
i

i

“main” — 2009/2/23 — 18:41 — page i — #1
i

i

i

i

i

i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Small Screens and Large Graphs:
Area-Efficient Drawings of

Planar Combinatorial Structures

Fabrizio Frati

i

i

“main” — 2009/2/23 — 18:41 — page ii — #2
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page iii — #3
i

i

i

i

i

i

Small Screens and Large Graphs: Area-Efficient Drawings of
Planar Combinatorial Structures

A thesis presented by
Fabrizio Frati

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

April 2009

i

i

“main” — 2009/2/23 — 18:41 — page iv — #4
i

i

i

i

i

i

Committee:

Prof. Giuseppe Di Battista

Reviewers:

Prof. Michael T. Goodrich
Prof. Ferran Hurtado

i

i

“main” — 2009/2/23 — 18:41 — page v — #5
i

i

i

i

i

i

-Would you bring a message to your Lord?
-As you order. What should I say to Him?
-That the Black Warrior is arrived. Only this.

a Riccardo

i

i

“main” — 2009/2/23 — 18:41 — page vi — #6
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page vii — #7
i

i

i

i

i

i

Acknowledgments

My best acknowledgments go to my advisor Giuseppe Di Battista. I owe him
what I know about graphs and algorithms, the insight that gave rise to our
results, the possibility of traveling around (for conferences, workshops, visits,
and vacations), the target of tackling harder and harder problems. But mostly
I have to thank him for the interest and fun he puts at doing research; these
are a clear answer to the question whether I will be bored of doing research in
twenty years from now.

I would like to thank Michael Kaufmann, Stephen Kobourov, and János
Pach that allowed me to collaborate with them during very pleasant and inter-
esting visit periods that I spent at the University of Tübingen, at the University
of Arizona, and at the New York University, respectively.

I would like to thank Michael Goodrich and Ferran Hurtado for carefully
reviewing this thesis.

I would like to thank all my coauthors, I learned a lot from them and I
enjoyed doing research so much also because it was with such amazing mates:
Patrizio Angelini, Carla Binucci, Ulrik Brandes, Pier Francesco Cortese, Walter
Didimo, Emilio Di Giacomo, Guido Drovandi, Cesim Erten, Alejandro Estrella-
Balderrama, Joe Fowler, Markus Geyer, Luca Grilli, Carsten Gutwenger, Seok-
Hee Hong, Katharina A. Lehmann, Giuseppe Liotta, Petra Mutzel, Maur-
izio Patrignani, Maurizio Pizzonia, Antonios Symvonis, Ioannis G. Tollis, and
Francesco Trotta.

I would like to thank all the members of our research group creating that
great atmosphere mixing friendship and collaboration that we have in our office:
Luca Cittadini, Fabrizio Martorelli, Alessandro Marzioni, Bernardo Palazzi,
Tiziana Refice, Massimo Rimondini, and Stefano Vissicchio.

Finally, I would like to thank all those I love. They are my life and hence
they are fundamental to all I did, including this thesis, and to all I will do.

vii

i

i

“main” — 2009/2/23 — 18:41 — page viii — #8
i

i

i

i

i

i

Contents

Contents viii

Introduction 1

I Planar Graphs 7

1 Graph Preliminaries and Definitions 9

1.1 Introduction . 9
1.2 Planar Drawings, Embeddings, and Graphs 11
1.3 Maximality and Connectivity 13
1.4 Classes of Planar Graphs . 14
1.5 Graph Drawing . 18

2 Straight-line, Poly-line, Convex, and Proximity Drawings of

Planar Graphs 23

2.1 Introduction . 23
2.2 Straight-line Drawings . 26
2.3 Poly-line Drawings . 35
2.4 Convex Drawings . 37
2.5 Proximity Drawings . 39
2.6 Conclusions and Open Problems 41

3 Greedy Drawings of Planar Graphs 43

3.1 Introduction . 43
3.2 Triangulated Binary Cactuses 47
3.3 Greedy Drawings of Binary Cactuses 48
3.4 Spanning a Triangulation with a Binary Cactus 57

viii

i

i

“main” — 2009/2/23 — 18:41 — page ix — #9
i

i

i

i

i

i

CONTENTS ix

3.5 Extension to Triconnected Planar Graphs 67
3.6 Conclusions and Open Problems 74

II Series-Parallel Graphs and Outerplanar Graphs 81

4 Straight-line and Poly-line Drawings of Series-Parallel Graphs 83

4.1 Introduction . 83
4.2 Lemmata on the Geometry of K2,n 88
4.3 A Lower Bound on the Area Requirements of K2,n 91
4.4 Conclusions and Open Problems 99

5 Straight-line Drawings of Outerplanar Graphs 101

5.1 Introduction . 101
5.2 Non-Outerplanar Drawings of Complete and Balanced Outer-

planar Graphs . 104
5.3 Outerplanar Drawings and Star-Shaped Drawings 113
5.4 Outerplanar Drawings of Complete and Balanced Outerplanar

Graphs . 120
5.5 Outerplanar Drawings of Outerplanar Graphs in O(n1.48) Area 127
5.6 Outerplanar Drawings of Outerplanar Graphs in O(dn log n) Area136
5.7 Conclusions and Open Problems 145

III Trees 149

6 Straight-line, Poly-line, and Orthogonal Drawings of Trees 151

6.1 Introduction . 151
6.2 Straight-Line Orthogonal Order-Preserving Drawings of Binary

Trees . 156
6.3 Straight-Line Orthogonal Drawings of Ternary Trees 161
6.4 Straight-Line Orthogonal Drawings of Complete Ternary Trees 165
6.5 Conclusions and Open Problems 168

7 Straight-line and Poly-line Upward Drawings of Directed

Trees 171

7.1 Introduction . 171
7.2 Upward Drawings of Trees . 174
7.3 Upward Drawings of Trees with Fixed Embedding 178

i

i

“main” — 2009/2/23 — 18:41 — page x — #10
i

i

i

i

i

i

x CONTENTS

7.4 Upward Drawings of Some Families of Directed Trees 182
7.5 Upward Drawings of Directed Bipartite and Outerplanar Graphs 187
7.6 Conclusions and Open Problems 192

8 Straight-line Drawings of Minimum Spanning Trees 195

8.1 Introduction . 195
8.2 MST Embeddings of Complete Binary Trees 198
8.3 MST Embeddings of Arbitrary Binary Trees 200
8.4 MST Embeddings of Complete Ternary Trees 207
8.5 MST Embeddings of Arbitrary Ternary Trees 210
8.6 Conclusions and Open Problems 218

IV Clustered Graphs 221

9 Straight-line, Poly-line, Orthogonal, and Upward Drawings

of Clustered Trees 223

9.1 Introduction . 223
9.2 Preliminaries on R-Drawings, C-Drawings, and NC-Drawings . 228
9.3 R-Drawings and C-Drawings of C-Connected C-Trees 230
9.4 R-Drawings and C-Drawings of Non-C-Connected C-Trees . . . 241
9.5 NC-Drawings of C-Connected and Non-C-Connected C-Trees . 253
9.6 Conclusions and Open Problems 257

10 C-Planarity of Embedded Flat Clustered Graphs with

Small Faces 259

10.1 Introduction . 259
10.2 Augmentations and Saturations 262
10.3 A Characterization . 267
10.4 An Efficient C-Planarity Testing Algorithm 281
10.5 Conclusions and Open Problems 290

V Publications and Bibliography 291

Other Research Activities 293

Publications 294

Bibliography 301

i

i

“main” — 2009/2/23 — 18:41 — page 1 — #11
i

i

i

i

i

i

Introduction

Graphs are the most widely used data structures to represent relationships
among objects. Maps, networks, circuits, molecules, compounds are a few ex-
amples of structures that are commonly represented by graphs. The clearest
way to express the information conveyed in a graph is to visualize it. Namely,
a drawing of a graph represents each object (in the graph terminology: ver-
tex) of the graph as a point in the plane and each relationship (in the graph
terminology: edge) between two objects as a line connecting the corresponding
points. However, not every drawing can be regarded as a good representation
of the graph. In fact, a drawing should be readable, that is, the human eye
should be able to easily identify the relationships among the objects in the
graph at the first glance to the drawing. Clearly, this is not a formal definition
of what differentiates a good drawing from a bad drawing. However, a few
topological and geometric features have been recognized and accepted as the
criteria a drawing should satisfy in order to be readable.

Planarity is probably the best characteristic a drawing can have. The
absence of intersections between the edges of the graph allows a viewer to easily
distinguish the line representing any edge and hence to immediately understand
which are the vertices connected by the edge. From a geometric perspective,
it would be preferable that edges are drawn as straight-lines, namely edges
bending and repeatedly changing direction are detrimental for the readability
of the drawing. When the straight-line requirement can not be met, it would
be still desiderable to have edges drawn as poly-lines bending only a limited
number of times.

When the size of the graph to be represented is too large in order for the
drawing to be constructed manually, there is a need for an algorithm automat-
ically constructing such a drawing. Graph Drawing deals with the design of
algorithms to automatically construct drawings of graphs. Usually a Graph
Drawing algorithm takes as an input a graph, a set of requirements the draw-

1

i

i

“main” — 2009/2/23 — 18:41 — page 2 — #12
i

i

i

i

i

i

2 CONTENTS

ing must satisfy (as being planar or having straight-line edges), and a set of
aesthetics the drawing should satisfy as much as possible. The most important
aesthetic a drawing should satisfy is probably the one of having a small area.
In fact, automatic drawings usually have to be displayed on a computer screen
of bounded size, hence they have to fit in the space available on the screen. The
study of graph drawings in small area has been first motivated by the design of
VLSI circuits and has attracted intense research efforts for almost thirty years
now.

In this thesis we deal with algorithms and bounds for drawing graphs in
small area. We mainly deal with planar graphs (Part I of the thesis), series-
parallel graphs and outerplanar graphs (Part II), trees (Part III), and clustered
graphs (Part IV), and for each of these graph classes we consider the problem
of obtaining drawings in small area under a large number of drawing conven-
tions (e.g., straight-line, poly-line, orthogonal, upward). We design several
algorithms for the construction of graph drawings in small area and we obtain
lower bounds for the area requirements of several drawing styles. The graph
classes and the drawing conventions we consider are among the most commonly
used for applications. Nevertheless, the beauty of some combinatorial, topo-
logical, and geometric problems concerning the construction of graph drawings
in small area justifies their study even when looking at them from a purely
theoretical point of view.

Part I of this thesis deals with drawings of planar graphs in small area.
In Chapter 1, we introduce some preliminaries and definitions about graphs

and their drawings.
In Chapter 2, we illustrate the state of the art on drawing planar graphs

in small area under several drawing conventions, namely straight-line, poly-
line, convex, and proximity drawings. Every planar graph admits a straight-
line drawing in quadratic area and such a bound is worst-case asymptotically
optimal, even for poly-line, orthogonal, and convex drawings. Determining the
exact area bounds for straight-line drawings of plane graphs is a long-standing
open problem, in which the gap between the best known upper bound and
the best known lower bound (the latter one is a result of this thesis) is still
quadratic in the number of vertices of the graph. Determining asymptotically
optimal area bounds for strictly-convex drawings of triconnected planar graphs
is another open problem that is attracting several research efforts.

In Chapter 3, we consider a proximity drawing standard that has recently
attracted much attention, namely greedy drawings of graphs. We show that ev-
ery triconnected planar graph admits a greedy drawing. The area requirements
of the constructed drawings is exponential in the worst case. Determining the

i

i

“main” — 2009/2/23 — 18:41 — page 3 — #13
i

i

i

i

i

i

CONTENTS 3

area requirements of greedy drawings of trees, triangulations, and triconnected
planar graphs, determining whether convex greedy drawings exist for every
triconnected planar graph, and characterizing the graphs admitting a greedy
drawing are among the main open problems in this area.

Part II of this thesis deals with drawings of subclasses of planar graphs in
small area.

In Chapter 4, we review the state of the art on drawing subclasses of planar
graphs in small area. For several important classes of planar graphs, like bipar-
tite planar graphs, four-connected planar graphs, and bounded-degree planar
graphs, the area requirements of straight-line and poly-line drawings are still
quadratic. Then, we consider series-parallel graphs, that are known to admit
subquadratic-area poly-line drawings. We prove the first super-linear lower
bound for the area requirements of poly-line drawings of series-parallel graphs.
Such a lower bound is also the best known for straight-line drawings. De-
termining asymptotically-optimal area bounds for straight-line and poly-line
drawings of series-parallel graphs are still intriguing open problems.

In Chapter 5, we show algorithms for drawing outerplanar graphs. In par-
ticular, it is known that every outerplanar graph can be drawn with poly-line
edges in sub-quadratic area. We exhibit the first sub-quadratic area upper
bound for straight-line drawings of outerplanar graphs. Algorithms achieving
better area bounds are shown for balanced outerplanar graphs and for bounded-
degree outerplanar graphs. Determining asymptotically-optimal area bounds
for straight-line and poly-line drawings of outerplanar graphs seem still to be
elusive tasks. In particular, no super-linear area lower bound and no algorithm
achieving sub-quadratic area and constant aspect ratio are known at the state
of the art.

Part III of this thesis deals with drawings of trees in small area.
In Chapter 6, we first review the state of the art on drawing trees in

small area, taking under consideration straight-line, poly-line, orthogonal, and
straight-line orthogonal drawings. Every bounded-degree tree admits straight-
line drawings and orthogonal drawings in linear area. We present algorithms for
constructing straight-line orthogonal drawings of binary and ternary trees. In
particular, we show how to construct straight-line orthogonal order-preserving
drawings of binary trees and straight-line orthogonal drawings of ternary trees
in sub-quadratic area. Whether every tree admits a linear-area straight-line
drawing, and whether every binary tree admits a linear-area straight-line or-
thogonal drawing are among the main problems in this area.

In Chapter 7, we consider the problem of constructing small-area upward
drawings of directed trees. Unlike non-directed planar graphs, upward pla-

i

i

“main” — 2009/2/23 — 18:41 — page 4 — #14
i

i

i

i

i

i

4 CONTENTS

nar directed graphs may require exponential area in any upward straight-line
drawing. On the other hand, quadratic area is a tight bound for constructing
upward poly-line drawings of upward planar directed graphs. We show that
directed trees can be drawn in optimal sub-quadratic area while exponential
area is sometimes necessary if an order of the neighbors of each node is fixed in
advance. We also extend such a lower bound to upward planar directed bipar-
tite graphs and upward planar directed outerplanar graphs. For several classes
of upward planar directed graphs, like directed balanced trees, determining the
area requirements for upward planar drawings is still an open problem.

In Chapter 8, we consider the problem of constructing drawings of minimum
spanning trees. It is known that no tree having a vertex of degree at least seven
can be realized as a minimum spanning tree, that deciding whether degree-six
trees can be realized as minimum spanning trees is a difficult problem, and that
every tree of maximum degree five can be realized as a minimum spanning tree.
However, all known algorithms for laying out degree-five minimum spanning
trees require exponential area. We show that degree-tree and degree-four trees
have polynomial-area drawings as minimum spanning trees. It is an obvious
and important open problem to determine whether drawings of degree-five
minimum spanning trees can be constructed in polynomial-area.

Part IV of this thesis deals with drawings of clustered graphs.
In Chapter 9, we consider the problem of constructing small-area drawings

of clustered trees under several drawing standards. It is known that every
clustered graph admits a straight-line c-planar drawing in which the clusters
are represented by convex polygons. However, the area requirement of such
drawings is exponential in the worst case. We show that c-connected clustered
trees admit quadratic-area straight-line c-planar drawings in which clusters are
represented by rectangles. However, we prove that exponential area is required
for c-planar straight-line drawings of non-c-connected clustered trees in which
clusters are drawn as convex polygons. Several problems concerning the area
requirements of clustered trees remain open. Among them, whether every c-
connected tree admits a straight-line order-preserving drawing in polynomial
area seems to be particularly appealing.

In Chapter 10, we consider the problem of deciding whether a clustered
graph admits a c-planar drawing. Such a problem is one of the most studied
in the recent Graph Drawing literature. Although the complexity of such a
problem remains unknown in the general case, we provide a characterization
and a linear-time testing algorithm for deciding the c-planarity of embedded
flat clustered graphs in which all faces have at most five incident vertices. Such
results are valid, more in general, if each candidate saturating edge, i.e., each

i

i

“main” — 2009/2/23 — 18:41 — page 5 — #15
i

i

i

i

i

i

CONTENTS 5

edge that can be added to the graph to make it c-connected, crosses at most one
distinct candidate saturating edge. Determining the time complexity of testing
the c-planarity of a clustered graph remains an fascinating open problem.

i

i

“main” — 2009/2/23 — 18:41 — page 6 — #16
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 7 — #17
i

i

i

i

i

i

Part I

Planar Graphs

7

i

i

“main” — 2009/2/23 — 18:41 — page 8 — #18
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 9 — #19
i

i

i

i

i

i

Chapter 1

Graph Preliminaries and

Definitions

In this chapter, we introduce some preliminaries and definitions about graphs
and their drawings. A reader who wants to assume more familiarity with the
basic concepts about graphs, algorithms, and geometry, may refer to books on
Graph Theory (e.g., [Har72, BM76, NC88, Die05]), to books on Algorithms
(e.g., [Eve79, AHU83, CLRS01, GT02]), and to books on Computational Ge-
ometry (e.g., [PS85, Ede87, dvKOS00]). The book of Di Battista, Eades,
Tamassia, and Tollis [DETT99] is usually considered as the book on Graph
Drawing. Other excellent books that specifically deal with Graph Drawing
are [KW01, NR04].

1.1 Introduction

A graph is a pair (V, E), where V is a set of vertices or nodes, and E is a
multiset of unordered pairs of vertices, called edges or arcs. A directed graph is
a pair (V, E), where V is a set of vertices or nodes, and E is a multiset of ordered
pairs of vertices, called edges or arcs. The graph obtained from a digraph G
by considering its edges without orientation is called the underlying graph of
G. In the following, unless otherwise specified, when we say “graph” we refer
to an undirected graph. The vertices u and v composing a pair e = (u, v) ∈ E
are incident to e, and edge e is incident to u and v. Two vertices are adjacent
when they are incident to the same edge, and two edges are adjacent when
they are incident to the same vertex. The end-vertices of an edge (u, v) are

9

i

i

“main” — 2009/2/23 — 18:41 — page 10 — #20
i

i

i

i

i

i

10 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

vertices u and v, which are also said to be neighbors.
A self-loop in a graph (V, E) is an edge (u, u) ∈ E. A set of multiple edges

or parallel edges in a graph (V, E) is a set of edges connecting the same two
vertices u, v ∈ V . A graph is simple when it contains no self-loops and no
multiple edges. In the following, unless otherwise specified, we always refer to
simple graphs.

The degree of a vertex is the number of edges incident to the vertex. The
degree of a graph is the maximum among the degrees of its vertices.

A cycle is a connected graph such that each vertex has degree exactly two.
A tree is a connected acyclic (i.e., not containing any cycle) graph. A path is
a tree such that each vertex has degree at most two.

A graph G′(V ′, E′) is a subgraph of a graph G(V, E) if V ′ ⊆ V and E′ ⊆ E.
A subgraph G′(V ′, E′) of a graph G(V, E) is induced by V ′ if, for every edge
(u, v) ∈ E such that u, v ∈ V ′, (u, v) ∈ E′. A graph G′(V ′, E′) is a spanning
subgraph of G(V, E) if it is a subgraph of G and V ′ = V .

A subdivision of a graph G is a graph G′ that can be obtained by replacing
each edge of G by a path of arbitrary length. The contraction of two vertices
u and v is the replacement of u and v by a single vertex w, that is adjacent to
every vertex u and v are adjacent to. A minor of a graph G is any graph that
can be obtained from G by a sequence of the following three operations:

• Removing a vertex.

• Removing an edge.

• Contracting an edge.

A drawing of a graph is a mapping of each vertex to a distinct point of the
plane and of each edge to a simple open Jordan curve between its endpoints,
i.e., the points to which the end-vertices of the edge have been mapped. It is
important to notice the difference between a graph, that is an abstract struc-
ture corresponding to a relationship among objects, and its drawing, that is a
graphical representation of the graph.

The rest of the chapter is organized as follows. In Sect. 1.2 we introduce
preliminaries and definitions about planar graphs and planar embeddings; in
Sect. 1.3 we introduce preliminaries and definitions about the maximality and
the connectivity of (planar) graphs; in Sect. 1.4 we introduce preliminaries and
definitions about subclasses of planar graphs; finally, in Sect. 1.5 we introduce
preliminaries and definitions about Graph Drawing.

i

i

“main” — 2009/2/23 — 18:41 — page 11 — #21
i

i

i

i

i

i

1.2. PLANAR DRAWINGS, EMBEDDINGS, AND GRAPHS 11

1.2 Planar Drawings, Embeddings, and Graphs

In this section we present some preliminaries and definitions about planar
graphs, planar embeddings, and planar drawings.

A drawing is planar when no two edges intersect except, possibly, at com-
mon endpoints. A planar graph is a graph admitting a planar drawing. Planar
graphs are probably the most studied class of graphs in Graph Theory, and
surely the most studied class of graphs in Graph Drawing. In fact, a planar
drawing of a graph provides extremely high readability of the combinatorial
structure of the graph [PCJ97, Pur00]. See Fig. 1.1 for a comparison between
a non-planar and a planar drawing.

(a) (b)

Figure 1.1: (a) A non-planar drawing of a graph. (b) A planar drawing of the
same graph.

A planar drawing of a graph determines a circular ordering of the edges
incident to each vertex. Two drawings of the same graph are equivalent if they
determine the same circular ordering around each vertex. A planar embedding
is an equivalence class of planar drawings. A graph is embedded when an
embedding of it has been decided. A planar drawing partitions the plane into
topologically connected regions, called faces. A vertex (an edge) is incident to a
face if the vertex (resp. the edge) belongs to the cycle delimiting the face. Two
faces are adjacent when they share an edge. The unbounded face is the outer
face (sometimes also called the external face), while the bounded faces are the
internal faces. The outer face of a graph G is denoted by f(G). A graph
together with a planar embedding and a choice for its outer face is called a
plane graph. In a plane graph, external and internal vertices are defined as the

i

i

“main” — 2009/2/23 — 18:41 — page 12 — #22
i

i

i

i

i

i

12 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

vertices incident and not incident to the outer face, respectively. Analogously,
external and internal edges are defined as the edges incident and not incident
to the outer face, respectively. Sometimes, the distinction is made between
planar embedding and plane embedding, where the former is an equivalence
class of planar drawings and the latter is a planar embedding together with
a choice for the outer face. When such a distinction is made, then a planar
embedding is more commonly referred to as a combinatorial embedding.

The dual graph G∗ of an embedded planar graph G has a vertex for each
face of G and has an edge (f, g) for each two faces f and g of G sharing an edge.
Fig. 1.2 shows an embedded planar graph and its dual graph. It is important
to notice that the dual graph of an embedded planar graph depends on the
embedding of the graph, that is, different dual graphs correspond to different
planar embeddings of the same graph. On the other hand, the dual graph of an
embedded planar graph G is independent of the choice of the outer face of G.

Figure 1.2: An embedded planar graph, whose vertices are represented by black
circles and whose edges are represented by thick lines, and its dual graph, whose
vertices are represented by white circles and whose edges are represented by
dotted lines.

Planar graphs have been nicely characterized by Kuratowski [Kur30] as
the graphs containing no subdivision of K5 and no subdivision of K3,3, and by
Wagner as the graphs containing no K5-minor and no K3,3-minor [Wag37]. The
planarity of a graph can be tested in linear time, as first shown by Hopcroft and
Tarjan in [HT74]. Linear-time algorithms for testing the planarity of a graph
are also presented, e.g., in [BL76, ET76, dR82]. The cited planarity testing
algorithms can be suitably modified in order to compute planar embeddings in

i

i

“main” — 2009/2/23 — 18:41 — page 13 — #23
i

i

i

i

i

i

1.3. MAXIMALITY AND CONNECTIVITY 13

the case the graph is found to be planar. If an embedding of a graph is fixed,
then linear time still suffices to test if the embedding is planar [Kir88].

1.3 Maximality and Connectivity

In this section we present some preliminaries and definitions about maximal
planar graphs, about the connectivity of graphs, and about the data structures
to handle the connectivity properties of a planar graph.

A plane graph is maximal (or equivalently is a triangulation) when all its
faces are delimited by cycles of three vertices. Fig. 1.3 (a) shows a maximal
plane graph. A planar graph is maximal when it can be embedded as a trian-
gulation. An algorithm for drawing planar graphs can usually assume to deal
with maximal planar graphs. In fact, any planar graph can be augmented to a
maximal planar graph by adding some dummy edges to the graph. Then the
algorithm can draw the maximal planar graph, and finally the inserted dummy
edges can be removed obtaining a drawing of the input graph. A plane graph
is internally-triangulated when all its internal faces are cycles of three vertices.
Fig. 1.3 (b) shows an internally-triangulated plane graph. A chord of a cycle
is an edge connecting two non-consecutive vertices of the cycle. A chord of a
plane graph is a chord of the cycle delimiting its outer face.

(a) (b)

Figure 1.3: (a) A drawing of a maximal plane graph. (b) A drawing of an
internally-triangulated plane graph.

A graph is connected if every pair of vertices of G is connected by a path.
A k-connected graph G is such that removing any k − 1 vertices leaves G
connected; 3-connected, 2-connected, and 1-connected graphs are also called
triconnected, biconnected, and simply connected graphs, respectively. A sepa-

i

i

“main” — 2009/2/23 — 18:41 — page 14 — #24
i

i

i

i

i

i

14 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

rating k-set is a set of k vertices whose removal disconnects the graph. Separat-
ing 1-sets and separating 2-sets are also called cutvertices and separation pairs,
respectively. Hence, a connected graph is biconnected if it has no cutvertices,
and it is triconnected if it has no separation pairs. The maximal biconnected
subgraphs of a graph are its blocks. Each edge of G falls into a single block of
G, while cutvertices are shared by different blocks.

Data structures exist to efficiently handle the decomposition of a con-
nected graph into biconnected components and the subdivision of a bicon-
nected graph into triconnected components. Such data structures are called
BC-trees and SPQR-trees, respectively. They were introduced by Harary and
Prins in [HP66], and by Di Battista and Tamassia in [DT90, DT96b, DT96a],
respectively. In the following, we present the definition of BC-trees, that will
be used throughout this thesis, while we skip the definition of SPQR-trees,
which is more involved and not strictly related to the contents of this thesis.

The block-cutvertex tree, or BC-tree, of a connected graph G is a tree with a
B-node for each block of G and a C-node for each cutvertex of G. Edges in the
BC-tree connect each B-node µ to the C-nodes associated with the cutvertices
in the block of µ.

A graph G is edge k-connected if the removal of any k − 1 edges leaves G
connected. A separating edge (sometimes also called bridge) is an edge whose
removal disconnects G.

1.4 Classes of Planar Graphs

In this section we present some preliminaries and definitions about sub-classes
of planar graphs.

A tree is a connected acyclic graph. A leaf in a tree is a node of degree
one. A caterpillar C is a tree such that the removal from C of all the leaves
and of their incident edges turns C into a path (see Fig. 1.4 (a)). A spider tree
is a tree having only one vertex of degree greater than two (see Fig. 1.4 (b)).

(a) (b)

Figure 1.4: (a) A caterpillar. (b) A spider tree.

i

i

“main” — 2009/2/23 — 18:41 — page 15 — #25
i

i

i

i

i

i

1.4. CLASSES OF PLANAR GRAPHS 15

A rooted tree is a tree with one distinguished node called root. In a rooted
tree T the root is denoted by r(T). In a rooted tree each node v at distance
(i.e., length of the shortest path) d from the root is the child of the only node
at distance d − 1 from the root v is connected to. A binary tree (a ternary
tree) is a rooted tree such that each node has at most two children (resp. three
children). Binary and ternary trees can be supposed to be rooted at any node
of degree at most two and three, respectively. Every tree of degree at most
three (at most four) can be rooted to a binary tree (resp. ternary tree). A
spine in T is a path connecting r(T) to a leaf. A double-spine in T is a path
connecting two leaves and passing through r(T). The height of a rooted tree
is the maximum number of nodes in any spine.

A complete binary tree (a complete ternary tree) is a rooted binary tree
such that each non-leaf node has exactly two children (resp. three children)
and such that each spine has the same number of nodes. Note that the height
of an n-node complete binary tree is log2(n + 1), while the one of a complete
ternary tree is log3(2n+1). A class of trees is balanced if there exists a constant
k > 0 such that the height of each n-node tree of the class is bounded by k log n.
In what follows when we say balanced tree we refer to a tree of a balanced class.
AVL trees and Fibonacci trees are balanced families of trees.

A tree is ordered if an order of the children of each node (i.e., a planar
embedding) is specified. For an ordered binary tree we talk about left and right
child. For an ordered ternary tree we talk about left, middle, and right child.
Removing a non-leaf node u from a tree disconnects the tree into connected
components. The ones containing children of u are subtrees of u. If the tree
is ordered and binary (ternary), the subtrees rooted at the left and right child
(resp. at the left, middle, and right child) of a node u are the left and the right
subtree of u (resp. the left, the middle, and the right subtree of u), respectively.
Removing a path P from a tree disconnects the tree into connected components.
The ones containing children of nodes in P are subtrees of P . If the tree is
ordered and binary (resp. ternary), then each component is a left or right
subtree (resp. a left, middle, or right subtree) of P , depending on whether the
root of such subtree is a left or right child of a node in P (resp. is a left, middle,
or right child), respectively. We denote by |T | the number of nodes in a tree T .
The subtree of a rooted tree T rooted at a vertex v is denoted by T (v). The
heaviest tree in a set of trees is the one with the greatest number of nodes.

Two binary trees are simply isomorphic if they are both empty or have
isomorphic left subtrees and isomorphic right subtrees.

An outerplanar graph is a graph that contains no K4-minor and no K2,3-
minor. However, outerplanar graphs due their name to the fact that they have

i

i

“main” — 2009/2/23 — 18:41 — page 16 — #26
i

i

i

i

i

i

16 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

the following embedding properties. An outerplane graph (see Fig. 1.5 (a))
is a plane graph such that all the vertices are incident to the outer face. An
outerplanar embedding is a planar embedding such that all the vertices are
incident to the same face. An outerplanar graph is a graph that admits an
outerplanar embedding. A maximal outerplane graph (see Fig. 1.5 (b)) is an
outerplane graph such that all its internal faces are delimited by cycles of three
vertices. A maximal outerplanar embedding is an outerplanar embedding such
that all its faces, except for the one to which all the vertices are incident, are
delimited by cycles of three vertices. A maximal outerplanar graph is a graph
that admits a maximal outerplanar embedding. Every outerplanar graph can
be augmented to maximal by adding dummy edges to it.

(a) (b)

Figure 1.5: (a) A drawing of an outerplane graph. (b) A drawing of a maximal
outerplane graph.

The dual graph of an outerplane graph G is a tree, when not considering
the vertex corresponding to the outer face of G. Hence, when dealing with out-
erplanar graphs, we talk about the dual tree of an outerplanar graph (meaning
the dual graph of an outerplane embedding of the outerplanar graph). The
nodes of the dual tree of a maximal outerplane graph G have degree at most
three. Hence the dual tree of G can be rooted to be a binary tree. In fact,
when dealing with outerplanar graphs, it is sometimes convenient to assume
that their dual trees are rooted. For this purpose, consider any maximal out-
erplanar graph G. We can select an edge (u, v) incident to the outer face of
(an outerplane embedding of) G and root the dual binary tree T of G at the
internal face f0 containing (u, v) (see Fig. 1.6). Let w be the third vertex of f0.
We call u and v poles and w central vertex of G. We also call u left vertex and
v right vertex of G. Consider a face f of G and suppose that f is composed
by edges (v1, v2), (v2, v3), and (v3, v1), in this clockwise order around f . Also,
suppose that the parent of f in T and f share edge (v1, v2) or that (f is the

i

i

“main” — 2009/2/23 — 18:41 — page 17 — #27
i

i

i

i

i

i

1.4. CLASSES OF PLANAR GRAPHS 17

root) (v1, v2) = (u, v). The face sharing with f (if any) edge (v3, v1) is the left
child of f , while the face sharing with f (if any) edge (v2, v3) is the right child
of f .

Two maximal outerplanar graphs are isomorphic if their dual trees are
isomorphic.

u v

w

f0

Figure 1.6: A drawing of an outerplanar graph and of its dual tree.

A balanced outerplanar graph is an outerplanar graph whose dual tree can
be rooted to a balanced binary tree. The height of a balanced outerplanar
graph is the height of its dual tree. A complete outerplanar graph is a balanced
outerplanar graph whose dual tree can be rooted to a complete binary tree.

A series-parallel graph is a graph that contains no K4-minor. However,
series-parallel graphs due their name to the fact that they can be inductively
constructed as follows. An edge (u, v) is a series-parallel graph with terminals
u and v. Denote by ui and vi the terminals of a series-parallel graph Gi.
Then, a series composition (see Fig. 1.7 (a)) of a sequence G1, G2, . . . , Gk of
series-parallel graphs, with k ≥ 2, constructs a series-parallel graph that has
terminals u = u1 and v = vk, that contains graphs Gi as subgraphs, and
such that vertices vi and ui+1 have been identified to be the same vertex, for
each i = 1, 2, . . . , k − 1. A parallel composition (see Fig. 1.7 (b)) of a set
G1, G2, . . . , Gk of series-parallel graphs, with k ≥ 2, constructs a series-parallel
graph that has terminals u = u1 = u2 = · · · = uk and v = v1 = v2 = · · · = vk,
that contains graphs Gi as subgraphs, and such that vertices u1, u2, · · · , uk

(vertices v1, v2, · · · , vk) have been identified to be the same vertex. A maximal
series-parallel graph is such that all its series compositions construct a graph
out of exactly two smaller series-parallel graphs G1 and G2, and such that all
its parallel compositions have a component which is the edge between the two

i

i

“main” — 2009/2/23 — 18:41 — page 18 — #28
i

i

i

i

i

i

18 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

terminals. Every series-parallel graph can be augmented to maximal by adding
dummy edges to it.

u=u1

v1=u2

vk-1=uk

vk=v

.

u=u1=u2= ... =uk

v=v1=v2= ... =vk

(a) (b)

Figure 1.7: (a) A series composition of a sequence G1, G2, . . . , Gk of series-
parallel graphs. (b) A parallel composition of a set G1, G2, . . . , Gk of series-
parallel graphs.

A bipartite graph G is such that its vertex set V can be partitioned into two
subsets V1 and V2 so that every edge of G is incident to a vertex of V1 and to a
vertex of V2. A bipartite planar graph is both bipartite and planar. A maximal
bipartite planar graph admits a planar embedding in which all its faces have
exactly four incident vertices. Every bipartite planar graph can be augmented
to maximal by adding dummy edges to it.

A Hamiltonian cycle (path) in a graph G is a simple cycle (resp. path) pass-
ing through all the vertices of G. A Hamiltonian graph is a graph containing
a Hamiltonian cycle. Every 4-connected planar graph is Hamiltonian, while
the converse is not true. Further, every biconnected outerplanar graph G has
exactly one Hamiltonian cycle, namely the one delimiting the face to which all
the vertices of G are incident in a outerplanar embedding of G.

1.5 Graph Drawing

In this section, we introduce basic concepts about Graph Drawing.
A Graph Drawing algorithm takes as an input a graph G and outputs a

nice drawing of G. What makes a drawing “nice”, is the fact that it is easily
understandable by the human eyes, that is, the fact that it is readable. In order
to construct a nice drawing of the graph, it is important the knowledge of the
class of graphs G belongs to. In fact, several graph drawing algorithms only
work for restricted classes of graphs. Moreover, the drawing should reflect the
combinatorial properties of the graph, which are mainly encoded in the class
of graphs G belongs to. It is also important to observe that the best drawing

i

i

“main” — 2009/2/23 — 18:41 — page 19 — #29
i

i

i

i

i

i

1.5. GRAPH DRAWING 19

of a graph might not exist. In fact, different individuals usually have different
perceptions of the same drawing; moreover, different domains of applications
determine different requirements for the drawings. The requirements a drawing
must satisfy in order to be admissible are generally regarded as the drawing
conventions ; the properties that a drawing should satisfy as much as possible
are generally regarded as the drawing aesthetics.

Drawing Conventions. There are several widely-studied drawing conven-
tions in the Graph Drawing literature. In the following we show a list of the
ones that are of interest for this thesis:

• Poly-line Drawings: Each edge is represented by a sequence of consecutive
segments.

• Straight-line Drawings: Each edge is represented by a segment. A straight-
line drawing is shown in Fig. 1.8 (a).

• Grid Drawings: Vertices and bends have integer coordinates.

• Orthogonal Drawings: Each edge is represented by a sequence of horizon-
tal and vertical segments. An orthogonal drawing is shown in Fig. 1.8 (b).

(a) (b)

Figure 1.8: Two planar grid drawings of the same graph. (a) A straight-line
drawing. (b) An orthogonal drawing.

• Planar Drawings: No two edges intersect.

• Convex Drawings: Planar straight-line drawings in which every face is
represented by a convex polygon.

• Upward Drawings: For directed graphs, each directed edge is represented
by a monotonically-increasing curve. For rooted (undirected) trees, the

i

i

“main” — 2009/2/23 — 18:41 — page 20 — #30
i

i

i

i

i

i

20 CHAPTER 1. GRAPH PRELIMINARIES AND DEFINITIONS

definition changes slightly. In fact, an upward drawing of a rooted tree
is such that each edge from a node to its child is represented by a
monotonically-non-decreasing curve, while a strictly-upward drawing of a
rooted tree is such that each edge from a node to its child is represented
by a monotonically-increasing curve.

• Order-Preserving Drawings: The order of the edges incident to each ver-
tex is fixed in advance.

• Visibility Representations: Each vertex u is represented by a horizontal
segment σ(u), and each edge (u, v) is represented by a vertical segment
connecting a point of σ(u) with a point of σ(v).

• Proximity Drawings: Given a definition of proximity (for example, two
points p1 and p2 can be defined to be proximate if no point lies in the
circumference having p1 and p2 as antipodal points), the proximity graph
of a set of points is the graph with a vertex for each point of the set, and
with an edge between two vertices if the corresponding points satisfy the
proximity property. Then, a proximity drawing of a graph G is a drawing
Γ of G such that the proximity graph of the set of points on which the
vertices of G are drawn in Γ coincides with G itself.

Straight-line and orthogonal drawings are special cases of poly-line draw-
ings. Straight-line drawings (which constitute a great part of the topics covered
by this thesis) are probably the most studied type of drawings, since they are
very natural and they provide high readability; references to such drawings can
be found in several graph theory books and papers.

Drawing Aesthetics. There are several widely-studied drawing aesthetics in
the Graph Drawing literature. In the following we show a list of the ones that
are of interest for topics related to this thesis:

• Area: Minimization of the area of the drawing. The bounding box B(Γ)
of a drawing Γ is the smallest rectangle with sides parallel to the axes
that covers Γ completely. We denote with b(Γ), t(Γ), l(Γ) and r(Γ) the
bottom, top, left and right side of B(Γ), respectively. The height (width)
of Γ is the height (resp. width) of B(Γ). The area of a drawing is the
area of B(Γ). Designing algorithms for constructing small area drawings
is usually regarded as a very important task. In fact, the screens on which
the graphs have to be displayed are bounded, hence the more an algorithm
constructs compact drawings, the more large are the graphs that can be

i

i

“main” — 2009/2/23 — 18:41 — page 21 — #31
i

i

i

i

i

i

1.5. GRAPH DRAWING 21

shown on a screen. Most of this thesis deals with the construction of
drawings in small area. Notice that the concept of area of a drawing
only makes sense once fixed a resolution rule, i.e., a rule that does not
allow vertices to be arbitrarily close and edges to be arbitrarily short. In
fact, without any of such rules, one could just construct arbitrarily small
drawings and enclose them in an arbitrarily small area. A good model
to ensure that the drawings satisfy such rules is the one of constructing
grid drawings in which, by definition, every two vertices have distance at
least one unit.

• Aspect Ratio: Minimization of the aspect ratio of the drawing. The aspect
ratio of a drawing is the ratio between the longest and the smallest side
of the bounding box of the drawing.

• Angular Resolution: Maximization of the smallest angle between two
edges incident to the same vertex.

• Crossings: Minimization of the number of crossings in the drawing. No-
tice that this aesthetic does not make sense when the drawing is required
to be planar.

• Total Edge Length: Minimization of the sum of the lengths of the edges
in the drawing.

• Total Bends: Minimization of the number of bends in the drawing.

i

i

“main” — 2009/2/23 — 18:41 — page 22 — #32
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 23 — #33
i

i

i

i

i

i

Chapter 2

Straight-line, Poly-line, Convex,

and Proximity Drawings of

Planar Graphs

In this chapter, we illustrate the state of the art on drawing planar graphs in
small area under several drawing conventions. We mainly focus on straight-line
drawings, poly-line drawings, convex drawings, and proximity drawings. We
give a sketch of the algorithms achieving the best known upper bounds at the
state of the art, and we show the graphs that give rise to the best lower bounds
at the state of the art.

2.1 Introduction

Constructing planar straight-line drawings of planar graphs is one of the most
studied topics in Graph Drawing. In fact, straight-line planar drawings are aes-
thetically pleasant and easily readable by the human eye, hence they are among
the best drawing styles to be used for computer applications; moreover, under-
standing the geometric properties of planar graphs is of course an interesting
mathematical issue, even when not motivated by any practical reason.

A ground-breaking result of the last century is that every plane graph admits
a planar straight-line drawing. Such a result was independently proved by
Wagner [Wag36], by Fary [Far48], and by Stein [Ste51]. However, that every
plane graph admits a planar straight-line drawing is often regarded as the
“Fary’s theorem” (and a planar straight-line drawing is sometimes regarded as

23

i

i

“main” — 2009/2/23 — 18:41 — page 24 — #34
i

i

i

i

i

i

24
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

a “Fary embedding”), probably because of the beauty and the simplicity of the
Fary’s proof.

Although the algorithm of Fary is very easy to understand and to imple-
ment, it turns out to be useless for the visualization of planar graphs with a
large number of vertices. In fact, it has the great drawback of assigning real
coordinates to the vertices. Such an assignment implies that two vertices can
be arbitrarily close or arbitrarily far in the drawing, i.e., the ratio between
the longest and the smallest edge in the drawing can be exponential in the
number of nodes of the graph, which is surely detrimental for the readabil-
ity of the drawing. Moreover, a computer storing the coordinates assigned to
the vertices would need a polynomial number of bits, while coordinates need-
ing a logarithmic number of bits to be represented on a computer would be
desiderable.

Hence, the question was raised by Rosenstiehl and Tarjan in [RT86] whether
planar straight-line drawings of n-vertex planar graphs can be realized on a grid
of side length bounded by nk, for some fixed k.

The problem was first solved in a paper by de Fraysseix, Pach, and Pollack
appeared at the Symposium on Theory of Computing in 1988 [dPP88] (and
further published in [dPP90]). The authors showed that every n-vertex plane
graph admits a planar straight-line drawing on a (2n− 4)× (n− 2) grid. Such
a result uses as main tool a very natural and simple order between the vertices
of a maximal plane graph, namely the canonical ordering. Such an ordering is
used to incrementally construct a straight-line drawing, by adding the vertices
one at a time to the partially constructed drawing.

Only two years later, Schnyder presented, at the first Symposium on Dis-
crete Algorithms [Sch90], an algorithm improving the grid size down to (n −
2) × (n − 2). The result relies on techniques completely different from the
ones of de Fraysseix et al. In fact, Schnyder proved that the internal edges
of a maximal plane graph G can be partitioned into three trees representing
three partial orders between the vertices of G. Such orders can be used to as-
sign three-dimensional integer coordinates to the vertices of G, thus obtaining
a straight-line planar drawing of G lying on a plane in the three-dimensional
space. Finally, such a drawing can be projected on the xy-plane, thus obtaining
a straight-line planar drawing of G on a (n − 2) × (n − 2) grid.

An area of b2(n − 1)/3c × (4b2(n − 1)/3c − 1) was shown to be suffi-
cient for constructing straight-line drawings of plane graphs by Chrobak and
Nakano [CN98]. The width of the drawing is the minimum possible. Bounds
of (n− 2−∆−)× (n− 2−∆−) and (n− 2−∆)× (n− 2−∆) were achieved by
Zhang and He in [ZH03], and by Bonichon, Felsner, and Mosbah in [BFM07].

i

i

“main” — 2009/2/23 — 18:41 — page 25 — #35
i

i

i

i

i

i

2.1. INTRODUCTION 25

∆− and ∆ are distinct parameters of the plane graph, that however can be
equal to 0 in the worst case.

A grid of quadratic size is asymptotically the best possible, since there exist
plane graphs, and even planar graphs, requiring such an area in any planar
grid drawing. this was first observed by Valiant in [Val81]. The lower bound

was then improved to
(

2n
3 − 1

)
×
(

2n
3 − 1

)
= 4n2

9 − 4n
3 + 1 by de Fraysseix et

al. [dPP90]. Currently, the best lower bound is, as far as we know, 4n2

9 − 2n
3 ,

that has been proved by Frati and Patrignani in [FP07].
While the determination of the exact bounds for the area requirements

of straight-line drawings of planar graphs still requires research efforts, tight
bounds on the area requirements of poly-line drawings of plane graphs are
known, up to the constants. In fact, Bonichon, Le Saëc, and Mosbah proved

in [BSM02] that every planar graph has a poly-line drawing in 4(n−1)2

9 area,
which matches the lower bound of de Fraysseix, Pach, and Pollack [dPP90].

Concerning convex drawings, quadratic area is sufficient for all triconnected
plane graphs, if angles equal to π radiants are allowed [Kan96, CK97, ST92,
DTL99, BFM07]. Clearly, such a bound is asymptotically tight. Otherwise,
i.e., if all the angles of the internal faces of the drawing have to be strictly less
than π, then all the n-vertex triconnected plane graphs can be drawn in O(n4)
area, as shown by Barany and Rote in [BR06], while cubic area is sometimes
necessary [And63, BP92, BT04].

Concerning proximity drawings, there exist meaningful definitions of prox-
imity for which exponential area is sometimes required for drawing planar
graphs (as proved by Liotta et al. in [LTTV97] for Gabriel drawings). On
the other hand, some polynomial upper bounds are known for drawing trees
under several definitions of proximity [PV04, FK08].

The rest of the chapter is organized as follows. In Sect. 2.2, we expose the
state of the art on straight-line drawings of planar graphs in small area, by
briefly discussing the algorithms of Fary [Far48], of de Fraysseix, Pach, and
Pollack [dPP90], and of Schnyder [Sch90], and by showing some planar graphs
providing the best known area lower bounds; in Sect. 2.3, we expose the state
of the art on poly-line drawings of planar graphs in small area; in Sect. 2.4, we
expose the state of the art on convex drawings of planar graphs in small area;
in Sect. 2.5, we expose the state of the art on proximity drawings of planar
graphs in small area. Finally, in Sect. 2.6 we conclude and present some open
problems.

i

i

“main” — 2009/2/23 — 18:41 — page 26 — #36
i

i

i

i

i

i

26
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

2.2 Straight-line Drawings

In this section, we sketch the most-widely known algorithms for constructing
straight-line drawings of planar graphs. In Sect. 2.2 we illustrate Fary’s algo-
rithm, in Sect. 2.2 we show de Fraysseix, Pach and Pollack’s algorithm, and
in Sect. 2.2 we present Schnyder’s algorithm. Finally, in Sect. 2.2, we discuss
lower bounds for the area requirements of straight-line drawings of plane and
planar graphs. More results on straight-line drawings of planar graphs (and
their subclasses) in small area are exhibited in Chapters 4, 5, 6, 7, 8, and 9.

Fary’s Algorithm

In this section we illustrate Fary’s algorithm [Far48]. Such an algorithm proves
that a straight-line drawing of a plane graph G can be constructed for an
arbitrary drawing of f(G). This is stated more precisely in the following:

Theorem 2.1 (Fary [Far48]) Let G be any maximal plane graph and let ∆
be any triangle in the plane. Then G admits a straight-line drawing Γ with
external face ∆.

The proof of the theorem is by induction on the number of nodes of G. In
the base case, G has three vertices and the proof is trivial. Suppose that G has
n > 3 vertices. Distinguish two cases:

• If G contains a separating 3-cycle c, then consider graphs G1, obtained
from G by removing all the vertices internal to c and consider graph G2,
obtained from G by removing all the vertices external to c (see Fig. 2.1
(a)). By the definition of separating 3-cycle, both graphs have less than
n vertices. Apply the inductive hypothesis to construct a straight-line
planar drawing Γ1 of G1 in which f(G1) is drawn as ∆. Since c is the
cycle delimiting the border of an internal face of G1, c is represented by
a triangle ∆′ in Γ1. Apply again the inductive hypothesis to construct
a straight-line planar drawing Γ2 of G2 in which f(G2) is drawn as ∆′.
Plug Γ2 inside Γ1 by gluing the two drawings along the common face
delimited by c and represented by ∆′ in both drawings (see Fig. 2.1 (b)).

• If G does not contain any separating 3-cycle, i.e. G is 4-connected, con-
sider any internal vertex u of G and consider any neighbor v of u. Con-
struct an (n−1)−vertex graph G′ by removing u and all its incident edges

i

i

“main” — 2009/2/23 — 18:41 — page 27 — #37
i

i

i

i

i

i

2.2. STRAIGHT-LINE DRAWINGS 27

G1

G2

G1

G2

(a) (b)

Figure 2.1: (a) A plane graph G containing a separating 3-cycle c. (b) Inductive
construction of a straight-line drawing of G.

from G, and by inserting dummy edges between v and all the neighbors
of u in G, except for the two vertices v1 and v2 forming faces with u and
v. The resulting graph is clearly planar. Further, it is simple. In fact, if
G′ is not simple, then G contains an edge between v and one of the neigh-
bors of u, say w, distinct from v1 and v2. However, this would imply that
(u, v, w) is a separating 3-cycle, contradicting the assumptions. Hence,
the inductive hypothesis can be applied to construct a straight-line pla-
nar drawing Γ′ of G′ in which f(G′) is drawn as ∆ (see Fig. 2.2 (a)).
Further, dummy edges can be removed and vertex u can be introduced
in Γ′ together with its incident edges, without altering the planarity of
Γ′. In fact, u can be placed at a suitable point in the interior of a small
disk centered at v, thus obtaining a straight-line drawing Γ of G in which
f(G) is represented by ∆ (see Fig. 2.2 (b)).

de Fraysseix, Pach, and Pollack’s Algorithm

In this section we describe the algorithm presented by de Fraysseix, Pach, and
Pollack in [dPP90]. The algorithm relies on two main ideas.

First, it is shown that any maximal plane graph can be constructed by
adding vertices one at a time, in an order such that a new vertex is always
added in the external face of the currently constructed plane graph, and such
that the current graph is always biconnected. Such an ordering of the vertices
of a plane graph has been called canonical ordering. Canonical ordering and

i

i

“main” — 2009/2/23 — 18:41 — page 28 — #38
i

i

i

i

i

i

28
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

v

v

u

(a) (b)

Figure 2.2: (a) A straight-line drawing of the plane graph G′ obtained from G
by contracting vertices u and v into a single vertex v. (b) Inductive construction
of a straight-line drawing of G.

variations of the canonical ordering have been studied also in [Kan96].
Second, it is shown how to construct a straight-line drawing of a plane

graph by adding vertices to a partially constructed drawing so that the order
in which the vertices are introduced in the drawing is a canonical ordering of
the graph, and so that the drawing always maintains some strong geometric
invariants, among which the fact that the border of the outer face of the par-
tially constructed drawing is represented by segments having slopes equal to
either π/4 radiants or −π/4 radiants. In the following, the two results are
stated more precisely.

Canonical Ordering of a Plane Graph. Let G be a maximal plane graph
with outer face (u, v, w). Then the following holds (refer to Fig. 2.3):

Lemma 2.1 (de Fraysseix, Pach, and Pollack [dPP90]) There exists a la-
belling of the vertices v1 = u, v2 = v, v3, . . . , vn = w meeting the following
requirements for 4 ≤ k ≤ n:

• (i) The subgraph Gk−1 ⊂ G induced by v1, v2, · · · , vk−1 is biconnected,
and the boundary of its outer face is a cycle Ck−1 containing edge (u, v).

• (ii) Vertex vk is in the outer face of Gk−1, and its neighbors in Gk−1

form an (at least 2-element) subinterval of the path Ck−1 − (u, v).

The proof of the previous lemma mainly relies on an auxiliary lemma stating
that, given a simple plane graph G and given a simple cycle c of G, there exists
a vertex of c not incident to any chord inside c. This allows de Fraysseix et al.
to prove the existence of a canonical ordering for a given maximal plane graph

i

i

“main” — 2009/2/23 — 18:41 — page 29 — #39
i

i

i

i

i

i

2.2. STRAIGHT-LINE DRAWINGS 29

u v

vk

Gk-1

Figure 2.3: An illustration of the canonical ordering of a maximal plane graph.

G by reverse induction, namely by setting vn = w, by assuming that Gk−1 has
been already determined (which is true in the base case k = n) with outer face
delimited by a cycle Ck−1, and by then setting vk−1 equal to a vertex of Gk−1

that is not incident to a chord of Ck−1.
From Canonical Orderings to Straight-line Grid Drawings. The drawing al-

gorithm proposed in [dPP90] inductively constructs a straight-line grid drawing
of a maximal plane graph G relying on a canonical ordering of G. Let (u, v, w)
be the outer face of G and let v1 = u, v2 = v, v3, . . . , vn = w be a canonical
ordering of G. Let Gk be the subgraph induced by v1, v2, · · · , vk. Then, de
Fraysseix et al. prove there exists a drawing of Gk such that (refer to Fig. 2.4
(a)):

1. Vertex v1 is at (0, 0), vertex v2 is at (2k − 4, 0).

2. If w1 = v1, w2, . . . , wm = v2 denote the vertices on the outer face of Gk

(in order of their appearance) and x(wi) denotes the x-coordinate of wi,
then x(w1) < x(w2) < . . . < x(wm).

3. The edges (wi, wi+1), with 1 ≤ i ≤ m, have slopes π/4 radiants or −π/4
radiants.

In order to maintain invariants (1), (2), and (3) when a new vertex vk+1

is added to the drawing, some vertices have to be shifted from their previous
positions along the horizontal line they lie on. However, de Fraysseix et al.
elegantly define which are the vertices that have to be moved in order to insert
vk+1 still maintaining a planar drawing. In fact, they inductively assume that
at step k of the algorithm, for each vertex w1, w2, . . . , wm, a subset M(k, wi) ⊆
V (Gk) is defined such that:

i

i

“main” — 2009/2/23 — 18:41 — page 30 — #40
i

i

i

i

i

i

30
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

wp

w2

wp+1 wqwq-1
wq+1

wmw1

Gk

wp

w2

vk+1

wq

wq+1

wmw1
Gk

(a) (b)

Figure 2.4: (a) Invariants of the drawing algorithm of de Fraysseix et al. (b)
Incremental construction of the drawing of Gk+1.

• (a) wj ∈ M(k, wi) if and only if j ≥ i;

• (b) M(k, w1) ⊃ M(k, w2) ⊃ . . . ⊃ M(k, wm);

• (c) For any non-negative numbers α1, α2, . . . , αm, if all the vertices in

M(k, wi) are moved by
∑i

j=1 αj , then the drawing remains straight-line
and planar.

Invariants (1), (2), and (3) and properties (a), (b), and (c) are initially sat-
isfied by setting w1 = (0, 0), w2 = (1, 1), w3 = (2, 0), M(3, w1) = {w1, w2, w3},
M(3, w2) = {w2, w3}, and M(3, w3) = {w3}. When a new vertex vk+1 is
inserted in the drawing (see Fig. 2.4 (b)), property (c) of sets M(k, wi) is
applied with αp+1 = αq = 1 and all other αi equal to 0, where wp and wq

are the first and the last neighbor of vk+1 on Ck. The new border of Gk+1

is then w1, w2, . . . , wp, vk+1, wq , . . . , wm, and sets M(k + 1, wi) are then de-
fined so that M(k + 1, wi) = M(k, wi) ∪ {vk+1}, for i ≤ p, M(k + 1, vk+1) =
M(k, wp+1)∪{vk+1}, and M(k+1, wi) = M(k, wi), for i ≥ q. de Fraysseix et al.
show how this modifications allow the partially constructed drawing to satisfy
invariants (1), (2), and (3), and allow sets M(k + 1, wi) to satisfy properties
(a), (b), and (c).

When k = n the resulting drawing is a planar straight-line drawing of G.
Further, the width of the drawing is 2n−4, while its height is half of its width,
hence n − 2.

Theorem 2.2 (de Fraysseix, Pach, and Pollack [dPP90]) Any plane graph
with n vertices has a straight-line planar drawing on the (2n−4)× (n−2) grid.

It is worth noting that the described algorithm has been proposed by de
Fraysseix et al. together with an O(n log n)-time implementation. The authors

i

i

“main” — 2009/2/23 — 18:41 — page 31 — #41
i

i

i

i

i

i

2.2. STRAIGHT-LINE DRAWINGS 31

conjectured that its complexity could be improved to O(n). This bound was
in fact achieved a few years later by Chrobak and Payne in [CP95].

Schnyder’s Algorithm

In this section we describe the algorithm presented by Schnyder in [Sch90]. The
approach of Schnyder is totally different from the one of de Fraysseix et al. [dPP90].
In fact, Schnyder’s algorithm constructs the drawing by determining the co-
ordinates of all the vertices in one shot. The algorithm relies on some results
concerning planar graph embeddings that are indeed less intuitive than the
canonical ordering of a plane graph used by de Fraysseix et al. Below, the
main ideas behind Schnyder’s algorithm are sketched.

Barycentric Representations and Straight-line Embeddings. Schnyder de-
fines a barycentric representation of a graph G to be an injective function
v ∈ V (G) → (x(v), y(v), z(v)) that satisfies the following conditions:

1. x(v) + y(v) + z(v) = 1, for all vertices v ∈ V (G).

2. For each edge (u, v) ∈ E(G) and each vertex w /∈ {u, v}, x(u) < x(w) and
x(v) < x(w) hold, or y(u) < y(w) and y(v) < y(w) hold, or z(u) < z(w)
and z(v) < z(w) hold.

Schnyder proves that, given any graph G, given any barycentric represen-
tation v → (x(v), y(v), z(v)) of G, and given any three non-collinear points
α, β, and γ in the three-dimensional space, the mapping f : v ∈ V (G) →
v1α + v2β + v3γ is a straight-line planar embedding of G in the plane spanned
by α, β, and γ.

Schnyder’s Realizers. Schnyder proves that the interior edges of a plane
graph G can be oriented and partitioned in three sets T1, T2, and T3, so that
the following conditions are satisfied:

1. The set of edges in Ti, for each i = 1, 2, 3, is a tree spanning all the
internal vertices of G and exactly one external vertex; all the edges of
Ti are directed towards this external vertex, which is the root of Ti; the
external vertices belonging to T1, to T2, and to T3 are distinct and appear
in counter-clockwise order on the border of the outer face of G.

2. For each internal vertex v of G, v has outdegree one in each of T1, T2,
and T3; further, the counter-clockwise order of the edges incident to v is:
leaving T1, entering T3, leaving T2, entering T1, leaving T3, and enter-
ing T2.

i

i

“main” — 2009/2/23 — 18:41 — page 32 — #42
i

i

i

i

i

i

32
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

Schnyder calls a realizer of G the described partition of the edges of G.
Fig. 2.5 (a) illustrates a realizer for a plane graph.

v

(a) (b)

Figure 2.5: (a) A realizer for a plane graph. (b) Paths P1(v), P2(v), and P3(v)
and regions R1(v), R2(v), and R3(v).

Given any realizer of a plane graph G, to each internal vertex v ∈ V (G)
three paths Pi(v), with i = 1, 2, 3, are univocally associated so that Pi(v) is
the only path composed entirely of edges of Ti connecting v to the root of Ti

(see Fig. 2.5 (b)). Such paths have only v as common vertex. Hence, P1(v),
P2(v), and P3(v) divide G into three regions R1(v), R2(v), and R3(v), where
Ri(v) denotes the closed region opposite to the root of Ti.

From Realizers to Barycentric Representations. Schnyder describes two
methods for obtaining a barycentric representation of a plane graph G starting
from a realizer of G. In both methods, the coordinates of the barycentric
representation are obtained by considering regions R1(v), R2(v), and R3(v)
associated with each vertex v.

In the first method, for each vertex v ∈ V (G), coordinates x(v), y(v), and
z(v) are set equal to the number of the faces in regions R1(v), R2(v), and
R3(v), respectively, each divided by 2n − 5. The assignment satisfies the first
condition of a barycentric representation. In fact, the number of internal faces
of a maximal plane graph G is equal to 2n − 5, thus the sum of the number
of faces in regions R1(v), R2(v), and R3(v) is equal to 2n − 5, and hence
x(v)+y(v)+z(v) = 1 holds for every vertex v ∈ V (G). Further, the assignment
satisfies the second condition of a barycentric representation, namely given any
edge (u, v) and given any vertex w 6= u, v, vertices u and v both belong to a
region Ri(w), for some i ∈ {1, 2, 3}, hence they both have the corresponding
coordinate smaller than the same coordinate of w. Then, in order to obtain a
planar straight-line drawing of G, it is sufficient to apply the correspondence

i

i

“main” — 2009/2/23 — 18:41 — page 33 — #43
i

i

i

i

i

i

2.2. STRAIGHT-LINE DRAWINGS 33

between barycentric representations and straight-line embeddings described at
the beginning of this section, by setting α = (2n − 5, 0), β = (0, 2n − 5), and
γ = (0, 0). The area of the resulting drawing is then (2n − 5) × (2n − 5).

In the second method, a definition of weak barycentric representation is
given, which is similar to the one of barycentric representation, apart from
the fact that the second condition is slightly relaxed allowing some equalities
between the coordinates assigned to the vertices. Again, Schnyder shows that
to any weak barycentric representation, a straight-line planar embedding in
the plane spanned by any three points α, β, and γ corresponds. Then, for
any given plane graph G, Schnyder shows how to obtain a weak barycentric
representation by assigning to each vertex v coordinates which are equal to
the number of vertices in regions R1(v), R2(v), and R3(v), where each region
Ri(v) is here meant to include the delimiting path Pi+1(v), and to exclude the
delimiting path Pi−1(v). Then, in order to obtain a planar straight-line drawing
of G, it is sufficient to apply the correspondence between weak barycentric
representations and straight-line embeddings, by setting α = (n − 2, 0), β =
(0, n − 2), and γ = (0, 0). The area of the resulting drawing is then (n − 2) ×
(n − 2).

Theorem 2.3 (Schnyder [Sch90]) Any plane graph with n vertices has a straight-
line planar drawing on the (n − 2) × (n − 2) grid.

Lower Bounds

The quadratic area upper bound achieved by de Fraysseix, Pach, and Pollack’s
algorithm [dPP90] and by the Schynder’s algorithm [Sch90] is asymptotically
the best possible bound for straight-line drawings of planar graphs. In fact,
almost ten years before the publication of such algorithms, Valiant observed
in [Val81] that there exist n-vertex plane graphs requiring Ω(n2) area in any
straight-line planar drawing (in fact, in every poly-line planar drawing). The
graph shown by Valiant to achieve such a bound is depicted in Fig. 2.6 (a).
An improved lower bound was then shown by de Fraysseix, Pach, and Pollack
in [dPP90]. In fact, they exhibited a class of graphs, known as nested triangles
graphs, that is composed of a sequence of n/3 cycles, each of three vertices,
nested one inside the other. A nested triangles graph with n vertices is easily
shown to require

(
2n
3 − 1

)
×
(

2n
3 − 1

)
area in any grid drawing. A nested

triangle graph is depicted in Fig. 2.6 (b).

The
(

2n
3 − 1

)
×
(

2n
3 − 1

)
= 4n2

9 − 4n
3 +1 lower bound of de Fraysseix, Pach,

and Pollack was improved only very recently by Frati and Patrignani [FP07].

i

i

“main” — 2009/2/23 — 18:41 — page 34 — #44
i

i

i

i

i

i

34
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

(a) (b)

Figure 2.6: (a) The graph shown in [Val81] to prove a quadratic lower bound
for the area requirements of plane graphs. (b) The graph shown in [dPP90]
to prove a

(
2n
3 − 1

)
×
(

2n
3 − 1

)
lower bound for the area requirements of plane

graphs.

In fact, they exhibited a plane graph requiring 4n2

9 − 2n
3 area in any straight-line

drawing. The structure of such a graph is the same as the ones of the graphs
shown by Valiant and by de Fraysseix, Pach, and Pollack. Namely, a linear
number of cycles are nested one inside the other. However, the improvement
comes from a 6-vertex graph which requires more than

(
2n
3 − 1

)
×
(

2n
3 − 1

)
=

3×3 area in any straight-line drawing. In fact, it can be proved by case analysis
that the smallest grid drawings of the graph G6 shown in Fig. 2.7 (a) require
2 × 7 and 3 × 4 area. Then, as shown in Fig. 2.7 (b), it is sufficient to nest a
sequence of n/3−2 cycles, each of three vertices, outside G6 to get the claimed
4n2

9 − 2n
3 lower bound.

Frati and Patrignani also observed that a quadratic area lower bound holds
even for planar graphs. In fact, in any plane embedding of an n-vertex nested
triangles graph (notice that in this setting the outer face can be suitably cho-
sen), a sequence of n/6 cycles, each of three vertices, can be found, thus leading

to a n2

9 +Ω(n) area lower bound. The same authours also observed that nested

triangles graphs actually admit straight-line drawings in 2n2

9 + O(n) area, and
conjectured that the latter bound is tight.

i

i

“main” — 2009/2/23 — 18:41 — page 35 — #45
i

i

i

i

i

i

2.3. POLY-LINE DRAWINGS 35

(a) (b)

Figure 2.7: (a) Graph G6 requiring 2×7 and 3×4 area in its smallest straight-
line grid drawings. (b) A plane graph requiring 4n2/9 − 2n/3 area.

2.3 Poly-line Drawings

In this section, we expose the state of the art on poly-line drawings of planar
graphs in small area. More results on poly-line drawings of planar graphs (and
their subclasses) in small area are exhibited in Chapters 4, 7, and 9.

The first quadratic upper bound for the problem was shown by Woods
in [Woo82]. Namely, the author proved that every planar graph has a planar
poly-line drawing in O(n2) area and with O(n2) bends.

Very soon, the bound was improved by Di Battista and Tamassia, who
showed that every plane graph has a poly-line drawing on a grid of size (2n−5)×
(n−1), with a total number of 1

3 (10n−31) bends. The result of Di Battista and
Tamassia appeared in [DT88] and used as a main tool the following technique
that has been later used in several other papers in which the construction
of poly-line drawings is required: First, a grid visibility representation of the
input graph is constructed. In a grid visibility representation, each vertex
u is represented by a segment lying on an integer horizontal line, and each
edge is represented by a segment lying on an integer vertical line. Such a
representation can be constructed with the algorithm presented by Tamassia
and Tollis in [TT86]. Second, a poly-line drawing is constructed from the
visibility representation as follows: (i) replace each vertex-segment σ(u) with a
grid point P (v) on σ(u); (ii) replace each edge-segment spanning one vertical
unit with a segment between the points P (u) and P (v), and replace each edge-

i

i

“main” — 2009/2/23 — 18:41 — page 36 — #46
i

i

i

i

i

i

36
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

segment spanning more than one vertical unit with a polygonal line connecting
points P (u), (x(u, v), y(u) + 1), (x(u, v), y(v) − 1), and P (v).

(a) (b)

Figure 2.8: (a) A visibility representation Σ of a plane graph. (b) The poly-
line drawing obtained from Σ by means of the algorithm of Di Battista and
Tamassia [DT88].

Kant and He [KH93] proved that, for a 4-connected plane graph, the al-
gorithm of Tamassia and Tollis produces visibility representations with (n −
1)× (n− 1) area. Kant [Kan97] showed how to compose the drawings of the 4-
connected components of a general maximal plane graph G, in order to obtain
a visibility representation of G with (n−1)× (n−1) area. Clearly, these upper
bounds also apply to poly-line drawings, due to the just described Di Battista
and Tamassia’s algorithm [DT88]. However, a better bound is achieved by
the already described Schnyder’s algorithm (see [Sch90] and Sect. 2.2), since
a straight-line drawing is a special case of poly-line drawing. Algorithms for
constructing poly-line drawings with a good angular resolution in quadratic
area were presented by Kant in [Kan96], by Gutwenger and Mutzel in [GM98],
and by Cheng, Duncan, Goodrich and Kobourov in [CDGK01].

Finally, Bonichon, Le Saëc, and Mosbah proved in [BSM02] that every plane
graph has a poly-line drawing in (n−b p

2c − 1)× (p + 1) area, where p ≤ 2n−5
3 .

Such an area bound is optimal up to the constants. In fact, the bound reads

as 4(n−1)2

9 in the worst case, which matches the lower bound provided by the
nested triangles graph (see Sect. 2.2). The algorithm of Bonichon et al. has the
further appealing feature of constructing drawings with at most n − 2 bends,
and with at most one bend per edge. The algorithm of Bonichon et al. uses as
a main tool the Schnyder realizers (see Sect. 2.2).

i

i

“main” — 2009/2/23 — 18:41 — page 37 — #47
i

i

i

i

i

i

2.4. CONVEX DRAWINGS 37

2.4 Convex Drawings

In this section, we expose the state of the art on convex and strictly-convex
drawings of planar graphs.

While every plane graph admits a planar straight-line drawing [Wag36,
Far48, Ste51], not every plane graph admits a convex drawing. Tutte showed
that every triconnected plane graph G admits a strictly-convex drawing with
its outer face drawn as an arbitrary strictly-convex polygon P [Tut60]. Its
algorithm starts by drawing the f(G) as P ; then, any other vertex is placed at
the barycenter of the positions of its adjacent vertices. This results in a set of
linear equations, namely, for each vertex u ∈ V (G), denoting by Eu the set of
edges incident to u in G:

x(u) =
1

|Eu|
∑

v∈Eu

x(v),

y(u) =
1

|Eu|
∑

v∈Eu

y(v).

Such a set of equations always admits a unique solution.
Characterizations of the graphs admitting a convex drawing were given

by Tutte in [Tut60, Tut63], by Thomassen in [Tho80, Tho84], by Chiba, Ya-
manouchi, and Nishizeki in [CYN84], by Nishizeki and Chiba in [NC88], by
Di Battista, Tamassia, and Vismara in [DTV01]. Chiba, Yamanouchi, and
Nishizeki presented in [CYN84] a linear-time algorithm for producing convex
drawings.

The area requirements of convex and strictly-convex grid drawings have
been widely studied, especially for triconnected plane graphs.

Convex Drawings. Convex grid drawings of triconnected plane graphs can
be realized on a quadratic-size grid. This was first shown by Kant in [Kan96].
In fact, Kant proved that such drawings can always be realized on a (2n−4)×
(n − 2) grid. The result is achieved by means of an incremental construction
of a partial drawing in which, at the (k + 1)-th step of the construction, either
the drawing of a single vertex vk or the drawing of a path (vk,1, vk,2, . . . , vk,l)
are added to the drawing of the partially constructed graph Gk. In the case in
which vk is added to the drawing, such a vertex could have several neighbors
on the border of the outer face of Gk. In the case in which (vk,1, vk,2, . . . , vk,l)
is added to the drawing (see Fig. 2.9), such a path delimits the border of one
internal face of Gk+1, together with a path on the border of the outer face
of Gk, and all the vertices vk,1, vk,2, . . . , vk,l have degree exactly two in Gk+1.

i

i

“main” — 2009/2/23 — 18:41 — page 38 — #48
i

i

i

i

i

i

38
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

This generalization of the canonical ordering allows to deal with plane graphs
containing non-triangular faces.

u v

vk,1 vk,4

vk,3vk,2

Gk

Figure 2.9: An illustration of the canonical ordering of a triconnected plane
graph.

The bound of Kant was later improved down to (n−2)×(n−2) by Chrobak
and Kant [CK97], and independently by Schnyder and Trotter [ST92]. The re-
sult of Chrobak and Kant again relies on the canonical ordering of a graph.
On the other hand, the result of Schnyder and Trotter relies on a generaliza-
tion of the Schnyder realizers in order to deal with triconnected plane graphs.
Such an extension was independently shown by Di Battista, Tamassia, and Vis-
mara [DTL99], who proved that every triconnected plane graph has a convex
drawing on a (f −2)×(f −2) grid, where f is the number of faces of the graph.
The best bound is currently, as far as we know, an (n − 2 − ∆) × (n − 2 − ∆)
bound achieved by Bonichon, Felsner, and Mosbah in [BFM07]. The bound is
again achieved by means of the use of the Schnyder realizers. The parameter
∆ is dependent of the Schnyder realizers, and can variate among 0 and n

2 − 2.
Strictly-Convex Drawings. Strictly-convex drawings of triconnected plane

graphs require cubic area in the worst case. In fact, a n-vertex cycle needs
Ω(n3) area in any grid realization (see, e.g., [And63, BP92, BT04]). The cur-
rently best lower bound, which has been proved by Rabinowitz in [Rab93],

is A(n) > n3

8π2 . The first polynomial upper bound for strictly-convex draw-
ings of triconnected plane graphs has been proved by Chrobak, Goodrich, and
Tamassia in [CGT96]. The authors showed that every triconnected plane graph
admits a strictly-convex drawing in a O(n3) × O(n3) grid. Their idea consists
in first constructing a (non-strictly-) convex drawing of the input graph, and
then perturbing the positions of the vertices in order to achieve strict convex-
ity. A more elaborated technique relying on the same idea allowed Rote to

i

i

“main” — 2009/2/23 — 18:41 — page 39 — #49
i

i

i

i

i

i

2.5. PROXIMITY DRAWINGS 39

achieve an O(n7/3) ×O(n7/3) area upper bound in [Rot05], which was further
improved by Barany and Rote to O(n2) × O(n2) in [BR06]. The last one is,
as far as we know, the best known upper bound. One of the main differences
between the Chrobak et al.’s algorithm, and the Rote’s ones is that the former
one constructs the intermediate non-strictly-convex drawing by making use of
a canonical ordering of the graph, while the latter ones by making use of the
Schnyder realizers.

2.5 Proximity Drawings

In this section, we expose the state of the art on proximity drawings of pla-
nar graphs. More results on proximity drawings of planar graphs (and their
subclasses) in small area are exhibited in Chapters 3 and 8.

Given a set P of points in the plane, the Delaunay triangulation [Del34]
of P is the internally-triangulated plane graph such that the three vertices of
every face span a circumference which contains no point of P in its interior (see
Fig. 2.10 (a)). Given a set P of points in the plane, a Gabriel graph [GS69]
of P is obtained by connecting every two points u and v such that the disk
having u and v as antipodal points does not contain any other point in its
interior (see Fig. 2.10 (b)). Given a set P of points in the plane, a minimum
spanning tree of P is defined as a tree having a vertex for each point of P and
having minimum total edge length (see Fig. 2.10 (c)). Delaunay triangulations,
Gabriel graphs, and minimum spanning trees are examples of proximity graphs,
that is, graphs that can be constructed from given point sets so that the graph
has a vertex for each point of the set, and there is an edge between two vertices
if the corresponding points satisfy some proximity properties.

From a Graph Drawing point of view, it is a fundamental to characterize
the class of proximity graphs, for a given definition of proximity. However,
it turns out that characterizing the graphs that admit a proximity drawing,
for a certain definition of proximity, is a difficult problem. For example, de-
spite several research efforts (see, e.g., [Dil90, LL96, DS96]), characterizing the
graphs that admit a realization (word which often substitutes drawing in the
context of proximity graphs) as Delaunay triangulations is still an intriguing
open problem. Further, the decision version of several realizability problems
(that is, given a graph G and a definition of proximity, can G be realized as
a proximity graph?) is NP -hard. For example, Eades and Whitesides proved
that deciding whether a tree can be realized as a minimum spanning tree is an
NP -hard problem [EW96b], and that deciding whether a graph can be realized

i

i

“main” — 2009/2/23 — 18:41 — page 40 — #50
i

i

i

i

i

i

40
CHAPTER 2. STRAIGHT-LINE, POLY-LINE, CONVEX, AND

PROXIMITY DRAWINGS OF PLANAR GRAPHS

.

(a) (b) (c)

Figure 2.10: A set of points P and its (a) Delaunay triangulation, (b) Gabriel
graph, and (c) minimum spanning tree. Notice that the minimum spanning
tree is a subgraph of the Gabriel graph, which in turn is a subgraph of the
Delaunay triangulation.

as a nearest neighbor graph is an NP -hard problem [EW96a], as well. On the
other hand, for several definitions of proximity graphs (such as Gabriel graphs
and relative neighborhood graphs), the realizability problem is polynomial-time
solvable for trees, as shown by Bose, Lenhart, and Liotta [BLL96]; further, Lu-
biw and Sleumer proved that maximal outerplanar graphs can be realized as
relative neighborhood graphs and Gabriel graphs [LS93], result later extended
by Lenhart and Liotta to all biconnected outerplanar graphs [LL96]. For more
results about proximity drawings, see [DLL94, Lio95].

Most of the known algorithms to construct proximity drawings produce
representations whose size increases exponentially with the number of vertices
(see, e.g., [LS93, BLL96, LL96, DLW06]). However, an exponential-area lower
bound was proved by Liotta, Tamassia, Tollis, and Vocca in [LTTV97] for the
area requirements of Gabriel drawings. On the other hand, Penna and Vocca
proved several polynomial upper bound for Gabriel drawings of trees in two
and three dimensions [PV04]. The problem of constructing proximity drawings
of graphs within polynomial area is considered as very challenging by several
authors [MS92, BLL96, EW96b]. In particular, it is a long-standing open
question whether trees with maximum degree 5 always admit realizations in
polynomial area. Monma and Suri [MS92] conjectured that exponential area is
sometimes required; however, Frati and Kaufmann proved in [MS92] that trees
with maximum degree 4 always admit realizations in O(n21.252) area.

i

i

“main” — 2009/2/23 — 18:41 — page 41 — #51
i

i

i

i

i

i

2.6. CONCLUSIONS AND OPEN PROBLEMS 41

2.6 Conclusions and Open Problems

In this chapter we have provided a panorama of the state of the art concerning
minimum area drawings of plane and planar graphs, under several different
drawing styles.

Concerning straight-line drawings, the best known upper bound is n2 +

O(n)1, due to Schnyder [Sch90], while the best known lower bound is 4n2

9 +
Ω(n) [dPP90, FP07]. The following is hence a natural open question:

Open Problem 2.1 Which are the tight bounds (up to a linear factor) for the
area requirements of straight-line planar drawings of plane graphs?

The same question is indeed interesting also for planar graphs, where the
gap between the best upper bound (still the n2 + O(n) by Schnyder [Sch90])

and the best lower bound (that is only n2

9 + Ω(n) [FP07] is even wider.

Open Problem 2.2 Which are the tight bounds (up to a linear factor) for the
area requirements of straight-line planar drawings of planar graphs?

However, in [FP07] the lower bound for such area requirements is conjec-

tured to be at least 2n2

9 + Ω(n).

Conjecture 2.1 There exist planar graphs requiring 2n2

9 + Ω(n) area in any
straight-line drawing.

Several problems on the area requirements of planar graphs remain open
also for the other drawing styles that have been presented in the chapter. We
cite here the one we find more appealing:

Open Problem 2.3 Which are the asymptotic bounds for the area require-
ments of strictly-convex drawings of triconnected plane graphs?

