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Prelude: Frege’s Grundgesetze

Frege’s Grundgesetze [Frel3| contain one of the first rigorous formulations of a formalism for
second order logic. As everybody knows, Frege’s theory was shown to be inconsistent by Russell
in 1901. However, [Frel3| contains an argument purported to show that all expressions in his
formalism “have a denotation”, and in particular that all propositions denote a definite truth-
value. If this had been the case, then the consistency of the theory would have followed from
that. Hence, Frege’s argument was not correct.

I believe that there is no better prelude to this thesis than to give a sketch of Frege’s wrong
argument, and to briefly highlight its fallacies: on the one hand this proof provides a very
instructive example of the obstinate circularity of second order reasoning, the actual subject of
this work; on the other hand, Frege’s unfortunate attempt anticipates, seventy years before, a
similar and equally unfortunate attempt which is discussed throughout this text: in 1970 Martin-
Lof presented a very elegant higher order type theory containing an impredicative type of all
types. The Swedish logician provided an argument for the normalization of his theory, obtained
by a natural generalization of Girard’s argument in [Gir72] for the normalization of System F'.
One year later, Girard showed Martin-Lof’s theory to be inconsistent, by deriving a paradox in
it.

Though being yet another victim of the obstinate circularity of higher order logic, Martin-
Lof’s elegant theory constitutes one of the main sources of both philosophical and technical
inspiration for this thesis. Much of what is claimed or discussed in the following pages comes
from the subtle analysis of impredicativity made possible by this unfortunate episode.

Let us come to Frege’s proof, then.

The language of the Grundgesetze (let us call it G) would be called nowadays a functional lan-
guage. It was based on Frege’s distinction between saturated and unsaturated expressions, which
roughly corresponds to the distinction between closed and open terms in modern functional
theories: unsaturated expressions are those which contain free variables. In Frege’s terminol-
ogy, saturated expressions are names for objects, while unsaturated expressions are names for
functions. For instance, a free variable x stands, in G, as a name of a function.

A peculiar class of saturated expressions is the class of propositions, which are, in Frege’s
terminology, names for the True or for the False.

Functions can be divided into two classes: first-level functions f(x), g(z),... are unsaturated
expressions whose free variables z,y,z,... can be substituted for (names of) objects; second-
level functions ¢(X(x)),9¥(X (x)) are unsaturated expressions whose free variables X,Y, Z, ...
can be substituted for (names of) first-level functions; a special second-level function is the
function Az.(X (x))El, which allows to associate, with any first-level function f(z), a course-of-
value expression, i.e. a saturated expression \z.f(x) intuitively denoting the class of all objects

Lwhere we replace Frege’s e notation with a more modern \ notation.

7
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falling under the concept expressed by the function f(z).

A peculiar class of first level functions is the class of truth-functions, which yield a proposition
as soon as their free variables are substituted for (names of) objects: for instance, the function
2?2 —1 = (z+1) x (x—1) yields the value True as soon as the variable x is replaced by a numerical
expression.

In §29 Frege defines what it means for an expression of G to have a denotation. Frege assumes
that the expressions True and False, so as the numerals 1,2, 3, ... have a (obvious) denotation;
then he states that a saturated expression has a denotation if it yields a denoting expression when
it is substituted for the free variables of an (appropriate) denoting unsaturated expression. An
unsaturated expression has a denotation if the result of replacing its free variables with denoting
saturated expressions always yields a denoting saturated expression.

In §30 Frege finally states and (tries to) prove a consistency theorem of the form: every
expression in G has a denotation. This would imply that every proposition has a denotation,
which is either the True, either the False, and thus that the theory G is consistent (as it is
remarked in [Dum9Tal, it is unclear from Frege’s text if he was aware of this fact).

Remark that Frege’s notion of denotation differs in many respect from the definition of a
model-theoretic satisfaction relation. Indeed, expressions are not interpreted as elements of
a model; on the contrary, Frege takes for granted that the constants of his language have a
denotation and takes this as the basis of an inductive definition: as he remarks,

These propositions are not to be construed as definitions of the words “to have a reference”
or “to refer to something”, because their application always assumes that some names have
already been recognized as having a reference; they can however serve to widen, step by
step, the circle of names so recognized. [Erel3]

Rather, to the eyes of the type-theorist, Frege’s stipulations might remind the clauses defining
the computability or reducibility predicates (see [Tai67, [Gir72|) for typed A-terms, a technique
used to prove normalization theorems for typed A-calculi. Indeed, if the reader takes True and
False as the two only normal proposition, then he can look at Frege’s consistency proof as a
sort of normalization argument, showing that every proposition has a normal form.

Frege’s proof is carried out following the inductive definition of the property of “having a
denotation”; here we limit ourselves to the case of propositions. The basis case is obvious, since
True and False denote, respectively, the True and the False, so as numerals 1,2,3,... denote
the numbers 1,2,3,.... For the case of a first-level function f(z), he shows that, if N is a
denoting object, then f(INV) is too; for instance, if f(x) is the function z = :LE|, he assumes P
to be a denoting proposition, i.e. corresponding to a truth-value, and shows that f(P) must
denote the True. As a consequence, propositions built by substituting denoting objects for the
free variables of a first-level functions have a denotation. He argues similarly for propositions of
the form fo(m)ﬂ

The most important and delicate case concerns second-level functions: Frege first assumes
f(z) to be a denoting first-level functions and argues that, if $(X(z)) is a second-level function,
then the first-level function ¢(X (2))[f(z)/X] = ¢(f(x)) has a denotation (as a consequence of the
argument above for first-level functions); hence he can argue that, if (X (z)) is a second-level
function having a denotation, then the first-level function V.X.¢(X (x))E| must have a denota-
tion: for all object N, either for all first-level functions f(z), ¢(f(N)) is the True, and then

2Written as |_|: z in Frege’s original notation.

x
3—2— f(a) in Frege’s notation.
4—C— ¢(a) in Frege’s notation.
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VX.¢(X(N)) is the True, either for some first-level function f(z), ¢(f(IN)) is the False, and then
VX.¢p(X(N)) is the False.

The reader may have noticed the circularity of the argument above: in showing that the
new first-level function VX.¢(X (x)) has a denotation, Frege is presupposing that all first-level
functions f(x) have a denotation, as a result of the argument developed above for first-level
functions. Indeed, in order to show, for a given object N, that the proposition VX.¢(X (N)) is
the True, one has to show that, for all first-level functions f(x), the proposition ¢(f(N)) is the
True; hence, in particular, one has to show this for the first-level function Vz.¢(X (z))!

A similar form of circularity appears in the case of couse-of-values expressions: Frege has to
show that the second-level function Az.X (x) has a denotation, and for that he has to show that,
for any two first-level functions f(z),g(x) having a denotation, the expression g(Az.f(x)) has a
denotation. This is shown by considering the possible cases for g(x), taking as basis case the
one of equality and appealing to the celebrated and unfortunate Basic Law V' (stating that two
course-of-value expressions A\z.f(z), Ax.g(z) name the same object if and only if the proposition
Vz(f(x) < g(x)) is the True).

Again, Frege’s argument contains a vicious circle: let g(x) be the function z = Az.h(z); in
order to show that the proposition Az.g(z) = A\x.h(x) has a denotation, one has to show that the
proposition Va(g(z) < h(x)) has a denotation. This means that he has to show that, for every
object N, g(N) < h(N) is either the True or the False. Now, this presupposes in particular
showing that g(Az.h(z)), i.e. Az.g(z) = Az.h(x) has a denotation.

As everybody knows, Russell was able to build a counterexample to Frege’s consistency
theorem by exploiting the circularity just sketched: he constructed a proposition R having no
denotation. Indeed, R is such that, if it were the True then it would be the False, and if it were
the False, then it would be the True. Hence, from the “normalization viewpoint”, Russell had
found an expression in G which has no normal form.

It is absolutely remarkable that, after Frege’s unfortunate attempt, one had to wait almost
eighty years before an actual proof of consistency for second order logic, through a normalization
argument, was published (in Girard’s thesis [Gir72]). The time the question remained unsettled,
as well as the subtlety with which the circularity of second order reasoning is treated in this proof
without falling into vicious circles bear witness to the hardness of the issues of understanding
and justifying second order logic.
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Chapter 1
Explaining why wvs explaining how

The perspective which underlies this thesis on the proof theory of second order logic is based
over a methodological opposition which can be reconstructed through the heritage of the two
main traditions in logic in the last century. The constructive tradition (intuitionism, realizability,
computability theory) taught us to extract a finite, recursive content from proofs. The semantic
tradition (model theory, proof-theoretic semantics) taught us to define and to prove the validity
of more and more complex notions of proof - by relying, in accordance with Gédel’s theorems,
on more and more complex logical principles -.

The two points of view are complementary not only in their achievements, but also in their
failures. The first fails to capture the difference between correct proofs and paradoxical, or
meaningless, programs, as this distinction cannot be traced in a finite, recursive way: think of
the problem of detecting the absence of loops in the execution of a computer program. The
second fails to capture the finite and combinatorial structure of proofs, as semantical notions like
truth or validity translate non elementary properties of formulae and proofs into non elementary
properties of their denotations: typically, the validity of a formula involving quantification over
an infinite domain is expressed by a quantification over an infinite domain.

The broad intent of this work is to draw the outline of a direction of research that will
be (hopefully) developed by the author in the future years. This is why this text contains, in
addition to philosophical arguments and some technical results, several proposals and technical
ideas which are only sketched and left for future investigations.

Before introducing the reader to the context of this research (the debate over the legitimacy
of a second order logic) and providing him an outline of the investigations contained in this
thesis, we illustrate the idea of the opposition just introduced through a metaphor coming from
a well-known novel by Borges.

1.1 The library of Babel and logical complexity

[...] the detailed history of the future, the autobiographies of the archangels, the faithful catalog of the Library,
thousands and thousands of false catalogs, the proof of the falsity of those false catalogs, a proof of the falsity of
the true catalog, ... [Bor00]

Meaningful proofs and meaningless codes The A-calculus (so as many other universal
models of computation) can be seen as an exemplification of Borges’ library of Babel. Every
algorithm, from the naive computations of a young student to the wittiest products of a Palo

13



14 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

Alto company, from the attitude control system of a satellite to a randomly chosen sequence of
instructions, finds its place among the shelfs of the library first conceived by Church in 1932.
At the same time, if a librarian randomly picked a book from this library, then, puzzled, he
would be immediately faced with a question: what does it mean?
Indeed, most of the programs he would find consist in quite inscrutable sequences of As and
variables, or in visibly idiot programs, indefinitely reproducing themselves.

One book, which my father once saw in a hexagon in circuit 15-94, consisted of the letters
M C V perversely repeated from the first line to the last. Another (much consulted in this
zone) is a mere labyrinth of letters whose penultimate page contains the phrase O Time
thy pyramids. This much is known: for every rational line or forthright statement there are
leagues of senseless cacophony, verbal nonsense, and incoherency. [Bor00]

Occasionally, he could bump into some books he would find himself able to read: books
written, at least partially, in a language he understands. This language would tell him the
circumstances in which to use these programs, and predict their possible outputs. In a word, he
would recognize such programs as typed programs (in a certain type system among his favorite
ones).

Anyway, without any acquaintance with (possibly many) type systems and without some
luck, he would not be able to tell the meaning (nor the use) of those programs from the mere
reading of a sequence of symbols.

I know of one semibarbarous zone whose librarians repudiate the “vain and superstitious
habit” of trying to find sense in books, equating such a quest with attempting to find
meaning in dreams or in the chaotic lines of the palm of one’s hand...[Bor(0]

Acquaintance with many typing languages is not enough to tell, in general, meaningful pro-
grams, i.e. programs representing (total) functions, from meaningless, idiot, ones. This is the
essence of Turing’s theorem: one will never find an algorithm to put the library in order. Hence
one will not find, in the library of Babel, a book telling the books worth reading from the rubbish
ones.

Similarly to the case of A-calculus and computation, a version of Borges’ library for proofs
arises from Kleene’s ingenious remark that all the information needed to construct a proof can
be compressed in a finite code. Kleene’s realizability provides a library of codes (natural numbers
in [Kle45]) which represent all arithmetical proofs (indeed, not just the proofs contained in a
fixed formal system!).

At the same time, the librarian of Kleene’s library might well spend his life trying to find the
meaning hidden behind these meaningless lists of symbols.

A realization number by itself of course conveys no information; but given the form of
statement of which it is a realization, we shall be able in the light of our definition to read
from it the requisite information. [Kle45|

The clauses defining realizability define the conditions under which a code realizes a certain
formula. They provide the key to decrypt (some of) the books in the library. For instance, a
code e realizes an arithmetical formula ¥nA when, for any integer k, the code {e}k (where {,}
denote Kleene’s brackets) realizes the formula A[k/n].

A fundamental remark should strike the logician reader here: on the one hand proofs are
coded, i.e. compressed into combinatorial objects. Logically speaking, this coding can all be
expressed by means of formulae of a fized logical complexity (say X9 E[) On the other hand,

It is a well-known by logicians that recursive properties can be expressed by means of 2(1) formulae, i.e.
formulae of the form In.A, where A contains no quantifiers.
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the decoding clauses connecting codes to arithmetical formulae correspond to statements whose
logical complexity depends on the logical complexity of the formulae. In the case above, the
clause for a I19 formula, i.e. a formula starting with a universal arithmetical quantifier ¥n and
containing no other quantifier, is expressed by a formula which is (at least) I19.

It is common to semantical notions to have the property we have just described. For instance,
the truth of a formula A, as characterized by Tarski’s notorious condition

A is true if and only if A (1.1.1)

is a property whose logical complexity clearly grows with the logical complexity of the formula
A under consideration (this has the well-known consequence that arithmetical truth cannot be
uniformly expressed by an arithmetical formula). Similar remarks can be made for the notion
of model-theoretic validity and for the notion of proof-theoretic validity (which is discussed in
detail in this thesis).

Hence, the meaning of proofs of formulae of complexity greater or equal to XY cannot be
analyzed, decomposed, by means of recursive (i.e. XV) techniques. This is indeed a consequence
of Godel’s theorems, which assert that the Validityﬂ of formulae of complexity superior to ¢
cannot be characterized by a recursive notion of provability: given a recursive and consistent
description of provability, there exists a valid formula (of complexity I1{) which is not provable
following that description.

Proofs, as meaningless codes, are finite, combinatorial, objects. On the contrary, the meaning
of those proofs, the properties which make these codes correct, or valid, proofs of a certain formula
(an evidence for the formula, in Martin-Lo6f’s terminology [ML87]), are described by clauses of
growing logical complexity.

In a word, whereas the whole library of Babel can be described as a purely combinatorial
structure, its meaningful part (or parts) cannot be entirely described in a recursive way.

“Proof-theory and logical complexity” Girard’s monumental volumes [Gir90bl [Gir89b]
provide a rigorous and extensive application of this idea to vast parts of logic. In particular, they
contain a proof-theoretical investigation of the logical complexities I} and II} by means of two
recursive libraries of proofs:

e for the complexity I3, w-proofs are “compressed” into codes for recursive (not necessarily
well-founded) trees, while the property characterizing correct, or valid, w-proofs, i.e. well-
foundedness (of complexity I11), is non recursive;

e for the complexity II3, B-proofs are “compressed” into codes for recursive pre—dilatorsﬂ
Here the property characterizing correct, or valid, -proof is the non recursive I3 property
of preserving well-foundedness.

The main advantage of the introduction of these recursive libraries was that the usual proof-
theoretical properties could be investigated directly on the recursive proofs: as already remarked
by Minc in [Min7§]|, the cut-elimination algorithm could be directly defined and performed, in a
primitive recursive way, on the “prew-proofs”. On the contrary, the Hauptsatz, i.e. the fact that
the algorithm terminates, required the logically complex hypothesis of well-foundedness.

2Technically, the truth of arithmetical formulae of complexity superior to E(l), which is equivalent to the validity
of second order logical formulae of complexity superior to IT' (see chapter for a presentation of these hierarchies
of formulae).

3A pre-dilator (see [Gir85]) is a functor from the category of linear orders into itself preserving direct limits
and pull-backs. A dilator is well-foundedness preserving pre-dilator, i.e. a pre-dilator which is a functor from
the category of ordinals into itself. The notion of dilator was invented by Girard as a tool to investigate ordinal
notation systems and H%—logic from an abstract mathematical point of view.
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This technique allowed then to separate the recursive content of cut-elimination, which lies
in the algorithmic transformation of proofs, from its logically complex one, given by termination.

Let us give a more precise picture of what is going on:

a) to each logically complex concept (w-proof, B-proof, dilator) one associates a m? (ele-
mentary) concept (prew-proof, pre-proof, pre-dilator, respectively); this associated
concept is weaker (e.g. every dilator is a predilator).

b) Most constructions (cut-elimination procedures, the functor A, ...) involving logically
complex concepts can be extended to the associated elementary concepts. A typical
example is the cut-elimination theorem for L, .: in chapter 6 we prove cut-elimination
for non-wellfounded w-proofs of non-wellfounded formulas of L, (i.e. prew-proofs of
pre-formulas). A more familiar example is the extension of familiar ordinal construc-
tions (sum, product, exponential, the Veblen hierarchy) to linear orders (= «preor-
dinals »). Steps a) and b) can be thought of as an algebraization of current proof-
theoretic constructions: typically, in b) we manage to do the constructions without
«well-foundedness »assumptions. [Gir90b]

The idea I tried to illustrate through the image of the library of Babel constituted the main
inspiration for this thesis on the proof theory of second order logic: on the one hand, the
explanation of the meaning of second order proofs, so as their justification, runs into paradoxes
and apparent “vicious circles” (see next subsection), at the point that it is generally considered
controversial whether second order logic can be actually called logic. On the other hand, such
“circular” proofs, as finite, recursive, objects, i.e. as programs, are the object of a quite rich
and extensive literature, often confined to computer science departments and ignored in the
philosophical literature.

In [Gir00] Girard describes the growing influence of theoretical computer science on proof-
theory as a shift of the latter from its original foundational motivations (“why does mathematics
work?”) to more pragmatical, concrete, ones (“how can we make it work - on a computer, for
instance - 7”). To this shift there corresponded a change in the technical equipment of the
proof-theorist: from logical notions of greater and greater complexity (comprehension princi-
ples, transfinite inductions, determination axioms) to combinatorial tools (recursion theory, A-
calculus, natural deduction) and mathematical concepts (coming from category theory, topology,
functional analysis).

Cette citation imaginaire résume 1’idéologie moyenne du théoricien de la demonstration de
1950. Elle situe d’emblée la théorie de la démonstration dans une problématique fonda-
mentaliste (I’élimination des paradoxes) qui affirme que la logique donne le sens profond
des mathématiques, ce que j’appellerai le «pourquoi ». Plus tard, vers 1985, I'informatique
devait promouvoir une approche plus pragmatique, ce que j’appellerai le «comment »: ce
comment est une préoccupation bien moins noble que le pourquoi, mais qui demande un
appareillage beaucoup plus subtil. [Gir00]

Following Girard’s suggestion, we can then draw a distinction between proof-theoretical in-
vestigations addressing the question “why does second order logic works?” (if it actually does)
and proof-theoretical investigations addressing the question “how does second order logic work?”.

The investigations of the first type concern the issues about the validity of second order rea-
soning, in particular consistency proofs, of syntactical or semantical nature. The resolution of
Takeuti’s conjecture ([Tak57]), regarding the Hauptsatz for second order logic, is a typical exam-
ple. Issues about the representation of second order proofs (as the Curry-Howard correspondence
between second order natural deduction and System F') and about their implementation (second
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order type inference, polymorphic functional programming) are examples of the second family
of investigations.

Obviously there might be superpositions between these two directions of research: for in-
stance, several important syntactical properties were discovered by means of semantic techniques
(this was the case for the so-called parametric interpretation of polymorphism [Rey83], see chap-
ter ().

Nevertheless the discussion above should convince the reader of the irreducibility of the two
approaches: the validity of a second order ¥! statement or proof cannot be analyzed by means
of recursive techniques. For instance, the normalization arguments for proofs of such statements
must rely on comprehension principles, i.e. set-theoretic principles of growing logical complexity.
This “pragmatic” (see [Dum91b]) or “epistemic” circularity affecting the “why-proof theory” of
second order logic is discussed in detail in the second part of this thesis.

On the contrary, this circularity is of no harm from the viewpoint of the “how-proof theorist”:
to him, the numerous auto-applications occurring in second order proofs, which might appear
incestuous to the Russellian philosopher, are just examples of standard recursive techniques.
The third part of this thesis contains two combinatorial analyses of the vicious circles of second
order proofs, the one based on the semantic property of parametricity, the other based on type
inference and unification theory.

A final remark is that the “how-proof theorist”, as the librarian of the library of Babel,
cannot rely on a book telling him the border between valid proofs and rubbish. Indeed, one
of the recurring aspects of this work, from the prelude to the last chapter, is the interest in
wrong proofs. In a sense, just like a complete understanding of computation required to take
into consideration also partial (i.e. wrong) algorithms, the investigations that follow are hinged
on the belief that the combinatorial structure of the whole library might turn out to be of more
interest than the logically complex characterization of its meaningful parts.

Others, going about it in the opposite way, thought the first thing to do was to eliminate all
worthless books. They would invade the hexagons, show credentials that were not always
false, leaf disgustedly through a volume and condemn entire walls of books. It is to their
hygienic, ascetic rage that we lay the senseless loss of millions of volumes. Their name is
execrated to day, but those who grieve over the "treasures" destroyed in that frenzy everlook
two widely acknowledged facts: one, that the Library is so huge that any reduction by human
hands must be infinitesimal. And two, that each book is unique and irreplaceable, but (since
the Library is total) there are always several hundred thousand imperfect facsimiles-books
that differ by no more than a single letter, or a comma. Despite general opinion, I daresay
that the consequences of the depredations committed by the Purifiers have been exaggerated
by the horror those same fanatics inspired. They were spurred on by the holy zeal to reach
someday - through unrelenting effort - the books of the Crimson Hexagon - books smaller
than natural books, books omnipotent, illustrated, and magical. [Bor00]

1.2 The Quinean critic and proof theory

The debate on the foundations and the legitimacy of second order logic provides an interesting
test bench for two rather antipodal perspectives on logic: on the one hand, the analytic tradition
in the philosophy of logic, focusing on semantical justification, aiming at clarifying what the
expressions of logical formalisms stand for; on the other hand, the proof-theoretical tradition,
building on Gentzen’s results on sequent calculus and the Curry-Howard bridge with theoretical
computer science, rather focusing on the inner properties of logical syntaxes (e.g. cut-elimination,
Church-Rosser, subformula etc.), crucial for programming purposes.
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Two remarkable facts are among the motivations of this work. First, the fact that the
philosophically-oriented tradition appears generally much more hostile than the other towards
second order, or “impredicative”, logics (with some notable exceptions, obviously, for instance
[Boo75, [Sha00]). Second, the fact that most of the technical advances and results on second
order logic obtained within the computer science-oriented tradition (which largely belong to a
period which goes from the publication of Girard’s thesis in 1972 to the beginning of the nineties)
are substantially ignored in the philosophical debate (again, with notable exceptions like [LE97]).

Here we recall some of the philosophical challenges which constitute the background for
the philosopher getting acquainted with second order logic, as well as some of the technical
cornerstones, which constitute the background for the “computer-science-oriented” proof-theorist.

1.2.1 Philosophical disputes over second order logic
Quine’s “paradigmatic” challenge

By treating predicate letters as variables of quantification we precipitated a torrent of universals against which
intuition is powerless. We can no longer see what we are doing, nor where the flood is carrying us. Our
precautions against contradictions are ad hoc devices, justified only in that, or in so far as, they seem to work.
[Qui0)

Quine’s well-known animadversions upon second order logic constitutes the center of gravity
of the debate on the subject in analytic philosophy. It was the opinion of the influential american
philosopher that the appeal to second order logic rested upon a confusion about the interpretation
of predicate letters.

The “prodigal logician” Frege and the “confused logician” Russell are considered by Quine as
responsible for this misunderstanding. On the one hand, in analogy with the fact that first-order
variables are usually taken as names for individuals, they took predicate variables as names of
attributes or universals. On the other hand, their resulting theories were to Quine completely
unsatisfactory: Frege’s Grundgesetze contained a contradiction, whereas the consistency of Rus-
sell’s Principia was obtained at the price of introducing the ad hoc discipline of typing.

