
Università degli Studi di Roma Tre

Scuola Dottorale in Ingegneria Informatica

XXVII Ciclo

Crowdsourcing Large scale Data
Extraction from the Web: Bridging

Automatic and Supervised Approaches

Dottorando:

Disheng Qiu

Tutor:

Prof. Paolo Merialdo

Gruppo di Basi di Dati

Dipartimento di Ingegneria

May 2015

http://www.uniroma3.it
http://phd.dia.uniroma3.it/xxvii-ciclo/
http://merialdo.dia.uniroma3.it
http://www.ingegneria.uniroma3.it

Declaration of Authorship

I, Disheng Qiu, declare that this thesis titled, ’Crowdsourcing Large scale Data Ex-

traction from the Web: Bridging Automatic and Supervised Approaches’ and the work

presented in it are my own. I confirm that:

� This work was done wholly or mainly while in candidature for a research degree

at this University.

� Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated.

� Where I have consulted the published work of others, this is always clearly at-

tributed.

� Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work.

� I have acknowledged all main sources of help.

� Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself.

Signed:

Date:

i

Università degli Studi di Roma Tre

Abstract

Dipartimento di Ingegneria

Crowdsourcing Large scale Data Extraction from the Web: Bridging

Automatic and Supervised Approaches

by Disheng Qiu

The Web is a rich source of data that represents a valuable resource for many organiza-

tions. Data in the Web is usually encoded in HTML pages, thus they are not processable;

a data extraction process, which is made by software modules called wrappers, is re-

quired to use these data. Several attempts have been conducted to reduce the efforts of

generating wrappers. Supervised approaches, based on annotated pages, achieve high

accuracy; but the costs of the training data, i.e. annotations, limit their scalability. Un-

supervised approaches have been developed to achieve high scalability, but the diversity

of the data sources can drastically limit the accuracy of the results. Overall, obtaining

high accuracy and high scalability is challenging because of the scale of the Web and

the heterogeneity of the published information.

In this dissertation we describe a solution to address these challenges: to scale to the

Web we define an unsupervised approach that is built considering several wrapper in-

ference techniques; to control the quality we define a quality model that understands at

runtime if human feedback is required; feedback is provided by workers enrolled from a

crowdsourcing platform. Crowdsourcing represents an effective way to reduce the costs

for the annotation process, but previous proposals are designed for experts and they are

not suitable for the crowd, in fact, workers from crowdsourcing platforms are typically

non-expert.

An open issue to scale the generation of wrappers is the collection of the pages to wrap,

we describe an end-to-end pipeline that discovers and crawls relevant websites in a case

study for product specifications.

An extensive evaluation with real data confirms that: (i) we can generate accurate

wrappers with few simple interactions from the crowd; (ii) we can accurately estimate

workers’ error rate and select at runtime the number of workers to enroll for a task;

(iii) we can effectively start by considering unsupervised approaches and switch to the

crowd to increase the quality; and (iv) we can discover thousands of websites from a

small initial seed.

http://www.uniroma3.it
http://www.ingegneria.uniroma3.it

Acknowledgements

If I look back to these three years, I have many people to thank.

Starting from the beginning. I want to thank Paolo and Lorenzo for their initial push

that inspired me to begin my PhD program and a big thank to Paolo and Valter for

their passion and guidance that continued to help me during these years and that led

me to complete this thesis.

I want to thank Divesh and Srinivas that guided me during my internship in AT&T,

those months gave me the confidence that I was looking for my work and (a good side

effect) made me appreciate Indian food.

A thank to Francesca and Luca, colleagues in our Lab but also good friends that accom-

panied me during the first years of my program.

With Luca I want to thank all the team behind Wanderio (Matteo, Giorgio, Matteo,

Giovanni, Costanza, Nicola, Simone), working with them was as a breath of fresh air to

my research, I was always in touch with real problems.

A thank to other colleagues and professors in my department, Paolo, Luca, Riccardo,

Emanuel, Roberto.

I want to thank all the students that I met and guided during these years, in particular

Lorenzo and Andrea that I have guided during their thesis but now they guide me with

their energy. Another big thank to Xinjie that brought art to my last years and made

everything more colourful.

A special thank to my family: my Mother that with her sacrifices thought me the im-

portance of the family; my Brother and my nieces, Diana and Livia, that were able to

make me smile when I was down; my cousins, Roberto, Luca, Wangwei, Alessandro,

that were friends during all these years.

I want to conclude thanking Kelly that made me think of other things other than my

work and Ivan that always reminded me of the importance of having someone to look

up to.

A thank to Francesca, Kelly, Jiajia and Roberto for reading through the thesis.

iii

Contents

Declaration of Authorship i

Abstract ii

Acknowledgements iii

Contents iv

List of Figures viii

List of Tables ix

Notation x

1 Introduction 1

1.1 Big Data Opportunities and Challenges 2

Transportation . 3

Products . 3

For Metadata: . 4

1.2 Wrappers at Web Scale . 4

1.3 Wrapper Generation . 6

1.3.1 Unsupervised Approaches . 6

1.3.2 Supervised Approaches . 7

1.3.3 Automatic Annotations . 8

1.3.4 Open Challenges . 8

1.4 Crowdsourcing . 9

1.5 Overview and Contributions . 10

Overview . 10

Contribution . 12

1.6 Outline . 12

2 Related Work 15

2.1 Wrapper Generation . 15

2.1.1 Supervised Wrapper Generation 16

Stalker [1]: . 16

iv

Contents v

Muslea et al [2]: . 17

Lixto [3]: . 17

2.1.2 Automatic Wrapper Generation . 17

RoadRunner [4]: . 17

ExAlg [5]: . 18

Zhai and Liu [6]: . 18

2.1.3 Scaling Wrapper Generation . 19

Senellart et al [7] . 19

Dalvi et al [8]: . 19

DIADEM [9]: . 19

Chuang et al [10]: . 20

WEIR [11]: . 20

2.2 Learning Model and Active Learning . 21

2.3 Crowdsourcing for Data Management . 22

2.4 Discovery and Crawling . 23

3 Single Noisy Worker 26

3.1 Overview . 27

3.2 Preliminaries . 29

3.3 Rules Generation . 30

3.4 Bayesian Model . 32

3.5 Active Learning for Wrapper Generation 33

3.5.1 Asking the Right Questions . 34

3.5.2 Termination Condition . 36

3.6 Sampling . 37

3.7 Experiments . 39

3.7.1 Datasets . 40

3.7.2 Learning with ALF . 42

3.7.3 Sampling with PAGESAMPLER 43

3.7.4 Modeling Real Workers . 45

3.7.5 alfη Evaluation . 46

3.8 Conclusions . 47

4 Noisy Crowd 48

4.1 Overview . 49

4.2 Error Rates Estimation . 50

4.3 Schedule . 51

4.4 Experiments . 55

4.4.1 Datasets . 55

4.4.2 Impact of Redundancy . 56

4.4.3 alfred Evaluation . 57

4.4.4 alfred on the Crowd . 59

4.5 Conclusions . 60

5 Automatic Responders 61

5.1 Preliminaries . 63

5.1.1 Automatic Responder . 63

Contents vi

5.1.2 Rules Selection . 64

5.2 Type . 64

5.2.1 Types Definition . 65

5.2.2 Scoring with Types . 65

5.3 LFEQ . 66

5.3.1 LFEQs definition . 66

5.3.2 Scoring with LFEQs . 67

5.4 Knowledge Base . 68

5.4.1 Knowledge Base definition . 68

5.4.2 Automatic Responder with Knowledge Base 68

Type Discovery . 69

Rules scoring . 69

5.5 PMI . 70

5.5.1 PMI intuition . 71

5.5.2 Automatic Responder with PMI 72

5.6 Experiments . 72

5.6.1 Experiments outline . 73

5.6.2 Evaluation . 73

Automatic Responders . 73

Humans vs Automatic Responders 76

5.7 Conclusions . 77

6 Discovery and Extraction of Product Specifications 79

6.1 Overview . 82

6.2 Discovery . 84

Search . 84

Backlink . 85

Merge . 87

6.3 Crawling . 88

Entry Page Discovery . 89

Index Page . 90

6.4 Features for Specification Detection . 90

6.5 Specification Extraction . 92

Extraction of Keywords . 94

6.6 Experiments . 94

6.6.1 Product sites Discovery and Crawling 94

Data Collection and Description. 94

Manual Effort and Tuning. 95

Strategies. 96

Rankings Results. 96

Filters Results. 97

Iterations Results. 98

6.6.2 Specification Detection and Extraction 99

Data and setup. 99

Results. 100

6.6.3 Summary . 103

6.7 Related Works . 104

Contents vii

Webtable. 104

Wrappers. 104

Source Discovery. 104

Products. 104

Crawling. 105

6.8 Conclusions . 105

7 Conclusions and Future Works 106

Contributions . 106

Future Directions . 107

Bibliography 109

List of Figures

1.1 Running example with the DOM tree of three sample pages 6

1.2 Running example with the template nodes highlighted 6

1.3 Regular expression that extracts target values from the running example . 7

3.1 Running example with the DOM tree of three sample pages 28

3.2 Extraction rules and the extracted values for the running example on the
attribute Title . 28

3.3 #MQ vs size of the hypothesis space . 43

3.4 Wrapper learning times vs sample size . 45

3.5 alfη, with η = 10%, and variable worker error rate η∗: (Left) cost and
(right) quality. 46

3.6 alfη, with a noisy worker η∗ = 10%, with variable η: (Left) cost and
(Right) quality. 47

4.1 The bipartite graph for the task allocation of Example 4.1 (left) and
Example 4.2 (right). 54

4.2 The effects of the initial redundancy K: (left) average cost: #MQ;
(right) standard deviation of output F -measure: σF 58

5.1 Types hierarchy for the Running Example 65

6.1 Examples of specifications of different products: (Left) ring specification
(www.overstock.com), (Right) tablet specification (www.bestbuy.com) . . 82

6.2 Architecture of Dexter, composed by the Sites Discovery, the In Site
Crawling, the Specification Detector (detection), and Generic Wrapper
(extraction). 82

6.3 A product detail page with the product key. 84

6.4 The pipeline to crawl a new website for target pages. 88

6.5 Average number of links and images, number of items and average text
length per item for specifications and non-specifications. 91

6.6 Examples of non-specifications. 92

6.7 Precision of the ranking algorithms, I = 1: fixed |S| = 50 and variable
K, (Left) No filter, (Middle) HPF, (Right) ICF. 96

6.8 Precision of the ranking algorithms, I = 1: fixed K = 20 and a variable
|S|, (Left) No filter, (Middle) HPF, (Right) ICF. 96

6.9 Precision with an increasing I, S = 20 and K = 10 99

6.10 Number of relevant websites with an increasing I, S = 20 and K = 10:
(Left) average on all domains (Middle) camera (Right) notebook 99

6.11 Example of a specification from bhphotovideo. 102

viii

List of Tables

1.1 A database with values that match the running example 8

1.2 A summary of the presented features related to cost and quality 11

3.1 Running example for asking the right questions 34

3.2 Dataset for Sampling and the average representative sample set 40

3.3 Dataset for the evaluations. 41

3.4 Total number of MQ for Dataset 2 and average quality of the output . . . 42

3.5 Precision and recall with different sampling strategies 44

4.1 alfred vs alfη with a population of synthetic noisy workers; average
and max total number of workers engaged per attribute (#w); average F -
measure of the output wrapper; average and max total number of queries
(#MQ); average difference between actual and estimated worker error
rate (|ηw − η∗|); standard deviation of the output wrapper F -measure
(σF). 56

4.2 alfred: percentage of attributes (%attr.) that reach the target quality
with 2, 3, and 4 workers; their average cost as total number of membership
queries posed (#MQ). 57

4.3 alfred (with N = 5, K = 0, λr = 90%, η = 10%): percentage of at-
tributes (%attr.) that reach the target quality with 1, 2, 3, and 4 workers;
their average cost as total number of membership queries posed (#MQ). 59

4.4 Evaluation of our tasks by the CrowdFlower workers. 60

5.1 Average quality based on different responders with a probability threshold
of 0.95 . 74

5.2 Average η and ση of the responders . 74

5.3 Comparison between alfred and two baselines, Majority Voting and alfη 75

5.4 Average quality based on different combinations of responders on all the
attributes and considering a probability threshold of 0.95 75

5.5 Average quality based on different combinations of responders on all the
attributes and considering a probability threshold of 0.95 76

6.1 Number of sites and pages per category in the dataset 95

6.2 Percentage of websites with multiple categories 95

6.3 # Relevant websites / # non relevant websites, for the HPF and ICF. . . 98

6.4 Estimated P and R of HPF and ICF. 98

6.5 Precision and recall for the Specification Detection 100

6.6 Results for our wrapper and the baselines on 10 websites (the most erro-
neous among the 37 sites). 101

6.7 Results for the SD, per site and per category 103

ix

Notation

p an HTML page

U all the input templated pages

I sample pages with I ⊂ U

r extraction rule

v extracted value

r(p) rule r applied to p

A an attribute to extract

R set of all the candidate rules

RA set of all the candidate rules for the attribute A

R(U) candidate rules applied to U

V the set of all the extracted values by R on U

MQ membership query

l a label so that l ∈ {+,−}

vl a labeled sample value, value from pv

L set of labeled sample values

L(r) r admissible to L

RL the set rules in R that are admissible wrt L

Lk training sequence (t.s.), an ordered sequence of K labeled sample

P (r) probability of the rule r to be the correct rule

P (r|Lk) probability of the rule r to be the correct rule observed a training sequence Lk

P (vl|r, L) the likelihood of acquiring the labeled value vlA conditioned to r and L

I representative sample set

DP (ri, rj) disagreement set, set of pages that make observable differences among ri and rj

Lw the t.s. generated by a worker w

λr target probability of correctness

x

Notation xi

λMQ maximum budget for each worker per attribute

t a task submitted to the crowd

N number of attributes per task on the crowd

K number of redundant attributes per task

G the tasks attribute bipartite graph

Gt the connected component of G that includes t

WA the set of workers enrolled for an attribute A

η workers’ error rate

η∗ expected workers’ error rate

T a text value type

Γ the Disjunctive Types Hierarchy with Γ = {T0, . . . , Tn}

Λ(U) set of LFEQs generated from U so that Λ(U) = {L0, . . . , Lm}

λ(v) set LFEQs associated to the value v

t a triple made of < s, p, o >, subject, predicate, object

To my family

xii

Chapter 1

Introduction

The Web is a valuable source of information. Its scale, the variety of the information

and the possibility of adopting tools for big data analytics, inspired many organizations

to integrate this information in their internal processes. In fact, automatically process

this information could provide a tremendous competitive advantage. Unfortunately,

most of the Web contents are embedded in HTML documents; they are designed to be

browsed and consumed by humans and not to be automatically processed by machines.

Data Extraction studies techniques to collect structured data from the Web, making this

information accessible. These techniques are adopted by many organizations to enrich

their internal databases with data published on the Web. To extract the structured data

from these pages, a data extraction system relies on a software module called wrapper: it

filters non relevant information inside the HTML pages and provides a structure to rel-

evant information. The structured data, extracted by wrappers, are then automatically

processable and can be integrated into an existing pipeline to augment the capability of

the entire system.

Nowadays, many organizations extract data from the Web for different purposes: to fil-

ter non relevant information in news applications, to compare product prices in different

online shopping websites, to collect data for marketing analysis, to generate an interface

for the mobile version of a website, etc.

While defining a wrapper for a single website is not complex, the process of generating

wrappers for many websites is challenging. Each website is characterized by its own

peculiarities, thus a different wrapper should be defined for each website making the

process costly and error prone. The possibility of harvesting structured data from a

large number of sources opens interesting opportunities for new applications and im-

provements to the existing solutions.

1

Chapter 1. Introduction 2

This dissertation faces these challenges. We present a large scale data extraction system

supervised by humans enrolled from a crowdsourcing platform, the goal is to “scale

out” the process of generating wrappers by shifting from few expert humans to a vast

number of non-expert workers. To scale the generation process to the Web we bridge the

gap between automatic wrapper generation approaches with supervised approaches by

adopting a Quality Model that understands when we can completely rely on unsupervised

approaches and when human feedback is required. If feedback is required, we adopt a

crowd based wrapper generation solution, the system controls the quality of the output

wrappers and aims to minimize the work required to the crowd to generate the output

wrappers.

In this chapter: we first describe the opportunities that scaling the generation of wrap-

pers on the Web could provide in real use cases (Section 1.1); we introduce the wrapper

generation problem and open issues related to the process of scaling the extraction task

to the Web (Section 1.2); we briefly describe the state of the art and solutions to scale

the generation of wrappers (Section 1.3); we introduce Crowdsourcing (Section 1.4) as

an opportunity to scale existing systems by plugging in a human component to control

and guide the extraction process. We conclude describing an overview of the approach

and highlighting the contributions of this thesis (Section 1.5) and the outline of the

dissertation (Section 1.6).

1.1 Big Data Opportunities and Challenges

The advent of the Big Data era, and the possibility of augmenting existing solutions

with information collected from the Web, opens new opportunities to intriguing applica-

tions. For some domains there are large websites that publish information about many

instances in that domain (the head of the distribution), e.g. IMDB1 for movies, reducing

in this way the need of scaling the generation of wrappers to many sources, i.e. the

extraction could be done only in few big websites. In the majority of the cases, domains

are characterized by a high degree of fragmentation (the tail of the distribution). Many

domains are characterized by a long tail, i.e. many small websites provide relevant infor-

mation that is not present in large websites (the head of the distribution [12]). Examples

are domains with a geographic focus, e.g. restaurants or real estates, with niches, e.g.

products or with subjective information, e.g. reviews. Even for well established domains,

where big websites, e.g. IMDB, have a good coverage of all the instances published in

1www.imdb.com

Chapter 1. Introduction 3

that domain, the coverage is not complete. For instance, in IMDB many local movies or

movies released only in specific countries are still missing.

To understand the opportunities that a large scale data extraction pipeline could provide,

consider 3 interesting applications; they represent different existing use cases that would

greatly benefit from scaling the data extraction to the Web.

Transportation Websites related to transportation that expose information of local

shuttles, coaches or private drivers are examples of a fragmented domain. Each web-

site is characterized by a local coverage of the services that they directly provide, e.g.

shuttles from an airport to the closest city center. There are websites that provide an

international coverage of these services2, but the number of shuttles that are found in

these websites is limited compared to the web presence of these services. Scaling the

extraction of the data published by transportation websites could create an interesting

application for many customers. In fact, by providing a comparison of the prices and

the estimated duration time of all kind of transportations, the coverage could be global.

The service could provide all the alternatives found on the web. Customers could select

the best option for their needs, without extensive search sessions in several websites.

Another interesting use case for the transportation domain are the flight related web-

sites. In fact, even when there are big aggregators3 or OTA (Online Travel Agency)4

that provide a comparison platform for many airlines, some flight companies, e.g. low

costs airlines, are missing from these platforms. This reduces the possible alternatives

returned to the end users. Adopting a Data Extraction pipeline at web scale for flights

companies would provide a detailed comparison of all the available companies.

Products There are many price comparison websites that aggregate information

about products. The product domain is characterized by the presence of multiple web-

sites that publish information about the same product, e.g. several stores sell a specific

camera model. Many of those online stores let users comment on the sold products,

thus users’ reviews of the same product are spread in many online shopping websites.

Collecting reviews for sentiment or opinion mining means extracting reviews from many

sources. Even if we consider big web portals, e.g. Amazon, where many products are

available, the coverage of niche products (products for specialists) is often low and re-

views from other websites on the same products still provide a great value [12]. If we

consider an comprehensive database of online products and reviews collected from all

the web, users could easily compare in a single website, prices, reviews and product

2www.getyourguide.com
3www.kayak.com
4www.expedia.com

Chapter 1. Introduction 4

specifications. Users could avoid multiple extensive search sessions in different shopping

websites.

For Metadata: The definition of common standards to semantically annotate HTML

pages, allowed an increasing presence of websites with metadata. An example is schema.org,

a standard de facto that is adopted by many websites to provide a semantic meaning to

information published by their pages. To increase the adoption of schema.org, modern

search engines reward websites that correctly uses these tags with rich snippets. Rich

snippets are returned by the search engines in their results, they provide partial pre-

views of the structured data that is embedded in the indexed pages. These previews

provide more visibility to the websites and the desired effect is an increased click rate

wrt the impressions on the results of the search engine. Semantic tags are adopted by

the search engines to understand the content of the HTML pages, thus improving the

results of the search query. While there is an increasing usage of these tags, websites

that use correctly these metadata are just a fraction of all the websites in Web. There

are multiple reasons for these limitations: (i) the adoption is often limited to those tags

that are highly rewarded by the search engine, e.g. reviews (ii) webmaster often “forces”

a misleading usage of some tags to get better previews (iii) annotating all the values in

every HTML pages is time consuming, costly and does not provide an advantage wrt a

partial annotation. The possibility of extracting data from HTML pages could provide

a powerful tool to annotate values in HTML pages, thus reducing the work required by

the webmaster.

1.2 Wrappers at Web Scale

The Web is a rich source of information; wrappers are tools to collect structured data

from it. Ideally, if we suppose that each web page is an independent page, a wrapper

should be defined for each web page. This is obviously not a practicable solution, thus,

to increase the efficiency of the extraction process, we work with a subset of all the

pages on the web, the template based HTML pages. Example of these pages are script

generated pages; a single website could contain millions of pages that are generated from

the same script (they share a common template), the script embeds the values from an

underlying database into the HTML pages. In this way, a single wrapper generated for

this kind of pages can extract the content in all the millions of pages by exploiting the

regularity inside the template.

A wrapper can be expressed as an extraction pattern, or extraction rule, that applied to

one or many target pages (from the same template) extracts the content of interest and

Chapter 1. Introduction 5

provides a structure to the extracted information. The extraction rule exploits the fact

that an HTML page can be represented as a DOM tree, thus the extraction process apply

the rule on the DOM tree to select the target values. Different approaches represent

wrappers in different ways, from regular expressions to XPaths, from queries similar to

SQL to new languages defined explicitly for the extraction task. All these approaches

rely on the fact that an HTML page can be parsed, filtered and the content embedded

in the HTML tags can be extracted.

Thanks to the presence of regularities on template-based pages, a new wrapper is not

required for each new HTML page, but the process of generating a wrapper for many

pages is not trivial. In fact, the script that generates these pages often contains some

irregularities, thus to accurately extract all the content the wrapper has to internally

“manage” these irregularities. A wrapper is crafted to extract the content by handling

the irregularity of a script, hence the wrapper can be applied only on the pages generated

by that script, i.e. a wrapper is template specific.

For a given domain there are thousands of web sites that publish information about

instances of that domain [12]. As we observed, there is value in the long tail, but the

number of possible sites and the diversity among the published information from different

sources make the extraction process challenging. To build a comprehensive catalogue

of the information published by many websites of a domain, three issues have to be

addressed: (1) a wrapper has to be generated to extract the structured information

from the relevant pages (2) relevant websites have to be discovered, (3) a crawling

strategy has to be adopted to navigate the websites to collect relevant pages. If we

consider a manual solution, and we write a software that crawls and wraps structured

content from an input website, and we repeat this work for many websites, this is a

costly solution, but still a practical if we do not consider the fact that websites are often

updated. In fact, websites are subject to continuous updates and these updates make

the defined extraction rules to not work correctly for the existing wrappers or crawlers.

Nevertheless, increasing the number of wrapped websites increases the probability of

changes that can “break” a wrapper for a website. If we consider this mutability of the

Web and the high cost of the manual work, these two issues make manual solutions not

practicable for real settings.

For reference about the discovery and crawling consider the Chapter 6. Scaling the

generation of wrappers on the Web for many domains is an open challenge and solutions

to this challenge have been studied for many years, by both academia and industry.

Chapter 1. Introduction 6

Figure 1.1: Running example with the DOM tree of three sample pages

Figure 1.2: Running example with the template nodes highlighted

1.3 Wrapper Generation

In literature there are many approaches that try to “scale up” the process of generating

wrappers. In general we can divide these approaches in 3 categories: (1) unsupervised

approaches, (2) supervised approaches and (3) automatic annotations to supervise the

generation.

1.3.1 Unsupervised Approaches

Unsupervised approaches rely on the fact that pages from a common template have

a similar structure. The structure is not identical, but it is similar enough to define

extraction rules that can separate the content from the HTML template. In Figure 1.1

we have a DOM representation of three HTML pages from the same template that

contains information about movies.

Unsupervised approaches analyze the HTML content of multiple pages to understand

which potion in the page is a template node and which portion is not. Template texts

are filtered while non template values are aligned and extracted in a structured form.

In Figure 1.2 we can observe the HTML template recognized by a wrapper inference

system. In Figure 1.3 a wrapper that extracts the values from our previous example

is described by means of a regular expression. The tag #DATA models the values to

extract and the tag (*)? models optional fragments.

Chapter 1. Introduction 7

Figure 1.3: Regular expression that extracts target values from the running example

The advantage of unsupervised approaches is that they do not require human supervision

for the generation of wrappers. They obtain high scalability; in fact, for the extraction

task the human factor is minimized. A well known issue is that unsupervised solutions

are not reliable, they extract non relevant data if part of the content embedded in HTML

templates is non relevant, e.g. the generation time of the HTML page, advertisements,

etc. Another issue is related to the semantic of the extracted data; in fact, a label is

required to support the automatic elaboration of the extracted data. For instance, if we

suppose to extract the values City of God, Inception and Oblivion from pages describing

movies, a label is required to assign the meaning Movie Title to the extracted values.

These issues motivate a manual post-processing of the extracted content that limits the

overall scalability of these solutions.

1.3.2 Supervised Approaches

As for the unsupervised ones, supervised approaches rely on the presence of an HTML

structure, but they exploit also the possibility of asking users to provide feedbacks. In

fact, humans can help the inference algorithm by providing annotations on the values to

be extracted. From these annotations the inference algorithm can understand the values

to be extracted and accurately select the target values.

Suppose that we want to extract all the directors from the pages in Figure 1.1. A user

could select from the p1 the value F.Meirelles, thus the inference system generates an

XPath rule r1=/html/table/tr[3]/td[2] that extracts the target value from the p1. The

wrapper inference system applies the extraction rule to p2, p3 and from the feedback of

the user it refines r1. In fact, when r1 is applied to p3 no value is extracted, thus the user

can provide an annotation on the new value J. Kosinski and the inference algorithm re-

fines the previous rule accordingly defining r2=//*[contains(text(),“Director:”)]/../../td[2].

Common issues for traditional supervised approaches are the cost required by the an-

notation process and the validation process, i.e. to make sure that the extraction rule

works correctly in all the input pages. In fact some technical skills are required to in-

crementally fix the extraction rule and validate it on the templated pages. Considering

Chapter 1. Introduction 8

our previous example, a solution based on a human that checks the extracted values on

every templated page is not efficient. The typical approach is to provide a visualization

of the extracted content on all the HTML pages, as a vector of extracted values; the

user selects the values to fix and the system updates the visualization for each iteration.

1.3.3 Automatic Annotations

The manual annotation process is expensive, because it requires continuous feedbacks

from human experts. A possible way to address this problem is by defining automatic

annotators that recognize portions of the HTML page. Annotations are meant to replace

the human work required by the supervised approaches.

instance title director

m1 City of God F. Meirelles
m2 Oblivion J. Kosinski

Table 1.1: A database with values that match the running example

Suppose that we have a database of movies represented by Table 1.1, the values inside

the database, title and director of movies, can be used to supervise the generation of

wrappers for these attributes. The rules are then applied to the entire website, to

discover new movies with new directors that are not present in the database. Obviously

the values could not match perfectly and non relevant information could be labelled,

thus these solutions often provide techniques to deal with the expected noise introduced

by the annotation process.

These solutions are scalable, because no human feedback is required. But they still

require an expensive initial set up. For instance, the discovery of a seed database and the

additional domain knowledge required to reduce the noise introduced by the annotation

process have to be manually set up. The inference algorithm could consider domain

knowledge to discard erroneous annotations, e.g. the fact that a movie has a single title,

or that normally a movie has one director but there are also movies with two directors.

This knowledge is processed by the inference algorithm to improve the extraction process.

A Knowledge Base can be complex, thus it requires an initial set up from a domain

expert.

1.3.4 Open Challenges

Other than the previous issues related to each technique, all the state of the art ap-

proaches do not address the following issues:

Chapter 1. Introduction 9

• Sampling: the inference algorithm is a learning process where we have a training

set and a test set, i.e. the training is the set of HTML pages adopted to infer the

extract rule and the test set is where the rules are actually used to extract the

data. Since the inference step is often more costly than the extraction step, state

of the art approaches rely on a fixed training set. The training set is randomly

collected or it is biased by the crawling strategy that is adopted to collect the

pages. The web is characterized by a high degree of variability, thus if a small

number of pages is enough for a website, the same number of pages is not enough

for other websites. Successfully learning a wrapper requires a training set that

is representative of the entire set of pages, so that the learned wrapper can work

correctly on all the pages.

• Experts: all the state of the art approaches rely on expert users, i.e. users that

have knowledge of the extraction problem and the underlying solution. For unsu-

pervised approaches the expert has to understand the output of the system and

correctly set up the values to be fed in the next step of the data extraction pipeline;

for supervised approaches the supervision requires a knowledge of the inference al-

gorithm and the possible inputs required by the system; for automatic annotators

the expert has to find a database and/or a knowledge base that represents the

data to be extracted.

All these issues and the one described in the previous sections make the generation of

wrappers challenging at Web scale.

1.4 Crowdsourcing

The advent of the Crowdsourcing with the possibility of accessing a huge amount of

human labour opens the opportunity to scale human work for many open challenges.

It has been successfully applied to digitalize legacy textbooks, to tag images and to

semantically tag sentences. The principle behind these systems is that many humans can

be involved in simple tasks, e.g. labelling data or images, exploiting an IT infrastructure.

Humans can be paid to complete these tasks or are self-motivated by some subjective

gain, for example the possibility of obtaining a service, e.g. solving a captcha lets the

users access the services in the websites, or for personal satisfaction, e.g. playing a game.

In general, users can be motivated by different goals, but all crowdsourcing platforms

are characterized by few principles: (1) users are voluntarily hired, they accept a job

so there is not a selection of the individual to complete the task; (2) users can make

mistakes completing their tasks, the mistakes depends on many factors, the kind of the

Chapter 1. Introduction 10

task, the skills of the works; (3) the more complex is the task required to complete a

work the more the worker has to be specialized.

As observed, Data Extraction at web scale is a challenging goal. Automatic approaches

can not be applied to the entire web, the quality is often not predictable and most of

the times they still require some human interactions. Supervised approaches generally

obtain a better (and controllable) quality, but they are hard to scale to all the Web for

the human factor. Crowdsourcing represents an opportunity to scale the human factor

by “scaling out” the wrapper generation task, i.e. by moving from a small set of expert

users to many non expert users. The possibility of learning wrappers from non expert

users reduces, on one hand, the costs required by the human intervention and, from the

other hand, it increases the scalability of the solution thanks to the high availability of

non expert humans.

Crowdsourcing for Data Extraction represents an opportunity, but it is also a challenge.

In fact, we have to deal with: (non experts) the wrapper generation technique should

be designed to be easily used by non experts; (the cost) the cost is still an issue and it

should be controlled and minimized; (the quality) users make mistakes, the wrapper

generation system should be tolerant to errors.

1.5 Overview and Contributions

Overview In this dissertation we propose a large scale data extraction system super-

vised by workers enrolled from a crowdsourcing platform.

We defined an original model that describes the process of obtaining a wrapper from

templated HTML pages. The model is based on works from the statistical learning

community [13] and adopts supervised learning to infer wrappers with training data

generated by mini-tasks submitted to the crowdsourcing platform.

