layers

can be chosen to be positive. Furthermore, all these con-

trol points can be chosen as large as one needs in absolute

value in order to get single sheeted patches.

Since the control points around the vertices of are

determined by the normals, the smooth vertex condition

is obviously satisfied. If the surface contains the edge

2 3 (see Figure 7), then since 1110
(or

0111
) is freely

chosen, the smooth edge condition is easily satisfied(see

the proof of Proposition 5.3 in [3]). Referring to Figure

5.1,weprove in the following that thepatches constructed

over 1 and 1 are single sheeted. The other patches are

similar.

Proposition 5.2. If the face 1 2 3 is non-negative

convex, then the control points can be determined so that

the surface over 1 is a three-sided 4-patch.

Proposition 5.3. If the edge 2 3 is non-negative con-

vex, then the control points can be determined such that

the surface over 1 is a four-sided 14-23-patch.

Subdivision. For any face of 1 2 3 , if it is

non-convex and if the three inner products of the face

normal and its three adjacent face normals have different

signs, then subdivide the double face tetrahedra into 6

subtetrahedraby adding avertex at the center of the face

(a Clough-Tocher split). The coefficients are specified as

before by regarding as 1(see Figure 7).

6

Figure 7.7: Adjacent double faces, tetrahedra, functions, and control points for two
nonconvex adjacent faces. [BCX95]

and the cubic polynomials fi over Vi, gi over Wi, f ′i over V ′i , andg′i over W ′i be expressed
in BB forms with coefficients ai

λ, bi
λ, ci

λ and di
λ i = 1,2 respectively. Now these coef-

ficients are determined.

C0 continuity If two tetrahedral share a common face, we equate the control points of
the associated cubic polynomials on the common face (see Lemma 7.1.2):

ai
λ1λ2λ30 = ci

λ1λ2λ30 ai
0λ2λ3λ4

= bi
0λ2λ3λ4

ci
0λ2λ3λ4

= di
0λ2λ3λ4

b1
λ1λ2λ30 = b2

λ1λ2λ30 d1
λ1λ2λ30 = d2

λ1λ2λ30
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Interpolation Since zero contours of fi and f ′i and gi and g′i pass through p2 and p3,
then ai

λ = bi
λ = ci

λ = di
λ = 0 for i ∈ {1,2} and λ ∈ {0300,0030}.

Normal Condition From (7.6) and (7.1.1) one has for j ∈ {2,3},

a1
2e j+e1

= 1
3 (p1−pj)T nj, a2

2e j+e1
= 1

3 (p′1−pj)T nj

a1
2e j+e4

= 1
3 (p4−pj)T nj, a2

2e j+e4
= 1

3 (p′4−pj)T nj

b1
2e j+e1

= 1
3 (p′′1−pj)T nj, d1

2e j+e1
= 1

3 (q′′1−pj)T nj

c1
2e j+e4

= 1
3 (q4−pj)T nj, c2

2e j+e4
= 1

3 (q′4−pj)T nj

(7.7)

C1 Conditions At present, consider a j
2e4+e j

, c j
2e4+e j

, b j
2001, d j

2001 j ∈ [1..4] as free
parameters and determine the other control points:

(1) Interface of [p2p3p4] and [p2p3p′4]. Suppose

p′′1 = β 1
1 p1 +β 1

2 p2 +β 1
3 p3 +β 1

4 p4, ∑
4
i=1 β 1

i = 1
p′′1 = β 1

1 p′1 +β 1
2 p2 +β 1

3 p3 +β 1
4 p′4, ∑

4
i=1 β 1

i = 1
(7.8)

Then, the C1 conditions require (see Lemma 7.1.2)

bi
1λ2λ3λ4

= β
i
1ai

1λ2λ3λ4
+β

i
2ai

0λ2λ3λ4+0100 +β
i
3ai

0λ2λ3λ4+0010 +β
i
4ai

0λ2λ3λ4+0001
(7.9)

For λ2λ3λ4 ∈ {002,101,011,110}. Hence bi
1002, bi

1101 bi
1011 are defined, leaving

ai
1011 and ai

1101 to be determined. Equation 7.9 for λ2λ3λ4 = 011 will be treated
later.

(2) Interface of [p2p3p′′1 ]. Suppose

p′′1 = µ1
1 p1 + µ1

2 p2 + µ1
3 p3 + µ1

4 p4, ∑
4
i=1 µ1

i = 1
p′′1 = µ1

1 p′1 + µ1
2 p2 + µ1

3 p3 + µ1
4 p′4, ∑

4
i=1 µ1

i = 1
(7.10)

Then, the C1 conditions require

bi
λ1λ2λ31 = µ

i
1b1

λ2λ3λ41 + µ
i
2b2

λ2λ3λ41 + µ
i
3bi

λ2λ3λ40+0100 + µ
i
4bi

λ2λ3λ41+0010 (7.11)

For λ2λ3λ4 ∈ {200,110,101,011}. Hence bi
3000, bi

2100 bi
2010 are defined. The

equation for λ2λ3λ4 = 011 will be treated later.

(3) Interface of [p2p3q4], [p2p3q′′1 ], and [p2p3q′4]. All control points of g′i and some of
the control points of f ′i can be fixed as fi and gi. That is, the relations (7.9)-(7.11)
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hold when the quantities a′s b′s, β ′s, and µ ′s are substituted by c′s, d′s, γ ′s, and
η ′s, respectively. The two untreated equations left are

di
1110 = γ

i
1ai

1110 + γ
i
2ai

0210 + γ
i
3ai

0120 + γ
i
4ci

0111 (7.12)

di
1110 = η

i
1c1

1110 +η
i
2c2

0111 +η
i
3ai

0210 +η
i
4ai

0120 (7.13)

where the coefficients γi and ηi are defined by

q′′1 = γ1
1 p1 + γ1

2 p2 + γ1
3 p3 + γ1

4 q4, ∑
4
i=1 γ1

i = 1
q′′1 = γ1

1 p′1 + γ1
2 p2 + γ1

3 p3 + γ1
4 q′4, ∑

4
i=1 γ1

i = 1
q′′1 = η1

1 q4 +η1
2 q′4 +η1

3 p2 +η1
4 p3, ∑

4
i=1 η1

i = 1

(4) Interface of [p1p2q3] and [p′1p2p3]. Let

q4 = α1
1 p1 +α1

2 p2 +α1
3 p3 +α1

4 p4, ∑
4
i=1 α1

i = 1
q′4 = α1

1 p1 +α1
2 p2 +α1

3 p3 +α1
4 p′4, ∑

4
i=1 α1

i = 1

Then one has

ci
0112 = α

i
1c1

1110 +α
i
2c2

0210 +α
i
3ai

0120 +α
i
4ai

0111 (7.14)

The equations (7.9), (7.11), (7.12), (7.13) and (7.14) must be solved for a minimal num-
ber of free parameters.
Equations (7.9), (7.11), (7.12), (7.13) may be combined as:

µ1a1
0111 + µ2a2

0111 + µ3ai
0210 + µ4ai

0120 = β
i
1ai

1110 +β
i
2ai

0210 +β
i
3ai

0120 +β
i
4ai

0111 (7.15)

(7.12), (7.13) may be combined as:

η1c1
0111 +η2c2

0111 +η3ai
0210 +η4ai

0120 = γ
i
2ai

0210 + γ
i
3ai

0120 + γ
i
4ci

0111 (7.16)

Therefore (7.15) and (7.16) together with (7.14) form a linear system with six equations
and six unknowns ai

0111,a
i
1110,c

i
0111 for i ∈ {1,2}. It is important to point out that this

is not an independent system (see Theorem 7.4.1 for the solvability of the system). It
has four independent equations and infinitely many solutions. In, fact if one assumes
p1,p2,p3,p′1 are not coplanar and then denote

p4 = θ 1
1 p1 +θ 1

2 p2 +θ 1
3 p3 +θ 1

4 p′1, ∑
4
i=1 θ 1

i = 1
p′4 = θ 2

1 p1 +θ 2
2 p2 +θ 2

3 p3 +θ 3
4 p′1, ∑

4
i=1 θ 1

i = 1
q4 = ϑ 1

1 p1 +ϑ 1
2 p2 +ϑ 1

3 p3 +ϑ 1
4 p′1, ∑

4
i=1 ϑ 1

i = 1
q′4 = ϑ 2

1 p1 +ϑ 2
2 p2 +ϑ 2

3 p3 +θ 3
4 p′1, ∑

4
i=1 ϑ 1

i = 1

(7.17)
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Then from (7.15) and (7.16) one can derive that

ai
0111 = θ

i
1a1

1110 +θ
i
2a1

0210 +θ
i
3a1

0120 +θ
i
4a2

1110 (7.18)

ci
0111 = ϑ

i
1a1

1110 +ϑ
i
2a1

0210 +ϑ
i
3a1

0120 +ϑ
i
4a2

1110 (7.19)

Actually, this means any group of four weights (e.g. a1
1110, ai

0210, and a2
1110) define the

same 4−D hyperplane in its own barycentric coordinates (e.g., [p1,p2,p3,p′1]. There-
fore, besides a1

0210 and a1
1201 (or c1

0210 and c1
1201) there are only 2 degrees of freedom

left. One chooses ai
1110 (or ci

1110) to be the free parameters. They may be determined by
approximating a quadratic (see later or Dahmen and Thamm-Schaar [1993]).

(b) Both faces are convex.

(b1) Both faces are nonnegative (or nonpositive) convex. Following the discussion
of (a), the scheme for determining the control points are as before, except for the follow-
ing:

1. Only half of the control points are needed. That is, we need ai
λ, bi

λ for functions
fi, and gi, if F and F ′ are nonnegative convex, or ci

λ, di
λ for functions f ′i , and g′i,

if F and F ′ are nonpositive convex.

2. ai
1110 (or ci

1110) can be determined freely as in (a). One way to choose them is to
make the cubic approximate a quadratic. In particular, ai

1110 = 0 (or ci
1110 = 0) if

the face is zero convex.

3. Only (7.18) is needed for unknown a1
0111 and a2

0111 if the edge [p2p3] is nonnega-
tive convex, or (7.19) for unknowns c1

0111 and c2
0111 if the edge [p2p3] is nonposi-

tive convex.

(b2) One positive convex face and one negative convex face. In this case, the com-
mon edge must be zero convex. Suppose F is positive convex and F is negative convex.
All of the control points are determined as before, except for the following:

1. We only need to construct fi, gi and f ′2; that is, c1
λ and di

λ are not needed. The
functions gi, and f2 have no contribution to the surface and are used for smooth
transition from f1 to f ′2.

2. a1
1110 ≤ 0 and c2

1110 ≥ 0 can be determined freely.

3. Only (7.14) and (7.18) are needed for unknowns a1
0111, a2

0111, and c1
0111.



i
i

“main” — 2008/10/19 — 20:00 — page 103 — #121 i
i

i
i

i
i

7.4. CUBIC C1 CONTINUOUS A-PATCHES 103

(b3) Both faces are zero convex. This case, in fact, is included in case (bl). The
surface is defined directly as the planar faces of the surface triangulation. No function
needs to be constructed.

(c) One convex face and one nonconvex face.

Suppose [p1,p2,p3] is convex and [p′1,p2,p3] is nonconvex, with the following excep-
tions:

1. The functions f ′i and g′i and their control points ci
λ and di

λ are not needed if F is
nonnegative convex. The functions fi and gi, and their control points ai

λ and bi
λ

are not needed if F is nonpositive convex.

2. a1
1110 ≤ 0 (or c1

1110 ≥ 0) and a2
1110 (c2

1110) can be determined freely. In particular
a1

1110 = 0 (or c1
1110 = 0) if [p1,p2,p3] is zero convex.

3. Only (7.14) for i = 2 and (7.18) are needed to solve for unknown a1
0111, a2

0111, and
c1

0111 if edge [p2,p3] is non negative convex. Otherwise solve (7.14) for i = 2 and
(7.16) for unknown c1

0111, c2
0111, and a2

0111 if edge [p2,p3] is non positive convex.

Coplanarity of adjacent faces.

In the discussions above, we have assumed that p1,p′1p2,p3 are affine independent. If
this is not the case, then the coefficient matrices of the linear systems (7.15) and (7.16)
are singular. However, the system (5. 11)-(5. 13) is still solvable (see Theorem 7.4.1).

The solvability of the related system

Theorem 7.4.1. Given two affine independent point sets (p2,p3p′4,p4) and (p2,p3q′4,q4)
as in figure (7.7).

(i) The system (7.14)-(7.16) has four independent equations. If (p1,p′1p2,p3) are
affine independent, then (7.15) and (7.16) are four independent equations for the
unknown ai

0111 and ci
0111 for i = 1,2.

(ii) Let
{r1,r2,r3,r4,r5,r6}= {p1,p′1,p4,p′4,q

′
4,q4}

and
{x1, . . . ,xn}= {a1

1110,a
2
1110,a

1
0111,a

2
0111,c

1
0111,c

2
0111}

For any 1≤ i < j ≤ 6, if r1,r3,p2,p3 are affine independent, then

xk = φ
k
1 xi +φ

k
2 x j +φ

k
3 a1

0210 +φ
k
4 a1

0120 (7.20)
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where φ k
l are defined by rk = φ k

1 ri +φ k
2 rj +φ k

3 p2 +φ k
4 p3, ∑

4
m=1 φ k

m = 1.

Proof of this theorem may be found in [BCX95].

Construction of single-sheeted A-patches

Having built C1 cubics with some free control points, we now illustrate how to determine
these free control points such that the zero contours are three-sided or four-sided A-
patches (smooth and single sheeted).
We assume (without loss of generality) that all of the normals point to the same side of
the surface triangulation T . That is the side on which p4 and p′4 lie (see Figure 7.7).
Under this assumption, it follows from Definition 7.3.1 and Eq. (7.7) that the control
points on the edge, say, ai

0210 and ai
0210, on edge [p2,p3] (see Figure 7.7), are nonnegative

if the edge is nonnegative convex, and nonpositive if the edge is nonpositive convex.
Now we can divide all of the control points into seven groups, called layers. The 0-th
layer consists of the control points that are ”on” the faces of T . The 1st layer is next to
the 0th layer, and on the same side as the normal direction, followed by the 2nd and 3rd
layers. Next to the 0th layer but opposite to the normal is the -1st layer, and then the
-2nd and -3rd layers. Now we show that we can set all of the control points on the 2nd
and 3rd layer as positive and the control points on the -2nd and -3rd layers as negative.
For the face-tetrahedra, it is always possible to make the 2nd and 3rd layers’ control
points positive, because these control points are free under the C0 condition. For the
control points on the edge-tetrahedra, it follows from (7.9) that the 2nd and 3rd layers’
control points can be positive only if the 2nd layer’s control points on the neighbor face-
tetrahedra are large enough. This is achieved since β i

4 in (7.9) are positive. Similarly, the
control points on the -2nd and -3rd layers can be chosen to be negative. Furthermore, all
of these control points can be chosen as large as one needs in absolute value in order to
get single-sheeted patches.
Since the control points around the vertices of T are determined by the normals, the
smooth vertex condition is obviously satisfied. If the surface contains the edge [p2p3]
(see Figure 7.7), then, since ai

1110 (or ai
0111) is freely chosen, the smooth edge condition

is easily satisfied. Referring to Figure 7.7, one has proved in the following that the
patches constructed over V1 and W1 are single sheeted. The other patches are similar:

Proposition 7.4.2. If the face [p1p2p3] is nonnegative convex, then the control points
can be determined so that the surface over V1 is a three-sided 4-patch.

Proposition 7.4.3. If the edge [p2p3] is nonnegative convex, then the control points can
be determined such that the surface over W1 is a four-sided 14-23-patch.

Theorem 7.4.4. The global piecewise surface constructed is smooth, connected, and
single-sheeted.
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With this, one concludes that the surface is topologically equivalent to the input triangu-
lation.

7.5 Examples

The data for the human femur in Figure 7.8, 9223 points, comes from contouring of a
CT scan. The algorithm does not use the fact that the data is arranged in slices. The
reconstructed C1 surface is made by 400 cubic patches.

(a) (b) (c)

Figure 5: (a) Data set for the upper part of a human femur. Data from a CT scan. (b) Final decomposition (wireframe). (c) Reconstructed
object.

(a) (b)

(c) (d)

Figure 6: A jet engine. (a) 0 reconstructed domain. Patches are visible in different colors. (b) Reconstructed domain (after 1 smoothing).
(c) Iso-pressure contours and regions of a surface-on-surfacepressure function displayedon the surface of the jet engine. (d) The reconstructed
engine surface and visualization of the pressure surface function surrounding the jet engine using the normal projection method.

116

Figure 7.8: (a) Data set from a CT scan for the upper part of a human femur. (b) A-patch
scaffold construction. (c) Reconstructed object [BCX95].

The engine in Figure 7.9 has been reconstructed from a data set containing 9800 points.
The number of patches generated in the approximation phase is 382, with an error equal
to 1/100 of the size of the object. Each patch is of degree 3, and is therefore defined
by 20 coefficients. At the same time, an approximate C1 scalar field (pressure form a
simulated experiment) over the surface has also been computed. Several techniques can
be used to visualize this surface-on-surface data. In Figure 7.9(c) we show iso-pressure
regions. With the normal projection method, each point p on the domain surface SD is
projected in the direction normal to SD, to a distance proportional to the value f F(p) of
the field at that point. The projected surface is visible in transparency in Figure 7.9(d),
with iso-contours of the pressure projected on it. the value of the function at each vertex,
the average gradient at vertices and mid-edge points, and the continuity constraint. The
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(a) (b) (c)

Figure 5: (a) Data set for the upper part of a human femur. Data from a CT scan. (b) Final decomposition (wireframe). (c) Reconstructed
object.

