
Dipartimento di Filosofia,
Comunicazione e Spettacolo (Fil.Co.Spe.)

Dottorato in Filosofia e
Teoria delle Scienze Umane,
XXVII ciclo

Institut de Mathématiques de Marseille (I2M)

École Doctorale en Mathématiques
et Informatique de Marseille - ED 184

UFR Sciences

tesi in cotutela / thèse en cotutelle

Paolo Pistone

On Proofs and Types in Second Order Logic

Relatori / Rapporteurs:

Joinet Jean-Baptiste Université Jean Moulin Lyon 3
Longo Giuseppe Ecole Normale Supérieure / CNRS
Streicher Thomas Technische Universtität Darmstadt

Commissione / Jury :

Abrusci Vito Michele Università Roma Tre (Co-direttore / Co-directeur)
Curien Pierre-Louis Université Paris 7 (Esaminatore / Examinateur)
Girard Jean-Yves Aix-Marseille Université (Co-direttore / Co-directeur)
Joinet Jean-Baptiste Université Jean Moulin Lyon 3 (Relatore / Rapporteur)
Martini Simone Università di Bologna (Esaminatore / Examinateur)
Moriconi Enrico Università di Pisa (Esaminatore / Examinateur)

2

Contents

Prelude: Frege’s Grundgesetze 7

I Introduction 11

1 Explaining why vs explaining how 13
1.1 The library of Babel and logical complexity . 13
1.2 The Quinean critic and proof theory . 17

1.2.1 Philosophical disputes over second order logic 18
1.2.2 Type theory “in sheep’s clothing” . 21

1.3 Outline of the thesis . 23

2 Arithmetics, logic and type theory 25
2.1 The proof-theoretic notion of “logic” . 25

2.1.1 From Hilbert’s program to structural proof theory 25
2.1.2 Second order arithmetics and logic . 29
2.1.3 System F . 33

2.2 The Dedekind functor . 35
2.2.1 “Was sind und was sollen die zahlen” . 35
2.2.2 The functor D . 37
2.2.3 Arithmetics and logic . 41

2.3 The forgetful functor . 43
2.3.1 The functor F . 44
2.3.2 Arithmetics in type theory . 49

2.4 Beyond System F . 51
2.4.1 From Curry’s type theory to System Fω 51
2.4.2 The systems U and U− . 54
2.4.3 A naïve type theory . 55

II Explaining why 57

3 Inferentialist and interactionist interpretations of proofs 59
3.1 Proof-theoretic validity . 59

3.1.1 Meaning and implicit definitions . 60
3.1.2 Consistency and the inversion principle 63
3.1.3 Proof-theoretic semantics . 66

3.2 Realizability and reducibility . 71

3

4 CONTENTS

3.2.1 Realizability semantics . 71
3.2.2 Tait-Girard reducibility . 75
3.2.3 Untyped semantics . 79

4 Around the second order Hauptsatz 87
4.1 Reducibility and Takeuti’s conjecture . 87

4.1.1 Reducibility . 87
4.1.2 Takeuti’s conjecture: an empty shell? . 92

4.2 The vicious circle principle . 95
4.2.1 The debate over impredicative definitions 95
4.2.2 Proof-theoretic semantics . 97
4.2.3 Untyped semantics . 102

4.3 Kaleidoscope effects . 103
4.3.1 The Hauptsatz seen from within . 104
4.3.2 A paradox of reducibility . 107

III Explaining how 113

5 Impredicativity and parametric polymorphism 115
5.1 Set-theoretic vs “generic” quantification . 116

5.1.1 Reynolds’ paradox: why second order logic is not set-theory 116
5.1.2 Carnap’s defense of impredicativity . 119
5.1.3 The operator J and the genericity theorem 120

5.2 Parametricity and the completeness of simple type theory 122
5.2.1 The mathematics of parametricity . 122
5.2.2 The dinatural interpretation: new equations for polymorphic terms 127
5.2.3 A completeness theorem . 130

5.3 An impredicative bridge . 137

6 Vicious circles and typability 141
6.1 Typing and unification . 141

6.1.1 Equations in the simple type discipline . 142
6.1.2 Equations in the polymorphic type discipline 145
6.1.3 Another scheme system . 149

6.2 Vicious circles and typing . 155
6.2.1 The geometry of vicious circles . 155
6.2.2 Recursive equations and typing constraints 158
6.2.3 Incompatible constraints and untypable terms 162

6.3 A conjecture on typability . 164
6.3.1 Type inference in System U− . 164
6.3.2 Around the conjecture . 166
6.3.3 Some consequences of the conjecture . 179

IV Perspectives 183

7 Towards a proof theory of “uncertain” proofs 185
7.1 The why and the how of typing . 185
7.2 A Curry-Howard perspective on System U . 187

CONTENTS 5

7.2.1 System U− and “how-proof theory” . 187
7.2.2 System U− and “why-proof theory” . 189

V Appendices 191

A Properties of System N 193

B Girard’s paradox 197

C Simulating recursive functions by normal λ-terms 201
C.1 A modified HGK-computability . 201
C.2 Recursive functions by normal λ-terms . 202

Bibliography 205

6 CONTENTS

Prelude: Frege’s Grundgesetze

Frege’s Grundgesetze [Fre13] contain one of the first rigorous formulations of a formalism for
second order logic. As everybody knows, Frege’s theory was shown to be inconsistent by Russell
in 1901. However, [Fre13] contains an argument purported to show that all expressions in his
formalism “have a denotation”, and in particular that all propositions denote a definite truth-
value. If this had been the case, then the consistency of the theory would have followed from
that. Hence, Frege’s argument was not correct.

I believe that there is no better prelude to this thesis than to give a sketch of Frege’s wrong
argument, and to briefly highlight its fallacies: on the one hand this proof provides a very
instructive example of the obstinate circularity of second order reasoning, the actual subject of
this work; on the other hand, Frege’s unfortunate attempt anticipates, seventy years before, a
similar and equally unfortunate attempt which is discussed throughout this text: in 1970 Martin-
Löf presented a very elegant higher order type theory containing an impredicative type of all
types. The Swedish logician provided an argument for the normalization of his theory, obtained
by a natural generalization of Girard’s argument in [Gir72] for the normalization of System F .
One year later, Girard showed Martin-Löf’s theory to be inconsistent, by deriving a paradox in
it.

Though being yet another victim of the obstinate circularity of higher order logic, Martin-
Löf’s elegant theory constitutes one of the main sources of both philosophical and technical
inspiration for this thesis. Much of what is claimed or discussed in the following pages comes
from the subtle analysis of impredicativity made possible by this unfortunate episode.

Let us come to Frege’s proof, then.
The language of the Grundgesetze (let us call it G) would be called nowadays a functional lan-

guage. It was based on Frege’s distinction between saturated and unsaturated expressions, which
roughly corresponds to the distinction between closed and open terms in modern functional
theories: unsaturated expressions are those which contain free variables. In Frege’s terminol-
ogy, saturated expressions are names for objects, while unsaturated expressions are names for
functions. For instance, a free variable x stands, in G, as a name of a function.

A peculiar class of saturated expressions is the class of propositions, which are, in Frege’s
terminology, names for the True or for the False.

Functions can be divided into two classes: first-level functions f(x), g(x), . . . are unsaturated
expressions whose free variables x, y, z, . . . can be substituted for (names of) objects; second-
level functions φ(X(x)), ψ(X(x)) are unsaturated expressions whose free variables X,Y, Z, . . .
can be substituted for (names of) first-level functions; a special second-level function is the
function λx.(X(x))1, which allows to associate, with any first-level function f(x), a course-of-
value expression, i.e. a saturated expression λx.f(x) intuitively denoting the class of all objects

1where we replace Frege’s ε notation with a more modern λ notation.

7

8 CONTENTS

falling under the concept expressed by the function f(x).
A peculiar class of first level functions is the class of truth-functions, which yield a proposition

as soon as their free variables are substituted for (names of) objects: for instance, the function
x2−1 = (x+1)×(x−1) yields the value True as soon as the variable x is replaced by a numerical
expression.

In §29 Frege defines what it means for an expression of G to have a denotation. Frege assumes
that the expressions True and False, so as the numerals 1, 2, 3, . . . have a (obvious) denotation;
then he states that a saturated expression has a denotation if it yields a denoting expression when
it is substituted for the free variables of an (appropriate) denoting unsaturated expression. An
unsaturated expression has a denotation if the result of replacing its free variables with denoting
saturated expressions always yields a denoting saturated expression.

In §30 Frege finally states and (tries to) prove a consistency theorem of the form: every
expression in G has a denotation. This would imply that every proposition has a denotation,
which is either the True, either the False, and thus that the theory G is consistent (as it is
remarked in [Dum91a], it is unclear from Frege’s text if he was aware of this fact).

Remark that Frege’s notion of denotation differs in many respect from the definition of a
model-theoretic satisfaction relation. Indeed, expressions are not interpreted as elements of
a model; on the contrary, Frege takes for granted that the constants of his language have a
denotation and takes this as the basis of an inductive definition: as he remarks,

These propositions are not to be construed as definitions of the words “to have a reference”
or “to refer to something”, because their application always assumes that some names have
already been recognized as having a reference; they can however serve to widen, step by
step, the circle of names so recognized. [Fre13]

Rather, to the eyes of the type-theorist, Frege’s stipulations might remind the clauses defining
the computability or reducibility predicates (see [Tai67, Gir72]) for typed λ-terms, a technique
used to prove normalization theorems for typed λ-calculi. Indeed, if the reader takes True and
False as the two only normal proposition, then he can look at Frege’s consistency proof as a
sort of normalization argument, showing that every proposition has a normal form.

Frege’s proof is carried out following the inductive definition of the property of “having a
denotation”; here we limit ourselves to the case of propositions. The basis case is obvious, since
True and False denote, respectively, the True and the False, so as numerals 1, 2, 3, . . . denote
the numbers 1, 2, 3, For the case of a first-level function f(x), he shows that, if N is a
denoting object, then f(N) is too; for instance, if f(x) is the function x ⇒ x2, he assumes P
to be a denoting proposition, i.e. corresponding to a truth-value, and shows that f(P) must
denote the True. As a consequence, propositions built by substituting denoting objects for the
free variables of a first-level functions have a denotation. He argues similarly for propositions of
the form ∀x.f(x)3.

The most important and delicate case concerns second-level functions: Frege first assumes
f(x) to be a denoting first-level functions and argues that, if φ(X(x)) is a second-level function,
then the first-level function φ(X(x))[f(x)/X] = φ(f(x)) has a denotation (as a consequence of the
argument above for first-level functions); hence he can argue that, if φ(X(x)) is a second-level
function having a denotation, then the first-level function ∀X.φ(X(x))4 must have a denota-
tion: for all object N , either for all first-level functions f(x), φ(f(N)) is the True, and then

2Written as x

x

in Frege’s original notation.

3 a
f(a) in Frege’s notation.

4 α
φ(α) in Frege’s notation.

CONTENTS 9

∀X.φ(X(N)) is the True, either for some first-level function f(x), φ(f(N)) is the False, and then
∀X.φ(X(N)) is the False.

The reader may have noticed the circularity of the argument above: in showing that the
new first-level function ∀X.φ(X(x)) has a denotation, Frege is presupposing that all first-level
functions f(x) have a denotation, as a result of the argument developed above for first-level
functions. Indeed, in order to show, for a given object N , that the proposition ∀X.φ(X(N)) is
the True, one has to show that, for all first-level functions f(x), the proposition φ(f(N)) is the
True; hence, in particular, one has to show this for the first-level function ∀x.φ(X(x))!

A similar form of circularity appears in the case of couse-of-values expressions: Frege has to
show that the second-level function λx.X(x) has a denotation, and for that he has to show that,
for any two first-level functions f(x), g(x) having a denotation, the expression g(λx.f(x)) has a
denotation. This is shown by considering the possible cases for g(x), taking as basis case the
one of equality and appealing to the celebrated and unfortunate Basic Law V (stating that two
course-of-value expressions λx.f(x), λx.g(x) name the same object if and only if the proposition
∀x(f(x)⇔ g(x)) is the True).

Again, Frege’s argument contains a vicious circle: let g(x) be the function x = λx.h(x); in
order to show that the proposition λx.g(x) = λx.h(x) has a denotation, one has to show that the
proposition ∀x(g(x) ⇔ h(x)) has a denotation. This means that he has to show that, for every
object N , g(N) ⇔ h(N) is either the True or the False. Now, this presupposes in particular
showing that g(λx.h(x)), i.e. λx.g(x) = λx.h(x) has a denotation.

As everybody knows, Russell was able to build a counterexample to Frege’s consistency
theorem by exploiting the circularity just sketched: he constructed a proposition R having no
denotation. Indeed, R is such that, if it were the True then it would be the False, and if it were
the False, then it would be the True. Hence, from the “normalization viewpoint”, Russell had
found an expression in G which has no normal form.

It is absolutely remarkable that, after Frege’s unfortunate attempt, one had to wait almost
eighty years before an actual proof of consistency for second order logic, through a normalization
argument, was published (in Girard’s thesis [Gir72]). The time the question remained unsettled,
as well as the subtlety with which the circularity of second order reasoning is treated in this proof
without falling into vicious circles bear witness to the hardness of the issues of understanding
and justifying second order logic.

10 CONTENTS

Part I

Introduction

11

Chapter 1

Explaining why vs explaining how

The perspective which underlies this thesis on the proof theory of second order logic is based
over a methodological opposition which can be reconstructed through the heritage of the two
main traditions in logic in the last century. The constructive tradition (intuitionism, realizability,
computability theory) taught us to extract a finite, recursive content from proofs. The semantic
tradition (model theory, proof-theoretic semantics) taught us to define and to prove the validity
of more and more complex notions of proof - by relying, in accordance with Gödel’s theorems,
on more and more complex logical principles -.

The two points of view are complementary not only in their achievements, but also in their
failures. The first fails to capture the difference between correct proofs and paradoxical, or
meaningless, programs, as this distinction cannot be traced in a finite, recursive way: think of
the problem of detecting the absence of loops in the execution of a computer program. The
second fails to capture the finite and combinatorial structure of proofs, as semantical notions like
truth or validity translate non elementary properties of formulae and proofs into non elementary
properties of their denotations: typically, the validity of a formula involving quantification over
an infinite domain is expressed by a quantification over an infinite domain.

The broad intent of this work is to draw the outline of a direction of research that will
be (hopefully) developed by the author in the future years. This is why this text contains, in
addition to philosophical arguments and some technical results, several proposals and technical
ideas which are only sketched and left for future investigations.

Before introducing the reader to the context of this research (the debate over the legitimacy
of a second order logic) and providing him an outline of the investigations contained in this
thesis, we illustrate the idea of the opposition just introduced through a metaphor coming from
a well-known novel by Borges.

1.1 The library of Babel and logical complexity
[...] the detailed history of the future, the autobiographies of the archangels, the faithful catalog of the Library,
thousands and thousands of false catalogs, the proof of the falsity of those false catalogs, a proof of the falsity of

the true catalog, . . . [Bor00]

Meaningful proofs and meaningless codes The λ-calculus (so as many other universal
models of computation) can be seen as an exemplification of Borges’ library of Babel. Every
algorithm, from the naïve computations of a young student to the wittiest products of a Palo

13

14 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

Alto company, from the attitude control system of a satellite to a randomly chosen sequence of
instructions, finds its place among the shelfs of the library first conceived by Church in 1932.

At the same time, if a librarian randomly picked a book from this library, then, puzzled, he
would be immediately faced with a question: what does it mean?

Indeed, most of the programs he would find consist in quite inscrutable sequences of λs and
variables, or in visibly idiot programs, indefinitely reproducing themselves.

One book, which my father once saw in a hexagon in circuit 15-94, consisted of the letters
M C V perversely repeated from the first line to the last. Another (much consulted in this
zone) is a mere labyrinth of letters whose penultimate page contains the phrase O Time
thy pyramids. This much is known: for every rational line or forthright statement there are
leagues of senseless cacophony, verbal nonsense, and incoherency. [Bor00]

Occasionally, he could bump into some books he would find himself able to read: books
written, at least partially, in a language he understands. This language would tell him the
circumstances in which to use these programs, and predict their possible outputs. In a word, he
would recognize such programs as typed programs (in a certain type system among his favorite
ones).

Anyway, without any acquaintance with (possibly many) type systems and without some
luck, he would not be able to tell the meaning (nor the use) of those programs from the mere
reading of a sequence of symbols.

I know of one semibarbarous zone whose librarians repudiate the “vain and superstitious
habit” of trying to find sense in books, equating such a quest with attempting to find
meaning in dreams or in the chaotic lines of the palm of one’s hand...[Bor00]

Acquaintance with many typing languages is not enough to tell, in general, meaningful pro-
grams, i.e. programs representing (total) functions, from meaningless, idiot, ones. This is the
essence of Turing’s theorem: one will never find an algorithm to put the library in order. Hence
one will not find, in the library of Babel, a book telling the books worth reading from the rubbish
ones.

Similarly to the case of λ-calculus and computation, a version of Borges’ library for proofs
arises from Kleene’s ingenious remark that all the information needed to construct a proof can
be compressed in a finite code. Kleene’s realizability provides a library of codes (natural numbers
in [Kle45]) which represent all arithmetical proofs (indeed, not just the proofs contained in a
fixed formal system!).

At the same time, the librarian of Kleene’s library might well spend his life trying to find the
meaning hidden behind these meaningless lists of symbols.

A realization number by itself of course conveys no information; but given the form of
statement of which it is a realization, we shall be able in the light of our definition to read
from it the requisite information. [Kle45]

The clauses defining realizability define the conditions under which a code realizes a certain
formula. They provide the key to decrypt (some of) the books in the library. For instance, a
code e realizes an arithmetical formula ∀nA when, for any integer k, the code {e}k (where {, }
denote Kleene’s brackets) realizes the formula A[k/n].

A fundamental remark should strike the logician reader here: on the one hand proofs are
coded, i.e. compressed into combinatorial objects. Logically speaking, this coding can all be
expressed by means of formulae of a fixed logical complexity (say Σ0

1
1). On the other hand,

1It is a well-known by logicians that recursive properties can be expressed by means of Σ0
1 formulae, i.e.

formulae of the form ∃n.A, where A contains no quantifiers.

1.1. THE LIBRARY OF BABEL AND LOGICAL COMPLEXITY 15

the decoding clauses connecting codes to arithmetical formulae correspond to statements whose
logical complexity depends on the logical complexity of the formulae. In the case above, the
clause for a Π0

1 formula, i.e. a formula starting with a universal arithmetical quantifier ∀n and
containing no other quantifier, is expressed by a formula which is (at least) Π0

1.
It is common to semantical notions to have the property we have just described. For instance,

the truth of a formula A, as characterized by Tarski’s notorious condition

A is true if and only if A (1.1.1)

is a property whose logical complexity clearly grows with the logical complexity of the formula
A under consideration (this has the well-known consequence that arithmetical truth cannot be
uniformly expressed by an arithmetical formula). Similar remarks can be made for the notion
of model-theoretic validity and for the notion of proof-theoretic validity (which is discussed in
detail in this thesis).

Hence, the meaning of proofs of formulae of complexity greater or equal to Σ0
1 cannot be

analyzed, decomposed, by means of recursive (i.e. Σ0
1) techniques. This is indeed a consequence

of Gödel’s theorems, which assert that the validity2 of formulae of complexity superior to Σ0
1

cannot be characterized by a recursive notion of provability: given a recursive and consistent
description of provability, there exists a valid formula (of complexity Π0

1) which is not provable
following that description.

Proofs, as meaningless codes, are finite, combinatorial, objects. On the contrary, the meaning
of those proofs, the properties which make these codes correct, or valid, proofs of a certain formula
(an evidence for the formula, in Martin-Löf’s terminology [ML87]), are described by clauses of
growing logical complexity.

In a word, whereas the whole library of Babel can be described as a purely combinatorial
structure, its meaningful part (or parts) cannot be entirely described in a recursive way.

“Proof-theory and logical complexity” Girard’s monumental volumes [Gir90b, Gir89b]
provide a rigorous and extensive application of this idea to vast parts of logic. In particular, they
contain a proof-theoretical investigation of the logical complexities Π1

1 and Π1
2 by means of two

recursive libraries of proofs:

• for the complexity Π1
1, ω-proofs are “compressed” into codes for recursive (not necessarily

well-founded) trees, while the property characterizing correct, or valid, ω-proofs, i.e. well-
foundedness (of complexity Π1

1), is non recursive;

• for the complexity Π1
2, β-proofs are “compressed” into codes for recursive pre-dilators3.

Here the property characterizing correct, or valid, β-proof is the non recursive Π1
2 property

of preserving well-foundedness.

The main advantage of the introduction of these recursive libraries was that the usual proof-
theoretical properties could be investigated directly on the recursive proofs: as already remarked
by Minc in [Min78], the cut-elimination algorithm could be directly defined and performed, in a
primitive recursive way, on the “preω-proofs”. On the contrary, the Hauptsatz, i.e. the fact that
the algorithm terminates, required the logically complex hypothesis of well-foundedness.

2Technically, the truth of arithmetical formulae of complexity superior to Σ0
1, which is equivalent to the validity

of second order logical formulae of complexity superior to Π1 (see chapter (2) for a presentation of these hierarchies
of formulae).

3A pre-dilator (see [Gir85]) is a functor from the category of linear orders into itself preserving direct limits
and pull-backs. A dilator is well-foundedness preserving pre-dilator, i.e. a pre-dilator which is a functor from
the category of ordinals into itself. The notion of dilator was invented by Girard as a tool to investigate ordinal
notation systems and Π1

2-logic from an abstract mathematical point of view.

16 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

This technique allowed then to separate the recursive content of cut-elimination, which lies
in the algorithmic transformation of proofs, from its logically complex one, given by termination.

Let us give a more precise picture of what is going on:

a) to each logically complex concept (ω-proof, β-proof, dilator) one associates a Π0
1 (ele-

mentary) concept (preω-proof, preβ-proof, pre-dilator, respectively); this associated
concept is weaker (e.g. every dilator is a predilator).

b) Most constructions (cut-elimination procedures, the functor Λ, . . .) involving logically
complex concepts can be extended to the associated elementary concepts. A typical
example is the cut-elimination theorem for Lω1ω: in chapter 6 we prove cut-elimination
for non-wellfounded ω-proofs of non-wellfounded formulas of Lω1ω (i.e. preω-proofs of
pre-formulas). A more familiar example is the extension of familiar ordinal construc-
tions (sum, product, exponential, the Veblen hierarchy) to linear orders (= «preor-
dinals »). Steps a) and b) can be thought of as an algebraization of current proof-
theoretic constructions: typically, in b) we manage to do the constructions without
«well-foundedness »assumptions. [Gir90b]

The idea I tried to illustrate through the image of the library of Babel constituted the main
inspiration for this thesis on the proof theory of second order logic: on the one hand, the
explanation of the meaning of second order proofs, so as their justification, runs into paradoxes
and apparent “vicious circles” (see next subsection), at the point that it is generally considered
controversial whether second order logic can be actually called logic. On the other hand, such
“circular” proofs, as finite, recursive, objects, i.e. as programs, are the object of a quite rich
and extensive literature, often confined to computer science departments and ignored in the
philosophical literature.

In [Gir00] Girard describes the growing influence of theoretical computer science on proof-
theory as a shift of the latter from its original foundational motivations (“why does mathematics
work?”) to more pragmatical, concrete, ones (“how can we make it work - on a computer, for
instance - ?”). To this shift there corresponded a change in the technical equipment of the
proof-theorist: from logical notions of greater and greater complexity (comprehension princi-
ples, transfinite inductions, determination axioms) to combinatorial tools (recursion theory, λ-
calculus, natural deduction) and mathematical concepts (coming from category theory, topology,
functional analysis).

Cette citation imaginaire résume l’idéologie moyenne du théoricien de la demonstration de
1950. Elle situe d’emblée la théorie de la démonstration dans une problèmatique fonda-
mentaliste (l’élimination des paradoxes) qui affirme que la logique donne le sens profond
des mathèmatiques, ce que j’appellerai le «pourquoi ». Plus tard, vers 1985, l’informatique
devait promouvoir une approche plus pragmatique, ce que j’appellerai le «comment »: ce
comment est une préoccupation bien moins noble que le pourquoi, mais qui demande un
appareillage beaucoup plus subtil. [Gir00]

Following Girard’s suggestion, we can then draw a distinction between proof-theoretical in-
vestigations addressing the question “why does second order logic works?” (if it actually does)
and proof-theoretical investigations addressing the question “how does second order logic work?”.

The investigations of the first type concern the issues about the validity of second order rea-
soning, in particular consistency proofs, of syntactical or semantical nature. The resolution of
Takeuti’s conjecture ([Tak57]), regarding the Hauptsatz for second order logic, is a typical exam-
ple. Issues about the representation of second order proofs (as the Curry-Howard correspondence
between second order natural deduction and System F) and about their implementation (second

1.2. THE QUINEAN CRITIC AND PROOF THEORY 17

order type inference, polymorphic functional programming) are examples of the second family
of investigations.

Obviously there might be superpositions between these two directions of research: for in-
stance, several important syntactical properties were discovered by means of semantic techniques
(this was the case for the so-called parametric interpretation of polymorphism [Rey83], see chap-
ter (5)).

Nevertheless the discussion above should convince the reader of the irreducibility of the two
approaches: the validity of a second order Σ1 statement or proof cannot be analyzed by means
of recursive techniques. For instance, the normalization arguments for proofs of such statements
must rely on comprehension principles, i.e. set-theoretic principles of growing logical complexity.
This “pragmatic” (see [Dum91b]) or “epistemic” circularity affecting the “why-proof theory” of
second order logic is discussed in detail in the second part of this thesis.

On the contrary, this circularity is of no harm from the viewpoint of the “how-proof theorist”:
to him, the numerous auto-applications occurring in second order proofs, which might appear
incestuous to the Russellian philosopher, are just examples of standard recursive techniques.
The third part of this thesis contains two combinatorial analyses of the vicious circles of second
order proofs, the one based on the semantic property of parametricity, the other based on type
inference and unification theory.

A final remark is that the “how-proof theorist”, as the librarian of the library of Babel,
cannot rely on a book telling him the border between valid proofs and rubbish. Indeed, one
of the recurring aspects of this work, from the prelude to the last chapter, is the interest in
wrong proofs. In a sense, just like a complete understanding of computation required to take
into consideration also partial (i.e. wrong) algorithms, the investigations that follow are hinged
on the belief that the combinatorial structure of the whole library might turn out to be of more
interest than the logically complex characterization of its meaningful parts.