The learning process starts from a first annotation on one templated page that selects

the value to extract. From this initial annotation, our inference algorithm generates

a pool of possible extraction rules by exploiting the presence of an underlying HTML

template. The rules extract all the same value on the first page, i.e., the annotated

value, but when they are applied to other pages they behave differently. The variation

represents an uncertainty of the correct value to extract on that page.

In our model, the generation of a wrapper is reduced to the selection of the best extrac-

tion rule among the pool of the candidate rules. This process is supported by simple

mini-tasks that consist of membership queries (MQ) [14], e.g., “Observe this page: is

the string “Dean Martin” a correct value to extract?”. Membership queries admit only

a yes/no answer, thus simplifying the interactions required by the enrolled workers. The

Chapter 1. Introduction 11

learning process interacts with a human worker until it is certain of an extraction rule

or it finds that no rule reflects the feedbacks provided by the worker. Our system takes

into account two aspects of the learning process: the Cost, in terms of number of MQ

required to terminate the computation; the Quality, in terms of the expected probability

of correctness of the output wrapper.

Cost Quality

Active Learning Quality Model
Distant Supervision Redundancy

Dynamic Recruitment Sampling

Table 1.2: A summary of the presented features related to cost and quality

In Table 1.2 we summarize the features of our system:

• Quality Model: We defined a Quality Model, based on the Bayesian Model, to

control the quality of the output wrapper. The Quality Model computes the prob-

ability of correctness of each candidate rule and takes into account the expected

error rate of the worker. The system requires more feedback until a termination

condition is not met.

• Active Learning: The Bayesian Model computes the probability of correctness of

the candidate rules and models the uncertainty of the candidate extraction rules.

To reduce the costs, i.e. the number of MQ required to infer the correct wrapper,

we adopt Active Learning. The most uncertain queries are selected to minimize

the number of MQ required to select the correct extraction rule.

• Redundancy: To deal with mistakes introduced by workers, we adopt redun-

dancy, i.e. we enroll multiple workers on the same task and we compare their

answers. We adopt a technique based on Expectation Maximization (EM) to es-

timate at runtime the workers’ error rate and the quality of the output wrapper

from multiple workers. We exploit the mutual dependency between the answers

provided by the workers with their expected error rate and the expected quality

of the output wrapper. Based on the previous Quality Model we can understand

at runtime the number of redundant workers to engage for a single task, i.e. we

engage other workers if the termination condition is not met.

• Distant Supervision: We provide an alternative to a solution based only on

humans. We bridge the gap between automatic approaches and supervised ap-

proaches by adopting Distant Supervision. We defined several automatic respon-

ders inspired by state of the art wrapper inference systems and we adopt them to

provide answers to the posed MQ. We collect the answers from these responders

Chapter 1. Introduction 12

and we adopt EM to estimate the responders’ error rate and the quality of the

best extraction rule.

• Dynamic Recruitment The number of workers to engage for a single task can

be statically set, but if there is a complex task then it is likely that that there is

a quality loss. To address this issue, the Quality Model selects at runtime whether

many real workers are needed, i.e. if the system is certain of the results, no human

intervention is required.

• Sampling: To make sure that the output wrapper is going to work correctly,

we define a sampling algorithm to select the training set that can guarantee the

quality of the wrapper on the test set. The right training set is the set of pages

that “shows” all the uncertainty present in all the templated pages.

We developed a running prototype that relies on workers enrolled from a crowdsourcing

platform to infer wrappers, we provide an extensive evaluation with a real dataset that

confirms that: we can generate accurate wrappers with just a few MQ; the inference al-

gorithm deals with erroneous workers by estimating the workers’ error rate and selecting

at runtime the right number of workers to enroll for a single task; we can further reduce

the human effort by considering automatic responders, the number of MQ on average is

just 2.38 with the F of the output wrappers close to 1.

Contribution Part of this thesis has been previously published in conferences and

journals. For instance the Active Learning model, the Quality Model and the sampling

algorithm are described in [15]. A demonstration of the system has been proposed in [16].

An extended journal version with the noisy tolerance and the EM technique to estimate

at runtime workers’ error rate is described in [17].

Some works [18, 19] are not included in the dissertation, but they provided precious

experiences to the results obtained with this thesis.

Other parts of the dissertation are under submission, for instance: Chapter 5 with

the description of the Distant Supervision technique and Chapter 6 with the discovery,

crawling and extraction of product specifications [20]. The main contribution described

in Chapter 6 has completed during an internship at AT&T Labs in New Jersey.

1.6 Outline

In Chapter 2 we describe the state of the art for wrapper generation, we present a

subset of the techniques organized in Unsupervised, Supervised and Annotations based

Chapter 1. Introduction 13

approaches. We also provide a brief introduction to some concepts required for the un-

derstanding of the thesis, e.g. Active Learning, Crowdsourcing, Crawling and Discovery

of relevant sources on the Web.

In Chapter 3 we introduce the simplest wrapper inference model with a single noisy

worker. We describe the Active Learning algorithm and the Quality Model. We describe

the sampling algorithm that finds a representative sample set. We provide evaluations

with real data, we show that our system can learn wrapper with few MQ, around 5 MQ

for each attribute.

In Chapter 4 we extend the previous chapter by considering multiple noisy workers.

The chapter describes a technique, alfred, that dynamically enrolls several workers on

the same task and estimates their error rate by adopting an Expectation Maximization

(EM) approach. Furthermore, the chapter describes a scheduling technique that further

reduces the cost by optimizing the redundancy for a given set of tasks. We provide

evaluations with real workers, we show that our system can effectively infer a wrapper

with multiple noisy workers. Erroneous workers and spammers do not affect the quality

of the output wrapper, alfred deals with the noise by enrolling additional workers on

uncertain tasks.

Chapter 5 adopts alfred to combine unsupervised approaches with human supervi-

sion. We describe a Distant Supervision approach that further reduces the human work

required to generate wrappers. The chapter describes several automatic responders.

alfred combines answers from multiple automatic responders to estimate the respon-

ders’ error rate and to check the expected quality of the output wrapper. we combine

multiple responders to increase the average F and to understand when the system is not

confident of the results. We provide experimental evaluation with real data: the average

F of wrappers generated by each automatic responder is around 0.9; for 70% of the cases

our technique returns wrappers with an F of 0.99; for the other 30% of the cases the

system engages human workers to reduce the uncertainty.

Chapter 6 describes a case study related to the extraction of product specifications from

the Web. We describe an end-to-end pipeline that discover, crawl and extract product

specifications from the Web. We adopt: a search API and backlinks to discover relevant

websites; a domain specific crawler to collect target pages on the relevant website; classi-

fiers to recognize specifications inside the target pages. In our evaluation we discovered

and crawled 2719 websites for a total of 1M product specification pages. We describe

two techniques to extract specifications and propose a hybrid approach with F greater

then 0.9.

Chapter 1. Introduction 14

Chapter 7 concludes the thesis with discussions about open problems and possible future

directions.

Chapter 2

Related Work

This dissertation describes a large scale data extraction system, the considered tech-

niques are from different fields of research. In this chapter we provide deeper descrip-

tion of the state of the art and an overview related to: (1) Wrapper Generation we

describe previous techniques for wrapper induction; (2) Active Learning we provide

an overview of the state of the art and the techniques adopted in this dissertation; (3)

Discovery and Crawling we provide a description of previous techniques and state of

the art; (4) Crowdsourcing we describe other crowdsourced systems in literature and

we provide a description of common coordinates among different systems.

2.1 Wrapper Generation

A lot of work has been done to study techniques to effectively extract content from the

Web.

The initial works in Data Extraction studied formalism and languages to manually define

wrappers. Those solutions simplified the process of writing a wrapper so that the parsing

of HTML content was done by extraction rules. These approaches provided formalisms

to select fields inside the pages and to filter portion of the content [1, 21, 22]. They

relied on the fact that the end users of the wrapper system were developers, which are

able to interact with the system writing code. This research branch led to the adoption

of well known and affirmed standards, such as XPath or Regular Expressions, providing

a common formalism to define wrappers.

A second trend in Data Extraction focused on scaling the generation of new wrappers.

Previous works studied languages to define a wrapper, but an open issue was to scale

this process. Most of these solutions exploited the presence of HTML templated pages,

15

Chapter 2. Related Works 16

thus the wrapper can be applied to many target pages. These solutions described in-

ference algorithms that generate wrappers from a set of examples pages, the training

set. Among them we can distinguish two trends: unsupervised approaches, that auto-

matically extracted the content from non-relevant data by exploiting the presence of an

underlying HTML template [4–6]; supervised approaches, that refined the extraction

rule for pages of the same template by asking feedback to an expert human [2, 3].

Unsupervised approaches can be easily adopted to extract data from many websites

without human intervention. The ambition was to automatically wrap the entire Web

with no human intervention. Many issues made this goal unrealistic, in fact human

intervention was always required: to provide the right semantic to the extracted data, to

fix errors in the extracted data. The quality of the output was not stable, for instance, in

some websites the output was perfect but in others the quality could dropped. Feedback

could not be easily integrated to fix erroneous wrappers. Supervised approaches were

the most accurate solutions. Feedback is required to train the inference algorithm to

recognize the values to extract; the task required several (even complex) interactions so

that the systems could effectively integrate feedback provided by human experts. It was

obvious that automatic approaches could not reach the quality of supervised approaches.

The latest trend in wrapper generation is to scale the process to the Web [8–11]. Most of

these techniques rely on Knowledge Bases or existing Databases. The principle behind

is that supervised techniques can be guided by a Domain Knowledge instead of a human

expert. Those solutions can easily scale over the number of the sources, but it is hard

to define a good Domain Knowledge and they do not scale well for multiple domains,

i.e. a Domain Knowledge has to be defined for each new domain.

An interesting alternative to the Domain Knowledge is to adopt the redundancy of the

Web to generate wrappers [10, 11]. Instead of relying on a crafted Domain Knowledge,

these solutions exploit the fact that instances on the Web are published by multiple

sources, thus it is possible to infer wrappers for different websites simultaneously ex-

ploiting common fields. While no experts are required, the quality of these solutions

often is still not controllable, i.e. the quality depends on the quality of the redundancy

and the considered domain.

2.1.1 Supervised Wrapper Generation

Stalker [1]: Stalker is a wrapper inference system supervised by feedback provided

by human experts. A wrapper is described by two patters, one prefix that matches the

HTML content before the extracted content, and one suffix that matches the HTML

content after the extracted content. The inference algorithm finds the correct wrapper

Chapter 2. Related Works 17

with the right prefix and suffix that applied to the templated pages it extracts the correct

value in all the pages. The system requires a training set with the extracted content

annotated by human users. The inference algorithm infers an initial wrapper that is

iteratively refined considering the provided annotations. In each step the wrapper is

refined and scored considering the annotations in the training set.

Muslea et al [2]: The authors described an Active Learning approach based on

Strong and Weak Views for wrapper induction. Strong views are features that can

be adopted to find the correct extraction rule, while weak views do not have enough

information to find correct extraction rule. Examples of strong views are the prefix

and the suffix described in Stalker [1]. Given multiple strong views on a training set,

it is possible to infer different extraction rules that are then applied on the test set.

When the extraction rules from different strong views differ, the system actively requires

feedback from users. The authors exploit the possibility of using weak views to reduce

the human intervention when rules generated from the strong views differ. The system

starts considering a set of initial annotations over the training data and in a second

moment it requires new annotates to refine the extraction rules.

Lixto [3]: The authors described a visual tool for generating wrappers. The expres-

siveness and the formalism of the wrapping program are based on Elog, an extension to

the datalog language. Users can: visualize the tree representation of the HTML pages;

select nodes to extract by using a mouse; visualize the inferred extraction patters; add

filters and test the patterns on some example pages; change and delete existing extrac-

tion patters; specify a crawling program to collect the target pages and so on. The

system has been used in real use cases, to collect data on flights, on news and for busi-

ness intelligence. The tool is extremely powerful, thanks to the expressiveness of the

extraction language and to many technical features. The tool was designed so that the

end user does not have to posses the knowledge of the extraction language adopted for

the wrapping. Even so, the tool was really complex and required many interactions to

visually define a wrapping program, thus limiting the overall adoption of the tool.

2.1.2 Automatic Wrapper Generation

RoadRunner [4]: RoadRunner is an automatic wrapper inference system; it infers a

regular expression from a set of templated HTML pages by reverse engineering the gen-

eration of the HTML pages. The regular expression is refined iteratively, and iteration

after iteration it matches the regular expression (the extraction rule) with a new HTML

page. The inference algorithm starts from a first HTML page, it sets the content of the

Chapter 2. Related Works 18

first page as the initial wrapper, it matches the wrapper to a new HTML page from

the same template. On mismatch between the wrapper and the HTML page it adopts

operators to solve them. There are different kind of operators for different mismatches:

(i) on the text content of an HTML tag, this leads to the detection of a tag that denotes

a value to extract, (ii) on a portion of the page that is not present in the wrapper (or

the opposite), this leads to the detection of an optional portion of the HTML page, (iii)

on a portion of the page that is repeated with a number of times different from the

wrapper, this leads to the detection of lists. Based on these operators the system infers

a wrapper that matches all the training pages, thus leading to the automatic extraction

of the content embedded in the HTML template.

ExAlg [5]: ExAlg follows the same principles as RoadRunner. The approach is

an unsupervised system that can separate the content from the template. The main

difference between RoadRunner and ExAlg is that ExAlg adds the concept of equivalence

class. Portions of the HTML pages are grouped together in as equivalence class when

they occur exactly the same amount of times (e.g. the html, body tags). ExAlg finds

equivalence classes in templated pages and retains only those classes that are frequently

present LFEQs (Large Frequently occurring EQuivalence classes). The intuition is that

HTML templates generated from scripts are characterized by portions of the page that

are equivalently frequent, these portions identify templated tags. In a second step,

the system extracts the content separating the values embedded inside the LFEQs.

ExAlg takes into account the frequency of the tags inside the templated pages, while

RoadRunner does not provide a frequency analysis on the HTML pages.

Zhai and Liu [6]: While RoadRunner and ExAlg consider as input multiple pages

generated from the same script, Zhai and Liu proposed an approach that extracts content

from a single HTML page with multiple instances embedded in the page. On the Web,

there are many index pages that are characterized by the presence of a list of instances

that are published into a single HTML page. The authors described a tree alignment

technique, the intuition is that the region where instances are embedded in a list is

more regular and it is generated by a iterative portion of the script. This motivates

the possibility of adopting a partial tree alignment to find sub-portions of the HTML

page that are similar. The algorithm aligns the records and extracts the text content

embedded in the HTML tags. To discover regions inside the HTML page to run the

alignment algorithm, the authors exploited some constraints related to the process of

generating index pages (considering the DOM representation, the regions are all under

the father node).

Chapter 2. Related Works 19

2.1.3 Scaling Wrapper Generation

Senellart et al [7] A possible technique to scale traditional supervised wrapper

inference system is to automatize the annotation process, i.e. the process of generating

the training data. The authors proposed an approach that exploits a Knowledge Base

to automatically fill forms, to cluster the result pages and to extract the data from the

result pages discarding erroneous pages. The Knowledge Base provides two kinds of

information: the schema that describes the domain and a set of sample instances. The

fields in the forms are matched with the schema and the instances are used to fill the

form and cluster the result pages. The authors observe that with an erroneous input,

forms are likely to lead to erroneous result pages. With this intuition the result pages

generated from a set of sample instances are clustered together. Instances are used to

annotate the result pages and fields are automatically extracted from the template. A

domain expert is required to define the schema and to provide the sample instances.

Dalvi et al [8]: They proposed another approach that relied on automatic annota-

tors. The authors described a system that annotates values in the page by matching

values on a database or by adopting simple regular expressions (e.g. strings that matches

“*Ltd” are likely to be related to names of companies). The annotation process is noisy

but previous supervised wrapper inference systems are not noisy tolerant. To increase

the robustness of the wrapper inference systems to mistakes during the annotation pro-

cess, the authors exploited different properties: (i) with some domain knowledge it is

possible to understand when a generalization is a good generalization and when it is

not, (ii) correct annotations lead to good generalizations while wrong annotations lead

to erroneous generalizations, (iii) a subset of the annotations generated by the noisy

annotator is correct. The system takes into account all the annotations generated by

the annotators, it considers different subsets of them and it generalizes to different ex-

traction rules. Based on the expected precision and expected recall of the annotation

process, the system ranks the extraction rules and selects the best rule.

The main limitations are: the Domain Knowledge is crafted by experts, i.e. requiring

a cost to build the annotators; the annotation process often is characterized by a high

standard deviation, i.e. the quality drops if the expected quality of the annotator is

different from the real one.

DIADEM [9]: DIADEM or Domain-Centric Intelligent automated Data Extraction

Methodology is a Data Extraction system that adopts Domain Knowledge to guide the

extraction process. The Domain Knowledge is manually crafted by a Domain Expert

and it describes how entities on that domain are described on the Web. The Domain

Chapter 2. Related Works 20

Knowledge provides the expected attributes or fields that are found on the Web, the type

associated to the attributes and the presence of optional or mandatory attributes. Based

on this Domain Knowledge and given a website to explore, DIADEM automatically

explores the website by filling forms and navigating the links. To find detail pages that

describe instances it matches attributes and records embedded in the HTML pages with

the lists and gazetteers. To recognize attributes in the HTML pages, it exploits the types

and the constraints defined by the Domain Knowledge. The system exploits the presence

of a common template, it infers a wrapper over a small sample set and the wrapper is

adopted to extract all the records published by the website. DIADEM adopts a specific

extraction language OXPath [23], that lets the inference algorithm define extraction rules

and navigation paths on dynamic pages. The solution easily scales over the number of

websites but it is hard to adapt for multiple domains, in their evaluation the authors

were able to extract content from thousands of websites for few domains (real estates

from UK and US websites and used cars in US). The sources were manually added or

collected from online lists.

Chuang et al [10]: The authors describe a context aware wrapping algorithm. The

process starts from a set of existing wrappers and exploits the presence of peer sources on

common domains. Traditional wrapper inference systems generate wrappers one site at a

time, thus not exploiting the context where they are applied, i.e. the presence of multiple

sites of the same domain. The domain knowledge is used to improve the accuracy of

existing wrappers and to provide a help to match the same attributes in different sources.

Given a set of sources where wrappers are already defined and given a new set of sources

with no wrappers, the system generates some base extractors for the new sources and

adopts a turbo decoding paradigm to sync the wrappers on the same fields. Data

collected from each source are used to define a model; a model is represented as the

set of fields that compose the model and the statistical model to generate the instances.

Models defined by existing wrappers are considered as correct models while models from

the base extractors on new sources are to be refined considering decoders. The authors

adopt an EM approach, exploiting a mutual dependency: models are used to refine the

decoders of the base extractors, refined decoders generate new models. The approach

exploits the fact that sources publish data independently, thus multiple decoders tends

to make different mistakes and an EM approach can be applied to converge the system

to some majority, leading to an improvement of the results.

WEIR [11]: WEIR or Web-Extraction and Integration of Redundant adopts the

redundancy of the same information published by multiple websites to infer wrappers

and integrate the data, by aligning the same attributes from multiple websites. The

Chapter 2. Related Works 21

system exploits the fact that for many domains there are multiple websites that publish

information about the same instances with the attributes, i.e. among multiple websites

there is an overlap at schema level, same attributes (e.g. code, name, volume of a stock

quotes), and at instance level, same entities (e.g. information about GOOG, APPL).

The inference algorithm generates multiple extraction rules on all the sources and it

selects the best rules for an attribute in each source by matching the extracted content

from different sources. The intuition is that correct extraction rules of the same attribute

(from different websites) are more similar to each other than erroneous rules. Exploiting

this natural constraint, the authors were able to automatically extract and integrate

data from multiple websites in different domains. The main limitation in this approach

is that the quality of the output is still limited by the quality of the overlap (how much

the attributes are similar, how many instances are in common).

2.2 Learning Model and Active Learning

Our inference algorithm finds its root in the statistical learning community. In machine

learning, the number of labeled samples needed by a supervised learning algorithm to in-

fer a good hypothesis is called sample complexity [24], and has been studied from several

perspectives. For instance, the author of [14] discusses the problem of exactly inferring

a concept, i.e., a set of elements, by means of different kinds of queries. The simplest

form are membership queries (MQ), question of the type “is this an element of the target

concept?”, i.e. the system asks if an element is of a target concept and the answers are

binary (yes/no). Another kind of queries, equivalence queries (EQ) let user provide a

counterexample to the original question (“no, because the element is of another concept

c”). An EQ can be expressed as multiple MQs, thus a learning model based on EQs can

be translated to a learning model based on MQs.

If answers provided by users can be erroneous, a more complex setting has to be consid-

ered. In [13] the authors defined a statistical learning model, the PAC learning model,

in which two loss functions are given in order to characterize the quality of the produced

hypothesis for the learning model when mistakes are taken into account. One of the loss

function models the probability that the learning algorithm learned a wrong concept,

thus the goal of the learning process is to reduce this probability by asking labels/feed-

backs in a sufficient number of examples so that it is lower than a given threshold, that

results in a minimal number of queries. The second loss function models the possibility

of not learning the exact concept, thus learning another concept that can be approxi-

mated to the right concept. In this work, the authors theoretically described the learning

process and the boundaries required to reduce the loss functions.

Chapter 2. Related Works 22

Previous works described the learning models that are the base of our generative model,

but they do not describe policies for the selection of the samples to request feedback. To

reduce the number of queries required to learn the right hypothesis, a possible technique

is to adopt Active Learning. Active Learning studies techniques to minimize the training

required to infer a hypothesis [25], by selecting the best sequence of questions. An

Oracle provides answers to the posed questions. Many researchers have proposed several

variations of the learning paradigm to make it practically feasible in different applicative

contexts: the learning approaches in which the inference algorithm is free to choose which

sample to label next are usually defined active. These have recently gained interest, since,

as clarified in [24], they might produce exponential improvements over the number of

samples wrt traditional supervised approaches. Different query strategies are proposed

in literature [25]: Uncertainty Sampling selects a query on the least certain sample;

Query-By-Committee selects a query on the value where the committee (trained from

the same training set) disagree the most; Expected Model Change selects the query

on the value that provides the greatest change if we knew its label; Estimated Error

Reduction finds the value that that minimizes the expected error rate if it is labeled

with a certain label and added training. Most of these approaches are designed for

complex classification tasks where different kinds of feedback are provided. In our case,

for a binary classification task, many of these approaches collapse. For instance, selecting

the most uncertain value is equivalent to selecting the value that reduces the most the

uncertainty. Most of the works in Active Learning [24] consider perfect oracles; with the

advent of the crowdsourcing phenomena a new trend related to noisy oracles has been

considered [26, 27]. The biggest challenge is to reliably estimate the workers error rate

by considering a golden standard or by considering multiple workers on the same task.

2.3 Crowdsourcing for Data Management

Recently there is an increasing interest in the crowdsourcing phenomenon. Crowdsourc-

ing is an emerging area of research and is studied by different communities on different

research areas. Involving the crowd is considered as a possible way to address many

long standing challenges. In fact, the crowd can be integrated in automated tasks,

thus for complex operations where algorithms or machines can not achieve sufficient

results, humans can be involved. In data management, proposals have been made for

crowdsourcing to support different stages of a data management lifecycle, such as data

collection (e.g. [17, 30, 31]), integration (e.g. [32–34]), entity resolution (e.g. [35–37]) and

querying (e.g. [38–40]).

A common aspect on all these works are the considered optimization coordinates: to

minimize the cost required to complete the task, to increase the quality of the output

Chapter 2. Related Works 23

considering mistakes introduced by workers and to reduce the latency, the time from the

submission of a task and its completion.

Some of the proposals address all three coordinates simultaneously [40], others consider

just two of them leaving the third coordinate as an orthogonal concern. One of the main

challenges for these crowdsourcing systems is the noise management; workers are prone

to mistakes and among them spammers can voluntarily provide misleading feedbacks.

To address this challenge, workers’ error rate should be estimated and spammers should

be detected. Common techniques to manage the noise are: golden standard a training

set with the correct answers for the posed questions are adopted to score workers and

filter spammers; redundancy multiple workers are asked to answer the same tasks, thus

it is possible to estimate the workers’ error rate; gamification or reputations workers are

somehow self motivated to complete the tasks in a correct way for a personal gain, e.g.

a ranking in a game or some social reputations.

In [30] the crowd is modelled as an extension of existing database systems. Special

annotations are added to table to identify special crowdsourced attributes. From these

annotations forms and tasks are automatically created and submitted to a crowdsourc-

ing platform. The crowd is also involved to solve queries on missing values.

Binary Query, Active Learning and Crowdsourcing are adopted by [32] to address schema

matching. This work aims to reduce the uncertainty resulting from automated schema

matching systems by actively posing query to workers enrolled from Amazon Mechanical

Turk. The authors described primarily how to optimize the costs with the crowd without

penalizing the quality of the output, but workers’ error rate estimation and spammers

identification are not considered.

In [30] the crowd is adopted to address the entity resolution problem. The system defines

a complete pipeline for entity resolution based on the crowd, hand-off crowdsourcing.

Blocking Rules are adopted to discard obviously wrong resolutions, Match is used to

predict probable resolutions with an Active Learning approach, Accuracy Estimator

computes the accuracy of the predictions and Difficult Pairs’ Locator is used to resolve

and identify errors in Match and to improve the matching rules. All these steps involve

the crowd to improve the quality of the output.

2.4 Discovery and Crawling

Data Extraction systems face the problem of finding the input pages, i.e. the templated

pages from the same website where it is possible to infer the wrapper. There are two

broad approaches to get templated web pages from the web. The first is to start from

a complete crawl of the web, and identify the HTML tables and lists that contain the

structured data of interest by adopting a clustering technique [41]. The second is to

Chapter 2. Related Works 24

perform a focused crawl of the web, looking only for target templated pages. While

the first approach has been investigated in the literature (see, e.g., [12, 41]), it has its

limitations: very few groups have access to up-to-date web crawls, and initiating such

crawls is extremely resource intensive. We focus our attention on the second approach.

In fact collecting target templated pages is a challenging task, existing generic snapshots

of the Web, e.g. Common Crawl 1, do not solve the problem. In fact, target pages are

often deep inside the website, thus hard to be collected by a generic crawler, pages are

not up-to-date and many small websites with relevant pages are not actually indexed.

In [12] the authors analyzed the distribution of the templated pages on several domains

considering all the pages indexed by Yahoo!. The authors adopted search on a certain

representation of the instances (e.g. key values, ISBN or restaurants’ telephone num-

ber) to discover websites that publish information on a target domain. They adopted an

automatic wrapper inference technique to extract all the representation of the instances

in the discovered websites and iteratively discovered a comprehensive list of target web-

sites related to that domain. For a single domain there are thousands of websites that

publish relevant information. If we model the sites discovering process as a bipartite

instance-sites graph, thus an edge represents the containment of an instance in that

website. The authors found that for many domains the graph is highly connected and

that the diameter is small, ranging from 6 to 8. The authors considered the extraction

only on few “core” attributes, e.g. identifiers and so on, thus simplifying the extraction

task. Many challenges related to focus crawling the target pages from the website and

the availability of a huge index of the web were not addressed by the authors.

The previous observation on the connectivity of the Web, motivated many iterative

search approaches that, querying an indexed copy of the Web (API from a search engine),

they incrementally discovered new websites with a set expansion paradigm [42, 43].

Many issues related to this approach are not addressed.

A first issue is the so called “Semantic Drift”, in fact from a small set of reliable websites,

adopting search the set expansion paradigm can end-up on a website that publish the

same representation used to query the search engine, but with a different semantic

(searching for the name of an actor can lead to pages related to a musician with the

same name).

A second more technical issue is related to the limitations imposed by the search engines

on their APIs. In fact, often these interfaces are limited in number of overall calls per

month, number of calls in a small interval of time, and number of results returned in

each call. This issue makes the previous bipartite navigation graph, which is highly

connected with a small diameter, really challenging to navigate for groups that do not

have an open access to a comprehensive index of the entire Web.

1commoncrawl.org

Chapter 2. Related Works 25

Techniques to automatically crawl templated pages have been proposed [44–47].

In [44] the authors defined a combination of online learning and bandit-based approach

to discover relevant websites and collect templated pages, balancing exploration and

exploitation. The approach uses the semantic annotations on the Web to guide the

crawler; semantic annotations provide the feedback required to recognize target pages.

The authors evaluated their approach on the dump of Common Crawl. [44] is a generic

crawler that can be adopted on different domains.

Another generic approach is to reverse engineer the navigation structure of the website

and infer a site map structure of the website. In [46] the system recursively navigates

from the target pages to the root of the website. Given a sample page, the crawler

navigates all the links from the sample page, from the navigated pages it searches for

link collections that leads to the original page. This kind of pages are commonly index

pages, recursively adopting this strategy finds the index structure of the website that

lead to pages similar to the sample page.

An alternative way to collect relevant pages is by considering some categories of pages.

[45] describes a forum specific crawler. The approach exploits the fact that forums are

organized following a common structure: an entry page of the forum, threads, topics,

discussions with user’s comments and responses and so on. Based on this structure,

classifiers and heuristics are combined together to craft a focus crawler specialized for

forums.

In [47] navigation paths are used to extract entities and relationship among the entities.

The authors adopt an existing database to guide the crawler and the extraction process

and exploit lists and parallel navigation paths to infer relationships among entities.

The database, with its instances and the schema associated to the entities, is used to

recognize the same entities in webpages: a list groups entities under a common semantic

and a parallel navigation describes hierarchies and relationships between instances of

different entities.

Chapter 3

Single Noisy Worker

Although many research efforts concentrated on the development of methods and tools

to generate web wrappers, large scale data extraction is still a challenging issue. Early

proposals to infer web wrappers for data intensive websites were based on supervised

approaches. Wrappers were generated starting from a set of training data, typically

provided as labeled values, i.e., annotated pages. To overcome the need of human

intervention in the production of training data, unsupervised approaches have been in-

vestigated. They exploit the local regularities of script-generated web pages to infer

a wrapper. Unsupervised approaches adopt sophisticated algorithms to generate the

wrappers, and represent an attempt to “scale-up” the wrapper generation process. Un-

fortunately, although they eliminate the costs of training data, they have a limited

applicability because of the low precision of the produced wrappers.

The recent advent of crowdsourcing platforms (such as, for example, Amazon Mechanical

Turk) can open new opportunities for supervised approaches. These platforms provide

support for managing and assigning mini-tasks to people. In the wrapper production

process, crowdsourcing platforms can be used to produce massive training data for su-

pervised wrapper inference systems. As they facilitate the involvement of a large number

of persons to produce the training data, we may say that they represent a solution to

“scale-out” the wrapper generation process. However, to obtain an efficient and effective

process, two main issues need to be addressed. First, since mini-tasks are performed by

non-expert people, they should be extremely simple. Second, since the costs of produc-

ing wrappers become proportional to the number of mini-tasks, the number of training

data produced by the crowd to infer a wrapper should be minimized.

In this chapter we present alfη a system that relies on crowdsourcing platforms to create

accurate web wrappers. Our system adopts a supervised approach to infer wrappers

with training data generated by means of a crowd computing platform. The mini-tasks

26

Chapter 3. Wrapper Generation with a Single Noisy Worker 27

submitted to the platform consist of membership queries (MQ), which are the simplest

form of queries, since they admit only a yes/no answer (e.g., “Observe this page: is the

string ’Dean Martin’ a correct value to extract?”). To address the costs issue, our system

is able to select the queries that more quickly bring to infer an accurate wrapper, thus

minimizing the number of mini-tasks assigned to the crowd platform. In this chapter we

limit the discussion on dealing with a single worker at the time and leave for the next

chapter the discussion about the schedule of tasks and the estimation of the workers’

error rate.