(a) (b)

(c) (d)

Figure 6: A jet engine. (a) 0 reconstructed domain. Patches are visible in different colors. (b) Reconstructed domain (after 1 smoothing).
(c) Iso-pressure contours and regions of a surface-on-surfacepressure function displayedon the surface of the jet engine. (d) The reconstructed
engine surface and visualization of the pressure surface function surrounding the jet engine using the normal projection method.

116

Figure 7.9: A jet engine. (a) C0 reconstructed domain. Patches are visible in different
colors. (b) Reconstructed domain (after C1 smoothing). (c) Iso-pressure contours and
regions of a surface-on-surface pressure function displayed on the surface of the jet
engine. (d) The reconstructed engine surface and visualization of the pressure surface
function surrounding the jet engine using the normal projection method [BCX95].
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Chapter 8

Prism Algebraic Patches

Prism A-patches are low-degree finite elements of algebraic surfaces, with dual implicit
and rational parametric representations. In [BX01, ZXB07] the input to the prism A-
patch construction is a matched triangulation pair T = (T0,T1) (also called a fat trian-
gulation) with attached normals at each vertex, which offers a linearization of the inner
and outer boundary surfaces of a shell domain. The goal is to reconstruct a smooth fat
surface whose bounding surfaces provide approximations of T0 and T1, respectively.
Additionally mid-surfaces between the boundary surfaces may be also generated.
The matched pair of surface triangulations with normals could be obtained via several
methods, including close iso-contours of volume data, point clouds, single surfaces,
etc. In this chapter it is described a reduced version in which a single triangulation
T is sufficient, together with external normals ni,ni j,ni jk attached to either the 0-cells
(vertex normals), or to the 1-cells (edge normals, to denote the parallel transport of
sharp features), or to the 2-cells (face normals) of T . Sources of this chapter are from
both [ZXB07] and [BPP+08] as well as other unpublished materials from Chandrajit
Bajaj, Na Lei, Wenqi Zhao and the author. The software was originally developed by
Wenqi Zhao [ZXB07] and extended by the author itself [BPP+08].

8.1 Triangular Prism Cubic A-patch

The triangular prism A-patch element is defined within a prism scaffold. For each trian-
gle [vi,v j,vk] of a triangulation T of the surface, let

v`(λ ) = v` +λn`, ` = i, j,k, λ ∈ I := [−1,1],

where the unit normals n` point outward. Then define the prism

Di jk := {p : p = α1vi(λ )+α2v j(λ )+α3vk(λ ), λ ∈ I}

107
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where (α1,α2,α3) are the barycentric coordinates of points in [vi,v j,vk]. The coordinate
transformation from local (prism’s) coordinates to global (world’s) reference system can
be written, by substituting α3 = 1−α1−α2, as: x

y
z

= D(λ )

 1
α1
α2

=
(

vi(λ ) v j(λ )−vi(λ ) vk(λ )−vi(λ )
) 1

α1
α2

.

(8.1)
The map (8.1) is bilinear.

(a) (b)

Figure 8.1: (a) A prism Di jk constructed based on the triangle [viv jvk]. (b) The control
coefficients of the cubic Bernstein-Bézier basis of function F .

The surface S of a patch is defined as the zero contour of a scalar function field defined
as a polynomial in the Benstein-Bézier (BB) form over the prism Di jk :

F(α,λ ) = ∑
i+ j+k=n

ai jk(λ )Bn
i jk(α) (8.2)

where Bn
i jk(α) is the BB basis

Bn
i jk(α) =

n!
i! j!k!

α
i
1α

j
2α

k
3

Since S passes through the vertices vi, v j, vk, then

a300 = a030 = a003 = λ (8.3)

To obtain C1 continuity at the vertices, let a210−a300 = 1
3 ∇F(vi) ·(v j(λ )−vi(λ )), where

∇F(vi) = ni. Therefore

a210 = λ +
1
3

ni · (v j(λ )−vi(λ )) (8.4)
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a120, a201, a102, a021, a012 are defined similarly.
It is assumed that S is C1 continuous at the midpoints of the edges of T . Then define
a111 using the side-vertex scheme [Nie79]:

a111 = w1a(1)
111 +w2a(2)

111 +w3a(3)
111 (8.5)

where

wi =
α2

j α2
k

α2
2 α2

3 +α2
1 α2

3 +α2
1 α2

2
, i = 1,2,3; i 6= j 6= k

Next it is explained how a(1)
111, a(2)

111 and a(3)
111 are defined such that the C1 continuity is

obtained at the midpoint of the edge v jvk, vivk and viv j. Consider the edge viv j in the
prism Di jk. Recall that any point p := (x,y,z) in Di jk can be represented by

(x,y,z)> = α1vi(λ )+α2v j(λ )+α3vk(λ ) (8.6)

Therefore, after differentiation of both sides of (8.6) with respect to x, y and z respec-
tively, we get

I3 =


∂α1
∂x

∂α2
∂x

∂λ

∂x
∂α1
∂y

∂α2
∂y

∂λ

∂y
∂α1
∂ z

∂α2
∂ z

∂λ

∂ z


 (vi(λ )−vk(λ ))>

(v j(λ )−vk(λ ))>
(α1ni +α2n j +α3nk)>

 (8.7)

where I3 is a 3×3 unit matrix. Let

T =

 (vi(λ )−vk(λ ))>
(v j(λ )−vk(λ ))>

(α1ni +α2n j +α3nk)>

 (8.8)

Let A = vi(λ )−vk(λ ), B = v j(λ )−vk(λ ) and C = α1ni +α2n j +α3nk, then

T =
(

A, B, C
)>

By (8.7) we have
∂α1
∂x

∂α2
∂x

∂λ

∂x
∂α1
∂y

∂α2
∂y

∂λ

∂y
∂α1
∂ z

∂α2
∂ z

∂λ

∂ z

= T−1 =
1

det(T )
(B×C, C×A, A×B) (8.9)

According to (8.2), at (α1,α2,α3) = ( 1
2 , 1

2 ,0) (the midpoint of viv j), one has have
∂F
∂b1
∂F
∂b2
∂F
∂λ

 =

 (vi(λ )−vk(λ ))>
(v j(λ )−vk(λ ))>

(ni +n j)>/2

(ni +n j

4

)
+

 3
2 (a210−a111)
3
2 (a120−a111)

1
2


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By (8.5), at (α1,α2,α3) = ( 1
2 , 1

2 ,0) it results

a111 = a(3)
111

Therefore the gradient at ( 1
2 , 1

2 ,0) is

∇F = T−1(
∂F
∂α1

,
∂F
∂α2

,
∂F
∂λ

)>

=
ni +n j

4
+

1
2det(T )

[3(a210−a(3)
111)B×C

+ 3(a120−a(3)
111)C×A+A×B] (8.10)

Let

d1(λ ) = v j(λ )−vi(λ ) = B−A

d2(α1,α2,α3) = α1ni +α2n j +α3nk = C

d3(α1,α2,α3,λ ) = d1×d2 = B×C +C×A (8.11)

Define

c = C(
1
2
,

1
2
,0)d3(λ ) = d3(

1
2
,

1
2
,0,λ ) = B× c+ c×A (8.12)

Let ∇F = ∇F( 1
2 , 1

2 ,0). In order to make S be C1 at ( 1
2 , 1

2 ,0), one should have ∇F ·
d3(λ ) = 0. Therefore, by (8.10) and (8.11), we have

a(3)
111 =

d3(λ )>(3a210B× c+3b120c×A+A×B)
3||d3(λ )||2 (8.13)

Similarly, one may define a(1)
111 and a(2)

111. For the surface evaluation, given the barycentric
coordinates of a point (α1,α2,α3) in triangle [viv jvk], equation F = 0 is solved for λ by
Newton’s method, where F is defined in (8.2). Then the corresponding point on S is

(x, y, z)> = α1vi(λ )+α2v j(λ )+α3vk(λ ) (8.14)

8.2 Quadrangular Prism Cubic A-patch

The quadrangular prism A-patch element is defined within a four sides prism scaffold.
For each quadrangle [vi,v j,vk,vl ] of T of the surface, let

v`(λ ) = v` +λn`, ` = i, j,k, l, λ ∈ I := [−1,1],
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Figure 8.2: The prism A-patch with scaffold. Image generated by the author using the
software developed for [BPP+08]

where the unit normals n` point outward. Then the prism, denoted by Di jkl , for [viv jvkvl ]
is a volume in R3 enclosed by the surfaces Hi j,H jk,Hkl , and Hli (see figure 8.5), where
Hsm is a ruled surface defined by vs and vm as follows:

Hsm = {p : p = b1vs(λ )+b2vm(λ ), b1 +b2 = 1, λ ∈ R}

For any point p = b1vs(λ ) + b2vm(λ ) with b1 + b2 = 1, (b1,b2,λ ) will be called the
Hsm−coordinate of p. The prism Di jkl as the volume given by

Di jk(I) = {p : p = B00(u,v)vi(λ )+B10(u,v)v j(λ )
+B01(u,v)vl(λ )+B11(u,v)vk(λ ),

u,v ∈ [0,1],λ ∈ R},
where B00 = (1−u)(1−v), B10 = u(1−v), B01 = (1−u)v, B11 = uv. One calls (u,v,λ )
the local coordinate of p. The equation

p = B00(u,v)vi(λ )+B10(u,v)v j(λ )
+B01(u,v)vl(λ )+B11(u,v)vk(λ ) (8.15)
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Figure 8.3: Smooth connection of two prism patches [ZXB07].

defines a transform between (u,v,λ ) and (x,y,z).

The mapping from the local coordinate to the global coordinate is three-linear in λ ,u,v,
as it is easy to see by combining explicitly the eight extreme vertices v`− n`,v` + n`

(` = i, j,k, l) of Di jkl with three linear BB basis in the variables λ ,u,v:

p =
1
2
(1+λ )(1−u)(1− v)(vi +ni)+

1
2
(1−λ )(1−u)(1− v)(vi−ni) (8.16)

+
1
2
(1+λ )u(1− v)(v j +n j)+

1
2
(1−λ )u(1− v)(v j−n j)

+
1
2
(1+λ )uv(vk +nk)+

1
2
(1−λ )uv(vk−nk)

+
1
2
(1+λ )u(1− v)(vl +nl)+

1
2
(1−λ )u(1− v)(vl−nl)

where p
(

x y z
)>. Let

F(vi(λ )) = λ , ∇F(vi(λ )) = Ni.
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Figure 8.4: (Top) Original triangulated models (Bottom) A-patch model. Images cour-
tesy of CVC at ICES.

Figure 8.5: A prism Di jkl constructed based on the quadrangular [viv jvkvl ] [BX01].

Note DNiF = N>i ∇F holds on the edge, where N>i is the transpose of Ni, DNiF denotes
the directional derivative of F in the direction Ni.
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Let
Flm(t,λ )

= F(vl(λ ))H3
0 (t)+F(vm(λ ))H3

2 (t)
+[vm(λ )−vl(λ )]>∇F(vl(λ ))H3

1 (t)
+[vm(λ )−vl(λ )]>∇F(vm(λ ))H3

3 (t),

(8.17)

with
H3

0 (t) = 1−3t2 +2t3, H3
1 (t) = t−2t2 + t3,

H3
2 (t) = 3t2−2t3, H3

3 (t) =−t2 + t3.

Let
d1(λ ) = vm(λ )−vl(λ ),
d2(t) = (1− t)Nl + tNm,
d3(t,λ ) = d1×d2.

Then we define the gradient ∇Flm(t,λ ) by the following conditions:
d>1 ∇Flm(t,λ ) =

∂Flm(t,λ )
∂ t

,

d>2 ∇Flm(t,λ ) =
∂Flm(t,λ )

∂λ
,

d>3 ∇Flm(t,λ ) = d>3 ∇F̆lm(t,λ ),

(8.18)

where
∇F̆lm(t,λ ) = (1− t)∇F(vl(λ ))+ t∇F(vm(λ )).

Since

‖d3‖2[d1,d2,d3]−1 =
[
d1‖d2‖2−d2(d>1 d2),d2‖d1‖2−d1(d>1 d2),d3

]>
,

the Equation (8.18) implies

∇Flm(t,λ ) =
1
‖d3‖2 {

[
d1‖d2‖2−d2(d>1 d2)

]
P

+
[
d2‖d1‖2−d1(d>1 d2)

]
Q+d3R},

where

P(t,λ ) =
∂Flm(t,λ )

∂ t
,

Q(t,λ ) =
∂Flm(t,λ )

∂λ
,

R(t,λ ) = d>3 ∇F̆lm(t,λ ).
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Therefore we have

Fu(u,v,λ ) = H3
0 (u)F14(v,λ )+H3

1 (u)du(v,λ )>∇F14(v,λ )
+ H3

2 (u)F23(v,λ )+H3
3 (u)du(v,λ )>∇F23(v,λ ),

Fv(u,v,λ ) = H3
0 (v)F12(u,λ )+H3

1 (v)dv(u,λ )>∇F12(u,λ )
+ H3

2 (v)F43(u,λ )+H3
3 (v)dv(u,λ )>∇F43(u,λ ),

where
du(v,λ ) = H23(v,λ )−H14(v,λ ),

dv(u,λ ) = H43(u,λ )−H12(u,λ ).

Then we define

F(σ)(u,v,λ ) =


Fu(u,v,λ )
Fv(u,v,λ )
ωuFu(u,v,λ )+ωvFv(u,v,λ )

ωu +ωv

u,v ∈ {0,1}, (8.19)

where ωu = [(1− v)v]2, ωv = [(1−u)u]2.
Note that the function F(σ) is C1 within each of the volumes, since the gradient on the
faces of the volumes is C1 and the correction terms is C1 in the volume.

8.3 Examples

The computation of electrostatic solvation energy (also known as polarization energy)
for bio-molecules plays an important role in molecular dynamics simulations. When
computing the electro- static solvation energy for bio-molecules, it is crucial to correctly
model the molecular surface (MS). A smooth algebraic spline model approximation of
the MS is built, based on an decimated triangulation derived from the atomic coordinate
information of the bio-molecule, resident in the PDB (Protein data bank). First a trian-
gular prism scaffold Ps covering the PDB structure is constructed, and, then piecewise
polynomial Bernstein-Bezier (BB) spline function approximation F within Ps , which
are nearly C1 everywhere, is generated. Approximation error and point sampling con-
vergence bounds may also be computed. An implicit algebraic spline model of the MS
which is free of singularity, is extracted as the zero contours of F . Furthermore, this
provides a polynomial parameterization of the implicit MS, which allows an efficient
point sampling on the MS, and thereby it may be used to simplify the accurate estima-
tion of integrals needed for electro-static solvation energy calculations [ZXB07]. The
steps of this construction are shown in figure 8.6 for molecule 1HIA(b) chain B and Y
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of the Kallikrein protein. The initial hard-sphere molecular model and the resulting SES
model using prism algebraic patches are shown in figure 8.7 and 8.8 for 1CGI(b) hu-
man pancreatic secretory trypsin inhibitor (kazal type) variant and 1PPE(b) the Trypsin
inhibitor CMT-1.
As an example of prism shell A-patches in figure 8.9 the reconstruction from CT scans of
the knee joint is shown, notice how with a single patch both the inner and outer surface
of the bone is modeled[BX99b].
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(a) (b)

(c) (d)

Figure 8.6: Molecular model of a protein(1HIA-B). (a) The van der Waals surface of the
atomic structure (693 atoms); (b) The initial triangulation of the solvent excluded surface
(SES) (27480 triangles); (c) The decimated triangulation of the SES (7770 triangles); (d)
The piecewise algebraic surfaces patches (7770 patches) generated from the decimated
triangulation of SES. [ZXB07]
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(a) (b)

Figure 8.7: Molecular model of a protein(1CGI-B). (a) The van der Waals surface of
the atomic structure; (b) The piecewise algebraic surfaces patches generated from the
decimated triangulation of SES. [ZXB07]

(a) (b)

Figure 8.8: Molecular model of a protein(1PPE-B). (a) The van der Waals surface of
the atomic structure; (b) The piecewise algebraic surfaces patches generated from the
decimated triangulation of SES. [ZXB07]
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Figure 8.9: Left: CT scan of a human knee. Middle: A pair of extracted C0 iso-surfaces
for the knee skeleton boundaries. Right: Smooth fat surface reconstruction of the knee
skeleton [BX01].
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Chapter 9

Boolean Operations

Boolean operation are the set-theoretical operations (Union, Intersection, Difference,
containment, etc) between the point sets described by two geometric models. Boolean
operation between geometrical models have the critical step of computing the intersec-
tion of two elements. The intersection of two varieties is well defined in algebraic ge-
ometry as it is simply the ideal generated by the defining equations. However the exact
boolean operator is often not closed inside the domain of fixed degree A-patches. The
reason is simply that the intersection of two algebraic surfaces of degree d (say cubic) is
in general, a space curve of degree d2. It is possible however to build a piecewise low-
degree topologically correct approximate, in case of tetrahedral and prismatic patches
a piecewise linear tracing of the intersection curve[BX97]. This tracing is the starting
point of the splitting of each geometric element along the approximate intersection and
the classification of each generated sub-element as either belonging to one and/or the
other model. The final step is to assemble the result depending on the wanted operation.