Quine’s therapy for this confusion is resumed by the celebrated expression of second order
logic as “set theory in sheep’s clothing”: when one freely talks about predicate variables and their
related attributes, indeed “a fair bit of set theory has slipped in unheralded [Qui86]”. Hence his
attempt to expose the (first-order) set-theoretical commitments implicit in second order logic.

[...] consider the hypothesis IyVa(z € y < F(z)). It assumes a set {x|F(z)} determined by
an open sentence in the role of F'(x). This is the central hypothesis of set theory, and the
one that has to be restrained in one way or another to avoid the paradoxes. This hypothesis
itself falls out of sight in the so-called higher-order predicate calculus. We get AGVz(G(z) <
F(x)), which evidently follows from the genuinely logical triviality Va(F(z) < F(z)) by an
elementary logical inference. [Qui86]

As Boolos comments,

reading him, one gets the sense of a culpable involvement with Russell’s paradox and of a
lack of forthrightness about its existential commitments. [...] Quine, of course, does not
assert that higher-order predicate calculi are inconsistent. But even if they are consistent,
the validity of 3XVz (X (z) < x ¢ x), which certainly looks contradictory, would at any rate
seem to demonstrate that their existence assumptions must be regarded as “vast”. [Boo75|

The controversy over second order logic in the philosophical literature revolves around Quine’s
challenge: is this to be considered as a primitive part of logic, or is it rather just a confusing
idea to be replaced by a rigorous first-order formalization?
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In [Sha00] Shapiro tracks the origins of this controversy, underlining its paradigmatic charac-
ter: Quine’s major confidence in first-order set-theory is there explained as a byproduct of the
historical success of first-order logic as a Kuhnian paradigm:

It seems that this general consensus was not based on a philosophy of foundational studies.
It was more of a research programme, suggesting that first-order model theory is the best
place to focus intellectual attention. In short, first-order logic became a Kuhnian paradigm.
[Sha00]

In order to highlight this paradigmatic character, Shapiro sketches an imaginary debate be-
tween an advocate of second order logic (called “Second”) and an advocate of first-order set theory
(called “First”), ending in a regress:

[-..] First raises a question concerning the range of the second-order variables. She asserts
that the meaning of the second-order terminology is not very clear [...]. Second could retort
that First knows perfectly well what locutions like “all subsets” mean, and he may accuse
her of making trouble for the sake of making trouble. They would then be at a stand-off.
[Sha00]

As Shapiro’s numerous examples show, this debate over the right interpretation of predicate
variables concentrates over the question: what do such variables stand for? Indeed, the technical
tools involved in it (see for instance [Boo75) [Sha00, [Vaa0l]) are mainly model-theoretical. Still,
Shapiro’s comprehensive book [Sha00] contains very few remarks on the proof-theory of second
order logic and suggests the view that there is little hope to find a solution to the controversy
above within a proof-theoretic approach:

The more philosophical disputes noted here do not concern the correctness of informal
mathematics, but rather things like how the discourse should be described, what it means,
what it refers to, and what its non-logical terminology is. [...|

This explains why the proof theories of the logics under examination here are remarkably
similar, and underscores the foregoing thesis that the differences between first-order logic
and higher-order logic lie primarily in the different views on the totality of the range of the
extra variables - in the model theory. [Sha00]

In a first sense, this thesis is then an attempt to reject the suggestion above, by a closer
examination of what is offered in the proof theory market. In particular, it will be argued that,
by switching the focus from the interpretation of predicate variables to the interpretation of
proofs in second order logic, a bunch of deep and stimulating ideas, often unexplored in the
philosophical literature, opens up.

Proofs and the ‘“vicious circle principle”

The choice between predicative and impredicative theories [...] is sometimes said to depend upon whether
mathematical entities are regarded as created by our thinking or as existing independently of us. We are then at
a loss to know how to resolve a metaphysical issue couched in these metaphorical terms. Was the monster group

discovered as Laverrier discovered Neptune? Or was it invented, like Conan Doyle invented Sherlock Holmes?
How can we decide? And can the legitimacy or illegitimacy of a certain procedure of reasoning within
mathematics possibly depend on our answer? [Dum91al

A very influential approach to the interpretation of proofs arises from Prawitz’s and Dum-
mett’s research on an alternative semantics for logic centered on the notion of proof. Unsatisfied
with the Tarskian definition of validity, Prawitz provided in [Pra7la] a definition of validity for
natural deduction derivations which does not rely on a set-theoretical interpretation of the ex-
pressions of the language, but rather on the possibility to transform (in the sense of Gentzen’s
cut-elimination) derivations into a so-called canonical form.
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Prawitz’s proof-theoretic validity is the main ingredient of a general program aiming at a
philosophical justification of deduction (see [Dum91b]) from an inferentialist perspective, opposed
to the usual Tarskian, referentialist, one; such a justification does not focus on what logical
expressions stand for, but on how they are used (by means of their associated introduction and
elimination rules) in the construction of proofs and deductive arguments.

Whereas proof-theoretic validity was originally conceived to include second-order logic (see
[Pra7lal), the latter was later excluded from the general “justificationist” project. Indeed, as
Dummett argues in [Dum9lal [Dum06|, the justification of second order proofs ends up in a
“vicious cycle” which was historically first remarked by Poincaré [Poi06].

As a typical example, if one wishes to show that a certain individual ¢ is inductive, i.e. that the
predicate N(z) := VX (Vy(X(y) = X(s(y))) = (X(0) = X (z))) holds of ¢, then he is supposed
to show that, for any predicate P(x), the predicate Yy(P(y) = P(s(y))) = (P(0) = P(z)) holds
of ¢t. But this means that, in particular, one is supposed to show that Yy(N(y) = N(s(y))) =
(N(0) = N(t)) holds and thus, since Vy(N(y) = N(s(y))) and N(0) clearly hold, that N(x)
holds of ¢: this is the start of an infinite regress.

This is how Russell described the “vicious cycle principle” in 1906:

I recognize further this element of truth in M. Poincaré’s objection to totality, that whatever
in any way concerns all or any or some of a class must not be itself one of the members of
a class. [...]

In M. Peano’s language, the principle I want to advocate may be stated: “Whatever involves
an apparent variable must not be among the possible values of that variable". [Rus06b]

The reader has already encountered similar “vicious circles” in Frege’s proof in the Grundge-
setze. At the beginning of the 19th century Poincaré and Russell held that the existence of such
circles constituted the reason for the antinomy in Frege’s “pure” second order formalism.

On the other side of the dispute there was Carnap’s remark [Car83| that, though the ex-
planation given above is surely circular, actual proofs are not built in that way: a proof
of the fact that the number 3 is inductive consists in a formal argument that the predicate
Vy(X (y) = X(s(y))) = (X(0) = X (x)) holds of ¢ in which the predicate variable X (z) is taken

as a mere “parameter” and finally generalized.

If we had to examine every single property, an unbreakable circle would indeed result, for
then we would run headlong against the property “inductive". Establishing whether some-
thing had it would then be impossible in principle, and the concept would be meaningless.
But the verification of a universal logical or mathematical sentence does not consist in
running through a series of individual cases [...] The belief that we must run through all in-
dividual cases rests on a confusion of “numerical generality" [...| We do not establish specific
generalities by running through individual cases but by logically deriving certain properties
from certain others. [Car83|

Poincare’s objections can be found, in an adapted form, in Dummett’s rejection of second or-
der logic from his justificationist program (this is discussed in detail in chapter ) In particular,
Poincaré claimed that, by appealing to second order concepts, logic loses the neutral character
which makes it a solid foundation for mathematics (“la logique n’est plus stérile” [Poi06]). Simi-
larly, Dummett points out that, by introducing second order natural deduction rules, one is forced
to give up the self-explanatory character of deduction and to adventure into the dangerous fields
of mathematical invention.

Dummett’s objection must be distinguished from Quine’s: for the former, rather than tac-
itly assenting to set-theoretic existence assumptions (concerning the reference of the predicate
variables), the logician adopting a second order language is endorsing a controversial view about
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the forms of reasoning that one is entitled to accept. In particular, a view whose intelligibility
demands for more than a “self-explanatory” proof-theoretic analysis.

[...] the vicious circle principle makes no assertion about what does or does not exists: it
merely distinguishes between what does and what does not require a further explanation.

1.2.2 Type theory “in sheep’s clothing”

From intuitionism to type A-calculi One of the most fruitful directions in the proof theory
of the last century arose from the development of a connection between the intuitionist notion of
construction and the mathematical notion of computable function. Historically, Kleene was the
first to look in that direction. In the intuitionistic explanation of proofs contained in the classical
[Hey56], it is stated that a proof of a formula of the form Vn3amA(n,m) consists in a method p
yielding, for any k, an integer p(k) along with an intuitionistic proof of A(k, u(k)). Kleene’s guid-
ing idea, in his 1945 paper on realizability [Kle45], was then to replace the philosophical notion
of “method” with a mathematically rigorous one: from an intuitionistic proof of Yn3mA(n,m)
one should extract then a computable function ¢ yielding, for any k, an integer ¢(k) such that
A(k, ¢(k)) holds intuitionistically. In particular, a proof of the totality of a recursive function ¢
(i.e. the statement YnIm(n = ¢(m)) should provide concrete instructions on how to compute
the function ¢.

On these lines Kleene defined an interpretation of the proofs of intuitionistic arithmetics as
computable functions, i.e. as programs. By reconstructing the realizability interpretation within
A-calculus, Kreisel’s “modified” version [Kre59] of realizability added an important idea: with
every arithmetical proposition A one could associate a type A*, such that all programs extracted
from proofs of A could be given the type A*. Hence, proofs of totality for recursive functions
were interpreted as programs of type N — N, where N is the type of natural numbers. A similar
idea was developed by Gédel in his Dialectica interpretation of arithmetics |G58].

Between the fifties and the sixties Curry [CF58] and Howard [How80| realized that the connec-
tion between intuitionistic proofs and typed programs could be given a yet more tight description:
derivations in first order intuitionistic natural deduction can be directly interpreted as (they are,
in a sense, isomorphic to) simply typed A-terms. This Curry-Howard correspondence adds to
Kreisel’s one a dynamical aspect: Gentzen’s transformations over natural deduction derivations
correspond directly to reductions of the associated A-terms. In a word, normalization steps in
natural deduction correspond to normalization steps in A-calculus.

The Curry-Howard correspondence between intuitionistic systems and typed A-calculi is by
now evolved into an extremely vast field of research, at the bridge between logic, pure mathe-
matics and theoretical computer science. The proofs-as-programs paradigm, which is at the very
heart of the investigations here presented, constitutes indeed one of the most powerful tools in
proof theory, witness the many active research programs based on it (as Girard’s geometry of
interaction program [Gir89¢c| or Krivine’s program [Kril2]).

System F' The extension of the proofs-as-program correspondence to second order intuition-
istic logic was provided independently by Girard in his thesis [Gir72] and later by Reynolds in
[Rey74]. The second order (or polymorphic) A-calculus, called System F' in [Gir72|, whose typed
terms correspond to intuitionistic second order natural deduction derivations, introduces an “im-
predicative” type discipline which, unlike Russell’s type discipline, allows the typing of functions
applied to themselves.

Terms in System F' are called polymorphic since they can be given several types at once: for
instance, a term of a second order type Vao can be regarded as a term of type o[r/al, for every



22 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

type 7 of System F', included Vao. It is through this circularity thats second order type theory
inherits the “vicious circles” of second order logic.

The main result of [Gir72] is a proof that System F' enjoys the strong normalization property.
By relying on the Curry-Howard correspondence, this result was used to provide a positive answer
to a conjecture posed by Takeuti in 1957, i.e. whether the Hauptsatz holds for second order logic.

Though several semantical proofs of cut-elimination for second order logic were proposed in
the sixties (see [Tai68, [Tak67, [Pra68]), the proof in [Gir72] was the first to provide a syntactical
normalization argument. This argument was based on an extension of Tait’s technique of com-
putability predicates ([Tai67]) by means of the notion of reducibility candidates. The latter allow
to define the computability of polymorphic terms in a way which, though impredicative, escapes
“vicious circles”. In a sense, Girard’s reducibility argument fixes the bugs in Frege’s consistency
argument of the Grundgesetze. A closer examination of this technique can be found in chapter
).

Girard’s work on System F' was the starting point of several fruitful lines of research on
second order logic from the Curry-Howard perspective. First, “Girard’s trick” (JGal90]) for
proving normalization introduced a new way to escape the circularity of impredicative types
and propositions. The so-called Tait-Girard reducibility technique became indeed a standard
tool for proving normalization for higher-order typed A-calculi. Slightly modified versions of
this technique were used by Prawitz ([Pra7lal) and Martin-Lof ([ML70al IMLT75]) to prove the
normalization of several intuitionistic higher order natural deduction theories.

Second, in [Gir72] it was observed that a program of a universal type Va.o cannot actually
“depend” on the information about the input type to be substituted for «. Girard showed that
a paradox (hence, a counterexample to normalization) would result from the violation of this
“genericity” (JLMS93|) constraint. This remark is at the basis of an interpretation of impredicative
quantification (see [Rey83|]) which, in a sense, provides a rigorous mathematical formulation of
Carnap’s argument against the “vicious circle principle” (see chapter )

Finally, the investigations on the semantics of System F' shed far more light on the relations
between the second order and set theory than Quine and Shapiro thought. In 1984 Reynolds
|[Rey84] showed that, if one considers arbitrary set-theoretic interpretations of typed A-calculi,
then there can be no model of System F': he was able to exploit impredicative quantification to
show that a counterexample to Cantor’s theorem on the cardinals would result from the existence
of such a model (see (5))). This (quite old!) result seems to contradict directly Shapiro’s claim
on the irrelevance of proof-theory for the second order logic/set theory debate.

Nevertheless, many mathematical constructions have been successfully applied to devise (non
set-theoretic) models of System F: for instance, in [Gir86, (GLT89] it was shown that one can
interpret impredicative types, in a categorial framework, by means of direct limits of certain finite
spaces (called coherent spaces), a very simple structure which became known for having led to
the discovery of linear logic (see [Gir87]). Another well-known example is Hyland’s effective topos
|Hy182|, which allows to extend Kleene’s realizability to System F within a topos theoryﬂ

It must be said that most of these advances are still confined to the literature on computer
science-oriented logic. System F' and its legacy constitute indeed a good example of the gaps
existing between the literature on logic coming from philosophy departments and the literature
coming from mathematics and computer science departments. Just to give an example, Shapiro’s
comprehensive book on second order logic has no reference to System F' or to whatever has been
written on the mathematical aspects of polymorphic type theories.

One of the aims of this thesis is to contribute to fill this gap, as it seems quite difficult to deny

4Reasons of space and time imposed to the author not to treat in detail the many and profound aspects which
come from the literature on the denotational semantics of higher order type theory. This is surely a serious lack
in the investigations contained in this thesis, to be left for a future work.
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that the results and aspect aforementioned have a serious impact on the philosophical challenges
and disputes over second order logic sketched in the previous subsection.

1.3 Outline of the thesis

In the second chapter of this first, introductory, part, we describe in detail the proof-theoretic
correspondences between, respectively, second order arithmetics and second order logic, and
second order logic and polymorphic type theory, or System F'.

Starting from the idea that a “logic” is given by a language (i.e. a set of formulae), a set
of proofs of such formulae and a set of transformations between proofs, we reconstruct these
well-known correspondences as “functors” between the various logics, i.e. maps preserving all
relevant proof-theoretic properties. This description highlights then the fact that arithmetical
derivations, second order derivations and polymorphically-typed A-terms essentially represent
the same proofs.

The second part is dedicated to the “why-proof theory” of second order logic. In chapter
we reconstruct and confront two distinct, though historically related, approaches to the
interpretation of proofs: the first one focuses on the analysis of the inferential content of proofs,
and historically derives from the proof theoretic semantics tradition, introduced by Dummett
and Prawitz (see [Pra7lal [Dum91b]). The second one interprets proofs as untyped programs
and focuses on the behavioral content of proofs, i.e. the way in which they interact through
the cut-elimination algorithm. Roots of this interactionist point of view are traced to Kleene’s
realizability ([Kle45]) and to the Tait/Girard reducibility technique (|Tai67, [Gir72]).

In chapter we present and discuss the Hauptsatz for second order logic, and we address
the epistemological issues arising from Girard’s proof ([Gir72]) from the two viewpoints. The
inferentialist proof-theorist appeals to an updated version of Poincaré’s “vicious circle” objection
and claims that impredicative reasoning cannot be justified proof-theoretically; by contrast,
the technique of reducibility candidates, used in the proof, appears much more akin to the
untyped perspective of the interactionist proof-theorist, and reveals a different, “epistemic”, form
of circularity. Still, this weaker circularity makes justification, in a sense, pointless: we sketch
the example of Martin-Lof’s inconsistent higher order theory (as the one in [ML70b]) admitting
an epistemically circular normalization arguments.

The third part is dedicated to the “how-proof theory” of System F'. In chapter , after re-
calling Reynolds’ argument for the impossibility of a set-theoretical interpretation of second order
proofs, the parametric and dinatural interpretations of polymorphism ([Rey83] [(GSS92|) are pre-
sented as providing a clear mathematical content to Carnap’s defense of impredicative reasoning
in [Car83]. By relying on a syntactic reformulation of these interpretations, the IT'-completeness
theorem is proved, which states that the closed normal A-terms in the reducibility of the
universal closure of a simple type are typable in simple type theory. This theorem provides,
by a passage through impredicative quantification, a bridge between the interactionist and the
inferential interpretation of propositional proof: by closing types universally, one indeed recovers
the usual “last rule conditions” required by the inferential proof-theorist.

In chapter @ a constructive viewpoint on impredicativity and its paradoxes is developed by
an analysis of the typability problem form the A-terms associated with (intuitionistic) second
order proofs. To the “vicious circles” in the proofs there correspond recursive (i.e. circular)
specifications for the types of the A-terms. The “geometrical” structure of these vicious cycles
is investigated (following [LC89L [Mal90]). As shown by Girard’s paradox, a typable term need
not be normalizing: the combinatorial analysis of typing does not discriminate between terms
corresponding to correct or to incorrect proofs.
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A combinatorial characterization of the typability of A-terms is investigated, by means of
a generalization of the notion of “compatibility” between the constraints forced by recursive
equations in [Mal90]. In particular, it is conjectured that this notion fully characterizes typability
for system U~ (an inconsistent extension of System F' connected with Martin-Lof’s inconsistent
type theory, see |Gir72|), and some results in this direction are shown.

Some interesting consequences motivating this conjecture are proved at the end of the chapter.
Among them, the fact that every strongly normalizable term would be typable in U™, the
decidability of the typability problem for the systems U~ and N as well as the fact that every
total recursive unary function (suitably coded in A-calculus) can be given type N — N in System
Uu-.

Chapter , in the fourth, concluding, part, contains a sketch of some future lines of research
which arise from the perspectives on “how-proof theory” developed in the third part. Indeed, the
type-theoretic investigations contained in chapter @ prompt a way to understand the limitations
imposed by incompleteness, in line with the metaphor of the Library of Babel: since every true
119 statement corresponds to the totality of a certain recursive function, from the typing of a
A-term computing the function (an untyped realizer of the statement) one should retrieve a proof
of the statement in an inconsistent extension of second order logic. At the same time, it should
be expected that the line between valid and invalid, or “paradoxical”’, derivations in this extended
system cannot be recursively drawn. In a sense, this would mean that we can have all the proofs,
but we cannot tell once for all those we can actually trust.



Chapter 2

Arithmetics, logic and type theory

The interaction between the proof theories of (second order) arithmetics, logic and type theory
constitutes the technical background of this thesis. The relation between the first and the second
usually goes under the name of Dedekind’s translation, from Dedekind’s intuition of a purely
logical (second order) definition of the natural numbers. The relation between the second and
the third is given by the Curry-Howard correspondence, from the remarks by Curry [CEF58| and
Howard [How8()] of a substantial isomorphism between intuitionistic sequent calculi and typed
A-calculi.

This introductive chapter is devoted to present these three formalisms and their aforemen-
tioned relationships by relying on a categorial intuition: as in denotational semantics, a “logic”
is though as a category made of objects (formulae), morphisms (proofs) and diagrams (given by
Gentzen’s transformations over proofs); hence Dedekind’s translation from second order arith-
metics to second order logic and the Curry-Howard translation of the latter into second order
type theory (System F') are described as functors between such logics.

Finally, we present the systems F“ U~,U, N, which are extensions of System F which will
be used in the next chapters, highlighting some of the theoretical challenges connected with the
extension of second order type theory (indeed, all such systems but F“ are inconsistent).

2.1 The proof-theoretic notion of “logic”

2.1.1 From Hilbert’s program to structural proof theory

Whereas in model theory one is mainly interested in formulas and their interpretations, in proof
theory one takes as the central notion the one of proof.

The problem of derivability Historically, the first systematic investigations on proofs were
developed in the context of Hilbert’s program (for instance [Hil96a]); the mathematical presen-
tation of proofs was provided by derivations built within a formal system: the so-called Hilbert
systems were made of a (usually quite large) set of axioms and by a set of rules, which in most
cases was reduced to the sole rule of modus ponens.

By means of Hilbert-systems the vague notion of “demonstrability”, central for Hilbert’s pro-
gram, was replaced by a rigorous one, i.e. derivability within a formal system; moreover, it was
shown that the property of being a derivation could be coded by a primitive recursive predicate;
this was the starting point of a series of results which marked the failure of Hilbert’s program: in
1931 Godel showed that there exist (true) sentences which are not derivable within sufficiently

25
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expressive formal systems, in 1936 Turing showed the existence of non-recursive problems and
in the same year Church showed that derivability within the formal system of first order logic is
one of them.

Serious improvements in the analysis of derivability were obtained with the development
of the so-called “structural” approach to proof theory, started with Gentzen’s pioneering thesis
[Gen64]. In this approach, Hilbert’s systems are replaced by sequent calculi and natural deduction
calculi, characterized by a significantly smaller number of axioms and a long list of rules. Gentzen
showed that, when dealing with questions of derivability within first order logic, one can restrict
the search to derivations in which there are no occurrences of the cut-rule (sometimes called
analytic derivations):

TLAFA T/F AN
T,TFA A

(cut) (2.1.1)

Such derivations exhibit a very peculiar structure: at every stage of the derivation the formu-
las occurring in the rules are subformulae of the formulae occurring in the conclusion of the
derivation. Remark that the rule (cut) clearly violates this property.

The Hauptsatz (as it was originally called by Gentzen), that is, the cut-elimination theorem,
can be considered as a fundamental result in logic, from a proof-theoretic viewpoint. Indeed, it
allows to provide purely proof-theoretical proofs of the consistency and completeness of first-order
logic, two results which are often expressed and proved in a model-theoretic setting.

The consistency of first order logic is an immediate corollary of the cut-elimination theorem:
if the falsity were provable, then it would have a cut-free proof; however, since no formula is a
subformula of the falsity, there can be no cut-free derivation of the falsity.

The fact that the Hauptsatz implies the completeness of first-order logic was first established
by Schiitte [Sch56] starting from the following remark: given a formula A, it is possible to devise
a procedure which looks for possible cut-free derivations of A by recursively looking for the
premisses of a (one-sided) sequent; indeed, the subformula property provides a finite bound on
the set of possible premisses of a sequent. This algorithm, starting from a formula A, gradually
builds a tree by repeatedly looking for premisses and halts as soon as all of it branches terminate
on an axiom sequent, i.e. a sequent of the form + I') A, —A. In that case (thanks to Konig's
lemma) the finite tree obtained must be a cut-free derivation of A. In particular, if A is derivable
in first-order logic, the algorithm produces a cut-free derivation of A. Otherwise, i.e. if the
algorithm never halts, the tree must contain an infinite branch made of rules of sequent calculus;
now Schiitte was able to show that the negation of the formulae occurring in this infinite branch
generates a counter-model of A: hence, if A is not derivable, from the infinite proof-search for A
we get a counter-model to A.

The dynamics of proofs At the basis of Gentzen’s Hauptsatz there is a procedure which
recursively transforms derivations in which there are occurrences of the cut rule into derivations
in which this rule does not occur. For instance, an occurrence of the rule (cut) with cut-formula
a conjunction:

§d1 §d21 Edzz
PABEA TiFEAA ThEB A,
INAANBEA IFAANB,A

LI F AN (cut) (2.1.2)
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can be transformed into a derivation in which the occurrences of the rule (cut) have with cut-
formula formulae of strictly smaller logical complexity:

dy do1
A BFA T)FANA, (cut) D das
I,T),BFAA, T+ B, A,
I FA, A (cut) (2.1.3)

We owe entirely to Gentzen this idea of transformations over proofs. By applying a quite complex
induction argument Gentzen was able to show that it is possible, by performing repeated appli-
cations of these transformation, to eliminate all cuts and transforming an arbitrary derivation of
first-order logic into a cut-free one.