Others, going about it in the opposite way, thought the first thing to do was to eliminate all
worthless books. They would invade the hexagons, show credentials that were not always
false, leaf disgustedly through a volume and condemn entire walls of books. It is to their
hygienic, ascetic rage that we lay the senseless loss of millions of volumes. Their name is
execrated to day, but those who grieve over the "treasures" destroyed in that frenzy everlook
two widely acknowledged facts: one, that the Library is so huge that any reduction by human
hands must be infinitesimal. And two, that each book is unique and irreplaceable, but (since
the Library is total) there are always several hundred thousand imperfect facsimiles-books
that differ by no more than a single letter, or a comma. Despite general opinion, I daresay
that the consequences of the depredations committed by the Purifiers have been exaggerated
by the horror those same fanatics inspired. They were spurred on by the holy zeal to reach
someday - through unrelenting effort - the books of the Crimson Hexagon - books smaller
than natural books, books omnipotent, illustrated, and magical. [Bor00]

1.2 The Quinean critic and proof theory

The debate on the foundations and the legitimacy of second order logic provides an interesting
test bench for two rather antipodal perspectives on logic: on the one hand, the analytic tradition
in the philosophy of logic, focusing on semantical justification, aiming at clarifying what the
expressions of logical formalisms stand for ; on the other hand, the proof-theoretical tradition,
building on Gentzen’s results on sequent calculus and the Curry-Howard bridge with theoretical
computer science, rather focusing on the inner properties of logical syntaxes (e.g. cut-elimination,
Church-Rosser, subformula etc.), crucial for programming purposes.

18 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

Two remarkable facts are among the motivations of this work. First, the fact that the
philosophically-oriented tradition appears generally much more hostile than the other towards
second order, or “impredicative”, logics (with some notable exceptions, obviously, for instance
[Boo75, Sha00]). Second, the fact that most of the technical advances and results on second
order logic obtained within the computer science-oriented tradition (which largely belong to a
period which goes from the publication of Girard’s thesis in 1972 to the beginning of the nineties)
are substantially ignored in the philosophical debate (again, with notable exceptions like [LF97]).

Here we recall some of the philosophical challenges which constitute the background for
the philosopher getting acquainted with second order logic, as well as some of the technical
cornerstones, which constitute the background for the “computer-science-oriented” proof-theorist.

1.2.1 Philosophical disputes over second order logic
Quine’s “paradigmatic” challenge

By treating predicate letters as variables of quantification we precipitated a torrent of universals against which
intuition is powerless. We can no longer see what we are doing, nor where the flood is carrying us. Our

precautions against contradictions are ad hoc devices, justified only in that, or in so far as, they seem to work.
[Qui80]

Quine’s well-known animadversions upon second order logic constitutes the center of gravity
of the debate on the subject in analytic philosophy. It was the opinion of the influential american
philosopher that the appeal to second order logic rested upon a confusion about the interpretation
of predicate letters.

The “prodigal logician” Frege and the “confused logician” Russell are considered by Quine as
responsible for this misunderstanding. On the one hand, in analogy with the fact that first-order
variables are usually taken as names for individuals, they took predicate variables as names of
attributes or universals. On the other hand, their resulting theories were to Quine completely
unsatisfactory: Frege’s Grundgesetze contained a contradiction, whereas the consistency of Rus-
sell’s Principia was obtained at the price of introducing the ad hoc discipline of typing.

Quine’s therapy for this confusion is resumed by the celebrated expression of second order
logic as “set theory in sheep’s clothing”: when one freely talks about predicate variables and their
related attributes, indeed “a fair bit of set theory has slipped in unheralded [Qui86]”. Hence his
attempt to expose the (first-order) set-theoretical commitments implicit in second order logic.

[...] consider the hypothesis ∃y∀x(x ∈ y ⇔ F (x)). It assumes a set {x|F (x)} determined by
an open sentence in the role of F (x). This is the central hypothesis of set theory, and the
one that has to be restrained in one way or another to avoid the paradoxes. This hypothesis
itself falls out of sight in the so-called higher-order predicate calculus. We get ∃G∀x(G(x)⇔
F (x)), which evidently follows from the genuinely logical triviality ∀x(F (x)⇔ F (x)) by an
elementary logical inference. [Qui86]

As Boolos comments,

reading him, one gets the sense of a culpable involvement with Russell’s paradox and of a
lack of forthrightness about its existential commitments. [...] Quine, of course, does not
assert that higher-order predicate calculi are inconsistent. But even if they are consistent,
the validity of ∃X∀x(X(x)⇔ x /∈ x), which certainly looks contradictory, would at any rate
seem to demonstrate that their existence assumptions must be regarded as “vast”. [Boo75]

The controversy over second order logic in the philosophical literature revolves around Quine’s
challenge: is this to be considered as a primitive part of logic, or is it rather just a confusing
idea to be replaced by a rigorous first-order formalization?

1.2. THE QUINEAN CRITIC AND PROOF THEORY 19

In [Sha00] Shapiro tracks the origins of this controversy, underlining its paradigmatic charac-
ter: Quine’s major confidence in first-order set-theory is there explained as a byproduct of the
historical success of first-order logic as a Kuhnian paradigm:

It seems that this general consensus was not based on a philosophy of foundational studies.
It was more of a research programme, suggesting that first-order model theory is the best
place to focus intellectual attention. In short, first-order logic became a Kuhnian paradigm.
[Sha00]

In order to highlight this paradigmatic character, Shapiro sketches an imaginary debate be-
tween an advocate of second order logic (called “Second”) and an advocate of first-order set theory
(called “First”), ending in a regress:

[...] First raises a question concerning the range of the second-order variables. She asserts
that the meaning of the second-order terminology is not very clear [...]. Second could retort
that First knows perfectly well what locutions like “all subsets” mean, and he may accuse
her of making trouble for the sake of making trouble. They would then be at a stand-off.
[Sha00]

As Shapiro’s numerous examples show, this debate over the right interpretation of predicate
variables concentrates over the question: what do such variables stand for? Indeed, the technical
tools involved in it (see for instance [Boo75, Sha00, Vaa01]) are mainly model-theoretical. Still,
Shapiro’s comprehensive book [Sha00] contains very few remarks on the proof-theory of second
order logic and suggests the view that there is little hope to find a solution to the controversy
above within a proof-theoretic approach:

The more philosophical disputes noted here do not concern the correctness of informal
mathematics, but rather things like how the discourse should be described, what it means,
what it refers to, and what its non-logical terminology is. [...]

This explains why the proof theories of the logics under examination here are remarkably
similar, and underscores the foregoing thesis that the differences between first-order logic
and higher-order logic lie primarily in the different views on the totality of the range of the
extra variables - in the model theory. [Sha00]

In a first sense, this thesis is then an attempt to reject the suggestion above, by a closer
examination of what is offered in the proof theory market. In particular, it will be argued that,
by switching the focus from the interpretation of predicate variables to the interpretation of
proofs in second order logic, a bunch of deep and stimulating ideas, often unexplored in the
philosophical literature, opens up.

Proofs and the “vicious circle principle”

The choice between predicative and impredicative theories [...] is sometimes said to depend upon whether
mathematical entities are regarded as created by our thinking or as existing independently of us. We are then at
a loss to know how to resolve a metaphysical issue couched in these metaphorical terms. Was the monster group

discovered as Laverrier discovered Neptune? Or was it invented, like Conan Doyle invented Sherlock Holmes?
How can we decide? And can the legitimacy or illegitimacy of a certain procedure of reasoning within

mathematics possibly depend on our answer? [Dum91a]

A very influential approach to the interpretation of proofs arises from Prawitz’s and Dum-
mett’s research on an alternative semantics for logic centered on the notion of proof. Unsatisfied
with the Tarskian definition of validity, Prawitz provided in [Pra71a] a definition of validity for
natural deduction derivations which does not rely on a set-theoretical interpretation of the ex-
pressions of the language, but rather on the possibility to transform (in the sense of Gentzen’s
cut-elimination) derivations into a so-called canonical form.

20 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

Prawitz’s proof-theoretic validity is the main ingredient of a general program aiming at a
philosophical justification of deduction (see [Dum91b]) from an inferentialist perspective, opposed
to the usual Tarskian, referentialist, one; such a justification does not focus on what logical
expressions stand for, but on how they are used (by means of their associated introduction and
elimination rules) in the construction of proofs and deductive arguments.

Whereas proof-theoretic validity was originally conceived to include second-order logic (see
[Pra71a]), the latter was later excluded from the general “justificationist” project. Indeed, as
Dummett argues in [Dum91a, Dum06], the justification of second order proofs ends up in a
“vicious cycle” which was historically first remarked by Poincaré [Poi06].

As a typical example, if one wishes to show that a certain individual t is inductive, i.e. that the
predicate N(x) := ∀X(∀y(X(y) ⇒ X(s(y))) ⇒ (X(0) ⇒ X(x))) holds of t, then he is supposed
to show that, for any predicate P (x), the predicate ∀y(P (y)⇒ P (s(y)))⇒ (P (0)⇒ P (x)) holds
of t. But this means that, in particular, one is supposed to show that ∀y(N(y) ⇒ N(s(y))) ⇒
(N(0) ⇒ N(t)) holds and thus, since ∀y(N(y) ⇒ N(s(y))) and N(0) clearly hold, that N(x)
holds of t: this is the start of an infinite regress.

This is how Russell described the “vicious cycle principle” in 1906:

I recognize further this element of truth in M. Poincaré’s objection to totality, that whatever
in any way concerns all or any or some of a class must not be itself one of the members of
a class. [...]

In M. Peano’s language, the principle I want to advocate may be stated: “Whatever involves
an apparent variable must not be among the possible values of that variable". [Rus06b]

The reader has already encountered similar “vicious circles” in Frege’s proof in the Grundge-
setze. At the beginning of the 19th century Poincaré and Russell held that the existence of such
circles constituted the reason for the antinomy in Frege’s “pure” second order formalism.

On the other side of the dispute there was Carnap’s remark [Car83] that, though the ex-
planation given above is surely circular, actual proofs are not built in that way: a proof
of the fact that the number 3 is inductive consists in a formal argument that the predicate
∀y(X(y)⇒ X(s(y)))⇒ (X(0)⇒ X(x)) holds of t in which the predicate variable X(x) is taken
as a mere “parameter” and finally generalized.

If we had to examine every single property, an unbreakable circle would indeed result, for
then we would run headlong against the property “inductive". Establishing whether some-
thing had it would then be impossible in principle, and the concept would be meaningless.
But the verification of a universal logical or mathematical sentence does not consist in
running through a series of individual cases [...] The belief that we must run through all in-
dividual cases rests on a confusion of “numerical generality" [...] We do not establish specific
generalities by running through individual cases but by logically deriving certain properties
from certain others. [Car83]

Poincare’s objections can be found, in an adapted form, in Dummett’s rejection of second or-
der logic from his justificationist program (this is discussed in detail in chapter (4)). In particular,
Poincaré claimed that, by appealing to second order concepts, logic loses the neutral character
which makes it a solid foundation for mathematics (“ la logique n’est plus stérile” [Poi06]). Simi-
larly, Dummett points out that, by introducing second order natural deduction rules, one is forced
to give up the self-explanatory character of deduction and to adventure into the dangerous fields
of mathematical invention.

Dummett’s objection must be distinguished from Quine’s: for the former, rather than tac-
itly assenting to set-theoretic existence assumptions (concerning the reference of the predicate
variables), the logician adopting a second order language is endorsing a controversial view about

1.2. THE QUINEAN CRITIC AND PROOF THEORY 21

the forms of reasoning that one is entitled to accept. In particular, a view whose intelligibility
demands for more than a “self-explanatory” proof-theoretic analysis.

[...] the vicious circle principle makes no assertion about what does or does not exists: it
merely distinguishes between what does and what does not require a further explanation.

1.2.2 Type theory “in sheep’s clothing”

From intuitionism to type λ-calculi One of the most fruitful directions in the proof theory
of the last century arose from the development of a connection between the intuitionist notion of
construction and the mathematical notion of computable function. Historically, Kleene was the
first to look in that direction. In the intuitionistic explanation of proofs contained in the classical
[Hey56], it is stated that a proof of a formula of the form ∀n∃mA(n,m) consists in a method µ
yielding, for any k, an integer µ(k) along with an intuitionistic proof of A(k, µ(k)). Kleene’s guid-
ing idea, in his 1945 paper on realizability [Kle45], was then to replace the philosophical notion
of “method” with a mathematically rigorous one: from an intuitionistic proof of ∀n∃mA(n,m)
one should extract then a computable function φ yielding, for any k, an integer φ(k) such that
A(k, φ(k)) holds intuitionistically. In particular, a proof of the totality of a recursive function φ
(i.e. the statement ∀n∃m(n = φ(m)) should provide concrete instructions on how to compute
the function φ.

On these lines Kleene defined an interpretation of the proofs of intuitionistic arithmetics as
computable functions, i.e. as programs. By reconstructing the realizability interpretation within
λ-calculus, Kreisel’s “modified” version [Kre59] of realizability added an important idea: with
every arithmetical proposition A one could associate a type A∗, such that all programs extracted
from proofs of A could be given the type A∗. Hence, proofs of totality for recursive functions
were interpreted as programs of type N→ N, where N is the type of natural numbers. A similar
idea was developed by Gödel in his Dialectica interpretation of arithmetics [G5̈8].

Between the fifties and the sixties Curry [CF58] and Howard [How80] realized that the connec-
tion between intuitionistic proofs and typed programs could be given a yet more tight description:
derivations in first order intuitionistic natural deduction can be directly interpreted as (they are,
in a sense, isomorphic to) simply typed λ-terms. This Curry-Howard correspondence adds to
Kreisel’s one a dynamical aspect: Gentzen’s transformations over natural deduction derivations
correspond directly to reductions of the associated λ-terms. In a word, normalization steps in
natural deduction correspond to normalization steps in λ-calculus.

The Curry-Howard correspondence between intuitionistic systems and typed λ-calculi is by
now evolved into an extremely vast field of research, at the bridge between logic, pure mathe-
matics and theoretical computer science. The proofs-as-programs paradigm, which is at the very
heart of the investigations here presented, constitutes indeed one of the most powerful tools in
proof theory, witness the many active research programs based on it (as Girard’s geometry of
interaction program [Gir89c] or Krivine’s program [Kri12]).

System F The extension of the proofs-as-program correspondence to second order intuition-
istic logic was provided independently by Girard in his thesis [Gir72] and later by Reynolds in
[Rey74]. The second order (or polymorphic) λ-calculus, called System F in [Gir72], whose typed
terms correspond to intuitionistic second order natural deduction derivations, introduces an “im-
predicative” type discipline which, unlike Russell’s type discipline, allows the typing of functions
applied to themselves.

Terms in System F are called polymorphic since they can be given several types at once: for
instance, a term of a second order type ∀ασ can be regarded as a term of type σ[τ/α], for every

22 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

type τ of System F , included ∀ασ. It is through this circularity thats second order type theory
inherits the “vicious circles” of second order logic.

The main result of [Gir72] is a proof that System F enjoys the strong normalization property.
By relying on the Curry-Howard correspondence, this result was used to provide a positive answer
to a conjecture posed by Takeuti in 1957, i.e. whether the Hauptsatz holds for second order logic.

Though several semantical proofs of cut-elimination for second order logic were proposed in
the sixties (see [Tai68, Tak67, Pra68]), the proof in [Gir72] was the first to provide a syntactical
normalization argument. This argument was based on an extension of Tait’s technique of com-
putability predicates ([Tai67]) by means of the notion of reducibility candidates. The latter allow
to define the computability of polymorphic terms in a way which, though impredicative, escapes
“vicious circles”. In a sense, Girard’s reducibility argument fixes the bugs in Frege’s consistency
argument of the Grundgesetze. A closer examination of this technique can be found in chapter
(4).

Girard’s work on System F was the starting point of several fruitful lines of research on
second order logic from the Curry-Howard perspective. First, “Girard’s trick” ([Gal90]) for
proving normalization introduced a new way to escape the circularity of impredicative types
and propositions. The so-called Tait-Girard reducibility technique became indeed a standard
tool for proving normalization for higher-order typed λ-calculi. Slightly modified versions of
this technique were used by Prawitz ([Pra71a]) and Martin-Löf ([ML70a, ML75]) to prove the
normalization of several intuitionistic higher order natural deduction theories.

Second, in [Gir72] it was observed that a program of a universal type ∀α.σ cannot actually
“depend” on the information about the input type to be substituted for α. Girard showed that
a paradox (hence, a counterexample to normalization) would result from the violation of this
“genericity” ([LMS93]) constraint. This remark is at the basis of an interpretation of impredicative
quantification (see [Rey83]) which, in a sense, provides a rigorous mathematical formulation of
Carnap’s argument against the “vicious circle principle” (see chapter (5)).

Finally, the investigations on the semantics of System F shed far more light on the relations
between the second order and set theory than Quine and Shapiro thought. In 1984 Reynolds
[Rey84] showed that, if one considers arbitrary set-theoretic interpretations of typed λ-calculi,
then there can be no model of System F : he was able to exploit impredicative quantification to
show that a counterexample to Cantor’s theorem on the cardinals would result from the existence
of such a model (see (5)). This (quite old!) result seems to contradict directly Shapiro’s claim
on the irrelevance of proof-theory for the second order logic/set theory debate.

Nevertheless, many mathematical constructions have been successfully applied to devise (non
set-theoretic) models of System F : for instance, in [Gir86, GLT89] it was shown that one can
interpret impredicative types, in a categorial framework, by means of direct limits of certain finite
spaces (called coherent spaces), a very simple structure which became known for having led to
the discovery of linear logic (see [Gir87]). Another well-known example is Hyland’s effective topos
[Hyl82], which allows to extend Kleene’s realizability to System F within a topos theory4.

It must be said that most of these advances are still confined to the literature on computer
science-oriented logic. System F and its legacy constitute indeed a good example of the gaps
existing between the literature on logic coming from philosophy departments and the literature
coming from mathematics and computer science departments. Just to give an example, Shapiro’s
comprehensive book on second order logic has no reference to System F or to whatever has been
written on the mathematical aspects of polymorphic type theories.

One of the aims of this thesis is to contribute to fill this gap, as it seems quite difficult to deny

4Reasons of space and time imposed to the author not to treat in detail the many and profound aspects which
come from the literature on the denotational semantics of higher order type theory. This is surely a serious lack
in the investigations contained in this thesis, to be left for a future work.

1.3. OUTLINE OF THE THESIS 23

that the results and aspect aforementioned have a serious impact on the philosophical challenges
and disputes over second order logic sketched in the previous subsection.

1.3 Outline of the thesis

In the second chapter of this first, introductory, part, we describe in detail the proof-theoretic
correspondences between, respectively, second order arithmetics and second order logic, and
second order logic and polymorphic type theory, or System F .

Starting from the idea that a “logic” is given by a language (i.e. a set of formulae), a set
of proofs of such formulae and a set of transformations between proofs, we reconstruct these
well-known correspondences as “functors” between the various logics, i.e. maps preserving all
relevant proof-theoretic properties. This description highlights then the fact that arithmetical
derivations, second order derivations and polymorphically-typed λ-terms essentially represent
the same proofs.

The second part is dedicated to the “why-proof theory” of second order logic. In chapter
(3) we reconstruct and confront two distinct, though historically related, approaches to the
interpretation of proofs: the first one focuses on the analysis of the inferential content of proofs,
and historically derives from the proof theoretic semantics tradition, introduced by Dummett
and Prawitz (see [Pra71a, Dum91b]). The second one interprets proofs as untyped programs
and focuses on the behavioral content of proofs, i.e. the way in which they interact through
the cut-elimination algorithm. Roots of this interactionist point of view are traced to Kleene’s
realizability ([Kle45]) and to the Tait/Girard reducibility technique ([Tai67, Gir72]).

In chapter (4) we present and discuss the Hauptsatz for second order logic, and we address
the epistemological issues arising from Girard’s proof ([Gir72]) from the two viewpoints. The
inferentialist proof-theorist appeals to an updated version of Poincaré’s “vicious circle” objection
and claims that impredicative reasoning cannot be justified proof-theoretically; by contrast,
the technique of reducibility candidates, used in the proof, appears much more akin to the
untyped perspective of the interactionist proof-theorist, and reveals a different, “epistemic”, form
of circularity. Still, this weaker circularity makes justification, in a sense, pointless: we sketch
the example of Martin-Löf’s inconsistent higher order theory (as the one in [ML70b]) admitting
an epistemically circular normalization arguments.

The third part is dedicated to the “how-proof theory” of System F . In chapter (5), after re-
calling Reynolds’ argument for the impossibility of a set-theoretical interpretation of second order
proofs, the parametric and dinatural interpretations of polymorphism ([Rey83, GSS92]) are pre-
sented as providing a clear mathematical content to Carnap’s defense of impredicative reasoning
in [Car83]. By relying on a syntactic reformulation of these interpretations, the Π1-completeness
theorem (5.2.4) is proved, which states that the closed normal λ-terms in the reducibility of the
universal closure of a simple type are typable in simple type theory. This theorem provides,
by a passage through impredicative quantification, a bridge between the interactionist and the
inferential interpretation of propositional proof: by closing types universally, one indeed recovers
the usual “last rule conditions” required by the inferential proof-theorist.

In chapter (6) a constructive viewpoint on impredicativity and its paradoxes is developed by
an analysis of the typability problem form the λ-terms associated with (intuitionistic) second
order proofs. To the “vicious circles” in the proofs there correspond recursive (i.e. circular)
specifications for the types of the λ-terms. The “geometrical” structure of these vicious cycles
is investigated (following [LC89, Mal90]). As shown by Girard’s paradox, a typable term need
not be normalizing: the combinatorial analysis of typing does not discriminate between terms
corresponding to correct or to incorrect proofs.

24 CHAPTER 1. EXPLAINING WHY VS EXPLAINING HOW

A combinatorial characterization of the typability of λ-terms is investigated, by means of
a generalization of the notion of “compatibility” between the constraints forced by recursive
equations in [Mal90]. In particular, it is conjectured that this notion fully characterizes typability
for system U− (an inconsistent extension of System F connected with Martin-Löf’s inconsistent
type theory, see [Gir72]), and some results in this direction are shown.

Some interesting consequences motivating this conjecture are proved at the end of the chapter.
Among them, the fact that every strongly normalizable term would be typable in U−, the
decidability of the typability problem for the systems U− and N as well as the fact that every
total recursive unary function (suitably coded in λ-calculus) can be given type N→ N in System
U−.

Chapter (7), in the fourth, concluding, part, contains a sketch of some future lines of research
which arise from the perspectives on “how-proof theory” developed in the third part. Indeed, the
type-theoretic investigations contained in chapter (6) prompt a way to understand the limitations
imposed by incompleteness, in line with the metaphor of the Library of Babel: since every true
Π0

2 statement corresponds to the totality of a certain recursive function, from the typing of a
λ-term computing the function (an untyped realizer of the statement) one should retrieve a proof
of the statement in an inconsistent extension of second order logic. At the same time, it should
be expected that the line between valid and invalid, or “paradoxical”, derivations in this extended
system cannot be recursively drawn. In a sense, this would mean that we can have all the proofs,
but we cannot tell once for all those we can actually trust.

Chapter 2

Arithmetics, logic and type theory

The interaction between the proof theories of (second order) arithmetics, logic and type theory
constitutes the technical background of this thesis. The relation between the first and the second
usually goes under the name of Dedekind’s translation, from Dedekind’s intuition of a purely
logical (second order) definition of the natural numbers. The relation between the second and
the third is given by the Curry-Howard correspondence, from the remarks by Curry [CF58] and
Howard [How80] of a substantial isomorphism between intuitionistic sequent calculi and typed
λ-calculi.

This introductive chapter is devoted to present these three formalisms and their aforemen-
tioned relationships by relying on a categorial intuition: as in denotational semantics, a “logic”
is though as a category made of objects (formulae), morphisms (proofs) and diagrams (given by
Gentzen’s transformations over proofs); hence Dedekind’s translation from second order arith-
metics to second order logic and the Curry-Howard translation of the latter into second order
type theory (System F) are described as functors between such logics.

Finally, we present the systems Fω, U−, U,N , which are extensions of System F which will
be used in the next chapters, highlighting some of the theoretical challenges connected with the
extension of second order type theory (indeed, all such systems but Fω are inconsistent).

2.1 The proof-theoretic notion of “logic”

2.1.1 From Hilbert’s program to structural proof theory

Whereas in model theory one is mainly interested in formulas and their interpretations, in proof
theory one takes as the central notion the one of proof.

The problem of derivability Historically, the first systematic investigations on proofs were
developed in the context of Hilbert’s program (for instance [Hil96a]); the mathematical presen-
tation of proofs was provided by derivations built within a formal system: the so-called Hilbert
systems were made of a (usually quite large) set of axioms and by a set of rules, which in most
cases was reduced to the sole rule of modus ponens.

By means of Hilbert-systems the vague notion of “demonstrability”, central for Hilbert’s pro-
gram, was replaced by a rigorous one, i.e. derivability within a formal system; moreover, it was
shown that the property of being a derivation could be coded by a primitive recursive predicate;
this was the starting point of a series of results which marked the failure of Hilbert’s program: in
1931 Gödel showed that there exist (true) sentences which are not derivable within sufficiently

25

26 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

expressive formal systems, in 1936 Turing showed the existence of non-recursive problems and
in the same year Church showed that derivability within the formal system of first order logic is
one of them.

Serious improvements in the analysis of derivability were obtained with the development
of the so-called “structural” approach to proof theory, started with Gentzen’s pioneering thesis
[Gen64]. In this approach, Hilbert’s systems are replaced by sequent calculi and natural deduction
calculi, characterized by a significantly smaller number of axioms and a long list of rules. Gentzen
showed that, when dealing with questions of derivability within first order logic, one can restrict
the search to derivations in which there are no occurrences of the cut-rule (sometimes called
analytic derivations):

Γ, A ` ∆ Γ′ ` A,∆′

Γ,Γ′ ` ∆,∆′
(cut)

(2.1.1)

Such derivations exhibit a very peculiar structure: at every stage of the derivation the formu-
las occurring in the rules are subformulae of the formulae occurring in the conclusion of the
derivation. Remark that the rule (cut) clearly violates this property.