The chapter is organized as follows: Section 3.1 presents an overview of alfη; Section 3.2

formalizes our setting; Section 3.3 describes the generation process of the candidate

rules; Section 3.4 develops our probabilistic model to characterize the correctness of

extraction rules; based on the model, Section 3.5 presents the active learning algorithm

to infer extraction rules; Section 3.6 introduces the sampling algorithm; Section 3.7

discusses experiments with a set of sources from the Web; finally, Section 3.8 concludes

the chapter.

3.1 Overview

We propose a logical framework based on original solutions for exploiting crowd plat-

forms to infer wrappers around large web sources. Since we aim at demanding to a

crowd platform the burden of generating labeled examples, our approach considers a

cost that takes into account the number of membership queries submitted to a crowd

platform.

Our framework includes a supervised active learning algorithm that aims at minimizing

the number of membership queries to infer a wrapper: it selects a value and poses a

membership query to obtain a confirmation about the correctness of the extracted value.

By accurately choosing this query, the user interaction is minimized. Our experiments

prove that our learning algorithm can infer high quality wrappers with a fraction of the

queries required by a traditional approach.

Our algorithm infers the wrapper on a set of labeled values, and the quality model

evaluates the wrapper on a larger set, ideally on the whole set of target pages. However,

in many practical cases the evaluation on the whole set is unrealistic because of its

size. To overcome this issue, our framework also includes an algorithm to compute a

small set of representative pages: the extraction rules inferred and evaluated against our

representative set also work on the larger set of target pages. Our experiments show that

our algorithm is able to select a representative set several orders of magnitude smaller

Chapter 3. Wrapper Generation with a Single Noisy Worker 28

Figure 3.1: Running example with the DOM tree of three sample pages

PPPPPPPPPrules
pages U

p1 p2 p3

RTitle
r1 City of God Inception Oblivion
r2 City of God Inception nil
r3 City of God nil Oblivion

r1 =/html/table/tr[1]/td
r2 =//td[contains(.,“Rating:”)]/../../tr[1]/td
r3 =//td[contains(.,“Director:”)]/../../tr[1]/td

Figure 3.2: Extraction rules and the extracted values for the running example on the
attribute Title .

than the whole set of target pages, and that wrappers inferred from our representative

sample outperforms (in term of precision and recall) wrappers generated from much

larger randomly selected sets.

In summary in this chapter, we make the following contributions:

• a framework that exploits crowd platforms to infer wrappers around large web

sources;

• a cost model that takes into account both the processing costs and the human

intervention costs needed to feed the crowd platform;

• a probabilistic quality model for computing correctness of a wrapper over the whole

set of pages even if it is inferred on a smaller set of pages chosen by a sampling

algorithm;

• an active learning algorithm for generating high quality wrappers in a cost-effective

manner;

• a sampling algorithm for selecting small yet representative sets of pages;

Chapter 3. Wrapper Generation with a Single Noisy Worker 29

3.2 Preliminaries

Let U = {p1, p2 . . . pn} be a set of pages. Every page publishes several attributes of

interest (e.g., in our running example, movies’ Title, Director, etc.). For simplicity we

assume that its values are either a textual leaf of the DOM tree representation of the

pages, or a distinguished nil value. We write v ∈ p to denote that v is a value of the

page p, and pv to denote the page in which the value v is located.

We refer to a generic extraction rule (or simply rule) r over the set of pages U as a

concrete tool to build a vector of values indexed by the pages in U such that r(p) ∈
p ∪ {nilp}. Every rule extracts one vector of values from U denoted r(U). Figure 3.2

shows the vectors extracted by the rules r1, r2, r3. We denote by R(U) the set of vectors

obtained by applying a set of rules R over U , and blur the distinction between a rule

and the vector it extracts from U . Note that |R(U)| ≤ |R|, with the strict inequality

holding whenever a vector is extracted by different rules.

We introduce the concept of labeled sample value (or simply labeled value) vl where v ∈ pv
is a value from a page pv, and l ∈ {+,−} is either a positive or a negative label. In the

following v+ and v− denote a positively labeled value (or annotation) and a negative

labeled value, respectively, i.e., the two possible answers to a MQ. We denote by RA

and vA the set of rules and a value extracted by rules related to the attribute A, in the

following we omit the notation when a single attribute is considered.

A rule r is admissible wrt a set of labelled values L (denoted L(r)) iff:

L(r) ⇔ ∀vl ∈ L,
l = +→ r(pv) = v

l = − → r(pv) 6= v

that is, it is compliant with the labels in the set.

The concept can be trivially extended to a set of rules R. We denote by RL = {r ∈
R : L(r)} the subset of admissible rules in R wrt L, and by V̂ R

L (U) all the values they

extract from U : V̂ R
L (U) = {v : v = r(p), r ∈ RL, p ∈ U}.

Example 3.1. Let p1, p2 and p3 be the pages in Figure 3.1 and let U = {p1, p2, p3}. The

attribute Title is extracted by the rule r1: two positive annotations are v+0 =’City of God’

in p1 and v+1 =’Inception’ in p2; a negative labelled value in p2 is v−2 = nilp2. Observe

that r2 is admissible wrt L = {v+0 , v
+
1 , v

−
2 }. Now consider another rule r3, the rule is not

admissible wrt L since r1(p2) = nilp2 which is the negatively labelled value v−2 . Hence,

RL = {r1} and V̂ R
L (U) = {v0, v1, v3} where v3 =’Oblivion’ in p3.

Chapter 3. Wrapper Generation with a Single Noisy Worker 30

We denote with VA the set of all the values extracted by RA in U for the attribute A,

i.e. we do not consider the admissibility of the rules wrt L.

In the following, given a set of rules R, we will only consider special ordered sets of

labeled values, called training sequences, which are formed by an initial set of positive

annotations, and then by adding only new values which are still admissible with respect

to those already seen. Intuitively, a training sequence lists the answers to the MQ posed

to learn a extraction rule.

A Training Sequence (t.s.) L wrt a set of rules R and a set of pages U is specified by

a sequence of labeled values that defines a sequence of (observed) sets Lk with Lk+1 =

Lk ∪ {vk} = {v+0 , . . . , v
+
a−1, va . . . , vk} such that: (i) it begins with sequence of a ≥ 1

annotations v+0 , . . . , v
+
a−1 6= nil with positive labels, and (ii) ∀k ≥ a, vk ∈ V R

Lk
(U) =

V̂ R
Lk

(U) \ Lk.

The constraint (i) on the first annotations of the sequence is useful to generate a finite

set of admissible rules RLa , whereas the constraint (ii) on the remaining values entails

that the new value vk that forms Lk+1 from Lk leads to smaller and smaller admissible

sets: RLk+1 ⊆ RLk . It is worth noting that RLk+1 plays the role of what the learning

communities call the version-space [25], i.e. the set of hypotheses still plausible after

having considered an input set of labeled values.

Example 3.2. Consider again the above Example 3.1 and our running example in

Figure 1.1. Then a possible t.s. is L2 = {v+0 , v
+
1 } and RL2 = {r1, r2}. Possible candidate

values are V R
L2(U) = V̂ R

L2(U) \ L2 = {’Oblivion’, nilp2 , nilp3}. A new MQ can be formed

by choosing a new value v2 to query from the elements in V R
L2(U). E.g., “ is ’Oblivion’ a

correct value? ”.

In the following we will uniformly refer to both L and one of its observed subsets Lk

blurring the differences between the two concepts whenever the context clarifies which

one is actually involved.

It can always be decided whether a rule extracting the desired vector exists. However,

since it is not known in advance whether that rule was in the set of all candidate rules,

the only certain way to be sure of its presence is by checking every single page [14].

3.3 Rules Generation

We propose a wrapper induction process that starts with only one annotated page,

that is, one page where the value of the target attribute has been marked.The input

Chapter 3. Wrapper Generation with a Single Noisy Worker 31

annotated page may be supplied either manually or automatically by looking up in the

page a golden value from an available database.

From the input annotated page, we generate a space of hypothesis, i.e., a set of candidate

rules, denoted R, that extract the given initial annotation for the attribute A. Notice

that distinct rules might be equivalent, i.e., they produce the same results on U . In the

following, we assume that in R we save only one representative rule for every class of

equivalent rules. We consider extraction rules defined by means of expressions belonging

to a simple fragment of XPath. Namely, we use rules that specify paths that start from

a pivot node and lead to the annotated value. We adopt several types of node as pivot:

nodes that occur exactly once in every input pages, such as, the document root and nodes

having an ‘id’ attribute; textual leaves that occur at most once in a large percentage

of the input pages. The rationale is that it is unlikely that these nodes appear once

in almost all pages by chance, but rather they are likely to be part of the underlying

template [5].

Although the candidate rules are correct for the page containing the initial annotation,

they might not work correctly for other pages in U .

Example 3.3. Suppose that we are interested to generate a wrapper that extracts the

Title from the fictional set of movie pages U = {p1, p2, p3} whose DOM trees are sketched

in Figure 1.1. Assume that the initial annotation ‘City of God’ is supplied on the sample

page p1. Figure 3.2 shows the set RTitle = {r1, r2, r3} of candidate rules generated from

this initial annotation. Rule r1 is pivoted in the document root, rule r2 and r3 are pivoted

in the template nodes ‘Rating:’ and ‘Director:’, respectively, which occur once in two out

of three input pages. Note that r1 is the only correct rule, as it extracts the Title from

all input pages, whereas r2 does not work on p3, and r3 does not work on p2.

In order to select the correct rule, our inference process evaluates the candidate rules by

posing a sequence of queries to a human worker recruited from a crowdsourcing platform.

The worker is shown a page p and is asked whether a given value vA = r(p), r ∈ R,

extracted from the candidate rule r is the correct one for the target attribute A in the

page p. The binary answer l, with l ∈ {−,+}, provided by the worker adorns the queried

value vA with either a positive or a negative label, producing a labeled value, denoted

by vlA.

Example 3.4. Continuing the previous example, the inference process may build a query

with the value r1(p2) = r2(p2) = Inception: the worker is shown page p2, and is asked

to confirm whether Inception is the Title of the movie in that page. A confirmation

corresponds to produce the labeled value Inception+.

Chapter 3. Wrapper Generation with a Single Noisy Worker 32

The labeled value produced by the worker is appended into a training sequence (t.s.) for

A, denoted L. A Bayesian model is used to compute the probability of correctness of

the candidate rules, given the labeled value just acquired, and the t.s. collected so far.

As new queries are posed, the t.s. is expanded with the returned labeled values, and the

probabilities are updated until a termination condition is satisfied.

3.4 Bayesian Model

In this section, we develop our Bayesian model for estimating the probability P (r|vlA, L)

of each candidate rule r ∈ RA of being a correct extraction rule of A for the whole set of

input pages U , given a new labeled value vlA and the t.s. L acquired so far. Our model

considers noisy workers making independent and random mistakes, that is, providing

erroneous labels with a certain error rate η.

The probability of correctness of an extraction rule is computed whenever the worker

provides a new labelled value vlA, which will expand the current t.s. L. The posterior

probability P (r|vlA, L) can be obtained starting from the probability P (r|L) by means

of a Bayesian update.

The whole process is triggered by a prior p.d.f. P(r) over the candidate extraction rules

r ∈ R extracting the initial annotated value of A from the input pages U . We assume

that a correct rule exists in R and we use a simple uniform prior: P(r) = 1
|R(U)| .

By applying Bayes’ theorem:

P (r|vlA, L) =
P (vlA|r, L)P (r|L)

P (vlA|L)
(3.1)

where P (vlA|r, L) is the likelihood of acquiring the labeled value vlA conditioned to the

correctness of r, once a t.s. L has been observed, and P (vlA|L) is a normalization factor

that can be expressed as: ∑
ri∈R

P (vlA|ri, L)P (ri|L) (3.2)

to sum up all the probabilities to one.

The p.d.f. P (vlA|r, L) can be obtained by introducing a probabilistic generative model

to abstract the actual process leading to the generation of every possible t.s. in presence

of a correct rule r. Notice that the labeled values forming the t.s. L will be labeled as

either positive or negative based on the values of A, assumed correctly extracted by r,

but these values are not known in advance.

Chapter 3. Wrapper Generation with a Single Noisy Worker 33

We adopt a simple generative model of the labelling process that randomly chooses,

without replacement, the next queried value among the set of candidate values, i.e., the

next value is chosen from the set VA \ L.

To take into account the errors of workers, we assume that a worker makes indepen-

dent random mistakes, as for example in the Classification Noise Process [48], with an

expected error rate η. It follows:

P (vlA|r, L) =

1−η
|VA\L| , iff vk ∈ V l

A(r)
η

|VA\L| , iff vk ∈ V −lA (r)

0 , otherwise

(3.3)

where, given a correct rule r, V l
A(r) denotes the set of values that can form new values

labeled l after having observed the t.s. L; −l is the opposite label of l.

3.5 Active Learning for Wrapper Generation

In the previous Section 3.4, we defined the probabilistic model that computes the prob-

ability of the candidate rules. In the remaining of this section we discuss a simple Active

Learning algorithm to select the best extraction rule and we discuss the subprograms

chooseQuestion(), which implements the query selection strategy by choosing the

best value to be queried, and halt(), which implements the stopping condition for the

algorithm.

Listing 1 alfη: Active Learning Algorithm for Wrapper Inference

Input: a set of pages U
Input: the set of candidate rules R

Parameter η: worker error rate
Parameter λr: target probability of correctness
Parameter λMQ: maximum budget

Output: a p.d.f. describing the probability of correctness of the rules in R

1: let L = ∅;
2: while (not halt(L, λr, λMQ)) do
3: vA ← chooseQuestion(L);
4: l← getAnswer(w, vA);
5: compute P (r|vA, L), ∀r ∈ R with Eq. 3.1 and Eq. 3.3 ;
6: L← L ∪ {vlA};
7: end while
8: return P (r|L), ∀r ∈ R;

The above approach is detailed in the alfη algorithm, whose pseudo-code is illustrated

in Listing 1: it takes as input a set of pages U and a set of candidate rules R for the

Chapter 3. Wrapper Generation with a Single Noisy Worker 34

attribute A (computed from an initial annotated page), it poses queries to the worker

and collects its answers into a t.s., and it returns a p.d.f. describing the probability of

correctness of the rules in R.

alfη progressively builds a t.s. L by posing queries to a worker. In every iteration

(lines 2–7), the worker is asked to label a new value vA (lines 3–4). Then, for all the

rules r ∈ R, alfη computes the probability distribution function P (r|vA, L), that is,

the probability that each r ∈ R is correct, given the last labeled value and the t.s. L

acquired so far (line 5). Finally, the t.s. L is expanded by adding vlA (line 6).

We can customize the algorithm by modifying the function to select the query (choose-

Question()) and by setting the termination condition (halt()).

3.5.1 Asking the Right Questions

PPPPPPPPPrules
pages U

p1 p2 p3

RTitle
r1 City of God Inception Oblivion P (r1|L) = 0.4
r2 City of God Inception nilp3 P (r2|L) = 0.2
r3 City of God nilp2 Ratings: P (r3|L) = 0.2
r4 City of God - Director: P (r4|L) = 0.2

VA \ L = {“Inception”, nilp2 , “-”, “Oblivion”, nilp3 , “Ratings:”, “Director:”}

Table 3.1: Running example for asking the right questions

The chooseQuestion() procedure chooses the next membership query: it decides the

next value to be labeled. We propose three alternative strategies: Entropy, Greedy,

and Lucky, plus a baseline algorithm Random. The value is picked up from the set

of candidate values for attribute A, denoted VA, which contains all the values extracted

from pages in U by the candidate rules in R.

Random: It chooses a random value from VA:

chooseQuestion(R,L) { return a random v ∈ VA \ L; }

and it serves as a baseline against other strategies.

Entropy: VA = {r(p), r ∈ R, p ∈ U}. Entropy strategy consists in choosing the value

on which rules most disagree, appropriately weighted according to their probability. This

is equivalent to compute the vote entropy [25] for each v ∈ VA \ L:

H(v) = −[P (v+|L) logP (v+|L) + P (v−|L) logP (v−|L)] (3.4)

Chapter 3. Wrapper Generation with a Single Noisy Worker 35

Equation 3.4 computes the vote entropy. i.e. the uncertainty of a given value. Equa-

tions 3.5 and 3.6 are the probabilities that v is respectively either a value to extract or

an incorrect value: Rv is the set composed of rules in R that extract v.

P (v+|L) =
∑
r∈Rv

P (r|L) (3.5)

P (v−|L) =
∑

r∈R\Rv
P (r|L) (3.6)

Intuitively, the entropy measures the uncertainty of a value and querying the value with

the highest entropy removes the most uncertain value:

chooseQuestion(L) { return argmaxv∈VA H(v); }

Example 3.5. Reconsider the running example in Table 3.1, and the t.s. L1 = {City of God+}.

P (v+1 |L1) and P (v−1 |L1) can be computed as follow:

v1 P (v+1 |L1) P (v−1 |L1)

Inception 0.4 + 0.2 0.2 + 0.2

nilp2 0.2 0.4 + 0.2 + 0.2

Oblivion 0.2 0.4 + 0.2 + 0.2

Director: 0.2 0.4 + 0.2 + 0.2

.

From P (vl1|L1) by using Eq. 3.4 the entropy H(v) can be obtained as follows:

v1 H(v1)

Inception −0.6 · log(0.6)− 0.4 · log(0.4) = 0.292

nilp2 −0.2 · log(0.2)− 0.8 · log(0.8) = 0.216

Oblivion −0.2 · log(0.2)− 0.8 · log(0.8) = 0.216

Director: −0.2 · log(0.2)− 0.8 · log(0.8) = 0.216

.

Hence, Entropy chooses v1 = Inception as the next value to query to get L2 = L1∪{v1}.

Greedy: The construction of the whole version-space is inefficient, since it requires to

enumerate all possible t.s.. However, the version-space can be exploited to find the

quickest t.s. confirming that a given rule is a solution. Let us call such a kind of

sequences confirming t.s.: they aim more at deciding as quickly as possible that a given

rule is a solution, rather than at finding which is the solution.

In every search step, Greedy “elects” the most likely rule to play the role of the solution,

and then it greedily builds a confirming t.s. wrt that conjecture. If, after a few labeled

Chapter 3. Wrapper Generation with a Single Noisy Worker 36

values, that rule is confuted and removed from the version-space, the whole process is

repeated by formulating another conjecture around the most likely rule in the remaining

version-space.

In this setting, the query is selected by greedily taking the value extracted by the sup-

posedly “correct” rule from the page on which most other rules behaves differently: if

that value is labeled positive as expected, the largest number of rules is removed from

the version-space.

chooseQuestion(R,L) { return r∗(p∗) }
where: r∗ = argmaxr∈RL(U) P (r|L);

p∗ = argmaxp∈U |{r(p) : r(p) 6= r∗(p)}|.

As the cost of this approach depends on the size of the version-space, it can be relevant

in the early stages of the searching. The next variant delays its construction until the

best rule emerges as significantly more likely than other candidates.

Example 3.6. Reconsider the running example in Table 3.1, and the t.s. L1 = {City of God+}.

The most likely rule is r1 because P (r1|L) = 0.4, p∗ is selected considering the following

scores:
p score

p1 0

p2 2

p3 3

Hence p∗ = p3 and Greedy chooses v1 = r∗(p∗) = Oblivion as the next value to query

to get L2 = L1 ∪ {v1}.

Lucky: It is a hybrid of the former two approaches, and it works in two phases: first,

it accumulates enough evidence of the correctness of a rule by using Entropy; then, it

switches to Greedy modality to confirm it. The switch is triggered by a fixed threshold

λr∗ on the probability of the most likely rule r∗.

This approach can be seen as a generalization of Greedy: at the beginning it waits to

observe enough evidence before allocating all its trust on the most likely rule.

3.5.2 Termination Condition

The most appropriate termination policy might well depend both on budget constraints

and on the quality targets. We propose a simple implementation of halt() that takes

into account both aspects:

Chapter 3. Wrapper Generation with a Single Noisy Worker 37

halt(L, λr, λMQ) { return (maxr∈R P (r|L) > λr) or (|L| > λMQ); }

According to this policy, we stop when the probability of the best rule overcomes a

threshold λr or just run out of a “budget” of λMQ membership queries allocated for

learning the rule from this worker.

3.6 Sampling

So far we considered feasible the application of our algorithm alfη to the whole set of

input pages. However, in many practical cases this assumption is unrealistic because

of the number of pages (e.g., consider www.imdb.com, which provides more than 6 · 106

pages about actors). Finding a sampling set that is “cheaper” to work on, and yet

it represents a larger population, is a traditional statistic problem. In this section we

contextualize this issue in our setting and move to the related problem of sampling

the input pages into a much smaller set of sample pages. The extraction rules can be

evaluated on the sample set much more efficiently than on the whole set of pages; at the

same time, a representative sample set must preserve the power of differentiating the

rules by showing all their differences. However, the sample pages need to be carefully

selected to be representative while, at the same time, minimizing their number.

These aspects are often neglected in the literature. Typically, sample pages are selected

randomly, or they are collected following straightforward crawling strategies. While

random samples could end up not representing the whole set of pages, crawling strategies

can lead to the composition of biased samples. As an example, www.imdb.com exposes

its content mainly in the form of top-lists, such as top-list movies, top-list actors and

so on. A crawler following the links in these lists will inherently collect biased samples

concentrated around “famous” instances.

We formulate the problem of finding a set I ⊂ U such that |I| � |U | yet I is represen-

tative (with respect to a given class of extraction rules R) of all the pages in U . The

representativeness of a set of pages I ⊂ U wrt a set of rules R can be formalized by

introducing the disagreement set of two extraction rules.

Given a set of pages P , and a set of rules R, the disagreement set, denoted as DP (ri, rj),

between two rules ri, rj ∈ R, is the set of pages in P making observable their differences:

DP (ri, rj) = {p ∈ P : ri(p) 6= rj(p)}, i.e., the subset of pages in P on which ri and rj

extract different values. Two rules ri, rj extract from P the same vector of values, and

hence are indistinguishable for our purposes, if and only if DP (ri, rj) = ∅.

Chapter 3. Wrapper Generation with a Single Noisy Worker 38

We say that a subset I ⊆ U is representative of U wrt a set of rules R if and only if:

∀ri, rj ∈ R, [DI (ri, rj) = ∅⇐⇒ DU (ri, rj) = ∅].

In other terms, I is representative of U wrt to R if all the differences amongst the rules

in R are also observable on I.

Example 3.7. Consider again our running example in Figure 1.1 and suppose that

I = {p1, p2}, while U = {p1, p2, p3}. I does not represent U since DU (r1, r2) = {p3}
whereas DI (r1, r2) = ∅.

Given the set of input pages U , and the class of rules R, there exist many representative

subsets, including U itself. As discussed above, our goal is to find a small sample set.

Finding the smallest one is an instance of the well-known Set Cover problem: a page

differentiates the set of rules that extract distinct values from it.1 Set covering is an

NP-complete problem but actually we do not need to compute the optimal sample set:

it suffices to estimate it by considering a small but not necessary minimal set of pages.

Listing 2 proposes PageSampler, a greedy sampling algorithm to extract a representa-

tive set of pages I wrt a class of rules R from a large set of input pages U in O(|U |·|RLa |)
time and O(|RLa |) space.

Listing 2 PageSampler: A greedy sampling strategy

Input: a set of pages U ;
Input: a class of rules R;
Input: a set of initial annotations La;

Output: a set I ⊆ U that is representative of U ; wrt R

1: let I = ∅;
2: let n = 0;
3: for p ∈ U do
4: if (|RLa(I ∪ {p})| > n) then
5: I ← I ∪ {p};
6: n← |RLa(I)|;
7: end if
8: end for
9: return I;

PageSampler processes the whole set of pages U (lines 3-8). It maintains a set of pages

I, initially empty, that is representative wrt the subset of pages already processed. It

selects as representative only those pages that increase the number of different vectors

extracted by the set of admissible rules RLa (line 4). The pages selected according to this

1 The problem reduces to finding the smallest set of pages such that the union of the sets of rules
differentiated from them equals the set of rules differentiated directly by U .

Chapter 3. Wrapper Generation with a Single Noisy Worker 39

criterion make observable new differences between at least two rules that were otherwise

indistinguishable in the subset of pages processed until the previous iteration.

Example 3.8. Consider the running example and suppose that PageSampler has al-

ready processed p1 and p2, producing I = {p1, p2}. Let RL1 = {r1, r2, r3} be the set of

admissible rules wrt to L1 = v+0 = {City of God}. The pages in I do not differentiate

r1 from r2: r1(I) = r2(I). However, when processing the next page p3, PageSampler

detects the different behaviour of r2 wrt other rules: r2(p3) 6= r1(p3), and then adds it

to I.

To clarify how PageSampler is related to the disagreement sets, consider that if

|RLa(I ∪ {p})| > |RLa(I)| it follows that there exist at least two rules ri, rj ∈ RLa such

that ri(p) 6= rj(p) and DI∪{p}(ri, rj) \DI (ri, rj) = {p}. Conversely, if |RLa(I ∪ {p})| =
|RLa(I)| then it follows that DI∪{p}(ri, rj) \ DI (ri, rj) = ∅, ∀ri, rj ∈ RLa . Therefore,

PageSampler maintains the representativeness of I for the subset of U already pro-

cessed by adding a page p to I if and only if p changes the disagreement sets of the

rules.

3.7 Experiments

We have developed a working prototype that has been used to conduct experiments

for evaluating the proposed approach [16]. The prototype takes as input a collection

of pages containing data of interest. The attributes to be extracted are specified by

annotating their value over a single page. Based on the input annotations, the system

produces the initial sets of candidate rules, then it generates multiple tasks, and submits

them to a crowdsourcing platform. The workers recruited on the crowdsourcing platform

are redirected to an interactive web application. Each worker is asked to accomplish a

task, consisting of a set of membership queries actively chosen by alfη and posed to

the worker through the web application. In particular, the application shows a page

and asks the worker whether a proposed string occurrence, extracted by a candidate

extraction rule, represents a correct value for the target attribute. Presenting HTML

pages downloaded from an external server into a web application is not trivial: client side

scripts and dependencies on remote resources (e.g., images) could prevent the pages to be

rendered outside the server originally publishing them. To overcome these issues, the web

application shows pre-computed images of the pages, generated during the downloading

by our application. When a worker has completed the task, the web application returns

a code that the worker has to insert into the crowdsourcing platform to prove the task

fulfillment.

Chapter 3. Wrapper Generation with a Single Noisy Worker 40

wesite domain #pages |IC |
www.imdb.com Actor 5 · 105 30
www.imdb.com Movie 5 · 105 42
www.allmusic.com Band 5 · 105 36
www.allmusic.com Album 5 · 105 29
www.nasdaq.com Stock quote 7 · 103 15

Table 3.2: Dataset for Sampling and the average representative sample set

With our prototype we conducted both experiments with real workers engaged by Crowd-

Flower (a popular meta-platform that offers services to recruit workers on AMT) and

experiments with synthetic workers whose behavior was simulated following the CNP

probabilistic model [48], i.e., they make random and independent errors with a fixed

error rate η.

In this section we describe the experiments conducted to evaluate our approach. Sec-

tion 3.7.1 presents our dataset and the evaluation metrics, we describe two dataset, one

to evaluate the sampling algorithm and one to evaluate the alfη. Section 3.7.2 presents

the results of the learning algorithm alf considering perfect workers with η = 0. We

compare the query selection policies: selecting the right query to pose drastically reduces

the costs wrt the Random baseline. Section 3.7.3 illustrates the results of experiments

to evaluate the effectiveness of the sampling strategy implemented by the PageSampler

algorithm. Our experimental results show that a few dozens of pages selected by Page-

Sampler are sufficient to represent large collections of 105 pages from real-life websites.

In Section 3.7.4, we present an experiment conducted with a population of real workers

recruited on the crowdsourcing market. The goal of this experiment was to study how

real workers behave with our particular tasks composed of a sequence of membership

queries over pages from data-intensive websites. In Section 3.7.5, we present experiments

for evaluating alfη with a single noisy worker on tasks related to a single attribute. We

show the impact of workers error rate on alfη, the algorithm driving the interaction

with the worker: the results motivate the introduction of our technique to estimate the

workers error rate by submitting redundant tasks.

3.7.1 Datasets

We considered two distinct datasets to evaluate the learning algorithm alfη.

The first dataset has been obtained by downloading pages from large websites related

to specific domain entities, as shown in Table 3.2. We wrote ad-hoc crawling pro-

grams, and let them collect around 5 ·105 pages for each entity from www.imdb.com and

www.allmusic.com, and all the available pages about stock quotes from www.nasdaq.com

Chapter 3. Wrapper Generation with a Single Noisy Worker 41

(around 7 · 103). For each entity we selected about 10 attributes, for a total of 40

attributes.

website domain #pages

imdb.com Movie 10,000
imdb.com Actor 10,000

allmusic.com Album 10,000
allmusic.com Band 10,000
nasdaq.com Stock 6,461
allgames.com Game 10,000
allmovies.com Movie 10,000
espnfc.com Player 10,000
espnfc.com Teams 10,000

espon.go.com Player 10,000
goodreads.com Author 10,000
goodreads.com Books 10,000
picclick.com Monitor 100
picclick.com Camera 100
alibaba.com Monitor 7,185
alibaba.com Camera 4,957
alibaba.com Headphone 2,096
alibaba.com Notebook 4,850
alibaba.com Tv 4,734
dealtime.com Monitor 358
dealtime.com Camera 798
dealtime.com Headphone 745
dealtime.com Notebook 272
dealtime.com Tv 213
colnect.com Stamp 10,000

Table 3.3: Dataset for the evaluations.

The second dataset (Table 3.3) consists of 25 collections of pages from 12 websites and

16 different domains as detailed. For every website we downloaded a number of pages

ranging from hundreds to 10 thousands. We considered the test set of 10,000 pages from

each collection and around 4 attributes, for a total of 110 attributes. We run the Page-

Sampler algorithm over these sample sets of pages to derive a representative sample for

every domain (the sizes of the input sets, #pages, and of representative samples, |IC |).

The first dataset will be used to evaluate the sampling algorithm, while the second

dataset will be used to evaluate our wrapper inference algorithm.

We manually crafted a golden XPath rule for every attribute to extract its values.

The (non-null) values extracted by the golden rules over the whole sets of pages were

then used to compute and evaluate the precision and recall of the best rule inferred

by our learning algorithm alfη. For each rule r generated by our algorithm wrt a

Chapter 3. Wrapper Generation with a Single Noisy Worker 42

Strategy P R F average MQ MQ
Random 0.99 0.97 0.98 9.43 1037
Greedy 1.00 0.99 0.99 4.33 476
Lucky 1.00 0.99 0.99 4.14 455

Entropy 1.00 0.99 0.99 4.17 459

Table 3.4: Total number of MQ for Dataset 2 and average quality of the output

golden rule rg, we used the standard metrics of precision (P), and recall (R), as follows:

P =
|rg(U)∩r(U)|
|r(U)| ; R =

|rg(U)∩r(U)|
|rg(U)| .

3.7.2 Learning with ALF

Over the set of attributes in Table 3.3 we run the alfη algorithm to infer the extraction

rules on the target attributes. In this experiment we set the probability threshold that

governs the halt condition to 0.9 and λMQ to unlimited, and consider perfect workers

with η = 0, i.e. we do not consider the budget limitation and we deal with ideal workers.

We were mainly interested to evaluate the impact of the different strategies to choose the

next membership query. Table 3.4 summarizes the results of the experiment. We report

the number of membership queries (#MQ) for all the chooseQuestion() strategies.

The most efficient strategies are Entropy and Lucky, which significantly outperforms

the baseline, represented by Random. Results obtained with Greedy are comparable

with Entropy with an average waste of 0.16 MQ.