Gentzen’s transformations provide a insight on the mutual structure of logical rules: the
premisses of the rules for introducing a logical symbol (for instance A in the example above) at the
right and at the left of the stroke symbol - must be in accordance in order for the transformation
to be applied. This remark became well-known in proof-theory thanks to Prawitz’s work on
natural deduction [Pra65], under the name of inversion principle:

Let a be an application of an elimination rule that has B as consequence. Then, deductions
that satisfy the sufficient condition [...] for deriving the major premiss of «, when combined
with deductions of the minor premisses of « (if any), already “contain” a deduction of B; the
deduction of B is thus obtainable directly from the given deductions without the addition
of a. [Pra65|

Remark that the inversion principle is a local criterion, allowing for a single application of a
Gentzen transformation. Genzten’s Hauptsatz, on the contrary, is a stronger, global, result,
showing that the repeated application of the transformations terminates producing a cut-free
derivation (this remark will be discussed in more details in chapter )

Gentzen’s transformational approach induced a severe change of focus in the study of proofs
with respect to Hilbert’s approach: from the (non recursive) question of derivability, i.e. the
existence of a derivation within a formal system, the interest can be turned to the question
of the inner structure of derivations (subformula, analyticity). At the same time, the study of
the construction of proofs can be combined with the study of their possible transformations (a
confrontation of these two viewpoints in proof theory constitutes the leitmotif of chapter )

A fundamental remark, made independently by Curry [CEF58| and later by Howard [HowS80],
was at the basis of the discovery of a strict connection between structural proof-theory and
computer science: they observed that Gentzen transformations behaved exactly in the same
way as normalization in A-calculus. In particular, it was shown that derivations in intuitionistic
logic could be interpreted as programs in A-calculus, and their transformations as the execution
of those programs. This connection, known under the name of Curry-Howard correspondence,
constitutes still today one of the most powerful tools in proof-theory, that will be discussed and
exploited throughout the following pages.

Logics as categories The presentation of logic which comes from the development of proof-
theory is essentially threefold: one has formulae, derivations (of formulae) and transformations
(of derivations). This partition is indeed the starting point of the semantical approach to proofs,
denotational semantics (for an introduction, see for instance [AL91]): the idea of a semantics of
proofs comes directly from Gentzen’s Hauptsatz; indeed, it is natural to think of the denotation
of a proof as an invariant of the cut-elimination procedure.

Usually these semantics are presented in a categorial setting: formulae A, B are interpreted as
objects A, B of a certain category C (for instance Scott domains or coherent spaces); a derivation
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d of A+ B is interpreted as a morphism d € C[A,B]; remark that, for every formula A, there
exists a trivial derivation of A = A (corresponding to the identity morphism ida). Finally,
given two derivations d, e, respectively in A+ B and B F C, a cut between them is interpreted
by the composition d o e of the two, and the transformations over derivations correspond to the
identities expressed by the diagrams in the category: this expresses the fact that the denotation
of a derivation d is invariant under cut-elimination.

As we not are going to deal with denotational semantics in detail in this text, the categorical
presentation will be left at an informal level. Nevertheless, the choice to adopt this categorical
intuitionﬂ in the following pages is motivated by the fact that it provides a very elegant way to
present the relationship between different logics. Indeed, once logics are thought in categorical
terms, the fact that, in passing from a logic C to a logic D, the proof-theoretic content is

preserved can be expressed as the existence of a functorial translation C 2 D from the first to
the second logic; this means that one has indeed two maps:

e a map A +— A’ from the formulae of C to the formulae of D;

e for all formulae Ay, ..., A,, BofC,amap f — J(f) from the derivations of A;,..., A, F Hﬂ
to those of A7,..., Al  BY such that for all A, B,C objects of C the following hold:

- J(ZdA) ZidAJ];
— for all d, e derivations respectively of 4;,...,A, + B and B,C4,...,C,, b D , J(f o
9) =3(f) e I(9).

The typical way to show the functoriality of a translation is to prove that the translation pre-
serves Gentzen’s transformations: if a derivation d in C reduces to a derivation d’ by applying
some transformations, then its translation d? reduces to d”¥ by applying some Gentzen’s trans-
formations in D. In particular this implies that a cut-free derivation of the form d¥ comes from
a cut-free derivation d in C. In definitive, a functor between two “logics” corresponds to a trans-
lation of formulae and derivations which preserves the reduction relation between derivations.

Intuitionistic vs classical second order logic The following two sections will be devoted
to show the equivalence between three different “second order logics”, thus showing that three
apparently distinct approaches to second order logic share the same proof-theoretical content;
these are:

e Second order (intuitionistic/classical) arithmetics HA? (PA?);
e Second order (intuitionistc/classical) logic LJ? (LK?);
e Second order type theory, also known as polymorphic lambda calculus or simply System F'.

In the next pages (and in all the rest of the text) we will make use of classical formalism only
when discussing completeness, as related to model-theoretic aspects. In all other cases intuitionist
formalisms will be preferred for purely pragmatical motivations: the forgetful translation (see
(2.3)) between sequent calculus and type theory is much easier to present and discuss in the
intuitionistic fragment (indeed the Curry-Howard correspondence, see below, was originally based
on intuitionistic logic). Nevertheless, many extensions of this correspondence to the classical

!n several places (for instance in [Girll] and [Dos]) it is advocated that the categorical presentation of logic
implies a radical change of viewpoint on the object of logic: with respect to the Fregean viewpoint centered around
the notions of sentence and assertion, the categorical approach takes proofs (i.e. morphisms) as logical primitives
and sentences (i.e. objects) as derived ones.

2The choice of an intuitionistic setting, i.e. of sequents of the form I' - A, with §A < 1, is justified below.
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case can be found in the literature (for instance by means of polarization techniques [Gir91], by
Parigot’s Ap-calculus [Par93] or by the appeal to realizability and control operators [Kri09]).

Clearly important issue of the relationship between classical and intuitionistic logic, with
respect to their constructive and recursive content, would demand for an extensive investigation
which goes beyond the goals of this thesis. At the same time, by paging through the following
chapters, the reader will remark that the questions and challenges raised and discussed in the
text concerning second order logic are quite insensitive to the classical/intuitionistic distinction.
In particular, both the expressive power and the apparent circularity of second order systems
crucially depends on the nature of the comprehension principles admittecﬂ so that the switch
from an intuitionistic or classical setting leaves most theoretical issues unaltered.

2.1.2 Second order arithmetics and logic

Second order logic The first “logic” is the second order predicate calculus, for which we
recall the rules and transformations. Since we are interested in relating this logic with second
order arithmetics, the language will include the arithmetical constant 0 and function symbols
s, 4+, X. From a purely logical point of view, these symbols can be seen as arbitrary symbols for,
respectively, a 0-ary, a unary and two binary functions.

We first introduce the language of second order logic and then the systems LJ? LK? of
intuitionistic and classical second order logic.

Definition 2.1.1 (£). The language L (with arithmetical symbols) of second order logic is made
of the following items:

o an individual constant 0, a unary function symbol s and two binary function symbols +, X
and two kinds of variables:

i. First-order variables x1, 29, x3,... (also noted x,y, z,... when not confusing);

i1. Second order variables X, X5, X3,... of all arities k > 0 (also noted X,Y, Z,... when
not confusing).

o Terms and formulae of L defined as follows

First-order terms The set T of first-order terms is the set of terms t,u,... given by the
grammar

t,u = x|0|s(t)|[t+ultxu (2.1.4)

Formulae The set F of formulae is the set of expressions A, B, ... given by the grammar

X(t1,7tk)|A:>B|VI’ZA|VXZA (tl,...,tk S T) (215)

Predicates The set P of predicates or second order terms is the set of expressions of
the form Axy..... Axg.A, where A € F and the variables x1,...,x, are subject to
Q-conVersion.

e A first order notion of substitution, a notion of application for predicates and a second
order notion of substitution:

first-order subs. t[u/z|, for t,u € T and Alt/z], fort € T,A € F, defined as usual;

3A typical example is Friedman’s classical result [Fri78] that Hg provable formulae are intuitionistically prov-
able.
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application Azi..... Az Aty .. th) = ATpg1e. ... Axy Alty /a1, ...tk /xg], for h <k,

Aej:7t17"'7tk€7—;

second-order subs. X;(t1,...t;)[P/X;] = A(t1,...,tg), for Pe P,A € F and X;, P of

the same arity.

In the following by a sequent it is meant an expression of the form I' - A, where A € F and

I is a finite multisetf of formulae.

We introduce the systems of second order logic by defining their formulae, their derivations
and the transformations over derivations; the latter are given by introducing, as usual, a reduction

relation between derivations.

Definition 2.1.2 (Intuitionistic second order logic LJ?). Intuitionistic second order logic is

gien by the following items:

Formulae The formulae of LI? are those of the language L;

Derivations The derivations of LI* are built up from the following rules:

AFa )
'-B
RAFB<W)
r-A IM,BFA
X (=51
(VL)

T, A= BFA
T Alt/x] F A
I\VzAF A

TLAP/X|F A

[LVXAF A (VL)x

TLAFA T'FA

T ra )

T,A, A B

rarp @

I AF B

rrasg &0
T'FA
TEved (VR).,x ¢ FV(I)
A

TEvYA (VR)x,X ¢ FV(T')

where I, is any permutation of the order of the formulae occurring in I'.

(2.1.6)

Transformations The reduction relation < of LI? is the reflexive-transitive closure of the re-
lation < generated by the following transformations or reduction rules:

(az)

AFA TEA

A
W)
W
NS D dy
TArs W) pia
IT'FB

(cut) d
o <~ TFA
4
_I'FB_
(cut) <~ T.r'rB (W)

(2.1.7)

(2.1.8)

4A multiset is given by a set S and a multiplicity function, i.e. a map g : S — N which assigns a multiplicity
to any element of S. Hence a multiset of formulae is a set which can contain several occurrences of the same

formula.
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(©)
W i
L, I'A,AFB T'FA (cut) D dy
LA A+-B © dy T, A B F’FA( "
s 41y : cu
rars ©) g . T.T.T'FB
I.T'FB (cut) I.I'+B
(2.1.9)
(=)
di1 dya da diy dy
[LFA TyBFC I AF B A I A+B L dys
raspro Y vass . rnors ) nBre .
I,I'F B (cut) T B (cut)
(2.1.10)
(V)
F,A[t/x] FB 1"‘/|'— D dy . dg{t/x}
tvear 5 P mivea Rt)) LARj B T Al
I.T'FB “u < I.I'FB cu
(2.1.11)

where do{t/x} is the derivation obtained by replacing all occurrences of x in da by the
term t (remark that this is well defined since x does not appear free in I ).

(VX)
I AP/X]-B ' A
ikl Bl L2 (vR
rvxar B UBX Trvxa (V)x
(cut)
I,T'+B

L dy D do{P/X}
[ AP/X]F B T'F A[P/X]
< I T'FB (cut)
(2.1.12)

where do{P/X} is the derivation obtained by replacing all occurrences of X in da by
the predicate P (remark that this is well defined since X does not appear free in the

formulae in V).

(commL)

D dy D da
I"AFB Al A
" AF B
IAFB

(R)

where (R) is any rule distinct from the left rule for the principal connective of A.

(commR)

. L dy
cdi A'HA
I'NAFB AFA (B)
T.AFB

IAFB A'FA

D dy D dy

(2.1.14)

I A'F B (cut)

T,AFB (R)
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where (R) is any rule distinct from the right rule for the principal connective of A.

As it is well-known, all other connectives of second order logic can be defined in the language

L:

1/1:=VXX/VX(X = X) ( )
t=u:=VX(X(t) = X(u)) ( )
AANB:=VX((A=B=X)=X) ( )
AVB =VX(A=X)=(B=X)=X) (2.1.18)
JrA:=VY(Vz(A=Y)=Y) ( )
IXA:=VY(VX(A=X)=Y) ( )

Second order classical logic LK? is obtained by extending the notion of sequent to T' + A,
where A is another multiset of formulae and by considering the following rules (with -4 := A =
1):

TLAFA T'FAA
A A (@) oA e
% (L) % (LR)
rars WD) e A VR
% (CL) % (CR) (2.1.21)
, ,
FrasBiay G0 rrasss GR
Ff,Av[iT:AA (VL) FFi—l_VfA,AA (VR)z, @ ¢ V(L)
DARIE wox po 2 vy, x ¢ V(D)

It is clear from the rules above that any derivation in LJ? is also a derivation in LK?. We do
not list the reduction rules for LK? (see for instance [ST00]), since in the following we will just
consider those of LJ?.

Second order arithmetics We describe now intuitionistic second order arithmetics, or Heyt-
ing Arithmetics HA?. Remark that, whereas HA? is usually presented as a theory over the
language of second order minimal logic, here we present it under the form of a “logic”; in partic-
ular, this “logic” is an extension of LJ? by some axioms, which can be seen, from the categorial
viewpoint, as new morphisms.

Definition 2.1.3 (Language of arithmetics). The language of arithmetics L4 is defined as the
language L, but first-order variables x1,x2, ... are replaced by number variables ny,ns,... and
the first-order quantifier ¥V is replaced by the number quantifier Vn.

Definition 2.1.4 (Heyting Arithmetics). Heyting arithmetics HA? is defined as follows:

Formulae The formulae of HA? are those of L4;
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Derivations The derivations of HA? are built up by the rules of LJ? (where individual variables

x,y,... are replaced by number variables n,m, ... ) plus the following axioms
0=s(n) - (PAY)
s(n) =s(m)Fn=m (PA2)
FVX(Vm(X(m) = X(s(m))) = (X(0) = VnX(n))) (PA3)
Fnt0=n F n+s(m) = s(nt+m) (PA+12)
Fnx0=0 Fnxs(m) = (nxm)+m (PAx12)

Transformations The reduction rules of HA? are just the reduction rules of LI>.

Again, all other connectives can be defined as above for the language of HA? (with number
variable replacing individual variables). Second order Peano Arithmetics PA? is the system
obtained by replacing LJ? by LK? in the definition of HAZ.

2.1.3 System F

The second order typed A-calculus was introduced independently by Girard in [Gir72] (under the
name of System F') and by Reynolds in [Rey74] (under the name of polymorphic A-calculus). In
the following we retain Girard’s terminology for simplicity.
System F' has a second order language for types made of type variables a, 3, ..., a constant
— to build implication types and a universal quantifier V. Hence the set of types Typ can be
defined by the grammar below:
0,7 :=alo = 7|Vao (2.1.22)

The original formulations of System F' are & la Church: this means that the A-terms (that
we note M, N,...) are defined with type superscripts. For any type o, one has a countable set
of variables 27,47, ... of type o. One has the usual rules for building simply typed A-terms (see
[BAGM92)|):

abstraction given a term M7 and a variable 27 one can form the term (Ax.M7)777;

application given two terms of the form M~ N7 one can form the term ((M"%T)N")T.

The novelty introduced with System F' is the possibility to abstract over type variables, given
by the following rules

type abstraction given a term M° and a type variable a one can form the term (Aa.M%)";
type extraction given a term MVY*? and a type 7 one can form the term (MY {7})el7/el,

The extraction construction tells that from a term of type Vao a term of type o[r/a], for any
type 7 (included Vao), can be extracted. This is what introduces in this typed A-calculus the
circularity which is typical of second order logic (also known as impredicativity, see chapter )
Moreover, this construction allows to type A-terms containing variables applying to themselves:
a variable 7% can be extracted on the two types @ — « and «, so that the term below, which
is not typable in simple type theory, can be correctly typed in System F':

A7 (z{a — a})z{a} (2.1.23)

Hence, the rules of type abstraction and type extraction introduce a type discipline which is very
far from Russell’s original motivations for introducing types (that is, avoiding auto-applications).
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We introduce below in more detail a version a la Curry of System F', that will be used
throughout the text: this means that one takes as terms the terms of pure, or untyped, A-
calculus and defines the rules of System F' as typing rules, i.e. rules for assigning a type to such
terms.

The presentation a la Curry highlights the polymorphic (etymologically, having many forms,
many types) nature of the typed terms of System F: if M is a (pure) A-term which has type
Vao, then the same term M must have type o[r/a], for any type 7. The acutal nature of this
polymorphism, and the paradoxes related with it, are discussed in chapters and @

The basic objects of d la Curry systems are A\-terms and typing judgements, i.e. sequents of
the form I' F M : o, which intuitively assert that M is a term of type o under the assumptions
r.

Definition 2.1.5 (System F). o We define the “language” of system F' by introducing terms,
types and judgements:

terms The terms of system F are usual pure lambda terms, generated by the grammar
M,N = z| . M|(M)N (2.1.24)

given a countable set of term variables x,v, z, EI and considered up to a-equivalence.
For a detailed introduction to the A-calculus see for instance [Bar85).

types the types of F' are given by the set Typ; the sets FV (o) and BV (o) of, respectively,
free and bound type variables of a type o are defined as follows:

FV(a) ={a} BV(a) =10
FV(c -7)=FV(c)UFV(r) BV(c—7)=BV(c)UBV(1) (2.1.25)
FV(Vao) = FV (o) — {a} BV (Yao) = BV (o) U{a}
A substitution operation over types is defined by
alo/f] = {Z eZzJ;ea =f (2.1.26)
r = plo/B) = 7lo/B) = plos) (2.1.27)
(Var)[o/B] := VYa(r[o/B]) (2.1.28)

where substitution is defined, as in \-calculus, as to avoid variable bindings.

declarations « type declaration is an expression of the form (x : o), where x is a term
variable and o is a type. A context ' is a finite set of type declamtionsﬂ

judgements a judgement is an expression of the form I' = M : o, where I is a context,
M a term and o a type.

o The typing derivations of system F are generated by the following rules:

(id)

'-M:0—-7 T'HFN:o D(x:o)FM:7
E
LE(M)N 7 (= B) ' eM:0—71 (=) (2.1.29)
I'-M :Vao I'EM:0 « bindable in T’
- (VE
TF M ofrja] ") TF M : Vao (vI)

5We adopt the same notation x, v, z for term variables and individual variables, unless confusing; this abuse
will be indeed exploited in section .

6Unless confusing, we use the same notation I for contexts of type declaration and contexts of sequent calculus.
Remark anyway that, whereas contexts of formulae are multisets, context of type declarations are sets.
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where « is bindable in T if, for all type declaration (x: o) € T, « is not free in o.

We distinguish two equality relations over types: o = 7 denotes syntactic equality whereas
o = 7 denotes a-equivalence.
We introduce an order relation over types, ¢ < 7, which is the reflexive transitive closure of
the relation
Vao < T & T =0lp/a] (2.1.30)

We recall some simple properties (whose proof can be found for instance in [BAGM92]):

Proposition 2.1.1 (basic properties). i. IfT' & M : o is derivable, then I" = M : o, with
I' C IV, is derivable;

it. IfT'F M : o is derivable, then, if v € FV(M), (x: 1) € T, for some type o;
tit. If Tk x: o is derivable, then (x : ') € T for some o’ such that ¢’ < o;

w. IfT'F M : o is derivable and M' is a subterm of M, then T'F= M’ : T is derivable for some
T.

In system F' we do not have a reduction relation over typing derivations, but only over lambda
terms: reduction M — N is defined (as in pure A-calculus) as the reflexive transitive closure of
the relation —; defined by

(Ax.M)N —; M[N/zx] (2.1.31)

We recall two important lemmas that related the type structure with the reduction of the
A-terms. The first lemma tells that a type declaration (x : o) in a typing of a term M can always
be replaced with the typing of a term N of type o, by replacing every occurrence of x in M by
the term N.

Lemma 2.1.1 (substitution lemma). If I',(x : o) - M : 7 and T' b N : o are derivable, then
'+ M[N/z]: 7 is derivable.

Proof. See [BAGMO92]. O

The lemma below shows that the typing derivations are preserved under term reduction:

Lemma 2.1.2 (subject reduction). IfT' = M : o is derivable in F and M — M', thenT - M’ : o
is derivable in F.

Proof. See [BAGM92]. O

Remark that the subject reduction property is, in a certain sense, the equivalent in type
theory of Prawitz’s inversion principle: in the same way in which the latter provides a way to
define a transformation over a derivation containing a cut, the former enables the reduction of a
redex preserving the type structure of the term.

2.2 The Dedekind functor

2.2.1 “Was sind und was sollen die zahlen”

The logicist dream was that of a purely logical definition of arithmetical (and analytical) concepts.
In his famous 1888 paper [Ded96|, Dedekind explicitly writes:
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In speaking of arithmetics (algebra, analysis) as merely a part of logic I imply that I consider
the number-concept entirely independent of the notions or intuitions of space and time -
that I rather consider it an immediate product of the pure laws of thought. [Ded96|

In that paper the logical definition of the natural numbers made indeed its first appearance:
Dedekind defined an “object” to be a natural number if it belongs to the intersection of all the
“chains”, i.e. of all the sets A containing an element 0 and closed under an injective function s(x).
Once translated in the common language of second order logic, Dedekind’s definition amounts
to the introduction of the second order predicate N(z) below:

N(z) :=VX(Vy(X(y) = X(s(y))) = (X(0) = X(2))) (2.2.1)

The purely logical nature of its definition comes from the fact that it does not depend on an
intended interpretation of the symbols 0 and s:

If in the consideration of a simply infinite system N ordered by a map ¢ we entirely neglect
the special character of the elements, simply retaining their distinguishability and taking
into account only the relations to one another in which they are placed by the ordering
mapping ¢, then these elements are called natural numbers or ordinal numbers or simply
numbers, and the base element 1 is called the base-number of the number-series N. [Ded96]

In particular Dedekind was able to show that all instances of the induction schema were derivable
from his definition and to prove the isomorphism theorem, which basically asserts that, provided
that 0 is interpreted as a base element and s as an injective function, then all possible interpre-
tations of the set {z|N(x)} are isomorphic to N, the set of natural numbers (what we call today
a categoricity theorem - see [BBJ0T]).

Far from the philosophical ambitions of the logicist program, in this section we develop
Dedekind’s idea of translating arithmetics into second order logic under the form of a functo-
rial translation D (that we abusively call Dedekind functor). The idea of this translation is
quite standard in the literature and amounts to relativize quantification in second order logic
to Dedekind’s predicate: for instance, arithmetical formulae of the form ¥YnA are translated as
Vz(N(z) = A’) and formulae of the form InA are translated as Jz(N(z) A A).

The essence of Dedekind’s translation is that all derivations in arithmetics of a sequent I' - A
can be translated into derivations in second order logic of the sequent PA;, PA;, TP - AP, where
PA;, PAs are the two sentence expressing respectively the fact that 0 is a base element and that
s(x) is injective (corresponding indeed to the first two axioms of Peano Arithmetics):

V(0 # s(x)) (PA)
Vavy(s(z) = s(y) = = =y) (PA2)

The presentation we give of this translation allows to show the preservation of Gentzen’s
transformations. The interest of this aspect is twofold: on the one hand it allows, as it will
be shown in the next section, to devise a complete cut-elimination procedure for arithmetics,
since we no more need to make use of induction axioms (which are replaced by occurrences of
Dedekind’s predicate). Indeed, it is well-known (see for instance [Pra71b]) that cut-elimination
for arithmetics fails when induction axioms are applied to terms containing parameters: the
translation in second order logic makes it possible to remove those cuts.

On the other hand, as it will be recalled in section , the translation of arithmetics
into second order logic allows a direct implementation of the Curry-Howard correspondence to
arithmetics, with very elegant results: a derivation of N(n) is translated into a program cor-
responding to the Church’s numeral \f Ax.(f)"x, and a derivation making use of an induction
axiom is translated into a term implementing primitive recursion over a certain (not necessarily
finite) type .
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2.2.2 The functor D

We describe here a functorial translation of second order (intuitionistic) arithmetics into second
order (intuitionistc)m logic arising from Dedekind’s intuition of a second order treatment of
arithmetical concepts.

This idea of a purely logical treatment of arithmetical concepts can be described as follows
(this idea was developed in many places, for instance in [Lei83]): given an arithmetical formula
A derivable in arithmetics, let us consider its signature X, i.e. the set of all the constant and
function symbols which occur in the derivation; ¥ will contain the symbols 0 and s, so as a finite
number of function symbols fi,..., f.