1At the Topological & Geometric Graph Theory International Conference, a four
pages abstract was presented by Brandenburg entitled “Drawing Planar Graphs on 8

9
n

2

Area” [Bra08]. The paper sketches an algorithm, mainly based on the de Fraysseix, Pach,
and Pollack’s method, which constructs straight-line drawings of planar graphs in 4n

3
×

2n
3

area. Even if this bound, which clearly improves Schnyder’s one, is now the best known
bound for constructing straight-line drawings of planar graphs on a grid, we choose to not
present the results of Brandenburg’s paper in the state of the art discussed in this section.
In fact, the paper has not yet, as far as we know, been published in an extended version,
and hence we are not aware of (and thus could not illustrate) all its new ideas that allow to
improve the de Fraysseix, Pach, and Pollack’s algorithm.

i

i

“main” — 2009/2/23 — 18:41 — page 42 — #52
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 43 — #53
i

i

i

i

i

i

Chapter 3

Greedy Drawings of Planar

Graphs

In this chapter1, we study greedy drawings of planar graphs, a kind of prox-
imity drawings that has recently attracted several research efforts. We show
an algorithm to construct greedy drawings of every given triangulation. The
algorithm relies on two main results. First, we show how to construct greedy
drawings of a fairly simple class of graphs, called triangulated binary cactuses.
Second, we show that every triangulation can be spanned by a triangulated bi-
nary cactus. Further, we discuss how to extend our techniques in order to prove
that every triconnected planar graph admits a greedy drawing. Such a result,
which proves a conjecture by Papadimitriou and Ratajczak, was independently
shown by Leighton and Moitra.

3.1 Introduction

The standard Internet routing protocol is as follows: Each computer is univo-
cally identified by an IP-address ; IP-addresses are aggregated, i.e., computers
that are topologically or geographically close in the network are assigned ad-
dresses with the same most significative bits; consequently, routers do not have

1The contents of this chapter are a joint work with Patrizio Angelini and Luca Grilli, to
appear in [AFG08] and submitted to journal. Thanks to Tom Leighton and Ankur Moitra
for providing us with their paper, for introducing us to Gao and Richter’s results, and for
helping us to clarify the relationship between our results, their own, and Gao and Richter’s
ones.

43

i

i

“main” — 2009/2/23 — 18:41 — page 44 — #54
i

i

i

i

i

i

44 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

to know the route to each address in the network, but they maintain in their
routing tables only informations on the route to take for reaching each set of ag-
gregated addresses. Such an approach does not work in many wireless networks,
such as ad-hoc and sensor networks, where the addresses that are assigned to
nodes geographically or topologically close are not necessarily similar. Despite
of their importance, no universally-accepted communication protocol exists for
such wireless environments.

Geographic routing is a class of routing protocols in which nodes forward
packets based on their geographic locations. Among such protocols, geometric
routing, or greedy routing, has been well investigated, because it relies on a
very simple strategy in which, in order to forward packets, each node has to
know only local informations and, obviously, the destination address. In fact,
in the greedy routing a node forwards packets to a neighbor that is closer than
itself to the destination’s geographic location. Different distance metrics de-
fine different meanings for the word “closer”, and consequently define different
routing algorithms for the packet delivery. The most used and studied metric
is of course the Euclidean distance.

The efficiency of the geographic routing algorithms strongly relies on the
geographic coordinates of the nodes. This is indeed a drawback of such routing
algorithms, for the following reasons: (i) Nodes of the network have to know
their locations, hence they have to be equipped with GPS devices, which are
expensive and increase the energy consumption of the nodes; (ii) geographic
coordinates are independent of the network obstructions, i.e. obstacles making
the communication between two close nodes impossible, and, more in general,
they are independent of the network topology; this could lead to situations in
which the communication fails because a void has been reached, i.e., the packet
has reached a node whose neighbors are all farther from the destination than
the node itself.

A brilliant solution to the geographic routing weakness has been proposed
by Rao, Papadimitriou, Shenker and Stoica, who in [RPSS03] proposed a
scheme in which nodes decide virtual coordinates and then apply the stan-
dard geometric routing algorithm relying on such virtual locations rather than
on the real geographic coordinates. Clearly, virtual coordinates need not to re-
flect the nodes actual positions, hence they can be suitably chosen to guarantee
that the geometric routing algorithm delivers packets with high probability. It
has been experimentally shown that such an approach strongly improves the
reliability of geometric routing [RPSS03, PR05]. Further, it has been proved
that virtual coordinates guarantee geometric routing to work for every con-
nected topology when they can be chosen in the hyperbolic plane [Kle07], even

i

i

“main” — 2009/2/23 — 18:41 — page 45 — #55
i

i

i

i

i

i

3.1. INTRODUCTION 45

if only a logarithmic number of bits are available to store the coordinates of
each node [EG08]. Moreover, some easy modifications of the routing algorithm
guarantee that Euclidean virtual coordinates can be chosen so that the packet
delivery always succeeds [BCGG06], even if the coordinates need to be locally
computed [BCGW07].

Subsequent to the publication of Rao et al. paper [RPSS03], an intense
research effort has been devoted to determine on which network topologies the
Euclidean geometric routing with virtual coordinates is guaranteed to work.

From a graph-theoretic point of view, the problem can be restated as fol-
lows: Which are the graphs that admit a greedy embedding, i.e., a straight-line
drawing Γ in the plane such that, for every pair of nodes u and v, there exists
a distance-decreasing path in Γ? A path (v0, v1, . . . , vm) is distance-decreasing
if d(vi, vm) < d(vi−1, vm), for i = 1, . . . , m. Notice that greedy drawings are a
type of proximity drawings (see Sect. 2.5), since a greedy drawing must satisfy
some proximity properties among the points to which the vertices are mapped
to.

In [PR05] Papadimitriou and Ratajczak conjectured the following:

Conjecture 3.1 (Papadimitriou and Ratajczak [PR05]) Every triconnected
planar graph admits a greedy embedding.

Papadimitriou and Ratajczak showed that Kk,5k+1 has no greedy embed-
ding, for k ≥ 1. As a consequence, both the triconnectivity and the pla-
narity are necessary, because there exist planar non-triconnected graphs, such
as K2,11, and non-planar triconnected graphs, such as K3,16, that do not admit
any greedy embedding. Further, they observed that, if a graph G has a greedy
embedding, then any graph containing G as a spanning subgraph has a greedy
embedding, as well. It follows that Conjecture 3.1 extends to all graphs which
are spanned by a triconnected planar graph. Related to such an observation,
Papadimitriou and Ratajczak proved that every triconnected graph that does
not have a K3,3-minor has a triconnected planar spanning subgraph.

There are a few classes of triconnected planar graphs for which the conjec-
ture is easily shown to be true, for example graphs with a Hamiltonian path
and Delaunay Triangulations. At SODA 2008 [Dha08], Dhandapani proved the
conjecture for the first non-trivial class of triconnected planar graphs, namely
he showed that every triangulation admits a greedy embedding. Triangulations
are clearly an important graph class to study, as also remarked by Papadim-
itriou and Ratajczak [PR05]. The proof of Dhandapani is probabilistic, namely
the author proves that, for every given triangulation G, a random Schnyder

i

i

“main” — 2009/2/23 — 18:41 — page 46 — #56
i

i

i

i

i

i

46 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

drawing of G [Sch90] is greedy with positive probability; hence, there exists
a greedy drawing of every triangulation. Although such a proof is elegant,
relying at the same time on an old Combinatorial Geometry theorem, known
as the Knaster-Kuratowski-Mazurkievicz Theorem [KKM29], and on standard
Graph Drawing techniques, as the Schnyder realizers [Sch90] and the canon-
ical orderings of a triangulation [dPP90], it does not lead to an embedding
algorithm.

In this chapter we show an algorithm for constructing greedy drawings of
triangulations. The algorithm relies on a different and maybe easier approach
with respect to the one used by Dhandapani. We define a simple class of graphs,
called triangulated binary cactuses, and we provide an algorithm to construct
a greedy drawing of any such a graph. Further, we show how to find, for every
triangulation, a triangulated binary cactus spanning it. It is clear that the
previous statements imply an algorithm for constructing greedy drawings of
triangulations. Namely, consider any triangulation G, apply the algorithm to
find a triangulated binary cactus S spanning G, and then apply the algorithm
to construct a greedy drawing of S. As already observed, adding edges to a
greedy drawing leaves the drawing greedy, hence S can be augmented to G,
obtaining the desired greedy drawing of G.

Theorem 3.1 Given a triangulation G, there exists an algorithm to compute
a greedy drawing of G.

Further, we provide an algorithm to construct greedy drawings of general
triconnected planar graphs. The strategy of such an algorithm is the same as
the one of the algorithm for constructing greedy drawings of triangulations. In
fact, we define a simple class of graphs, called non-triangulated binary cactuses,
and we provide an algorithm to construct a greedy drawing of any such a graph.
Finally, we show how to find, for every triconnected planar graph, a non-
triangulated binary cactus spanning it. Such a result proves Conjecture 3.1;
however, the conjecture has been very recently (and independently) proved by
Leighton and Moitra [LM08], by using techniques which are amazingly similar
to ours. Hence, we will only sketch how to modify the algorithm we provide for
triangulations in order to make it work for general triconnected planar graphs.

The rest of the chapter is organized as follows. In Sect. 3.2 we introduce
triangulated binary cactuses; in Sect. 3.3 we show an algorithm to construct
greedy drawings of triangulated binary cactuses; in Sect. 3.4 we show an algo-
rithm to construct a triangulated binary cactus spanning a given triangulation;
in Sect. 3.5 we show how to modify the algorithm described for triangulations

i

i

“main” — 2009/2/23 — 18:41 — page 47 — #57
i

i

i

i

i

i

3.2. TRIANGULATED BINARY CACTUSES 47

in order to make it work for general triconnected planar graphs; finally, in
Sect. 3.6 we conclude and present some open problems.

3.2 Triangulated Binary Cactuses

Consider a graph G. Consider its BC-tree T and suppose it is rooted at a
specific B-node corresponding to a block ν. When the BC-tree T of a graph G
is rooted at a certain block ν, we denote by G(µ) the subgraph of G induced
by all the vertices in the blocks contained in the subtree of T rooted at µ. In
a rooted BC-tree T of a graph G, for each B-node µ we denote by r(µ) the
cutvertex of G parent of µ in T . If µ is the root of T , i.e., µ = ν, then we
let r(µ) denote any non-cutvertex node of the block associated with µ. In the
following, unless otherwise specified, each considered BC-tree is meant to be
rooted at a certain B-node ν such that the block associated with ν has at least
one vertex r(ν) which is not a cutvertex. It is not difficult to see that such a
block exists in every planar graph.

A triangulated binary cactus S, in the following two sections simply called
binary cactus, is a connected graph such that (see Fig 3.1):

• The block associated with each B-node of T is either an edge or a trian-
gulated cycle, i.e., a cycle (r(µ), u1, u2, . . . , uh) triangulated by the edges
from r(µ) to each of u1, u2, . . . , uh.

• Every cutvertex is shared by exactly two blocks of S.

ν

µ1

µ2

µ3

µ4

µ5

µ6

µ7

r(µ1)

r(µ2)

r(µ3)

r(µ4)

r(µ5)

r(µ6)

r(µ7)

r(ν) ν

µ1

µ2

µ3

µ4

µ5

µ6

µ7

r(µ1)

r(µ2)

r(µ6)

r(µ3)

r(µ4)

r(µ5)
r(µ7)

(a) (b)

Figure 3.1: (a) A binary cactus S. (b) The block-cutvertex tree of S. White
(resp. black) circles represent C-nodes (resp. B-nodes).

i

i

“main” — 2009/2/23 — 18:41 — page 48 — #58
i

i

i

i

i

i

48 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

3.3 Greedy Drawings of Binary Cactuses

In this section, we give an algorithm to compute a greedy drawing of a binary
cactus S. Such a drawing is constructed by a bottom-up traversal of the BC-
tree T of S.

Consider the root µ of a subtree of T corresponding to a block of S, consider
the k children of µ, which correspond to cutvertices of S, and consider the
children of such cutvertices, say µ1, µ2, . . . , µk. Notice that each C-node child of
µ is parent of exactly one B-node µi of T , by the definition of binary cactus. For
each i = 1, . . . , k, inductively assume to have a drawing Γi of S(µi) satisfying
the properties listed below.

Let C be a circumference, let (ai, bi) be an arc of C, let p∗i be a point of C
such that the diameter through p∗i cuts (ai, bi) in two arcs of the same length.
Let αi and βi be any two angles less than π/4 such that βi ≥ αi. Consider the
tangent t(p∗i) to C in p∗i . Consider two half-lines l∗1 and l∗2 incident to p∗i , lying
on the opposite part of C with respect to t(p∗

i), and forming angles equal to βi

with t(p∗i). Denote by W (p∗i) the wedge centered at p∗i , delimited by l∗1 and l∗2 ,
and not containing C. Refer to Fig. 3.2 (a).

• Property 1. Γi is a greedy drawing.

• Property 2. Γi is entirely contained inside a region R(Γi) delimited by

arc (ai, bi), and by segments p∗i ai and p∗i bi. The angle âip∗i bi is αi.

• Property 3. For every vertex v in S(µi) and for every point p internal
to W (p∗i), there exists in Γi a path (v = v0, v1, . . . , vl = r(µi)) from v to
r(µi) such that d(vj , p) < d(vj−1, p), for j = 1, . . . , l.

• Property 4. For every vertex v in S(µi) and for every point p internal to
W (p∗i), d(v, p∗i) < d(v, p), for j = 1, . . . , l.

In the base case, block µ has no child. Denote by (r(µ) = u0, u1, . . . , uh−1)
the block of S corresponding to µ. Notice that h ≥ 2. Consider any circum-
ference C with center c. Let p∗ be the point of C with smallest y-coordinate.
Consider the wedges W (p∗, α) and W (p∗, α/2) with angles α and α/2, respec-
tively, incident to p∗ and such that the diameter of C through p∗ is their bisector
(see Fig. 3.2 (b)). Place r(µ) at p∗. Denote by p′a and p′b the intersection points
(different from p∗) of the half-lines delimiting W (p∗, α/2) with C. Denote by
A the arc of C between p′a and p′b and not containing p∗. Consider h+1 points
p0, p1, . . . , ph on A such that p0 = p′a and ph = p′b, and the distance between

i

i

“main” — 2009/2/23 — 18:41 — page 49 — #59
i

i

i

i

i

i

3.3. GREEDY DRAWINGS OF BINARY CACTUSES 49

ai

C

bi

pi*

l1* l2*

t(pi)*

R(Γi)

W(pi)*

βi

αi

βi

p0 ph

C

p*

W(p)*

β β

p1

p

ph-1

(a) (b)

Figure 3.2: (a) Illustration for Properties 1–4 of Γ. (b) Base case of the algo-
rithm. The light and dark shaded region represents R(Γ) (the angle of R(Γ)
at p∗ is α). The dark shaded region represents the intersection of W (p∗, α/2)
with the circle delimited by C.

any two consecutive points pi and pi+1 is the same. Place vertex ui at point
pi, for i = 1, 2, . . . , h − 1. Notice that, if h = 2, µ corresponds to an edge of S
that is drawn as a vertical segment, with u1 above u0.

In order to show that the constructed drawing Γ satisfies Property 1, con-
sider any two vertices ui and uj , with i < j. If i = 0, then u0 and uj are joined
by an edge, which provides a distance-decreasing path between them. Other-
wise, we prove that (ui, ui+1, . . . , uj) is a distance-decreasing path from ui to
uj , the proof that (uj , uj−1, . . . , ui) is a distance-decreasing path from uj to ui

being analogous. For each l = i, i + 1, . . . , j − 2, angle ̂ulul+1uj is greater than
π/2, because triangle (ul, ul+1, uj) is inscribed in less than half a circumference
with ul+1 as middle point (see Fig. 3.3 (a)). Hence, (ul, uj) is the longest side
of triangle (ul, ul+1, uj) and d(ul+1, uj) < d(ul, uj) follows. Drawing Γ satisfies
Property 2 by construction. In order to prove that Γ satisfies Property 3, we
have to prove that, for every vertex ui, with i ≥ 1, and for every point p in
W (p∗), d(u0, p) < d(ui, p). Angle p̂p∗pi is at least β + (π

2 − α
4), which is more

than π/2 (see Fig. 3.3 (b)). It follows that segment ppi is the longest side of
triangle (p, p∗, pi), thus proving that d(u0, p) < d(ui, p). For the same reason
d(u0, ui) < d(p, ui), hence proving Property 4.

Now we discuss the inductive case, that is, suppose that µ is a node of T
having k children. We show how to construct a drawing Γ of S(µ) satisfying
Properties 1–4 with parameters α and β. Refer to Fig. 3.4. Denote by (r(µ) =

i

i

“main” — 2009/2/23 — 18:41 — page 50 — #60
i

i

i

i

i

i

50 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

ul+1 uj
ul

p*β

α/4

p

pi

(a) (b)

Figure 3.3: (a) Γ satisfies Property 1. (b) Γ satisfies Properties 3 and 4.

u0, u1, . . . , uh−1) the block of S corresponding to µ. Remember that h ≥ 2 and
that, if h = 2 the block is an edge, otherwise it is a triangulated cycle. Consider
any circumference C with center c. Let p∗ be the point of C with smallest y-
coordinate. Consider the wedges W (p∗, α) and W (p∗, α/2) with angles α and
α/2, respectively, incident to p∗ and such that the diameter of C through p∗

is their bisector. Region R(Γ) is the intersection region of W (p∗, α) with the
closed circle delimited by C.

0
=p

p*

c

β β

α

p’
a p’=pb h

A

3α/2

Figure 3.4: Construction of a drawing Γ in the inductive case of the algorithm.

i

i

“main” — 2009/2/23 — 18:41 — page 51 — #61
i

i

i

i

i

i

3.3. GREEDY DRAWINGS OF BINARY CACTUSES 51

Consider a circumference C ′ with center c intersecting the two lines delim-

iting W (p∗, α/2) in two points p′a and p′b such that angle p̂′acp′b = 3α/2. It is
not difficult to see that such a circumference always exists. Denote by A the
arc of C ′ delimited by p′a and p′b and farther from p∗. Consider h + 1 points
p0, p1, . . . , ph on A such that p0 = p′a and ph = p′b, and the distance between
any two consecutive points pi and pi+1 is the same. Observe that, for each
i = 0, 1, . . . , h − 1, angle p̂icpi+1 = 3α

2h .
First, we draw the block of S corresponding to µ. As in the base case,

place vertex u0 = r(µ) at p∗ and, for i = 1, 2, . . . , h − 1, place ui at point
pi. Recursively construct a drawing Γi of S(µi) satisfying Properties 1–4 with
αi = 3α

16h and βi = 3α
8h .

We are going to place each drawing Γi of S(µi) together with the con-
structed drawing of the block of S corresponding to µ, thus obtaining a drawing
Γ of S(µ). Notice that not all the h nodes ui are cutvertices of S. However,
with a slight abuse of notation, we suppose that block S(µi) has to be placed
at node ui. Refer to Fig 3.5. Consider point pi and its “neighbors” pi−1 and
pi+1, for i = 1, 2, . . . , h − 1. Consider lines t(pi−1) and t(pi+1) tangent to C ′

in pi−1 and pi+1, respectively. Further, consider circumferences Ci−1 and Ci+1

centered at pi−1 and pi+1, respectively, and passing through pi. Moreover,
consider lines hi−1 and hi+1 tangent to Ci−1 and Ci+1 in pi, respectively. For
each point pi, with i = 0, . . . , h, consider two half-lines ti1 and ti2 incident to pi,
forming angles βi = 3α

8h with t(pi), and both lying in the half-plane delimited
by t(pi) and containing C ′. Denote by W (pi) the wedge delimited by ti1 and
by ti2, and containing c.

We will place Γi inside (a part of) the bounded region Ri intersection of: (i)
the half-plane H i−1 delimited by hi−1 and not containing Ci−1, (ii) the half-
plane H i+1 delimited by hi+1 and not containing Ci+1, (iii) wedge W (pi−1),
(iv) wedge W (pi+1), and (v) the circle delimited by C.

First, we prove that Ri is “large enough” to contain Γi, namely we claim
that there exists an isosceles triangle T that has an angle larger than αi = 3α

16h
incident to pi and that is completely contained in Ri. Such a triangle will
have the further feature that the angle incident to pi is bisected by the line li
through c and pi.

Lines hi−1 and hi+1 are both passing through pi; we prove that they have
different slopes and we compute the angles that they form at pi. Refer to
Fig. 3.6. Line hi−1 forms an angle of π/2 with segment pi−1pi; angle ̂cpipi−1 is
equal to π

2 − 3α
4h , since p̂icpi−1 = 3α

2h and since triangle (pi−1, c, pi) is isosceles.
Hence, the angle delimited by hi−1 and li is π − π/2 − (π

2 − 3α
4h) = 3α

4h . Anal-

i

i

“main” — 2009/2/23 — 18:41 — page 52 — #62
i

i

i

i

i

i

52 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

pi

li

pi+1pi-1

βi

hi-1

to c

hi+1

Ci-1 Ci+1

t(pi-1)
t(pi+1)

t1
i+1

t2
i-1

C

C’

to cto c

βi

Figure 3.5: Lines and circumferences in the construction of Γ. The shaded
areas represent angles βi and region Ri.

ogously, the angle between li and hi+1 is 3α
4h . Hence, the intersection of H i−1

and H i+1 is a wedge W (pi, hi−1, hi+1) centered at pi, with an angle of 3α
2h , and

bisected by li.
We claim that each of ti−1

2 and ti+1
1 cuts the border of W (pi, hi−1, hi+1)

twice. The angle between t(pi−1) and pi−1pi is 3α
4h , namely the angle between

t(pi−1) and cpi−1 is π/2, and angle ̂cpi−1pi is π
2 − 3α

4h . The angle between t(pi−1)

and ti−1
2 is βi = 3α

8h , by construction. Hence, the angle between ti−1
2 and pi−1pi

is 3α
4h − 3α

8h = 3α
8h . Since the slope of both hi−1 and hi+1 with respect to pi−1pi

is greater than 3α
8h and less than π − 3α

8h , namely the slope of hi−1 and hi+1

with respect to pi−1pi is π
2 and π

2 + 3α
2h , respectively (notice that α ≤ π/4 and

h ≥ 2), then ti−1
2 intersects both hi−1 and hi+1. It can be analogously proved

that ti+1
1 intersects hi−1 and hi+1. It follows that the intersection of H i−1,

H i+1, W (pi−1), and W (pi+1) contains a triangle T as required by the claim
(notice that the angle of T incident to pi is 3α

2h). Considering circumference
C does not invalidate the existence of T , since C is concentric with C ′ and
has a bigger radius, hence T can always be chosen sufficiently small so that it
completely lies inside C.

Now Γi can be placed inside T , by scaling Γi down till it fits inside T (see

i

i

“main” — 2009/2/23 — 18:41 — page 53 — #63
i

i

i

i

i

i

3.3. GREEDY DRAWINGS OF BINARY CACTUSES 53

pi

c

pi-1

t(pi-1)

3α/2h

π/2−

3α/4h

3α
/8
h3α
/8
h

3α/4h

3α/4h

π/2−

3α/4h

hi-1

li

Figure 3.6: The angle between li and hi−1.

Fig. 3.7 (a)). The scaling always allows to place Γi inside T , since the angle of
R(Γi) incident to p is αi = 3α

16h , that is smaller than the angle of T incident to
pi, which is 3α

2h . In particular, we choose to place Γi inside T so that li bisects
the angle of R(Γi) incident to pi. This concludes the construction of Γ.

Consider the tangent t(p∗) to C in p∗. Consider two half-lines l∗1 and l∗2
incident to p∗, lying on the opposite part of C with respect to t(p∗), and
forming angles equal to β with t(p∗). Denote by W (p∗) the wedge centered
at p∗, delimited by l∗1 and l∗2 , and not containing C. We have the following
lemmata.

Lemma 3.1 The closed wedge W (p∗) is completely contained inside the open
wedge W (pi), for each i = 0, 1, . . . , h.

Proof: Consider any point pi. First, observe that pi is contained in the
wedge W (p∗) obtained by reflecting W (p∗) with respect to t(p∗). Namely,
pi is contained in W (p∗, α/2), which is in turn contained inside W (p∗), since
α/2 < π − 2β, as a consequence of the fact that π/4 > β ≥ α. Hence, in order
to prove the lemma, it suffices to show that the absolute value of the slope of
each of ti1 and ti2 is less than the absolute value of the slope of the half-lines

i

i

“main” — 2009/2/23 — 18:41 — page 54 — #64
i

i

i

i

i

i

54 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

pi

li

t1
i+1

hi-1 hi+1

t2
i-1

C

C’

p0
αa

t1
0

t2
0
βi

βi ’C C

c

p*
*

W(p)*

W(p)*

β β
ββ

h(c)

l1 *l2

h(p0)

t(p)*

t(p0)

(a) (b)

Figure 3.7: (a) Placement of Γ inside Ri. Region R(Γ) is the darkest, triangle
T is composed of R(Γ) and of the second darkest region, Ri is composed of T
and of the light shaded region. (b) Illustration for the proof of Lemma 3.1.

delimiting W (p∗). Such latter half-lines form angles of β, by construction, with
the x-axis.

The slope of ti1 can be computed by summing up the slope of ti1 with
respect to t(pi) with the slope of t(pi). The former slope is equal to βi = 3α

8h ,
by construction. Recalling that t(pi) is the tangent to A in pi, the slope of
t(pi) is bounded by the maximum among the slopes of the tangents to points
of A. Such a maximum is clearly achieved at p0 and ph and is equal to 3α/4.
Namely, refer to Fig. 3.7 (b) and consider the horizontal lines h(c) and h(p0)
through c and p0, respectively, that are traversed by radius (c, p0). Such a
radius forms angles of π/2 with t(p0); hence, the slope of t(p0), that is equal
to the angle between t(p0) and h(p0), is π/2 minus the angle αa between h(p0)
and (c, p0). Angle αa is the alternate interior of the angle between h(c) and
(c, p0), which is complementary to the half of angle p̂0cph, which is equal to
3α/2, by construction. Hence, αa is equal to π

2 − 3α
4 and the slope of t(p0) is

3α
4 .

It follows that the absolute value of the slope of ti
1 is at most 3α

4 + 3α
8h , which

is less than α, since h ≥ 2, and hence less than β. Analogously, the absolute
value of the slope of ti2 is less than β, and the lemma follows. 2

Corollary 3.1 Point p∗ is inside the open wedge W (pi), for each i = 1, 2, . . . , h.

i

i

“main” — 2009/2/23 — 18:41 — page 55 — #65
i

i

i

i

i

i

3.3. GREEDY DRAWINGS OF BINARY CACTUSES 55

Lemma 3.2 For every pair of indices i and j such that 1 ≤ i < j ≤ k,
the drawing of S(µj) is contained inside W (pi) and the drawing of S(µi) is
contained inside W (pj).

p*

p
h

p
0

Figure 3.8: Illustration for the proof of Lemma 3.2.

Proof: We prove that the drawing of S(µj) is contained inside W (pi), the
proof that the drawing of S(µi) is contained inside W (pj) being analogous.
If S(µi) and S(µj) are consecutive, i.e., the cutvertices parents of S(µi) and
S(µj) are ui and uj and j = i + 1, then the statement is true by construction.
Suppose S(µi) and S(µj) are not consecutive. Refer to Fig. 3.8. Consider the
triangle Ti delimited by (p∗, pi), by ti2, and by the line through p∗ and ph. Such
a triangle contains the triangle delimited by (p∗, pi+1), by ti+1

2 , and by the line
through p∗ and ph, which in turn contains the triangle delimited by (p∗, pi+2),
by ti+2

2 , and by the line through p∗ and p′b. The repetition of such an argument

shows that Ti contains the triangle Tj−1 delimited by (p∗, pj−1), by tj−1
2 , and

by the line through p∗ and ph. By construction, Γj lies inside Tj−1, and the
lemma follows. 2

We prove that the constructed drawing Γ satisfies Properties 1–4.

Property 1. We show that, for every pair of vertices w1 and w2, there exists
a distance-decreasing path between w1 and w2 in Γ. If both w1 and w2

are internal to the same graph S(µi), the property follows by induction.
If w2 = r(µ) and w1 is a node in S(µi), then, by Property 3, there exists
a path (w1 = v0, v1, . . . , vl = r(µi)) from w1 to r(µi) such that, for every

i

i

“main” — 2009/2/23 — 18:41 — page 56 — #66
i

i

i

i

i

i

56 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

point p in W (pi), d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l. By Corol-
lary 3.1, p∗ is contained inside W (pi). Hence, path (w1 = v0, v1, . . . , vl =
r(µi), w2 = r(µ)) is a distance-decreasing path between w1 and w2. If
w1 = r(µ) and w2 is a node in S(µi), then, by induction, there exists a
distance-decreasing path (v1 = r(µi), v2, . . . , vl = w2). By Corollary 3.1,
p∗ is contained inside W (pi). Hence, by Property 4, d(pi, w2) < d(p∗, w2).
It follows that path (w1 = r(µ), v1 = r(µi), v2, . . . , vl = w2) is a distance-
decreasing path between w1 and w2. If w1 belongs to S(µi) and w2

belongs to S(µj) then suppose, w.l.o.g., that j > i. We show the ex-
istence of a distance-decreasing path P in Γ, composed of three sub-
paths P1,P2, and P3. By Property 3, Γj is such that there exists a
path P1 = (w1 = v0, v1, . . . , vl = r(µi)) from w1 to r(µi) such that,
for every point p in W (pi), d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l. By
Lemma 3.2, drawing Γj , and hence vertex w2, is contained inside W (pi).
Hence, path P1 decreases the distance from w2 at every vertex. Path
P2 = (ui = r(µi), ui+1, . . . , uj = r(µj)) is easily shown to decrease the
distance from w2 at every vertex. In fact, for each l = i, i + 1, . . . , j − 2,
angle ̂ulul+1uj is greater than π/2, because triangle (ul, ul+1, uj) is in-
scribed in less than half a circumference with ul+1 as middle point. Angle

̂ulul+1w2 is strictly greater than ̂ulul+1uj , hence it is the biggest angle in
triangle (ul, ul+1, w2), which implies d(ul+1, w2) < d(ul, w2). By induc-
tion, there exists a distance-decreasing path P3 from r(µj) to w2, thus
obtaining a distance-decreasing path P from w1 to w2.

Property 2. Such a property holds for Γ by construction.

Property 3. Consider any node v in S(µi) and consider any point p internal to
W (p∗). By Lemma 3.1, p is internal to W (pi), as well. By induction, there
exists a path (v = v0, v1, . . . , vl = r(µi)) such that d(vj , p) < d(vj−1, p),
for j = 1, 2, . . . , l. Hence, path (v = v0, v1, . . . , vl = r(µi), vl+1 = r(µ)) is
a path such that d(vj , p) < d(vj−1, p), for j = 1, 2, . . . , l + 1, if and only

if d(r(µ), p) < d(r(µi), p). Angle ̂pp∗r(µi) is at least β + (π
2 − α

2), which
is more than π/2. It follows that (p, r(µi)) is the longest side of triangle
(p, p∗, r(µi)), thus proving that d(p, p∗) < d(p, r(µi)) and that Property
3 holds for Γ.

Property 4. By Property 2, v is contained inside the wedge W (p∗, α) with
angle α, centered at p∗, and bisected by the line through p∗ and c. Con-
sider any point p inside W (p∗). Angle p̂p∗v is at least β +(π

2 − α
2), which

is more than π/2. It follows that (p, v) is the longest side of triangle

i

i

“main” — 2009/2/23 — 18:41 — page 57 — #67
i

i

i

i

i

i

3.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 57

(p, p∗, v), thus proving that d(p, v) < d(p∗, v) and that Property 4 holds
for Γ.

When the induction is performed with µ equal to the root ν of the BC-tree
T , we obtain a greedy drawing of S, thus proving the following:

Theorem 3.2 There exists an algorithm that constructs a greedy drawing of
any triangulated binary cactus.

3.4 Spanning a Triangulation with a Binary Cactus

In this section we prove the following theorem:

Theorem 3.3 Given a triangulation G, there exists a spanning subgraph S of
G such that S is a triangulated binary cactus.

Consider any triangulation G. We are going to construct a binary cactus S
spanning G. First, we outline the algorithm to construct S. Such an algorithm
has several steps. At the first step, we choose a vertex u incident to the outer
face of G and we construct a triangulated cycle CT composed of u and of
all its neighbors. We remove u and its incident edges from G, obtaining a
biconnected internally-triangulated plane graph G∗. At the beginning of each
step after the first one, we suppose to have already constructed a binary cactus
S whose vertices are a subset of the vertices of G (at the beginning of the
second step, S coincides with CT), and we assume to have a set G of subgraphs
of G (at the beginning of the second step, G∗ is the only graph in G). Each
of such subgraphs is biconnected, internally-triangulated, has an outer face
whose vertices already belong to S, and has internal vertices. All such internal
vertices do not belong to S and each vertex of G not belonging to S is internal
to a graph in G. Only one of the graphs in G may have chords. During each
step, we perform the following two actions:

• Action 1. We partition the only graph GC of G with chords, if any,
into several biconnected internally-triangulated chordless plane graphs;
we remove GC from G and we add to G all graphs with internal vertices
into which GC has been partitioned.

• Action 2. We choose a graph Gi from G, we choose a vertex u incident to
the outer face of Gi and already belonging to exactly one block of S, and
we add to S a block composed of u and of all its neighbors internal to

i

i

“main” — 2009/2/23 — 18:41 — page 58 — #68
i

i

i

i

i

i

58 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

Gi. We remove u and its incident edges from Gi, obtaining a biconnected
internally-triangulated plane graph G∗

i . We remove Gi from G and we
add G∗

i to G.

The algorithm stops when G is empty, that is, when all the vertices of G
have been spanned by S. An example of application of the algorithm is shown
in the Appendix.

Now we give the details of the above outlined algorithm. At the first step
of the algorithm (see Fig. 3.9), choose any vertex u incident to the outer face
of G. Consider all the neighbors (u1, u2, . . . , ul) of u in clockwise order around
it. Since G is a triangulation, C = (u, u1, u2, . . . , ul) is a cycle. Let CT be
the triangulated cycle obtained by adding to C the edges connecting u to its
neighbors. Let S = CT . Remove vertex u and all its incident edges from G,
obtaining a biconnected internally-triangulated graph G∗.

u1

u

u2

u3
G*

ul

Figure 3.9: First step of the algorithm.

If G∗ has no internal vertex, then all the vertices of G belong to S and
we have the desired binary cactus spanning G. Otherwise, G∗ has internal
vertices. Let G = {G∗}.

At each step of the algorithm, for each graph Gi ∈ G, consider the vertices
incident to f(Gi). Each of such vertices can be either forbidden for Gi or
assigned to Gi. A vertex w is forbidden for Gi if the choice of not introducing
in S any new block incident to w and spanning a subgraph of Gi has been
done. Conversely, a vertex w is assigned to Gi if a new block incident to w
and spanning a subgraph of Gi could be introduced in S. For example, w is
forbidden for Gi if two blocks of S already exist sharing w as a cutvertex. At
the end of the first step of the algorithm, choose any two vertices incident to
f(G∗) as the only forbidden vertices for G∗. All the other vertices incident to
f(G∗) are assigned to G∗.

i

i

“main” — 2009/2/23 — 18:41 — page 59 — #69
i

i

i

i

i

i

3.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 59

At the beginning of the i-th step, with i ≥ 2, we assume that each of the
following holds:

• Invariant A: Graph S is a binary cactus spanning all and only the vertices
that are not internal to any graph in G.

• Invariant B: Each graph in G is biconnected, internally-triangulated, and
has internal vertices.

• Invariant C: Only one of the graphs in G may have chords.

• Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph
Gj ∈ G, with i 6= j.

• Invariant E: For each graph Gi ∈ G, all the vertices incident to f(Gi) are
assigned to Gi, except for two vertices, which are forbidden.

• Invariant F: Each vertex v incident to the outer face of a graph in G is
assigned to at most one graph Gi ∈ G. The same vertex is forbidden for
all graphs Gj ∈ G such that v is incident to f(Gj) and i 6= j.

• Invariant G: Each vertex assigned to a graph in G belongs to exactly one
block of S.

Such invariants clearly hold after the first step of the algorithm. During
each step of the algorithm after the first one, we perform the following two
actions.

Action 1: If G does not contain any graph with chords, go to Action 2.
Otherwise, by Invariant C, only one of the graphs in G, say GC , may have
chords. We use the chords of GC to partition it into k biconnected, internally-
triangulated, chordless graphs Gj

C , with j = 1, 2, . . . , k.
Consider the subgraph OC of GC induced by the vertices incident to f(GC).

Clearly, OC is a biconnected outerplane graph. To each internal face f of OC

delimited by a cycle c, a graph Gj
C is associated such that Gj

C is the subgraph
of GC induced by the vertices of c or inside c. We are going to replace GC

with graphs Gj
C in G. However, we first show how to decide which vertices

incident to the outer face of a graph Gj
C are assigned to Gj

C and which vertices

are forbidden for Gj
C . Since each graph Gj

C is univocally associated with a face

of OC , namely the face of OC delimited by the cycle that delimits f(Gj
C), in

the following we assign vertices to the faces of OC and we forbid vertices for
the faces of OC , meaning that if a vertex is assigned to (forbidden for) a face

i

i

“main” — 2009/2/23 — 18:41 — page 60 — #70
i

i

i

i

i

i

60 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

of OC delimited by a cycle c then it is assigned to (resp. forbidden for) graph
Gj

C whose outer face is delimited by c.
We want to assign the vertices incident to f(OC) to faces of OC so that:

• Property 1: No forbidden vertex is assigned to any face of OC ;

• Property 2: No vertex is assigned to more than one face of OC ;

• Property 3: Each face of OC has exactly two incident vertices which are
forbidden for it; all the other vertices of the face are assigned to it.

By Invariant E, GC has two forbidden vertices. We construct an assignment
of vertices to the faces of OC in some steps. Let p be the number of chords
of OC . Consider the Hamiltonian cycle O0

C of OC , and assign all the vertices
of O0

C , but for the two forbidden vertices, to the only internal face of O0
C . At

the i-th step, 1 ≤ i ≤ p, we insert into Oi−1
C a chord of OC , obtaining a graph

Oi
C . This is done so that Properties 1–3 are satisfied by Oi

C (with Oi
C instead

of OC). After all p chords of OC have been inserted, Op
C = OC , and we have

an assignment of vertices to faces of OC satisfying Properties 1–3.
Properties 1–3 are clearly satisfied by the assignment of vertices to the faces

of O0
C . Inductively assume Properties 1–3 are satisfied by the assignment of

vertices to the faces of Oi−1
C . Let (ua, ub) be the chord that is inserted at the

i-th step. Chord (ua, ub) partitions a face f of Oi−1
C into two faces f1 and f2.

By Property 3, two vertices u∗
1 and u∗

2 incident to f are forbidden for it and
all other vertices incident to f are assigned to it. For each face of Oi

C different
from f1 and f2, assign and forbid vertices as in the same face in Oi−1

C . Assign
and forbid vertices for f1 and f2 as follows:

• If vertices ua and ub are the same vertices of u∗
1 and u∗

2 (see Fig. 3.10),
assign to each of f1 and f2 all the vertices incident to it, except for ua and
ub. No forbidden vertex has been assigned to any face of Oi

C (Property
1). Vertices ua and ub have not been assigned to any face. All the vertices
assigned to f belong to exactly one of f1 and f2 and so they have been
assigned to exactly one face (Property 2). The only vertices of f1 (resp.
of f2) not assigned to it are ua and ub, while all the other vertices are
assigned to such a face (Property 3).

• If vertices ua and ub are both distinct from each of u∗
1 and u∗

2 and both
u∗

1 and u∗
2 are in the same of f1 and f2, say in f1 (see Fig. 3.11), assign

to f1 all the vertices incident to it, except for u∗
1 and u∗

2, and assign to f2

i

i

“main” — 2009/2/23 — 18:41 — page 61 — #71
i

i

i

i

i

i

3.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 61

u1*

u2*

f

u1*

u2*

f1

ua=

ub=

f2

(a) (b)

Figure 3.10: Vertices ua and ub are the same vertices of u∗
1 and u∗

2.

all the vertices incident to it, except for ua and ub. No forbidden vertex
has been assigned to any face of Oi

C (Property 1). Vertices ua and ub

have been assigned to exactly one face, namely f1. All the other vertices
assigned to f belong to exactly one of f1 and f2 and so they have been
assigned to exactly one face (Property 2). The only vertices of f1 (resp.
of f2) not assigned to it are u∗

1 and u∗
2 (resp. ua and ub), while all the

other vertices are assigned to such a face (Property 3).

u1*

u2*

f

u1*

u2*

f1
ua

ub

f2

(a) (b)

Figure 3.11: Vertices ua and ub are both distinct from each of u∗
1 and u∗

2 and
both u∗

1 and u∗
2 are in f1.

i

i

“main” — 2009/2/23 — 18:41 — page 62 — #72
i

i

i

i

i

i

62 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

• If vertices ua and ub are both distinct from each of u∗
1 and u∗

2 and one
of u∗

1 and u∗
2, say u∗

1, is in f1 while the other one, say u∗
2, is in f2 (see

Fig. 3.12), assign to f1 all the vertices incident to it, except for u∗
1 and

ua, and assign to f2 all the vertices incident to it, except for u∗
2 and ub.

No forbidden vertex has been assigned to any face of Oi
C (Property 1).

Vertices ua and ub have been assigned to exactly one face, namely f2 and
f1, respectively. All the other vertices assigned to f belong to exactly one
of f1 and f2 and so they have been assigned to exactly one face (Property
2). The only vertices of f1 (resp. of f2) not assigned to it are u∗

1 and ua

(resp. u∗
2 and ub), while all the other vertices are assigned to such a face

(Property 3).

u1*

u2*

f

u1*

u2*

f1

ua

ub

f2

(a) (b)

Figure 3.12: Vertices ua and ub are both distinct from each of u∗
1 and u∗

2, u∗
1 is

in f1, and u∗
2 is in f2.

• If one of the vertices u∗
1 and u∗

2 coincides with one of ua and ub, say u∗
1

coincides with ua, and the other one, say u∗
2, is in one of f1 and f2, say in

f1 (see Fig. 3.13), assign to f1 all the vertices incident to it, except for u∗
2

and ua, and assign to f2 all the vertices incident to it, except for ua and
ub. No forbidden vertex has been assigned to any face of Oi

C (Property
1). Vertex ua has not been assigned to any face and vertex ub has been
assigned to exactly one face, namely f1. All the other vertices assigned
to f belong to exactly one of f1 and f2 and so they have been assigned
to exactly one face (Property 2). The only vertices of f1 (resp. of f2)
not assigned to it are u∗

2 and ua (resp. ua and ub), while all the other
vertices are assigned to such a face (Property 3).

i

i

“main” — 2009/2/23 — 18:41 — page 63 — #73
i

i

i

i

i

i

3.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 63

u1*

u2*

f

u1*

u2*

f1

ua

ub

f2

ua=

(a) (b)

Figure 3.13: Vertex u∗
1 coincides with ua and vertex u∗

2 is in f1.

Graph GC is removed from G. All the graphs Gj
C having internal vertices

are added to G. We prove that Invariants A–G are satisfied after Action 1.

Invariant A: A vertex is internal to a graph in G after Action 1 if and only if
it is internal to a graph in G before Action 1. Since no block is added to
S during Action 1, then Invariant A holds after Action 1.

Invariant B: By construction, each graph Gj
C inserted into G after Action 1

has internal vertices. Further, Gj
C is the graph contained inside a simple

cycle of a biconnected internally triangulated plane graph, hence it is
biconnected and internally triangulated, as well, satisfying Invariant B.

Invariant C: By Invariant C, before Action 1 only graph GC may have chords
among the graphs in G. After Action 1, however, GC is replaced in
G by chordless graphs and hence no graph in G has chords, satisfying
Invariant C.

Invariant D: By Invariant D, each vertex that, before Action 1, is internal to
a graph Gi 6= GC in G does not belong to any graph Gj 6= Gi in G. Since

the set of vertices belonging to graphs Gj
C is a subset of the vertices of

GC , after Action 1 Invariant D holds for all vertices internal to a graph
Gi 6= Gj

C . An internal vertex of a graph Gj
C is an internal vertex of GC ,

as well, hence, by Invariant D, it does not belong to any graph that has
not been introduced in G during Action 1. It remains to prove that an
internal vertex of a graph Gj

C does not belong to any graph Gl
C , with

i

i

“main” — 2009/2/23 — 18:41 — page 64 — #74
i

i

i

i

i

i

64 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

l 6= j. By construction, the internal vertices of such graphs are inside
cycles corresponding to distinct faces of OC . Hence, an internal vertex
of Gj

C does not belong to Gl
C .

Invariant E: Invariant E holds for all graphs that are in G before Action 1 and
that are still in G after Action 1. By Property 3, each graph Gj

C inserted
into G after Action 1 satisfies Invariant E.

Invariant F: All vertices that, before Action 1, are assigned to a graph Gi 6=
GC in G satisfy Invariant F after Action 1. Namely, by Invariant F before
Action 1, if they are incident to f(GC), then they are forbidden for GC

and, by Property 1, they are not assigned to any graph Gj
C . By Invariant

F, before Action 1 each vertex w assigned to GC is not assigned to any
graph Gi 6= GC in G. After Action 1, GC is not a graph in G any longer,
hence w is not assigned to it. By Property 2, after Action 1 each vertex is
assigned to at most one graph Gj

C , hence Invariant F holds after Action 1.

Invariant G: Since no block is added to S during Action 1, and since the set
of vertices assigned to graphs in G after Action 1 is a subset of the set of
vertices assigned to graphs in G before Action 1, then Invariant G holds
after Action 1.

Action 2: After Action 1 all graphs in G are chordless. Notice that there
is at least one graph Gi in G, otherwise the algorithm would have stopped
before Action 1. By Invariant B, Gi has internal vertices. Choose any vertex
u that is incident to f(Gi) and that is assigned to Gi (see Fig. 3.14). By
the biconnectivity of Gi and by the fact that it has internal vertices, f(Gi)
has at least three vertices. Since each graph in G has at most two forbidden
vertices (by Invariant E), a vertex u assigned to Gi always exists. Consider
all the neighbors (u1, u2, . . . , ul) of u internal to Gi, in clockwise order around
u. Since G is biconnected, chordless, internally triangulated, and has internal
vertices, then l ≥ 1. If l = 1 then let CT be edge (u, u1). Otherwise, let CT be
the triangulated cycle obtained by adding to cycle (u, u1, u2, . . . , ul) the edges
connecting u to its neighbors. Add CT to S. Remove u and its incident edges
from Gi, obtaining a graph G∗

i . Assign to G∗
i all the vertices incident to f(G∗

i),
except for the two vertices that are forbidden for Gi. Remove Gi from G and
insert G∗

i , if it has internal vertices, into G.
We prove that Invariants A–G are satisfied after Action 2.

Invariant A: The block (u, u1, u2, . . . , ul) added to S is either an edge or a
triangulated cycle. By Invariant A, before Action 2 all vertices internal

i

i

“main” — 2009/2/23 — 18:41 — page 65 — #75
i

i

i

i

i

i

3.4. SPANNING A TRIANGULATION WITH A BINARY CACTUS 65

u1

u

u2

u3

G*

ul

i

Figure 3.14: Action 2 of a step of the algorithm.

to a graph in G are not spanned by S. Further, by Invariant G, before
Action 2 vertex u belongs to exactly one block of S. It follows that S
is still a binary cactus after Action 2. Before Action 2, S spans all and
only the vertices that are not internal to graphs in G. The only vertices
that are internal to a graph in G before Action 2 and that are incident
to the outer face of a graph in G after Action 2, are u1, u2, . . . , ul, which
are spanned by S after Action 2. Hence, S spans all vertices of G that
are not internal to a graph in G. Before Action 2, no internal vertex of a
graph in G is spanned by S. The vertices which are added to S during
Action 2 are incident to f(G∗

i), hence, by Invariant D to be proved below,
they are not internal to any graph in G after Action 2. Hence, S does not
span vertices of G that are internal to a graph in G satisfying Invariant
A.

Invariant B: By construction, G∗
i is the only graph inserted into G after Ac-

tion 2. However, G∗
i is biconnected and internally triangulated, since it is

obtained from a graph Gi that, by Invariant B before Action 2, is bicon-
nected, internally triangulated, chordless, and has internal vertices, by
removing a vertex incident to f(Gi). Further, G∗

i has internal vertices,
otherwise it would not have been inserted into G. Hence, Invariant B is
satisfied after Action 2.

Invariant C: Before Action 2, all graphs in G have no chord. At most one
graph, G∗

i , is inserted into G after Action 2, hence Invariant C is still
satisfied.

Invariant D: By Invariant D, before Action 2 no internal vertex of a graph
Gl 6= Gi in G belongs to a graph Gj 6= Gl in G. Since the vertices of G∗

i

i

i

“main” — 2009/2/23 — 18:41 — page 66 — #76
i

i

i

i

i

i

66 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

are a subset of the vertices of Gi then, after Action 2, Invariant D holds
for each internal vertex of Gl. Further, the internal vertices of G∗

i are a
subset of the internal vertices of Gi and hence, after Action 2, Invariant
D holds also for each internal vertex of G∗

i .

Invariant E: Invariant E holds for all the graphs that are in G before Action
2 and that are still in G after Action 2. By construction, all the vertices
incident to the outer face of G∗

i , except for the two forbidden vertices of
Gi, are assigned to G∗

i , satisfying Invariant E.

Invariant F: The only vertices that are assigned to a graph in G during Action
2 are the vertices incident to the outer face of G∗

i . All the vertices internal
to Gi before Action 2 and incident to the outer face of G∗

i after Action
2 are assigned only to G∗

i , namely if before Action 2 one of such vertices
is assigned to a graph Gj 6= Gi, then such a vertex would be incident to
the outer face of Gj , contradicting Invariant D. All the vertices that are
assigned to Gi before Action 2 and that are incident to the outer face of
G∗

i after Action 2, are assigned only to Gi before Action 2, by Invariant
F, and hence they are assigned only to G∗

i after Action 2. All the vertices
that are assigned to a graph different from Gi are such that, if they are
incident to the outer face of Gi, then they are forbidden for it. Since all
the vertices forbidden for Gi are forbidden for G∗

i , then Invariant F holds
for such vertices, as well.

Invariant G: The block added to S after Action 2 spans only vertices internal
to Gi and vertex u. Hence, all the vertices assigned to a graph in G and
not belonging to Gi are still spanned by a single block of S. All the
vertices incident to the outer face of Gi, except for u, are not spanned
by the block added during Action 2. All the vertices internal to Gi and
assigned to G∗

i are spanned by the only block added during Action 2.
Finally, after Action 2, vertex u is not assigned to any graph in G any
longer.

When the algorithm stops, i.e., when there is no graph in G, by Invari-
ant A graph S is a binary cactus spanning all vertices of G, hence proving
Theorem 3.3.

i

i

“main” — 2009/2/23 — 18:41 — page 67 — #77
i

i

i

i

i

i

3.5. EXTENSION TO TRICONNECTED PLANAR GRAPHS 67

3.5 Extension to Triconnected Planar Graphs

In this section, we show how slight modifications of the two main arguments
(see Sect. 3.3 and Sect. 3.4) used to prove that every triangulation has a greedy
drawing allow to prove Conjecture 3.1. First, we show how to construct a
greedy drawing of any non-triangulated binary cactus, that is a connected graph
such that: (i) the block associated with each B-node of T is either an edge or
a simple cycle; and (ii) every cutvertex is shared by exactly two blocks of S.
Second, we show that a triconnected planar graph can always be spanned by a
non-triangulated binary cactus. Notice that a non-triangulated binary cactus
is easily obtained from a triangulated binary cactus by removing the edges
internal to the triangulated cycles.

It is not difficult to argue that the algorithm shown in Sect. 3.3 also con-
structs greedy drawings of any non-triangulated binary cactus S. More specif-
ically, construct the BC-tree T of S; consider each block (r(µ) = u0, u1, . . . ,
uh−1) corresponding to a B-node µ of T and insert a dummy edge between r(µ)
and each node ui, with 1 ≤ i ≤ h − 2; the resulting graph S ′ is a triangulated
binary cactus; apply the algorithm described in Sect. 3.3 to construct a greedy
drawing Γ′ of S′; finally, remove dummy edges from Γ′, obtaining a drawing Γ
of S.

We claim that Γ is a greedy drawing. Notice that the validity of Lem-
mata 3.1 and 3.2 only depends on the angles of the geometric construction.
Hence, such Lemmata hold for Γ. Then, it is enough to prove that at each step
of the induction Γ satisfies Properties 1–4 described in Sect. 3.3.

Actually, Property 2 and Property 4 are trivially verified, since they only
depend on the angles of the construction.

The proof of Property 1 can be conduced analogously to the one presented
in Sect. 3.3, namely by proving that, for every pair of vertices w1 and w2, there
exists a distance-decreasing path between them. However, the case in which
the distance-decreasing path contains edge (ui, r(µ)), for some 2 ≤ i ≤ h − 2,
deserves an explicit discussion, because such an edge is no longer an edge of
the graph. Observe that it can be supposed that one out of w1 and w2 is r(µ),
because in all the other cases the distance-decreasing path between w1 and w2

does not contain (ui, r(µ)).
First, suppose that the path ends at r(µ), i.e., w2 = r(µ). Edge (ui, r(µ))

can be replaced either by path (ui, ui−1, . . . , u1, u0), if i ≤ h/2, or by path
(ui, ui+1, . . . , uh−1, u0), if i ≥ h/2, still leaving the path distance-decreasing.
In fact (see Fig. 3.15 (a)), denote by p′ the intersection point between C ′

and segment cp∗ and suppose that i ≥ h/2, the case in which i ≤ h/2 being

i

i

“main” — 2009/2/23 — 18:41 — page 68 — #78
i

i

i

i

i

i

68 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

analogous; angle ̂uiui+1p′ is greater than or equal to π/2 because triangle
(ui, ui+1, p

′) is inscribed in no more than half a circumference with ui+1 as

middle point; then, angle ̂uiui+1p∗ is also greater than π/2 because it is strictly

greater than ̂uiui+1p′; hence, p∗ui is longer than p∗ui+1; it follows that, when
traversing edge (ui, ui+1), the path decreases its distance from the point p∗

where r(µ) is drawn.
Second, suppose that the path starts at r(µ), i.e., w1 = r(µ). Edge (ui, r(µ))

can be replaced either by path (ui, ui−1, . . . , u1, u0), if i ≤ h/2, or by path
(ui, ui+1, . . . , uh−1, u0), if i ≥ h/2, still leaving the path distance-decreasing.
In fact, suppose that i ≥ h/2, the case in which i ≤ h/2 being analogous; as in
the previous case, edge (r(µ), uh−1) can be shown to decrease the distance from

w2 by considering triangle (r(µ), uh−1, w2) and arguing that angle ̂p∗uh−1w2

is greater than π/2. Further, path (uh−1, uh−2, . . . , ui+1, ui, . . . , w2) can be
shown to be distance-decreasing as in the proof of Property 1 in Sect. 3.3 (in
the case in which w1 belongs to S(µi) and w2 belongs to S(µj)).

In order to prove Property 3, it is sufficient to observe that an edge (ui, r(µ))
can be replaced either by path (ui, ui−1, . . . , u1, u0) or by path (ui, ui+1, . . . , uh−1,
u0), still obtaining a path in which at every step the distance from any point
in W (p∗) decreases. In fact (see Fig.3.15 (b)), denote by p any point inside
W (p∗), and denote by ai−1,i and ai,i+1 the axes of segments pi−1pi and pipi+1,
respectively. Since ai−1,i and ai,i+1 intersect in the center of C ′, we have
that p is either to the left of ai−1,i or to the right of ai,i+1, or both. Sup-
pose that p is to the right of ai,i+1, the other case being analogous. Then,
d(p, pi+1) < d(p, pi). The repetition of such an argument leads to prove that
path (ui, ui+1, . . . , uh−1, u0) decreases the distance from p at every vertex.

Since there exists an algorithm to construct greedy drawings of non-triangulated
binary cactuses, in order to prove Conjecture 3.1 it suffices to show that every
triconnected planar graph admits a non-triangulated binary cactus as a span-
ning subgraph. In the following we sketch how to extend the arguments of
Sect. 3.4 in order to prove such a result.

The algorithm to find a non-triangulated binary cactus spanning a given
triconnected planar graph G consists of several steps, in which the cactus is
constructed incrementally by adding to it one block at a time. As in the
triangulated case, at the beginning of each step after the first one, we suppose
to have already constructed a non-triangulated binary cactus S whose vertices
are a subset of the vertices of G, and we assume to have a set G of subgraphs
of G. Further, we assume that the following invariants hold:

• Invariant A: Graph S is a non-triangulated binary cactus spanning all

i

i

“main” — 2009/2/23 — 18:41 — page 69 — #79
i

i

i

i

i

i

3.5. EXTENSION TO TRICONNECTED PLANAR GRAPHS 69

p*

ui
ui+1

p’

p*

ui-1

a i+1
,i+
2

a i,
i+
1

a i
-1
,i

ui
ui+1
ui+2

p

c

(a) (b)

Figure 3.15: (a) When traversing edge (ui, ui+1), the distance from p∗ de-
creases. (b) When traversing edge (ui, ui+1), the distance from p decreases.

and only the vertices that are not internal to any graph in G.

• Invariant B: Each graph in G is biconnected and has internal vertices.

• Invariant C: At most one graph GC ∈ G has separating pairs. However,
if GC exists, each of its separating pairs has both vertices incident to
f(GC).

• Invariant D: No internal vertex of a graph Gi ∈ G belongs to a graph
Gj ∈ G, with i 6= j.

• Invariant E: For each graph Gi ∈ G, all the vertices incident to f(Gi) are
assigned to Gi, except for two vertices, which are forbidden.

• Invariant F: Each vertex v incident to the outer face of a graph in G is
assigned to at most one graph Gi ∈ G. The same vertex is forbidden for
all graphs Gj ∈ G such that v is incident to f(Gj) and i 6= j.

• Invariant G: Each vertex assigned to a graph in G belongs to exactly one
block of S.

i

i

“main” — 2009/2/23 — 18:41 — page 70 — #80
i

i

i

i

i

i

70 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

During each step, we perform two different actions. Action 1 removes from
G the only graph GC which contains separating pairs, if such a graph exists,
and partitions GC into a set of triconnected planar graphs Gi

C to be added to
G. Action 2 removes from a graph Gi ∈ G a vertex incident to f(Gi) and its
incident edges and creates a new block to be added to S. At the end of each
of the two actions, Invariants A–G are satisfied. The algorithm stops when G
is empty, that is, when all the vertices of G have been spanned by S.

A first difference between the triangulated and the non-triangulated case
concerns the first step of the algorithm. Namely, while in the triangulated case
we select one vertex v of the outer face and we initialize the cactus with the
block composed of v and of its neighbors, in this new algorithm we initialize
the cactus with the cycle delimiting the outer face.

Another important difference is in Action 1, that is, in the way the graph
GC which may be not triconnected is partitioned into subgraphs. In the tri-
angulated case, such a partition is done by considering the chords of f(GC).
In the non-triangulated case we have to more generally consider separating
pairs incident to f(GC), since we are not guaranteed that every two vertices
composing a separating pair are joined by an edge. Refer to Fig. 3.16. The
partition is performed by considering one separating pair at a time. At the
beginning of every step of such an algorithm, we have a partition of GC into
a set of graphs Gi. Each graph Gi which still has a separating pair is further
partitioned into two subgraphs G1

i and G2
i and each of the vertices incident

to f(Gi) is assigned to, or forbidden for, G1
i and G2

i by means of the same
algorithm described in Sect. 3.4. Hence, the assignment of the vertices to the
graphs G1

i and G2
i can be done so that the invariant that each of G1

i and G2
i

has at most two forbidden vertices is maintained. A dummy edge connecting
the two vertices of the separating pair has to be added incident to the outer
face of each of G1

i and G2
i , if it does not exist yet, in order to maintain the

invariant that all the vertices incident to the outer faces of G1
i and G2

i have
already been assigned to some block of S. Such a dummy edge is incident to
the outer faces of G1

i and G2
i and hence it will not be part of any new block

that is added to S in the following steps of the algorithm. It is easy to see
that the described procedure for partitioning a graph into subgraphs does not
introduce new separating pairs, does not introduce multiple edges, and hence
it terminates providing a set of triconnected plane graphs.

Concerning Action 2, while in the triangulated case at every step we add to
the cactus either an edge or a triangulated cycle, in the non-triangulated case
we add either an edge or a simple cycle. Such a cycle is obtained as follows
(see Fig. 3.17). As in the triangulated case, consider a vertex v incident to the

i

i

“main” — 2009/2/23 — 18:41 — page 71 — #81
i

i

i

i

i

i

3.5. EXTENSION TO TRICONNECTED PLANAR GRAPHS 71

(a)

(b)

Figure 3.16: Partition of a biconnected graph having all separating pairs inci-
dent to the outer face into a set of triconnected planar graphs.

outer face of a subgraph Gi ∈ G and such that v is assigned to Gi. Consider
the internal faces of Gi that are incident to v, except for the two faces f1 and
f2 sharing an edge with f(Gi). Add to S the cycle that passes through all
the vertices that are incident to such faces. Remove vertex v and its incident
edges from Gi, obtaining a new graph G∗

i . Consider the two vertices v′
1 and v′′1

adjacent to v and belonging to f1. A dummy edge (v′
1, v

′′
1) is added to G∗

1, if
it does not exist yet, incident to f(G∗

i). Analogously, consider the two vertices
v′2 and v′′2 adjacent to v and belonging to f2 and add a dummy edge (v′

2, v
′′
2)

to G∗
i , if it does not exist yet, incident to f(G∗

i). Such dummy edges allow
to maintain the invariant that all the vertices incident to f(G∗

i) have already
been assigned to some block of S.

We choose to present the algorithm for triangulations as the main contri-
bution of this chapter because a proof of Conjecture 3.1 was very recently and

i

i

“main” — 2009/2/23 — 18:41 — page 72 — #82
i

i

i

i

i

i

72 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

f1v1’

v2’

v2’’
v1’’

f2

iG*

v

Figure 3.17: Action 2. The thick cycle is added to S. The dotted edges
are inserted incident to f(G∗

i), in order to maintain the invariant that all the
vertices incident to f(G∗

i) have already been assigned to some block of S.

independently presented by Leighton and Moitra at FOCS’08 [LM08]. Surpris-
ingly, the approach used by Leighton and Moitra is exactly the same as ours.
In fact, in [LM08] the authors define a class of graphs, called Christmas cactus
graphs, which coincides with the class of non-triangulated binary cactuses; they
show an algorithm to construct greedy drawings of Christmas cactus graphs
and they show that every triconnected planar graph is spanned by a Christmas
cactus graph. However, the way such results are achieved differs from ours.
Such an issue is discussed below.

Concerning the geometric construction of greedy drawings of Christmas
cactus graphs, the algorithm by Leighton and Moitra is quite similar to ours,
even if a slightly different construction is used. Their algorithm places the
nodes of the graph on a set of concentric circumferences C0, C1, . . . , Ck, so
that the block corresponding to the root ν of the BC-tree T has its nodes
placed on C0 and each block µ at depth i (where the depth is meant to be the
number of B-nodes in the path from ν to µ in T) is placed on Ci, except for
the C-node parent of µ, which is placed on Ci−1. The difference between the
radii of two consecutive circumferences (and hence the length of the edges of
the drawing) exponentially decreases with i.

Concerning the construction of a Christmas cactus graph spanning a given
triconnected planar graph, we have the main differences between our techniques
and Leighton and Moitra’s ones. In fact, in order to show that every tricon-

i

i

“main” — 2009/2/23 — 18:41 — page 73 — #83
i

i

i

i

i

i

3.5. EXTENSION TO TRICONNECTED PLANAR GRAPHS 73

nected planar graph is spanned by a Christmas cactus graph, they use some
results from a paper [GR94] by Gao and Richter.

Define a circuit graph to be an ordered pair (G, C) such that: (1) G is
2-connected and C is a polygon in G; (2) there exists an embedding of G in the
plane such that C bounds a face; and (3) every separating pair of G has both
vertices belonging to C. Hence, circuit graphs are a superclass of triconnected
planar graphs. Define a chain of blocks Bi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,ki

to be a connected graph such that each block contains at most two cutvertices
and each cutvertex is shared by exactly two blocks.

In [GR94], Gao and Richter prove some strong structural results about cir-
cuit graphs, which are briefly described below. Gao and Richter prove that,
given a circuit graph (G, C) and given two vertices x and y belonging to C, there
exists a partition of V (G)−V (C) into subsets V1, V2, . . . , Vm and there exist dis-
tinct vertices v1, v2, . . . , vm ∈ V (C)−{x, y} such that: (i) the subgraph induced
by Vi∪{vi} is a chain of blocks Bi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,ki , and
(ii) vi ∈ V (Bi,1) \ {bi,1}.

Gao and Richter used this structural result in order to inductively prove
that every triconnected planar graph (in fact, every circuit graph) has a closed
2-walk, which is a walk on the graph starting and ending at the same vertex
and passing through each vertex of the graph at least once and at most twice.

The same result is used by Leighton and Moitra to inductively prove that,
for every circuit graph (G, C) (and hence every triconnected planar graph G),
a Christmas cactus graph S spanning G exists. In fact, the outline of their al-
gorithm for spanning G consists of the following steps: (i) use Gao and Richter’s
structural result to find chains of blocks Bi,1, bi,1, Bi,2, bi,2, . . . , Bi,ki−1, bi,ki−1, Bi,ki

spanning all vertices of G not in C; (ii) inductively compute Christmas cactus
graphs spanning each block Bi,j (which is in turn a circuit graph); (iii) glue the
Christmas cactus graphs spanning the blocks and C into a unique Christmas
cactus graph spanning G.

Our spanning algorithm, as discussed above, finds the spanning graph of
G without using Gao and Richter’s result. Moreover, once one has a non-
triangulated binary cactus spanning a triconnected planar graph G, it is easy
to find a closed 2-walk that passes only through the edges of such a spanning
graph. Hence, our algorithm for spanning triconnected planar graphs also
provides a proof that every triconnected planar graph has a closed 2-walk
alternative to Gao and Richter’s one.

It is interesting to observe that our algorithm for spanning a triconnected
planar graph with a non-triangulated binary cactus works more generally for
circuit graphs (as the Leighton and Moitra’s algorithm). In fact, in our algo-

i

i

“main” — 2009/2/23 — 18:41 — page 74 — #84
i

i

i

i

i

i

74 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

rithm, the only graph which may contain separating pairs before Action 1 is
actually a circuit graph, since all its separating pairs are incident to the outer
face. A spanning cactus for such a graph can hence be found with the same
algorithm described above.

3.6 Conclusions and Open Problems

In this chapter we have shown an algorithm for constructing greedy drawings of
triangulations. The algorithm relies on two main results. The first one states
that every triangulated binary cactus admits a greedy drawing. The second one
states that, for every triangulation G, there exists a triangulated binary cactus
S spanning G. Then, we have shown how to modify the algorithm provided for
triangulations in order to deal with triconnected planar graphs thus proving
a conjecture by Papadimitriou and Ratajczak [PR05], that was independently
settled by Leighton and Moitra [LM08].

Although greedy drawings have been proved to be feasible for large classes
of planar graphs (like triconnected planar graphs), a characterization of the
graphs that admit a greedy drawing seems still to be an elusive goal.

Open Problem 3.1 Characterize the class of (planar) graphs that admit a
greedy drawing.

The main drawback of our algorithm (and of Leighton and Moitra’s algo-
rithm, as well) is that it uses real coordinates, hence it constructs drawings
requiring exponential area once a finite resolution rule has been fixed. It would
be interesting to understand whether greedy drawings of every triconnected
planar graph can be constructed in polynomial area or whether such drawings
require exponential area instead.

Open Problem 3.2 Which are the asymptotic bounds for the area require-
ments of greedy drawings of triconnected planar graphs?

Clearly, the above problem seems to be interesting also when the class
of graphs considered is, e.g., the one of triangulations, or the one of greedy-
drawable trees.

A stronger version of the Papadimitriou and Ratajczak’s conjecture [PR05]
says that for every triconnected planar graph there exists a convex greedy
drawing. Such a conjecture has so far not been proved nor disproved, as far as
we know.

i

i

“main” — 2009/2/23 — 18:41 — page 75 — #85
i

i

i

i

i

i

3.6. CONCLUSIONS AND OPEN PROBLEMS 75

Open Problem 3.3 Does a convex greedy drawing of every triconnected pla-
nar graph exist?

i

i

“main” — 2009/2/23 — 18:41 — page 76 — #86
i

i

i

i

i

i

76 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

Appendix: Spanning a Triangulation with a Binary

Cactus, an Example of Application

(a) (b)

Figure 3.18: First step of the algorithm: (a) A triangulation G, from which a
vertex u and its neighbors are selected. The thick subgraph is the triangulated
cycle CT such that S = CT after Step 1. (b) Graph G∗ obtained from G by
removing u and its incident edges. Two arbitrarily chosen vertices (represented
by black circles) incident to f(G∗) are forbidden for G∗, all others (represented
by white circles) are assigned to it.

i

i

“main” — 2009/2/23 — 18:41 — page 77 — #87
i

i

i

i

i

i

3.6. CONCLUSIONS AND OPEN PROBLEMS 77

(a) (b) (c)

(d) (e) (f)

Figure 3.19: Step 2, Action 1. (a)–(c) Outerplane graphs O0
C , O1

C , and O2
C =

OC , and the assignment of vertices to their faces. (d)–(f) Graphs G1, G2,
and G3, where G = {G1, G2, G3}, obtained by partitioning G∗ in biconnected,
internally triangulated, chordless subgraphs.

(a) (b)

Figure 3.20: Step 2, Action 2. (a) Choice of a graph Gi in G (here Gi = G1)
and of a vertex u incident to f(Gi). The thick subgraph is the edge (u, u1)
added to S after Action 2 of Step 2. (b) Binary cactus S after Action 2 of Step
2. Set G is now {G2, G3}.

i

i

“main” — 2009/2/23 — 18:41 — page 78 — #88
i

i

i

i

i

i

78 CHAPTER 3. GREEDY DRAWINGS OF PLANAR GRAPHS

(a) (b)

Figure 3.21: Step 3, Action 2 (Action 1 of Step 3 is skipped because no graph
in G has chords). (a) Choice of a graph Gi in G (here Gi = G2) and of a vertex
u incident to f(Gi). The thick subgraph is the triangulated cycle CT added to
S after Step 3, Action 2. (b) Binary cactus after Action 2 of Step 3. Set G is
now {G3}.

(a) (b)

Figure 3.22: Step 4, Action 2 (Action 1 of Step 4 is skipped because no graph
in G has chords). (a) Choice of a graph Gi in G (here Gi = G3) and of a vertex
u incident to f(Gi). The thick subgraph is the triangulated cycle CT added to
S after Step 4, Action 2. (b) Binary cactus S after Action 2 of Step 4. Set G
is now {G∗

3}, where G∗
3 is the graph obtained from G3 by removing u and its

incident edges.

(a) (b)

Figure 3.23: Step 5, before Action 1. (a) The only graph GC = G∗
3 in G, with

its assigned vertices (white circles) and forbidden vertices (black circles). (b)
The outerplane graph OC induced by the vertices incident to f(GC).

i

i

“main” — 2009/2/23 — 18:41 — page 79 — #89
i

i

i

i

i

i

3.6. CONCLUSIONS AND OPEN PROBLEMS 79

(a) (b) (c) (d)

Figure 3.24: Step 5, Action 1. (a)–(d) Outerplane graphs O0
C , O1

C , O2
C ,

O3
C = OC , and the assignment of vertices to their faces. Partitioning GC

into subgraphs Gj
C produces only one graph, say G4, with internal vertices.

Hence, set G is now {G4}.

(a) (b)

(c)

Figure 3.25: Step 5, Action 2: (a) Choice of a graph Gi in G (here Gi = G4)
and of a vertex u incident to f(Gi). The thick subgraph is the edge (u, u1)
added to S after Step 5, Action 2. (b) Binary cactus S at the end of the
algorithm. (c) The obtained binary cactus S spans G.

i

i

“main” — 2009/2/23 — 18:41 — page 80 — #90
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 81 — #91
i

i

i

i

i

i

Part II

Series-Parallel Graphs and

Outerplanar Graphs

81

i

i

“main” — 2009/2/23 — 18:41 — page 82 — #92
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 83 — #93
i

i

i

i

i

i

Chapter 4

Straight-line and Poly-line

Drawings of Series-Parallel

Graphs

In this chapter1, we consider straight-line and poly-line drawings of series-
parallel graphs in small area. We give a sketch of the algorithms achieving
the best known area upper bounds at the state of the art and we prove that
there exist series-parallel graphs requiring Ω(n log n) area in any straight-line
or poly-line grid drawing. Such a result is achieved by proving that, in any
straight-line or poly-line drawing of K2,n, one side of the bounding box has
length Ω(n).

4.1 Introduction

As discussed in Chapter 2, every planar graph admits a planar straight-line
(or poly-line) drawing in an O(n) × O(n) grid, and such a bound is worst-
case optimal. Hence, it is natural to search for interesting subclasses of planar
graphs admitting subquadratic area drawings. However, several natural sub-
classes of planar graphs still contain graphs requiring quadratic area in any
grid embedding.

Every 4-connected plane graph whose outer face has at least four vertices
admits a straight-line drawing in bn

2 c ×
(
dn

2 e − 1
)

area. Such a result, which

1The contents of this chapter appeared in [Fra08a]. Thanks to Giuseppe Di Battista for
useful discussions.

83

i

i

“main” — 2009/2/23 — 18:41 — page 84 — #94
i

i

i

i

i

i

84
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

mainly relies on the construction of two canonical orderings partitioning the
graph into two subgraphs that are separately drawn with some visibility prop-
erties, was shown by Miura, Nakano, and Nishizeki in [MNN01], improving
upon previous results by He [He97]. Such a bound is tight, as shown by the
graph in Fig. 4.1 (a).

(a) (b) (c)

Figure 4.1: (a) A 4-connected plane graph requiring bn
2 c×

(
dn

2 e − 1
)

area in any
poly-line drawing. (b) A plane graph with degree 3 requiring quadratic area
in any poly-line drawing. (c) A plane graph with outerplanarity 2 requiring
quadratic area in any poly-line drawing.

Every bipartite plane graph admits a straight-line drawing in bn
2 c×

(
dn

2 e − 1
)

area. Such a result, that was shown by Biedl and Brandenburg in [BB05],
mainly relies on the previously cited result by Miura et al. [MNN01]. In fact,
Biedl and Brandenburg use the results of Biedl, Kant, and Kaufmann [BKK97]
to prove that every planar bipartite graph, except for the star graph, can be
augmented to a 4-connected plane graph by adding dummy edges to it; this
augmentation results in a plane graph whose outer face has three incident ver-
tices; however, an edge incident to the outer face can be removed, obtaining
a plane graph which is almost 4-connected (in [BB05], Biedl and Brandenburg
define such a graph as a plane graph that becomes 4-connected when adding
an edge incident to the outer face); finally, Biedl and Brandenburg show how
Miura et al.’s algorithm can be modified in order to work for almost 4-connected
plane graphs. The upper bound of Biedl and Brandenburg is tight, since there
exist planar bipartite graphs, very similar to the one shown by Miura et al.,
requiring bn

2 c ×
(
dn

2 e − 1
)

area in any poly-line drawing.
Graphs with degree at most three exist requiring quadratic area in any poly-

line/straight-line grid drawing and graphs with outerplanarity at most two exist
requiring quadratic area in any poly-line grid drawing. Refer to Figs. 4.1 (b)

i

i

“main” — 2009/2/23 — 18:41 — page 85 — #95
i

i

i

i

i

i

4.1. INTRODUCTION 85

and 4.1 (c) (the graphs shown in Fig. 4.1 (c) was presented by Biedl in [Bie05]).
Planar graphs exclude K5 and K3,3 as minors. Which are the classes of

graphs excluding graphs smaller than K5 and K3,3 as minors? The answer to
the previous question is a list of some of the most studied subclasses of planar
graphs. In fact, trees are the graphs excluding K3 as a minor, outerplanar
graphs are the graphs excluding K4 and K2,3 as minors, and series-parallel
graphs are the graphs excluding K4 as a minor. Such graph classes, apart from
having nice characterizations in terms of excluded minors, apart from having
nice alternative characterizations (as discussed in Chapter 1, trees are con-
nected acyclic graphs, outerplanar graphs admit planar embeddings in which
all the vertices are incident to the same face, and series-parallel graphs can
be defined inductively from a sequence of series and parallel compositions),
and apart of being of real interest for applications, do admit grid drawings in
subquadratic area.

The state of the art concerning small-area straight-line and poly-line grid
drawings of outerplanar graphs and trees will be discussed in Chapters 5 and 6,
respectively. In this chapter, we deal with series-parallel graphs, a class of
planar graphs that has been widely investigated in Graph Theory and Graph
Drawing (see, e.g., [VTL82, Epp92, BCB+94, Gia03, GDLW06]).

The main algorithmic result about the construction of small-area grid draw-
ings of series-parallel graphs is that every series-parallel graph admits a poly-
line drawing in O(n3/2) area. Such a bound was proved by Biedl in [Bie05].

In that paper, Biedl first introduces the concept of flat visibility represen-
tation of a series-parallel graph, that is, a grid drawing in which each vertex is
represented by a box with height equal to one and each edge is either a horizon-
tal or a vertical segment. Biedl shows how such representations can be turned
into poly-line drawings with asymptotically the same area (in fact, this is done
by means of an algorithm reminiscent of the Di Battista and Tamassia’s one
for turning visibility representations into poly-line drawings, see [DT88] and
Chapter 2). Then, Biedl shows how to construct a flat visibility representation
of any maximal series-parallel graph in small area.

This is done by means of an algorithm that constructs a drawing of a
series-parallel graph G in which the boxes representing the two terminals of
G are placed at the top-right corner and at the bottom-right corner of the
bounding-box of the drawing. Such an algorithm works by induction on the tree
of series/parallel compositions that construct G. At each step, the drawings
Γi,1, Γi,2, . . . , Γi,l of graphs Gi,1, Gi,2, . . . , Gi,l are placed together in order to
get a drawing of a graph Gi (at the last step of the algorithm, Gi ≡ G). The
way the drawings of graphs Gi are placed together varies according to several

i

i

“main” — 2009/2/23 — 18:41 — page 86 — #96
i

i

i

i

i

i

86
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

cases, namely, different construction are used if: (i) Gi,1, Gi,2, . . . , Gi,l are in
parallel composition; (ii) Gi,1, Gi,2 are in series composition (observe that by
the maximality of G, a graph obtained by series composition is composed by
exactly two subgraphs), and one of them is an edge; (iii) Gi,1, Gi,2 are in
series composition, none of them is an edge, and Gi,2 is composed by less
than 3

√
ni,1 + 1 subgraphs, where ni,1 is the number of vertices of Gi,1; and

(iv) Gi,1, Gi,2 are in series composition, none of them is an edge, and Gi,2 is
composed by more than 3

√
ni,1 + 1 subgraphs.

Let f be the fan-out of a series-parallel graph G, that is, the maximum
number of components in a parallel composition for the construction of G.
The described approach yields to the following two theorems:

Theorem 4.1 (Biedl [Bie05]) Any series-parallel graph has a poly-line draw-
ing in O(n3/2) area.

Theorem 4.2 (Biedl [Bie05]) Any series-parallel graph has a poly-line draw-
ing in O(fn log n) area.

While poly-line drawings can be realized in O(n3/2) area, no sub-quadratic
area upper bound is known in the case of straight-line drawings. In [Bie05],
Biedl also proved a Ω(n log n

log log n) area lower bound for straight-line drawings of
series-parallel graphs.