In this chapter a symbolic-numeric algorithm for Boolean operations is discussed, closed
in the algebra of curved polyhedra whose boundary is triangulated with algebraic patches
(A-patches). This approach uses a linear polyhedron as a first approximation of both the
arguments and the result. On each triangle of a boundary representation of such linear
approximation, a piecewise cubic algebraic interpolant is built, using a C1-continuous
prism algebraic patch (prism A-patch) that interpolates the three triangle vertices, with
given normal vectors. The boundary representation only stores the vertices of the ini-
tial triangulation and their external vertex normals. In order to represent also flat and/or
sharp local features, the corresponding normal-per-face and/or normal-per-edge may be
also given, respectively. The topology is described by storing, for each curved triangle,
the two triples of pointers to incident vertices and to adjacent triangles. For each trian-
gle, a scaffolding prism is built, produced by its extreme vertices and normals, which
provides a containment volume for the curved interpolating A-patch. When looking

121
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for the result of a regularized Boolean operation, the 0-set of a tri-variate polynomial
within each such prism is generated, and intersected with the analogous 0-sets of the
other curved polyhedron, when two prisms have non-empty intersection. The intersec-
tion curves of the boundaries are traced and used to decompose each boundary into the
3 standard classes of subpatches, denoted in, out and on. While tracing the intersection
curves, the locally refined triangulation of intersecting patches is produced, and added
to the boundary representation.
This chapter is an expanded and detailed version of [BPP+08]. The prototype software
implementing the algorithm described herein has been developed by the author basing
it on the prism patch implementation of Wenqi Zhao [ZXB07]. The structure of the
chapters is as follows. In Section 9.1 an overall introduction and some useful concepts
are recalled and preliminary definitions are given. Prism patches have been introduced
in chapter 3 and the formulation of chapter 8 will be used here. In Section 9.2 we give
a synthetic introduction to Boolean algorithms between curved triangulated solids. In
Section 9.3 we discuss the implemented intersection between prismatic A-patches, with
tracing of intersection curves and local triangulation refinement. In the examples and
applications Section 9.4 we show the results of our prototype implementation, including
the computation of the Boolean union of a docked complex of two proteins containing
several thousand prism A-patches.

9.1 Introduction and Background

A-Patches are smooth algebraic surface patch families, defined using a fixed degree
trivariate polynomial within a compact polyhedron domain (also called the patch scaf-
fold). Simple A-patches use a tetrahedron, or a cube, or a triangular prism scaffold.
An exact union or intersection Boolean operator is often not closed inside the domain
of fixed degree A-patches. The reason is simply that the intersection of two algebraic
surfaces of degree d (say cubic) is in general, a space curve of degree d2, (i.e. nine ).
In this chapter, an efficient solution is provided, using a clever combination of symbolic
and geometric methods, for the subproblems below:

(i) The robust computation of the intersection of a pair of algebraic curves, and/or
surfaces,

(ii) The decomposition of the explicit union of a pair of A-patches, into a small set of
A-patches of the same scaffold type,

The combination of (i) and (ii) provides a union operator capable of reproducing A-
patches maintaining the topology of the exact solution. These methods are currently
being implemented in the context of the PLaSM Language [Pao03, Pa] and using the
Ganith Algebraic Toolkit [BR90b, Por07b]. For the current status on the integration
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between these two software please refer to appendix A. The computation of the union of
A-patches is a necessary step for the development of Boolean set operations on algebraic
finite elements in an integrated software package.

The main assumption that is made here is that the boundary of the solid is triangulated
by curved algebraic patches, where each patch is single-sheeted and contained within
the prismatic scaffold defined on the triangles of the coarse linear approximation of the
solid boundary. This assumption reduces the Boolean problem with curved solids to the
much easier and well-known problem with linear polyhedra (see, e.g. [Bra78, LTH86,
Man88, Hof89, Mas93]). For the same reason, we may represent quite complex curved
solids using the very simple winged-triangle (WT) boundary representation, which does
not require the use of Euler operators [EW79]. Such winged representation was intro-
duced in [PSR89], and later generalized to solid decompositions and higher dimensional
manifolds in [PBCF93].

Boolean Operators

Before proceeding further some definitions on what boolean algebra and regularized
boolean operators are needed.

Boolean Algebra The domain of the representation scheme [Req80] discussed in this
paper is the Boolean algebra of solid polyhedra with bounded boundary and where com-
plementation simply exchanges the interior with the exterior. It is easy to see that it ver-
ifies all axioms of a Boolean algebra, and that it also has to verify all theorems known
for a Boolean algebra.

In particular, we may evaluate the intersection and difference of polyhedra from their
union and complements, using the notion that conjunction is dual to disjunction by way
of the De Morgan’s laws, i.e. ¬(P1 ∩ P2) = ¬P1 ∪¬P2 and ¬(P1 ∪ P2) = ¬P1 ∩¬P2.
These can also be constructed as definitions of union in terms of intersection and vice
versa: P1∩P2 = ¬(¬P1∪¬P2) and P1∪P2 = ¬(¬P1∩¬P2). The difference can also be
constructed using either union and complement P1−P2 = ¬(¬P1 ∪P2) or intersection
and complement P1−P2 = P1 ∩¬P2. To complement any boundary representation of a
solid is O(n), since it is sufficient to reverse the direction of all the normal vectors to 0-
and to 2-cells.

Regularized Operations Also, it is well-known and easy to see (e.g. [Req80]) that
a Boolean operation between regular polyhedra may give a non regular result, i.e. a
point set with subsets of different dimensions. For this reason the concept of regularized
Boolean was introduced. If op ∈ {∪,∩,−}, then the regularized op∗ is defined as:

op∗ := clos ◦ int ◦ op
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so that, for every solid pair of the same dimension P1 and P2, it is

P1 op∗ P2 := clos (int (P1 op P2))

Where clos and int respectively denote topological closure and interior. Therefore, in the
following of this paper we only discuss algorithms for regularized boolean operations.
In brief, some previous work on boolean operators and trimming of curved free form
surfaces is: interactive boundary computation of Boolean combinations of sculptured
solids [KGMM97]; netbased modeling [Lin00]; approximate Boolean operations on
free-form solids [BKZ01]; ESOLID− a system for exact boundary evaluation [KCF+02];
adaptive trimming of cubic triangular Bézier patches [GMF06].

Scaffold Data Structure

To represent in memory the polyhedral envelope that contains the A-patches which cover
the boundary of a curved solid, we use the WT (winged-triangle) [PSR89] representa-
tion scheme, i.e. a boundary representation based on vertices and triangles (0- and 2-
simplices) of a simplicial complex that triangulates the object boundary. This scheme
provides a relational representation with tuples of constant length, that allows multishell
polyhedra to be dealt with, regardless of the topological genus of their boundary sur-
faces. Nonmanifold objects are represented by duplicating some adjacency information.
The space of mathematical models represented by the WT scheme is quite extensive.
It coincides with the set of regular 3-polyhedra which are possibly: unconnected; un-
bounded (but with bounded boundary); non-manifold; multishell; with multiply con-
nected faces, i.e. with multiple edge loops.
In particular, the WT representation can be implemented as a table in first normal form,
where each tuple, indexed by the t j triangle, contains (see figure 9.1):

• 3 references to incident vertices;

• 3 references to adjacent triangles.

This scheme is characterized by the design choice of making no use of Euler operators.
This choice is allowed by the extreme simplicity of the data structure representing the
triangulation of the boundary. If all references to adjacent triangles are valid, then the
WT representation automatically fulfills the requirement for closed surfaces, that is, each
edge (1-cell) is a face of exactly two triangles (2-cells). Furthermore, if the geometry
has more components (shells), each component may be easily extracted in O(n) time,
where n is the number of triangles. A WT may be built easily from the common ”raw”
format for a triangulation, that is, a series of points (with optional normals) and a series
of triangles represented by three references to the points. The algorithm to do so is very
simple, linear in the number of triangles and may also be used to check if the ”raw”
format is a valid closed surface triangulation:
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1. Build an initially empty hash table associating edges (pair of points) to a triangle.

2. For each processed triangle one checks each edge in the hash table. If it is present
then:

a) fill the current triangle adjacent reference with the triangle in the hash table;

b) fill the triangle in the hash table adjacent reference with the current triangle;

c) delete the entry in the hash table (edge used).

If it is not present then insert the edge and current triangle in the hash table.

3. At the end all references to adjacent triangles must be filled; all points must have
been used; and most importantly the hash table must return to the empty state.

Almost all boolean algorithms on geometric representations based on finite elements
have two main elements:

• A method to intersect two elements and split into smaller elements along the in-
tersection. Usually this step is highly sophisticated under the mathematical point
of view but has a very simple logic.

• An algorithm that guides the method for intersection/split on paired elements of
the input geometries and assembles the final result according the wanted operation.
This step usually employs very simple mathematic methods but has a complicated
combinatorial logic.

The WT supports a very straightforward Boolean algorithm, discussed in the following
section 9.2, where the consistency of the boundary simplicial complex is easily main-
tained. The method for intersecting and splitting two algebraic patches will be discussed
in section 9.3.

9.2 Boolean Algorithm for Boundary Representation

Several approaches to the computation of Boolean operators using a boundary represen-
tation can be found in the solid modeling literature (see, e.g. [Bra78, Hof89, LTH86,
Man88, Mas93]). The very simple Boolean algorithms defined with the winged-triangle
(WT) boundary representation, that does not require the use of Euler operators [EW79],
can be found in [PSR89].
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university-logo
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(a) triangolo tj , con triple di triangoli adiacenti e di vertici
incidenti (b) tupla associata con tj

Alberto Paoluzzi Progettazione assistita da calcolatore

Figure 9.1: Winged edge representation [PSR89].

Outline of the Algorithm Assume one has a method for intersecting two patches,
splitting the patches along the intersection, and classify the new patches w.r.t. the inter-
section. The basic idea of the algorithm is that two shells of the input geometry either
intersect or don’t intersect. In the former case two shells intersect if at least one pair of
patches of the two shells intersect. Then the split and the classification is propagated to
all the shell using the patch adjacency information and the shell is split into open sur-
faces along the intersection. In the later case they either are unrelated or contained one
in the other. At this point the algorithm may produce the output for the wanted operation
by selecting the appropriately classified surfaces and gluing them.

The main assumption we make is that the boundary of the solid is triangulated by curved
algebraic patches, where each patch is single-sheeted and contained within the prismatic
scaffold defined by one or two (adjacent) triangles of the linear approximation of the
solid boundary. This assumption reduces the Boolean problem with curved solids to the
much easier and well-known problem with linear polyhedra.

The algorithm for the regularized set union of two regular polyhedra P1, and P2 is com-
posed of two main steps (see [PSR89]). In the first step, each shell of P1 is intersected
with every shell of P2, where a boundary shell is a maximal connected subset of the
boundary. The result of this computation is the space curve where the boundary surfaces
of the input polyhedra intersect. In general, this space curve is nonplanar and may be dis-
connected, i.e. it may contain more than one cycle (connected component). The second
step of the union algorithm reconstructs the output boundary ∂ (P1∪P2) by subdividing
the input shells in alternate patches along the intersection curve previously determined,
and by choosing which subpatches must be collected into the result.

The intersection curve subdivides each intersecting shell into no more than three dis-
joint open surfaces: the surface outside, inside and on the boundary of the other polyhe-
dron. The part of the boundary of the resulting polyhedron, generated by the intersecting
shells, is very easy to set up: the corresponding algorithm is detailed in the paragraph on
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partitionable shells. The paragraph on isolated shells analyses how to evaluate the part
of the boundary of the union where input shells do not intersect. Such isolated shells
may or may not appear in the resulting boundary: to discard or to collect them in the
Boolean result will depend on their position with respect to the polyhedron to which
they do not belong.

Shell Extraction The Boolean operations are closed in the set of polyhedra only if one
may regard a polyhedron as unconnected. Even a connected polyhedron may have an
unconnected boundary. As an example consider an empty sphere, with an external and
an internal boundary shell.

In order to perform a Boolean operation, say P1∪P2, the shells of both arguments must
be preliminarly extracted from the data structure used as their computer representation.
A very simple recursive algorithm working in linear time may be used with the WT
representation, starting a new shell as containing a first boundary triangle, marking it,
and extracting recursively the unmarked adjacent triangles. When the extraction stops, a
shell (a maximal 1-connected boundary subset) has been extracted. A new shell can then
be started from the first non marked triangle in the data structure, if any, and so on, until
no more unmarked triangles remain. Let us denote with S1 and S2 the sets of shells of
P1 and P2, respectively.

Shell Intersection Each pair of shells (si,s j) ∈S1×S2 must be checked for empty
intersection, using both global tests, e.g. checking for intersection of the containment
boxes or spheres of si and s j, and local tests when the former do not succeed. A local
test will check for patch intersection, discussed in the next paragraph.

A shell of P1 which does not intersect any shell of P2 is referred to as an isolated shell. A
shell of P1 that intersects at least one shell of P2 is referred to as a partitionable shell. Let
I and P be two sets containing the isolated and partitionable shells of P, respectively,
so that S = I ∪P . A shell of P1 moves from the set I1 (initially set to S1) to the set
P1 (initially set to /0) when one of its patches gives a valid intersection with some patch
of P2.

An intersection between two curved triangles (i.e. two A-patches) is said valid when
there exists points of P1 that belong to both the below and the above subspaces of P2,
and viceversa, i.e. there exists points of P2 that belong to both the below and the above
subspaces of P1. In other words, an intersection between two patches is valid when they
really cross each other, and do not simply touch (i.e. intersect) on a subset of points
(topologically: a cell) of whatever dimensionality.

Patch Intersection and Splitting When a valid intersection between two A-patches
occurs, the intersection curve is inserted in both input A-patches, by splitting the support
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triangles t1 and t2—and possibly their adjacent triangles—so as to split the patches into
subpatches supported by two new subsets of triangles, pairwise containing a segment of
the intersection curve as the common edge. The algebraic formulation of the intersection
problem; the numerical tracing of the intersection curve, and the final triangle splitting
are discussed in Section 9.3.

Partitionable Shells The intersection curves subdivide the partitionable shells into no
more than three sets, which contain the surface patches that are internal, external and on
the boundary of the other polyhedron, respectively. Such surfaces must be alternatively
chosen to collect the whole boundary of the resulting polyhedron. In the general case,
the envelope of the polyhedron P1∪P2 will be composed by:

1. all the boundary patches of P1 external to P2 (and vice versa);

2. some of the patches laying on the boundary of both input polyhedra. In particular,
the only common patches with same orientation of the external normals;

3. some of the nonintersecting input shells, that we named isolated patches (see the
next paragraph).

Isolated Shells An isolated shell may appear or may not appear in the resulting solid
P1∪P2: it will be collected in the final result only if it resides in the exterior of the object
to which it does not belong. More precisely: given a shell s ∈ I1 (respectively I2),
where I1 is the set of isolated shells of P1 (respectively P2), then s ⊆ ∂ (P1 ∪P2) if and
only if it is external with respect to P2 (respectively P1). The problem of classifying a
shell versus a nonintersecting polyhedron is reduced to the classification of a single shell
point. To solve efficiently this classification problem with respect to every cardinality of
the set of patches, some sort of spatial index (say, a BSP-tree) would be very useful.

To sum things up the algorithm for a boolean (i.e. union) operator in pseudocode is:
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Operationally, step 2.a may be decomposed into: 
 
 

 

 
 

 

 

1. Extract the shell sets S1 and S2 of polyhedra P1 and P2;  
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4. Add each external isolated shell of I1 and of I2)to the result R. 
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, respectively; 

ii. If no intersecting patch pairs are found, then store si and sj into I1 , I2. 
Using the adjacency information: 

i. Link all tkl 
0
 into loops;  

ii. Propagate the partitioning and classification to all non intersecting 
patches tk of si (and tl of sj); 

iii. Create the new adjacency information. 

 

Step 2.a may further be detailed as:
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Shell intersection Each pair of shells 
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e.g. checking for intersection of the containment boxes or spheres of si and sj, and local tests when the former do not 
succeed. A local test will check for patch intersection, discussed in the next paragraph.  
A shell of P1 which does not intersect any shell of P2 is referred to as an isolated shell. A shell of P1 that intersects at 
least one shell of P2 is referred to as a partitionable shell. Let I and T be two sets containing the isolated and 

partitionable shells of S, respectively, so that  S = I !T . A shell of P1 moves from the set I1 (initially set to S1) to the 
set T1 (initially set to 0 ) when one of its patches gives a valid intersection with some patch of P2.  
An intersection between two curved triangles (i.e. two A-patches) is said valid when there exists points of P1 that 
belong to both the below and the above subspaces of P2, and viceversa, i.e. there exists points of P2 that belong to both 
the below and the above subspaces of P1. In other words, an intersection between two patches is valid when they 
really cross each other, and do not simply touch (i.e. intersect) on a subset of points (topologically: a cell) of whatever 
dimensionality.  
 
Patch intersection and splitting When a valid intersection between two A-patches occurs, the intersection curve is 
inserted in both input A-patches, by splitting the support triangles t1 and t2 (and possibly their adjacent triangles) so 
as to split the patches into subpatches supported by two new subsets of triangles, pairwise containing a segment of 
the intersection curve as the common edge. The algebraic formulation of the intersection problem is discussed in 
Section 4.1; the numerical tracing of the intersection curve is shown in Section 4.2 , and the final triangle splitting is 
discussed in Section 4.3 .  
 
Partitionable shells The intersection curves subdivide the partitionable shells into no more than three sets, which 
contain the surface patches that are internal, external and on the boundary of the other polyhedron, respectively. Such 
surfaces must be alternatively chosen to collect the whole boundary of the resulting polyhedron. In the general case, 
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(i) all the boundary patches of P1 external to P2 (and vice versa); 
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(iii) some of the nonintersecting input shells, that we named isolated patches (see the next paragraph). 
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is external with respect to P2 (respectively P1). The problem of classifying a shell versus a nonintersecting polyhedron 
is reduced to the classification of a single shell point. To solve efficiently this classification problem with respect to 
every cardinality of the set of patches, some sort of spatial index (say, a BSP-tree) would be very useful. 
 