The “meaning” of those symbols is characterized by a finite set of formulae Ay, = {E1, ..., E, };
for instance, the “meaning” of the symbols 0 and s is fixed by formulae in the axioms PA1E| and
PA,, and the meaning of the symbols + and X is fixed by the axioms PA;1—2 and PA,1—2;
more generally, since any recursive function f can be defined by a finite set of equations (by
the so-called Herbrand-Gddel-Kleene computability [Kle52]), we let pure logic talk about f by
introducing in its language function symbols f,g1,...,gr for the functions which occur in the
equations defining f and by putting such equations in the antecedent of each sequent.

A second element to be considered is the free occurrence of parameters: if a free variable x
occurs in a formula, then, in logic, we have to make explicit the assumption that the variable x
stands for an (unknown) natural number. As a consequence, in our translation we’ll have to add
assumptions declaring all freely occurring variables to stand for natural numbers.

The logical translation of a derivation of I' - A in HA? is a derivation in second order logic of
the sequent N (z1),...,N(z,),Axs,I'® - AP where x1,...,x, are the free parameters occurring
in A and [_]? indicates the Dedekind translation of arithmetical formulae.

Formulas Let N(z) be Dedekind’s predicate

VX (Vy(X(y) = X(s(y)) = (X(0) = X(x))) (22.2)
Dedekind’s translation from the formulas of HA? to the formulas of LM? is given by the rela-
tivization of the universal quantifier ¥n to Dedekind’s predicate: let, for all term ¢ € T4, t® be
the result of replacing in ¢ every occurrence of a number variable n; with the individual variable

x;. We put then:

(X(t1,..ta)? = X(t7,...,t2)  (A=DBP:=4A"= B° (2.2.3)
(Yn; AP :=Va;(N(z;) = A®)  (VXA)P :=vXxAP (2.2.4)

Dedekind’s isomorphism theorem can now be restated in the following form:

Theorem 2.2.1. Let A be an arithmetical formula. Then AP is valid if and only if A is true in
the standard model.

Proof. See for instance [BBJOT]. O

"The reader will be easily convinced that this translation is actually independent from the choice of an intu-
itionistic or classical frame.

8 Actually by the formula —(0 = s(x)). This is indeed the only formula in Ay which is not an equation. The
occurrence of negation in this formula has some delicate consequences for the translation in type theory, see

subsection (2.3.2]).
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Derivations We show how to translate a derivation d of I' - A in HA? into a derivation d® of
A, TP AP in LM?, where A may contain the axioms PA;, PA,, equations defining the function
symbols occurring in d” and assumptions of the form N(z) for the free variables occurring in
I, A.

The only cases to consider are the identity rules, the rules for the number-theoretic quantifiers

and the axioms (PA1).
(id) The axiom Vn; A I Vn; A is translated into the axiom Va; (N (z;) = AP) - Vz;(N(z;) = AP).
(VR), Let d be the derivation
d
I-A
I'tVnA
then, by applying the induction hypothesis to the subderivation d’, we define d® as

(VR)n, (2.2.5)

L (d)
A TP |- AP
A,FD,N(J?,') l_ AD
A TP - N(z;) = AP
(VR)q,
A TP F Va;(N(x;) = AP) (2.2.6)

(W)

(VL),, Before defining the translation we describe, for all term ¢ € T, its number derivation d,
of conclusion T', N(x1),..., N(xy,) F N(t), where z1, ..., x,, are the free variables of ¢ and
I' contains the equational axioms defining the function symbols occurring in ¢. We build
d¢ by induction on t:

o if t = x;, then d; is the axiom N(z;) - N(x;);
e if t =0, then d; is
X(0) + X(0)
Vy(X(y) = X(s()), X(0) - X(0)
FYy(X(y) = X(s(y)) = (X(0) = X(0))
FN(0)

W)

= R)
(VR)x

(2.2.7)
o if t = s(t'), then FV(t) = FV (') and d; is (the cut-free derivation obtained from)

X(OFX(0) X()FX() (= 1)
X(0) = X(t),X(0) - X(t) (X (y) = X(s(y)) F ¥y(X(y) = X(s(y))
S dy Yy(X(y) = X(s(y)) = (X(0) - X (1)), Vy(X(y) = X(s(y)). X (0) - X(t'))

(=1)
(VL)x

X(t)FX() X(s(t) - X(s(t))

A N@1). - N(wm) F N (E) N, Vy(X(y) = X(s(y), X(0) - X(¥')) (cut)
A N(@1), ., N(m), Vy(X (y) = X(s()). X(0) - X(t))

X(t) = X(s(1), X (1) - X(s(t))

B Vo). V) X0 = XEGD)XO) = XG0 XQ - XG0
A N(@), - Nm), Vy(X (y) = X(s(9)), (X (y) = X(s(y))), X (0) - X(s(t')) ©) !
A N(@1), . Nim), Vy(X(y) = X(s(y)), X(0) F X(s(t)
AN, Nom) F Y9(X ) = X)) = (X0 = X(6(0))
A, N(xy) N(xy,) F N(s(t))

(=R)
(VR)x

FEREE}

(2.2.8)
o if t = t;+4to, then FV(t) = FV (t1)UFV (t2) and d; is (the cut-free derivation obtained
from)

N(t)F N(t) Nt2) - N(ts) N(titta) - N(titts)
ta, N(t1) = N(t2) = N(t1+t2), N(t1), N(t2) F N(t1+t2)
Ay F V(N () = N(z) = N(y+2)) Viva(N() = N(z) = N(gL2) N(tr), N(ta) - N(tait)
Ay, N(t1), N(t2) - N(titt2)

=1)
(YL)y.»
(cut)
Ay N(21),..., N(@m), N(t2) F N(t1+t2)

-,
N(z1), .-, N(@m) b N(tr)

(cut) N

Sy,

N(@ig) b N(t2)

Ay N(z1),.... ] N (@m4p) = N(t1tt2)
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where A contains PA;, PAy and the equality axioms defining addition

z+0 ==z x+s(y) = s(x+y) (2.2.10)

and d is a derivation of the totality of the sum (see the next subsection for a discus-
sion).

o if t = ¢y Xty, then FV(t) = FV(t1) U FV(t2) and d; is built as in the case above,
with dy replacing d,, where dy is a derivation of the totality of the product (again,
see the next subsection), with context Ay made of PA;, PAs, the equality axioms of
addition and the equality axioms below

xx0=0 zxs(y) = (zxy)+a (2.2.11)
We can now describe the translation of the (VL), rule: let d be the derivation

s d
T, A(t)F B

T,V A- B (VL)n.

(2.2.12)
then, by applying the induction hypothesis to the subderivation d’, we define dP as

LdP Ly
Ao, TP AP(t) - B® Ay, N(z1),....N(zm) F N(2)
A, N(@1), .-, N(@m), I®, N(t) = AP(t) - B
A,N(21)y. .o, N(20), [P, Vo, (N (z;) = AP(;)) - BP

(=1L
(VL)a,

(2.2.13)

(PA;/PAs) The axioms PA; and P A, are translated into the trivial derivations of PA;, PAs F
PAl and PA17PA2 F PA2

(PA3) The axiom PAj is translated into the derivation d;yp below

Vy(X(y) = X(s() F Vu(X () = X(s(»)) X(0)F X(0) X(z)F X(x)

Vy(X(y) = X (1)), X(0), (V(X () = X(s(1)))) = (X(0) = X (2)) - X (x)
Vy(X(y) = X(s))). X(0), N(z) F X (=)

V(X (@) = X)) = (X(0) = Ya(N(z) = X(2)))

FYX (VY (X (y) = X(s(y)) = (X(0) = Va(N(z) = X()))) o)

PA;, PAy FVX((Yy(X(y) = X(5(y)))) = (X(0) = Va(N(z) = X(x)))) (2.2.14)

(=1
(VL)x

(=w)
(VR)x

Reductions We show now that, for all derivations d,d’ in HA?, if d reduces to d’, then d®
reduces to d® in LM?. We show this by induction on the translation of rules defined above.
Since the case of the identity rule is trivial, we discuss the case of a cut (VL),/(VR),; moreover,
we must add the case of the irreducible cut (VL),/PAs: since the axiom PAj is translated into
a derivation, it follows that this irreducible cut is translated into a reducible one.

(VL)/(VR) let d be the following derivation

I A(t) - B - A
TV AFB VD TEvna E\”g
I+ B o (2.2.15)
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which reduces in one step to

s dy S dy{t/x}
T, A(t) - B F’FA(t)
/ (cut)
r,I'+B (2.2.16)
The derivation d® is the following:
: ()
s Cdp Ao, TP | AD

: [ R — V4
Ay, T2 AP(P)  B® Ayg, N(z1), ..., N(zp) F N(EP) I Ag,T'" N(z;) - AP )
Ay, N(21),. .., N(2p), I?, N(tP) = A>(t®) - BP L) Ao, TP F N(z;) = AP vE)
AL N(21), .o N(@p), TP, Yy (N (2;) = AP(z,)) - BP " Ag, TP V(N (x;) = AP) .
CU;

A, N(@1),...,N(@m),T°,I"® - BP (cut) (2.2.17)

which reduces in two steps to

GG
Ddp Ay, TP | AD

L ap Arps N, N(m) F N(®) B TP, N@) - 0) )
D gD (4D D ; . D7D (cut)
Ay, TP, AP(°) - B iz Az Vo), oo, Nlam) EAYE)
A, N(z1), ..., N(z), " - B® (e (2.2.18)
and successively to
LR )
Sd? Ay TP} AP w
Ayp, TP, AP(P) F BP Ay, N(z1), ..., N(zm), I'P - AP(P) E t)>
A, N(z1),...,N(zp),T?, TP+ BP o (2.2.19)
(VL)/PAs let d be the following irreducible derivation
L, 1
I A(t)+ B FPAs PAs,Vy(Ay) = A(§( ))), A(0) F Vn; A ;
TvnAr B (Hn y(Aly) = A(s(), AQ) FnA (cut)
Vy(Aly) = A(s(1))), AQ),T - B (cut) (2.2.20)
The derivation dP, after some reduction step, is the following:
Vy(AP(y) = AP(s(y))) - Vy(A°(y) = A%(s(y))) AP(0) - AP(0) A°(z) F AP(x) (= 1)
S aP Cdp Vy(A°(y) = AP(s(v))), A°(0), Yy (A" (y) = AP (s(y))) = (4°(0) = AP(x)) - A(2) (VL)
AP B N Naw) N WA ) = W), QN L@ x
N, N I N@) = OB 7 WA ) = () L O F N ):»A%) ),
N(z1), ..., 1\(1,,,) I Vay(N(z;) = AP) (@) - BP © " Vy(A(y) = AP(s(y))), AP(0) - Va(N(z) = A°(x)) (Cut;
Vy(AP(y) = AP (s(y))), A°(0), N(@1), ..., ] N (), I = B”
(2.2.21)
which reduces to the derivation
D dP D dp{AP/X}
[P AP(tP) F B wy(AP(y) = AP(s(y))), A(0), N(21), ..., N(zm) = AP(t7) (cut)
CUu
VA ) = A (), AP0 Ne), o, N, T - B (2.2.22)

Remark that in this case all the reductions are applied to the parts of the derivation
introduced by the translation: the derivation d;» and the negative occurrence of N(x) in
the right-hand derivation (this is why the reduction is not “visible” in HA?).
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2.2.3 Arithmetics and logic

Dedekind’s translation provides a proof-theoretical bridge between arithmetics and logic. We
recall here some applications, in particular the translation of some well-known theorems on
arithmetics in the frame of second order (classical) logic.

The comparison of hierarchies The translation of arithmetics into second order logic pro-
vides an interesting proof-theoretical viewpoint over some results which are usually connected
with arithmetics. Let us introduce two hierarchies for, respectively, arithmetical and second
order logical closed formulaeﬂ

The arithmetical hierarchy is defined recursively as follows

Definition 2.2.1. Let A be a closed arithmetical formula.

o A is X3 or, equivalently 113, if it is classically equivalent to a formula without number
quantifiers;

o Ais Zgﬂ if it is classically equivalent to a formula of the form 3In, ...3ng B, where B is
o,
e Ais H%_H if it is classically equivalent to a formula of the form ¥n, ...Vng B, where B is
=
Of particular interest for arithmetics are the two classes ¢ and I19. The first one is indeed
connected with a completeness theorem:

Theorem 2.2.2 (X9-completeness). Let A be a Xy formula. If A is true in the standard model,
then A is derivable in PA.

Proof. see [BBJOT]. O

The second class is connected with Gédel’s well-known incompleteness theorems, that can be
reformulated as follows:

Theorem 2.2.3 (I19-incompleteness). There exists a 11 formula G which is true in the standard
model but is not derivable in PA (if PA is coherent).

Proof. This is just Gédel’s first incompleteness theorem, along with the remark that the formula
G is of the form Vn— prfpa(n,k) (where k is the code of G) is II§. O
The logical hierarchy is defined recursively as follows
Definition 2.2.2. Let A be a closeﬂ formula of second order logic.
o A is X0 or, equivalently TI°, if it is classically equivalent to a formula without second order
quantifiers;
o A is XL if it is classically equivalent to a formula of the form 3X, ...,3X,, B, where B
is I1™;
o A is TI™! if 4t is classically equivalent to a formula of the form VX ...VX, B, where B
is X"
With the aid of Dedekind’s functor we can now restate theorems (2.2.2)) and (2.2.3)) as theo-

rems concerning classical second order logic rather than arithmetics (in the following two para-
graphs by second order logic we will implicitly mean classical second order logic LK2).

9Here by closed formula we mean a formula with no free first-order or number variable. Hence a closed formula
can have free second order variables.
10Same remark that in the footnote above.
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II'-completeness Let us first consider the class II': it contains all formulas of the form B =
VX;...VX,A, where A is first-order. Typical examples of II' formulae are those of the form

N(t).
Remark that a cut-free derivation of B still satisfies the subformula property: such a deriva-
tion must consist in a cut-free derivation of = A, ..., A, which satisfies subformula since A is first

order, followed by instances of the (V — R) rule and the contraction rule, which still satisfies sub-
formula. A consequence of this remark is that we can extend the Schiitte proof-search algorithm
discussed above to II' formula, obtaining the following result:

Theorem 2.2.4 (IT'-completeness). Let A be a II' logical formula. If A is not derivable (in
classical second order logic), then it has a counter-model.

Dedekind translation turns a $¢ formula A4 into a IT* one: if A is In; A, i.e. VY (Vn;(A(n;) =
Y) = Y), then, AP is VY (Va;(N(z;) = (AP(x;) = Y)) = Y) which is classically equivalent to
Jx; (N (x;) A A]F)E By applying theorem we can thus derive the theorem from the
completeness theorem for IT! formulae.

Incompleteness and the comprehension schema Let us now consider the class ': it
contains all formulae of the form B =3X;...3X, A, where A is first-order. Remark that a cut-
free derivations of a ' formulae might not satisfy the subformula property, since the premiss of
the second order (3R) rule may contain formulae of arbitrary logical complexity.

This fact has striking consequences, that we will explore in the next chapters: indeed the rule
(3R) can be equivalently reformulated by means of a comprehension schema:

Var ... 2, 3X (A(x1, ooy Ty Yty ooy Ym) S X (21,00, 2Tp) (2.2.23)

It is a well-known fact in the proof-theory of second order logic (see for instance [Poh89]) that the
“strength” of second order systems depends on the complexity of their comprehension schemas.

As a consequence, when devising a proof-search for a X! formula, one can no more limit
himself to a finite set of possible premisses for every rule: given a formula 3X A, he must take
into account all possible instances A[P/X], for any predicate P: so to say, one is not only in
search for the proof, but also in search for the predicates to use in the proof.

Dedekind translation turns a II{ formula into a $! formula: indeed, if A is Vn;B, then
AP is Va;(N(x;) = B"), which is classically equivalent to the 3! formula 3XVaz,((Vy(X (y) =
X(s(y))) = (X(0) = X (x))) = B"f

By applying theorem , theorem can be reformulated as a theorem asserting
that, as soon as subformula is lost, completeness is too:

Theorem 2.2.5 (X!-incompleteness). There exists a valid St formula which is not derivable in
second order logic.

Proof. One has to formulate a variant of Godel’s argument with a formula G’ := Vn—pr fikz(n, k),
where k = "G’™ and the predicate pr fyk2(n,m) codes derivability in second order logic. O

11Indeed, the converse also holds, that is, if B := VX;...VX,A is a II' formula, by means of the II!-
completeness theorem, it is equivalent to the validity of the first-order formula A, i.e. B is equivalent to the
2(1) formula In(prfLk(n,”"A™)), where prfxr(n,m) is the recursive predicate which codes derivability in first-
order logic.

12Indeed, the converse also holds: it can be shown that a second order existentially closed ¥! formula
dX;...3X, A is equivalent to the satisfiability of A which, by the completeness theorem for first order logic,
is equivalent in turn to the H(l) formula Vn(—prfLk(n,"A = 17)), where prfLk (n, m).
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Since the class I19 contains all those formulae that one can prove by means of an induction
axiom, this means that such proofs contain a hidden comprehension: the Dedekind translation
of a proof by induction corresponds exactly to a derivation in which the second order (VL) rule
occurs. So to say, Dedekind translation can be used to eztract the comprehensions implicit in
arithmetical proofs.

An interesting example can be found in Gentzen’s 1943 paper [Gen69]: in order to show that
transfinite induction up to w,, (T'T (wn)@, for every integer n, can be derived in first-order Peano
Arithmetics PA, he defines a series of predicates of growing complexity T'1,,(z) as

ThH(x) :=Vy(TI(y) = TI(y +w"))

TIy(x) = Va(Vy(TI(y) = TI(y + w*)) = Vy(TI(y) = TI(y + w**")))

TI3(z) :=Vu(Vz(Vy(T1(y) = TI(y +w*)) = Vy(TI(y) = TI(y + wz‘wu))) =
V2(Vy(TI(y) = TI(y +w*)) = Vy(TI(y) = TI(y +w+"""))

(2.2.24)

and constructs, by applying induction on the predicates TI,(z), cut-free derivations in PA
of TI(wy), for all n € N. If we apply Dedekind translation to such derivations, we obtain
derivations of formulae T1(w,)? of a fized logical complexity containing comprehensions over
predicates T'I,,(x)® whose logical complexity grows exponentially in n. In other words, we can
use the translation to show the failure of the subformula property already in first-order Peano
Arithmetics (see for instance [ST00]). This perspective is developed in detail in [Lei01], where
the second order translation of arithmetics is applied to obtain a subsystem of LK? which
corresponds exactly to first order Peano Arithmetics.

2.3 The forgetful functor

In this section we recall some of the technical tools of the Curry-Howard correspondence between
intuitionistic second order logic and polymorphic type theory.

First we associate with any formula A a type A¥ and with any context of formulae I" a context
I'F of type declarations. Then, with any derivation d of a sequent I' - A we associate a lambda
term F(d) and a typing derivation d¥ of the judgement I'* I~ F(d) : AF.

This functorial translation has been called forgetful (as in [GirlI]) to stress the fact that it
deletes all first order information: for instance, the translation of Dedekind’s predicate is the
type N = Va((a = a) — (@ — «)). In particular, the functoriality of the translation implies
that the behavior of the rules for first order quantifiers under Gentzen’s transformations has a
void computational content: the reduction of a cut between first-order quantifiers implies no
reduction of the corresponding programs (see [Lei90] for a discussion).

The payoff of this translation is at least threefold: firstly, since a normalizable term of the
form F(d) must come from a derivation which reduces into a cut-free one, the Hauptsatz for
intuitionistic second order logic can be directly inferred from the weak normalization theorem for
System F' (that will be shown and widely discussed in the next chapter), i.e. the theorem which
asserts that every term typable in System F' has a normal form.

13Corresponding to the formula Vz(Vy(Vz(z < y = A(2)) = A(y)) = (z < wn = A(z))), where w,, refers to a
recursive coding of Cantor ordinal notation and < is a recursive coding of the order relation on Cantor ordinals
(see [ST00]).
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A second consequence is at the level of derivability: since the existence of a proof of A
corresponds to the existence of a A-term of type AF, derivability in second order logic can be
investigated from the viewpoint of typability in System F. This will be indeed the perspective
developed in chapter @ and discussed in chapter .

A third consequence is at the level of the structure of the derivations: one of the main fruitful
directions within the Curry-Howard paradigm is to investigate the structure of proofs of certain
classes of formulae through the behavior of their associated programs (see subsection
about Krivine’s program). For instance, the derivations of the sequents - N(¢) induce programs
M which behave as iterators: given a base program Ny and a functional program Ny, (M)N;Ny
reduces to the k-th iteration of N, over Ny, i.e. to the term (N,)*Ny: the computational content
of Dedekind’s predicate is thus expressed by iteration. A second important case is represented by
derivations of the totality of recursive functions, whose associated A-terms behave as programs
computing those functions.

2.3.1 The functor F

Formulas The translation of formulae and predicates into types is relatively straightforward:
all we do is systematically erase first-order information from formulae.

(Xi(tl,...,tn))F =y (A:>B)]F = AF — BF
(Axp..... Az, A)F = AF

We translate contexts I' = {A;,..., A, } as follows: let 21, ...,xz, be variables of the lambda
calculus; then I'F is the set made of the type declarations (x1 : AY),..., (x, : AY).

Derivations We define now a map which associates with every derivation d of a sequent I' - A,
a lambda term F(d) and a derivation d* of the typing judgement I'* - F(d) : AF.
We consider all cases:

(id) ifd= AT 4 %) then F(d) = y and dF = (y: A7) Iy : AF;

4 i
LBEA AFB
(cut) ifd=  T,AFA U then F(d) := (Ae.F(d1))F(ds) and dF is

¥

I'" (2 : BY) FF(dy) : A¥ - dy

'+ A\e.F(dy) : B¥ — A" AF\-F(dy) : BF
I, AT F F(d) : AT (2.3.2)

. d/

TEB gy
(W) ifd=T,A+ B then F(d) := F(d’) and d* is just d'F, where all contexts A have been
replaced by A U (z : A¥) for a fresh variable z (use proposition (2.1.1) i.));

s d
A AF B

(C)ifd= T,AFB ( )7 let x,y be respectively the variables associated to the two type
declarations (z : A¥) and (y : A¥) occurring in d'F; then F(d) := F(d')[z/y] and d¥ is
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obtained from d'F by replacing all occurrences of the declaration (y : AF) by the declaration
(z : AF) (and remembering that contexts are sets of declarations).

D dy D dy
I[LBFC AFA
(=L)ifd=T,AA=BFC (= L), then F(d) := F(d1)[yF(d2)/x], where z is the variable
declared of type BY in d} and y is a fresh variable; one has the following two derivations

¥
Y AF (y: A" = BYY by AF — BF AT M, : AT
¥ (z: BY) FF(dy) : CF AF (y: AF¥ — BF) - yF(dp) : BY
(2.3.3)
and d¥ is obtained by applying proposition (2.1.1)) i. and the substitution lemma (2.1.1)).
. d

A+ B
(=R)ifd=THA=B (= R) then F(d) := Az.F(d'), where z is the variable declared of type
AF in d'F, and dF is

S d”
IF, (2 : A¥) F F(d') : BF
IF - F(d) : AF — BF (2.3.4)
d
T,A(t)F B
(VL) ifd=T,VzAF B (VL)QC, then F(d) := F(d’) and d" := d'F;
d
a—Trvag (VR N and dF 1z dF
(VR), if d=TFVzA , then F(d) := F(d’) and d" := d"";
s d
I, A[P/X;]+ B
(VL)x ifd= T,VX;A+ B (VL)I, then F(d) = F(d’) we have the following two derivations:
7 (2 : Vo A¥) - 2 : Yoy AT S d
IF (z: Vo, AY) = 2 0 AF[PF /o] F (- A]F[PF/@]) FF(d') : BF (2.3.5)

one easily verifies by induction that A¥[P¥ /o] = (A[P/X;])¥ and d¥ is obtained by means
of the substitution lemma (2.1.1]).