The Ω(n log n
log log n) area lower bound for straight-line drawings of series-parallel

graphs is a direct consequence of the results in [BCLO03], where Biedl, Chan,
and López-Ortiz, settling in the positive a conjecture of Felsner et al. [FLW03],
proved that no linear-area straight-line drawing of K2,n can achieve constant
aspect ratio. Fig. 4.2 shows a straight-line drawing of K2,n with linear area and
linear aspect ratio. Notice that a poly-line drawing of the complete bipartite
graph K2,n can be thought as a drawing of n paths that start and end at the
same two vertices, in the following denoted by a and b, and that do not share
any other vertex. In the following we will refer to such paths as to the paths of
K2,n. Precisely, Biedl, Chan, and López-Ortiz proved the following:

Theorem 4.3 (Biedl et al. [BCLO03]) Every planar straight-line drawing of
K2,n in a W × H grid with W ≥ H satisfies W log H ∈ Ω(n).

Corollary 4.1 (Biedl et al. [BCLO03]) Every planar straight-line drawing of
K2,n in a W × H grid satisfies max{W, H} ∈ Ω(n/ log n).

i

i

“main” — 2009/2/23 — 18:41 — page 87 — #97
i

i

i

i

i

i

4.1. INTRODUCTION 87

Figure 4.2: A straight-line drawing of K2,n with linear area and linear aspect
ratio.

Biedl et al. ask whether the log H factor in Theorem 4.3 can be eliminated
and whether the same lower bound holds even in the case of poly-line drawings.

In this chapter we answer both the questions in the affirmative. Namely,
we prove the following:

Theorem 4.4 Every planar straight-line or poly-line drawing of K2,n in a
W × H grid satisfies max{W, H} ∈ Ω(n).

As a main consequence of Theorem 4.4, we obtain a Ω(n log n) lower bound
on the area requirements of poly-line and straight-line drawings of series-
parallel graphs. We remark that no super-linear area lower bound was previ-
ously known for poly-line drawings of series-parallel graphs and that Ω(n log n

log log n)
was the best known area lower bound for straight-line drawings of series-parallel
graphs [Bie05].

Theorem 4.5 There exist series-parallel graphs requiring Ω(n log n) area in
any straight-line or poly-line drawing.

Proof: Consider any series-parallel graph S containing K2,(n/2−2) and a
(n/2)-node complete ternary tree as subgraphs. A complete ternary tree that
has height h + 1 cannot be drawn on h parallel grid lines [FLW03, Sud04].
Since an n-node complete ternary tree has height log3(2n + 1), it follows that
both sides of the drawing of a (n/2)-node complete ternary tree have length
Ω(log n). Hence, in any straight-line or poly-line drawing of S both sides have
length Ω(log n) and, by Theorem 4.4, one side has length Ω(n). The theorem
follows. 2

Table 4.1 summarizes the area requirements for straight-line and poly-line
drawings of series-parallel graphs.

The rest of the chapter is organized as follows. In Sect. 4.2, we study geo-
metric properties of the drawings of K2,n; in Sect. 4.3, we prove Theorem 4.4;
in Sect. 4.4, we conclude and present some open problems.

i

i

“main” — 2009/2/23 — 18:41 — page 88 — #98
i

i

i

i

i

i

88
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

Straight-line Poly-line

UB ref. LB ref UB ref. LB ref.

Series-Parallel O(n2) [dPP90] Ω(n log n) Th. 4.4 O(n1.5) [Bie05] Ω(n log n) Th. 4.4

Table 4.1: A table summarizing the area requirements for straight-line and poly-line

drawings of series-parallel graphs.

4.2 Lemmata on the Geometry of K2,n

In this section we show some lemmata that will be used to prove Theorem 4.4.

Lemma 4.1 Consider any poly-line drawing of K2,n, any path π of K2,n, and
any vector ~v = (v1, v2). There exists a grid point p ∈ π such that ~v · p ≥ ~v · p′,
for any point p′ ∈ π.

Proof: If ~v · a ≥ ~v · p′ or ~v · b ≥ ~v · p′, for every point p′ ∈ π, the lemma
follows. Otherwise, consider the part π′ of π starting at a and ending at the
first point p in which ~v ·p ≥ ~v ·p′, for every point p′ ∈ π (see Fig. 4.3 (a)). Since
each point p′ of π′ has ~v ·p′ < ~v ·p, then there exists a small disk D centered at p
such that the part of π′ enclosed in D is increasing in the direction determined
by ~v, when π′ is oriented from a to p. On the other hand π, when oriented from
a to b, cannot be increasing immediately after p in the direction determined
by ~v, otherwise there would exist a point p′′ such that ~v · p′′ > ~v · p. It follows
that π changes slope at p and, by definition of poly-line grid drawing, p is a
grid point. 2

Lemma 4.2 Consider any drawing of K2,n. Let l be any line that does not
intersect or contain the open segment (a, b). There exist no three paths π1, π2,
and π3 of K2,n such that: (i) π1, π2, and π3 do not intersect each other; (ii)
π1, π2, and π3 are entirely contained in the closed half-plane delimited by l and
containing a and b; (iii) each of π1, π2, and π3 touches l at least once.

Proof: Suppose, for a contradiction, that three paths π1, π2, and π3 of K2,n

with the above properties exist. Paths π1 and π2 form a cycle C. Line l is
external to C and separates a from b in the exterior of C (see Fig. 4.3 (b)).
Consider any path π3 between a and b. If π3 is internal to C, then it can not
touch l unless it intersects C. If π3 is external to C, then it intersects l. If π3 is
part internal and part external to C, then it intersects C. In any case we have
a contradiction. 2

i

i

“main” — 2009/2/23 — 18:41 — page 89 — #99
i

i

i

i

i

i

4.2. LEMMATA ON THE GEOMETRY OF K2,N 89

v
b

a

p
l

a

b

a

b

(a) (b) (c)

Figure 4.3: (a) Illustration for the proof of Lemma 4.1. Disk D is the small
shaded region. (b) Illustration for the proof of Lemma 4.2. (c) Drawing the
maximum number of paths in a convex polygon with vertices (drawn as black
circles) having integer coordinates.

Let P be any convex polygon in the plane with vertices having integer
coordinates. Let G be the set of grid points in the interior or on the border
of P . Let a and b be two distinct vertices of P . Let π∗

1 and π∗
2 be the two

paths that connect a and b and that compose P . At least one out of π∗
1 and

π∗
2 , say π∗

1 , is different from segment ab. Let M be the maximum number of
paths connecting a and b that can be drawn as non-crossing polygonal paths
inside or on the border of P .

Lemma 4.3 There exists a drawing of M non-crossing polygonal paths con-
necting a and b such that each path is completely contained inside or on the
border of P and one of such paths is drawn as π∗

1 .

Proof: Consider any drawing Γ of M non-crossing polygonal paths con-
necting a and b and contained inside or on the border of P . If a path of Γ is
drawn as π∗

1 , there is nothing to prove. Otherwise, observe that no two distinct
paths πi and πj can pass through points of π∗

1 , otherwise πi and πj would cross.
Hence, Γ has at most one path π passing through points of π∗

1 . Remove π from
Γ, if π exists, and draw a path in Γ as π∗

1 . Since no path different from π
passes through a point of π∗

1 , the resulting drawing is planar, hence proving
the lemma. 2

Lemma 4.4 There exists a drawing of M non-crossing polygonal paths con-
necting a and b such that each path is completely contained inside or on the
border of P and such that one of the paths is represented by segment ab.

i

i

“main” — 2009/2/23 — 18:41 — page 90 — #100
i

i

i

i

i

i

90
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

Proof: We prove the claim by induction on M . If M = 1, then drawing a
path as segment ab proves the claim. Suppose M ≥ 2. By Lemma 4.3, there
exists a drawing Γ of M non-crossing polygonal paths connecting a and b such
that each path is inside or on the border of P and one of such paths, say π,
is drawn as π∗

1 . Remove π from Γ and all the grid points π passes through,
except for a and b, from G. Consider the convex closed polygon P ′ that is
the convex hull of the resulting grid point-set G′. The vertices of P ′ have
integer coordinates. Further, P ′ is such that M − 1 non-crossing polygonal
paths connecting a and b can be drawn with each path inside or on the border
of P ′. In fact Γ is a drawing having such a property. Hence, the inductive
hypothesis applies and M − 1 paths can be drawn so that each path is inside
or on the border of P ′ and so that one of the paths is represented by segment
ab. Considering the drawing of such M − 1 paths together with the drawing of
π as π∗

1 proves the lemma. 2

Now assume that a and b are consecutive vertices of P (see Fig. 4.3 (c)).
Let G be the set of grid points in the interior or on the border of P . As before,
let π∗

1 and π∗
2 be the two paths that connect a and b and that compose P ,

where π∗
1 is different from segment ab. Let also M be the maximum number of

paths connecting a and b that can be drawn as non-crossing polygonal paths
completely contained inside or on the border of P . We iteratively draw paths
π1, π2, · · · , πN connecting a and b inside or on the border of P as follows. Path
πi is drawn when the current convex grid polygon is Pi containing in its interior
or on its border a set Gi of grid points. At the first step P1 = P and G1 = G.
If Pi does not coincide with segment ab, draw path πi as the polygonal line
that connects a and b, that lies on Pi, and that is different from segment ab.
Remove the grid points that lie on Pi, except for a and b, from Gi, obtaining
a new set of grid points Gi+1. Then, Pi+1 is the convex hull of Gi+1. If Pi

coincides with segment ab, draw the path πi as segment ab. We observe the
following:

Lemma 4.5 Paths π1, π2, · · · , πN are non-crossing polygonal lines that connect
a and b and that completely lie inside or on the border of P . Further, N = M .

Proof: The first part of the statement is trivial. We prove that N = M by
induction on M . If M = 2, then the claim trivially holds, since π1 is drawn
as π∗

1 and π2 as ab. Suppose M ≥ 3. By Lemma 4.3, there exists a drawing Γ
of M non-crossing polygonal paths connecting a and b such that each path is
completely contained inside or on the border of P and one of such paths, say
π1, is drawn as π∗

1 . Remove π1 from Γ and all the grid points π1 passes through

i

i

“main” — 2009/2/23 — 18:41 — page 91 — #101
i

i

i

i

i

i

4.3. A LOWER BOUND ON THE AREA REQUIREMENTS OF K2,N 91

from G. Consider the convex closed polygon P ′ that is the convex hull of the
resulting grid point-set G′. Clearly, the vertices of P ′ have integer coordinates.
Further, P ′ is such that M − 1 non-crossing polygonal paths connecting a
and b can be drawn such that each path is completely contained inside or on
the border of P ′. In fact Γ is a drawing having such a property. Hence, the
inductive hypothesis applies and the drawing algorithm described before the
statement of the lemma draws M − 1 non-crossing polygonal paths inside or
on the border of P ′. Considering such paths together with the drawing of π1

as π∗
1 proves the lemma. 2

4.3 A Lower Bound on the Area Requirements of K2,n

In this section we prove Theorem 4.4. By definition, a straight-line drawing is
also a poly-line drawing. Hence, it suffices to prove Theorem 4.4 for poly-line
drawings. Consider any poly-line drawing of K2,n. Let R be the minimum
closed axis-parallel rectangle enclosing a and b (see Fig. 4.4). Let la,b be the
line through a and b. Suppose, w.l.o.g., that y(a) ≤ y(b). Suppose also that
the slope of la,b is greater or equal than 0, the case in which the slope of la,b is
less than 0 being analogous. Let c and d be the upper left corner and the lower
right corner of R, respectively. Let ha and va (hb and vb) be the horizontal and
vertical lines through a (resp. through b), respectively. For any line l, denote
by H+(l) (resp. by H−(l)) the closed half-plane delimited by l and containing
the normal vector of l increasing in the y-direction (resp. decreasing in the
y-direction). If l is a vertical line, then H+(l) (resp. H−(l)) denotes the closed
half-plane delimited by l and containing the normal vector of l increasing in
the x-direction (resp. decreasing in the x-direction). Let d1 and d2 be the
horizontal and vertical distance between a and b, respectively. The width W
and the height H of the drawing are such that W ≥ d1 and H ≥ d2.

Consider the half-plane H+(hb). By Lemma 4.1 with ~v = (0, 1), for each
path π intersecting H+(hb), there exists a grid point p ∈ π whose y-coordinate
is maximum among the points of π. Clearly, p belongs to H+(hb). Hence, p
belongs to an horizontal grid line l that does not intersect or contain the open
segment (a, b). By Lemma 4.2, at most two paths of K2,n have their points
with greatest y-coordinate belonging to l. It follows that, if a linear number of
paths of K2,n intersects H+(hb), then their points with greatest y-coordinate
belong to a linear number of distinct horizontal grid lines and hence H ∈ Ω(n).

Similar arguments show that, if a linear number of edges intersect H−(ha),
H+(vb), or H−(va), then H ∈ Ω(n), W ∈ Ω(n), or W ∈ Ω(n), respectively. If

i

i

“main” — 2009/2/23 — 18:41 — page 92 — #102
i

i

i

i

i

i

92
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

l a,b

a

c
b

d1

d

hb

ha
d
2

v
a

v
b

Figure 4.4: (a) Illustration of the notation for the proof of Theorem 4.4.

there exists no linear number of edges intersecting H+(hb), H−(ha), H+(vb),
or H−(va), then a linear number of edges is completely inside R. We show that
this implies that max{d1, d2} ∈ Ω(n), and hence that max{W, H} ∈ Ω(n).

Let M be the maximum number of paths of K2,n that can be drawn inside
R. By Lemma 4.4, there exists a drawing of M paths connecting a and b, and
completely lying inside R, such that one of the paths is drawn as segment ab.
Since M ∈ Ω(n), then either a linear number of paths of K2,n is contained in
the triangle T1 having a, b, and c as vertices, or a linear number of paths of
K2,n is contained in the triangle T2 having a, b, and d as vertices. Suppose that
a linear number of paths is contained into T1, the other case being symmetric.

Let M1 ∈ Ω(n) be the maximum number of paths of K2,n that can be
drawn inside T1, and let G1 be the set of grid points inside or on the border of
T1. By Lemma 4.5, a sequence of M1 non-crossing paths Π = (π1, π2, · · · , πM1)
connecting a and b and completely inside or on the border of T1 can be drawn
by repeating the following two operations, for 1 ≤ i < M1: (1) consider the
current convex grid polygon Pi (when i = 1 then P1 = T1); let Gi be the set of
grid points inside or on the border of Pi; draw path πi as the part of Pi that
connects a and b, and that is different from segment ab; (2) delete from Gi

the grid points πi passes through, obtaining a set of grid points Gi+1. Closed
convex polygon Pi+1 is the convex hull of Gi+1. Path πM1 is drawn as segment
ab. See Fig. 4.5.

In order to prove that M1 ∈ Ω(n) implies max{d1, d2} ∈ Ω(n), we study
paths π1, π2, · · · , πM1 . Such a study reveals interesting properties of the grid

i

i

“main” — 2009/2/23 — 18:41 — page 93 — #103
i

i

i

i

i

i

4.3. A LOWER BOUND ON THE AREA REQUIREMENTS OF K2,N 93

a

b

Figure 4.5: Paths π1, π2, · · · , πM1 in Π.

that we skecth here and detail in the following. First, we observe that each
path in Π is composed by two or three segments, i.e., each path has one or
two bends. A sequence of paths that are consecutive in Π and that are each
composed by three segments is such that all the “second segments” of the
paths have the same slope. We show that, in a sequence of paths such that the
second segments of the paths have the same slope, all the bends lie on two lines,
having slopes one greater and one less than the slope of segment ab. The more
sequences of three-segments-paths that are consecutive in Π are considered,
the more the slope of the first, of the second, and of the third segment of the
paths approaches to the slope of segment ab. Consider a sequence of paths
such that the second segments of the paths have the same slope s1

s2
. Then,

the bends of such paths lie on two lines with slopes, say, s3

s4
and s5

s6
, such that

s3 + s5 = s1 and s4 + s6 = s2. Further, the next sequence of paths whose
second segments have the same slope is such that the bends of such paths lie
on two lines with slopes s1

s2
and s3

s4
(or s1

s2
and s5

s6
), and the second segments

of such paths have slope s1+s3

s2+s4
(resp. s1+s5

s2+s6
). We subdivide Π into disjoint

subsequences Π1, Π2, · · · , Πf and we argue that Π1 has at most max{d1, d2}
paths and that Πi has at most max{d1, d2}/2i−2 paths, for 2 ≤ i ≤ f ; such
bounds lead to conclude that, as long as M1 ∈ Ω(n), max{d1, d2} ∈ Ω(n).

Path π1 is composed of segments ac and cb. Let p1 be the point one vertical
unit below and one horizontal unit to the right of c. Consider the following
two sequences of grid points (see Fig. 4.6 (a)). Sequence S1,0 is composed of

i

i

“main” — 2009/2/23 — 18:41 — page 94 — #104
i

i

i

i

i

i

94
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

points:

p1,0
1 = p1,

p1,0
2 = (x(p1), y(p1) − 1),

p1,0
3 = (x(p1), y(p1) − 2),

· · · ,
p1,0

i1
= (x(p1), y(p1) − (i1 − 1)),

where i1 is the maximum such that point (x(p1), y(p1)− (i1 − 1)) is contained
inside T1. Sequence S0,1 is composed of points:

a

c b
p
1

p
2
1,0

p
2
0,1p

3
0,1

p
3
1,0

p
i1
1,0

p
j1
1,0

a

c b

p
k-1
1,0

p
k
1,0

p
k-1
0,1 p

k
0,1

l
k
1,0

l
k
0,1

(a) (b)

Figure 4.6: (a) Sequences S1,0 and S0,1. (b) Path πk+1 is a polygonal line

composed of segments ap1,0
k , p1,0

k p0,1
k , p0,1

k b, for k = 1, 2, · · · , min{i1, j1}.

p0,1
1 = p1,

p0,1
2 = (x(p1) + 1, y(p1)),

p0,1
3 = (x(p1) + 2, y(p1)),

· · · ,
p0,1

j1
= (x(p1) + (j1 − 1), y(p1)),

where j1 is the maximum such that point (x(p1) + (j1 − 1), y(p1)) is contained
inside T1. Notice that the points of S1,0 lie on a line with slope 1

0 = ∞ and
the points of S0,1 lie on a line with slope 0

1 = 0. In the following, we show
that a subsequence Π1 of Π, starting at π2 and composed of paths consecutive
in Π, “consumes” the points in S1,0 and in S0,1, i.e., each point in S1,0 and
each point in S0,1 is traversed by a path in Π1; further, each path in Π1 passes

i

i

“main” — 2009/2/23 — 18:41 — page 95 — #105
i

i

i

i

i

i

4.3. A LOWER BOUND ON THE AREA REQUIREMENTS OF K2,N 95

through a distinct point of the one of S1,0 and S0,1 that has the greater number
of points.

We claim that path πk+1 is a polygonal line composed of segments ap1,0
k ,

p1,0
k p0,1

k , p0,1
k b, for k = 1, 2, · · · , min{i1, j1} (notice that p1,0

1 = p0,1
1 = p1, hence

π2 is composed by only two segments). The claim directly implies that the
second segment of path πk+1, for k = 2, 3, · · · , min{i1, j1}, has slope 1

1 = 1.

We prove the claim by induction on k. Let l1,0
k , l1,1

k , and l0,1
k , be the lines

through a and p1,0
k , through p1,0

k and p0,1
k , and through p0,1

k and b, respectively.

In the base case k = 1. Observe that H+(l1,0
1) and H+(l0,1

1) do not contain
grid points that are inside or on the border of T1, and that do not belong to
π1, except for p1. Hence, π2 is composed by segments ap1 and p1b, proving the
claim in the base case. Suppose that the claim holds for paths π2, π3, · · · , πk.

Then, πk is a polygonal line composed of segments ap1,0
k−1, p1,0

k−1p
0,1
k−1, p0,1

k−1b. We
prove that the claim holds for path πk+1 (see Fig. 4.6 (b)). It is easy to see that
H+(l1,0

k) and H+(l0,1
k) do not contain grid points internal to polygon πk ∪ ab,

except for p1,0
k and for p0,1

k , respectively. Further, no grid point is contained

inside quadrilateral (p0,1
k−1, p

1,0
k−1, p

1,0
k , p0,1

k). Namely, any grid point of the plane

lies on a line with slope 1
1 , and the line that has slope 1

1 , that contains grid

points internal to πk ∪ab, and that is closer to l1,1
k−1 is line l1,1

k through p1,0
k and

p0,1
k . Hence, path πk+1 is composed by segments ap1,0

k , p1,0
k p0,1

k , p0,1
k b, proving

the claim.
Three cases have to be considered, namely i1 = j1, i1 < j1, and i1 > j1.

If i1 = j1, we claim that there is no grid point internal to polygon πi1+1 ∪ ab.
Observe that, since a is one unit to the left of the vertical line on which the
points of S1,0 lie, and since b is one unit above the horizontal line on which the
points of S0,1 lie, then, if there is any grid point internal to polygon πi1+1 ∪ab,
either point p1,0

i1+1 = (x(p1), y(p1)− i1) or p0,1
j1+1 = (x(p1)+ j1, y(p1)) is internal

to πi1+1 ∪ ab (see Fig. 4.7 (a)). However, by the maximality of i1 and j1,
both p1,0

i1+1 and p0,1
j1+1 are outside or on the border of T1, and hence they are

not internal to πi1+1 ∪ ab. Since there is no grid point internal to polygon
πi1+1 ∪ ab, then the only path of K2,n after πi1+1 = πj1+1 in Π is segment ab.

Now consider the case in which i1 < j1 (the case in which i1 > j1 is
analogous). Sequence S1,0 is “over”, i.e., there is a path πi passing through
each point of S1,0. Let S1,1 be the sequence defined as follows (see Fig. 4.7
(b)):

i

i

“main” — 2009/2/23 — 18:41 — page 96 — #106
i

i

i

i

i

i

96
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

a

b

p
i1
1,0

p
i1

0,1

p
i1+1
1,0

p
i1+1
0,1

a

c bp0,1
i1

p1,1
2

1,0
i1

i2

p0,1
i1+1

p1,1
3

p1,1

p

(a) (b)

Figure 4.7: (a) When i1 = j1, no grid point is internal to πi1+1 ∪ ab. (b)
Sequence S1,1.

p1,1
1 = p0,1

i1+1,

p1,1
2 = (x(p0,1

i1+1) − 1, y(p0,1
i1+1) − 1),

p1,1
3 = (x(p0,1

i1+1) − 2, y(p0,1
i1+1) − 2),

· · · ,
p1,1

i2
= (x(p0,1

i1+1) − (i2 − 1), y(p0,1
i1+1) − (i2 − 1)),

where i2 is the maximum such that point ((x(p0,1
i1+1)− (i2 − 1), y(p0,1

i1+1)− (i2 −
1)) is contained inside T1. Sequence S1,1 “replaces” sequence S1,0, namely
path πi1+k+1, with 1 ≤ k ≤ min{i2, j1 − i1}, is a polygonal line composed

of segments ap1,1
k , p1,1

k p0,1
i1+k, p0,1

i1+kb (the proof of such a claim is analogous to

the proof that πk+1 is composed by segments ap1,0
k , p1,0

k p0,1
k , p0,1

k b, for k =
1, 2, · · · , min{i1, j1}). Notice that the bends of such paths lie on two lines with
slope 1

1 = 1 and 0
1 = 0, while the second segments of such paths lie on lines

with slope 1+0
1+1 = 1

2 .
Again, three cases have to be considered. In the first case, we have i2 =

j1 − i1. Hence, path πj1+1 passes through the last point of S1,1 and through
the last point of S0,1. Then no grid point lies inside polygon πj1+1 ∪ ab (the
proof of such a claim is analogous to the one that there is no grid point internal
to polygon πi1+1 ∪ ab when i1 = j1), and hence the only path of K2,n after
πi1+i2+1 = πj1+1 in Π is segment ab. Otherwise, one of the two sequences S1,1

i

i

“main” — 2009/2/23 — 18:41 — page 97 — #107
i

i

i

i

i

i

4.3. A LOWER BOUND ON THE AREA REQUIREMENTS OF K2,N 97

and S1,0 ends before the other. Suppose that sequence S1,1 ends before S0,1.
Then S1,1 is replaced by a sequence S1,2 of points lying on a line with slope 1

2 .
Namely, such points have coordinates:

p1,2
k =

(
x(p0,1

i1+i2+1) − 2(k − 1), x(p0,1
i1+i2+1) − (k − 1)

)
,

for 1 ≤ k ≤ i3, where i3 is the maximum index such that point (x(p0,1
i1+i2+1) −

2(i3 − 1), x(p0,1
i1+i2+1) − (i3 − 1)) is internal to T1. Each path πi1+i2+k+1, with

1 ≤ k ≤ min{i3, j1 − i1 − i2}, passes through point p1,2
k and through point

p0,1
i1+i2+k, and the second segment of each of such paths has slope 1+0

2+1 = 1
3 .

The above argument iterates while sequence S0,1 is not over, i.e., while
there are points of S0,1 that are not traversed by paths in Π. From the above
discussion, all paths that come after π1 in Π pass through distinct points of S0,1,
while sequence S0,1 is not over. Hence, supposing i1 ≤ j1 (the case in which
j1 ≤ i1 being analogous), Π1 = (π2, π3, · · · , πj1+1) is the desired subsequence
of Π passing through all points of S1,0 and through all points of S0,1. Further,
there exists an index l ≥ 1 such that: (1) every point in S1,i is traversed by a
path in Π1, for 0 ≤ i < l, and (2) some points of S1,l are eventually traversed
by a path in Π1.

After drawing path πj1+1 (that passes through the last point of S0,1), either
sequence S1,l is simultaneously over, i.e., j1 = i1 + i2 + · · · + il, or S1,l still
contains points internal to T1 and not traversed by any path in Π1. In the
former case we have that no grid point is internal to polygon πj1+1 ∪ {ab} and
hence the only path of K2,n after πj1+1 in Π is segment ab. In the latter case,
more than one path could exist in Π after πj1+1. Namely, sequence S0,1 is now
replaced by a sequence S1,l+1, whose points lie on a line with slope 0+1

1+l = 1
l+1

passing through the first point of S1,l that is not traversed by a path in Π1 (see
Fig. 4.8).

The whole argument is now repeated again. Namely, we search for a subse-
quence Π2 of Π such that Π2 “consumes” the points in S1,l and the points in
S1,l+1, i.e., such that each point in S1,l that is not traversed by a path in Π1 is
traversed by a path in Π2 and such that each point in S1,l+1 is traversed by a
path in Π2; further, each path in Π2 passes through a point of the one out of
S1,l and S1,l+1 that has the greater number of points. Again, Π2 is generally
found in several steps, where at each step two sequences Sy1,x1 and Sy2,x2 of
grid points are considered (at the first step such sequences are S1,l and S1,l+1,
where the points of S1,l that are traversed by paths in Π1 are not considered).
At each step, the smallest between Sy1,x1 and Sy2,x2 is consumed by the paths

i

i

“main” — 2009/2/23 — 18:41 — page 98 — #108
i

i

i

i

i

i

98
CHAPTER 4. STRAIGHT-LINE AND POLY-LINE DRAWINGS OF

SERIES-PARALLEL GRAPHS

a

bS1,0
S0,1

S1,1
S
1,2

S
1,3

Figure 4.8: The case in which sequence S1,l still contains at least one point
after drawing path πj1+1. In this example l = 2. To improve the readability of
the drawing, only the second segments of the paths in Π1 are drawn, but for
path πj1+1, which is entirely drawn. The arrow shows the first point of S1,2

that is not traversed by a path in Π1.

in a subsequence of Π2 and is replaced by a sequence of points lying on a line
with slope y1+y2

x1+x2
, hence starting a new step. After a certain number of steps,

all points in S1,l and in S1,l+1 are traversed by a path in Π2. When the last
path of Π2 is drawn, either the currently considered sequences Sy∗

1 ,x∗
1

and Sy∗
2 ,x∗

2

are simultaneously over, or there are still points, not traversed by any path in
Π2, in the one out of Sy∗

1 ,x∗
1

and Sy∗
2 ,x∗

2
that is different from both S1,l and

in S1,l+1. In the former case, no grid point is inside the polygon composed of
the last drawn path and of ab, and hence the only path of K2,n after the last
path of Π2 in Π is segment ab. In the latter case, the one between Sy∗

1 ,x∗
1

and
Sy∗

2 ,x∗
2

that is over, say Sy∗
2 ,x∗

2
, is replaced by a sequence Sy∗

1+y∗
2 ,x∗

1+x∗
2
, whose

grid points lie on a line with slope
y∗
1+y∗

2

x∗
1+x∗

2
, and the whole argument is repeated

again, searching for a subsequence Π3 of Π such that Π3 consumes the points
in Sy∗

1 ,x∗
1

and the points in Sy∗
1+y∗

2 ,x∗
1+x∗

2
. Clearly, there exists an index f such

that Π = {π1} ∪ Π1 ∪ Π2 ∪ · · ·Πf ∪ {ab}.
We now compute how many paths exist in Π, as a function of d1 and d2.

Denote by Syi
1,xi

1
and by Syi

2,xi
2

the sequences of grid points that are consumed

by Πi, where the grid points in Syi
1,xi

1
lie on a line with slope yi

1/xi
1 and the

grid points in Syi
2,xi

2
lie on a line with slope yi

2/xi
2. Notice that, with the above

notation, Sy1
1 ,x1

1
= S1,0 and Sy1

2 ,x1
2

= S0,1, and, if i1 ≤ j1, Sy2
1 ,x2

1
= S1,l, and

i

i

“main” — 2009/2/23 — 18:41 — page 99 — #109
i

i

i

i

i

i

4.4. CONCLUSIONS AND OPEN PROBLEMS 99

Sy2
2 ,x2

2
= S1,l+1. It is easy to prove that xi

1, y
i
1, x

i
2, y

i
2 ≥ 2i−2, for i ≥ 2. Notice

that we already observed that such a claim holds when i = 2. From the above
discussion, we have that yi

1 is obtained as the sum of the numerators yi−1
a

and yi−1
b of the slopes of two lines containing grid points traversed by paths in

Πi−1. Inductively, yi−1
a +yi−1

b ≥ yi−1
1 +yi−1

2 ≥ 2i−3+2i−3 ≥ 2i−2. Analogously
yi
2, x

i
1, x

i
2 ≥ 2i−2.

The number of paths in Πi is the number of grid points in the one out of
Syi

1,xi
1

and Syi
2,xi

2
with the greater number of points. When i = 1, each of S1,0

and S0,1 has at most max{d1, d2} grid points. Further, for i ≥ 2, Syi
1,xi

1
and

Syi
2,xi

2
lie on lines with slopes whose numerators and denominators are greater

or equal than 2i−2. Hence, each of such sequences has at most max{d1,d2}
2i−2 + 1

grid points. Hence, the total number of paths in Π is at most

1︸︷︷︸
π1

+ max{d1, d2}︸ ︷︷ ︸
paths in Π1

+

f∑

i=2

(
max{d1, d2}

2i−2
+ 1

)

︸ ︷︷ ︸
paths in Πi, for 2 ≤ i ≤ f

+ 1︸︷︷︸
ab

≤

max{d1, d2} + 2 max{d1, d2} + log2(max{d1, d2}) + 2 < 4 max{d1, d2} + 2.

Since the number of paths in Π is Ω(n), then max{d1, d2} ∈ Ω(n) and hence
max{W, H} ∈ Ω(n). Theorem 4.4 follows.

4.4 Conclusions and Open Problems

In this chapter we have shown that there exist series-parallel graphs requiring
Ω(n log n) area in any straight-line or poly-line grid drawing. As far as we know
the best upper bound for the area requirements of poly-line drawings of series-
parallel graphs is O(n3/2) [Bie05], while no sub-quadratic area upper bound
is known in the case of straight-line drawings. Hence, in both cases, the gap
between the upper and the lower bound is large, and the following problems
are quite natural:

Open Problem 4.1 Which are the asymptotic bounds for the area require-
ments of straight-line planar drawings of series-parallel graphs?

Open Problem 4.2 Which are the asymptotic bounds for the area require-
ments of poly-line planar drawings of series-parallel graphs?

i

i

“main” — 2009/2/23 — 18:41 — page 100 — #110
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 101 — #111
i

i

i

i

i

i

Chapter 5

Straight-line Drawings of

Outerplanar Graphs

In this chapter1 we consider straight-line and poly-line drawings of outerplanar
graphs in small area. We show four linear-time algorithms for constructing
planar straight-line grid drawings of outerplanar graphs. The first and the
second algorithm are for balanced outerplanar graphs. Both require linear area.
The drawings produced by the first algorithm are not outerplanar while those
produced by the second algorithm are. On the other hand, the first algorithm
constructs drawings with better angular resolution. The third and the fourth
algorithm construct outerplanar drawings of general outerplanar graphs with
O(n1.48) area and with O(dn log n) area, where d is the degree of the graph.
Further, we study the interplay between the area requirements of the drawings
of an outerplanar graph and the area requirements of a special class of drawings
of its dual tree. Finally, we settle in the negative a conjecture [Bie02] on the
area requirements of outerplanar graphs by showing that snowflake graphs
admit linear-area drawings.

5.1 Introduction

Outerplanar graphs are one of the classes of graphs that has attracted more
research interest in the field of Graph Drawing. For example, it has been
proved by Gritzmann, Mohar, Pach, and Pollack in [GPP91] that the outer-

1The contents of this chapter are a joint work with Giuseppe Di Battista, appeared
in [DF05, Fra07b] and to appear in [DF09].

101

i

i

“main” — 2009/2/23 — 18:41 — page 102 — #112
i

i

i

i

i

i

102
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

planar graphs are exactly the graphs that have a planar straight-line embed-
ding into every point set. Bose [Bos02] showed an O(n log3 n) algorithm to
compute such an embedding. As an other (more graph-theoretical) example,
Gonçalves [Gon05] proved that the edges of any planar graph can be partitioned
into two sets, each set inducing an outerplanar graph.

Determining the area requirements of outerplanar graphs has been con-
sidered an intriguing challenge for almost thirty years. In 1981, Dolev and
Trickey [DT81] showed that every n-vertex outerplanar graph whose degree
is bounded by four admits a poly-line drawing in Θ(n) area. The techniques
presented in [DT81] can be modified in order to obtain poly-line drawings of
outerplanar graphs with degree d in O(d2n) area, as pointed out in [Bie02].
More recently, the problem of obtaining minimum-area drawings of outerpla-
nar graphs has been tackled by Biedl, who first provided a sub-quadratic area
upper bound for poly-line drawings of general outerplanar graphs. Namely,
she proved that outerplanar graphs admit poly-line drawings in O(n log n)
area. Such a result, which first appeared in [Bie02], can be obtained as a
Corollary of the results of the same author on series-parallel graphs, appeared
in [Bie05] and sketched in Chapter 4. In fact, outerplanar graphs are series-
parallel graphs with fan-out equal to two. Hence, Theorem 4.2 applies to such
graphs, providing an O(n log n) area upper bound. In the same two papers,
Biedl [Bie02, Bie05] conjectured that there exists a class of outerplanar graphs
called “snowflake graphs” requiring Ω(n log n) area in any planar straight-line
or poly-line drawing.

Concerning straight-line drawings, it can be noticed as preliminary obser-
vations that: (i) any strictly-convex polygon can be used as drawing of the
outer face of the outerplanar graph; adding the remaining edges of the graph
preserves the planarity of the drawing; however, the size of a grid containing a
n-vertex strictly-convex polygon is Ω(n3) [And63, BP92, BT04, Rab93], hence
no area bound better than O(n3) can be obtained for straight-line grid drawings
of outerplanar graphs by relying on the a priori construction of a set of points
in convex position; (ii) any set of grid points in general position allows for
constructing straight-line embeddings of outerplanar graphs [GPP91, Bos02];
however, the size of a grid containing n points in general position is Ω(n2),
hence no area bound better than O(n2) can be obtained for straight-line grid
drawings of outerplanar graphs by relying on the a priori construction of a set
of points in general position.

The first interesting bound for straight-line drawings of outerplanar graphs
appeared in [GR03a] (further published in [GR07]). Garg and Rusu showed
that every n-vertex outerplanar graph with degree d has a straight-line drawing

i

i

“main” — 2009/2/23 — 18:41 — page 103 — #113
i

i

i

i

i

i

5.1. INTRODUCTION 103

with O(dn1.48) area. Such a result is achieved by means of an algorithm that
works by induction on the dual tree T of the outerplanar graph G, namely, it
finds a path P in T , it removes from G the subgraph GP that has P as dual,
it inductively draws the outerplanar graphs that are disconnected by such a
removal, and it puts all the drawings of such outerplanar graphs together with
a drawing of GP , obtaining a drawing of the whole outerplanar graph.

In this chapter we study straight-line drawings of outerplanar graphs and
we show the following results.

• We show a linear-time algorithm for drawing a balanced outerplanar
graph in linear area and with angular resolution greater than c√

n
, where

c is a constant. A balanced outerplanar graph is such that its dual tree is
a balanced tree. The drawings obtained with such an algorithm are not
outerplanar.

• We define a new type of drawings of binary trees, called star-shaped
drawings. We study the interplay between the drawings of an outerplanar
graph and the star-shaped drawings of its dual tree. Namely, we show
that, given a drawing of an outerplanar graph it is possible to find a star-
shaped drawing of its dual tree with the same area bound. Conversely,
given a star-shaped drawing of a binary tree it is possible to find a drawing
of its dual outerplanar graph with the same area bound, but for the
placement of two special vertices.

• Based on the above correspondence, we show a linear-time algorithm for
drawing a balanced outerplanar graph in linear area. The drawings ob-
tained with such an algorithm are outerplanar, but the angular resolution
is worse with respect to those computed by the previous algorithm.

• We show a linear-time algorithm for constructing outerplanar drawings
of general outerplanar graphs with O(n1.48) area. Such an algorithm
is based on the correspondence between the drawings of an outerplanar
graph and the star-shaped drawings of its dual tree, on a decomposition
technique of binary trees presented in [Cha02], and on a simple geometric
construction of star-shaped drawings of binary trees.

• We show a linear-time algorithm for constructing outerplanar drawings
of general outerplanar graphs with O(dn log n) area. Such an algorithm
is based on the correspondence between the drawings of an outerplanar
graph and the star-shaped drawings of its dual tree, and on a quite in-
volved geometric construction of star-shaped drawings of binary trees.

i

i

“main” — 2009/2/23 — 18:41 — page 104 — #114
i

i

i

i

i

i

104
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

• We show a linear-time algorithm for constructing straight-line drawings
of snowflake graphs in O(n) area, settling in the negative the above cited
conjecture appeared in [Bie02].

In all the above algorithmic results, we deal with maximal outerplanar
graphs. However, we remark that this is not a limitation since that any out-
erplanar graph can be always augmented in linear time with a linear number
of dummy edges to a maximal outerplanar graph. Hence, an algorithm for
drawing an (even disconnected) outerplanar graph G can first augment G to a
maximal outerplanar graph G′ by adding dummy edges, can then draw G′, and
can finally remove the dummy edges inserted at the first step, thus obtaining
a drawing of G.

Table 5.1 summarizes the area requirements for straight-line and poly-line
drawings of outerplanar graphs.

Straight-line Poly-line

UB ref. LB ref UB ref. LB ref.

Outerpl. O(n1.48) Th. 5.5 Ω(n) trivial O(n log n) [Bie05] Ω(n) trivial

Degree-d Outerpl. O(dn log n) Th. 5.6 Ω(n) trivial O(dn log n) Th. 5.6 Ω(n) trivial

O(d2n) [Bie05]

Balanced Outerpl. O(n) Th. 5.3 Ω(n) trivial O(n) Th. 5.3 Ω(n) trivial

Table 5.1: A table summarizing the area requirements for straight-line and poly-line

drawings of outerplanar graphs.

The rest of the chapter is organized as follows. In Sect. 5.2, we study non-
outerplanar drawings of balanced outerplanar graphs; in Sect. 5.3, we study the
relationships between straight-line drawings of outerplanar graphs and star-
shaped drawings of binary trees; in Sect. 5.4, we study outerplanar drawings of
balanced outerplanar graphs; in Sect. 5.5 and 5.6, we study outerplanar draw-
ings of outerplanar graphs; finally, in Sect. 5.7, we study outerplanar drawings
of snowflake graphs, we conclude and present some open problems.

5.2 Non-Outerplanar Drawings of Complete and

Balanced Outerplanar Graphs

In this section we present an algorithm for constructing linear-area non-outerpla-
nar drawings of complete and balanced outerplanar graphs. A paper [Bie02]
by Biedl reports that Biedl and Demaine have observed that every outerplanar

i

i

“main” — 2009/2/23 — 18:41 — page 105 — #115
i

i

i

i

i

i

5.2. NON-OUTERPLANAR DRAWINGS OF COMPLETE AND

BALANCED OUTERPLANAR GRAPHS 105

graph whose dual tree has diameter k has a straight-line drawing in O(kn)
area. Balanced trees are trees whose diameter is O(log n), hence their bound
here reads as O(n log n).

We call Gh a complete outerplanar graph with height h and Γh a planar
straight-line grid drawing of Gh. Let also uh, vh and wh be the left vertex, the
right vertex and the central vertex of Gh, respectively (see Sect. 1.4).

We show an inductive algorithm to draw complete outerplanar graphs. It
draws Γh exploiting Γh−1. The algorithm is as follows.

• Base case: if h = 1, then place u1 in (0, 0), v1 in (1, 1) and w1 in (1, 0).

a

vh-1

uh-1 wh-1

luv

lvw

luw

a

vh-1

uh-1 wh-1

wh

vh
uh

a

(a) (b) (c)

a

vh-1uh-1

wh-1

luv

lvw luw a

vh-1uh-1

wh-1

a

whuh

vh

(d) (e) (f)

Figure 5.1: Inductive case of the algorithm. (a)–(c) h even: (a) Γh−1; (b) Γh−1

after the shifts of uh−1 and vh−1; (c) Γh. (d)–(f) h odd: (d) Γh−1; (e) Γh−1

after the shifts of uh−1 and vh−1; (f) Γh.

• Inductive case: if h > 1, inductively suppose to have a drawing Γh−1

of Gh−1 such that: (i) If h − 1 is odd, then the convex hull of Γh−1 is
an isosceles rectangular triangle whose vertices are uh−1, vh−1, and wh−1;
the catheti (uh−1, wh−1) and (vh−1, wh−1) lie on lines parallel to the axes,
so that uh−1 and wh−1 lie on the same horizontal line luw, with uh−1 to
the left of wh−1, and so that vh−1 and wh−1 lie on the same vertical line

i

i

“main” — 2009/2/23 — 18:41 — page 106 — #116
i

i

i

i

i

i

106
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

lvw, with vh−1 above wh−1; the hypothenuse lies on a line luv with slope
π/4. (ii) If h − 1 is even, then the convex hull of Γh−1 is an isosceles
rectangular triangle whose vertices are uh−1, vh−1, and wh−1; the catheti
(uh−1, wh−1) and (vh−1, wh−1) lie on lines parallel to the bisectors of the
axes, so that uh−1 and wh−1 lie on the same line luw with slope π/4, with
uh−1 below and to the left of wh−1, and so that vh−1 and wh−1 lie on the
same line lvw with slope 3π/4, with vh−1 below and to the right of wh−1;
the hypothenuse lies on an horizontal line lvw.

Denote by a the line obtained by translating lvw by (1, 0). If h is even,
shift vertex uh−1 by (−1,−1) and vertex vh−1 by (1, 1). If h is odd,
shift vertex uh−1 by (−1, 0) and vertex vh−1 by (1, 0). Now, reflect the
modified drawing Γh−1 with respect to a. Insert the edge from uh−1 to
its symmetric vertex, say z. Let uh = uh−1, vh = z and wh = vh−1 (see
Fig. 5.1).

It’s easy to see that the inductive construction of the algorithm builds
drawings satisfying the hypotheses. Examples of the drawings produced by the
algorithm are shown in Fig. 5.2.

(a) (b)

Figure 5.2: Applications of the algorithm in Sect. 5.2. (a) Γ4. (b) Γ5.

We prove the planarity of such drawings.

Lemma 5.1 Γh is planar.

i

i

“main” — 2009/2/23 — 18:41 — page 107 — #117
i

i

i

i

i

i

5.2. NON-OUTERPLANAR DRAWINGS OF COMPLETE AND

BALANCED OUTERPLANAR GRAPHS 107

Proof: Suppose, by induction, that the drawing Γh−1 of Gh−1 constructed
by the algorithm has the following properties: Property (i) Γh−1 is planar.
Property (ii) denote by p(uh−1) and p(vh−1) the points where uh−1 and vh−1

are drawn in Γh−1, respectively; if h is even it is possible to simultaneously
shift vertex uh−1 to any point of the closed wedge W (p(uh−1), π, 5π/4) cen-
tered at p(uh−1) and delimited by the half-lines with slopes π and 5π/4 and
vertex vh−1 to any point of the closed wedge W (p(vh−1), π/4, π/2) centered
at p(vh−1) and delimited by the half-lines with slopes π/4 and π/2, respec-
tively, without altering the planarity of Γh−1 (see Fig. 5.3 (a)); if h is odd
it is possible to simultaneously shift vertex uh−1 to any point of the closed

W(p(vh-1),7π/4,0)W(p(uh-1),π,5π/4)

p(uh-1) p(vh-1) p(uh-1)

p(vh-1)

W(p(uh-1),π,5π/4)

W(p(vh-1),π/4,π/2)

(a) (b)

Figure 5.3: Wedges in the proof of planarity of Γh. (a) h odd. (b) h even.

wedge W (p(uh−1), π, 5π/4) centered at p(uh−1) and delimited by the half-lines
with slopes π and 5π/4 and vertex vh−1 to any point of the closed wedge
W (p(vh−1), 7π/4, 0) centered at p(vh−1) and delimited by the half-lines with
slopes 7π/4 and 0, respectively, without altering the planarity of Γh−1 (see
Fig. 5.3 (b)).

Note that properties (i) and (ii) are trivially satisfied by Γ1. Inductively
suppose that properties (i) and (ii) are satisfied by Γh−1. First, suppose h is
even.

We show that Γh satisfies property (i). After vertex uh−1 has been shifted
by (−1,−1) and vertex vh−1 by (1, 1), such vertices are still inside wedges
W (p(uh−1), π, 5π/4) and W (p(vh−1), π/4, π/2), respectively. Hence, by prop-
erty (ii) of Γh−1, the planarity of Γh−1 is maintained by such shifts. The

i

i

“main” — 2009/2/23 — 18:41 — page 108 — #118
i

i

i

i

i

i

108
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

reflection of the modified Γh−1 with respect to line a doesn’t cause crossings,
since a is tangent to the modified Γh−1. Since vertices uh and vh are below
any other vertex of Gh in the resulting drawing, then inserting edge (uh, vh)
doesn’t create crossing. Hence, Γh is planar.

Now we show that Γh satisfies property (ii). Denote by Γ1
h−1 the sub-

drawing of Γh induced by the vertices to the left of a and by vertex wh; denote
also by Γ2

h−1 the sub-drawing of Γh induced by the vertices to the right of a and
by vertex wh. Denote by p(uh) and by p(vh) the points where uh and vh are
drawn in Γh, respectively. Denote by p−1(uh) (by p−1(vh)) the point one unit
to the right and one unit above p(uh) (the point one unit to the left and one
unit above p(vh)). Since p(uh) is in the closed wedge p−1(uh), π, 5π/4), then
W (p(uh), π, 5π/4) is entirely contained in W (p−1(uh)), π, 5π/4) (part of their
delimiting half-lines coincide). Symmetrically, W (p(vh), 7π/4, 0) is in the closed
wedge W (p−1(vh), 7π/4, 0). Suppose that property (ii) is not satisfied by Γh.
Shifting uh inside W (p(uh), π, 5π/4) and vh inside W (p(vh), 7π/4, 0) doesn’t
create a crossing between any edge e1 ∈ Γ1

h−1 and any edge e2 ∈ Γ2
h−1, since e1

and e2 are separated by a. Shifting uh inside W (p(uh), π, 5π/4) doesn’t create
a crossing between any edge ea ∈ Γ1

h−1 and any edge eb ∈ Γ1
h−1, or between

any edge ea ∈ Γ2
h−1 and any edge eb ∈ Γ2

h−1, since such a crossing would
imply that property (i) is not verified by Γh−1. Finally, shifting uh inside
W (p(uh), π, 5π/4) and vh inside W (p(vh), 7π/4, 0) doesn’t create a crossing
between edge (uh, vh) and any other edge, since regardless of the position of
uh and vh inside the corresponding wedges, such vertices are below any other
vertex of the drawing.

If h is odd, properties (i) and (ii) are inductively verified analogously. 2

Now we analyze the area requirement of the drawings obtained by applying
the above described algorithm.

Lemma 5.2 If h is even, then the height of Γh is 7
2

√
n − 1−3 and its width is

7
√

n − 1− 7. If h is odd, then the height of Γh is 7√
2

√
n − 1 − 5 and its width

is 7√
2

√
n − 1 − 5.

Proof: Let heighth and widthh be the height and the width of Γh, respec-
tively.

• h is even: heighth is given by the vertical distance between uh and wh,
that is equal to the vertical distance between uh−1 and vh−1 in Γh−1 after
their shifts, that is (1) heighth = heighth−1 +2. Further, widthh is given
by the horizontal distance between uh and vh. Such a distance is twice

i

i

“main” — 2009/2/23 — 18:41 — page 109 — #119
i

i

i

i

i

i

5.2. NON-OUTERPLANAR DRAWINGS OF COMPLETE AND

BALANCED OUTERPLANAR GRAPHS 109

the horizontal distance between uh−1 and vh−1 in Γh−1 after their shifts,
minus one unit corresponding to the vertical grid line a, that is counted
twice. Hence, we have (2) widthh = 2·(widthh−1+2)−1 = 2·widthh−1+3.

• h is odd: heighth is given by the vertical distance between vh and wh,
that is equal to the horizontal distance between uh−1 and vh−1 in Γh−1

after their shifts, that is (3) heighth = widthh−1 + 2. Further, widthh

is also given by the horizontal distance between uh−1 and vh−1 in Γh−1

after their shifts. Hence, we have (4) widthh = widthh−1 + 2.

Let us compute widthh as a function of h and, consequently, as a function of
n. Suppose h is even. Substituting (4) into (2) we get widthh = 2·widthh−2+7.

Using width2 = 7, a simple inductive proof shows that (5) widthh = 7 · 2 h
2 − 7,

which is 7
√

n − 1− 7, since h = log2(n− 1). If h is odd, we derive the value of

widthh by substituting (5) into (4). Namely, (6) widthh = 7 · 2 h−1
2 − 7 + 2 =

7√
2
· 2h

2 − 5. Hence, widthh = 7√
2

√
n − 1 − 5.

Now we compute heighth. Suppose h is odd. Substituting (5) into (3),

we get (7) heighth = 7 · 2
h−1
2 − 7 + 2 = 7√

2
· 2

h
2 − 5 and hence heighth =

7√
2

√
n − 1− 5. Finally, suppose h is even. Substituting (7) into (1), we get (8)

heighth = 7√
2
· 2h−1

2 − 5+2 = 7
2 · 2

h
2 − 3 and hence heighth = 7

2

√
n − 1− 3. 2

We analyze the angular resolution of the drawings built by the above al-
gorithm. Let uh be the left vertex of Γh. Notice that uh = uh−1 = . . . = u1.
Constructing Γh from Γh−1, the number of neighbors of uh increases by one.
Let vi be the neighbor of uh inserted in the construction of Γi. Let m (resp.
t) be the largest odd (resp. even) integer less or equal than h.

Let φ be the angle between segments uhvm−2 and uhvm (see Fig. 5.4 (a)).
Denote by vH

m−2 the intersection point between the line lm through uh and vm

and the line through vm−2 orthogonal to lm.

Lemma 5.3 sin φ > k/
√

n, for some constant k.

Proof: Observe that, independently of the value of m, the length |vH
m−2vm−2|

of segment vH
m−2vm−2 is

√
2/2. Since Γh is contained in a bounding-box of

O(
√

n)×O(
√

n), the length |uhvm−2| of segment uhvm−2 is O(
√

n) and hence

sin φ = |vH
m−2vm−2|/|uhvm−2| > k/

√
n, for some constant k. 2

Lemma 5.4 φ is the smallest angle of Γh.

i

i

“main” — 2009/2/23 — 18:41 — page 110 — #120
i

i

i

i

i

i

110
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

vm = n1

lm

vm-2 = n2

uh

n3

n4 n5
vt = n6

vH
m-2

φ

θ1

θ*

θ2

ρ1

ρ4

ρ3

ρ2

θ3

ρ*

θ4

(a) (b)

ni+1

ni

uh
uh

nH
i+1

φ i, i+1

φ i, i+1

l H
i+1

(c)

Figure 5.4: Illustration for the proof of the bound on the angular resolution of
Γh.

Proof: We prove the lemma by induction on h. As base case of the induc-
tion, consider Γ1. Trivially, φ = π/4 is the smallest angle of the drawing. Now
suppose the claim holds for Γh−1. Denote by ΓS

h−1 the drawing obtained from
Γh−1 after shifting vertices uh−1 and vh−1. The first part of the proof consists
of showing that it is sufficient to compare φ only with the angles incident to
uh. The second part of the proof shows that φ is the smallest of such angles.

Angle φ is less in Γh than in Γh−1. Namely, |vH
m−2vm−2| is still

√
2/2 and

i

i

“main” — 2009/2/23 — 18:41 — page 111 — #121
i

i

i

i

i

i

5.2. NON-OUTERPLANAR DRAWINGS OF COMPLETE AND

BALANCED OUTERPLANAR GRAPHS 111

the length |uhvm−2| of segment uhvm−2 is larger in Γh than in Γh−1, hence

sin φ = |vH
m−2vm−2|/|uhvm−2| is less in Γh than in Γh−1. Hence, for every

angle θ in ΓS
h−1 that is not incident to uh−1 or to vh−1 we have θ > φ by

inductive hypothesis. It follows that, to determine the smallest angle in Γh, we
can forget about any angle also belonging to ΓS

h−1 and not incident to uh−1 or
vh−1.

Observe that (see Fig. 5.4 (b)): (i) for every angle θ1 incident to vh−1 in
ΓS

h−1 there is an angle ρ1 incident to uh−1 in ΓS
h−1 such that ρ1 = θ1, (ii) for

every angle θ2 not incident to uh, vh, and wh in Γh, there is an angle ρ2 in ΓS
h−1

such that ρ2 = θ2, (iii) for every angle θ3 incident to vh in Γh there is an angle
ρ3 incident to uh in Γh such that ρ3 = θ3, (iv) for every angle θ4 incident to
wh in Γh, but for one angle θ∗, there is an angle ρ4 in ΓS

h−1 such that ρ4 = θ4,

and (v) angle θ∗ is the angle between segments whwh−1 and whw∗
h−1, where

w∗
h−1 is the vertex obtained by reflecting wh−1 with respect to a, and there

exists an angle ρ∗ incident to uh in Γh such that θ∗ = 2 · ρ∗. Such observations
can be trivially proved exploiting the symmetry of the drawings constructed
by the algorithm. By the inductive hypothesis it follows that, to determine the
smallest angle in Γh, we can look only at angles incident to uh.

Consider the neighbors of uh and consider the clockwise order (t1 = vm, t2,
. . . , th, th+1 = vt) in which they are incident to uh. Observe that tdh/2e and
tdh/2e+1 are adjacent. Denote by φi,i+1 the angle incident to uh delimited by
segments uhti and uhti+1, with i = 1, 2, . . . , h. We have φ = φ1,2 and we claim
that such an angle is the smallest among all angles φi,i+1, with i = 1, 2, . . . , h.

First, we show that sin φi,i+1 > sin φ1,2, for i = 2, 3, . . . , dh/2e. Namely, de-
noting by tHi+1 the intersection point between the line lHi through uh and ti, and

the line through ti+1 orthogonal to lHi , we have sin φi,i+1 = |tHi+1ti+1|/|uhti+1|.
We prove that |tHi+1ti+1| >

√
2/2, for any i = 2, 3, . . . , dh/2e. Consider the

placement of the left vertex uh in the drawing constructed at the step of the
algorithm when vertex ti was first introduced. In such a drawing, the slope

of the line through uh and ti was π/4 by construction and |tHi+1ti+1| =
√

2/2.
In the inductive steps that lead to the construction of Γh, vertices ti and ti+1

do not move and vertex uh moves in turn by (−1, 0) and by (−1,−1). Hence,

the slope of the line through uh and ti is less than π/4 and tHi+1ti+1 >
√

2/2
(see Fig. 5.4 (c)). It is trivial to prove that uht2 is the longest among seg-
ments uhti+1, with i = 1, 2, . . . , dh/2e. It follows that sin φi,i+1 > sin φ, for
any i = 2, 3, . . . , dh/2e.

Next, we show that sin φi,i+1 > sin φh,h+1, for any i = dh/2e + 1, dh/2e +

i

i

“main” — 2009/2/23 — 18:41 — page 112 — #122
i

i

i

i

i

i

112
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

2, . . . , h−1. Denoting by tHi the intersection point between the line lHi+1 through
uh and ti+1, and the line through ti orthogonal to lHi+1, we have sin φi,i+1 =

|tHi ti|/|uhti|. Analogously to the previous case, it can be proved that |tH
i ti| > 1,

for any i = dh/2e+1, dh/2e+2, . . . , h−1, that |tH
h th| = 1, and that uhth is the

longest among segments uhti, with i = dh/2e + 1, dh/2e + 2, . . . , h. It follows
that sin φi,i+1 > sin φh,h+1, for any i = dh/2e+ 1, dh/2e+ 2, . . . , h − 1.

It remains just to compare sin φ1,2 with sin φh,h+1. Such values can be
easily derived from the results on the width and the height of Γh, by applying
the Pythagorean theorem to compute uht2 and uhth.

Namely, if h is odd we have: sin φ1,2 =
√

2

(2·
√

(7·2(h−3/2)−3)2+(7·2(h−3/2)−4)2)
<

1√
(7·2(h−3/2)−4)2+1

= sin φh,h+1. If h is even, we have:

sinφ1,2 =
√

2

(2·
√

(7·2(h−4/2)−2)2+(7·2(h−4/2)−3)2)
= 1√

49
4 ·2h−35·2h/2+26

. Also, we have

sinφh,h+1 = 1/
√

(7 · 2(h−2/2) − 5)2 + 1 = 1/
√

49
4 · 2h − 35 · 2h/2 + 26 = sinφ1,2.

Hence, φ is the smallest angle in Γh. 2

From the above discussion we have:

Theorem 5.1 Given an n-vertex complete outerplanar graph Gh with height
h, there exists an O(n)-time algorithm that constructs a planar straight-line
grid drawing Γh of Gh such that:

1. if h is even, then the height of Γh is 7
2

√
n − 1 − 3 and its width is

7
√

n − 1 − 7;

2. if h is odd, then the height of Γh is 7√
2

√
n − 1 − 5 and its width is

7√
2

√
n − 1 − 5;

3. the angular resolution of Γh is greater than k√
n
, with k constant;

4. isomorphic subgraphs of Gh have congruent drawings in Γh up to a trans-
lation and a reflection; and

5. Γh is axially symmetric.

From the fact that a balanced outerplanar graph can be augmented to
complete by adding a linear number of nodes and without altering its height
we have:

i

i

“main” — 2009/2/23 — 18:41 — page 113 — #123
i

i

i

i

i

i

5.3. OUTERPLANAR DRAWINGS AND STAR-SHAPED DRAWINGS 113

Theorem 5.2 Given an n-vertex balanced outerplanar graph G, there exists
an O(n)-time algorithm that constructs a planar straight-line grid drawing Γ
of G such that both the height and the width of Γ are O(

√
n) and the angular

resolution of Γ is greater than k√
n
, with k constant.

5.3 Outerplanar Drawings and Star-Shaped Drawings

In this section we show that the planar drawings of outerplanar graphs are
strongly related to the drawings of their dual trees.

l

r

r

r

r

ll

v0

l

r
r

r

r

l
l

v0

(a) (b)

Figure 5.5: A binary tree T . The edges (u, v) labeled r (l) are such that v
is the right (resp. left) child of u. (a) The thick edges and the black vertices
show L(T) and R(T). (b) A straight-line grid drawing of T . The squared black
points and the squared white points are examples of points of the outer-left set
and of the outer-right set, respectively. The ’x’ points don’t belong to either
one of the sets.

Let T be a binary tree rooted at any node v0. The leftmost path L(T) (the
rightmost path R(T)) of T is the path v0, v1, . . . , vm such that vi+1 is the left
child (resp. the right child) of vi, ∀i such that 0 ≤ i ≤ m − 1, and vm doesn’t
have a left child (resp. a right child) (see Fig. 5.5 (a)).

The outer-left set (outer-right set) of a planar straight-line drawing Γ of T
is the set of points of the plane with integer coordinates from which it’s possible
to draw edges to each one of the nodes of L(T) (resp. of R(T)) without creating
crossings with the edges of Γ (see Fig. 5.5 (b)).

The left-right (right-left) path of a node t ∈ T is the path v0, v1, . . . , vm

such that v0 = t, v1 is the left child (resp. the right child) of v0, vi+1 is the

i

i

“main” — 2009/2/23 — 18:41 — page 114 — #124
i

i

i

i

i

i

114
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

right child (resp. the left child) of vi, ∀i such that 1 ≤ i ≤ m − 1, and vm

doesn’t have a right child (resp. a left child) (see Fig. 5.6 (a)).
The left cycle of the neighbors (right cycle of the neighbors) of a node t ∈ T ,

with left-right path v0 = t, v1, . . . , vm (with right-left path u0 = t, u1, . . . , up),
is defined as follows: if m = 0 (if p = 0), then the left cycle of the neighbors
(the right cycle of the neighbors) is vertex t; if m = 1 (if p = 1), then the left
cycle of the neighbors (the right cycle of the neighbors) is edge (v0, v1) (is edge
(u0, u1)); if m ≥ 2 (if p ≥ 2), then the left cycle of the neighbors (the right
cycle of the neighbors) is the cycle composed of the edges of the left-right path
of t (resp. of the edges of the right-left path of t) plus an extra edge connecting
vm and v0 (resp. plus an extra edge connecting up and u0). See Fig. 5.6 (b).

Consider any drawing Γ of T . The left polygon of the neighbors Pl(t) (resp.
the right polygon of the neighbors Pr(t)) of a node t ∈ T is the polygon of
representing in Γ the left cycle of the neighbors (resp. the right cycle of the
neighbors).

r

r
r r r

rl

l

ll

l

v0

x
y

r

r
r r r

rl

l

ll

l

v0

Pl
Pr

x
y

(a) (b)

Figure 5.6: A binary tree T . The edges (u, v) labeled r (l) are such that v is the
right (resp. left) child of u. (a) The thick edges and the black vertices show the
left-right path of node x and the right-left path of node y in T . (b) The thick
edges, the black vertices and the labels Pr and Pl show the left cycle of the
neighbors of node x and the right cycle of the neighbors of node y, respectively.

A planar straight-line order-preserving drawing Γ of T is star-shaped if it
satisfies all the following conditions:

1. For each node t ∈ T , the left (right) polygon of the neighbors Pl(t) (resp.
Pr(t)) representing the left cycle of the neighbors (t, v1, . . . , vm) (resp. the
right cycle of the neighbors (t, u1, . . . , up)), is a simple polygon; further,
if m > 2 (if p > 2) each segment (t, vi), with 2 ≤ i ≤ m − 1 (resp. each

i

i

“main” — 2009/2/23 — 18:41 — page 115 — #125
i

i

i

i

i

i

5.3. OUTERPLANAR DRAWINGS AND STAR-SHAPED DRAWINGS 115

segment (t, uj), with 2 ≤ j ≤ p− 1) belongs to the interior of Pl(t) (resp.
of Pr(t)), but for its endpoints t and vi.

2. For each node t ∈ T , Pl(t) (Pr(t)) does not contain any vertex of T in its
interior and does not contain any vertex of T on its border, but for the
vertices of the left (resp. right) cycle of the neighbors of t.

3. There exist a point pu in the outer-left set of Γ and a point pv in the
outer-right set of Γ such that segment (pu, pv) doesn’t intersect any edge
of Γ.

Observe that the drawings of trees in Figs. 5.5 and 5.6 are star-shaped.
Given an outerplanar graph G and its poles u and v, we call internal sub-

graph I(G) the graph obtained by deleting u, v and their incident edges from
G.

We now put in evidence a tight relation between the drawing of an n-vertex
maximal outerplanar graph G and the drawing of its dual binary tree T . First,
we establish a bijection γ between the nodes of T and the vertices of G, but
for its poles (see Fig. 5.7).

Consider the poles u and v and the central vertex w of G. By definition such
vertices are incident to an internal face f of an outerplanar embedding G of G.
Further, edge (u, v) is incident to the outer face of G. Face f corresponds to
the root v0 of T . Set γ(v0) = w. Label also edge (u, w) as a left edge and edge
(v, w) as a right edge. A left (right) edge is such that its dual edge connects a
node to its left (resp. right) child in T .

Consider the order of the vertices of G given by its construction as a 2-
tree, i.e., the order O : (u, v, w, v1, v2, . . . , vn−3) of the vertices of G starting
from u, v, and w, and such that v1 is adjacent to exactly two out of u, v,
and w, and, for i = 2, . . . , n − 3, exactly two adjacent vertices u1

i and u2
i of

(u, v, w, v1, v2, . . . , vi−1) are neighbors of vi.
Denote by G0 the subgraph of G induced by u, v, and w. Denote by Gi the

subgraph of G induced by vertices (u, v, w, v1, v2, . . . , vi), for i = 1, . . . , n − 3.
From the construction of an outerplanar graph as a 2-tree, we have:

Property 5.1 For each i = 0, 1, . . . , n−3, Gi is a maximal outerplanar graph.

We construct the outerplanar embedding G of G starting from an embedding
G0 of G0 and by adding vertices vi’s in the order O defined above. When vertex
vi is inserted together with edges (vi, u

1
i) and (vi, u

2
i), partial embedding Gi is

constructed.

i

i

“main” — 2009/2/23 — 18:41 — page 116 — #126
i

i

i

i

i

i

116
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

When Gi is constructed by the addition of vertex vi, each vertex vj ∈
(w, v1, v2, . . . , vi−1) has been already put in bijection with an internal face fj

of Gi that is incident to vj . Inductively assume that each edge e 6= (u, v)
incident to the outer face of Gi is such that the internal face of Gi incident to
e has been put in bijection with one of the end-vertices of e.

The insertion of vertex vi and of its incident edges (vi, u
1
i) and (vi, u

2
i)

creates a new internal face fi with incident vertices vi, u1
i , and u2

i . Consider
node t(fi) of the dual tree of Gi corresponding to fi and the node p(fi) of
the dual tree of Gi parent of t(fi). By induction, the face of Gi corresponding
to p(fi) has been mapped with one out of u1

i and u2
i . Suppose, w.l.o.g., that

γ(p(fi)) = u1
i . Set γ(t(fi)) = vi, satisfying the inductive hypothesis for both

edges (vi, u
1
i) and (vi, u

2
i) that are incident to the outer face. If edge (u1

i , u
2
i)

was a left edge then label (vi, u
1
i) as a right edge and (vi, u

2
i) as a left edge. If

edge (u1
i , u

2
i) was a right edge then label (vi, u

1
i) as a left edge and (vi, u

2
i) as

a right edge.
Denote by f(t) the face of G corresponding to the node t of T .

Property 5.2 Each node t of T is associated to the vertex incident to f(t)
that comes last in O.

The following lemma proves the interesting property that, given any maxi-
mal outerplanar graph G, it dual tree T is a subgraph of I(G) and hence of G
itself.

Lemma 5.5 If edge (ti, tj) belongs to T , then edge (γ(ti), γ(tj)) belongs to G.

Proof: Suppose w.l.o.g. that ti is the parent of tj in T . Let vi = γ(ti) and
vj = γ(tj). Consider the order O : (u, v, w, v1, v2, . . . , vn−3) of the vertices of G
defined above. Since ti is the parent of tj in T , then vj follows vi in O. Denote
by u1

j and by u2
j the neighbors of vj in Gj−1. Hence, faces f(ti) and f(tj)

share edge (u1
j , u

2
j) that is dual to edge (ti, tj) of T . Further, by the inductive

construction of the bijection between the vertices of G and the nodes of T ,
node ti is mapped to one out of u1

j and by u2
j . Since G contains both edges

(vj , u
1
j) and (vj , u

2
j), the statement follows. 2

Let G be any maximal outerplanar graph and T its dual binary tree. Let
I(G) be the internal subgraph of G. Denote by (t, v1, . . . , vm) (by (t, u1, . . . , up))
the left cycle of the neighbors (the right cycle of the neighbors) of node t ∈ T .
For each node t ∈ T , if m > 1 add to T edges connecting t to each node vi,
with 2 ≤ i ≤ m, and, if p > 1 add to T edges connecting t to each node ui,
with 2 ≤ i ≤ p. Denote by T + the resulting graph.

i

i

“main” — 2009/2/23 — 18:41 — page 117 — #127
i

i

i

i

i

i

5.3. OUTERPLANAR DRAWINGS AND STAR-SHAPED DRAWINGS 117

Figure 5.7: Bijection between the small white nodes of the dual tree T and the
big black vertices of the primal outerplanar graph G.

Lemma 5.6 T+ = I(G).

Proof: Consider the order O : (u, v, w, v1, v2, . . . , vn−3) of the vertices of G
in its construction as a 2-tree. As before, denote by G0 the outerplanar graph
induced by vertices u, v, w, by Gi the outerplanar graph induced by vertices
u, v, w, v1, v2, . . . , vi, and denote also by Ti the dual binary tree of Gi. We
prove by induction on i that T +

i is the internal subgraph of Gi.
In the base case, graph T +

0 consists only of node γ−1(w) and the internal
subgraph of G0 consists only of vertex w. Inductively suppose that T +

i−1 is the
internal subgraph of Gi−1.

Consider the outerplanar embedding Gi of Gi. Let fi be the internal face
created by the insertion of vi and its incident edges (vi, u

1
i) and (vi, u

2
i) in Gi−1.

Let t(fi) be the node of T corresponding to fi and let p(fi) be the parent of
t(fi) in T . We know that γ(t(fi)) = vi. Further, we can assume w.l.o.g. that
γ(p(fi)) = u1

i .
Suppose that t(fi) is the left child of p(fi). Consider the path (t1, t2, . . . ,

tk−2, tk−1 = p(fi), tk = t(fi)) such that: (i) for any j = 2, 3, . . . , k − 1, node
tj+1 is the left child of node tj ; (ii) t2 is the right child of t1 or t1 is the root
of T . Notice that such a path always exists and is unique.

Distinguish two cases: (1) node t2 is the left child of t1; (2) node t2 is the
right child of t1.

In the first case t1 is the root of T (see Fig. 5.8 (a)). By definition of poles,
we have u2

i = u, that is, u2
i is the left vertex of G. Hence, the internal subgraph

i

i

“main” — 2009/2/23 — 18:41 — page 118 — #128
i

i

i

i

i

i

118
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

vk

u=ui

tk-1

2

ui
1

t2

t1

tk

tk-1

t2

t1

tk

vk

ui
1

ui
2

(a) (b)

Figure 5.8: Illustration for the proof of Lemma 5.6

of Gi differs from the internal subgraph of Gi−1 only for vertex vi and edge
(vi, u

1
i). We show that T +

i contains the internal subgraph of Gi−1, edge (vi, u
1
i),

and no other edge. Graph T +
i contains T+

i−1 and hence, by inductive hypothesis,
the internal subgraph of Gi−1. Further, by Lemma 5.5 it contains edge (vi, u

1
i)

since γ−1(vi) = t(fi), since γ−1(u1
i) = p(fi), and since (t(fi), p(fi)) ∈ T . Node

t(fi) does not belong to the right cycle of the neighbors of any node of Ti.
Further, t(fi) belongs to the left cycle of the neighbors of node p(fi) and does
not belong to the left cycle of the neighbors of any other node. However, since
t(fi) is the second node in the left cycle of the neighbor of p(fi), no further
edge incident to t(fi) is added in T+

i .
In the second case the internal subgraph of Gi differs from the internal

subgraph of Gi−1 for vertex vi and edges (vi, u
1
i) and (vi, u

2
i) (see Fig. 5.8 (b)).

We show that T+
i contains the internal subgraph of Gi−1, edges (vi, u

1
i) and

(vi, u
2
i), and no other edge. Graph T +

i contains T+
i−1 and hence, by inductive

hypothesis, the internal subgraph of Gi−1. Further, by Lemma 5.5 it contains
edge (vi, u

1
i). Node t(fi) belongs to the left cycle of the neighbors of node

p(fi) and does not belong to the left cycle of the neighbors of any other node.
However, since t(fi) is the second node in the left cycle of the neighbor of
p(fi), no further edge incident to t(fi) is added in T+

i . Node t(fi) belongs
to the right cycle of the neighbors of t1 and does not belong to the right
cycle of the neighbors of any other node. Hence, edge (t1, t(fi)) is in T+

i .
Since γ(t(fi)) = vi, it remains only to show that γ(t1) = u2

i . Consider edge
(u2

i , u
3
i) dual to edge (t1, t2). By inductive hypothesis in the construction of

the bijection, t1 has been mapped to one out of u2
i and u3

i . However, if it is
γ(t1) = u3

i , then (t1, t2) would be a left edge.

i

i

“main” — 2009/2/23 — 18:41 — page 119 — #129
i

i

i

i

i

i

5.3. OUTERPLANAR DRAWINGS AND STAR-SHAPED DRAWINGS 119

The case in which t(fi) is the right child of p(fi) can be discussed analo-
gously. 2

Conversely, let G be a maximal outerplanar graph with dual tree T . Let
I(G) be the internal subgraph of G. For each vertex vi of I(G), let t be the
node of T such that γ−1(vi) = t, let p, tl, and tr be the parent, the left child,
and the right child of t in T , respectively. Remove from I(G) all the edges
incident on vi, but for (vi, γ(p)), (vi, γ(tl)), and (vi, γ(tr)). Denote by I−(G)
the resulting graph.

Lemma 5.7 I−(G) = T .

Proof: By construction, all the edges (vi, vj) ∈ I−(G) are such that
(γ−1(vi), γ

−1(vj)) ∈ T . Further, suppose that an edge (ti, tj) ∈ T is not in
I−. Assume, w.l.o.g., that ti is parent of tj . Consider vertices vi = γ(ti) and
vj = γ(tj) in G. By Lemma 5.5, edge (vi, vj) belongs to G and it could not
have been removed from I(G) since, by construction, edges connecting vertices
of I(G) whose corresponding nodes are neighbors in T are not removed. 2

Lemma 5.8 Let G be an n-vertex outerplanar graph and suppose that its dual
tree T admits a star-shaped drawing with f(n) area. We have that G admits
an outerplanar straight-line drawing such that the area of the drawing of its
internal subgraph is f(n).

Proof: Suppose you have a planar star-shaped straight-line grid drawing Γ
of T . Map each vertex vi of G, but for its poles, to the point where the node t
such that γ−1(vi) = t is drawn.

For each node t ∈ T with left cycle of the neighbors (t, v1, . . . , vm) (with
right cycle of the neighbors (t, u1, . . . , up)), if m > 1 draw segments connecting
t to each node vi, 2 ≤ i ≤ m, and, if p > 1 draw segments connecting t to each
node ui, 2 ≤ i ≤ p. By Lemma 5.6 the resulting graph I(G) is the internal
subgraph of G. Denote by ΓI(G) the resulting drawing of I(G). By Conditions 1
and 2 of a star-shaped drawing, we have that ΓI(G) is a planar drawing. Since
ΓI(G) is straight-line, and its vertices have the same coordinates of the nodes
in Γ, then the area of ΓI(G) is equal to the area of Γ.

By definition of internal subgraph, it is sufficient to insert the poles of G
and to draw the edges between the poles and the vertices of L(T) and R(T)
to augment ΓI(G) in a straight-line outerplanar drawing of G. Draw the left
vertex u of G at a point pu of the outer-left set of Γ and draw the right vertex
v of G at a point pv of the outer-right set of Γ so that the segment (pu, pv),

i

i

“main” — 2009/2/23 — 18:41 — page 120 — #130
i

i

i

i

i

i

120
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

representing edge (u, v), doesn’t intersect any of the edges of T . By Condition 3
in the definition of star-shaped drawing such two points exist. Draw the edges
from u to each vertex of L(T) and the edges from v to each vertex of R(T). By
definition of outer-left and outer-right set such edges do not alter the planarity
of the drawing. 2

Lemma 5.9 Let G be an n-vertex outerplanar graph that admits an outerpla-
nar straight-line drawing with f(n) area. We have that its dual tree T admits
a planar star-shaped straight-line drawing with at most f(n) area.

Proof: Suppose you have an outerplanar drawing Φ of G. Remove from
Φ the poles of G, obtaining a drawing ΦI(G) of the internal subgraph I(G) of
G. For each vertex vi ∈ I(G) let t be the node of T such that γ−1(vi) = t
and let p, tl, and tr be the parent, the left child, and the right child of t in
T , respectively. Remove from Φ all the edges incident on vi, but for (vi, γ(p)),
(vi, γ(tl)), and (vi, γ(tr)). By Lemma 5.7 the resulting drawing Φ′ is a drawing
of T and the area of Φ′ is less or equal than the area of Φ.

Clearly, such a drawing is planar, straight-line, and order-preserving. To
prove that Φ′ is a a star-shaped drawing, it is sufficient to observe that Φ′ sat-
isfies Conditions 1, 2, otherwise augmenting it again by inserting straight-line
edges from each node t ∈ T to each node of the left and right polygons of the
neighbors of t would result in a non-planar drawing, contradicting the hypoth-
esis that Φ is planar. Further, Φ′ satisfies Condition 3, since the placement of
the poles in Φ is as required by such a condition. 2

You can see in Fig. 5.9 an example of augmentation of a star-shaped drawing
of a tree T to the drawing of the outerplanar graph G to which T is dual.

5.4 Outerplanar Drawings of Complete and Balanced

Outerplanar Graphs

We apply the lemmata of Sect. 5.3 to construct a linear-area straight-line outer-
planar drawing of a complete outerplanar graph. We denote by Th a complete
binary tree, by rh its root, and by Γh its drawing. What follows is an inductive
algorithm to construct a star-shaped drawing of a complete binary tree. The
algorithm draws Γh exploiting Γh−1, as follows.

• Base case: if h = 1, then place r1 in (0, 0).

i

i

“main” — 2009/2/23 — 18:41 — page 121 — #131
i

i

i

i

i

i

5.4. OUTERPLANAR DRAWINGS OF COMPLETE AND BALANCED

OUTERPLANAR GRAPHS 121

l

rr
r

r

r
r

r
r r

r

r

r

r

ll

l

l l

l

l

ll
l

v0

l

r

r

r

r

ll

(a) (b)

(c)

Figure 5.9: (a) A star-shaped drawing Γ of T . (b) The drawing Γ′ of the
internal subgraph of G obtained from Γ. (c) An outerplanar drawing of G
obtained from Γ′.