Another experiment aimed at considering the behavior of alfη by using different choose-

Question() strategies, wrt the size of the hypothesis space, which in our context corre-

sponds to the number of admissible vectors after the initial annotations, i.e., |RLa(I)|.
Intuitively, the size of the hypothesis space is a measure of the cost that any learning

algorithm needs to pay to infer a rule.2

The plots in Figure 3.3 show the average number of membership queries vs size of the

hypothesis space. Note that when |RLa(I)| is low, the differences in terms of #MQ are

not apparent.

On the contrary, when |RLa(I)| � 5, Random performs worse than other strategies.

Entropy and Lucky outperform the other approaches and, as expected from an active

learning algorithm [25], #MQ follows a logarithmic trend with respect to the size of the

hypothesis space.

2This is strictly related to the sample complexity commonly used by the machine learning community,
as the amount of training data to learn a concept [24].

Chapter 3. Wrapper Generation with a Single Noisy Worker 43

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

P

K

Random
Entropy
Greedy

Lucky

Figure 3.3: #MQ vs size of the hypothesis space

It is interesting to observe that Greedy exhibits very good performances with smaller

hypothesis space, while the number of MQ increases with larger hypothesis space.

We observe that between Entropy and Lucky the performances are comparable, thus

the following we will consider Entropy as our query selection strategy.

3.7.3 Sampling with PAGESAMPLER

We now discuss the experiments to evaluate the sampling algorithm PageSampler.

For this evaluation we used the pages of the first dataset (Table 3.2). We collected three

sample sets I according to different strategies, as follows:

• IB represents a “biased sample”: many large websites propose navigation paths

to facilitate the browsing towards lists of relevant objects (e.g. famous actors,

top-stocks, etc.). In our experiments, for each entity we downloaded the pages

from the first list proposed by the sites. Therefore the size |IB| corresponds to the

dimension of the proposed list.

• IR is a set of pages randomly selected from the whole set U of pages with |IR|
equals |IB|.

• IC is the representative sample set as computed by our sampling algorithm starting

from the pages collected in our data set. |IC | is determined by the algorithm.

The first strategy does not pick up pages from the whole set of input pages U , while the

second one chooses the sample pages in an uninformed way. These sampling strategies

Chapter 3. Wrapper Generation with a Single Noisy Worker 44

Domain Sampling |I| P R
Crawler IB 250 0.98 0.71

Movies Random IR 250 0.99 0.99
Representative IC 42 1.00 1.00

Crawler IB 250 1.00 1.00
Actors Random IR 250 1.00 0.96

Representative IC 30 1.00 1.00
Crawler IB 86 1.00 0.98

Stocks Random IR 86 1.00 0.99
Representative IC 15 1.00 1.00

Crawler IB 258 1.00 0.99
Albums Random IR 258 1.00 1.00

Representative IC 29 1.00 1.00
Crawler IB 289 1.00 0.68

Bands Random IR 289 1.00 1.00
Representative IC 36 1.00 1.00

Table 3.5: Precision and recall with different sampling strategies

are used by many wrapper inference approaches more focused on the inference phase

rather than on the sampling.

To evaluate the role of the three sampling strategies, Table 3.5 reports the average

precision and recall computed over the attributes of all the entities of each domain.

We inferred the extraction rules by running alfη (without SRM) on the three samples

obtained. We obtained perfect rules when the inference was performed on the repre-

sentative sample IC ; conversely, both the random set IR and the biased set IB loose

precision and recall for a majority of cases, with a significant lost of recall with IB for

bands and movies.

Table 3.5 also reports the size of the samples: it is worth observing that the representative

sample set IC is always much smaller than the random sample set IR. This is an

important point as it affects the running times of the learning algorithm, which performs

better when working on small samples. Figure 3.4 illustrates this issue: the graphic

plots the average wrapper learning times (in logarithmic scale) vs the size of the random

sample |IR| (number of pages). The curve associated to IR describes the learning times

to compute the wrapper using a random sample of increasing size. As an example, for

a random sample of 50 pages, it runs in about 15 secs; for a random sample of 450

pages, it runs in 100 secs. The curve associated to the representative sample IC reports

the learning times to infer the wrapper over a representative sample IC whose pages

have been selected from a random sample IR with that number of pages. For example,

from a random sample of |IR| = 450 pages, PageSampler selected a representative

sample composed of |IC | = 25 pages, and on this sample alfη inferred the wrapper

in about 7 secs. Computing the representative sample has its own costs. However, as

we can observe from the curves on Figure 3.4, even counting these costs the overall

Chapter 3. Wrapper Generation with a Single Noisy Worker 45

 1

 10

 100

 50 100 150 200 250 300 350 400 450

ti
m

e
 (

s
e

c
s
)

|IR| (# of pages)

Learning on IR
Finding IC

Learning on IC

Figure 3.4: Wrapper learning times vs sample size

computation cost (sampling IR to compute IC + learning on IC) is lower than the time

required by learning without sampling (learning on IR).

3.7.4 Modeling Real Workers

We report on a set of experiments that we conducted on a population of real workers

engaged from CrowdFlower. The goal of the experiment was to obtain statistics about

real workers behavior on our kind of tasks. Namely, we measures their error rates as

they work through our web application. The goal of this session of experiments is to

gain insights for setting realistic configurations of the synthetic workers used in other

experiments.

We posted on CrowdFlower 485 tasks to generate with alfη the extraction rules for 125

attributes, randomly selected from our datasets. Each task was paid 10¢, and posed

queries to infer the rules for 5 attributes. We collected all the answers and we checked

that the tasks were assigned to distinct workers. We evaluated the correctness of each

answer by means of the golden rules of our datasets, and then computed the error rate

of each worker as the ratio between the number of erroneous answers and the number

of answers.

The observed average error rate of a real worker was η = 10%, with a standard deviation

ση = 14%. Interestingly, about 27% of the workers responded correctly to all the queries.

The information gathered in this experiment has been used to set up the other experi-

ments: the average error rate empirically observed η is used to set the parameter η = η

Chapter 3. Wrapper Generation with a Single Noisy Worker 46

 5

 10

 15

 20

 25

 30

 35

 40

0% 5% 10% 15% 20% 25% 30% 35% 40%

M
Q

η
∗

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0% 5% 10% 15% 20% 25% 30% 35% 40%

F

η
∗

Figure 3.5: alfη, with η = 10%, and variable worker error rate η∗:
(Left) cost and (right) quality.

in alfη, and the error rate distribution observed on real workers is used to create pop-

ulation of synthetic workers with the same average error rate. To create populations of

synthetic workers with a greater average error rate, we just scaled the error rates of the

distribution on real workers.

3.7.5 alfη Evaluation

We evaluated alfη by conducting two experiments on attributes taken from our dataset.

The main goal of these experiments was to evaluate the sensitivity of alfη to its param-

eter η, i.e., the estimation of the worker error rate. We set λr = 90%, and λMQ = +∞,

respectively: alfη tries to reach the target probability of the best rule without any

bound on the number of queries.

The first experiment aims at studying the effects produced by an inaccurate worker: we

set η = η = 10%, and we run alfη with synthetic workers with an increasing error rate

η∗ ranging from 0 to 40%.

Figure 3.5 reports the results of this experiment averaged over 20 executions, and it

shows that as the actual error rate η∗ of the workers increases, the results degrade: alfη

poses a larger number of queries, but the quality of the results, F -measure, decreases.

The second experiment aims at empirically evaluating how an incorrect setting of the

parameter η, i.e., the expected worker error rate, influences alfη performances. We used

a single worker with η∗ = η = 10%, and repeated several inference processes, configuring

alfη with η ranging again from 0 to 40%.

Figure 3.6 reports the results of this experiment (averaged over 20 executions): when

the system overestimates the accuracy of worker (η < η∗) we observe a reduction of the

number of MQ, but the quality of the output wrapper drops. The system trusts the

Chapter 3. Wrapper Generation with a Single Noisy Worker 47

 5

 10

 15

 20

 25

 30

 35

 40

0% 5% 10% 15% 20% 25% 30% 35% 40%

M
Q

η

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

0% 5% 10% 15% 20% 25% 30% 35% 40%

F

η

Figure 3.6: alfη, with a noisy worker η∗ = 10%, with variable η:
(Left) cost and (Right) quality.

workers and terminates quickly, thus posing less queries than actually needed. When

the system underestimates the worker accuracy (η > η∗), some queries are wasted since

the system does not trust the worker, however there is no loss in the quality of the result.

With an η larger than η∗ by +30%, alfη requires more than 25 MQ, i.e., 2 times those

required when η = η∗. Observe that many queries are wasted since the F -measure gain

is less than 5%.

3.8 Conclusions

We propose a framework that allows supervised inference with simple membership

queries suitable for the non-expert workers of a crowd platform. An original algo-

rithm, alfη, applies active learning techniques to infer a wrapper, while minimizing

the number of queries. Noisy answers are adopted to update a Bayesian Model that

computes the probability of correctness of the candidate rules. We developed a com-

plimentary sampling algorithm, PageSampler, to select for the learning phase a small

yet representative set of sample pages from a much larger set of pages to wrap.

Experimental results prove the effectiveness of the approach. We can learn accurate

wrappers with few membership queries. The sampling strategy leads to the selection of

a small number of samples that effectively represents a much larger set of pages.

We observe that a correct estimation of the parameter η that models a worker’s error

rate highly improve the performance of alfη.

Chapter 4

Noisy Crowd

In the previous chapter we described alfη, an active learning algorithm that is able to

infer a wrapper by selecting the queries that more quickly bring to the generation of an

accurate wrapper, thus reducing the costs. alfη relies on a probabilistic quality model

that considers the presence of errors in the answers returned by a worker.

The algorithm alfη computes the quality of an extraction rule by using answers provided

by an inaccurate worker. However, the performances of the algorithm are strongly

affected by the estimation of the worker’s error rate. If the worker is overestimated,

i.e. the algorithm expects that the worker performs better than she really does, the

quality of the results is compromised. Conversely, if the worker is underestimated, i.e.

it assumes that the worker performs worse than she actually does, the cost augments:

since the algorithm does not trust the worker, it does not weight her answers enough,

and it ends up posing more questions than actually needed.

A simple technique for estimating the workers error rate is to rely on the availability of

ground truth information. To check the workers performance, they are asked a number of

control queries, which have been already pre-labeled with the correct answers. However,

this solution is expensive, because of the costs of preparing the ground truth, and because

of the costs paid to the workers for answering the control queries rather than the real

ones [49].

An alternative solution to evaluate workers performance without making use of any

ground truth information is based on redundancy: the same tasks are assigned to several

workers, and their error rate estimation relies only on their agreement with other workers.

This approach is based on the assumption that independent workers make independent

errors, which is indeed a realistic assumption with workers recruited on a crowdsourcing

48

Chapter 4. Wrapper generation with a Noisy Crowd 49

platform.1 On the one hand, redundancy offers the advantage of eliminating the costs

of the ground truth information; on the other hand, it originates the additional costs of

employing more workers on the same task.

In general, the use of redundancy raises the question of how much redundancy is actually

needed to reach an optimal trade-off between costs and quality. In many situations it has

been proved as good as those based on ground truth (e.g., [50]) for estimating the workers

performance, with lower costs. Some theoretical bounds have been developed for specific

(and simple) models (e.g., [51]), but usually the redundancy is established statically, i.e,

before the tasks are assigned, and in a non-adaptive way, i.e., independently from their

difficulty and from the provided answers.2

The chapter is organized as follows: Section 4.1 presents an overview of alfred; Sec-

tion 4.2 describes the technique adopted to estimate η; Section 4.3 presents the a schedule

of the tasks submitted in the crowdsourcing platform; Section 4.4 presents the evaluation

of the scheduling algorithm; we conclude the chapter in Section 4.5.

4.1 Overview

alfred (alfη with redundancy) builds on alfη, it improves the resilience to errors of

alfη by recruiting several workers on the same task. Unlike traditional approaches,

which statically set the number of workers to employ on the same task, alfred decides

the number of workers during the learning process, at runtime, thus minimizing the

costs: it engages only the workers actually needed to achieve the desired quality. Also,

alfred exploits the agreement among multiple workers to jointly estimate their error

rates and the quality of the wrappers inferred: the larger the amount of redundancy, the

better the estimation of the workers error rates, but the fewer resources are left for the

inference process. To further optimize the costs, we consider a practical setting in which

alfred assembles the tasks submitted to the crowd with queries to infer the wrappers of

several attributes, and study the optimal amount of redundant attributes that should be

allocated in each task. Our experimental evaluation shows that alfred can adaptively

control the learning process to compensate the noise introduced by workers: it jointly

estimates their error rates and allocates the right amount of redundancy to consistently

achieve the target quality.

alfred represents the first proposal that exploits crowdsourcing to address wrapper

inference. This Chapter makes the following contributions: (i) we develop a solution to

1Notice that this approach can be seen as a special case of the previous one, as a task with ground
truth information can be seen as a redundant task solved by a perfect worker.

2 For example, Marcus et al. [52] engage 5 workers per task.

Chapter 4. Wrapper generation with a Noisy Crowd 50

decide at runtime how many workers should be recruited to deal with the presence of

noisy answers; (ii) we present techniques to leverage redundant tasks to estimate the

workers? error rates during the learning process; (iv) we report the results of an extensive

experimental activity conducted with both synthetic and real workers recruited from a

crowdsourcing platform.

4.2 Error Rates Estimation

To combine the efforts done by multiple workers on the same attribute, we rely on our

probabilistic quality model that is easily extended to consider training data produced

by several workers: it suffices to concatenate the t.s. obtained by several workers into a

single training sequence.

We now denote Lw the t.s. produced by a worker w, LwA the t.s. produced by the

worker w for the attribute A.3 Also, we generalize the notation LA to indicate the t.s.

obtained by concatenating the t.s. of several workers for the same attribute A, that is,

LA =]w∈WA
LwA, where] denotes the concatenation over several sequences, and WA

indicates the set of workers that provided labelled values for attribute A.

Given a t.s. LA, we compute the p.d.f. P (r|LA) by using Eq. 3.1 (and Eq. 3.3). Such a

p.d.f. can then be used to compute the error rate of a worker w, as the average number

of incorrect answers provided in the t.s. Lw, weighted by the probability of each answer,

as follows:

ηw =

∑
vlA∈Lw

{
1− P (vA|LA) , iff l = +

P (vA|LA) , iff l = −
|Lw|

(4.1)

where P (vA|LA) is the probability that vA is a correct value to extract for the attribute

A, and, as it has been done before, it is reduced to the sum of the probabilities of the

rules that extract vA; that is: P (vA|LA) =
∑

r∈Rv P (r|LA).

Observe the mutual dependency between Eq. 3.1 and Eq. 4.1: the former computes a

p.d.f. for the correctness of the rules, given a training sequence and the error rates of

the workers who labeled its values; the latter computes the error rates of each worker,

given the p.d.f. associated with the rules.

3In the following, we consider workers producing t.s. for several attributes in a single task.

Chapter 4. Wrapper generation with a Noisy Crowd 51

We exploit such mutual dependency by triggering an iterative process that interleaves

the estimation of the error rates and the computation of the p.d.f. until a convergence

criteria is satisfied, i.e., until these values do not significantly change anymore.4

4.3 Schedule

The approach described in the previous section allows us to dynamically choose the

number of workers to be recruited for inferring the extraction rule of a single attribute.

For every attribute we can submit a pair of tasks, each posing queries to infer the rules

for the same target attribute. With the t.s. generated from these tasks, we can trigger

the iterative process to jointly estimate the workers error rates and the p.d.f. over the

candidate rules, as described in the previous section. If, at the end of the process, a

quality criterion is not satisfied (e.g., the most likely correct rule has a low probability

of correctness), other workers can be recruited on the same attribute, until they produce

t.s. that allows the selection of the correct extraction rule.

However, we observe that on a real crowdsourcing platform it is not convenient to

submit too short tasks composed of just a few membership queries related to a single

attribute. As reported by Ipeirotis in his study on the Amazon Mechanical Turk (AMT)

marketplace [53], 90% of the AMT tasks give a reward of 10¢, and the estimated hourly

wage is approximately $5: the typical 10¢ task requires about 75 seconds to be fulfilled.

On average, for every attribute alfη poses a number of queries that are answered by

an ordinary worker in around 15 seconds. Therefore, by following those guidelines, it is

fairly reasonable to submit 10¢ tasks composed of queries related to 5 attributes.

For the sake of generality, we now present our solution for the composition of task as-

suming that each task includes N attributes. In practice, according to the considerations

discussed about, in our experiments we set N = 5.

To guarantee a reliable estimation of the error rate (and thus of the probability of

correctness of the rules) a straightforward solution is that of assembling tasks containing

N attributes, and submit each task (at least) twice. However, we have experimentally

observed that, due to the simplicity of our membership queries, the average error rate of

real workers is rather low (10%), and thus for a significant percentage of attributes even

one worker suffices to select the correct rule (we report details on these experiments in

Section and 4.4.2).

4For our experiments we stop when all the error rates do not change, in absolute value, more than
∆η = 10−4.

Chapter 4. Wrapper generation with a Noisy Crowd 52

Therefore, instead of redundantly submitting a whole task, we prepare tasks with a

limited overlapping: each task is composed of N attributes, and only a subset of K

redundant attributes is included also in another task. With the results of the redundant

portion of each task, we estimate the error rate of the worker that accomplished the

task, and then we use such error rate estimation to compute the p.d.f. of the extraction

rules for the remaining non-redundant attributes of the task.

Example 4.1. Suppose given the set of attributes A = {A1, A2, . . . , A10}. Assuming

N = 3 and K = 1, the following tasks would be created: t1 = {A1, A2, A3}, t2 =

{A1, A4, A5}, t3 = {A6, A7, A8}, t4 = {A6, A9, A10}. Note that A1 and A6 are submitted

twice, in different tasks. A worker produces a sequence covering N attributes, e.g., w1

produces Lw1 = Lw1
A1
] Lw1

A2
] Lw1

A3
that we also denote Lw1 = [Lw1

A1
, Lw1

A2
, Lw1

A3
].

Given LA1 = Lw1
A1
] Lw2

A1
= [Lw1

A1
, Lw2

A1
], we compute the p.d.f. P (r|LA1) of the redundant

attribute A1 and the error rates ηw1 and ηw2 of the involved workers. Similarly, we

compute P (r|LA6), ηw3 and ηw4 and any P (r|LAi) and ηwk+1
for k = 0, 1, 2, . . . and

i = 1 + k(2N − 1).

These error rates are then used to recompute the p.d.f. of any redundant attributes in

the same tasks, such as P (r|LA2), P (r|LA3), P (r|LA4), P (r|LA5), P (r|LA7), . . . and

any P (r|LAi) such that i 6= 1 + k(2N − 1).

Those attributes whose inferred extraction rules do not satisfy a quality criterion are

used to compose new tasks, which are submitted again to the crowdsourcing platform.

The new sequences returned by these tasks feed a new estimation of the error rates of

the workers that elaborated the same attributes, as well as the updating of the p.d.f. of

all the involved attributes.

Example 4.2. Continuing the previous example, suppose that the probability attributes

A2, A3 and A7 do not reach the target quality. Then, in order to acquire more labeled

values for these attributes, their candidate values will be used to formulate the queries

of a new task t5 = {A2, A3, A7} to be submitted to the crowdsourcing platform.

The produced t.s. LA2 = [Lw1
A2
, Lw5

A2
] is used to recompute all the error rates of the workers

directly involved on the attributes of the new task t5, e.g., ηw5 has to be computed and ηw1

has to recomputed. Notice also that w2, that worked on A2, is indirectly involved since

its error rate ηw2 depends on P (r|LA2) that depends on ηw1. Transitively following these

dependencies, it turns out that the error rates of all the workers need to be recomputed,

and hence all the p.d.f. of all attributes in these five tasks.

Listing 3 illustrates the pseudo-code of the alfred algorithm, which implements the

above approach. Here the crowdsourcing platform is modeled as a queue q abstracting a

Chapter 4. Wrapper generation with a Noisy Crowd 53

Listing 3 alfred

Input: a set of attributes {A1, A2, . . . , An};

Parameter λr: target probability of correctness
Parameter λMQ: maximum budget for each worker per attribute
Parameter N : number of attributes per task
Parameter K: number of redundant attributes per task

Output: the set of the most probable extraction rules r ∈ R, ∀A ∈ {A1, A2, . . . , An};

1: let C = ∅; // set of completed tasks
2: q.submitAll(createTasks({A1, . . . , An}, N,K, λr, λMQ)); // create initial tasks
3: while (not q.isEmpty()) do
4: let U = ∅; // set of unsolved attributes (already with a t.s. but need more...)
5: let t = q.take(); // removes a fulfilled task from the completion queue
6: C ← C ∪ {t}; // save as completed
7: let G be << the bipartite assignment graph of the submitted tasks >>;
8: let G(t) be << its connected component including t >>;
9: let T ← all the tasks in G(t);

10: let A ← all the attributes in G(t);
11: if (T ⊆ C) then
12: // all the tasks of the connected component that includes t have been completed

13: let R← {A ∈ A such that |WA| ≥ 2}; // redundant attributes
14: compute P (r|LA) and ηw with Eq. 3.1 and Eq. 4.1, resp., ∀r ∈ R, ∀w ∈

WA, ∀A ∈ R;

15: let N ← {A ∈ A such that |WA| = 1}; // non-redundant attributes
16: compute P (r|LA) with Eq. 3.1 with ηw as computed on line 14, ∀r ∈ R, ∀A ∈ N ;

17: U ← U ∪ {A ∈ A such that not halt(LA, λr,+∞)};
18: end if
19: q.submitAll(createTasks(U , N,K, λr, λMQ));
20: end while
21: return {r ∈ R such that r = argmaxr∈R P (r|LA), A ∈ {A1, A2, . . . , An} };

completion service to which task submissions are performed by means of a non-blocking

operation q.submitAll(); completion notifications are provided via a blocking operation

q.take() that removes the next completed task from the queue, or just wait if none of

the submitted task has been fulfilled yet.

Starting from the input set of attributes, a set of tasks are initially submitted to the

crowd (line 2) following the redundancy scheme illustrated above: Each task is com-

posed of queries related to N attributes, with K attributes per task assigned also to

another task. We model the composition of the submitted tasks in attributes by means

of a bipartite graph, denoted G (line 7), whose nodes are either attributes or tasks, and

there is an edge between a task and an attribute if and only if the task includes queries

on the attribute. Figure 4.1 (right) shows the bipartite graph for the tasks described in

Example 4.1. Observe that G is composed by several connected components. Each con-

nected component includes tasks that are related by some shared redundant attribute:

Chapter 4. Wrapper generation with a Noisy Crowd 54

t4	

t3	

t2	

A10	

A9	

A8	

A7	

A6	

A5	

A4	

A3	

A2	

A1	

t1	

t5	

t4	

t3	

t2	

A10	

A9	

A8	

A7	

A6	

A5	

A4	

A3	

A2	

A1	

t1	

Figure 4.1: The bipartite graph for the task allocation of Example 4.1 (left) and
Example 4.2 (right).

all the p.d.f. associated with the attributes, and all the error rates of the workers in

the component, are mutually dependent. Given a task t, we denote G(t) the connected

component of G that includes t (line 8).

While the queue is not empty (lines 3–20), i.e., there are tasks yet be completed by

the crowd, the first ready task t is taken from the queue, and it is added to a set of

completed tasks, C (line 6). If every task of the connected component G(t) have been

already completed (line 11), the t.s. produced for the attributes of these tasks, A, can

be processed. First, the workers error rates and the p.d.f. of the associated extraction

rules are computed (line 14) for the redundant attributes (i.e., attributes A such that

|WA| ≥ 2). The estimated error rates are then used to recompute the p.d.f. of the

extraction rules for the remaining (non redundant) attributes of the same connected

component (line 16).

All the attributes that do no reach the quality target5 are added to a set of unsolved

attributes (line 17): for these attributes the collected t.s. did not lead to the production

of a satisfactory extraction rule, and thus they will be added in a new task, which

is submitted to the crowdsourcing platform (line 19).6 It is worth noting that all the

unsolved attributes have been already processed at least by one worker and they become

5We neglect any budget issue at alfred’s level where the goal is to reach the quality target λr;
however alfη bounds to λMQ the budget per attribute spent for each worker.

6For the sake of simplicity we are assuming that |U| is a multiple of N . Otherwise, the tasks can be
completed by inserting control attributes with known answers to better estimate the workers error rate.

Chapter 4. Wrapper generation with a Noisy Crowd 55

redundant: they might trigger the merging of several connected components of the graph

thus creating a component with a larger diameter that includes a larger number of

attributes.

Figure 4.1 (right) illustrates the graph for the tasks of Example 4.2: observe that task

t5, which is composed by the unsolved attributes A2, A3, A7, creates a component that

includes all the attributes. Before t5 had been submitted, the same attributes were

spread in two separate components.

4.4 Experiments

In this section we evaluate alfred, our system built from alfη. For instance: in

Section 4.4.1 we describe a third dataset based on a previous work; in Section 4.4.2 we

focus on the impact of redundancy by considering tasks related to a single attribute and

in Section 4.4.3, we report the results with tasks covering N > 1 attributes each, and

then study how our algorithm performs in presence of redundancy confined to only a

subset of K (with 0 ≤ K ≤ N) attributes. Section 4.4.4 reports our final experiments

on alfred with real workers.

4.4.1 Datasets

In the previous chapter we presented two datasets, one to evaluate the sampling algo-

rithm 3.2 and one generic 3.3. In this chapter we will evaluate our techniques on 3.3 and

on a third one. The new dataset is the public swde dataset [54],7 which includes about

124,000 pages from 80 websites related to 8 different domains (10 sites per domain, 200–

2,000 pages per website). From the swde dataset, we used 34 websites: those whose

HTML pages were correctly rendered at the time of the submission to the crowdsourc-

ing platform (pages from the discarded websites were not correctly rendered because

their images or CSS files were not available anymore). For the collections of pages of

this dataset, we selected a total of 127 attributes, and we manually crafted a golden

extraction rule for each of them.

The learning algorithms used in the evaluation were run on a small yet representative

sample set of pages (e.g., a few dozens of pages), selected by a suitable sampling strategy

described in Chapter 3 from the whole set of pages. The pages in these samples are

carefully chosen to guarantee that a wrapper inferred on the sample also works on the

whole set of pages. The extraction rules obtained on the representative sample were

then evaluated on the test set.
7http://swde.codeplex.com

Chapter 4. Wrapper generation with a Noisy Crowd 56

average max
#w F #MQ |ηw − η∗| #w #MQ σF

alfη 1 0.96 9.15 — 1 11 15%
alfredno 2.37 1 23.35 — 8 80 0.29%
alfred 2.13 1 20.7 0.8% 4 40 0.18%
alfred∗ 2.11 1 20.27 0% 4 40 0.18%

Table 4.1: alfred vs alfη with a population of synthetic noisy workers; average and
max total number of workers engaged per attribute (#w); average F -measure of the
output wrapper; average and max total number of queries (#MQ); average difference
between actual and estimated worker error rate (|ηw − η∗|); standard deviation of the

output wrapper F -measure (σF).

In the following, we measure the cost in terms of the number of membership queries,

and rather than focusing on the F -measure value of the output wrapper, which is always

very close to 1 in the settings that we consider, we report its average standard deviation

(σF) over several executions. The latter is a simple measure of the predictability of the

output quality of the learning process.

4.4.2 Impact of Redundancy

As discussed in Section 4.2, alfred submits the inference of the same attribute to

several workers. It lazily recruits additional workers, at runtime, to estimate their error

rate while minimizing the costs.

Although in practice it is convenient to assemble tasks composed of queries related to

several attributes (as we discussed in Section 4.3), in this experiment we focus the study

on the solely role of redundancy: we run alfred with tasks composed by a single

redundant attribute, i.e., K = N = 1.

Table 4.1 reports the results of the experiment averaged over 20 executions in which

alfred recruits workers from a population of synthetic workers with the same error

rates distribution observed over real workers. We compare the algorithm against a

baseline (alfredno) in which the error rate estimation is disabled (we just set ηw = η

without using Eq. 4.1), and against a bound (alfred∗) in which an oracle sets ηw = η∗

(since the workers are synthetic, their actual error rates are known). Also, in order to

emphasize the impact of the redundancy, we report the performance of alfη, which does

not rely on redundant tasks. Observe that the workers error rate estimation is precise

(|ηw−η∗| = 0.8% when the learning terminates), and it allows the system to save queries

(20.7 vs 23.35 on average). The average number of queries posed by alfred to learn

the correct rule is very close to the lower bound set by alfred∗. Compared to alfη,

which employs a single worker, the number of queries is more than twice (20.7 vs. 9.15).

Chapter 4. Wrapper generation with a Noisy Crowd 57

However, notice that alfred always concluded the tasks with an almost perfect result,

and therefore it is much more robust to variations in the workers error rates as shown by

the standard deviation of the F -measure (alfred’s σF = 0.18% vs alfη’s σF = 15%).

#workers
2 3 4

%attr. 89% 10% 1%
#MQ 19.62 30 40

Table 4.2: alfred: percentage of attributes (%attr.) that reach the target quality
with 2, 3, and 4 workers; their average cost as total number of membership queries

posed (#MQ).

Overall, alfred was able to recruit more workers, thus paying their answers, only when

it is necessary to achieve the target quality of the output wrapper. However, consider

Table 4.2 that aggregates the same results in terms of the number of recruited workers

(#workers) and the number of MQ posed (#MQ) per attribute: in a large majority of

cases (89%), alfred terminates recruiting only 2 workers, and seldom 3 and 4 workers

(10% and 1%, respectively) with an average of 2.13 workers engaged and 20.7 queries

posed per attribute.

So it is reasonable to conjecture that for a significant portion of these attributes requiring

only 2 workers, similar results can be achieved even with less redundancy, and then with

lower costs.

The experiments presented in the next section investigate and confirm such a conjecture,

thus motivating the study of a more complex scheme of redundancy than that discussed

here.

4.4.3 alfred Evaluation

We now present our experimental evaluation of alfred in the most general setting: we

consider tasks composed of N attributes, each containing K redundant attributes. The

goal of the experiment is to study how alfred is affected by the amount of redundancy

initially introduced in the tasks, expressed as the value of K. Therefore we run several

experiments with K ranging from 0 to N .

We analyze the cost per attribute versus the ability of alfred to reach the target

quality independently from the noise introduced by the workers. We run the system

with different populations of synthetic workers, and for each experiment we averaged

the results over 100 executions. In the next section we present experiments with a

Chapter 4. Wrapper generation with a Noisy Crowd 58

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 1 2 3 4 5

M
Q

K

λr=99% η=10%

λr=99% η=30%
λr=90% η=10%

λr=90% η=30%
1%

2%

3%

4%

5%

6%

7%

 0 1 2 3 4 5

σ
F

K

λr=99% η=10%

λr=99% η=30%

λr=90% η=10%

λr=90% η=30%

Figure 4.2: The effects of the initial redundancy K: (left) average cost: #MQ;
(right) standard deviation of output F -measure: σF .

population of real workers recruited on CrowdFlower, selecting the number of redundant

attributes K according to the experiments with synthetic workers.

Figure 4.2 reports the results obtained with synthetic workers from two distinct popu-

lations: the first one is composed of workers with an average error rate η∗ = 10%, while

the second one is more noisy, with η∗ = 30%. We also consider two different quality

targets by considering λr = 90% and λr = 99%.

Overall alfred achieves high quality (F > 99%) with a low standard deviation (σF <

6%) in all the configurations considered. As shown in Figure 4.2 (left), alfred recog-

nizes and compensates a large amount of errors (when η∗ = 30%) by augmenting the

number of queries posed with respect to the other population (with η∗ = 10%).