X
_I'tA (VR)X
(VR)x ifd=T F VXA , then F(d) := F(d’) ad d¥ is
s dF
TF - F(d) : AF
I'F - F(d) : Vo, AF (2.3.6)

remark that the requirement X ¢ FV(T) implies that « is bindable in T'F.
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Remark 2.3.1. FEqualities t = u are translated by F as the unity (t = u)¥ = 1F = Va(a — a).
This implies that no computational content is assigned to equalities: indeed the two rules of
equality
' A(t) (= L)
Cit=uk A(u) Ft=t (2.3.7)

which are immediately derivable from the second order definition of equality t = v := VX (X (t) =
X (u)), are translated into dummy terms by the forgetful functor:

(= R)

d
Tk A(t) L
=L)ifd=T,t=ubt A(u) ~ ", then F(d) := F(d') and d* := d'¥;

=R) ifd=Ft=t ) hen F(d) := \zv.2 and d¥ is

(z:a)Fa:a
FFd):a—a
FF(d) : Va(a — «) (2.3.8)

Reductions We pass now to show that if a derivation d reduces to d’ by cut-elimination, then
the lambda term F(d) and the lambda term F(d') are B—equivalentlﬂ We limit ourselves to the
cases of identity and implication:

(id) Let d be the derivation
o d
AFA TFA
r=c

which reduces in one step to d’. The derivation d* is

(cut) (2.3.9)

(v : AF) 20 AF : d¥F

Fz.x: AF — AF TF FF(d): AF
I = (Az.z)F(d) : A¥ (2.3.10)

and clearly F(d) reduces in one step to F(d').
(= L)/(= R) let d be the derivation

Ly L dy ds
I'nFA Ty BFC Iy, AF B
r,isprc =D FQI—A:>B(:>tR)
THA (cut) (2.3.11)

which reduces in one step to d’ below

a
INTRP FQ,AI—B( 9 S dy
TL,.ToFB L, BFC

(cut)

T A (2.3.12)

14\We recall that the relation =g of B-equivalence over pure A-terms is the symmetric closure of the reduction
relation —-.
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The typing derivations d*, d’" have respectively the shape below:

IF F \y.F(dy)[yF(d1)/a] : (AT — BF) = CF Tk A\2.F(ds) : A¥ — BF

IF F (\y.F(dy) [yF(dy)/2]) Az F(d3) : AF (2.3.13)
s dy
L dE 7 (z: AF) F F(ds) : BY L F
¥ (z: B¥) - CF IF - \2.F(ds) ¥ F F(dy) : AF
IF - M2 F(dy) : BY — CF IF - (A2.F(ds))F(dy) : BY
TP F (\z.F(da))(\2.F(d3))F(dy) : CF (2.3.14)

now (Ay.F(de)[yF(d1)/x])Az.F(ds) and (Az.F(ds))(Az.F(d3))F(d1) both reduce to the term
F(d2)[F(d3)[F(dv)/z]/x].

Remark 2.3.2. We can also consider the derived case of equality, as it will be explicitly used in
the next section:

Let d be the derivation

s d
rEA _
F,t:tFA(_L) Fttg_g)
THA “ (2.3.15)
which reduces in one step to d'; the derivation d¥ is
) (z:a)Fa:a
D d" U (2 Va(a = a)) Flxz:a—a
' (2 :Va(a — ) - F(d) : AF FAz.z:Va(a — «a)

" = (A\2.F(d)\z.x : AF (2.3.16)

and clearly F(d) reduces in one step to F(d'), since z is fresh.

We end this subsection by recalling a result (called faithfulness in [Kre70]) which shows that
the forgetful functor can be inverted: typed programs are exactly those that are the image, under
the forgetful translation, of actual derivations in sequent calculus

Theorem 2.3.1 (faithfulness). If (z1 : A), ..., (zx : AZ) = M : AY is derivable in simple type
theory, then there exists a sequent calculus derivation d of conclusion Ay, ..., A, - A such that
F(d) = M.

Proof. We argue by induction on construction of M:

(M = ;) The typing derivation of M is just the axiom (z1 : AY),..., () : AL) Fa;: AY, and d
is obtained by an axiom followed by several weakenings:

A - A;
Ay, AR EA,; (2.3.17)
(M = M\x.M') Then A¥ = B¥ — CF and the typing derivation of M has the form

(w1 : AY), . (wp : AY), (2 : BY) - M. CF
(z1: AN, (g AE) F Az M AF (2.3.18)
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then, by induction hypothesis there exists a derivation d’ of Ay, ..., Ay, B+ C such that
F(d') = M’ and we can obtain d with a (= R) rule:

Sl
Ai,...,A,,BFC
A,.. A,FB=C (2.3.19)

(M = ()M ... M) Then the typing derivation of M has the form:
-
ta;:BY - =B - A" T+ M :B}
'k (z;)My: B — - — Bf — AF

: s dy,
Tk (z)My... My : By — AF '+ M, :BF
'+ (;Ei)Ml . Mh : A]F (2320)

where AY = B — -+ — Bl — AF and T is the context (z; : A1),..., (2 : Ax). Then the
derivation d is the following:

L
Ai,. AL AE A AF B, (
AAL.. . Br=A,.. A=A

= L)
; 4
A,...,A,Al,...,BQ:>...:>B}L:>A,...,Ak|_A A+ By I
A AA B> SBoA  AFA (= 1)
AF A ( (2.3.21)

where A is the context Ay,...,B1 = ... = B, = A,..., Ay and dj, for 1 < j < h, exists
by induction hypothesis and is such that IF(d;) = d;. Remark that the order of appearance
of the dj is inverted with respect to the order of appearance of the d;.

(M = (Az.M;)M3) Then the typing derivation of M has the form:

D ds
L, (z: B M, : AF Cdy
THXe.M;:BY¥ - AF T'v+ M, : BF
'+ M:AF (2.3.22)

where I' is as above. Then the derivation d is the following:

o a
A BFA AFB
AAr4 (et
ara @ (2.3.23)
where A is the context Aj,..., Ar and dj,d} exist by induction hypothesis and are such

that F(d}) = dy and F(d}) = da.
O
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2.3.2 Arithmetics in type theory

The composition of the two functors yields a type-theoretic interpretation of arithmetics, that
we briefly recall.

Composing D and F We present here some well-known results on the interpretation of arith-
metics within System F (see [GLT89]). This translation can now be presented as the composition
of the Dedekind and the forgetful translation.

Let us introduce the type N := N(z)¥, which is the standard type for the iterators:

N :=Va((a = a) = (o = @) (2.3.24)

Let t € T and d; be the number derivation of T', N(x1),...,N(xg) = N(t). By applying F
we obtain a (normal) program F(d;) and a derivation di of the judgement I'F, (z; : N),..., (zy :
N) F F(d;) : N (remark the abuse of notation). In particular, if ¢ = n, then the context of d,,
is empty and thus F(d,) is a normal term of type N. One easily shows then by induction that
F(d,,) corresponds to the n-th Church numeral n := Af.Az.(f)"x. In other words, a derivation
of N(n) corresponds to a program which behaves like a n-times iterator.

One of the most significative examples of composition of D and F, that we use through-out
this text, concerns the provably recursive functions: a k-ary recursive function f is said provably

recursive (or provably total) if it is derivable in PA? that
Vny ... VngIm(f(ng, ..., ng) =m) (2.3.25)

where f is a function symbol introduced along with a set of equational axioms.

Now, if a function is provably recursive then its totality can be derived already in HA?: this
follows from a well-known theorem by [Fri78] which says that HA? and PA? prove exactly the
same 119 statement

Let us say that a k-ary recursive function f is representable in System F' if there exists a A-
term M such that, for all ny,...,ng, (M)ny,...,n; reduces to m if and only if f(ny,...,nx) =m
and moreover the judgement - M : N — N is derivable in System F. A classic result is the
following:

Theorem 2.3.2 (|Gir72, [GLT89|). The provably recursive functions of second order Peano arith-
metics are exactly those which are representable in System F'.

Proof. We limit ourselves to sketch the first part of the proof, in order to highight the role of the
two functorial translations. The second part, which involves the notion of reducibility which we
introduce in chapter (4)), will be sketched in section and can be found in [Gir72] (GLT89.

Let f be provably recursive and let d be a derivation of I' - Vny ... V¥niIm(f(n) = m) (where
I contains equations expressing the “meaning” of the function symbols defining f). By applying
the Dedekind functor to d we obtain a derivation dP of the sequent IV - B, where B is the
formula below:

Voy ... Verdy(N(z1) = - = N(zk) = N@y) Af(z1,...,28) =) (2.3.26)

and I contains the equational axioms of the function f plus the axioms PAl and PA2.

15The idea of this theorem is that of using the ——-translation from classical to intuitionistic logic: in particular
the translation of a Hg formula YnmA is Vn——3ImA. Now it can be shown by standard proof-theoretic techniques
that the latter formula is derivable in HA? if and only if the former is derivable in PAZ2.
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A simple manipulation turns the derivation d® into a derivation d’ of the sequent IV I Tot(f),
where Tot(f) is the formula below (which is intuitionistically equivalent to B)

Yoy .. Vl’k(N(Qﬁl) = = N(Ik) = N(f(.%‘l, C ,J,’k))) (2.3.27)

Now we can apply the forgetful functor to the derivation d’: this produces a program My
and a derivation of the judgement (zp : Va(a — a) — Vaa),(z1 : Yala = «@)),...,(zn :
Va(a — a)) F My : N — N. Indeed all axioms are interpreted by F as unities except PAL,
which is interpreted as the negation of the unity Va(a — ) — Vaa = Vaa. Let then M J’c =
M¢Az.z/z1,..., 2.2/ 2]; since Az.z has type Ya(a — «), it follows by the substitution lemma
that (20 : Va(a — o) = VYaa) = M} : N — N is derivable in F.

It remains then to get rid of the free variable zy : Va(a — a) — Vaa: a first solution
(discussed in [GLT89]) would be to add a junk term € of type Vao to System F, so that Az.Q
can be given type Va(a — «) — Vaa. The argument we develop below would suffice indeed
to show that the term 2 disappears during the normalization process. A more elegant solution
requires a slight modification of the forgetful interpretation, but for all details we address the
reader to [GLT89].

By applying one of the two mentioned strategies, we get, in definitive, a closed term M} and
a derivation of - M7 : N — N.

We want now to show that the program M JZ" effectively computes the function f; to do this,
we will have to rely on the Hauptsatz for second order logic (that will be proved in the next
chapter). Indeed, by applying the Hauptsatz we get that, for all ky,..., &k, € N, the derivation
below

: dyy
Yy .. Yap(N(z1) = - = N(zy) = Nz, .. 7)), N(ky), ..., ] N(ky) b N(EQOkys - k) + N(ky)

Var - Van(N(@n) = = N@n) = N1, o0) Ny, - Ney) - Ny, k) (eut) )
: s d,
L Vay . Fap(N() = - = N(ay) = NE@r, . 20)), Nkn) - NEE, . k) N (L
Tk V.. Yan(N(z1) = - = N(zn) = N(E(@r,....21)) Vo Vo (V) = = NG) = Nteer, o)) F NG B ut
T+ N(E(Ey, .- k) et
(2.3.28)
reduces into a cut-free derivation ey, ., of I' = N(f(k;,...,k;)); now, since no parameters

occur in the formulae in the sequent, it follows that ey, ... x, contains a derivation of - N(p), for

a certain p € N followed by several application of the (= L) rule. From the soundness of HA?
we get indeed f(ki,...,kn) = p.

We can now rely on the functorial nature of both D and F and verify that (My)k; ...k
reduces indeed to (e”)¥, which must be of the form (z;,)(z,) ... (z,)p, for a certain ¢ € N,
where the z;; are the variables corresponding to the equality axioms of the function f. As an
immediate consequence we get that (M }“)kl ... kj, must reduce to p. In other words, we have
shown that for all k1,..., k&, the application of My to the Church numerals kq, ...,k reduces
to the Church numeral corresponding to f(ki,...,kn).

O

A simple application of the theorem above is provided by the standard exercise of constructing
derivations of totality d; and dy in HA?, respectively for the sum and the product of natural
numbers in such a way that the application of the Dedekind and the forgetful translation to such
produces the two terms Add and Mult below

Add := Az y A frz.(2) f((y)fz) (2.3.29)
Mult .= Az y \f ) z.x(yf)z (2.3.30)

which correspond to the usual programs to code sum and product of Church numerals in A-
calculus.
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Type inference and the type hierarchy We introduce a hierarchy of types which allows to
extend the comparison of hierarchies between logic and arithmetics to type theory.
Definition 2.3.1. Let o be a type of System F.

o 0 is 30 or, equivalently TIC, if it is quantifier-free;

o o is XL if it is of the form T — p, where T and p are II";

o o is II"TL if it is of the form Yo ...You,T, where T is 2.

In the next chapter we will derive theorems which correspond, in type theory, to the IT'-
completeness and the Y!-incompleteness theorems (2.2.3) and (2.2.2)) of second order logic: we
introduce a predicate of reducibility Red, (or validity or realizability) for programs with respect
to a type o and we will prove the following:

e if o is II' and M is a normal A-term such that Red,(M), then - M : o is derivable in
System F;

e there exists a normal term M and such that Redn_n(M) but M : N — N is not
derivable in System F (remark that N — N is a X! type).

In chapter @ we will discuss the type inference problem for IT' and X' types: when is
F M : o derivable in System F'?

Indeed, in the IT' case, this can formulated as a problem of first-order unification and shown
to be decidable (see [MDS82]); in the X! this can be formulated as a problem of second-order
unification and is known to be indecidable (see [Wel98]).

2.4 Beyond System F

The following pages contain a brief presentation of the systems F“,U~,U, N, which are higher
order extensions of System F' and which can be seen as more and more powerful Curry-Howard
formalisms for higher-order logic.

The generalization of the polymorphic type discipline of System F poses some delicate the-
oretical challenges. In particular, the identification of propositions (or formulae, see footnotes
and and types, which is apparently at work in the Curry-Howard correspondence, seems
incompatible with a completely uniform treatment of quantification over types.

As these theoretical questions involve many technical notions and ideas that will be presented
later in this text, this section can be read as a sketch of some issues that will be developed in
more detail in the next chapters, or simply skipped and postponed to a later reading.

2.4.1 From Curry’s type theory to System F¥

The type prop Historically, the task of generalizing the polymorphic type discipline of System
F led to some difficulties which are very similar to the ones faced at the very beginning of the
history of type theory.

FlIrst observe that quantification over arbitrary propositionsiﬂ7 along with Russell’s principle
(RUS) (discussed in subsection (3.2.3))

161n the literature on type theory and typed A-calculi it is standard to talk of propositions rather than formulae;
since the literature we are confronted with in this chapter is essentially type-theoretic we follow this terminology
in the following pages, in order to avoid confusion in the description of type systems.
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(RUS) The range of significance of a propositional function forms a type

implies that there must be a type prop of all propositions.

Church’s original version of the simply typed A-calculus in [Chu40] (that we will call CTT
for Church’s type theory) was indeed thought as a representation of Russell’s doctrine of types.
CTT contains a type prop of all propositions (intended d la Frege as truth-values), a type ¢ for
individuals and several constants, among which the constants — of type prop — prop — prop
and I17 of type (0 — prop) — prop (for every type o).

A n-ary predicate P(x7*,...,2%") in CTT is represented by a A-term of the form Az;.. ... Az, .M

of type 01 — -+ — o, — prop. An atomic proposition P(t1,...,t;) is obtained then by the
application of the term M representing the predicate P(x{',...,2%") to the terms Ny,..., Ni
representing the individuals ¢1,...,t;. Complex propositions are constructed by means of the

constants — and II°:

e given two propositions A, B, represented by terms M, N, the proposition A = B is repre-
sented by the term (—)MN;

e given a proposition A depending a free variable 7, represented by the term M, the propo-
sition Vz? A is represented by the term II7 (Az?.M).

Thus, in Church’s type theory, a proposition is represented by a typed A-term (with con-
stants). The reader should not confuse between Church’s identification of propositions with
typed A-terms and the Curry-Howard correspondence between proofs and typed A-terms. The
latter is indeed based on the principle PasT (discussed in subsection )

(PasT) Propositions should be identified with types

which asserts the identification of propositionﬂ and types.

As it is observed in [Coq90|, the conjunction of the principle RUS and the principle PasT
is incompatible with quantification over all propositions: since, as we already remarked, quan-
tification over all propositions and RUS imply the existence of a type of all propositions, the
identification of types and proposition implies that this type must be a type of all types, an
hypothesis which is inconsistent, as it will be shown in subsection . This idea was indeed
one of the main motivations for Martin-Lo6f’s introduction of the type v of all types in his original
type theory [ML70Db|, shown to be inconsistent in [Gir72] (see subsection and appendix
for more details).

Indeed, one of the main features of Martin-Lof’s type theory is the identification of two prima
facie distinct forms of typing: the typing of terms, where the latter are seen as (the interpretation
of) proofs, and the typing of propositions, where the latter are seen as (the interpretation of)
formulae and predicates.

Hence, if one wishes to extend polymorphic type theory in the style of Church’s type theory
the identification of propositions and types must be rejected: a distinction must be made between
the types for the terms and the types for the propositions; this solution is at the basis of systems
like F (see |Gir72) [Urz97]), the calculus of constructions [Coq90] and the pure type systems (see
[Ber8§]). Though these systems do not follow the identification of propositions and types, they
can still be considered “Curry-Howard” as they can be related to higher order intuitionistic se-
quent calculi by means of rather straightforward extensions of the forgetful translation described
above (see for instance [Lei94]).

17A terminological ambiguity, which seems to persist in the literature, must be here stressed: Curry [CE5S]
originally noticed a correspondence between logical propositions and types; Howard’s [How80| presents a corre-
spondence between formulae and types; still, one reads about propositions-as-types in [ML84] [Coq90|, and about
formula-as-types in the classical notes [SU06] and in [GLT89|.
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In order to avoid confusions around the word “type”, we will talk of propositions when referring
to the expressions used to type proof-like terms, and of kinds or universes when referring to the
expressions used to type constructors, i.e. terms used to build propositions (hence, prop will be
considered as a universe).

We can define the grammar of pure (i.e. untyped) constructors as follows (we use X,Y,...
to indicate constructor variables):

C,D := X|C — D|VXC|\X.C (2.4.1)

Hence, by a proposition we will mean a pure constructor C such that T' = C : prop is derivable
in the type system.

System F“ The Curry-Howard version of Church’s type theory is an extension of System F
called System F“. In System F“ one has three levels of objects: “proof-like” terms, notation
M,N,..., type constructors, notation C, D, ..., and universes, notation x, x’,....

Universes are defined similarly to simple types: one has a constant prop, and a constructor
— of type prop — prop — prop, with the following rules

DT

J(vir)Fyik

T'EC:prop FI—D:prop( ) F,(a:m)l—C:prop(ﬁ)
I'-C — D :prop FFV“QC:pTOp/ (2.4.2)

LHC:k— K FI—D:R() L(y:R)FC:k 3
' (C)D :« 'FXM.C:k— K

Once defined universes, one can call types those constructors C' such that T' = C : prop is
derivable in the system above. The rules for typing “proof-like” terms are then the following:

I'EM:0 o=pT
'eM:7 (8)
D(z:o)FM:71

(id)

M(z:o)Fax:0o
I't-M:0—>7 T'EM:0o

TFMN:7 (@) TraeMioor M (24.3)
THEN:V*Xo THC:k I'(X:k)FM:0 X bindablein T’
E K
'k M:o[C/X] (V“E) I'EM:V"Xo (V1)

Where X is bindable in T" if it does not occur free in any of the constructors occurring in T'.

Remark the rule (), which accounts for the possibility that a type containing a redex be
reduced. On the other hand, since all types in F“ are strongly normalizing (as a consequence of
the reducibility theorem for simple type theory ), one can eliminate rule (5) and replace
the rule (V*E) by the rule (V*E)" below

'EM:V*Xo THC:k
'k M :nf(oc]C/X))

(VB (2.4.4)

where nf (o), for a type o, denotes its normal form.

A constructor of universe prop will be called a proposition and noted, as usual, by small greek
letters o, 7,.... A constructor Ay.C of universe k — prop will be called a set over xk and noted
in set notation as {7 : k|C'}. Moreover, if C' is a set over  and D is in s, then we will note the
application C'D in set notation as D € C. Thus, we can see the type theory F“ as a set theory.
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The System F“ is quite well-studied in the literature (see [Urz97, Mal97]); here we recall some
well-known facts about the reducibility of System F“. The remarks that follow make reference
to reducibility and its connected technical aspects that will be introduced in the next chapters
(chapter , and ), so the reader not familiar with these topics may want to postpone the
reading of the following lines after the reading of those chapters.

The reducibility technique for System F' (presented in chapter (4))) can be straightforwardly
extended to prove strong normalization for system F*. The idea of the extension is indeed
contained in the proof sketched in section of normalization for Martin-Lo6f’s type theory;
in particular, one interprets universes as sets as follows: the interpretation of the universe prop is
set C'R of all reducibility candidates (remind that CR C ©(A)); the interpretation of the universe
k — k' is then the set of all functions from the interpretation of x to the interpretation of x'.
As a consequence, propositions are interpreted by means of reducibility candidates (as types in
System F'), and general constructors are interpreted by functions in the appropriate function
space.

The reducibility interpretation of F“ has many similarities with Reynolds’ set-theoretic in-
terpretation of type theory (sketched in subsection ): one interprets implication universes
by means of function spaces. That is, the reducibility interpretation of higher-order type theory
mimics the set-theoretic interpretation of simple type theory.

2.4.2 The systems U and U~

It seems then quite natural to expect the worse to happen if one tries to extend the hierarchy of
universes by means of impredicative quantifiers in the style of System F. If we denote universe
variables as X,), Z, ..., we can introduce a quantifier over universes: if x is a universe and X
a variable, then YX'k is a universe, intuitively the “intersection” of all universes x[x'/X].

The system U~ is obtained by extending System F“ by means of polymorphic universes, i.e.
by adding to F'“ the following rules:

I'-C:VXk (VE) I'C:x X bindable in T’

I'EC:k[r'/X] T'C:VXk (V1)

(2.4.5)

Clearly System U~ contains much more sets than System F“: in particular, one can construct
in System U~ “paradoxical universes” ([Hur95]) of the form

U =YX ((ppX — X) = X) (2.4.6)

where pk := Kk — prop is the universe of sets over k. One can in particular reproduce Reynolds’
argument (section (5.1.1))) within the reducibility interpretation of System U~.

System U (first formulated in [Gir72]) is just System U~ extended with quantification over
universes, i.e. by adding the rules below:

'k N :VXo[k/X]
I'EM:o

I'EM:0 X bindablein I’
I'EM: VX0

(VE)

(V1) (2.4.7)

The Systems U and U~ can be easily interpreted in Martin-Lo6f’s impredicative type theory
[IML70b] (section ) Historically, Girard found the paradox that bears his name (appendix
(B)) in System U and was then able to reproduce it in Martin-Lo6f’s type theory. The connection
between the two system is not prima facie evident, because in Martin-Lof’s type theory there
is no distinction between propositions and types, nor between types and universes: indeed an
object of type v can be either a proposition, either a universe.
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Remark that, as a consequence of the reducibility theorem of System F', one has a reducibility
theorem for the propositions of System U and U~ of the form: every proposition has a (unique)
normal form.

However one cannot extend reducibility to the terms typable in such systems: Girard’s para-
dox (JGir72], see appendix (B])) provides an example of a non reducible though typable A-term.
The question of the consistency of the apparently weaker System U~ was solved negatively in
[Coq94], where a paradox (i.e. a non normalizing typable term) is described for that system.
[Coq94] also contains a Curry-Howard presentation of System U~ in connection with a system
called Polymorphic Higher Order Logic, an extension of Curry’s type theory with polymorphic
types.

The analysis of these paradoxes constituted for the author the main source of intuitions and
ideas for the investigations pursued in chapter @ The reader will find in appendix an
analysis of Girard’s paradox, which follows essentially [Hur95], from the viewpoint of typability;
this analysis provides at the same time an insight into the typing properties of these violently
impredicative type systems and an introductory example to the perspective developed in chapter

(©)-

2.4.3 A naive type theory

Church’s type theory introduced the idea that propositions can be constructed as typed A-terms.
In order to describe the type disciplines for propositions, in the last subsection we introduced
pure constructors and associated, with each type system, a set of typing rules for constructors.