• Inductive case: if h > 1, inductively suppose to have a star-shaped
drawing Γh−1 of Th−1 such that: (i) if h − 1 is even, then the convex
hull of Γh−1 is an isosceles rectangular triangle, whose catheti C1 and C2

lie on lines l1 and l2 with slopes 3π/4 and π/4, respectively; C1 and C2

intersect at vertex rh−1, that is the rightmost point of the drawing; all
the vertices of R(Th−1) lie on C1 and all the vertices of L(Th−1) lie on C2.
Only vertices of L(Th−1) and of R(Th−1) lie on C1 and C2. (ii) if h− 1 is
odd, then all the vertices of L(Th−1) lie on a line l2 with slope π/4; vertex
rh−1 is the vertex of such a path with the greatest y-coordinate; all the
vertices of R(Th−1), but for rh−1, lie on a line l1 with slope π/4; line l1 is
obtained by shifting of (−1, 0) line l2; the right child of vertex rh−1 has
y-coordinate smaller than the one of any other vertex of the rightmost
path of Th−1, but for rh−1 that is one unit below it, on the same vertical
line. Only vertices of L(Th−1) are placed on l2 and only the vertices of
R(Th−1) are placed on l1 above rh−1.

i

i

“main” — 2009/2/23 — 18:41 — page 122 — #132
i

i

i

i

i

i

122
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

If h is even, let l0 be the highest horizontal line intersecting Γh−1. Let
a be the horizontal line one unit above l0. Let l2 be the lowest line with
slope π

4 intersecting Γh−1. Reflect Γh−1 with respect to a. Place rh at
the intersection between a and l2. Insert the edges from rh to its children
(see Fig. 5.10).

If h is odd, let l1 be the highest line with slope 3π
4 intersecting Γh−1. Let

a be the line with slope 3π
4 two vertical units above l1. Let l2 be the

lowest line with slope π
4 intersecting Γh−1. Reflect Γh−1 with respect to

a. Translate the new part of the drawing by a vector (−1, 0). Place rh at
the intersection between a and l2. Insert the edges from rh to its children
(see Fig. 5.11).

rh-1

l0

l1

l2

a

Γh-1

π/4

rl

rr

rha

Γh-1
1

Γh-1
2

(a) (b)

Figure 5.10: Inductive case, h even. (a) Γh−1. (b) Γh.

It’s easy to see that the inductive construction of the algorithm builds
drawings satisfying the geometric hypotheses. A drawing produced by the
algorithm is shown in Fig. 5.12 (a).

i

i

“main” — 2009/2/23 — 18:41 — page 123 — #133
i

i

i

i

i

i

5.4. OUTERPLANAR DRAWINGS OF COMPLETE AND BALANCED

OUTERPLANAR GRAPHS 123

π/4

3π/4

Γh-1 rh-1

l1

a l2

Γh-1 rl

rr

a l2

1

Γh-1

2

Γh-1 rl

rr

rh

a l2

1

Γh-1

2

(a) (b) (c)

Figure 5.11: Inductive case, h odd: (a) Γh−1. (b) Γh−1 after the reflection. (c)
Γh.

We sketch the proof that the algorithm constructs a drawing Γh of Th

that is star-shaped, when augmented by an extra vertical line one unit to the
right of the rightmost vertical line intersecting Γh. Denote by Γ1

h−1 (by Γ2
h−1)

the sub-drawing of Γh corresponding to Γh−1 (resp. obtained by reflecting and,
eventually, shifting Γh−1) in the inductive case of the algorithm for constructing
Γh. Drawing Γh is straight-line and order-preserving by construction. The
planarity of Γh is easily proved inductively. Namely, suppose that Γh−1 is
planar. Reflecting Γ1

h−1 with respect to line a external to Γ1
h−1 constructs Γ2

h−1,
whose planarity is a consequence of the planarity of Γ1

h−1; further, Γ1
h−1 and

Γ2
h−1 are separated by line a (even after translating Γ2

h−1 by a vector (−1, 0)
if h is odd) and hence they do not intersect. By the geometric inductive
hypotheses of the algorithm, it’s easy to observe that the planarity of the
drawing is maintained by the insertion of rh and of its incident edges. We
prove that Condition 1 of a star-shaped drawing is satisfied by Γh. Inductively
suppose that Γh−1 satisfies Condition 1 of a star-shaped drawing. Then, after
reflecting Γ1

h−1 with respect to line a and, if h is odd, after translating Γ2
h−1

by a vector (−1, 0), Condition 1 of a star-shaped drawing is satisfied by all
the vertices in Γ1

h−1 and in Γ2
h−1, since reflection and translation preserve the

shapes of the drawings and since Γ1
h−1 and Γ2

h−1 do not overlap being separated
by line a. It remains to show that, if m ≥ 2 (if p ≥ 2), the left cycle of the
neighbors (rh, v1, . . . , vm) (the right cycle of the neighbors (rh, u1, . . . , up)) of
rh is represented in Γh by a left polygon of the neighbors Pl(rh) (by a right
polygon of the neighbors Pr(rh)) such that, if m > 2 (if p > 2), each segment
(rh, vi), with 2 ≤ i ≤ m − 1 (each segment (rh, uj), with 2 ≤ j ≤ p − 1)

i

i

“main” — 2009/2/23 — 18:41 — page 124 — #134
i

i

i

i

i

i

124
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

(a) (b)

Figure 5.12: An application of the algorithm in Sect. 5.4. (a) Γ6. (b) The
drawing of the outerplanar graph G6 constructed from Γ6.

belongs to the interior of Pl(rh) (Pr(rh)), but for its endpoints rh and vi (rh

and uj). Suppose h is even. Let l2 be the line with slope π/4 through rh.
By the geometric inductive hypotheses of the algorithm, the left child rl of
rh lies on l2, the rightmost path of rl lies on a line l1 obtained by shifting of
(−1, 0) line l2, the right child of vertex rl is the vertex of the rightmost path
of Th−1 with smallest y-coordinate, and it is one vertical unit above rl. Hence,
if m ≥ 2, Pl(rh) is a trapezium with parallel sides lying on l2 and l1; hence,
Pl(rh), and symmetrically Pr(rh), is a convex polygon satisfying Condition 1
of a star-shaped drawing. If h is odd, let a be the line with slope 3π/4 through
rh. By the geometric inductive hypotheses of the algorithm, the rightmost
path of the left child rl of rh lies on a line l1 with slope 3π/4 obtained by

i

i

“main” — 2009/2/23 — 18:41 — page 125 — #135
i

i

i

i

i

i

5.4. OUTERPLANAR DRAWINGS OF COMPLETE AND BALANCED

OUTERPLANAR GRAPHS 125

shifting of (−1,−1) line a; hence Pl(rh), and analogously Pr(rh), is a triangle,
that is a convex shape satisfying Condition 1 of a star-shaped drawing. Now
we prove that Γh satisfies Condition 2 of a star-shaped drawing. Again, this
can be done inductively. Namely, suppose that Γh−1 satisfies Condition 2 of a
star-shaped drawing. No left or right polygon of the neighbors of a vertex in
Γ1

h−1 overlaps any left or right polygon of the neighbors of a vertex in Γ2
h−1,

since such polygons are separated by line a. It remains to show that the left
and right polygons of the neighbors of rh, say Pl(rh) and Pr(rh), respectively,
do not overlap with any left or right polygon of the neighbors. First, Pl(rh)
does not overlap with Pr(rh) or with any left or right polygon of the neighbors
of a vertex in Γ2

h−1, since such polygons are separated by line a. Analogously,
Pr(rh) does not overlap with any left or right polygon of the neighbors of a
vertex in Γ1

h−1, since such polygons are separated by line a. If h is odd, then
Pl(rh) is contained in the closed half-plane above line l1; since only the vertices
of the rightmost path of the subtree of Th rooted at rl lie on l1 or above it,
then Pl(rh) does not overlap with any left or right polygon of the neighbors of
a vertex in Γ1

h−1. It can be proved analogously that Pr(rh) does not overlap
with any left or right polygon of the neighbors of a vertex in Γ2

h−1. If h is even
the closed region of the plane delimited by l1, l2, a, and the line through rl and
its right child contains only the vertices of the rightmost path of rl. Since such
a region contains Pl(rh), then Pl(rh) does not overlap with any left or right
polygon of the neighbors of a vertex in Γ1

h−1. It can be proved analogously
that Pr(rh) does not overlap with any left or right polygon of the neighbors in
Γ2

h−1.
Now we prove that Γh augmented by a vertical line one unit to the right

of rh satisfies Condition 3 of a star-shaped drawing. Draw pu at the point one
unit to the right and one unit below rh and draw pv at the point one unit to
the right and one unit above rh. Since the leftmost and rightmost paths of Th

lie entirely on lines with slopes π/4 or 3π/4 and pu and pv are in the opposite
part of the drawing with respect to such lines, then straight-line segments can
connect pu to each vertex of L(Th) and pv to each vertex of R(Th) without
introducing crossings.

Now we analyze the area requirements of the drawings constructed by the
above algorithm. Let heighth and widthh be the height and the width of Γh,
respectively. We distinguish two cases:

1. h is even: Since Γh is obtained by reflecting Γ1
h−1 with respect to the

horizontal line a, then heighth is twice heighth−1 plus one unit corre-
sponding to a; hence, (1) heighth = 2 · heighth−1 + 1. The width of Γh

i

i

“main” — 2009/2/23 — 18:41 — page 126 — #136
i

i

i

i

i

i

126
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

is given by the width of Γ1
h−1 plus the horizontal displacement of rh with

respect to rightmost line l intersecting Γ1
h−1. It’s easy to see that rh is

two units to the right of l, hence (2) widthh = widthh−1 + 2.

2. h is odd: The height of Γh is equal to the height of Γ1
h−1 plus the verti-

cal displacement of the highest line intersecting Γ2
h−1 with respect to the

highest line intersecting Γ1
h−1. It’s easy to see that such a displacement

is two grid units; hence, (3) heighth = heighth−1 + 2. The width of Γh

is given by the width of Γ2
h−1 (that is the height of Γh−1, due to the re-

flection) plus the horizontal displacement of the leftmost line intersecting
Γ1

h−1 with respect to leftmost line intersecting Γ2
h−1. It’s easy to see that

such a displacement is one grid unit; hence, (4) widthh = heighth−1 + 1.

Let us compute heighth as a function of h and, consequently, as a function
of n. Suppose h is even. Substituting (3) into (1) we get heighth = 2 ·
heighth−2 + 5. Using height2 = 3, a simple inductive proof shows that (5)

heighth = 4 · 2
h
2 − 5, which is 4

√
n − 1 − 5, since h = log2(n − 1). If h is

odd, we derive the value of heighth by substituting (5) into (3). Namely, (6)

heighth = 4 · 2 h−1
2 − 5 + 2 = 4√

2
· 2h

2 − 3. Hence, heighth = 4√
2

√
n − 1 − 3.

Now we compute widthh. Suppose h is odd. Substituting (5) into (4),

we get (7) widthh = 4 · 2
h−1
2 − 5 + 1 = 4√

2
· 2

h
2 − 4 and hence widthh =

4√
2

√
n − 1− 4. Finally, suppose h is even. Substituting (7) into (2), we get (8)

widthh = 4√
2
· 2h−1

2 − 4 + 2 = 2 · 2 h
2 − 2 and hence widthh = 2

√
n − 1 − 2.

We exploit the above algorithm and Lemma 5.8 to prove the following
theorem.

Theorem 5.3 Given an n-vertex complete outerplanar graph Gh with height
h, there exists an O(n)-time algorithm that constructs an outerplanar straight-
line grid drawing Γh of Gh such that:

1. if h is even, then the height of Γh is 4
√

n − 1−5 and its width is 2
√

n − 1−
1;

2. if h is odd, then the height of Γh is 4√
2

√
n − 1 − 3 and its width is

4√
2

√
n − 1 − 4;

3. isomorphic subgraphs of Gh have congruent drawings in Γh up to a trans-
lation and a reflection; and

i

i

“main” — 2009/2/23 — 18:41 — page 127 — #137
i

i

i

i

i

i

5.5. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(N1.48) AREA 127

4. Γh is axially symmetric.

Proof: Denote by Th the dual tree of Gh. Drawing Γh can be constructed
as follows. First, we apply the algorithm shown in this section to obtain a star-
shaped drawing Γh of Th. Second, using Lemmata 5.6 and 5.8, we construct a
straight-line outerplanar drawing ΓI(G) of the internal subgraph of Gh. Finally,
we draw the poles of Gh and their incident edges, obtaining Γh. This is done
as follows.

Draw the left vertex one unit below and one unit to the right of rh, and
draw the right vertex one unit above and one unit to the right of rh. As already
discussed, this placement allows to draw straight-line edges from the left vertex
to each node of L(Th) and from the right vertex to each node of R(Th) without
introducing crossings. Moreover, this placement increases by at most one unit
the width of the drawing (only if h is even) and doesn’t alter the height of Γh.
See Fig. 5.12 (b).

The bounds on the height and on the width of Γh easily descend from the
bounds given for the star-shaped drawings of complete binary trees. Unfortu-
nately, the drawings obtained by the described algorithm have poor angular
resolution. Namely, some calculations show that there are angles in the drawing
that decrease as fast as k

n , with k constant. 2

From the fact that a balanced outerplanar graph can be augmented to
complete by adding a linear number of nodes and without altering its height
we have:

Theorem 5.4 Given an n-vertex balanced outerplanar graph G, there exists an
O(n)-time algorithm that constructs an outerplanar straight-line grid drawing
Γ of G such that both the height and the width of Γ are O(

√
n).

5.5 Outerplanar Drawings of Outerplanar Graphs in

O(n1.48) Area

This section is devoted to the proof of the following theorem.

Theorem 5.5 Given an n-vertex outerplanar graph G, there exists an O(n)-
time algorithm that constructs an O(n1.48) area outerplanar straight-line grid
drawing of G.

The main ingredients of the proof are: (i) a recursive algorithm for con-
structing a star-shaped drawing of a binary tree, (ii) Lemma 5.8, and (iii)
Lemma 5.10 presented by Chan in [Cha02].

i

i

“main” — 2009/2/23 — 18:41 — page 128 — #138
i

i

i

i

i

i

128
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

Lemma 5.10 (Chan [Cha02]) Let p = 0.48. Given any binary tree T of size
n, there exists a root-to-leaf path π such that for any left subtree α and right
subtree β of π, |α|p + |β|p ≤ (1 − δ)np, for some constant δ > 0.

First, we show two techniques, called Constructions 1–2, for constructing
a star-shaped drawing Γi, with i ∈ {1, 2}, of a general binary tree T with
n nodes. Each one is defined in terms of itself and of the other one. Let
S = (v0, v1, . . . , vm) be any spine of T .

Let si be the non-spine child of vi and let T (si) be the subtree of T rooted
at si. We denote by W1(T) (by W2(T)) the width of Γ1 (of Γ2). We denote
by W1(n) (by W2(n)) the maximum width of a drawing obtained from an
application of Construction 1 (of Construction 2) among all possible n-node
input binary trees. Clearly, Wi(T) ≤ Wi(n).

Now we show Construction 1. First, we draw each vi ∈ S together with
T (si), obtaining Γ(vi); then we put all the Γ(vi) together to obtain Γ1. Con-
struction 1 has four subcases, labeled 1xy, x ∈ {t, b} and y ∈ {l, r}. Index x
states that S is drawn going towards the top (x = t) or towards the bottom
(x = b) of Γ1. Index y states that L(T) (y = l), or R(T) (y = r), is drawn
going towards the left of Γ1. In the following we show the details of Construc-
tion 1bl, while the others are easily obtained from 1bl after a reflection with
respect to the x-axis and/or a switch of the left with the right and vice-versa.
Construction 1 is shown in Fig. 5.13.

Suppose v1 is the right child of v0. Let k be the first index such that vk

is the left child of vk−1. In the following we denote the subtree T (s0) also
with T (sl) and we denote the subtree T (sk−1) also with T (sr). Draw T (s0)
and T (sk−1) with Construction 1bl, obtaining Γ(s0) and Γ(sk−1), respectively.
Draw v0 one unit above and one unit to the right of B(Γ(s0)), obtaining Γ(v0).
Draw vk−1 one unit above and one unit to the left of B(Γ(sk−1)), obtaining
Γ(vk−1). Draw any other left subtree of S with Construction 2tr and any other
right subtree of S with Construction 2bl, obtaining Γ(si). If si is the left child
of vi, draw vi on the same row and one unit to the right of si, else (si is the
right child of vi) draw vi on the same horizontal row and one unit to the left
of si, obtaining Γ(vi).

Now suppose v1 is the left child of v0. Let k be the first index such that
vk is the right child of vk−1. In the following we denote the subtree T (s0) also
with T (sr) and we denote the subtree T (sk−1) also with T (sl). Draw T (s0)
and T (sk−1) with Construction 1bl, obtaining Γ(s0) and Γ(sk−1), respectively.
Draw v0 one unit above and one unit to the left of B(Γ(s0)), obtaining Γ(v0).

i

i

“main” — 2009/2/23 — 18:41 — page 129 — #139
i

i

i

i

i

i

5.5. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(N1.48) AREA 129

1bl 1tr 1br 1tl

1bl

s0 v0

r

r

r

r

l

v12tr s1

2tr
sk-2 vk-2

vk-1

vk

1bl
sk-1

2bl
l

vk+1 2bl
l

vk+2 2bl

sk

sk+1

sk+2

l
2tr

sk+3

r
vk+4 2blsk+4

vk+3

s0v0

v1

vk-2

vk-1

vk

vk+1

vk+2

vk+3

vk+4

s1

sk-2

sk-1

sk

sk+1

sk+2

sk+3

sk+4

r

r

r

r

r

l

l

l

l

1tr

1tr

2bl

2bl

2bl

2tr

2tr

2tr

2tr 1br

s0 v0

v12br s1

2br
sk-2 vk-2

vk-1

vk

1br
sk-1

2tl

vk+1 2tl

vk+2 2tl

sk

sk+1

sk+2

2br
sk+3

vk+4 2tlsk+4

vk+3

r

r

r

r

l

l

l

l

l

s0v0

v1

vk-2

vk-1

vk

vk+1

vk+2

vk+3

vk+4

s1

sk-2

sk-1

sk

sk+1

sk+2

sk+3

sk+4

1tl

1tl

2tl

2tl

2tl

2br

2br

2br

2br

l

l

l

l

l

r

r

r

r

(a) (b) (c) (d)

Figure 5.13: Constructions (a) 1bl, (b) 1tr, (c) 1br and (d) 1tl. The edges
(vi, vi+1) labeled r (l) are such that vi+1 is the right (resp. left) child of vi.
The thick edges show the spine of T .

Draw vk−1 one unit above and one unit to the right of B(Γ(sk−1)), obtaining
Γ(vk−1). Draw any other left subtree with Construction 2tr and any other
right subtree with Construction 2bl, obtaining Γ(si). If si is the left child of
vi, draw vi on the same row and one unit to the right of si, else (si is the right
child of vi) draw vi on the same row and one unit to the left of si, obtaining
Γ(vi).

Now we put together all the Γ(vi), 0 ≤ i ≤ m as follows. Place Γ(v0)
anywhere in the plane. For 1 ≤ i ≤ m do as follows:

• if vi is the left child of vi−1 and vi+1 is the left child of vi, then draw
Γ(vi) so that vi is on the same column of vi−1 and so that b(Γ(vi−1)) is

i

i

“main” — 2009/2/23 — 18:41 — page 130 — #140
i

i

i

i

i

i

130
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

one unit above t(Γ(vi)).

• if vi is the right child of vi−1 and vi+1 is the right child of vi, then draw
Γ(vi) so that vi is on the same column of vi−1 and so that b(Γ(vi−1)) is
one unit above the t(Γ(vi)).

• if vi is a leaf (i = m), then draw Γ(vi) so that vi is on the same column
of vi−1 and so that b(Γ(vi−1)) is one unit above vi.

• if vi is the left child of vi−1 and vi+1 is the right child of vi then draw
vi on the column one unit to the left with respect to the column of vi−1

and so that b(Γ(vi−1)) is one unit above t(Γ(vi)).

• if vi is the right child of vi−1 and vi+1 is the left child of vi then draw vi

on the column one unit to the right with respect to the column of vi−1

and so that b(Γ(vi−1)) is one unit above t(Γ(vi)).

Property 5.3 Construction 1bl guarantees that all the vertices of L(T) are
visible from any point that is above and to the left of B(Γ1) and that all the
vertices of R(T) are visible from any point that is above and to the right of
B(Γ1).

Property 5.4 Suppose that Construction 2tr constructs a star-shaped drawing
in which the leftmost and the rightmost paths of the tree lie on the right side
of the drawing’s bounding box. Suppose also that Construction 2bl constructs
star-shaped drawings in which the leftmost and the rightmost paths of the tree
lie on the left side of the drawing’s bounding box. We have that the drawing
obtained with Construction 1bl is star-shaped.

Property 5.5 The following equality holds:

W1(T) = 2 + max{W1(T (sl)), max
i

{W2(T (si))}} +

+ max{W1(T (sr)), max
j

{W2(T (sj))}},

where i is such that si is the left child of vi and j is such that sj is the right
child of vj , with i, j /∈ {0, k − 1}.

Analogous properties hold for Constructions 1br, 1tl,and 1tr.

i

i

“main” — 2009/2/23 — 18:41 — page 131 — #141
i

i

i

i

i

i

5.5. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(N1.48) AREA 131

Construction 2 is as follows. We have four subcases, say 2xy, where x ∈
{t, b} and y ∈ {l, r}. Index x states that L(T) is drawn going towards the top
(x = t) or going towards the bottom (x = b) of Γ2. Index y states that the
root is drawn on the right side (y = r) or on the left side (y = l) of Γ2. In the
following we show Construction 2bl, while the other cases are easily obtained
from 2bl after a reflection with respect to the y-axis and/or a switch of the left
with the right and vice-versa. Construction 2 is shown in Fig. 5.14.

2bl 2tl 2br 2tr

v0

ul,1

ul,m

ul,x
sl,x

2bl

1bl

1tr

sl,xl

sl,xr ul,x-1

ul,x-2

ur,1

ur,2

ur,p

2bl

2bl

2bl

2bl

2bl

2bl

v0

ur,1

ur,p

ur,x
sr,x

2tl

1br

1tl

sr,xr

sr,xlur,x-1

ur,x-2

ul,1

ul,2

ul,m

2tl

2tl

2tl

2tl

2tl

2tl

ur,x-2

ul,m

ul,2

ul,1

v0

ur,1

ur,p

ur,x

ur,x-1

sr,x

sr,xl

sr,xr

2br

1tl

1br

2br

2br

2br

2br

2br

2br

ul,x-2

ur,p

ur,2

ur,1

v0

ul,1

ul,m

ul,x

ul,x-1

sl,x

sl,xr

sl,xl

2tr

1tr

1bl

2tr

2tr

2tr

2tr

2tr

2tr

(a) (b) (c) (d)

Figure 5.14: Constructions (a) 2bl, (b) 2tl, (c) 2br, (d) 2tr. The thick edges
show L(T) and R(T).

Let v0 be the root of T , let Cl = (ul,0, ul,1, . . . , ul,m) be L(T), and let
Cr = (ur,0, ur,1, . . . , ur,p) be the rightmost path of T , with ul,0 = ur,0 = v0.
Let sl,i be the right child of a node ul,i ∈ Cl and let sr,i be the left child of
a node ur,i ∈ Cr; we call T (sl,i) the subtree of T rooted at sl,i and T (sr,i)

i

i

“main” — 2009/2/23 — 18:41 — page 132 — #142
i

i

i

i

i

i

132
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

the subtree of T rooted at sr,i. First, we draw each ul,i ∈ Cl together with
T (sl,i) and each ur,i ∈ Cr together with T (sr,i), obtaining Γ(ul,i) and Γ(ur,i)
respectively; then we put all the Γ(ul,i) and the Γ(ur,i) together to obtain Γ2.

Let sk,x be the one among nodes sj,i, with j = l and i = 1, 2, . . . , m and with
j = r and i = 1, 2, . . . , p, such that T (sk,x) has the maximum number of nodes
among all the subtrees T (sj,i). Let T (sk,xl) and T (sk,xr) be the left and the
right subtree of sk,x, with roots sk,xl and sk,xr, respectively. Draw T (sk,xl) with
Construction 1bl and draw T (sk,xr) with Construction 1tr, obtaining Γ(sk,xl)
and Γ(sk,xr), respectively. Draw any other subtree T (sj,i) with Construction
2bl, obtaining Γ(sj,i).

Place Γ(sk,xl) anywhere in the plane. Place Γ(sk,xr) so that b(Γ(sk,xr)) is
three vertical units above t(Γ(sk,xl)) and so that l(Γ(sk,xr)) is on the same
column of l(Γ(sk,xl)). If k = l, place sl,x one unit above t(Γ(sl,xl)) and one
unit to the right of the rightmost boundary between r(Γ(sl,xl)) and r(Γ(sl,xr)).
Draw ul,x on the same row of sl,x, one unit to the left of l(Γ(sl,xl)). Draw
ul,x−1 one unit above ul,x. If k = r, place sr,x one unit below b(Γ(sr,xr))
and one unit to the right of the rightmost boundary between r(Γ(sr,xl)) and
r(Γ(sr,xr)). Draw ur,x on the same row of sr,x, one unit to the left of l(Γ(sr,xr)).
Draw ur,x−1 one unit below ur,x. Place Γ(sk,x−1) so that l(Γ(sk,x−1)) is on the
same column of l(Γ(sk,x)) and so that (if k = l) b(Γ(sk,x−1)) is one unit above
t(Γ(sk,x)) or (if k = r) t(Γ(sk,x−1)) is one unit below b(Γ(sk,x)), obtaining
Γ(uk,x−1).

For each Γ(sj,i), with j = l and i = 1, 2, . . . , m and with j = r and i =
1, 2, . . . , p, but for Γ(sk,x−1) and Γ(sk,x), place uj,i one unit to the left of sj,i,
obtaining Γ(uj,i). Place all the Γ(ul,i) (eventually also Γ(uk,x−1) if k = l)
so that all ul,i are on the same column, so that t(Γ(ul,i)) is one unit below
b(Γ(ul,i−1)), with 2 ≤ i ≤ m, obtaining Γl. Place all the Γ(ur,i) (eventually
also Γ(uk,x−1) if k = l) so that all ur,i are on the same column, so that b(Γ(ur,i))
is one unit above t(Γ(ur,i−1)), with 2 ≤ i ≤ p, obtaining Γr.

Notice that if x = 1 then v0 is already drawn in Γl (if k = l) or in Γr (if
k = r). Otherwise, augment Γl by drawing v0 on the same column of vertices
ul,i, one unit above t(Γ(ul,1)).

Finally, place Γl and Γr together, so that l(Γl) and l(Γr) are on the same
column, and so that b(Γr) is one unit above t(Γl).

Property 5.6 Construction 2bl guarantees that all the vertices of L(T) are on
the left side of the bounding box of Γ2. Construction 2bl guarantees that all the
vertices of the rightmost path of T are on the left side of the bounding box of
Γ2.

i

i

“main” — 2009/2/23 — 18:41 — page 133 — #143
i

i

i

i

i

i

5.5. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(N1.48) AREA 133

Property 5.7 Suppose that Constructions 1tr and 1bl construct star-shaped
drawings. Suppose that Construction 1tr is such that L(T (sk,xr)) is visible
from any point that is below and to the right of B(Γ(sk,xr)). Suppose that
Construction 1tr is such that R(T (sk,xr)) is visible from any point that is be-
low and to the to the left of B(Γ(sk,xr)). Suppose that Construction 1bl is
such that L(T (sk,xl)) is visible from any point that is above and to the left of
B(Γ(sk,xl)). Suppose that Construction 1bl is such that R(T (sk,xl)) is visible
from any point that is above and to the right of B(Γ(sk,xl)). We have that a
drawing constructed by Construction 2bl is star-shaped.

Property 5.8 The following equality holds:

W2(T) = max{2 + W1(T (sk,xl)), 2 + W1(T (sk,xr)), max{1 + W2(T (sj,i))}},

where sj,i 6= sk,x.

Analogous properties hold for Constructions 2br, 2tl,and 2tr.
We can use Constructions 1–2 for constructing a star-shaped drawing Γ

of a binary tree T as follows. First, we select any spine. Second, we apply
Construction 1bl. Third, we recursively apply all the constructions in the
appropriate cases. From the above properties we have that Γ is star-shaped.

At this point we can draw any outerplanar graph G with dual tree T as fol-
lows. First, we draw T with the above algorithm. Second, we apply Lemma 5.8
to construct an outerplanar drawing of the internal subgraph of G with the
same height and width of T . Third, exploiting Property 5.3 we place the poles
of G obtaining a drawing that has the same height and width plus one unit
and two units, respectively.

An example of application of the algorithm is shown in Fig. 5.15.
Now we analyze the height and the width of Γ. About the height, it’s easy

to see that there is at least one vertex for each horizontal line that intersects
Γ. So we immediately obtain that the height of Γ is O(n).

Now we focus on the width W (T) of Γ. To get a good bound for W (T),
we need to carefully choose the spine of T (and recursively the spine of each
subtree drawn with Construction 1) while applying the algorithm. Denote by
W (n) the maximum width of a drawing obtained from an application of the
algorithm among all possible n-node input binary trees. Observe that since
the algorithm starts by applying Construction 1, then W (n) = W1(n). By
definition we have W (T) ≤ W (n).

i

i

“main” — 2009/2/23 — 18:41 — page 134 — #144
i

i

i

i

i

i

134
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

1

3

2

(a) (b)

(c) (d)

Figure 5.15: Application of the algorithm in Sect. 5.5. (a) An outerplanar
graph G. (b) The dual tree T of G and its subdivision by the selection of its
spine. (c) The star-shaped drawing of T . (d) The outerplanar drawing of G .

Let n1 (n2) be the number of vertices of the heaviest left (right) subtree of
the spine S of T , that is, the number of vertices of the left (right) subtree of S
with the maximum number of nodes. Spine S can be chosen so that, for any left
subtree α and right subtree β of S, we have |α|0.48 + |β|0.48 ≤ (1− δ)n0.48, for
some constant δ > 0, according to Lemma 5.10 appeared in [Cha02]. Clearly,
the previous inequality implies that n0.48

1 + n0.48
2 ≤ (1− δ)n0.48. Observe that,

i

i

“main” — 2009/2/23 — 18:41 — page 135 — #145
i

i

i

i

i

i

5.5. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(N1.48) AREA 135

by definition, W (n), W1(n), and W2(n) are non-decreasing functions of n.
We claim that W1(n) ≤ 7 · n0.48 − 6 and that W2(n) ≤ 7 · n0.48 − 4. In the

following, we prove such claims by induction on n. In the base case n = 1 and
the trivial drawing of a single node satisfies both inequalities. Now suppose
that the claims hold for trees with at most n − 1 nodes.

First, we prove that W1(n) ≤ 7 · n0.48 − 6. By property 5.5, we have:

W1(T) = 2 + max{W1(T (sl)), max
i

{W2(T (si))}} +

+ max{W1(T (sr)), max
j

{W2(T (sj))}},

where i is such that si is the left child of vi and j is such that sj is the right child
of vj , with i, j /∈ {0, k−1}. Observe that T (sl) and each of T (si), where i is such
that si is the left child of vi, have at most n1 nodes, and that T (sr) and each
of T (sj), where j is such that sj is the right child of vj , have at most n2 nodes.
Hence, we have W1(n) = 2 + max{W1(n1), W2(n1)} + max{W1(n2), W2(n2)}.
Applying the inductive hypothesis, we have W1(n) = 2 + max{7 · n0.48

1 − 6, 7 ·
n0.48

1 − 4}+ max{7 · n0.48
2 − 6, 7 · n0.48

2 − 4} = 2 + 7 · n0.48
1 − 4 + 7 · n0.48

2 − 4 =
7 · (n0.48

1 + n0.48
2)− 6. Since n0.48

1 + n0.48
2 ≤ (1− δ)n0.48 ≤ n0.48, the first claim

follows.
We prove that W2(n) ≤ 7 · n0.48 − 4. By property 5.8, we have W2(T) =

max(2 + W1(T (sk,xl)), 2 + W1(T (sk,xr)), 1 + max(W2(T (sj,i)))), where sj,i 6=
sk,x. Observe that T (sk,xl) and T (sk,xr) have no more than n − 1 nodes and
that T (sj,i), where sj,i 6= sk,x, has no more than n/2 nodes, since T (sk,x) is
chosen to be the subtree of the leftmost and rightmost paths of T with the
maximum number of nodes. Hence, we get W2(n) ≤ {2+W1(n), 1+W2(n/2)}.
Applying the inductive hypothesis, we have W2(n) ≤ max{2 + 7 · n0.48 − 6, 1 +
7 · (n/2)0.48 − 4} = max{7 · n0.48 − 4, 7 · (n/2)0.48 − 3}. Hence, we have only to
show that 7 · (n/2)0.48 − 3 ≤ 7 · n0.48 − 4. The previous inequality is satisfied if
7(1 − 1

20.48)n0.48 ≥ 1. However, since n ≥ 1, we have 7(1 − 1
20.48)n0.48 > 1.98.

From the results on the height and on the width, we obtain the O(n1.48)
area bound on Γ. It is easy to see that the algorithm can be implemented to
run in linear time.

i

i

“main” — 2009/2/23 — 18:41 — page 136 — #146
i

i

i

i

i

i

136
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

5.6 Outerplanar Drawings of Outerplanar Graphs in

O(dn logn) Area

In this section we show an algorithm for constructing straight-line outerplanar
drawings of outerplanar graphs with degree d in O(dn log n) area.

Similarly to the algorithm shown in the previous section, the algorithm we
present in this section has the following steps: (i) augment the input outerpla-
nar graph G to a maximal outerplanar graph G′; (ii) select any edge (ul, ur)
incident to the outer face of the outerplanar embedding E of G′ and root the
dual binary tree T of E at the internal face r of E containing (ul, ur); construct
a star-shaped drawing Γ of T ; (iii) insert the poles of G′ and the edges that
are needed to augment Γ in a drawing Γ′ of G′; (iv) remove the dummy edges
inserted during the first step to obtain a drawing of G.

Differently from the algorithm shown in the previous section, some care
has to be taken when augmenting the outerplanar graph to maximal. In fact,
this must be done so that the degree of the graph does not asymptotically in-
crease. However, Kant and Bodlaender proved in [KB97] that any outerplanar
graph can be augmented to maximal by inserting dummy edges that do not
asymptotically increase the degree of the graph.

Now we describe how to construct a star-shaped drawing Γ of T . The
outline of such a construction is as follows. A path S is removed from T ,
together with the edges incident to the vertices of S. The subtrees that are
disconnected from the removal of S are recursively drawn. Path S is chosen so
that each one of such subtrees is “small”, that is, has at most n/2 nodes. The
drawings of the recursively drawn subtrees are horizontally aligned, namely
they are all contained in an horizontal strip H . The vertical extension of such
a strip is given by the height of the highest drawing of a subtree recursively
drawn. The nodes of S are drawn in the upper part and in the lower part of
the drawing, that is, in the 4d + 1 horizontal grid lines above and below H ,
respectively. In particular, S is partitioned into subpaths, and each subpath
“cuts” H , that is, the subpath is drawn in part above and in part below H .
The drawing is constructed to satisfy the visibility properties of a star-shaped
drawing. In particular, the leftmost and the rightmost path of T are placed on
the lowest line intersecting the drawing.

Denote by h1 and h2 the horizontal grid lines delimiting H with h1 above h2

at a vertical distance that will be determined later. The 4d + 1 horizontal grid
lines above h1 (resp. below h2), that compose the upper part (resp. the lower
part) of the drawing, are labeled by u1, u2, . . . , u4d+1 (resp. by l1, l2, . . . , l4d+1)

i

i

“main” — 2009/2/23 — 18:41 — page 137 — #147
i

i

i

i

i

i

5.6. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(DN LOGN) AREA 137

from the lowest to the highest (resp. from the highest to the lowest). All the
nodes of L(T) and of R(T) lie on l4d+1. See Fig. 5.16.

r rrr rl

H

u4d+1

u2d+2
u2d+1

l2d+2

l4d+1

l4d

u1

l1

l2d+1

u4d

h1

h2

v0

Figure 5.16: The strip H , the upper and the lower part of the drawing, the
placement of L(T) and R(T) in Γ.

Assume T is rooted at any node v0 of degree at most 2. Select a spine
S = (v0, v1, . . . , vm) in T , such that, for 1 ≤ i ≤ k, vi is the child of vi−1 that
is root of the heaviest subtree of vi−1. The nodes of T belonging to S (not
belonging to S) are spine nodes (resp. non-spine nodes). We call left edge
(right edge) an edge (vi−1, vi) of S such that vi is the left child of vi−1 in S
(resp. the right child of vi−1 in S). We prove that each non-spine node ui child
of a spine node vi is root of a subtree with no more than n/2 nodes. Let vi+1

be the spine node child of vi (notice that vi+1 exists, otherwise ui would be
chosen as a spine node). Suppose, for a contradiction, that T (ui) has at least
1 + n/2 nodes. However, by the way in which the spine is chosen, T (vi+1) has
also at least 1+n/2 nodes. Hence, T would have more than n nodes, providing
a contradiction.

Path S is partitioned into vertex-disjoint subpaths S0, S1, . . . , Sq, so that,

for 0 ≤ j ≤ q, path Sj = (vj
k, vj

k+1, . . . , v
j
l , v

j
l+1, . . . , v

j
f−1, v

j
f) is defined as

follows::

• v0
k = v0, and, for 1 ≤ j ≤ q, vj

k is the node after vj−1
f in S.

• If (vj
k, vj

k+1) is a right edge, then let vj
l be the first node after vj

k in S

such that (vj
l , v

j
l+1) is a left edge.

– If (vj
l+1, v

j
l+2) is a left edge then let vj

f be the first node after vj
l in

S such that (vj
f , vj

f+1) is a right edge.

i

i

“main” — 2009/2/23 — 18:41 — page 138 — #148
i

i

i

i

i

i

138
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

– If (vj
l+1, v

j
l+2) is a right edge then let vj

f be the first node after vj
l in

S such that (vj
f , vj

f+1) is a left edge.

• If (vj
k , vj

k+1) is a left edge, then let vj
l be the first node after vj

k in S such

that (vj
l , v

j
l+1) is a right edge.

– If (vj
l+1, v

j
l+2) is a right edge then let vj

f be the first node after vj
l in

S such that (vj
f , vj

f+1) is a left edge.

– If (vj
l+1, v

j
l+2) is a left edge then let vj

f be the first node after vj
l in

S such that (vj
f , vj

f+1) is a right edge.

Notice that Sq
j could have no vertex vq

l or vq
f if the spine ends before a left

edge or a right edge is encountered. Roughly speaking, a path Sj starts from

the vertex vj
k of S following the one where path Sj−1 ends; further, Sj ends

where the second or the third alternation among left and right edges of S is
found starting from vj

k. In particular, Sj ends at the third alternation when the
second alternation comes immediately after the first one, i.e., when S contains
a sequence (left edge, right edge, left edge) or a sequence (right edge, left edge,
right edge) providing the first and the second alternation among left and right
edges of S starting from vj

k.
Tree T is also subdivided into subtrees: For 0 ≤ j ≤ q, tree Tj is the

subtree of T induced by the nodes in Sj and the nodes in the subtrees rooted
at non-spine nodes children of spine nodes in Sj .

Now we show how to construct a drawing Γj of each Tj , for 0 ≤ j ≤ q.
First, we show how to draw path Sj together with some other nodes of Tj . We
distinguish eight cases, based on whether:

• j is even (Cases 1-2-3-4) or odd (Cases 5-6-7-8)

• (vj
k, vj

k+1) is a right edge (Cases 1-2-5-6) or a left edge (Cases 3-4-7-8)

• (vj
l+1, v

j
l+2) is a right edge (Cases 1-3-5-7) or a left edge (Cases 2-4-6-8)

In the cases in which j is even, draw L(Tj) and R(Tj) on l2d+1 so that the
each node of L(Tj) (of R(Tj)) is one unit to the right of its left child (resp. one
unit to the left of its right child). In the cases in which j is odd, draw L(Tj)
and R(Tj) on u2d+1 so that the each node of L(Tj) (of R(Tj)) is one unit to
the left of its left child (resp. one unit to the right of its right child). Denote
by hl the vertical grid line passing through vl, and denote by hl+1, hl+2, hl−1,

i

i

“main” — 2009/2/23 — 18:41 — page 139 — #149
i

i

i

i

i

i

5.6. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(DN LOGN) AREA 139

and hl−2 the vertical grid lines one unit to the right, two units to the right,
one unit to the left, and two units to the left of hl, respectively.

l

v0
k v0

l

v1
l

r

r

r

r

r

r

r

r

r
r rl

ll

Γ0

Γ0

Γ0 Γ1

Γ1 Γ1

Γ1 Γ2

Γ2 Γ2

Γ2

l l

l

l l

l

H

u4d+1

u2d+2
u2d+1

l2d+2

l4d+1

l4d

u1

l1

l2d+1

u4d
v0

f-1Case 1 Case 5 Case 4

v0
f

h1

h2

l
l

l

l

l l

lr
r

rrr

l
l

l

l

r

r r

r

r
r

r
r

r

r

r

r
r

r rr

l l l l

l

l

l

v0
l+1

v1
k

v1
f-1

v2
f-1

v1
f

v2
f

v1
l+1

v2
l+1

v2
l

v2
k

Figure 5.17: Thick segments represent the edges of S. Left (right) edges are
labeled by l (resp. by r).

Case 1. Draw vj
f at the intersection between hl+1 and u2d+2; draw R(T (vj

f))

on hl+1, with any node one unit above its right child. Draw vj
f−1 at the inter-

section between hl−2 and u4d+1. Draw R(T (vj
l+1)) till vj

f−1 on hl−2, with any

node one unit below its right child; draw L(T (vj
l+1)) on hl−2, with any node

one unit above its left child.
Case 2. Draw vj

f at the intersection between hl−2 and u4d+1; draw L(T (vj
f))

on hl−2, with any node one unit above its left child. Draw vj
f−1 at the inter-

section between hl+1 and u2d+2. Draw L(T (vj
l+1)) till vj

f−1 on hl+1, with any

node one unit below its left child; draw R(T (vj
l+1)) on hl+1, with any node one

unit above its right child.
Case 3. Draw vj

f at the intersection between hl+2 and u2d+2; draw R(T (vj
f))

on hl+2, with any node one unit above its right child. Draw vj
f−1 at the inter-

section between hl−1 and u4d+1. Draw R(T (vj
l+1)) till vj

f−1 on hl−1, with any

node one unit below its right child; draw L(T (vj
l+1)) on hl−1, with any node

one unit above its left child.
Case 4. Draw vj

f at the intersection between hl−1 and u4d+1; draw L(T (vj
f))

i

i

“main” — 2009/2/23 — 18:41 — page 140 — #150
i

i

i

i

i

i

140
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

on hl−1, with any node one unit above its left child. Draw vj
f−1 at the inter-

section between hl+2 and u2d+2. Draw L(T (vj
l+1)) till vj

f−1 on hl+2, with any

node one unit below its left child; draw R(T (vj
l+1)) on hl+2, with any node one

unit above its right child.
Case 5. Draw vj

f at the intersection between hl−1 and l4d+1; draw R(T (vj
f))

on hl−1, with any node one unit below its right child. Draw vj
f−1 at the

intersection between hl+2 and l2d+2. Draw R(T (vj
l+1)) on hl+2, with any node

one unit above its right child; draw L(T (vj
l+1)) on hl+2, with any node one

unit below its left child.
Case 6. Draw vj

f at the intersection between hl+2 and l2d+2; draw L(T (vj
f))

on hl+2, with any node one unit below its left child. Draw vj
f−1 at the intersec-

tion between hl−1 and l4d+1. Draw L(T (vj
l+1)) on hl−1, with any node one unit

above its left child; draw R(T (vj
l+1)) on hl−1, with any node one unit below its

right child.
Case 7. Draw vj

f at the intersection between hl−2 and l4d+1; draw R(T (vj
f))

on hl−2, with any node one unit below its right child. Draw vj
f−1 at the

intersection between hl+1 and u2d+2. Draw R(T (vj
l+1)) on hl+1, with any node

one unit above its right child; draw L(T (vj
l+1)) on hl+1, with any node one

unit below its left child.
Case 8. Draw vj

f at the intersection between hl+1 and l2d+2; draw L(T (vj
f))

on hl+1, with any node one unit below its left child. Draw vj
f−1 at the intersec-

tion between hl−2 and l4d+1. Draw L(T (vj
l+1)) on hl−2, with any node one unit

above its left child; draw R(T (vj
l+1)) on hl−2, with any node one unit below its

right child.
In Γ0 shift the nodes of L(T0) and R(T0) vertically, so that they keep the

same x-coordinates and lie on line l4d+1.
Fig. 5.17 shows how to draw path Sj in Cases 1, 5, and 4.
For each Tj , with 0 ≤ j ≤ q, recursively construct a drawing of each subtree

rooted at a node of Tj that has not been already drawn and that is child of a
node of Tj that has been already drawn. Let hmax be the maximum between
the heights of the drawings of the subtrees recursively drawn. Set the distance
between h1 and h2 to be hmax − 1, that is H consists of hmax horizontal grid
lines.

For each Tj , with 0 ≤ j ≤ q and j even, construct a drawing Γj starting
from the drawing of Sj already constructed, as follows:

i

i

“main” — 2009/2/23 — 18:41 — page 141 — #151
i

i

i

i

i

i

5.6. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(DN LOGN) AREA 141

• Consider the drawings of the subtrees rooted at non-already drawn nodes
of Tj that are children of nodes belonging to L(Tj) or to R(Tj), and whose

parents are placed to the right of vj
l . Place such drawings in the left-right

order induced by the order of their parents on l4d+1 or on l2d+1, at one
unit of horizontal distance between them, with the leftmost vertical line
intersecting the leftmost drawing one unit to the right of the last node of
R(Tj), and with their leftmost and rightmost paths on h1.

• Consider the drawings of the subtrees rooted at non-already drawn nodes
of Tj that are children of nodes belonging to L(Tj) or to R(Tj), and whose

parents are placed to the left of vj
l . Place such drawings in the left-right

order induced by the order of their parents on l4d+1 or on l2d+1, at one
unit of horizontal distance between them, with the rightmost vertical line
intersecting the rightmost drawing one unit to the left of the last node of
L(Tj), and with their leftmost and rightmost paths on h1.

• Consider the drawings of the subtrees rooted at non-already drawn nodes
of Tj that are children of nodes already drawn in the upper part of the
drawing. Rotate such drawings of π radiants and place them so that
their leftmost and rightmost paths lie on h2, so that the drawings of the
subtrees rooted at children of nodes drawn on hl+1 or on hl+2 (on hl−1

or on hl−2) are placed to the right (resp. to the left) of the drawing
constructed up to now, at one unit of horizontal distance in the order
induced by their parents in L(T (vj

l+1)) or in R(T (vj
l+1)).

If j is odd, a drawing Γj of Tj can be constructed analogously.
Now place all the Γj ’s together, starting from Γ0, and iteratively adding Γj ,

for j = 1, . . . , m, so that the leftmost vertical line intersecting Γj is one unit
to the right of the rightmost vertical line intersecting Γj−1.

We prove that the resulting drawing Γ is a star-shaped drawing of T .

Lemma 5.11 Γ is a star-shaped drawing of T .

Proof: We show that, given a rooted binary tree T , dual of a maximal
outerplanar graph G, the above described algorithm constructs a star-shaped
drawing Γ of T .

First, observe that the claim that all the subtrees recursively drawn are
contained inside H holds, since the distance between h1 and h2 is set equal to
the height of the highest subtree recursively drawn.

i

i

“main” — 2009/2/23 — 18:41 — page 142 — #152
i

i

i

i

i

i

142
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

Second, all the nodes directly drawn are in the upper and lower part of
Γ. Namely, we have that: (i) by construction such nodes are never placed
above u4d+1 or below l4d+1 and (ii) if such nodes are placed in H , then it’s
easy to deduce by the algorithm’s construction that there exists a leftmost or
a rightmost path of a subtree of T whose length is greater than d; however,
this would imply that there exists a vertex of G whose degree is greater than
d, since all the nodes of a leftmost or rightmost path of a subtree of T are
neighbors of the same node of G.

v* v* v j
l v j

l v j
l-1

(a) (b) (c) (d)

v j+1
k

3 4

v

v

u4d+1

u2d+2

u2d+1

v j+1
k

v

v

u4d+1

u2d+2

u2d+1

(e) (f)

Figure 5.18: Illustrations for the proof of Lemma 5.11.

Drawing Γ is straight-line and order-preserving by construction. We prove
that Γ is planar and satisfies Conditions 1 and 2 of a star-shaped drawing.
However, the planarity of Γ comes straightforwardly by the algorithm’s con-
struction, with the exception of the proof that each edge (vj

f , vj+1
k), with

1 ≤ j ≤ q − 1, does not cross other edges.
For each node v∗ lying in the upper part of the drawing, except for vj

l−1

and vj
l , all the nodes of Pl(v

∗) and of Pr(v
∗) are placed either on h1, or in

i

i

“main” — 2009/2/23 — 18:41 — page 143 — #153
i

i

i

i

i

i

5.6. OUTERPLANAR DRAWINGS OF OUTERPLANAR GRAPHS IN

O(DN LOGN) AREA 143

the upper part of Γ. Analogously, for each node v∗ lying in the lower part of
the drawing, except for vj

l−1 and vj
l , all the nodes of Pl(v

∗) and of Pr(v
∗) are

placed either on h2, or in the lower part of Γ. Hence, all the edges incident to
nodes different from vj

l−1 and vj
l and lying in the upper part and in the lower

part of the drawing do not cut H . It follows that, provided a proof that the
edges connecting vj

l−1 and vj
l to the nodes on Pl(v

j
l−1) and Pr(v

j
l−1), and to

the nodes on Pl(v
j
l) and Pr(v

j
l), respectively, do not cause crossings, the proof

that Γ is planar and satisfies Conditions 1 and 2 of a star-shaped drawing can
be done separately for each recursive step of the algorithm.

Consider a subtree Tj of T , as defined for the algorithm’s description. For

each node v∗ of Tj different from vj
l−1, vj

l , vj
f−1, and vj

f , one between Pl(v
∗) and

Pr(v
∗) has nodes placed either all on h1 or all on h2, but for v∗ (see Fig. 5.18

(a)); the other one between Pl(v
∗) and Pr(v

∗) has one node placed on the same
horizontal or vertical line of v∗ and the other nodes either all on h1 or all on
h2 (see Fig. 5.18 (b)). Hence, straight-lines can be drawn from v∗ to the nodes
of Pl(v

∗) and of Pr(v
∗) without creating crossings in Γ.

Concerning vj
l−1 (resp. vj

l), one between Pl(v
j
l−1) and Pr(v

j
l−1) (resp. one

between Pl(v
j
l) and Pr(v

j
l)) has nodes all on h1 or all on h2, but for vj

l−1 (resp.

but for vj
l−1 and its child that lies on the same horizontal line of vj

l−1) and the

other one between Pl(v
j
l−1) and Pr(v

j
l−1) (resp. between Pl(v

j
l) and Pr(v

j
l))

is a convex polygon P (see Figs. 5.18.c and 5.18.d), cutting H . However,
no recursively drawn subtree has intersection with the smallest vertical strip
containing P (such a strip is delimited either by lines hl−2 and hl+1 or by lines
hl−1 and hl+2). Hence, straight-lines can be drawn from vj

l−1 (from vj
l) to

the nodes of Pl(v
j
l−1) and of Pr(v

j
l−1) (resp. of Pl(v

j
l) and of Pr(v

j
l)) without

creating crossings in Γ.
Finally, consider nodes vj

f−1 and vj
f . One out of vj

f−1 and vj
f , say v, is

placed on u4d+1 or on l4d+1, while the other one, say v̂, is placed on u2d+2 or
on l2d+2. One between Pl(v) and Pr(v) has nodes all on h1 or all on h2, but
for v, while the other one has nodes all on u2d+1 or on l2d+1, but for v and ,
eventually, for v̂. To prove that v is visible from the nodes of Pl(v) and Pr(v),
we claim that the slope of the edge connecting v to vj+1

k is less than the one of
the edge connecting v to v̂ (see Fig. 5.18 (e)). Namely, the horizontal distance
between v and vj+1

k is at least 4 and the vertical distance between v and vj+1
k

is exactly 2d. Further, the horizontal distance between v and v̂ is exactly 3
and the vertical distance between v and v̂ is exactly 2d− 1, and so the slope of
(vvj+1

k) is less or equal than 2d
4 , while the one of (vv̂) is 2d−1

3 . We have that

i

i

“main” — 2009/2/23 — 18:41 — page 144 — #154
i

i

i

i

i

i

144
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

2d
4 < 2d−1

3 if and only if d > 2 that is always satisfied considering maximal
outerplanar graphs with more than 3 vertices. Hence, straight-lines can be
drawn from v to the nodes of Pl(v) and of Pr(v) without creating crossings in
Γ. Concerning v̂, the nodes of one between Pl(v̂) and Pr(v̂) lie all on h1, or all
on h2, but for v̂ and eventually for its child that lies on the same vertical line
of v̂. The nodes of the other one between Pl(v̂) and Pr(v̂) lie all on u2d+1 or
all on l2d+1, but for v̂ and eventually for v, that we have already proved to be
visible from v̂. Hence, straight-lines can be drawn from v̂ to the nodes of Pl(v̂)
and of Pr(v̂) without creating crossings in Γ (see Fig. 5.18 (f)).

Concerning Condition 3, L(T) and R(T) lie on the bottommost line l4d+1

intersecting Γ. Hence, placing the poles ul and ur of G one unit below l4d+1

allows to draw edges from u and ur to the nodes of L(T) and R(T) without
creating crossings with Γ. 2

Let’s analyze the area requirement of Γ. The width of Γ is clearly O(n).
The height of Γ is the sum of the heights of H , of the upper part, and of
the lower part of Γ. The height of H is equal to the height of the highest
subtree of T recursively drawn; by definition of S, each subtree recursively
drawn has at most n/2 nodes. Denoting by H(n) the maximum height of a
drawing of an n-nodes tree T constructed by the algorithm, we get: H(n) ≤
(4d + 1) + (4d + 1) + H(n/2) = O(d) + H(n/2) = O(d log n).

Place the poles of G′ on the horizontal line one unit below v0, at one hor-
izontal unit distance from each other, and so that one pole is on the same
vertical line of v0. Notice that this placement doesn’t asymptotically increase
the area of Γ. Finally, the edges necessary to augment Γ in a drawing of G′

can be inserted and the dummy edges inserted in the first step can be removed
obtaining a drawing of G. Figure 5.19 shows an example of application of the
above described algorithm.

Theorem 5.6 Any n-vertex outerplanar graph of degree d has a straight-line
outerplanar drawing in O(dn log n) area.

Straightforwardly, we obtain the following:

Corollary 5.1 Any n-vertex outerplanar graph with constant degree has a
straight-line outerplanar drawing in O(n log n) area.

i

i

“main” — 2009/2/23 — 18:41 — page 145 — #155
i

i

i

i

i

i

5.7. CONCLUSIONS AND OPEN PROBLEMS 145

ul

ur

root

r

l

l

l

l

l

l

l

l

l

l

l

l

l l

l

r r

r

r

r

r

r

r

r

r

r

r

r

r

r

1

2

3

4

5 7

8

6

9

10

11
12

1315

14

16 17 18

19

20

21

25

26

27

28

29

30
31

32

22

24

23

(a) (b)

u25
u24
u23

u12

u13

u14

u15

u2
u1
h1=h2
l1
l2

l12
l13
l14
l15

l25

9

l23
l24

10

5

13 14 32 2915 18

16

19

20
2122

24

23 2625

27

28

30

31

6 7 8

12 1711

1 3 42

u25
u24
u23

u12

ul ur

u13

u14

u15

u2
u1
h1=h2
l1
l2

l12
l13
l14
l15

l25

l23
l24

23

(c) (d)

Figure 5.19: (a) A maximal outerplanar graph G with n = 34 vertices and
degree d = 6. The poles of G are labeled by ul and ur. (b) The dual binary
tree T of G. Edges labeled by l (by r) are between a node and its left (resp.
right) child. Thick edges show the spine S. Red, green, and blue vertices
show subpaths S0, S1, and S2 of S, respectively. Cases 2, 8, and 1 have to
be applied to draw S0, S1, and S2, respectively. (c) The star shaped drawing
Γ of T constructed by the algorithm shown in Sect. 5.6. (d) The outerplanar
drawing of G obtained by augmenting Γ with the poles of G and with extra
edges.

5.7 Conclusions and Open Problems

In this chapter we have presented four linear-time algorithms for constructing
planar straight-line grid drawings of outerplanar graphs. The first algorithm
is for balanced outerplanar graphs; it constructs non-outerplanar drawings in
O(n) area and with angular resolution greater than c√

n
, where c is a constant.

The second algorithm is also for balanced outerplanar graphs; it constructs
outerplanar drawings in O(n) area and with angular resolution less than c

n ,
where c is a constant. The third algorithm is for general outerplanar graphs and
constructs outerplanar drawings in O(n1.48) area. The fourth algorithm is for

i

i

“main” — 2009/2/23 — 18:41 — page 146 — #156
i

i

i

i

i

i

146
CHAPTER 5. STRAIGHT-LINE DRAWINGS OF OUTERPLANAR

GRAPHS

general outerplanar graphs and constructs outerplanar drawings in O(dn log n)
area. We have also shown that the outerplanar drawings of outerplanar graphs
are strongly related to a special kind of drawings of their dual trees. We
have called such drawings star-shaped drawings. This relationship leads to a
new methodology for drawing outerplanar graphs and this can be helpful in
the development of new algorithms, since drawing a tree, even if with some
constraints, is generally easier than drawing a graph.

Despite of the improved upper bounds proved in this chapter, the following
problems still remain widely open:

Open Problem 5.1 Which are the asymptotic bounds for the area require-
ments of straight-line and poly-line planar drawings of outerplanar graphs?

In fact, while the research efforts on the determination of the area require-
ments of straight-line and poly-line drawings of outerplanar graphs have pro-
duced many algorithms (and consequently some upper bounds), no lower bound
better than the trivial Ω(n) is known. In [Bie02] Biedl conjectured an Ω(n log n)
lower bound on the area requirement of straight-line and poly-line drawings of
outerplanar graphs. More precisely, she exhibited a class of outerplanar graphs,
the “snowflake graphs” shown in Fig. 5.20 (a), for which she claimed:

v w

u
uu

v
v w

w

u

v w

(a) (b) (c)

Figure 5.20: (a) A snowflake graph. (b) A snowflake graph subdivided into
three complete outerplanar graphs. (c) Drawing snowflake graphs in linear
area. The shaded regions correspond to the three copies of the drawing of the
internal subgraph of a complete outerplanar graph constructed by the algorithm
in Sect. 5.4.

Conjecture 5.1 (Biedl [Bie02]) Any poly-line drawing of the snowflake graph
has Ω(n log n) area.

i

i

“main” — 2009/2/23 — 18:41 — page 147 — #157
i

i

i

i

i

i

5.7. CONCLUSIONS AND OPEN PROBLEMS 147

It can be observed that an n-vertex snowflake graph G is composed of three
identical O(n)-vertex complete outerplanar graphs with height h. Then, the
algorithm shown in Sect. 5.4 can be used as follows. Construct a drawing of
the internal subgraph I(G) of a complete outerplanar graph with height h′ ≥ h
even (such an height can be always chosen to be at most one unit more than
h), by means of the algorithm shown in Sect. 5.4. Such an algorithm constructs
drawings in which the vertices of GI that are connected to the poles lie on two
half-lines l1 and l2 with a common endpoint and with slopes −π/4 and π/4.
The entire drawing of I(G) lies in the wedge with angle π/2 delimited by l1 and
l2. Hence, considering three copies of the drawing of I(G) constructed by the
algorithm in Sect. 5.4, rotating them of 0, π, and 3π/2, respectively, placing the
drawings together, and inserting the three vertices that are poles for the three
complete outerplanar graphs, an O(

√
n)×O(

√
n) area straight-line drawing of

a snowflake graph can be obtained (see Fig. 5.20 (c)).
We would like to point up that all the known algorithms for constructing

straight-line drawings of general outerplanar graphs try to minimize the ex-
tension of the drawing in only one coordinate dimension, while allowing the
other dimension to be O(n). However, we believe that O(n log n) area cannot
be achieved by squeezing the drawing in only one dimension, and that hence a
compaction in both dimensions (or a proof that there exist n-vertex outerplanar
graphs for which one dimension is Ω(n)) should be pursued.

Conjecture 5.2 There exist n-vertex outerplanar graphs for which, for any
straight-line drawing in which the longest side of the bounding-box is O(n), the
smallest side of the bounding-box is ω(log n).

We notice that there exist outerplanar graphs such that both the width and
the height of any grid drawing are Ω(log n) (e.g., outerplanar graphs containing
a complete ternary tree as a subgraph).

On the other hand, it is not clear whether a compaction in both dimen-
sions can be pursued. In fact, no algorithm is known to construct planar grid
drawings of outerplanar graphs in which both sides of the drawing are o(n).
However, our new techniques have not improved the situation in this direction.

i

i

“main” — 2009/2/23 — 18:41 — page 148 — #158
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 149 — #159
i

i

i

i

i

i

Part III

Trees

149

i

i

“main” — 2009/2/23 — 18:41 — page 150 — #160
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 151 — #161
i

i

i

i

i

i

Chapter 6

Straight-line, Poly-line, and

Orthogonal Drawings of Trees

In this chapter1 we consider straight-line, poly-line, orthogonal, and straight-
line orthogonal drawings of trees in small area. After having exposed the state
of the art on the area requirements of such drawings, we focus on straight-
line orthogonal drawings of binary and ternary trees. We show algorithms
for constructing order-preserving straight-line orthogonal drawings of binary
trees in O(n1.5) area, straight-line orthogonal drawings of ternary trees in
O(n1.631) area, and straight-line orthogonal drawings of complete ternary trees
in O(n1.262) area. Further, we show lower bounds on the area requirements and
on the side lengths of straight-line orthogonal drawings of binary and ternary
trees.

6.1 Introduction

The problem of drawing trees is a classical topic of investigation in algorith-
mics. Contributions on that field span almost three decades and algorithms for
drawing trees have been proposed within a wide spectrum of drawing conven-
tions. Here, we focus on straight-line, poly-line, orthogonal, and straight-line
orthogonal drawings (addressing, for each of the drawing conventions, also the
upward and the order-preserving constraint).

Straight-line Drawings. The best bound for constructing general trees
is, as far as we know, the O(n log n) area upper bound provided by a sim-

1The contents of this chapter appeared in [Fra07c].

151

i

i

“main” — 2009/2/23 — 18:41 — page 152 — #162
i

i

i

i

i

i

152
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

ple modification of the hv-drawing algorithm of Crescenzi, Di Battista, and
Piperno [CBP92]. See Fig. 6.1 for an illustration of such an algorithm. On
the other hand, no super-linear lower bound is known. Linear area bounds

Figure 6.1: The hv-drawing algorithm of [CBP92] extended to work a general
tree T . The heaviest subtree of the root r(T) is the only subtree of r(T) which
has its root placed on the same horizontal line of r(T).

for straight-line drawings of trees have been however achieved when restricting
to trees of bounded degree. In fact, Garg and Rusu presented an algorithm
to construct straight-line drawings of binary trees in O(n) area [GR02, GR04]
and an algorithm to construct straight-line drawings of trees whose degree is
O(

√
n) in O(n) area [GR03c].

Concerning order-preserving drawings, Garg and Rusu have shown in [GR03b]
how to construct order-preserving straight-line drawings of general trees in
O(n log n) area. A better bound of O(n log log n) area can be achieved when
restricting to binary trees [GR03b]. Both results rely on inductive algorithms
exploiting interesting decompositions of trees into paths and nice geometric
constructions of the final drawing from the drawings of the subtrees. No super-
linear area lower bound is known, neither for binary nor for general trees.

Concerning upward drawings, the illustrated algorithm of Crescenzi et al. [CBP92]
achieves the best upper bound of O(n log n). For trees with constant degree,
Shin, Kim, and Chwa prove in [SKC00] that upward straight-line drawings in
O(n log log n) area can be constructed. No super-linear area lower bound is
known, neither for binary nor for general trees.

Concerning strictly-upward drawings, tight bounds are known. In fact, the
algorithm of Crescenzi et al. [CBP92] can be suitably modified in order to
obtain strictly-upward drawings (in fact, instead of aligning the subtrees of the
root with their bottom sides on the same horizontal line, it is sufficient to align
them with their left sides on the same vertical line). The same authors also
showed a binary tree requiring Ω(n log n) area in any strictly-upward drawing,
hence their bound is tight.

i

i

“main” — 2009/2/23 — 18:41 — page 153 — #163
i

i

i

i

i

i

6.1. INTRODUCTION 153

Concerning strictly-upward order-preserving drawings, the Ω(n log n) area
lower bound of Crescenzi et al. [CBP92] is still matched by an O(n log n) area
upper bound in the case of binary trees. This was proved by Garg and Rusu
in [GR03b]. However, for general trees, the best upper bound we are aware of

is a O(n4
√

2 log n) due to Chan [Cha02].
Table 6.1 summarizes the best known area bounds for straight-line drawings

of trees.

Ord. Pres. Upw. Str. Upw. Upper Bound Ref. Lower Bound Ref.

Binary O(n) [GR04] Ω(n) trivial

Binary X O(n log log n) [GR03b] Ω(n) trivial

Binary X O(n log log n) [SKC00] Ω(n) trivial

Binary X O(n log n) [CBP92] Ω(n log n) [CBP92]

Binary X X O(n log n) [GR03b] Ω(n log n) [CBP92]

General O(n log n) [CBP92] Ω(n) trivial

General X O(n log n) [GR03b] Ω(n) trivial

General X O(n log n) [CBP92] Ω(n) trivial

General X O(n log n) [CBP92] Ω(n log n) [CBP92]

General X X O(n4
√

2 log n) [Cha02] Ω(n log n) [CBP92]

Table 6.1: Summary of the best known area bounds for straight-line drawings of

trees.

Poly-line Drawings. For general trees, no algorithms are known exploiting
the possibility of bending the edges of the graph to get bounds better than the
corresponding ones shown for straight-line drawings. However, better bounds
can be achieved when restricting to bounded-degree trees.

Concerning upward drawings, a linear area bound is known, due to Garg
et al. [GGT96], for all trees whose degree is O(nδ), where δ is a constant less
than 1. Concerning order-preserving strictly-upward drawings, Garg et al. also
show how to construct order-preserving strictly-upward poly-line drawings of
bounded degree trees in O(n log n) area. This bound is tight. Namely, there
exist binary trees requiring Ω(n log n) area in any (even non-strictly) upward
order-preserving drawing [GGT96] (notice that for strictly-upward drawings
the lower bound to be considered is still the one of Crescenzi et al. [CBP92]).

Table 6.1 summarizes the best known area bounds for poly-line drawings
of trees.

Orthogonal Drawings. First, observe that orthogonal drawings only make
sense for trees whose degree is at most four. Valiant proved in [Val81] that
every n-node ternary tree (and every n-node binary tree) admits a Θ(n) area
orthogonal drawing.

i

i

“main” — 2009/2/23 — 18:41 — page 154 — #164
i

i

i

i

i

i

154
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

Ord. Pres. Upw. Str. Upw. Upper Bound Ref. Lower Bound Ref.

Binary O(n) [GGT96] Ω(n) trivial

Binary X O(n log log n) [GR03b] Ω(n) trivial

Binary X O(n) [GGT96] Ω(n) trivial

Binary X O(n log n) [CBP92] Ω(n log n) [CBP92]

Binary X X O(n log n) [GGT96] Ω(n log n) [CBP92]

General O(n log n) [CBP92] Ω(n) trivial

General X O(n log n) [GR03b] Ω(n) trivial

General X O(n log n) [CBP92] Ω(n) trivial

General X O(n log n) [CBP92] Ω(n log n) [CBP92]

General X X O(n4
√

2 log n) [Cha02] Ω(n log n) [CBP92]

Table 6.2: Summary of the best known area bounds for poly-line drawings of trees.

Concerning order-preserving drawings, in [DT81] Dolev and Trickey strength-
ened the result of Valiant, by proving that ternary trees (and binary trees)
admit Θ(n) area order-preserving orthogonal drawings.

Concerning upward drawings, a O(n log log n) bound for upward orthogonal
drawings of binary trees was proved by Garg et al. in [GGT96]. The same
authors proved the bound to be tight. In [Kim95] Kim showed that O(n log n)
area is an optimal bound for upward orthogonal drawings of ternary trees, and
that the bound is tight.

Concerning order-preserving upward drawings, Θ(n log n) is an optimal bound
both for binary and ternary trees. In fact, Kim [Kim95] proved the upper
bound for ternary trees, result that can be immediately be extended to binary
trees. The lower bound directly comes from the results of Garg et al. on
order-preserving upward (non-orthogonal) drawings [GGT96].

Table 6.1 summarizes the best known area bounds for orthogonal drawings
of trees.

Ord. Pres. Upw. Upper Bound Ref. Lower Bound Ref.

Binary O(n) [Val81] Ω(n) trivial

Binary X O(n) [DT81] Ω(n) trivial

Binary X O(n log log n) [GGT96] Ω(n log log n) [GGT96]

Binary X X O(n log n) [Kim95] Ω(n log n) [GGT96]

Ternary O(n) [Val81] Ω(n) trivial

Ternary X O(n) [DT81] Ω(n) trivial

Ternary X O(n log n) [Kim95] Ω(n log n) [GGT96]

Ternary X X O(n log n) [Kim95] Ω(n log n) [GGT96]

Table 6.3: Summary of the best known area bounds for orthogonal drawings of

binary and ternary trees.

i

i

“main” — 2009/2/23 — 18:41 — page 155 — #165
i

i

i

i

i

i

6.1. INTRODUCTION 155

Straight-line Orthogonal Drawings. Straight-line orthogonal drawings pro-
vide extremely high readability of the combinatorial structure of a tree. In fact,
the effects of orthogonal drawings (i.e., large angles between any two adjacent
edges) and the ones of straight-line drawings (i.e., edges that extend straight)
are combined in such a drawing convention. See Fig. 6.2 for an example of
straight-line orthogonal drawing.

Figure 6.2: A straight-line orthogonal drawing of a binary tree.

Concerning the area requirements of straight-line orthogonal drawings, Chan,
Goodrich, Kosaraju, and Tamassia in [CGKT02], and Shin, Kim, and Chwa
in [SKC00] have shown that O(n log log n) area suffices for straight-line or-
thogonal drawings of binary trees. Further, it has been shown in [CBP92,
CGKT02] that binary trees admit upward straight-line orthogonal drawings
in O(n log n) area. Such an area bound is worst-case optimal, as proved
in [CGKT02]. Crescenzi et al. [CBP92] proved that complete binary trees
admit upward straight-line orthogonal drawings in linear area, improving the
result of Shiloach [Shi76], stating that complete binary trees admit straight-line
orthogonal drawings in linear area.

In this chapter we study straight-line orthogonal drawings of binary and
ternary trees and we present the following results: (i) order-preserving straight-
line orthogonal drawings of binary trees can be constructed in O(n1.5) area;
(ii) upward order-preserving straight-line orthogonal drawings of binary trees
require (and can be realized in) Ω(n2) area; (iii) straight-line orthogonal draw-
ings of ternary trees can be constructed in O(n1.631) area; (iv) order-preserving
straight-line orthogonal drawings of ternary trees require (and can be realized
in) Ω(n2) area; (v) straight-line orthogonal drawings of complete ternary trees
can be constructed in O(n1.262) area; and (vi) there exist ternary trees for
which the minimum side of any straight-line orthogonal drawing is Ω(n0.438)

i

i

“main” — 2009/2/23 — 18:41 — page 156 — #166
i

i

i

i

i

i

156
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

and, for complete ternary trees, such a bound is tight.
Table 6.4 summarizes the best known area bounds for straight-line orthog-

onal drawings of binary and ternary trees.
Upw. Ord. Pres. Upper Bound Ref. Lower Bound Ref.

Complete Binary X O(n) [CBP92] Ω(n) trivial

Complete Binary O(n) [Shi76] Ω(n) trivial

Binary X X O(n2) [CBP92] Ω(n2) Th. 6.1

Binary X O(n log n) [CBP92] Ω(n log n) [CGKT02]

Binary X O(n1.5) Th. 6.2 Ω(n) trivial

Binary O(n log log n) [CGKT02] Ω(n) trivial

Complete Ternary X non-drawable

Complete Ternary O(n1.262) Th. 6.6 Ω(n) trivial

Ternary X X non-drawable

Ternary X non-drawable

Ternary X O(n2) Th. 6.4 Ω(n2) Th. 6.3

Ternary O(n1.631) Th. 6.5 Ω(n) trivial

Table 6.4: Summary of the best known area bounds for straight-line orthogonal

drawings of binary and ternary trees. For complete trees the order-preserving column

is not considered, since such trees are symmetric. Straight-line orthogonal upward

drawings of ternary trees cannot generally be constructed.

The rest of the chapter is organized as follows. In Sect. 6.2 we study
straight-line orthogonal drawings of binary trees; in Sect. 6.3 we study straight-
line orthogonal drawings of ternary trees; in Sect. 6.4 we study straight-line
orthogonal drawings of complete ternary trees; finally, in Sect. 6.5 we conclude
and present some open problems.

6.2 Straight-Line Orthogonal Order-Preserving

Drawings of Binary Trees

First, we show that order-preserving upward straight-line orthogonal drawings
of binary trees generally require quadratic area. Such a bound is matched
by an O(n2) upper bound obtained by using the well-known h-v layout (see,
e.g., [CBP92]).

Theorem 6.1 There exists an n-node binary tree T requiring Ω(n2) area in
any upward order-preserving straight-line orthogonal drawing.

Proof: Assume n ≡ 0 mod 6. Tree T is composed of (see Fig. 6.3 (a)):

i

i

“main” — 2009/2/23 — 18:41 — page 157 — #167
i

i

i

i

i

i

6.2. STRAIGHT-LINE ORTHOGONAL ORDER-PRESERVING

DRAWINGS OF BINARY TREES 157

r(T)
m1 p1

p2m2

mn/6-1
mn/6-2

pn/6-1
pn/6-2

p l1
p l2

p ln/6-2
mrn/6-2

mr1

mr2

(a)

m1

p1

r(T)

(b)

p1

m1

r(T)

(c)

m1 p1

r(T)

(d)

Figure 6.3: (a) Tree T providing the lower bound of Theorem 6.1. (b)-(c)-(d)
Possible placements of r(T) and its children.

• an n/6-node spine C1 : (m0 = r(T), m1, . . . , mn
6
−2, mn

6
−1), with mi left

child of mi−1, for 1 ≤ i ≤ n
6 − 1;

• an n/6-node spine C2 : (p0 = r(T), p1, . . . , pn
6 −2, pn

6 −1), with pi right
child of pi−1, for 1 ≤ i ≤ n

6 − 1;

• the right child mr
i of each node mi of C1, with 1 ≤ i ≤ n

6 − 2;

• the left child pl
i of each node pi of C2, with 1 ≤ i ≤ n

6 − 2;

• a path C3 of n/6 + 3 nodes, alternating between right and left children,
such that one end-vertex of C3 is mr

1; and

• n/6+3 leaves attached to C3, alternating between left and right children.

Consider any upward order-preserving straight-line orthogonal drawing Γ
of T . In [GGT96] it is shown that C3 and its attached leaves require Ω(n)
height in any upward order-preserving drawing.

Consider the relative position of r(T) and its children in Γ. Three are the
cases; either m1 is to the left of r(T) and p1 is above r(T) (see Fig. 6.3 (b)),
or m1 is above r(T) and p1 is to the right of r(T) (see Fig. 6.3 (c)), or m1 is
to the left of r(T) and p1 is to the right of r(T) (see Fig. 6.3 (d)).

i

i

“main” — 2009/2/23 — 18:41 — page 158 — #168
i

i

i

i

i

i

158
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

Suppose m1 is to the left of r(T). We prove by induction that each node
mi of C1, with 1 ≤ i ≤ n

6 −1, is drawn at least one unit to the left of its parent.
The claim holds in the base case by the assumption that m1 is to the left of
m0 = r(T). If mi is to the left of mi−1, then the edges from mi to its children
are drawn towards the left and the top. Since the drawing is order-preserving,
mr

i must be above mi and mi+1 to the left of mi. So each node mi, with
1 ≤ i ≤ n

6 − 1, is drawn at least one unit to the left of its parent, implying a
linear lower bound on the width of Γ.

If m1 is not to the left of r(T) then p1 is to the right of r(T) and a similar
argument shows that each node pi, with 1 ≤ i ≤ n

6 − 1, is at least one unit to
the right of its parent, again implying a linear lower bound on the width of Γ.
Hence both the height and the width of Γ are Ω(n). 2

Now we turn to non-upward drawings, showing that sub-quadratic area
suffices for order-preserving straight-line orthogonal drawings:

Theorem 6.2 Any n-node binary tree T admits an O(n1.5) area order-preserving
straight-line orthogonal drawing.

Proof: We describe an inductive algorithm constructing an order-preserving
straight-line orthogonal drawing Γ of T satisfying the side visibility property.
Denoting by r the horizontal line through r(T), then Γ has the side visibility
property if no node, but for r(T), is placed on r and no edge crosses r. If
n = 1, then Γ is trivially constructed. Suppose n > 1. Select a double-spine
π = (uk, uk−1, . . . , u1, u0 = r(T) = v0, v1, . . . , vm) in T . How to choose π is
discussed later. Denote by pi the non-spine child of a node ui ∈ π and by qj

the non-spine child of a node vj ∈ π.
Recursively construct drawings Γ(pi) of T (pi) and Γ(qj) of T (qj) satisfying

the side visibility property, for 1 ≤ i < k and 1 ≤ j < m. Let hv, h−1
v , and

h1
v be vertical grid lines with h−1

v (h1
v) one unit to the left (to the right) of

hv. Draw r(T) on hv . For i = 1, 2, . . . , k − 1, if pi is the left child of ui rotate
Γ(pi) of π and place it so that the rightmost vertical line intersecting it is h−1

v

and with the lowest horizontal line intersecting it one unit above the highest
horizontal line intersecting Γ(pi−1) or ui−1; otherwise (pi is the right child of
ui), place Γ(pi) so that the leftmost vertical line intersecting it is h1

v and with
the lowest horizontal line intersecting it one unit above the highest horizon-
tal line intersecting Γ(pi−1) or ui−1. Draw ui on hv on the same horizontal
line of its already drawn child (or one unit above the highest horizontal line
intersecting Γ(pi−1) or ui−1 if no child of ui has been drawn). Draw uk on hv

one unit above the highest horizontal line intersecting Γ(pk−1) or uk−1. For

i

i

“main” — 2009/2/23 — 18:41 — page 159 — #169
i

i

i

i

i

i

6.2. STRAIGHT-LINE ORTHOGONAL ORDER-PRESERVING

DRAWINGS OF BINARY TREES 159

u0=v0

u1

v2

v1

v3

p1

u2

u3 p3

u4

-1

v4

hvhv
+1hv

l

l

l
r

r

r
r

r

r

r

rq2

ll

l

l

ll

l
l

q1

r

r
r

r

p2

r
l q3

l

(a)

ui

li

l

ri

r

αi βi

u0

(b)

αi

βj

v0

vjrj lj

l

l

r

r

(c)

Figure 6.4: Illustrations for the algorithm in the proof of Theorem 6.2. Left
(right) edges are labeled l (r). Label l (r) inside a subtree shows the direction
of the edge from the root to its left (right) child.

j = 1, 2, . . . , m− 1, if qj is the right child of vj rotate Γ(qj) of π and place it so
that the rightmost vertical line intersecting it is h−1

v and with the highest hori-
zontal line intersecting it one unit below the lowest horizontal line intersecting
Γ(qj−1) or vj−1; otherwise (qj is the left child of vj), place Γ(qj) so that the
leftmost vertical line intersecting it is h1

v and with the highest horizontal line
intersecting it one unit below the lowest horizontal line intersecting Γ(qj−1) or
vj−1. Draw vj on hv on the same horizontal line of its already drawn child (or
one unit below the lowest horizontal line intersecting Γ(qj−1) or vj−1 if no child
of vj has been drawn). Draw vm on hv one unit below the lowest horizontal
line intersecting Γ(qm−1) or vm−1 (see Fig. 6.4 (a)).