The Hauptsatz (as it was originally called by Gentzen), that is, the cut-elimination theorem,
can be considered as a fundamental result in logic, from a proof-theoretic viewpoint. Indeed, it
allows to provide purely proof-theoretical proofs of the consistency and completeness of first-order
logic, two results which are often expressed and proved in a model-theoretic setting.

The consistency of first order logic is an immediate corollary of the cut-elimination theorem:
if the falsity were provable, then it would have a cut-free proof; however, since no formula is a
subformula of the falsity, there can be no cut-free derivation of the falsity.

The fact that the Hauptsatz implies the completeness of first-order logic was first established
by Schütte [Sch56] starting from the following remark: given a formula A, it is possible to devise
a procedure which looks for possible cut-free derivations of A by recursively looking for the
premisses of a (one-sided) sequent; indeed, the subformula property provides a finite bound on
the set of possible premisses of a sequent. This algorithm, starting from a formula A, gradually
builds a tree by repeatedly looking for premisses and halts as soon as all of it branches terminate
on an axiom sequent, i.e. a sequent of the form ` Γ, A,¬A. In that case (thanks to König’s
lemma) the finite tree obtained must be a cut-free derivation of A. In particular, if A is derivable
in first-order logic, the algorithm produces a cut-free derivation of A. Otherwise, i.e. if the
algorithm never halts, the tree must contain an infinite branch made of rules of sequent calculus;
now Schütte was able to show that the negation of the formulae occurring in this infinite branch
generates a counter-model of A: hence, if A is not derivable, from the infinite proof-search for A
we get a counter-model to A.

The dynamics of proofs At the basis of Gentzen’s Hauptsatz there is a procedure which
recursively transforms derivations in which there are occurrences of the cut rule into derivations
in which this rule does not occur. For instance, an occurrence of the rule (cut) with cut-formula
a conjunction:

.... d1

Γ, A,B ` ∆

Γ, A ∧B ` ∆

.... d21

Γ′1 ` A,∆′1

.... d22

Γ′2 ` B,∆′2
Γ′ ` A ∧B,∆′

Γ,Γ′ ` ∆,∆′
(cut)

(2.1.2)

2.1. THE PROOF-THEORETIC NOTION OF “LOGIC” 27

can be transformed into a derivation in which the occurrences of the rule (cut) have with cut-
formula formulae of strictly smaller logical complexity:

.... d1

Γ, A,B ` ∆

.... d21

Γ′1 ` A,∆′1
Γ,Γ′1, B ` ∆,∆′1

(cut)

.... d22

Γ′2 ` B,∆′2
Γ,Γ′ ` ∆,∆′

(cut)
(2.1.3)

We owe entirely to Gentzen this idea of transformations over proofs. By applying a quite complex
induction argument Gentzen was able to show that it is possible, by performing repeated appli-
cations of these transformation, to eliminate all cuts and transforming an arbitrary derivation of
first-order logic into a cut-free one.

Gentzen’s transformations provide a insight on the mutual structure of logical rules: the
premisses of the rules for introducing a logical symbol (for instance ∧ in the example above) at the
right and at the left of the stroke symbol ` must be in accordance in order for the transformation
to be applied. This remark became well-known in proof-theory thanks to Prawitz’s work on
natural deduction [Pra65], under the name of inversion principle:

Let α be an application of an elimination rule that has B as consequence. Then, deductions
that satisfy the sufficient condition [...] for deriving the major premiss of α, when combined
with deductions of the minor premisses of α (if any), already “contain” a deduction of B; the
deduction of B is thus obtainable directly from the given deductions without the addition
of α. [Pra65]

Remark that the inversion principle is a local criterion, allowing for a single application of a
Gentzen transformation. Genzten’s Hauptsatz, on the contrary, is a stronger, global, result,
showing that the repeated application of the transformations terminates producing a cut-free
derivation (this remark will be discussed in more details in chapter (3)).

Gentzen’s transformational approach induced a severe change of focus in the study of proofs
with respect to Hilbert’s approach: from the (non recursive) question of derivability, i.e. the
existence of a derivation within a formal system, the interest can be turned to the question
of the inner structure of derivations (subformula, analyticity). At the same time, the study of
the construction of proofs can be combined with the study of their possible transformations (a
confrontation of these two viewpoints in proof theory constitutes the leitmotif of chapter (3)).

A fundamental remark, made independently by Curry [CF58] and later by Howard [How80],
was at the basis of the discovery of a strict connection between structural proof-theory and
computer science: they observed that Gentzen transformations behaved exactly in the same
way as normalization in λ-calculus. In particular, it was shown that derivations in intuitionistic
logic could be interpreted as programs in λ-calculus, and their transformations as the execution
of those programs. This connection, known under the name of Curry-Howard correspondence,
constitutes still today one of the most powerful tools in proof-theory, that will be discussed and
exploited throughout the following pages.

Logics as categories The presentation of logic which comes from the development of proof-
theory is essentially threefold: one has formulae, derivations (of formulae) and transformations
(of derivations). This partition is indeed the starting point of the semantical approach to proofs,
denotational semantics (for an introduction, see for instance [AL91]): the idea of a semantics of
proofs comes directly from Gentzen’s Hauptsatz ; indeed, it is natural to think of the denotation
of a proof as an invariant of the cut-elimination procedure.

Usually these semantics are presented in a categorial setting: formulae A,B are interpreted as
objects A,B of a certain category C (for instance Scott domains or coherent spaces); a derivation

28 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

d of A ` B is interpreted as a morphism d ∈ C[A,B]; remark that, for every formula A, there
exists a trivial derivation of A ⇒ A (corresponding to the identity morphism idA). Finally,
given two derivations d, e, respectively in A ` B and B ` C, a cut between them is interpreted
by the composition d ◦ e of the two, and the transformations over derivations correspond to the
identities expressed by the diagrams in the category: this expresses the fact that the denotation
of a derivation d is invariant under cut-elimination.

As we not are going to deal with denotational semantics in detail in this text, the categorical
presentation will be left at an informal level. Nevertheless, the choice to adopt this categorical
intuition1 in the following pages is motivated by the fact that it provides a very elegant way to
present the relationship between different logics. Indeed, once logics are thought in categorical
terms, the fact that, in passing from a logic C to a logic D, the proof-theoretic content is
preserved can be expressed as the existence of a functorial translation C J→ D from the first to
the second logic; this means that one has indeed two maps:

• a map A 7→ AJ from the formulae of C to the formulae of D;

• for all formulae A1, . . . , An, B of C, a map f 7→ J(f) from the derivations of A1, . . . , An ` B2

to those of AJ
1, . . . , A

J
n ` BJ such that for all A,B,C objects of C the following hold:

– J(idA) = idAJ ;

– for all d, e derivations respectively of A1, . . . , An ` B and B,C1, . . . , Cm ` D , J(f ◦
g) = J(f) ◦ J(g).

The typical way to show the functoriality of a translation is to prove that the translation pre-
serves Gentzen’s transformations: if a derivation d in C reduces to a derivation d′ by applying
some transformations, then its translation dJ reduces to d′J by applying some Gentzen’s trans-
formations in D. In particular this implies that a cut-free derivation of the form dJ comes from
a cut-free derivation d in C. In definitive, a functor between two “logics” corresponds to a trans-
lation of formulae and derivations which preserves the reduction relation between derivations.

Intuitionistic vs classical second order logic The following two sections will be devoted
to show the equivalence between three different “second order logics”, thus showing that three
apparently distinct approaches to second order logic share the same proof-theoretical content;
these are:

• Second order (intuitionistic/classical) arithmetics HA2 (PA2);

• Second order (intuitionistc/classical) logic LJ2 (LK2);

• Second order type theory, also known as polymorphic lambda calculus or simply System F .

In the next pages (and in all the rest of the text) we will make use of classical formalism only
when discussing completeness, as related to model-theoretic aspects. In all other cases intuitionist
formalisms will be preferred for purely pragmatical motivations: the forgetful translation (see
(2.3)) between sequent calculus and type theory is much easier to present and discuss in the
intuitionistic fragment (indeed the Curry-Howard correspondence, see below, was originally based
on intuitionistic logic). Nevertheless, many extensions of this correspondence to the classical

1In several places (for instance in [Gir11] and [Dos]) it is advocated that the categorical presentation of logic
implies a radical change of viewpoint on the object of logic: with respect to the Fregean viewpoint centered around
the notions of sentence and assertion, the categorical approach takes proofs (i.e. morphisms) as logical primitives
and sentences (i.e. objects) as derived ones.

2The choice of an intuitionistic setting, i.e. of sequents of the form Γ ` ∆, with]∆ ≤ 1, is justified below.

2.1. THE PROOF-THEORETIC NOTION OF “LOGIC” 29

case can be found in the literature (for instance by means of polarization techniques [Gir91], by
Parigot’s λµ-calculus [Par93] or by the appeal to realizability and control operators [Kri09]).

Clearly important issue of the relationship between classical and intuitionistic logic, with
respect to their constructive and recursive content, would demand for an extensive investigation
which goes beyond the goals of this thesis. At the same time, by paging through the following
chapters, the reader will remark that the questions and challenges raised and discussed in the
text concerning second order logic are quite insensitive to the classical/intuitionistic distinction.
In particular, both the expressive power and the apparent circularity of second order systems
crucially depends on the nature of the comprehension principles admitted3, so that the switch
from an intuitionistic or classical setting leaves most theoretical issues unaltered.

2.1.2 Second order arithmetics and logic

Second order logic The first “logic” is the second order predicate calculus, for which we
recall the rules and transformations. Since we are interested in relating this logic with second
order arithmetics, the language will include the arithmetical constant 0 and function symbols
s,+,×. From a purely logical point of view, these symbols can be seen as arbitrary symbols for,
respectively, a 0-ary, a unary and two binary functions.

We first introduce the language of second order logic and then the systems LJ2,LK2 of
intuitionistic and classical second order logic.

Definition 2.1.1 (L). The language L (with arithmetical symbols) of second order logic is made
of the following items:

• an individual constant 0, a unary function symbol s and two binary function symbols +,×
and two kinds of variables:

i. First-order variables x1, x2, x3, . . . (also noted x, y, z, . . . when not confusing);

ii. Second order variables X1, X2, X3, . . . of all arities k ≥ 0 (also noted X,Y, Z, . . . when
not confusing).

• Terms and formulae of L defined as follows

First-order terms The set T of first-order terms is the set of terms t, u, . . . given by the
grammar

t, u := x|0|s(t)|t+u|t×u (2.1.4)

Formulae The set F of formulae is the set of expressions A,B, . . . given by the grammar

X(t1, . . . , tk)|A⇒ B|∀xiA|∀XiA (t1, . . . , tk ∈ T) (2.1.5)

Predicates The set P of predicates or second order terms is the set of expressions of
the form λx1.λxk.A, where A ∈ F and the variables x1, . . . , xk are subject to
α-conversion.

• A first order notion of substitution, a notion of application for predicates and a second
order notion of substitution:

first-order subs. t[u/x], for t, u ∈ T and A[t/x], for t ∈ T , A ∈ F , defined as usual;

3A typical example is Friedman’s classical result [Fri78] that Π0
2 provable formulae are intuitionistically prov-

able.

30 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

application λx1.λxkA(t1, . . . , th) = λxh+1.λxk.A[t1/x1, . . . , tk/xk], for h ≤ k,
A ∈ F , t1, . . . , tk ∈ T ;

second-order subs. Xi(t1, . . . tk)[P/Xi] = A(t1, . . . , tk), for P ∈ P, A ∈ F and Xi, P of
the same arity.

In the following by a sequent it is meant an expression of the form Γ ` A, where A ∈ F and
Γ is a finite multiset4 of formulae.

We introduce the systems of second order logic by defining their formulae, their derivations
and the transformations over derivations; the latter are given by introducing, as usual, a reduction
relation between derivations.

Definition 2.1.2 (Intuitionistic second order logic LJ2). Intuitionistic second order logic is
given by the following items:

Formulae The formulae of LJ2 are those of the language L;

Derivations The derivations of LJ2 are built up from the following rules:

A ` A (ax)
Γ, A ` ∆ Γ′ ` A

Γ,Γ′ ` ∆
(cut)

Γ ` B
Γ, A ` B (W)

Γ, A,A ` B
Γ, A ` B (C)

Γ ` A Γ′, B ` ∆

Γ,Γ′, A⇒ B ` ∆
(⇒ L)

Γ, A ` B
Γ ` A⇒ B

(⇒ R)

Γ, A[t/x] ` ∆

Γ,∀xA ` ∆
(∀L)x

Γ ` A
Γ ` ∀xA (∀R)x, x /∈ FV (Γ)

Γ, A[P/X] ` ∆

Γ,∀XA ` ∆
(∀L)X

Γ ` A
Γ ` ∀XA (∀R)X , X /∈ FV (Γ)

(2.1.6)

where Γσ is any permutation of the order of the formulae occurring in Γ.

Transformations The reduction relation � of LJ2 is the reflexive-transitive closure of the re-
lation ≺ generated by the following transformations or reduction rules:

(ax)

A ` A

.... d
Γ ` A

Γ ` A (cut) ≺

.... d
Γ ` A

(2.1.7)

(W)
.... d1

Γ ` B
Γ, A ` B (W)

.... d2

Γ′ ` A
Γ,Γ′ ` B

(cut)
≺

.... d1

Γ ` B
Γ,Γ′ ` B

(W)

(2.1.8)

4A multiset is given by a set S and a multiplicity function, i.e. a map g : S → N which assigns a multiplicity
to any element of S. Hence a multiset of formulae is a set which can contain several occurrences of the same
formula.

2.1. THE PROOF-THEORETIC NOTION OF “LOGIC” 31

(C)

.... d1

Γ, A,A ` B
Γ, A ` B (C)

.... d2

Γ′ ` A
Γ,Γ′ ` B

(cut)
≺

.... d1

Γ, A,A ` B

.... d2

Γ′ ` A
Γ,Γ′, A ` B

(cut)

.... d2

Γ′ ` A
Γ,Γ′,Γ′ ` B

(cut)

Γ,Γ′ ` B
(C)

(2.1.9)
(⇒)

.... d11

Γ1 ` A

.... d12

Γ2, B ` C
Γ, A⇒ B ` C (⇒ L)

.... d2

Γ′, A ` B
Γ′ ` A⇒ B

Γ,Γ′ ` B
(cut)

≺

.... d11

Γ1 ` A

.... d2

Γ′, A ` B
Γ1,Γ

′ ` B
(cut)

.... d12

Γ2, B ` C
Γ,Γ′ ` B

(cut)

(2.1.10)
(∀x)

.... d1

Γ, A[t/x] ` B
Γ,∀xA ` B (∀L)x

.... d2

Γ′ ` A
Γ′ ` ∀xA

(∀R)x

Γ,Γ′ ` B
(cut)

≺

.... d1

Γ, A[t/x] ` B

.... d2{t/x}
Γ′ ` A[t/x]

Γ,Γ′ ` B
(cut)

(2.1.11)
where d2{t/x} is the derivation obtained by replacing all occurrences of x in d2 by the
term t (remark that this is well defined since x does not appear free in Γ′).

(∀X)

.... d1

Γ, A[P/X] ` B
Γ,∀XA ` B (∀L)X

.... d2

Γ′ ` A
Γ′ ` ∀XA

(∀R)X

Γ,Γ′ ` B
(cut)

≺

.... d1

Γ, A[P/X] ` B

.... d2{P/X}
Γ′ ` A[P/X]

Γ,Γ′ ` B
(cut)

(2.1.12)
where d2{P/X} is the derivation obtained by replacing all occurrences of X in d2 by
the predicate P (remark that this is well defined since X does not appear free in the
formulae in Γ′).

(commL)

.... d1

Γ′, A ` B′
Γ, A ` B (R)

.... d2

∆ ` A
Γ,∆ ` B (cut) ≺

.... d1

Γ′, A ` B′

.... d2

∆ ` A
Γ′,∆ ` B′

(cut)

Γ,∆ ` B (R)

(2.1.13)

where (R) is any rule distinct from the left rule for the principal connective of A.
(commR)

.... d1

Γ, A ` B

.... d2

∆′ ` A
∆ ` A (R)

Γ,∆ ` B (cut) ≺

.... d1

Γ, A ` B

.... d2

∆′ ` A
Γ,∆′ ` B

(cut)

Γ,∆ ` B (R)

(2.1.14)

32 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

where (R) is any rule distinct from the right rule for the principal connective of A.

As it is well-known, all other connectives of second order logic can be defined in the language
L:

⊥/1 := ∀XX/∀X(X ⇒ X) (2.1.15)
t = u := ∀X(X(t)⇒ X(u)) (2.1.16)
A ∧B := ∀X((A⇒ B ⇒ X)⇒ X) (2.1.17)
A ∨B := ∀X((A⇒ X)⇒ (B ⇒ X)⇒ X) (2.1.18)
∃xA := ∀Y (∀x(A⇒ Y)⇒ Y) (2.1.19)
∃XA := ∀Y (∀X(A⇒ X)⇒ Y) (2.1.20)

Second order classical logic LK2 is obtained by extending the notion of sequent to Γ ` ∆,
where ∆ is another multiset of formulae and by considering the following rules (with ¬A := A⇒
⊥):

A ` A (ax)
Γ, A ` ∆ Γ′ ` A,∆′

Γ,Γ′ ` ∆,∆′
(cut)

Γ ` A,∆
Γ,¬A ` ∆

(⊥L)
Γ, A ` ∆

Γ ` ¬A,∆ (⊥R)

Γ ` ∆
Γ, A ` ∆

(WL) Γ ` ∆
Γ ` ∆, A

(WR)

Γ, A,A ` ∆

Γ, A ` ∆
(CL)

Γ ` ∆, A,A

Γ ` ∆, A
(CR)

Γ ` A,∆ Γ′, B ` ∆′

Γ,Γ′, A⇒ B ` ∆,∆′
(⇒ L)

Γ, A ` B,∆
Γ ` A⇒ B,∆

(⇒ R)

Γ, A[t/x] ` ∆

Γ,∀xA ` ∆
(∀L)x

Γ ` A,∆
Γ ` ∀xA,∆ (∀R)x, x /∈ FV (Γ)

Γ, A[P/X] ` ∆

Γ,∀XA ` ∆
(∀L)X

Γ ` A,∆
Γ ` ∀XA,∆ (∀R)X , X /∈ FV (Γ)

(2.1.21)

It is clear from the rules above that any derivation in LJ2 is also a derivation in LK2. We do
not list the reduction rules for LK2 (see for instance [ST00]), since in the following we will just
consider those of LJ2.

Second order arithmetics We describe now intuitionistic second order arithmetics, or Heyt-
ing Arithmetics HA2. Remark that, whereas HA2 is usually presented as a theory over the
language of second order minimal logic, here we present it under the form of a “logic”; in partic-
ular, this “logic” is an extension of LJ2 by some axioms, which can be seen, from the categorial
viewpoint, as new morphisms.

Definition 2.1.3 (Language of arithmetics). The language of arithmetics LA is defined as the
language L, but first-order variables x1, x2, . . . are replaced by number variables n1, n2, . . . and
the first-order quantifier ∀x is replaced by the number quantifier ∀n.

Definition 2.1.4 (Heyting Arithmetics). Heyting arithmetics HA2 is defined as follows:

Formulae The formulae of HA2 are those of LA;

2.1. THE PROOF-THEORETIC NOTION OF “LOGIC” 33

Derivations The derivations of HA2 are built up by the rules of LJ2 (where individual variables
x, y, . . . are replaced by number variables n,m, . . .) plus the following axioms

0 = s(n) ` (PA1)
s(n) = s(m) ` n = m (PA2)

` ∀X(∀m(X(m)⇒ X(s(m)))⇒ (X(0)⇒ ∀nX(n))) (PA3)
` n+0 = n ` n+s(m) = s(n+m) (PA+1,2)

` n×0 = 0 ` n×s(m) = (n×m)+m (PA×1,2)

Transformations The reduction rules of HA2 are just the reduction rules of LJ2.

Again, all other connectives can be defined as above for the language of HA2 (with number
variable replacing individual variables). Second order Peano Arithmetics PA2 is the system
obtained by replacing LJ2 by LK2 in the definition of HA2.

2.1.3 System F

The second order typed λ-calculus was introduced independently by Girard in [Gir72] (under the
name of System F) and by Reynolds in [Rey74] (under the name of polymorphic λ-calculus). In
the following we retain Girard’s terminology for simplicity.

System F has a second order language for types made of type variables α, β, . . . , a constant
→ to build implication types and a universal quantifier ∀. Hence the set of types Typ can be
defined by the grammar below:

σ, τ := α|σ → τ |∀ασ (2.1.22)

The original formulations of System F are à la Church: this means that the λ-terms (that
we note M,N, . . .) are defined with type superscripts. For any type σ, one has a countable set
of variables xσ, yσ, . . . of type σ. One has the usual rules for building simply typed λ-terms (see
[BAGM92]):

abstraction given a term Mτ and a variable xσ one can form the term (λxσ.Mτ)σ→τ ;

application given two terms of the form Mσ→τ , Nσ one can form the term
(
(Mσ→τ)Nσ

)τ .
The novelty introduced with System F is the possibility to abstract over type variables, given

by the following rules

type abstraction given a term Mσ and a type variable α one can form the term (Λα.Mσ)∀ασ;

type extraction given a term M∀ασ and a type τ one can form the term (M∀ασ{τ})σ[τ/α].

The extraction construction tells that from a term of type ∀ασ a term of type σ[τ/α], for any
type τ (included ∀ασ), can be extracted. This is what introduces in this typed λ-calculus the
circularity which is typical of second order logic (also known as impredicativity, see chapter (4)).
Moreover, this construction allows to type λ-terms containing variables applying to themselves:
a variable x∀αα can be extracted on the two types α→ α and α, so that the term below, which
is not typable in simple type theory, can be correctly typed in System F :

λx∀αα.(x{α→ α})x{α} (2.1.23)

Hence, the rules of type abstraction and type extraction introduce a type discipline which is very
far from Russell’s original motivations for introducing types (that is, avoiding auto-applications).

34 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

We introduce below in more detail a version à la Curry of System F , that will be used
throughout the text: this means that one takes as terms the terms of pure, or untyped, λ-
calculus and defines the rules of System F as typing rules, i.e. rules for assigning a type to such
terms.

The presentation à la Curry highlights the polymorphic (etymologically, having many forms,
many types) nature of the typed terms of System F : if M is a (pure) λ-term which has type
∀ασ, then the same term M must have type σ[τ/α], for any type τ . The acutal nature of this
polymorphism, and the paradoxes related with it, are discussed in chapters (5) and (6).

The basic objects of á la Curry systems are λ-terms and typing judgements, i.e. sequents of
the form Γ ` M : σ, which intuitively assert that M is a term of type σ under the assumptions
Γ.

Definition 2.1.5 (System F). • We define the “language” of system F by introducing terms,
types and judgements:

terms The terms of system F are usual pure lambda terms, generated by the grammar

M,N := x|λx.M |(M)N (2.1.24)

given a countable set of term variables x, y, z, ...5 and considered up to α-equivalence.
For a detailed introduction to the λ-calculus see for instance [Bar85].

types the types of F are given by the set Typ; the sets FV (σ) and BV (σ) of, respectively,
free and bound type variables of a type σ are defined as follows:

FV (α) = {α} BV (α) = ∅
FV (σ → τ) = FV (σ) ∪ FV (τ) BV (σ → τ) = BV (σ) ∪BV (τ)
FV (∀ασ) = FV (σ)− {α} BV (∀ασ) = BV (σ) ∪ {α}

(2.1.25)

A substitution operation over types is defined by

α[σ/β] =

{
σ if α = β

α else
(2.1.26)

τ → ρ[σ/β] = τ [σ/β]→ ρ[σβ] (2.1.27)
(∀ατ)[σ/β] := ∀α(τ [σ/β]) (2.1.28)

where substitution is defined, as in λ-calculus, as to avoid variable bindings.
declarations a type declaration is an expression of the form (x : σ), where x is a term

variable and σ is a type. A context Γ is a finite set of type declarations6.
judgements a judgement is an expression of the form Γ ` M : σ, where Γ is a context,

M a term and σ a type.

• The typing derivations of system F are generated by the following rules:

Γ, (x : σ) ` x : σ
(id)

Γ `M : σ → τ Γ ` N : σ
Γ ` (M)N : τ

(→ E)
Γ, (x : σ) `M : τ

Γ ` λx.M : σ → τ
(→ I)

Γ `M : ∀ασ
Γ `M : σ[τ/α]

(∀E) Γ `M : σ α bindable in Γ
Γ `M : ∀ασ (∀I)

(2.1.29)

5We adopt the same notation x, y, z for term variables and individual variables, unless confusing; this abuse
will be indeed exploited in section (2.3).

6Unless confusing, we use the same notation Γ for contexts of type declaration and contexts of sequent calculus.
Remark anyway that, whereas contexts of formulae are multisets, context of type declarations are sets.

2.2. THE DEDEKIND FUNCTOR 35

where α is bindable in Γ if, for all type declaration (x : σ) ∈ Γ, α is not free in σ.

We distinguish two equality relations over types: σ ≡ τ denotes syntactic equality whereas
σ = τ denotes α-equivalence.

We introduce an order relation over types, σ � τ , which is the reflexive transitive closure of
the relation

∀ασ ≺ τ ⇔ τ = σ[ρ/α] (2.1.30)

We recall some simple properties (whose proof can be found for instance in [BAGM92]):

Proposition 2.1.1 (basic properties). i. If Γ ` M : σ is derivable, then Γ′ ` M : σ, with
Γ ⊆ Γ′, is derivable;

ii. If Γ `M : σ is derivable, then, if x ∈ FV (M), (x : τ) ∈ Γ, for some type σ;

iii. If Γ ` x : σ is derivable, then (x : σ′) ∈ Γ for some σ′ such that σ′ � σ;

iv. If Γ `M : σ is derivable and M ′ is a subterm of M , then Γ `M ′ : τ is derivable for some
τ .

In system F we do not have a reduction relation over typing derivations, but only over lambda
terms: reduction M →β N is defined (as in pure λ-calculus) as the reflexive transitive closure of
the relation →1 defined by

(λx.M)N →1 M [N/x] (2.1.31)

We recall two important lemmas that related the type structure with the reduction of the
λ-terms. The first lemma tells that a type declaration (x : σ) in a typing of a termM can always
be replaced with the typing of a term N of type σ, by replacing every occurrence of x in M by
the term N .