It is natural then to consider the possibility of a “naive” type system, whose constructors are
not typed. This means that every pure constructor can be seen as an element of the universe
prop. This type system bears some analogies with naive set theory: as we did for System F“ and
System U we can call a constructor of the form \y.C a set, and write the application of a set C'
to a constructor D as D € C; then we can write the usual rules of S-expansion and S-reduction
as

C[D/~] DeM.C
Dea.c e cinjy P red) (2.4.8)
The rules above closely resemble Prawitz’s rules for naive set theory (see subsection (3.1.2)):
Alt/x] t e {z|A}
—_— t—1 ——— (set — E
re {ojay *t D A P (2.4.9)

This is why we chose to call such a system System N, where N stands for “naive”.
The rules of System N are very simple, since there are no rules for universes: they are indeed
just the rules of System F' plus the (8) rule (already present in F%).

(id) '-M:0 o=pT
N(z:o)Fa:o ’ 'EM:T (8)
EM:ioor TEN:o g I(@:o)FM:7 o) (2.4.10)
I'EMN: 7 I'bEXeM:o—T1
I'-M :Vao I'M:0 « bindablein T
- (VE
Fl—M:U[T/a]( ) ' M :Vao (1)

The structural properties of System N closely resemble those of System F' (except for normal-
ization, obviously), but one has to take into account the existence of a not normalizing reduction
relation over types. In particular one can prove the following two properties (whose proofs can

be found in (A)):
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Proposition 2.4.1 (subject reduction lemma in [BAGM92]). Let T'+ M : o be derivable in N
and let M ~ M'. Then Tk M’ : c* is derivable for some o* such that o ~ o*.

This proposition says that the reduction relation over terms is preserved by the type systems.

Proposition 2.4.2. Let M be a normal term and = M : N be derivable in N; then there exists
a positive integer n € N such that M = \f. \x.(f)"x, where = denotes syntactic equality.

A simple corollary of the propositions above ensures that normal terms of type N — N in
system N can still be considered as codes for recursive functions (though we can no more be sure
that those functions are actually total ones).

Corollary 2.4.1. Let M be a normal term and = M : N — N be derivable in N ; then, for all
Church integer n, (M)n is either not normalizable either it reduces to a m, for a positive integer
m € N.

Since the reduction behavior of M can be coded by a recursive function, it follows that there
exists a partial recursive function f such that f(n) is defined and equal to m iff Mn is weakly
normalizable and has normal form m.

Fixpoint types System N allows the definition of types by means of fixpoint operators: the
combinator (§)d of A-calculus, seen as a pure constructor, is a set such that, if o[a] is a type with
a free variable «, then fiz, := (A)Ala.o is a type which satisfies

fix, = olfixs/q] (2.4.11)

There exists a quite vast literature on types satisfying equations like the one above: for instance
in [ML8&6] and [Pal90] one finds the analysis of extensions of Martin-Lot’s type theory by means of
fixpoint operations. In the computer science literature several extensions of simple type theory or
System F' with fixed point types (usually called recursive types) are investigated (see for instance
[CCI1l, Men8&7]).

All type systems containing a fixpoint operator are inconsistent and, then, not normalizing.
For instance, Russell’s paradox can be typed in N by using the type Rus below

Rus := (Va((a)a — L))VB((B)B — L) (2.4.12)

where we may take | as Vv.y. Since Rus is S-equivalent to Rus — L one has that \z.(z)z
can be given type Rus — L1; again, since Rus is f-equivalent to Rus — L, Az.(z)x can be
given type (Rus — 1) — L and thus it can be applied to an isomorphic copy of Az.(x)z. As a
consequence, we succeed in typing the not normalizing term (Az.(x)z)\y.(y)y of type L.

Remark that the type Rus used to type the A-term (Az.(z)z)Ay.(y)y is not normalizing. In
chapter @ it will be shown (lemma ) that if (A\z.(z)z)\y.(y)y is typable, then its types
cannot be in normal form.

The expressive power of System N is prima facie extremely big: if one takes as C7(«a) the
constructor o — o, for an arbitrary type o, then the type Ace =g Ac — o allows to type every
A-term (indeed the type Rus is of the form Ags1). This impression will be indeed disproven at
the end of chapter @, where it is shown that, if we exclude fixpoint types (which can always be
used to type not normalizing A-terms), then the typability in System N essentially corresponds
to the one of the Systems U and U~.
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Chapter 3

Inferentialist and interactionist
interpretations of proofs

An interpretation of proofs is obtained by associating derivations, in a suitable formal system,
with certain “constructions”, which might be informal entities or concrete mathematical objects.
The interest of an interpretation of proofs is twofold: first, it can be used to attach meaning to
formulae and to the logical constants occurring in therrﬂ This proof-theoretic meaning is given
by stipulating the conditions under which a “construction” can be considered as an evidence for,
or a realizer of the formula. Second, it can be used to provide a proof-theoretic notion of validity
for derivations and to derive soundness theorems of the form: if d is a derivation of a formula A,
then its associated “construction” is an evidence for, or a realizer of A.

In this chapter we present two quite distinct, though historically and conceptually related,
approaches to the interpretation of proofs and the connected notions of proof-theoretic meaning
and validity. On the one hand, we recall some of the main ideas coming from the proof-theoretic
semantics tradition, arising from Prawitz’s work on natural deduction and Dummett’s program
of a philosophical foundation of deductive inference; on the other hand, we recall some of the
ideas connected with Kleene’s realizability interpretation and, more recently, with the Tait-
Girard reducibility technique, and try to reconstruct from those ideas a coherent proof-theoretic
approach. The exposition will be limited to the case of first order logic; the more controversial
situation of second order logic will be discussed in detail in the next chapter.

In addition to constituting a background for the next chapters, this chapter contains an
attempt at confronting two traditions which, though sharing a common origin in Gentzen’s
transformational proof-theory and constructivism, developed in a quite independent way.

3.1 Proof-theoretic validity

In a series of papers ([Pra7lal [Pra7lbl [Pra74]) Prawitz laid down the foundations of a proof-
theoretical approach to the notions of validity and logical consequence, i.e. an approach which
takes the notion of proof (and its transformations) as central rather than the notion of truth and
the connected notion of model.

n the following pages we’ll refer to the tasks of providing meaning to logical formulae and of providing meaning
to the logical constants as essentially equivalent tasks, since the meaning of a logical formulae is stipulated on the
basis of the logical constant which occurs in it as its principal operator.

59
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At the basis of Prawitz’s project was a criticism of the standard model-theoretical approach
to validity:

Whether e.g. a sentence Jx—P(x) follows logically from a sentence —VxP(z) depends
according to this definition on whether 3z—P(z) is true in each model (D,S) in which
—VzP(z) is true. And this again is the same as to ask whether there is an element e in D
that does not belong to S whenever it is not the case that every e in D belongs to S, i.e.
we are essentially back to the question whether 3z—P(z) follows from —VzP(z). [Pra74]

In definitive, Prawitz’s criticism amounted to the claim that Tarski’s definition of logical con-
sequence, though extensionally correct, does not provide any clue as to why a certain sentence
should be taken as a consequence of another one, or to why a certain sentence should be taken
as valid while another should not: indeed, the model-theoretic explanation relies on those rules
whose meaning it is supposed to explain (see section ) By contrast, Prawitz proposed
to redefine the usual semantical notions starting from a definition of valid argument and, in
particular, an interpretation of proofs. It is not among the aims of this chapter to evaluate this
contraposition; we will limit ourselves to reconstruct Prawitz’s notion of validity; by the way, in
the next chapter, we’ll find forms of explanatory circularity very similar to the one ascribed to
model-theoretic semantics, when dealing with second order extensions of proof-theoretic validity.

Prawitz’s papers and ideas constituted the starting point for the proof-theoretic semantics
program (see [SHI9I,[SH12]): this is a program in the philosophy of logic, arising from the works
by Dummett and Prawitz himself in the 70s, which aims at showing how deductive inference
can be justified by relying on the meanings assigned to the logical constants by means of the
interpretation of proofs.

Proof-theoretic semantics is not a direct consequence of the acceptance of a proof-theoretical
notion of validity, since it relies on the thesis (usually called the verificationist thesis, see below),
vaguely inspired by some remarks by Gentzen, that the meaning of a logical constant is deter-
mined by its introduction rules. In particular, the technique of computability predicates in proofs
of normalization in type theory (which will be presented in the next section) is historically and
conceptually tied to Prawitz’s notion of validity, but is not in accordance with the verificationist
thesis (section (3.2.2))).

In this section we briefly present and discuss some of the motivations for a proof-theoretic
approach to validity and we recall the basic ideas of proof-theoretic semantics.

3.1.1 Meaning and implicit definitions

Before entering into the details of the interpretation of proofs which is usually referred to as
proof-theoretic semantics, something must be said about the conception of meaning (and thus,
of semantics) which underlies this perspective.

Meaning as use: first interpretation A characteristic aspect of the proof-theoretic ap-
proaches is the idea that the meaning of the logical constant lies in the concrete conditions of
the their use (as occurring as principal operators in logical sentences): if a natural deduction
frame is adopted (as it is often the case in this tradition) then such conditions are identified with
the introduction and elimination rules associated to the logical constants. This idea was already
contained in some remarks by Gentzen (see below) in his 1934 thesis [Gen64], and i usually
associated with a well-known remark by Wittgenstein in [Wit09l [Wit78| (see below)

For a large class of cases of the employment of the word “meaning” - though not for all - this
way can be explained in this way: the meaning of a word is its use in the language. [Wit09]
§43
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A second interpretation of the Wittgenstein’s“meaning as use” motto will be sketched in subsec-
tion .

Such a conception of meaning has to be contrasted with the view which takes truth-conditions
(for instance, truth-tables) as determining the meaning of the logical constants and which con-
siders deductive inference justified as it preserves truth from premisses to conclusion: the usual
model-theoretic notions of validity and logical consequence are usually applied to devise a formal
frame for this view [Tar83].

In definitive, in contrast with the model-theoretic conception of meaning (charged by Prawitz
of running into a form of explanatory circularity), the proof-theoretic conception aims at a
vindication of logic within the description of the practice of proving and deriving consequences
from assertions (as far as this practice can be formalized within a suitable proof-system).

Self-justifying rules Opposed to the idea that the justification of logical rules comes from the
preservation of model-theoretic truth, and in accord with the “meaning as use” motto, stands the
thesis that (at least some of) the logical rules must be taken as self-justifying, i.e. as demanding
for no justification; in [Dum91b] Dummett describes a self-justifying rule as simply a rule that
we treat as immediately valid. Dummett takes the admission of some rules as self-justifying as a
condition for the possibility itself of a proof-theoretical justification of logic:

[...] we cannot have a proof theory unless we have some means of proof. If, then, there
is to be a general proof-theoretic procedure for justifying logical laws, uncontaminated by
any ideas foreign to proof theory, there must be some logical laws that can be stipulated
outright initially, without the need for justification, to serve as a base for the proof-theoretic
justification of other laws. [Dum91b]

The link with the “meaning as use” view is that a rule (for the introduction or elimination
of a logical constant) which is taken as self-justifying, is part of an implicit definition of that
constant, i.e. as meaning-constitutive for that operator: understanding its meaning corresponds
then to accepting the rule as valid. As Boghossian explains

It is by arbitrarily stipulating that [...| certain inferences are to be valid that we attach a
meaning to the logical constants. [Bog96|

This conception stands in open contrast with the model-theoretic view, according to which
the meaning of a sentence is given by the conditions which determine it as true and a rule is valid
when it preserves the truth from the premisses to the conclusion. The roots of this opposition
can be traced back to a well-known debate occurred at the end of the 19th century between
Frege and Hilbert: the latter, in his Grundlagen der Geometrie, was explicitly advancing the
idea that the axioms of a certain geometry constitute an implicit definition of the geometrical
notions involved. Frege replied to Hilbert in a letter in 1899, fiercely opposing the view that it is
up to definitions to fix the meaning of sentences and the denotation of terms, and that axioms
should express truths.

[Axioms and theorems] must not contain a word or sign whose sense and meaning, or whose
contribution to the expression of a thought, was not already completely laid down, so that
there is no doubt about the sense of the proposition and the thought it expresses. The only
question can be whether this thought is true and what its truth rests on. Thus axioms and
theorems can never try to lay down the meaning of a sign or a word that occurs in them,
but it must be already laid down. [Fre80]

Reading the Grundlagen under this perspective, Frege observed that

[...] the meanings of the words “point”, “line”, “between” are not given, but are assumed to
be known in advance. [Fre50]
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In his answer to Frege, Hilbert strongly rejected Frege’s reading:

I do not want to assume anything as known in advance. I regard my explanation [...] as a
definition of the concepts point, line, plane [...] If one is looking for other definitions of a
“point”, [...| one is looking for something one can never find because there is nothing there.
[Ere50]

In [Cof91] Coffa describes the view defended by Hilbert in Kantian terms as one of the first
steps towards a “Copernican turn in semantics”:

Meanings are constituted roughly in the way in which Kantians used to think that we
constitute experience or its objects, through the employment of rules or maxims whose
adoption is prior to and the source of the meanings in question. [Cof91]

The mature development of such a semantical turn, in Coffa’s reconstruction, can be found in
the writings by Carnap and Wittgenstein in the 1930’s: the first, in [Car37|, defended the view
that axioms and rules of a formal system implicitly define the meaning of the logical symbols.

Let any postulates and any rules of inference be chosen arbitrarily; then this choice, whatever
it may be, will determine what meaning is to be assigned to the fundamental logical symbols.
[Car37]

In particular Carnap’s conception allowed to retrieve the ancient notion of analyticity, or “truth
by virtue of meaning”: since the meanings of the logical sentences are determined by the rules
and axioms involving them, all theorems of a formal logical system shuld be taken as analytically
true.

In the same years Wittgenstein was defending a similar position (in contrast with the ideas
made popular with the Tractatus [Wit01]): he held that the sole vindication of logical inference
lied in the practice of accepting its defining rules: in a word, the rules of logic would not be
infallible because of some property they enjoy (“In what sense is logic something sublime?”
[Wit09], 989), but just because we have been learned to treat them as infallible.

But doesn’t e.g. ’fa’ have to follow from ’(z)fz’, if ’(z) fz’ is meant in the way we mean
it?" - And how does the way we mean it come out? Doesn’t it come out in the constant
practice of its use? [...| One learns the meaning of ’(xz)’ by learning that ’fa’ follows from
(z) fx’. [Wit78]

Wittgenstein’s “meaning as use” doctrine has here the consequence of inverting the direction of
explanation of the role of logic with respect to language: logic would not have an exceptional,
normative role in language because of its nature, but rather the nature of logic would be given
by the exceptional, normative role that it plays in linguistic practices.

Inference and analyticity As it is well-known Quine in the 1950s had presented a series of
arguments (contained in [Quib3] and [Qui76]) against the use of the notion of analyticity in the
explanation and justification of logical rules, with an explicit reference to Carnap’s doctrine of
implicit definitions. The development of the proof-theoretic semantic conception between the
1970s and the 1980s had, among its consequences, the one of revitalizing the debate in the
philosophy of logic over analyticity.

Indeed, in proof-theoretic semantics the meaning of a logical constant is given by the set of
self-justifying rules involving that operator. From an epistemological point of view, this implies
that the knowledge of the meaning of a logical constant is enough to be justified in taking its
meaning-constitutive rules as valid.

In [Bog96|, Boghossian acknowledges that Quine’s arguments lead to a rejection of a meta-
physical notion of analyticity: he calls a sentence metaphysically analytic when its truth-value
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is determined by its meaning. Similarly we can call an inference metaphysically analytic if its
truth-preservation is determined by the meaning of the premisses and the conclusion. The re-
jection of the metaphysical notion undermines a semantic justification of logical inference based
on the idea that the meaning of a logical sentence is determined by its truth-conditions.

At the same time Boghossian tries to defend the view that Quine’s rejection can be escaped
if one endorses an inferentialist conception of meaning, as the one involved in the thesis that
rules work as implicit definitions of the logical constants. In particular, Boghossian claims that
Quine’s argument leaves room for the development of an epistemic notion of analyticity (see
[Bog96], Bog03]): a sentence is epistemically analytic if mere grasp of its meaning suffices for
being justified in holding it true; an inference is epistemically analytic if mere grasp of the
meaning of the premisses and the conclusion suffices for being justified in holding it valid. On
this reading the self-justifying rules for a logical constant turn out to be epistemically analytic.

3.1.2 Consistency and the inversion principle

An obvious objection to the implicit definition conception is that, by admitting that whatever
rule can be taken as implicitly defining a logical constant, one runs into serious problems of
justification: for instance, if a contradiction can be derived from a given system of rules or
axioms, in what sense can the use of those rules and axioms be considered justified (or self-
justified)?

The advocate of proof-theoretic semantics would answer that the rules of logic are not purely
arbitrary, as the enjoy some structural properties (arising from Prawitz’s inversion principle -
see subsection ) which allow to reject some pathological examples (as the one notoriously
proposed by Prior in [Pri67]).

However, in chapter (|1) we remarked that a consequence of G6del’s incompleteness theorems is
that a sharp distinction must be made between properties that can be established combinatorially
or recursively (“how proof theory”) and properties, like consistency, which demand for logically
complex arguments (“why proof theory”).

Hence Prawitz’s inversion principle, which is a local, combinatorial, criterion, must be distin-
guished from the Hauptsatz, a global criterion, which implies consistency.

Implicit definitions and contradictions The conceptions of Hilbert, Carnap and Wittgen-
stein sketched above diverge on the problem of contradictions: in [Wit78] Wittgenstein, as it is
well-known, defended the idea that all rules gain their legitimacy from the concrete practice of
language, and in particular logical rules gain their epistemological status (of deductively valid
ones) from the role attributed to them in the use of language. As a consequence, he considered
all matters as to the justification of logical rules as devoid of sense. In [Wit89] he even tries to
argue for the substantial harmlessness of contradictions (as those arising from Russell’s paradox).

By contrast, as it is well-known, in the formalist program developed by Hilbert, a set of
axioms can be taken as an implicit definition of a mathematical entity only when satisfying a
criterion of non-contradiction:

If contradictory attributes be assigned to a concept, I say, that mathematically the concept
does not exist. So, for example, a real number whose square is —1 does not exist math-
ematically. But if it can be proved that the attributes assigned to the concept can never
lead to a contradiction by the application of a finite number of logical inferences, I say that
the mathematical existence of the concept (for example, of a number or a function which
satisfies certain conditions) is thereby proved. [Hil96D]

In definitive, if we do not want to admit as valid an inference which can be used to derive
a contradiction, it appears that implicit definitions should be supplemented with some form of
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warrant that they won’t lead to a contradiction. But, since at least one of the purposes of a
definition of validity for sentences and inferences is to have a warrant that they do not lead to
contradiction, this seems tantamount to say that we can define validity by means of implicitly
defining inferences, provided that the latter are valid inferences: a viciously circular explanation.

A similar objection is often advocated against defenders of an epistemic conception of an-
alyticity: since the reason for judging an inference analytic is that this inference must be in a
sense compelling, an implicitly defining inference should be supplemented with a warrant that a
speaker is actually entitled to draw the its conclusion from its premisses (for instance, as Peacocke
agues in [Pea93|, by the warrant that the inference is truth-preserving).

In this context Carnap’s position is of some interest: in [Car37] he adopts a liberalist position
as to logical rules:

No question of justification arises at all, but only the question of the syntactical consequences
to which one or other of the choices leads, including the question of non-contradiction.
[Car37]

In the same text he remarks that the evaluation of a formal system on the basis of its syntactical
properties (like non-contradiction) is made on a purely pragmatic basis. It must be remarked
here how Carnap seems to consider the question of non-contradiction as a finite, combinatorial
matter (a “syntactical consequence”), devoid of a genuine epistemological interest.

By contrast it should be remarked that, by Go6del’s second incompleteness theorem, the
question of the non-contradiction has a deep epistemological content: it was just the fact that
the argument for the satisfaction of such a criterion for an arithmetical theory could not be
formalized within the theory itself which was at the origin of the failure of Hilbert’s program

(see subsection (4.3.1))).

The inversion principle In a famous paper (JPri67]) Arthur Prior, in order to argue against
the implicit definition conception, presented a weird connective, tonk, whose implicitly defining
rules are listed below

A B

AtonkB (tonk — 1), AtonkB (tonk —I)2

AtonkB
A

AtonkB

(tonk — E); i)

(tonk — E)

(3.1.1)
Since, by successively introducing and eliminating tonk, every formula can be derived, the ac-
ceptance of the tonk connective as a meaningful logical constant leads to contradictions.

Prior’s example provoked a vast debate over the legitimacy of a purely conventionalist inter-
pretation of logic. The by now “standard” proof-theoretical response to Prior is the remark that
the rules of logic are not purely conventional, since they are supposed to satisfy some structural
properties. In order to describe such properties, we have to get back to Gentzen’s transforma-
tional approach.

When defining Gentzen transformations over derivations, we have to consider cuts whose
premisses are respectively obtained by means of right and of a left rule for the same logical
constant (see chapter ) In such cases the transformation consists in deleting the two rules
introducing the logical constant on the two sides of the sequents and introducing cuts between
the remaining subderivations.

The translation of this operation in the language of natural deduction leads to a normalization
procedure for derivations (see [Pra65]): by a cut it is meant the occurrence of an introduction rule
for a logical constant immediately followed by an elimination rule for the same logical constant;
the Gentzen transformation in this case applies to the derivation in order to produce a derivation
in which the two rules are deleted. For instance, in the case of implication, a cut corresponds to
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the occurrence of the following situation in a derivation d:

A
B :
A:>B(:>I) A(:>E)

(3.1.2)

which can be reduced to the derivation d below, where the occurrences of the rules (= I) and
(= E) have been eliminated:

A
5
' (3.1.3)

Prawitz’s inversion principle (subsection ) states indeed that such transformations
must always be performable, if a cut occurs in a derivation. This principle can indeed be seen
as a principle for the justification of a logical constant: it says that the conditions which allow
for the assertion of a sentence in which a logical constant occurs as principal operator must be
enough for justifying the assertion of an immediate consequence of this sentence.

We can use the inversion principle to reject Prior’s connective tonk: in order to derive a
contradiction one has to use a tonk-introduction (given a derivation of an arbitrary formula A)
immediately followed by a tonk-elimination, as below:

A

A Gonk - 1),
AtonkL _
1 (tonk—=E) (3.1.4)

now, since the two rules (tonk — I'); and (tonk — E)2 do not satisfy an inversion principle, the
derivation above cannot be normalized.

By the way, the inversion principle does not constitute a sufficient criterion for avoiding
contradictions from arbitrarily stipulated rules. A counterexample can be found already in
Prawitz’s book [Pra65|: there he defines a natural deduction version of naive set theory, made
of the following two rules (corresponding to the naive comprehension principle):

Alt/z] t e {z|A}
——— (set — I ————— (set— F
re {oay et Altja 4P (3.1.5)
the rules above satisfy the inversion principle, as
Alt
Al
t e {z|A}
————— (set— E)

Alt/]
: (3.1.6)
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can be reduced to

Afifz)
' (3.1.7)

At the same time, Russell’s paradox can be reproduced within this system: in particular, by
letting ¢ be the set {z|x € x = A}, the derivation dr,s below can be built

. e g
c x A Se y
fet=a B g - " e (= —E)
A = -F) fcisa 1
feisa ol “rer, (et =)
A (= —F) (3.1.8)

for an arbitrary formula A (for instance A = 1). dpys ends with a cut made of the rules (= —1I)
and (= —F), and one easily verifies that, by normalizing this cut, a derivation identical to dgrys
is produced, i.e. the normalization procedure diverges.

This example shows that the existence of a well-defined reduction procedure over derivations
1s not sufficient for characterizing valid inferences: the possibility to locally reduce proofs be-
longs to “how proof theory” (it can be entirely described in a recursive way), whereas the fact
that all such reductions terminate producing a normal form belongs to “why proof theory” (as
Gentzen’s Hauptsatz is expressed by a I3 formula). This fact will appear more clear when we
look at derivations from the “forgetful” viewpoint, i.e. as pure A-terms, and at the normalization
procedure as the execution of those terms (see (3.2)).

3.1.3 Proof-theoretic semantics

We start our short description of the perspective of proof-theoretic semantics by recalling the two
main sources of the proof-theoretical interpretation: the BH K interpretation of intuitionistic
proofs, and Gentzen’s remarks on the role of introduction rules as implicit definitions of the
meaning of the logical constants.