It’s easy to see that the constructed drawing Γ is an order-preserving
straight-line orthogonal drawing satisfying the side visibility property. Let’s
analyze the area requirement of Γ. Concerning its height, there is at least one
node of T on each horizontal grid line intersecting Γ, hence the height of Γ is

i

i

“main” — 2009/2/23 — 18:41 — page 160 — #170
i

i

i

i

i

i

160
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

O(n). Denote by W (T) the width of the drawing constructed by the described
algorithm when its input is binary tree T . Let also W (n) = max{W (T)} over
all binary trees T with n nodes.

Since all subtrees drawn to the left (to the right) of π are aligned on their
right side (on their left side) and since W (n) is a non-decreasing function of n,
then W (n) = W (nl) + W (nr) + 1, where nl (nr) is the number of nodes in the
heaviest subtree drawn to the left (to the right) of π.

To get a good bound for W (n) we need to carefully choose π. A tech-
nique similar to the one we present was introduced in [Cha02] for select-
ing (single) spines. π is composed of two spines U = (u0, u1, . . . , uk) and
V = (v0, v1, . . . , vm). Spine U is iteratively selected as follows: u0 = r(T),
u1 is the left child of u0. Denote by li and by ri the left and right child
of ui, respectively. Denote also by αi and by βi the heaviest left subtree
and the heaviest right subtree of path (u1, . . . , ui−1) (see Fig. 6.4 (b)). If
|αi| + |T (ri)| ≤ |βi| + |T (li)| then set ui+1 = li, otherwise set ui+1 = ri. Spine
V is iteratively selected as follows: v0 = r(T), v1 is the right child of u0. Denote
by lj and by rj the left and right child of vj , respectively. Denote by αj the one
between the heaviest right subtree of path (v1, . . . , vj−1) and the heaviest left
subtree of U \u0 that has the greatest number of nodes. Denote also by βj the
one between the heaviest left subtree of path (v1, . . . , vj−1) and the heaviest
right subtree of U \u0 that has the greatest number of nodes (see Fig. 6.4 (c)).
If |αj | + |T (lj)| ≤ |βj | + |T (rj)| then set vj+1 = rj , otherwise set vj+1 = lj .
Similarly to [Cha02], we get the following:

Lemma 6.1 For any left subtree α of U \ u0 or right subtree α of V \ v0 and
for any right subtree β of U \ u0 or left subtree β of V \ v0, |α| + |β| ≤ n/2.

Proof: If α and β are both subtrees of U \u0 or if are both subtrees of V\v0,
then the statement follows as in Lemma 4.1 of [Cha02]. Otherwise, suppose α
is a left subtree of U \u0 and β is a left subtree of V \v0. Let vj be the parent of
β’s root. Denote by lj and rj the left and right child of vj , respectively. Notice
that rj = vj+1. Denote by αj the one between the heaviest right subtree of
path (v1, . . . , vj−1) and the heaviest left subtree of U \u0 that has the greatest
number of nodes, and denote by βj the one between the heaviest left subtree of
path (v1, . . . , vj−1) and the heaviest right subtree of U\u0 that has the greatest
number of nodes. By construction |αj | + |T (lj)| ≤ |βj | + |T (rj)|. Moreover,
|αj |+ |T (lj)|+ |βj |+ |T (rj)| ≤ n. Therefore, αj + |T (lj)| ≤ n/2. Since α ≤ αj

and β = T (lj), the statement follows. The case in which α is a right subtree
of V \ v0 and β is a right subtree of U \ u0 is analogous. 2

i

i

“main” — 2009/2/23 — 18:41 — page 161 — #171
i

i

i

i

i

i

6.3. STRAIGHT-LINE ORTHOGONAL DRAWINGS OF TERNARY

TREES 161

Selecting π as just described, we get W (n) ≤ maxn1+n2≤n/2 W (n1) +
W (n2)+1. As already noticed in [Cha02], by Hölder’s inequality n1+n2 ≤ n/2
implies

√
n1+

√
n2 ≤ √

n and, by induction, W (n) ≤ c
√

n−1, for some constant
c depending only on the values of W (n) with n small. 2

6.3 Straight-Line Orthogonal Drawings of Ternary Trees

In this section we consider straight-line orthogonal drawings of ternary trees.
First, we show that if an order of the children of each node is fixed, then
quadratic area is necessary in the worst case.

Theorem 6.3 There exists an n-node ternary tree T requiring Ω(n2) area in
any order-preserving straight-line orthogonal drawing.

Proof: Assume n ≡ 4 mod 9. Tree T is composed of (see Fig. 6.5 (a)):

• a spine C1 : (m0 = r(T), m1, . . . , mn−4
9

, mn+5
9

), with m1 left child of r(T)

and mi middle child of mi−1, for i = 2, 3, . . . , n+5
9 ;

• a spine C2 : (p0 = r(T), p1, . . . , pn−4
9

, pn+5
9

), with pi middle child of pi−1,

for i = 1, 2, . . . , n+5
9 ;

• a spine C3 : (q0 = r(T), q1, . . . , qn−4
9

, qn+5
9

), with q1 right child of r(T)

and qi middle child of qi−1, for i = 2, 3, . . . , n+5
9 ; and

• a left and a right child for each node mi, pi, and qi, for i = 1, 2, . . . , n−4
9 .

Consider any order-preserving straight-line orthogonal drawing of C1 and
of the children of nodes mi, with 1 ≤ i ≤ n−4

9 . Suppose that m1 is to the
left of m0. Then, to preserve the order of the children of m1, mi is to the
left of mi−1, for i = 2, 3, . . . , n+5

9 . Analogously, if m1 is to the right, above,
or below m0, then mi is to the right, above, or below mi−1, respectively, for
i = 2, 3, . . . , n+5

9 . Such an argument applies to C2 (to C3), as well: If p1 (q1)
is to the left, to the right, above, or below p0 (q0), then pi (qi) is to the left, to
the right, above, or below pi−1 (qi−1), respectively, for i = 2, 3, . . . , n+5

9 . Since
r(T) has three children, then at least one of them is above or below r(T) and
one of them is to the left or to the right of r(T). Hence, any order-preserving
straight-line orthogonal drawing of T has at least n+5

9 +1 height and width. 2

The proved bound is tight, as shown in the following:

i

i

“main” — 2009/2/23 — 18:41 — page 162 — #172
i

i

i

i

i

i

162
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

Theorem 6.4 Any n-node ternary tree T admits an O(n2) area order-preserving
straight-line orthogonal drawing.

Proof: We show an inductive algorithm constructing an order-preserving
straight-line orthogonal drawing Γ of T satisfying the top visibility property.
Denoting by l the vertical half-line starting at the root r(T) of T and directed
upward, then Γ has the top visibility property if no node, but for r(T), is
placed on l and no edge crosses l. If n = 1, then Γ is trivially constructed.
Suppose n > 1. Let Tl, Tm, and Tr be the left, middle, and right subtree
of r(T). By induction, drawings Γl, Γm, and Γr satisfying the top visibility
property can be constructed for Tl, Tm, and Tr, respectively. Draw r(T) in the
plane. Rotate Γl of π/2 in clockwise direction. Place Γl with the rightmost
vertical line intersecting it one unit to the left of r(T) and with r(Tl) on the
same horizontal line of r(T). Rotate Γr of π/2 in counter-clockwise direction.
Place Γr with the leftmost vertical line intersecting it one unit to the right
of r(T) and with r(Tr) on the same horizontal line of r(T). Place Γm with
the highest horizontal line intersecting it one unit below the lowest horizontal
line intersecting Γl or Γr and with r(Tm) on the same vertical line of r(T)
(see Fig. 6.5 (b)). It’s easy to see that Γ is an order-preserving straight-line
orthogonal drawing satisfying the top visibility property. Since Γ has at least
one node for each horizontal and vertical grid line intersecting it, then its height
and its width are O(n). 2

For non-order-preserving drawings better bounds can be achieved:

Theorem 6.5 Any n-node ternary tree T admits an O(n1.631) area straight-
line orthogonal drawing.

Proof: We show an inductive algorithm that constructs a straight-line or-
thogonal drawing Γ of T satisfying the top visibility property (see the proof of
Theorem 6.4). If n = 1, then Γ is trivially constructed. Suppose n > 1. Select a
double-spine π = (uk, uk−1, . . . , u1, u0 = r(T) = v0, v1, . . . , vm) in T such that:
T (v1) is the heaviest subtree of r(T); for j = 2, 3, . . . , m, T (vj) is the heaviest
subtree of vj−1; T (u1) is the heaviest subtree of r(T) different from T (v1); for
i = 2, 3, . . . , k, T (ui) is the heaviest subtree of ui−1. For each node vj in π,
with j = 0, 1, . . . , m − 1, (for each node ui in π, with i = 1, 2, . . . , k − 1), call
second heaviest subtree S(vj) (S(ui)) and third heaviest subtree R(vj) (R(ui)),
the subtrees of vj (of ui) different from T (vj+1) (from T (ui+1)) with the greater
and the smaller number of nodes, respectively.

i

i

“main” — 2009/2/23 — 18:41 — page 163 — #173
i

i

i

i

i

i

6.3. STRAIGHT-LINE ORTHOGONAL DRAWINGS OF TERNARY

TREES 163

r(T) r(T)Γl

Γm

Γr

(a) (b)

v1 v2
v3 v4v0=u0

secondsecond

thirdthird

u1u2u3u4

(c)

Figure 6.5: (a) Tree T requiring Ω(n2) area in any order-preserving straight-
line orthogonal drawing. (b) Illustration for the algorithm in Theorem 6.4. (c)
Illustration for the algorithm in Theorem 6.5. Subtrees labeled by second or
third are second or third heaviest subtrees, respectively.

Recursively construct a drawing satisfying the top visibility property of
each subtree of π. Let h be an horizontal grid line. Draw r(T) on h. Place the
drawing of R(v0) with the highest horizontal line intersecting it one unit below
h and with its root on the same vertical line of r(T). For j = 1, 2, . . . , m − 1,
rotate of π the drawing of R(vj). Place the drawing ΓS

j of S(vj) and ΓR
j of

R(vj) so that the highest horizontal line intersecting ΓS
j is one unit below h,

the lowest horizontal line intersecting ΓR
j is one unit above h, their roots are

on the same vertical line, and the leftmost vertical line intersecting ΓS
j or ΓR

j is

one unit to the right of the rightmost vertical line intersecting ΓS
j−1, ΓR

j−1, or
vj−1. Draw vj on h on the same vertical line of its already drawn children (or
draw vj one unit to the right of the rightmost vertical line intersecting ΓS

j−1,

ΓR
j−1, or vj−1 if no child of vj has been drawn). Draw vm on h one unit to the

right of the rightmost vertical line intersecting ΓS
m−1, ΓR

m−1, or vm−1. For path
(u1, u2, . . . , uk) and its subtrees, analogously construct a drawing in which the

i

i

“main” — 2009/2/23 — 18:41 — page 164 — #174
i

i

i

i

i

i

164
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

path lies on h, to the left of r(T), and the S(ui)’s and the R(ui)’s are below
and above h, respectively (see Fig. 6.5 (c)).

It’s easy to see that Γ is a straight-line orthogonal drawing satisfying the
top visibility property. Let’s analyze the area of Γ. Since there is at least one
node of T for each vertical grid line intersecting Γ, then its width is O(n).
Denote by H(T) the height of the drawing constructed by the algorithm when
its input is T . Let also H(n) = max{H(T)} over all ternary trees T with n
nodes.

Since all subtrees drawn above π (below π) are aligned on their bottom
side (on their top side) and since H(n) is a non-decreasing function of n, then
H(n) = H(na)+H(nb)+1, where na (nb) is the number of nodes in the heaviest
subtree drawn above (below) of π. We claim (1) na + nb ≤ 2n/3. Namely, we
have (2) na ≤ nb, (3) nb ≤ n/2, and (4) na ≤ n − 2nb.

Inequality (2) holds since for each node w in π, |R(w)| ≤ |S(w)|; inequality
(3) follows from the fact that, for each node vj and ui in π, |S(vj)| ≤ |T (vj+1)|
and |S(ui)| ≤ |T (ui+1)|; inequality (4) follows by considering any node vj (ui)
in π and observing that |S(vj)| ≤ |T (vj+1)| (|S(ui)| ≤ |T (ui+1)|) and that
|R(vj)| + |S(vj)| + |T (vj+1)| ≤ n (|R(ui)| + |S(ui)| + |T (ui+1)| ≤ n).

By (3) we have nb = n
2 − α, with α ≥ 0. If α ≥ n/6, then by (2) nb + na ≤

2(n/2 − α) ≤ 2n/3. If α < n/6, by (4) we have na ≤ n − 2(n/2 − α) = 2α.
Hence, nb + na ≤ n/2− α + 2α = n/2 + α ≤ 2n/3, and inequality (1) holds.

We claim that n
(1/ log2 3)
a + n

(1/ log2 3)
b ≤ n(1/ log2 3).

Hölder’s inequality states that (5)
∑

aibi ≤ (
∑

ap
i)

1
p (
∑

bq
i)

1
q for every p

and q such that 1
p + 1

q = 1. Substituting into (5) the values a1 = n
(1/ log2 3)
a ,

a2 = n
(1/ log2 3)
b , b1 = b2 = 1, 1

p = 1
log2 3 , and 1

q = 1 − 1
log2 3 , we get:

n
1

log2 3
a + n

1
log2 3

b ≤
[(

n
1

log2 3
a

)log2 3

+

(
n

1
log2 3

b

)log2 3
] 1

log2 3

· [1 + 1]

(
1− 1

log2 3

)
=

= (na + nb)
1

log2 3 · 2
(
1− 1

log2 3

)
≤
(

2n

3

) 1
log2 3

· 2
(
1− 1

log2 3

)
=

= n
1

log2 3

(
2

1
log2 3 · 2 · 2

−1
log2 3

)
/
(
3

1
log2 3

)
=

= 2n
1

log2 3 /3
1

log2 3 = n
1

log2 3 .

Hence, H(n) ≤ maxn1+n2≤2n/3 H(n1) + H(n2) + 1 by induction solves to

H(n) = c · n(1/ log2 3) − 1 for some constant c, depending only on the values of

i

i

“main” — 2009/2/23 — 18:41 — page 165 — #175
i

i

i

i

i

i

6.4. STRAIGHT-LINE ORTHOGONAL DRAWINGS OF COMPLETE

TERNARY TREES 165

H(n) with n small. It follows that H(n) = O(n(1/ log2 3)) = O(n0.631) 2

6.4 Straight-Line Orthogonal Drawings of Complete

Ternary Trees

For complete ternary trees we present two algorithms constructing drawings
with better area bounds than the ones obtained for general ternary trees.

Let Γh be a drawing of a complete ternary tree Th with height h. In both
algorithms inductively suppose to have a drawing Γh−1 of Th−1 satisfying the
top visibility property, take three copies Γ′

h−1, Γ′′
h−1, and Γ′′′

h−1 of Γh−1, rotate
Γ′

h−1 of π/2 and Γ′′
h−1 of 3π/2 in clockwise direction.

The algorithms differ in the geometric construction of Γh. In Construction
1 draw r(Th) on any horizontal grid line lh. Place Γ′′′

h−1 with the highest
horizontal line intersecting it one unit below lh and with the root r(Th−1) in
Γ′′′

h−1 on the same vertical line of r(Th). Place Γ′
h−1 with the rightmost vertical

line intersecting it one unit to the left of the leftmost vertical line intersecting
Γ′′′

h−1 and with the root r(Th−1) in Γ′
h−1 on lh. Place Γ′′

h−1 with the leftmost
vertical line intersecting it one unit to the right of the rightmost vertical line
intersecting Γ′′′

h−1 and with the root r(Th−1) in Γ′′
h−1 on lh (see Fig. 6.6 (a)).

In Construction 2 draw r(Th) on any horizontal grid line lh. Place Γ′
h−1

with the rightmost vertical line intersecting it one unit to the left of r(Th) and
with the root r(Th−1) in Γ′

h−1 on lh. Place Γ′′
h−1 with the leftmost vertical line

intersecting it one unit to the right of r(Th) and with the root r(Th−1) in Γ′′
h−1

on lh. Place Γ′′′
h−1 with the highest horizontal line intersecting it one unit below

the lowest horizontal line intersecting Γ′′
h−1, and with the root r(Th−1) in Γ′′′

h−1

on the same vertical line of r(Th) (see Fig. 6.6 (b)). We have the following:

Theorem 6.6 An n-node complete ternary tree Th admits an O(n1/ log4 3) =
O(n1.262) area straight-line orthogonal drawing.

Proof: Construct a drawing Γh of Th by inductively using Construction
1. Denoting by Wh and by Hh the width and the height of Γh, respectively,
by construction we have Wh = Wh−1 + 2Hh−1 and Hh = max{Wh−1, Hh−1 +
(Wh−1 + 1)/2}. Assume by inductive hypothesis that Wh−1 = 2h−1 − 1 and
that Hh−1 = 2h−2. Notice that this holds in the base case, where W1 =
H1 = 1. Observe also that by inductive hypothesis Hh−1 + (Wh−1 + 1)/2 =
2h−2 + (2h−1 − 1 + 1)/2 = 2h−1 > Wh−1 = 2h−1 − 1. Hence, Hh = 2h−1 and
Wh = 2h−1−1+2·2h−2 = 2h−1, that proves the inductive hypothesis. The area

i

i

“main” — 2009/2/23 — 18:41 — page 166 — #176
i

i

i

i

i

i

166
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

h-1

Γ ’h-1
Γ ’’
h-1

Γ ’’’

r(Th)
Γ ’h-1

Γ ’’
h-1

h-1Γ ’’’

r(Th)

(a) (b)

Figure 6.6: Constructions 1 (a) and 2 (b) for straight-line orthogonal drawings
of complete ternary trees.

of Γh is equal to (2h − 1) · 2h−1 < 4h = 4O(log3 n) = O(n1/ log4 3). Inductively
applying Construction 2 instead of Construction 1 yields to a drawing with
asymptotically the same area. 2

Next, we show that n-node complete ternary trees have Ω(n0.438) minimum
side in any straight-line orthogonal drawing. This result sharply contrasts with
the analogous for binary trees. Namely, any binary tree admits a straight-line
orthogonal drawing in which one side is O(log n).

Let Γh be any straight-line orthogonal drawing of Th. One of the children of
r(Th), say v1, is such that no other child of r(Th) is drawn on the line l through
r(Th) and v1. Moreover, for i = 1, 2, . . . , h − 2, node vi has exactly one child
vi+1 drawn on l. Hence, in any straight-line orthogonal drawing of Th, there is
a spine of h nodes drawn all on the same horizontal or vertical line l, such that
no other child of r(Th) is on l. We call leg of Γh such a spine. Analogously,
in any straight-line orthogonal drawing of Th there is a double-spine of 2h − 1
nodes that are drawn all on the same horizontal or vertical line. We call arm
of Γh such a double-spine. We have the following:

Lemma 6.2 The minimum side of any straight-line orthogonal drawing of an
n-node complete ternary tree is Ω(n0.438).

Proof: Let Γh be a straight-line orthogonal drawing of a complete ternary
tree Th in which the length of the leg is minimum. Let l(Γh) be the length of
the leg in Γh. We claim that l(Γh) ≥ l(Γh−1) + l(Γh−2).

Consider the arms of the subtrees of r(Th). Either two of such arms are
vertical and one horizontal or vice versa. Assume, possibly rotating Γh of π/2,

i

i

“main” — 2009/2/23 — 18:41 — page 167 — #177
i

i

i

i

i

i

6.4. STRAIGHT-LINE ORTHOGONAL DRAWINGS OF COMPLETE

TERNARY TREES 167

r(Th)

S1 S2l

S3

r(Th)
S1 S2

S3
l

(a) (b)

r(Th)

Th-2

Th-1

Th

r(Th)

Th-3

Th-7

Th-5

Th-1

Th

(c) (d)

Figure 6.7: Illustrations for Lemma 6.2. Thick lines drawn inside subtrees
represent their legs.

that two of such arms, say S1 and S2, are vertical and one, say S3, horizontal.
Consider the possible non-crossing placements of S1, S2, and S3, and consider
the lowest horizontal line l intersecting both S1 and S2. Two are the cases;
either S3 is below l (Fig. 6.7 (a)), or not (Fig. 6.7 (b)).

In the first case we trivially have l(Γh) > l(Γh−1) + l(Γh−2) (see Fig. 6.7
(c)) and the claim follows.

In the second case we have l(Γh) > l(Γh−1) + l(Γh−3) + l(Γh−5) + . . . +
l(Γh/2−bh/2c+3) + l(Γh/2−bh/2c+1) (see Fig. 6.7 (d)). However, recurrence

(a) : f(x) = f(x − 1) + f(x − 3) + . . . + f
(x

2
−
⌊x

2

⌋
+ 3
)

+ f
(x

2
−
⌊x

2

⌋
+ 1
)

asymptotically provides for f(x) the same value provided by f(x) = f(x−1)+
f(x − 2). Namely, from (a) we get

(b) : f(x−2) = f(x−3)+. . .+f

(
x − 2

2
−
⌊

x − 2

2

⌋
+ 3

)
+f

(
x − 2

2
−
⌊

x − 2

2

⌋
+ 1

)
,

that substituted into (a) gives f(x) = f(x − 1) + f(x − 2).

i

i

“main” — 2009/2/23 — 18:41 — page 168 — #178
i

i

i

i

i

i

168
CHAPTER 6. STRAIGHT-LINE, POLY-LINE, AND ORTHOGONAL

DRAWINGS OF TREES

Hence, l(Γh) ≥ l(Γh−1) + l(Γh−2), implying that l(Γh) grows at least as
the terms of the Fibonacci series, for which it is well know that the ratio of
two consecutive terms lk+1 and lk tends to the golden ratio φ. Hence l(Γh) =
Ω(φh) = Ω(φlog3 n) = Ω(n1/ logφ 3) = Ω(n0.438). The statement follows by
observing that the minimum length of the arm of Γh grows asymptotically at
least as the leg of Γh and that each side of Γh is at least long as the leg or as
the arm of Γh. 2

In the following we prove that, for complete ternary trees, the lower bound
of Lemma 6.2 is tight. Again, we introduce two constructions, called Con-
structions 1̂ and 2̂, defined as follows: Construction 1̂ has the same geometric
inductive step of Construction 1, but the side drawings are recursively con-
structed with Construction 2̂ and the base drawing is recursively constructed
with Construction 1̂; Construction 2̂ has the same geometric inductive step of
Construction 2, but the side drawings are recursively constructed with Con-
struction 1̂ and the base drawing is recursively constructed with Construction
2̂.

Lemma 6.3 The drawings built by Construction 1̂ have O(n0.438) height.

Proof: Denote by H1
h (by W 2

h) the height (the width) of the drawing of a
complete ternary tree with height h built with Construction 1̂ (with Construc-
tion 2̂).

By simple geometric considerations, we have (1) H1
h = max{W 2

h−1, H
1
h−1 +

(W 2
h−1 + 1)/2} and (2) W 2

h = max{W 2
h−1, 2H1

h−1 + 1}.
Suppose by induction that H1

h−1+(W 2
h−1 +1)/2 ≥ W 2

h−1 and that 2H1
h−1+

1 ≥ W 2
h−1. Such inductive hypotheses are verified in the base case, where

H1
1 = 1 and W 2

1 = 1. Due to the inductive hypotheses, (1) and (2) turn in (1’)
H1

h = H1
h−1 + (W 2

h−1 + 1)/2, and (2’) W 2
h = 2H1

h−1 + 1, respectively. We have
H1

h + (W 2
h + 1)/2 = H1

h−1 + (W 2
h−1 + 1)/2 + (2H1

h−1 + 1 + 1)/2 = 2H1
h−1 +

(W 2
h−1)/2+3/2 > 2H1

h−1+1 = W 2
h , and that 2H1

h+1 = 2H1
h−1+W 2

h−1+1+1 >
2H1

h−1 + 1 = W 2
h . Hence, the inductive hypothesis is verified and (1’) and (2’)

hold. Substituting (2’) into (1’), we get H1
h = H1

h−1 + ((2H1
h−2 + 1) + 1)/2 =

H1
h−1 +H1

h−2 +1. As in the proof of Lemma 6.2, H1
h grows as the terms of the

Fibonacci series, yielding H1
h = O(n0.438). 2

6.5 Conclusions and Open Problems

In this chapter we presented the state of the art on the area requirements
of straight-line, poly-line, orthogonal, and straight-line orthogonal drawings

i

i

“main” — 2009/2/23 — 18:41 — page 169 — #179
i

i

i

i

i

i

6.5. CONCLUSIONS AND OPEN PROBLEMS 169

of trees in small area. We focused our research on straight-line orthogonal
drawings of binary and ternary trees. We showed algorithms for constructing
order-preserving straight-line orthogonal drawings of binary trees in O(n1.5)
area, straight-line orthogonal drawings of ternary trees in O(n1.631) area, and
straight-line orthogonal drawings of complete ternary trees in O(n1.262) area.
Such upper bounds are, as far as we know, the first sub-quadratic algorithms
for the corresponding problems. Further, we have shown lower bounds on the
area requirements and on the side lengths of straight-line orthogonal drawings
of binary and ternary trees.

As can be noticed from Tables 6.1, 6.2, 6.3, and 6.4 some of the bounds
on the area requirements of trees are asymptotically tight, whereas for others
there is still space for improvements. In particular, it is a long-standing open
question whether all trees admit straight-line/poly-line drawings in linear area.

Open Problem 6.1 Which are the asymptotic bounds for the area require-
ments of straight-line and poly-line drawings of trees?

Concerning straight-line orthogonal drawings, there are still wide gaps be-
tween the area upper bounds and the actual lower bounds, especially for order-
preserving straight-line orthogonal drawings of binary trees and for straight-line
orthogonal drawings of ternary trees. Concerning complete ternary trees, we
conjecture that an algorithm only relying on the geometry of Constructions 1
and 2 could improve the upper bound we provided here.

Conjecture 6.1 Every complete ternary tree admits drawings in o(n1.262) area.

However, we strongly suspect that for (complete) ternary trees linear area
straight-line orthogonal drawings are not always achievable. The most fasci-
nating problem in the area of straight-line orthogonal drawings still remains,
in our opinion, the one of determining whether binary trees admit straight-line
orthogonal drawings in linear area.

Open Problem 6.2 Which are the asymptotic bounds for the area require-
ments of straight-line orthogonal drawings of binary trees?

i

i

“main” — 2009/2/23 — 18:41 — page 170 — #180
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 171 — #181
i

i

i

i

i

i

Chapter 7

Straight-line and Poly-line

Upward Drawings of Directed

Trees

In this chapter1 we consider straight-line and poly-line upward drawings of
directed trees in small area. We show how to construct optimal Θ(n logn) area
upward straight-line/poly-line planar drawings of directed trees. However, we
prove that if the drawing is required to be order-preserving, then exponential
area is required for straight-line upward drawings and quadratic area is required
for poly-line upward drawings. Further, we establish tight bounds on the area
requirements of planar upward drawings of several families of directed trees,
and we show how the results obtained for trees can be exploited to determine
asymptotic optimal values for the area requirements of planar upward drawings
of directed bipartite graphs and directed outerplanar graphs.

7.1 Introduction

Directed graphs commonly represent hierarchical relationships among objects,
such as PERT diagrams, subroutine-call charts, Hasse diagrams, and is-a re-
lationships. When visualizing a directed graph, the drawing is often required

1The contents of this chapter appeared in [Fra07a] and in [Fra08b]. Thanks to Walter
Didimo and Giuseppe Liotta for reporting the problem of obtaining minimum area upward
drawings of directed trees. Thanks to Giuseppe Di Battista for useful discussions.

171

i

i

“main” — 2009/2/23 — 18:41 — page 172 — #182
i

i

i

i

i

i

172
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

to be upward. In fact, having all the edges flowing towards the same direction
reflects the hierarchical structure of the graph.

Upward drawings of directed acyclic digraphs have been intensively stud-
ied from a theoretical point of view. It is known that testing the upward
planarity of a graph is an NP -complete problem if the graph has a variable
embedding [GT01], while it is polynomial-time solvable if the embedding of
the graph is fixed [BDLM94], if the underlying graph is supposed to be an
outerplanar graph [Pap94], if the digraph has a single source [HL96], or if it is
a bipartite directed acyclic graph [DLR90]. Di Battista and Tamassia showed
in [DT88] that a graph is upward planar if and only if it is a subgraph of an
st-planar graph. Moreover, some families of directed acyclic graphs are al-
ways upward planar, like the series-parallel digraphs and the digraphs whose
underlying graph is a tree.

A considerable research effort has been devoted to the design of algorithms
for obtaining upward drawings of directed acyclic graphs in small area. Namely,
Di Battista, Tamassia, and Tollis have shown in [DTT92] that every upward
planar embedded graph can be drawn with upward poly-line edges in opti-
mal Θ(n2) area, while there exist graphs that require exponential area in any
planar straight-line upward drawing. Hence, it is natural to restrict the atten-
tion to interesting families of directed acyclic graphs, searching for better area
bounds. This research direction has been taken by Bertolazzi, Cohen, Di Bat-
tista, Tamassia, and Tollis in [BCB+94], where it is shown that series-parallel
digraphs admit upward planar straight-line drawings in Θ(n2) area, while ex-
ponential area is generally required if the embedding is chosen in advance.

Figure 7.1: A directed tree.

In this chapter we study straight-line and poly-line planar upward drawings

i

i

“main” — 2009/2/23 — 18:41 — page 173 — #183
i

i

i

i

i

i

7.1. INTRODUCTION 173

of directed trees, that is, of directed graphs whose underlying graph is a tree
(see Fig. 7.1 for an example of a directed tree), and of some other families
of directed acyclic graphs that commonly arise in practice, as directed acyclic
graphs whose underlying graph is a bipartite graph (directed bipartite graphs),
or is an outerplanar graph (directed outerplanar graphs). All of such digraph
classes exhibit simple and strong structural properties that allow to create pla-
nar upward drawings with less constraints and in a easier way with respect to
general digraphs. Consequently, we are able to construct straight-line planar
upward drawings of directed trees in Θ(n logn) area, and to get Θ(n) area
straight-line planar upward drawings for some sub-classes of directed trees.
However, we prove that when constraints are imposed on the drawings by forc-
ing an ordering of the neighbors of each vertex, then again exponential area is
required for constructing straight-line planar upward drawings and quadratic
area is required for constructing poly-line planar upward drawings. Such nega-
tive results sharply and surprisingly contrast with the fact that sub-quadratic
area is sufficient for constructing straight-line order-preserving upward planar
drawings of undirected trees [Cha02, GR03b]. Furthermore, we prove that
the lower bounds obtained for directed trees extend also to directed bipartite
graphs and directed outerplanar graphs.

More in detail, we provide the following results (throughout the rest of
the chapter when we refer to upward drawings we always mean planar upward
grid drawings): (i) straight-line and poly-line upward drawings of directed trees
can be constructed in optimal Θ(n log n) area; (ii) straight-line order-preserving
upward drawings of directed trees require (and can be constructed in) expo-
nential area; (iii) poly-line order-preserving upward drawings of directed trees
require (and can be constructed in) quadratic area; (iv) directed binary trees
have the same area requirements of general directed trees; (v) directed caterpil-
lars and directed spider trees admit linear area straight-line upward drawings;
(vi) straight-line upward drawings of directed bipartite graphs require (and
can be constructed in) exponential area; (vii) poly-line upward drawings of
directed bipartite graphs require (and can be constructed in) quadratic area;
(viii) straight-line outerplanar upward drawings of directed outerplanar graphs
require (and can be constructed in) exponential area; and (ix) poly-line upward
drawings of directed outerplanar graphs require (and can be constructed in)
quadratic area.

Tables 7.1 and 7.2 summarize the area requirements of planar upward draw-
ings of directed trees, directed binary trees, directed caterpillars, and directed
spider trees.

The rest of the chapter is organized as follows. In Sect. 7.2 we study up-

i

i

“main” — 2009/2/23 — 18:41 — page 174 — #184
i

i

i

i

i

i

174
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

Straight-line / Poly-line

UB ref. LB ref.

Dir. Trees O(n log n) Th. 7.1 Ω(n log n) Th. 7.1

Dir. Binary Trees O(n log n) Th. 7.1 Ω(n log n) Th. 7.1

Dir. Caterpillars O(n) Th. 7.4 Ω(n) trivial

Dir. Spider Trees O(n) Th. 7.5 Ω(n) trivial

Table 7.1: A table summarizing the results on minimum area non-order-preserving

upward drawings of directed trees. Straight-line and poly-line drawings are in the

same columns, since they have the same area bounds.

Straight-line Order-Pres. Poly-line Order-Pres.

UB ref. LB ref UB ref. LB ref.

Dir. Trees O(cn) [GT94] Ω(bn) Th. 7.2 O(n2) [DTT92] Ω(n2) Th. 7.3

Dir. Binary Trees O(cn) [GT94] Ω(bn) Th. 7.2 O(n2) [DTT92] Ω(n2) Th. 7.3

Dir. Caterpillars O(cn) [GT94] Ω(bn) Th. 7.2 O(n2) [DTT92] Ω(n2) Th. 7.3

Dir. Spider Trees O(n) Th. 7.5 Ω(n) trivial O(n) Th. 7.5 Ω(n) trivial

Table 7.2: A table summarizing the results on minimum area order-preserving up-

ward drawings of directed trees. b and c denote constants greater than 1.

ward drawings of directed trees; in Sect. 7.3 we study order-preserving upward
drawings of directed trees; in Sect. 7.4 we study upward drawings of directed
binary trees, directed caterpillars, and directed spider trees; in Sect. 7.5 we
study upward drawings of directed bipartite graphs and directed outerplanar
graphs; finally, in Sect. 7.6 we conclude and present some open problems.

7.2 Upward Drawings of Trees

In this section we show that directed trees admit straight-line upward drawings
in Θ(n log n) area and that such an area is necessary in the worst case, even if
bends are allowed on the edges.

Concerning the lower bound, Crescenzi et al. have shown in [CBP92] a
non-directed rooted binary tree T that requires Ω(n log n) area in any strictly
upward grid drawing. Now T can be turned in a directed binary tree T ′ by
directing its edges away from the root. Since an upward drawing of T ′ is a
strictly upward drawing of T , the lower bound on the area requirement of
upward drawings of directed trees follows.

Now we show that every directed tree has an O(n log n) area straight-line

i

i

“main” — 2009/2/23 — 18:41 — page 175 — #185
i

i

i

i

i

i

7.2. UPWARD DRAWINGS OF TREES 175

upward drawing. This is done by means of an algorithm that considers a
directed tree T , removes from T a path called spine, recursively draws each
disconnected subtree, and finally puts the drawings of the subtrees together
with a drawing of the spine, obtaining a drawing of T . Let us describe the
algorithm more formally.

Preprocessing: The input is a directed tree T with n nodes. We derive
a non-directed rooted tree T ′ from T by removing the orientations from the
edges of T and by choosing a node r in T as root of T ′.

Divide: Let T ∗ be the current non-directed rooted tree and let r∗ be its
root (at the first step the current tree is T ′ rooted at r).

If the number of nodes in T ∗ is greater than one, then select a spine S∗ =
(v0, v1, . . . , vk) in T ∗ with the following properties: (i) v0 = r∗, (ii) for 1 ≤
i ≤ k, vi is the root of the heaviest subtree among the subtrees rooted at the
children of vi−1, (iii) each edge (vi−1, vi) is directed from vi to vi−1 in T , for
1 ≤ i < k, and (iv) edge (vk−1, vk) is directed from vk−1 to vk in T , or vk is a
leaf.

Remove from T ∗ the nodes of S∗, except for vk, disconnecting T ∗ into
several non-directed subtrees. We classify such subtrees into sets T ∗(↑, vi) and
T ∗(↓, vi), with 0 ≤ i < k, so that a tree rooted at a vertex v goes into set
T ∗(↑, vi) (resp. T ∗(↓, vi)) if in the directed tree T there is an edge directed
from v to vi (resp. there is an edge directed from vi to v). Notice that each
set could contain several trees. We denote by T ∗(vk) the tree rooted at vk and
by r(T ∗) the root of a non-directed tree T ∗.

Impera: Assume that in the Divide step a tree T ∗ has been disconnected
into a spine S∗, into a subtree T ∗(vk), and into several subtrees in T ∗(↑, vi)
and in T ∗(↓, vi), with 0 ≤ i < k. Introduce again the directions on the edges
of T ∗, obtaining a directed tree T (vk) from T ∗(vk), obtaining a set T (↑, vi)
of directed trees from the trees in T ∗(↑, vi), and obtaining a set T (↓, vi) of
directed trees from the trees in T ∗(↓, vi). Assume to have for each of such
directed trees a drawing satisfying the following properties: (P1) the drawing
is planar, upward, and straight-line; (P2) the root of the tree is placed on the
left side of the bounding box of the drawing; and (P3) no node of the tree is
placed in the drawing below and on the same vertical line of the root of the
tree.

Notice that such a drawing can be trivially constructed for a tree with one
node. Now we show how to construct a drawing Γ satisfying properties P1,
P2, and P3 for the directed tree T obtained from T ∗ by introducing again
the directions on the edges. Notice that, in the last Impera step, Γ will be a
drawing of the whole directed tree T . We distinguish two cases:

i

i

“main” — 2009/2/23 — 18:41 — page 176 — #186
i

i

i

i

i

i

176
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

k = 1: Place the drawings of the trees in T (↓, v0) stacked one above the
other at one unit of vertical distance, with the left side of their bounding boxes
on the same vertical line l, obtaining a drawing Γ′. Place v0 one unit to the
left of l and one unit below b(Γ′). Place the drawings of the trees in T (↑, v0)
stacked one above the other at one unit of vertical distance, with the left side of
their bounding boxes on l, and so that the highest horizontal line intersecting
a drawing of a tree in T (↑, v0) is one unit below v0, obtaining a drawing Γ′′.

If (v0, v1) is directed from v0 to v1, then place the drawing of T (v1) so that
the left side of its bounding box is on the same vertical line of v0 and so that
the bottom side of its bounding box is one unit above t(Γ′′) (see Fig. 7.2 (a)).
Otherwise, i.e. v1 is a leaf and (v0, v1) is directed from v1 to v0, place v1 on l
one unit below b(Γ′′) (see Fig. 7.2 (b)).

k ≥ 2: Place the drawings of the trees in T (↓, v0) stacked one above the
other at one unit of vertical distance, with the left side of their bounding boxes
on the same vertical line l, obtaining a drawing Γ′. Place v0 two units to the
left of l and one unit below b(Γ′). Place the drawings of the trees in T (↑, v0)
stacked one above the other at one unit of vertical distance, with the left side of
their bounding boxes on l, and so that the highest horizontal line intersecting
a drawing of a tree in T (↑, v0) is one unit below v0, obtaining a drawing Γ0.

For i = 1, 2, . . . , k − 2 (if k = 2 this part of the construction is not consid-
ered), place the drawings of the trees in T (↓, vi) stacked one above the other
at one unit of vertical distance, with the left side of their bounding boxes on
l, and so that the highest horizontal line intersecting a drawing of a tree in
T (↓, vi) is one unit below b(Γi−1), obtaining a drawing Γ′

i−1. Place vi one unit
to the left of l and and one unit below b(Γ′

i−1). Place the drawings of the trees
in T (↑, vi) stacked one above the other at one unit of vertical distance, with
the left side of their bounding boxes on l, and so that the highest horizontal
line intersecting a drawing of a tree in T (↑, vi) is one unit below vi, obtaining
a drawing Γi.

Let W be the maximum between the width of the drawing of T (vk) minus
1 and the maximum width of a drawing of a tree in T (↑, vi) or in T (↓, vi) plus
2, with 0 ≤ i < k. Let l′ be the vertical line W units to the right of v0. Mirror
the drawings of the trees in T (↑, vk−1) with respect to a vertical line and place
them stacked one above the other at one unit of vertical distance, with the
right side of their mirrored bounding boxes one unit to the left of l′ and so
that the highest horizontal line intersecting a drawing of a tree in T (↑, vk−1)
is one unit below b(Γk−2). Mirror the drawings of the trees in T (↓, vk−1) with
respect to a vertical line and place them stacked one above the other at one
unit of vertical distance, with the right side of their mirrored bounding boxes

i

i

“main” — 2009/2/23 — 18:41 — page 177 — #187
i

i

i

i

i

i

7.2. UPWARD DRAWINGS OF TREES 177

T(,v0)

l

v0

v1 T(v1)

T(,v0)

T(,v0)

T(,v0)

T(,v0)

T(,v0)

(a)

T(,v0)

l

v0

v1

T(,v0)

T(,v0)

T(,v0)

T(,v0)

T(,v0)

(b)

v1

vk-2

l l’

vk-1

vk

v0

T(vk)

T(,vk-1)

T(,vk-1)

T(,vk-2)

T(,vk-2)

T(,vk-2)

T(,vk-2)

T(,v1)

T(,v1)

T(,v1)

T(,v1)

T(,v0)

T(,v0)

T(,v0)

T(,v0)

T(,vk-1)

T(,vk-1)

(c)

v1

vk-2

l l’

vk-1

vk

v0

T(,vk-1)

T(,vk-1)

T(,vk-2)

T(,vk-2)

T(,vk-2)

T(,vk-2)

T(,v1)

T(,v1)

T(,v1)

T(,v1)

T(,v0)

T(,v0)

T(,v0)

T(,v0)

T(,vk-1)

T(,vk-1)

(d)

Figure 7.2: Impera step of the algorithm for obtaining straight-line non-order
preserving upward drawings of trees. (a) k = 1 and (v0, v1) directed from v0

to v1. (b) k = 1 and (v0, v1) directed from v1 to v0. (c) k > 1 and (vk−1, vk)
directed from vk−1 to vk. (d) k > 1 and (vk−1, vk) directed from vk to vk−1.

one unit to the left of l′, and so that the lowest horizontal line intersecting a
drawing of a tree in T (↓, vk−1) is one unit above t(Γk−2). Place vk−1 on l′ one
unit below vk−2, obtaining a drawing Γk−1.

Finally, if edge (vk−1, vk) is directed from vk−1 to vk, mirror the drawing
of T (vk) with respect to a vertical line and place it with the right side of its
mirrored bounding box on l′ so that the bottom side of its bounding box is
one unit above t(Γk−1) (see Fig. 7.2 (c)); otherwise, i.e. vk is a leaf and edge

i

i

“main” — 2009/2/23 — 18:41 — page 178 — #188
i

i

i

i

i

i

178
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

(vk−1, vk) is directed from vk to vk−1, place vk on l′ one unit below b(Γk−1)
(see Fig. 7.2 (d)).

The planarity and the upwardness of the final drawing Γ of T can be easily
verified. Concerning the area requirements of Γ, the height h(Γ) of Γ is O(n),
since there is at least one node of the tree for each horizontal line intersecting Γ.
Now we compute the width W (Γ) of Γ. Denote by W (T (↑, vi)), by W (T (↓, vi)),
and by W (T (vk)) the maximum width of the drawing of a tree in T (↑, vi), of a
tree in T (↓, vi), and of tree T (vk) constructed by the above described algorithm,
respectively. Denote also by W (n) the maximum width of a tree with n nodes
constructed by the above described algorithm. Clearly, we have W (Γ) ≤ W (n).

If k = 1 we have W (Γ) = max{W (T (v1)), 1+W (T (↑, v0)), 1+W (T (↓, v0))},
and if k ≥ 2 we have W (Γ) = max0≤i<k{W (T (vk)), 3+W (T (↑, vi)), 3+W (T (↓
, vi))}. By the definition of S, each tree in T (↑, vi) and each tree in T (↓, vi)
has at most n/2 nodes, and T (vk) has at most n − k nodes. It follows that
W (n) = max{W (n − 1), 3 + W (n/2)}, that easily solves to W (n) = O(log n).
So we have the following:

Theorem 7.1 Every n-nodes directed tree admits an upward straight-line draw-
ing in optimal Θ(n logn) area.

7.3 Upward Drawings of Trees with Fixed Embedding

In this section we study the area requirements of order-preserving upward draw-
ings of directed trees. It is easy to observe that a tree T with fixed embedding
is upward planar if and only if, for any node n ∈ T , all the outgoing edges of
n appear consecutively around n. In such a case the embedding is an upward
planar embedding. In the following we refer only to upward planar embeddings.
Garg and Tamassia proved in [GT94] that any upward planar embedding can
be realized with straight-line edges in exponential area. Hence, exponential
area straight-line upward drawings of embedded directed trees are feasible.

Now we prove the claimed exponential lower bound. Bertolazzi et al.
showed in [BCB+94] an embedding En of a 2n-vertex series-parallel digraph re-
quiring Ω(4n) area in any order-preserving upward straight-line drawing. Such
an embedding is recursively defined as follows: E0 consists of a single edge
(s0, t0); En+1 is obtained from En by adding (i) two new nodes sn+1 and tn+1,
(ii) an edge from sn+1 to sn, (iii) an edge from tn to tn+1, (iv) an edge from
sn to tn+1 to the right of En, and (v) an edge from sn+1 to tn+1 to the left of
En (see Fig. 7.3 (a)).

i

i

“main” — 2009/2/23 — 18:41 — page 179 — #189
i

i

i

i

i

i

7.3. UPWARD DRAWINGS OF TREES WITH FIXED EMBEDDING 179

tn+1

sn+1

sn

εn

tn

v1

v2

v4

v6

vk

v3
v5

vk-1

v1

v2

v4

v6

vk

v3
v5

vk-1

(a) (b) (c)

Figure 7.3: (a) Embedding En+1 of a series-parallel digraph requiring exponen-
tial area. (b) A clockwise coil. (c) A counter-clockwise coil.

We define a clockwise coil S to be an upward planar drawing of a directed
path P = (v1, v2, . . . , vk) satisfying the following properties: property (i) the
edges (vi, vi+1) of P , with i odd (with i even), are directed from vi to vi+1

(resp. from vi+1 to vi), property (ii) y(vi) < y(vj) (y(vi) > y(vj)), for every
i odd (resp. for every i even) and every j such that j < i, and property
(iii) for every i odd (for every i even) all the vertices vj such that j < i are
contained in the open region R(vi, vi+1) delimited by the edge (vi, vi+1) and
by the horizontal half-lines starting at vi and at vi+1 and directed toward
increasing x-coordinates (resp. toward decreasing x-coordinates) (see Fig. 7.3
(b)). A counter-clockwise coil is defined analogously, with odd replaced by even
and vice-versa in property (iii) (see Fig. 7.3 (c)). We have:

Lemma 7.1 Any straight-line n-vertex clockwise or counter-clockwise coil re-
quires Ω(2n) area.

Proof: Consider any straight-line clockwise coil S. We show that adding seg-
ments (vi, vi+2), for i = 1, 2 . . . , n − 2, augments S in a planar drawing S ′.
Namely, we prove that a segment (vi, vi+2) does not intersect (a) any seg-
ment (vj , vj+1) of S, with j ≤ i, (b) segment (vi+1, vi+2) of S, (c) segment
(vi+2, vi+3) of S, (d) any segment (vj , vj+1) of S, with j > i + 2, and (e) any
segment (vj , vj+2), with j 6= i added to S.

(a) Suppose i is odd (is even). By property (ii) no vertex vj of S, with
j < i + 2 and j 6= i, lies in the open half-plane H below (resp. above) the

i

i

“main” — 2009/2/23 — 18:41 — page 180 — #190
i

i

i

i

i

i

180
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

horizontal line through vi. Moreover, vi+2 is contained in H. Hence, (vi, vi+2)
does not create crossings with any segment (vj , vj+1) of S, with j ≤ i.

(b) Since they are adjacent, (vi, vi+2) and (vi+1, vi+2) cross only if they
overlap. But in such a case (vi, vi+1) and (vi+1, vi+2) overlap, too. However,
this is not possible by the supposed planarity of S.

(c) Since they are adjacent, (vi, vi+2) and (vi+2, vi+3) cross only if they
overlap. However, by property (iii) vi is contained inside R(vi+2, vi+3). Hence
(vi, vi+2) is internal to R(vi+2, vi+3), except for vertex vi+2, and cannot overlap
with (vi+2, vi+3) that is, by definition, on the border of R(vi+2, vi+3).

(d) By property (iii) vi and vi+2 are contained inside R(vj , vj+1), so (vi, vi+2)
is internal to R(vj , vj+1) and cannot cross (vj , vj+1) that is, by definition, on
the border of R(vj , vj+1).

(e) It is easy to see that segments (vi, vi+2), for i = 1, 2 . . . , n − 2, form a
directed path with increasing y-coordinate and so they don’t cross each other.

Now one can observe that S ′ is an upward drawing of En/2 (see [BCB+94]
and the beginning of the section). Hence, an n-vertex straight-line clock-
wise coil S requires the same area of a straight-line drawing of En/2, that is

Ω(4n/2) = Ω(2n). If S is a counter-clockwise straight-line coil a straightforward
modification of the previous proof shows that S requires Ω(2n) area. 2

Now let T ∗ be a tree composed of an n/2-nodes path P ∗ = (v1, v2, . . . , vn/2)
and of n/2 leaves si, 1 ≤ i ≤ n/2, such that si adjacent to vi. Suppose, for
simplicity of notation, that n and n/2 are even. Edges (vi, vi+1), with i odd
(with i even), are directed from vi to vi+1 (resp. from vi+1 to vi). Edges (vi, si),
with i odd (with i even), are directed from si to vi (resp. from vi to si). We
fix for T ∗ an embedding E∗ such that, for each node vi with 2 ≤ i ≤ n/2, the
clockwise order of the edges incident in vi is [si, vi−1, vi+1] (see Fig. 7.4 (a)).
We claim the following:

Lemma 7.2 Every upward drawing Γ∗ of T ∗ with embedding E∗ contains a
clockwise or a counter-clockwise coil of at least n/4 nodes.

Proof: Observe that, by the embedding constraints of E∗ and by the upward-
ness of Γ∗, path P ∗ turns in counter-clockwise direction at every edge (vi−1, vi),
for i = 2, 3, . . . , n/2, i. e., considering the half-lines t1 and t2 starting at vi and
tangent to the curves representing edges (vi−1, vi) and (vi, vi+1), respectively,
the angle described by a counter-clockwise movement that leads t2 to overlap
with t1 is less than π. Let j be the highest index such that the drawing S∗

1 of
the subpath (v1, v2, . . . , vj) of P ∗ is a counter-clockwise coil.

i

i

“main” — 2009/2/23 — 18:41 — page 181 — #191
i

i

i

i

i

i

7.3. UPWARD DRAWINGS OF TREES WITH FIXED EMBEDDING 181

v1

v2

s2

v4

s4
v6

s6

s1

s3

v3

s5

v5

s7

v7

T(vj)

vj

vj-1

vj+1

vj+2

T(vj+1)

vj+3

vj

vj+1

vj+2

v1

v2

v6

v3

v7

v8

v9

v10

v11

v5

v4

(a) (b) (c) (d)

Figure 7.4: (a) An upward drawing of T ∗ with embedding E∗. (b) T (vj).
(c) T (vj+1). (d) An upward drawing of P ∗. Notice that (v1, v2, . . . , v7) is a
counter-clockwise coil, while (v11, v10, . . . , v7) is a clockwise coil.

If j ≥ n/4 the lemma follows. Otherwise, we claim that the drawing S∗
2 of

the subpath (vn/2, vn/2−1, . . . , vj+1, vj) of P ∗ is a clockwise coil.
Assume j is odd. Property (i) follows from the definition of T ∗ and from

the upwardness of Γ∗. To prove that S∗
2 satisfies property (ii), consider three

vertices vi−1, vi, and vi+1 that are consecutive in S∗
2 . Let vt be the one between

vi−1 and vi+1 such that |y(vi) − y(vt)| is minimum. Denote by T (vi), with
i = j, j + 1, . . . , n/2− 1 the triangle with curved edges delimited by (vi, vi−1),
by (vi, vi+1), and by the horizontal line through vt. Since (v1, v2, . . . , vj , vj+1)
is not a coil, then y(vj−1) ≥ y(vj+1). Since (vj+1, vj+2) turns in clockwise
direction with respect to (vj , vj+1), the planarity and the upwardness of Γ∗

imply that vj+2 is inside T (vj), and so y(vj+2) > y(vj) (see Fig. 7.4 (b)).
Since (vj+2, vj+3) turns in clockwise direction with respect to (vj+1, vj+2), the
planarity and the upwardness of Γ∗ imply that vj+3 is inside T (vj+1), and so
y(vj+3) < y(vj+1) (see Fig. 7.4 (c)). Proceeding in the same way, it follows that,
for all i = j, j+1, . . . , n/2−2, y(vi+2) > y(vi) (resp. y(vi+2) < y(vi)) with i odd
(resp. with i even). Hence, property (ii) is satisfied by S∗

2 . Further, property
(iii) is satisfied by S∗

2 , since every vertex vk, with k ≥ i + 2 is contained inside
T (vi) and, consequently, inside R(vi, vi+1), that encloses T (vi). If j is even an
analogous proof shows that S∗

2 is a clockwise coil. Finally, since j < n/4, S∗
2

contains at least n/2 − j > n/4 nodes. 2

Theorem 7.2 There exists an n-nodes embedded directed tree requiring Ω(bn)
area, with b greater than 1, in any upward straight-line order-preserving draw-

i

i

“main” — 2009/2/23 — 18:41 — page 182 — #192
i

i

i

i

i

i

182
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

ing.

Proof: Consider T ∗ and its embedding E∗ described in this section. By
Lemma 7.2 every upward drawing of T ∗ with embedding E∗ contains a coil of
at least n/4 nodes that, by Lemma 7.1, requires Ω(2n/4) = Ω((4

√
2)n) = Ω(bn),

with b = 4
√

2. 2

Now we turn to poly-line drawings. Di Battista et al. have shown in [DTT92]
that every upward planar embedding can be drawn with poly-line edges in
O(n2) area. It follows that quadratic area poly-line upward drawings of em-
bedded directed trees are feasible. Concerning the lower bound, we have the
following:

Lemma 7.3 Any n-vertex poly-line clockwise or counter-clockwise coil requires
Ω(n2) area.

Proof: By property (ii) vertex vi, with i odd, has y-coordinate less than the
one of every vertex vj , with j < i. This implies that n/2 vertices vi such that
i is odd occupy n/2 distinct horizontal lines and so the height of S is Ω(n).
Concerning the width of S, suppose w.l.o.g. to draw S starting from a drawing
Γ1 of v1, and then iteratively constructing a drawing Γi by adding vertex vi

and edge (vi−1, vi) to Γi−1, for i = 2, . . . , n. We claim that the width of Γi is
at least the width of Γi−2 plus one. Suppose that the width of Γi is at most
the width of Γi−2. Then Γi−2 cannot be enclosed inside R(vi−1, vi) and so
property (iii) cannot be satisfied. It follows that the width of S is Ω(n). 2

Hence, we can again consider directed tree T ∗ with fixed embedding E∗.
By Lemma 7.2 every upward drawing of T ∗ with embedding E∗ contains a
clockwise or a counter-clockwise coil S of at least n/4 nodes. By Lemma 7.3
quadratic area is required for S.

Theorem 7.3 There exists an n-nodes directed tree T ∗ and an embedding of
T ∗ requiring Ω(n2) area in any upward poly-line order-preserving drawing.

7.4 Upward Drawings of Some Families of Directed

Trees

In this section we study the area requirements of planar upward drawings of
some families of directed trees, like directed binary trees (see Fig. 7.5 (a)),
directed caterpillars (see Fig. 7.5 (b)), and directed spider trees (see Fig. 7.5

i

i

“main” — 2009/2/23 — 18:41 — page 183 — #193
i

i

i

i

i

i

7.4. UPWARD DRAWINGS OF SOME FAMILIES OF DIRECTED TREES183

(c)), searching for better area bounds with respect to those obtained for general
trees.

(a) (b) (c)

Figure 7.5: (a) A directed binary tree. (b) A directed caterpillar. (c) A directed
spider tree.

Concerning directed binary trees, one can observe that the lower bounds on
the area requirement of planar upward drawings of directed trees presented in
Sections 7.2 and 7.3 are obtained by considering directed binary trees. Hence
such lower bounds are still valid here. Moreover, the algorithms for drawing
directed trees clearly apply also to directed binary trees, hence the optimal
bounds on the area requirement of planar upward drawings of directed binary
trees are the same of the ones of general trees.

Analogously, concerning directed caterpillars, we notice that the lower bounds
on the area requirement of order-preserving upward drawings of directed trees
presented in Section 7.3 were obtained by considering a directed caterpillar.
Hence such lower bounds are still valid here. On the other hand, for non-
order-preserving drawings one can obtain better results with respect to those
for general trees, as shown by the following:

Theorem 7.4 Every n-nodes directed caterpillar admits an upward straight-
line drawing in optimal Θ(n) area.

Proof: Let C be an n-nodes directed caterpillar and let P = (v1, v2, . . . , vm)
be the path obtained from C by removing its leaves. Let v1 be the root of C.
We will denote by C(vi) the caterpillar obtained from C by removing nodes
v1, . . . , vi−1 and their adjacent leaves. We prove by induction on m that an
upward drawing Γ of C satisfying the following properties can be constructed:

i

i

“main” — 2009/2/23 — 18:41 — page 184 — #194
i

i

i

i

i

i

184
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

(P1) the root of C is placed on l(Γ); (P2) no node of C is placed below and
on the same vertical line of the root of C; (P3) the width of Γ is less or equal
than 4; (P4) the height of Γ is less or equal than n.

v1

u1

w1

w2

wW

u2

u3

uU

v1

u1

w1

w2

wW

u2

u3

uU

v2
Γ(v2)

v1

q1

l1

lL

qQ

v2
v1

q1

l1

lL

qQ

v2

v3Γ(v3)

v1 v2

v3

q3,1

l3,1

q3,Q3

l3,L3

v1 v2

v3

vk-2

vkΓ(vk)

vk-1

v1 v2

v3

vk-2

vk

vk-1

qk,1

lk,1

qk,Qk

lk,Lk

(a) (b) (c) (d) (e) (f) (g)

Figure 7.6: Illustration of the algorithm for constructing planar upward draw-
ings of caterpillars. (a) m = 1. (b) k = 2 and edge (v1, v2) directed from v1 to
v2. (c) k = m = 2 and edge (v1, v2) directed from v2 to v1. (d) k = 3 and edge
(v2, v3) directed from v2 to v3. (e) k = m = 3 and edge (v2, v3) directed from
v3 to v2. (f) k > 3 and edge (vk−1, vk) directed from vk−1 to vk. (g) k = m
and edge (vk−1, vk) is directed from vk to vk−1.

Let u1, u2, . . . , uU be the neighbors of v1 such that C contains edges directed
from v1 to ui. Further, let w1, w2, . . . , wW be the neighbors of v1 such that C
contains edges directed from wi to v1. Place v1 in (0, 0), place u1, u2, . . . , uU on
the line x = 1 with distinct integer y-coordinates between 1 and U , and place
w1, w2, . . . , wW on the line x = 1 with distinct integer y-coordinates between
−1 and −W . If m = 1 the algorithm stops (see Fig. 7.6 (a)).

If m > 1, select vertex vk in P such that: (i) each edge (vi−1, vi) of P is
directed from vi to vi−1, for 1 < i < k, and (ii) edge (vk−1, vk) is directed from
vk−1 to vk or k = m.

If k = 2 and edge (v1, v2) is directed from v1 to v2, recursively construct a
drawing Γ(v2) of C(v2) and place Γ(v2) so that l(Γ(v2)) lies on the axis x = 0

i

i

“main” — 2009/2/23 — 18:41 — page 185 — #195
i

i

i

i

i

i

7.4. UPWARD DRAWINGS OF SOME FAMILIES OF DIRECTED TREES185

and so that b(Γ(v2)) lies on the horizontal line y = U + 1 (see Fig. 7.6 (b)).
If k = m = 2 and edge (v1, v2) is directed from v2 to v1, then let q1, q2, . . . , qQ

be the neighbors of v2 such that C contains edges directed from v2 to qi. Fur-
ther, let l1, l2, . . . , lL be the neighbors of v2 such that C contains edges directed
from li to v2. Place q1, q2, . . . , qQ on the line x = 1 with distinct integer y-
coordinates between U +1 and U +Q, and place l1, l2, . . . , lL on the line x = 1
with distinct integer y-coordinates between −W − 1 and −W −L. Place v2 at
grid point (2,−1) (see Fig. 7.6 (c)).

If k > 2, let q1, q2, . . . , qQ be the neighbors of v2 such that C contains
edges directed from v2 to qi. Further, let l1, l2, . . . , lL be the neighbors of v2

such that C contains edges directed from li to v2. Place q1, q2, . . . , qQ on the
line x = 1 with distinct integer y-coordinates between U + 1 and U + Q, and
place l1, l2, . . . , lL on the line x = 1 with distinct integer y-coordinates between
−W − 1 and −W − L. If k = 3 and edge (v2, v3) is directed from v2 to v3,
place v2 at grid point (3,−1), recursively construct a drawing Γ(v3) of C(v3)
and mirror Γ(v3) with respect to a vertical axis, so that v3 lies on r(Γ(v3)).
Place the mirrored Γ(v3) so that r(Γ(v3)) lies on the vertical line x = 3 and so
that b(Γ(v3)) lies on the horizontal line y = U + Q + 1 (see Fig. 7.6 (d)).

If k = m = 3 and edge (v2, v3) is directed from v3 to v2, let q3,1, q3,2, . . . , q3,Q3

be the neighbors of v3 such that C contains edges directed from v3 to q3,j . Fur-
ther, let l3,1, l3,2, . . . , l3,L3 be the neighbors of v3 such that C contains edges
directed from l3,j to v3. Place v2 at grid point (2,−1), place q3,1, q3,2, . . . , q3,Q3

on the line x = 1 with distinct integer y-coordinates between −W − L − 1
and −W − L − Q3, place v3 at grid point (2,−W − L − Q3 − 1), and place
l3,1, l3,2, . . . , l3,L3 on the line x = 1 with distinct integer y-coordinates between
−W − L − Q3 − 2 and −W − L − Q3 − L3 − 1 (see Fig. 7.6 (e)).

If k > 3 place v2 at grid point (2,−1). The drawing of C will be constructed
by iteratively adding to the drawing constructed so far vertex vi and its adjacent
leaves, for i = 3, . . . , k − 1. Denote by yi the minimum y-coordinate that has
been already assigned to a node when vertex vi and its adjacent leaves have
to be added to the drawing. Let qi,1, qi,2, . . . , qi,Qi be the neighbors of vi such
that C contains edges directed from vi to qi,j . Further, let li,1, li,2, . . . , li,Li

be the neighbors of vi such that C contains edges directed from li,j to vi.
Place qi,1, qi,2, . . . , qi,Qi on the line x = 1 with distinct integer y-coordinates
between yi − 1 and yi − Qi, place vi at grid point (2, yi − Qi − 1), and place
li,1, li,2, . . . , li,Li on the line x = 1 with distinct integer y-coordinates between
yi −Qi − 2 and yi −Qi −Li − 1. If edge (vk−1, vk) is directed from vk−1 to vk,
shift vertex vk−1 one unit to the right, recursively construct a drawing Γ(vk)
of C(vk) and mirror Γ(vk) with respect to a vertical axis, so that vk lies on

i

i

“main” — 2009/2/23 — 18:41 — page 186 — #196
i

i

i

i

i

i

186
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

r(Γ(vk)). Place the mirrored Γ(vk) so that r(Γ(vk)) lies on the vertical line
x = 3 and so that b(Γ(vk)) lies on the horizontal line y = U + Q + 1 (see
Fig. 7.6 (f)).

If k = m and edge (vk−1, vk) is directed from vk to vk−1, let qk,1, qk,2, . . . , qk,Qk

be the neighbors of vk such that C contains edges directed from vk to qk,j . Fur-
ther, let lk,1, lk,2, . . . , lk,Lk

be the neighbors of vk such that C contains edges
directed from lk,j to vk. Place qk,1, qk,2, . . . , qk,Qk

on the line x = 1 with dis-
tinct integer y-coordinates between yk − 1 and yk −Qk, place vk at grid point
(2, yk − Qk − 1), and place lk,1, lk,2, . . . , lk,Lk

on the line x = 1 with distinct
integer y-coordinates between yk − Qk − 2 and yk − Qk − Lk − 1 (see Fig. 7.6
(g)).

It is easy to verify that the constructed drawing satisfies properties (P1)
and (P2). Moreover, since all the vertices are assigned x-coordinates between 0
and 3, and since there is at least one vertex for every horizontal line intersecting
the drawing, then also properties (P3) and (P4) are satisfied. 2

For directed spider trees linear area is achievable even for order-preserving
drawings:

Theorem 7.5 Every n-nodes directed spider tree admits an upward order-
preserving straight-line drawing in optimal Θ(n) area.

Proof: Denoting by k the degree of v, S is composed of v and of k paths
all incident to v. We now show how to construct a linear-area straight-line
order-preserving planar upward drawing of S. Suppose that an embedding E is
specified for S by means of a clockwise order v1, v2, . . . , vk of the neighbors of v.
Since a planar upward drawing of S exists if and only if all the outgoing edges
of v appear consecutively around v, we can suppose w.l.o.g. that there exists
an index q, with 1 ≤ q ≤ k, such that all the edges (v, vi), with 1 ≤ i ≤ q, are
directed from v to vi and all the edges (v, vi), with q + 1 ≤ i ≤ k, are directed
from vi to v. Let Pi be the path starting at v and containing vertex vi.

Di Giacomo, Liotta, Meijer, and Wismath proved in [DLMW05] that every
directed path admits a straight-line upward drawing in a bounding box that has
height O(n) and width 3. Moreover, the drawings constructed by the algorithm
shown by Di Giacomo et al. [DLMW05] have one end-point of the path placed
on the left side of the bounding box of the drawing. Hence, a straight-line
upward drawing of S can be obtained as follows: Construct a drawing Γi of
each path Pi \ v, 1 ≤ i ≤ k, with vi on l(Γi), as described in [DLMW05]; place
the drawings Γi stacked one above the other, so that b(Γi) is one unit above
t(Γi+1), with 1 ≤ i ≤ q − 1 and q + 1 ≤ i ≤ k − 1, so that b(Γq) is two units

i

i

“main” — 2009/2/23 — 18:41 — page 187 — #197
i

i

i

i

i

i

7.5. UPWARD DRAWINGS OF DIRECTED BIPARTITE AND

OUTERPLANAR GRAPHS 187

Γ(vq+1)

Γ(vk-1)

Γ(vk)
l

v

Γ(v1)

Γ(vq-1)

Γ(vq)

Γ(v2)

Figure 7.7: Illustration of the algorithm for constructing planar upward draw-
ings of spider trees.

above t(Γq+1), and so that all the l(Γi) lie on the same vertical line l; finally
insert v one unit to the left of l and one unit below b(Γq) and draw edges
between v and its neighbors as straight-line segments (see Fig. 7.7).

It is easy to see that the constructed drawing Γ is order-preserving, planar,
and upward. Moreover, the width of Γ is 4, and its height is one plus the sum
of the heights of the Γi’s, hence it is linear. 2

7.5 Upward Drawings of Directed Bipartite and

Outerplanar Graphs

In this section we consider upward drawings of families of directed acyclic
graphs richer than directed trees, and we show that exponential area for straight-
line drawings and quadratic area for poly-line drawings are sometimes necessary
even without forcing an order of the neighbors of each vertex.

In the following we show the inductive construction of an n-vertex directed
bipartite graph Bn. Such a digraph contains an Ω(n) nodes coil in any up-
ward planar drawing, hence it requires exponential area in any straight-line up-
ward drawing and quadratic area in any poly-line upward drawing. Such lower

i

i

“main” — 2009/2/23 — 18:41 — page 188 — #198
i

i

i

i

i

i

188
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

bounds are again matched by the upper bounds in [GT94] and in [BCB+94].
We define Bn as the directed bipartite graph with vertex sets V and U ,

inductively defined as follows: (i) B8 has vertices v−2, v−1, v1, v2 ∈ V and
u−2, u−1, u1, u2 ∈ U , the edges of a directed path (v−2, u−2, v−1, u−1, v1, u1, v2, u2),
and the directed edges (v1, u2), (v−1, u1), (v−2, u1) and (v−1, u2) (see Fig. 7.8
(a)); (ii) Bn, with n multiple of 4, is constructed from Bn−4, by adding four new
vertices vn/4, un/4, v−n/4, and u−n/4 and eight directed edges (v−n/4, u−n/4),
(u−n/4, v−n/4+1), (un/4−1, vn/4), (vn/4, un/4), (v−n/4+2, un/4), (v−n/4+1, un/4−1),
(v−n/4, un/4−1), and (v−n/4+1, un/4) (see Fig. 7.8 (b)). We claim the following:

Theorem 7.6 There exists an n-vertex directed bipartite graph requiring Ω(bn)
area, with b greater than 1, in any upward straight-line drawing.

Theorem 7.7 There exists an n-vertex directed bipartite graph requiring Ω(n2)
area in any upward poly-line drawing.

In the following we prove the previous theorems, by considering the n-vertex
directed bipartite graph Bn. The outline of the proof is as follows: First, we
prove that Bn has a unique planar upward embedding En, up to a reversal of
the adjacency list of each vertex; second, we show that every planar upward
drawing of Bn with embedding En contains an Ω(n) nodes clockwise or counter-
clockwise coil; by Lemmas 7.1 and 7.3 this is sufficient to prove Theorems 7.6
and 7.7.

Lemma 7.4 Bn has exactly one upward planar embedding En, up to a reversal
of the adjacency list of each vertex.

Proof: Assume w.l.o.g. to construct an upward drawing of Bn starting
from a drawing P of the directed path

(v−n/4, u−n/4, v−n/4+1, u−n/4+1, . . . , v−1, u−1, v1, u1, v2, u2, . . . , vn/4, un/4)

and by iteratively adding the remaining edges. (v1, u2) can be drawn to the
left or to the right of P . Suppose that it is drawn to the left. Then (v−1, u1)
and (v−2, u1) must be drawn to the right of P , since u1 is closed on the left
by (v1, u2). Analogously, (v−1, u2) must be drawn to the left of P , since v−1

is closed on the right by (v−2, u1). Inductively, we can assume that if (v1, u2)
is drawn to the left of P there is only one embedding En−4 for Bn−4. Let
now draw the remaining edges of Bn. Edge (v−n/4+2, un/4) must be drawn
to the left of P , since v−n/4+2 is closed on the right from (v−n/4+1, un/4−2).

i

i

“main” — 2009/2/23 — 18:41 — page 189 — #199
i

i

i

i

i

i

7.5. UPWARD DRAWINGS OF DIRECTED BIPARTITE AND

OUTERPLANAR GRAPHS 189

Then (v−n/4+1, un/4−1) and (v−n/4, un/4−1) must be drawn to the right of P ,
since un/4−1 is closed on the left from (v−n/4+2, un/4). Finally (v−n/4+1, un/4)
must be drawn to the left of P , since v−n/4+1 is closed on the right from edge
(v−n/4+2, un/4). Hence, embedding (v1, u2) to the left of P fully determines
the embedding En of Bn. An analogous proof shows that embedding (v1, u2)
to the right of P fixes the same embedding En of Bn, but with the adjacency
list of each vertex reverted with respect to the previous case. 2

v2

u2

v1

u1

u-1

v-1

u-2

v-2

vn/4

un/4

vn/4 -1

un/4 -2

un/4 -1

v-n/4

u-n/4

Bn-4

v-n/4 +1

v-n/4 +2

u-n/4 +1

(a) (b) (c) (d)

Figure 7.8: (a) B8. (b) Bn, defined in terms of Bn−4. (c) and (d) The unique
embeddings of B20, when (v1, u2) is drawn to the left or to the right of P ,
respectively. The thick lines show the coil S.

Lemma 7.5 Any upward drawing Γn of En contains an n/2-vertex clockwise
or counter-clockwise coil.

Proof: Consider the drawing S of the path

(v1, u1, v−1, u2, v−2, u3, . . . , v−i+1, ui, . . . , v−n/4+1, un/4−1, v−n/4)

in Γn. We claim that S is a clockwise or a counter-clockwise coil. Property
(i) is satisfied for S because of the definition of En and of the upwardness of
Γn. It can be easily checked that property (ii) is satisfied because P fully
determines the y-ordering of the vertices of Bn. It can be proved that property

i

i

“main” — 2009/2/23 — 18:41 — page 190 — #200
i

i

i

i

i

i

190
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

(iii) is satisfied for S by the same considerations that constitute the proof of
Lemma 7.4, where if edge (v1, u2) is drawn to the left (to the right) of P then
S is a clockwise (resp. counter-clockwise) coil. Figures 7.8 (c) and 7.8 (d) show
the coil S in the embedding E20 of B20. 2

Hence, by Lemmas 7.4 and 7.5 digraph Bn has only one upward planar
embedding that contains an n/2-vertex coil. By Lemma 7.1 every straight-line
n-vertex coil requires Ω(2n) area. This implies that every straight-line drawing
of Bn requires Ω(2n/2) = Ω((

√
2)n) = Ω(bn) area, with b =

√
2, proving

Theorem 7.6. Further, by Lemma 7.3 every poly-line n-vertex coil, and so Bn,
requires Ω(n2) area, proving Theorem 7.7.

Again using arguments based on the results obtained for directed trees, it
can be shown that directed outerplanar graphs generally require exponential
area in any outerplanar straight-line upward drawing and quadratic area in
any poly-line upward drawing.

Consider the n-vertex directed outerplanar graph On inductively defined
as follows: (i) O4 has four vertices v1, v2, v3, and v4 and four directed edges
(v1, v2), (v1, v4), (v2, v3), and (v3, v4) (see Fig. 7.9 (a)); (ii) On+4 is composed
of On, of four new vertices vn+1, vn+2, vn+3, and vn+4, and of six new di-
rected edges (vn+1, vn), (vn+2, vn−1), (vn+1, vn+2), (vn+2, vn+3), (vn+1, vn+4),
and (vn+3, vn+4) (see Fig. 7.9 (b)).

We claim the following theorems:

Theorem 7.8 There exists an n-vertex directed outerplanar graph requiring
Ω(bn) area, with b greater than 1, in any upward outerplanar straight-line draw-
ing.

Theorem 7.9 There exists an n-vertex directed outerplanar graph requiring
Ω(n2) area in any upward poly-line drawing.

To prove Theorem 7.8, consider the directed outerplanar graph On. Since
On is a biconnected outerplanar graph, then it has only one outerplanar em-
bedding On, up to a reversal of the adjacency list of each vertex. It is easy to
see that On contains an embedding E∗ of tree T ∗ as subgraph (see Fig. 7.9 (c)).
By Theorem 7.2 any upward planar straight-line drawing of T ∗ with embed-
ding E∗ requires Ω(bn) area, with b greater than 1. Hence the claimed lower
bound follows.

Although we believe that On doesn’t admit any upward poly-line (possibly
non-outerplanar) drawing in o(n2) area, we can more easily obtain a proof of
Theorem 7.9 by considering the following family of directed outerplanar graphs.

i

i

“main” — 2009/2/23 — 18:41 — page 191 — #201
i

i

i

i

i

i

7.5. UPWARD DRAWINGS OF DIRECTED BIPARTITE AND

OUTERPLANAR GRAPHS 191

v1

v2

v4

v3

vn

vn-1

vn+1

vn+2

vn+3

vn+4

On

v1

v5

v6

v2

v3
v4

v7

v8

v9

v10

v11

v12

(a) (b) (c)

Figure 7.9: (a) O4. (b) On+4, defined in terms of On. (c) Outerplanar embed-
ding of O12. The thick lines show the subgraph T ∗ with embedding E∗.

Let On be recursively defined as follows: (i) O4 has four vertices v1, v2, v3,
and v4, an edge from v1 to v2, an edge from v1 to v3, an edge from v3 to v4,
and an edge from v4 to v2 (see Fig. 7.10 (a)); (ii) On is obtained from On−2

by adding to it two vertices vn−1 and vn, an edge from vn−3 to vn−1, an edge
from vn−1 to vn, and an edge from vn to vn−2 (see Fig. 7.10 (b)).

v1

v3

v4

v2

v1

vn-3

vn-1

vn

v2

vn-2

v1

v2

(a) (b) (c)

Figure 7.10: (a) O4. (b) On , defined in terms of On−2. (c) Edge (v1, v2)
touches a new vertical line with respect to those that intersect Γi−1.

In the following we show that On requires Ω(n2) area in any upward poly-
line drawing. First, notice that On contains an n-vertex directed path (v1, v3, . . . , vn−3, vn−1, vn, vn−2, . . . , v4, v2)
as a subgraph, hence it has height at least n in any upward drawing.

i

i

“main” — 2009/2/23 — 18:41 — page 192 — #202
i

i

i

i

i

i

192
CHAPTER 7. STRAIGHT-LINE AND POLY-LINE UPWARD

DRAWINGS OF DIRECTED TREES

Consider the set S of edges (v2i−1, v2i) of On, with i = 1, . . . , n/2. We
prove by induction that n/2 width is required by any poly-line drawing of
the edges in S in which (i) vertices and bends have integer coordinates, (ii)
the y-coordinate of a vertex v2i (of a vertex v2i−1) is greater than (resp. is
less than) the y-coordinate of a vertex v2i+2 (resp. of a vertex v2i+1), for
i = 1, . . . , n/2− 1, and (iii) all the edges (v2j−1, v2j) are contained in the same
of the two vertically bounded regions delimited by edge (v2i−1, v2i) and by
the horizontal lines through v2i−1 and through v2i, for i, j = 1, 2, . . . , n/2 and
j > i (i.e., all the edges (v2j−1, v2j) are on the same side of edge (v2i−1, v2i)).
Notice that in any planar upward grid drawing Γn of On the edges of S satisfy
such properties. Namely, property (i) is satisfied by definition, property (ii) is
satisfied by the upwardness of Γn, and property (iii) is satisfied by the planarity
of Γn.

If |S| = 1, then the only edge of S requires one vertical line to be drawn.
Now suppose, by induction, that if S has n/2 − 1 edges, then they require
n/2− 1 width in any poly-line drawing satisfying properties (i)–(iii). Consider
any planar upward drawing Γ of a set S with n/2 edges. Denote by Γ−1 the
sub-drawing of Γ obtained by not considering edge (v1, v2). If the width of Γ−1

is greater or equal than n/2, then the thesis follows. If the width of Γ−1 is equal
to n/2− 1, then there is a bend or a vertex on both the left and the right side
of the bounding box, otherwise the width would be less or equal than n/2− 2.
To have all the other edges on the same side, the drawing of edge (v1, v2) must
touch with a bend or a vertex at least one vertical line not intersecting Γ−1

(see Fig. 7.10 (c)), hence the thesis follows.

7.6 Conclusions and Open Problems

In this chapter we have studied the area requirements of upward drawings of
directed trees and of several classes of directed acyclic graphs that frequently
arise in theory and in practice.

We provided tight bounds on the area requirements of straight-/poly-line
order-/non-order-preserving upward drawings of general directed trees and of
several families of directed trees. However, the following problem is still open:

Open Problem 7.1 Which are the asymptotic bounds for the area require-
ments of upward straight/poly-line order/non order-preserving drawings of di-
rected complete and balanced trees?

i

i

“main” — 2009/2/23 — 18:41 — page 193 — #203
i

i

i

i

i

i

7.6. CONCLUSIONS AND OPEN PROBLEMS 193

Concerning directed bipartite graphs, we have shown an exponential area
lower bound for straight-line upward drawings. An interesting subclass of the
directed bipartite graphs was defined in [DLR90] and called bipartite directed
acyclic graphs. Such graphs are those directed acyclic graphs having a vertex
set partitioned into two subsets V1 and V2 with each edge directed from a vertex
of V1 to a vertex of V2.