As regards the behavior of alfred versus the initial amount of redundancy as K grows,

Figure 4.2 (left) shows that for the population of less noisy workers (η∗ = 10%), the cost

increases from an average of around 13 (K = 0) to 17 (K = 5) queries per attribute,

while σF , in Figure 4.2 (right), decreases from 6% to 3.5%. Both trends are less visible

when η∗ = 30% than when η∗ = 10%: With a population of noisy workers, alfred

quickly detects that a larger amount of redundancy is needed to achieve the quality

targets, and therefore the initial amount of redundancy is augmented towards the level

reached at the end of the simulation, that depends on the initial values of K only loosely.

As a particular example of this behavior, consider Figure 4.2 (left) when K = 0 and

η∗ = 30%: this corresponds to an “optimistic” approach, in which the initial tasks are

not redundant at all, and the workers error rates estimations are set with the initial fixed

parameter η = 10%. Even if alfη is overestimating the workers (the actual average error

rate of the workers in this population is η∗ = 30%), thus giving them more trust than

they deserve, the redundancy is introduced as soon as alfred detects that the quality

targets are not reached, and it ends up with almost the same amount of redundancy of

Chapter 4. Wrapper generation with a Noisy Crowd 59

a “pessimistic” approach in which all the attributes of the tasks are already redundant

at the beginning of the simulation (K = 5).

It is worth observing that the quality target, i.e., the threshold λr, has an impact

on alfred’s effectiveness. As the plots in Figure 4.2 show, increasing λr = 90% to

λr = 99% pushes alfred to quickly increase the initial redundancy to reach the stricter

quality target, and the initial redundancy K does not have a strong impact on the

results. In settings with really high value of λr, alfred’s sub-task redundancy does not

lead to any saving in the costs.

#workers
1 2 3 4

%attr. 58% 31% 8% 3%
#MQ 7.2 16.5 26.68 37.21

Table 4.3: alfred (with N = 5, K = 0, λr = 90%, η = 10%): percentage of
attributes (%attr.) that reach the target quality with 1, 2, 3, and 4 workers; their

average cost as total number of membership queries posed (#MQ).

Conversely, Table 4.3 has been obtained with K = 0, N = 5, λr = 90%, and η = 10%,

and reports the percentage of attributes grouped by number of distinct workers employed

on them. The majority of attributes (about 58%) were assigned to only 1 worker (i.e.,

without redundancy), 31% of the attributes required 2 workers, and just 11% of the

attributes needed to be assigned to more than 2 workers. The number of workers needed

for an attribute was 1.57 on average, with 12.7 queries, with a significant saving compared

to the simplistic redundancy scheme that allocates at least two workers for each attribute.

4.4.4 alfred on the Crowd

We evaluated alfred with real workers recruited on the CrowdFlower crowdsourcing

platform. We chose a configuration for which alfred produces good results in our

simulations with synthetic workers, while producing a significant saving in the costs: we

set N = 5, K = 2 and λr = 90%.

These experiments have been conducted by randomly selecting 100 attributes from 35

websites within our two datasets. To generate the extraction rules for the 100 attributes,

a total of 34 tasks were submitted, and executed by the same number of (distinct)

workers. After the first submission of 25 tasks, only other 8 tasks have been created,

with a single attribute requiring 5 workers.

The total cost for inferring the extraction rules of 100 attributes was $3.4 with an

average cost per attribute of 3.4¢. The tasks were completed in 6 hours with an average

F = 99.7% and standard deviation σF = 1.8%. Workers answered to 1, 286 queries

Chapter 4. Wrapper generation with a Noisy Crowd 60

Overall Instructions Clear Test Questions Fair Ease of Job Pay
3.8 / 5 4.1 / 5 3.8 / 5 3.7 / 5 3.6 /5

Table 4.4: Evaluation of our tasks by the CrowdFlower workers.

with an average number of around 37 queries per task. The average error rate observed

during this session was η = 10.5%.

CrowdFlower also provides feedbacks from the workers about the requester and the

submitted jobs. Table 4.4 reports the scores that we obtained from the workers that

fulfilled our tasks.

4.5 Conclusions

We presented wrapper inference algorithms specifically tailored to exploit crowdsourcing

solutions. Our approach allows the generation of wrappers by means of training data

obtained by posing simple queries to workers recruited on a crowdsourcing platform. In

this chapter we proposed alfred that is built on alfη. alfη can infer a wrapper with

the labeled data produced by a single worker, but open issues are: the estimation of the

worker’s error rate η and the schedule of the tasks for the crowd. alfred addresses these

open issues by estimating in runtime η, alfred adopts an EM approach by exploiting

the mutual dependency between the workers’ error rate and the quality of the inferred

wrapper. To reduce the cost, alfred adopts a quality model to dynamically set the

number of workers to recruit in the same task. To optimize alfred we consider the

schedule of the tasks in a real crowdsourcing platform. Workers are enrolled to generate

wrappers with alfη for several attributes; alfred optimizes the presence of several

attributes by using only a part of them to estimate η.

An extensive evaluation shows that alfred can produce high quality wrappers at rea-

sonable costs, and that the quality of the output wrapper is highly predictable. We show

that with an accurate scheduling of the tasks, we can achieve accurate wrappers with

an average of 1.57 tasks per attribute.

Chapter 5

Automatic Responders

In the previous chapters we defined a crowd based solution and we minimized its cost by

estimating workers’ error rate and selecting at run time the correct number of redundant

tasks. In our evaluation we observed that for the majority of the cases redundancy is

not required and this motivated the work in Chapter 4 where we introduced a scheduling

technique so that we can estimate worker’s error rate based only on a portion of the

tasks. We adopted alfred to estimate η on a subset of the tasks, while the other part

of the tasks were completed by a single worker adopting the estimated worker’ η. With

a combination of the schedule algorithm and alfred we were able to accurately infer

a wrapper with an average number of 1.57 workers per attribute and on average 12.7

MQ per attribute. In this chapter our goal is to further reduce the average number of

required workers and the number of MQ without penalizing the quality of the output. To

achieve this goal we observe that there are many automatic wrapper inference systems in

literature that can achieve a reasonable quality in output if some conditions of the input

are met [4, 5, 8–11]. For instance, they consider the presence of: a template without

ambiguity [4, 5], a database or annotators [8], a domain knowledge [9], redundancy

from the Web [10, 11]. All these approaches rely on some features that can be used to

guide the extraction process to infer wrappers, but these solutions suffer of the same

limitations: (i) at Web scale there are many cases where these systems are not applicable,

(ii) the quality can drop if the conditions are not perfectly met, (iii) there is not a reliable

quality control of the output.

From one hand we have several proposals that consider different features to generate

wrappers, from the other hand we have the scale and the variety of the Web. All

these approaches considered singularly can not scale to all the Web, but there is a

subset of the Web that can be wrapped by one or some of them. This motivates an

approach that is in part automatic but when the system finds out that the automatic

61

Chapter 5. Wrapper Generation with Automatic Responders 62

approach is not reliable enough, humans are involved to reduce the uncertainty left by the

automatic approach. This approach opens the possibility to further reduce the human

work required to complete a task. For instance, we could go from 1.57 workers per task

to less than 1 worker. To understand when a solution is not reliable we implement several

automatic wrapper inference systems and we combine them with alfred to estimate

the expected wrapper quality and decide at runtime if a crowd work is required.

A similar approach has been adopted by [55, 56]. The intuition is that for several

domains it is possible to define independent processes extractors (or learners) to extract

triples from the Web [55] (or match two different schemas [56]). In one case [56] learners

were trained from an initial supervised approach, in the other case [56] extractors are

simple extraction heuristics. All these works follow the intuition that mistakes can

be automatically discovered by the system considering the incongruent responses of

different processes. In fact, it is unlikely that all the processes make the same mistakes,

thus incongruences in the responses provides an evidence of the presence of mistakes. In

this way a further supervision is submitted, but this is required only for cases when the

automatic solutions end up with an uncertain solution.

Similar to them, we define four independent wrapper inference systems, we combine the

responses provided by all our processes with alfred and we select at runtime if real

workers are required or not. The described wrapper inference systems are: (1) Types

that observe the types of the extract values, (2) LFEQs that exploits the regularity

of templated pages, (3) Knowledge Base that supervises the system with an existing

Knowledge Base and (4) PMI that exploits the correlation between the extracted values

considering the Web. To combine the answers provided by these automatic wrapper

inference systems we design them to generate distinct training sequences, each following

their own strategy. Training sequences are then combined with alfred as described

in the previous chapters, the system converges to the most likely rule by exploiting the

mutual dependency between the error rate of the responder and the expected quality

of the extraction rules. We present two new scenarios: (i) An automatic approach that

combines several automatic wrapper inference systems, (ii) An hybrid approach that

starts considering an automatic solution and on uncertainty it involves the crowd. We

compare these two scenarios with the crowd based solution described in the previous

chapters.

We present an extensive evaluation that shows: the automatic approach based on the

combination of several systems is the most accurate (F = 0.94) and that it is able to

find cases where the uncertainty is lower (F = 0.99 in 71% of the attributes); the hybrid

approach can achieve almost the same quality of the human based solution with just a

Chapter 5. Wrapper Generation with Automatic Responders 63

−0.01 in F but requiring only a fraction of the MQ required by the completely human

solution.

This Chapter is organized as follow: Section 5.1 presents preliminaries about the creation

of a responder from a wrapper, in the following Sections we describe four different wrap-

per inference approaches, based on Types (Section 5.2), LFEQs (Section 5.3), Knowledge

Base (Section 5.4), PMI (Section 5.5), Section 5.6 presents an extensive evaluation with

automatic responders and a comparison with a solution humans-based and a hybrid

approach.

5.1 Preliminaries

In this section we provide some preliminaries for this chapter. First we define a wrapper

as a responder for alfη 5.1.1, then we describe a wrapper as a scoring function, this

approach is adopted by the wrapper inference systems 5.1.2 considered later.

5.1.1 Automatic Responder

Listing 4 alfη: Active Learning Algorithm With Automatic Responders

Input: a set of pages U
Input: an extraction rule generated by a wrapper inference system r∗ U
Input: the set of candidate rules R

Parameter η r∗ error rate
Parameter λr: target probability of correctness
Parameter λMQ: maximum budget

Output: a p.d.f. describing the probability of correctness of the rules in R and the t.s
L

1: let L = ∅;
2: while (not halt(L, λr, λMQ)) do
3: vA ← chooseQuestion(L);
4: l← getAnswer(r∗, vA);
5: compute P (r|vA, L), ∀r ∈ R with Eq. 3.1 and Eq. 3.3 ;
6: L← L ∪ {vlA};
7: end while
8: return P (r|L), ∀r ∈ R;

A wrapper is expressed as an extraction rule. The wrapper is given in input to alfη

so that we generate the training sequence that corresponds to the considered wrapper.

alfη poses MQ to reduce the uncertainty, but instead of asking to a human Oracle we

interact with the input wrapper; the wrapper answers to the posed MQ by matching the

query to the extracted values of the wrapper. When alfη terminates the computation it

Chapter 5. Wrapper Generation with Automatic Responders 64

returns the training sequence required by alfη that satisfies the termination condition.

Consider the Listing 4, given the set of pages U , a wrapper r∗ generated for the set of

pages and a set of candidate rules R, we adopt the extraction rule r∗ to provide answers

to the function getAnswer. The getAnswer takes into account the value extracted

by r∗ for the considered page and the questioned value. The answer is positive if the

questioned value is also extracted by r∗, otherwise the answer is negative.

getAnswer(r∗, vA) =

{
Positive , iff r∗(pvA) = vA

Negative , otherwise

alfη provides questions until a termination condition is met, the system returns the

most likely rule and the training sequence L.

5.1.2 Rules Selection

The wrapper inference process can be separated in two components: the first component

provides the candidate rules while the second component selects the best candidate. If we

give as granted the generation of the candidate rules, by considering the rules generated

by alfη, then a wrapper inference system can be identified by the policy that is adopted

to select the best extraction rule. Following this observation, a wrapper inference system

can be described as a scoring function that given a rule r it provides a score for the rule

S(r), thus the selection of the best rule r∗ is reduced to find the rule that maximizes

the function S.

For instance, given a set of candidate rules R a wrapper inference systemW is described

by a scoring function SW on R. The scoring function provides for each r ∈ R a score

Sw(r) and the output wrapper is the rule that maximizes SW .

W(R, U) = argmax
r∈R

Sw(r)

We can define different scoring functions; the scoring functions can be modified to that

generate different wrappers.

5.2 Type

A possible way to select the best extraction rule is by selecting the rule where the Types

of the extracted values are more similar.

Chapter 5. Wrapper Generation with Automatic Responders 65

String

Email URL Phone

Figure 5.1: Types hierarchy for the Running Example

In this section we introduce the concepts of attribute type and of types-hierarchy (Sec 5.2.1)

and propose an automatic responder that considers more likely rules extracting homo-

geneous values of the same type (Sec 5.2.2).

5.2.1 Types Definition

We call type a set into which values of pages in U can be organized. For example, the

type String and one of its possible sub-type is Email. A set of types can be structured

into a disjunctive types-hierarchy:

Definition 5.1. A Disjunctive Types Hierarchy Γ is a set of types Γ = {T0, T1, T2 . . . Tn}
such that for every pair of its types Ti, Tj ∈ Γ: either (i) Ti ⊆ Tj ∨ Tj ⊆ Ti, or

(ii) Ti ∩ Tj = ∅.

Furthermore, there exists a unique maximal type T0, called the root type, wrt the inclu-

sion relationship such that ∀T ∈ Γ : T ⊆ T0 and ∀v ∈ p, p ∈ U : v ∈ T0.

According to this definition, there exists a partial order amongst types in the hierarchy,

and it is possible to define an operator τ(·) returning the minimal type T ∈ Γ over any

value v of pages in U : τ(v) = T ⇔ v ∈ T, T ∈ Γ ∧ (v ∈ T ′, T ′ ∈ Γ ⇒ T ⊆ T ′). This

operator can be trivially overloaded to work on a vector of values, rules, samples and

labelled samples. We set by definition that τ(nilp) = ⊥,∀p ∈ U considering the nil

values as belonging to every type of the hierarchy.

It is worth noting that the operator τ(·) returning the minimal type induces a partition

on every set of non-nil values, rules, vectors of values, whereas the types do not.

5.2.2 Scoring with Types

Correct vectors are likely to have a sequence of values of the same types, i.e. it is more

likely that a rule extracting all Email values is correct rather than a rule mixing String

and Email values. In our case we have a first annotation vl0 that provides a strong

evidence of the main type of the correct vector. Based on this observation we define a

Chapter 5. Wrapper Generation with Automatic Responders 66

scoring function that selects the extraction rule that best match the type of the first

annotation T0 = τ(vl0).

Based on the type of the first annotation we define the scoring function as follows:

STypes(r, T0,Γ, U) =
∑
p∈U

{
1 , iff τ(r(p)) = T0

0 , otherwise

The function takes in input a rule r ∈ R, the type associated to the initial value T0,

a disjunctive types hierarchy Γ, and the set of all the pages U . The rule r is scored

considering a function that matches the type T0 with the type of the extracted value

τ(r(p)) in each page in U . The function simply scores 1 if there is a perfect match

between the initial type T0 and the type of the extracted value.

5.3 LFEQ

Another possible way to select the best extraction rule is by exploiting the regularity

of the HTML template. In this section we describe an automatic responder based

on LFEQs (Large and Frequently occurring EQuivalence classes) a state of the art

automatic wrapper inference system described in [5].

In this Section, we will introduce the definition of LFEQs and provide an intuition of

the automatic wrapper inference described in [5] 5.3.1 and we introduce our automatic

responder based on LFEQs 5.3.2.

5.3.1 LFEQs definition

Templated pages are generated by a common script that embeds values in HTML tags;

values are returned from an underlying database. Templated pages are characterized by

the presence of EQuivalence classes (EQ) that represents portions of the HTML pages

that occurs exactly the same amount of time. If we observe the HTML tag and the body

tag, it is obvious that a page that contains an HTML tag it contains also the body tag.

If this analysis is reproduced in templated pages, we can find different kinds of EQs that

describe the template structure of the pages [5]. While some EQs are likely to be present

on a subset of the pages, there are several EQs that are likely to be present in many

pages and these EQs are the ones that characterize the most the template, the template

tags are likely to be frequent in all the templated pages. This subset is described as

LFEQs, i.e. EQs that are frequent for that template.

Chapter 5. Wrapper Generation with Automatic Responders 67

The wrapper generation process described by [5], first infers the LFEQs that describe the

template structure of the pages and in a second step it extracts the values embedded in

these tags. To extract the contents, the intuition is that values of interest are embedded

in the templated tags, thus for each value to be extracted the tag in which the value is

embedded belongs to an LFEQ.

We can formally define Λ(U) = {L0, L1, L2 . . . Ln} as a set of LFEQs generated for a

set of pages U . To find the LFEQ associated to a value v we define an operator λ(v)

that finds the LFEQ of the template tag that embeds the value v. As for the types, for

each value on the pages we can provide a single label that in this case is described by

the template structure.

In some cases the values are embedded in EQs that are not frequent enough, thus there

is not an LFEQ associated to the value. In contrast to Type, the LFEQ Lno is considered

different from the other LFEQs in Λ(U). We overwrite the operator λ(v) to return a

Lno that marks the absence of an LFEQ associated to v. As for the Type, we have to

model the presence of nil, we define that λ(nil) = ⊥∀ p ∈ U and we model nil as a

value that do not belong to any LFEQs in Λ(U).

5.3.2 Scoring with LFEQs

Correct vectors are likely to have a sequence of values that belong to the same LFEQ,

i.e. it is more likely that a rule extracting all values embedded in a single EQ is correct

rather than a rule that extracts some values in a EQ and some values in another EQ. As

for the types, we have a first annotation vl0 that provides a strong evidence of the LFEQ

of the correct vector. Based on this observation we define a scoring function that selects

the extraction rule that best matches the LFEQ of the first annotation L0 = λ(vl0).

Based on the type of the first annotation we define the scoring function as follows:

SLFEQs(r, L0,Λ(U)) =
∑
p∈U

{
1 , iff λ(r(p)) = L0

0 , otherwise

As for the Type, the function takes in input a rule r ∈ R, the LFEQ associated to

the initial value L0, the set of all the LFEQs generated on U . The rule r is scored

considering a function that matches the initial LFEQ L0 with the LFEQ of the extracted

value λ(r(p)) in each page in U . The function simply scores 1 if there is a perfect match

between the initial LFEQ T0 and the LFEQ of the extracted value.

Chapter 5. Wrapper Generation with Automatic Responders 68

5.4 Knowledge Base

Another possible way to select the best extraction rule is by exploiting the semantic

meaning of the extracted values. In this section we describe an automatic responder

based on the Knowledge Base, the system matches the extracted values with the triples

in the Knowledge Base and scores extraction rules that matches better.

In this Section, we will introduce the notation of a Knowledge Base 5.4.1 and we intro-

duce our automatic responder based a Knowledge Base 5.4.2.

5.4.1 Knowledge Base definition

A Knowledge Base (KB) is expressed as a set of triples t =< s, p, o >, subject, predicate

and object. The predicate represents a relationship between the subject entity and the

object entity.

In the KB, we add the concept of the type of an entity. We extend the previous definition

so that each entity e in the KB is composed by a pair (te, ve), with te the type of the

entity and ve the value of the type.

A subject and an object in a triple represents the relationship between two entities, both

subject and object are described by a pairs s = (ts, vs), o = (to, vo).

We say that a triple < s, p, o > is related to t if the type of the subject is equal to t,

ts = t.

From the initial KB K we can select the subset of the triples Kt so that all the triples

in K are related to the type t. For instance, examples of triples related to a type movie

are all the triples that describe the relationships where the subject entity is a movie.

The set of all possible types in the KB is T = {t1, t2, . . . } and each entity is associated

to a single 1 Type te ∈ T .

5.4.2 Automatic Responder with Knowledge Base

Correct vectors that extract data published in a KB are likely to extract values that

match with subjects and objects of triples of a specific predicate in the KB. In this

section we exploit this intuition by scoring extraction rules considering the presence of a

KB. The system requires in input the set of templated pages U and two set of rules, Ra
and Rb. Ra are the candidate rules for the main attribute, the attribute that identifies

the entity, e.g. the name of a person or the title of a book, and Rb are the candidate

rules for the secondary attributes, e.g. the age of a person or the rating of a book.

1For the sake of the presentation we make the assumption that each entity has a single type

Chapter 5. Wrapper Generation with Automatic Responders 69

Compared to Types and LFEQs the solution based on Knowledge Base infers the best

extraction rules considering a pair of attributes. This is motivated by the fact that the

system matches triples and it is more reliable to match both subject and object instead

of matching a single entity in the triples.

We can divide our approach in two steps: (i) discover the best type t in the KB that

contains triples related to the considered pages, and (ii) find the best pair of rules that

matches the triples in KB of the type t.

We consider a type discovery step for a performance issues. In fact, the dimension of

the KB can be huge, thus searching among all the triples in the knowledge base is an

expensive task. Our type discovery exploits the presence of an interface in the KB so

that given a string value, the interface returns all the types in the KB associated to the

string value, i.e. for all the entities e, it selects te if ve is matched with input string.

Type Discovery The first step of our algorithm is to find the type related to the

attributes that we want to extract, our goal is to find a type τ and select all the triples

of the given type Kτ .

τ is the type that maximizes a scoring function; this function takes into account the

extracted values and all the Knowledge Base.

argmax{ti∈T}scoreType(K,Ra(U), Rb(U), ti)

The scoring function is described as follow:

scoreType(K,Ra(U), Rb(U), ti) =
∑
p∈U

{
1 iff ∃ < s, p, o >∈ K|ti = ts, vs ∈ Ra(p), vo ∈ Rb(p);
0 , otherwise;

scoreType counts the number of triples that match the type and the values extracted

by the rules in Ra and in Rb with triples in the KB.

By finding the most likely type the system selects a subset of the original K where the

type is compatible with the target type τ .

Kτ = {< s, p, o >∈ K|ts = τ}

Rules scoring Discovered the type we can finally define the algorithm to select the

pair of rules that best matches the triples in the knowledge base.

Chapter 5. Wrapper Generation with Automatic Responders 70

Listing 5 Wrapper inference with a Knowledge Base

Input: a set of pages U
Input: a set of rules for the main attribute Ra = {ra1, ra2 , . . . }
Input: a set of rules for a secondary attribute Rb = {rb1 , rb2 , . . . }
Input: a knowledge base Kτ , set of < s, p, o > where τ = ts.

Output: a pair {ra, rb}|ra ∈ Ra, rb ∈ Rb
1: let k =< s, p, o >∈ Kτ |vs ∈ Ra(U), vo ∈ Rb(U);
2: let P = ∀p ∈< s, p, o > |vs = v+a0, vo = v+b0
3: let T = Ra(U)×Rb(U)× P ;
4: ra, rb, p← argmax{ri(U),rj(U),pz}∈T scorePair(ri(U), rj(U), pz, k);
5: return ra, rb;

In Listing 5 we describe the algorithm. The set of pages U , two set of candidate rules

Ra and Rb, a set of triples Kτ are the input of the algorithm.

In line 1, the system pre-computes all the triples k that match the values extracted

from the main attributes and the secondary attributes. In line 2, it computes all the

predicates that match the first annotation of the attributes a and b. In this step we

model the presence of different kind of relationships between two objects. In line 3, T is

computed as the Cartesian product between the vectors in Ra(U), the vectors in Rb(U)

and the set of predicates. In line 4, the system finds a ra, rb and p that maximizes the

function scorePair.

scorePair is defined as follow:

scorePair(ri(U), rj(U), pz, k) =
∑
p∈U

{
1 iff ∃e =< se, pe, oe >∈ k|vse = ri(p), voe = rj(p), pz = pe;

0 , otherwise;

The function scorePair takes in input two vectors of extracted values, one by ri and the

second by rj , a predicate pz and scores the pair for each page p ∈ U . If there is a triple

in k that contains the subject and the object extracted by the rules, then it is counted

as a positive score.

5.5 PMI

Another interesting way to select the best extraction rule is by exploiting the correlation

between the extracted values among different attributes. In this section we describe an

automatic responder based on the measure of mutual association, the Pointwise Mutual

Information (PMI). The system scores the mutual association between pairs of attributes

Chapter 5. Wrapper Generation with Automatic Responders 71

and finds the best extraction rules based on the frequency of the association of the

extracted values on the Web.

In this Section, we will give an intuition of PMI 5.5.1 and we introduce our automatic

responder based a Knowledge Base 5.5.2.

5.5.1 PMI intuition

The Pointwise Mutual Information (PMI) measures the association between two distinct

events X and Y . On the specific, PMI measures the probability of the coincidence

between X and Y with their individual probabilities [57]:

PMI(X,Y) = log(
P (X,Y)

P (X)P (Y)
)

Higher is the PMI score and higher is the correlation between the two events. Never-

theless if the events X and Y are two independent events, then the joint probability

is computed by P (X)P (Y) and the score would be equal to log(1). If the events are

correlated and they tend to co-occur together, then the joint probability will be greater

than P (X)P (Y). The ratio between P (X,Y) and P (X)P (Y) measures the degree of

correlation between the two events.

PMI has been adopted to measure the correlation between keywords in Information

Retrieval [58]. The technique can be adopted to measure the correlation between two

keywords on the Web. Given two keywords A and B, we can compute the correlation

between A and B by first counting the number of documents in the Web that contain

them by searching with a Search Engine first with A, then with B and then we search for

documents that contain both A and B. We can compute the probabilities by normalizing

the number of documents with the number of all the documents indexed by the Search

Engine, but this is not required for our setting. In fact, as we will observe later, our

goal is to select the rule that maximizes the scoring function, thus we can adopt the

following function:

scoreMI(X,Y) =
hits(X,Y)

hits(X)hits(Y)

The score scoreMI is proportional to PMI, thus for our maximization task they are

equivalent. hits is the function that computes the number of results returned by the

search engine [58].

Chapter 5. Wrapper Generation with Automatic Responders 72

5.5.2 Automatic Responder with PMI

Correct vectors from different attributes are likely to extract correlated values. For

instance, if we are extracting the names of movies and the names of directors, these two

values are likely to co-occur in the web, i.e. a document that contains the name of a

movie is likely to contain also the name of the director. We exploit this intuition by

scoring extraction rules with the function scoreMI and programmatically querying a

search engine2 to count the number of documents in the Web.

Listing 6 Wrapper inference with PMI

Input: a set of pages U
Input: a set of rules for the main attribute Ra = {ra1, ra2 , . . .)
Input: a set of rules for a secondary attribute Rb = {rb1 , rb2 , . . . }
Output: a pair {ra, rb}|ra ∈ Ra, rb ∈ Rb

1: let T = Ra(U)×Rb(U);
2: ra, rb ← argmax{ri(U),rj(U)}∈T scorePair(ri(U), rj(U));
3: return ra, rb;

In Listing 6 we describe the algorithm. As for the solution based on the KB, the system

requires in input the set of templated pages U and two set of rules, Ra rules for the

main attribute and Rb rules for a secondary attribute.

The system computes T as the Cartesian product between the vectors in Ra(U) and the

vectors in Rb(U) and then it selects the pair of vectors ra(U), rb(U) that maximizes the

function scorePair.

The function scorePair is described as follow:

scorePair(ri(U), rj(U)) =
∑
p∈U

hits(ri(p), rj(p))

hits(ri(p))hists(rj(p))
)

For each p ∈ U the system apply the function scoreMI. Each call of scoreMI executes

three queries on a search engine: the value extracted by the candidate of the main

attribute, the value extracted by the candidate of the secondary attribute and the values

extracted by both candidate rules.

5.6 Experiments

In the previous sections we have described several automatic wrapper inference ap-

proaches that exploit different kind of information. But some questions arise: Can they

2Bing Search API

Chapter 5. Wrapper Generation with Automatic Responders 73

be combined together effectively to increase the quality, wrt, the approaches that con-

sider each responder separately? Can they be guided with a small human supervision

when the result is still uncertainty? Is there a quality loss when we move from human

supervision to automatic responders? In this section we address these open questions.

We compare the quality of the output wrappers by considering the standard metrics of

P, R and F. We consider the standard deviation of the F measure σF to understand the

reliability of the results.

We first present an outline of the experiments in 5.6.1 and we describe our evaluations

in 5.6.2.

5.6.1 Experiments outline

For our evaluation we adopt the dataset 3.3 described in Chapter 3. We first compare

the results obtained considering only automatic responders. We denote with: Types

(T), LFEQ (L), Freebase (F), PMI (P) the automatic responders described previously

in this chapter. Responders are used to answer MQ posed by alfη on our dataset. The

initial η is statically set to 0.1 and the termination condition is set with λp = 0.95 and

λMQ = 10. The answers from multiple automatic responders can be combined adopting

alfred. We adopt alfred to estimate the responders’ error rate and to evaluate the

expected quality of the returned extraction rule. The termination threshold on alfred

provides a metric to terminate the computation or to search for human workers to reduce

the uncertainty, i.e. the system can trust or not the combined results.

In the first part of the evaluation, we compare the results considering only automatic re-

sponders. We evaluate responders singularly, combining them together and we compare

alfred with two simple baselines. In the second part, we compare the results of the

automatic responders with synthetic workers; synthetic workers simulate the answers

provided by real workers. We denote with H the output provided by a synthetic human

worker and with Hi the output of alfred when the initial number of workers is set to

i.

5.6.2 Evaluation

Automatic Responders We first evaluate the quality of the output wrapper con-

sidering different responders by adopting alfη.

In Table 5.1 we provide the results considering a single responder at a time. Overall,

responders based on Types and LFEQ are the most accurate, with an F greater than

0.9. Types and LFEQ are domain independent, thus on average the results on several

Chapter 5. Wrapper Generation with Automatic Responders 74

Resp. P R F σF
T 0.91 0.93 0.91 22%
L 0.93 0.91 0.90 20%
F 0.88 0.88 0.88 26%
P 0.88 0.91 0.89 27%

Table 5.1: Average quality based on different responders with a probability threshold
of 0.95

domains are better than domain dependent approaches. Freebase and PMI are domain

specific and, in fact, Freebase provides the worst results. This is motivated by the fact

that some attributes are not found in the Knowledge Base, common examples are: sub-

jective attributes, e.g. the number of the users that provides a review to a movie or

a product, site specific attributes, e.g the number of pages of the edition of the book

and so on. The PMI responder suffers in part of the issues of Freebase, in fact some

attributes are less likely to be found on the web because they are site specific, thus the

quality is affected by the presence of unique values on the website. Another interesting

result is the standard deviation, in fact, only adopting a single automatic responder

we can obtain a high F, but the quality is often not predictable with a high standard

deviation (σF > 0.2). The approach based on LFEQ obtains less uncertain, but the

standard deviation is still high σF = 0.2.

Resp. η ση
T 0.13 24%
L 0.17 25%
F 0.17 28%
P 0.22 27%

Table 5.2: Average η and ση of the responders

Table 5.2 confirms our previous observation. The average η of automatic responders is

higher than the η observed with humans. There is a small difference if we consider the

average η, it increases between 0.03 and 0.12. A much more interesting comparison is on

the standard deviation. With automatic responders we observe a much higher ση that

increases between 13% and 16% wrt the humans ση = 11%. This is an expected result,

in fact automatic approaches tends to work really well in some cases and fail completely

in others.

In Table 5.3 we compare the results combining the responders together considering

alfred and two baselines, the baselines describe different approaches to combine the

answers provided by the responders: Majority Voting (MV) selects the rule that is

returned by more responders, alfη returns the rule that is more likely considering a

training sequence generated by the union of the training sequences of the responders.