The BHK interpretation The idea of a semantics centered on the notion of proof has to
be traced back to the so-called BHK interpretation of intuitionistic proofs. This is usually
acknowledged as the first example of an (informal) interpretation of logic defined at the level of
proofs. BHK is an informal semantics in which proofs are interpreted as certain “constructions”
(we discuss this ambiguous notion in the next section). In particular, this interpretation is
obtained by a series of clauses which state the conditions under which a certain formula can
be asserted: the interpretation of proofs can then be seen also as an assignment of meaning to
logical formulae, where the meaning of a formula is given by stating under which circumstances
a “construction” can be seen as a proof of that formula.
The most well-known source for the BHK interpretation is [Hey506]:

The conjunction A gives no difficulty: p A ¢ can be asserted if and only if both p and ¢ can
be asserted.

I have already spoken of the disjunction V. pV q can be asserted if and only if at least one
of the propositions p and ¢ can be asserted.

The negation — [...] —p can be asserted if and only if we possess a construction which from
the supposition that a construction p were carried out, leads to a contradiction.
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The implication p — q can be asserted if and only if we possess a construction r which, joined
to any construction proving p (supposing that the latter be effected), would automatically
effect a construction proving ¢. In other words, a proof of p, together with r, would form a
proof of q. [Hey56].

This interpretation was indeed one of the first attempt towards a dynamical presentation
of logic, since a proof of an implication was described in terms of how it could be used in
order to transform other proofs; a precise connection with the Curry-Howard correspondence
between proofs and programs will be discussed in the section , by exploiting the realizability
interpretation.

Gentzen’s remarks and verificationism Gentzen’s doctoral thesis [Gen64| contains a series
of brief remarks in which he states that the introduction rules of natural deduction calculus work
as definitions of the “meaning” of the logical constants, and that the elimination rules are, in a
sense, derived from the former.

The introductions represent, as it were, the “definitions" of the symbols concerned, and
the eliminations are no more, in the final analysis, than the consequences of these definitions.
This fact may be expressed as follows: in eliminating a symbol, the formula, whose terminal
symbol we are dealing with, may be used only “in the sense afforded it by the introduction
of that symbol.”

By making these ideas more precise, it should be possible to devise the E-inferences as
single-valued functions of their corresponding I-inferences, on the basis of certain require-
ments. [Gen64]

The proponents of proof theoretic semantics (see for instance [SH12|) interpret the intuitions
contained in these remarks by means of two theses: first, the thesis of implicit definitions, that
is, the already discussed thesis that some rules of natural deduction can be considered as an
implicit definition of the logical constants; second, the verificationist thesis, asserting that the
meaning-constitutive rules are the introduction rules, and that the elimination rules are indeed
“derived” or justified with respect to the meaning fixed by the former.

The verificationist thesis The explanation of the verificationist thesis comes from two re-
marks: firstly, it embodies the idea, coming from the BH K interpretation, that the meaning of
a sentence is given by specifying the form of its proofs (or “verifications”, in Dummett’s termi-
nology). Dummett opposes this idea to a “pragmatist” conception, for which the meaning of a
sentence is given by specifying how to derive consequences from it. In this sense the verificationist
thesis appears quite natural for an approach based on proofs.

By the way, the idea that the meaning of a logical constant C' is given by what counts as a
proof of a formula in which C occurs principally must be kept distinct from the old empiricist
idea that the meaning of a sentence is given by its (experimental) verifications: as Prawitz points
out

[...] according to the verificationism of today, to know the meaning of a sentence it is
sufficient to know what counts as a verification of the sentence, one does not need to know
a method that in principle verifies or refutes the sentence. [Pra02].

As Dummett writes

just this mistake was one of the two dogmas of empiricism repudiated by Quine. [Dum91b]
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Indeed, it is already part of the BHK interpretation that the knowledge of the meaning
of a formula does not provide a way to explicitly construct a proof, but involves the ability to
recognize the form that such a proof, if any, should have. Thus, the verificationist thesis should
be read as stating that the meaning of a sentence (in which a certain logical constant occurs
principally) is given by the conditions under which this can be proved, where such conditions are
stipulated by a recursive definition in the style of the BH K interpretation.

The second remark comes from the fact that admitting all forms of verification (i.e. of
proofs) as meaning-constitutive would amount to admitting all rules as meaning-constitutive for
the logical constants. Indeed, an arbitrary rule can potentially occur in a proof of an arbitrary
formula (that is exactly what distinguishes a arbitrary derivation from a cut-free one, enjoying
the subformula property).

By elaborating Gentzen’s intuition that the introduction rules are the only meaning-constitutive
ones, a distinction between two forms of proofs was then proposed: a canonical proof of a formula
whose principal operator is C' is a proof which ends with an introduction rule for C'; this means
that the last step of the proof is taken in accordance with the meaning attached to C' (it is, in
Boghossian’s terminology, epistemically analytic). A non canonical proof is a proof which is not
canonical.

The distinction between canonical and non canonical derivation constitutes the essential
ingredient of the proof-theoretic definition of validity of proofs. First, the validity of a canonical
derivation can be defined by an induction on the sum of the complexities of its premisses and
its conclusion: since the last rule of the derivation is an introduction rule, and thus immediately
valid, it is enough to verify that the sub-derivations which have those premisses as conclusion are
valid; now, the premisses of the rule are subformulae of the conclusion, and are thus of smaller
complexity.

Second, the definition of validity for non-canonical derivations requires the appeal to Gentzen’s
transformations, which allows to reduce the derivation in canonical form. Indeed, since the last
rule of a non canonical derivation might not be an introduction, the inductive definition above
does not work. One has then to rely on the inversion principle in order to transform the deriva-
tion into a canonical one: as Martin-Lof puts it in [ML84], a non-canonical proof can be seen as
a “method which, when applied, produces a canonical proof”.

In the definition of validity (that we sketch below) the normalization procedure (i.e. cut-
elimination) assumes thus the role of a vindication of meaning: firstly, because the inversion
principle can be restated as a semantical principle for the local justification of the elimination
rules with respect to meaning. Dummett’s harmony requirement is indeed a general reformulation
of that principle:

We say that harmony, in the general sense, obtains between the verification-conditions or
application-conditions of a given expression and the consequences of applying it when we
cannot [...] establish as true some statement which we should not have had other means of
establishing [...] The analogue, within the restricted domain of logic, for an arbitrary logical
constant ¢, is that it should not be possible, by

first applying one of the introduction rules for ¢ and then immediately drawing a consequence
from the conclusion of that introduction rule by means of an elimination rule of which it is
the major premiss, to derive form the premisses of the introduction rule a consequence that
we could not otherwise have drawn.

[]

The requirement that this criterion for harmony be satisfied conforms to our fundamental
conception of what deductive inference accomplishes. An argument or proof convinces us
because we construe it as showing that, given that the premisses hold good according to our
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ordinary criteria, the conclusion must also hold according to the criteria we already have for
its holding. [Dum91Db]

Secondly, since, as we saw in the preceding section, the inversion principle is not power-
ful enough to characterize validity, a stronger condition is required, namely that an arbitrary
closed derivation can be transformed into a canonical one, what Dummett calls the fundamental
assumption:

But the justification depends heavily upon what we may call the “fundamental assumption”:
that, if we have a valid argument for a complex statement, we can construct a valid argument
for it which finishes with an application of one of the introduction rules governing its principal
operator. [Dum91b]

Such an assumption, at least in the V, 3-free fragment of intuitionistic logic, can be proved as a
simple corollary of the normalization theorem for first order intuitionistic natural deduction.

Remark that, trivially, there exists no canonical proof of the absurd, since the latter has no
introduction rules. As a consequence, from the normalization theorem (or, from the fundamental
assumption) it follows that no non canonical proof of the absurd exists: if it existed, it would
reduce to a canonical one.

Hence, once again, we must distinguish between the inversion principle (a local, combinatorial,
property) and the fundamental assumption (a global property, implying consistency).

A definition of validity We provide a brief sketch of the definition of proof-theoretic valid-
ity for the implicative fragment of intuitionistic logic. The definition below essentially follows
Prawitz’s definition of strong validity in [Pra7lal. For a detailed discussion of the several notions
of proof-theoretic validity on the market, the reader can look at [SHOG].

The definition is given by a generalized inductive definition: firstly, an induction on the
complexity of the conclusion of the derivation; secondly, an induction on the reduction relation
between derivations of the same conclusion.

Definition 3.1.1 (Validity for the =-fragment of intuitionistic logic). Let d be a natural deduc-
tion derivation of conclusion A. d is valid if either:

(V1) A= B = C and d is canonical, i.e. of the form

(5]
c
=0 &P (3.1.9)
and for every valid derivation d' of conclusion B, the derivation
s d
B
C (3.1.10)

is valid;
(V2) d is not canonical and normal;

(V3) d is not canonical and not normal, and for every derivation d' such that d reduces to d’ in
one step, d' is valid.
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Proof-theoretic validity, as it implies consistency, is a logically complex concept. In particular,
the validity of a derivation with respect to a formula A is expressed by a formula which has at
least the logical complexity of A: if A is B = C, then a derivation of conclusion A is valid if, for
all derivation d’, if d’ is a valid derivation of conclusion B, then the composition of d and d’ by
means of the implication elimination rule is a valid derivation of conclusion C.

A simple consequence of this definition is the following lemma

Lemma 3.1.1. Every valid derivation is strongly normalizable.

Proof. We argue by induction on the sum of the complexities of the conclusion and the open
assumptions of d (where compl(A = B) is compl(A) + compl(B) + 1), with a sub-induction on
the reduction relation over derivations.

Let A be B = C and d be canonical. Hence d is of the form

5]
. dl
c

B=c =0

(3.1.11)

Since, d; is valid, it follows by the induction hypothesis that it is strongly normalizing, hence d
is too.

If d is non canonical and normal, then it is obviously strongly normalizing. If d is non
canonical and non normal, then, since all its immediate reducts are valid, and by induction
hypothesis, strongly normalizing, it follows that d is too.

O

A second consequence of the definition of validity concerns open derivations, i.e. derivations
with open assumptions:

Lemma 3.1.2 (substitution lemma). Let d be an open derivation of the form

[A1],. o [A]
)

B (3.1.12)
then d is valid if and only if, for every list of valid derivations dy, . .., d,, respectively of conclusion
Ay, ..., A,, the derivation

dy - d,
AL A,
S d
B (3.1.13)

s valid.

We omit the proofs of this lemma so as of the theorem below. The arguments are indeed very
similar to the ones presented in the next section for reducibility in type theory (see subsection
(13.2.2))).

By a more sophisticated argument (we’ll sketch in the next section an argument for type
theory which has the same structure), and by relying on the lemma above, it can finally be
proved that all derivations are valid.

Theorem 3.1.1. FEvery derivation of the =-fragment of intuitionistic natural deduction is valid.
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In the next section, we will discuss the computability or reducibility properties of A-terms, in
the context of type theory, which are similar to the property of validity for natural deduction
derivations. Indeed, we will present in some more detail how these properties can be used to
prove strong normalization theorems by techniques vary similar to the ones above. The main
difference is that, when dealing with the computability of A-terms, we drop the distinction
between canonical and non canonical derivations, and with it the emphasis over introduction
rules. As a result, proofs are easier to follow but proof-theoretic semantics is lost. Rather, we
will try to propose an alternative to proof-theoretic semantics based on realizability semantics.

We conclude this presentation with some remarks. The proof-theoretic justification here
sketched can be read at two distinct levels: at an epistemological level it provides a notion of
validity for derivations and formulae by which the validity of all derivations can be reduced (by
means of the manipulations arising from Gentzen’s transformations) to the validity of deriva-
tions whose last step is taken as valid by definition (or “epistemically analytic”, in the sense of
[Bog96]). At a semantic level it provides a notion of meaning for the logical constants (given
by introduction rules) which is preserved by all deductive constructions (i.e. canonical or non
canonical derivations). On the one hand, then, cut-elimination is used to assure validity (and
coherence); on the other hand, it provides a vindication of the meaning stipulated by means of
introduction rules:

The meanings of our assertoric sentences in general, and of the logical constants in
particular, are given to us in such a way that the forms of deductive inference we admit
as valid can be exhibited as faithful to, or licensed by, those meanings and involve no
modification of them. [Dum91b|

3.2 Realizability and reducibility

In this section we present two different, though intimately related, approaches to the inter-
pretation of proofs: we briefly recall realizability semantics, a quite vast domain of research
inaugurated by Kleene’s paper [Kle45] and we discuss the technique of reducibility (also known
as convertibility or computability) predicates, used to build normalization proofs for type the-
ories. In the last section we discuss some of the features shared by the two approaches, which
prompt an alternative view with respect to proof-theoretic semantics.

3.2.1 Realizability semantics

Kleene’s recursive realizability The history of realizability starts with Kleene’s paper [Kle45],
where he provides an interpretation of proofs for intuitionistic (first-order) arithmetics. Kleene’s
goal was to state a clear connection between the informal intuitionistic notion of construction (as
stated for instance in the BHK interpretatiorED and the notion of recursive computation that
had been developed by Herbrand, Godel and himself.

Kleene’s main intuition, as he reports in [Kle73], was the following: intuitionistically, a proof
of a IIJ statement VnImA(n, m) is a constructive method p producing, for each integer n, an
integer p(n) and a proof that A(n,u(n)) holds; now, on the basis of Church’s thesis, which
identifies the informal notion of computability with the rigorous one defined by means of the
notion of general recursive function, he conjectured that the method u could be coded by a
general recursive function. Kleene’s conjecture, as he reports, did not receive a great appreciation

2Kleene is indeed quite explicit that, in developing the definition of realizability, he was not really inspired by
the BHK interpretation of proofs but rather by Brouwer’s texts.
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at the time ﬂ by the way, it can surely be seen as one of the first intuitions in the direction of
what we presented in chapter by the notion of “forgetful functor”. Through the realizability
interpretation, Kleene was indeed able to express his conjecture in precise terms and finally to
prove it.

The basic idea of Kleene’s realizability is to define a realizability relation between codes
and formulae: an intuitionistic proof of a formula A is then translated into a code realizing A.
Realizability is defined by means of the following clauses:

1. e realizes t = u if and only if ¢t = u is true;

i1. no e realizes 1;

iti. e realizes A = B if and only if, for all a which realizes A, {e}a realizes B;
iv. e realizes VnA if and only if, for all integer k, {e}k realizes A[k/n].

where {e}a denotes Kleene’s brackets, i.e. the application of the recursive function whose code
is e to the integer a. A code e realizing a formula A is called a realizer of A.

Kleene was able to show that, from a derivation d in Heyting Arithmetics HA of a formula
A it is possible to extract a realizer eg of A. In particular, among the several properties he could
establish, he proved the following two:

1) If A is derivable in HA | then A is realizable;

2) if YnImA(n,m) is derivable in HA, then there exists a recursive function f such that
A(n, f(n)) is realizable.

Kleene himself remarked that the realizability relation was akin to be explicitly formalized
by a predicate ® in the language of arithmetics. A complete formalization was obtained by
Troelstra in [Tro63], where Kleene’s results were internalized within HA as follows:

1’) if A is derivable in HA, then there exists a code e such that e®A is derivable in HA;

2') if YndmA(n, m) is derivable in HA, then there exists an e such that both A(n,{e}n) and
Yndm(m = {e}n) (i.e. the totality of the function coded by e) are derivable in HAEI

These results can actually be seen as the first hints towards the extraction of programs from
formal derivations. In particular the theorem 2’) goes in the direction of theorem (2.3.2]), which
shows how to extract a provably total recursive function from a derivation of a I19 formula.

Modified realizability and the forgetful functor Kreisel’s approach to realizability in
[Kreb9| differed from Kleene’s original one in that he took realizers not to be arbitrary codes, but
rather typed programs (in his vocabulary, functionals of finite type). Kreisel’s functionals where
defined starting from typed variables 27,47, ..., combinators k=777 gle=>7=p)=((0=7)=(0—p))
(coming from combinatory logic [CE58|) and combinators r
cursion.

The idea of this “modified” version of the realizability interpretation is, first, to assign with
each sentence A a type A* (where A* is essentially A¥); second, to define a realizability relation
under the form of a typing relation between programs and types. Kreisel’s results can then be
summarized as follows:

o=(N—=o—=0)=N=0 for primitive re-

3¢That this plan was not altogether obvious in 1940 is illustrated by the reaction of a prominent logician to
whom I explained it at a chance meeting early in 1940. He explained to me reasons why, in his view, the plan
could not be expected to succeed. I did not succeed in understanding his reasons” [Kle73).

4@Given a suitable encoding of Kleene’s brackets.



3.2. REALIZABILITY AND REDUCIBILITY 73

1") If A is derivable in HA“, then there exists a program M of type AT such that M®AF is
derivable in HA";

2"} if VnamA(n,m) is derivable in HA, then there exists a program M of type N — (N A AF))
such that M@N — (N A AF)) is derivable in HA“ and moreover, for all positive integers
k,h € N, A(k, h) is derivable in HA if and only if Mk reduces to h.

where HAY is Heyting Arithmetics enriched with finite types or, equivalently, Godel’s System
T enriched with predicate logic (see [Kre59]). Remark that 2” is very similar to the extraction

of program given by theorem (2.3.2)).

Kreisel’s functional interpretation can be seen as one of the first concrete examples of the
formula-as-types paradigm: he explicitly assigned types to closed formulae and showed how to
extract typed programs from derivations. In this sense, it constitutes one of the most striking
precursors of the Curry-Howard correspondence. As van QOosten remarks in his brief historical
reconstruction [VO02]:

This “typed realizability”, defined by Kreisel in 1959 ([Kre59]), predates the slogan “formulae
as types” ([How80]) by 10 years! [VO02]

The relationship between Kreisel’s realizability and Kleene’s can be expressed again through
the forgetful translation: if we translate Kreisel’s functionals in a typed A-calculus (for instance,
in System T') and then we erase all type information from them, we obtain an interpretation of
proofs by means of untyped programs which is equivalent to Kleene’s interpretation by means of
numerical codes. More on this below.

What is realizability? Realizability has actually grown into a quite vast domain of research,
so it would be pointless to try to make a list of all of its relevant developments. We can just
recall two main axis of research: on the one hand the search for purely mathematical descriptions
of the concept of realizability led to the development of a very rich categorial approach to the
subject (for instance [Hyl82] is considered as a cornerstone of the categorical approach, see [VO02]
for a brief reconstruction); on the other hand one should mention the development of classical
realizability, i.e. the extension of realizability to the interpretation of classical proofs by means
of control operators (see [Kri09]).

More relevant to the scopes of this very short summary is to try to highlight the main
characteristics of the several, and quite different, approaches to the semantics of proofs which go
under the name of realizability. A first property of all realizability interpretations is that they
are based over a map | - |, which associates, with each formula A, a set |A| of programs, i.e. the
set of the programs which realize A.

An interpretation presupposes then the choice of a class P of programs, such that, for each
formula A, |A| C P. The very general notion of partial combinatory algebra, or pca, (see [Sta73|)
captures the ingredients needed to yield a realizability interpretation. A pca is essentially a set
on which a notion of product a b is defined (where a % b is to be read as the application of
program a to input b), which contains variables and equivalent of the combinators k and s. In
particular, Kleene’s codes for partial recursive functions, along with Kleene’s bracket, form a
partial combinatory algebra, so as Kreisel’s functionals of finite type and pure A-calculus.

Starting from the definition of the realizability relation, the map |-| can be essentially described
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as follows:
o
it = u| = P ift =wis true (3.2.1)
0 else
|L| =0 (3.2.2)
|A= B|=|A| — |B| (3.2.3)
vnA| = [ |Alk/n]] (3.2.4)

keN

where, given two sets a,b C P, a — b denotes the set of programs M such that, for all program
N ea, M« N €b.

Thus, with the exception of Kreisel’s modified realizability, all these interpretation associate
formal derivations with untyped programs; in particular, the internal structure of the programs
is never questioned in the definition of realizability: all that matters is how the program behaves
in certain context. Kleene in particular seems already quite conscious of this aspect:

A realization number by itself of course conveys no information; but given the form of
statement of which it is a realization, we shall be able in the light of our definition to read
from it the requisite information. [Kled5]|

This is a major difference with respect to the Curry-Howard correspondence, where a derivation
is usually translated into a typed A-term; in realizability, derivations are interpreted by arbitrary
programs, independently of how such programs are constructed. Here we can see a very strong
difference with respect to the rule-based approach of proof-theoretic semantics: there the inter-
pretation of a derivation is based upon the notion of a canonical proof, i.e. of a proof with a
peculiar internal structure (connected with its last rule).

A crucial consequence of this untyped approach is that the same program can be a realizer
of different sentences: trivially every program is a realizer of every true atomic formula; more
interestingly, an untyped combinator for recursion (for instance a type-free version of Kreisel’s
combinator r) is a realizer of every instance of an induction axiom. Such a polymorphism of
programs will be indeed a crucial ingredient when discussing second order proof-theory.

A second remarkable feature concerns the treatment of atomic sentences; the definition im-
plies indeed a form of proof-irrelevance of atomic sentences: if an atomic sentence is true, then
whatever program can interpret a proof; if it is false, then no program can realize it. As a con-
sequence, for instance, one can devise trivial realizers for the first two Peano axioms: if we chose
A-calculus as our pca, for the first one one simply takes the term Az.Ay.\z.z, for the second one
one can take any term.

Finally, whereas theorem 1) and its variants 1’),1"”) all express the soundness of HA with
respect to the realizability semantics, the converse result (i.e. completeness) is false: there exists
many well-known cases of realizable sentences which are not intuitionistically derivable. A long
list of remarkable examples can be provided as a corollary of a simple result stating that, for every
formula A, either it or its negation is realizable. In particular, since the excluded middle AV —A
is not realizable, its negation —=(AV—A) is realizable (but not derivable). Again, as a consequence
of the Halting problem one can show that the formula Vn(Halt(n) VvV ~Halt(n)), where Halt(n) is
a predicate expressing that the program coded by the integer n halts, is not realizable. Thus, its
negation is realizable, but not derivable. These examples show that realizability, as we defined,
is fundamentally incompatible with classical logic. The extension of realizability to a classical
frame demands indeed for the introduction of several new ingredients (see [Kri09]).

We can produce other interesting examples of incompleteness which are indeed compatible
with classical logic by applying Godel’s theorems: the latter allows to find II9 formulae which
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are not derivable in HA; in particular, to devise recursive functions whose totality cannot be
proved in HA. Now, as a consequence of 2’, the recursive function itself, as coded in a suitable
pca, can be seen as a realizer of the I19 sentence expressing its totality.

Remark that, since a realizer is a constructive object in all respects, this means that in a
sense we have constructive realizations of all (true) totality statements. By the way, due to the
incompleteness theorems, to quote Kleene, we have no means to “read the requisite information”
from these programs. In a word, we have the codes but we don’t know how to decode them.
This idea will be indeed at the basis of chapter @ and discussed in chapter .

To sum up, the main features of the realizability interpretation are essentially three: the
polymorphism of realizers, the proof-irrelevance of atomic sentences and the incompleteness with
respect to realizable sentences.

3.2.2 Tait-Girard reducibility

In the literature on type theory the expression “Tait-Girard reducibility” refers to a family of
techniques for proving normalization arguments which originates in a paper by Tait (|Tai67])
on the strong normalization of Godel’s System T and was successively developed and extended
to higher order type theories by Girard in his thesis ([Gir72]). Several variants and further
developments of this technique can be found in the literature (for instance, Krivine’s technique
of saturated sets [Kri93| or Mitchell’s [Mit86]).

Furthermore, Prawitz’s proof-theoretical validity in [Pra7lal, so as Martin-Lo6f’s computabil-
ity in [ML70a] arose as extensions of the reducibility technique to natural deduction for, re-
spectively, intuitionistic higher order logic and the intuitionistic theory of (iterated) inductive
definitions. We briefly discuss below the (quite relevant) differences between these two related
techniques.

The technique of reducibility predicates shares many ideas and features with the realizability
interpretation: in particular [Tai75], soon after the publication of Girard’s ideas, elaborated an
untyped version of Girard’s reducibility and showed that the normalization proof for System
F could be restated in the form of a realizability argument; [Gal95] discusses in detail the re-
lationship between realizability and reducibility. In a sense, it might be said that Tait-Girard
reducibility is an application of the idea of realizability to type theory in order to prove normal-
ization.

In particular, this technique can be seen as a semantics of programs which associates types
with sets of programs behaving in a certain way; the definition of the behavior of programs
strongly resembles the realizability interpretation. Moreover, whereas [Tai67] and [Gir72| are
based on a typed frame (i.e. types are associated with sets of typed programs), in [Tai75] and
later [Mit86] and [Gal90] reducibility is defined in an untyped frame (i.e. types are associated
with sets of pure A-terms). The latter will be the approach followed in the brief sketch below.