Open Problem 7.2 Which are the asymptotic bounds for the area require-
ments of upward drawings of bipartite directed acyclic graphs?

Further, we have shown an outerplanar graph requiring exponential area
in any straight-line outerplanar upward drawing. However, when considering
non-outerplanar drawings, one could obtain better area bounds, so we ask:

Open Problem 7.3 Which are the asymptotic bounds for the area require-
ments of upward straight-line (possibly non-outerplanar) drawings of directed
outerplanar graphs?

i

i

“main” — 2009/2/23 — 18:41 — page 194 — #204
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 195 — #205
i

i

i

i

i

i

Chapter 8

Straight-line Drawings of

Minimum Spanning Trees

In this chapter1 we consider straight-line embeddings of minimum spanning
trees in small area. We show that trees whose degree is bounded by four
can be embedded as minimum spanning trees in polynomial area, namely in
O(n21.252) area. Better bounds are obtained for complete binary trees, binary
trees, and complete ternary trees.

8.1 Introduction

In this chapter we study small-area drawings of a type of proximity graphs,
namely minimum spanning trees, that have attracted intense research efforts
and that have many applications in several fields of Theoretical Computer
Science. As an example, minimum spanning trees are widely used in the field
of sensor networks, namely their topologies guarantee total connection between
the nodes of a network, while minimizing the total energy consumption of the
sensors (see, e.g., [CLJ06]).

A minimum spanning tree of a set P of points in the plane is defined as a
tree having a vertex for each point of P and having minimum total edge length.

1The contents of this chapter are a joint work with Michael Kaufmann, appeared
in [Kau07, FK08] and submitted to journal. Thanks to the organizers and participants of the
Workshop on Graph Drawing and Computational Geometry held in Bertinoro, Italy, where
the research for this work started. The results on complete binary trees have been achieved
together with Roberto Tamassia. Thanks also to Markus Geyer and Barbara Pampel for
many critical remarks and suggestions.

195

i

i

“main” — 2009/2/23 — 18:41 — page 196 — #206
i

i

i

i

i

i

196
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

The minimum spanning reflects certain proximity relations in a set of points
in the plane, as shown by the following nice property, that is throughout the
chapter cited as the MST condition.

Property 8.1 A straight-line drawing Γ of a tree T is an embedding of T as
a minimum spanning tree if and only if, for each pair of non-adjacent nodes u
and v of T , their Euclidean distance in Γ is greater or equal than the length of
each edge in the path connecting u and v in T .

Given a set P of n points in the plane, it is well-known that the mini-
mum spanning tree of P can be computed in optimal Θ(n log n) time, however
the computation of a minimum spanning tree subject to further constraints is
often required. The boundedness of the degree of the nodes of the tree is a
natural constraint to consider, since having high-degree nodes is in many ways
undesiderable. It is well-known that every set of points in the plane has a mini-
mum spanning tree with maximum degree 5 [MS92]. If the maximum degree of
the nodes is constrained to be bounded by 2 or 3, then computing a minimum
spanning tree is NP -hard [GJ79, PV84] (the complexity status of the same
problem is still unknown if the degree of the tree is bounded by 4). However,
a polynomial-time approximation scheme is known if the maximum degree of
the tree is required to be at most 2 [Aro98, Mit99], an O(nlogc n)-time (1 + ε)-
approximation algorithm [AC04] and a polynomial-time 1.402-approximation
algorithm [Cha04] are known if the maximum degree of the tree is required to
be at most 3, and a polynomial-time 1.143-approximation algorithm [Cha04]
is known if the maximum degree of the tree is required to be at most 4.

Consider a tree T . Does T admit an MST embedding, i.e., a straight-line
drawing in which the minimum spanning tree of the points where the vertices
of T are placed at coincides with T ? Monma and Suri [MS92] provided an
algorithm to construct an MST embedding of any tree of maximum degree 5
and proved that any tree having a node of degree at least 7 does not admit an
MST embedding. Eades and Whitesides [EW96b] filled the gap in Monma and
Suri’s results, by proving that deciding whether an MST embedding exists for
a given tree of maximum degree 6 is NP -hard.

Extensions to higher dimensions have been performed by Di Battista and
Liotta [LB95], as well as by King [Kin06]. In the former paper, the authors
proved that trees with maximum degree 9 can be embedded as MSTs in the
three-dimensional space; in the latter paper, it is proved that every tree of
maximum degree 10 admits an MST embedding in the three-dimensional space.

i

i

“main” — 2009/2/23 — 18:41 — page 197 — #207
i

i

i

i

i

i

8.1. INTRODUCTION 197

It is also known that no tree having a vertex of degree at least 13 admits an
MST embedding in the three-dimensional space [Lee56].

Monma and Suri’s proof that every tree of maximum degree five admits an
MST embedding in the plane is a strong combinatorial result. However, their
algorithm for constructing MST embeddings of trees turns out to be useless in
practice, since the constructed drawings require an area of O(2k2

)×O(2k2

) for
trees of height k (hence, in the worst case the area requirement of the drawings
is doubly-exponential in the number of nodes of the tree). Notice that the
algorithm of Monma and Suri does not give a polynomial area bound even for
complete binary trees, namely the algorithm provides an O(nlog n) area bound
in such a case. However, Monma and Suri conjectured that there exist trees of
maximum degree 5 that require cn × cn area in any MST embedding, for some
constant c > 1. The problem of determining whether or not the area upper
bound for MST embeddings of trees can be improved to polynomial is reported
also in [EW96b].

In this chapter, we concentrate on the area requirements for MST embed-
dings of trees in the plane. In particular we present the following area bounds:
(i) Complete binary trees admit MST embeddings in O(n4.3) area; (ii) binary
trees admit MST embeddings in O(n11.387) area; (iii) complete ternary trees
admit MST embeddings in O(n3.73) area; and (iv) ternary trees admit MST
embeddings in O(n21.252) area.

Table 8.1 summarizes the best known area bounds for straight-line drawings
of trees.

Upper bound Ref.

Complete Degree 3 O(n4.3) Th. 8.1

Degree 3 O(n11.387) Th. 8.2

Complete Degree 4 O(n3.73) Th. 8.3

Degree 4 O(n21.252) Th. 8.4

Complete Degree 5 O(nlog n) [MS92]

Degree 5 O(2n2
) [MS92]

Table 8.1: Summary of the best known area bounds for MST-embeddings of trees.

The rest of the chapter is organized as follows. In Sect. 8.2 we show how to
construct MST embeddings of complete binary trees; in Sect. 8.3 we show how
to construct MST embeddings of arbitrary binary trees; in Sect. 8.4 we show
how to construct MST embeddings of complete ternary trees; in Sect. 8.5 we
show how to construct MST embeddings of arbitrary ternary trees; finally, in
Sect. 8.6 we conclude and present some open problems.

i

i

“main” — 2009/2/23 — 18:41 — page 198 — #208
i

i

i

i

i

i

198
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

We notice that a polynomial area bound for arbitrary ternary trees implies
polynomial area bounds for complete binary trees, for arbitrary binary trees,
and for complete ternary trees, that are all subclasses of arbitrary ternary
trees. However, we still present algorithms for constructing MST embeddings
of complete binary trees, of arbitrary binary trees, and of complete ternary
trees, motivated both by the simplicity of the corresponding algorithms, and
by the better area bounds that we can achieve in such cases. Notice also that we
do not strive for the best polynomial bounds but try to keep the techniques and
the analysis as simple as possible. Nevertheless, we achieve the first polynomial
area bounds drastically improving from the previous exponential ones.

We also notice that throughout this chapter we deal with a model for graph
drawing that is slightly different with respect to the one used for obtaining the
previous results about small-area drawings of graphs. In fact, we do not force
vertices to be on a grid (this choice is quite usual when dealing with proximity
drawings); however, we ensure that every pair of vertices in the drawing are at
distance at least one unit. For this purpose, it sufficient to ensure that every
pair of adjacent vertices in the drawing are at distance at least one unit. In
fact, if all the edges have length at least one unit, two non-adjacent vertices u
and v cannot be closer than one unit distance, otherwise the path connecting u
and v would contain edges longer than the Euclidean distance between u and
v, hence violating the MST condition.

8.2 MST Embeddings of Complete Binary Trees

In this section we deal with the construction of MST embeddings of complete
binary trees.

Let T be a complete binary tree with n nodes and let n = 2k − 1, for some
integer k. Tree T consists of a root r and of two subtrees T1 and T2 rooted at
the children r1 and r2 of r, respectively. Each of T1 and T2 has size less than
n/2. We recursively embed T1 and T2 into two equal isosceles right triangles
∆1 and ∆2, respectively, so that the root of a subtree Ti is placed at the vertex
of ∆i incident to the 90-degree angle.

When T has only one node, such a node is placed at the vertex incident to
the 90 degrees angle of an isosceles right triangle ∆ having sides of length one.

When T has more than one node, we place ∆1 and ∆2 with their hy-
potenuses on the same horizontal line, at distance d from each other, where d
is a value that will be chosen later. Let L denote the length of a side of ∆1 and
∆2. We place r at the intersection of the perpendicular lines on which a side

i

i

“main” — 2009/2/23 — 18:41 — page 199 — #209
i

i

i

i

i

i

8.2. MST EMBEDDINGS OF COMPLETE BINARY TREES 199

of ∆1 and a side of ∆2 lie. The whole drawing is contained inside an isosceles
right triangle ∆ having sides of length (c + 1)L, where c is a constant that will
be determined later. Observe that r is placed at the vertex of ∆ incident to
the 90-degree angle. See Fig. 8.1.

r

r
1

r
2

∆2∆1

cL

d

(c+
1)

L

Figure 8.1: The recursive construction of an MST embedding of a complete
binary tree.

We prove that the constructed drawing is an MST embedding of T , for
some value of c. Inductively assume that the drawings of subtrees T1 and T2

are MST embeddings. Then, we have only to prove that each straight-line
segment connecting a node w1 in T1 and a node w2 in T2 is longer than each
edge of the path connecting w1 and w2 in T . By construction, the distance
between w1 and w2 is at least d. The edges belonging to the path connecting
w1 and w2 in T have length at most max{

√
2L, cL}, namely all such edges are

contained inside ∆1 and ∆2, but for (r, r1) and (r, r2), that by construction
have length cL. Observe that, by construction, d =

√
2(c − 1)L. Hence, as

long as c ≥
√

2/(
√

2 − 1), d is greater or equal than both cL and
√

2L, so the
constructed drawing is an MST embedding of T .

We now compute the area of the constructed drawing, which is bounded
by the area of ∆. Observe that each edge of the drawing has length at least
one. Denote by S(n) the length of the side of ∆, when the input is a complete

binary tree with n nodes. We get: S(n) = (c + 1)S(n
2) =

(
2
√

2−1√
2−1

)log2 n

=

n
log2

2
√

2−1√
2−1 ≤ nlog2 4.415 ≤ n2.15. Since the area of ∆ is asymptotically the

square of its side, we obtain the following:

i

i

“main” — 2009/2/23 — 18:41 — page 200 — #210
i

i

i

i

i

i

200
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

Theorem 8.1 A complete binary tree with n vertices admits an MST embed-
ding in O(n4.3) area.

8.3 MST Embeddings of Arbitrary Binary Trees

In this section we present an algorithm to construct MST embeddings of arbi-
trary binary trees.

Overall strategy. Assume that the input binary tree T is rooted at any
node r of degree at most two. Select a spine P = (r = v1, v2, v3, · · · , vk) in T .
Remove the spine from the tree, disconnecting the tree into several subtrees.
Recursively draw the disconnected subtrees and place a drawing of the spine
together with the drawings of the subtrees, obtaining a drawing of the whole
tree.

Choice of the spine. The choice of P is done as follows. The first node v1

of P is r. For each 1 ≤ i < k, node vi+1 is defined as the root of the largest of
the two subtrees of vi. Observe that each subtree of P has at most n/2 nodes.

The shape of the subtrees. Denote by Ti the subtree rooted at the child
ti of vi that does not belong to P . We recursively draw the subtrees Ti of P
inside isosceles right triangles ∆i, for 1 ≤ i ≤ k − 1. The whole spine together
with the drawing of the subtrees of P will be placed inside a larger isosceles
right triangle ∆. The root of each subtree Ti is placed on the midpoint of the
hypotenuse of ∆i. Denote by Li the length of the hypotenuse of ∆i.

Drawing the spine and the subtrees together. Let ei = (vi, vi+1), for 1 ≤
i < k. We draw P in a zig-zag way, with constant angles of 120 degrees between
two consecutive edges ei and ei+1. The length of edges ei will be determined
later.

Consider vertex vi. Opposite to the 120 degree angle, we have an angle of
240 degrees, which we partition into four consecutive wedges W 1

i , W 2
i , W 3

i ,
and W 4

i of 90, 30, 30, and 90 degrees, respectively, such that W 1
i is the wedge

closer to vertex vi−1. See Fig. 8.2. We place ∆i inside W 3
i as follows. Consider

the line li through vi bisecting W 3
i . Vertex ti is placed on li and triangle ∆i

is placed inside W 3
i so that the hypotenuse of ∆i is perpendicular to li, and

so that the endvertices of the hypotenuse of ∆i lie on the semi-axes delimiting
W 3

i . See Fig. 8.3.
Notice that, for vertex v1 (and for vertex vk), wedges W 1

i , W 2
i , W 3

i , and
W 4

i are not well-defined, since only one edge e1 of P is incident to v1. However,

i

i

“main” — 2009/2/23 — 18:41 — page 201 — #211
i

i

i

i

i

i

8.3. MST EMBEDDINGS OF ARBITRARY BINARY TREES 201

v1

e1 e2

90

120
120 12060

W2
1 W2

2 W2
3 W2

4

W3
1 W3

2 W3
3 W3

4

W4
1 W4

2 W4
3 W4

4

W1
3 W1

4

v2

v3

v4

v5

v6

v7

v8

v9

∆1

∆2

∆3

∆5
∆7

∆9

∆8

∆6

∆4

90

90
90

90
90

90

3030

30

30

30

e3 e4

e5
e6 e7 e8

Figure 8.2: The recursive construction of an MST embedding of an arbitrary
binary tree.

it is not difficult to extend the above definition of wedges W 1
i , W 2

i , W 3
i , and

W 4
i to the case in which i = 1, by considering a dummy edge (v0, v1) that has

an angle of 120 degrees with edge (v1, v2), and defining the wedges incident to
v1 as for the other vertices of P .

Choosing the length of edges ei. We set:

len(ei) = max{cLi, cLi+1},

where c is a constant greater than one to be determined later. In order to have
positive lengths for all the edges, we set len(ei) = 1, for all the edges ei where
none of subtrees Ti and Ti+1 exists.

The isosceles right triangle ∆ is defined as the smallest isosceles right tri-
angle containing the whole drawing, having r as midpoint of the hypotenuse,
and having the hypotenuse forming angles of 120, 60, and 180 degrees with
edge (v1, v2). In the following we suppose, for clarity of exposition, that the
hypotenuse of ∆ is vertical, and that P is contained in the half-plane to the
right of the line through the hypotenuse. If a subtree Ti has only one node, ∆
is defined as the isosceles right triangle having r as midpoint of the hypotenuse,
and having the hypotenuse such that Li = 1.

The drawing satisfies the MST condition. We use induction to show that

i

i

“main” — 2009/2/23 — 18:41 — page 202 — #212
i

i

i

i

i

i

202
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

vi
120

75

75

15 15

90 90

9090

30

ti
∆ i

Wi
1

Wi
2

Wi
3

li

Wi
4

Figure 8.3: A closer look to the construction of an MST embedding of an
arbitrary binary tree.

every pair of vertices in the drawing satisfies the MST condition. If the tree
has only one node, then there is nothing to prove. Otherwise, inductively
suppose that each pair of nodes in the drawing of each subtree Ti satisfies the
MST condition. Then, we prove that each pair of nodes in the whole drawing
satisfies the MST condition.

The only pairs of nodes for which the MST condition is not trivially satisfied,
are: (i) node vi and any node in Ti, for i = 1, 2, · · · , k − 1, (ii) node vi and
any node in Ti−1, for i = 2, 3, · · · , k, (iii) node vi and any node in Ti+1, for i =
1, 2, · · · , k−2, and (iv) any node in Ti−1∪{vi−1} and any node in Ti+1∪{vi+1},
for i = 2, 3, · · · , k − 2.

(i) Consider node vi and any node wi in Ti, for any i = 1, 2, · · · , k − 1. We
prove that all the edges in the path from vi to wi are shorter than segment
viwi. Each edge of such a path belonging to Ti has length at most Li. The
length of edge (vi, ti) is equal to Li/(2 · tan(15)) ≥ 1.866Li. Hence, (vi, ti) is
the longest edge of the path connecting vi and wi. However, viwi is longer
than (vi, ti), since wi is contained inside ∆i, whose closest point to vi is ti.

(ii) For any i = 2, 3, · · · , k − 1, consider a node vi and any node wi−1

in Ti−1, and suppose that the pair (vi, wi−1) of vertices does not satisfy the
MST condition. As in the previous case each edge of such a path belonging

i

i

“main” — 2009/2/23 — 18:41 — page 203 — #213
i

i

i

i

i

i

8.3. MST EMBEDDINGS OF ARBITRARY BINARY TREES 203

also to Ti−1 has length at most Li−1. Further, edge (vi−1, ti−1) has length
Li/(2 · tan(15)) ≤ 1.867Li, and edge (vi−1, vi) has length at least cLi−1. It
follows that, as long as c ≥ 1.867, edge (vi−1, vi) is the longest edge in the
path connecting vi and wi−1. However, consider triangle (vi, vi−1, wi−1). By
construction, angle viv̂i−1wi−1 contains wedge W 4

i and hence it is greater or
equal than 90 degrees. Segment viwi is opposite to viv̂i−1wi−1 and hence is
the longest side of such a triangle. It follows that viwi is longer than (vi−1, vi).

(iii) For any i = 1, 2, · · · , k − 2, it can be proved analogously to the pre-
vious case that the MST of the points of the drawing cannot contain an edge
(vi, wi+1), for any node wi+1 in Ti+1.

(iv) Consider any node wi−1 in Ti−1 ∪ {vi−1} and any node wi+1 in Ti+1 ∪
{vi+1}, for i = 2, 3, · · · , k − 2. The path P i+1

i−1 connecting wi−1 and wi+1 in

T contains edges ei−1 and ei. All the edges of P i+1
i−1 belonging to Ti−1 or to

Ti+1 are contained inside ∆i−1 or ∆i+1, respectively, and hence their length
is at most the maximum between Li−1 and Li+1. Further, the length of edge
vi−1ti−1 is Li−1/(2 · tan(15)) ≤ 1.867Li−1. Analogously, the length of edge
vi+1ti+1 is at most 1.867Li+1. Hence, the length of each edge in P i+1

i−1 is less
or equal than max{1.867Li−1, 1.867Li+1, len(ei−1), len(ei)}. Observe that, by
construction, len(ei−1) ≥ cLi−1, and that len(ei) ≥ cLi+1. Hence, as long as
c ≥ 1.867, one edge between ei and ei+1 is the longest edge in P i+1

i−1 , and we
have only to prove that the distance between wi−1 and wi+1 is greater than
max{len(ei−1), len(ei)}. In the following, refer to Fig. 8.4.

Consider line l3,4
i−1 separating wedges W 3

i−1 and W 4
i−1, and consider line

l1,2
i separating wedges W 1

i and W 2
i . By construction such lines are parallel.

Further, Ti−1 is contained in the half-plane delimited by l3,4
i−1 and not containing

l1,2
i . Notice that the distance between l3,4

i−1 and l1,2
i is exactly len(ei−1). We

claim that, for a suitable constant c, Ti+1 is entirely contained in the half-plane
delimited by l1,2

i and not containing l3,4
i−1. The claim clearly implies that the

distance between wi−1 and wi+1 is greater or equal than len(ei−1).
Let vC

i+1 be the vertex of ∆i+1 on the line lCi+1 separating wedges W 2
i+1 and

W 3
i+1. By construction, Ti+1 entirely lies in the half-plane that is delimited by

the line with slope 60 degrees through vC
i+1 and that does not contain l3,4

i−1 and

l1,2
i . Hence, we have only to prove that, for a suitable constant c, vC

i+1 is in the

half-plane delimited by l1,2
i and not containing l3,4

i−1.

The vertical distance between vi+1 and vC
i+1 is easily computed to be Li+1/(2·

sin(15)). The vertical distance between vi+1 and the intersection point uC
i of

lCi and l1,2
i is exactly len(ei), since triangle (vi, vi+1, u

C
i) is an isosceles triangle

i

i

“main” — 2009/2/23 — 18:41 — page 204 — #214
i

i

i

i

i

i

204
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

vi-1

vi

vi+1

ei-1
ie

i-1
3,4l

i
1,2l

len(e
i-1)

vi+1
C

u i
C

Figure 8.4: Illustration for the proof that the MST condition is satisfied for
any node in Ti−1 ∪{vi−1} and any node in Ti+1 ∪{vi+1}, for i = 2, 3, · · · , k−2.

with catheti (vi, vi+1) and (vi+1, u
C
i). It follows that vi+1uC

i is at least cLi+1.

Hence, vC
i+1 is in the half-plane delimited by l1,2

i and not containing l3,4
i−1 as

long as cLi+1 ≥ Li+1/(2 · sin(15)), i.e., as long as c ≥ 1.932.
In analogous way, it can be proved that, as long as c ≥ 1.932, the distance

between wi−1 and wi+1 is greater than len(ei). Hence, as long as c ≥ 1.932,
the straight-line segment between wi−1 and wi+1 is longer than every edge in
the path P i+1

i−1 connecting wi−1 and wi+1 in T , and hence it does not belong to
the MST of the points of the drawing.

The length of P. We bound the length of P as a function of the lengths Li’s.
Since len(ei) = max{cLi, cLi+1}, and since len(ei) ≥ 1, for every 1 ≤ i < k,

then len(ei) < cLi + cLi+1. It follows that
∑k−1

i=1 len(ei) ≤ 2c
∑k−1

i=1 Li.

The area of the drawing is polynomial. We now compute the length of
h(C), i.e., of the hypotenuse of an isosceles right triangle that contains the
whole drawing, that has r as midpoint of its hypotenuse, and that has the
hypotenuse forming angles of 120, 60, and 180 degrees with edge (v1, v2). In

i

i

“main” — 2009/2/23 — 18:41 — page 205 — #215
i

i

i

i

i

i

8.3. MST EMBEDDINGS OF ARBITRARY BINARY TREES 205

the following refer to Fig. 8.5. Notice that the length of the longest edge of the
drawing is at most equal to h(C), while the length of the shortest edge of the
drawing is at least 1, by construction.

We first notice that the drawing of P (without the drawing of subtrees T ′
is)

is contained inside an equilateral triangle ∆e that has r as a vertex and such
that the two sides incident to r have length equal 2c

∑k−1
i=1 Li and form angles

of 60 degrees with h(C). In fact, the length of P is at most 2c
∑k−1

i=1 Li, and,
since each edge of P forms an angle of 30 degrees with a horizontal line, the
horizontal extension of P is at most 2c

∑k−1
i=1 Li · cos(30).

Consider the smallest isosceles right triangle ∆∗ that contains ∆e com-
pletely, that has r as midpoint of its hypotenuse, and that has the hypotenuse
forming angles of 120, 60, and 180 degrees with edge (v1, v2). Easy trigonomet-
ric calculations show that the hypotenuse of ∆∗ has length at most 2(cos(60)+

sin(60))(2c
∑k−1

i=1 Li) = 5.46411c
∑k−1

i=1 Li.
Since edge (vi, ti) has length at most Li/(2 · tan(15)) ≤ 1.867Li and since

all the points of ∆i are at distance at most Li/2 from ti, then no point of ∆i

is at distance greater than 2.367Li from vi. Consider the smallest isosceles
right triangle ∆ that contains ∆∗, that has r as midpoint of its hypotenuse,
that has the hypotenuse forming angles of 120, 60, and 180 degrees with edge
(v1, v2), and such that every point on one of its catheti has distance at least

2.367
∑k−1

i=1 Li from any point of ∆∗. It is easy to see that ∆ contains the
whole drawing, namely it contains P since it contains ∆∗, and it contains
each subtree Ti, since Ti can stick outside ∆∗ by at most Li/2 + 1.867Li =

2.367Li ≤ 2.367
∑k−1

i=1 Li. Notice that the hypotenuse of ∆ has length at most

5.46411c
∑k−1

i=1 Li + 2(2.367
√

2
∑k−1

i=1 Li). By choosing c = 1.932, the drawing
of T is an MST embedding, and the length of the hypotenuse of smallest right
isosceles triangle containing the drawing is bounded by 5.46411·1.932

∑k−1
i=1 Li+

2(2.367
√

2
∑k−1

i=1) = 17.246
∑k−1

i=1 Li.

Lemma 8.1 The length of h(C) is at most 17.246
∑k−1

i=1 Li.

Let α = 17.246. Now, we express h(C) as a function of the number of nodes
of the tree. Denoting by h(n) the maximum length of h(C) when the input tree
has n nodes, we inductively prove that h(n) ≤ nlog2(3α). By Lemma 8.1, we

get h(n) ≤ α
∑k−1

i=1 h(ni), where ni is the number of nodes in Ti. By inductive

hypothesis we get h(n) ≤ α
∑k−1

i=1 n
log2(3α)
i . Group the numbers ni in at most

three groups N1, N2, and N3 such that
∑

ni∈N1
ni ≤ n

2 ,
∑

ni∈N2
ni ≤ n

2 , and∑
ni∈N3

ni ≤ n
2 . Notice that it is always possible to construct such groups,

i

i

“main” — 2009/2/23 — 18:41 — page 206 — #216
i

i

i

i

i

i

206
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

r

60

60

90
90

90

90 90

90

45

45

45

45

45

45

45

45

60

60
30

30

30

30

2.
36

7Σ

L i

5.
46

41
1c

Σ
L

i
2.

36
7

2
Σ

L
i

2.
36

7
2

Σ
L

i

45

.

.

Figure 8.5: Bounding the constructed drawing with an isosceles right triangle.

namely start from groups {ni}, each one containing a single value ni, for 1 ≤
i ≤ k − 1. Since each subtree Ti has at most n/2 vertices, then ni ≤ n/2 and
each starting group contains numbers adding up to at most n/2. Till there are
more than three groups of numbers, consider any four groups of numbers. The
numbers in the two groups that have minimal sum of their numbers add up

i

i

“main” — 2009/2/23 — 18:41 — page 207 — #217
i

i

i

i

i

i

8.4. MST EMBEDDINGS OF COMPLETE TERNARY TREES 207

to at most n/2 (otherwise the sum of the ni’s would be more than n). Hence,
such groups can be joined to be the same group, hence decreasing the number
of groups by one. Therefore, we have:

h(n) ≤ α
k−1∑

i=1

n
log2(3α)
i =

= α

(∑

ni∈N1

n
log2(3α)
i +

∑

ni∈N2

n
log2(3α)
i +

∑

ni∈N3

n
log2(3α)
i

)
≤

≤ α



(∑

ni∈N1

ni

)log2(3α)

+

(∑

ni∈N2

ni

)log2(3α)

+

(∑

ni∈N3

ni

)log2(3α)

 ≤

≤ α

((n

2

)log2(3α)

+
(n

2

)log2(3α)

+
(n

2

)log2(3α)
)

≤ 3α
(n

2

)log2(3α)

=

= 3α
nlog2(3α)

2log2(3α)
= 3α

nlog2(3α)

3α
= nlog2(3α),

in which we used
∑

(nk
i) ≤ (

∑
ni)

k. Hence, the inductive hypothesis is verified,
and we can conclude that h(n) ≤ nlog2 51.738 = O(n5.6932).

Finally, since the area of the drawing is the square of the length of its side,
we get the following:

Theorem 8.2 Every binary tree with n vertices admits an MST drawing in
O(n11.387) area.

8.4 MST Embeddings of Complete Ternary Trees

In this section we deal with the construction of MST embeddings of complete
ternary trees.

Let T be a complete ternary tree with n nodes and let n = 3k−1
2 , for some

integer k. Tree T consists of a root r and of three subtrees T1, T2, and T3

rooted at the children r1, r2, and r3 of r, respectively. Each of T1, T2, and T3

has size less than n/3. We recursively embed T1, T2, and T3 into three equal
isosceles right triangles ∆1, ∆2, and ∆3, respectively, so that the root of a
subtree Ti is placed at the midpoint of the hypotenuse of ∆i. In the base case,
i.e., when T has only one node r, assume that r is placed at the midpoint of

i

i

“main” — 2009/2/23 — 18:41 — page 208 — #218
i

i

i

i

i

i

208
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

the hypotenuse of an isosceles right triangle ∆ having the hypotenuse of length
1.

∆2

∆1 r
1

r
260

8055 60 60

60

60

1010

10
10

10
10

60

90

45

r
3

∆3c(∆)1
b(∆)1

b(∆)2

a(∆)1

c(∆)2

c(∆)

b(∆)

a(∆)2

a(∆)
b(∆)3

a(∆)3

c(∆)3

r

dd

d

L/(2sin(10))
Lcos(55)/ 2

Lsin(55)/ 2

Figure 8.6: Bounding the constructed drawing with an isosceles right triangle.

In the inductive case we construct a drawing of T inside an isosceles right
triangle ∆ as follows. Refer to Fig. 8.6. Let L denote the length of the hy-
potenuse of ∆1, ∆2, and ∆3. Denote also by a(∆i), b(∆i), and c(∆i) the
vertices of ∆i, for i = 1, 2, 3, so that a(∆i) and b(∆i) are the end-vertices of
the hypotenuse of ∆i. Place r in the plane. ∆2 is placed with its hypotenuse
lying on a horizontal line, so that the segment connecting r and r2 is per-
pendicular to the line through a(∆2) and b(∆2), and so that angles r2r̂a(∆2)
and r2r̂b(∆2) are both of 10 degrees. Denote by d the distance between r and
a(∆2). ∆1 is placed with a(∆1) on the horizontal line through r, with b(∆1)
at distance d from both r and a(∆2), so that angles r1r̂a(∆1) and r1r̂b(∆1)
are both of 10 degrees, and so that segment rr1 is perpendicular to the line
through a(∆1) and b(∆1). ∆3 is placed in the plane symmetrically to ∆1 with
respect to a vertical line through r. The whole drawing is contained inside an
isosceles right triangle ∆ with hypotenuse that lies on a horizontal line and
that has a length to be computed later.

We prove that the constructed drawing is an MST embedding of T . In-

i

i

“main” — 2009/2/23 — 18:41 — page 209 — #219
i

i

i

i

i

i

8.4. MST EMBEDDINGS OF COMPLETE TERNARY TREES 209

ductively assume that the drawings of subtrees T1, T2, and T3 are MST em-
beddings. We prove that each straight-line segment connecting a node w1 in
T1 and a node w2 in T2 is longer than each edge of the path connecting w1

and w2 in T . By construction, the distance between w1 and w2 is at least d.
The edges belonging to the path connecting w1 and w2 in T have length that
is at most max{L, L/(2 · tan(10))} = max{L, 2.836L} = 2.836L, namely all
such edges are contained inside ∆1 and ∆2, but for (r, r1) and (r, r2), that by
construction have length at most L/(2 · tan(10)). Observe that, by construc-
tion, d = L/(2 · sin(10)) > 2.879L. Hence, the distance between each pair of
nodes w1 and w2 in T1 and in T2, respectively, satisfies the MST condition.
It can be proved analogously that each pair of nodes w2 and w3 in T2 and in
T3, respectively, satisfies the MST condition. Further, the MST condition is
trivially satisfied for each pair of nodes w1 and w3 in T1 and in T3, respectively.

We now compute the area of the constructed drawing. Namely, we bound
the constructed drawing by an isosceles right triangle ∆ such that r is placed
at the midpoint of the hypotenuse of ∆. Consider the line l(∆1) with slope
−45 degrees passing through c(∆1). We claim that all the drawing is contained
in the half-plane to the right of l(∆1). The claim is proved by the following
two considerations: 1) ∆1 is contained in the half-plane to the right of l(∆1),
namely the slope of the segment connecting c(∆1) and b(∆1) is −35 degrees;
2) ∆2 is contained in the half-plane to the right of l(∆1), namely the distance
between r and c(∆2) is easily computed to be L/(2 · tan(10)) + L/2 < 3.34L,
which is less than the distance between r and the intersection point of l(∆1)
and the horizontal line through r. In fact, such a distance is equal to L

2·sin(10) +
L·cos(55)√

2
+ L·sin(55)√

2
> 3.864L.

The length of the hypotenuse of ∆ is twice the length of segment ra(∆1),
hence the hypotenuse of ∆ has length less or equal than 7.7284L. Observe that
each edge of the drawing has length at least 1. Denote by h(n) the length of the
hypotenuse of ∆. We get: h(n) ≤ 7.7284h(n

3) ≤ 7.7284log3 n = nlog3 7.7284 ≤
n1.862. Since the area of ∆ is asymptotically the square of its side, we obtain
the following:

Theorem 8.3 A complete ternary tree with n vertices admits an MST embed-
ding in O(n3.73) area.

i

i

“main” — 2009/2/23 — 18:41 — page 210 — #220
i

i

i

i

i

i

210
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

8.5 MST Embeddings of Arbitrary Ternary Trees

In this section we present an algorithm to construct MST-embeddings of arbi-
trary ternary trees.

Overall strategy. Assume that the input ternary tree T is rooted at any
node r of degree at most three. Analogously to the arbitrary binary tree case,
select a spine P = (r = v1, v2, v3, · · · , vk) in T . Remove the spine from the tree,
disconnecting the tree into several subtrees. Recursively draw the disconnected
subtrees and place a drawing of the spine together with the drawings of the
subtrees, obtaining a drawing of the whole tree.

Choice of the spine. The choice of P is done as in the arbitrary binary trees
case. The first node v1 of P is r. For each 1 ≤ i < k, node vi+1 is defined as
the root of the largest of the three subtrees of vi. Observe that each subtree of
P has at most n/2 nodes.

The shape of the subtrees. Denote by T 1
i and T 2

i the subtrees rooted at the
children t1i and t2i of vi that do not belong to P , respectively. We recursively
draw subtrees T 1

i and T 2
i , for all 1 ≤ i ≤ k − 1, inside isosceles right triangles

∆1
i and ∆2

i , respectively. For each 1 ≤ i ≤ k − 1, we scale up the drawing of
the smallest between ∆1

i and ∆2
i , so that the two isosceles right triangles are

congruent. The whole spine together with the drawing of the subtrees of the
nodes of P will be placed inside a larger isosceles right triangle ∆. The root of
each subtree T 1

i and T 1
2 is placed on the midpoint of the hypotenuse of ∆1

i and
∆2

i , respectively. Denote by Li the length of the hypotenuse of ∆1
i and ∆2

i .

Drawing the spine and the subtrees together. Let ei = (vi, vi+1), for 1 ≤
i < k. We draw P in a zig-zag way, with constant angles of 110 degrees between
two consecutive edges ei and ei+1. See Fig. 8.7. The length of edges ei will be
determined later.

Consider vertex vi. Opposite to the 110 degree angle, we have an angle of
250 degrees, which we partition into five consecutive wedges W 1

i , W 2
i , W 3

i , W 4
i ,

and W 5
i of 90, 5, 60, 5, and 90 degrees, respectively, such that W 1

i is the wedge
closer to vertex vi−1. We place ∆1

i inside W 2
i and ∆2

i inside W 4
i as follows.

Consider the line l2i through vi bisecting W 2
i . Vertex t1i is placed on l2i and

triangle ∆1
i is placed inside W 2

i so that the hypotenuse of ∆1
i is perpendicular

to l2i , and so that the endvertices of the hypotenuse of ∆1
i lie on the semi-axes

delimiting W 2
i . ∆2

i is analogously placed inside W 4
i . See Fig. 8.8.

Notice that, for vertex v1 (and for vertex vk), wedges W 1
i , W 2

i , W 3
i , W 4

i ,
and W 5

i are not well-defined, since only one edge e1 of P is incident to v1.

i

i

“main” — 2009/2/23 — 18:41 — page 211 — #221
i

i

i

i

i

i

8.5. MST EMBEDDINGS OF ARBITRARY TERNARY TREES 211

v1

e1

90

20

∆1
1

∆1
2

∆2
1

∆2
2

60

60 e2

110
v2

v3

e3

90

90
90

90

90

90

5

5

5

5

60

60 e4
110

110

v5 90
90 60

110

v4

5

5

5

5

5

5

∆3
2

∆3
1

∆4
2

∆4
1

∆5
2

∆5
1

Figure 8.7: The recursive construction of an MST embedding of an arbitrary
ternary tree. In order to improve readability, edges connecting the subtrees to
the spine are longer than they should be (hence the actual drawing is not an
MST embedding).

However, it is not difficult to extend the above definition of wedges W 1
i , W 2

i ,
W 3

i , W 4
i , and W 5

i to the case in which i = 1, by considering a dummy edge
(v0, v1) that has an angle of 110 degrees with edge (v1, v2), and defining the
wedges incident to v1 as for the other vertices of P .

Choosing the length of edges ei. As in the arbitrary binary tree case, we
set:

len(ei) = max{cLi, cLi+1},

where c is a constant to be determined later. In order to have length at least
one for all the edges, we set len(ei) = 1, for all the edges ei where none of
subtrees T 1

i , T 2
i , T 1

i+1, and T 2
i+1 exists.

i

i

“main” — 2009/2/23 — 18:41 — page 212 — #222
i

i

i

i

i

i

212
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

i

90
90

60

110

vi

∆ i
2

∆ i
1

t2
1

2.5
2.5

t11

2.5 2.5

Wi
1

Wi
3

Wi
5

W
2

Wi
4

Figure 8.8: A closer look to the construction of an MST embedding of an
arbitrary ternary tree.

The isosceles right triangle ∆ is defined as the smallest isosceles right tri-
angle containing the whole drawing, having r as midpoint of the hypotenuse,
and having the hypotenuse forming angles of 160, 20, and 180 degrees with
edge (v1, v2). In the following we suppose, for clarity of exposition, that the
hypotenuse of ∆ is vertical, and that P is contained in the half-plane to the
right of the line through the hypotenuse. If a tree T has only one node, ∆ is
defined as the isosceles right triangle having r as midpoint of the hypotenuse,
and having the hypotenuse of length 1.

The drawing satisfies the MST condition. We use induction to show that
every pair of vertices in the drawing satisfies the MST condition. If the tree has
only one node, then there is nothing to prove. Otherwise, inductively suppose
that each pair of nodes in the drawing of each subtree T 1

i and T 2
i satisfies the

MST condition. Then, we prove that each pair of nodes in the whole drawing
satisfies the MST condition.

The only pairs of nodes for which the MST condition is not trivially satisfied,

i

i

“main” — 2009/2/23 — 18:41 — page 213 — #223
i

i

i

i

i

i

8.5. MST EMBEDDINGS OF ARBITRARY TERNARY TREES 213

are: (i) node vi and any node in T 1
i or in T 2

i , for i = 1, 2, · · · , k − 1, (ii)
any node in T 1

i and any node in T 2
i , for i = 1, 2, · · · , k − 1, (iii) node vi

and any node in T 2
i−1, for i = 2, 3, · · · , k, (iv) node vi and any node in T 1

i+1,
for i = 1, 2, · · · , k − 2, and (v) any node in T 2

i−1 ∪ {vi−1} and any node in
T 1

i+1 ∪ {vi+1}, for i = 2, 3, · · · , k − 2.
(i) Consider node vi and any node wi in T 1

i (resp. in T 2
i), for any i =

1, 2, · · · , k−1. We prove that all the edges in the path from vi to wi are shorter
than segment viwi. The length of each edge of such a path belonging to T 1

i

(resp. to T 2
i) is at most Li. The length of edge (vi, t

1
i) (resp. edge (vi, t

2
i))

is equal to Li/(2 · tan(2.5)) ≥ 11.451Li. Hence, (vi, t
1
i) (resp. (vi, t

2
i)) is the

longest edge of the path connecting vi and wi. However, segment viwi is longer
than (vi, t

1
i) (resp. than (vi, t

2
i)), since wi is contained inside ∆1

i (resp. inside
∆2

i), whose closest point to vi is t1i (resp. t2i).
(ii) Consider any node n1

i in T 1
i and any node n2

i in T 2
i , for any i =

1, 2, · · · , k − 1. We prove that all the edges in the path from n1
i to n2

i are

shorter than segment n1
i n

2
i . The length of each edge of such a path belonging

also to T 1
i or to T 2

i is at most Li. Further, edges (vi, t
1
i) and (vi, t

2
i) have length

Li/(2 · tan(2.5)) ≈ 11.451Li. Hence, (vi, t
1
i) and (vi, t

2
i) are the longest edges in

the path connecting n1
i and n2

i . However, consider the intersection point p(i1)
of ∆1

i and the line separating wedges W 2
i and W 3

i , and consider the intersection
point p(i2) of ∆2

i and the line separating wedges W 3
i and W 4

i . The length of

segment n1
i n

2
i is greater or equal than the length of segment p(i1)p(i2). By con-

struction, triangle (p(i1), p(i2), vi) is equilateral, hence p(i1)p(i2) has the same
length of segments vip(i1) and vip(i2), that is Li/(2 · sin(2.5)) ≈ 11.462Li,
which is greater than Li/(2 · tan(2.5)).

(iii) For any i = 2, 3, · · · , k − 1, consider a node vi and any node wi−1

in T 2
i−1, and suppose that the pair (vi, wi−1) of vertices does not satisfy the

MST condition. As in the previous case each edge of such a path belonging
also to T 2

i−1 has length at most Li−1. Further, edge (vi−1, t
2
i−1) has length

Li1/(2 · tan(2.5)) ≤ 11.452Li1, and edge (vi−1, vi) has length at least cLi−1. It
follows that, as long as c ≥ 11.452, edge (vi−1, vi) is the longest edge in the
path connecting vi and wi−1. However, consider triangle (vi, vi−1, wi−1). By
construction, angle viv̂i−1wi−1 contains wedge W 5

i and hence it is greater or
equal than 90 degrees. Segment viwi−1 is opposite to viv̂i−1wi−1 and hence is
the longest side of such a triangle. It follows that viwi is longer than (vi−1, vi).

(iv) For any i = 1, 2, · · · , k − 2, it can be proved analogously to the pre-
vious case that the MST of the points of the drawing cannot contain an edge
(vi, wi+1), for any node wi+1 in T 1

i+1.

i

i

“main” — 2009/2/23 — 18:41 — page 214 — #224
i

i

i

i

i

i

214
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

(v) Consider any node wi−1 in T 2
i−1 ∪ {vi−1} and any node wi+1 in T 1

i+1 ∪
{vi+1}, for i = 2, 3, · · · , k − 2. The path P i+1

i−1 connecting wi−1 and wi+1 in

T contains edges ei−1 and ei. All the edges of P i+1
i−1 belonging to T 2

i−1 or to
T 1

i+1 are contained inside ∆2
i−1 or ∆1

i+1, respectively, and hence their length
is at most the maximum between Li−1 and Li+1. Further, the length of edge
(vi−1, t

2
i−1) is Li−1/(2 · tan(2.5)) ≤ 11.452Li−1. Analogously, the length of

edge (vi+1, t
1
i+1) is at most 11.452Li+1. Hence, the length of each edge in P i+1

i−1

is less or equal than max{11.452Li−1, 11.452Li+1, len(ei−1), len(ei)}. Observe
that, by construction, len(ei−1) ≥ cLi−1, and that len(ei) ≥ cLi+1. Hence, as
long as c ≥ 11.452, one between ei−1 and ei is the longest edge in P i+1

i−1 , and
we have only to prove that the distance between wi−1 and wi+1 is greater than
max{len(ei−1), len(ei)}. In the following, refer to Figs. 8.9 and 8.10.

Consider line l4,5
i−1 separating wedges W 4

i−1 and W 5
i−1, and consider line

l1,2
i separating wedges W 1

i and W 2
i . By construction such lines are parallel.

Further, T 2
i−1 is contained in the half-plane delimited by l4,5

i−1 and not containing

l1,2
i . Notice that the distance between l4,5

i−1 and l1,2
i is exactly len(ei−1). We

claim that, for a suitable constant c, T 1
i+1 is entirely contained in the half-plane

delimited by l1,2
i and not containing l4,5

i−1. The claim clearly implies that the
distance between wi−1 and wi+1 is greater or equal than len(ei−1).

Since the length of edge (vi+1, t
1
i+1) is Li+1/(2 · tan(2.5)) ≤ 11.452Li+1 and

since all the points of ∆1
i+1 are at distance at most Li+1/2 from t1i+1, then

no point of ∆1
i+1 is at distance greater than 11.952Li+1 from vi+1. Hence,

∆1
i+1 is enclosed inside an isosceles triangle ∆ having vi+1 as a vertex inci-

dent to a 5-degree angle, and having two sides (vi+1, v
C
i+1) and (vi+1, v

D
i+1)

of length 11.952Li+1/cos(2.5) ≤ 11.964Li+1 lying on the line l1,2
i+1 separating

wedges W 1
i+1 and W 2

i+1, and on the line l2,3
i+1 separating wedges W 2

i+1 and W 3
i+1,

respectively.
We show that, for a suitable value of c, ∆ is entirely contained in the

half-plane delimited by l1,2
i and not containing l4,5

i−1. First, observe that vC
i+1

is the point of ∆ closer to l1,2
i . The distance between vi+1 and l1,2

i is equal
to len(ei) · sin(20) ≥ 0.342cLi+1. The distance between vC

i+1 and vi+1 in the

direction orthogonal to l1,2
i is 11.964Li+1 · cos(20) ≤ 11.243Li+1. It follows

that, as long as 0.342cLi+1 ≥ 11.243Li+1, i.e., as long as c ≥ 32.875, vC
i+1 (and

hence ∆ and ∆1
i+1) is in the half-plane delimited by l1,2

i and not containing

l4,5
i−1.

In analogous way, it can be proved that, as long as c ≥ 32.875, the distance
between wi−1 and wi+1 is greater than len(ei). Hence, as long as c ≥ 32.875,

i

i

“main” — 2009/2/23 — 18:41 — page 215 — #225
i

i

i

i

i

i

8.5. MST EMBEDDINGS OF ARBITRARY TERNARY TREES 215

ei-1vi-1 vi

ei

20

90

vi+1

li
1,2

i

Wi
1

Wi
3

Wi
5

W
2

Wi
4

70
20

90

li-1
4,5

Ti-1
2

len(ei-1)

Ti+1
1

70vi+1
C

Figure 8.9: Illustration for the proof that the MST condition is satisfied for
any node in T 2

i−1∪{vi−1} and any node in T 1
i+1 ∪{vi+1}, for i = 2, 3, · · · , k−2.

the straight-line segment between wi−1 and wi+1 is longer than every edge in
the path P i+1

i−1 connecting wi−1 and wi+1 in T , and hence it does not belong to
the MST of the points of the drawing.

The length of P. We bound the length of P as a function of the lengths Li’s.
As in the binary case, since len(ei) = max{cLi, cLi+1}, and since len(ei) ≥ 1,

for every 1 ≤ i < k, then len(ei) < cLi + cLi+1. It follows that
∑k−1

i=1 len(ei) ≤
2c
∑k−1

i=1 Li.

i

i

“main” — 2009/2/23 — 18:41 — page 216 — #226
i

i

i

i

i

i

216
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

vi+1

vi+1
C

l i+1
1,2

l i
1,2

vi+1
D

t i+1
1

2.5

2.5

11.964L
i+1

l i+1
2,3

Figure 8.10: Triangle ∆, shaded in the picture, containing edge (vi+1, ti+1) and
subtree T 1

i+1.

The area of the drawing is polynomial. We now compute the length of
h(C), i.e., of the hypotenuse of an isosceles right triangle that contains the
whole drawing, that has r as midpoint of its hypotenuse, and that has the
hypotenuse forming angles of 160, 20, and 180 degrees with edge (v1, v2). In
the following refer to Fig. 8.11. Notice that the length of the longest edge of
the drawing is at most equal to h(C), while the length of the shortest edge of
the drawing is at least 1, by construction.

The computation of the area of the drawing proceeds as in the binary case.
We first notice that the drawing of P (without the drawing of subtrees T 1

i ’s
and T 2

i ’s) is contained inside an isosceles triangle ∆e such that:

• ∆e has two angles of 20 degrees and one angle of 140 degrees;

• r is the vertex of ∆e incident to the 140-degree angle;

• one side of ∆e contains edge (v1, v2);

• the distance between r and the side of ∆e opposite to r is 2c
∑k−1

i=1 Li.

In fact, the length of P is at most 2c
∑k−1

i=1 Li, and, no edge of P forms an
angle of less than 20 degrees with a vertical line.

i

i

“main” — 2009/2/23 — 18:41 — page 217 — #227
i

i

i

i

i

i

8.5. MST EMBEDDINGS OF ARBITRARY TERNARY TREES 217

r

20

20

20

20

70

90
90

90

90
90

90

45

45

45

45

45

45

45

45

11
.9

52

Σ L i

14
.9

9c
Σ

L
i

11
.9

52
2

Σ
L

i
11

.9
52

2
Σ

L
i

45

.

70

70
70

.

.

Figure 8.11: Bounding the constructed drawing with an isosceles right triangle.

Consider the smallest isosceles right triangle ∆∗ that contains ∆e com-
pletely, that has r as midpoint of its hypotenuse, and that has the hypotenuse
forming angles of 160, 20, and 180 degrees with edge (v1, v2). Easy trigono-
metric calculations show that the hypotenuse of ∆∗ has length at most 2(1 +

1/ tan(20))(2c
∑k−1

i=1 Li) < 14.99c
∑k−1

i=1 Li.

i

i

“main” — 2009/2/23 — 18:41 — page 218 — #228
i

i

i

i

i

i

218
CHAPTER 8. STRAIGHT-LINE DRAWINGS OF MINIMUM SPANNING

TREES

Consider the smallest isosceles right triangle ∆ that contains ∆∗, that has
r as midpoint of its hypotenuse, that has the hypotenuse forming angles of 160,
20, and 180 degrees with edge (v1, v2), and such that every point on one of its

catheti has distance at least 11.952
∑k−1

i=1 Li from any point of ∆∗. It is easy to
see that ∆ contains the whole drawing, namely it contains P since it contains
∆∗, and it contains each subtree T 1

i and T 2
i , since T 1

i and T 2
i can stick outside

∆∗ by at most Li/2 + 11.452Li = 11.952Li ≤ 11.952
∑k−1

i=1 Li. Notice that the

hypotenuse of ∆ has length at most 14.99c
∑k−1

i=1 Li + 2(11.952
√

2
∑k−1

i=1 Li).
By choosing c = 32.875, the drawing of T is an MST embedding, and the
length of h(C) is bounded by 14.99 · 32.875

∑k−1
i=1 Li + 2(11.952

√
2
∑k−1

i=1 Li) <

526.602
∑k−1

i=1 Li.

Lemma 8.2 The length of h(C) is at most 526.602
∑k−1

i=1 Li.

Let α = 526.602. We express h(C) as a function of the number of nodes
of the tree. Denote by h(n) the maximum length of h(C) when the input tree
has n nodes. It can be inductively proved that h(n) ≤ nlog2(3α). However, this
is done by using exactly the same arguments and calculations that we used for
the binary case, and hence such arguments and calculations are omitted here.
Then, we conclude that h(n) ≤ nlog2 1579.805 = O(n10.626).

Finally, since the area of the drawing is the square of the length of its side,
we get the following:

Theorem 8.4 Every ternary tree with n vertices admits an MST drawing in
O(n21.252) area.

8.6 Conclusions and Open Problems

In this chapter, we have shown algorithms for constructing MST embeddings
of trees with maximum degree 4 in polynomial area. It would be interesting to
understand how much the bounds achieved by our algorithms can be improved
by modifying the constant angles in the geometric constructions we have shown.
In the case of complete binary trees, a construction similar to the one we
presented for complete ternary trees achieve a slightly better bound than the
one claimed in Theorem 8.1 (we still opted for providing the construction of
Sect. 8.2, which is particularly simple).

It is an obvious and important open problem to determine whether polyno-
mial-area suffices for constructing MST embeddings of trees with degree 5 or,
instead, the conjecture of Monma and Suri is correct [MS92].

i

i

“main” — 2009/2/23 — 18:41 — page 219 — #229
i

i

i

i

i

i

8.6. CONCLUSIONS AND OPEN PROBLEMS 219

Open Problem 8.1 Which are the asymptotic bounds for the area require-
ments of MST embeddings of trees with maximum degree 5?

We remark that an exponential area lower bound can be quite easily ob-
tained if the order of the edges incident to the nodes of the tree is fixed. In order
to prove such a lower bound, it is sufficient to consider a 5-regular caterpillar,
i.e. a caterpillar T such that all its non-leaf nodes have degree 5, that has the
following property: Removing all the leaves turns T into a path (v1, v2, · · · , vk),
in which edge (vi, vi+1) is the last edge incident to vi, in the clockwise order of
the edges incident to vi starting at (vi−1, vi), for each i = 2, 3, . . . , k − 1 (see
Fig. 8.12).

v1 v2 v3 vk

Figure 8.12: A 5-regular caterpillar in which the path always turns right.

However, we expect that there exist degree-5 trees for which exponential
area is required in any MST embedding, even if the order of the edges incident
to each node is not fixed. In fact, we have the following conjecture:

Conjecture 8.1 The 5-regular caterpillar requires exponential area.

i

i

“main” — 2009/2/23 — 18:41 — page 220 — #230
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 221 — #231
i

i

i

i

i

i

Part IV

Clustered Graphs

221

i

i

“main” — 2009/2/23 — 18:41 — page 222 — #232
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 223 — #233
i

i

i

i

i

i

Chapter 9

Straight-line, Poly-line,

Orthogonal, and Upward

Drawings of Clustered Trees

In this chapter1 we consider straight-line, poly-line, orthogonal, and upward
drawings of directed trees in small area. For each of the drawing conventions,
we consider models in which the clusters are drawn as rectangles, as convex
polygons, and as non-convex polygons. We show many results that put in
evidence how drawing clustered trees has many sharp differences with respect
to drawing “plain” trees. In fact, we show that there exist clustered trees
that do not have any drawing in certain standards and clustered trees that
require exponential area in other standards. On the contrary, for many drawing
conventions we show efficient algorithms that allow to draw clustered trees with
polynomial asymptotically optimal area.

9.1 Introduction

A clustered graph is a pair C = (G, T), where G is a graph and T is a rooted
tree such that the leaves of T are the vertices of G. Graph G and tree T
are called underlying graph and inclusion tree, respectively. Fig. 9.1 shows a
clustered graph. A clustered tree is a clustered graph whose underlying graph
is a tree. The clustered graph in Fig. 9.2 is a clustered tree. Each internal

1The contents of this chapter are a joint work with Giuseppe Di Battista and Guido
Drovandi, appeared in [DDF07] and to appear in [DDF09].

223

i

i

“main” — 2009/2/23 — 18:41 — page 224 — #234
i

i

i

i

i

i

224
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

node ν of T corresponds to the subset V (ν) of the vertices of G (called cluster)
that are the leaves of the subtree rooted at ν. The subgraph of G induced by
V (ν) is denoted by G(ν), where ν is a cluster of T . If each cluster induces a
connected subgraph of G, then C is c-connected. The clustered tree in Fig. 9.2
is not c-connected.

(a)

(b) (c)

Figure 9.1: (a) A c-planar drawing of a clustered graph C = (G, T). (b) The
underlying graph G of C. (c) The inclusion tree T of C.

Clustered graphs are widely used in applications where it is needed at the
same time to show relationships between entities and to group entities with
semantic affinities. For example, in a social network representing the working
relationships between the employees of a company it might be desirable to
group into clusters the people of each department.

i

i

“main” — 2009/2/23 — 18:41 — page 225 — #235
i

i

i

i

i

i

9.1. INTRODUCTION 225

(a)

(b) (c)

Figure 9.2: (a) A c-planar drawing of a clustered tree C = (G, T). (b) The
underlying graph G of C. Note that G is a tree. (c) The inclusion tree T of C.

Visualizing clustered graphs turns out to be a difficult problem, due to the
simultaneous need for a readable drawing of the underlying structure and for a
good rendering of the recursive clustering relationship. As for the visualization
of graphs, the most important aesthetic criterion for a drawing of a clustered
graph to be “nice” is commonly regarded to be planarity. However, the classical
concept of planarity needs a refinement in the context of clustered graphs, in
order to deal also with the clustering structure.

A drawing of a clustered graph C = (G, T) consists of a drawing of G and
of a representation of each node ν of T as a simple closed region R(ν) such
that: (i) R(ν) contains the drawing of G(ν); (ii) R(ν) contains a region R(µ)

i

i

“main” — 2009/2/23 — 18:41 — page 226 — #236
i

i

i

i

i

i

226
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

iff µ is a descendant of ν in T ; and (iii) the borders of any two regions do not
intersect. Consider an edge e and a node ν of T . If e crosses the boundary of
R(ν) more than once, we say that edge e and region R(ν) have an edge-region
crossing. A drawing of a clustered graph is c-planar if it does not have edge
crossings or edge-region crossings and a graph is c-planar if it has a c-planar
drawing.

A number of papers have been presented for constructing c-planar drawings
of clustered graphs within many drawing conventions, and the problem of de-
termining the area requirements of c-planar drawings of clustered graphs has
been considered. Namely, Eades, Feng, and Nagamochi in [EFN99] showed an
algorithm to construct O(n2) area c-planar orthogonal drawings of clustered
graphs with maximum degree 4, in which each cluster is represented by an
axis-parallel rectangle. Eades et al. [EFLN06] proved that every c-planar clus-
tered graph admits a c-planar straight-line drawing, in which all the clusters
are drawn as convex regions. In fact, they provided an algorithm for construct-
ing such drawings in exponential area. However, in [FCE95a] it is shown that
such a bound is asymptotically optimal in the worst case. All the cited results
are more extensively discussed throughout the chapter.

In this chapter we look for algorithms to construct c-planar drawings of
clustered trees with efficient area. A clustered tree is a clustered graph such
that its underlying graph is a tree. We consider the most investigated drawing
standards for the underlying tree (see, e.g., [CGKT02, Cha02, GGT96, GR04]),
namely straight-line, poly-line, orthogonal, and upward drawings, and combi-
nations of them. We deal both with c-connected and non-c-connected clustered
trees. Further, we consider drawings in which the clusters are represented by
rectangles (R-drawings), by convex polygons (C-drawings), and also by even-
tually non-convex polygons (NC-drawings).

We provide the following results: (i) there exist n-node c-connected clus-
tered trees requiring Ω(n2) area in any NC-drawing (and hence in any R-
and C-drawing); (ii) every n-node c-connected clustered tree C = (G, T) has
a Θ(n2) area strictly-upward order-preserving poly-line (strictly-upward non-
order-preserving straight-line) R-drawing (and hence C- and NC-drawing);
(iii) every n-node c-connected clustered binary tree C = (G, T) has a Θ(n2)
area strictly-upward order-preserving straight-line (upward order-preserving
orthogonal) R-drawing (and hence C- and NC-drawing); (iv) there exist n-
node c-connected clustered binary trees that do not admit any straight-line
orthogonal R-drawing; (v) there exist n-node non-c-connected clustered bi-
nary trees that do not admit any upward C-drawing (and hence any upward
R-drawing); (vi) there exist n-node non-c-connected clustered trees requiring

i

i

“main” — 2009/2/23 — 18:41 — page 227 — #237
i

i

i

i

i

i

9.1. INTRODUCTION 227

exponential area in any straight-line C-drawing (and hence in any straight-
line R-drawing); (vii) every n-node non-c-connected clustered tree C = (G, T)
has a Θ(n2) area order-preserving poly-line R-drawing (and hence C- and NC-
drawing); (viii) every n-node c-connected clustered tree C = (G, T) has a O(n4)
area strictly-upward order-preserving straight-line NC-drawing; (ix) every n-
node c-connected clustered tree C = (G, T) has a O(n3 log n) area straight-line
orthogonal NC-drawing.

Tables 9.1 and 9.2 summarize the area requirements of R-drawings and C-
drawings of c-connected and non c-connected clustered trees. In the tables,
“UB” and “LB” stand for Upper Bound and Lower Bound, respectively. “Up-
ward” means upward when referring to orthogonal drawings and means strictly
upward otherwise. If the straight-line column does not have a “X”, then the
drawing is poly-line. Orthogonal drawings are referring to binary trees. An
“X” means that in general a drawing with the corresponding features does not
exist.

R-Drawings C-Drawings

u
p
w
a
rd

st
ra

ig
h
t-

li
n
e

o
rd

e
re

d

o
rt

h
o
g
o
n
a
l

UB ref. LB ref. UB ref. LB ref.

X X O(n2) Th. 9.2 Ω(n2) Le. 9.1 O(n2) Th. 9.2 Ω(n2) Le. 9.1

X X X ? - Ω(n2) Le. 9.1 ? - Ω(n2) Le. 9.1

X X O(n2) Th. 9.1 Ω(n2) Le. 9.1 O(n2) Th. 9.1 Ω(n2) Le. 9.1

X X X O(n2) Th. 9.4 Ω(n2) Le. 9.1 O(n2) Th. 9.4 Ω(n2) Le. 9.1

X X X Th. 9.5 ? - Ω(n2) Le. 9.1

X X O(n2) [EFN99] Ω(n2) Le. 9.1 O(n2) [EFN99] Ω(n2) Le. 9.1

Table 9.1: Summary of the results on minimum area drawings of c-connected

clustered trees.

The rest of the chapter is organized as follows. In Sect. 9.2 we estab-
lish precise definitions about R-drawings, C-drawings, and NC-drawings, and
we prove a simple lower bound valid for any considered drawing standard; in
Sect. 9.3, we deal with R-drawings and C-drawings of c-connected clustered
trees; in Sect. 9.4 we deal with R-drawings and C-drawings non-c-connected
clustered trees; in Sect. 9.5 we deal with NC-drawings of c-connected and non-
c-connected clustered trees; finally, in Sect. 9.6 we conclude and present some
open problems.

i

i

“main” — 2009/2/23 — 18:41 — page 228 — #238
i

i

i

i

i

i

228
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

R-Drawings C-Drawings

u
p
w
a
rd

st
ra

ig
h
t-

li
n
e

o
rd

e
re

d

o
rt

h
o
g
o
n
a
l

UB ref. LB ref. UB ref. LB ref.

X X Th. 9.6 X Th. 9.6

X ? - Ω(2n) Th. 9.7 O(2n) [EFLN06] Ω(2n) Th. 9.7

X X O(n2) [EFN99] Ω(n2) Le. 9.1 O(n2) [EFN99] Ω(n2) Le. 9.1

X O(n2) Th. 9.8 Ω(n2) Le. 9.1 O(n2) Th. 9.8 Ω(n2) Le. 9.1

Table 9.2: Summary of the results on minimum area drawings of non-c-

connected clustered trees.

9.2 Preliminaries on R-Drawings, C-Drawings, and

NC-Drawings

We define the following drawing conventions for clustered graphs. A polygon
with vertices having integer coordinates is a lattice polygon.

Definition 9.1 A drawing of a clustered tree C = (G, T) is an NC-drawing
(for Non-Convex-drawing) if it is c-planar, the vertices of G and the bends on
the edges of G (if any) have integer coordinates, and the border of each cluster
is a lattice polygon.

Definition 9.2 A drawing of a clustered tree C = (G, T) is a C-drawing (for
Convex-drawing) if it is c-planar, the vertices of G and the bends on the edges
of G (if any) have integer coordinates, and the border of each cluster is a convex
lattice polygon.

Definition 9.3 A drawing of a clustered tree C = (G, T) is an R-drawing (for
Rectangle-drawing) if it is c-planar, the vertices of G and the bends on the
edges of G (if any) have integer coordinates, and the border of each cluster is
an axis-parallel rectangle with corners having integer coordinates.

Notice that by definition an R-drawing is also a C-drawing and a C-drawing
is also an NC-drawing. Hence, an area upper bound obtained for R-drawings
is also an upper bound for C-drawings and for NC-drawings. On the contrary,
a lower bound for NC-drawings implies a lower bound for C-drawings and for
R-drawings. Figure 9.3 shows examples of R-drawings and C-drawings within
different drawing standards for the underlying tree.

i

i

“main” — 2009/2/23 — 18:41 — page 229 — #239
i

i

i

i

i

i

9.2. PRELIMINARIES ON R-DRAWINGS, C-DRAWINGS, AND

NC-DRAWINGS 229

r

(a) (b) (c)

Figure 9.3: (a) A straight-line R-drawing. (b) An orthogonal R-drawing. (c)
A poly-line upward C-drawing.

The following lemma is easy to prove. Throughout the rest of the chapter,
given a clustered tree (G, T), let G(v) (T (v)) denote the subtree of G (resp. of
T) rooted at v.

Lemma 9.1 There exist n-vertex clustered trees requiring Ω(n2) area in any
NC-drawing.

Proof: Consider a clustered tree C = (G, T) such that T has height h.
We show by induction on h that C requires 2h width in any NC-drawing. If
h = 1 then the border of the only cluster of T must be drawn as a simple
lattice polygon and hence it must intersect at least two vertical grid lines of
the plane. Suppose by induction hypothesis that 2h− 2 is the minimum width
of an NC-drawing of a clustered tree C ′ = (G′, T ′) such that the height of T ′

is h − 1. Consider a clustered tree C = (G, T) such that the height of T is
h. Clearly, there exists a subtree T (ν) of T rooted at a child ν of the root r
of T that has height h − 1. By induction hypothesis every NC-drawing Γ′ of
C ′ = (G(ν), T (ν)) requires 2h − 2 width. Draw the polygon P representing
r. By definition of NC-drawing, P surrounds Γ′ and its vertices have integer
coordinates, so P must touch the vertical grid line one unit to the left of the
leftmost vertical line intersecting Γ′ and must touch the vertical grid line one
unit to the right of the rightmost vertical line intersecting Γ′. It follows that C
requires the width of Γ′ plus two units, so it requires 2h width. Analogously,
the minimum height of an NC-drawing of a clustered tree with height h is 2h.
Since there exist clustered trees C = (G, T) such that T has height Ω(n), the
lemma follows. 2

i

i

“main” — 2009/2/23 — 18:41 — page 230 — #240
i

i

i

i

i

i

230
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

9.3 R-Drawings and C-Drawings of C-Connected

C-Trees

In this section we consider R-drawings and C-drawings of c-connected c-trees.
We show that quadratic area is sufficient (and necessary) to construct R-

drawings of c-connected clustered trees in which the underlying tree is repre-
sented within several drawing standards. Namely, we present an algorithm for
constructing Θ(n2) area strictly upward order-preserving poly-line R-drawings
of n-node c-connected clustered trees. Then, we show how to slightly modify
such an algorithm to obtain different kinds of drawings.

Let C = (G, T) be a c-connected clustered tree. We first perform an aug-
mentation of C. Namely, for each cluster of T we add dummy vertices and
edges to G as follows. Consider each node r of G, if r is the root of k subtrees
induced by k clusters, i.e. Σr = {µ1, . . . , µk} (suppose µi is the parent of µi+1

in T for each 1 ≤ i ≤ k − 1), add a path composed by nodes sµ1 , sµ2 , . . . , sµk

(a node for each cluster belonging to Σr) to G as follows: If the parent p of r
exists (see Fig. 9.4 (a)) then split the edge (p, r) into edges (p, sµ1) and (sµk

, r)
(Fig. 9.4 (c)); otherwise (Fig. 9.4 (b)) add only the edge (sµk

, r) (Fig. 9.4 (d)).
In any case at each dummy vertex sµ add two dummy children c1

µ and c2
µ and

a dummy node c3
µ as child of c2

µ; these four dummy vertices belong to cluster
µ. The counter-clockwise order of the children of sµi (µi ∈ Σr) is: If 1 ≤ i < k,
c1
µi

, sµi+1 , and c2
µi

; otherwise c1
µk

, r, and c2
µk

. After having performed the de-
scribed augmentation on each cluster, we obtain a clustered tree C ′ = (G′, T ′).
We call r′ the root of G′. Figure 9.4 (e) shows a clustered tree C and Figure 9.4
(f) the augmentation of C. A pseudo-code description of the above phase is
given in Fig. 9.5.

We now construct a strictly upward drawing of G′. From now on, x(v)
and y(v) denote the coordinates assigned to a node v. Further, denote by p(v)
the parent of a node v. First, assign an x-coordinate to each node in G′ by
means of a depth-first traversal of G′. Set x(r′) = 0. Then, suppose that
the x-coordinate has already been assigned to a node v. Let v1, v2, . . . , vm be
the children of v in counter-clockwise order. Set x(v1) = x(v); for each child
vi of v, i = 2, . . . , m, set x(vi) = 1 + maxu∈G′(vi−1){x(u)} (see Fig. 9.6). A
pseudo-code description of this step is given in Fig. 9.7.

Concerning the y-coordinates we adopt the following general strategy. We
perform a traversal of G′ based on the clustering hierarchy of C ′. Such a
traversal has the following properties:

• We maintain a current cluster such that, when node µ ∈ T ′ is the current

i

i

“main” — 2009/2/23 — 18:41 — page 231 — #241
i

i

i

i

i

i

9.3. R-DRAWINGS AND C-DRAWINGS OF C-CONNECTED C-TREES231

µ1

µ2

r

p

µ1

µ2

r

sµ2

1cµ2 cµ2

2

cµ2

3 cµ
3

1

cµ
2

1

1cµ1

sµ1

µ2µ1

r

p

sµ2

1cµ2 cµ2

2

cµ2

3 cµ
3

1

cµ
2

1

1cµ1

µ2µ1

sµ1

r

(a) (b) (c) (d)

(e) (f)

Figure 9.4: (a) The root of G(µ1) is not the root of the underlying tree G. (b)
The root of G(µ1) is the root of the underlying tree G. (c)–(d) G(µ1) aug-
mented with dummy vertices and edges. (e) A clustered tree C = (G, T). (f)
Clustered tree C ′ = (G′, T ′) obtained by the augmentation of C with dummy
vertices and edges.

cluster we perform a depth-first traversal of G′(µ).

• When a node v is visited, the current cluster is set equal to the smallest
cluster containing v and containing at least one not yet visited node.

More in detail, the y-coordinates assignment is as follows (see Fig. 9.9): Set
y(r′) = 0. Let µr be the smallest cluster containing r′. Set the current cluster
to be µr. Now suppose that node µ ∈ T ′ is the current cluster.

• If there is more than one node in V ′(µ) that is not yet visited, then
consider the first not yet visited node v ∈ V ′(µ) that is encountered in a

i

i

“main” — 2009/2/23 — 18:41 — page 232 — #242
i

i

i

i

i

i

232
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Augmentation Algorithm for a C-Connected Clustered Tree

input: A c-connected clustered tree C(G, T)

for all cluster µ ∈ T do
v = root(µ)
sµ, c1

µ, c2
µ, c3

µ = new vertices
add vertices sµ, c1

µ, c2
µ and c3

µ to cluster µ

root(µ) = sµ

last(µ) = c3
µ

if parent(v) is not NIL then
substitute v with sµ in children(parent(v))

end if
parent(sµ) = parent(v)
parent(c1

µ) = parent(v) = parent(c2
µ) = sµ

parent(c3
µ) = c2

µ

children(sµ) = {c1
µ, v, c2

µ} in counter-clockwise order
children(c2

µ) = {c3
µ}

end for

Figure 9.5: The augmentation algorithm.

depth-first traversal of G′(µ).

– If the smallest cluster ν containing v is the same cluster or is a
descendant of the smallest cluster containing p(v), then set y(v) =
y(p(v)) − 1; cluster ν is the new current cluster.

– Otherwise (the smallest cluster ν containing v is not the same cluster
or a descendant of the smallest cluster containing p(v)) set y(v)
equal to the minimum y-coordinate of a node in the biggest cluster
containing p(v) and not containing v minus one; cluster ν is the new
current cluster.

• If there is exactly one node in V ′(µ) that is not yet visited, then such
a node is c3

µ; set y(c3
µ) equal to the minimum y-coordinate of a node in

V ′(µ) minus one; set the current cluster to be µ.

• If all nodes in V ′(µ) are already visited, then set the current cluster to
be the parent of µ.

From the drawing of G′, obtained with the above technique, we construct a
strictly upward order-preserving poly-line R-drawing as follows (Fig. 9.10). For

i

i

“main” — 2009/2/23 — 18:41 — page 233 — #243
i

i

i

i

i

i

9.3. R-DRAWINGS AND C-DRAWINGS OF C-CONNECTED C-TREES233

0

0

24 24
11 23

2
23

22
18

18 21

21

2019

19
2

3
3

3

4
5

4 6

6
7

7

2

8

8
9

9

16
16

17
17

10
11

10

10

13
131211

14
15

(a) (b)

Figure 9.6: (a) The underlying tree G′ of the clustered tree C ′ of Fig. 9.4 (f).
(b) The x-coordinates assignment to the vertices of G′.

X-Coordinates Assignment for a C-Connected Clustered Tree

input: The root of an augmented c-connected clustered tree C(G, T)

Initialization
leaf counter = 0
Procedure AssignXCoord(r)
if children(r) = ∅ then

x(r) = leaf counter

leaf counter = leaf counter + 1
else

for all v ∈ children(r) in counter-clockwise order do
AssignXCoord(v)

end for
v = the first child of r

x(r) = x(v)
end if

Figure 9.7: The x-coordinates assignment.

each cluster µ remove vertices sµ, c1
µ, c2

µ, and c3
µ and their incident edges, and

insert a rectangle Rµ:[x(c1
µ), x(c3

µ)] × [y(c3
µ), y(sµ)] (see Fig. 9.11) representing

µ in the final drawing. Draw the edges of G: For each edge (p(v), v) in G,
if y(v) = y(p(v)) − 1 then draw a straight-line segment between p(v) and v,

i

i

“main” — 2009/2/23 — 18:41 — page 234 — #244
i

i

i

i

i

i

234
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Y -Coordinates Assignment for a C-Connected Clustered Tree

input: The root of an augmented c-connected clustered tree C(G, T), the
root of T and 0 (the y-coordinate of the upmost vertex)

output: The y-coordinate of the lower vertex

Initialization
for all µ ∈ T do

minY (µ) = 0
end for
Procedure AssignYCoord(v, µ, yCoord)
if y(v) is not set then

if v = last(µ) then
y(v) = minY (µ) − 1
remove cluster µ

return y(v) − 1
else

y(v) = yCoord

yCoord = y(v) − 1
end if

end if
newY Coord = yCoord

for all ν ∈ clusters(v) ≤ µ do
minY (ν) = min{minY (ν), y(v)}
for all s ∈ children(v) in counter-clockwise order do

if clusters(s) ∩ {ν} 6= ∅ then
newY Coord = AssignYCoord(s, ν, yCoord)

end if
end for
yCoord = newY Coord

end for
return yCoord

Figure 9.8: The y-coordinates assignment.

otherwise (y(v) < y(p(v))−1) draw a polygonal line composed of two segments,
the first between p(v) and point (x(v), y(p(v)) − 1), and the second between
point (x(v), y(p(v)) − 1) and v. Figure 9.12 (b) shows a drawing constructed
by the described algorithm, Figure 9.12 (a) shows the same drawing before the
removal of the dummy vertices. We have:

i

i

“main” — 2009/2/23 — 18:41 — page 235 — #245
i

i

i

i

i

i

9.3. R-DRAWINGS AND C-DRAWINGS OF C-CONNECTED C-TREES235

0

−1

−1
−20

−2
-8

−3−3

−6

−7
−4

−9

−12−15
−15

−9
−10 −10

−16−12−12

−10

−11 −12

−13 −15

−14

−10

−18 −16 −17
−14

−13

−19
−10

−11

-1

-2

−4
−4

−5

−2

−10 −11

−11
−14−15

Figure 9.9: The y-coordinates assignment to the vertices of the underlying tree
G′ of the clustered tree C ′ of Fig. 9.4 (f).

Theorem 9.1 For every n-node c-connected clustered tree C = (G, T) a Θ(n2)
area strictly upward order-preserving poly-line R-drawing can be constructed in
O(n2) time.

Proof: The drawing Γ obtained by applying the previously described algo-
rithm is strictly upward, order-preserving, and poly-line by construction. All
the vertices, bends, and corners of the rectangles representing clusters have
integer coordinates. Further, each cluster µ contains all the vertices and clus-
ters belonging to T (µ). This is because the coordinates of the box R(µ) are
obtained from the coordinates of the dummy vertices sµ and c3

µ: Since such ver-
tices are respectively the first and the last vertex considered in the coordinates’
assignment for the vertices in V ′(µ), then they have respectively the smallest
x- and y-coordinate and the greatest x- and y-coordinate among all real and
dummy vertices in V ′(µ). Hence, the rectangle delimited by such coordinates
contains all the vertices and clusters belonging to T (µ).

The planarity of the drawing of G is proved as follows. Consider any pair
of edges e1 = (u1, v1) and e2 = (u2, v2) such that u1 and u2 are parents of v1

and v2, respectively. Assume, w.l.o.g., that if u1 and u2 are on the same path
from the root to a leaf then u1 is an ancestor of u2. We distinguish three cases:

i

i

“main” — 2009/2/23 — 18:41 — page 236 — #246
i

i

i

i

i

i

236
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Drawing Algorithm for a C-Connected Clustered Tree

input: The root of a c-connected clustered tree C(G, T)

Procedure RDrawing(r)
if r is a dummy vertex then

v = the second child of r

c1 = the first child of r

c2 = the last (the third) child of r

c3 = the only child of c2

draw a horizontal line between (x(c1), y(r)) and (x(c3), y(r))
draw a horizontal line between (x(c1), y(c3)) and (x(c3), y(s3))
draw a vertical line between (x(c1), y(r)) and (x(r), y(c3))
draw a vertical line between (x(c3), y(r)) and (x(c3), y(c3))
parent(v) = parent(r)
remove vertices r, c1, c2, c3

RDrawing(v)
else

draw a vertex in (x(r), y(r))
if parent(r) is not NIL then

p = parent(r)
case polyline drawing:

draw a straight-line between (x(p), y(p)) and (x(r), y(p) + 1)
draw a vertical line between (x(r), y(p) + 1) and (x(r), y(r))

case orthogonal drawing:
draw a horizontal line between (x(p), y(p)) and (x(r), y(p))
draw a vertical line between (x(r), y(p)) and (x(r), y(r))

case straight-line drawing:
draw a straight-line between (x(p), y(p)) and (x(r), y(r))

end if
for all v ∈ children(r) do

RDrawing(v)
end for

end if

Figure 9.10: The R-drawing algorithm.

• If v1 is an ancestor of u2 or coincides with u2, then u1 is an ancestor of
u2 and edges e1 and e2 do not cross by the upwardness of Γ.

• If u1 and u2 coincide, consider the at most two segments sa
1 and sb

1 (resp.
sa
2 and sb

2) representing edge e1 (resp. edge e2) in Γ, where sa
1 connects

i

i

“main” — 2009/2/23 — 18:41 — page 237 — #247
i

i

i

i

i

i

9.3. R-DRAWINGS AND C-DRAWINGS OF C-CONNECTED C-TREES237

Rµ

sµ

cµ
3

rµ

µ
1c 2cµ

Figure 9.11: The rectangle Rµ defined by the four dummy vertices associated
to cluster µ. Dashed lines represent the edges in the augmented cluster tree
C ′.

20

0
0 24 0

20

0 24

(a) (b)

Figure 9.12: (a) The drawing of the clustered tree C of Fig. 9.4 (e) constructed
by the algorithm described in Sect. 9.3 before the removal of the dummy ver-
tices. (b) The drawing of C after the removal.

u1 with (x(v1), y(u1) − 1) and sb
1 connects (x(v1), y(u1) − 1) with v1

(resp. where sa
2 connects u1 = u2 with (x(v2), y(u1)− 1) and sb

2 connects
(x(v2), y(u1) − 1) with v2). Segment sa

1 cannot cross sb
2 and segment sa

2

cannot cross sb
1, since they lie in disjoint y-intervals; segment sa

1 cannot
cross sa

2 since they are incident to the same vertex and have different
slopes; segment sb

1 cannot cross sb
2 since they lie on different vertical

lines.