Lemma 2.1.1 (substitution lemma). If Γ, (x : σ) ` M : τ and Γ ` N : σ are derivable, then
Γ `M [N/x] : τ is derivable.

Proof. See [BAGM92].

The lemma below shows that the typing derivations are preserved under term reduction:

Lemma 2.1.2 (subject reduction). If Γ `M : σ is derivable in F andM →M ′, then Γ `M ′ : σ
is derivable in F .

Proof. See [BAGM92].

Remark that the subject reduction property is, in a certain sense, the equivalent in type
theory of Prawitz’s inversion principle: in the same way in which the latter provides a way to
define a transformation over a derivation containing a cut, the former enables the reduction of a
redex preserving the type structure of the term.

2.2 The Dedekind functor

2.2.1 “Was sind und was sollen die zahlen”

The logicist dream was that of a purely logical definition of arithmetical (and analytical) concepts.
In his famous 1888 paper [Ded96], Dedekind explicitly writes:

36 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

In speaking of arithmetics (algebra, analysis) as merely a part of logic I imply that I consider
the number-concept entirely independent of the notions or intuitions of space and time -
that I rather consider it an immediate product of the pure laws of thought. [Ded96]

In that paper the logical definition of the natural numbers made indeed its first appearance:
Dedekind defined an “object” to be a natural number if it belongs to the intersection of all the
“chains”, i.e. of all the sets A containing an element 0 and closed under an injective function s(x).
Once translated in the common language of second order logic, Dedekind’s definition amounts
to the introduction of the second order predicate N(x) below:

N(x) := ∀X(∀y(X(y)⇒ X(s(y)))⇒ (X(0)⇒ X(x))) (2.2.1)

The purely logical nature of its definition comes from the fact that it does not depend on an
intended interpretation of the symbols 0 and s:

If in the consideration of a simply infinite system N ordered by a map φ we entirely neglect
the special character of the elements, simply retaining their distinguishability and taking
into account only the relations to one another in which they are placed by the ordering
mapping φ, then these elements are called natural numbers or ordinal numbers or simply
numbers, and the base element 1 is called the base-number of the number-series N . [Ded96]

In particular Dedekind was able to show that all instances of the induction schema were derivable
from his definition and to prove the isomorphism theorem, which basically asserts that, provided
that 0 is interpreted as a base element and s as an injective function, then all possible interpre-
tations of the set {x|N(x)} are isomorphic to N, the set of natural numbers (what we call today
a categoricity theorem - see [BBJ07]).

Far from the philosophical ambitions of the logicist program, in this section we develop
Dedekind’s idea of translating arithmetics into second order logic under the form of a functo-
rial translation D (that we abusively call Dedekind functor). The idea of this translation is
quite standard in the literature and amounts to relativize quantification in second order logic
to Dedekind’s predicate: for instance, arithmetical formulae of the form ∀nA are translated as
∀x(N(x)⇒ A′) and formulae of the form ∃nA are translated as ∃x(N(x) ∧A′).

The essence of Dedekind’s translation is that all derivations in arithmetics of a sequent Γ ` A
can be translated into derivations in second order logic of the sequent PA1, PA2,Γ

D ` AD, where
PA1, PA2 are the two sentence expressing respectively the fact that 0 is a base element and that
s(x) is injective (corresponding indeed to the first two axioms of Peano Arithmetics):

∀x(0 6= s(x)) (PA1)
∀x∀y(s(x) = s(y)⇒ x = y) (PA2)

The presentation we give of this translation allows to show the preservation of Gentzen’s
transformations. The interest of this aspect is twofold: on the one hand it allows, as it will
be shown in the next section, to devise a complete cut-elimination procedure for arithmetics,
since we no more need to make use of induction axioms (which are replaced by occurrences of
Dedekind’s predicate). Indeed, it is well-known (see for instance [Pra71b]) that cut-elimination
for arithmetics fails when induction axioms are applied to terms containing parameters: the
translation in second order logic makes it possible to remove those cuts.

On the other hand, as it will be recalled in section (2.3), the translation of arithmetics
into second order logic allows a direct implementation of the Curry-Howard correspondence to
arithmetics, with very elegant results: a derivation of N(n) is translated into a program cor-
responding to the Church’s numeral λf.λx.(f)nx, and a derivation making use of an induction
axiom is translated into a term implementing primitive recursion over a certain (not necessarily
finite) type .

2.2. THE DEDEKIND FUNCTOR 37

2.2.2 The functor D

We describe here a functorial translation of second order (intuitionistic) arithmetics into second
order (intuitionistc)7 logic arising from Dedekind’s intuition of a second order treatment of
arithmetical concepts.

This idea of a purely logical treatment of arithmetical concepts can be described as follows
(this idea was developed in many places, for instance in [Lei83]): given an arithmetical formula
A derivable in arithmetics, let us consider its signature Σ, i.e. the set of all the constant and
function symbols which occur in the derivation; Σ will contain the symbols 0 and s, so as a finite
number of function symbols f1, . . . , fk.

The “meaning” of those symbols is characterized by a finite set of formulae ∆Σ = {E1, . . . , En};
for instance, the “meaning” of the symbols 0 and s is fixed by formulae in the axioms PA1

8 and
PA2, and the meaning of the symbols + and × is fixed by the axioms PA+1− 2 and PA×1− 2;
more generally, since any recursive function f can be defined by a finite set of equations (by
the so-called Herbrand-Gödel-Kleene computability [Kle52]), we let pure logic talk about f by
introducing in its language function symbols f, g1, . . . , gk for the functions which occur in the
equations defining f and by putting such equations in the antecedent of each sequent.

A second element to be considered is the free occurrence of parameters: if a free variable x
occurs in a formula, then, in logic, we have to make explicit the assumption that the variable x
stands for an (unknown) natural number. As a consequence, in our translation we’ll have to add
assumptions declaring all freely occurring variables to stand for natural numbers.

The logical translation of a derivation of Γ ` A in HA2 is a derivation in second order logic of
the sequent N(x1), . . . , N(xn),∆Σ,Γ

D ` AD, where x1, . . . , xn are the free parameters occurring
in A and [_]D indicates the Dedekind translation of arithmetical formulae.

Formulas Let N(x) be Dedekind’s predicate

∀X(∀y(X(y)⇒ X(s(y)))⇒ (X(0)⇒ X(x))) (2.2.2)

Dedekind’s translation from the formulas of HA2 to the formulas of LM2 is given by the rela-
tivization of the universal quantifier ∀n to Dedekind’s predicate: let, for all term t ∈ TA, tD be
the result of replacing in t every occurrence of a number variable ni with the individual variable
xi. We put then:

(X(t1, . . . , tn))D := X(tD1 , . . . , t
D
n) (A⇒ B)D := AD ⇒ BD (2.2.3)

(∀niA)D := ∀xi(N(xi)⇒ AD) (∀XA)D := ∀XAD (2.2.4)

Dedekind’s isomorphism theorem can now be restated in the following form:

Theorem 2.2.1. Let A be an arithmetical formula. Then AD is valid if and only if A is true in
the standard model.

Proof. See for instance [BBJ07].

7The reader will be easily convinced that this translation is actually independent from the choice of an intu-
itionistic or classical frame.

8Actually by the formula ¬(0 = s(x)). This is indeed the only formula in ∆Σ which is not an equation. The
occurrence of negation in this formula has some delicate consequences for the translation in type theory, see
subsection (2.3.2).

38 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

Derivations We show how to translate a derivation d of Γ ` A in HA2 into a derivation dD of
∆,ΓD ` AD in LM2, where ∆ may contain the axioms PA1, PA2, equations defining the function
symbols occurring in dD and assumptions of the form N(x) for the free variables occurring in
Γ, A.

The only cases to consider are the identity rules, the rules for the number-theoretic quantifiers
and the axioms (PA1).

(id) The axiom ∀niA ` ∀niA is translated into the axiom ∀xi(N(xi)⇒ AD) ` ∀xi(N(xi)⇒ AD).

(∀R)n Let d be the derivation
.... d
′

Γ ` A
Γ ` ∀niA

(∀R)ni (2.2.5)

then, by applying the induction hypothesis to the subderivation d′, we define dD as
.... (d′D)

∆,ΓD ` AD

∆,ΓD, N(xi) ` AD (W)

∆,ΓD ` N(xi)⇒ AD

∆,ΓD ` ∀xi(N(xi)⇒ AD)
(∀R)xi (2.2.6)

(∀L)n Before defining the translation we describe, for all term t ∈ T , its number derivation dt,
of conclusion Γ, N(x1), . . . , N(xm) ` N(t), where x1, . . . , xm are the free variables of t and
Γ contains the equational axioms defining the function symbols occurring in t. We build
dt by induction on t:

• if t = xi, then dt is the axiom N(xi) ` N(xi);
• if t = 0, then dt is

X(0) ` X(0)

∀y(X(y)⇒ X(s(y))), X(0) ` X(0)
(W)

` ∀y(X(y)⇒ X(s(y)))⇒ (X(0)⇒ X(0))
(⇒ R)

` N(0)
(∀R)X (2.2.7)

• if t = s(t′), then FV (t) = FV (t′) and dt is (the cut-free derivation obtained from)

.... dt′
∆, N(x1), . . . , N(xm) ` N(t′)

X(0) ` X(0) X(t′) ` X(t′)

X(0)⇒ X(t′), X(0) ` X(t′)
(⇒ L)

∀y(X(y)⇒ X(s(y)) ` ∀y(X(y)⇒ X(s(y))

∀y(X(y)⇒ X(s(y))⇒ (X(0) ` X(t′)),∀y(X(y)⇒ X(s(y)), X(0) ` X(t′))
(⇒ L)

N(t′),∀y(X(y)⇒ X(s(y)), X(0) ` X(t′))
(∀L)X

∆, N(x1), . . . , N(xm),∀y(X(y)⇒ X(s(y)), X(0) ` X(t′))
(cut)

X(t) ` X(t) X(s(t)) ` X(s(t))

X(t)⇒ X(s(t)), X(t) ` X(s(t))
(⇒ L)

∆, N(x1), . . . , N(xm),∀y(X(y)⇒ X(s(y))), X(t′)⇒ X(s(t)), X(0) ` X(s(t′))
(cut)

∆, N(x1), . . . , N(xm),∀y(X(y)⇒ X(s(y))),∀y(X(y)⇒ X(s(y))), X(0) ` X(s(t′))
(∀L)y

∆, N(x1), . . . , N(xm),∀y(X(y)⇒ X(s(y))), X(0) ` X(s(t′))
(C)

∆, N(x1), . . . , N(xm) ` ∀y(X(y)⇒ X(s(y)))⇒ (X(0)⇒ X(s(t′)))
(⇒ R)

∆, N(x1), . . . , N(xm) ` N(s(t))
(∀R)X

(2.2.8)
• if t = t1+t2, then FV (t) = FV (t1)∪FV (t2) and dt is (the cut-free derivation obtained

from)

.... d+

∆+ ` ∀y∀z(N(y)⇒ N(z)⇒ N(y+z))

N(t1) ` N(t1) N(t2) ` N(t2) N(t1+t2) ` N(t1+t2)

N(t1)⇒ N(t2)⇒ N(t1+t2), N(t1), N(t2) ` N(t1+t2)
(⇒ L)

∀y∀z(N(y)⇒ N(z)⇒ N(y+z)), N(t1), N(t2) ` N(t1+t2)
(∀L)y,z

∆+, N(t1), N(t2) ` N(t1+t2)
(cut)

.... dt1
N(x1), . . . , N(xm) ` N(t1)

∆+, N(x1), . . . , N(xm), N(t2) ` N(t1+t2)
(cut)

.... dt2
N(xm+1), . . . , N(xm+p) ` N(t2)

∆+, N(x1), . . . , N(xm+p) ` N(t1+t2)

(2.2.9)

2.2. THE DEDEKIND FUNCTOR 39

where ∆+ contains PA1, PA2 and the equality axioms defining addition

x+0 = x x+s(y) = s(x+y) (2.2.10)

and d+ is a derivation of the totality of the sum (see the next subsection for a discus-
sion).

• if t = t1×t2, then FV (t) = FV (t1) ∪ FV (t2) and dt is built as in the case above,
with d× replacing d+, where d× is a derivation of the totality of the product (again,
see the next subsection), with context ∆× made of PA1, PA2, the equality axioms of
addition and the equality axioms below

x×0 = 0 x×s(y) = (x×y)+x (2.2.11)

We can now describe the translation of the (∀L)n rule: let d be the derivation

.... d
′

Γ, A(t) ` B
Γ,∀niA ` B

(∀L)ni (2.2.12)

then, by applying the induction hypothesis to the subderivation d′, we define dD as

.... d
′D

∆2,Γ
D, AD(t) ` BD

.... dt
∆1, N(x1), . . . , N(xm) ` N(t)

∆, N(x1), . . . , N(xm),ΓD, N(t)⇒ AD(t) ` BD (⇒ L)

∆, N(x1), . . . , N(xm),ΓD,∀xi(N(xi)⇒ AD(xi)) ` BD (∀L)xi (2.2.13)

(PA1/PA2) The axioms PA1 and PA2 are translated into the trivial derivations of PA1, PA2 `
PA1 and PA1, PA2 ` PA2.

(PA3) The axiom PA3 is translated into the derivation dIND below

∀y(X(y)⇒ X(s(y))) ` ∀y(X(y)⇒ X(s(y))) X(0) ` X(0) X(x) ` X(x)

∀y(X(y)⇒ X(s(y))), X(0), (∀y(X(y)⇒ X(s(y))))⇒ (X(0)⇒ X(x)) ` X(x)
(⇒ L)

∀y(X(y)⇒ X(s(y))), X(0), N(x) ` X(x)
(∀L)X

(∀y(X(y)⇒ X(s(y))))⇒ (X(0)⇒ ∀x(N(x)⇒ X(x)))
(⇒W)

` ∀X((∀y(X(y)⇒ X(s(y))))⇒ (X(0)⇒ ∀x(N(x)⇒ X(x))))
(∀R)X

PA1, PA2 ` ∀X((∀y(X(y)⇒ X(s(y))))⇒ (X(0)⇒ ∀x(N(x)⇒ X(x))))
(W) (2.2.14)

Reductions We show now that, for all derivations d, d′ in HA2, if d reduces to d′, then dD

reduces to d′D in LM2. We show this by induction on the translation of rules defined above.
Since the case of the identity rule is trivial, we discuss the case of a cut (∀L)n/(∀R)n; moreover,
we must add the case of the irreducible cut (∀L)n/PA3: since the axiom PA3 is translated into
a derivation, it follows that this irreducible cut is translated into a reducible one.

(∀L)/(∀R) let d be the following derivation

.... d1

Γ, A(t) ` B
Γ,∀niA ` B

(∀L)ni

.... d2

Γ′ ` A
Γ′ ` ∀niA

(∀R)ni

Γ,Γ′ ` B
(cut)

(2.2.15)

40 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

which reduces in one step to
.... d1

Γ, A(t) ` B

.... d2{t/x}
Γ′ ` A(t)

Γ,Γ′ ` B
(cut)

(2.2.16)

The derivation dD is the following:

.... d
D
1

∆11,Γ
D, AD(tD) ` BD

.... dtD
∆12, N(x1), . . . , N(xm) ` N(tD)

∆1, N(x1), . . . , N(xm),ΓD, N(tD)⇒ AD(tD) ` BD (⇒ L)

∆1, N(x1), . . . , N(xm),ΓD,∀xi(N(xi)⇒ AD(xi)) ` BD (∀L)xi

.... (dD2)

∆2,Γ
′D ` AD

∆2,Γ
′D, N(xi) ` AD (W)

∆2,Γ
′D ` N(xi)⇒ AD

∆2,Γ
′D ` ∀xi(N(xi)⇒ AD)

(∀R)xi

∆, N(x1), . . . , N(xm),ΓD,Γ′D ` BD (cut) (2.2.17)

which reduces in two steps to

.... d
D
1

∆11,Γ
D, AD(tD) ` BD

.... dtD
∆12, N(x1), . . . , N(xm) ` N(tD)

.... (dD2 {tD/xi})
∆2,Γ

′D ` AD

∆2,Γ
′D, N(tD) ` AD(tD)

(W)

∆12,∆2, N(x1), . . . , N(xm) ` AD(tD)
(cut)

∆, N(x1), . . . , N(xm),ΓD ` BD (cut) (2.2.18)

and successively to

.... d
D
1

∆11,Γ
D, AD(tD) ` BD

.... (d′D{tD/xi})
∆2,Γ

′D ` AD

∆2, N(x1), . . . , N(xm),Γ′D ` AD(tD)
(W)

∆, N(x1), . . . , N(xm),ΓD,Γ′D,` BD (cut) (2.2.19)

(∀L)/PA3 let d be the following irreducible derivation
.... d1

Γ, A(t) ` B
Γ,∀niA ` B

(∀L)ni
` PA3

....
PA3,∀y(A(y)⇒ A(s(y))), A(0) ` ∀niA
∀y(A(y)⇒ A(s(y))), A(0) ` ∀niA

(cut)

∀y(A(y)⇒ A(s(y))), A(0),Γ ` B
(cut) (2.2.20)

The derivation dD, after some reduction step, is the following:

.... d
′D

ΓD, AD(tD) ` BD

.... dtD
N(x1), . . . , N(xm) ` N(tD)

N(x1), . . . , N(xm),ΓD, N(tD)⇒ AD(tD) ` BD (⇒ L)

N(x1), . . . , N(xm),ΓD,∀xi(N(xi)⇒ AD)(xi) ` BD (∀L)xi

∀y(AD(y)⇒ AD(s(y))) ` ∀y(AD(y)⇒ AD(s(y))) AD(0) ` AD(0) AD(x) ` AD(x)

∀y(AD(y)⇒ AD(s(y))), AD(0),∀y(AD(y)⇒ AD(s(y)))⇒ (AD(0)⇒ AD(x)) ` AD(x)
(⇒ L)

∀y(AD(y)⇒ AD(s(y))), AD(0), N(x) ` AD(x)
(∀L)X

∀y(AD(y)⇒ AD(s(y))), AD(0) ` N(x)⇒ AD(x)
(⇒ R)

∀y(AD(y)⇒ AD(s(y))), AD(0) ` ∀x(N(x)⇒ AD(x))
(∀R)x

∀y(AD(y)⇒ AD(s(y))), AD(0), N(x1), . . . , N(xm),ΓD ` BD (cut)

(2.2.21)

which reduces to the derivation
.... d
′D

ΓD, AD(tD) ` BD

.... dtD{A
D/X}

∀y(AD(y)⇒ AD(s(y))), AD(0), N(x1), . . . , N(xm) ` AD(tD)

∀y(AD(y)⇒ AD(s(y))), AD(0), N(x1), . . . , N(xm),ΓD ` BD (cut)
(2.2.22)

Remark that in this case all the reductions are applied to the parts of the derivation
introduced by the translation: the derivation dtD and the negative occurrence of N(x) in
the right-hand derivation (this is why the reduction is not “visible” in HA2).

2.2. THE DEDEKIND FUNCTOR 41

2.2.3 Arithmetics and logic
Dedekind’s translation provides a proof-theoretical bridge between arithmetics and logic. We
recall here some applications, in particular the translation of some well-known theorems on
arithmetics in the frame of second order (classical) logic.

The comparison of hierarchies The translation of arithmetics into second order logic pro-
vides an interesting proof-theoretical viewpoint over some results which are usually connected
with arithmetics. Let us introduce two hierarchies for, respectively, arithmetical and second
order logical closed formulae9.

The arithmetical hierarchy is defined recursively as follows

Definition 2.2.1. Let A be a closed arithmetical formula.

• A is Σ0
0 or, equivalently Π0

0, if it is classically equivalent to a formula without number
quantifiers;

• A is Σ0
n+1 if it is classically equivalent to a formula of the form ∃n1 . . . ∃nk B, where B is

Π0
n;

• A is Π0
n+1 if it is classically equivalent to a formula of the form ∀n1 . . . ∀nk B, where B is

Σ0
n;

Of particular interest for arithmetics are the two classes Σ0
1 and Π0

1. The first one is indeed
connected with a completeness theorem:

Theorem 2.2.2 (Σ0
1-completeness). Let A be a Σ0

1 formula. If A is true in the standard model,
then A is derivable in PA.

Proof. see [BBJ07].

The second class is connected with Gödel’s well-known incompleteness theorems, that can be
reformulated as follows:

Theorem 2.2.3 (Π0
1-incompleteness). There exists a Π0

1 formula G which is true in the standard
model but is not derivable in PA (if PA is coherent).

Proof. This is just Gödel’s first incompleteness theorem, along with the remark that the formula
G is of the form ∀n¬ prfPA(n, k) (where k is the code of G) is Π0

1.

The logical hierarchy is defined recursively as follows

Definition 2.2.2. Let A be a closed10 formula of second order logic.

• A is Σ0 or, equivalently Π0, if it is classically equivalent to a formula without second order
quantifiers;

• A is Σn+1 if it is classically equivalent to a formula of the form ∃X1 . . . ,∃Xn B, where B
is Πn;

• A is Πn+1 if it is classically equivalent to a formula of the form ∀X1 . . . ∀Xn B, where B
is Σn.

With the aid of Dedekind’s functor we can now restate theorems (2.2.2) and (2.2.3) as theo-
rems concerning classical second order logic rather than arithmetics (in the following two para-
graphs by second order logic we will implicitly mean classical second order logic LK2).

9Here by closed formula we mean a formula with no free first-order or number variable. Hence a closed formula
can have free second order variables.

10Same remark that in the footnote above.

42 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

Π1-completeness Let us first consider the class Π1: it contains all formulas of the form B =
∀X1 . . . ∀XnA, where A is first-order. Typical examples of Π1 formulae are those of the form
N(t).

Remark that a cut-free derivation of B still satisfies the subformula property: such a deriva-
tion must consist in a cut-free derivation of ` A, . . . , A, which satisfies subformula since A is first
order, followed by instances of the (∀−R) rule and the contraction rule, which still satisfies sub-
formula. A consequence of this remark is that we can extend the Schütte proof-search algorithm
discussed above to Π1 formula, obtaining the following result:

Theorem 2.2.4 (Π1-completeness). Let A be a Π1 logical formula. If A is not derivable (in
classical second order logic), then it has a counter-model.

Dedekind translation turns a Σ0
1 formula A into a Π1 one: if A is ∃niA, i.e. ∀Y (∀ni(A(ni)⇒

Y) ⇒ Y), then, AD is ∀Y (∀xi(N(xi) ⇒ (AD(xi) ⇒ Y)) ⇒ Y) which is classically equivalent to
∃xi(N(xi)∧AF)11. By applying theorem (2.2.1) we can thus derive the theorem (2.2.2) from the
completeness theorem for Π1 formulae.

Incompleteness and the comprehension schema Let us now consider the class Σ1: it
contains all formulae of the form B = ∃X1 . . . ∃XnA, where A is first-order. Remark that a cut-
free derivations of a Σ1 formulae might not satisfy the subformula property, since the premiss of
the second order (∃R) rule may contain formulae of arbitrary logical complexity.

This fact has striking consequences, that we will explore in the next chapters: indeed the rule
(∃R) can be equivalently reformulated by means of a comprehension schema:

∀x1 . . . xn∃X(A(x1, . . . , xn, y1, . . . , ym)⇔ X(x1, . . . , xn)) (2.2.23)

It is a well-known fact in the proof-theory of second order logic (see for instance [Poh89]) that the
“strength” of second order systems depends on the complexity of their comprehension schemas.

As a consequence, when devising a proof-search for a Σ1 formula, one can no more limit
himself to a finite set of possible premisses for every rule: given a formula ∃XA, he must take
into account all possible instances A[P/X], for any predicate P : so to say, one is not only in
search for the proof, but also in search for the predicates to use in the proof.

Dedekind translation turns a Π0
1 formula into a Σ1 formula: indeed, if A is ∀niB, then

AD is ∀xi(N(xi) ⇒ BD), which is classically equivalent to the Σ1 formula ∃X∀xi(
(
∀y(X(y) ⇒

X(s(y)))⇒ (X(0)⇒ X(x))
)
⇒ BD)12.

By applying theorem (2.2.1), theorem (2.2.3) can be reformulated as a theorem asserting
that, as soon as subformula is lost, completeness is too:

Theorem 2.2.5 (Σ1-incompleteness). There exists a valid Σ1 formula which is not derivable in
second order logic.

Proof. One has to formulate a variant of Gödel’s argument with a formulaG′ := ∀n¬prfLK2(n, k),
where k = pG′q and the predicate prfLK2(n,m) codes derivability in second order logic.

11Indeed, the converse also holds, that is, if B := ∀X1 . . . ∀XnA is a Π1 formula, by means of the Π1-
completeness theorem, it is equivalent to the validity of the first-order formula A, i.e. B is equivalent to the
Σ0

1 formula ∃n(prfLK(n, pAq)), where prfKL(n,m) is the recursive predicate which codes derivability in first-
order logic.

12Indeed, the converse also holds: it can be shown that a second order existentially closed Σ1 formula
∃X1 . . . ∃XnA is equivalent to the satisfiability of A which, by the completeness theorem for first order logic,
is equivalent in turn to the Π0

1 formula ∀n(¬prfLK(n, pA⇒ ⊥q)), where prfLK(n,m).

2.3. THE FORGETFUL FUNCTOR 43

Since the class Π0
1 contains all those formulae that one can prove by means of an induction

axiom, this means that such proofs contain a hidden comprehension: the Dedekind translation
of a proof by induction corresponds exactly to a derivation in which the second order (∀L) rule
occurs. So to say, Dedekind translation can be used to extract the comprehensions implicit in
arithmetical proofs.

An interesting example can be found in Gentzen’s 1943 paper [Gen69]: in order to show that
transfinite induction up to ωn (TI(ωn)13), for every integer n, can be derived in first-order Peano
Arithmetics PA, he defines a series of predicates of growing complexity TIn(x) as

TI1(x) := ∀y(TI(y)⇒ TI(y + ωx))

TI2(x) := ∀z(∀y(TI(y)⇒ TI(y + ωz))⇒ ∀y(TI(y)⇒ TI(y + ωz+ω
x

)))

TI3(x) := ∀u(∀z(∀y(TI(y)⇒ TI(y + ωz))⇒ ∀y(TI(y)⇒ TI(y + ωz+ω
u

)))⇒

∀z(∀y(TI(y)⇒ TI(y + ωz))⇒ ∀y(TI(y)⇒ TI(y + ωz+ω
(u+ωx)

))))

...