Chapter 5. Wrapper Generation with Automatic Responders 75

all attributes threshold

Alg. P R F σF P R F σF %

alfη 0.91 0.92 0.91 22% 0.95 0.98 0.96 13% 68%
MV 0.93 0.95 0.94 18% 0.93 0.95 0.94 18% 97%

alfred 0.94 0.95 0.95 16% 0.97 0.99 0.98 4% 71%

Table 5.3: Comparison between alfred and two baselines, Majority Voting and alfη

We say that the system “trusts” the output extraction rule: MV the rule is returned at

least by half of the responders; alfη the probability of the most likely rule has to be

greater than λr. Overall alfred achieves the best F and with the lowest uncertainty

σF . If we compare alfred with alfη we can observe the difference between estimating

the responders’ error rate and a simple approach that combines the answers, in alfη

erroneous responses are weighted too much, thus the system is not able to combine

the answers efficiently. A simple MV achieves good results with an F and σF close to

alfred. If we consider the termination threshold, we observe that MV obtains the same

results as the average and it terminates in 97% of the cases, thus MV is less sensitive to

erroneous majorities. alfη achieves better results wrt MV, but the standard deviation

is still high. alfred obtains the best results with the lowest standard deviation of 4%

and an F = 0.98.

all attributes threshold

Resp. P R F σF P R F σF %

LP 0.91 0.90 0.89 25% 0.95 0.98 0.96 14% 59%
TF 0.92 0.91 0.91 21% 0.92 0.95 0.92 21% 46%
PF 0.87 0.88 0.87 30% 0.91 0.95 0.92 23% 49%
TL 0.92 0.93 0.92 20% 0.93 0.97 0.95 15% 67%
TP 0.92 0.93 0.91 23% 0.95 0.98 0.96 4% 65%
LF 0.92 0.90 0.91 21% 0.93 0.96 0.93 13% 48%

LPF 0.91 0.91 0.90 24% 0.95 0.98 0.96 13% 68%
TLF 0.93 0.93 0.92 21% 0.94 0.96 0.95 16% 75%
TPF 0.91 0.93 0.93 18% 0.95 0.99 0.97 11% 69%
TLP 0.92 0.93 0.93 20% 0.96 0.99 0.97 8% 73%

TLFP 0.94 0.95 0.95 16% 0.97 0.99 0.98 4% 71%

Table 5.4: Average quality based on different combinations of responders on all the
attributes and considering a probability threshold of 0.95

In Table 5.4 we compare different combination of responders with alfred and we check

the quality of the output when a threshold over the combined answers is met. Answers

are collected by running alfη with each responder separately. The answers are then

collected and combined by running alfred. The configuration of the evaluation is de-

noted by the symbol of each responder, e.g. TL denotes alfred executed on answers

Chapter 5. Wrapper Generation with Automatic Responders 76

provided by two responders Types and LFEQ. Overall, the combination of multiple re-

sponders increases quality of the output. Combining all the responders (TLFP) provides

on average a high F measure of 0.94, with a lower standard deviation of 0.17. A really

interesting result is when we consider the probability threshold set by alfred. In fact,

the system is able to understand when we should trust the results and when additional

feedback is required to reduce the uncertainty. In Table 5.4 we consider a threshold of

λp = 0.95; in 71% of the attributes we obtained an F = 0.99 with a standard deviation

of 0.04, i.e. almost perfect results without human feedback. In the remaining 29% of

the attributes the system is not certain of the results, but if we still consider the most

likely rule for these attribute on average we obtain F = 0.94.

If we consider configurations with two responders: TP is the best combination in terms

of F and σF when λr > 0.95, TL obtains the best coverage with the algorithm that

terminates in 67%. Considering configurations with three responders: TLP is the best

solution with a high F = 0.97 and the lowest standard deviation of 8%, TLF terminates

on 75% of the attributes but the F is the lowest wrt other combination of three respon-

ders. Overall TLFP obtains the best results in terms of average F and has the lowest

standard deviation. F is close to 1 and the standard deviation is 4%.

Humans vs Automatic Responders We previously observed that alfred under-

stands when additional feedback is required to reduce the uncertainty. In those cases,

humans can be involved to answers the MQ provided by alfη. The collected answers are

combined together with answers provided by automatic responders with alfred. As

described in the previous chapters, alfred can dynamically enroll additional workers,

until the termination condition is met (λp is greater than a threshold).

Resp. P R F σF #MQ |W | max |W |
TLFP 0.94 0.94 0.94 17% 0 0 0
H1 0.99 0.98 0.98 11% 9.19 2.06 6
H2 1.00 0.98 0.99 6% 13.31 2.38 7

TLFP+H1 0.97 0.99 0.98 7% 2.30 0.36 4

Table 5.5: Average quality based on different combinations of responders on all the
attributes and considering a probability threshold of 0.95

In Table 5.5 we compare the results considering answers from synthetic human workers

and automatic responders. We compare different configurations: TLFP provides results

based only on automatic responders where all the responders are combined and the most

likely rule is returned anyway, i.e. even when the termination condition is not met; H1

runs alfred with an initial set up of one worker; H2 runs alfred with 2 workers in

the initial setup; TLFP+H1 describes an hybrid approach where automatic responders

are adopted to infer the extraction rule, and only when the termination condition is not

Chapter 5. Wrapper Generation with Automatic Responders 77

reached by alfred, humans are involved.

A solution based only on automatic responders (TLPF) that does not consider the

quality threshold, obtains the worst F measure with F = 0.94 and a high standard

deviation of 0.17. No human work is required, but the results are not predictable and

the quality can drop.

Enrolling humans to infer wrappers drastically increases the quality of the output, when

alfred engages a single worker at the beginning of the inference (H1) the F is 0.98.

Enrolling multiple workers at the beginning of the task reduces the uncertainty with an

F = 0.99 and a −0.05 in standard deviation. The reason for the high standard deviation

in H1 is that workers can make mistakes and enrolling a single worker on a task does not

give enough evidence of her mistakes. Engaging multiple workers at the beginning of the

task is the best way to address this issue, but the price to pay is on the number of MQ

required for each attribute, on average is 13.31. alfred dynamically enrolls multiple

workers on the same task and on average 2.38 workers are required for each task in

H2. TLFP+H1 addresses many issues related to a complete human based approach.

The quality of the output is comparable to H2 with a small loss in precision −0.03, but

the standard deviation is lower than H1 and it is close to H2. The hybrid approach

obtains almost perfect results with just a fraction of the MQ required by H2. In fact, on

average the number of tasks required for each attribute is 0.36 and the number of MQ is

2.3. Notice that even with the hybrid approach, alfred dynamically engages multiple

workers when some attributes are uncertain, in fact for some attributes 4 workers are

involved before terminating the algorithm. If we consider the number of workers, 71%

of the tasks are completed with no human intervention, 25% with a single worker and

6.07 MQ, and only 4% of the tasks require more than 1 worker with an average MQ of

20.00.

5.7 Conclusions

In this chapter we presented several independent automatic wrapper inference systems:

Types exploits the similarity between the types of the extracted values (repeating emails,

or URLs); LFEQs exploits the equivalence classes in the HTML templates; Knowledge

Base exploits the presence of a knowledge base that matches extracted values and PMI

exploits the correlation between the values extracted in different attributes for the same

entity. We compared the responders, we evaluated each responder separately and we

combined them with alfred to define a new automatic wrapper inference system. We

show that the combination of all the responders increases the average F and reduces

its standard deviation. We also compared a crowd based solution with the automatic

approach and we defined a hybrid solution that starts by considering only automatic

Chapter 5. Wrapper Generation with Automatic Responders 78

responders and when it is required humans are engaged. The results are promising:

around 70% of the attributes are automatically wrapped with the quality close to the

crowd based solution, alfred dynamically engages humans workers only on those cases

where automatic responders fail to reduce the uncertainty, the hybrid approach learns

accurate wrappers with a fraction (17%) of the MQ required by the crowd based solution.

The loss is very limited, a drop of 0.01 in F.

Chapter 6

Discovery and Extraction of

Product Specifications

In the previous chapters we described a hybrid wrapper generation approach that dy-

namically understands if human feedback is required. We optimized the solution to

reduce the cost related to human work and we controlled the quality of the output by

using redundancy. An open issue is the discovery of the input pages to wrap, i.e. the

pages that share a common template. In fact, to define an end-to-end pipeline that scales

to the Web other challenges have to be addressed: the discovery of relevant websites

that are likely to contain templated pages, the crawling inside a website of the templated

pages and finally the extraction of the output values.

In this chapter we address these issues. We consider a case study on specifications pub-

lished on the Web and we describe techniques to discover and collect the attribute-value

pairs embedded in the specifications. We focus on product specifications because: (i)

specifications are widely available in many websites (ii) specifications are example of

templated pages; (iii) they are published in many domains for people (e.g., entertainers,

politicians), products (e.g., cameras, computers), organizations (e.g., restaurants, hos-

pitals), etc; (iv) specifications are characterized by a strong regularity and a potentially

big number of attribute-value pair in each specifications.

A recent study [59] showed that specifications (set of attribute-value pairs for a single

entity) are among the most common forms of structured data available on the web,

e.g., infoboxes in wikipedia pages. Figure 6.1 shows example product specifications

from different websites. Specifications are typically represented as vertical tables [60]

or HTML lists, though only a small fraction of vertical tables and HTML lists are

specifications. There has been considerable interest in using specifications that can be

collected from Web data sources for a variety of applications, such as data integration,

79

Chapter 6. Discovery and Extraction of Product Specifications on the Web 80

faceted search and question answering [61]. For example, many organizations today look

to the Web to augment their internal databases with specifications in specific domains

of interest.

A possible strategy to collect specifications from the Web is to run a general crawler,

and then extract the data from the gathered pages. This approach has been investigated

in the literature (see, e.g., [62]), and has its limitations: very few groups have access to

up-to-date Web crawls, and initiating such crawls is extremely resource intensive. An

alternative is to use a publicly-accessible snapshot of the Web, e.g. Common Crawl 1.

We examined this possibility and verified that on Common Crawl many pages are out-of-

date and some small websites are not even indexed. To avoid all these issues, we present

in this chapter a scalable focused-crawling technique that only looks for specifications in

a domain of interest. Domains are represented by categories of products (e.g., cameras,

computers). We focus this study on product specifications for three reasons. First,

there is much interest in using product specifications for comparison shopping, faceted

search, etc. [63, 64]. Second, product specifications are available from a large variety

of Web data sources (e.g., e-commerce retailers, local stores with an online presence).

Third, despite their availability, efficiently obtaining a large set of high-quality product

specifications in a given category comes with many challenges.

Efficiency: The number of data sources (websites) for any given product category can

be in the thousands, but these sources are spread out on the web. Similarly, only

a small fraction of pages in a relevant website have product specifications.

This problem of sparsity makes it challenging to efficiently obtain a large set of

product specifications.

Quality: There is considerable variability among product specifications in terms of their

attributes, sizes, format and content. Further, even though product specifications

are typically represented using HTML tables and lists, only a small fraction of

HTML tables and lists are product specifications.

This problem of identifiability makes it challenging to obtain a large set of high-

quality product specifications.

To effectively address the challenges of efficiency and quality, we propose an end-to-

end system, Dexter, that consistently uses the principles of vote-filter-iterate. From

a small collection of seed Web pages and product specifications in a given category,

Dexter iteratively obtains a large set of product specifications. More specifically, in

each iteration, Dexter uses voting and filtering to prune potentially irrelevant websites

1http://commoncrawl.org

Chapter 6. Discovery and Extraction of Product Specifications on the Web 81

and Web pages in a site, to reduce the noise introduced in the pipeline, and to efficiently

obtain a large number of high-quality product specifications.

In this chapter, we make the following contributions: (i) an original approach to ef-

ficiently discover websites that contain product specifications; (ii) an adaptation of an

existing crawling technique [45] designed for forums to work for product websites; (iii) an

original technique to find and extract attribute-value pairs from product specifications;

(iv) an end-to-end system to efficiently and accurately build a database of product spec-

ifications.

In this chapter we develop a new extraction technique wrt the techniques presented

in the previous chapters. The motivation is that specifications are characterized by the

presence of a big number of attribute/value pairs, thus making inefficient a per attribute

cost model. A possible technique to address this issue is to exploit the regularity that

characterize the portion of the HTML that contains the specifications, thus instead of

learning an extraction rule for each attribute, we describe a technique to recognize the

specifications area.

We have performed an extensive experimental evaluation with five different product

categories on the web. Our results show that (1) our website discovery and in-site

crawling strategies efficiently identified over 2,719 websites and 1M HTML pages that

contain product specification pages in the five product categories; (2) our specification

detector obtains a high value of F-measure (close to 0.9) over a large variety of product

specifications; and (3) our wrapper (attribute-value extractor) gets very high values of

precision and recall.

We compared our dataset with Common Crawl: 68% of the sources discovered by Dex-

ter are not present in Common Crawl, only in 20% of the websites Dexter discovered

fewer pages, but product pages are just a fraction of all the discovered pages. In fact,

on a sample set of 12 websites where Common Crawl indexed more pages, 99.2% of the

pages were non-specification pages.

The rest of this chapter is organized as follows. Section 6.1 defines our problem and

presents an overview of Dexter. In Section 6.2, we introduce our strategies for website

discovery and in Section 6.2 we describes the in-site crawling to locate product pages.

Section 6.4 describes the approach we used in generic specification detection, Section 6.5

presents our approach to extract attribute-value pairs. In Section 6.6, we present our

extensive experimental evaluation results. We discuss some related works in Section 6.7,

and we summarize in Section 6.8.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 82

Figure 6.1: Examples of specifications of different products: (Left) ring specification
(www.overstock.com), (Right) tablet specification (www.bestbuy.com)

Figure 6.2: Architecture of Dexter, composed by the Sites Discovery, the In Site
Crawling, the Specification Detector (detection), and Generic Wrapper (extraction).

6.1 Overview

We define a product specification as follows.

Definition 6.1 (Product Specification). A product specification SP is a set of attribute-

value pairs < ai, vi >. The attributes (partially) form a schema for the product category

C which SP belongs to.

The goal of this work is to build a database of products specifications. More formally,

we state the problem as:

Definition 6.2 (Problem Definition). Given seed products P and product websites S in

a specific category C, we aim to efficiently crawl a comprehensive database of products

specifications in C.

To deal with this problem, we propose Dexter. Initially, from seed products and

product websites, Dexter locates product websites such as shopping websites (Website

Discovery). Here we assume specifications are mostly contained in such sites. Second,

Chapter 6. Discovery and Extraction of Product Specifications on the Web 83

Dexter crawls those websites to collect product specification pages (In-site Crawling).

From those pages, Dexter detects the HTML portion of the pages that contains the

specification (Specification Detection) and, finally extracts the attribute-value pairs from

the specification (Specification Extraction). Figure 6.2 shows the architecture of Dex-

ter. In the rest of this section we provide further details about each step and their

main challenges.

Website Discovery: The goal of Website Discovery is to locate candidate product

websites. Since product websites are sparsely distributed on the Web, Dexter

uses two strategies to deal with that: (i) it queries a search engine with known

product keys, and (ii) identifies hubs that contain links to known product websites.

Voting is used to generate a ranking of the candidate websites to select websites for

further exploration. Since some of the resulting websites might not be relevant, we

implemented a product website classifier to quickly filter out irrelevant websites.

Iteration is subsequently used to obtain a large number of relevant websites.

In-site Crawling: Within a potentially relevant product website, we aim to efficiently

locate the product specification pages. For that, we use a number of classifiers to

discover product category entry pages and index pages, filtering out Web pages on

the website that are unlikely to lead to product specification pages. Voting is used

to score the links from product specification pages in a website, discovered using a

search engine, to aggregate the classifier scores for identifying promising category

entry pages.

Specification Detection: Once product specification pages are identified, the goal is

to detect the HTML fragments on those pages that correspond to specifications.

For that, we propose a product category detector, to avoid labeling data for each

considered category. The specification detection classifier looks at HTML frag-

ments (e.g., tables and lists) in these pages, and makes use of various structural

features such as the number of links, items, text size, etc., that distinguish high-

quality specifications from non-specifications.

Specification Extraction: The final step in the Dexter pipeline is to extract attribute-

value pairs in the detected specifications. Since a large number of specifications can

be detected, it is important for attribute-value pairs to be extracted efficiently. For

that, we implemented two different strategies: (1) a heuristic lightweight approach

that takes into consideration HTML structural commonalities between specifica-

tions across sites, and (2) a hybrid method that combines the approach of [65]

of inferring extraction patterns based on noisy annotations with our heuristic ap-

proach.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 84

Figure 6.3: A product detail page with the product key.

6.2 Discovery

Product pages are usually located in online stores. Under this assumption, the first

task of Dexter is to find online store sites to collect product pages from them. Since

these websites are sparsely distributed on the Web, the main challenges are: to effi-

ciently find online stores while avoiding visiting unproductive regions on the Web, and

to discover a comprehensive catalog of them with a high quality. To achieve these goals,

we implemented four different strategies: (1) Search: the crawler issues queries based

on known products to a search engine in order to discover other websites that publish

information about these products; (2) Backlink: from known relevant sites, the crawler

explores their backlinks to find other relevant sites; (3-4) Merge: the system defines two

rankings strategies made by a combination of the discovered websites adopting Union

and Intersection. We give further details about these strategies in the rest of this section.

Search In our domain, we expect that multiple websites publish specifications of the

same product. Taking advantage of this high redundancy, searching for known products

on a search engine would return pages of these products in different sites. Notice that

the search engine can return non-product-specification websites, e.g. a forum with a

discussion of a product. To efficiently discover relevant websites without penalizing

the overall recall we exploit the previous observations, Dexter searches for multiple

products and provides an ordered ranking of the returned websites from the search

engine considering the number of times a website is present in the results, i.e., a forum

or other non specification websites are less likely to have pages in the results for many

products. Based on the ranking, for each iteration, Dexter selects the top K websites.

The idea of using search engines to help collect pages has been previously explored

[42, 43, 62]. For instance [62] analyzed the distribution of entities for a set of domains

by searching for entities on the Web using some unique identifiers, e.g. restaurant

phone numbers. Similarly, we extract a representation of given products to discover new

product sites that contain the products.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 85

Examples of the used representation are the product identifiers like the model name that

often is published in the page that contains the product specifications. In Figure 6.3 we

show the product key extracted and used for the search step.

Our method works as follows. Given a set of product keys K obtained from seed web-

sites S, the crawler uses a search engine API to discover new websites S′ that publish

information for products in K. More specifically, S′ is built considering all the websites

returned by the search engine over all queries in K. S′ is then ranked considering the

score according to the following equation:

sSearch(K, sj) =

∑
ki∈K

search(ki, sj)

|K|
(6.1)

The search function is a binary function that scores a website sj = 1 if and only if the

website is returned by the search engine using as query the keyword ki:

search(ki, sj) =

{
1 if sj returned searching for ki

0 otherwise
(6.2)

Using the function sSearch for all the websites sj ∈ S′, we generate an ordered ranking

R′.

Based on the ranked list of websites we can adopt a threshold to select the top websites

and consider them for further steps in the pipeline.

The main limitations of the search approach are the restrictions usually imposed by

search engine APIs as e.g. number of results per query, number of results per user and

total number of queries in an interval of time. This is a significant issue if the goal is

to collect an unbounded number of product websites. Our next approach tries to deal

with this problem of scalability since it is less dependent of search engines.

Backlink An interesting source for finding relevant websites are pages that point to

multiple sites, so-called hub pages. As an example, previous work [66] uses backlinks of

multilingual websites to find hub pages that point to other multilingual sites, and then

restricts the crawler to the Web region defined by the bipartite graph composed by the

pages pointed by the backlinks of relevant sites and the outlinks of these hub pages. A

backlink is just a reverse link so that from the initial website we can discover hubs that

point to it.

Efficiency, recall and quality are challenging goals. In fact, backlinks can lead to non-

relevant hubs, thus leading to non-relevant websites. Common examples are generic

Chapter 6. Discovery and Extraction of Product Specifications on the Web 86

hubs that point to multiple websites, like popular websites in a country, websites where

the name of the domain starts with an ’A’ and so on.

We adopted a similar vote-filter-iterative strategy to locate product websites and to

address our challenges. Non-relevant hubs are less likely to point to many relevant

websites, while relevant websites are more likely to be pointed by many relevant hubs.

Based on this intuition using backlinks, we score hubs that point to many relevant

websites. From these hubs, we compute an ordered ranking of the new websites pointed

by the hubs. As with search, we generate an ordered ranking and for each iteration we

select the top K websites.

The approach works as follows. Given the initial set of websites S, we want to discover

a new set of websites S′′ and an ordered ranking R′′ of S′′ so that S′′ are all pointed

by hubs discovered from S. To provide a ranking and prune the enormous number of

websites and hubs discovered by backlinks we first search for the hubs H using backlinks

for each website si ∈ S. Each hub hj ∈ H is scored following this formulation:

sHub(S, hj) =

∑
si∈S

hub(si, hj)

|S|
(6.3)

The hub function is a binary function that scores a hub hj with 1 if si has a backlink to

hj .

hub(si, hj) =

{
1 if hj in backlink for si

0 otherwise
(6.4)

To improve the performance, we prune those hubs that are pointed only by a single

website. We expect that if S is big enough, hubs discovered only by one website are not

likely to lead to interesting websites. From the hubs H, we follow the forward links to

discover new websites S′′, for each new website sj we score the website as the weighted

average of all the hubs that point to sj :

sForward(H, sj) =

∑
hi∈H

forward(hi, sj) ∗ sHub(S, hi)∑
h∈H

sHub(S, hj)
(6.5)

The forward function describes whenever the website sj is pointed by the hub hi.

forward(hi, sj) =

{
1 if sj in forward links of hi

0 otherwise
(6.6)

Using the function sForward for all the websites sj ∈ S′′ we generate a second ordered

ranking R′′. We adopt the same threshold of the search approach to select the top K

websites for further processing in the pipeline.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 87

Merge An interesting observation is that the backlink and the search are two inde-

pendent approaches and they can be combined to define a new ranking algorithm.

In this work, we consider two merging algorithms: the first one based on the union

and the second based on the intersection of the two generated rankings. The intuition

behind the union is that if the two rankings generate two disjoint but good ordered sets,

considering the union of the top results from each ranking can provide better results.

For the intersection we expect that if there is an overlap among the results from the two

distinct rankings, a good website is likely to be in the overlap and ranked better by the

new ordering.

Given two rankings R′ and R′′, each value in Rx is made of a pair (si, p
x
i) where si ∈

S′ ∪ S′′ and pxi is the position assigned to si by the ranking Rx.

We score a site si for a ranking Rx considering the following formulation:

rScore(si, R
x) =

1

|Rx|
||Rx|+ 1− pxi |

i.e, we score a source si for a ranking Rx considering the position of the source inside

the ranking.

We define the score of the union as follow:

sUnion(si) = max(rScore(si, R
′), rScore(si, R

′′))

From this function, we generate a new ranking Runion so that the score of the website

si is defined by sUnion.

We define the intersection as the harmonic mean among the rankings as follow:

sIntersection(si) = 2 ∗ rScore(si, R
′) ∗ rScore(si, R′′)

rScore(si, R′) + rScore(si, R′′)

From sIntersection we define Rintersection.

Notice that we do not merge the rankings considering the scores provided by the source

discovery strategies. An issue that we observed is that often the scores are not balanced

because one ranking often leads to scores close to 1 while the second has lower scores.

A naive merging could penalize one of the rankings.

Since there are many non-relevant sites returned by the voting and iterating steps, the

final step in the Website Discovery is to efficiently detect product websites. It is based

on a classifier trained to recognize if a website is a product website considering the

features in the root home page (Home Page Classifier). More specifically, we trained the

Chapter 6. Discovery and Extraction of Product Specifications on the Web 88

Figure 6.4: The pipeline to crawl a new website for target pages.

classifier to recognize websites that publish specifications of products by just looking at

their home page. We trained the classifier with the anchor text of the links in the home

page2. The words inside the anchor text are good features because the home page, as

the root page, provides links to multiple categories, and links that leads to the same

category are likely to be the same, e.g. for TV common anchor texts are TV, Television,

Home, Living Room etc.

6.3 Crawling

Having discovered a new product website, the following step in the pipeline is to crawl

the website and discover product specification pages. To avoid visiting unproductive

regions of a website, it is important to have a strategy that collects as many product

pages as possible, visiting as few pages as possible.

2We use 50 relevant product websites and 50 non-relevant websites as training data for all the cate-
gories.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 89

Dexter’s Insite Crawling is inspired by [45], which was focused on forum crawling. We

use a similar approach to crawl generic shopping websites. The main assumption is that,

similar to forum sites, product-based sites have a well-defined structure consisting of an

entry page to the product content in a given category, index pages that point to prod-

uct pages and, finally, the product pages themselves. Based on that, we implemented

the following strategy. Figure 6.4 shows an overview of our approach. First, the Insite

Crawling discovers the entry page related to a category (Entry Page Discovery). Nor-

mally, shopping websites organize their catalogs in categories and subcategories. This is

expected because the website administrator wants to improve the navigation experience

of the customer inside the website. Next, the crawler performs the Index Page Detec-

tion. The category entry page leads to index pages or nested index pages. An index page

is a structured page inside the website that lets the customer search, filter and select

the product that she wants to purchase. The Index Navigation Detector discovers the

pagination structure inside an index or a nested index and finally, a classifier is trained

to detect pages of a given product. The category that we assign to the crawled pages is

inferred considering multiple steps: the keywords used to find the Web site are category

specific, the entry page is category specific, the features that we adopt to recognize the

target pages are specific to the category. The category is automatically assigned to the

target pages based on the category of the crawling step. In the rest of this section, we

provide further details of the Entry Page Discovery and the Index Page Detection.

Entry Page Discovery To discover the entry page of a given category, we defined

three distinct strategies:

• From the home page: the first approach starts from the site’s home page and

uses the Entry Page Classifier to detect links to the entry page of a given category.

For that, it uses as features words in the anchor texts. In this strategy we crawl the

website from the home page and we score candidate entry pages as the product of

the score returned by the Entry Page Classifier on the anchor text of each crawled

link.

• From the target pages: The second approach follows the intuition that often

in the product page we have references to the category that the product belongs

to. We use the confidence score from the Entry Page Classifier to score the links

of the given page. This is repeated for every candidate target page and the final

score is the average score obtained from each page.

• By search: The last approach uses a search engine to directly find the entry page.

We search within the website using the category name as query terms. We score

the candidate results by considering the ranking of the search engine.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 90

The three strategies return independent scores, and Dexter considers the webpage that

gets the best score from all three scores using a harmonic mean formulation.

Index Page To recognize generic index pages, we make the assumption that the

anchor text that points to product pages have some regularity. Under this assumption,

we trained several classifiers, one for each category, using as features the words in the

anchor text of the link that points to the target pages. Since index pages usually contain

group of links to product pages, to improve classification accuracy, we group links and

then score the groups as the average score of the links that compose the group. To

group links, we make the observation that regions in the index pages that points to

target pages have the same layout and presentation properties. This motivates the

usage of link collections [67], a group of links grouped by an extraction rule (XPath),

like lists. The same technique is applied to recognize a nested index structure. We

recognize a nested index that points to multiple index pages by scoring each page as

index page. We empirically observed that a complex nested structure is unlikely and

that most of the cases are managed by a two level structure. We say that a page is an

index page if the average score is greater than a given threshold that we set empirically.

6.4 Features for Specification Detection

The process of automatically extracting specifications in many websites for different

categories is a challenging task. For each website, the template based HTML pages are

characterized by some local variability. This variability is related to the script used to

generate them. The script is site specific, thus to accurately extract the data, we have

to generate a specific wrapper for each website. A possible way to address this issue is to

recognize the variability in a website by using domain knowledge to recognize a specific

category, like in [9]. Dexter adopts an alternate approach, which does not require any

domain knowledge and is not specific to few categories. The detection addresses the

local variability inside the websites, recognizing product specifications with a Machine

Learning based solution. The extraction is then applied to a regular portion of the

HTML page, thus simplifying the extraction task.

Previous approaches have been proposed to detect tables/lists that consist of structured

data [68, 69]. More specifically, Wang and Hu [69] use machine learning algorithms to

detect tables with relational information, and Gupta and Sarawagi [68] proposed some

heuristics to remove useless and navigational lists. Similar to [69], we also use machine

learning techniques but our task is not to detect relational table on the Web, but to

detect specifications.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 91

avg text size #items

0
5

10
15

20

avg #links avg #images0.
0

0.
1

0.
2

0.
3

0.
4

Specifications
Non−specifications

Figure 6.5: Average number of links and images, number of items and average text
length per item for specifications and non-specifications.

Specifications can be contained in different HTML structures. But they are primarily

found within tables and lists (ul tag). We empirically verified that by manually inspect-

ing 301 specifications from a great variety of products. Among them, 62% were inside

tables whereas 31% inside lists. The remaining 7% were in miscellaneous structures

(e.g. HTML div tag). By also annotating tables and lists that are not specifications

(304 instances), we observed that some structural characteristics of specifications can be

useful as a good indicator of whether a table or list is a specification or not, independent

of product or site. To illustrate that, we present in Figure 6.5 features such as average

number of links and images, number of items and average text length per item from our

sample set containing both specifications and non-specifications. As one can see from

these numbers, specifications contain far fewer links and images than non-specifications,

and more items and smaller texts. Figure 6.6 presents concrete examples of tables and

lists that do not contain product specifications. As one can see, they present many links

and larger text size compared with the specifications presented in Figure 6.1. Other fea-

tures that we use to differentiate specifications from non-specifications include average

node depth of the items and its standard deviation, standard deviation of the text size,

overall frequency of the word “specification”, HTML type and average number of the

pattern of two upper cases followed by a number (e.g., “Weight Max 40 pounds”).

As we present in Section 6.6, Dexter not only is effective to detect specifications, but

it is also able to pinpoint them on the page because it classifies not the entire page but

the tables or lists which contain specifications. As we show in Section 6.5, this is very

helpful for the extraction of the specification’s set of attribute-value pairs from these

HTML fragments.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 92

Figure 6.6: Examples of non-specifications.

6.5 Specification Extraction

The final tasks of Dexter are: the extraction of the attribute-value pairs from the

HTML fragments provided by the generic specification detector (see Figure 6.2) and the

extraction of the keywords K to feed the search algorithm.

According to [70], designing an automated procedure to extract Web data remains chal-

lenging due to its large volume and variety. To achieve high accurate performance,

existing tools [71–73] always ask human experts to design the extraction pattern or

prepare labeled data for training, which are labor-intensive. Other platforms such as

RoadRunner [74] avoid human engagement by learning patterns from unlabeled exam-

ples automatically. However, they suffer in poor resilience by trading off the performance

against the power of automation. In our context, we can do better because the data

to extract is no longer the raw data on the web, but some “clean” HTML fragments

Chapter 6. Discovery and Extraction of Product Specifications on the Web 93

supplied by our generic specification detector. In other words, the extraction task is

simplified by our first-phase processing. We adopted other techniques [74] for our task

but we obtained poor performance. Therefore, instead of using an existing automatic

wrapper generation system, we implemented two different wrapper strategies: the first

completely unsupervised that exploits the regularity of the specification structure and

the second that uses automatic annotations to generate the wrapper.

The first strategy is based on the observation that the structure of these fragments

containing the specifications are very homogeneous. By inspecting these tables and

lists, we came up with the following heuristic for the extraction. For HTML tables, we

first assume each attribute-value pair of the specification is contained in a table row

tag (tr). Subsequently, we parse the DOM subtree, in which tr is the parent node, and

extracts the text nodes in this subtree. The first text node is considered as attribute

and the remaining ones as concatenated values. With respect to HTML lists (ul), we

consider that each item in the list (li) contains an attribute-value pair, and the token

that separates the attribute from the value is the colon character. In addition to its

simplicity, this wrapper is domain-independent and does not require any training. We

show in Section 6.6 that it obtains very high values of recall and precision over a set of

heterogeneous sites with specifications.