The algorithm for set union in pseudo code is thus: 

 
 
 
 
 
 
 
 
 
 
 

Operationally, step 2.a may be decomposed into: 
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3. Assemble the result R (i.e. glue si 
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  and sj 
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 along sij 
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); 

4. Add each external isolated shell of I1 and of I2)to the result R. 

 

2.a.  If the bounding boxes or spheres of 
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 intersect: 

i. For each patch pair 
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, if intersect: 

i. For all the intersection curves compute an A-spline approximation tkl 
0
; 

ii. Partition tk and tl into A-patch sets tk 
+
, tk 

-
  and tl 

-
, tl 

+
, respectively; 

ii. If no intersecting patch pairs are found, then store si and sj into I1 , I2. 
Using the adjacency information: 

i. Link all tkl 
0
 into loops;  

ii. Propagate the partitioning and classification to all non intersecting 
patches tk of si (and tl of sj); 

iii. Create the new adjacency information. 

 

9.3 Boolean Operators on an Algebraic Finite Elements

Given two solids, represented by a boundary representation of prismatic A-patches, the
Boolean algorithm in section 9.2 has the two critical steps: (1) computation of the inter-
section of two patch elements; and; (2) split along the intersection into a new patch sets.
In this section we describe an approximate solution. The prismatic A-patch intersection
may be further decomposed into:

• algebraic formalization of the intersection curve;

• topologically sound piecewise-linear tracing of the intersection curve between two
patches;

• construction of new prism (sub)patches along the approximate intersection.

The Boolean algorithm in previous section will then select the appropriate (sub)patches
to compute a Boolean operation.

Algebraic Formulation

To formalize the problem of the patch to patch intersection, one proceeds by writing
down all the relevant equations and then algebraically simplify and transform them into
a ”convenient form”.

Equations Consider two prism A-patches (Fig. 9.2) A and B. Patch A (respectively B)
is built on prisms D (E) of vertexes vi,vj,vk (wi,wj,wk) and normals ni,nj,nk (oi,oj,ok).
Call the prism’s local coordinates, α = (α1,α2,α3) (β = (β1,β2,β3)) for the barycentric
part, and, λ (µ) for the height along the interpolated normal n(α) = α1ni +α2nj +α3nk
(o(α) = . . .). As shown in equation 8.1, the global coordinates generic point in the prism
is v = D(λ )α (w = E(µ)β). The surface patch is defined as the zero-contour of scalar
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field F(α,λ ) = 0 (G(β,µ) = 0) (see also eq. 8.2) . The scalar field may be written in
B.B. form as

F(α,λ ) = ∑i+ j+k=n ai jk(α,λ )Bn
i jk(α)

(
resp. G(β,µ) = ∑i+ j+k=n bi jk(β,µ)Bn

i jk(β)
)

.

Figure 9.2: Two intersecting patches. Image generated by the author using the prototype
software [BPP+08].

Given a certain point α (β) in the barycentric coordinate, by root finding and selecting
the λ ∈ Iλ , one has a procedural parametric formulation of the surface (see also eq. 8.14)

λ = λF(α) (µ = µG(β)) .

Restricting the attention to cubic A-patches, the B.B. coefficients are uniquely deter-
mined by the prism data (see chapter.section 8.1). With the sole exception of a111 (b111),
the coefficients are simple linear expression ai jk(λ ) = a(1)

i jk λ +a(0)
i jk . The boundary curves

of a patch have a simple rational parametric form (ie. α2 = 0 and α3 = 1−α1) :

λ = λF(α1) =
∑i+ j=n a(0)

i jk Bn
i j(1−α1,α1)

∑i+ j=n a(1)
i jk Bn

i j(1−α1,α1)

(
µ = µG(β1) =

∑i+ j=n b(0)
i jk Bn

i j(1−β1,β1)

∑i+ j=n b(1)
i jk Bn

i j(1−β1,β1)

)
(9.1)

The intersection between the two surfaces of the patches is implicitly defined by the two
surface equations and by equating the coordinate transformation of the two prisms. The
coordinate transformation equation is vectorial in a 3D space thus counts as 3 equations.
The intersection is a system of 5 non-linear equations in 6 variables thus describing a
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curve. 
D(λ )

 1
α1
α2

 = E(µ)

 1
β1
β2


F(α,λ ) = 0
G(β,µ) = 0

(9.2)

The objective is to reduce the system 9.2 in a minimal number of equations involving
only the barycentric coordinates of one of the two prisms (i.e. E).

Coordinate Transformation Inversion The first focus is to use the first row (the co-
ordinate transformation equation) of the system 9.2 in order to convert coordinates from
one prism to the other. Consider the coordinate transformation of prism D(λ ) as a λ -
family of linear transformations and invert keeping λ symbolic

D(λ )−1 = 1
|D(λ )|

 (vj(λ )−vi(λ ))× (vk(λ )−vi(λ ))
(vk(λ )−vi(λ ))×vi(λ )
vi(λ )× (vj(λ )−vi(λ ))

 .

One may then compose with E(µ)

 1
α1
α2

 = D(λ )−1E(µ)

 1
β1
β2

 . (9.3)

By bringing |D(λ )| to the left in the first row one has an equation relating in β,λ ,µ . The
second and third row define α1 as rationals of β,λ ,µ . Denote these as Q(β,λ ,µ) = 0
and α(β,λ ,µ) respectivelly.
An operational example is, given any point (β,µ) in E coordinates: (1) solve Q(β,λ ,µ)=
0 for λ ∈ Iλ ; (2) compute α = α(β,λ ,µ).

There is a more intuitive, elementary and explicit approach though not mathematically
synthetic and neither implementation efficient. Consider the prism D as a λ -family of
planes L(x,y,z;λ ) = A(λ )x + B(λ )y +C(λ )z + D = 0 passing through points vi(λ ) =
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vi +λni, vj(λ ) = vj +λnj, vk(λ ) = vk +λnk:

A(λ ) =

∣∣∣∣∣∣
1 (vi +λni)y (vi +λni)z
1 (vj +λnj)y (vj +λnj)z
1 (vk +λnk)y (vk +λnk)z

∣∣∣∣∣∣
B(λ ) =

∣∣∣∣∣∣
(vi +λni)x 1 (vi +λni)z
(vj +λnj)x 1 (vj +λnj)z
(vk +λnk)x 1 (vk +λnk)z

∣∣∣∣∣∣
C(λ ) =

∣∣∣∣∣∣
(vi +λni)x (vi +λni)y 1
(vj +λnj)x (vj +λnj)y 1
(vk +λnk)x (vk +λnk)y 1

∣∣∣∣∣∣
D(λ ) =

∣∣∣∣∣∣
(vi +λni)x (vi +λni)y (vi +λni)z
(vj +λnj)x (vj +λnj)y (vj +λnj)z
(vk +λnk)x (vk +λnk)y (vk +λnk)z

∣∣∣∣∣∣
Factor out the λ and define the plane family in λ :

A(λ ) = A0 +A1λ +A2λ
2

B(λ ) = B0 +B1λ +B2λ
2

C(λ ) = C0 +C1λ +C2λ
2

D(λ ) = D0 +D1λ +D2λ
2 +D3λ

3

A(λ )x = A0x + A1λx + A2λ 2x
+ B(λ )y = B0y + B1λy + B2λ 2y
+ C(λ )x = C0z + C1λ z + A2λ 2z
+ D(λ ) = D0x + D1λ + D2λ 2 + D3λ 3

= L(λ ) = L0 + L1λ + L2λ 2 + L3λ 3

Given a point p = (x,y,z) in global coordinates, finding the roots
{

λ i

}
i∈{1,2,3}

of L(λ )

with λ ∈ Iλ will give the plane in the family passing through the point p and thus
λ (x,y,z) coordinate of the point in the prism. Once the λ is determined the α coor-
dinates are easily found inverting the baricentric coordinates in the triangle on points
vi(λ ) = vi +λni, vj(λ ) = vj +λnj, vk(λ ) = vk +λnk as shown in equation (2.2) (chap-
ter 2).

Both Q(β,λ ,µ) = 0 and L(x,y,z;λ ) = A(λ )x + B(λ )y +C(λ )z + D = 0 are generally
cubic (however there are degenerate cases). To solve symbolically one may using Car-
dano’s method, however it has not been possible to overcome the numerical instabilities
of such method. Furthermore, until now the concept of selecting the appropriate root
λ ∈ Iλ is easy if one is guaranteed that the point is on/near the surface and inside the
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prism. In the boolean algorithm one has to test points from other surfaces and from other
prisms. To overcome these difficulties the implementation uses a slightly different ap-
proach. Instead of defining the λ family of planes L(x,y,z;λ ) one defines the λ family
of normals to these planes, which is quadratic:

nL(λ ) =
(
vj(λ )−vi(λ )

)× (vk(λ )−vi(λ ))

Given a point p = (x,y,z) in global coordinates the equation determining λ becomes the
(generally) cubic:

E(λ ) = nL(λ ) · (p−vi(λ )) = 0

Furthermore the the dot product of nn(λ ) = nL(λ ) · nL(0) is a (generally) quadratic
function: The study of this function gives insight on the structure of the prism:

• If deg(nn(λ )) is zero the three normals are parallel to each other. In this case
E(λ ) is linear.

• If the degree on deg(nn(λ )) = 1 then two normals are parallel and the plane family
L(λ ) will ”flip” once, nn(λ ) = 0 will give the λ̃ coordinate of the ”flip”. In this
case E(λ ) is quadratic. If λ̃ < 0 the prism is positive convex and only λ̃ < λ < ∞

are considered. Otherwise it is negative convex and −∞ < λ < λ̃ .

• If the degree on deg(nn(λ ))= 2, E(λ ) is cubic and depending on the discriminant(nn):

– If discriminant(nn) = 0 the three normals will meet at one point and L(λ )
will ”flip” there. nn(λ ) = 0 will give the λ̃ coordinate of the ”flip”. The case
is similar to the quadratic except E(λ ) is cubic. If λ̃ < 0 the prism is positive
convex and only λ̃ < λ < ∞ considered. Otherwise it is negative convex and
−∞ < λ < λ̃ .

– If discriminant(nn) > 0 the nn(λ ) = 0 will give two λ̃ coordinate of the
”flips”. If both are negative, the prism is positive convex and max(λ̃ ) < λ <
∞. If both are negative, the prism is negative convex and −∞ < λ < min(λ̃ ).
Otherwise it is not convex and min(λ̃ ) < λ < max(λ̃ ).

– If discriminant(nn) < 0 there are no ”flips” and E(λ ) will have one real root
and two imaginary roots.

The information is combined by the study of the E(λ ): slope, E(λ )3 ≶ 0; flex point,
d2E(λ )/dλ 2 = 0; and relative max and min, dE(λ )/dλ = 0 to permit the appropriate
selection of λ
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Equation Simplification The original formulation of the coordinate conversion (9.3)
may be used symbolically, substituting α(β,λ ,µ) in F(α,λ ) = 0, obtaining

F(β,λ ,µ) = F(α(β,λ ,µ),λ ) = 0,

then use Q(β,λ ,µ) = 0 to eliminate λ by resultant

F(β,µ) = Resλ ,0(F(β,λ ,µ),Q(β,λ ,µ)) = 0.

The intersection equations are now reduced to two equations in the local coordinates of
prism E {

F(β,µ) = 0
G(β,µ) = 0

.

Conceptually, one may proceed further, and use the parametric form of the surface µ =
µG(β) and reduce the intersection to a curve in the barycentric coordinates β of prism
E.

FG(β) = F(β,µG(β)).

Given any line in the barycentric coordinates β (eg: a linear constraint) one may by root
finding compute the intersection point. However, due to the procedural nature of µG(β)
one may only proceed numerically. The intersection between the surface of patch A and
a border (ie. β2 = 0) of B may be fully developed symbolically by plugging the rational
µ(β1) into F(β1,µ) obtaining FG(β1) = F(β1,µG(β1)).
Notice one may have also proceed by resultants and define:

FG(β) = Resµ,0(F(β,µ),G(β,µ)) = 0

Even with the aid of computer algebra systems (see appendix A), the symbolic develop-
ment of such polynomials for a pair of generic patches, has been found too cumbersome.
On the other hand the computation of such polynomials for each specific pair of patches
is too time consuming at implementation level.
Symmetrically the same intersection curve may be defined in domain α of prism D.

Intersection Tracing

The intersection points between the boundary of one patch and the surface of the other
may be formulated as the roots of univariate polynomials, albeit of high degree:

FG(β1) = 0, FG(β2) = 0, FG(β3) = 0, GF(α1) = 0, GF(α2) = 0, GF(α3) = 0.

Methods to approximate all the roots of a polynomial exist. This is a powerful starting
point for a topologically accurate tracing[BX97] of the intersection curve. Under the
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condition FG(β) = 0 one could determine its singular points ∇FG(β) = 0, its βi-extreme
points ∂FG(β)/∂βi = 0, and its flex points Hβ (FG(β)) = 0. Example of such tracing on
simpler polynomials may be found in appendix A. However this symbolic development
is premature due to symbolic complexity and implementation cost.
In a prototype implementation a purely numerical approach has been used. Given a
certain point β, in E barycentric coordinates (Fig. 9.2):

1. compute the height µ along the interpolated normal of the surface G using the
procedural form µ = µG(β);

2. solve Q(β,λ ,µ) = 0 for λ by root finding and selecting λ ∈ Iλ ;

3. compute the corresponding barycentric coordinates in prism D by α = α(β,λ ,µ);

4. Compute in F(α,λ ).

This procedure effectively computes FG(β). Furthermore, the membership of the point
in the interior of prism D is determined. The computation may be used iteratively with a
numeric root finding algorithm (such as the false position method) to find an intersection
point (FG(β) = 0) along any line segment in the β barycentric domain.
Operationally, the barycentric domain of both prisms is subdivided. The particular subdi-
vision is not important, for simplicity the standard decomposition along iso-coordinates
is used (Figure 9.3a).

Figure 9.3: Subdivision along: (a) iso-coordinates; (b) barycenter; (c) orthocenter. Fig-
ure created by the author for [BPP+08].

Without loss of generality consider the prism E, the same operations are symmetrically
done in the other prism D. For each vertex of the subdivision the corresponding value
of the surface scalar function FG(β) is computed. Each sub-triangle may either have no
sign change (even number of intersections) or a sign change on two sides (odd number of
intersections). A simplistic approach is used and only one intersection in case of a sign
change is searched. For each intersection point one computes and stores the barycentric
coordinates β, the height µ , and the corresponding coordinates α and λ in the other
prism.
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All intersection points in the same sub-triangle will be considered in the same connected
component of the intersection, thus a tracing of the intersection curve is possible. For
the correctness of next steps it is important that: (1) the trace of the intersection is done
on both prisms; and; (2) both tracings contain the same points. (Figure 9.4, 9.5 and 9.6)
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Figure 9.4: Tracing the intersection on both domains. Figure created by the author
for [BPP+08].

An advantage of this simplified algorithm is that the topology of the intersection in each
sub-triangle is the same as the intersection between two triangles and apt to be processed
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(a) (b)

(c) (d)

Figure 9.5: Tracing the intersection points on both domains: (a,b) a closed intersection
curve between two A-patches; (c,d) two unconnected segments of the intersection curve.
Image generated by the author using the prototype software [BPP+08].
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(a) (b)

(c) (d)

Figure 9.6: Plot and trace of the intersection of two patches: (a) both patches in wire-
frame, subdivision used in the numeric algorithm is shown; (b) first patch; (c) second
patch; (d) detail of intersection, notice the point is more accurately located (by the nu-
meric algorithm) while the surface is a triangular approximation with same scale of the
subdivision. Image generated by the author using the prototype software [BPP+08].

by the Boolean algorithm described in section 9.2. Topological errors are possible but
their size is limited by subdivision granularity. (Figure 9.7)

Triangulation and New Patch Construction

The final step of our intersection algorithm is to reconstruct triangular (and hence scaf-
fold) support, conforming to the topology of the intersection curve, for all the prism
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Figure 9.7: Topological approximation. Figure created by the author for [BPP+08].

A-patches, that constitute the result of the Boolean operation. Since the topology of the
interesection curve is either an open or a closed curve in both the patch domains, the
necessary conforming triangulation can easily be affected in either or both domains.
In both the top and bottom rows of Figure 9.8, the leftmost figures show the intersection
topology of the two A-patches (shaded differently). The middle figures (top and bottom)
depict the result of the union operation . The rightmost figures, show the patch decom-
position into triangles and quads. The quads are further subdivided into two triangles,
using any diagonal. The prism scaffolds are easily erected on each triangle based on the
normals defined at the vertices. Note, for vertices lying on the intersection curve, there
exist two vertex normals (one from each initial A-patch). Hence these vertices are part
of two prism scaffold edges.
Note that two adjacent prism scaffolds may intersect each other, since the resulting
patches are no longer C1.
Consider the prism D of patch A with all traces of the intersection curves given by in-
tersecting patches Bi. The next step is to triangulate the base barycentric coordinates
in a way to contain the piecewise linear traces of the intersections. In the prototype
implementation, the triangulation is obtained using, in a hierarchical manner, the same
subdivision scheme used for the intersection finding . The largest subdivisions without
intersections are selected as they are. The sub-triangles of smallest size, containing the
intersection trace, are triangulated by linking the intersection points to the vertexes of the
sub-triangle (Figure 9.9(a)). Additional operations are needed if a sub-triangle contains
more than one trace. Then the original sub-triangles of the subdivision are aggregated
to build a new regular triangulation of the result surface of the boolean operation (Fig-
ure 9.9(b) and 9.10).
This triangulation scheme is not very sophisticated but it is the most compatible with the
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Figure 9.8: Examples of conforming triangular supports of the prism A-patches that
constitute the union of original twin A-patches. Shown are parts of the scaffolds of the
A-patches for two different topologies of the intersection curve. The triangulation of the
quad patches are not shown, just to maintain picture clarity. Figure created by Na Lei
for [BPP+08].

current tracing method that already generates the sub-triangles. As mentioned there are
more sophisticated tracing methods where the singular, extreme and flex points of the
curve are considered. In this case a very sophisticated scheme for triangulation may be
adopted. For each curve point not only the coordinates are computed but the local curve
tangent. Then the triangulation is operated in BSP (Binary Space Partition) [Nay90]
style using the secants between consecutive points and the tangents. At first approxi-
mation the intersection curve is piecewise linearly approximated by the secants and the
triangles classified as over/under the intersection along this approximation. Notice how-
ever that the real curve segment is contained only by the triangle between the secant
and the extended tangents(see figure 9.11). One may proceed further and classify this
triangle as a possible loci of a refinement. Indeed calculating any other curve point in
this triangle one may split locally and create a local refinement and a local classification.
This refinement may be applied locally at will producing a converging approximation of
the curve. These scheme may be used in a computational framework where the approx-
imation is refined progressively depending on the actual need.