(2.2.24)

and constructs, by applying induction on the predicates TIn(x), cut-free derivations in PA
of TI(ωn), for all n ∈ N. If we apply Dedekind translation to such derivations, we obtain
derivations of formulae TI(ωn)D of a fixed logical complexity containing comprehensions over
predicates TIn(x)D whose logical complexity grows exponentially in n. In other words, we can
use the translation to show the failure of the subformula property already in first-order Peano
Arithmetics (see for instance [ST00]). This perspective is developed in detail in [Lei01], where
the second order translation of arithmetics is applied to obtain a subsystem of LK2 which
corresponds exactly to first order Peano Arithmetics.

2.3 The forgetful functor

In this section we recall some of the technical tools of the Curry-Howard correspondence between
intuitionistic second order logic and polymorphic type theory.

First we associate with any formula A a type AF and with any context of formulae Γ a context
ΓF of type declarations. Then, with any derivation d of a sequent Γ ` A we associate a lambda
term F(d) and a typing derivation dF of the judgement ΓF ` F(d) : AF.

This functorial translation has been called forgetful (as in [Gir11]) to stress the fact that it
deletes all first order information: for instance, the translation of Dedekind’s predicate is the
type N = ∀α((α → α) → (α → α)). In particular, the functoriality of the translation implies
that the behavior of the rules for first order quantifiers under Gentzen’s transformations has a
void computational content: the reduction of a cut between first-order quantifiers implies no
reduction of the corresponding programs (see [Lei90] for a discussion).

The payoff of this translation is at least threefold: firstly, since a normalizable term of the
form F(d) must come from a derivation which reduces into a cut-free one, the Hauptsatz for
intuitionistic second order logic can be directly inferred from the weak normalization theorem for
System F (that will be shown and widely discussed in the next chapter), i.e. the theorem which
asserts that every term typable in System F has a normal form.

13Corresponding to the formula ∀x(∀y(∀z(z ≺ y ⇒ A(z))⇒ A(y))⇒ (x ≺ ωn ⇒ A(x))), where ωn refers to a
recursive coding of Cantor ordinal notation and ≺ is a recursive coding of the order relation on Cantor ordinals
(see [ST00]).

44 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

A second consequence is at the level of derivability: since the existence of a proof of A
corresponds to the existence of a λ-term of type AF, derivability in second order logic can be
investigated from the viewpoint of typability in System F . This will be indeed the perspective
developed in chapter (6) and discussed in chapter (7).

A third consequence is at the level of the structure of the derivations: one of the main fruitful
directions within the Curry-Howard paradigm is to investigate the structure of proofs of certain
classes of formulae through the behavior of their associated programs (see subsection (3.2.3)
about Krivine’s program). For instance, the derivations of the sequents ` N(t) induce programs
M which behave as iterators: given a base program N0 and a functional program Ns, (M)NsN0

reduces to the k-th iteration of Ns over N0, i.e. to the term (Ns)
kN0: the computational content

of Dedekind’s predicate is thus expressed by iteration. A second important case is represented by
derivations of the totality of recursive functions, whose associated λ-terms behave as programs
computing those functions.

2.3.1 The functor F
Formulas The translation of formulae and predicates into types is relatively straightforward:
all we do is systematically erase first-order information from formulae.

(Xi(t1, . . . , tn))F := αi (A⇒ B)F := AF → BF

(∀xiA)F := AF (∀XiA)F := ∀αiAF

(λx1.λxn.A)F := AF
(2.3.1)

We translate contexts Γ = {A1, . . . , An} as follows: let x1, . . . , xn be variables of the lambda
calculus; then ΓF is the set made of the type declarations (x1 : AF

1), . . . , (xn : AF
n).

Derivations We define now a map which associates with every derivation d of a sequent Γ ` A,
a lambda term F(d) and a derivation dF of the typing judgement ΓF ` F(d) : AF.

We consider all cases:

(id) if d = A ` A (Ax)
, then F(d) := y and dF := (y : AF) ` y : AF;

(cut) if d =

.... d1

Γ, B ` A

.... d2

∆ ` B
Γ,∆ ` A (cut)

, then F(d) := (λx.F(d1))F(d2) and dF is
.... d

F
1

ΓF, (x : BF) ` F(d1) : AF

ΓF ` λx.F(d1) : BF → AF

.... d
F
2

∆F ` F(d2) : BF

ΓF,∆F ` F(d) : AF (2.3.2)

(W) if d =

.... d
′

Γ ` B
Γ, A ` B (W)

then F(d) := F(d′) and dF is just d′F, where all contexts ∆ have been
replaced by ∆ ∪ (x : AF) for a fresh variable x (use proposition (2.1.1) i.));

(C) if d =

.... d
′

Γ, A,A ` B
Γ, A ` B (C)

, let x, y be respectively the variables associated to the two type
declarations (x : AF) and (y : AF) occurring in d′F; then F(d) := F(d′)[x/y] and dF is

2.3. THE FORGETFUL FUNCTOR 45

obtained from d′F by replacing all occurrences of the declaration (y : AF) by the declaration
(x : AF) (and remembering that contexts are sets of declarations).

(⇒ L) if d =

.... d1

Γ, B ` C

.... d2

∆ ` A
Γ,∆, A⇒ B ` C (⇒ L)

, then F(d) := F(d1)[yF(d2)/x], where x is the variable
declared of type BF in dF1 and y is a fresh variable; one has the following two derivations

.... d
F
1

ΓF, (x : BF) ` F(d1) : CF
∆F, (y : AF → BF) ` y : AF → BF

.... d
F
2

∆F `M2 : AF

∆F, (y : AF → BF) ` yF(d2) : BF

(2.3.3)
and dF is obtained by applying proposition (2.1.1) i. and the substitution lemma (2.1.1).

(⇒ R) if d =

.... d
′

Γ, A ` B
Γ ` A⇒ B

(⇒ R)
then F(d) := λx.F(d′), where x is the variable declared of type

AF in d′F, and dF is d
′F

ΓF, (x : AF) ` F(d′) : BF

ΓF ` F(d) : AF → BF (2.3.4)

(∀L)x if d =

.... d
′

Γ, A(t) ` B
Γ,∀xA ` B (∀L)x, then F(d) := F(d′) and dF := d′F;

(∀R)x if d =

.... d
′

Γ ` A
Γ ` ∀xA (∀R)x, then F(d) := F(d′) and dF := d′F;

(∀L)X if d =

.... d
′

Γ, A[P/Xi] ` B
Γ,∀XiA ` B

(∀L)x, then F(d) = F(d′) we have the following two derivations:

ΓF, (x : ∀αiAF) ` x : ∀αiAF

ΓF, (x : ∀αiAF) ` x : AF[P F/αi]

.... d
′F

ΓF, (x : AF[P F/αi]) ` F(d′) : BF (2.3.5)

one easily verifies by induction that AF[P F/αi] = (A[P/Xi])
F and dF is obtained by means

of the substitution lemma (2.1.1).

(∀R)X if d =

.... d
′

Γ ` A
Γ ` ∀XiA

(∀R)X , then F(d) := F(d′) ad dF is
.... d
′F

ΓF ` F(d) : AF

ΓF ` F(d) : ∀αiAF (2.3.6)

remark that the requirement X /∈ FV (Γ) implies that α is bindable in ΓF.

46 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

Remark 2.3.1. Equalities t = u are translated by F as the unity (t = u)F = 1F = ∀α(α → α).
This implies that no computational content is assigned to equalities: indeed the two rules of
equality

Γ ` A(t)

Γ, t = u ` A(u)
(= L)

` t = t
(= R)

(2.3.7)

which are immediately derivable from the second order definition of equality t = u := ∀X(X(t)⇒
X(u)), are translated into dummy terms by the forgetful functor:

(= L) if d =

.... d
′

Γ ` A(t)

Γ, t = u ` A(u)
(= L)

, then F(d) := F(d′) and dF := d′F;

(= R) if d = ` t = t
(= R)

, then F(d) := λx.x and dF is

(x : α) ` x : α

` F(d) : α→ α

` F(d) : ∀α(α→ α) (2.3.8)

Reductions We pass now to show that if a derivation d reduces to d′ by cut-elimination, then
the lambda term F(d) and the lambda term F(d′) are β-equivalent14. We limit ourselves to the
cases of identity and implication:

(id) Let d be the derivation

A ` A

.... d
′

Γ ` A
Γ ` C (cut)

(2.3.9)

which reduces in one step to d′. The derivation dF is

(x : AF) ` x : AF

` λx.x : AF → AF

.... d
′F

ΓF ` F(d′) : AF

ΓF ` (λx.x)F(d′) : AF (2.3.10)

and clearly F(d) reduces in one step to F(d′).

(⇒ L)/(⇒ R) let d be the derivation
.... d1

Γ11 ` A

.... d2

Γ12, B ` C
Γ1, A⇒ B ` C (⇒ L)

.... d3

Γ2, A ` B
Γ2 ` A⇒ B

(⇒ R)

Γ ` A (cut) (2.3.11)

which reduces in one step to d′ below
.... d1

Γ11 ` A

.... d3

Γ2, A ` B
Γ11,Γ2 ` B

(cut)

.... d2

Γ12, B ` C
Γ ` A (cut)

(2.3.12)
14We recall that the relation =β of β-equivalence over pure λ-terms is the symmetric closure of the reduction

relation →.

2.3. THE FORGETFUL FUNCTOR 47

The typing derivations dF, d′F have respectively the shape below:
....

ΓF ` λy.F(d2)[yF(d1)/x] : (AF → BF)→ CF

....
ΓF ` λz.F(d3) : AF → BF

ΓF ` (λy.F(d2)[yF(d1)/x])λz.F(d3) : AF (2.3.13)

.... d
F
2

ΓF, (x : BF) ` CF

ΓF ` λx.F(d2) : BF → CF

.... d
F
3

ΓF, (z : AF) ` F(d3) : BF

ΓF ` λz.F(d3)

.... d
F
1

ΓF ` F(d1) : AF

ΓF ` (λz.F(d3))F(d1) : BF

ΓF ` (λx.F(d2))(λz.F(d3))F(d1) : CF (2.3.14)

now (λy.F(d2)[yF(d1)/x])λz.F(d3) and (λx.F(d2))(λz.F(d3))F(d1) both reduce to the term
F(d2)[F(d3)[F(d1)/z]/x].

Remark 2.3.2. We can also consider the derived case of equality, as it will be explicitly used in
the next section:

Let d be the derivation d
′

Γ ` A
Γ, t = t ` A (= L) ` t = t

(= R)

Γ ` A (cut)
(2.3.15)

which reduces in one step to d′; the derivation dF is

.... d
′F ∪ (z : ∀α(α→ α))

ΓF, (z : ∀α(α→ α)) ` F(d′) : AF

(x : α) ` x : α

` λx.x : α→ α
` λx.x : ∀α(α→ α)

ΓF ` (λz.F(d′))λx.x : AF (2.3.16)

and clearly F(d) reduces in one step to F(d′), since z is fresh.

We end this subsection by recalling a result (called faithfulness in [Kre70]) which shows that
the forgetful functor can be inverted: typed programs are exactly those that are the image, under
the forgetful translation, of actual derivations in sequent calculus

Theorem 2.3.1 (faithfulness). If (x1 : AF
1), . . . , (xk : AF

n) ` M : AF is derivable in simple type
theory, then there exists a sequent calculus derivation d of conclusion A1, . . . , An ` A such that
F(d) = M .

Proof. We argue by induction on construction of M :

(M = xi) The typing derivation of M is just the axiom (x1 : AF
1), . . . , (xk : AF

k) ` xi : AF
i , and d

is obtained by an axiom followed by several weakenings:

Ai ` Ai
A1, . . . , Ak ` Ai (2.3.17)

(M = λx.M ′) Then AF = BF → CF and the typing derivation of M has the form

(x1 : AF
1), . . . , (xk : AF

k), (x : BF) `M ′ : CF

(x1 : AF
1), . . . , (xk : AF

k) ` λx.M ′ : AF (2.3.18)

48 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

then, by induction hypothesis there exists a derivation d′ of A1, . . . , Ak, B ` C such that
F(d′) = M ′ and we can obtain d with a (⇒ R) rule:

.... d
′

A1, . . . , Ak, B ` C
A1, . . . , Ak ` B ⇒ C (2.3.19)

(M = (x)M1 . . .Mh) Then the typing derivation of M has the form:

Γ ` xi : BF
1 → · · · → BF

h → AF

.... d1

Γ `M1 : BF
1

Γ ` (xi)M1 : BF
2 → · · · → BF

h → AF
....

Γ ` (xi)M1 . . .Mh−1 : BF
h → AF

.... dh
Γ `Mh : BF

h

Γ ` (xi)M1 . . .Mh : AF (2.3.20)

where AF
i ≡ BF

1 → · · · → BF
h → AF and Γ is the context (x1 : A1), . . . , (xk : Ak). Then the

derivation d is the following:

A1, . . . , A, . . . , Ak ` A

.... d
∗
h

∆ ` Bh
∆, A1, . . . , Bh ⇒ A, . . . , Ak ⇒ A

(⇒ L)
....

∆, . . . ,∆, A1, . . . , B2 ⇒ . . .⇒ Bh ⇒ A, . . . , Ak ` A

.... d
∗
1

∆ ` B1

∆, . . . ,∆, A1, . . . , B1 ⇒ . . .⇒ Bh ⇒ A, . . . , Ak ` A
(⇒ L)

∆ ` A (C)
(2.3.21)

where ∆ is the context A1, . . . , B1 ⇒ . . . ⇒ Bh → A, . . . , Ak and d∗j , for 1 ≤ j ≤ h, exists
by induction hypothesis and is such that F(d∗j) = dj . Remark that the order of appearance
of the d∗j is inverted with respect to the order of appearance of the dj .

(M = (λx.M1)M2) Then the typing derivation of M has the form:
.... d1

Γ, (x : BF) `M1 : AF

Γ ` λx.M1 : BF → AF

.... d2

Γ `M2 : BF

Γ `M : AF (2.3.22)

where Γ is as above. Then the derivation d is the following:
.... d
∗
1

∆, B ` A

.... d
∗
2

∆ ` B
∆,∆ ` A (cut)

∆ ` A (C)
(2.3.23)

where ∆ is the context A1, . . . , Ak and d∗1, d∗2 exist by induction hypothesis and are such
that F(d∗1) = d1 and F(d∗2) = d2.

2.3. THE FORGETFUL FUNCTOR 49

2.3.2 Arithmetics in type theory

The composition of the two functors yields a type-theoretic interpretation of arithmetics, that
we briefly recall.

Composing D and F We present here some well-known results on the interpretation of arith-
metics within System F (see [GLT89]). This translation can now be presented as the composition
of the Dedekind and the forgetful translation.

Let us introduce the type N := N(x)F, which is the standard type for the iterators:

N := ∀α((α→ α)→ (α→ α)) (2.3.24)

Let t ∈ T and dt be the number derivation of Γ, N(x1), . . . , N(xk) ` N(t). By applying F
we obtain a (normal) program F(dt) and a derivation dFt of the judgement ΓF, (x1 : N), . . . , (xk :
N) ` F(dt) : N (remark the abuse of notation). In particular, if t = n, then the context of dn
is empty and thus F(dn) is a normal term of type N. One easily shows then by induction that
F(dn) corresponds to the n-th Church numeral n := λf.λx.(f)nx. In other words, a derivation
of N(n) corresponds to a program which behaves like a n-times iterator.

One of the most significative examples of composition of D and F, that we use through-out
this text, concerns the provably recursive functions: a k-ary recursive function f is said provably
recursive (or provably total) if it is derivable in PA2 that

∀n1 . . . ∀nk∃m(f(n1, . . . , nk) = m) (2.3.25)

where f is a function symbol introduced along with a set of equational axioms.
Now, if a function is provably recursive then its totality can be derived already in HA2: this

follows from a well-known theorem by [Fri78] which says that HA2 and PA2 prove exactly the
same Π0

2 statements15.
Let us say that a k-ary recursive function f is representable in System F if there exists a λ-

termM such that, for all n1, . . . , nk, (M)n1, . . . ,nk reduces to m if and only if f(n1, . . . , nk) = m
and moreover the judgement ` M : N → N is derivable in System F . A classic result is the
following:

Theorem 2.3.2 ([Gir72, GLT89]). The provably recursive functions of second order Peano arith-
metics are exactly those which are representable in System F .

Proof. We limit ourselves to sketch the first part of the proof, in order to highight the role of the
two functorial translations. The second part, which involves the notion of reducibility which we
introduce in chapter (4), will be sketched in section (4.3.1) and can be found in [Gir72, GLT89].

Let f be provably recursive and let d be a derivation of Γ ` ∀n1 . . . ∀nk∃m(f(n) = m) (where
Γ contains equations expressing the “meaning” of the function symbols defining f). By applying
the Dedekind functor to d we obtain a derivation dD of the sequent Γ′ ` B, where B is the
formula below:

∀x1 . . . ∀xk∃y(N(x1)⇒ · · · ⇒ N(xk)⇒ N(y) ∧ f(x1, . . . , xk) = y) (2.3.26)

and Γ′ contains the equational axioms of the function f plus the axioms PA1 and PA2.

15The idea of this theorem is that of using the ¬¬-translation from classical to intuitionistic logic: in particular
the translation of a Π0

2 formula ∀n∃mA is ∀n¬¬∃mA. Now it can be shown by standard proof-theoretic techniques
that the latter formula is derivable in HA2 if and only if the former is derivable in PA2.

50 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

A simple manipulation turns the derivation dD into a derivation d′ of the sequent Γ′ ` Tot(f),
where Tot(f) is the formula below (which is intuitionistically equivalent to B)

∀x1 . . . ∀xk(N(x1)⇒ · · · ⇒ N(xk)⇒ N(f(x1, . . . , xk))) (2.3.27)

Now we can apply the forgetful functor to the derivation d′: this produces a program Mf

and a derivation of the judgement (z0 : ∀α(α → α) → ∀αα), (z1 : ∀α(α → α)), . . . , (zh :
∀α(α → α)) ` Mf : N → N. Indeed all axioms are interpreted by F as unities except PA1,
which is interpreted as the negation of the unity ∀α(α → α) → ∀αα ≡ ∀αα. Let then M ′f :=
Mf [λz.z/z1, . . . , λz.z/zh]; since λz.z has type ∀α(α → α), it follows by the substitution lemma
(2.1.1) that (z0 : ∀α(α→ α)→ ∀αα) `M ′f : N→ N is derivable in F .

It remains then to get rid of the free variable z0 : ∀α(α → α) → ∀αα: a first solution
(discussed in [GLT89]) would be to add a junk term Ω of type ∀αα to System F , so that λz.Ω
can be given type ∀α(α → α) → ∀αα. The argument we develop below would suffice indeed
to show that the term Ω disappears during the normalization process. A more elegant solution
requires a slight modification of the forgetful interpretation, but for all details we address the
reader to [GLT89].

By applying one of the two mentioned strategies, we get, in definitive, a closed term M∗f and
a derivation of `M∗f : N→ N.

We want now to show that the program M∗f effectively computes the function f ; to do this,
we will have to rely on the Hauptsatz for second order logic (that will be proved in the next
chapter). Indeed, by applying the Hauptsatz we get that, for all k1, . . . , kh ∈ N, the derivation
below

.... d
′

Γ ` ∀x1 . . . ∀xh(N(x1)⇒ · · · ⇒ N(xh)⇒ N(f(x1, . . . , xh)))

....
∀x1 . . . ∀xh(N(x1)⇒ · · · ⇒ N(xh)⇒ N(f(x1, . . . , xh))), N(k1), . . . , N(kh) ` N(f()k1, . . . , kh)

.... dk1
` N(k1)

∀x1 . . . ∀xh(N(x1)⇒ · · · ⇒ N(xh)⇒ N(f(x1, . . . , xh))), N(k2), . . . , N(kh) ` N(f(k1, . . . , kh))
(cut)

....
∀x1 . . . ∀xh(N(x1)⇒ · · · ⇒ N(xh)⇒ N(f(x1, . . . , xh))), N(kh) ` N(f(k1, . . . , kh))

.... dkh
` N(kh)

∀x1 . . . ∀xh(N(x1)⇒ · · · ⇒ N(xh)⇒ N(f(x1, . . . , xh))) ` N(f(k1, . . . , kh))
(cut)

Γ ` N(f(k1, . . . , kh))
(cut)

(2.3.28)
reduces into a cut-free derivation ek1,...,kh of Γ ` N(f(k1, . . . , kh)); now, since no parameters
occur in the formulae in the sequent, it follows that ek1,...,kh contains a derivation of ` N(p), for
a certain p ∈ N followed by several application of the (= L) rule. From the soundness of HA2

we get indeed f(k1, . . . , kh) = p.
We can now rely on the functorial nature of both D and F and verify that (Mf)k1 . . .kh

reduces indeed to (eD)F, which must be of the form (zi1)(zi2) . . . (ziq)p, for a certain q ∈ N,
where the zij are the variables corresponding to the equality axioms of the function f . As an
immediate consequence we get that (M∗f)k1 . . .kh must reduce to p. In other words, we have
shown that for all k1, . . . , kh, the application of Mf to the Church numerals k1, . . . ,kh reduces
to the Church numeral corresponding to f(k1, . . . , kh).

A simple application of the theorem above is provided by the standard exercise of constructing
derivations of totality d+ and d× in HA2, respectively for the sum and the product of natural
numbers in such a way that the application of the Dedekind and the forgetful translation to such
produces the two terms Add and Mult below

Add := λx.λy.λf.λz.(x)f((y)fz) (2.3.29)
Mult := λx.λy.λf.λz.x(yf)z (2.3.30)

which correspond to the usual programs to code sum and product of Church numerals in λ-
calculus.

2.4. BEYOND SYSTEM F 51

Type inference and the type hierarchy We introduce a hierarchy of types which allows to
extend the comparison of hierarchies between logic and arithmetics to type theory.

Definition 2.3.1. Let σ be a type of System F .

• σ is Σ0 or, equivalently Π0, if it is quantifier-free;

• σ is Σn+1 if it is of the form τ → ρ, where τ and ρ are Πn;

• σ is Πn+1 if it is of the form ∀α1 . . . ∀αnτ , where τ is Σn.

In the next chapter we will derive theorems which correspond, in type theory, to the Π1-
completeness and the Σ1-incompleteness theorems (2.2.3) and (2.2.2) of second order logic: we
introduce a predicate of reducibility Redσ (or validity or realizability) for programs with respect
to a type σ and we will prove the following:

• if σ is Π1 and M is a normal λ-term such that Redσ(M), then ` M : σ is derivable in
System F ;

• there exists a normal term M and such that RedN→N(M) but ` M : N → N is not
derivable in System F (remark that N→ N is a Σ1 type).

In chapter (6) we will discuss the type inference problem for Π1 and Σ1 types: when is
`M : σ derivable in System F?

Indeed, in the Π1 case, this can formulated as a problem of first-order unification and shown
to be decidable (see [MD82]); in the Σ1 this can be formulated as a problem of second-order
unification and is known to be indecidable (see [Wel98]).

2.4 Beyond System F

The following pages contain a brief presentation of the systems Fω, U−, U,N , which are higher
order extensions of System F and which can be seen as more and more powerful Curry-Howard
formalisms for higher-order logic.

The generalization of the polymorphic type discipline of System F poses some delicate the-
oretical challenges. In particular, the identification of propositions (or formulae, see footnotes
16 and 17) and types, which is apparently at work in the Curry-Howard correspondence, seems
incompatible with a completely uniform treatment of quantification over types.

As these theoretical questions involve many technical notions and ideas that will be presented
later in this text, this section can be read as a sketch of some issues that will be developed in
more detail in the next chapters, or simply skipped and postponed to a later reading.

2.4.1 From Curry’s type theory to System F ω

The type prop Historically, the task of generalizing the polymorphic type discipline of System
F led to some difficulties which are very similar to the ones faced at the very beginning of the
history of type theory.

FIrst observe that quantification over arbitrary propositions16, along with Russell’s principle
(RUS) (discussed in subsection (3.2.3))

16In the literature on type theory and typed λ-calculi it is standard to talk of propositions rather than formulae;
since the literature we are confronted with in this chapter is essentially type-theoretic we follow this terminology
in the following pages, in order to avoid confusion in the description of type systems.

52 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

(RUS) The range of significance of a propositional function forms a type

implies that there must be a type prop of all propositions.
Church’s original version of the simply typed λ-calculus in [Chu40] (that we will call CTT

for Church’s type theory) was indeed thought as a representation of Russell’s doctrine of types.
CTT contains a type prop of all propositions (intended á la Frege as truth-values), a type ι for
individuals and several constants, among which the constants → of type prop → prop → prop
and Πσ of type (σ → prop)→ prop (for every type σ).

A n-ary predicate P (xσ1
1 , . . . , xσnn) in CTT is represented by a λ-term of the form λx1.λxn.M

of type σ1 → · · · → σn → prop. An atomic proposition P (t1, . . . , tk) is obtained then by the
application of the term M representing the predicate P (xσ1

1 , . . . , xσnn) to the terms N1, . . . , Nk
representing the individuals t1, . . . , tk. Complex propositions are constructed by means of the
constants → and Πσ:

• given two propositions A,B, represented by terms M,N , the proposition A⇒ B is repre-
sented by the term (→)MN ;

• given a proposition A depending a free variable xσ, represented by the term M , the propo-
sition ∀xσA is represented by the term Πσ(λxσ.M).

Thus, in Church’s type theory, a proposition is represented by a typed λ-term (with con-
stants). The reader should not confuse between Church’s identification of propositions with
typed λ-terms and the Curry-Howard correspondence between proofs and typed λ-terms. The
latter is indeed based on the principle PasT (discussed in subsection (3.2.3))

(PasT) Propositions should be identified with types

which asserts the identification of propositions17 and types.
As it is observed in [Coq90], the conjunction of the principle RUS and the principle PasT

is incompatible with quantification over all propositions: since, as we already remarked, quan-
tification over all propositions and RUS imply the existence of a type of all propositions, the
identification of types and proposition implies that this type must be a type of all types, an
hypothesis which is inconsistent, as it will be shown in subsection (4.3.2). This idea was indeed
one of the main motivations for Martin-Löf’s introduction of the type ν of all types in his original
type theory [ML70b], shown to be inconsistent in [Gir72] (see subsection (4.3.2) and appendix
(B) for more details).