The reducibility of simple types We present here an untyped version of the reducibility
technique which is essentially based on Tait’s paper [Tai75] and on [Girll] and [Gal90]. We limit
ourself to the case of finite types (covering, by the forgetful translation, the case of intuitionistic
first order logic), as this will be enough for a brief comparison with the notion of proof-theoretic
validity presented in the preceding section. In the next section we discuss the second order case.

The first intuition for a normalization proof for type theory is to develop an argument by
induction over the size of terms. The main difficulty arises in the case of a redex (Az.M)N,
since the reduced term M[N/xz] might have size strictly bigger than the former. That’s why one
looks indeed for an argument by induction over the types, with a subinduction over the reduction
relation for each type (similarly to the definition of validity).
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Tait’s idea in [Tai67] is to define, for each type o, a set of terms of type o which are called
computable, and which have the property of being strongly normalizing. In [Tai75| this idea is
restated in an untyped frame: with each simple type o, he associates a set Red, of untyped
A-terms by induction as follows:

e if 0 is a variable, then Red, = SN, the set of strongly normalizing A-terms;

o if o =7 — p, then Red, = Red; — Red,, i.e. the set of A\-terms M such that, for all
N € Red,, MN € Red,.

[Tai75] explicitly states this definition in a realizability style: he defines indeed a realizability
relation between terms and types given by M®o if and only if M € Red,, .

When a € A, we say that a realizes A. This is closely related to Kleene’s 1945 recursive
realizability interpretation, except that, instead of coding functions by their Gédel numbers,
we use the corresponding term of C [i.e. pure A-calculus]. [Tai75]

In [Gir72] Girard proves three crucial properties of this definition:
Lemma 3.2.1. Reducibilitiy satisfies the following properties:
(R1) Every reducible term is in SN
(R2) M € Red, and M —3 M’ implies M’ € Red, ;
(R3) If M is simple and for all M’ such that M —1 M’, M’ € Red,, then M € Red,,.

Proof. We argue by induction over the types. We just discuss the case of the implication o — 7,
since the variable case is obvious.

(R1) By R3 applied to o, the variable x is in Red,; if M € Red,_,,, then Mx € Red,, hence,
by R1 for 7, Mz € SN, which implies that M € SN.

(R2) If M € Redy—,r and M —3 M’, and if N € Red,,, then MN € Red, and, since MN —g
M'N,by R2 M'N € Red,. Hence, M’ € Red,_,.

(R3) Let N € Red,; by R1, N € SN; by induction on the |N|, the supremum of the lengths all
reduction sequences of N, one shows that M N € Red, (and, a fortiori, by R3, that M €
Red,_,;; indeed, the immediate reducts of M N are of the form M’'N, where M —1 M’,
or MN', where N —1 N’ (here we use the fact that M is simple). Now, M'N € Red. by
hypothesis, whereas M N’ € Red, by induction hypothesis, since |N'| < |N|.

O

Property R1 states that, for all type o, Red, is a subset of SN; property R2 states that
reducibilities are closed under S-reduction; property R3 is the least intuitive: a simple term is
a term which does not begin with a /\Et then the property states that reducibilities are closed
under immediate anti-reduction.

One of Girard’s ideas in [Gir72| was to use properties R1 — 3 in order to define an abstract
notion of reducibility candidate, fundamental for the second order case (see section (L.I])):

Definition 3.2.1 (Reducibility candidate). A reducibility candidate C is a set of A-terms sat-
isfying R1 — 3.

5Remark that those terms, from a natural deduction perspective, essentially correspond to derivations which
are not in canonical form.
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Hence lemma can be restated as saying that, for all o, Red, is a reducibility candidate.

In order to prove strong normalization for all simply types terms, it remains then to show
that, for every term M of type o, M realizes o (this is called indeed the realizability theorem in
[Tai7s]).

The idea is now to proceed by induction over the reduction of terms: the problematic case of
an application M N now becomes easy: from M € Red,_,, and N € Red, one immediately gets
MN € Red,, and hence M € SN. More delicate is the case of A-abstraction: we have to show
that, if M € Red,, then \x.M € Red,_,, i.e. for every N € Red,, (Ax.M)N € Red,. Remark
that, by R3, it is enough to show that M[N/z] € Red,. To achieve this we need to strengthen
the induction hypothesis: we will show by induction indeed that, if M € Red,, x € FV (M) is
declared of type o and N € Red,, then M[N/z] € Red.

Remark that this strengthened version essentially corresponds to what is proven, for natural

deduction, by lemma (3.1.2).

To prove the final result, now, we need a lemma:;:

Lemma 3.2.2. IfT' (z:0) - M : 7 is derivable in simple type theory and, for all N € Red,,
M[N/z] € Red,, then Ax.M € Redy_,.

Proof. We have to show that (Az.M)N € Red,. Remark that M is reducible (and hence strongly
normalizing), since My € Red,. We argue then by induction on |M| + |N|; since (Az.M)N is a
simple term, by R3 it suffices to show the result for its immediate reducts; these are of the form
(Ax.M")N, for M —1 M’ and hence |M'| < |M]|, or (Az.M)N’, with N —; N', |[N’| < |N|, both
reducible by induction hypothesis, or M[N/z], reducible by hypothesis.

O

We can now state the main theorem, corresponding to lemma (3.1.2]).

Theorem 3.2.1. Let (z1:71),...,(Zn : Tn) F M : o be derivable in simple type theorty. Then,
for every choice of Ny € Red,,,...,N, € Red,, , M[Ny/x1,...,Nn/x,] € Red,.

Proof. Let M be M[Ny/z1,..., N,/z,]. We argue by induction on the term M:
i. If M is a variable, then the result is immediate;

ii. If M = A\x.M’, then 0 = 7 — p and, by induction hypothesis, (x1 : 71),..., (zn : ™), (z :
T) F M’ : p is derivable and for all N € Red,, M[N/z] € Red,. Hence, by lemma (3.2.2)),
Ax.M € Red,_,p;

iii. If M = M'M", then, by induction hypothesis, (x1 : 71),...,(xp : 7) F M’ : 7 — p and
(21 : 71)y...,(xy = 7y) F M" : 7 are derivable and M e Red_,, and M € Red, for

certain types 7, p (this is easily proved by induction on the typing derivation), and the
result immediately follows by the definition of reducibility.

O
We can thus finally state the “realizability theorem” as a corollary:

Corollary 3.2.1. If+ M : o is derivable in simple type theory, then M is a realizer of o (and
hence strongly normalizing).

Proof. By R3 variables belong to Red., for all 7, hence, if FV (M) = {x1,...,z,}, M[z1/z1 ... 20 /20] =
M € Red,.
O
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Reducibility and validity We won’t enter here into the complex debate over the differences
between a normalization argument and a semantic proof of validity (which constitutes for instance
the subject of [SHO6]), but we limit ourselves to highlight some important differences between
the two historically related approaches of Tait-Girard reducibility and proof-theoretic validity.

Tait-Girard reducibility was a key ingredient for the development of the notions of proof-
theoretic validity (Prawitz explicitly refers to Tait’s and Girard’s work in [Pra7lal). It is indeed
possible to extend the reducibility definition into a definition of proof-theoretic validity, based
on elimination rules rather than on introduction rules (as the clause defining Red,_,, imposes).
Such a definition is just sketched in [Pra7lal and discussed in [SHO6].

Definition 3.2.2 (Validity based on elimination rules). Let d be a natural deduction derivation
of conclusion A. d is valid if either

(V'1) A is atomic and d is strongly normalizable;

(V'2) A= B = C and for every valid derivation d' of conclusion B, the derivation

cd o d
B=C B
c =B (3.2.5)

1s valid.

As a consequence of lemma , lemma is derivable for this eliminative version of
validity. The definition above looks much simpler than the one based on introduction rules, for at
least two reasons: first, no distinction is made between canonical and non canonical derivations,
since no reference is made to introduction rules; second, the complex and counterintuitive clause
(V3) is absent, and is indeed recovered by the analogue property (R3), which is a consequence
of the definition by means of lemma . In particular, the definition is a pure induction
over formulae, in contrast with Prawitz’s validity, which is defined by an iterated induction over
formulae and over the reduction relation (such an iterated induction is then recovered in the
proof of theorem .

The lack of a canonical/non canonical distinction makes the definitions easier, but has the
consequence that the very idea of proof-theoretic semantics is lost: the validity of a derivation
is not defined in terms of an ideal form that the derivation must have or must achieve, through
reduction; it is indeed defined in terms of the potential behavior of the derivation in fixed contexts,
i.e. following the paradigm of realizability.

In the preceding section, we identified the epistemological content of the definition of validity
with the fact that valid derivations can be transformed into canonical ones, which are in a sense
valid by definition. In the case above, no derivation is taken as valid by definition in virtue of its
internal form. Rather, derivations are valid in virtue of the properties of their behavior (their
interaction with other derivations in the case of a non-atomic conclusion). The normalization
argument achieves then the following result: if a A-term can be assigned the type o (equivalently, if
a derivation has been constructed following the introduction and elimination rules of intuitionistic
logic), then it will behave in a well-specified way; in particular, the term itself will be strongly
normalizing and its interaction with other (well-behaving) terms will preserve validity.

Though the reducibility approach does not consider the internal structure of terms, it inherits
the main features of realizability semantics: first, the untyped and polymorphic frame, given by
the fact that we associates types with sets of pure A-terms; second, the proof-irrelevance of atomic
types: all atomic types are assigned the set SA of strongly normalizing terms, which means that
the behavior of their realizers is not decomposed, as it is the case for non atomic types. Finally,
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the incompleteness of simple type theory: from a closed term M being a realizer of a certain
type o, it does not follow that M can be given type o in simple type theory (see next section).

3.2.3 Untyped semantics

By the expression “untyped semantics” it will be meant an approach to the interpretation of proofs
which reflects the perspectives coming from realizability and reducibility interpretations. It
must be said that, whereas the philosophical and epistemological development of proof-theoretic
semantics is the object of a quite large literature, the literature on realizability and Tait-Girard
reducibility arguments is quite confined to mathematics and computer science departments, with
some few exceptions (notably Girard’s many philosophical comments and intuitions, Joinet’s
work on the philosophy of computability - [Joi07, [Joi09) [Joill] - and some other works like
INPS14]).

There are at least two active research programs in the logic panorama that explicitly pursue
the idea of an untyped interpretation of proofs: one is Krivine’s program ([Kri09) KrilTl Kril2]
Kril|, which aims at reconstructing the untyped programs (or machines) which lay beyond proofs
of classical logic and mathematics, by extending the Curry-Howard correspondence to classical
logic and set theories. The other one is Girard’s geometry of interaction program ([Gir89c
Gir89al, [Gir90al, [Gir95l [Gir006, [Girl0Q, [Girl3]), which aims at reconstructing untyped proofs from
a purely geometrical perspective, provided by operator algebras ([Gir89al [Gir10]) and unification
algebras (|Gir13]).

In trying to highlight the main features of these approaches we aim indeed at helping con-
fronting two different traditions sharing the same origins (intuitionism and constructivist math-
ematics), but divided by a cultural and technical gap evolved through time (the aim of recon-
structing the history of this bifurcation in the development of logic clearly exceeds the aims of
this short presentation).

Untyped proofs and intuitionism Kleene’s recursive realizability is often presented as a for-
malization of the intuitionistic (or BHK) explanation of the logical constants, thought Kleene
explicitly rejected this connection (see [Kle45]). As it is argued in [Sun83|, a major difference
between the two approaches regards the different way in which the notion of proof (or, more gen-
erally, the notion of “construction”) is considered: whereas in stating his conditions in [Hey506]
Heyting was describing constructions, methods as informal (mental?) entities, not themselves
subject to mathematical treatment, Kleene’s interpretation of proofs pursues an explicit mathe-
matical formalization of the (allegedly) intuitionistic notion of construction. At best, as Kleene
himself writes in [Kle45|, his interpretation can be seen as an explanation of intuitionistic con-
structions within classical mathematics.

One of the main features of the untyped approach is indeed the interpretation of proofs as
elements of certain algebraic structures (pca): the informal notion of proof (or construction) is
thus replaced by a well-defined mathematical notion, investigated with purely mathematical tools
(A-calculus, category theory and even operator algebra, in the case of geometry of interaction).
This feature appears in sharp contrast with the intuitionistic credo that constructions are purely
mental entities.

Historically, the reception of the intuitionist interpretation was strongly influenced by Kreisel’s
formalizations in [Kre60) [Kre65|: there his aim was “to set up a formal system, called “abstract
theory of constructions” for the basic notions mentioned above, in terms of which the formal
rules of Heyting’s predicate calculus can be interpreted”’. In particular Kreisel’s reconstruction
incorporated a recursive predicate formalizing the relation

the construction c proves the formula A (3.2.6)
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so that the BHK clauses themselves could at the end be regarded as logical formulae. As
Sundholm observes:

The difference in aims between the early views of Heyting-Kolmogoroff and Kreisel now
becomes clear. Heyting-Kolmogoroff do not give a reduction to any other theory, but try
to explain what a proposition is, how it should be understood. For Kreisel, on the other
hand, the aim was to formalize the properties of the “abstract constructions” in a theory
and reduce the theory of logic to that. Kreisel is thus closer to [...] Gddel’s Dialectica and
the realizability interpretations. [Sun83|

As it is well-known, in his attempt Kreisel was led to slightly modify the clauses for impli-
cation and universal quantification, by adding the request of an effective “verification” that the
construction actually does what it is supposed to: for instance, a proof of an implication A = B
is a construction ¢ which assigns to each proof d of A a proof ¢(d) of B, along with a verification
that c satisfies this condition. As we discuss below this further clause is especially problematic in
the case of I1{ formulae. It is quite significative that Troelstra’s 1968 presentation of intuitionism
(J[Tro69]) incorporates Kreisel’s modifications and explicitly refers to his formalization.

Kreisel’s theory of constructions was not the only attempt at formalizing the intuitionistic
notion of construction: we can mention for instance Godel’s Dialectica interpretation |G58],
Scott’s theory of constructive validity [Sco68] and Martin-Lof’s intuitionistic type theory [ML84].
In the latter, in particular, the identification of proofs with certain mathematical objects is a
consequence of the formulae-as-types paradigm (that we discuss in the next paragraph). Martin-
Lof draws a distinction between proofs as constructions, in the sense of mathematical objects,
and proofs as derivations in tree-like form:

To distinguish between proofs of judgements (usually in tree-like form) and proofs of propo-
sitions (here identified with elements, thus to the left of €) we reserve the word construction
for the latter and use it when confusion might occur. [ML84]

In the context of proof-theoretic semantics the question about the nature of constructions is
debated: [Sun98| reports the skepticism by Prawitz about the legitimacy of the mathematical
notion of construction; in particular, in [Pral2|, Prawitz considers two opposite alternatives: the
first one, attributed to Martin-Lo6f and Sundholm, takes proofs as construction in the mathemat-
ical sense:

For instance, a “proof” of an implication A = B is simply a function that applied to proofs
of A yields a proof of B, and the “proofs” of A and B may again be just functions, which
may make one doubt that the notion of proof is really an epistemic one. [Pral2]

In particular, Martin-Lof, in [ML98], claims that proofs are not to be considered as epistemic
notions, but rather as mathematical “proof objects” which may enter in the stipulation of the
proof-conditions for the logical constants (he explicitly draws a connection with Kleene’s realiz-
ability).

The second alternative, inspired by the verificationist thesis, takes proofs as chain of infer-
ences, where an inference is conceived as a piece of linguistic practice; this alternative can be
found for instance in Dummett’s treatment of derivations in sequent calculus or natural deduc-
tion as a formalization of linguistic practice, with no peculiar interest in their inner mathematical
structure.

It is the opinion of the author that this divergence about the legitimacy of a purely mathemat-
ical treatment of constructions constitutes one of the main obstacles which keep the philosophical
tradition of proof-theoretic semantics far from the the tradition of Kleene and Kreisel (and in par-
ticular from the most recent advances in the mathematical interpretation of proofs, as Krivine’s
classical realizability and Girard’s geometry of interaction).
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Russell’s typing and Curry-Howard typing The principle by which Russell introduced
his type discipline in [Rus08] was the following:

(RUS) The range of significance of a propositional function forms a type

by that he meant that, when considering a propositional function, i.e. a predicate P(x) depending
on a variable z, the objects to which the predicate can be applied must belong to a well-defined
set. Syntactically, this implies that the terms that can be substituted for the variable z in P(x)
must be of the same type as the variable x. We can indeed rephrase the principle (RUS) by the
following syntactic principle: variables occurring (free or bound) in predicates (and in proofs)
must be typed. Variables are then written with a type index as x?, a propositional function
P(z7) being a function from o to a certain family of propositions.

As it is widely known, the reason that led Russell to introduce the type discipline was that,
by admitting unrestricted substitutions for the variables occurring in his propositional functions,
it was possible to construct pathological propositions, leading to the well-known antinomies.

The Curry-Howard typing discipline can be obtained (as it is explained for instance in
[Coq90]) from Russell’s discipline by simply adding the principle below:

(PasT) Propositions should be identified with types

Indeed, principle (PasT), along with principle (RUS), yields the consequences that a proof of a
proposition is an object of a certain type, and that a propositional function P(z7) is a function
from o to a certain family of types. The identification of proofs with the objects of a type leads
then to the interpretation of the former as programs (an example of the forgetful translation
can be found clearly stated in [How80]). Moreover, if a propositional function is a function from
a type to a family of types, it follows that a proof of a universal proposition Vz? A is indeed a
typed program of type ¢ — A, where A is a family of types over the elements of o (this idea is
made explicit in Martin-Lof type theory [ML84], see also subsection (4.3.2))).

Now, admitting unrestricted substitutions for the variables occurring in the propositional
function P(x?) amounts, from the Curry-Howard perspective, to admitting unrestricted inputs
for a program of type o — 7 (for a certain type or family of types 7). This means that Russell’s
typing discipline is turned into a discipline for the interaction (styled “socialization” in [Joill])
between programs: it forbids indeed to apply programs to certain other programs. Typically, if
a program M has type o — 7, it cannot have itself as an input.

This is indeed the paradigm which underlies the distinction between pure and typed program-
ming languages; in the case of A-calculus, the most studied and significative for type theory, one
has an underlying space of programs, with no restriction as to possible interactions: any program
can be applied to any other one. The rule-less society of untyped programs reveals itself indeed
quite wild, since unrestricted interactions between programs give rise to pathological cases of
non terminating computations. In a word, types discipline the contexts in which a program can
be put.

On the contrary, once programs are typed, i.e. once the socialization is regulated, pathological
cases are expelled from society; the typical example, again, is the one of autoapplication: if a
variable z in a program is declared of type ¢ — 7, then it cannot be applied to a program of
type 0 — 7, and in particular it cannot be applied to itself. This is tantamount to say that the
A-term Az.(x)z is not typable in simple type theory (in chapter @ we discuss these properties
of typing from the abstract viewpoint of unification theory).

Remark that a peculiar feature of simple types is that the typing is in a sense rigid: terms are
called monomorphic, which means that they have a unique type. On the contrary, if a variable
can have, at the same time, different types, then one can find a way to correctly type an auto-
application (this polymorphism is indeed the central feature of higher-order type theories, see

chapters (B)) and (6)).
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Now, as the strong normalization theorem of the preceding section shows, the rigid discipline
of simply types provides the following properties:

1. All programs of variable type are strongly normalizing;

2. If M and N are strongly normalizing programs and M N is well-typed, then M N is strongly nor-
malizing.

Remark that the two properties above strongly resemble the realizability-reducibility clauses;
in particular, property 2. implies that all programs are strongly normalizing: if M does not
have variable type, then it has type ¢ — 7, and for N = z, M N is well-typed and is strongly
normalizing, hence M is too. In a sense, the realizability-reducibility clauses express the norms
of “socialization” of simple type theory. [Joill] discusses in detail the “social” features that can
be imported in logic from the experience on typed A-calculi:

Ce qu’on pourra appeler “la bonne socialité dynamique des processus” prévaut donc en-
core dans le fragment typé correspondant au systéme de déduction naturelle concerné, et le
typage doit étre vu non simplement comme découpant un sous-ensemble des termes (des pro-
grammes), mais au deld comme découpant un fragment de la dynamique (un sous-ensemble
des Ovaluations, une sous-dynamique) |...] [Joil1]

Krivine’s program pushes farther this reflection, since it aims at reconstructing the behavioral
content of mathematical theorems:

Nous avons écrit ce programme a partir d’une preuve d’une certaine formule ©. Nous sommes
confrontés a ce que j’appelle le probléme de la spécification, qui est, sans doute, le probléme
le plus difficile mais aussi le plus fascinant posé par la correspondance de Curry-Howard:

Etant donné un théoréeme © (de la théorie des ensembles avec choix dépendant), quel est le
comportement commun & tous les programmes obtenus & partir des preuves de © ¢

In the following paragraph we try to sketch some of the features of an interpretation of proofs
and their validity based on this untyped (wild) vs typed (civilized) paradigm.

Untyped proofs and rules The two basic principles shared by the realizability and the
reducibility interpretation of derivations and programs are the following:

U1 Proofs are interpreted as untyped programs;
U2 Rules are interpreted by clauses disciplining the “socialization” of proofs.

Principle U1 is indeed the starting point of Kleene’s 1945 realizability interpretation, and prin-
ciple U2 is a consequence of the application of the realizability-reducibility clauses to the PasT
condition.

An immediate consequence of Ul is that the internal structure of proofs is not taken in
consideration by interpretations of this form; as a limit case, a proof of an atomic (true) formula
is interpreted by an arbitrary (strongly normalizing) program (this is the principle that we called
of proof-irrelevance). This blindness to the internal structure of proofs implies that an untyped
interpretation must assign a quite different role to rules with respect to proof-theoretic semantics.
The latter indeed assigned a role to rules which can be called constitutiveﬂ there is simply no

8The constitutive/regulative distinction traces back to Kant, and was more recently retrieved by Searle ([Sea69].
We take here Searle’s definition: a rule is constitutive if the existence of the practice it disciplines depends on the
acceptance of the rule itself. It is regulative if it disciplines an activity which might exists independently from the
acceptance of that rule.
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notion of proof without a definition of introduction and elimination rules (or left and right rules
in the case of sequent calculus).

On the contrary, in the untyped interpretation, so as in the related notion of eliminative
validity (see above), no mention is made to the rules of which a proof is made; in particular,
there is no space for a last rule condition, i.e. for a distinction between canonical and non
canonical proofs.

In the next chapter the question of the retrieval of a last rule condition within a reducibility
interpretation will be briefly discussed on the basis of a completeness theorem for II'-reducibility.

A conception of the role of rules must indeed be developed in accordance with principle U2:
indeed, as it results from the strong normalization theorem, the rules (intended as typing rules)
internalize patterns of behavior, as they are described by means of the realizability-reducibility
clauses. As Joinet writes,

[-..] chaque (type de) régle est moins une régle d’inference (régle de transition des énon-
cés vers les énoncés) qu'une régle d’interaction, régle déterminant une forme particuliére
d’interaction avec le cotexte. [Joill]

In particular, the principle of implicit definitions, i.e. that the meaning of the logical constants
is implicitly defined by (some of) the rules of logic has to be replaced by what we might call a
principle of behavioral definition, stating that the meaning of the logical constant is (explicitly)
defined by clauses describing the behavior of proofs of formulae containing such a constant as its
principal operator in fixed contexts.

Since untyped programs live in an independent space of computations, rules, following this
behavioral principle, assume a regulative role with respect to the “socialization” of programs.
Interpreting logical rules as regulative, rather than constitutive, amounts to viewing a “logic”
as a set of restrictions imposed on programs to discipline their interaction. For instance, the
“logic” of simple types (corresponding, through Curry-Howard, to intuitionistic propositional -
and, forgetfully, first-order - logic) is the one in which the interaction of a program with itself is
forbidden (“incestuous”, one might be tempted to say).

A “logic”, in this sense, induces a demarcation between “good” programs, i.e. the typed
ones, and “bad” programs, the untyped ones. Indeed, typed programs are exactly those that are
the image, under the forgetful translation, of actual derivations in sequent calculus or natural
deduction (this is what is indeedasserted by the faithfulness theorem (2.3.1))).

In chapter we provide a stronger result, that we call II'-completeness, which states that a
sequent calculus derivation d of - A can be recovered from a term M which is a realizer of VatAF,
i.e. such that M € Redysr, where YaA" indicate