Any triangulation on the barycentric domain, corresponds to a triangulation of the sur-
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∂P⋂Q1

∂Q1⋂P=∂Q2⋂P

P⋂Q1

∂P⋂Q2

(a) (b)

Figure 9.9: Triangulation: (a) local triangulation along trace; (b) triangles aggregation.
Figure created by the author for [BPP+08].

face. For each point αl, corresponds a λl = λF(αl) and a vl = D(λl)αl.
The normal for a point not belonging to the intersection is the normal to the surface of
the patch n(F)

l = T−1
D ∇F(αl,λl) (see eq. 8.9).

Special care must be given to the normal of an intersection point. This point belongs to
both surfaces patches. The intersection curve has both the normal n(F)

l to the surface of
patch A and the normal n(G)

l = T−1
E ∇G(αl,λl) to the surface of patch B. The intersection

curve has infinite normals in the span nl = αn(F)
l + βn(G)

l . The tangent to the curve is
tl = n(F)

l ×n(G)
l . Two options may be considered:

• The point will belong to both the new patch set generated by the split of patch A
and of patch B. The point will have two normals defined by the respective patch
surface normals n(F)

l and n(G)
l . However a new kind of prismatic patch must be

defined with ”sharp” boundary (see figure 9.12(a)(c)) and 9.13(a)(b)(c)).

• The point will be identified on both patches and an unique normal in the span is
used (e.g. nl = 0.5n(F)

l +0.5n(G)
l ). The resulting patch will approximate ”smoothly”

the sharp boundary at the intersection. By construction, its effect is limited to the
sub-triangles of highest resolution (see figure 9.12(b)(d) and 9.13(d)(e)(f)).

Given a triangulation T of the patch A the new patch set may be built simply by re-
applying the prismatic A-patch construction algorithm as in Chapter 8 (see figure 9.12
and 9.13).



i
i

“main” — 2008/10/19 — 20:00 — page 142 — #160 i
i

i
i

i
i

142 CHAPTER 9. BOOLEAN OPERATIONS

(a) (b)

(c) (d)

Figure 9.10: Triangulation of two patches: (a) wireframe; (b) solid; (c) second patch;
(d) the exterior of first patch and the interior of the first patch, trimmed along intersec-
tion.Image generated by the author using the prototype software [BPP+08].

9.4 Examples and Applications

Simple Example In figure (9.13) a sample run with the prototype implementation is
shown. Two shells (blue B and green G) are given with a single component intersec-
tion curve. Both shells where spheroids of four patches each. The intersection curve
is plotted on patch and subdivision boundaries. Then a piecewise linear tracing of the
intersection curve interpolates the intersection points. Along the intersection curve seg-
ments the sub-triangles are split. Then for each new triangle a new scaffold is built with
the adjacent intersection points and the calculated normals therein. In figure (9.13(a)(d))
all the patches exterior to the other shell are selected by the boolean algorithm to pro-
duce the shell of the boolean union of both shells. In figure (9.13(b)(e)) all the patches
interior to the other shell are selected and the normals flipped (boolean complement) by
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Figure 9.11: Alternative progressive tracing and triangulation. Figure created by the
author for [BPP+08].

the boolean algorithm to produce the shell of the boolean intersection of both shells. In
figure (9.13(c)(f)) all the patches of the green shell interior to the blue shell and all the
patches of the blue shell exterior to the green shell are selected and the normals flipped
for the patches of the green shell to produce the shell of the boolean difference B−G.
In the first set of examples (9.13(a)(b)(c)) both normals, one for each original shell, are
used and the resulting edges are sharp. However the definition of sharp sided prism
A-patch is not well defined and at high resolution there is a gap between the patches
along the intersection curve outside the intersection points. In the second set of exam-
ples (9.13(d)(e)(f)) there is a common normal (e.g. nl = 0.5n(F)

l +0.5n(G)
l ) and there is

no gap between on the intersection curve, however the resulting shell is approximated
and smoothed on all patches along the intersection.

Stress test In this example we show the Boolean union produced by two very similar
objects P1 and P2, whose prism scaffolds are displayed in Figures 9.14a and 9.14b, to-
gether with the intersection curves drawn on both surfaces. The resulting triangulated
subpatches are displayed in Figure 9.14c, whereas the resulting object P1∪P2 is shown
in Figure 9.14d.
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(a) (b)

(c) (d)

Figure 9.12: New patch construction with new scaffold prisms: top row (a) (b), the
exterior of blue patch and the interior of green patch w.r.t. the intersection curve (e.g.
boolean difference); bottom row (c) (d), the exterior of both patches (e.g. union); left
column (a) (c), two new separate normals for each intersection point and sharp edge;
right column (b) (d), single blended for each intersection point normal and smooth edge.
Image generated by the author using the prototype software [BPP+08].

Molecular Models The prototype implementation has been used to compute the ac-
tual intersection and union in the rest configuration of two ligands proteins and the re-
sulting complex after the docking. Each molecular model includes the solvent excluded
surface (SES) [IBR98, STHH90, BC00, BZ06, ZXB06] and is calculated using meth-
ods similar to chapter 5 by the TexMol program. Each ligand model has a number of
patches in the order of ten thousands. The intersection curve (in purple) of the two
ligands has a small geometry with very complex multi component topology. This is
a very unfavorable situation for the prototype algorithm. In figures 9.15 and 9.16 the
docking of α-Chymotrypsinogen (1CGI-A) and the human pancreatic secretory trypsin
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(a) (b) (c)

(d) (e) (f)

Figure 9.13: Boolean operations on two simple shells: (a)(d) union; (b)(e) intersection;
(c)(f) difference; (a)(b)(c) separate normals at intersection; (d)(e)(f) blended normal at
intersection. Image generated by the author using the prototype software [BPP+08].

inhibitor (kazal type) variant (1CGI-B) is shown. The models have 64208 and 28852
patches respectively. In figures 9.17 and 9.18 the docking of Trypsin (1PPE-A) and the
Trypsin inhibitor CMT-1 (1PPE-B) is shown. The models have 12756 and 5872 patches
respectively. In figures 9.19 and 9.20 the docking of Calmodulin (1CKK-A) and RAT
CA2+/Calmodulin Dependent protein kinase (1CKK-B) is shown. The models have
13680 and 5252 patches respectively.

Another application is the 3D printing of physical models of molecular models which
have seen increasing use in bio-chemistry kits, and more recently in tangible augmented
interfaces, for experiential understanding of the complexity of molecular interfaces,
especially in docked complexes. Several CAD operations need to be performed on
molecular models, including Boolean set operations, thereby allowing, for example,
the unioning of bonds, and differences to create holes, before the 3D auto-fabrication
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process[GSS+04].
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(a) (b)

(c) (d)

Figure 9.14: (a) The argument object P1, drawn with the associated prisms. (b) The argu-
ment object P2. (c) The triangulated subpatches between the intersection curves. (d) the
object P1∪P2. Image generated by the author using the prototype software [BPP+08].
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(a) (b)

(c) (d)

Figure 9.15: Global view of boolean operations between 1CGI-A and 1CGI-B ligands:
(a)union; (b) Intersection; (c)(d) difference.Image generated by the author using the
prototype software [BPP+08]. Original molecular model courtesy of CVC at ICES.
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(a) (b)

(c) (d)

Figure 9.16: Detail view of boolean operations between 1CGI-A and 1CGI-B ligands:
(a)union; (b) Intersection; (c)(d) difference. Image generated by the author using the
prototype software [BPP+08]. Original molecular model courtesy of CVC at ICES.
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(a) (b)

(c) (d)

Figure 9.17: Global view of boolean operations between 1PPE-A and 1PPE-B ligands:
(a) union; (b) Intersection; (c)(d) difference. Image generated by the author using the
prototype software [BPP+08]. Original molecular model courtesy of CVC at ICES.
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(a) (b)

(c) (d)

Figure 9.18: Detail view of boolean operations between 1PPE-A and 1PPE-B ligands:
(a) union; (b) Intersection; (c)(d) difference.Image generated by the author using the
prototype software [BPP+08]. Original molecular model courtesy of CVC at ICES.
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(a) (b)

(c) (d)

Figure 9.19: Gloabal view of boolean operations between 1CKK-A and 1CKK-B lig-
ands: (a) union; (b) Intersection; (c)(d) difference. Image generated by the author using
the prototype software [BPP+08]. Original molecular model courtesy of CVC at ICES.
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(a) (b)

(c) (d)

Figure 9.20: Detail view of boolean operations between 1CKK-A and 1CKK-B ligands:
(a) union; (b) Intersection; (c)(d) difference.Image generated by the author using the
prototype software [BPP+08]. Original molecular model courtesy of CVC at ICES.
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Chapter 10

Conclusion

Algebraic modeling has never been the main mean for computer based geometric rep-
resentation. When used in literature, for example in [CS04, LB02, BDST04, BLMP97,
BDST04, BCCSX05, ZXB07, ZXB06][ZnBS05, KOB+04, BYA03], the representation
scheme was tailored to the actual problem and operations implemented ad-hoc for a
particular reconstruction, operation, or computation needed for the problem. There is a
wide range of schemes and none of them particularly flexible in terms of degree, scaf-
fold type, dimensionality and interoperability. Notwithstanding the current limitations
there is evidence of distinctive advantages. This thesis tries to systemize current repre-
sentation schemes under an unified point of view. To date the use of algebraic geometry
is still in developing phase and far from being a major element in current geometric
systems. Much research work and engineering is needed to develop a general algebraic
representation and a rich toolset of operations.

10.1 Results

The principal result [BPP+08, BPP07] and practical objective of this thesis are symbolic-
numeric methods for Boolean operations on the algebra of curved polyhedra[Req77,
Req80, LTH86] whose boundary is triangulated with algebraic patches [Dah89, BCX94,
BCX95, BCX95, BX99b, BXHN02, BCX97, Guo92]. The method includes a robust
method to trace the intersection curves between two triangular prismatic A-patches,
while at the same time locally refining the support triangulation of the result. It is not
the ”ultimate” solution, boolean operation on curved geometry is yet an open stubborn
research problem [KGMM97, Lin00, BKZ01, KCF+02, GMF06]. Though the mathe-
matical solution exists in algebraic geometry [Abh90] few works refer to it explicitly.
The development of Boolean set operations is a necessary step for the development of
an integrated software package for algebraic finite elements.

155
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The prototype implementation provides for the computation of Boolean operations be-
tween two free-form solids, modeled by prism A-patches, however, the general tech-
nique is applicable to any A-patch scheme. For example, using tetrahedral A-patches the
scaffolding, boolean algorithm, the triangulation and new patch construction are much
more complex, but, the polynomials involved are much simpler to manipulate symboli-
cally. From the prototype implementation several important facts have been learned:

• Intersection curve point finding is very accurate with current methods.

• As mentioned, tracing may further enhanced using more sophisticated algebraic
methods.

• Current triangulation scheme is poor regarding the number of new triangles (and
patches) produced. The quality of the triangles is acceptable but not optimal.

• When input patch sets have very different granularity numerical problems are
greatly amplified.

• Performance has not been an objective, however it has been found to be compara-
ble to a standard polyhedral boolean algorithm applied by approximating the input
patches with a polyhedral surface of same granularity as the subdivision used in
the tracing phase. The resulting object of the polyhedral boolean algorithm is less
accurate then the output of the triangulation phase (without new patch construc-
tion). This is due to the more accurate point finding (see figure 9.6d).

Hopefully in the future this work may be further developed:

• The implementation code should be further optimized, numerically solidified and
organized. It should then be integrated in a geometric application, for example the
geometric language PLaSM [Pao03, Pa]. Further improvements in the efficiency
involve spatial progressive indices, and multiresolution evaluators, and with local
refinement.

• Apply the method to a broader set of real world application and examples. Oper-
ating on both acquired models and generated ones. Also, the extension to other
A-patch schemes may further enhance the real world use.

• Develop symbolic and topologically exact methods on tracing and triangulation.
Under this point of view the ongoing work with the integration of PLaSM [Pao03,
Pa] with GANITH [BR90b, Por07b] (see appendix A) enables to interoperate nu-
merical and symbolic methods easily.

Another objective of the thesis has been the rationale to present the algebraic model-
ing under an unified point of view. This is the result of an ongoing knowledge transfer
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between the CVC (Center for Computational Visualization) of the ICES (Institute of
Computational Engineering and Sciences) at the University of Texas at Austin and both
the PLM group and the SICS at the University Roma Tre. Current A-splines and A-patch
representation schemes are too rigid (i.e. fixed support domain, degree, and dimension-
ality) to constitute a general geometric representation carrier. Hopefully this thesis will
help in the further research and engineering towards a general and flexible algebraic
modeling.

10.2 Wider Context

At the PLM group at the University ”Roma Tre” there is ongoing work to the develop-
ment of algorithms and software that couple molecular- and cellular-scale simulations of
biological systems, in order to understand the impact of chemical and biological agents
on synaptic transmission at NMJs (Neuro-Muscular Junctions). Previous computational
work in this area has either considered the molecular components of the NMJ in isolation
or has used highly simplified models of the NMJ with only gross molecular information.
Unfortunately, such methods do not provide a robust framework for understanding the
physiological effects of anti-cholinergic agents. For example, modeling of the isolated
components ignores the possibility of competition and compensation between the multi-
ple biomolecular targets present in the NMJ. Likewise, models which use only the gross
features of the NMJ morphology rely on parameterization against existing experimental
data which severely restricts the range of conditions under which the models can work
reliably.

The first step in this modelling activity is the collection of structural data for the NMJ
and its biomolecular components. All of data from high resolution tomography are
assembled into a finite element mesh. The goal of this initial meshing step is to provide
a coarse geometric description of the domain to serve as a template for placement of
the more accurate biomolecular structural information. AChE and AChR molecules are
treated as spherical cavities in the NMJ domain. These spherical cavities must be “filled”
with detailed biomolecular finite element meshes based on structural models obtained
from existing X-ray data.

One of the objectives of the method presented in this thesis is to contribute to a com-
putational framework [BDP08] where to generate multi-scale detailed meshes, driven
by structural data from high-resolution tomography, and to support highly efficient fi-
nite element algorithms and software (in this case to simulate the diffusion of ACh in
the NMJ). Furthermore, the large size of a bio-simulation mesh demands the ability to
coarsen meshes through surface and volumetric simplification methods. The effective-
ness of these types of adaptive finite element techniques rests on fast and robust low-level
mesh primitives, including Booleans operators, for both refinement and unrefinement.
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Another interesting future direction consists in the direct modeling within both space and
time dimensions. In fact, the implicit geometric approach used here and the associated
linear scaffolding can be extended to work in higher dimensions. The most flexible
finite element techniques for evolution equations are based on spacetime discretizations,
whereby the space and time domains are subdivided into finite elements. Evolution
equations are then discretized in both space and time on each element through low-
order polynomial approximation and numerical quadrature. Treating space and time
in a unified way in the discretization provides a framework for both mesh refinement
and coarsening where needed in both space and time, driven by rigorously-derived a
posteriori error indicators.
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Appendix A

Algebraic Geometry in GANITH and
PLaSM

PLaSM [Pao03, Pa], (Programming LAnguage for Solid Modeling) is a design language,
strongly influenced by FL (programming at Function Level), a novel approach to func-
tional programming developed by the Functional Programming Group leaded by John
Backus and John Williams at the IBM Research Division in Almaden in the first nineties
[BWW90, JWW90]. PLaSM is a geometric extension of FL, allowing for a powerful al-
gebraic calculus with dimension-independent geometric objects, that include polyhedral
complexes and parametric polynomial and rational manifolds (curves, surfaces, curved
solids, and higher-dimensional objects). In this environment for geometric computa-
tions, a complex shape is generated as an assembly of component shapes, highly depen-
dent from each other, where (a) each part may result from computations with other parts,
(b) a generating function is associated to each, (c) geometric expressions may appear as
actual parameters of function calls.