Indeed, one of the main features of Martin-Löf’s type theory is the identification of two prima
facie distinct forms of typing: the typing of terms, where the latter are seen as (the interpretation
of) proofs, and the typing of propositions, where the latter are seen as (the interpretation of)
formulae and predicates.

Hence, if one wishes to extend polymorphic type theory in the style of Church’s type theory
the identification of propositions and types must be rejected: a distinction must be made between
the types for the terms and the types for the propositions; this solution is at the basis of systems
like Fω (see [Gir72, Urz97]), the calculus of constructions [Coq90] and the pure type systems (see
[Ber88]). Though these systems do not follow the identification of propositions and types, they
can still be considered “Curry-Howard” as they can be related to higher order intuitionistic se-
quent calculi by means of rather straightforward extensions of the forgetful translation described
above (see for instance [Lei94]).

17A terminological ambiguity, which seems to persist in the literature, must be here stressed: Curry [CF58]
originally noticed a correspondence between logical propositions and types; Howard’s [How80] presents a corre-
spondence between formulae and types; still, one reads about propositions-as-types in [ML84, Coq90], and about
formula-as-types in the classical notes [SU06] and in [GLT89].

2.4. BEYOND SYSTEM F 53

In order to avoid confusions around the word “type”, we will talk of propositions when referring
to the expressions used to type proof-like terms, and of kinds or universes when referring to the
expressions used to type constructors, i.e. terms used to build propositions (hence, prop will be
considered as a universe).

We can define the grammar of pure (i.e. untyped) constructors as follows (we use X,Y, . . .
to indicate constructor variables):

C,D := X|C → D|∀XC|λX.C (2.4.1)

Hence, by a proposition we will mean a pure constructor C such that Γ ` C : prop is derivable
in the type system.

System Fω The Curry-Howard version of Church’s type theory is an extension of System F
called System Fω. In System Fω one has three levels of objects: “proof-like” terms, notation
M,N, . . . , type constructors, notation C,D, . . . , and universes, notation κ, κ′,

Universes are defined similarly to simple types: one has a constant prop, and a constructor
→ of type prop→ prop→ prop, with the following rules

Γ, (γ : κ) ` γ : κ
(id)

Γ ` C : prop Γ ` D : prop

Γ ` C → D : prop
(→)

Γ, (α : κ) ` C : prop

Γ ` ∀καC : prop
(∀κ)

Γ ` C : κ→ κ′ Γ ` D : κ
Γ ` (C)D : κ′

(@)
Γ, (γ : κ) ` C : κ′

Γ ` λγ.C : κ→ κ′
(λ)

(2.4.2)

Once defined universes, one can call types those constructors C such that Γ ` C : prop is
derivable in the system above. The rules for typing “proof-like” terms are then the following:

Γ, (x : σ) ` x : σ
(id)

Γ `M : σ σ =β τ

Γ `M : τ
(β)

Γ `M : σ → τ Γ `M : σ
Γ `MN : τ

(@)
Γ, (x : σ) `M : τ

Γ ` λx.M : σ → τ
(λ)

Γ ` N : ∀κXσ Γ ` C : κ
Γ `M : σ[C/X]

(∀κE)
Γ, (X : κ) `M : σ X bindable in Γ

Γ `M : ∀κXσ (∀κI)

(2.4.3)

Where X is bindable in Γ if it does not occur free in any of the constructors occurring in Γ.
Remark the rule (β), which accounts for the possibility that a type containing a redex be

reduced. On the other hand, since all types in Fω are strongly normalizing (as a consequence of
the reducibility theorem for simple type theory (3.2.1)), one can eliminate rule (β) and replace
the rule (∀κE) by the rule (∀κE)′ below

Γ `M : ∀κXσ Γ ` C : κ
Γ `M : nf(σ[C/X])

(∀κE)′
(2.4.4)

where nf(σ), for a type σ, denotes its normal form.
A constructor of universe prop will be called a proposition and noted, as usual, by small greek

letters σ, τ, A constructor λγ.C of universe κ → prop will be called a set over κ and noted
in set notation as {γ : κ|C}. Moreover, if C is a set over κ and D is in κ, then we will note the
application CD in set notation as D ∈ C. Thus, we can see the type theory Fω as a set theory.

54 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

The System Fω is quite well-studied in the literature (see [Urz97, Mal97]); here we recall some
well-known facts about the reducibility of System Fω. The remarks that follow make reference
to reducibility and its connected technical aspects that will be introduced in the next chapters
(chapter (3), (4) and (5)), so the reader not familiar with these topics may want to postpone the
reading of the following lines after the reading of those chapters.

The reducibility technique for System F (presented in chapter (4)) can be straightforwardly
extended to prove strong normalization for system Fω. The idea of the extension is indeed
contained in the proof sketched in section (4.3.2) of normalization for Martin-Löf’s type theory;
in particular, one interprets universes as sets as follows: the interpretation of the universe prop is
set CR of all reducibility candidates (remind that CR ⊆ ℘(Λ)); the interpretation of the universe
κ → κ′ is then the set of all functions from the interpretation of κ to the interpretation of κ′.
As a consequence, propositions are interpreted by means of reducibility candidates (as types in
System F), and general constructors are interpreted by functions in the appropriate function
space.

The reducibility interpretation of Fω has many similarities with Reynolds’ set-theoretic in-
terpretation of type theory (sketched in subsection (5.1.1)): one interprets implication universes
by means of function spaces. That is, the reducibility interpretation of higher-order type theory
mimics the set-theoretic interpretation of simple type theory.

2.4.2 The systems U and U−

It seems then quite natural to expect the worse to happen if one tries to extend the hierarchy of
universes by means of impredicative quantifiers in the style of System F . If we denote universe
variables as X ,Y,Z, . . . , we can introduce a quantifier over universes: if κ is a universe and X
a variable, then ∀Xκ is a universe, intuitively the “intersection” of all universes κ[κ′/X].

The system U− is obtained by extending System Fω by means of polymorphic universes, i.e.
by adding to Fω the following rules:

Γ ` C : ∀Xκ
Γ ` C : κ[κ′/X]

(∀E) Γ ` C : κ X bindable in Γ
Γ ` C : ∀Xκ (∀I)

(2.4.5)

Clearly System U− contains much more sets than System Fω: in particular, one can construct
in System U− “paradoxical universes” ([Hur95]) of the form

U := ∀X ((℘℘X → X)→ X) (2.4.6)

where ℘κ := κ→ prop is the universe of sets over κ. One can in particular reproduce Reynolds’
argument (section (5.1.1)) within the reducibility interpretation of System U−.

System U (first formulated in [Gir72]) is just System U− extended with quantification over
universes, i.e. by adding the rules below:

Γ ` N : ∀Xσ[κ/X]

Γ `M : σ
(∀UE)

Γ `M : σ X bindable in Γ
Γ `M : ∀Xσ (∀UI) (2.4.7)

The Systems U and U− can be easily interpreted in Martin-Löf’s impredicative type theory
[ML70b] (section (4.3.2)). Historically, Girard found the paradox that bears his name (appendix
(B)) in System U and was then able to reproduce it in Martin-Löf’s type theory. The connection
between the two system is not prima facie evident, because in Martin-Löf’s type theory there
is no distinction between propositions and types, nor between types and universes: indeed an
object of type ν can be either a proposition, either a universe.

2.4. BEYOND SYSTEM F 55

Remark that, as a consequence of the reducibility theorem of System F , one has a reducibility
theorem for the propositions of System U and U− of the form: every proposition has a (unique)
normal form.

However one cannot extend reducibility to the terms typable in such systems: Girard’s para-
dox ([Gir72], see appendix (B)) provides an example of a non reducible though typable λ-term.
The question of the consistency of the apparently weaker System U− was solved negatively in
[Coq94], where a paradox (i.e. a non normalizing typable term) is described for that system.
[Coq94] also contains a Curry-Howard presentation of System U− in connection with a system
called Polymorphic Higher Order Logic, an extension of Curry’s type theory with polymorphic
types.

The analysis of these paradoxes constituted for the author the main source of intuitions and
ideas for the investigations pursued in chapter (6). The reader will find in appendix (B) an
analysis of Girard’s paradox, which follows essentially [Hur95], from the viewpoint of typability;
this analysis provides at the same time an insight into the typing properties of these violently
impredicative type systems and an introductory example to the perspective developed in chapter
(6).

2.4.3 A naïve type theory
Church’s type theory introduced the idea that propositions can be constructed as typed λ-terms.
In order to describe the type disciplines for propositions, in the last subsection we introduced
pure constructors and associated, with each type system, a set of typing rules for constructors.

It is natural then to consider the possibility of a “naïve” type system, whose constructors are
not typed. This means that every pure constructor can be seen as an element of the universe
prop. This type system bears some analogies with naïve set theory: as we did for System Fω and
System U we can call a constructor of the form λγ.C a set, and write the application of a set C
to a constructor D as D ∈ C; then we can write the usual rules of β-expansion and β-reduction
as

C[D/γ]

D ∈ λγ.C (β − exp)
D ∈ λγ.C
C[D/γ]

(β − red)
(2.4.8)

The rules above closely resemble Prawitz’s rules for naïve set theory (see subsection (3.1.2)):

A[t/x]

t ∈ {x|A}
(set− I)

t ∈ {x|A}
A[t/x]

(set− E)
(2.4.9)

This is why we chose to call such a system System N , where N stands for “naïve”.
The rules of System N are very simple, since there are no rules for universes: they are indeed

just the rules of System F plus the (β) rule (already present in Fω).

Γ, (x : σ) ` x : σ
(id)

Γ `M : σ σ =β τ

Γ `M : τ
(β)

Γ `M : σ → τ Γ ` N : σ
Γ `MN : τ

(@)
Γ, (x : σ) `M : τ

Γ ` λx.M : σ → τ
(λ)

Γ `M : ∀ασ
Γ `M : σ[τ/α]

(∀E) Γ `M : σ α bindable in Γ
Γ `M : ∀ασ (∀I)

(2.4.10)

The structural properties of System N closely resemble those of System F (except for normal-
ization, obviously), but one has to take into account the existence of a not normalizing reduction
relation over types. In particular one can prove the following two properties (whose proofs can
be found in (A)):

56 CHAPTER 2. ARITHMETICS, LOGIC AND TYPE THEORY

Proposition 2.4.1 (subject reduction lemma in [BAGM92]). Let Γ ` M : σ be derivable in N
and let M M ′. Then Γ `M ′ : σ∗ is derivable for some σ∗ such that σ σ∗.

This proposition says that the reduction relation over terms is preserved by the type systems.

Proposition 2.4.2. Let M be a normal term and `M : N be derivable in N ; then there exists
a positive integer n ∈ N such that M ≡ λf.λx.(f)nx, where ≡ denotes syntactic equality.

A simple corollary of the propositions above ensures that normal terms of type N → N in
system N can still be considered as codes for recursive functions (though we can no more be sure
that those functions are actually total ones).

Corollary 2.4.1. Let M be a normal term and ` M : N → N be derivable in N ; then, for all
Church integer n, (M)n is either not normalizable either it reduces to a m, for a positive integer
m ∈ N.

Since the reduction behavior of M can be coded by a recursive function, it follows that there
exists a partial recursive function f such that f(n) is defined and equal to m iff Mn is weakly
normalizable and has normal form m.

Fixpoint types System N allows the definition of types by means of fixpoint operators: the
combinator (δ)δ of λ-calculus, seen as a pure constructor, is a set such that, if σ[α] is a type with
a free variable α, then fixσ := (∆)λα.σ is a type which satisfies

fixσ = σ[fixσ/α] (2.4.11)

There exists a quite vast literature on types satisfying equations like the one above: for instance
in [ML86] and [Pal90] one finds the analysis of extensions of Martin-Löf’s type theory by means of
fixpoint operations. In the computer science literature several extensions of simple type theory or
System F with fixed point types (usually called recursive types) are investigated (see for instance
[CC91, Men87]).

All type systems containing a fixpoint operator are inconsistent and, then, not normalizing.
For instance, Russell’s paradox can be typed in N by using the type Rus below

Rus :=
(
∀α((α)α→ ⊥)

)
∀β((β)β → ⊥) (2.4.12)

where we may take ⊥ as ∀γ.γ. Since Rus is β-equivalent to Rus → ⊥ one has that λx.(x)x
can be given type Rus → ⊥; again, since Rus is β-equivalent to Rus → ⊥, λx.(x)x can be
given type (Rus→ ⊥)→ ⊥ and thus it can be applied to an isomorphic copy of λx.(x)x. As a
consequence, we succeed in typing the not normalizing term (λx.(x)x)λy.(y)y of type ⊥.

Remark that the type Rus used to type the λ-term (λx.(x)x)λy.(y)y is not normalizing. In
chapter (6) it will be shown (lemma (6.3.6)) that if (λx.(x)x)λy.(y)y is typable, then its types
cannot be in normal form.

The expressive power of System N is prima facie extremely big: if one takes as Cσ(α) the
constructor α→ σ, for an arbitrary type σ, then the type ∆Cσ =β ∆C → σ allows to type every
λ-term (indeed the type Rus is of the form ∆C⊥). This impression will be indeed disproven at
the end of chapter (6), where it is shown that, if we exclude fixpoint types (which can always be
used to type not normalizing λ-terms), then the typability in System N essentially corresponds
to the one of the Systems U and U−.

Part II

Explaining why

57

Chapter 3

Inferentialist and interactionist
interpretations of proofs

An interpretation of proofs is obtained by associating derivations, in a suitable formal system,
with certain “constructions”, which might be informal entities or concrete mathematical objects.
The interest of an interpretation of proofs is twofold: first, it can be used to attach meaning to
formulae and to the logical constants occurring in them1. This proof-theoretic meaning is given
by stipulating the conditions under which a “construction” can be considered as an evidence for,
or a realizer of the formula. Second, it can be used to provide a proof-theoretic notion of validity
for derivations and to derive soundness theorems of the form: if d is a derivation of a formula A,
then its associated “construction” is an evidence for, or a realizer of A.

In this chapter we present two quite distinct, though historically and conceptually related,
approaches to the interpretation of proofs and the connected notions of proof-theoretic meaning
and validity. On the one hand, we recall some of the main ideas coming from the proof-theoretic
semantics tradition, arising from Prawitz’s work on natural deduction and Dummett’s program
of a philosophical foundation of deductive inference; on the other hand, we recall some of the
ideas connected with Kleene’s realizability interpretation and, more recently, with the Tait-
Girard reducibility technique, and try to reconstruct from those ideas a coherent proof-theoretic
approach. The exposition will be limited to the case of first order logic; the more controversial
situation of second order logic will be discussed in detail in the next chapter.

In addition to constituting a background for the next chapters, this chapter contains an
attempt at confronting two traditions which, though sharing a common origin in Gentzen’s
transformational proof-theory and constructivism, developed in a quite independent way.

3.1 Proof-theoretic validity

In a series of papers ([Pra71a, Pra71b, Pra74]) Prawitz laid down the foundations of a proof-
theoretical approach to the notions of validity and logical consequence, i.e. an approach which
takes the notion of proof (and its transformations) as central rather than the notion of truth and
the connected notion of model.

1In the following pages we’ll refer to the tasks of providing meaning to logical formulae and of providing meaning
to the logical constants as essentially equivalent tasks, since the meaning of a logical formulae is stipulated on the
basis of the logical constant which occurs in it as its principal operator.

59

60CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

At the basis of Prawitz’s project was a criticism of the standard model-theoretical approach
to validity:

Whether e.g. a sentence ∃x¬P (x) follows logically from a sentence ¬∀xP (x) depends
according to this definition on whether ∃x¬P (x) is true in each model (D,S) in which
¬∀xP (x) is true. And this again is the same as to ask whether there is an element e in D
that does not belong to S whenever it is not the case that every e in D belongs to S, i.e.
we are essentially back to the question whether ∃x¬P (x) follows from ¬∀xP (x). [Pra74]

In definitive, Prawitz’s criticism amounted to the claim that Tarski’s definition of logical con-
sequence, though extensionally correct, does not provide any clue as to why a certain sentence
should be taken as a consequence of another one, or to why a certain sentence should be taken
as valid while another should not: indeed, the model-theoretic explanation relies on those rules
whose meaning it is supposed to explain (see section (4.3.1)). By contrast, Prawitz proposed
to redefine the usual semantical notions starting from a definition of valid argument and, in
particular, an interpretation of proofs. It is not among the aims of this chapter to evaluate this
contraposition; we will limit ourselves to reconstruct Prawitz’s notion of validity; by the way, in
the next chapter, we’ll find forms of explanatory circularity very similar to the one ascribed to
model-theoretic semantics, when dealing with second order extensions of proof-theoretic validity.

Prawitz’s papers and ideas constituted the starting point for the proof-theoretic semantics
program (see [SH91, SH12]): this is a program in the philosophy of logic, arising from the works
by Dummett and Prawitz himself in the 70s, which aims at showing how deductive inference
can be justified by relying on the meanings assigned to the logical constants by means of the
interpretation of proofs.

Proof-theoretic semantics is not a direct consequence of the acceptance of a proof-theoretical
notion of validity, since it relies on the thesis (usually called the verificationist thesis, see below),
vaguely inspired by some remarks by Gentzen, that the meaning of a logical constant is deter-
mined by its introduction rules. In particular, the technique of computability predicates in proofs
of normalization in type theory (which will be presented in the next section) is historically and
conceptually tied to Prawitz’s notion of validity, but is not in accordance with the verificationist
thesis (section (3.2.2)).

In this section we briefly present and discuss some of the motivations for a proof-theoretic
approach to validity and we recall the basic ideas of proof-theoretic semantics.

3.1.1 Meaning and implicit definitions
Before entering into the details of the interpretation of proofs which is usually referred to as
proof-theoretic semantics, something must be said about the conception of meaning (and thus,
of semantics) which underlies this perspective.

Meaning as use: first interpretation A characteristic aspect of the proof-theoretic ap-
proaches is the idea that the meaning of the logical constant lies in the concrete conditions of
the their use (as occurring as principal operators in logical sentences): if a natural deduction
frame is adopted (as it is often the case in this tradition) then such conditions are identified with
the introduction and elimination rules associated to the logical constants. This idea was already
contained in some remarks by Gentzen (see below) in his 1934 thesis [Gen64], and i usually
associated with a well-known remark by Wittgenstein in [Wit09, Wit78] (see below)

For a large class of cases of the employment of the word “meaning” - though not for all - this
way can be explained in this way: the meaning of a word is its use in the language. [Wit09]
§43

3.1. PROOF-THEORETIC VALIDITY 61

A second interpretation of the Wittgenstein’s“meaning as use” motto will be sketched in subsec-
tion (3.2.3).

Such a conception of meaning has to be contrasted with the view which takes truth-conditions
(for instance, truth-tables) as determining the meaning of the logical constants and which con-
siders deductive inference justified as it preserves truth from premisses to conclusion: the usual
model-theoretic notions of validity and logical consequence are usually applied to devise a formal
frame for this view [Tar83].

In definitive, in contrast with the model-theoretic conception of meaning (charged by Prawitz
of running into a form of explanatory circularity), the proof-theoretic conception aims at a
vindication of logic within the description of the practice of proving and deriving consequences
from assertions (as far as this practice can be formalized within a suitable proof-system).

Self-justifying rules Opposed to the idea that the justification of logical rules comes from the
preservation of model-theoretic truth, and in accord with the “meaning as use” motto, stands the
thesis that (at least some of) the logical rules must be taken as self-justifying, i.e. as demanding
for no justification; in [Dum91b] Dummett describes a self-justifying rule as simply a rule that
we treat as immediately valid. Dummett takes the admission of some rules as self-justifying as a
condition for the possibility itself of a proof-theoretical justification of logic:

[...] we cannot have a proof theory unless we have some means of proof. If, then, there
is to be a general proof-theoretic procedure for justifying logical laws, uncontaminated by
any ideas foreign to proof theory, there must be some logical laws that can be stipulated
outright initially, without the need for justification, to serve as a base for the proof-theoretic
justification of other laws. [Dum91b]

The link with the “meaning as use” view is that a rule (for the introduction or elimination
of a logical constant) which is taken as self-justifying, is part of an implicit definition of that
constant, i.e. as meaning-constitutive for that operator: understanding its meaning corresponds
then to accepting the rule as valid. As Boghossian explains

It is by arbitrarily stipulating that [...] certain inferences are to be valid that we attach a
meaning to the logical constants. [Bog96]

This conception stands in open contrast with the model-theoretic view, according to which
the meaning of a sentence is given by the conditions which determine it as true and a rule is valid
when it preserves the truth from the premisses to the conclusion. The roots of this opposition
can be traced back to a well-known debate occurred at the end of the 19th century between
Frege and Hilbert: the latter, in his Grundlagen der Geometrie, was explicitly advancing the
idea that the axioms of a certain geometry constitute an implicit definition of the geometrical
notions involved. Frege replied to Hilbert in a letter in 1899, fiercely opposing the view that it is
up to definitions to fix the meaning of sentences and the denotation of terms, and that axioms
should express truths.

[Axioms and theorems] must not contain a word or sign whose sense and meaning, or whose
contribution to the expression of a thought, was not already completely laid down, so that
there is no doubt about the sense of the proposition and the thought it expresses. The only
question can be whether this thought is true and what its truth rests on. Thus axioms and
theorems can never try to lay down the meaning of a sign or a word that occurs in them,
but it must be already laid down. [Fre80]

Reading the Grundlagen under this perspective, Frege observed that

[...] the meanings of the words “point”, “line”, “between” are not given, but are assumed to
be known in advance. [Fre50]

62CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

In his answer to Frege, Hilbert strongly rejected Frege’s reading:

I do not want to assume anything as known in advance. I regard my explanation [...] as a
definition of the concepts point, line, plane [...] If one is looking for other definitions of a
“point”, [...] one is looking for something one can never find because there is nothing there.
[Fre50]

In [Cof91] Coffa describes the view defended by Hilbert in Kantian terms as one of the first
steps towards a “Copernican turn in semantics”:

Meanings are constituted roughly in the way in which Kantians used to think that we
constitute experience or its objects, through the employment of rules or maxims whose
adoption is prior to and the source of the meanings in question. [Cof91]

The mature development of such a semantical turn, in Coffa’s reconstruction, can be found in
the writings by Carnap and Wittgenstein in the 1930’s: the first, in [Car37], defended the view
that axioms and rules of a formal system implicitly define the meaning of the logical symbols.

Let any postulates and any rules of inference be chosen arbitrarily; then this choice, whatever
it may be, will determine what meaning is to be assigned to the fundamental logical symbols.
[Car37]

In particular Carnap’s conception allowed to retrieve the ancient notion of analyticity, or “truth
by virtue of meaning”: since the meanings of the logical sentences are determined by the rules
and axioms involving them, all theorems of a formal logical system shuld be taken as analytically
true.

In the same years Wittgenstein was defending a similar position (in contrast with the ideas
made popular with the Tractatus [Wit01]): he held that the sole vindication of logical inference
lied in the practice of accepting its defining rules: in a word, the rules of logic would not be
infallible because of some property they enjoy (“In what sense is logic something sublime?”
[Wit09], ¶89), but just because we have been learned to treat them as infallible.

But doesn’t e.g. ’fa’ have to follow from ’(x)fx’, if ’(x)fx’ is meant in the way we mean
it?" - And how does the way we mean it come out? Doesn’t it come out in the constant
practice of its use? [...] One learns the meaning of ’(x)’ by learning that ’fa’ follows from
’(x)fx’. [Wit78]

Wittgenstein’s “meaning as use” doctrine has here the consequence of inverting the direction of
explanation of the role of logic with respect to language: logic would not have an exceptional,
normative role in language because of its nature, but rather the nature of logic would be given
by the exceptional, normative role that it plays in linguistic practices.

Inference and analyticity As it is well-known Quine in the 1950s had presented a series of
arguments (contained in [Qui53] and [Qui76]) against the use of the notion of analyticity in the
explanation and justification of logical rules, with an explicit reference to Carnap’s doctrine of
implicit definitions. The development of the proof-theoretic semantic conception between the
1970s and the 1980s had, among its consequences, the one of revitalizing the debate in the
philosophy of logic over analyticity.

Indeed, in proof-theoretic semantics the meaning of a logical constant is given by the set of
self-justifying rules involving that operator. From an epistemological point of view, this implies
that the knowledge of the meaning of a logical constant is enough to be justified in taking its
meaning-constitutive rules as valid.

In [Bog96], Boghossian acknowledges that Quine’s arguments lead to a rejection of a meta-
physical notion of analyticity: he calls a sentence metaphysically analytic when its truth-value

3.1. PROOF-THEORETIC VALIDITY 63

is determined by its meaning. Similarly we can call an inference metaphysically analytic if its
truth-preservation is determined by the meaning of the premisses and the conclusion. The re-
jection of the metaphysical notion undermines a semantic justification of logical inference based
on the idea that the meaning of a logical sentence is determined by its truth-conditions.

At the same time Boghossian tries to defend the view that Quine’s rejection can be escaped
if one endorses an inferentialist conception of meaning, as the one involved in the thesis that
rules work as implicit definitions of the logical constants. In particular, Boghossian claims that
Quine’s argument leaves room for the development of an epistemic notion of analyticity (see
[Bog96, Bog03]): a sentence is epistemically analytic if mere grasp of its meaning suffices for
being justified in holding it true; an inference is epistemically analytic if mere grasp of the
meaning of the premisses and the conclusion suffices for being justified in holding it valid. On
this reading the self-justifying rules for a logical constant turn out to be epistemically analytic.

3.1.2 Consistency and the inversion principle
An obvious objection to the implicit definition conception is that, by admitting that whatever
rule can be taken as implicitly defining a logical constant, one runs into serious problems of
justification: for instance, if a contradiction can be derived from a given system of rules or
axioms, in what sense can the use of those rules and axioms be considered justified (or self-
justified)?

The advocate of proof-theoretic semantics would answer that the rules of logic are not purely
arbitrary, as the enjoy some structural properties (arising from Prawitz’s inversion principle -
see subsection (2.1.1)) which allow to reject some pathological examples (as the one notoriously
proposed by Prior in [Pri67]).