• If u1 is an ancestor of u2 but v1 is not, then consider the at most two
segments sa

1 and sb
1 representing edge e1 in Γ, where sa

1 connects u1 with
(x(v1), y(u1)− 1) and sb

1 connects (x(v1), y(u1)− 1) with v1. Segment sa
1

i

i

“main” — 2009/2/23 — 18:41 — page 238 — #248
i

i

i

i

i

i

238
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

can not cross e2 since they lie in disjoint y-intervals. Segment sb
1 can not

cross e2 since they lie in disjoint x-intervals.

• If u1 is not ancestor of u2 and if they are not the same node, then they
are not on the same path from the root to a leaf. Consider the lowest
common ancestor lca of u1 and u2. Edges e1 and e2 belong to different
subtrees among the subtrees rooted at the children of lca and hence they
lie in in disjoint x-intervals.

If µ is the parent of ν, we have that R(ν) is contained in R(µ): Namely, all
the vertices belonging to V (ν) have an x-coordinate that is strictly greater than
the x-coordinate of the root sµ of G(µ) and that is strictly lesser than the x-
coordinate of c3

µ (the rightmost vertex of G(µ)). Also, all the vertices belonging
to V (ν) have a y-coordinate that is strictly lesser than the y-coordinate of the
root sµ of G(µ) and that is strictly greater than the y-coordinate of c3

µ (the
bottommost vertex of G(µ)).

Region-region crossings do not occur: Namely, consider two distinct clusters
µ and ν, none of which is an ancestor of the other in T . If the roots r(µ) and
r(ν) of G(µ) and G(ν), respectively, are such that r(µ) is an ancestor of r(ν)
in G or viceversa, then the regions representing µ and ν in Γ lie in disjoint
y-intervals. Otherwise (r(µ) and r(ν) are not on the same path from the root
to a leaf in G), the regions representing µ and ν in Γ lie in disjoint x-intervals.

Concerning edge-region crossings, if the y-interval of an edge e = (u, v) has
intersection with the y-extension of a cluster µ three cases are possible:

• Edge e belongs to G(µ). In this case e is internal to the region R(µ)
representing µ in Γ, since by construction the drawing of e in Γ is con-
tained inside the smallest rectangle R(e) with sides parallel to the axis
that contains both u and v. Clearly R(e) is internal to R(µ).

• Edge e does not belong to G(µ), but it is incident to a vertex of G(µ).
Since R(µ) is a rectangle with sides parallel to the axes, since the second
segment of e, if any, is vertical, then e crosses the border of µ exactly
once.

• If edge e does not belong to G(µ) and is not incident to a vertex of G(µ),
then there exists a node r in G such that G(µ) and e belong to two non
overlapping subtrees of G(r). This implies that e and R(µ) lie in disjoint
x-intervals.

i

i

“main” — 2009/2/23 — 18:41 — page 239 — #249
i

i

i

i

i

i

9.3. R-DRAWINGS AND C-DRAWINGS OF C-CONNECTED C-TREES239

Concerning the area requirement, observe that for every horizontal or verti-
cal line intersecting Γ there is at least one node of G or one side of a rectangle
representing a cluster. Since there are n vertices and O(n) sides, both the
height and the width of Γ are at most linear, so the area upper bound follows.
By Lemma 9.1, quadratic area is necessary in the worst case. Concerning the
running time, it’s easy to see that the algorithm can be implemented to run in
O(n2) time. 2

The above described algorithm can be slightly modified in order to produce
R-drawings within different drawing conventions for the underlying tree.

vk

v

vk-1

v1

v2

v

v1

v2

v

v1

v2

(a) (b) (c)

Figure 9.13: (a) Strictly upward non-order-preserving straight-line R-drawings
of c-connected clustered trees. (b) Strictly upward order-preserving straight-
line R-drawings of c-connected binary clustered trees. (c) Upward orthogonal
order-preserving straight-line R-drawings of c-connected binary clustered trees.

Theorem 9.2 For every n-node c-connected clustered tree C = (G, T) a Θ(n2)
area strictly upward non-order-preserving straight-line R-drawing can be con-
structed in O(n2) time.

Proof: First, counter-clockwise order the children of each node v so that a
child vi of v coming before a child vi+1 of v is such that the smallest cluster
containing both vi and v is an ancestor or is the same cluster of the smallest
cluster containing both vi+1 and v. Second, augment C = (G, T) to a clustered
tree C ′ = (G′, T ′) and assign x- and y-coordinates to the nodes of G′ as in the
previous algorithm. The x- and y-coordinates’ assignment of the algorithm
and the order of the children of each node ensure that x(vi+1) > x(vi) and
y(vi+1) ≥ y(vi), for each pair of consecutive nodes vi and vi+1 of a node v
(see Fig. 9.13 (a)). Hence, after replacing dummy vertices with rectangles
representing clusters, the edges connecting each node to its children can be
drawn as straight-line segments, without introducing crossings. 2

i

i

“main” — 2009/2/23 — 18:41 — page 240 — #250
i

i

i

i

i

i

240
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Theorem 9.3 For every n-node c-connected binary clustered tree C = (G, T)
a Θ(n2) area strictly upward order-preserving straight-line R-drawing can be
constructed in O(n2) time.

Proof: In this case the previously described algorithm loses the invariant
that the root v of a subtree G(v) is the leftmost node in G(v). Hence, the
x-coordinates assignment changes slightly, while the y-coordinates assignment
remains the same. Compute the y-coordinate of each node as in the previous
algorithm. For each non-leaf node v ∈ G, let v1 and v2 be the children of v and
let µ1 (µ2) be the smallest cluster containing both v and v1 (containing both v
and v2). If µ1 is an ancestor of or is the same cluster as µ2, set the x-coordinate
of v to x(v1). Otherwise (if µ2 is an ancestor of µ1), set the x-coordinate of v
to x(v2) (see Fig. 9.13 (b)). It’s easy to see that the edges of G can be drawn
as straight-line segments without introducing crossings. 2

Theorem 9.4 For every n-node c-connected binary clustered tree C = (G, T)
a Θ(n2) area upward orthogonal order-preserving R-drawing can be constructed
in O(n2) time.

Proof: What changes in this case, with respect to the original formulation
of the algorithm, is just the position of the bend on every edge between a
node v and its second child v2, in the counter-clockwise order of the children
of v. Namely, such an edge must be orthogonal, hence it goes horizontally till
reaching x(v2), and then goes down to v2 vertically (see Fig. 9.13 (c)). 2

Contrasting with the above positive results, we prove the following theo-
rem, that also contrasts with the fact that each binary tree has an orthogonal
straight-line drawing [DETT99].

Theorem 9.5 There exists a c-connected c-planar binary clustered tree that
does not admit any orthogonal straight-line R-drawing.

Proof: Consider the clustered tree C = (G, T) defined as follows: G is
a complete rooted binary tree with 31 vertices; all the non-leaf vertices of G
belong to the same cluster α that is the only non-root cluster, and all the leaves
of G do not belong to α. It’s easy to see that C is c-planar. Fig. 9.14 (a) shows
a c-planar drawing of C.

Consider any orthogonal straight-line R-drawing Γ of C. Consider the rect-
angle A representing α in Γ. Let r be the root of G, let u1, . . . , u8 be the 8
vertices that are leaves in G(α), and let v1, . . . , v4 be the corners of A.

i

i

“main” — 2009/2/23 — 18:41 — page 241 — #251
i

i

i

i

i

i

9.4. R-DRAWINGS AND C-DRAWINGS OF NON-C-CONNECTED

C-TREES 241

α r

u1 u2 u8

α
r

Ai Ai

v3 v4

ui

v2v1

r
ui

uj

vk

r
ui

uj

vk

(a) (b) (c) (d)

Figure 9.14: (a) A c-planar drawing of C. (b) Regions Ai and Ai. (c) The
edges connecting ui to its children and the edges connecting uj to its children
cross. (d) Ai is enclosed inside Aj .

The two edges connecting a node ui and its children divide A in two regions
Ai and Ai the first containing r and the second not. Since Γ is a straight-line
orthogonal drawing, then both Ai and Ai contain at least one corner vk (see
Fig. 9.14 (b)). If two regions Ai and Aj , with i 6= j, contain the same corner vk,
then either the edges connecting ui to its children and the edges connecting uj

to its children cross (see Fig. 9.14 (c)), or Ai (Aj) is enclosed inside Aj (resp.
Ai), and so the path connecting r and ui (resp. connecting r and uj) crosses
one of the edges connecting uj and its children (resp. connecting ui and its
children) (see Fig. 9.14 (d)).

Since (i) each region Ai contains at least one corner vk of A, (ii) any two
regions Ai and Aj , with i 6= j, cannot contain the same corner vk, and (iii)
there are four corners vk and eight regions Ai, then Γ cannot be an orthogonal
straight-line R-drawing of C. 2

9.4 R-Drawings and C-Drawings of Non-C-Connected

C-Trees

In this section we consider R-drawings and C-drawings of non-c-connected clus-
tered trees. We have that most of the positive results presented for c-connected
trees are not achievable for non-c-connected trees, that seem to have the same
area requirement of general clustered graphs. We begin by showing that up-
ward drawings of non-c-connected clustered trees are generally not feasible.

Theorem 9.6 There exists a non-c-connected c-planar clustered tree that does
not admit any upward C-drawing.

i

i

“main” — 2009/2/23 — 18:41 — page 242 — #252
i

i

i

i

i

i

242
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Proof: Consider the clustered tree C = (G, T) defined as follows: G has
root b1, that has two children r1 and r2. Node r1 (node r2) has two children
b2 and g1 (b3 and g2). Node b2 (node b3) has a child g3 (resp. g4). Vertices
bi, with i ∈ {1, 2, 3}, belong to cluster β, vertices ri, with i ∈ {1, 2}, belong
to cluster ρ, and vertices gi, with i ∈ {1, 2, 3, 4}, belong to cluster γ. The
inclusion tree T has root α that has three children β, ρ, and γ. It’s easy to see
that C is c-planar. Fig. 9.15 shows two c-planar drawings of C.

r1 r2

b1b2 b3

g1 g3 g2g4

ρ

γ

β

r1 r2b1

b2 b3

g1 g3 g2g4

ρ

γ

β

(a) (b)

Figure 9.15: (a) A non-upward c-planar drawing of C in which each cluster is
represented by a convex region. (b) An upward c-planar drawing of C in which
each cluster is represented by a non-convex region.

Suppose that an upward C-drawing Γ of C exists. Let bx be the one between
b2 and b3 that has minimum y-coordinate. Consider the horizontal strip S
delimited by the horizontal lines through b1 and through bx. Let lb be the
segment connecting b1 and bx and let lr be the segment connecting r1 and r2.
Segment lb divides S in two parts S1 and S2. The upwardness of Γ implies
that y(bx) ≤ y(r1), y(r2) ≤ y(b1). Hence, if r1 and r2 are not both in S1 or
both in S2 segment lb crosses segment lr. However, the convexity of β and ρ
implies that lb and lr belong entirely to the regions representing β and ρ in
Γ, respectively. It follows that vertices r1 and r2 are both on the same of the
parts S1 and S2 of S cut by lb, otherwise β would cross ρ (see Fig. 9.16 (a)).

We claim that either there exists a node ri, with i ∈ {1, 2}, that is enclosed
inside a region R delimited by cluster β and by edges (bj , rk) (see Fig. 9.16
(b)), with j ∈ {1, 2, 3}, k ∈ {1, 2}, and k 6= i, or there exists a node bi, with
i ∈ {2, 3} that is enclosed inside a region R delimited by cluster ρ and by edges
(bj , rk) (see Fig. 9.16 (c)), with j ∈ {1, 2, 3}, k ∈ {1, 2}, and j 6= i.

i

i

“main” — 2009/2/23 — 18:41 — page 243 — #253
i

i

i

i

i

i

9.4. R-DRAWINGS AND C-DRAWINGS OF NON-C-CONNECTED

C-TREES 243

b1

bx

lb

lr

r1

S1

S2

ρ

β

r2

(a) (b) (c)

Figure 9.16: (a) Placing nodes r1 and r2 one in S1 and one in S2 leads to a
region-region crossing. (b) A node ri (i ∈ {1, 2}) enclosed inside the region
delimited by β and by edges (bj , rk) (j ∈ {1, 2, 3} and k = 3 − i). (c) A node
bi (i ∈ {2, 3}) enclosed inside the region delimited by cluster ρ and by edges
(bj , rk) (j ∈ {1, 2, 3}, j 6= i and k ∈ {1, 2})

We consider two cases, depending on the y-coordinates of r1 and r2. If
y(r1) 6= y(r2), let r∗ (resp. r) be the one between r1 and r2 that has greater
(resp. smaller) y-coordinate. Let h∗ be the horizontal line through r∗ and let
p be any intersection point between R(β) and h∗. Otherwise (y(r1) = y(r2)),
let p be any intersection point between R(β) and the line through r1 and r2.
Let r∗ (resp. r) be the one between r1 and r2 that is closer (resp. farther) to
p.

b1

r*
h*

h

p’ p

r

b
ρ

β

b1

r*h*

b*

h

p’p

r
ρ β

b1

r*

b*

h*

h

p’ p

r

ρ

β

(a) (b) (c)

Figure 9.17: (a) Point p′ lies outside β and r∗ is closer than p′ to p. (b) Point
p′ lies inside β or r∗ is farther than p′ to p, and edge (r∗, b∗) has no intersection
with h. (c) Point p′ lies inside β or r∗ is farther than p′ to p, and edge (r∗, b∗)
has intersection with h.

Consider any intersection point p′ between h∗ and edge (b1, r).

• If p′ is outside β and r∗ is closer than p′ to p, then r∗ is closed inside

i

i

“main” — 2009/2/23 — 18:41 — page 244 — #254
i

i

i

i

i

i

244
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

the region R delimited by cluster β, by edge (b1, r), and by edge (r, b)
(Fig. 9.17 (a)).

• If p′ is inside β or if r∗ is farther than p′ to p, then let h be the horizontal
line through r; we distinguish two cases:

– If edge (r∗, b∗) has no intersection with h, then b∗ is closed inside
the region R delimited by cluster ρ, by edge (b1, r

∗), and by edge
(b1, r) (Fig. 9.17 (b)).

– If edge (r∗, b∗) has intersection with h, then r is closed inside the
region R delimited by cluster β, by edge (b1, r

∗), and by edge (r∗, b∗)
(Fig. 9.17 (c)).

Observe that every node bi or rj , with i ∈ {2, 3} and j ∈ {1, 2}, has a child
gk, with k ∈ {1, 2, 3, 4}, belonging to cluster γ. Hence, the child gk of the node
bi or rj that is closed inside region R must lie inside R, as well, since placing gk

outside R would imply an edge crossing or an edge-region crossing. Moreover,
the child g′k of the node bi that has minimum y-coordinate among the vertices
of cluster β lies outside R, with k ∈ {3, 4} and i ∈ {2, 3}. It follows that γ
crosses region R, implying an edge-region crossing or a region-region crossing.

2

Now we show that straight-line drawings of non-c-connected clustered trees
may require exponential area. Let Ck = (Gk , Tk) be the family of non-c-
connected c-planar clustered trees inductively defined as follows.

• Clustered tree C0 (see Fig. 9.18 (a)): Tree G0 has vertices s0 and t0 and
edge (s0, t0). The inclusion tree T0 has a root node with two children σ
and τ . Node σ (node τ) has one child σ0 (resp. τ0), where s0 ∈ V (σ0)
(resp. t0 ∈ V (τ0)).

• Clustered tree C1 (see Fig. 9.18 (b)): Tree G1 is obtained from G0 by
adding vertices s1, t1, s′′0 , and t′′0 and edges (s1, t0), (s1, s

′′
0), (t1, s0) and

(t1, t
′′
0). The inclusion tree T1 is obtained from T0 by adding σ1 to the

children of σ and τ1 to the children of τ , where s′′0 ∈ V (σ0), s1 ∈ V (σ1),
t′′0 ∈ V (τ0), and t1 ∈ V (τ1).

• Clustered tree Ck, with k > 1 (see Fig. 9.18 (c)): Tree Gk is obtained
from Gk−1 by adding vertices sk, tk, s′′k−1, t′′k−1, s′k−2, and t′k−2, and edges
(sk, tk−1), (sk, s′′k−1), (tk, sk−1), (tk, t′′k−1), (sk, t′k−2), and (tk, s′k−2). The
inclusion tree Tk is obtained from Tk−1 by adding σk to the children of

i

i

“main” — 2009/2/23 — 18:41 — page 245 — #255
i

i

i

i

i

i

9.4. R-DRAWINGS AND C-DRAWINGS OF NON-C-CONNECTED

C-TREES 245

s0

t0 τ0

σ0

σ

τ

s0

t0
t0’’

s0’’

t1

s1

τ0

τ1

σ0σ1

σ

τ

(a) (b)

sk sk-1

tk-1 tk-2
tk-2

sk-2

t0
t0’’’’

’

tk-2
’’tk-1

’’sk-1 ’’sk-2

’sk-2
s0

s0

’’

tk
τ0

τk τk-2τk-1

σ0

σk σk-2σk-1

σ

s0’

t0’

τ

(c)

Figure 9.18: Inductive construction of the clustered tree Ck. (a) C0. (b) C1.
(c) Ck.

σ and τk to the children of τ , where s′k−2 ∈ V (σk−2), s′′k−1 ∈ V (σk−1),
sk ∈ V (σk), t′k−2 ∈ V (τk−2), t′′k−1 ∈ V (τk−1), and tk ∈ V (τk).

It is easy to see (Fig. 9.19 (a)) that Ck is c-planar. Also, G(σ), G(τ),
G(σi), and G(τi), with i = 0, . . . , k − 1, are not connected. For simplifying the
notation, in the following we assume k is odd.

We have the following lemma (see Fig. 9.19 (b)):

i

i

“main” — 2009/2/23 — 18:41 — page 246 — #256
i

i

i

i

i

i

246
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

(a) (b)

Figure 9.19: (a) A c-planar drawing of C5. (b) A c-planar drawing of C5

augmented as in Lemma 9.2.

Lemma 9.2 In any c-planar drawing of Ck polygonal lines l(s0, s1) connecting
s0 to s1, l(t0, t1) connecting t0 to t1 and, for i = 2, . . . , k, l(si−1, si) connecting
si−1 to si, l(ti−1, ti) connecting ti−1 to ti, l(ti−2, si) connecting ti−2 to si,
and l(si−2, ti) connecting si−2 to ti can be drawn such that they do not cross
between themselves, do not cross any edge of Gk, and: (1) l(s0, s1) crosses only
the border of clusters σ0 and σ1; (2) l(t0, t1) crosses only the border of clusters
τ0 and τ1; (3) l(si−1, si) crosses only the border of clusters σi−1 and σi; (4)
l(ti−1, ti) crosses only the border of clusters τi−1 and τi; (5) l(ti−2, si) crosses
only the border of clusters τi−2, τ , σi, and σ; and (6) l(si−2, ti) crosses only
the border of clusters σi−2, σ, τi, and τ .

Proof: We only show how to draw line l(si−1, si); the other lines are drawn
analogously. Consider any c-planar drawing Γk of Ck. Polygonal line l(si−1, si)
is composed of two parts: the first part is a segment between si and a point
pi arbitrarily close to s′′i−1; such a segment can be drawn arbitrarily close to
segment (si, s

′′
i−1), so that it does not intersect any edge of Gk. Moreover, since

(si, s
′′
i−1) crosses only the borders of clusters σi−1 and σi, then (si, pi) crosses

only the borders of clusters σi−1 and σi, as well. The second part of l(si−1, si)
is a polygonal line between pi and si−1. Such points lie both inside the region
representing σi−1 in Γk. Since such a region contains only vertices si−1, s′i−1,
and s′′i−1 that are not adjacent and contains entirely at most one polygonal

i

i

“main” — 2009/2/23 — 18:41 — page 247 — #257
i

i

i

i

i

i

9.4. R-DRAWINGS AND C-DRAWINGS OF NON-C-CONNECTED

C-TREES 247

c0
t0s0 s2i−2s2t2

t3

t2i−1

s3

t1

s1

s2i−1

s2i t2i

s2i+1

t2i+1

c2i−2
c2

c2i

t2i−2 t0s0t2i−2 s2i−2s2t2

t3

t2i−1

s3

t1

s1

s2i−1

s2i t2i

s2i+1

t2i+1

(a) (b)

Figure 9.20: Graph G′
k . (a) Cycles c2i and (b) their interconnections. Thick

edges and thin edges distinguish among those edges that are common to Gk

and G′
k and those edges that are not common to Gk and G′

k, respectively.

line between a point arbitrarily close to s′i−1 and si−1 (such a line is part of
l(si−1, ti+1)), then we can connect pi and si−1 with a polygonal line without
creating crossings. 2

Consider any straight-line C-drawing of clustered tree Ck . Augment it by
the polygonal lines of Lemma 9.2. Now remove the vertices of Gk with apex
“prime” or “double prime” and their incident edges. The resulting clustered
graph C ′

k = (G′
k , T ′

k) is exactly the one defined in [FCE95a] to prove an expo-
nential area lower bound for straight-line C-drawings of clustered graphs.

More formally, graph G′
k is defined as follows (see Fig. 9.20). For i =

0, 1, . . . , k−1
2 , let c2i be the simple cycle composed of edges (s2i, s2i+1), (t2i, t2i+1),

(s2i, t2i+1), and (s2i+1, t2i). For i = 0, 1, . . . , k−3
2 , cycle c2i is connected to c2i+2

by edges (s2i, t2i+2), (t2i, s2i+2), (s2i+1, t2i+2), (t2i+1, s2i+2), (s2i+1, s2i+2), (t2i+1, t2i+2),
(s2i+1, t2i+3), and (t2i+1, s2i+3). The graph resulting from the connection of
all the c2i is G′

k. The inclusion tree T ′
k is the subtree of Tk restricted to the

vertices of G′
k.

In order to study the c-planar drawings of Ck, we study the ones of C ′
k.

Notice that Lemma 9.2 does not directly extend the exponential area lower
bound from the straight-line C-drawings of C ′

k to the ones of Ck , since, even if
by Lemma 9.2 we can obtain a C-drawing of C ′

k by augmenting any straight-
line C-drawing of Ck, the edges necessary for such an augmentation (i.e., the
polygonal lines of Lemma 9.2) are not forced to be drawn as straight lines.

Observe that, by the c-planarity of Ck and by Lemma 9.2, clustered tree
C ′

k is c-planar. Also, it is easy to see that G′
k is triconnected.

i

i

“main” — 2009/2/23 — 18:41 — page 248 — #258
i

i

i

i

i

i

248
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Since G′
k is triconnected, all the plane embeddings of G′

k differ only for
the external face. Consider any face f of G′

k as external. Three cases are
possible: (i) f coincides with c0; (ii) f coincides with ck−1; (iii) otherwise,
let c2h and c2h+2 be the cycles that contain the vertices of f . Selecting f as
external face induces a nesting of the cycles c2i of G′

k. In case (i) c2i+2 is
contained into c2i, for i = 0, 1, . . . , k−1

2 . In case (ii) c2i is contained into c2i+2,

for i = 0, 1, . . . , k−1
2 . In case (iii) c2i is contained into c2i+2, for i = 0, 1, . . . , h,

and c2i+2 is contained into c2i, for i = h + 1, h + 2, . . . , k−1
2 . In all three cases

there is a nesting composed of at least d(k−1)/4e cycles. The area lower bound
for C ′

k will be obtained by considering the area requirement of such a nesting.
The following lemma is a generalization of Theorem 4 in [FCE95a]. In that

paper the drawings of C ′
k are studied where all the edges are straight-lines,

while in the following lemma only the edges of G′
k that are also edges of Gk

are required to be straight.

Lemma 9.3 Any c-planar drawing of C ′
k such that the edges of Gk are straight-

line segments and the clusters are represented by convex polygons requires Ω(bn)
area, with b > 1.

Proof: Consider any c-planar drawing Γ′ of C ′
k, in which the edges of Gk

are straight-line segments and the clusters are represented by convex polygons.
As already discussed, in Γ′ there is a nesting of at least d(k − 1)/4e cycles.
Rename the vertices of G′

k (and of Gk) according to such a nesting. Namely,
call c0 the most nested cycle, and s0, t0, s1, and t1 its vertices. Call c2 the
cycle surrounding c0, and s2, t2, s3, and t3 its vertices, etc. The outermost
cycle is denoted by c2d. Observe that d = Ω(k) = Ω(n).

Let Γ′
2i denote the part of Γ′ embedded inside c2i, including such a cy-

cle. Notice that, among the edges (s2i, s2i+1), (t2i, t2i+1), (s2i, t2i+1), and
(t2i, s2i+1) composing cycle c2i, only edges (s2i, t2i+1) and (t2i, s2i+1) are nec-
essarily straight-lines in Γ′. Because of the convexity of the regions R(σ) and
R(τ) representing σ and τ , respectively, there exists a line l in Γ′ separating
R(σ) and R(τ). Suppose w.l.o.g. that l is horizontal and that R(σ) is above
R(τ). Denote by H+ and by H− the half-planes above and below l, respec-
tively. We argue that the area of Γ′

2i+2 is at least twice the one of Γ′
2i, for

0 ≤ i ≤ d − 1. The thesis follows from this argument.
First, we show that y(sj) < y(sj+1), 0 ≤ j ≤ 2d− 2. Suppose, for a contra-

diction, that y(sj) ≥ y(sj+1) (Fig. 9.21 (a)). We claim that sj is outside the
region Rj delimited by edges (sj+1, tj), (sj+1, tj+2), (tj+1, tj) and (tj+1, tj+2).
Namely, sj lies in H+, hence if Rj contains sj in its interior, then the inter-

i

i

“main” — 2009/2/23 — 18:41 — page 249 — #259
i

i

i

i

i

i

9.4. R-DRAWINGS AND C-DRAWINGS OF NON-C-CONNECTED

C-TREES 249

l

sj+1
sj

tj+1

tj

tj+2

l

s2i+1

s2i

t2i+1

t2i

lB

lA

(A) (B) (C)

(a) (b)

Figure 9.21: Illustrations for the proof of Lemma 9.3. (a) y(s2i) ≥ y(s2i+1).
The grey region (both the dark and the light grey) is Rj . The dark grey region
is Ij . (b) Possible placements for vertex t2i+2. Region (A), Region (B), and
Region (C) have different shades of grey.

section Ij between Rj and H+ (dark grey in Fig. 9.21 (a)) contains sj in its
interior, as well. However, since edges (sj+1, tj) and (sj+1, tj+2) are straight-
lines and since edges (tj+1, tj) and (tj+1, tj+2) cannot intersect l because of
the supposed c-planarity of Γ′, Ij is a triangle whose uppermost vertex is sj+1.
Since y(sj) ≥ y(sj+1), Ij cannot contain sj in its interior and Rj cannot contain
sj in its interior, as well. Two cases are possible: j is even or j is odd (recall
that cycles ci’s have an even index). Suppose j is even. Since sj is outside Rj ,
cycle cj+2 cannot be external to cycle cj , contradicting the assumption that
cycle cj+2 is drawn externally with respect to cycle cj . Suppose j is odd. Since
sj is outside Rj , cycle cj+1 cannot be external to cycle cj−1, contradicting the
assumption that cycle cj+1 is drawn externally with respect to cycle cj−1.

An analogous proof shows that y(tj) > y(tj+1), for 0 ≤ j ≤ 2d − 2.
Consider the placement of vertex t2i+2 in Γ′. Let lA be the line through t2i

and s2i+1 and let lB be the line through s2i and s2i+1. By the above discussion,
y(t2i+2) < y(t2i+1) holds. Hence, vertex t2i+2 can only lie in one of the regions
(A), (B), and (C) defined below and outside the polygon delimited by cycle c2i

(composed by edges (s2i, t2i+1), (s2i, s2i+1), (t2i, t2i+1), and (t2i, s2i+1)). (See
Fig. 9.21 (b)). Region (A), that is the intersection region between the half-plane
delimited by lA and not including s2i, and the half-plane y < y(t2i+1). Region
(B), that is the intersection region between the half-plane delimited by lA and
including s2i, the half-plane delimited by lB and including t2i, and the half-
plane y < y(t2i+1). Region (C), that is the intersection region between the half-
plane delimited by lB and not including t2i, and the half-plane y < y(t2i+1).

i

i

“main” — 2009/2/23 — 18:41 — page 250 — #260
i

i

i

i

i

i

250
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

If vertex t2i+2 is placed inside Region (A), then vertex t2i is enclosed in-
side the cycle C composed of edges (s2i+1, s2i), (s2i, t2i+1), (t2i+1, t2i+2), and
(t2i+2, s2i+1) (see Fig. 9.22 (a)). Since vertex s2i+2 has to be connected to
vertex t2i, then, by the supposed planarity of Γ′, s2i+2 is enclosed inside C,
as well. However, this contradicts the assumption that cycle c2i+2 is external
with respect to cycle c2i.

If vertex t2i+2 is placed inside Region (B) then Γ′ has a crossing. Namely,
edge (s2i+1, t2i+2) is a straight-line segment in Γ′. Hence, if vertex t2i+2 is
placed inside Region (B) edge (s2i+1, t2i+2) crosses either edge (t2i+1, t2i) or
edge (s2i, t2i+1). In fact such edges separate vertex s2i+1 from Region (B) (see
Fig. 9.22 (b)).

Hence, we have that Region (C) is the only possible placement of t2i+2. This
geometric constraint on the placement of t2i+2 is exactly the same that was
exploited in [DTT92] to prove an exponential area lower bound for straight-line
upward drawings of planar directed graphs.

Let Θ1 be the angle formed by line lB and by the x-axis and let Θ2 be the
angle formed by the line through t2i and t2i+1 and by the x-axis. In [DTT92]
it is shown that (suppose that Θ1 ≥ Θ2 and see Fig. 9.22 (c)): (i) the parallel-
ogram P ∗ delimited by the horizontal lines through s2i+1 and t2i+1, by lB and
by the line through t2i+1 parallel to lB has area at least twice the area of the
cycle composed of edges (t2i, s2i+1), (s2i+1, t2i+1), (t2i+1, s2i), and (s2i, t2i); (ii)
the triangle T ∗ delimited by the horizontal line through s2i+1, by lB and by the
line through t2i+1 parallel to edge (t2i+2, s2i+3) contains P ; (iii) the drawing
of the cycle composed of edges (t2i+2, s2i+3), (s2i+3, s2i+2), (s2i+2, t2i+3), and
(t2i+3, t2i+2) contains T ∗. Properties symmetric to properties (i), (ii), and (iii)
hold if Θ1 < Θ2.

Such arguments straightforwardly apply here (by suitably replacing the area
of the drawing with the convex-hull area of the vertices) and this concludes the
proof. 2

Lemma 9.4 If there exists a straight-line C-drawing of Ck with area A, then
there exists a c-planar drawing of C ′

k such that the edges of Gk are straight-line
segments, the clusters are represented by convex polygons, and the area is less
or equal than A.

Proof: Consider any C-drawing of Ck with area A. It can be augmented
without increasing the area by inserting the polygonal lines of Lemma 9.2, still
remaining c-planar. At this point the vertices that do not belong to G′

k and

i

i

“main” — 2009/2/23 — 18:41 — page 251 — #261
i

i

i

i

i

i

9.4. R-DRAWINGS AND C-DRAWINGS OF NON-C-CONNECTED

C-TREES 251

l

s2i+1

s2i

t2i+1

t2i

lB

lA

t2i+2

l

s2i+1

s2i

t2i+1

t2i+2

t2i

lB

lA

(a) (b)

l
s2i+1

s2i+2
s2i+3

Θ1

s2i

t2i+1

t2i+2

t2i

lB

Θ2

(c)

Figure 9.22: (a) If vertex t2i+2 is placed inside Region (A), then the embedding
of G′

k changes. (b) If vertex t2i+2 is placed inside Region (B), then Γ′ has a
crossing. (c) Placement of vertex t2i+2 inside Region (C). Parallelogram P ∗

is composed of the regions colored by light shades of grey. Triangle T ∗ is
composed of all regions colored by grey.

their incident edges can be removed obtaining a c-planar drawing of C ′
k with

area less or equal than A. 2

From the above lemmas we have:

Theorem 9.7 There exists an n-vertex non-c-connected c-planar clustered tree

i

i

“main” — 2009/2/23 — 18:41 — page 252 — #262
i

i

i

i

i

i

252
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

requiring Ω(bn) area in any straight-line C-drawing, with b > 1.

The above lower bound is matched by an exponential upper bound. Namely,
one can augment the non-c-connected c-planar clustered tree in a c-connected
c-planar clustered graph, that admits an exponential area C-drawing, by the
results in [EFLN06]. If we relax the straight-line constraints, then better results
can be obtained:

Theorem 9.8 There exists an algorithm that computes an order-preserving
2-bends poly-line R-drawing requiring Θ(n2) area of every non-c-connected c-
planar clustered tree.

Proof: The proof is strongly based on the results of Eades, Feng, and Nag-
amochi in [EFN99]. Namely, in [EFN99] an algorithm is shown for computing
an orthogonal c-planar drawing of a clustered graph C = (G, T) such that G
has maximum degree 4. As a first step, such an algorithm computes an O(n2)
area c-planar drawing of C where the drawing of G is a visibility representation
and where each cluster is drawn as a rectangle having sides parallel to the axes
and having corners with integer coordinates. As noticed in [EFN99], a visibil-
ity representation with the above described features can be constructed for a
clustered graph whichever is the maximum degree of its underlying graph.

We use such results as follows: (i) according to Theorem 2 of [FCE95b],
augment the input clustered tree C = (G, T) to a c-connected c-planar clustered
graph C ′ = (G′, T) with the same number of vertices and with some extra
dummy edges; (ii) compute a visibility representation Γ′ of C ′ by using the
algorithm in [EFN99]; (iii) turn Γ′ into a poly-line drawing of C ′, using the
techniques presented by Di Battista and Tamassia in [DT88] and sketched in
Sect. 2.3; (iv) remove the dummy edges from Γ′, obtaining an R-drawing Γ of
the clustered tree C.

It is easy to observe that turning a visibility drawing into a poly-line drawing
preserves the c-planarity of the drawing. Moreover, the area of Γ is quadratic
and, by Lemma 9.1, such a bound is optimal. Notice that at most two bends
per edge are introduced by the algorithm.

Concerning the running time of the described algorithm, it has been ob-
served in [EFN99] that, supposing the c-connected clustered graph C ′ to be
given, then a c-planar visibility representation Γ′ of C ′ can be computed in
linear time. Further, it’s easy to see that turning the visibility representa-
tion into a poly-line drawing can be performed in linear time, as well. Hence
the total running time is linear if C ′ is given. If not, then the running time

i

i

“main” — 2009/2/23 — 18:41 — page 253 — #263
i

i

i

i

i

i

9.5. NC-DRAWINGS OF C-CONNECTED AND NON-C-CONNECTED

C-TREES 253

can not be assumed neither polynomial, since the complexity of providing a
c-connected c-planar clustered graph containing a non-c-connected clustered
tree as a subgraph is unknown, as far as we know (see also Chapter 10). 2

9.5 NC-Drawings of C-Connected and

Non-C-Connected C-Trees

In this section we consider c-planar drawings of clustered trees, assuming that
each cluster is drawn as a simple, potentially non-convex, lattice polygon. We
show that polynomial area is sufficient for strictly upward order-preserving
straight-line NC-drawings of c-connected clustered trees. Notice that in the
same drawing convention whether R- and C-drawings require polynomial or
exponential area is open.

We show an inductive algorithm to construct a strictly upward order-
preserving straight-line NC-drawing of a c-connected clustered tree C = (G, T).
Let r be the root of G and let G(r1), G(r2), . . ., G(rk) be the subtrees of G
rooted at the children r1, r2, . . ., rk of r, respectively. Suppose that, for
each Ci = (G(ri), Ti), where 1 ≤ i ≤ k and where Ti is the subtree of T in-
duced by the clusters containing at least one vertex of G(ri), a strictly upward
NC-drawing Γi can be constructed. Suppose also that each cluster µ of Ti is
represented in Γi by a polygonal line composed by four parts (see Fig. 9.23):
A horizontal segment T (µ) delimiting the top side of the cluster and lying on
the line y = yT (µ), two vertical segments L(µ) and R(µ) delimiting the left
and right sides of the cluster and lying on the lines x = xL(µ) and x = xR(µ),
respectively, and one polygonal line B(µ) monotonically increasing in the x-
direction delimiting the bottom side of the cluster.

y=yT(µ)

x=xL(µ) x=xR(µ)

µ

Figure 9.23: Shape of a cluster in the algorithm to construct strictly upward
order-preserving straight-line NC-drawings of c-connected clustered trees.

i

i

“main” — 2009/2/23 — 18:41 — page 254 — #264
i

i

i

i

i

i

254
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

The above induction hypothesis is easily verified in the base case. Namely,
if G(r) has only one vertex v, draw it on a grid point. The clusters containing
v are drawn as squares enclosing each other.

Now, suppose that G(r) has more than one node. Inductively assume
to have an NC-drawing Γi of each Ci. For each i such that 1 ≤ i ≤ k,
consider the set Vi of vertices of G(ri) and the set Si of clusters belong-
ing to Ti that do not contain r. Let xL(Γi) = minv∈Vi,µ∈Si{x(v), xL(µ)},
xR(Γi) = maxv∈Vi,µ∈Si{x(v), xR(µ)}, and yT (Γi) = maxµ∈Si{y(ri), yT (µ)}.
For each i such that 1 ≤ i ≤ k, remove the part of Γi (observe that it does not
contain vertices of G) that is inside one of the three half-planes x < xL(Γi),
x > xR(Γi), and y > yT (Γi). This gives us partial drawings Γ′

i of all the Ci’s,
where the notations xL(Γ), xR(Γ), and yT (Γ) are extended to xL(Γ′), xR(Γ′),
and yT (Γ′), respectively, in the obvious way.

Place the Γ′
i’s one beside the other, with xL(Γ′

i+1) = xR(Γ′
i) + 1, and so

that all the ri’s lie on the same horizontal line h. Place r 2n2 units above
and on the same vertical line of r1. Draw straight-line edges between r and its
children. Consider the clusters µ1, µ2, . . . , µl containing r ordered so that µj

is a sub-cluster of µj+1, for 1 ≤ j < l. In the following we show how to draw
each cluster µj :

• Draw T (µj) as a horizontal segment between points (xL(Γ′
1)−j, y(r)+j)

and (xR(Γ′
k) + j, y(r) + j).

• Draw L(µj) as a vertical segment between points (xL(Γ′
1) − j, y(r) + j)

and (xL(Γ′
1) − j, yT (Γ′

1) + l − j + 1).

• Draw R(µj) as a vertical segment between endpoints (xR(Γ′
k)+j, y(r)+j)

and (xR(Γ′
k) + j, yT (Γ′

k) + l − j + 1).

• We show how to draw B(µj). For each Γ′
i and each µj such that Ti does

not contain µj , with 1 ≤ i ≤ k and 1 ≤ j ≤ l, draw a horizontal segment
between points (xL(Γ′

i), yT (Γ′
i)+ l−j+1) and (xR(Γ′

i), yT (Γ′
i)+ l−j+1).

Notice that now for each Γ′
i and each µj the part of B(µj) between

x-coordinates xL(Γ′
i) and xR(Γ′

i) has been drawn. We call that part
B(Γ′

i, µj). For each pair (Γ′
i, Γ

′
i+1) and each µj , with 1 ≤ i < k and

1 ≤ j ≤ l, connect B(Γ′
i, µj) and B(Γ′

i+1, µj) by a segment between
the rightmost point of B(Γ′

i, µj) and the leftmost point of B(Γ′
i+1, µj).

Polygonal line B(µj) is completed by a segment connecting (xL(Γ′
1) −

j, yT (Γ′
1) + l − j + 1) and the leftmost point of B(Γ′

1, µj) and a segment

i

i

“main” — 2009/2/23 — 18:41 — page 255 — #265
i

i

i

i

i

i

9.5. NC-DRAWINGS OF C-CONNECTED AND NON-C-CONNECTED

C-TREES 255

connecting (xR(Γ′
k) + j, yT (Γ′

k) + l − j + 1) and the rightmost point of
B(Γ′

k, µj).

An example of application of the algorithm is shown in Fig. 9.24. We obtain
the following:

1

5 98

76

43

2

(a)

3
4

5 6
8

9

(b) (c) (d) (e) (f) (g)

3

2

4 5 8

7

9
3

2

1

4 5

6

8

7

9

(h) (i) (j)

Figure 9.24: (a) An ordered c-connected clustered tree C = (G, T). (b)–(j) Ap-
plication of the algorithm for constructing a strictly-upward order-preserving
straight-line NC-drawing of C.

Theorem 9.9 For every c-connected clustered tree there exists a strictly up-
ward order-preserving straight-line NC-drawing in O(n4) area.

i

i

“main” — 2009/2/23 — 18:41 — page 256 — #266
i

i

i

i

i

i

256
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Proof: Let C = (G, T) be a c-connected clustered tree. Apply the algo-
rithm described in this section with C as an input. It’s easy to see that the
obtained drawing Γ is strictly upward, order-preserving, planar and straight-
line. An easy inductive argument can be used to prove the c-planarity of Γ. In
particular, the absence of edge-region crossings is guaranteed by the high value
of the slopes of the edges of G.

Concerning the area bound, it’s easy to see that the height of the drawing
increases by O(n2) at each inductive step; since there are O(n) steps the height
of the drawing is O(n3). Concerning the width, the observation that for each
vertical line there is either a vertex or one of the two lateral sides enclosing a
cluster leads to a O(n) width. 2

We conclude the section with the following theorem.

Theorem 9.10 For every c-connected binary clustered tree C = (G, T) there
exists a straight-line orthogonal upward NC-drawing with O(n3 log n) area.

1
5

10
9 12

13

118

7

643

2

1 3

4

13
6 7 8

9

10 11
12

5

2

(a) (b) (c) (d)

Figure 9.25: (a) A c-connected binary clustered tree C = (G, T). Notice that
h(T) = 4. (b) An hv-drawing Γ of G [CBP92] with O(n) height and O(log n)
width. (c) Augmenting the grid of Γ. Notice that 2(h(T) − 1) = 6. (d) The
NC-drawing of C constructed on Γ.

Proof: Let C = (G, T) be a c-connected binary clustered tree (see Fig. 9.25
(a)). Construct an hv-drawing Γ of G with O(n) height and O(log n) width,
by the algorithm in [CBP92] (see Fig 9.25 (b)). Augment the grid by inserting,
for each column of Γ (for each row of Γ), 2(h(T) − 1) vertical grid lines (resp.

i

i

“main” — 2009/2/23 — 18:41 — page 257 — #267
i

i

i

i

i

i

9.6. CONCLUSIONS AND OPEN PROBLEMS 257

2(h(T) − 1) horizontal grid lines), where h(T) is the number of edges in the
longest path from the root to a leaf in T (see Fig 9.25 (c)). Such lines are
used to draw each cluster µ as an orthogonal non-convex polygon P (µ). This
can be easily done by proceeding bottom-up on the inclusion tree; each cluster
surrounds the already drawn clusters and the part of the tree that it contains
(see Fig 9.25 (d)). 2

9.6 Conclusions and Open Problems

In this chapter we dealt with the problem of obtaining minimum area c-planar
drawings of clustered graphs whose underlying graph is required to be a tree.

Tables 9.1 and 9.2 summarize area bounds proved for the different drawing
standards considered. Tables 9.1 and 9.2 are also a reference point for classify-
ing open problems. They correspond to question marks, to cells where upper
and lower bound do not match, and to cells where a drawing is in general not
feasible. Such latter cells open the problem of recognizing the clustered trees
that have a feasible drawing. We would like to explicitly mention two of such
open problems that seem especially interesting.

We have shown that polynomial area is sufficient for obtaining c-planar
drawings in most of the drawing’s styles, contrasting with the result presented
in [EFLN06, Fen97], where it is shown that c-planar straight-line drawings of
c-connected clustered graphs generally require exponential area. However, the
following problem remains open:

Open Problem 9.1 Which are the asymptotic bounds for the area require-
ments of (strictly-upward) order-preserving straight-line drawings of c-connected
clustered trees?

We notice that an O(n2) area upper bound for such a problem would imply
most of our positive results on c-connected trees.

Concerning non-c-connected clustered trees, we have shown that straight-
line drawings could require as much area as that required by clustered graphs,
hence nothing is earned by requiring the underlying graph to be a tree. Even
if the mentioned lower bound is matched by an upper bound in the case of C-
drawings, whether straight-line R-drawings of non-c-connected clustered trees
always exist is still an open question. Such a problem is, as far as we know,
open also for c-connected clustered graphs.

i

i

“main” — 2009/2/23 — 18:41 — page 258 — #268
i

i

i

i

i

i

258
CHAPTER 9. STRAIGHT-LINE, POLY-LINE, ORTHOGONAL, AND

UPWARD DRAWINGS OF CLUSTERED TREES

Open Problem 9.2 Does every non-c-connected clustered tree (every c-connected
clustered graph) admit a straight-line R-drawing?

i

i

“main” — 2009/2/23 — 18:41 — page 259 — #269
i

i

i

i

i

i

Chapter 10

C-Planarity of Embedded Flat

Clustered Graphs with Small

Faces

In this chapter1 we consider the problem of efficiently testing the c-planarity of
clustered graphs, probably the most studied topic in the Graph Drawing com-
munity during the last ten years. We consider embedded clustered graphs, that
is, clustered graphs for which the planar embedding of the underlying graph
is fixed, and we give a first contribution towards designing a polynomial-time
testing algorithm for such graphs. Namely, we characterize c-planar embedded
flat clustered graphs with at most five vertices per face and give an efficient
testing algorithm for such graphs. The results are based on a more general
methodology that sheds new light on the c-planarity testing problem.

10.1 Introduction

Determining the computational complexity of the c-planarity testing for clus-
tered graphs is one of the main Graph Drawing challenges. The problem takes
as an input a clustered graph C = (G, T) and asks whether C is c-planar or not.
Despite all the research efforts spent, only for restricted families of clustered
graphs polynomial-time testing algorithms have been found, and the general
problem is still open.

1The contents of this chapter are a joint work with Giuseppe Di Battista, appeared
in [BF07] and submitted to journal.

259

i

i

“main” — 2009/2/23 — 18:41 — page 260 — #270
i

i

i

i

i

i

260
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

A brief survey on the problem of testing the c-planarity of clustered graphs
can be found in [CB05]. The classes of clustered graphs for which the problem
is known to be polynomial-time solvable are the following:

• c-connected clustered graphs, in which each cluster induces a connected
subgraph of the underlying graph; the first polynomial-time testing algo-
rithm for this class has been presented in [FCE95b]; a linear-time testing
algorithm has been proposed in [Dah98]; a characterization and a conse-
quent linear-time testing algorithm have been shown in [CBF+08].

• completely connected clustered graphs, that are c-connected clustered graphs
such that the complement of the subgraph induced by each cluster is con-
nected; an elegant characterization for this class is shown in [CW06].

• almost connected clustered graphs, in which either all the nodes corre-
sponding to non-connected clusters are on the same path in the cluster
hierarchy, or for each non-connected cluster its parent and all its siblings
are connected [GJL+02].

• extrovert clustered graphs, a generalization of c-connected clustered graphs
with special restrictions on the cluster hierarchy [GLS05].

• cycles of clusters, in which the hierarchy is flat, the underlying graph is
a simple cycle, and the clusters are arranged in a cycle [CDPP05a].

• clustered cycles, that are clustered graphs in which the hierarchy is flat,
the underlying graph is a simple cycle, and the clusters are arranged into
an embedded plane graph [CDPP05b].

• k-rib Eulerian graphs, that are clustered graphs in which the underlying
graph is Eulerian, and the graph can be obtained from a 3-connected
graph on k vertices, for some constant k, by multiplying and subdividing
some edges [JKK+07].

• clustered graphs with four outgoing edges, that are clustered graphs in
which every cluster has at most four edges that have one end-vertex
inside the cluster and the other end-vertex outside the cluster [SJTV08].

• embedded clustered graphs with two components for each cluster, that are
clustered graphs in which every cluster induces at most two connected
components [JJKL08].

i

i

“main” — 2009/2/23 — 18:41 — page 261 — #271
i

i

i

i

i

i

10.1. INTRODUCTION 261

Let C be a clustered graph. Suppose that C is embedded, that is, the com-
binatorial embedding of the underlying graph of C is fixed (then an embedded
clustered graph is c-planar if it admits a c-planar drawing in which the embed-
ding of G is preserved). Is testing the c-planarity of C easier than in the variable
embedding setting? This question is motivated by the existence of many Graph
Drawing problems on planar graphs that are in general NP-hard and that be-
come polynomial-time solvable if the embedding is fixed. Testing if a graph
admits an orthogonal planar drawing with at most k bends [Tam87, GT01] or
if a graph admits an upward planar drawing [BDLM94, GT01] are examples of
such problems.

In this chapter we give a first contribution towards answering the above
question. Namely, we characterize c-planar embedded flat clustered graphs
with at most five vertices per face and give an efficient testing algorithm for
such graphs. A flat clustered graph (G, T) is such that in any path from the root
to a leaf of T there are at most three nodes (the clustered graph in Fig. 10.1 is
flat). Hence, in a flat clustered graph the only non-trivial clusters are all and
only the children of the root. Hence, when referring to a flat clustered graph,
we call clusters only the children of the root. Also, given a vertex v of the
underlying graph we say that the cluster of v is its parent in T .

(a) (b)

Figure 10.1: (a) A flat clustered graph C(G, T). (b) The inclusion tree T of C
has height three.

Our approach is to look for an augmentation that adds to the embed-
ded underlying graph extra edges such that the resulting clustered graph is
c-connected and c-planar. We call candidate saturating edges those edges that
are potential candidates for the augmentation. Two of such edges have a con-
flict if using both of them in the augmentation causes a crossing. We present
a characterization for single-conflict embedded flat clustered graphs, that are

i

i

“main” — 2009/2/23 — 18:41 — page 262 — #272
i

i

i

i

i

i

262
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

embedded flat clustered graphs such that each candidate saturating edge has
a conflict with at most one other candidate saturating edge. The characteri-
zation and the algorithm for embedded flat clustered graphs with at most five
vertices per face are a consequence of such a more general result.

We remark that in the following we deal both with biconnected and with
simply connected embedded planar graphs. In the former case, the “number
of vertices in a face” is trivially defined as the number of vertices incident to
the face, while in the latter case is meant to be the number of occurrences of
vertices on the border of the face.

A slightly weaker result, namely a quadratic time algorithm for c-planarity
on 3-connected graphs with faces of size at most four, was independently dis-
covered by Jelinkova et al. in [JKK+07].

The rest of the chapter is organized as follows. In Sect. 10.2 we introduce
notions about augmentations and saturations of clustered graphs; in Sect. 10.3
we characterize c-planar single-conflict embedded flat clustered graphs and c-
planar embedded flat clustered graphs with at most five vertices per face; in
Sect. 10.4 we present a linear time and space c-planarity testing algorithm;
finally, in Sect. 10.5 we conclude and present some open problems.

We remark that the contents of this chapter (characterizations of the c-
planar clustered graphs and algorithms for testing the c-planarity of clustered
graphs) are not in the mainstream of this thesis (that is about the construction
of geometric representations of graphs with small area). However, we still de-
cided to present the results of this chapter in the thesis for two main reasons:
(1) the c-planarity testing has a strong relation with the topics of Chapter 9,
namely any algorithm for constructing c-planar drawings of clustered graphs
should first verify the c-planarity of the input graph; (2) the problem of testing
the c-planarity of clustered graphs is beautiful and it is probably the problem
that is attracting the greatest research efforts in the Graph Drawing commu-
nity.

10.2 Augmentations and Saturations

In this section we study augmentations and saturations of non-c-connected
clustered graphs.

Consider an embedded flat clustered graph C(G, T). For each face f of G a
set of candidate saturating edges is defined as follows: Let O be the clockwise
circular order of the vertices on the border of f . Subdivide such vertices into
subsets such that each subset Vi contains a maximal sequence of consecutive

i

i

“main” — 2009/2/23 — 18:41 — page 263 — #273
i

i

i

i

i

i

10.2. AUGMENTATIONS AND SATURATIONS 263

vertices in O belonging to the same cluster. Introduce a candidate saturating
edge for each two subsets Vi 6= Vj such that (i) Vi and Vj contain vertices of
the same cluster µk and (ii) Vi and Vj are in different connected components
of G(µk). Candidate saturating edges represent edges that can be added to
the embedded clustered graph to make the subgraph induced by each cluster
connected (see Fig. 10.2 (a) and 10.2 (b)).

(a) (b)

(c) (d) (e)

Figure 10.2: (a) An embedded flat clustered graph C. Different clusters have
different colors. The connected components of each cluster are inside simple
connected regions having the color of the cluster. (b) Clustered graph C and
its candidate saturating edges. Candidate saturating edges of each cluster have
the same color of the cluster. (c)–(d)–(e) Multigraphs Gi for C. The vertices of
Gi are the connected components of G(µi) and the edges of Gi are the candidate
saturating edges connecting such components.

For a cluster µi of T we define Gi as the embedded multigraph whose vertices
are the connected components of G(µi) and whose edges are the candidate
saturating edges connecting such components. The embedding of Gi is given

i

i

“main” — 2009/2/23 — 18:41 — page 264 — #274
i

i

i

i

i

i

264
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

by the order of the faces around the vertices of G (Fig. 10.2 (c), 10.2 (d),
and 10.2 (e)). Observe that Gi does not have self-loops and is, in general, non-
planar. However, possible crossings are only between edges introduced in the
same face of G.

Two candidate saturating edges e1, joining connected components G1(µi)
and G2(µi) of G(µi), and e2, joining connected components G1(µj) and G2(µj)
of G(µj), with µi 6= µj and with e1 and e2 in the same face f of G, have a
conflict if G1(µi), G1(µj), G2(µi), and G2(µj) appear in this order around
the border of f . Informally speaking, two candidate saturating edges have a
conflict if adding both of them to the clustered graph causes a crossing.

The following theorem shows the role of the candidate saturating edges of a
flat embedded clustered graph C in the c-planarity of C. Even if not explicitly
stated, Theorem 10.1 has been already used in [CDPP05a].

Theorem 10.1 An embedded flat clustered graph C(G, T) is c-planar if and
only if: (1) G is planar; (2) there exists a face f in G such that when f is
chosen as outer face for G no cycle composed by vertices of the same cluster
encloses a vertex of a different cluster; (3) it is possible to augment G to a
graph G′ by adding a subset of the candidate saturating edges of C so that
no two added edges have a conflict and so that clustered graph C ′(G′, T) is
c-connected.

Proof: First, we prove the necessity. The necessity of Condition 1 is trivial.
The necessity of Condition 2 easily descends from the definition of c-planarity.

Namely, suppose that any plane embedding of G contains a cycle C composed
by vertices belonging to cluster µi, such that C encloses a vertex v not belong-
ing to µi. By definition of c-planar drawing, the region R(µi) representing µi

in any drawing Γ(C) of C contains C, and hence either R(µi) is not simple, or
it contains v, that does not belong to µi. By definition of c-planar drawing, in
both cases Γ(C) is not c-planar.

To prove that Condition 3 is necessary for the c-planarity of C, consider
any c-planar drawing Γ(C) of C. We show that it is possible to draw candidate
saturating edges augmenting G to a graph G′ so that the subgraph induced by
each cluster in G′ is connected and so that the augmented drawing Γ′(C) is
still c-planar.

Consider the region R(µi) representing in Γ(C) a cluster µi. Subdivide
R(µi) into connected open regions Rj(µi) delimited by the border of R(µi)
and by the edges of G. Consider any region Rj(µi) that has on its border
vertices of more than one connected component of G(µi). Edges connecting

i

i

“main” — 2009/2/23 — 18:41 — page 265 — #275
i

i

i

i

i

i

10.2. AUGMENTATIONS AND SATURATIONS 265

Rj(µi)

R(µi) R(µi) R(µi)

(a) (b) (c)

Figure 10.3: Illustrations for the proof of Theorem 10.1

vertices of different connected components can be drawn inside Rj(µi) so that
the planarity of the drawing of G is maintained and so that the connected com-
ponents of G(µi) appearing on the border of Rj(µi) form a unique connected
component (see Figs. 10.3 (a) and 10.3 (b)). Notice that added edges are can-
didate saturating edges of C. After this step is repeated for every Rj(µi) all
the connected components of G(µi) form a unique connected component. In
fact, having two connected components in Γ′(C) would imply that there is an
edge-region crossing in Γ(C) (see Fig. 10.3 (c)). After the augmentation is per-
formed for every cluster µi the set of edges added to G satisfies the properties
of Condition 3. Namely, no two added edges have a conflict since edges added
to connect G(µi) and G(µj) for different clusters µi and µj are drawn inside
non-overlapping regions R(µi) and R(µj).

Now we prove the sufficiency of Conditions 1, 2, and 3 for the c-planarity of
C. Consider any planar drawing Γ of G in which no cycle composed by vertices
of the same cluster encloses a vertex of a different cluster (such a drawing exists
by Conditions 1 and 2). Consider a set S of candidate saturating edges of C
satisfying Condition 3. Insert each edge e of S in Γ inside the face of G for
which e is a candidate saturating edge. Since no two edges of S conflict each
other, it is possible to do such an insertion so that the resulting drawing Γ′ of
the augmented graph G′ is planar.

As long as G′ has at least one edge e∗ of S belonging to a cycle in which all
the vertices are in the same cluster, remove e∗ from G′ and from Γ′. Clearly,
such a removal leaves each cluster connected in G′. Moreover, after all such
deletions no edge of any cycle in which all the vertices are in the same cluster
belongs to S. Observe that removing such edges is not strictly necessary, since
their presence does not alter the c-planarity of C ′. However, their removal
makes simpler the following construction steps.

For any cluster µ draw a region R(µ) representing µ in Γ′ as a simple closed
connected region surrounding the entire drawing of G′(µ). The border of R(µ)

i

i

“main” — 2009/2/23 — 18:41 — page 266 — #276
i

i

i

i

i

i

266
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

can be drawn so close to the border of the outer face of G′(µ) that (i) R(µ) does
not enclose vertices that are outside the outer face of G′(µ), (ii) the border of
R(µ) does not touch edges that are not incident to vertices of the outer face of
G′(µ), and (iii) the borders of any two clusters do not intersect.

We prove that the resulting clustered drawing Γ(C) of C is c-planar. By
Condition 1, the drawing of G is planar. By construction, for each cluster µ,
region R(µ) contains the drawing of G′(µ) in its interior. Suppose that a region
R(µ) encloses a vertex v ∈ V (ν), with µ 6= ν. By the construction of region
R(µ), this implies that there exists a cycle in G′(µ) enclosing v. However,
since every cycle of G′ in which all the vertices are in the same cluster is also
a cycle of G, this would imply that Condition 2 is not satisfied by C. By the
construction of regions R(µ) no two borders of different clusters intersect in
Γ(C). Finally, an edge-region crossing would imply an edge crossing in G′, that
is planar by Condition 3 and by the definition of saturator. 2

Hence, given an embedded flat clustered graph C(G, T), if Conditions 1 and 2
are satisfied by G, the problem of testing the c-planarity of C can be restated
as the problem of testing if it is possible to select from multigraphs Gi a set of
candidate saturating edges to enforce Condition 3 of Theorem 10.1. If such a
set exists, we call it a saturator of C.

Lemma 10.1 An embedded flat clustered graph C(G, T) admits a saturator if
and only if it admits an acyclic saturator.

Proof: Consider any saturator S of C and denote by G′ the embedded
graph obtained by inserting each edge e of S inside the face of G for which e
is a candidate saturating edge. As long as G′ has at least one edge e∗ of S
belonging to a cycle in which all the vertices are in the same cluster, remove e∗

from G′. After the removal the edges added to G are still a saturator of C, since,
for each cluster µ, G′(µ) is connected and since the c-planarity of C(G′ \ e∗, T)
is a consequence of the c-planarity of C(G′, T). Finally, observe that after all
such deletions are performed no cycle composed of edges all belonging to S
exists in G′. 2

Hence, the problem of testing if an embedded flat clustered graph satisfying
Conditions 1 and 2 of Theorem 10.1 is c-planar is reduced to the one of testing
if there exists a spanning tree of each Gi such that no two edges in different
spanning trees have a conflict.

i

i

“main” — 2009/2/23 — 18:41 — page 267 — #277
i

i

i

i

i

i

10.3. A CHARACTERIZATION 267

10.3 A Characterization

In this section we study the c-planarity of those embedded flat clustered graphs
in which each candidate saturating edge has a conflict with at most one other
candidate saturating edge. We call an embedded flat clustered graph satisfying
such a property to be single-conflict. The clustered graph of Fig. 10.4 is single-
conflict, while the one of Fig. 10.2 is not.

Figure 10.4: A single-conflict flat embedded clustered graph.

Consider a single-conflict embedded flat clustered graph C(G, T) and, for
any cluster µi in T , consider multigraph Gi. We have the following structural
lemma, showing that if two edges e1 = (u, v) and e2 = (x, w) of Gi cross, that
is, vertices u, x, v, and w appear in this order on the border of the face f for
which e1 and e2 are candidate saturating edges, then none of e1 and e2 can
possibly cross an edge e3 of a multigraph Gj , with i 6= j.

Lemma 10.2 If a graph Gi contains two crossing edges e1 and e2, then e1 and
e2 have no conflict with edges of other multigraphs.

Proof: Suppose, for a contradiction, that (i) C is a single-conflict embedded
flat clustered graph, (ii) e1 and e2 are edges of Gi, that is, e1 and e2 are
candidate saturating edges for a cluster µi, (iii) e1 and e2 cross inside a face f
of G, and (iv) e1 has a conflict with an edge e3 of a multigraph Gj , with j 6= i,
inside f (see Fig 10.5 (a)).

We claim that e3 has conflicts with at least two edges of Gi and hence C
is not a single-conflict embedded clustered graph. Let u and v, w and x, and
y and z be the end-vertices of e1, e2, and e3, respectively. If e3 crosses e2,
the statement follows. Otherwise we can suppose without loss of generality, up

i

i

“main” — 2009/2/23 — 18:41 — page 268 — #278
i

i

i

i

i

i

268
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

u
y z

w x

v

e1

e2
e3

(a) (b)

Figure 10.5: (a) Illustration for the proof of Lemma 10.2. (b) Illustration for
the proof of Lemma 10.3. Graph Gi for the cyan cluster is not connected and
there is no way of adding edges to the clustered graph to make the cyan cluster
connected.

to a renaming of the vertices, that w, y, u, z, x, and v appear in this order
around f . If vertices u and w do not belong to the same connected component
of G(µi), then there exists in Gi an edge joining u and w that has a conflict
with e3 and the statement follows. Analogously, if vertices u and x do not
belong to the same connected component of G(µi), then there exists in Gi an
edge joining u and x that has a conflict with e3 and the statement follows.
However, either u and w, or u and x belong to different connected components
of G(µi), otherwise u, w, and x would be in the same connected component of
G(µi) and e2 would not be a candidate saturating edge. 2

By Lemma 10.3, we can assume that in the interesting cases the Gi’s are
connected (see Fig. 10.5 (b)).

Lemma 10.3 If there exists a multigraph Gi that is not connected, then C is
not c-planar.

Proof: If a multigraph Gi is not connected, then adding to G any set of
candidate saturating edges would not connect G(µi). Hence, by Theorem 10.1,
C is not c-planar. 2

There are edges in the Gi’s that must be used in any saturator of C. Con-
versely, there are edges that will never be used in any saturator. Further, there
are edges that can be supposed to belong to a saturator without altering the
possibility to have one. Roughly speaking, such edges do not belong to the
“core” of the problem. Hence, in the following we simplify the Gi’s with an al-

i

i

“main” — 2009/2/23 — 18:41 — page 269 — #279
i

i

i

i

i

i

10.3. A CHARACTERIZATION 269

gorithm that either returns that C is not c-planar or returns a structure where
there are no trivial choices. For this purpose, we define two operations on Gi,
that remove or collapse edges, to be used in the simplification phase.

The operation of removing an edge e from Gi, corresponds to the choice of
not using e as an edge of the saturator of C. Notice that, when an edge e is
removed from Gi, an edge of Gj , with i 6= j, that eventually had a conflict with
e does not have a conflict any longer.

The operation of collapsing an edge e with end-vertices u and v in Gi cor-
responds to the choice of using e as an edge of the saturator of C. It consists
of (see Fig. 10.6): (i) deleting vertices u and v, (ii) removing from Gi all the
edges between u and v, and (iii) inserting in Gi a new vertex w whose incident
edges are those of u and v. The embedding of Gi is preserved. The collapsing
operation “preserves” the conflicts. Namely, let ei be an edge of Gi incident to
u or to v but not to both. Suppose that ei has a conflict (has not a conflict)
with an edge ej of Gj , with i 6= j. After collapsing edge e in a new vertex w the
edge incident to w corresponding to ei has a conflict (resp. has not a conflict)
with ej . When an edge e is collapsed, the edge that conflicts with e, if any, is
removed. In fact, collapsing e corresponds to choosing it in a saturator, hence
no edge conflicting with e can be introduced in the saturator.

u v w

(a) (b)

Figure 10.6: The operation of collapsing an edge (u, v): (a) Before collapsing
(u, v). (b) After collapsing (u, v).

The simplification phase is as follows. Repeatedly modify the Gi’s by apply-
ing one of the following simplifications. From now on, Gi denotes the multigraph
obtained from the starting Gi after some simplifications have been performed.

Simplification 1: If there exists an edge e of a multigraph Gi that has no
conflict, then collapse e in Gi.

i

i

“main” — 2009/2/23 — 18:41 — page 270 — #280
i

i

i

i

i

i

270
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

Simplification 2: If there exist a separating edge ei and a non-separating
edge ej that are in multigraphs Gi and Gj , respectively, and that conflict
each other, then collapse ei in Gi and remove ej from Gj .

Simplification 3: If there exist two separating edges ei and ej that are in
multigraphs Gi and Gj , respectively, and that conflict each other, then
stop because C is not c-planar.

If the algorithm does not stop for non-c-planarity, we call the final multi-
graph Gi candidate saturating graph for cluster µi and we denote it by G∗

i . Also,
we say that µi admits a candidate saturating graph.

Observe that the above operations modify graphs Gi. However, at any step
of the simplification phase each edge e of Gi is associated with two vertices
u and v and a face f of G meaning that if e is chosen to be in a saturator
an edge between u and v is inserted in f . We preprocess Gi labeling each
edge with its endpoints and with a face. Such labels are never changed by the
operations described below. In the following, each time we add an edge e of
Gi to a saturator, we add to G an edge between the endpoints and within the
face specified by the label of e.

The following properties hold.

Property 10.1 None of Simplifications 1, 2, and 3 could disconnect any multi-
graph Gi.

Proof: Simplification 1 collapses an edge of a multigraph Gi. If Gi was
connected before such a simplification, then it is still connected after that.
Further, no edges of other multigraphs are removed when applying Simplifica-
tion 1. Simplification 2 collapses an edge ei of a multigraph Gi and removes
the edge ej of a multigraph Gj that had a conflict with ei. However, if Gi was
connected before such a simplification, then it is still connected after that, and
since ej is not a separating edge, then Gj remains connected after Simplifica-
tion 2. Simplification 3 does not modify and hence does not disconnect any
multigraph Gi. 2

Property 10.2 None of Simplifications 1, 2, and 3 can create a self-loop in
any multigraph Gi.

Proof: A self-loop in a multigraph Gi cannot be created by a removing
operation. Further, when an edge e of a multigraph Gi is collapsed in a vertex
w, edges parallel to e are removed. Hence, no self-loop is inserted in Gi. 2

i

i

“main” — 2009/2/23 — 18:41 — page 271 — #281
i

i

i

i

i

i

10.3. A CHARACTERIZATION 271

Property 10.3 The subgraphs induced by the collapsed edges are acyclic.

Proof: Suppose that the subgraph induced by the set E of collapsed edges
contains a cycle C. Consider the last simplification sm of the simplification
phase that collapses one of the edges of C, say edge e = (u, v). A path P
connecting u and v exists in E composed of candidate saturating edges that
have been collapsed before sm. The edges of P are collapsed in a single vertex
w at the beginning of step sm. By Property 10.2, vertex w has no self-loops,
hence no edge connecting two vertices of P exists at step sm. 2

Property 10.4 Candidate saturating graphs are planar embedded and edge 2-
con-
nected.

Proof: Each multigraph Gi before the simplification phase is planar embed-
ded and the operations of removing and collapsing edges of Gi leave Gi planar
embedded. By Property 10.1, multigraph G∗

i is connected. Further, if it has a
separating edge e, then either e would be chosen to be in a saturator by one of
Simplifications 1 and 2 (depending on whether e has no conflict or has a con-
flict with a non-separating edge) or C would not admit candidate saturating
graphs (if e has a conflict with a separating edge). 2

Property 10.5 Any edge of a candidate saturating graph has exactly one con-
flict with an edge of a different candidate saturating graph.

Proof: Any edge of a candidate saturating graph has at most one conflict
with an edge of a different candidate saturating graph, since the embedded
flat clustered graph is assumed to be single-conflict and operations of removing
and collapsing edges do not introduce new conflicts. Any edge of a candidate
saturating graph has at least one conflict with an edge of a different candi-
date saturating graph, otherwise it would be chosen to be in a saturator by
Simplification 1. 2

We now give lemmas in order to prove that each simplification performed
by the algorithm preserves the possibility of finding a saturator of C. Con-
sider simplification sm, that is performed at a certain step of the simplification
phase. Simplification sm can be one of Simplifications 1, 2, or 3. Denote
by s0, s1, . . . , sm−1 the simplifications that have been performed before sm.
Denote also by E the set of edges that have been collapsed while applying
s0, s1, . . . , sm−1. Inductively, suppose that if an acyclic saturator of C exists,

i

i

“main” — 2009/2/23 — 18:41 — page 272 — #282
i

i

i

i

i

i

272
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

then there exists an acyclic saturator composed only of the edges of E plus
some of the edges remaining in the Gi’s after simplifications s0, s1, . . . , sm−1.
This is indeed the case when no simplification has been performed yet.

Lemma 10.4 Consider an edge e of Gi with no conflict. We have that C
admits a saturator only if it admits an acyclic saturator containing e and con-
taining the edges of E.

Proof: Suppose C admits a saturator. Then, by Lemma 10.1, it admits
an acyclic saturator. Moreover, by inductive hypothesis, it admits an acyclic
saturator S such that E ⊆ S. If S contains e the statement follows. Otherwise,
observe that since S is a saturator, there exists a set S ′ ⊆ S of edges forming a
path between the end-vertices u and v of e. Hence, the edges of S ′ ∪ {e} form
a cycle. Notice that not all the edges of S ′ belong to E, otherwise u and v
would not have been distinct vertices in Gi after simplifications s0, s1, . . . , sm−1.
Hence, the set S∗ of edges obtained from S by inserting e and by removing any
edge of S′ not in E is an acyclic saturator of C containing E and e. Namely,
all the connected components of C are connected by a path of edges in S∗ and
since e has no conflict and S is a saturator, no two edges in S∗ have a conflict.

2

Lemma 10.5 Consider two edges ei and ej of two distinct multigraphs Gi for
cluster µi and Gj for cluster µj , respectively. Suppose that ei and ej conflict
each other. Also, suppose that ei is a separating edge, while ej is not. Then
C admits a saturator only if it admits an acyclic saturator containing ei, con-
taining E, and not containing ej.

Proof: Suppose C admits a saturator. Then, by Lemma 10.1, it admits
an acyclic saturator. Moreover, by inductive hypothesis, it admits an acyclic
saturator S such that E ⊆ S. Since at step sm end-vertices u and v of ei are in
Gi, no path composed by edges of E connects u and v. Moreover, since ei is a
separating edge, if ei is not in S adding the edges of S to G would not connect
G(µi). Hence ei ∈ S. Since no two conflicting edges can be simultaneously in
S, ej /∈ S. 2

Lemma 10.6 Consider two separating edges ei and ej of two distinct multi-
graphs Gi for cluster µi and Gj for cluster µj , respectively. Suppose that ei and
ej conflict each other. We have that C is not c-planar.

i

i

“main” — 2009/2/23 — 18:41 — page 273 — #283
i

i

i

i

i

i

10.3. A CHARACTERIZATION 273

Proof: Suppose, for a contradiction, that C admits a saturator. Then, by
inductive hypothesis, it admits an acyclic saturator S such that E ⊆ S. Since
at step sm the end-vertices u and v of ei (the end-vertices w and x of ej) are
in Gi (are in Gj), no path composed by edges of E connects u and v (connects
w and x). Moreover, since ei and ej are separating edges, if ei (ej) is not in
S, adding the edges of S to G would not connect G(µi) (G(µj)). However, S
cannot contain both ei and ej , that conflict each other. 2

Let µi and µj be two distinct clusters admitting candidate saturating graphs
G∗

i and G∗
j , respectively. We define graph G∗

i,j as the planar embedded subgraph
of G∗

i induced by the edges having a conflict with the edges of G∗
j . We have

(see Fig. 10.7):

(a) (b)

(c) (d) (e) (f) (g)

Figure 10.7: Illustrations for the statement of Theorem 10.2. (a) A set of
candidate saturating graphs G∗

i for a single-conflict embedded flat clustered
graph C. (b) A saturator of C. (c–g) Each picture contains graphs G∗

i,j , G∗
j,i,

and spanning trees T ∗
i,j , T ∗

j,i (in bold).

i

i

“main” — 2009/2/23 — 18:41 — page 274 — #284
i

i

i

i

i

i

274
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

Theorem 10.2 A single-conflict embedded flat clustered graph C(G, T) is c-
planar iff:

1. G is planar;

2. There exists a face f in G such that when f is chosen as outer face for
G no cycle composed by vertices of the same cluster encloses a vertex of
a different cluster;

3. Each cluster of C admits a candidate saturating graph;

4. For each pair of distinct clusters µi and µj , G∗
i,j is edge 2-connected; and

5. For each pair of distinct clusters µi and µj , G∗
i,j is dual to G∗

j,i.

Proof: First, we remark that each vertex of G∗
i corresponds to a distinct

connected component of G(µi) after the edges chosen during the simplification
phase have been added into the corresponding faces of G and that an edge
connecting vertices u and v of G∗

i corresponds to an edge connecting a vertex
of the connected component corresponding to u to a vertex of the connected
component corresponding to v inside a face of G. Since the simplification phase
preserves the possibility of finding an acyclic saturator S, then S can be found
only if a set of edges can be selected from graphs G∗

i so that, after the edges
of S are inserted into the faces of G, all the clusters induce connected graphs,
no cycle composed of vertices of the same cluster has been created, and no
two edges intersect. It follows that, in order to obtain an acyclic saturator S
of C, a spanning tree of each G∗

i has to be selected such that no two edges of
spanning trees of different graphs G∗

i and G∗
j have a conflict.

Let S be any acyclic saturator of C and let u and v be any two distinct
vertices of any candidate saturating graph G∗

i . We denote by S(u, v) the unique
path connecting u and v in the spanning tree of G∗

i contained in S. We remark
that such a path exists, otherwise cluster µi would not induce a connected
graph after adding the edges of S to G, and is unique, otherwise the chosen
saturator S would not be acyclic. If edges ei and ej of different candidate
saturating graphs G∗

i and G∗
j conflict each other, we write ei ⊕ ej .

The necessity of Conditions 1 and 2 descends from the necessity of Condi-
tions 1 and 2 of Theorem 10.1. We prove the necessity of Condition 3. Suppose
that C does not admit candidate saturating graphs. Two cases are possible:
Either before the simplification phase one of the Gi’s is not connected, or dur-
ing the simplification phase two separating conflicting edges are found. In the

i

i

“main” — 2009/2/23 — 18:41 — page 275 — #285
i

i

i

i

i

i

10.3. A CHARACTERIZATION 275

former case the non-c-planarity of C descends from Lemma 10.3, in the latter
case from Lemma 10.6.

Now we deal with Condition 4. Suppose that G∗
i,j is not connected and

denote by u1 and u2 vertices in different connected components. Suppose, for
a contradiction, that an acyclic saturator S of C exists. Consider path S(u1, u2)
(see Fig. 10.9 (a)). Since u1 and u2 are in different connected components of
G∗

i,j , there exists an edge (u3, u4) ∈ S(u1, u2) such that (u3, u4) ⊕ (w1, w2),
where (w1, w2) ∈ G∗

k , with k 6= i, j. Consider path S(w1, w2). Each edge
of S(w1, w2) cannot have a conflict with any edge of S(u1, u2), otherwise S
would contain two conflicting edges, and neither can it have a conflict with
any edge (v1, v2) of G∗

j,i, otherwise (v1, v2) would conflict with two candidate
saturating edges. Hence, G∗

j,i has at least two connected components. Let
v3 and v4 be two vertices in such components, respectively. Then, S(v3, v4)
either contains an edge (v5, v6) such that (v5, v6) ⊕ (w3, w4), with (w3, w4) ∈
S(w1, w2), implying that S contains two conflicting edges, or contains an edge
(v5, v6) conflicting with edge (w1, w2), implying that (w1, w2) conflicts with
two candidate saturating edges.

(u1,u2) not in S

�ecessity of Condition 4

j,i

(u1,u2) in S

an edge (v3,v4) in

S(v1,v2) is not in G* j,i

all edges in S(v1,v2)

are in G*

i,j

all edges in S(u1,u3)

are in G* i,j

an edge (u5,u6) in

S(u1,u3) is not in G*

Figure 10.8: Proof of the necessity of Condition 4. Edge (u1, u2) is a separating
edge that has a conflict with an edge (v1, v2). If (u1, u2) ∈ S and all the edges of
S(v1, v2) belong to G∗

j,i, then (u3, u4) is an edge that has a conflict with an edge
of S(v1, v2). Vertices u1 and u3 are both internal to cycle S(v1, v2) ∪ (v1, v2).

Now suppose that G∗
i,j has a separating edge (u1, u2). By construction

(u1, u2) ⊕ (v1, v2), where (v1, v2) ∈ G∗
j,i. Suppose, for a contradiction, that a

saturator S of C exists. Fig. 10.8 shows the strategy of the proof of such a
contradiction.

i

i

“main” — 2009/2/23 — 18:41 — page 276 — #286
i

i

i

i

i

i

276
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

• If (u1, u2) /∈ S, then consider S(u1, u2) (see Fig. 10.9 (b)). Since (u1, u2)
is a separating edge for G∗

i,j , there exists an edge (u3, u4) ∈ S(u1, u2)
such that (u3, u4) ⊕ (w1, w2), where (w1, w2) ∈ G∗

k , with k 6= i, j. Hence,
S(w1, w2) either contains an edge (w3, w4) such that (w3, w4) ⊕ (u5, u6),
with (u5, u6) ∈ S(u1, u2), implying that S contains two conflicting edges,
or contains an edge (w3, w4) conflicting with (u1, u2), implying that
(u1, u2) conflicts with two candidate saturating edges.

• If (u1, u2) ∈ S, then consider S(v1, v2).

– If an edge (v3, v4) ∈ S(v1, v2) is such that (v3, v4)⊕ (w1, w2), where
(w1, w2) ∈ G∗

k , with k 6= i, j, a contradiction is obtained as in the
previous case (see Fig. 10.9 (c)).

– Otherwise, all the edges of S(v1, v2) belong to G∗
j,i. Consider any

edge (v3, v4) ∈ S(v1, v2) and edge (u3, u4) ∈ G∗
i,j such that (u3, u4)⊕

(v3, v4). Let u1 (u3) be the endpoint of (u1, u2) (resp. of (u3, u4))
inside cycle S(v1, v2) ∪ (v1, v2).