The design of PLaSM, the open-source Programming Language for Solid Modeling,
started in 1992, long time before the internet-based access to virtual worlds was even
imagined. The second optimized and extended version of the language interpreter, writ-
ten in Common Lisp, and characterized by an unique multidimensional approach to
geometric modeling [PPV95], was available in 1994. The version 3, extended with ani-
mations, colors and cameras, and exporting to OpenInventor and VRML, came in 1999.
The following version 4 was completely rewritten in Scheme and C++, with javascripted
animations. The novel version 5, introduced here, is being deployed with a fast geomet-
ric engine and with rewriting optimizations in the interpreter, aiming to automatically
exploit multi-core processing. The XGP (eXtreme Geometric Processing) engine is us-
ing a novel multidimensional decompositive representation, based on progressive BSP
trees [SPP07] and on the Hasse graph of the generated d−complex; at upper level is us-
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ing HPC (Hierarchical Polyhedral Complex) structures. The language allows for power-
ful operations, including progressive Booleans, the Cartesian product of cell complexes,
the extraction of their k−skeletons (k = 1, . . . ,d), and the Minkowski sum of a polyhe-
dral complex with parallelotopes, allowing for sweeping and offset. Current extensions
aim to encode the object topology as a sparse matrix, using a tensor representation of
the chain complex underlying the cell decomposition [ADS07].
The GANITH algebraic geometry toolkit [BR90b, Por07b] manipulates arbitrary degree
polynomials and power series. It can be used to solve a system of algebraic equations
and visualize its multiple solutions. Example applications of this for geometric mod-
eling and computer graphics are curve and surface display, curve-curve intersections,
surface-surface intersections, global and local parameterizations, implicitizations, and
inversions. It also incorporates subsystems for techniques for A-splines, multivariate
interpolation and least-squares approximation to an arbitrary collection of points and
curves.
There are four major components of GANITH: the user interface, controller, numerical
and graphics subsystem, and the algebra subsystem. The first three components reside
in one process, and the algebra subsystem in another process. The algebra subsystem is
written in Common Lisp, and the others in C. All graphics and numerical calculations
are performed in C, while symbolic and exact calculations are done in Lisp. The two
processes communicate with each other using Unix sockets, and may run on different
hosts.
The main functionalities of Ganith are:

• Graphic visualization of points, curves, surfaces in both parametric and implicit
form

• Symbolic algebraic manipulation of arbitrary degree polynomials with infinite
precision rational numbers.

• Subsystems for ad-hoc functionalities such as:

– A-splines

– Interpolation

– Parametrized Families

– Scattered Data

– CT Data Visualization

The author has recently ported the GANITH [BR90b, Por07b] algebra subsystem to
PLT [PLT] Scheme [Var98, ASS84] the host language of PLaSM [Pao03, Pa] and inte-
grated in a prototype version of PLaSM. This appendix is actually the first documenta-
tion on this project. It is the hope of the author to further develop this work by porting and
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integrating in PLaSM both the visualization techniques of Ganith and the A-spline/A-
patches techniques described in this thesis including the boolean operators. This would
result in a sophisticated environment and programming language to manipulate symbol-
ically and numerically both parametric and algebraic geometry.

A.1 Polynomial Operations

All the operations on the euclidean ring of polynomials are implemented and integrated
into the PLaSM language. The algebra subsystem represents polynomials of arbitrary
degree and number of variables in Recursive Canonical Form (RCF). In this form, a
polynomial in the variables x1, . . . ,xn is represented either as a constant, or as a polyno-
mial in xn whose coefficients are (recursively) polynomials in the remaining variables
x1, . . . ,xn−1. The variable xn is sometimes referred to as the main variable. A strength of
this form (for purposes of implementation) is that multivariates “look like” univariates,
making it easy to modify algorithms for univariate polynomials to handle multivariates.
In PLaSM, RCF polynomials have been integrated by defining a new data-type. The
constructor takes the string representation of the polynomial and converts it into the
internal RCF representation. The destructor takes a RCF object and outputs it string
representation. Variables may be composed of multiple characters.

DEF APOL=mkrcf : ’ x1∧3−3∗x1∧2∗x2+3∗x1∗x2∧2+1 ’ ;APOL;
% RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 %

UKRCF:APOL;
% ’3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 ’ %

ISRCF :APOL;
% True %

Numerical constants are automatically considered polynomials. Predicates are available
to recognize them.

ISRCF : 6 6 6 ;
% True %

UKRCF: 4 2 ;
% ’42 ’ %

RCF CONSTANT ? : 1 4 9 ;
% True %

RCF CONSTANT ? :APOL;
% F a l s e %

RCF ZERO ? : 1 ;
% F a l s e %
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RCF ZERO ? : 0 ;
%True%

All the operation in the polynomial ring are available and the operator symbols are over-
loaded (** is power elevation).

3∗APOL + MKRCF: ’ x1+x2 ’ − 1 ;
% RCF p o l y : 9∗x1∗x2∧2−9∗x1∧2∗x2+x2+3∗x1∧3+x1+2 %

APOL ∗ MKRCF: ’ x3+1 ’ ;
% RCF p o l y : 3∗x1∗x2∧2∗x3−3∗x1∧2∗x2∗x3+x1∧3∗x3+x3+3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3

+1 %

(APOL∗∗ 3) ;
% RCF p o l y : 27∗x1∧3∗x2∧6−81∗x1∧4∗x2∧5+108∗x1∧5∗x2∧4+27∗x1∧2∗x2∧4−81∗x1∧6∗

x2∧3−54∗x1∧3∗x2∧3+36∗x1∧7∗x2∧2+45∗x1∧4∗x2∧2+9∗x1∗x2∧2−9∗x1∧8∗x2−18∗
x1∧5∗x2−9∗x1∧2∗x2+x1∧9+3∗x1∧6+3∗x1∧3+1 %

Polynomial is an Euclidean ring, the result of a division dividend/divisor is defined
by the pair (quotient,remainder) where dividend = quotient ∗divisor + remainder and
degree(remainder) < degree(divisor). Division is performed w.r.t. the main variable.
The results are undefined if the division cannot be performed. Pseudo-division is also
supported, pseudo-division of A by B is the same as division of (bm−n+1)∗A by B, where
b = ldc f (B).

APOL RCF DIVIDE MKRCF: ’ x2∧2+1 ’ ;
% < RCF p o l y : 3∗x1 , RCF p o l y : −3∗x1∧2∗x2+x1∧3−3∗x1+1 > %

APOL∗∗2 RCF DIVIDE APOL;
% < RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 , 0 > %

APOL RCF PDIVIDE MKRCF: ’ x2∧2+1 ’ ;
% < RCF p o l y : 3∗x1 , RCF p o l y : −3∗x1∧2∗x2+x1∧3−3∗x1+1 > %

APOL∗∗2 RCF PDIVIDE APOL;
% < RCF p o l y : 81∗x1∧4∗x2∧2−81∗x1∧5∗x2+27∗x1∧6+27∗x1∧3 , 0 > %

It is possible to inspect a polynomial, that is extract variables and their coefficients:

rc f vars(poly) list of vars in poly;

rc f coe f (poly,var,e) the coefficient of vare in poly, 0 if var is not present in poly, var
need not be the main variable of poly;

The last two examples is actually a little PLaSM program: T EST COEFS 0 builds
the cartesian product of APOL with its variables and with integers 0,1,2,3. Then the
coefficient is applied on all combinations.
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RCF COEF:<MKRCF: ’ x1+x2+x1∗x2−1 ’ , ’ x1 ’ ,1 >;
% RCF p o l y : x2+1 %

RCF VARS :APOL;
% < ’ x2 ’ , ’ x1 ’ > %

DEF TEST COEF 0=CART:<<APOL>,RCF VARS : APOL, 0 . . 3>; TEST COEF 0 ;
% < < RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 , ’ x2 ’ , 0 > , < RCF p o l y : 3∗

x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 , ’ x2 ’ , 1 > , < RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2
∗x2+x1∧3+1 , ’ x2 ’ , 2 > , < RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 , ’
x2 ’ , 3 > , < RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 , ’ x1 ’ , 0 > , <
RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2∗x2+x1∧3+1 , ’ x1 ’ , 1 > , < RCF p o l y : 3∗x1
∗x2∧2−3∗x1∧2∗x2+x1∧3+1 , ’ x1 ’ , 2 > , < RCF p o l y : 3∗x1∗x2∧2−3∗x1∧2∗
x2+x1∧3+1 , ’ x1 ’ , 3 > > %

AA: RCF COEF : TEST COEF 0 ;
% < RCF p o l y : x1∧3+1 , RCF p o l y : −3∗x1∧2 , RCF p o l y : 3∗x1 , 0 , 1 , RCF

p o l y : 3∗x2∧2 , RCF p o l y : −3∗x2 , 1 > %

Various functions are available to extract useful properties of a polynomial:

rc f norm(poly) the norm of a polynomial, norm(poly) =
if (poly is constant) then |poly|
else sum of norm(coefficient-i) for i = 0,..,deg(poly);

rc f max norm(poly) the max norm of a polynomial max norm(poly) =
max of norm(coefficient-i) for i = 0,..,deg(poly);

rc f constant term(poly) the constant term of poly in the main variable;

rc f terms(poly) all the terms of poly in a list (a list of polynomials);

rc f total degree(poly) total degree of poly, i.e. the highest degree of any term (mono-
mial) in the polynomial;

rc f coe f f denom(poly) a number that when multiplied into poly, will cause poly to
have integer coefficients;

rc f coe f f gcd(poly) the gcd of all the coefficients of poly, assuming they’re integers.

RCF NORM:APOL;
% 8 %

RCF MAX NORM:APOL;
% 3 %

RCF CONSTANT TERM :APOL;
% RCF p o l y : x1∧3+1 %



i
i

“main” — 2008/10/19 — 20:00 — page 166 — #184 i
i

i
i

i
i

166 APPENDIX A. ALGEBRAIC GEOMETRY IN GANITH AND PLASM

RCF TERMS :APOL;
% < RCF p o l y : 3∗x1∗x2∧2 , RCF p o l y : −3∗x1∧2∗x2 , RCF p o l y : x1∧3 , 1 > %

RCF TOTAL DEGREE :APOL;
% 3 %

RCF COEFF DENOM : ( APOL / 3) ;
% 3 %

RCF COEF GCD : ( APOL∗ 5) ;
% 5 %

A polynomial may be evaluated on any variable. Furthermore any variable may substi-
tuted with another polynomial.

rc f evaluate(polyvval) Evaluate poly in variable v at value val. Return a new polyno-
mial that is the evaluated one. The new polynomial will not contain v. The value
val must be constant. For non-constant values use rc f substitute.

rc f substitute(polys list) Apply a variable substitution to all of poly’s variables. s list
is an associative list of pairs (vi, pi), where vi is a variable and pi is a polynomial.
The substitution vi == pi is applied for each i.

RCF EVALUATE:<MKRCF: ’ x1∧2−x1∗x2+1 ’ , ’ x1 ’ ,2 >;
% RCF p o l y : −2∗x2+5 %

AA: RCF EVALUATE : TEST COEF 0 ;
% < RCF p o l y : x1∧3+1 , RCF p o l y : x1∧3−3∗x1∧2+3∗x1+1 , RCF p o l y : x1∧3−6∗x1

∧2+12∗x1+1 , RCF p o l y : x1∧3−9∗x1∧2+27∗x1+1 , 1 , RCF p o l y : 3∗x2∧2−3∗
x2+2 , RCF p o l y : 6∗x2∧2−12∗x2+9 , RCF p o l y : 9∗x2∧2−27∗x2+28 > %

RCF SUBSTITUTE:<MKRCF: ’ x1∧2−x1∗x2+1 ’,<< ’ x2 ’ ,MKRCF: ’ x1+1 ’>>>;
% RCF p o l y : −x1+1 %

RCF SUBSTITUTE:<MKRCF: ’ x1∧2−x1∗x2+1 ’,<< ’ x2 ’ ,MKRCF: ’ x1 ’>,< ’ x1 ’ ,MKRCF: ’ x2 ’
>>>;

% RCF p o l y : x2∧2−x1∗x2+1 %

Moreover a polynomial has also a functional value and may be applied to values (eval-
uation) or other polynomials (substitution). In this case the lexicographical order of the
variables is considered when applying to multiple arguments. This capability opens in-
teresting possibilities when operating with higher-order functions in PLaSM. However
this capability is both incompatible with the optimized version of plasm where scheme
application is used whenever possible. Furthermore to operate with high order functions
it must use the fully lifted combinatorial environment (e.g. the definition of all PLaSM
combinators and the lambda substitution must refer PLaSM function application instead
of scheme’s one). The fully lifted environment is quite a hindrance to performance.
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IsFun :APOL;
% True %

( mkrcf : ’ x1+2∗x2 ’ ) :<1 ,2>;
% 5 %

( mkrcf : ’ x1+2∗x2 ’ ) :<mkrcf : ’ x2 ’ , mkrcf : ’ x1 ’>;
% RCF p o l y : x2+2∗x1 %

APOL:<3 ,2>;
% 10 %

APOL:<mkrcf : ’ y∧2 ’ , mkrcf : ’ y−1 ’>;
% RCF p o l y : y∧6−3∗y∧5+6∗y∧4−6∗y∧3+3∗y∧2+1 %

DEF TEST ( x : : TT) =K: x + ID ∗∗ K : 3 ;
TEST : 1 : 2 ;
% 9 . 0 %
TEST : ( mkrcf : ’ x1 ’ ) : ( mkrcf : ’ x2 ’ ) ;
% RCF p o l y : x2∧3+x1 %
TEST : ( mkrcf : ’ x1∧5+x2∧3 ’ ) : ( mkrcf : ’ x2∧2−x1∗x2 ’ ) ;
% RCF p o l y : x2∧6−3∗x1∗x2∧5+3∗x1∧2∗x2∧4−x1∧3∗x2∧3+x2∧3+x1∧5 %
( TEST : ( mkrcf : ’ x1∧5+x2∧3 ’ ) : ( mkrcf : ’ x2∧2−x1∗x2 ’ ) ) :<mkrcf : ’ u1u∧4−1 ’ , mkrcf : ’

v2n ’>;
% RCF p o l y : v2n∧6−3∗u1u∧4∗v2n∧5+3∗v2n∧5+3∗u1u∧8∗v2n∧4−6∗u1u∧4∗v2n∧4+3∗v2n

∧4−u1u∧12∗v2n∧3+3∗u1u∧8∗v2n∧3−3∗u1u∧4∗v2n∧3+2∗v2n∧3+u1u∧20−5∗u1u∧16+
10∗u1u∧12−10∗u1u∧8+5∗u1u∧4−1 %

A series of functions useful both for polynomial manipulation and algebraic geometry
(in addition to the ones in next section) are available:

rc f homogenize(poly,v) Return a homogenous version of poly using the new variable
v. Useful in algebraic geometry to find loci at infinity.

rc f rroots(poly) Returns lists of real roots of univariate poly.

rc f pdi f f (poly,v) The partial derivative of poly with respect to variable v.

rc f interpolate(points,vals,var,n) Return the polynomial p(var) such that p(var =
points[i]) = vals[i], with i = 0...n−1

rc f gcd(p1 p2) Return the greatest common divisor (GCD) of the two polynomials p1
and p2. Algorithm is from (Brown, JACM V18 #4 Oct 1971 pp478-504). The
presence of such algorithm enables operating on rational functions.

rc f primitive part(p) Primitive-part of polynomial p. The primitive part of a polyno-
mial is itself divided by its content (see below). The coefficients of the polynomial
returned will be relatively prime to each other.
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rc f content(p) The content of polynomial p. The content of a polynomial is the GCD
of its coefficients.

RCF HOMOGENIZE:<mkrcf : ’ x1∧2−x1∗x2+1 ’ , ’ x3 ’>;
% RCF p o l y : x3∧2−x1∗x2+x1∧2 %

RCF PDIFF:<mkrcf : ’ x1∗x2∧2+x1∗x2−2 ’ , ’ x2 ’>;
% RCF p o l y : 2∗x1∗x2+x1 %

RCF RROOTS : ( mkrcf : ’ x1−3 ’ ∗ mkrcf : ’ x1+3 ’ ∗ mkrcf : ’ ( x1−1)∧3 ’ ) ;
% < 3 , −3 , 1 .00000351322 , 1 .00000351322 , 0 .999992973551 > 5

DEF INT POLY= r c f i n t e r p o l a t e :<<−1 ,0 ,1 ,2 > , <1 , 0 , 1 , 2>, ’ z ’>; INT POLY ;
% RCF po ly : −1 / 3∗z∧3+z∧2+1 / 3∗z %

AA : ( r c f e v a l u a t e∼[K: INT POLY , K: ’ z ’ , ID ] ) :<−1 ,0 ,1 ,2 > ;
% < 1 , 0 , 1 , 2 > %

RCF GCD:<mkrc f : ’ x1∧2−1 ’ , mkrc f : ’ x1−1’>;
% RCF po ly : x1−1 %

RCF CONTENT : ( mkrc f : ’ 3 ∗x1∗ ( y2+ 2)∗ (3∗ z3∧2+ 2) ’ ) ;
% RCF po ly : 3∗x1∗y2+6∗x1 %

RCF PRIMITIVE PART : ( mkrc f : ’ 3 ∗x1∗ ( y2+ 2)∗ (3∗ z3∧2+ 2) ’ ) ;
% RCF po ly : 3∗z3∧2+2 %

A.2 Algebraic Functions

In addition to the fundamental operations on polynomials the algebra subsystem im-
plements a series of sophisticated algorithms typical of algebraic geometry. These
too have been ported to PLaSM, however the graphic visualization is still work in
progress. Furthermore the rational parameterization and the conversion between power
to Berstein/Bézier is still not effective. For these reason the images have been created
with GANITH while the computation output is in PLaSM whenever these function are
working properly.