However, in chapter (1) we remarked that a consequence of Gödel’s incompleteness theorems is
that a sharp distinction must be made between properties that can be established combinatorially
or recursively (“how proof theory”) and properties, like consistency, which demand for logically
complex arguments (“why proof theory”).

Hence Prawitz’s inversion principle, which is a local, combinatorial, criterion, must be distin-
guished from the Hauptsatz, a global criterion, which implies consistency.

Implicit definitions and contradictions The conceptions of Hilbert, Carnap and Wittgen-
stein sketched above diverge on the problem of contradictions: in [Wit78] Wittgenstein, as it is
well-known, defended the idea that all rules gain their legitimacy from the concrete practice of
language, and in particular logical rules gain their epistemological status (of deductively valid
ones) from the role attributed to them in the use of language. As a consequence, he considered
all matters as to the justification of logical rules as devoid of sense. In [Wit89] he even tries to
argue for the substantial harmlessness of contradictions (as those arising from Russell’s paradox).

By contrast, as it is well-known, in the formalist program developed by Hilbert, a set of
axioms can be taken as an implicit definition of a mathematical entity only when satisfying a
criterion of non-contradiction:

If contradictory attributes be assigned to a concept, I say, that mathematically the concept
does not exist. So, for example, a real number whose square is −1 does not exist math-
ematically. But if it can be proved that the attributes assigned to the concept can never
lead to a contradiction by the application of a finite number of logical inferences, I say that
the mathematical existence of the concept (for example, of a number or a function which
satisfies certain conditions) is thereby proved. [Hil96b]

In definitive, if we do not want to admit as valid an inference which can be used to derive
a contradiction, it appears that implicit definitions should be supplemented with some form of

64CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

warrant that they won’t lead to a contradiction. But, since at least one of the purposes of a
definition of validity for sentences and inferences is to have a warrant that they do not lead to
contradiction, this seems tantamount to say that we can define validity by means of implicitly
defining inferences, provided that the latter are valid inferences: a viciously circular explanation.

A similar objection is often advocated against defenders of an epistemic conception of an-
alyticity: since the reason for judging an inference analytic is that this inference must be in a
sense compelling, an implicitly defining inference should be supplemented with a warrant that a
speaker is actually entitled to draw the its conclusion from its premisses (for instance, as Peacocke
agues in [Pea93], by the warrant that the inference is truth-preserving).

In this context Carnap’s position is of some interest: in [Car37] he adopts a liberalist position
as to logical rules:

No question of justification arises at all, but only the question of the syntactical consequences
to which one or other of the choices leads, including the question of non-contradiction.
[Car37]

In the same text he remarks that the evaluation of a formal system on the basis of its syntactical
properties (like non-contradiction) is made on a purely pragmatic basis. It must be remarked
here how Carnap seems to consider the question of non-contradiction as a finite, combinatorial
matter (a “syntactical consequence”), devoid of a genuine epistemological interest.

By contrast it should be remarked that, by Gödel’s second incompleteness theorem, the
question of the non-contradiction has a deep epistemological content: it was just the fact that
the argument for the satisfaction of such a criterion for an arithmetical theory could not be
formalized within the theory itself which was at the origin of the failure of Hilbert’s program
(see subsection (4.3.1)).

The inversion principle In a famous paper ([Pri67]) Arthur Prior, in order to argue against
the implicit definition conception, presented a weird connective, tonk, whose implicitly defining
rules are listed below

A
AtonkB

(tonk − I)1
B

AtonkB
(tonk − I)2

AtonkB
A

(tonk − E)1
AtonkB

B
(tonk − E)2

(3.1.1)
Since, by successively introducing and eliminating tonk, every formula can be derived, the ac-
ceptance of the tonk connective as a meaningful logical constant leads to contradictions.

Prior’s example provoked a vast debate over the legitimacy of a purely conventionalist inter-
pretation of logic. The by now “standard” proof-theoretical response to Prior is the remark that
the rules of logic are not purely conventional, since they are supposed to satisfy some structural
properties. In order to describe such properties, we have to get back to Gentzen’s transforma-
tional approach.

When defining Gentzen transformations over derivations, we have to consider cuts whose
premisses are respectively obtained by means of right and of a left rule for the same logical
constant (see chapter (2)). In such cases the transformation consists in deleting the two rules
introducing the logical constant on the two sides of the sequents and introducing cuts between
the remaining subderivations.

The translation of this operation in the language of natural deduction leads to a normalization
procedure for derivations (see [Pra65]): by a cut it is meant the occurrence of an introduction rule
for a logical constant immediately followed by an elimination rule for the same logical constant;
the Gentzen transformation in this case applies to the derivation in order to produce a derivation
in which the two rules are deleted. For instance, in the case of implication, a cut corresponds to

3.1. PROOF-THEORETIC VALIDITY 65

the occurrence of the following situation in a derivation d:

A....
B

A⇒ B
(⇒ I)

....
A

B
(⇒ E)

.... (3.1.2)

which can be reduced to the derivation d below, where the occurrences of the rules (⇒ I) and
(⇒ E) have been eliminated:

....
A....
B.... (3.1.3)

Prawitz’s inversion principle (subsection (2.1.1)) states indeed that such transformations
must always be performable, if a cut occurs in a derivation. This principle can indeed be seen
as a principle for the justification of a logical constant: it says that the conditions which allow
for the assertion of a sentence in which a logical constant occurs as principal operator must be
enough for justifying the assertion of an immediate consequence of this sentence.

We can use the inversion principle to reject Prior’s connective tonk: in order to derive a
contradiction one has to use a tonk-introduction (given a derivation of an arbitrary formula A)
immediately followed by a tonk-elimination, as below:

....
A

Atonk⊥ (tonk − I)1

⊥ (tonk − E)2 (3.1.4)

now, since the two rules (tonk − I)1 and (tonk − E)2 do not satisfy an inversion principle, the
derivation above cannot be normalized.

By the way, the inversion principle does not constitute a sufficient criterion for avoiding
contradictions from arbitrarily stipulated rules. A counterexample can be found already in
Prawitz’s book [Pra65]: there he defines a natural deduction version of naïve set theory, made
of the following two rules (corresponding to the naïve comprehension principle):

A[t/x]

t ∈ {x|A}
(set− I)

t ∈ {x|A}
A[t/x]

(set− E)
(3.1.5)

the rules above satisfy the inversion principle, as

....
A[t/x]

t ∈ {x|A}
(set− I)

A[t/x]
(set− E)

.... (3.1.6)

66CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

can be reduced to
A[t/x].... (3.1.7)

At the same time, Russell’s paradox can be reproduced within this system: in particular, by
letting t be the set {x|x ∈ x⇒ A}, the derivation dRus below can be built

[t ∈ t]x

t ∈ t⇒ A
(set− E)

[t ∈ t]x

A
(⇒ −E)

t ∈ t⇒ A
(⇒ I)x

[t ∈ t]y

t ∈ t⇒ A
(set− E)

[t ∈ t]y

A
(⇒ −E)

t ∈ t⇒ A
(⇒ I)y

t ∈ t (set− I)

A
(⇒ −E)

(3.1.8)

for an arbitrary formula A (for instance A = ⊥). dRus ends with a cut made of the rules (⇒ −I)
and (⇒ −E), and one easily verifies that, by normalizing this cut, a derivation identical to dRus
is produced, i.e. the normalization procedure diverges.

This example shows that the existence of a well-defined reduction procedure over derivations
is not sufficient for characterizing valid inferences: the possibility to locally reduce proofs be-
longs to “how proof theory” (it can be entirely described in a recursive way), whereas the fact
that all such reductions terminate producing a normal form belongs to “why proof theory” (as
Gentzen’s Hauptsatz is expressed by a Π0

2 formula). This fact will appear more clear when we
look at derivations from the “forgetful” viewpoint, i.e. as pure λ-terms, and at the normalization
procedure as the execution of those terms (see (3.2)).

3.1.3 Proof-theoretic semantics
We start our short description of the perspective of proof-theoretic semantics by recalling the two
main sources of the proof-theoretical interpretation: the BHK interpretation of intuitionistic
proofs, and Gentzen’s remarks on the role of introduction rules as implicit definitions of the
meaning of the logical constants.

The BHK interpretation The idea of a semantics centered on the notion of proof has to
be traced back to the so-called BHK interpretation of intuitionistic proofs. This is usually
acknowledged as the first example of an (informal) interpretation of logic defined at the level of
proofs. BHK is an informal semantics in which proofs are interpreted as certain “constructions”
(we discuss this ambiguous notion in the next section). In particular, this interpretation is
obtained by a series of clauses which state the conditions under which a certain formula can
be asserted: the interpretation of proofs can then be seen also as an assignment of meaning to
logical formulae, where the meaning of a formula is given by stating under which circumstances
a “construction” can be seen as a proof of that formula.

The most well-known source for the BHK interpretation is [Hey56]:

The conjunction ∧ gives no difficulty: p ∧ q can be asserted if and only if both p and q can
be asserted.

I have already spoken of the disjunction ∨. p ∨ q can be asserted if and only if at least one
of the propositions p and q can be asserted.

The negation ¬ [...] ¬p can be asserted if and only if we possess a construction which from
the supposition that a construction p were carried out, leads to a contradiction.

3.1. PROOF-THEORETIC VALIDITY 67

[...]

The implication p→ q can be asserted if and only if we possess a construction r which, joined
to any construction proving p (supposing that the latter be effected), would automatically
effect a construction proving q. In other words, a proof of p, together with r, would form a
proof of q. [Hey56].

This interpretation was indeed one of the first attempt towards a dynamical presentation
of logic, since a proof of an implication was described in terms of how it could be used in
order to transform other proofs; a precise connection with the Curry-Howard correspondence
between proofs and programs will be discussed in the section (3.2), by exploiting the realizability
interpretation.

Gentzen’s remarks and verificationism Gentzen’s doctoral thesis [Gen64] contains a series
of brief remarks in which he states that the introduction rules of natural deduction calculus work
as definitions of the “meaning” of the logical constants, and that the elimination rules are, in a
sense, derived from the former.

The introductions represent, as it were, the “definitions" of the symbols concerned, and
the eliminations are no more, in the final analysis, than the consequences of these definitions.
This fact may be expressed as follows: in eliminating a symbol, the formula, whose terminal
symbol we are dealing with, may be used only “in the sense afforded it by the introduction
of that symbol.”

[...]
By making these ideas more precise, it should be possible to devise the E-inferences as

single-valued functions of their corresponding I-inferences, on the basis of certain require-
ments. [Gen64]

The proponents of proof theoretic semantics (see for instance [SH12]) interpret the intuitions
contained in these remarks by means of two theses: first, the thesis of implicit definitions, that
is, the already discussed thesis that some rules of natural deduction can be considered as an
implicit definition of the logical constants; second, the verificationist thesis, asserting that the
meaning-constitutive rules are the introduction rules, and that the elimination rules are indeed
“derived” or justified with respect to the meaning fixed by the former.

The verificationist thesis The explanation of the verificationist thesis comes from two re-
marks: firstly, it embodies the idea, coming from the BHK interpretation, that the meaning of
a sentence is given by specifying the form of its proofs (or “verifications”, in Dummett’s termi-
nology). Dummett opposes this idea to a “pragmatist” conception, for which the meaning of a
sentence is given by specifying how to derive consequences from it. In this sense the verificationist
thesis appears quite natural for an approach based on proofs.

By the way, the idea that the meaning of a logical constant C is given by what counts as a
proof of a formula in which C occurs principally must be kept distinct from the old empiricist
idea that the meaning of a sentence is given by its (experimental) verifications: as Prawitz points
out

[...] according to the verificationism of today, to know the meaning of a sentence it is
sufficient to know what counts as a verification of the sentence, one does not need to know
a method that in principle verifies or refutes the sentence. [Pra02].

As Dummett writes

just this mistake was one of the two dogmas of empiricism repudiated by Quine. [Dum91b]

68CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

Indeed, it is already part of the BHK interpretation that the knowledge of the meaning
of a formula does not provide a way to explicitly construct a proof, but involves the ability to
recognize the form that such a proof, if any, should have. Thus, the verificationist thesis should
be read as stating that the meaning of a sentence (in which a certain logical constant occurs
principally) is given by the conditions under which this can be proved, where such conditions are
stipulated by a recursive definition in the style of the BHK interpretation.

The second remark comes from the fact that admitting all forms of verification (i.e. of
proofs) as meaning-constitutive would amount to admitting all rules as meaning-constitutive for
the logical constants. Indeed, an arbitrary rule can potentially occur in a proof of an arbitrary
formula (that is exactly what distinguishes a arbitrary derivation from a cut-free one, enjoying
the subformula property).

By elaborating Gentzen’s intuition that the introduction rules are the only meaning-constitutive
ones, a distinction between two forms of proofs was then proposed: a canonical proof of a formula
whose principal operator is C is a proof which ends with an introduction rule for C; this means
that the last step of the proof is taken in accordance with the meaning attached to C (it is, in
Boghossian’s terminology, epistemically analytic). A non canonical proof is a proof which is not
canonical.

The distinction between canonical and non canonical derivation constitutes the essential
ingredient of the proof-theoretic definition of validity of proofs. First, the validity of a canonical
derivation can be defined by an induction on the sum of the complexities of its premisses and
its conclusion: since the last rule of the derivation is an introduction rule, and thus immediately
valid, it is enough to verify that the sub-derivations which have those premisses as conclusion are
valid; now, the premisses of the rule are subformulae of the conclusion, and are thus of smaller
complexity.

Second, the definition of validity for non-canonical derivations requires the appeal to Gentzen’s
transformations, which allows to reduce the derivation in canonical form. Indeed, since the last
rule of a non canonical derivation might not be an introduction, the inductive definition above
does not work. One has then to rely on the inversion principle in order to transform the deriva-
tion into a canonical one: as Martin-Löf puts it in [ML84], a non-canonical proof can be seen as
a “method which, when applied, produces a canonical proof”.

In the definition of validity (that we sketch below) the normalization procedure (i.e. cut-
elimination) assumes thus the role of a vindication of meaning : firstly, because the inversion
principle can be restated as a semantical principle for the local justification of the elimination
rules with respect to meaning. Dummett’s harmony requirement is indeed a general reformulation
of that principle:

We say that harmony, in the general sense, obtains between the verification-conditions or
application-conditions of a given expression and the consequences of applying it when we
cannot [...] establish as true some statement which we should not have had other means of
establishing [...] The analogue, within the restricted domain of logic, for an arbitrary logical
constant c, is that it should not be possible, by

first applying one of the introduction rules for c and then immediately drawing a consequence
from the conclusion of that introduction rule by means of an elimination rule of which it is
the major premiss, to derive form the premisses of the introduction rule a consequence that
we could not otherwise have drawn.

[...]

The requirement that this criterion for harmony be satisfied conforms to our fundamental
conception of what deductive inference accomplishes. An argument or proof convinces us
because we construe it as showing that, given that the premisses hold good according to our

3.1. PROOF-THEORETIC VALIDITY 69

ordinary criteria, the conclusion must also hold according to the criteria we already have for
its holding. [Dum91b]

Secondly, since, as we saw in the preceding section, the inversion principle is not power-
ful enough to characterize validity, a stronger condition is required, namely that an arbitrary
closed derivation can be transformed into a canonical one, what Dummett calls the fundamental
assumption:

But the justification depends heavily upon what we may call the “fundamental assumption”:
that, if we have a valid argument for a complex statement, we can construct a valid argument
for it which finishes with an application of one of the introduction rules governing its principal
operator. [Dum91b]

Such an assumption, at least in the ∨,∃-free fragment of intuitionistic logic, can be proved as a
simple corollary of the normalization theorem for first order intuitionistic natural deduction.

Remark that, trivially, there exists no canonical proof of the absurd, since the latter has no
introduction rules. As a consequence, from the normalization theorem (or, from the fundamental
assumption) it follows that no non canonical proof of the absurd exists: if it existed, it would
reduce to a canonical one.

Hence, once again, we must distinguish between the inversion principle (a local, combinatorial,
property) and the fundamental assumption (a global property, implying consistency).

A definition of validity We provide a brief sketch of the definition of proof-theoretic valid-
ity for the implicative fragment of intuitionistic logic. The definition below essentially follows
Prawitz’s definition of strong validity in [Pra71a]. For a detailed discussion of the several notions
of proof-theoretic validity on the market, the reader can look at [SH06].

The definition is given by a generalized inductive definition: firstly, an induction on the
complexity of the conclusion of the derivation; secondly, an induction on the reduction relation
between derivations of the same conclusion.

Definition 3.1.1 (Validity for the ⇒-fragment of intuitionistic logic). Let d be a natural deduc-
tion derivation of conclusion A. d is valid if either:

(V1) A = B ⇒ C and d is canonical, i.e. of the form

[B]....
C

B ⇒ C
(⇒ −E)

(3.1.9)

and for every valid derivation d′ of conclusion B, the derivation
.... d
′

B....
C (3.1.10)

is valid;

(V2) d is not canonical and normal;

(V3) d is not canonical and not normal, and for every derivation d′ such that d reduces to d′ in
one step, d′ is valid.

70CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

Proof-theoretic validity, as it implies consistency, is a logically complex concept. In particular,
the validity of a derivation with respect to a formula A is expressed by a formula which has at
least the logical complexity of A: if A is B ⇒ C, then a derivation of conclusion A is valid if, for
all derivation d′, if d′ is a valid derivation of conclusion B, then the composition of d and d′ by
means of the implication elimination rule is a valid derivation of conclusion C.

A simple consequence of this definition is the following lemma

Lemma 3.1.1. Every valid derivation is strongly normalizable.

Proof. We argue by induction on the sum of the complexities of the conclusion and the open
assumptions of d (where compl(A ⇒ B) is compl(A) + compl(B) + 1), with a sub-induction on
the reduction relation over derivations.

Let A be B ⇒ C and d be canonical. Hence d is of the form

[B].... d1

C
B ⇒ C

(⇒ −I)
(3.1.11)

Since, d1 is valid, it follows by the induction hypothesis that it is strongly normalizing, hence d
is too.

If d is non canonical and normal, then it is obviously strongly normalizing. If d is non
canonical and non normal, then, since all its immediate reducts are valid, and by induction
hypothesis, strongly normalizing, it follows that d is too.

A second consequence of the definition of validity concerns open derivations, i.e. derivations
with open assumptions:

Lemma 3.1.2 (substitution lemma). Let d be an open derivation of the form

[A1], . . . , [An].... d
B (3.1.12)

then d is valid if and only if, for every list of valid derivations d1, . . . , dn, respectively of conclusion
A1, . . . , An, the derivation

.... d1

A1 . . .

.... dn
An.... d

B (3.1.13)

is valid.

We omit the proofs of this lemma so as of the theorem below. The arguments are indeed very
similar to the ones presented in the next section for reducibility in type theory (see subsection
(3.2.2)).

By a more sophisticated argument (we’ll sketch in the next section an argument for type
theory which has the same structure), and by relying on the lemma above, it can finally be
proved that all derivations are valid.

Theorem 3.1.1. Every derivation of the ⇒-fragment of intuitionistic natural deduction is valid.

3.2. REALIZABILITY AND REDUCIBILITY 71

In the next section, we will discuss the computability or reducibility properties of λ-terms, in
the context of type theory, which are similar to the property of validity for natural deduction
derivations. Indeed, we will present in some more detail how these properties can be used to
prove strong normalization theorems by techniques vary similar to the ones above. The main
difference is that, when dealing with the computability of λ-terms, we drop the distinction
between canonical and non canonical derivations, and with it the emphasis over introduction
rules. As a result, proofs are easier to follow but proof-theoretic semantics is lost. Rather, we
will try to propose an alternative to proof-theoretic semantics based on realizability semantics.

We conclude this presentation with some remarks. The proof-theoretic justification here
sketched can be read at two distinct levels: at an epistemological level it provides a notion of
validity for derivations and formulae by which the validity of all derivations can be reduced (by
means of the manipulations arising from Gentzen’s transformations) to the validity of deriva-
tions whose last step is taken as valid by definition (or “epistemically analytic”, in the sense of
[Bog96]). At a semantic level it provides a notion of meaning for the logical constants (given
by introduction rules) which is preserved by all deductive constructions (i.e. canonical or non
canonical derivations). On the one hand, then, cut-elimination is used to assure validity (and
coherence); on the other hand, it provides a vindication of the meaning stipulated by means of
introduction rules:

The meanings of our assertoric sentences in general, and of the logical constants in
particular, are given to us in such a way that the forms of deductive inference we admit
as valid can be exhibited as faithful to, or licensed by, those meanings and involve no
modification of them. [Dum91b]

3.2 Realizability and reducibility

In this section we present two different, though intimately related, approaches to the inter-
pretation of proofs: we briefly recall realizability semantics, a quite vast domain of research
inaugurated by Kleene’s paper [Kle45] and we discuss the technique of reducibility (also known
as convertibility or computability) predicates, used to build normalization proofs for type the-
ories. In the last section we discuss some of the features shared by the two approaches, which
prompt an alternative view with respect to proof-theoretic semantics.

3.2.1 Realizability semantics

Kleene’s recursive realizability The history of realizability starts with Kleene’s paper [Kle45],
where he provides an interpretation of proofs for intuitionistic (first-order) arithmetics. Kleene’s
goal was to state a clear connection between the informal intuitionistic notion of construction (as
stated for instance in the BHK interpretation2) and the notion of recursive computation that
had been developed by Herbrand, Gödel and himself.

Kleene’s main intuition, as he reports in [Kle73], was the following: intuitionistically, a proof
of a Π0

2 statement ∀n∃mA(n,m) is a constructive method µ producing, for each integer n, an
integer µ(n) and a proof that A(n, µ(n)) holds; now, on the basis of Church’s thesis, which
identifies the informal notion of computability with the rigorous one defined by means of the
notion of general recursive function, he conjectured that the method µ could be coded by a
general recursive function. Kleene’s conjecture, as he reports, did not receive a great appreciation

2Kleene is indeed quite explicit that, in developing the definition of realizability, he was not really inspired by
the BHK interpretation of proofs but rather by Brouwer’s texts.

72CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

at the time 3; by the way, it can surely be seen as one of the first intuitions in the direction of
what we presented in chapter (2) by the notion of “forgetful functor”. Through the realizability
interpretation, Kleene was indeed able to express his conjecture in precise terms and finally to
prove it.

The basic idea of Kleene’s realizability is to define a realizability relation between codes
and formulae: an intuitionistic proof of a formula A is then translated into a code realizing A.
Realizability is defined by means of the following clauses:

i. e realizes t = u if and only if t = u is true;

ii. no e realizes ⊥;

iii. e realizes A⇒ B if and only if, for all a which realizes A, {e}a realizes B;

iv. e realizes ∀nA if and only if, for all integer k, {e}k realizes A[k/n].

where {e}a denotes Kleene’s brackets, i.e. the application of the recursive function whose code
is e to the integer a. A code e realizing a formula A is called a realizer of A.

Kleene was able to show that, from a derivation d in Heyting Arithmetics HA of a formula
A it is possible to extract a realizer ed of A. In particular, among the several properties he could
establish, he proved the following two:

1) If A is derivable in HA, then A is realizable;

2) if ∀n∃mA(n,m) is derivable in HA, then there exists a recursive function f such that
A(n, f(n)) is realizable.

Kleene himself remarked that the realizability relation was akin to be explicitly formalized
by a predicate r in the language of arithmetics. A complete formalization was obtained by
Troelstra in [Tro63], where Kleene’s results were internalized within HA as follows:

1′) if A is derivable in HA, then there exists a code e such that erA is derivable in HA;

2′) if ∀n∃mA(n,m) is derivable in HA, then there exists an e such that both A(n, {e}n) and
∀n∃m(m = {e}n) (i.e. the totality of the function coded by e) are derivable in HA4.

These results can actually be seen as the first hints towards the extraction of programs from
formal derivations. In particular the theorem 2′) goes in the direction of theorem (2.3.2), which
shows how to extract a provably total recursive function from a derivation of a Π0

2 formula.

Modified realizability and the forgetful functor Kreisel’s approach to realizability in
[Kre59] differed from Kleene’s original one in that he took realizers not to be arbitrary codes, but
rather typed programs (in his vocabulary, functionals of finite type). Kreisel’s functionals where
defined starting from typed variables xσ, yσ, . . . , combinators kσ→τ→σ, s(σ→τ→ρ)→((σ→τ)→(σ→ρ))

(coming from combinatory logic [CF58]) and combinators rσ→(N→σ→σ)→N→σ for primitive re-
cursion.

The idea of this “modified” version of the realizability interpretation is, first, to assign with
each sentence A a type A∗ (where A∗ is essentially AF); second, to define a realizability relation
under the form of a typing relation between programs and types. Kreisel’s results can then be
summarized as follows:

3“That this plan was not altogether obvious in 1940 is illustrated by the reaction of a prominent logician to
whom I explained it at a chance meeting early in 1940. He explained to me reasons why, in his view, the plan
could not be expected to succeed. I did not succeed in understanding his reasons” [Kle73].

4Given a suitable encoding of Kleene’s brackets.

3.2. REALIZABILITY AND REDUCIBILITY 73

1′′) If A is derivable in HAω, then there exists a program M of type AF such that MrAF is
derivable in HAω;

2′′) if ∀n∃mA(n,m) is derivable in HA, then there exists a program M of type N→ (N∧AF))
such that MrN→ (N ∧AF)) is derivable in HAω and moreover, for all positive integers
k, h ∈ N, A(k, h) is derivable in HA if and only if Mk reduces to h.

where HAω is Heyting Arithmetics enriched with finite types or, equivalently, Gödel’s System
T enriched with predicate logic (see [Kre59]). Remark that 2′′ is very similar to the extraction
of program given by theorem (2.3.2).

Kreisel’s functional interpretation can be seen as one of the first concrete examples of the
formula-as-types paradigm: he explicitly assigned types to closed formulae and showed how to
extract typed programs from derivations. In this sense, it constitutes one of the most striking
precursors of the Curry-Howard correspondence. As van Oosten remarks in his brief historical
reconstruction [VO02]:

This “typed realizability”, defined by Kreisel in 1959 ([Kre59]), predates the slogan “formulae
as types” ([How80]) by 10 years! [VO02]

The relationship between Kreisel’s realizability and Kleene’s can be expressed again through
the forgetful translation: if we translate Kreisel’s functionals in a typed λ-calculus (for instance,
in System T) and then we erase all type information from them, we obtain an interpretation of
proofs by means of untyped programs which is equivalent to Kleene’s interpretation by means of
numerical codes. More on this below.