The second strategy is based on the technique proposed by [65]. Dalvi et al. defined

an approach for inferring extraction patterns by annotations generated by automatic

but noisy annotators. For our purpose, we train two simple annotators considering the

attribute-values pairs from the extracted websites. The first annotator annotates nodes

in an HTML fragment if there is a perfect match between the string contained in the

fragment with one of the values in the training, the second annotator is similar to the

previous one but it is trained to extract only the attribute names. Notice that our

implementation infers two extraction rules, one for all the values and the other for all

the attribute names published in the specifications. A straightforward implementation

would be to infer an extraction rule for each attribute in the specifications. As observed

by [75], the attributes published by multiple websites of the same domain are skewed,

in fact 86% of the attributes are published only by a small percentage of the sources.

Adopting a per attribute inference would lead to successfully extracting only overlapping

attributes that are just a fraction of the total number of published attributes.

Notice that while the previous heuristic is completely domain independent, the technique

based on annotators is domain dependent. [65] requires training related to a specific

category and an a-priori distribution to improve the generation of the extraction rule.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 94

Extraction of Keywords A similar technique to the previous specification extrac-

tion by annotators is adopted to incrementally extract product keys. From an initial

seed set of websites S, we manually define the extraction rules to extract product keys

K. From K we define an annotator that annotates nodes that publish information that

match any keyword kj in K. For each new website the system infers a new extraction

rule and extracts new product keys that are added to the initial seed set K. The wrapper

generation adopts the technique proposed by [65]. These products keys are then used

for querying the search engine and discovering new product websites.

We observe that even with an accurate wrapper generation system, the noise, iteration

after iteration, can affect the quality of the generated K. To address this issue we follow

the intuition that keywords extracted by multiple websites are more likely to be relevant

keywords. We provide a ranking of the keywords and we set a threshold τ to select only

the keywords that are extracted by multiple websites.

Each keyword ki ∈ K is scored following this formulation:

sKey(ki, S) =
∑
sj∈S

key(ki, sj) (6.7)

The key function is a binary function that scores a key ki with 1 if and only if ki is

extracted from sj .

Keywords are considered for search only if sKey(ki, S) > τ .

6.6 Experiments

In this section, we initially assess the site discovery and crawling, then the specification

detection and extraction, and we conclude the section with a summary of the evaluation.

6.6.1 Product sites Discovery and Crawling

Data Collection and Description. We discovered and collected 935k pages from

2, 719 online shopping websites related to 5 categories (camera, notebook, headphone,

tv, monitor). The corpus was collected running our pipeline with different configurations

from an initial set of 10 well-known products websites. We manually wrote the wrappers

to extract the product keys K and the set of attribute-value pairs from the specifications

for the initial seed set. We ran the pipeline several times with different configurations:

we considered all ranking strategies (backlinks only, search only, union and intersection)

and different setup of I, K and S. We used the Bing Search API to search new product

Chapter 6. Discovery and Extraction of Product Specifications on the Web 95

websites with a limit of 250 results for each query and a public API3 to find backlinks

from known relevant websites, here also with a limit of 250 backlinks per website.

cat. # sites # pages

camera 1,162 248k
headphone 454 141k
monitor 997 171k
notebook 593 241k
tv 882 133k

all 2,719 935k

Table 6.1: Number of sites and pages
per category in the dataset

cat. % pages

1 71%
2 15%
3 7%
4 4%
5 3%

Table 6.2: Percentage of web-
sites with multiple categories

Overall, we discovered 152.539 websites. Over those sites, we ran our home page classifier

to detect product sites, resulting in 19, 673 detected sites. We then crawled these sites

and manually checked the candidate target pages of 2, 719 websites. These sites were

used as gold data G for evaluating the site discovery strategies.

For each website on average we have collected 343 product pages for a total of 935k

pages. The biggest websites contain more than 40k pages while the smallest websites

have 5 product pages. We show: in Table 6.1 the number of sites per category and in

Table 6.2 the percentage of sites with the number of categories. Only 3% of the websites

covers all the categories, while the majority of 70% are related to a single category.

Camera is the most frequent category with 1, 162 websites while headphone is the least

frequent with 454 websites. The number of pages is very uneven across sites, in fact,

popular websites provide a huge catalogue with many products. The 2, 719 websites is

collected from 4, 088 websites/categories.

Manual Effort and Tuning. The manual effort required to trigger the complete

pipeline was limited. For the initial seed set of 10 websites, we manually wrote wrappers

and crawlers to collect the pages and extract specifications for a given category. For

each category in those websites we also found manually the Entry Page related to the

category. For the Discovery of new websites we set the minimal redundancy of K to 4,

we also trained the Home Page classifier with a manually labeled list of 50 relevant and

50 non relevant websites. For the Insite Crawling we trained two Classifiers to discover

of the Target Pages (TP) and Entry Pages (EP). The training was limited to the initial

seed set, we trained TP considering the anchor text that pointed to the target pages

collected from the initial seed set, and EP using the anchor text that pointed to the

3Link Metrics from apiwiki.moz.com

apiwiki.moz.com

Chapter 6. Discovery and Extraction of Product Specifications on the Web 96

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P

K

BL

Search

Union

Intersection

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P

K

BL

Search

Union

Intersection

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P

K

BL

Search

Union

Intersection

Figure 6.7: Precision of the ranking algorithms, I = 1: fixed |S| = 50 and variable
K, (Left) No filter, (Middle) HPF, (Right) ICF.

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P

|S|

BL
Search
Union

Intersection

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P

|S|

BL
Search
Union

Intersection

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50 60 70 80 90 100

P

|S|

BL
Search
Union

Intersection

Figure 6.8: Precision of the ranking algorithms, I = 1: fixed K = 20 and a variable
|S|, (Left) No filter, (Middle) HPF, (Right) ICF.

entry pages from the root of the website. For the specification extraction we trained a

classifier based on the features from 37 websites in G.

Strategies. To assess the discovery of new product websites, we evaluated the ranking

strategies considering different parameters: the top websites returned from the ranking

K, the size of the initial seed set |S|, the quality control filters and the number of

iterations I for which the pipeline is executed. The quality control filters are based on

the home page classifier, Home Page Filter (HPF), which discards evaluation websites

that are not recognized by the classifier trained on the home pages of online shopping

websites, and on the In-site Crawling Filter (ICF), which discards websites where the

crawling returned no product specification pages.

For this evaluation, we take an initial seed set of websites S from our golden set G,

from S our system extracts K and computes different rankings of new websites based on

different ranking strategies. It then retrieves the top K sites in the ranking and passes

them to the filters. The websites that successfully pass the filters are then considered

relevant sites and are added to the initial seed set S. We score the precision considering

the intersection between the updated S with our golden set G.

Rankings Results. In Figures 6.7 and 6.8 (Left), we evaluate the ranking strategies

when we increase the top K (with a fixed S = 50) and the size of the seed set S (with a

Chapter 6. Discovery and Extraction of Product Specifications on the Web 97

fixed K = 20). For this experiment, I = 1 (number of iterations) and no filter is applied

to increase the precision. Overall, increasing K reduces the precision of all the ranking

strategies: the Search Only strategy is slightly more resilient. Intersection achieves the

best quality obtaining almost a 0.68 in precision when K = 10; the precision drops

to 0.40 when K = 100. Increasing the seed set improves the quality of the ranking

strategies: also in this case intersection achieves the best scores, precision goes from

0.41 to 0.61. The quality of the search-only strategy is not affected by the size of seed

set. Explanations are (1) we have to consider also the number of product keys we used

to search new sites (the average number of pages per site is 343) (2) we expect that the

top shopping websites (amazon, bestbuy etc) are easily ranked even with few product

keys. From Figure 6.7 (Left), we can also observe that the quality of the combined

ranking strategies is affected by the quality of the single ranking strategies: the quality

of Intersection drops because the quality of the Backlinks Only drops, the quality of

Union is lower than the quality of Search Only because generally Backlinks Only is

lower than the Search Only. The loss in precision for the Backlinks Only ranking when

the initial seed set is 10 is caused by the presence of many non popular websites.

Filters Results. The previous ranking results were obtained without any filter. But

before discussing how our filters affect the ranking results, we present an evaluation of

the quality of our filters. The biggest challenge in this evaluation is to feasibly make

an estimation of the overall recall. To craft a golden set a manual effort is required but

the number of relevant websites is just a small fraction of all the non relevant websites

(not conditioned by a ranking strategy), making the manual evaluation difficult. To

design an evaluation to estimate the recall, we randomly collected 1, 000 websites from

the list of all the websites that are discovered from all the combination of our techniques.

We then applied our HPF to discover 145 candidate websites, and our ICF, selecting

40 relevant websites among this smaller filtered set. On these 40 candidate results, we

manually checked the quality and estimated the precision for HPF.ICF. To estimate the

recall, we further execute the ICF for a random set of 145 websites chosen from the

initial 1, 000 websites that are discarded by the HPF. For these websites the ICF returns

only 20 websites and manually checking the quality only 5 were relevant. To complete

the evaluation, we manually checked the quality of 50 websites from the ones discarded

by HPF and ICF, and for those accepted by HPC and discarded by ICF (Table 6.3).

From Table 6.3 we can finally estimate the overall P and R of the filters algorithms over

a random set of 1000 websites in Table 6.4.

We observe from Table 6.4 that a combination of the two filters HPF and ICF leads to

a reasonable solution with P = 0.87. The loss in recall is related to multiple factors:

non-english websites, index pages with a small list of target pages, dynamic navigation

Chapter 6. Discovery and Extraction of Product Specifications on the Web 98

HPF
yes no

ICF
yes 35/40 5/20
no 12.6/105 0/125

Table 6.3: # Relevant websites / #
non relevant websites, for the HPF and

ICF.

P R

HPF 0.33 0.62
ICF 0.41 0.84

HPF.ICF 0.87 0.45

Table 6.4: Estimated P and R of
HPF and ICF.

inside the website, non representative anchor text for links that lead to target pages

or to the category entry page. Notice that the obtained results are from a randomly

selected 1000 websites, thus the ratio of relevant websites to non relevant websites is not

even. Hence, in the next evaluation we consider the effect of the filters on the top K

websites returned by the ranking strategies.

In Figures 6.7 and 6.8 (Middle, Right), we also show the impact of our filtering techniques

to the ranking strategies, when I = 1. In Figures 6.7 and 6.8 (Middle) we can observe

that all the ranking strategies are positively affected by the HPF. Overall we have a gain

of 0.2 in precision. The strategy that achieves the best boost is Backlinks Only with

a gain of 0.3 in precision, when we have a seed set between 70 − 90 sites. This result

is confirmed in Figures 6.7 and 6.8 (Right) where the HPF is combined with the ICF.

The precision of Backlinks Only is higher than 0.9 with seed set higher than 60 sites,

whereas Search Only achieves only 0.82 in precision. A plausible explanation for that is

that if we search for new websites using product keys, we are likely to find websites that

provide pages that publish some information about the products with these keys. But it

is not guaranteed that these new websites also publish product specifications, e.g., price

comparator and review websites. Overall the HPF+ICF combined with the Intersection

ranking achieves the best scores, obtaining a precision of 0.95 for K ranging from 10 to

90, and for a seed set greater than 20.

Iterations Results. Figures 6.9 and 6.10 show results of our ranking algorithms

running our pipeline for multiple iterations, with initial seed set to |S| = 20 and K = 10.

One may expect that when running multiple iterations the quality of the obtained sites

will drop, even as the number of obtained sites increases. However, in our evaluation

(Figure 6.9), we can observe that after a slight initial drop in the first 15 iterations,

the precision of all the algorithms is almost stable, between iterations 15 and 50. The

precision of Intersection is around 0.95 while Search Only has the worst precision, around

0.92. This result supports our statement that a complete iterative pipeline with multiple

filtering steps can be adopted to harvest product specifications from all the web. If we

consider the absolute number of relevant sites obtained from the ranking algorithms,

Chapter 6. Discovery and Extraction of Product Specifications on the Web 99

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 5 10 15 20 25 30 35 40 45 50
P

I

BL

Search

Union

Intersection

Figure 6.9: Precision with an increasing I, S = 20 and K = 10

 0

 50

 100

 150

 200

 5 10 15 20 25 30 35 40 45 50

#
 G

o
o
d
 S

it
e
s

I

BL

Search

Union

Intersection

 0

 50

 100

 150

 200

 5 10 15 20 25 30 35 40 45 50

#
 G

o
o
d
 S

it
e
s

I

BL

Search

Union

Intersection

 0

 50

 100

 150

 200

 5 10 15 20 25 30 35 40 45 50

#
 G

o
o
d
 S

it
e
s

I

BL

Search

Union

Intersection

Figure 6.10: Number of relevant websites with an increasing I, S = 20 and K = 10:
(Left) average on all domains (Middle) camera (Right) notebook

Figure 6.10 (Left) shows that Intersection and Search Only are the best approaches,

discovering overall 160 new websites after 50 iterations. Whereas, in Figure 6.10 (Left),

we provide an average value across different categories, we observe that the growth

in number of sites related to the ranking algorithm is strongly related to the searched

category. Figure 6.10 (Middle) shows that for camera category Intersection is better than

Search Only for all the 50 iterations, while Figure 6.10 (Right) for notebook category

after 20 iterations Search Only obtains more relevant websites. This is caused by a

few factors: the quality of the hubs and the presence of a clear key attribute for the

considered category.

6.6.2 Specification Detection and Extraction

Data and setup. To evaluate our specification detection (SD) and specification

extraction (SE) steps, we consider a subset of 37 websites from G (30 random websites

and 7 well known shopping websites). For each website, we manually crafted wrappers

to extract the specifications and their attribute name/value pairs. To train the SD, we

take at most 50 pages from each website and from each category (some websites have

fewer pages). The positive examples are the specifications extracted by the wrapper and

Chapter 6. Discovery and Extraction of Product Specifications on the Web 100

the negative examples are the tables/lists not considered relevant by the site wrapper.

Since in this context, the number of negative examples is overwhelmingly higher than

the positive ones, and this can affect the classification performance [76], we restricted

the number of negative examples to be the same as the number of positive.

We evaluate the SD and SE in two different scenarios: 1) across sites and same category

and 2) across sites and across categories. For the testing we adopt a leave-one-outside

approach. More specifically: (1) we train a classifier for each website considering all

the features from the other websites of the same category; and (2) we train the same

classifier considering also features from different categories.

For Specification Extraction, we consider our two alternative solutions: one [65] based

on wrapper inference from noisy annotations (WI) and one that follows the heuristic of

the table structure (SE|SD).

Features P R P (table) R (table)

Our 0.84 0.90 0.88 0.92
Wang-Hu 0.66 0.78 0.79 0.94

Both 0.87 0.91 0.92 0.94

Table 6.5: Precision and recall for the Specification Detection

Results. Table 6.5 compares precision and recall of a classifier trained with our

features and the features defined in [69, 77] for specification detection. It also shows the

average precision and recall obtained on our dataset. Our features are more robust to

non-table specifications and have a better precision with a small loss in recall for only

table specifications. Combining all the features from both approaches increases slightly

the average precision by 0.03 and recall by 0.01, the increase is mostly for tables where

the combination of our features achieves a 0.92 in precision and 0.94 in recall.

Table 6.6 shows the average precision and recall obtained by all approaches on the 37

sites and, for the sake of space, we present the individual results of only 10 of them,

focusing our discussion on those cases where our approach (SE|SD) achieves the worst

results. Table 6.6 compares our wrapper conditioned on a perfect SD’s output (SE|SD*)

i.e., we calculated the performance of the wrapper in isolation, the baseline WI, the

quality of the annotations (An.), the wrapper inference conditioned on a perfect SD’s

output (WI|SD*) and a hybrid approach (WI+(SE|SD)) that chooses between WI and

SE|SD when a quality check is passed.

Overall, our approach (SE|SD) obtained very high values of recall and precision over

most of the sites (average precision equals to 0.80 and recall 0.90) and the results are

Chapter 6. Discovery and Extraction of Product Specifications on the Web 101

SE|SD SE|SD* WI An. WI|SD* An.|SD* WI+SE|SD
website P R P R P R P R P R P R P R
shop.lenovo 0.81 0.87 0.87 0.87 1.00 0.87 0.24 0.22 1.00 0.87 0.24 0.22 0.81 0.87
uk.hardware 0.83 0.76 0.83 1.00 0.96 0.82 0.46 0.33 0.95 0.79 0.68 0.23 0.96 0.82
abt 0.46 1.00 1.00 1.00 0.99 1.00 0.30 0.57 1.00 1.00 1.00 0.48 0.99 1.00
alibaba 0.35 0.75 0.90 0.90 0.07 0.07 0.10 0.05 0.99 1.00 0.48 0.05 0.35 0.75
bhphotovideo 0.96 0.78 1.00 1.00 0.97 1.00 0.49 0.43 0.93 1.00 0.99 0.64 0.97 1.00
buzzillions 0.73 1.00 0.95 1.00 0.86 1.00 0.24 0.42 0.92 1.00 0.82 0.32 0.86 1.00
cyberguys 0.66 0.99 1.00 0.99 0.99 0.96 0.49 0.15 0.99 0.96 0.89 0.07 0.99 0.96
netplus 0.60 0.96 0.80 0.96 0.99 1.00 0.44 0.48 0.98 1.00 0.87 0.45 0.99 1.00
newegg 0.92 0.54 1.00 1.00 0.92 1.00 0.29 0.41 0.92 1.00 0.74 0.38 0.92 1.00
pcrichard 0.00 0.00 0.00 0.00 1.00 1.00 0.17 0.14 1.00 1.00 1.00 0.06 1.00 1.00
. .
Average 0.80 0.90 0.95 0.95 0.85 0.85 0.38 0.39 0.92 0.86 0.88 0.32 0.92 0.95

Table 6.6: Results for our wrapper and the baselines on 10 websites (the most erro-
neous among the 37 sites).

comparable with WI with a loss in precision but a higher recall. The only exception

was pcrichard, in which WI obtained a perfect score while our wrapper was not able

to extract the correct results. We observed that pcrichard does not provide a table-like

structure (it is the only site with a dl structure) leading to mistakes for the SD and SE.

For precision, SE|SD obtained poor results in some websites: newegg, alibaba and abt.

The reason for this is that these websites provide in their specification pages other types

of information that have similar structure to specifications or might also be considered

as part of them. For instance, some of the lists misclassified by the SD on newegg

website contained information of some product features, which were not presented in

the specification of gold data for this product. Regarding recall, the loss occurs in those

websites with specifications consisting of small tables, as one can see in Figure 6.11.

In addition, when one compares SE|SD vs SE|SD*, it is clear that SD is the main reason

for the limitations of SE|SD. The number shows that SE performs an almost perfect job:

average precision and recall equals to 0.95. The loss in quality is related to sites such

as pcrichard, where no table structure is present, shop.lenovo and netplus, where the

specifications’ table rows sometimes consist of three columns, two dedicated to labels

and one to the value.

In WI, the extraction performance is determined by the quality of the set of annotations.

The annotator generally performs poorly with an average precision of 0.38 and an average

recall of 0.39. For some websites WI achieves perfect scores. The loss in precision and

recall is strongly related to the quality of the annotators [65]. Another aspect that

strongly affects the extraction error rate is the dependency of the annotations’ mistakes.

In fact, in [65] the authors adopted a random distribution to control and define an

annotator of desired quality, in our setting we observed that there is a strong dependency

on mistakes made by our annotator.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 102

Figure 6.11: Example of a specification from bhphotovideo.

We observe that inferring the specifications from the right portion of the HTML page

boosts both the annotator’s precision and the extraction quality. WI|SD* obtains a

precision of 0.92 and a recall of 0.86 compared to the previous 0.85 and 0.85 of WI.

The most common mistakes are (1) the presence of short feature lists that are not

specification but with specifications values and (2) the presence of specification values

that are used as attribute names in other websites.

The first issue is addressed by WI|SD*, so that the annotation process is applied only

on the portion of the HTML document with a specification. The second issue is ad-

dressed by taking into account both specifications values and attribute names during

training: matches on values are positive annotations while matches on attribute names

are negative annotations.

In WI+(SE|SD), we considered a hybrid approach. We observe that often WI and

SE|SD makes mistakes for different reasons and that it is possible to define a criterion

to choose one approach over another. The intuition is that we can check the quality of

the WI by comparing the attribute names and the values. As for WI, the system learns

an extraction rule to extract the values of the specifications by using an annotator that

matches the values in the test website with the values in the training websites. We adopt

the same technique to learn an extraction rule to extract the attribute names of the test

website, and compare the two extraction rules, the one for the values and the one for the

attribute names. We observe that rules that extract values and attribute names for the

specifications are likely to extract paired nodes. When it successfully learns two paired

rules, it uses WI, or uses SE|SD if no paired rules are found. WI+(SE|SD) achieves

really high precision and recall. The loss in quality is related to few websites, where WI

fails and the heuristic for SE|SD is not perfect as, e.g., alibaba.

We observe that the diversity across websites is the main issue that affects the SD quality.

This observation is confirmed by Table 6.7 where we compared the classification quality

with a per categories basis. The SD (websites) has the same configuration as Table 6.6

Chapter 6. Discovery and Extraction of Product Specifications on the Web 103

SD (websites) SD (categories)
P R P R

camera 0.88 0.92 0.94 0.96
headphone 0.86 0.89 0.89 0.97
notebook 0.81 0.88 0.98 0.98
monitor 0.83 0.87 0.89 0.98
tv 0.83 0.91 0.96 0.98

Table 6.7: Results for the SD, per site and per category

but with the average score for each category. Here we observe the classification quality

is not drastically affected by the variability across categories. The next question is: if a

classifier is trained to recognize a set of categories, can it be used on other categories?

The answer is in Table 6.7, in SD (categories) for each category, the training is made

by features from other categories and the testing on websites that contain pages related

to the considered category and at least another category, i.e., the classifier has been

trained to recognize another category for the same website. The quality is much higher:

for notebook and tv, we have almost perfect precision and recall with a small drop

only for headphone and monitor precision. This motivates our consideration that after

discovering the specifications for a subset of the categories of a website, we can use the

same classifier to recognize the specifications for new categories in the website.

6.6.3 Summary

Our results show that, with a limited human effort, Dexter:

• Efficiently discovered and crawled 935k product specification pages from 2,719

websites for five different product categories. Tables 6.1 and 6.2 present the col-

lected dataset and Figures 6.8, 6.8, 6.9 and 6.10 show that the vote-filter-iterate

principles applied to our setting can accurately discover websites with product

specifications with a high precision.

• Accurately detected product specifications. In Tables 6.5 and 6.7 our specification

detector achieves on average F = 0.87 for specifications in unknown websites

and known categories and F that goes from 0.94 to 0.98 for known websites and

unknown categories.

• Accurately extracted attribute name/value pairs. Table 6.6 shows that a hybrid

approach that combines a domain independent with a domain dependent approach

achieves a 0.92 in precision and 0.95 in recall, close to settings where the detection

is given as perfect.

Chapter 6. Discovery and Extraction of Product Specifications on the Web 104

6.7 Related Works

Webtable. Many previous approaches try to explore the Web to obtain structured

data [68, 69, 77, 78]. The WebTable project [77, 78] extracts HTML tables which contain

relational data, similar to [69], and applies techniques to search and explore these tables.

Similarly, Gupta and Sarawagi [68] propose a system that extracts and integrates tuples

from HTML lists. Both approaches target at constructing a corpus of high-quality data,

where, to recover the semantics of the data content, a huge amount of post-processing

effort such as entity resolution and schema matching [79, 80] is needed. In contrast, our

approach requires to explore product semantics (e.g., category) during the discovery of

their specifications. Namely, the specifications we obtain are automatically categorized.

Wrappers. Along with these systems, various techniques/tools have been proposed

to extract structured data from web pages. Strategies exploit the opportunity of web

page similarity in both HTML structure and natural language. Usually, a pattern (aka.

wrapper) exploring the underlying similarity is obtained and will later be applied to

other pages for further extraction. Much work [74] studies how to develop wrappers

automatically but the quality of the output, in many cases, is low and not controllable.

To control the automatic generation of wrappers, several techniques adopt: domain

knowledge [9], but a knowledge base has to be crafted for each category; redundancy [10,

11], but products are characterized by many “rare” attributes that are present only in

few sources; annotators [65], but it is hard to define a priori a set of annotators that can

annotate all the present attributes.

Source Discovery. An analysis of structured data on the web has been described

by [62]. The authors adopted a search paradigm to discover all the websites related to

several domains and extracted some attributes from them. The authors found thousands

of websites for several domains, but their evaluation was limited to few key attributes

(identifiers), making the extraction step much simpler. Many other works adopted the

search paradigm [42, 43], but the number of visited websites is one order of magnitude

lower than our approach, thus the task of maintaining a high efficiency and quality was

much simpler.

Products. Another topic related to our work is product integration and catego-

rization. Existing work follows a supervised approach, which starts from an already

well-established product database, and accomplishes integration for new product in-

stances. Nguyen et al. [81] propose a scalable approach to synthesize product offers

Chapter 6. Discovery and Extraction of Product Specifications on the Web 105

from thousand of merchants into their centralized schema. Kannan et al. [63] build a

system to perform matching from unstructured product offers to structured specifica-

tions. However, none of them has specified how to construct a high-quality product

database aforehand.

Crawling. Techniques to automatically crawl target pages have been studied [44, 45,

47]. All these techniques guide the crawler by adopting some kind of knowledge: in [44]

authors guide the focused crawler considering the semantic annotations on target pages;

in [45], authors exploit the expected structure of a forum to efficiently crawl generic

forums; in [47], the system infers relationships among instances present in a database

from parallel navigation paths. In our approach the concept of target pages and the

domain differ from previous approaches making these previous approaches not directly

applicable.

6.8 Conclusions

In this chapter we have presented Dexter, an end-to-end solution to the task of building

specification databases from web pages. For that, we propose techniques to discover,

crawl, detect and extract product specifications.

To efficiently discover product websites Dexter explores different techniques that rely

on existing search APIs, for keywords search and navigating backlinks. To collect prod-

uct pages Dexter crawls shopping websites. To detect specifications, the Specification

Detector identifies the tables and lists that contain product specifications. Finally, to

extract the attribute-value pairs from the detected specification fragments, Dexter

adopts two wrapper generation techniques, a domain independent and a domain depen-

dent approach.

A future direction is to use the specification database obtained using our technique

to perform entity and attribute matching in order to build a universal specification

database. Other interesting directions are: the selection of “good” sources to integrate

[82] and the discovery of new categories based on the navigation structure of the product

websites.

Chapter 7

Conclusions and Future Works

Data Extraction at Web scale is an open challenge. Previous proposals tried to “scale

up” the generation of wrapper by defining inference algorithms: unsupervised approaches

have a high scalability but they still require human experts to guide and fix the quality

of the output wrapper; supervised approaches have a higher accuracy, but the generation

of the training data required for inference process is expensive. Many proposals tried to

address the previous issues [8–11], but they are limited by the information adopted as

training in each system. Some proposals are domain dependent [8, 9], they are limited by

the domain knowledge required for the inference algorithm, others adopt the redundancy

on the Web to infer wrappers [10, 11], they scale over several domains, but the quality of

the output is not controllable. The Web is characterized by a great variety of websites,

thus a single automatic technique can scale the Web.

Contributions This dissertation presented a technique to address these challenges:

• we defined a Quality Model and a learning algorithm alfη that estimates the

quality of the output wrapper considering a sequence of annotations, a training

sequence.

• we defined 4 unsupervised wrapper inference techniques, some inspired by previous

proposals [5] and we adopted the Quality Model to evaluated them by defining

responders that generate training sequences based on MQ posed by alfη.

• We described an algorithm alfred inspired by an EM solution that exploits the

mutual dependency between the error rate of responders and the expected quality

of the output wrapper.

106

Chapter 7. Conclusions 107

• We designed a hybrid approach that adopts the Quality Model to evaluate the

automatic wrapper inference approach based on the combination of the previous

4 unsupervised wrapper inference techniques.

• If the expected quality is not enough, additional training sequences are created by

engaging humans enrolled from a crowdsourcing platform.

• We designed an original learning paradigm suitable for non-expert workers.

• To control the quality of the crowd, the Quality Model is combined with alfred

to enroll multiple workers on the same task and estimate at runtime the their error

rates.

• To reduce the cost of the crowd, we adopted Active Learning and we selected at

runtime the number of required workers for the task.

• We exploited the schedule of the crowd to further reduce the cost.

An extensive evaluation with real data collected from the Web with workers enrolled

from a crowdsourcing platform and synthetic workers show: we learn accurate wrappers

with F close to 1 and a low standard deviation; the hybrid approach achieves the quality

of a solution based completely on humans with just a fraction of the human supervision,

2.3 MQ and on average 0.36 workers for each attribute; alfred can effectively estimate

workers’ error rate.

Parts of this dissertation are the results of several publications in conferences and a

journal. In Chapter 3: the Active Learning with the query selection policies and the

sampling algorithm have been described in [16]; a demo with the application that we

adopted to evaluate the crowd has been described in [15]; the Quality Model and the

model with a single noisy worker has been described in [17]. In Chapter 4: the schedul-

ing of the tasks and the dynamic recruitment of workers enrolled from a crowdsourcing

platform have been described in [17]. The Chapters 4 and 6 are original and they are

under submission. Other works published during the PhD program are not described

in this dissertation: in [19] we described a sequence prediction model based on HMM

for routes prediction in a noisy environment; [18] shows technique to extract and inte-

grate triples from a knowledge base considering Data Extraction techniques; and several

workshop papers [83–85] that describes parts of the system and future works.

Future Directions The focus of this dissertation is to scale the data extraction

pipeline to the Web. But to deploy a real end to end system there are many open

challenges to address.

Chapter 7. Conclusions 108

A first issue is to organize the extracted data under a common database, this is a

well known data integration problem, but the scale of the setting and the noise of the

extracted information make this issue non trivial. Which sources do we have to consider?

In which order? How can we effectively scale over thousands of sources? These are still

open questions.

A second issue is related to the noise in different steps of the pipeline. For instance,

the noise and errors: on the websites to consider, on the selected pages to wrap, on

the extraction rules adopted to collect structured information, of the integrated data

under an uniform schema and the linkage of the instances. Considering the scale of

the Web, the solutions for these steps are characterize by a high degree of automation.

Automatic approaches are typically not accurate enough, while supervised approaches

are costly and require expert users. “Humans in the loop” is required to control the

quality; this motivates a hybrid approach deployed in all the data processing lifecycle.

With this assumption we developed our approach for generating extraction rules but a

similar approach could be deployed to address other steps of the pipeline.

A third issue is related to the motivation of the crowd. The interactions described in this

dissertation are based on a “work for pay” model, where workers are paid to complete

a defined task. There are several disadvantage on this model: (i) there is a constant

cost for each completed task, (ii) workers are motivated by the money and they are to

make a great job, (iii) there is no history of the workers’ tasks, thus it is challenging to

predict their error rates. Self-motivated workers are known to be more accurate wrt paid

workers. The possibility of defining a self-motivated community would further improve

the quality of the pipeline. Possible triggers would be: benefits of the community,

considering the extraction pipeline, if we specialize the task on some domains such as

travel, people could be motivated to share their work for the good of the community;

personal achievements, in some cases it is more cost effective to motivate workers to do

a good job by providing few prizes than paying them for their tasks; gamification, the

feedback provided by workers could be encoded inside “games” to self-motivate workers.

Another open issue is the discovery of structured data that belongs to new categories

inside a crawled website. In Chapter 6 we proposed an approach that discovers new

sources given a small seed set of websites organized in a category. An interesting problem

is to discover new categories given a small seed set of categories. The approach exploits

the fact that websites often publish data on multiple categories, thus the information

learned from the known categories could be used to discover new categories on the Web.

With this extension our approach would be able to start from a fixed seed of websites

and categories and discover on the Web new sources by increasing both coordinates,

number of sources and number of categories.