Compactify, Resultant, Realify and Conicoid Parameterization

rc f compacti f y(p) Compactify the polynomial p which may be in two or three vari-
ables. If it is in two variables x,y, then it is homogenized with the variable z, and
the intersection of this surface with x2 +y2 +z2−1 is displayed (see figure A.1.a).
Otherwise a homogenizing variable w is used and the resultant of the homoge-
neous surface and x2 + y2 + z2 +w2−1 with respect to w, is displayed.
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rc f resultant(p1, p2,n,v) Compute the resultant Res(v,n)(p1, p2), that is, eliminate the
variable in n = 0 or reduce to a term of degree n. This is the fundamental operator
to compute intersections between algebraic varieties.

rc f reali f y2d(p) Compute and return the real and imaginary parts of a curve, and their
resultant. If p is a polynomial in two variables x and y, the substitution

x = x+ iw

y = y+ iz

is made; then the real and imaginary parts are computed, and their resultant w.r.t.
w is returned. Their resultant is a polynomial in three variables defining a surface,
which is displayed.

rc f param2dNv(poly,(v1, . . . ,vN),(u1, . . . ,uN−1),(p1, . . . , pN) Create a rational param-
eterization of the hypersurface of degree 2 and dimension N defined by the equa-
tion poly = 0. The (v1, . . . ,vN) are variables of the polynomial that define the
geometric space. The (u1, . . . ,uN−1) are the variables to be used for the parame-
terization. The (p1, . . . , pN) is an optional point on the surface to use as the base
of a parameterization. The result is an ordered list of pairs, with each pair corre-
sponding by position to a variable in vi. Each pair will be a list of two items, the
first being the numerator of the rational function for that variable, and the second
being the denominator. The numerator and denominator polynomials will be in
the variables of ui. In figure A.1.b shows both the rendering of the implicit curve
and its parameterization.

r c f c o m p a c t i f y : ( mkrcf : ’ x∧2+y∧2−1 ’ ) ;
% < < RCF p o l y : 26244∗y∧4+52488∗x∧2∗y∧2−13284∗y∧2−27216∗x∗y+26244∗x∧4−

39204∗x∧2+529 , RCF p o l y : 972∗y+2268∗x , RCF p o l y : −162∗y∧2−162∗x∧2+
23 > , < 7 , 3 > , < RCF p o l y : −z∧2+y∧2+x∧2 , < RCF p o l y : z∧2+y∧2+x∧
2−1 > > > %

r c f c o m p a c t i f y : ( mkrcf : ’ x∧2+2∗y∧2+3∗z∧2−1 ’ ) ;
% RCF p o l y : 16∗ z∧4+24∗y∧2∗ z∧2+16∗x∧2∗ z∧2−8∗ z∧2+9∗y∧4+12∗x∧2∗y∧2−6∗y∧2+4∗x

∧4−4∗x∧2+1 %

r c f r e s u l t a n t :<mkrcf : ’ x∧2+y∧2+z∧2−1 ’ , mkrcf : ’ y−z ’ , 0 , ’ z ’>>;
% RCF p o l y : 2∗y∧2+x∧2−1 %

r c f r e s u l t a n t :<mkrcf : ’ x∧2+y∧2+z∧2−1 ’ , mkrcf : ’ y−z ’ , 1 , ’ z ’>>;
% RCF p o l y : −z+y %

r c f r e s u l t a n t :<mkrcf : ’ x∧2+y∧2+z∧2−1 ’ , mkrcf : ’ x∧2+y∧2+ ( z−1)∧2−9 / 16 ’ , 0 , ’ z ’>;
% RCF p o l y : 1024∗y∧2+1024∗x∧2−495 %

r c f r e s u l t a n t :<mkrcf : ’ x∧2+y∧2+z∧2−1 ’ , mkrcf : ’ x∧2+y∧2+ ( z−1)∧2−9 / 16 ’ , 1 , ’ z ’>;
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% RCF p o l y : −32∗ z+23 %

r c f p a r a m e t e r i z e :<mkrcf : ’ 2∗x∗y+y∧2+1 ’ ,< ’ x ’ , ’ y ’>,< ’ u ’>>;
% < < RCF p o l y : −u∧2−1 , RCF p o l y : 2∗u > , < RCF p o l y : u , 1 > > %

r c f p a r a m e t e r i z e :<mkrcf : ’ x∧2+2∗y∧2+z−1 ’ ,< ’ x ’ , ’ y ’ , ’ z ’>,< ’ u ’ , ’ v ’>>;
% < < RCF p o l y : u , 1 > , < RCF p o l y : v , 1 > , < RCF p o l y : −2∗v∧2−u∧2+1

, 1 > > %

(A) (B.1) (B.2)

Figure A.1: a: Compactify in two variables: x2 + y2 − 1. b: Quadratic parameteri-
zation: (1) curve 2xy + y2 + 1; (2) surface x2 + 2y2 + z2 − 1. Image generated with
GANITH [BR90a].

Intersection

rc f intersect2e2d(p1, p2) Intersect two plane algebraic curves and display their points
of intersection, along with the curves. Given two plane curves p1(x,y) = 0 and
c2(x,y) = 0 the algorithm returns (pts aux) where:

pts = list of intersection points (x y), they may be repeated if multiple;

aux = is the list (res sgcd s11 s10 alpha) where:

res = resultant
subres = sgcd*(s11*y+s10)
alpha = plane transformation parameter

See figure A.2 for GANITH graphic output.
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r c f i n t e r s e c t 2 e 2 d :<mkrcf : ’ ( x∧2+y∧2)∧2+3∗x∧2∗y−y∧3 ’ , mkrcf : ’ ( x∧2+y∧2)∧3−4∗
x∧2∗y∧2 ’>;

% < < < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0
> , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0
, 0 > , < 0 , 0 > , < 0 , 0 > , < 0.181635632001 ,

0 .5590169748238133 > , < −0.181635632001 , 0 .5590169748238133 > , <
−0.769420884294 , −0.5590169943759334 > , < 0.769420884294 , −
0.5590169943759334 > > , RCF p o l y : 4096∗x∧18−2560∗x∧16+80∗x∧14 , <
RCF p o l y : 4∗x∧6 , RCF p o l y : −464∗x∧4+379∗x∧2−12 , y , RCF p o l y : −64∗
x∧6+124∗x∧4−4∗x∧2 , 1 > > %

r c f i n t e r s e c t 2 e 2 d :<mkrcf : ’ 2∗x∧4−3∗x∧2∗y+y∧2−2∗y∧3+y∧4 ’ , mkrcf : ’ ( x∧2+y∧2)∧3
−4∗x∧2∗y∧2 ’>;

% < < < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0
> , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0 , 0 > , < 0
, 0 > , < 0.191264461949 , 0 .5710907930166544 > , < −0.191264461949
, 0 .5710907930166544 > , < −0.734809903348 , 0 .3952342840395756 > ,

< 0.734809903348 , 0 .3952342840395756 > > , RCF p o l y : 729∗x∧24−2079
∗x∧22+10102∗x∧20−2743∗x∧18+986∗x∧16−1263∗x∧14+45∗x∧12 , < RCF p o l y :
x∧4 , RCF p o l y : 270∗x∧10−734∗x∧8+1242∗x∧6+205∗x∧4+319∗x∧2−12 , y ,
RCF p o l y : −27∗x∧12+430∗x∧10−832∗x∧8−176∗x∧6−240∗x∧4+9∗x∧2 , 1 > > %

(a) (b)

Figure A.2: Curve intersection: (a)
{
(x2 + y2)2 +3x2y− y3 = 0

}
∩ {

(x2 + y2)3 −4x2y2 = 0
}

; (b)
{

2x4−3x2y+ y2−2y3 + y4 = 0
} ∩{

(x2 + y2)3−4x2y2 = 0
}

. Image generated with GANITH [BR90a].

rc f intersect2e3d(p1, p2) Intersect the surfaces p1 and p2, displaying their curve of
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intersection. The intersection curve is projected onto a plane curve first, so this
object can be refined by changing the plane curve bounding box. Algorithm re-
turns (crv aux) where

crv = (res s1 s11 -s10)

aux = Transformation parameters (al pha,beta)

See figure A.3 for GANITH graphic output.

r c f i n t e r s e c t 2 e 3 d :<mkrcf : ’ z∧2−y∧3 ’ , mkrcf : ’ x∧2+y∧2+z∧2−1 ’>;
% < < RCF p o l y : 2197000∗y∧6−2129400∗x∗y∧5+2737800∗y∧5+1144260∗x∧2∗y∧4−

442260∗x∗y∧4+455679∗y∧4−368928∗x∧3∗y∧3+341496∗x∧2∗y∧3+294840∗x∗y∧3−
2548260∗y∧3+79218∗x∧4∗y∧2+1479870∗x∧3∗y∧2+1713150∗x∧2∗y∧2−1479870∗x∗
y∧2−1792368∗y∧2−10206∗x∧5∗y−594864∗x∧4∗y+20412∗x∧3∗y+1189728∗x∧2∗y−
10206∗x∗y−594864∗y+729∗x∧6+30618∗x∧5+909792∗x∧4−61236∗x∧3−1821771∗x∧
2+30618∗x+911250 , RCF p o l y : −148590∗y∧2+48006∗x∗y−67554∗y−1539∗x∧2−
157626∗x−3753 , RCF p o l y : 15730∗y∧3+378∗x∗y∧2+11259∗y∧2−3591∗x∧2∗y+
3591∗y+378∗x∧3+11259∗x∧2−378∗x−11259 > , < RCF p o l y : 2197000∗y∧6−
2129400∗x∗y∧5+2737800∗y∧5+1144260∗x∧2∗y∧4−442260∗x∗y∧4+455679∗y∧4−
368928∗x∧3∗y∧3+341496∗x∧2∗y∧3+294840∗x∗y∧3−2548260∗y∧3+79218∗x∧4∗y∧2
+1479870∗x∧3∗y∧2+1713150∗x∧2∗y∧2−1479870∗x∗y∧2−1792368∗y∧2−10206∗x∧5
∗y−594864∗x∧4∗y+20412∗x∧3∗y+1189728∗x∧2∗y−10206∗x∗y−594864∗y+729∗x∧6
+30618∗x∧5+909792∗x∧4−61236∗x∧3−1821771∗x∧2+30618∗x+911250 , RCF
p o l y : −148590∗y∧2∗ z+48006∗x∗y∗ z−67554∗y∗ z−1539∗x∧2∗ z−157626∗x∗ z−3753
∗ z−15730∗y∧3−378∗x∗y∧2−11259∗y∧2+3591∗x∧2∗y−3591∗y−378∗x∧3−11259∗x∧2
+378∗x+11259 > , < 7 , 3 > > %

r c f i n t e r s e c t 2 e 3 d :<mkrcf : ’ z+x∧4+y∧4 ’ , mkrcf : ’ z+y∧2 ’>;
% < < RCF p o l y : −y∧4+y∧2−x∧4 , 1 , RCF p o l y : −y∧4−x∧4 > , < RCF p o l y : −y∧

4+y∧2−x∧4 , RCF p o l y : z+y∧4+x∧4 > , < 0 , 0 > > %

r c f i n t e r s e c t 2 e 3 d :<mkrcf : ’ ( x+y ) ∗z−y∧2+1 ’ , mkrcf : ’ x∧2+y∧2−2 ’>;
% < < RCF p o l y : y∧2+x∧2−2 , RCF p o l y : y+x , RCF p o l y : y∧2−1 > , < RCF

p o l y : y∧2+x∧2−2 , RCF p o l y : y∗ z+x∗ z−y∧2+1 > , < 0 , 0 > > %

rc f intersect3e3d(p1, p2, p3) returns the intersections of the surfaces two by two (just a
shortcut for displaying their pairwise intersections (i.e. calling rc f intersect2e3d
three times).

rc f intersect3e3dtem(p1, p2, p3) Computes the intersection points of the the surfaces
p1, p2, and p3.

See figure A.4 for GANITH graphic output.

r c f i n t e r s e c t 3 e 3 d :<mkrcf : ’ z∧2+y∧2−1 ’ , mkrcf : ’ z∧2+x∧2−1 ’ , mkrcf : ’ z∧2−y∧3 ’>;
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(a) (b) (c)

Figure A.3: Surface intersection: (a)
{
(x+ y)∗ z− y2 +1 = 0

} ∩ {x2 + y2−2 = 0
}

; (b){
z+ x4 + y4 = 0

} ∩ {z+ y2 = 0
}

; (c)
{

z2− y3 = 0
} ∩ {x2 + y2 + z2−1 = 0

}
. Image

generated with GANITH [BR90a].

% < < < RCF p o l y : 16900∗y∧4−10920∗x∗y∧3−1080∗x∧2∗y∧2−15080∗y∧2−7560∗x∧3∗y
+18480∗x∗y+8100∗x∧4−10440∗x∧2+1600 , RCF p o l y : −780∗y+1260∗x , RCF
p o l y : 130∗y∧2−90∗x∧2−40 > , < 7 , 3 > > , < < RCF p o l y : 2197000∗y∧6−
2129400∗x∗y∧5+1144260∗x∧2∗y∧4−456300∗y∧4−368928∗x∧3∗y∧3+673920∗x∧2∗y
∧3+294840∗x∗y∧3−2737800∗y∧3+79218∗x∧4∗y∧2+1326780∗x∧3∗y∧2−110808∗x∧2
∗y∧2−1326780∗x∗y∧2+31590∗y∧2−10206∗x∧5∗y−568620∗x∧4∗y+20412∗x∧3∗y+
1137240∗x∧2∗y−10206∗x∗y−568620∗y+729∗x∧6+30618∗x∧5+850743∗x∧4−61236∗
x∧3−1703673∗x∧2+30618∗x+852201 , RCF p o l y : −152100∗y∧2+49140∗x∗y−
1782∗x∧2−147420∗x−3510 , RCF p o l y : 16900∗y∧3−3510∗x∧2∗y+3510∗y+378∗x
∧3+10530∗x∧2−378∗x−10530 > , < 7 , 3 > > , < < RCF p o l y : 531441∗y∧6+
1062882∗y∧5+413343∗y∧4−944784∗y∧3−1161297∗y∧2−380538∗y+589761 , RCF
p o l y : −56862∗y∧2−43740∗y−2430 , RCF p o l y : 5832∗y∧3+7290∗y∧2+2268∗y−
7290 > , < 7 , 3 > > > %

r c f i n t e r s e c t 3 e 3 d t e m :<mkrcf : ’ x∧2+y+z∧2−3 ’ , mkrcf : ’ x∧2+y∧2−2 ’ , mkrcf : ’ x∧2−1 ’
>;

% < <−0 .9717549 0 .9897984 0.9717549 > ,
<−0 .9717549 0 .9897984 0.9717549 > ,
<1.0719498 −0 .8264992 −1.5520653 > ,
<−0 .79833984 1 .3150873 1.2784553 > ,
<1.0833083 −0 .8446808 −1.5780976 > >;

Weierstrass Preparation, Newton Factorization, Hensel’s Lemma

rc f weierstrass(p,n) The argument p is a polynomial and n is an integer. Factor alge-
braic polynomial p(x,y) into p(x,y) = g(x,y) h(x,y) by Weierstrass Preparation
up to degree n. Curves g(x,y) = 0 and h(x,y) = 0 are displaced. Returns the pair
of polynomials (g,h).
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(a) (b)

Figure A.4: Surface triple intersection: (a)
{

z2 + y2−1
} ∩ {

z2 + x2−1
} ∩{

z2− y3
}

; (b)
{

x2 + y+ z2−3
} ∩ {x2 + y2−2

} ∩ {x2−1
}

. Image generated with
GANITH [BR90a].

local param2d(p,s,deg) Computes newton powes series aproximation for the non sin-
gular point in (0,0). Returns parameter expression of the given curve at the origin.

rc f newton(p,n) Computes newton powes series aproximation for the singular point
in (0,0). Returns a list of pairs, each pair is parameter expression of the given
curve at the origin. The parameter is assumed to be positive. That is we got the
expression to p = f (u) and p = f (−u). The argument p is a polynomial and n is
an integer. Factor algebraic polynomial p(x,y) into

p(x,y) = Π
d
i=1(y−ni(t)), x = tmi

at origin and display every branch (see fig. A.5(a,c)). x = tmi

y = ni(t)

where ni(t) is power series up to degree n.

rc f gnewton(p,a,n) The argument p is a polynomial, a is a real, and n is an integer. At
each of the points, that satisfy x = a

p(x,y) = 0
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make Newton factorization of degree n and every branch is displayed (see fig.
A.5(b,d)).

r c f w e i e r s t r a s s :<mkrcf : ’ y∧4 − 2∗y∧3 + y∧2 − 3∗x∧2∗y + 2∗x∧4 ’ , 6>;
% < RCF p o l y : y∧2+3501972∗x∧14∗y+248484∗x∧12∗y+18441∗x∧10∗y+1462∗x∧8∗y+

129∗x∧6∗y+14∗x∧4∗y+3∗x∧2∗y−2∗y−4844256∗x∧14−345355∗x∧12−25806∗x∧10−
2068∗x∧8−186∗x∧6−21∗x∧4−6∗x∧2+1 , RCF p o l y : y∧2−3501972∗x∧14∗y−
248484∗x∧12∗y−18441∗x∧10∗y−1462∗x∧8∗y−129∗x∧6∗y−14∗x∧4∗y−3∗x∧2∗y+
224760∗x∧14+16610∗x∧12+1308∗x∧10+114∗x∧8+12∗x∧6+2∗x∧4 > %

r c f n e w t o n :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ ,6 >;
% < < RCF p o l y : −s , RCF p o l y : 0 .02734375∗ s∧6−0 .0390625∗ s∧5+ 0 .0625∗ s∧4−

0 .125∗ s∧3+ 0 . 5 ∗ s∧2+ 1 . 0 ∗ s > , < RCF p o l y : −s , RCF p o l y : −0 .02734375∗ s
∧6+ 0 .0390625∗ s∧5−0 .0625∗ s∧4+ 0 .125∗ s∧3−0 . 5 ∗ s∧2−1 . 0 ∗ s > , < RCF p o l y :
s , RCF p o l y : −0 .02734375∗ s∧6−0 .0390625∗ s∧5−0 .0625∗ s∧4−0 .125∗ s∧3−0 . 5
∗ s∧2+ 1 . 0 ∗ s > , < RCF p o l y : s , RCF p o l y : 0 .02734375∗ s∧6+ 0 .0390625∗ s∧
5+ 0 .0625∗ s∧4+ 0 .125 ∗ s∧3+ 0 . 5 ∗ s∧2−1 . 0 ∗ s > > %

r c f g n e w t o n :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ ,0 ,6 > ;
% < < RCF p o l y : s , RCF p o l y : 0 .02734375∗ s∧6+ 0 .0390625∗ s∧5+ 0 .0625∗ s∧4+