∗ If u1 = u3 or if all the edges of S(u1, u3) have conflicts with edges
of G∗

j,i (see Fig. 10.9 (d)), consider path S(u2, u4). Then there
exists an edge (u5, u6) ∈ S(u2, u4) such that (u5, u6)⊕ (w1, w2),
where (w1, w2) ∈ G∗

k , with k 6= i, j, otherwise (u1, u2) would
not be a separating edge. Hence, S(w1, w2) either contains
an edge (w3, w4) such that (w3, w4) ⊕ (u7, u8), with (u7, u8) ∈
S(u3, u4), implying that S contains two conflicting edges, or an
edge (w3, w4) such that (w3, w4)⊕(u3, u4) implying that (u3, u4)
conflicts with two candidate saturating edges.

∗ If u1 6= u3 and S(u1, u3) contains at least one edge (u5, u6)
such that (u5, u6)⊕ (w1, w2), where (w1, w2) ∈ G∗

k , with k 6= i, j
(see Fig. 10.9 (e)), then S(w1, w2) contains: (i) either an edge
(w3, w4) such that (w3, w4) ⊕ (v5, v6), with (v5, v6) ∈ S(v1, v2),
implying that S contains two conflicting edges, (ii) or an edge
(w3, w4) such that (w3, w4)⊕ (u7, u8), with (u7, u8) ∈ S(u2, u3)
implying that S contains two conflicting edges, (iii) or an edge
(w3, w4) such that (w3, w4) ⊕ (u3, u4), implying that (u3, u4)
conflicts with two candidate saturating edges, (iv) or an edge
(w3, w4) such that (w3, w4)⊕(v1, v2), implying that (v1, v2) con-
flicts with two candidate saturating edges.

Now we prove the necessity of Condition 5. By definition, each edge of
G∗

i,j has a conflict with (and hence is dual to) one edge of G∗
j,i and vice versa.

i

i

“main” — 2009/2/23 — 18:41 — page 277 — #287
i

i

i

i

i

i

10.3. A CHARACTERIZATION 277

u1

w1

w2

u3
u4

v3

v4

u2
u1

u3 u4

u2

v2

v1
w1

w2

v2
v1

u1

u2

v3 v4

w1

w2

(a) (b) (c)

u1=u3

u2

v2

v1

v4

v3

u4

u5 u6

w1

w2

v2

v1

u2
u1

u3

u4
v4

v3 u5 u6

w1

w2

v1

u1

w2

w1 u3

u4
u2

v2

(d) (e) (f)

v1
v3

v2

w1

w2

v4 v1
v2

v3
v4

u1

u2

u5

u3

w1
w2

v1
v2

v3 v4

u1

u2

u5

u4

u3

w1
w2

(g) (h) (i)

Figure 10.9: Illustrations for the necessity of the conditions of Theorem 10.2.
Edges of G∗

i are red, edges of G∗
j are light blue, and edges of G∗

k are green.

Moreover, by the necessity of Condition 4, we can assume that both G∗
i,j and

G∗
j,i are edge 2-connected. Hence G∗

i,j is not dual to G∗
j,i only if there is a face

of G∗
i,j that contains in its interior two vertices of G∗

j,i, or vice versa. Suppose
w.l.o.g. that a face f of G∗

i,j contains in its interior two vertices v1 and v2 of
G∗

j,i. Suppose, for a contradiction, that a saturator S of C exists. Consider path
S(v1, v2). Fig. 10.10 shows the strategy of the proof of such a contradiction.

• If S(v1, v2) is composed in part by vertices inside f and in part by ver-
tices outside f (see Fig. 10.9 (f)), consider two vertices u1 and u2 in
different connected components, disconnected by S(v1, v2), of f . Con-
sider S(u1, u2). There exists an edge (u3, u4) ∈ S(u1, u2) such that
(u3, u4)⊕ (w1, w2), where (w1, w2) ∈ G∗

k , with k 6= i, j, otherwise f would
not be a face. Hence, S(w1, w2) either contains an edge (w3, w4) such
that (w3, w4) ⊕ (u5, u6), with (u5, u6) ∈ S(u1, u2), implying that S con-
tains two conflicting edges, or contains an edge (w3, w4) conflicting with

i

i

“main” — 2009/2/23 — 18:41 — page 278 — #288
i

i

i

i

i

i

278
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

S(v1,v2) has vertices

outside f

ecessity of Condition 5

j,i

all vertices of S(v1,v2)

are inside f

an edge (v3,v4) in

S(v1,v2) is not in G* j,i

all edges in S(v1,v2)

are in G*

i,j

all edges in S(u1,u3)

are in G* i,j

an edge (u4,u5) in

S(u1,u3) is not in G*

Figure 10.10: Proof of the necessity of Condition 5. Vertices v1 and v2 are both
in face f . If all the edges of S(v1, v2) belong to G∗

j,i , then (u1, u2) is an edge
that has a conflict with an edge of S(v1, v2). Vertex u3 is in f .

an edge (u5, u6) ∈ f , implying that (u5, u6) conflicts with two candidate
saturating edges.

• Otherwise, S(v1, v2) is composed by vertices all lying inside f .

– If there exists an edge (v3, v4) ∈ S(v1, v2) such that (v3, v4) ⊕
(w1, w2), where (w1, w2) ∈ G∗

k , with k 6= i, j (see Fig. 10.9 (g)), then
S(w1, w2) contains: (i) either an edge (w3, w4) such that (w3, w4)⊕
(v5, v6), with (v5, v6) ∈ S(v1, v2), implying that S contains two con-
flicting edges, (ii) or an edge (w3, w4) such that (w3, w4) ⊕ (u1, u2),
with (u1, u2) ∈ f , implying that (u1, u2) conflicts with two candi-
date saturating edges, (iii) or an edge (w3, w4) such that (w3, w4)⊕
(v5, v6), with (v5, v6) dual to an edge of f , implying that (v5, v6)
conflicts with two candidate saturating edges.

– Otherwise, each edge of S(v1, v2) is dual to an edge of G∗
i,j . Consider

any edge (u1, u2) dual to an edge of S(v1, v2).

∗ If u1 ∈ f or if there exists a vertex u3 ∈ f such that all the
edges of S(u1, u3) conflict with edges of G∗

j,i (see Fig. 10.9 (h)),
then u2 /∈ f and there exists no vertex u4 in f such that all
the edges of S(u2, u4) conflict with edges of G∗

j,i, otherwise f
would not be a face. Consider any vertex u5 ∈ f and path
S(u2, u5). Then, there exists an edge in S(u2, u5) that has a

i

i

“main” — 2009/2/23 — 18:41 — page 279 — #289
i

i

i

i

i

i

10.3. A CHARACTERIZATION 279

conflict with an edge (w1, w2) in G∗
k , with k 6= i, j. Hence,

path S(w1, w2) contains: (i) either an edge (w3, w4) such that
(w3, w4) ⊕ (v5, v6), with (v5, v6) ∈ S(v1, v2), implying that S
contains two conflicting edges, (ii) or an edge (w3, w4) such that
(w3, w4) ⊕ (u6, u7), with (u6, u7) ∈ S(u2, u5), implying that S
contains two conflicting edges, (iii) or an edge (w3, w4) such that
(w3, w4) ⊕ (u6, u7), with (u6, u7) ∈ f , implying that (u6, u7)
conflicts with two candidate saturating edges, (iv) or an edge
(w3, w4) such that (w3, w4) ⊕ (v5, v6), with (v5, v6) dual to an
edge in f , implying that (v5, v6) conflicts with two candidate
saturating edges.

∗ If u1 /∈ f and there exists no vertex u3 ∈ f such that every edge
of S(u1, u3) conflicts with an edge of G∗

j,i (see Fig. 10.9 (i)), then
there exists a vertex u3 ∈ f such that S(u1, u3) contains an edge
(u4, u5) such that (u4, u5) ⊕ (w1, w2), with (w1, w2) ∈ G∗

k , with
k 6= i, j, and a contradiction is derived as in the previous case.

Now we prove the sufficiency of Conditions 1, 2, 3, 4, and 5, for the c-
planarity of C(G, T). Consider any planar drawing of G satisfying Conditions 1
and 2 and hence satisfying Conditions 1 and 2 of Theorem 10.1. We show how
to construct an acyclic saturator S of C satisfying Condition 3 of Theorem 10.1.
Apply the simplification phase. As a result, get an acyclic set E of edges already
chosen to be in S and a candidate saturating graph G∗

i for each cluster µi (this
can be done since C satisfies Condition 3).

Order the clusters in whichever way µ1, µ2, . . . , µm. For any pair of clusters
µi and µj , with i < j, choose a spanning tree T ∗

i,j of G∗
i,j (a spanning tree

of G∗
i,j can always be found since, by Condition 4, G∗

i,j is edge 2-connected).
Remove from G∗

j,i all the edges dual to edges of T ∗
i,j , obtaining a graph T ∗

j,i.
We claim that T ∗

j,i is a spanning tree of G∗
j,i. By Condition 5, G∗

i,j and G∗
j,i are

dual graphs, and, since they are edge 2-connected, the edges of a cycle in G∗
i,j

are dual to the edges of a cutset in G∗
j,i, and vice versa (Lemma 1.4 of [NC88]).

Hence, if T ∗
j,i has more than one connected component, then the edges removed

from G∗
j,i form a cutset for G∗

j,i, and the edges of T ∗
i,j form a cycle, contradicting

the hypothesis that T ∗
i,j is a tree. Moreover, if a set of edges of T ∗

j,i is a cycle,
then the edges dual to such a cycle form a cutset for G∗

i,j , contradicting the
hypothesis that T ∗

i,j is spanning for G∗
i,j .

For any pair of clusters µi and µj , with i < j, add the edges of T ∗
i,j and the

edges of T ∗
j,i to S. We claim that S is an acyclic saturator of C. Namely, we

prove that (1) no two edges of S have a conflict, (2) adding the edges of S to

i

i

“main” — 2009/2/23 — 18:41 — page 280 — #290
i

i

i

i

i

i

280
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

G connects the subgraph induced by each cluster, and (3) adding the edges of
S to G does not create cycles composed by vertices all belonging to the same
cluster.

1. No two edges of S have a conflict: Edges chosen in the simplification
phase do not conflict each other by construction. Such edges do not
conflict with edges of trees T ∗

i,j . In fact, an edge in T ∗
i,j conflicts only

with an edge in G∗
j , with i 6= j. By construction, edges of the T ∗

i,j ’s do
not conflict each other.

2. Adding the edges of S to G connects the subgraph induced by each cluster:
Distinct connected components of G(µi) are represented after the sim-
plification phase by distinct vertices in G∗

i , that is edge 2-connected and
that is partitioned in edge 2-connected subgraphs G∗

i,j . Since a spanning
tree is chosen to be in S for any G∗

i,j , we have that
⋃

j T ∗
i,j is spanning for

G∗
i and G′(µi) has exactly one connected component. Recall that G′(µi)

is the graph obtained by adding the edges of the saturator to G(µi).

3. Adding the edges of S to G does not create cycles composed by vertices
all belonging to the same cluster: Suppose that G′(µi) has a cycle C con-
taining an edge of S. By construction, edges chosen in the simplification
phase only join different connected components of G(µi) and no edge of
C could belong to some G∗

i,j , otherwise G′(µj) would be disconnected.

Since S is an acyclic saturator of C, the conditions of Theorem 10.1 are
satisfied by C, that hence is c-planar. 2

Theorem 10.3 An embedded flat clustered graph C(G, T) with at most five
vertices per face is c-planar if and only if:

1. G is planar;

2. There exists a face f in G such that when f is chosen as outer face for
G no cycle composed by vertices of the same cluster encloses a vertex of
a different cluster;

3. Each cluster of C admits a candidate saturating graph;

4. For each pair of distinct clusters µi and µj , G∗
i,j is edge 2-connected; and

5. For each pair of distinct clusters µi and µj , G∗
i,j is dual to G∗

j,i.

i

i

“main” — 2009/2/23 — 18:41 — page 281 — #291
i

i

i

i

i

i

10.4. AN EFFICIENT C-PLANARITY TESTING ALGORITHM 281

Proof: Consider any face f of G. Since f has at most five vertices, it has at
most two connected components of each cluster, so it has at most one candidate
saturating edge for each cluster. Since at least two vertices are necessary for
each candidate saturating edge, f contains candidate saturating edges for at
most two clusters. Hence, C is a single-conflict embedded flat clustered graph
and the statement follows from Theorem 10.2. 2

10.4 An Efficient C-Planarity Testing Algorithm

In this section we use Theorem 10.3 to derive a linear time and space c-planarity
testing algorithm for embedded flat clustered graphs with at most five vertices
per face. The algorithm can be extended to test the c-planarity of single-
conflict embedded flat clustered graphs relying on Theorem 10.2. However, it
turns out that such an extension exploits several technicalities, in order to deal
with a number of candidate saturating edges that can be asymptotically more
than linear in the number of vertices of the clustered graph. Hence, to improve
the readability of the section, we give the algorithm for the case of embedded
flat clustered graphs with at most five vertices per face, while emphasizing the
steps of the algorithm that have to be modified to deal with single-conflict
embedded flat clustered graphs.

Let C(G, T) be an n-vertex embedded flat clustered graph with at most five
vertices per face. To test Condition 1 of Theorem 10.3, it is sufficient to test if
G is a planar embedding. This can be done in O(n) time and space with the
techniques in [Kir88].

To test Condition 2, we observe that a face exists satisfying such a condition
if and only if the embedded clustered graph is hole-free, that is, chosen an
arbitrary face as external, there exists no cycle C that is composed by vertices
of the same cluster µ and that separates two vertices both belonging to clusters
different from µ (see Fig. 10.11).

A linear-time algorithm for checking if an embedded clustered graph is hole-
free has been provided in [Dah98] in the case of c-connected clustered graphs.
We can use the same algorithm because of the following lemma.

Lemma 10.7 Let C(G, T) be an embedded clustered graph. Let C ′(G, T ′) be
the embedded c-connected clustered graph obtained from C as follows. Each
node ν of T is replaced in T ′ by nodes ν1, . . . , νh, one for each of the h ≥ 1
connected components of G(ν). Let µ1, . . . , µk be the nodes replacing the parent

i

i

“main” — 2009/2/23 — 18:41 — page 282 — #292
i

i

i

i

i

i

282
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

Figure 10.11: A hole in an embedded clustered graph. A hole consists of a
cycle that is composed by vertices of the same cluster µ and that separates two
vertices both belonging to clusters different from µ. An embedded clustered
graph having no hole is said to be hole-free.

µ of ν. The parent of νj in T ′ is the node µi such that G(νj) is a subgraph of
G(µi). We have that C is hole-free if and only if C ′ is hole-free.

Proof: Suppose that C is hole-free and suppose, for a contradiction, that
C ′ is not hole-free. Choose arbitrarily in G an external face. Then, a cycle
C of G exists composed by vertices of the same cluster µi ∈ T ′ such that C
has a vertex v1 inside and a vertex v2 outside both belonging to clusters in T ′

different from µi. Consider cluster µ ∈ T that is replaced in T ′ by a set of
clusters among which there is µi. By construction the vertices of C belong to
µ in C.

We claim that there exists a vertex inside C that does not belong to µ.
Since v1 /∈ µi, there are two cases: Either v1 /∈ µ, or v1 ∈ µ. In the first case
the claim directly follows. In the second case, since v1 and C belong to µ but
are in different clusters in C ′, they belong to different connected components
of G(µ). Consider any path internal to C connecting v1 to a vertex of C. Such
a path exists, otherwise G would not be connected. The vertices of such a path
cannot all belong to µ, otherwise v1 and C would be in the same connected
component of G(µ). Hence, there exists a vertex internal to C not belonging to
µ and the claim follows. A similar argument proves that there exists a vertex
outside C that does not belong to µ, that gives the desired contradiction.

Now suppose C ′ is hole-free and suppose, for a contradiction, that C is not
hole-free. Choose arbitrarily in G an external face. Then, a cycle C of G exists
composed by vertices of the same cluster µ ∈ T such that C has a vertex v1

inside and a vertex v2 outside both belonging to clusters in T different from

i

i

“main” — 2009/2/23 — 18:41 — page 283 — #293
i

i

i

i

i

i

10.4. AN EFFICIENT C-PLANARITY TESTING ALGORITHM 283

µ. Then, consider cluster µi containing C in C ′. Since v1, v2 /∈ µ, we have that
v1, v2 /∈ µi, that gives the desired contradiction. 2

In order to test Condition 3 we need to create multigraphs Gi. This is done
in O(n) time as follows.

• Connected Components. For each node µ of T compute the connected
components of G(µ). This is easily done in linear time and space. Each
vertex v of G(µ) is labelled by a name uniquely associated with the
connected component of G(µ) vertex v belongs to.

• Candidate saturating edges. We insert candidate saturating edges inside
the faces of G. Consider a face f . Construct maximal sequences of ver-
tices that are consecutive on the border of f and that belong to the same
cluster. For any two sequences V1 and V2 that have vertices belonging
to the same cluster µ, take a vertex v1 ∈ V1 and a vertex v2 ∈ V2. Test
in constant time if the connected component Gi(µ) of G(µ) labelling v1

is different from the connected component Gj(µ) labelling v2. If Gi(µ)
is not the same connected component of Gj(µ), then insert a candidate
saturating edge between v1 and v2. As already discussed in the proof of
Theorem 10.3, at most two edges are inserted inside f . Since f has at
most five vertices, the described insertion can be performed in constant
time and hence in linear time for all the faces of G.

This step is more tricky when considering single-conflict clustered graphs,
where faces can have a linear number of vertices. In that case, in order to
achieve linear time special care must be taken when considering groups
of candidate saturating edges between vertices of the same cluster and
when determining the conflicts between candidate saturating edges.

Namely, consider a face f and a cluster µ having connected components
G1(µ), . . . , Gk(µ) in f .

If k = 1 no candidate saturating edge is inserted in f .

If k > 2 (see Fig. 10.12 (a)), then we insert in f one candidate saturating
edge between any vertex of Gi(µ) and any vertex of Gi+1(µ), for i =
1, . . . , k − 1. In fact, in this case, since C is single-conflict, none of such
edges has a conflict with any other candidate saturating edge e (otherwise
e would have more than one conflict). Hence, since such edges are conflict-
free no other edge is required in order to connect the components of
cluster µ in f .

i

i

“main” — 2009/2/23 — 18:41 — page 284 — #294
i

i

i

i

i

i

284
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

G1(µ)

G2(µ)

e

G3(µ) V1,1(µ)

V1,2(µ)

V2,1(µ)

V2,2(µ)

V1,1(µ)

V2,k (µ)2

V2,1(µ)

V2,2(µ)

(a) (b) (c)

Figure 10.12: Candidate saturating edges for a cluster µi in a single-conflict
clustered graph: (a) k > 2. (b) k = 2, k1 > 1, and k2 > 1. (c) k = 2 and
k1 = 1. The candidate saturating edges that are added to the graphs Gi’s are
solid. Dashed cyan edges correspond to candidate saturating edges that cannot
exist, otherwise the clustered graph would not be single-conflict. Dashed red
edges correspond to candidate saturating edges that are not needed to connect
the components of µi in f .

Suppose that k = 2 and let V1,1(µ), . . . , V1,k1(µ) (V2,1(µ), . . . , V2,k2(µ))
be the maximal sequences of vertices that are consecutive on the border
of f and that belong to G1(µ) (resp. to G2(µ)).

If both k1 > 1 and k2 > 1 (see Fig. 10.12 (b)), we add a candidate
saturating edge between any vertex of V1,1(µ) and any vertex of V2,1(µ).
Such an edge is conflict-free and we can repeat the above arguments to
show that no other edge is required to connect the components of µ in f .

If either k1 = 1 or k2 = 1, say k1 = 1 (see Fig. 10.12 (c)), we add
edges between any vertex of V1,1(µ) and any vertex of V2,i(µ) (with i =
1, . . . , k2). Observe that such edges might have conflicts.

By the above discussion, the number of candidate saturating edges in-
serted for each cluster µ inside f is linear in the number of maximal
sequences of vertices that are consecutive on the border of f and that be-
long to G(µ). It follows that a total linear number of candidate saturating
edges are inserted into the faces of G. Further, such edges are sufficient
to find a saturator for the clustered graph, if any such a saturator exists.

At this point we detect conflicts. We traverse the border of f in clockwise
direction starting at any vertex. During the traversal, we maintain a list
of encountered edges in a stack P . At each encountered vertex v we

i

i

“main” — 2009/2/23 — 18:41 — page 285 — #295
i

i

i

i

i

i

10.4. AN EFFICIENT C-PLANARITY TESTING ALGORITHM 285

do what follows: We consider the candidate saturating edges incident to
v in clockwise order; for each edge e, if e has never been encountered
we insert e into P ; otherwise, the first end-vertex of e has already been
encountered and e is already in P . We check if e has a conflict with the
top edge e′ of P . If yes, we record the conflict and remove e and e′ from
P . If not, we remove e from P . Such a procedure detects all conflicts
among candidate saturating edges. In fact, the conflict structure of the
candidate saturating edges is parenthetic, due to the restriction to single-
conflict clustered graphs.

• Multigraphs Gi. Consider cluster µi. Add a vertex to Gi for each con-
nected component of G(µi). For each of the above mentioned candidate
saturating edges (u, v), insert an edge between the connected components
of u and v. For each edge e in a multigraph Gi, we record the edge e∗

that has a conflict with e, if any. The construction of the Gi’s can be
done such that their embeddings are those induced by the adjacencies of
the faces of G. Further, such a construction can be done in linear time
and space because of the following:

Property 10.6
∑

µi
|Gi| = O(n), where |Gi| is the size of the graph.

Proof: The total number of vertices of the Gi’s is at most the number of
vertices of G, hence it is bounded by n.

If each face of G has at most five vertices the proof is trivial. In fact,
there are at most two candidate saturating edges for each face. Hence,
the total number of edges of the Gi’s is O(n).

On the other hand, when considering single-conflict embedded flat clus-
tered graphs, that can generally have faces with a linear number of in-
cident vertices, we apply the algorithm described above, that inserts for
each face f only a number of edges that is linear in the size of f . 2

Now we show how to test if Condition 3 of Theorem 10.3 is satisfied. First,
test if the Gi’s are connected. If not, return non-c-planar.

We equip each Gi with a data structure supporting the following update
operations, which are trivial graph operations and that can be hence be per-
formed in constant time: Remove an edge, collapse (identify the end-vertices
of) an edge and merge the embeddings of its end-vertices. Observe the differ-
ence between the above definition of the collapse operation and the one given
in Sect. 10.3, where the edges between the end-vertices are removed.

i

i

“main” — 2009/2/23 — 18:41 — page 286 — #296
i

i

i

i

i

i

286
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

Next, we show how to apply the simplification phase. We first deal with
conflict-free edges, that are edges with no conflict, and we will apply Simpli-
fication 1 till the multigraphs Gi’s have no conflict-free edge. Second, we will
handle separating edges by either applying Simplification 2 till the multigraphs
Gi’s have no separating edge or the non-c-planarity of C has been established.

• Conflict-free edges. Extract from all Gi’s the candidate saturating edges
that have no conflict. Insert all such edges into a set called F . For each
edge e of F compute the set E of edges parallel to e. Such computations
are easily performed in linear time.

Construct the set F ′ of the edges of any spanning forest of F . The edges
of F ′ are collapsed as follows. Let F ′′ be the set containing the edges that
have no conflict after the edges of F ′ have been collapsed. We construct
F ′′ as follows. Initialize F ′′ = ∅. Take each edge e1 of F ′. Consider the
set E of edges parallel to e1. For each edge e2 6= e1 in E , if e2 has a conflict
with an edge e∗2, add e∗2 to F ′′. After this work has been performed on
all the edges of F ′, collapse all of such edges, removing self-loops. We
have the following:

Lemma 10.8 The edges of set F ′′ do not have parallel edges.

Proof: Suppose, for a contradiction, that after Simplification 1 has been
performed on all the edges of F ′, F ′′ contains an edge e1 ∈ Gi joining
vertices u and v, such that there exists an edge e2 ∈ Gi also joining vertices
u and v. Since e1 ∈ F ′′, there exists an edge e3 joining vertices w and x
that has been removed when applying Simplification 1 to collapse an edge
e4 also joining vertices w and x. Consider the step si of Simplification 1
in which e4 has been collapsed. Since e3 cannot have a conflict with both
e1 and e2, vertices w and x are before step si one inside and one outside
the cycle composed of the edges e1 and e2 (see Fig. 10.13). Hence, before
step si, e4 either intersects e1 or e2, that gives us a contradiction, since
e4 is supposed to be a conflict-free edge, otherwise it would have not been
collapsed during an application of Simplification 1. 2

Compute any spanning forest of the edges of F ′′ and perform Simplifi-
cation 1 on all the edges of such a forest. The above lemma guarantees
that after this second pass no new conflict-free edge can be originated.

• Separating edges. After the end of the previous step, a set of current
multigraphs Gi’s is returned. Exploiting such multigraphs, a set H of

i

i

“main” — 2009/2/23 — 18:41 — page 287 — #297
i

i

i

i

i

i

10.4. AN EFFICIENT C-PLANARITY TESTING ALGORITHM 287

e3

e4

e4

e2 e1

u x
w

v

Figure 10.13: Illustration for the proof of Lemma 10.8

separating edges is constructed as follows. First, associate a name to each
face of each multigraph Gi. Second, for each edge e in each multigraph
Gi, record the names of the two faces incident to e. Third, for each edge
e in each multigraph Gi, verify if the faces incident to e are the same. If
yes, then add e to H. Observe that H is a set containing edges coming
from all Gi’s. Each edge e is labelled with a value indicating that e is
a separating edge. This computation takes time linear in the number of
edges in the Gi’s.

After the set H has been created, for each edge e in H, check if the edge
e∗ conflicting with e is a separating edge. If yes, return non-c-planar.
Otherwise, delete e∗ and collapse e. Observe that e has no parallel edges,
otherwise it would not be a separating edge. After this has been done
for all the edges in H, it is easy to see that no conflict-free edge has been
created. On the other hand, some edges in Gi could now be separating
edges. However, if this happens, then we can conclude that C is not
c-planar as stated in the following lemmas:

Lemma 10.9 Consider a face f of Gi. Suppose that f contains a sepa-
rating pair composed by edges (u1, u2) and (u3, u4). Suppose that (u1, u2)
has a conflict with an edge (v1, v2) that is a separating edge, and that
(u3, u4) has a conflict with an edge (v3, v4). We have that C is not c-
planar.

Proof: Suppose w.l.o.g. that (v1, v2) ∈ Gj and that removing (u1, u2) and
(u3, u4) disconnects Gi in two connected components G1

i and G2
i such that

u1, u3 ∈ G1
i and u2, u4 ∈ G2

i . By Lemma 10.5, C admits a saturator only
if it admits an acyclic saturator S such that (v1, v2) ∈ S and (u1, u2) /∈
S. Since (u1, u2) and (u3, u4) compose a separating pair, (u3, u4) ∈ S,

i

i

“main” — 2009/2/23 — 18:41 — page 288 — #298
i

i

i

i

i

i

288
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

v2v1
v3 v4

u3
u1

u2 u4

v2v1
v3 v4

u3
u1

u2 u4
(a) (b)

Figure 10.14: Illustrations for the proof of Lemma 10.9

otherwise no path in S could connect G1
i and G2

i . Consider paths S(u1, u3)
and S(u2, u4) connecting u1 and u3, and connecting u2 and u4 in S (such
paths are single vertices if u1 = u3 and/or u2 = u4).

If (v3, v4) ∈ Gj (see Fig. 10.14 (a)), then let v1 (v2) be the one out of v1 and
v2 that is outside (resp. inside) f and let v4 (v3) be the one out of v3 and
v4 that is outside (resp. inside) f . Then, v3 (v4) is inside (resp. outside)
cycle C = S(u1, u3)∪(u3, u4)∪S(u2, u4)∪(u1, u2). Consider path S(v2, v3)
connecting v2 and v3 in S. Notice that S(v2, v3) lies completely inside
C, otherwise S(v2, v3) would contain an edge conflicting with an edge of
S(u1, u3), or an edge conflicting with an edge of S(u2, u4), or an edge
conflicting with (u3, u4), implying that S contains two conflicting edges.
Consider path S(v2, v4) connecting v2 and v4 in S. Since v2 is inside C
and v4 is outside C, S(v2, v4) lies in part inside and in part outside C.
It follows that either there exists an edge of S(v2, v4) conflicting with an
edge of S(u1, u3), or an edge conflicting with an edge of S(u2, u4), or an
edge conflicting with (u3, u4), implying that S contains two conflicting
edges, or S(v2, v4) contains edge (v1, v2). However, since (v1, v2) is a
separating edge no path excluding (v1, v2) and connecting v1 to v4 exists
in Gi.

If (v3, v4) ∈ Gk, with k 6= i, j, then vertices v3 and v4 lie one inside
and one outside C. Hence, any path connecting v3 and v4 in S either
contains an edge conflicting with an edge of S(u1, u3), or with an edge of
S(u2, u4), or with (u3, u4) implying that S contains two conflicting edges,
or contains an edge conflicting with (u1, u2), implying that (u1, u2) has
two conflicting edges, respectively. 2

i

i

“main” — 2009/2/23 — 18:41 — page 289 — #299
i

i

i

i

i

i

10.4. AN EFFICIENT C-PLANARITY TESTING ALGORITHM 289

Lemma 10.10 Suppose that each edge of H has a conflict with a non-
separating edge. Collapse the edges in H, repeatedly applying Simplifica-
tion 2. Either the resulting multigraphs Gi are edge 2-connected or C is
not c-planar.

Proof: Order the edges of H in whichever way {e1, e2, . . . , ek}. Let ej ,
with 1 ≤ j ≤ k, be the first edge in {e1, e2, . . . , ek} such that (i) collapsing
edges e1, e2, . . . , ej−1 from the Gi’s does not create new separating edges
and (ii) collapsing edge ej creates a new separating edge ej . Suppose,
for a contradiction, that a saturator of C exists. Then, by Lemma 10.5,
there exists a saturator S containing edges e1, e2, . . . , ej−1 and not con-
taining the edges that have conflicts with edges e1, e2, . . . , ej−1. Consider
the Gi’s after edges e1, e2, . . . , ej−1 have been collapsed (and the edges
that have conflicts with edges e1, e2, . . . , ej−1 have been removed). Refer
to Fig. 10.14. Since collapsing edge ej = (v1, v2) creates a new separat-
ing edge (u3, u4), (u1, u2) and (u3, u4) compose a separation pair for a
multigraph Gi, where (u1, u2) is the edge that has a conflict with (v1, v2).
Hence, there exists a face of Gi containing (u1, u2) and (u3, u4). Since no
edge (and hence neither (u3, u4)) is conflict-free, the statement follows
from Lemma 10.9. 2

After the collapse of all the edges in H and the removal of their conflicting
edges, a set of current multigraphs Gi’s is returned. Exploiting such multi-
graphs, Condition 3 can be tested as follows. First, associate a name to each
face of each multigraph Gi; second, for each edge e in each multigraph Gi, record
the names of the two faces incident to e, and third, for each edge e in each
multigraph Gi, verify if the faces incident to e are the same. If this is true for
at least one edge, by the previous lemmas we can return that the input graph
is not c-planar, otherwise the current Gi’s are the candidate saturating graphs
of the clusters.

For each pair of distinct clusters µi and µj , we check if G∗
i,j is edge 2-

connected (Condition 4 of Theorem 10.3) and if G∗
i,j is dual to G∗

j,i (Condition 5
of Theorem 10.3). This is easily done in linear time because of the following
property.

Property 10.7
∑

i,j |G∗
i,j | = O(n), where |G∗

i,j | is the size of the graph.

Proof: It trivially follows from Property 10.6. 2

Hence, we can conclude the section with the following theorem.

i

i

“main” — 2009/2/23 — 18:41 — page 290 — #300
i

i

i

i

i

i

290
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

Theorem 10.4 The c-planarity of an n-vertex embedded flat clustered graph
C(G, T) with at most five vertices per face can be tested in O(n) time and space.

As a consequence of the arguments discussed in this section, we remark that
a theorem analogous to Theorem 10.4 holds even for single-conflict clustered
graphs.

10.5 Conclusions and Open Problems

In this chapter we have considered the problem of testing the c-planarity of a
clustered graph. We have shown that the c-planarity of embedded flat clustered
graphs with at most five vertices per face and, more generally, the c-planarity
of single-conflict embedded flat clustered graphs can be efficiently tested.

We remark that the simplification phase described in Sect. 10.3 is a pre-
processing that can be performed on any embedded flat clustered graph. This
allows to reduce the problem of testing the c-planarity of such graphs to the
one of deciding whether a set of edge 2-connected candidate saturating graphs
admits a set of non-conflicting spanning trees. However, it’s rather easy to
see that the characterization shown in Theorem 10.2 does not hold for general
embedded flat clustered graphs.

We conclude by providing a list of families of embedded clustered graphs for
which, in our opinion, determining the time complexity of a c-planarity testing
is worth of interest: (i) single-conflict general (non-flat) embedded clustered
graphs; (ii) embedded flat clustered graphs such that for each face of the un-
derlying graph there are at most two (or a constant number of) vertices of the
same cluster; and (iii) embedded flat clustered graphs.

i

i

“main” — 2009/2/23 — 18:41 — page 291 — #301
i

i

i

i

i

i

Part V

Publications and Bibliography

291

i

i

“main” — 2009/2/23 — 18:41 — page 292 — #302
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 293 — #303
i

i

i

i

i

i

Other Research Activities

Simultaneously with the research for the development of this thesis, other topics
in the area of Graph Drawing have been dealt with:

• Simultaneous Graph Drawing. A simultaneous embedding of a set of n-
vertex graphs G1, G2, . . . , Gk is a set of planar drawings Γ1, Γ2, . . . , Γk of
G1, G2, . . . , Gk on the same set of n points. Different constraints have
been considered, namely the ones in which the mapping between the ver-
tices of the graph is given or not (respectively, simultaneous embedding
with mapping and simultaneous embedding without mapping), the ones
in which the edges of the graph are forced to be drawn as straight-lines
or not (respectively, geometric simultaneous embedding and simultaneous
embedding), the ones in which edges shared by different graphs are forced
to have the same drawing or not (respectively, simultaneous embedding
with fixed edges and simultaneous embedding). The typical problems that
are studied in this field are the combinatorial determination of the classes
of graphs that always have a simultaneous embedding, and the complexity
of determining whether two or more graphs have a simultaneous embed-
ding.

• Planar Packing. A packing of a set of n-vertex graphs G1, G2, . . . , Gk is
a graph G containing graphs G1, G2, . . . , Gk as edge-disjoint subgraphs.
A planar packing is such that G is planar. The work in the area of planar
packing mainly concentrates around the conjecture that every two non-
star trees admit a planar packing.

• Straight-line Embeddings into Point Sets. A straight-line embedding of a
graph G into a point set P is a mapping of the vertices of G to the points
of P such that the resulting straight-line drawing of G is planar. Typical
questions in this area ask for the largest class of graphs that admit a

293

i

i

“main” — 2009/2/23 — 18:41 — page 294 — #304
i

i

i

i

i

i

294
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

straight-line embedding into every point set, and for the complexity of
testing whether a graph has a straight-line embedding into a given point
set. Recently, the same question referred to directed graphs and upward
straight-line embeddings has been studied.

• Bad Graph Drawing. A bad graph drawing is a drawing as unreadable as
possible. Such drawings are clearly useless for applications, however they
turn out to have nice combinatorial properties. Drawings with the maxi-
mum number of bends and drawings in which all the faces are represented
by non-convex polygons are examples of bad drawings.

i

i

“main” — 2009/2/23 — 18:41 — page 295 — #305
i

i

i

i

i

i

Publications

Journal Publications

1. G. Di Battista, F. Frati. Efficient C-Planarity Testing for Embedded
Flat Clustered Graphs with Small Faces. Journal of Graph Algorithms
and Applications, Special Issue of Selected Papers from GD ’07, 2009. To
appear.

2. F. Frati, M. Kaufmann, S. Kobourov. Constrained Simultaneous and
Near Simultaneous Embeddings. Journal of Graph Algorithms and Ap-
plications, Special Issue of Selected Papers from GD ’07, 2009. To appear.

3. P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, M. Pizzonia. C-
Planarity of C-Connected Clustered Graphs. Journal of Graph Algo-
rithms and Applications, 12(2):225-262. November 2008.

4. G. Di Battista, G. Drovandi, F. Frati. How to Draw a Clustered Tree.
Journal of Discrete Algorithms, 2009. To appear.

5. F. Frati, M. Geyer, M. Kaufmann. Planar Packings of Trees and Spider
Trees. Information Processing Letters, 109(6):301-307. February 2009.

6. G. Di Battista, F. Frati, M. Patrignani. On Embedding a Graph on
the Grid with the Maximum Number of Bends and Other Bad Features.
Theory of Computing Systems, Special Issue of Selected Papers from FUN
’07, 44(2):143-149. February 2009.

7. F. Frati. On Minimum Area Planar Upward Drawings of Directed Trees
and Other Families of Directed Acyclic Graphs. International Journal of
Computational Geometry and Applications, 18(3):251-271. June 2008.

295

i

i

“main” — 2009/2/23 — 18:41 — page 296 — #306
i

i

i

i

i

i

296
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

8. G. Di Battista, F. Frati. Small Area Drawings of Outerplanar Graphs.
Algorithmica, 2009. To appear.

Conference Publications

1. P. Angelini, F. Frati, L. Grilli. An Algorithm to Construct Greedy Draw-
ings of Triangulations. In 16th International Symposium on Graph Draw-
ing (GD ’08), volume 5417 of Lecture Notes Comput. Sci., pages 26-37,
2008.

2. G. Di Battista, F. Frati, M. Patrignani. Non-Convex Representations of
Graphs. In 16th International Symposium on Graph Drawing (GD ’08),
volume 5417 of Lecture Notes Comput. Sci., pages 390-395, 2008.

3. F. Frati. A Lower Bound on the Area Requirements of Series-Parallel
Graphs. In 34th International Workshop on Graph-Theoretic Concepts
in Computer Science (WG ’08), volume 5344 of Lecture Notes Comput.
Sci., pages 159-170, 2008.

4. Alejandro Estrella-Balderrama, F. Frati, S. Kobourov. Upward Straight-
line Embeddings of Directed Graphs into Point Sets. In 34th Interna-
tional Workshop on Graph-Theoretic Concepts in Computer Science (WG
’08), volume 5344 of Lecture Notes Comput. Sci., pages 122-133, 2008.

5. F. Frati. Straight-line Orthogonal Drawings of Binary and Ternary Trees.
In 15th International Symposium on Graph Drawing (GD ’07), volume
4875 of Lecture Notes Comput. Sci., pages 76-87, 2007.

6. F. Frati, M. Kaufmann, S. Kobourov. Constrained Simultaneous and
Near Simultaneous Embeddings. In 15th International Symposium on
Graph Drawing (GD ’07), volume 4875 of Lecture Notes Comput. Sci.,
pages 268-279, 2007.

7. G. Di Battista, F. Frati. Efficient C-Planarity Testing for Embedded Flat
Clustered Graphs with Small Faces. In 15th International Symposium on
Graph Drawing (GD ’07), volume 4875 of Lecture Notes Comput. Sci.,
pages 291-302, 2007.

8. F. Frati, M. Patrignani. A Note on Minimum Area Straight-line Drawings
of Planar Graphs. In 15th International Symposium on Graph Drawing

i

i

“main” — 2009/2/23 — 18:41 — page 297 — #307
i

i

i

i

i

i

10.5. CONCLUSIONS AND OPEN PROBLEMS 297

(GD ’07), volume 4875 of Lecture Notes Comput. Sci., pages 339-344,
2007.

9. F. Frati. Straight-line Drawings of Outerplanar Graphs in O(dn log n)
Area. In 19th Canadian Conference on Computational Geometry (CCCG
’07), pages 225-228, 2007.

10. F. Frati, M. Geyer, M. Kaufmann. Packing and Squeezing Subgraphs
into Planar Graphs. In 32nd International Symposium on Mathematical
Foundations of Computer Science (MFCS ’07), volume 4708 of Lecture
Notes Comput. Sci., pages 394-405, 2007.

11. F. Frati. On Minimum Area Planar Upward Drawings of Directed Trees
and Other Families of Directed Acyclic Graphs. In 33rd International
Workshop on Graph-Theoretic Concepts in Computer Science (WG ’07),
volume 4769 of Lecture Notes Comput. Sci., pages 133-144, 2007.

12. G. Di Battista, G. Drovandi, F. Frati. How to Draw a Clustered Tree. In
10th Workshop on Algorithms and Data Structures (WADS ’07), volume
4619 of Lecture Notes Comput. Sci., pages 89-101, 2007.

13. U. Brandes, C. Erten, J. Fowler, F. Frati, M. Geyer, C. Gutwenger, S.-H.
Hong, M. Kaufmann, S. Kobourov, G. Liotta, P. Mutzel, A. Symvonis.
Colored Simultaneous Geometric Embeddings. In 13th Annual Interna-
tional Computing and Combinatorics Conference (COCOON ’07), vol-
ume 4598 of Lecture Notes Comput. Sci., pages 254-263, 2007.

14. G. Di Battista, F. Frati, M. Patrignani. On Embedding a Graph on the
Grid with the Maximum Number of Bends and Other Bad Features. In
Fun with Algorithms (FUN ’07), volume 4475 of Lecture Notes Comput.
Sci., pages 1-13, 2007. (bibtex)

15. P. F. Cortese, G. Di Battista, F. Frati, L. Grilli, K. A. Lehmann, G.
Liotta, M. Patrignani, I. Tollis, F. Trotta. On the Topologies of Local
Minimum Spanning Trees. In 3rd Workshop on Combinatorial and Al-
gorithmic Aspects of the Networks (CAAN ’06), volume 4235 of Lecture
Notes Comput. Sci., pages 31-44, 2006.

16. F. Frati, G. Di Battista. Three Dimensional Drawings of Bounded Degree
Trees. In 14th International Symposium on Graph Drawing (GD ’06),
volume 4372 of Lecture Notes Comput. Sci., pages 89-94, 2006.

i

i

“main” — 2009/2/23 — 18:41 — page 298 — #308
i

i

i

i

i

i

298
CHAPTER 10. C-PLANARITY OF EMBEDDED FLAT CLUSTERED

GRAPHS WITH SMALL FACES

17. F. Frati. Embedding Graphs Simultaneously with Fixed Edges. In 14th
International Symposium on Graph Drawing (GD ’06), volume 4372 of
Lecture Notes Comput. Sci., pages 108-113, 2006.

18. G. Di Battista, F. Frati. Small Area Drawings of Outerplanar Graphs.
In 13th International Symposium on Graph Drawing (GD ’05), volume
3843 of Lecture Notes Comput. Sci., pages 89-100, 2005.

Technical Reports

1. G. Di Battista, F. Frati, M. Patrignani. Non-Convex Representations of
Graphs. Technical Report RT-DIA-134-2008, Dept. of Computer Science
and Automation, Roma Tre University, 2008.
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2008-134.pdf

2. A. Estrella-Balderrama, F. Frati, S. Kobourov. Upward Straight-line
Embeddings of Directed Graphs into Point Sets. Technical Report RT-
DIA-133-2008, Dept. of Computer Science and Automation, Roma Tre
University, 2008.
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2008-133.pdf

3. F. Frati, M. Kaufmann. Polynomial Area Bounds for MST Embeddings
of Trees. Technical Report RT-DIA-122-2008, Dept. of Computer Science
and Automation, Roma Tre University, 2008.
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2008-122.pdf

4. F. Frati, M. Kaufmann, S. Kobourov. Constrained Simultaneous and
Near-Simultaneous Embeddings. Technical Report RT-DIA-120-2007, Dept.
of Computer Science and Automation, University of Roma Tre, 2007.
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2007-120.pdf

5. G. Di Battista, F. Frati. Efficient C-Planarity Testing for Embedded Flat
Clustered Graphs with Small Faces. Technical Report RT-DIA-119-2007,
Dept. of Computer Science and Automation, University of Roma Tre,
2007.
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2007-119.pdf

6. G. Di Battista, G. Drovandi, F. Frati. How to Draw a Clustered Tree.
Technical Report RT-DIA-115-2007, Dept. of Computer Science and Au-
tomation, University of Roma Tre, 2007.
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2007-115.pdf

i

i

“main” — 2009/2/23 — 18:41 — page 299 — #309
i

i

i

i

i

i

10.5. CONCLUSIONS AND OPEN PROBLEMS 299

7. F. Frati, M. Geyer, M. Kaufmann. Packing and Squeezing Subgraphs into
Planar Graphs. Technical Report RT-DIA-114-2007, Dept. of Computer
Science and Automation, University of Roma Tre, 2007.
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2007-114.pdf

8. P. F. Cortese, G. Di Battista, F. Frati, L. Grilli, K. A. Lehmann, G.
Liotta, M. Patrignani, I. Tollis, F. Trotta. On the Topologies of Local
Minimum Spanning Trees. Technical Report RT-001-06, Dip. Ingegneria
Elettronica e dell’Informazione, Univ. Perugia, 2006.
http://www.diei.unipg.it/rt/RT-001-06-Cortese-DiBattista-Frati-Grilli-
Lehmann-Liotta-Patrignani-Tollis-Trotta.pdf

9. P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, M. Pizzonia. C-
Planarity of C-Connected Clustered Graphs: Part I - Characterization.
Technical Report RT-DIA-109-2006, Dip. Informatica e Automazione,
Univ. Roma Tre, 2006
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2006-109.pdf

10. P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, M. Pizzonia. C-
Planarity of C-Connected Clustered Graphs: Part II - Testing and Embed-
ding Algorithm. Technical Report RT-DIA-110-2006, Dip. Informatica e
Automazione, Univ. Roma Tre, 2006
http://dipartimento.dia.uniroma3.it/ricerca/rapporti/rt/2006-110.pdf

i

i

“main” — 2009/2/23 — 18:41 — page 300 — #310
i

i

i

i

i

i

i

i

“main” — 2009/2/23 — 18:41 — page 301 — #311
i

i

i

i

i

i

Bibliography

[AC04] S. Arora and K. L. Chang. Approximation schemes for degree-
restricted MST and red-blue separation problems. Algorithmica,
40(3):189–210, 2004.

[AFG08] P. Angelini, F. Frati, and L. Grilli. An algorithm to construct
greedy drawings of triangulations. In M. Patrignani and I. Tollis,
editors, Graph Drawing (GD ’08), LNCS, pages 26–37, 2008.

[AHU83] A. V. Aho, J. E. Hopcroft, and J. D. Ullman. Data Structures and
Algorithms. Addison-Wesley, Reading, MA, 1983.

[And63] G. E. Andrews. A lower bound for the volumes of stricly convex
bodies with many boundary points. Trans. AMS, 106:270–279,
1963.

[Aro98] S. Arora. Polynomial time approximation schemes for euclidean
traveling salesman and other geometric problems. J. ACM,
45(5):753–782, 1998.

[BB05] T. C. Biedl and F. J. Brandenburg. Drawing planar bipartite
graphs with small area. In Canadian Conference on Computational
Geometry (CCCG ’05), pages 105–108, 2005.

[BCB+94] P. Bertolazzi, R. F. Cohen, G. Di Battista, R. Tamassia, and I. G.
Tollis. How to draw a series-parallel digraph. Int. J. Comp. Geom.
Appl., 4(4):385–402, 1994.

[BCGG06] M. Ben-Chen, C. Gotsman, and S. J. Gortler. Routing with guar-
anteed delivery on virtual coordinates. In Canadian Conference
on Computational Geometry (CCCG ’06), 2006.

301

i

i

“main” — 2009/2/23 — 18:41 — page 302 — #312
i

i

i

i

i

i

302 BIBLIOGRAPHY

[BCGW07] M. Ben-Chen, C. Gotsman, and C. Wormser. Distributed compu-
tation of virtual coordinates. In J. Erickson, editor, Symposium
on Computational Geometry (SoCG ’07), pages 210–219, 2007.

[BCLO03] T. C. Biedl, T. M. Chan, and A. López-Ortiz. Drawing K2,n: A
lower bound. Inf. Process. Lett., 85(6):303–305, 2003.

[BDLM94] P. Bertolazzi, G. Di Battista, G. Liotta, and C. Mannino. Upward
drawings of triconnected digraphs. Algorithmica, 12(6):476–497,
1994.

[BF07] G. Di Battista and F. Frati. Efficient c-planarity testing for em-
bedded flat clustered graphs with small faces. In S. H. Hong,
T. Nishizeki, and W. Quan, editors, Graph Drawing (GD ’07),
volume 4875 of LNCS, pages 291–302, 2007.

[BFM07] N. Bonichon, S. Felsner, and M. Mosbah. Convex drawings of
3-connected plane graphs. Algorithmica, 47(4):399–420, 2007.

[Bie02] T. C. Biedl. Drawing outer-planar graphs in O(n log n) area. In
M. T. Goodrich, editor, Graph Drawing (GD ’02), volume 2528 of
LNCS, pages 54–65, 2002.

[Bie05] T. C. Biedl. Small poly-line drawings of series-parallel graphs.
Tech. Report CS-2007-23, School of Computer Science, University
of Waterloo, Canada, 2005.

[BKK97] T. C. Biedl, G. Kant, and M. Kaufmann. On triangulating pla-
nar graphs under the four-connectivity constraint. Algorithmica,
19(4):427–446, 1997.

[BL76] K. Booth and G. Lueker. Testing for the consecutive ones property
interval graphs and graph planarity using PQ-tree algorithms. J.
Comp. Syst. Sci., 13:335–379, 1976.

[BLL96] P. Bose, W. Lenhart, and G. Liotta. Characterizing proximity
trees. Algorithmica, 16(1):83–110, 1996.

[BM76] J. A. Bondy and U. S. R. Murty. Graph Theory with Applications.
Macmillan, London, United Kingdom, 1976.

[Bos02] P. Bose. On embedding an outer-planar graph in a point set.
Computat. Geom. Th. Appl., 23(3):303–312, 2002.

i

i

“main” — 2009/2/23 — 18:41 — page 303 — #313
i

i

i

i

i

i

BIBLIOGRAPHY 303

[BP92] I. Bárány and J. Pach. On the number of convex lattice polygons.
Combinatorics, Probability & Computing, 1:295–302, 1992.

[BR06] I. Bárány and G. Rote. Strictly convex drawings of planar graphs.
Documenta Math., 11:369–391, 2006.

[Bra08] F. J. Brandenburg. Drawing planar graphs on 8
9n2 area. Elet.

Notes Discr. Math., 31:37–40, 2008.

[BSM02] N. Bonichon, B. Le Saëc, and M. Mosbah. Optimal area algorithm
for planar polyline drawings. In L. Kucera, editor, Graph-Theoretic
Concepts in Computer Science (WG ’02), volume 2573 of LNCS,
pages 35–46, 2002.

[BT04] I. Bárány and N. Tokushige. The minimum area of convex lattice
n-gons. Combinatorica, 24(2):171–185, 2004.

[CB05] P. F. Cortese and G. Di Battista. Clustered planarity. In Sympo-
sium on Computational Geometry (SoCG ’05), pages 32–34, 2005.

[CBF+08] P. F. Cortese, G. Di Battista, F. Frati, M. Patrignani, and M. Piz-
zonia. C-planarity of c-connected clustered graphs. J. Graph Alg.
Appl., 12(2):225–262, 2008.

[CBP92] P. Crescenzi, G. Di Battista, and A. Piperno. A note on optimal
area algorithms for upward drawings of binary trees. Computat.
Geom. Th. Appl., 2:187–200, 1992.

[CDGK01] C. C. Cheng, C. A. Duncan, M. T. Goodrich, and S. G. Kobourov.
Drawing planar graphs with circular arcs. Discr. Computat.
Geom., 25(3):405–418, 2001.

[CDPP05a] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia.
Clustering cycles into cycles of clusters. J. Graph Alg. Appl.,
9(3):391–413, 2005.

[CDPP05b] P. F. Cortese, G. Di Battista, M. Patrignani, and M. Pizzonia.
On embedding a cycle in a plane graph. In P. Healy and N. S.
Nikolov, editors, Graph Drawing (GD ’05), volume 3843 of LNCS,
pages 49–60, 2005.

i

i

“main” — 2009/2/23 — 18:41 — page 304 — #314
i

i

i

i

i

i

304 BIBLIOGRAPHY

[CGKT02] T. M. Chan, M. T. Goodrich, S. Rao Kosaraju, and R. Tamassia.
Optimizing area and aspect ratio in straight-line orthogonal tree
drawings. Computat. Geom. Th. Appl., 23(2):153–162, 2002.

[CGT96] M. Chrobak, M. T. Goodrich, and R. Tamassia. Convex drawings
of graphs in two and three dimensions (preliminary version). In
Symposium on Computational Geometry (SoCG ’96), pages 319–
328, 1996.

[Cha02] T.M. Chan. A near-linear area bound for drawing binary trees.
Algorithmica, 34(1):1–13, 2002.

[Cha04] T. M. Chan. Euclidean bounded-degree spanning tree ratios.
Discr. Computat. Geom., 32(2):177–194, 2004.

[CK97] M. Chrobak and G. Kant. Convex grid drawings of 3-connected
planar graphs. Int. J. Comp. Geom. Appl., 7(3):211–223, 1997.

[CLJ06] H. Cheng, Q. Liu, and X. Jia. Heuristic algorithms for real-
time data aggregation in wireless sensor networks. In S. Onoe,
M. Guizani, H.-H. Chen, and M. Sawahashi, editors, Wireless
Communications and Mobile Computing Conference (IWCMC
’08), pages 1123–1128, 2006.

[CLRS01] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. In-
troduction to Algorithms. McGraw-Hill Book Company, Boston,
MA, 2001.

[CN98] M. Chrobak and S.-I. Nakano. Minimum-width grid drawings of
plane graphs. Computat. Geom. Th. Appl., 11:29–54, 1998.

[CP95] M. Chrobak and T. H. Payne. A linear-time algorithm for drawing
a planar graph on a grid. Inf. Process. Lett., 54(4):241–246, 1995.

[CW06] S. Cornelsen and D. Wagner. Completely connected clustered
graphs. J. Discrete Algorithms, 4(2):313–323, 2006.

[CYN84] N. Chiba, T. Yamanouchi, and T. Nishizeki. Linear algorithms for
convex drawings of planar graphs. In J. A. Bondy and U. S. R.
Murty, editors, Progress in Graph Theory, pages 153–173. Aca-
demic Press, New York, NY, 1984.

i

i

“main” — 2009/2/23 — 18:41 — page 305 — #315
i

i

i

i

i

i

BIBLIOGRAPHY 305

[Dah98] E. Dahlhaus. A linear time algorithm to recognize clustered graphs
and its parallelization. In C. L. Lucchesi and A. V. Moura, edi-
tors, Latin American Theoretical Informatics (LATIN ’98), LNCS,
pages 239–248, 1998.

[DDF07] G. Di Battista, G. Drovandi, and F. Frati. How to draw a clustered
tree. In F. K. H. A. Dehne, J. R. Sack, and N. Zeh, editors, Algo-
rithms and Data Structures (WADS ’07), volume 4619 of LNCS,
pages 89–101, 2007.

[DDF09] G. Di Battista, G. Drovandi, and F. Frati. How to draw a clustered
tree. J. Discrete Algorithms, 2009. To appear.

[Del34] B. Delaunay. Sur la sphére vide. Bull. Acad. Sci. USSR (VII),
Classe Sci. Mat. Nat., 7:793–800, 1934.

[DETT99] G. Di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Graph
Drawing. Prentice Hall, Upper Saddle River, NJ, 1999.

[DF05] G. Di Battista and F. Frati. Small area drawings of outerplanar
graphs. In Healy and Nikolov, editors, Graph Drawing (GD ’05),
volume 3843 of LNCS, pages 89–100, 2005.

[DF09] G. Di Battista and F. Frati. Small area drawings of outerplanar
graphs. Algorithmica, 2009. To appear.

[Dha08] R. Dhandapani. Greedy drawings of triangulations. In S. T.
Huang, editor, Symposium on Discrete Algorithms (SODA ’08),
pages 102–111, 2008.

[Die05] R. Diestel. Graph Theory. Springer, Heidelberg, Germany, 2005.

[Dil90] M. B. Dillencourt. Realizability of Delaunay triangulations. Inf.
Process. Lett., 33(6):283–287, 1990.

[DLL94] G. Di Battista, W. Lenhart, and G. Liotta. Proximity drawability:
a survey. In R. Tamassia and I. G. Tollis, editors, Graph Drawing
(GD ’94), volume 894 of LNCS, pages 328–339, 1994.

[DLMW05] E. Di Giacomo, G. Liotta, H. Meijer, and S. K. Wismath. Vol-
ume requirements of 3D upward drawings. In P. Healy and N. S.
Nikolov, editors, Graph Drawing (GD ’05), pages 101–110, 2005.

i

i

“main” — 2009/2/23 — 18:41 — page 306 — #316
i

i

i

i

i

i

306 BIBLIOGRAPHY

[DLR90] G. Di Battista, W.P. Liu, and I. Rival. Bipartite graphs, upward
drawings, and planarity. Inf. Process. Lett., 36(6):317–322, 1990.

[DLW06] G. Di Battista, G. Liotta, and S. Whitesides. The strength of weak
proximity. J. Discrete Algorithms, 4(3):384–400, 2006.

[dPP88] H. de Fraysseix, J. Pach, and R. Pollack. Small sets supporting
fáry embeddings of planar graphs. In Symposium on Theory of
Computing (STOC ’88), pages 426–433, 1988.

[dPP90] H. de Fraysseix, J. Pach, and R. Pollack. How to draw a planar
graph on a grid. Combinatorica, 10(1):41–51, 1990.

[dR82] H. de Fraysseix and P. Rosenstiehl. A depth-first-search charac-
terization of planarity. Ann. Discr. Math., 13:75–80, 1982.

[DS96] M. B. Dillencourt and W. D. Smith. Graph-theoretical conditions
for inscribability and Delaunay realizability. Discr. Math., 161(1-
3):63–77, 1996.

[DT81] D. Dolev and H. W. Trickey. On linear area embedding of pla-
nar graphs. Technical report, Stanford University, Stanford, USA,
1981.

[DT88] G. Di Battista and R. Tamassia. Algorithms for plane representa-
tions of acyclic digraphs. Theor. Comput. Sci., 61:175–198, 1988.

[DT90] G. Di Battista and R. Tamassia. On-line graph algorithms with
SPQR-trees. In M. Paterson, editor, International Colloquium
on Automata, Languages and Programming (ICALP ’90), LNCS,
pages 598–611, 1990.

[DT96a] G. Di Battista and R. Tamassia. On-line maintenance of tricon-
nected components with spqr-trees. Algorithmica, 15(4):302–318,
1996.

[DT96b] G. Di Battista and R. Tamassia. On-line planarity testing. SIAM
J. Comput., 25(5):956–997, 1996.

[DTL99] G. Di Battista, R. Tamassia, and Vismara L. Output-sensitive
reporting of disjoint paths. Algorithmica, 23(4):302–340, 1999.

i

i

“main” — 2009/2/23 — 18:41 — page 307 — #317
i

i

i

i

i

i

BIBLIOGRAPHY 307

[DTT92] G. Di Battista, R. Tamassia, and I. G. Tollis. Area requirement
and symmetry display of planar upward drawings. Disc. Computat.
Geom., 7:381–401, 1992.

[DTV01] G. Di Battista, R. Tamassia, and L. Vismara. Incremental convex
planarity testing. Inf. Comput., 169(1):94–126, 2001.

[dvKOS00] M. de Berg, M. van Kreveld, M. Overmars, and O. Schwarzkopf.
Computational Geometry - Algorithms and Applications. Springer,
Heidelberg, Germany, 2000.

[Ede87] H. Edelsbrunner. Algorithms in Combinatorial Geometry.
Springer, New York, NY, 1987.

[EFLN06] P. Eades, Q. Feng, X. Lin, and H. Nagamochi. Straight-line draw-
ing algorithms for hierarchical graphs and clustered graphs. Algo-
rithmica, 44(1):1–32, 2006.

[EFN99] P. Eades, Q. Feng, and H. Nagamochi. Drawing clustered graphs
on an orthogonal grid. J. Graph Alg. Appl., 3(4):3–29, 1999.

[EG08] D. Eppstein and M. Goodrich. Succinct greedy graph drawing in
the hyperbolic plane. In M. Patrignani and I. Tollis, editors, Graph
Drawing 2008, pages 14–25, 2008.

[Epp92] D. Eppstein. Parallel recognition of series-parallel graphs. Inf.
Comput., 98(1):41–55, 1992.

[ET76] S. Even and R. E. Tarjan. Computing an st-numbering. Theor.
Comp. Sci., 2:339–344, 1976.

[Eve79] S. Even. Graph Algorithms. Computer Science Press, Potomac,
Maryland, 1979.

[EW96a] P. Eades and S. Whitesides. The logic engine and the realiza-
tion problem for nearest neighbor graphs. Theor. Comput. Sci.,
169(1):23–37, 1996.

[EW96b] P. Eades and S. Whitesides. The realization problem for euclidean
minimum spanning trees in NP-hard. Algorithmica, 16(1):60–82,
1996.

i

i

“main” — 2009/2/23 — 18:41 — page 308 — #318
i

i

i

i

i

i

308 BIBLIOGRAPHY

[Far48] I. Fary. On straight line representions of planar graphs. Acta. Sci.
Math., 11:229–233, 1948.

[FCE95a] Q. Feng, R. F. Cohen, and P. Eades. How to draw a planar clus-
tered graph. In D. Du and M. Li, editors, Computing and Combi-
natorics Conference (COCOON ’95), pages 21–30, 1995.

[FCE95b] Q. Feng, R. F. Cohen, and P. Eades. Planarity for clustered
graphs. In P. G. Spirakis, editor, European Symposium on Al-
gorithms (ESA ’95), volume 979 of LNCS, pages 213–226, 1995.

[Fen97] Q. Feng. Algorithms for Drawing Clustered Graphs. PhD thesis,
The University of Newcastle, Australia, 1997.

[FK08] F. Frati and M. Kaufmann. Polynomial area bounds for MST
embeddings of trees. Tech. Report RT-DIA-122-2008, Dept. of
Computer Science and Automation, Roma Tre University, 2008.

[FLW03] S. Felsner, G. Liotta, and S. K. Wismath. Straight-line drawings
on restricted integer grids in two and three dimensions. J. Graph
Alg. Appl., 7(4):363–398, 2003.

[FP07] F. Frati and M. Patrignani. A note on minimum area straight-line
drawings of planar graphs. In S. H. Hong and T. Nishizeki, editors,
Graph Drawing (GD ’07), LNCS, pages 339–344, 2007.

[Fra07a] F. Frati. On minimum area planar upward drawings of di-
rected trees and other families of directed acyclic graphs. In
A. Brandstädt, D. Kratsch, and H. Müller, editors, Graph-
Theoretic Concepts in Computer Science (WG ’07), volume 4769
of LNCS, pages 133–144, 2007.

[Fra07b] F. Frati. Straight-line drawings of outerplanar graphs in o(dn log
n) area. In P. Bose, editor, Canadian Conference on Computa-
tional Geometry (CCCG ’07), pages 225–228, 2007.

[Fra07c] F. Frati. Straight-line orthogonal drawings of binary and ternary
trees. In S. H. Hong, T. Nishizeki, and W. Quan, editors, Graph
Drawing (GD ’07), volume 4875 of LNCS, pages 76–87, 2007.

[Fra08a] F. Frati. A lower bound on the area requirements of series-parallel
graphs. In H. Broersma and T. Erlebach, editors, Graph-Theoretic

i

i

“main” — 2009/2/23 — 18:41 — page 309 — #319
i

i

i

i

i

i

BIBLIOGRAPHY 309

Concepts in Computer Science (WG ’08), volume 5344 of LNCS,
pages 159–170, 2008.

[Fra08b] F. Frati. On minimum area planar upward drawings of directed
trees and other families of directed acyclic graphs. Int. J. Comput.
Geom. Appl., 18(3):251–271, 2008.

[GDLW06] E. Di Giacomo, W. Didimo, G. Liotta, and S. K. Wismath. Book
embeddability of series-parallel digraphs. Algorithmica, 45(4):531–
547, 2006.

[GGT96] A. Garg, M. T. Goodrich, and R. Tamassia. Planar upward
tree drawings with optimal area. Int. J. Comput. Geom. Appl.,
6(3):333–356, 1996.

[Gia03] E. Di Giacomo. Drawing series-parallel graphs on restricted integer
3d grids. In G. Liotta, editor, Graph Drawing (GD ’03), volume
2912 of LNCS, pages 238–246, 2003.

[GJ79] M. R. Garey and D. S. Johnson. Computers and Intractability: A
Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.

[GJL+02] C. Gutwenger, M. Jünger, S. Leipert, P. Mutzel, M. Percan,
and R. Weiskircher. Advances in c-planarity testing of clustered
graphs. In S. G. Kobourov and M. T. Goodrich, editors, Graph
Drawing (GD ’02), volume 2528 of LNCS, pages 220–235, 2002.

[GLS05] M. T. Goodrich, G. S. Lueker, and J. Z. Sun. C-planarity of
extrovert clustered graphs. In P. Healy and N. Nikolov, editors,
Graph Drawing (GD ’05), volume 3843 of LNCS, pages 211–222,
2005.

[GM98] C. Gutwenger and P. Mutzel. Planar polyline drawings with good
angular resolution. In S. Whitesides, editor, Graph Drawing (GD
’98), volume 1547 of LNCS, pages 167–182, 1998.

[Gon05] D. Gonçalves. Edge partition of planar graphs into two outerplanar
graphs. In H. N. Gabow and R. Fagin, editors, Symposium on
Theory of Computing (STOC ’05), pages 504–512. ACM, 2005.

[GPP91] P. Gritzmann, B. Mohar J. Pach, and R. Pollack. Embedding a
planar triangulation with vertices at specified positions. Amer.
Math. Monthly, 98:165–166, 1991.

i

i

“main” — 2009/2/23 — 18:41 — page 310 — #320
i

i

i

i

i

i

310 BIBLIOGRAPHY

[GR94] Z. Gao and R. B. Richter. 2-walks in circuit graphs. J. Comb.
Theory, Ser. B, 62(2):259–267, 1994.

[GR02] Ashim Garg and Adrian Rusu. Straight-line drawings of binary
trees with linear area and arbitrary aspect ratio. In S. G. Kobourov
and M. T. Goodrich, editors, Graph Drawing (GD ’02), volume
2528 of LNCS, pages 320–331, 2002.

[GR03a] A. Garg and A. Rusu. Area-efficient drawings of outerplanar
graphs. In G. Liotta, editor, Graph Drawing (GD ’03), pages
129–134, 2003.

[GR03b] A. Garg and A. Rusu. Area-efficient order-preserving planar
straight-line drawings of ordered trees. Int. J. Comput. Geometry
Appl., 13(6):487–505, 2003.

[GR03c] A. Garg and A. Rusu. Straight-line drawings of general trees
with linear area and arbitrary aspect ratio. In V. Kumar, M. L.
Gavrilova, C. J. K. Tan, and P. L’Ecuyer, editors, Computational
Science and its Applications (ICCSA ’03), volume 2669 of LNCS,
pages 876–885, 2003.

[GR04] A. Garg and A. Rusu. Straight-line drawings of binary trees
with linear area and arbitrary aspect ratio. J. Graph Alg. Appl.,
8(2):135–160, 2004.

[GR07] A. Garg and A. Rusu. Area-efficient planar straight-line draw-
ings of outerplanar graphs. Discr. Appl. Math., 155(9):1116–1140,
2007.

[GS69] K. R. Gabriel and R. R. Sokal. A new statistical approach to geo-
graphic variation analysis. Systematic Zoology, 18:259–270, 1969.

[GT94] A. Garg and R. Tamassia. Efficient computation of planar straight-
line upward drawings. In Graph Drawing (GD ’94), pages 298–306,
1994.

[GT01] A. Garg and R. Tamassia. On the computational complexity
of upward and rectilinear planarity testing. SIAM J. Comput.,
31(2):601–625, 2001.

[GT02] M. T. Goodrich and R. Tamassia. Algorithm Design. John Wiley
and Sons, New York, NY, 2002.

i

i

“main” — 2009/2/23 — 18:41 — page 311 — #321
i

i

i

i

i

i

BIBLIOGRAPHY 311

[Har72] F. Harary. Graph Theory. Addison-Wesley, Reading, MA, 1972.

[He97] X. He. Grid embedding of 4-connected plane graphs. Discr. Com-
putat. Geom., 17(3):339–358, 1997.

[HL96] M. D. Hutton and A. Lubiw. Upward planarity testing of single-
source acyclic digraphs. SIAM J. Comput., 25(2):291–311, 1996.

[HP66] F. Harary and G. Prins. The block-cutpoint-tree of a graph. Publ.
Math. Debr., 13:103–107, 1966.

[HT74] J. Hopcroft and R. E. Tarjan. Efficient planarity testing. J. ACM,
21(4):549–568, 1974.

[JJKL08] V. Jelinek, E. Jelinkova, J. Kratochvil, and B. Lidicky. Clustered
planarity: Embedded clustered graphs with two-component clus-
ters. In M. Patrignani and I. Tollis, editors, Graph Drawing (GD
’08), LNCS, pages 121–132, 2008.

[JKK+07] E. Jelinkova, J. Kara, J. Kratochvil, M. Pergel, O. Suchy, and
T. Vyskocil. Clustered planarity: Small clusters in eulerian graphs.
In S. H. Hong, T. Nishizeki, and W. Quan, editors, Graph Drawing
(GD ’07), volume 4875 of LNCS, pages 303–314, 2007.

[Kan96] G. Kant. Drawing planar graphs using the canonical ordering.
Algorithmica, 16(1):4–32, 1996.

[Kan97] G. Kant. A more compact visibility representation. Int. J. Com-
put. Geom. Appl., 7(3):197–210, 1997.

[Kau07] M. Kaufmann. Polynomial area bounds for MST embeddings of
trees. In S. H. Hong, T. Nishizeki, and W. Quan, editors, Graph
Drawing (GD ’07), volume 4875 of LNCS, pages 88–100, 2007.

[KB97] G. Kant and H. L. Bodlaender. Triangulating planar graphs while
minimizing the maximum degree. Inf. Comput., 135(1):1–14, 1997.

[KH93] G. Kant and X. He. Two algorithms for finding rectangular du-
als of planar graphs. In J. van Leeuwen, editor, Graph-Theoretic
Concepts in Computer Science (WG ’93), volume 790 of LNCS,
pages 396–410, 1993.

i

i

“main” — 2009/2/23 — 18:41 — page 312 — #322
i

i

i

i

i

i

312 BIBLIOGRAPHY

[Kim95] S.K. Kim. Simple algorithms for orthogonal upward drawings of
binary and ternary trees sung. In Canadian Conference on Com-
putational Geometry (CCCG ’95), pages 115–120, 1995.

[Kin06] J. A. King. Realization of degree 10 minimum spanning trees
in 3-space. In Canadian Conference on Computational Geometry
(CCCG ’06), 2006.

[Kir88] D. G. Kirkpatrick. Establishing order in planar subdivisions.
Discr. Computat. Geom., 3:267–280, 1988.

[KKM29] B. Knaster, C. Kuratowski, and C. Mazurkiewicz. Ein beweis des
fixpunktsatzes fur n dimensionale simplexe. Fund. Math., 14:132–
137, 1929.

[Kle07] R. Kleinberg. Geographic routing using hyperbolic space. In IN-
FOCOM ’07, pages 1902–1909, 2007.

[Kur30] K. Kuratowski. Sur le problme des courbes gauches en topologie.
Fund. Math., 15:271–283, 1930.

[KW01] M. Kaufmann and D. Wagner, editors. Drawing Graphs, Methods
and Models, volume 2025 of LNCS. Spinger, 2001.

[LB95] G. Liotta and G. Di Battista. Computing proximity drawings
of trees in the 3-dimensional space. In S. G. Akl, F. K. H. A.
Dehne, J.-R. Sack, and N. Santoro, editors, Algorithms and Data
Structures (WADS ’95), pages 239–250, 1995.

[Lee56] J. Leech. The problem of the thirteen spheres. Math. Gaz., 40:22–
23, 1956.

[Lio95] G. Liotta. Computing Proximity Drawings of Graphs. PhD thesis,
University of Rome “La Sapienza”, Italy, 1995.

[LL96] W. Lenhart and G. Liotta. Proximity drawings of outerplanar
graphs. In S. C. North, editor, Graph Drawing (GD ’96), volume
1190 of LNCS, pages 286–302, 1996.

[LM08] T. Leighton and A. Moitra. Some results on greedy embeddings in
metric spaces. In Foundations of Computer Science (FOCS ’08),
pages 337–346, 2008.

i

i

“main” — 2009/2/23 — 18:41 — page 313 — #323
i

i

i

i

i

i

BIBLIOGRAPHY 313

[LS93] A. Lubiw and N. Sleumer. Maximal outerplanar graphs are relative
neighborhood graphs. In Canadian Conference on Computational
Geometry (CCCG ’93), pages 198–203, 1993.

[LTTV97] G. Liotta, R. Tamassia, I. G. Tollis, and P. Vocca. Area require-
ment of gabriel drawings. In G. Bongiovanni, D. P. Bovet, and
G. Di Battista, editors, Italian Conference on Algorithms and
Complexity (CIAC ’97), volume 1203 of LNCS, pages 135–146,
1997.

[Mit99] J. S. B. Mitchell. Guillotine subdivisions approximate polygonal
subdivisions: A simple polynomial-time approximation scheme for
geometric TSP, k-MST, and related problems. SIAM J. Comput.,
28(4):1298–1309, 1999.

[MNN01] Kazuyuki Miura, Shin-Ichi Nakano, and Takao Nishizeki. Grid
drawings of 4-connected plane graphs. Discr. Computat. Geom.,
26(1):73–87, 2001.

[MS92] C. L. Monma and S. Suri. Transitions in geometric minimum
spanning trees. Discr. Computat. Geom., 8:265–293, 1992.

[NC88] T. Nishizeki and N. Chiba. Planar Graphs: Theory and Algo-
rithms. North-Holland, Amsterdam, 1988.

[NR04] T. Nishizeki and M. S. Rahman. Planar Graph Drawing. Word
Scientific, Singapore, 2004.

[Pap94] A. Papakostas. Upward planarity testing of outerplanar dags. In
R. Tamassia and I. G. Tollis, editors, Graph Drawing (GD ’94),
volume 894 of LNCS, pages 298–306, 1994.

[PCJ97] H. C. Purchase, R. F. Cohen, and M. I. James. An experimental
study of the basis for graph drawing algorithms. ACM J. Exp.
Alg., 2:4, 1997.

[PR05] C. H. Papadimitriou and D. Ratajczak. On a conjecture related
to geometric routing. Theor. Comput. Sci., 344(1):3–14, 2005.

[PS85] F. Preparata and M. I. Shamos. Computational Geometry: An
Introduction. Springer, New York, NY, 1985.

i

i

“main” — 2009/2/23 — 18:41 — page 314 — #324
i

i

i

i

i

i

314 BIBLIOGRAPHY

[Pur00] H. C. Purchase. Effective information visualisation: a study of
graph drawing aesthetics and algorithms. Interacting with Com-
puters, 13(2):147–162, 2000.

[PV84] C. H. Papadimitriou and U. V. Vazirani. On two geometric prob-
lems related to the traveling salesman problem. J. Algorithms,
5:231–246, 1984.

[PV04] P. Penna and P. Vocca. Proximity drawings in polynomial area
and volume. Comput. Geom. Th. Appl., 29(2):91–116, 2004.

[Rab93] S. Rabinowitz. O(n3) bounds for the area of a convex lattice n-gon.
Geocombinatorics, 2:85–88, 1993.

[Rot05] G. Rote. Strictly convex drawings of planar graphs. In Symposium
on Discrete Algorithms (SODA ’05), pages 728–734, 2005.

[RPSS03] A. Rao, C. H. Papadimitriou, S. Shenker, and I. Stoica. Ge-
ographic routing without location information. In D. B. John-
son, A. D. Joseph, and N. H. Vaidya, editors, Conference on Mo-
bile Computing and Networking (MOBICOM 2003), pages 96–108,
2003.

[RT86] P. Rosenstiehl and R. E. Tarjan. Rectilinear planar layouts and
bipolar orientations of planar graphs. Discr. Computat. Geom.,
1:343–353, 1986.

[Sch90] W. Schnyder. Embedding planar graphs on the grid. In Symposium
on Discrete Algorithms (SODA ’90), pages 138–148, 1990.

[Shi76] Y. Shiloach. Arrangements of Planar Graphs on the Planar Lat-
tice. PhD thesis, Weizmann Institute for Science, 1976.

[SJTV08] O. Suchy, V. Jelinek, M. Tesar, and T. Vyskocil. Clustered pla-
narity: Clusters with few outgoing edges. In M. Patrignani and
I. Tollis, editors, Graph Drawing (GD ’08), LNCS, pages 102–113,
2008.

[SKC00] C.S. Shin, S. K. Kim, and K.Y. Chwa. Area-efficient algorithms for
straight-line tree drawings. Comput. Geom. Th. Appl., 15(4):175–
202, 2000.

i

i

“main” — 2009/2/23 — 18:41 — page 315 — #325
i

i

i

i

i

i

BIBLIOGRAPHY 315

[ST92] W. Schnyder and W. Trotter. Convex drawings of planar graphs.
Abstracts of the AMS, 92T-05-135, 1992.

[Ste51] S. K. Stein. Convex maps. Amer. Math. Soc., 2:464–466, 1951.

[Sud04] M. Suderman. Pathwidth and layered drawings of trees. Int. J.
Comp. Geom. Appl., 14(3):203–225, 2004.

[Tam87] R. Tamassia. On embedding a graph in the grid with the minimum
number of bends. SIAM J. Comput., 16(3):421–444, 1987.

[Tho80] C. Thomassen. Planarity and duality of finite and infinite graphs.
J. Comb. Theory, Ser. B, 29(2):244–271, 1980.

[Tho84] C. Thomassen. Plane representations of graphs. In Progress in
Graph Theory, pages 43–69. Academic Press, 1984.

[TT86] R. Tamassia and I. G. Tollis. A unified approach a visibility rep-
resentation of planar graphs. Discr. Computat. Geom., 1:321–341,
1986.

[Tut60] W. T. Tutte. Convex representations of graphs. London Math.
Soc., 10:304–320, 1960.

[Tut63] W. T. Tutte. How to draw a graph. London Math. Soc., 13(3):743–
768, 1963.

[Val81] L. G. Valiant. Universality considerations in VLSI circuits. IEEE
Trans. Comp., 30(2):135–140, 1981.

[VTL82] J. Valdes, R. E. Tarjan, and E. L. Lawler. The recognition of series
parallel digraphs. SIAM J. Comput., 11(2):298–313, 1982.

[Wag36] K. Wagner. Bemerkungen zum vierfarbenproblem. Jahresbericht.
German. Math.-Verein, 2:26–32, 1936.

[Wag37] K. Wagner. Uber eine eigenschaft der ebenen komplexe. Math.
Ann., 114:570–590, 1937.

[Woo82] D. Woods. Drawing Planar Graphs. PhD thesis, Stanford Univer-
sity, CA, 1982.

i

i

“main” — 2009/2/23 — 18:41 — page 316 — #326
i

i

i

i

i

i

316 BIBLIOGRAPHY

[ZH03] H. Zhang and X. He. Compact visibility representation and
straight-line grid embedding of plane graphs. In F. K. H. A. Dehne,
J. R. Sack, and M. H. M. Smid, editors, Algorithms and Data
Structures (WADS ’03), volume 2748 of LNCS, pages 493–504,
2003.