Bibliography

[1] Dayne Freitag and Nicholas Kushmerick. Boosted wrapper induction. In AAAI/I-

AAI, pages 577–583, 2000.

[2] Ion Muslea, Steven Minton, and Craig A. Knoblock. Active learning with strong

and weak views: A case study on wrapper induction. In IJCAI, pages 415–420.

Morgan Kaufmann, 2003.

[3] Georg Gottlob, Christoph Koch, Robert Baumgartner, Marcus Herzog, and Sergio

Flesca. The Lixto data extraction project - back and forth between theory and

practice. In PODS, pages 1–12. ACM, 2004. ISBN 1-58113-858-X.

[4] V. Crescenzi, G. Mecca, and P. Merialdo. RoadRunner: Towards automatic

data extraction from large web sites. In Int. Conf. on Very Large Data Bases

(VLDB’2001), Roma, Italy, September 11-14, pages 109–118, 2001.

[5] Arvind Arasu and Hector Garcia-Molina. Extracting structured data from web

pages. In SIGMOD Conference, pages 337–348. ACM, 2003. ISBN 1-58113-634-X.

[6] Yanhong Zhai and Bing Liu. Structured data extraction from the web based on

partial tree alignment. IEEE Trans. Knowl. Data Eng., 18(12):1614–1628, 2006.

[7] Pierre Senellart, Avin Mittal, Daniel Muschick, Rémi Gilleron, and Marc Tommasi.

Automatic wrapper induction from hidden-web sources with domain knowledge.

In Proceedings of the 10th ACM Workshop on Web Information and Data Man-

agement, WIDM ’08, pages 9–16, New York, NY, USA, 2008. ACM. ISBN 978-1-

60558-260-3. doi: 10.1145/1458502.1458505. URL http://doi.acm.org/10.1145/

1458502.1458505.

[8] Nilesh N. Dalvi, Ravi Kumar, and Mohamed A. Soliman. Automatic wrappers for

large scale web extraction. PVLDB, 4(4):219–230, 2011.

[9] Tim Furche, Georg Gottlob, Giovanni Grasso, Xiaonan Guo, Giorgio Orsi, Christian

Schallhart, and Cheng Wang. Diadem: Thousands of websites to a single database.

Proceedings of the VLDB Endowment, 7(14), 2014.

109

http://doi.acm.org/10.1145/1458502.1458505
http://doi.acm.org/10.1145/1458502.1458505

Bibliography 110

[10] Shui-Lung Chuang, Kevin Chen-Chuan Chang, and ChengXiang Zhai. Context-

aware wrapping: synchronized data extraction. In Proceedings of the 33rd inter-

national conference on Very large data bases, pages 699–710. VLDB Endowment,

2007.

[11] Mirko Bronzi, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. Extraction

and integration of partially overlapping web sources. Proceedings of the VLDB

Endowment, 6(10):805–816, 2013.

[12] Nilesh N. Dalvi, Ashwin Machanavajjhala, and Bo Pang. An analysis of structured

data on the web. PVLDB, 5(7):680–691, 2012.

[13] Vladimir Vapnik. An overview of statistical learning theory. IEEE Transactions on

Neural Networks, 10(5):988–999, 1999.

[14] Dana Angluin. Queries revisited. Theor. Comput. Sci., 313(2):175–194, 2004.

[15] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. A framework for learning

web wrappers from the crowd. In Proceedings of the 22nd international conference

on World Wide Web, WWW ’13, pages 261–272, Republic and Canton of Geneva,

Switzerland, 2013. International World Wide Web Conferences Steering Committee.

ISBN 978-1-4503-2035-1. URL http://dl.acm.org/citation.cfm?id=2488388.

2488412.

[16] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. Alfred: Crowd assisted data

extraction. In Proceedings of the 22Nd International Conference on World Wide

Web Companion, WWW ’13 Companion, pages 297–300, Republic and Canton of

Geneva, Switzerland, 2013. International World Wide Web Conferences Steering

Committee. ISBN 978-1-4503-2038-2. URL http://dl.acm.org/citation.cfm?

id=2487788.2487927.

[17] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. Crowdsourcing large scale

wrapper inference. Distributed and Parallel Databases, 33(1):95–122, 2015. ISSN

0926-8782. doi: 10.1007/s10619-014-7163-9. URL http://dx.doi.org/10.1007/

s10619-014-7163-9.

[18] Lorenz Bühmann, Ricardo Usbeck, Axel-Cyrille Ngonga Ngomo, Muhammad

Saleem, Andreas Both, Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. Web-

scale extension of RDF knowledge bases from templated websites. In Peter

Mika, Tania Tudorache, Abraham Bernstein, Chris Welty, Craig Knoblock, Denny

Vrandečić, Paul Groth, Natasha Noy, Krzysztof Janowicz, and Carole Goble, edi-

tors, The Semantic Web – ISWC 2014, volume 8796 of Lecture Notes in Computer

http://dl.acm.org/citation.cfm?id=2488388.2488412
http://dl.acm.org/citation.cfm?id=2488388.2488412
http://dl.acm.org/citation.cfm?id=2487788.2487927
http://dl.acm.org/citation.cfm?id=2487788.2487927
http://dx.doi.org/10.1007/s10619-014-7163-9
http://dx.doi.org/10.1007/s10619-014-7163-9

Bibliography 111

Science, pages 66–81. Springer International Publishing, 2014. ISBN 978-3-319-

11963-2. doi: 10.1007/978-3-319-11964-9 5. URL http://dx.doi.org/10.1007/

978-3-319-11964-9_5.

[19] Disheng Qiu, Paolo Papotti, and Lorenzo Blanco. Future locations prediction with

uncertain data. In Hendrik Blockeel, Kristian Kersting, Siegfried Nijssen, and Filip

Železný, editors, Machine Learning and Knowledge Discovery in Databases, volume

8188 of Lecture Notes in Computer Science, pages 417–432. Springer Berlin Hei-

delberg, 2013. ISBN 978-3-642-40987-5. doi: 10.1007/978-3-642-40988-2 27. URL

http://dx.doi.org/10.1007/978-3-642-40988-2_27.

[20] Disheng Qiu, Luciano Barbosa, Xin Luna Dong, Yanyan Shen, and Divesh Srivas-

tava. Dexter: Large-scale discovery and extraction of product specifications on the

web. Technical report, 2015. URL http://cl.ly/3s182f0a2M1A/paper.pdf.

[21] Nicholas Kushmerick. Wrapper induction: Efficiency and expressiveness. Artif.

Intell., 118(1-2):15–68, 2000.

[22] Chia Hui Chang, Mohammed Kayed, Moheb R Girgis, and Khaled F Shaalan. A

survey of web information extraction systems. Knowledge and Data Engineering,

IEEE Transactions on, 18(10):1411–1428, 2006.

[23] Tim Furche, Georg Gottlob, Giovanni Grasso, Christian Schallhart, and An-

drew Sellers. Oxpath: A language for scalable data extraction, automation,

and crawling on the deep web. The VLDB Journal, 22(1):47–72, 2013. ISSN

1066-8888. doi: 10.1007/s00778-012-0286-6. URL http://dx.doi.org/10.1007/

s00778-012-0286-6.

[24] Maria-Florina Balcan, Steve Hanneke, and Jennifer Wortman Vaughan. The true

sample complexity of active learning. Machine Learning, 80(2-3):111–139, 2010.

[25] Burr Settles. Active learning literature survey. Computer Sciences Technical Report

1648, University of Wisconsin–Madison, 2009.

[26] Victor S Sheng, Foster Provost, and Panagiotis G Ipeirotis. Get another label? im-

proving data quality and data mining using multiple, noisy labelers. In Proceedings

of the 14th ACM SIGKDD international conference on Knowledge discovery and

data mining, pages 614–622. ACM, 2008.

[27] Mike Mintz, Steven Bills, Rion Snow, and Dan Jurafsky. Distant supervision for

relation extraction without labeled data. In Proceedings of the Joint Conference of

the 47th Annual Meeting of the ACL and the 4th International Joint Conference on

Natural Language Processing of the AFNLP: Volume 2-Volume 2, pages 1003–1011.

Association for Computational Linguistics, 2009.

http://dx.doi.org/10.1007/978-3-319-11964-9_5
http://dx.doi.org/10.1007/978-3-319-11964-9_5
http://dx.doi.org/10.1007/978-3-642-40988-2_27
http://cl.ly/3s182f0a2M1A/paper.pdf
http://dx.doi.org/10.1007/s00778-012-0286-6
http://dx.doi.org/10.1007/s00778-012-0286-6

Bibliography 112

[28] Utku Irmak and Torsten Suel. Interactive wrapper generation with minimal user

effort. In WWW, pages 553–563. ACM, 2006. ISBN 1-59593-323-9.

[29] Ion Muslea, Steven Minton, and Craig A. Knoblock. Active learning with multiple

views. J. Artif. Intell. Res. (JAIR), 27:203–233, 2006.

[30] Michael J Franklin, Donald Kossmann, Tim Kraska, Sukriti Ramesh, and Reynold

Xin. Crowddb: answering queries with crowdsourcing. In Proceedings of the 2011

ACM SIGMOD International Conference on Management of data, pages 61–72.

ACM, 2011.

[31] Aditya Ganesh Parameswaran, Hyunjung Park, Hector Garcia-Molina, Neoklis

Polyzotis, and Jennifer Widom. Deco: declarative crowdsourcing. In Proceedings of

the 21st ACM international conference on Information and knowledge management,

pages 1203–1212. ACM, 2012.

[32] Chen Jason Zhang, Lei Chen, HV Jagadish, and Chen Caleb Cao. Reducing uncer-

tainty of schema matching via crowdsourcing. Proceedings of the VLDB Endowment,

6(9):757–768, 2013.

[33] Robert McCann, Warren Shen, and AnHai Doan. Matching schemas in online

communities: A web 2.0 approach. In Data Engineering, 2008. ICDE 2008. IEEE

24th International Conference on, pages 110–119. IEEE, 2008.

[34] Norman W Paton and Alvaro AA Fernandes. Crowdsourcing feedback for pay-as-

you-go data integration. DBCrowd 2013, page 32, 2013.

[35] Jiannan Wang, Tim Kraska, Michael J Franklin, and Jianhua Feng. Crowder:

Crowdsourcing entity resolution. Proceedings of the VLDB Endowment, 5(11):1483–

1494, 2012.

[36] Gianluca Demartini, Djellel Eddine Difallah, and Philippe Cudré-Mauroux. Large-

scale linked data integration using probabilistic reasoning and crowdsourcing. The

VLDB Journal, 22(5):665–687, 2013.

[37] Chaitanya Gokhale, Sanjib Das, AnHai Doan, Jeffrey F Naughton, Narasimhan

Rampalli, Jude Shavlik, and Xiaojin Zhu. Corleone: Hands-off crowdsourcing for

entity matching. In Proceedings of the 2014 ACM SIGMOD international conference

on Management of data, pages 601–612. ACM, 2014.

[38] Jiannan Wang, Guoliang Li, Tim Kraska, Michael J Franklin, and Jianhua Feng.

Leveraging transitive relations for crowdsourced joins. In Proceedings of the 2013

ACM SIGMOD International Conference on Management of Data, pages 229–240.

ACM, 2013.

Bibliography 113

[39] Susan B Davidson, Sanjeev Khanna, Tova Milo, and Sudeepa Roy. Using the crowd

for top-k and group-by queries. In Proceedings of the 16th International Conference

on Database Theory, pages 225–236. ACM, 2013.

[40] Aditya G Parameswaran, Hector Garcia-Molina, Hyunjung Park, Neoklis Polyzotis,

Aditya Ramesh, and Jennifer Widom. Crowdscreen: Algorithms for filtering data

with humans. In Proceedings of the 2012 ACM SIGMOD International Conference

on Management of Data, pages 361–372. ACM, 2012.

[41] Lorenzo Blanco, Nilesh Dalvi, and Ashwin Machanavajjhala. Highly efficient al-

gorithms for structural clustering of large websites. In Proceedings of the 20th

international conference on World wide web, pages 437–446. ACM, 2011.

[42] Lorenzo Blanco, Valter Crescenzi, Paolo Merialdo, and Paolo Papotti. Supporting

the automatic construction of entity aware search engines. In Proceedings of the

10th ACM Workshop on Web Information and Data Management, WIDM ’08, pages

149–156, New York, NY, USA, 2008. ACM. ISBN 978-1-60558-260-3. doi: 10.1145/

1458502.1458526. URL http://doi.acm.org/10.1145/1458502.1458526.

[43] Oren Etzioni, Michael Cafarella, Doug Downey, Stanley Kok, Ana-Maria Popescu,

Tal Shaked, Stephen Soderland, Daniel S. Weld, and Alexander Yates. Web-scale

information extraction in knowitall: (preliminary results). In WWW, pages 100–

110, 2004. ISBN 1-58113-844-X. doi: 10.1145/988672.988687. URL http://doi.

acm.org/10.1145/988672.988687.

[44] Robert Meusel, Peter Mika, and Roi Blanco. Focused crawling for structured data.

In Proceedings of the 23rd ACM International Conference on Conference on Infor-

mation and Knowledge Management, CIKM ’14, pages 1039–1048, New York, NY,

USA, 2014. ACM. ISBN 978-1-4503-2598-1. doi: 10.1145/2661829.2661902. URL

http://doi.acm.org/10.1145/2661829.2661902.

[45] Jingtian Jiang, Xinying Song, Nenghai Yu, and Chin-Yew Lin. Focus: learning to

crawl web forums. Knowledge and Data Engineering, IEEE Transactions on, 25(6):

1293–1306, 2013.

[46] Lorenzo Blanco, Valter Crescenzi, and Paolo Merialdo. Efficiently locating collec-

tions of web pages to wrap. In In WEBIST, 2005.

[47] Tim Weninger, Thomas J. Johnston, and Jiawei Han. The parallel path framework

for entity discovery on the web. ACM Trans. Web, 7(3):16:1–16:29, September 2013.

ISSN 1559-1131. doi: 10.1145/2516633.2516638. URL http://doi.acm.org/10.

1145/2516633.2516638.

http://doi.acm.org/10.1145/1458502.1458526
http://doi.acm.org/10.1145/988672.988687
http://doi.acm.org/10.1145/988672.988687
http://doi.acm.org/10.1145/2661829.2661902
http://doi.acm.org/10.1145/2516633.2516638
http://doi.acm.org/10.1145/2516633.2516638

Bibliography 114

[48] Dana Angluin and Philip Laird. Learning from noisy examples. Mach. Learn., 2

(4):343–370, April 1988. ISSN 0885-6125. doi: 10.1023/A:1022873112823. URL

http://dx.doi.org/10.1023/A:1022873112823.

[49] Qiang Liu, Alexander T. Ihler, and Mark Steyvers. Scoring work-

ers in crowdsourcing: How many control questions are enough? In

Advances in Neural Information Processing Systems 26: 27th Annual

Conference on Neural Information Processing Systems 2013. Proceed-

ings of a meeting held December 5-8, 2013, Lake Tahoe, Nevada, United

States., pages 1914–1922, 2013. URL http://papers.nips.cc/paper/

4889-scoring-workers-in-crowdsourcing-how-many-control-questions-are-enough.

[50] Michael D Lee, Mark Steyvers, Mindy De Young, and Brent Miller. Inferring

expertise in knowledge and prediction ranking tasks. Topics in cognitive science, 4

(1):151–163, 2012.

[51] David R. Karger, Sewoong Oh, and Devavrat Shah. Iterative learning for reliable

crowdsourcing systems. In John Shawe-Taylor, Richard S. Zemel, Peter L. Bartlett,

Fernando C. N. Pereira, and Kilian Q. Weinberger, editors, Advances in Neural

Information Processing Systems 24: 25th Annual Conference on Neural Informa-

tion Processing Systems 2011. Proceedings of a meeting held 12-14 December 2011,

Granada, Spain., pages 1953–1961, 2011. URL http://papers.nips.cc/paper/

4396-iterative-learning-for-reliable-crowdsourcing-systems.

[52] Adam Marcus, David R. Karger, Samuel Madden, Rob Miller, and Sewoong Oh.

Counting with the crowd. PVLDB, 6(2):109–120, 2012. URL http://www.vldb.

org/pvldb/vol6/p109-marcus.pdf.

[53] Panagiotis G. Ipeirotis. Analyzing the amazon mechanical turk marketplace. XRDS,

17(2):16–21, December 2010. ISSN 1528-4972. doi: 10.1145/1869086.1869094. URL

http://doi.acm.org/10.1145/1869086.1869094.

[54] Qiang Hao, Rui Cai, Yanwei Pang, and Lei Zhang. From one tree to a forest: a

unified solution for structured web data extraction. In Wei-Ying Ma, Jian-Yun Nie,

Ricardo A. Baeza-Yates, Tat-Seng Chua, and W. Bruce Croft, editors, Proceeding

of the 34th International ACM SIGIR Conference on Research and Development in

Information Retrieval, SIGIR 2011, Beijing, China, July 25-29, 2011, pages 775–

784. ACM, 2011. doi: 10.1145/2009916.2010020. URL http://doi.acm.org/10.

1145/2009916.2010020.

[55] Xin Luna Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko Horn, Kevin Murphy,

Shaohua Sun, and Wei Zhang. From data fusion to knowledge fusion. Proc. VLDB

http://dx.doi.org/10.1023/A:1022873112823
http://papers.nips.cc/paper/4889-scoring-workers-in-crowdsourcing-how-many-control-questions-are-enough
http://papers.nips.cc/paper/4889-scoring-workers-in-crowdsourcing-how-many-control-questions-are-enough
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems
http://papers.nips.cc/paper/4396-iterative-learning-for-reliable-crowdsourcing-systems
http://www.vldb.org/pvldb/vol6/p109-marcus.pdf
http://www.vldb.org/pvldb/vol6/p109-marcus.pdf
http://doi.acm.org/10.1145/1869086.1869094
http://doi.acm.org/10.1145/2009916.2010020
http://doi.acm.org/10.1145/2009916.2010020

Bibliography 115

Endow., 7(10):881–892, June 2014. ISSN 2150-8097. URL http://dl.acm.org/

citation.cfm?id=2732951.2732962.

[56] AnHai Doan, Pedro Domingos, and Alon Y Halevy. Reconciling schemas of dis-

parate data sources: A machine-learning approach. In ACM Sigmod Record, vol-

ume 30, pages 509–520. ACM, 2001.

[57] Kenneth Ward Church and Patrick Hanks. Word association norms, mutual infor-

mation, and lexicography. Computational linguistics, 16(1):22–29, 1990.

[58] David A Grossman. Information retrieval: Algorithms and heuristics, volume 15.

Springer Science & Business Media, 2004.

[59] Eric Crestan and Patrick Pantel. Web-scale table census and classification. In

Proceedings of the fourth ACM international conference on Web search and data

mining, pages 545–554. ACM, 2011.

[60] Larissa R. Lautert, Marcelo M. Scheidt, and Carina F. Dorneles. Web table

taxonomy and formalization. SIGMOD Rec., 42(3):28–33, October 2013. ISSN

0163-5808. doi: 10.1145/2536669.2536674. URL http://doi.acm.org/10.1145/

2536669.2536674.

[61] M.J. Cafarella, A. Halevy, and J. Madhavan. Structured data on the web. Com-

munications of the ACM, 54(2):72–79, 2011.

[62] N. Dalvi, A. Machanavajjhala, and B. Pang. An analysis of structured data on the

web. Proceedings of the VLDB Endowment, 5(7):680–691, 2012.

[63] Anitha Kannan, Inmar E. Givoni, Rakesh Agrawal, and Ariel Fuxman. Matching

unstructured product offers to structured product specifications. In Proceedings of

the 17th ACM SIGKDD international conference on Knowledge discovery and data

mining, KDD ’11, pages 404–412, New York, NY, USA, 2011. ACM. ISBN 978-1-

4503-0813-7. doi: 10.1145/2020408.2020474. URL http://doi.acm.org/10.1145/

2020408.2020474.

[64] H. Nguyen, A. Fuxman, S. Paparizos, J. Freire, and R. Agrawal. Synthesizing

products for online catalogs. Proceedings of the VLDB Endowment, 4(7):409–418,

2011.

[65] Nilesh Dalvi, Ravi Kumar, and Mohamed Soliman. Automatic wrappers for large

scale web extraction. Proc. VLDB Endow., 4(4):219–230, January 2011. ISSN

2150-8097. URL http://dl.acm.org/citation.cfm?id=1938545.1938547.

http://dl.acm.org/citation.cfm?id=2732951.2732962
http://dl.acm.org/citation.cfm?id=2732951.2732962
http://doi.acm.org/10.1145/2536669.2536674
http://doi.acm.org/10.1145/2536669.2536674
http://doi.acm.org/10.1145/2020408.2020474
http://doi.acm.org/10.1145/2020408.2020474
http://dl.acm.org/citation.cfm?id=1938545.1938547

Bibliography 116

[66] Luciano Barbosa, Srinivas Bangalore, and Vivek Kumar Rangarajan Sridhar.

Crawling back and forth: Using back and out links to locate bilingual sites. In

IJCNLP, pages 429–437, 2011.

[67] Valter Crescenzi, Paolo Merialdo, and Paolo Missier. Clustering web pages based

on their structure. Data & Knowledge Engineering, 54(3):279–299, 2005.

[68] R. Gupta and S. Sarawagi. Answering table augmentation queries from unstructured

lists on the web. Proceedings of the VLDB Endowment, 2(1):289–300, 2009.

[69] Y. Wang and J. Hu. A machine learning based approach for table detection on

the web. In Proceedings of the 11th international conference on World Wide Web,

pages 242–250. ACM, 2002.

[70] Emilio Ferrara, Pasquale De Meo, Giacomo Fiumara, and Robert Baumgartner.

Web data extraction, applications and techniques: A survey. CoRR, abs/1207.0246,

2012.

[71] Nicholas Kushmerick. Wrapper induction: efficiency and expressiveness. Artif.

Intell., 118(1-2):15–68, April 2000. ISSN 0004-3702. doi: 10.1016/S0004-3702(99)

00100-9. URL http://dx.doi.org/10.1016/S0004-3702(99)00100-9.

[72] Arnaud Sahuguet and Fabien Azavant. Building light-weight wrappers for legacy

web data-sources using w4f. In Proceedings of the 25th International Conference

on Very Large Data Bases, VLDB ’99, pages 738–741, San Francisco, CA, USA,

1999. Morgan Kaufmann Publishers Inc. ISBN 1-55860-615-7. URL http://dl.

acm.org/citation.cfm?id=645925.671350.

[73] Stephen Soderland. Learning information extraction rules for semi-structured and

free text. Mach. Learn., 34(1-3):233–272, February 1999. ISSN 0885-6125. doi:

10.1023/A:1007562322031. URL http://dx.doi.org/10.1023/A:1007562322031.

[74] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo. Roadrunner: Towards

automatic data extraction from large web sites. In VLDB, pages 109–118, 2001.

[75] Xian Li, Xin Luna Dong, Kenneth Lyon, Weiyi Meng, and Divesh Srivastava. Truth

finding on deep web: Is the problem solved. Proceedings of the VLDB Endowment,

2013.

[76] G.M. Weiss and F.J. Provost. Learning when training data are costly: The effect

of class distribution on tree induction. J. Artif. Intell. Res. (JAIR), 19:315–354,

2003.

http://dx.doi.org/10.1016/S0004-3702(99)00100-9
http://dl.acm.org/citation.cfm?id=645925.671350
http://dl.acm.org/citation.cfm?id=645925.671350
http://dx.doi.org/10.1023/A:1007562322031

Bibliography 117

[77] Michael J. Cafarella, Alon Y. Halevy, Daisy Zhe Wang, Eugene Wu, and Yang

Zhang. Webtables: exploring the power of tables on the web. PVLDB, 1(1):538–

549, 2008.

[78] Michael J. Cafarella, Alon Y. Halevy, Yang Zhang, Daisy Zhe Wang, and Eugene

Wu. Uncovering the relational web. In WebDB, 2008.

[79] Anish Das Sarma, Lujun Fang, Nitin Gupta, Alon Halevy, Hongrae Lee, Fei Wu,

Reynold Xin, and Cong Yu. Finding related tables. In Proceedings of the 2012 ACM

SIGMOD International Conference on Management of Data, SIGMOD ’12, pages

817–828, New York, NY, USA, 2012. ACM. ISBN 978-1-4503-1247-9. doi: 10.1145/

2213836.2213962. URL http://doi.acm.org/10.1145/2213836.2213962.

[80] Michael J. Cafarella, Alon Y. Halevy, and Nodira Khoussainova. Data integra-

tion for the relational web. PVLDB, 2(1):1090–1101, 2009. URL http://dblp.

uni-trier.de/db/journals/pvldb/pvldb2.html#CafarellaHK09.

[81] Hoa Nguyen, Ariel Fuxman, Stelios Paparizos, Juliana Freire, and Rakesh Agrawal.

Synthesizing products for online catalogs. Proc. VLDB Endow., 4(7):409–418, April

2011. ISSN 2150-8097. URL http://dl.acm.org/citation.cfm?id=1988776.

1988777.

[82] Xin Luna Dong, Barna Saha, and Divesh Srivastava. Less is more: selecting sources

wisely for integration. In Proceedings of the 39th international conference on Very

Large Data Bases, PVLDB’13, pages 37–48. VLDB Endowment, 2013. URL http:

//dl.acm.org/citation.cfm?id=2448936.2448938.

[83] Disheng Qiu and Lorenzo Luce. Extraction and integration of web sources with

humans and domain knowledge. In Chin-Wan Chung, Andrei Z. Broder, Kyuseok

Shim, and Torsten Suel, editors, 23rd International World Wide Web Conference,

WWW ’14, Seoul, Republic of Korea, April 7-11, 2014, Companion Volume, pages

1295–1298. ACM, 2014. doi: 10.1145/2567948.2579707. URL http://doi.acm.

org/10.1145/2567948.2579707.

[84] Valter Crescenzi, Paolo Merialdo, and Disheng Qiu. Wrapper generation super-

vised by a noisy crowd. In Reynold Cheng, Anish Das Sarma, Silviu Maniu, and

Pierre Senellart, editors, Proceedings of the First VLDB Workshop on Databases

and Crowdsourcing, DBCrowd 2013, Riva del Garda, Trento, Italy, August 26,

2013, volume 1025 of CEUR Workshop Proceedings, pages 8–13. CEUR-WS.org,

2013. URL http://ceur-ws.org/Vol-1025/research1.pdf.

[85] Rolando Creo, Valter Crescenzi, Disheng Qiu, and Paolo Merialdo. Minimizing the

costs of the training data for learning web wrappers. In Marco Brambilla, Stefano

http://doi.acm.org/10.1145/2213836.2213962
http://dblp.uni-trier.de/db/journals/pvldb/pvldb2.html#CafarellaHK09
http://dblp.uni-trier.de/db/journals/pvldb/pvldb2.html#CafarellaHK09
http://dl.acm.org/citation.cfm?id=1988776.1988777
http://dl.acm.org/citation.cfm?id=1988776.1988777
http://dl.acm.org/citation.cfm?id=2448936.2448938
http://dl.acm.org/citation.cfm?id=2448936.2448938
http://doi.acm.org/10.1145/2567948.2579707
http://doi.acm.org/10.1145/2567948.2579707
http://ceur-ws.org/Vol-1025/research1.pdf

Bibliography 118

Ceri, Tim Furche, and Georg Gottlob, editors, Proceedings of the Second Inter-

national Workshop on Searching and Integrating New Web Data Sources, Istanbul,

Turkey, August 31, 2012, volume 884 of CEUR Workshop Proceedings, pages 35–40.

CEUR-WS.org, 2012. URL http://ceur-ws.org/Vol-884/VLDS2012_p35_Creo.

pdf.

http://ceur-ws.org/Vol-884/VLDS2012_p35_Creo.pdf
http://ceur-ws.org/Vol-884/VLDS2012_p35_Creo.pdf

	Declaration of Authorship
	Abstract
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Notation
	1 Introduction
	1.1 Big Data Opportunities and Challenges
	Transportation
	Products
	For Metadata:

	1.2 Wrappers at Web Scale
	1.3 Wrapper Generation
	1.3.1 Unsupervised Approaches
	1.3.2 Supervised Approaches
	1.3.3 Automatic Annotations
	1.3.4 Open Challenges

	1.4 Crowdsourcing
	1.5 Overview and Contributions
	Overview
	Contribution

	1.6 Outline

	2 Related Work
	2.1 Wrapper Generation
	2.1.1 Supervised Wrapper Generation
	Stalker freitag2000boosted:
	Muslea et al DBLP:conf/ijcai/MusleaMK03:
	Lixto DBLP:conf/pods/GottlobKBHF04:

	2.1.2 Automatic Wrapper Generation
	RoadRunner CMM2001:
	ExAlg ExAlg:
	Zhai and Liu DBLP:journals/tkde/ZhaiL06:

	2.1.3 Scaling Wrapper Generation
	Senellart et al Senellart:2008:AWI:1458502.1458505
	Dalvi et al DBLP:journals/pvldb/DalviKS11:
	DIADEM furche2014diadem:
	Chuang et al chuang2007context:
	WEIR bronzi2013extraction:

	2.2 Learning Model and Active Learning
	2.3 Crowdsourcing for Data Management
	2.4 Discovery and Crawling

	3 Single Noisy Worker
	3.1 Overview
	3.2 Preliminaries
	3.3 Rules Generation
	3.4 Bayesian Model
	3.5 Active Learning for Wrapper Generation
	3.5.1 Asking the Right Questions
	3.5.2 Termination Condition

	3.6 Sampling
	3.7 Experiments
	3.7.1 Datasets
	3.7.2 Learning with ALF
	3.7.3 Sampling with PAGESAMPLER
	3.7.4 Modeling Real Workers
	3.7.5 alf Evaluation

	3.8 Conclusions

	4 Noisy Crowd
	4.1 Overview
	4.2 Error Rates Estimation
	4.3 Schedule
	4.4 Experiments
	4.4.1 Datasets
	4.4.2 Impact of Redundancy
	4.4.3 alfred Evaluation
	4.4.4 alfred on the Crowd

	4.5 Conclusions

	5 Automatic Responders
	5.1 Preliminaries
	5.1.1 Automatic Responder
	5.1.2 Rules Selection

	5.2 Type
	5.2.1 Types Definition
	5.2.2 Scoring with Types

	5.3 LFEQ
	5.3.1 LFEQs definition
	5.3.2 Scoring with LFEQs

	5.4 Knowledge Base
	5.4.1 Knowledge Base definition
	5.4.2 Automatic Responder with Knowledge Base
	Type Discovery
	Rules scoring

	5.5 PMI
	5.5.1 PMI intuition
	5.5.2 Automatic Responder with PMI

	5.6 Experiments
	5.6.1 Experiments outline
	5.6.2 Evaluation
	Automatic Responders
	Humans vs Automatic Responders

	5.7 Conclusions

	6 Discovery and Extraction of Product Specifications
	6.1 Overview
	6.2 Discovery
	Search
	Backlink
	Merge

	6.3 Crawling
	Entry Page Discovery
	Index Page

	6.4 Features for Specification Detection
	6.5 Specification Extraction
	Extraction of Keywords

	6.6 Experiments
	6.6.1 Product sites Discovery and Crawling
	Data Collection and Description.
	Manual Effort and Tuning.
	Strategies.
	Rankings Results.
	Filters Results.
	Iterations Results.

	6.6.2 Specification Detection and Extraction
	Data and setup.
	Results.

	6.6.3 Summary

	6.7 Related Works
	Webtable.
	Wrappers.
	Source Discovery.
	Products.
	Crawling.

	6.8 Conclusions

	7 Conclusions and Future Works
	Contributions
	Future Directions

	Bibliography