0 .125∗ s∧3+ 0 . 5 ∗ s∧2−1 . 0 ∗ s > , < RCF p o l y : s , RCF p o l y : −0 .02734375∗ s∧
6−0 .0390625∗ s∧5−0 .0625∗ s∧4−0 .125∗ s∧3−0 . 5 ∗ s∧2+ 1 . 0 ∗ s > , < RCF p o l y : −
s , RCF p o l y : −0 .02734375∗ s∧6+ 0 .0390625∗ s∧5−0 .0625∗ s∧4+ 0 .125∗ s∧3−0 . 5
∗ s∧2−1 . 0 ∗ s > , < RCF p o l y : −s , RCF p o l y : 0 .02734375∗ s∧6−0 .0390625∗ s
∧5+ 0 .0625∗ s∧4−0 .125∗ s∧3+ 0 . 5 ∗ s∧2+ 1 . 0 ∗ s > > %

r c f n e w t o n :<mkrcf : ’ y∧5 +2∗x∗y∧4 −x∗y∧2 −2∗x∧2∗y −x∧3 +x∧4 ’ ,5 >;
% < < RCF p o l y : −s∧3 , RCF p o l y : −0.3333333333333333∗ s∧5−1 . 0 ∗ s > , < RCF

p o l y : s∧6 , 0 > , < RCF p o l y : s∧6 , 0 > > %

r c f g n e w t o n :<mkrcf : ’ y∧5 +2∗x∗y∧4 −x∗y∧2 −2∗x∧2∗y −x∧3 +x∧4 ’ ,1 ,5 > ;
% < < RCF p o l y : 37859122764575 / 129961739795077∗ s∧5−9588516643 / 94931877133

∗ s∧4−32632332 / 69343957∗ s∧3+42909 / 50653∗ s∧2−18 / 37∗ s+1 , RCF p o l y : s−2
> , < RCF p o l y : s+1 , RCF p o l y : −1308353 / 4782969∗ s∧5+23974 / 177147∗ s
∧4−1187 / 6561∗ s∧3−55 / 243∗ s∧2+2 / 9∗ s+1 > , < RCF p o l y : s+1 , RCF p o l y :
−195 / 256∗ s∧5−181 / 128∗ s∧4+11 / 16∗ s∧3+11 / 8∗ s∧2+1 / 2∗ s > > %

Local Parameterization

rc f local power2d(p,s,n,x0,y0) The argument p is a polynomial, s is a variable, n is an
integer and x0,y0 are reals. At point (x0,y0), compute power series expansion of
p(x,y) = 0 in s up to degree n, where (x0,y0) can be either simple point or singular
point of curve p(x,y) = 0. If (x0,y0) is not on the curve, then the expansion if taken
at the nearest point to (x0,y0) (see fig. A.6(a,b)).

rc f local pade2d(p,s,m,n,x0,y0) The argument p is a polynomial, s is a variable, n is
an integer and x0,y0 are reals. At point (x0,y0), compute Padè approximation of
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degree (m,n) to the power series expansion of p(x,y) = 0, where s is parameter of
Padè approximant, and (x0,y0) is the same as localpower2d. (see fig. A.6(c,d)).

r c f l o c a l p o w e r 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,6 ,<0 ,0>>;
% < < 0 , 0 > , < < RCF p o l y : −s , RCF p o l y : 0 .02734375∗ s∧6−0 .0390625∗ s∧5

+ 0 .0625∗ s∧4−0 .125 ∗ s∧3+ 0 . 5 ∗ s∧2+ 1 . 0 ∗ s > , < RCF p o l y : −s , RCF p o l y : −
0 .02734375∗ s∧6+ 0 .0390625∗ s∧5−0 .0625∗ s∧4+ 0 .125∗ s∧3−0 . 5 ∗ s∧2−1 . 0 ∗ s > ,
< RCF p o l y : s , RCF p o l y : −0 .02734375∗ s∧6−0 .0390625∗ s∧5−0 .0625∗ s∧4−
0 .125∗ s∧3−0 . 5 ∗ s∧2+ 1 . 0 ∗ s > , < RCF p o l y : s , RCF p o l y : 0 .02734375∗ s∧6
+ 0 .0390625∗ s∧5+ 0 .0625∗ s∧4+ 0 .125∗ s∧3+ 0 . 5 ∗ s∧2−1 . 0 ∗ s > > > %

r c f l o c a l p o w e r 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,6 ,<1 ,0>>;
% < < 1 , 0 > , < < RCF p o l y : −7∗ s∧6−2∗ s∧4−s∧2+1 , RCF p o l y : s > > > %

r c f l o c a l p a d e 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,<3,3> ,<0,0>>;
% < < 0 , 0 > , < < RCF p o l y : s , 1 , RCF p o l y : −0 .4375∗ s∧3+

1.4000000000000004∗ s∧2−1 . 0 ∗ s , RCF p o l y : 0 .006250000000000001∗ s∧3+
0.11250000000000002∗ s∧2−0.8999999999999999∗ s+ 1 . 0 > , < RCF p o l y : s ,

1 , RCF p o l y : 0 .4375∗ s∧3−1.4000000000000004∗ s∧2+ 1 . 0 ∗ s , RCF p o l y :
0 .006250000000000001∗ s∧3+0.11250000000000002∗ s∧2−0.8999999999999999∗
s+ 1 . 0 > , < RCF p o l y : −s , 1 , RCF p o l y : −0 .4375∗ s∧3−
1.4000000000000004∗ s∧2−1 . 0 ∗ s , RCF p o l y : −0.006250000000000001∗ s∧3+
0.11250000000000002∗ s∧2+0.8999999999999999∗ s+ 1 . 0 > , < RCF p o l y : −s
, 1 , RCF p o l y : 0 .4375∗ s∧3+1.4000000000000004∗ s∧2+ 1 . 0 ∗ s , RCF p o l y :
−0.006250000000000001∗ s∧3+0.11250000000000002∗ s∧2+0.8999999999999999
∗ s+ 1 . 0 > > > %

r c f l o c a l p a d e 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,<3,3> ,<1,0>>;
% < < 1 , 0 > , < < RCF p o l y : 3 / 2∗ s∧4−9 / 2∗ s∧2+1 , RCF p o l y : −7 / 2∗ s∧2+1 ,

RCF p o l y : s , 1 > > > %

Curve Approximation by Piecewise Rational Elements

It is the implementation of the algorithm presented in “Piecewise Rational Approxi-
mation of Real Algebraic Curves”[BX97]. Plane curve algorithm has been ported in
PLaSM, however output is currently inexact. Both text and graphics output is from
GANITH.

piecerational2d(p,s,m,n,a,b,c,d,ε,continuity) The argument p is a polynomial, s is
a variable, m, n are integers and a,b,c,d and ε are reals; continuity is a integer. For
the given algebraic curve p(x,y) = 0, compute piecewise (m,n) rational approxi-
mation within the given box

{(x,y) : a≤ x≤ b, c≤ y≤ d}
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and error limit ε , where

continuity =


- 1 c−1 continuity
0 c0 continuity
1 c1 continuity

piecerational p2d(p,s,m,n,a,b,c,d,ε,continuity,k, polygon) Similar to the piecerational2d
command. The argument k is the modified degree. If polygon is 1 the polygon is
drawn.

spacecurveiis( f1, f2,a0,a1,b0,b1,c0,c1,m,n,k,ε,slice) For the given space curve de-
fined by the intersection of implicit surfaces f1(x,y,z) = 0 and f2(x,y,z) = 0, a
bounding box defined by (x,y,z) : x ∈ [a0,a1],y ∈ [b0,b1],z ∈ [c0,c1], the degree
m,n of the rational function to be used, the smoothness index k and error limit ε ,
compute a parametric piecewise rational approximation.

spacecurvepc(p1,q0, p1,q1, p2,q2,a0,a1,b0,b1,c0,c1,m,n,k,ε,slice) For the given space
curve defined by the parametric form x(t) = p0(t)/q0(t),y(t) = p1(t)/q1(t),z(t) =
p2(t)/q2(t), a bounding box defined by (x,y,z) : x ∈ [a0,a1],y ∈ [b0,b1],z ∈ [c0,c1],
the degree m,n of the rational function to be used, the smoothness index k and error
limit ε , compute a parametric piecewise rational approximation with arc-length as
parameter.

r c f l o c a l p o w e r 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,6 ,<0 ,0>>;
% < < 0 , 0 > , < < RCF p o l y : −s , RCF p o l y : 0 .02734375∗ s∧6−0 .0390625∗ s∧5

+ 0 .0625∗ s∧4−0 .125∗ s∧3+ 0 . 5 ∗ s∧2+ 1 . 0 ∗ s > , < RCF p o l y : −s , RCF p o l y : −
0 .02734375∗ s∧6+ 0 .0390625∗ s∧5−0 .0625∗ s∧4+ 0 .125∗ s∧3−0 . 5 ∗ s∧2−1 . 0 ∗ s > ,
< RCF p o l y : s , RCF p o l y : −0 .02734375∗ s∧6−0 .0390625∗ s∧5−0 .0625∗ s∧4−
0 .125∗ s∧3−0 . 5 ∗ s∧2+ 1 . 0 ∗ s > , < RCF p o l y : s , RCF p o l y : 0 .02734375∗ s∧6
+ 0 .0390625∗ s∧5+ 0 .0625∗ s∧4+ 0 .125∗ s∧3+ 0 . 5 ∗ s∧2−1 . 0 ∗ s > > > %

r c f l o c a l p o w e r 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,6 ,<1 ,0>>;
% < < 1 , 0 > , < < RCF p o l y : −7∗ s∧6−2∗ s∧4−s∧2+1 , RCF p o l y : s > > > %

r c f l o c a l p a d e 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,<3,3> ,<0,0>>;
% < < 0 , 0 > , < < RCF p o l y : s , 1 , RCF p o l y : −0 .4375∗ s∧3+

1.4000000000000004∗ s∧2−1 . 0 ∗ s , RCF p o l y : 0 .006250000000000001∗ s∧3+
0.11250000000000002∗ s∧2−0.8999999999999999∗ s+ 1 . 0 > , < RCF p o l y : s ,

1 , RCF p o l y : 0 .4375∗ s∧3−1.4000000000000004∗ s∧2+ 1 . 0 ∗ s , RCF p o l y :
0 .006250000000000001∗ s∧3+0.11250000000000002∗ s∧2−0.8999999999999999∗
s+ 1 . 0 > , < RCF p o l y : −s , 1 , RCF p o l y : −0 .4375∗ s∧3−
1.4000000000000004∗ s∧2−1 . 0 ∗ s , RCF p o l y : −0.006250000000000001∗ s∧3+
0.11250000000000002∗ s∧2+0.8999999999999999∗ s+ 1 . 0 > , < RCF p o l y : −s
, 1 , RCF p o l y : 0 .4375∗ s∧3+1.4000000000000004∗ s∧2+ 1 . 0 ∗ s , RCF p o l y :
−0.006250000000000001∗ s∧3+0.11250000000000002∗ s∧2+0.8999999999999999
∗ s+ 1 . 0 > > > %
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r c f l o c a l p a d e 2 d :<mkrcf : ’ x∧3 −x∧2+ y∧2 ’ , ’ s ’ ,<3,3> ,<1,0>>;
% < < 1 , 0 > , < < RCF p o l y : 3 / 2∗ s∧4−9 / 2∗ s∧2+1 , RCF p o l y : −7 / 2∗ s∧2+1 ,

RCF p o l y : s , 1 > > > %

Power To Bernstein Conversion

bern3d(p) Convert a polynomial p = f (x,y,z) in power basis to a polynomial F(s, t,u)
in barycentric coordinates, defined with respect to a default reference tetrahedron.
The polynomial F(s, t,u) is displayed in the output window. The default reference
tetrahedron has vertices (n,0,0), (0,n,0), (0,0,n), and (0,0,0), where n is the
degree of the polynomial. The polynomial may contain free parameters.

berntetra3d(sur f ,(x1,y1,z1),(x2,y2,z2),(x3,y3,z3),(x4,y4,z4)) Similar to the bern3d com-
mand except the reference tetrahedron has vertices (x1,y1,z1), (x2,y2,z2), (x3,y3,z3),
(x4,y4,z4).

Currently unavailable in PLaSM.

b e r n t e t r a 3 d ( a∗x∧2 + 2∗a∗x∗y + d∗x∗z − 2∗a∗x +a∗y∧2 + e∗y∗z −2∗a∗y + c∗z∧2
+ b∗z + a , (2

Tetrahedron s e t t o :
( 2 . 0 0 0 0 0 0 1 .000000 1 . 0 0 0 0 0 0 )
( 1 . 0 0 0 0 0 0 2 .000000 1 . 0 0 0 0 0 0 )
( 1 . 0 0 0 0 0 0 1 .000000 2 . 0 0 0 0 0 0 )
( 0 . 0 0 0 0 0 0 0 .000000 0 . 0 0 0 0 0 0 )
Weights f o r t h e c o n t r o l p o i n t s :
w000 : 1 .000000∗A∧1
w001 : 1 .000000∗B∧1+−1 .000000∗A∧1
w002 : 2 .000000∗E∧1+ 2 .000000∗B∧1+ 4 .000000∗C∧1+ 2 .000000∗D∧1+ 1 .000000∗A∧1
w010 : 0 .500000∗B∧1+−2 .000000∗A∧1
w011 : 2 .500000∗E∧1+ 2 .000000∗C∧1+ 1 .500000∗B∧1+ 2 .000000∗A∧1+ 1 .500000∗D∧1
w020 : 2 .000000∗E∧1+ 1 .000000∗B∧1+ 1 .000000∗C∧1+ 1 .000000∗D∧1+ 4 .000000∗A∧1
w100 : 0 .500000∗B∧1+−2 .000000∗A∧1
w101 : 1 .500000∗E∧1+ 2 .000000∗C∧1+ 1 .500000∗B∧1+ 2 .000000∗A∧1+ 2 .500000∗D∧1
w110 : 1 .500000∗E∧1+ 1 .000000∗C∧1+ 1 .000000∗B∧1+ 4 .000000∗A∧1+ 1 .500000∗D∧1
w200 : 1 .000000∗E∧1+ 1 .000000∗B∧1+ 1 .000000∗C∧1+ 2 .000000∗D∧1+ 4 .000000∗A∧1

bern3d ( a∗x∧2 + 2∗a∗x∗y + d∗x∗z − 2∗a∗x + a∗y∧2 + e∗y∗z −2∗a∗y + c∗z∧2 + b
∗z + a )

w000 : 1 .000000∗A∧1
w001 : 1 .000000∗A∧1+ 1 .000000∗B∧1
w002 : 1 .000000∗A∧1+ 2 .000000∗B∧1+ 4 .000000∗C∧1
w010 : −1 .000000∗A∧1
w011 : 1 .000000∗B∧1+−1 .000000∗A∧1+ 2 .000000∗E∧1
w020 : 1 .000000∗A∧1
w100 : −1 .000000∗A∧1
w101 : 1 .000000∗B∧1+−1 .000000∗A∧1+ 2 .000000∗D∧1
w110 : 1 .000000∗A∧1
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w200 : 1 .000000∗A∧1
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(a) (b)

(c) (d)

Figure A.5: Newton factorization: (a) rcf newton(xˆ3 -xˆ2+ yˆ2,6); (b)
rcf gnewton(xˆ3 -xˆ2+ yˆ2,0,6); (c) rcf newton(yˆ5 +2*x*yˆ4 -x*yˆ2 -2*xˆ2*y -
xˆ3 +xˆ4,6); (d) rcf gnewton(yˆ5 +2*x*yˆ4 -x*yˆ2 -2*xˆ2*y -xˆ3 +xˆ4,1,5). Image
generated with GANITH [BR90a].
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(a) (b)

(c) (d)

Figure A.6: Local polynomial and rational parameterization: (a) localpower2d (xˆ3 -
xˆ2+ yˆ2,s,6,0,0); (b) localpower2d (xˆ3 -xˆ2+ yˆ2,s,6,1,0); (c) localpade2d (xˆ3-
xˆ2+yˆ2,s,3,3,0,0); (d) localpade2d (xˆ3 -xˆ2+ yˆ2,s,3,3,1,0). Image generated with
GANITH [BR90a].



i
i

“main” — 2008/10/19 — 20:00 — page 182 — #200 i
i

i
i

i
i

182 APPENDIX A. ALGEBRAIC GEOMETRY IN GANITH AND PLASM

(a) (b)

(c) (d)

Figure A.7: Piecewise tracing: (a) piecerational2d ((xˆ2 +yˆ2)ˆ3 - 4*xˆ2*yˆ2,s,3,3 ,-
2,2,-2,2,0.05,1); (b) piecerationalp2d ((xˆ2 +yˆ2)ˆ3 - 4*xˆ2*yˆ2, s,3,1, -2, 2, -
2, 2, 0.1,0,2,1); (c) spacecurveiis (yˆ2-xˆ2-xˆ3+0.0*zˆ1,0.0*xˆ1+ 0.0*yˆ1+zˆ1; (d);
spacecurvepc (x*(x-2)*(x+2),1,x*(x-2)*(x+2)*(1+x),1, x*(x-2)*(x+2)*(1-x),1,-8,8,-
8,8,-8,8,7,0,3,0.01,3). Image generated with GANITH [BR90a].
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