What is realizability? Realizability has actually grown into a quite vast domain of research,
so it would be pointless to try to make a list of all of its relevant developments. We can just
recall two main axis of research: on the one hand the search for purely mathematical descriptions
of the concept of realizability led to the development of a very rich categorial approach to the
subject (for instance [Hyl82] is considered as a cornerstone of the categorical approach, see [VO02]
for a brief reconstruction); on the other hand one should mention the development of classical
realizability, i.e. the extension of realizability to the interpretation of classical proofs by means
of control operators (see [Kri09]).

More relevant to the scopes of this very short summary is to try to highlight the main
characteristics of the several, and quite different, approaches to the semantics of proofs which go
under the name of realizability. A first property of all realizability interpretations is that they
are based over a map | · |, which associates, with each formula A, a set |A| of programs, i.e. the
set of the programs which realize A.

An interpretation presupposes then the choice of a class P of programs, such that, for each
formula A, |A| ⊆ P. The very general notion of partial combinatory algebra, or pca, (see [Sta73])
captures the ingredients needed to yield a realizability interpretation. A pca is essentially a set
on which a notion of product a ∗ b is defined (where a ∗ b is to be read as the application of
program a to input b), which contains variables and equivalent of the combinators k and s. In
particular, Kleene’s codes for partial recursive functions, along with Kleene’s bracket, form a
partial combinatory algebra, so as Kreisel’s functionals of finite type and pure λ-calculus.

Starting from the definition of the realizability relation, the map |·| can be essentially described

74CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

as follows:

|t = u| =

{
P if t = u is true
∅ else

(3.2.1)

|⊥| = ∅ (3.2.2)
|A⇒ B| = |A| → |B| (3.2.3)

|∀nA| =
∏
k∈N
|A[k/n]| (3.2.4)

where, given two sets a, b ⊆ P, a→ b denotes the set of programs M such that, for all program
N ∈ a, M ∗N ∈ b.

Thus, with the exception of Kreisel’s modified realizability, all these interpretation associate
formal derivations with untyped programs; in particular, the internal structure of the programs
is never questioned in the definition of realizability: all that matters is how the program behaves
in certain context. Kleene in particular seems already quite conscious of this aspect:

A realization number by itself of course conveys no information; but given the form of
statement of which it is a realization, we shall be able in the light of our definition to read
from it the requisite information. [Kle45]

This is a major difference with respect to the Curry-Howard correspondence, where a derivation
is usually translated into a typed λ-term; in realizability, derivations are interpreted by arbitrary
programs, independently of how such programs are constructed. Here we can see a very strong
difference with respect to the rule-based approach of proof-theoretic semantics: there the inter-
pretation of a derivation is based upon the notion of a canonical proof, i.e. of a proof with a
peculiar internal structure (connected with its last rule).

A crucial consequence of this untyped approach is that the same program can be a realizer
of different sentences: trivially every program is a realizer of every true atomic formula; more
interestingly, an untyped combinator for recursion (for instance a type-free version of Kreisel’s
combinator r) is a realizer of every instance of an induction axiom. Such a polymorphism of
programs will be indeed a crucial ingredient when discussing second order proof-theory.

A second remarkable feature concerns the treatment of atomic sentences; the definition im-
plies indeed a form of proof-irrelevance of atomic sentences: if an atomic sentence is true, then
whatever program can interpret a proof; if it is false, then no program can realize it. As a con-
sequence, for instance, one can devise trivial realizers for the first two Peano axioms: if we chose
λ-calculus as our pca, for the first one one simply takes the term λx.λy.λz.z, for the second one
one can take any term.

Finally, whereas theorem 1) and its variants 1′),1′′) all express the soundness of HA with
respect to the realizability semantics, the converse result (i.e. completeness) is false: there exists
many well-known cases of realizable sentences which are not intuitionistically derivable. A long
list of remarkable examples can be provided as a corollary of a simple result stating that, for every
formula A, either it or its negation is realizable. In particular, since the excluded middle A∨¬A
is not realizable, its negation ¬(A∨¬A) is realizable (but not derivable). Again, as a consequence
of the Halting problem one can show that the formula ∀n(Halt(n)∨¬Halt(n)), where Halt(n) is
a predicate expressing that the program coded by the integer n halts, is not realizable. Thus, its
negation is realizable, but not derivable. These examples show that realizability, as we defined,
is fundamentally incompatible with classical logic. The extension of realizability to a classical
frame demands indeed for the introduction of several new ingredients (see [Kri09]).

We can produce other interesting examples of incompleteness which are indeed compatible
with classical logic by applying Gödel’s theorems: the latter allows to find Π0

2 formulae which

3.2. REALIZABILITY AND REDUCIBILITY 75

are not derivable in HA; in particular, to devise recursive functions whose totality cannot be
proved in HA. Now, as a consequence of 2′, the recursive function itself, as coded in a suitable
pca, can be seen as a realizer of the Π0

2 sentence expressing its totality.
Remark that, since a realizer is a constructive object in all respects, this means that in a

sense we have constructive realizations of all (true) totality statements. By the way, due to the
incompleteness theorems, to quote Kleene, we have no means to “read the requisite information”
from these programs. In a word, we have the codes but we don’t know how to decode them.
This idea will be indeed at the basis of chapter (6) and discussed in chapter (7).

To sum up, the main features of the realizability interpretation are essentially three: the
polymorphism of realizers, the proof-irrelevance of atomic sentences and the incompleteness with
respect to realizable sentences.

3.2.2 Tait-Girard reducibility

In the literature on type theory the expression “Tait-Girard reducibility” refers to a family of
techniques for proving normalization arguments which originates in a paper by Tait ([Tai67])
on the strong normalization of Gödel’s System T and was successively developed and extended
to higher order type theories by Girard in his thesis ([Gir72]). Several variants and further
developments of this technique can be found in the literature (for instance, Krivine’s technique
of saturated sets [Kri93] or Mitchell’s [Mit86]).

Furthermore, Prawitz’s proof-theoretical validity in [Pra71a], so as Martin-Löf’s computabil-
ity in [ML70a] arose as extensions of the reducibility technique to natural deduction for, re-
spectively, intuitionistic higher order logic and the intuitionistic theory of (iterated) inductive
definitions. We briefly discuss below the (quite relevant) differences between these two related
techniques.

The technique of reducibility predicates shares many ideas and features with the realizability
interpretation: in particular [Tai75], soon after the publication of Girard’s ideas, elaborated an
untyped version of Girard’s reducibility and showed that the normalization proof for System
F could be restated in the form of a realizability argument; [Gal95] discusses in detail the re-
lationship between realizability and reducibility. In a sense, it might be said that Tait-Girard
reducibility is an application of the idea of realizability to type theory in order to prove normal-
ization.

In particular, this technique can be seen as a semantics of programs which associates types
with sets of programs behaving in a certain way; the definition of the behavior of programs
strongly resembles the realizability interpretation. Moreover, whereas [Tai67] and [Gir72] are
based on a typed frame (i.e. types are associated with sets of typed programs), in [Tai75] and
later [Mit86] and [Gal90] reducibility is defined in an untyped frame (i.e. types are associated
with sets of pure λ-terms). The latter will be the approach followed in the brief sketch below.

The reducibility of simple types We present here an untyped version of the reducibility
technique which is essentially based on Tait’s paper [Tai75] and on [Gir11] and [Gal90]. We limit
ourself to the case of finite types (covering, by the forgetful translation, the case of intuitionistic
first order logic), as this will be enough for a brief comparison with the notion of proof-theoretic
validity presented in the preceding section. In the next section we discuss the second order case.

The first intuition for a normalization proof for type theory is to develop an argument by
induction over the size of terms. The main difficulty arises in the case of a redex (λx.M)N ,
since the reduced term M [N/x] might have size strictly bigger than the former. That’s why one
looks indeed for an argument by induction over the types, with a subinduction over the reduction
relation for each type (similarly to the definition of validity).

76CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

Tait’s idea in [Tai67] is to define, for each type σ, a set of terms of type σ which are called
computable, and which have the property of being strongly normalizing. In [Tai75] this idea is
restated in an untyped frame: with each simple type σ, he associates a set Redσ of untyped
λ-terms by induction as follows:

• if σ is a variable, then Redσ = SN , the set of strongly normalizing λ-terms;

• if σ = τ → ρ, then Redσ = Redτ → Redρ, i.e. the set of λ-terms M such that, for all
N ∈ Redτ , MN ∈ Redσ.

[Tai75] explicitly states this definition in a realizability style: he defines indeed a realizability
relation between terms and types given by Mrσ if and only if M ∈ Redσ.

When a ∈ A, we say that a realizes A. This is closely related to Kleene’s 1945 recursive
realizability interpretation, except that, instead of coding functions by their Gödel numbers,
we use the corresponding term of C [i.e. pure λ-calculus]. [Tai75]

In [Gir72] Girard proves three crucial properties of this definition:

Lemma 3.2.1. Reducibilitiy satisfies the following properties:

(R1) Every reducible term is in SN ;

(R2) M ∈ Redσ and M →β M
′ implies M ′ ∈ Redσ ;

(R3) If M is simple and for all M ′ such that M →1 M
′, M ′ ∈ Redσ, then M ∈ Redσ.

Proof. We argue by induction over the types. We just discuss the case of the implication σ → τ ,
since the variable case is obvious.

(R1) By R3 applied to σ, the variable x is in Redσ; if M ∈ Redσ→τ , then Mx ∈ Redτ , hence,
by R1 for τ , Mx ∈ SN , which implies that M ∈ SN .

(R2) If M ∈ Redσ→τ and M →β M
′, and if N ∈ Redσ, then MN ∈ Redτ and, since MN →β

M ′N , by R2 M ′N ∈ Redτ . Hence, M ′ ∈ Redσ→τ .

(R3) Let N ∈ Redσ; by R1, N ∈ SN ; by induction on the |N |, the supremum of the lengths all
reduction sequences of N , one shows that MN ∈ Redτ (and, a fortiori, by R3, that M ∈
Redσ→τ ; indeed, the immediate reducts of MN are of the form M ′N , where M →1 M

′,
or MN ′, where N →1 N

′ (here we use the fact that M is simple). Now, M ′N ∈ Redτ by
hypothesis, whereas MN ′ ∈ Redτ by induction hypothesis, since |N ′| < |N |.

Property R1 states that, for all type σ, Redσ is a subset of SN ; property R2 states that
reducibilities are closed under β-reduction; property R3 is the least intuitive: a simple term is
a term which does not begin with a λ5; then the property states that reducibilities are closed
under immediate anti-reduction.

One of Girard’s ideas in [Gir72] was to use properties R1− 3 in order to define an abstract
notion of reducibility candidate, fundamental for the second order case (see section (4.1)):

Definition 3.2.1 (Reducibility candidate). A reducibility candidate C is a set of λ-terms sat-
isfying R1− 3.

5Remark that those terms, from a natural deduction perspective, essentially correspond to derivations which
are not in canonical form.

3.2. REALIZABILITY AND REDUCIBILITY 77

Hence lemma (3.2.1) can be restated as saying that, for all σ, Redσ is a reducibility candidate.
In order to prove strong normalization for all simply types terms, it remains then to show

that, for every term M of type σ, M realizes σ (this is called indeed the realizability theorem in
[Tai75]).

The idea is now to proceed by induction over the reduction of terms: the problematic case of
an application MN now becomes easy: from M ∈ Redσ→τ and N ∈ Redσ one immediately gets
MN ∈ Redτ , and hence M ∈ SN . More delicate is the case of λ-abstraction: we have to show
that, if M ∈ Redτ , then λx.M ∈ Redσ→τ , i.e. for every N ∈ Redσ, (λx.M)N ∈ Redτ . Remark
that, by R3, it is enough to show that M [N/x] ∈ Redτ . To achieve this we need to strengthen
the induction hypothesis: we will show by induction indeed that, if M ∈ Redτ , x ∈ FV (M) is
declared of type σ and N ∈ Redσ, then M [N/x] ∈ Redτ .

Remark that this strengthened version essentially corresponds to what is proven, for natural
deduction, by lemma (3.1.2).

To prove the final result, now, we need a lemma:

Lemma 3.2.2. If Γ, (x : σ) ` M : τ is derivable in simple type theory and, for all N ∈ Redσ,
M [N/x] ∈ Redτ , then λx.M ∈ Redσ→τ .

Proof. We have to show that (λx.M)N ∈ Redτ . Remark thatM is reducible (and hence strongly
normalizing), since My ∈ Redτ . We argue then by induction on |M |+ |N |; since (λx.M)N is a
simple term, by R3 it suffices to show the result for its immediate reducts; these are of the form
(λx.M ′)N , for M →1 M

′ and hence |M ′| < |M |, or (λx.M)N ′, with N →1 N
′, |N ′| < |N |, both

reducible by induction hypothesis, or M [N/x], reducible by hypothesis.

We can now state the main theorem, corresponding to lemma (3.1.2).

Theorem 3.2.1. Let (x1 : τ1), . . . , (xn : τn) ` M : σ be derivable in simple type theorty. Then,
for every choice of N1 ∈ Redτ1 , . . . , Nn ∈ Redτn , M [N1/x1, . . . , Nn/xn] ∈ Redσ.

Proof. Let M be M [N1/x1, . . . , Nn/xn]. We argue by induction on the term M :

i. If M is a variable, then the result is immediate;

ii. If M = λx.M ′, then σ = τ → ρ and, by induction hypothesis, (x1 : τ1), . . . , (xn : τn), (x :
τ) ` M ′ : ρ is derivable and for all N ∈ Redτ , M [N/x] ∈ Redρ. Hence, by lemma (3.2.2),
λx.M ∈ Redτ→ρ;

iii. If M = M ′M ′′, then, by induction hypothesis, (x1 : τ1), . . . , (xn : τn) ` M ′ : τ → ρ and
(x1 : τ1), . . . , (xn : τn) ` M ′′ : τ are derivable and M

′ ∈ Redτ→ρ and M
′′ ∈ Redτ for

certain types τ, ρ (this is easily proved by induction on the typing derivation), and the
result immediately follows by the definition of reducibility.

We can thus finally state the “realizability theorem” as a corollary:

Corollary 3.2.1. If ` M : σ is derivable in simple type theory, then M is a realizer of σ (and
hence strongly normalizing).

Proof. By R3 variables belong toRedτ , for all τ , hence, if FV (M) = {x1, . . . , xn},M [x1/x1 . . . xn/xn] =
M ∈ Redσ.

78CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

Reducibility and validity We won’t enter here into the complex debate over the differences
between a normalization argument and a semantic proof of validity (which constitutes for instance
the subject of [SH06]), but we limit ourselves to highlight some important differences between
the two historically related approaches of Tait-Girard reducibility and proof-theoretic validity.

Tait-Girard reducibility was a key ingredient for the development of the notions of proof-
theoretic validity (Prawitz explicitly refers to Tait’s and Girard’s work in [Pra71a]). It is indeed
possible to extend the reducibility definition into a definition of proof-theoretic validity, based
on elimination rules rather than on introduction rules (as the clause defining Redσ→τ imposes).
Such a definition is just sketched in [Pra71a] and discussed in [SH06].

Definition 3.2.2 (Validity based on elimination rules). Let d be a natural deduction derivation
of conclusion A. d is valid if either

(V′1) A is atomic and d is strongly normalizable;

(V′2) A = B ⇒ C and for every valid derivation d′ of conclusion B, the derivation

.... d
B ⇒ C

.... d
′

B
C

(⇒ E)
(3.2.5)

is valid.

As a consequence of lemma (3.2.2), lemma (3.1.2) is derivable for this eliminative version of
validity. The definition above looks much simpler than the one based on introduction rules, for at
least two reasons: first, no distinction is made between canonical and non canonical derivations,
since no reference is made to introduction rules; second, the complex and counterintuitive clause
(V3) is absent, and is indeed recovered by the analogue property (R3), which is a consequence
of the definition by means of lemma (3.2.1). In particular, the definition is a pure induction
over formulae, in contrast with Prawitz’s validity, which is defined by an iterated induction over
formulae and over the reduction relation (such an iterated induction is then recovered in the
proof of theorem (3.2.1).

The lack of a canonical/non canonical distinction makes the definitions easier, but has the
consequence that the very idea of proof-theoretic semantics is lost: the validity of a derivation
is not defined in terms of an ideal form that the derivation must have or must achieve, through
reduction; it is indeed defined in terms of the potential behavior of the derivation in fixed contexts,
i.e. following the paradigm of realizability.

In the preceding section, we identified the epistemological content of the definition of validity
with the fact that valid derivations can be transformed into canonical ones, which are in a sense
valid by definition. In the case above, no derivation is taken as valid by definition in virtue of its
internal form. Rather, derivations are valid in virtue of the properties of their behavior (their
interaction with other derivations in the case of a non-atomic conclusion). The normalization
argument achieves then the following result: if a λ-term can be assigned the type σ (equivalently, if
a derivation has been constructed following the introduction and elimination rules of intuitionistic
logic), then it will behave in a well-specified way; in particular, the term itself will be strongly
normalizing and its interaction with other (well-behaving) terms will preserve validity.

Though the reducibility approach does not consider the internal structure of terms, it inherits
the main features of realizability semantics: first, the untyped and polymorphic frame, given by
the fact that we associates types with sets of pure λ-terms; second, the proof-irrelevance of atomic
types: all atomic types are assigned the set SN of strongly normalizing terms, which means that
the behavior of their realizers is not decomposed, as it is the case for non atomic types. Finally,

3.2. REALIZABILITY AND REDUCIBILITY 79

the incompleteness of simple type theory: from a closed term M being a realizer of a certain
type σ, it does not follow that M can be given type σ in simple type theory (see next section).

3.2.3 Untyped semantics
By the expression “untyped semantics” it will be meant an approach to the interpretation of proofs
which reflects the perspectives coming from realizability and reducibility interpretations. It
must be said that, whereas the philosophical and epistemological development of proof-theoretic
semantics is the object of a quite large literature, the literature on realizability and Tait-Girard
reducibility arguments is quite confined to mathematics and computer science departments, with
some few exceptions (notably Girard’s many philosophical comments and intuitions, Joinet’s
work on the philosophy of computability - [Joi07, Joi09, Joi11] - and some other works like
[NPS14]).

There are at least two active research programs in the logic panorama that explicitly pursue
the idea of an untyped interpretation of proofs: one is Krivine’s program ([Kri09, Kri11, Kri12,
Kri], which aims at reconstructing the untyped programs (or machines) which lay beyond proofs
of classical logic and mathematics, by extending the Curry-Howard correspondence to classical
logic and set theories. The other one is Girard’s geometry of interaction program ([Gir89c,
Gir89a, Gir90a, Gir95, Gir06, Gir10, Gir13]), which aims at reconstructing untyped proofs from
a purely geometrical perspective, provided by operator algebras ([Gir89a, Gir10]) and unification
algebras ([Gir13]).

In trying to highlight the main features of these approaches we aim indeed at helping con-
fronting two different traditions sharing the same origins (intuitionism and constructivist math-
ematics), but divided by a cultural and technical gap evolved through time (the aim of recon-
structing the history of this bifurcation in the development of logic clearly exceeds the aims of
this short presentation).

Untyped proofs and intuitionism Kleene’s recursive realizability is often presented as a for-
malization of the intuitionistic (or BHK) explanation of the logical constants, thought Kleene
explicitly rejected this connection (see [Kle45]). As it is argued in [Sun83], a major difference
between the two approaches regards the different way in which the notion of proof (or, more gen-
erally, the notion of “construction”) is considered: whereas in stating his conditions in [Hey56]
Heyting was describing constructions, methods as informal (mental?) entities, not themselves
subject to mathematical treatment, Kleene’s interpretation of proofs pursues an explicit mathe-
matical formalization of the (allegedly) intuitionistic notion of construction. At best, as Kleene
himself writes in [Kle45], his interpretation can be seen as an explanation of intuitionistic con-
structions within classical mathematics.

One of the main features of the untyped approach is indeed the interpretation of proofs as
elements of certain algebraic structures (pca): the informal notion of proof (or construction) is
thus replaced by a well-defined mathematical notion, investigated with purely mathematical tools
(λ-calculus, category theory and even operator algebra, in the case of geometry of interaction).
This feature appears in sharp contrast with the intuitionistic credo that constructions are purely
mental entities.

Historically, the reception of the intuitionist interpretation was strongly influenced by Kreisel’s
formalizations in [Kre60, Kre65]: there his aim was “to set up a formal system, called “abstract
theory of constructions” for the basic notions mentioned above, in terms of which the formal
rules of Heyting’s predicate calculus can be interpreted ”. In particular Kreisel’s reconstruction
incorporated a recursive predicate formalizing the relation

the construction c proves the formula A (3.2.6)

80CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

so that the BHK clauses themselves could at the end be regarded as logical formulae. As
Sundholm observes:

The difference in aims between the early views of Heyting-Kolmogoroff and Kreisel now
becomes clear. Heyting-Kolmogoroff do not give a reduction to any other theory, but try
to explain what a proposition is, how it should be understood. For Kreisel, on the other
hand, the aim was to formalize the properties of the “abstract constructions” in a theory
and reduce the theory of logic to that. Kreisel is thus closer to [...] Gödel’s Dialectica and
the realizability interpretations. [Sun83]

As it is well-known, in his attempt Kreisel was led to slightly modify the clauses for impli-
cation and universal quantification, by adding the request of an effective “verification” that the
construction actually does what it is supposed to: for instance, a proof of an implication A⇒ B
is a construction c which assigns to each proof d of A a proof c(d) of B, along with a verification
that c satisfies this condition. As we discuss below this further clause is especially problematic in
the case of Π0

1 formulae. It is quite significative that Troelstra’s 1968 presentation of intuitionism
([Tro69]) incorporates Kreisel’s modifications and explicitly refers to his formalization.

Kreisel’s theory of constructions was not the only attempt at formalizing the intuitionistic
notion of construction: we can mention for instance Gödel’s Dialectica interpretation [G5̈8],
Scott’s theory of constructive validity [Sco68] and Martin-Löf’s intuitionistic type theory [ML84].
In the latter, in particular, the identification of proofs with certain mathematical objects is a
consequence of the formulae-as-types paradigm (that we discuss in the next paragraph). Martin-
Löf draws a distinction between proofs as constructions, in the sense of mathematical objects,
and proofs as derivations in tree-like form:

To distinguish between proofs of judgements (usually in tree-like form) and proofs of propo-
sitions (here identified with elements, thus to the left of ∈) we reserve the word construction
for the latter and use it when confusion might occur. [ML84]

In the context of proof-theoretic semantics the question about the nature of constructions is
debated: [Sun98] reports the skepticism by Prawitz about the legitimacy of the mathematical
notion of construction; in particular, in [Pra12], Prawitz considers two opposite alternatives: the
first one, attributed to Martin-Löf and Sundholm, takes proofs as construction in the mathemat-
ical sense:

For instance, a “proof” of an implication A⇒ B is simply a function that applied to proofs
of A yields a proof of B, and the “proofs” of A and B may again be just functions, which
may make one doubt that the notion of proof is really an epistemic one. [Pra12]

In particular, Martin-Löf, in [ML98], claims that proofs are not to be considered as epistemic
notions, but rather as mathematical “proof objects” which may enter in the stipulation of the
proof-conditions for the logical constants (he explicitly draws a connection with Kleene’s realiz-
ability).

The second alternative, inspired by the verificationist thesis, takes proofs as chain of infer-
ences, where an inference is conceived as a piece of linguistic practice; this alternative can be
found for instance in Dummett’s treatment of derivations in sequent calculus or natural deduc-
tion as a formalization of linguistic practice, with no peculiar interest in their inner mathematical
structure.

It is the opinion of the author that this divergence about the legitimacy of a purely mathemat-
ical treatment of constructions constitutes one of the main obstacles which keep the philosophical
tradition of proof-theoretic semantics far from the the tradition of Kleene and Kreisel (and in par-
ticular from the most recent advances in the mathematical interpretation of proofs, as Krivine’s
classical realizability and Girard’s geometry of interaction).

3.2. REALIZABILITY AND REDUCIBILITY 81

Russell’s typing and Curry-Howard typing The principle by which Russell introduced
his type discipline in [Rus08] was the following:

(RUS) The range of significance of a propositional function forms a type

by that he meant that, when considering a propositional function, i.e. a predicate P (x) depending
on a variable x, the objects to which the predicate can be applied must belong to a well-defined
set. Syntactically, this implies that the terms that can be substituted for the variable x in P (x)
must be of the same type as the variable x. We can indeed rephrase the principle (RUS) by the
following syntactic principle: variables occurring (free or bound) in predicates (and in proofs)
must be typed. Variables are then written with a type index as xσ, a propositional function
P (xσ) being a function from σ to a certain family of propositions.

As it is widely known, the reason that led Russell to introduce the type discipline was that,
by admitting unrestricted substitutions for the variables occurring in his propositional functions,
it was possible to construct pathological propositions, leading to the well-known antinomies.

The Curry-Howard typing discipline can be obtained (as it is explained for instance in
[Coq90]) from Russell’s discipline by simply adding the principle below:

(PasT) Propositions should be identified with types

Indeed, principle (PasT), along with principle (RUS), yields the consequences that a proof of a
proposition is an object of a certain type, and that a propositional function P (xσ) is a function
from σ to a certain family of types. The identification of proofs with the objects of a type leads
then to the interpretation of the former as programs (an example of the forgetful translation
can be found clearly stated in [How80]). Moreover, if a propositional function is a function from
a type to a family of types, it follows that a proof of a universal proposition ∀xσA is indeed a
typed program of type σ → A, where A is a family of types over the elements of σ (this idea is
made explicit in Martin-Löf type theory [ML84], see also subsection (4.3.2)).

Now, admitting unrestricted substitutions for the variables occurring in the propositional
function P (xσ) amounts, from the Curry-Howard perspective, to admitting unrestricted inputs
for a program of type σ → τ (for a certain type or family of types τ). This means that Russell’s
typing discipline is turned into a discipline for the interaction (styled “socialization” in [Joi11])
between programs: it forbids indeed to apply programs to certain other programs. Typically, if
a program M has type σ → τ , it cannot have itself as an input.

This is indeed the paradigm which underlies the distinction between pure and typed program-
ming languages; in the case of λ-calculus, the most studied and significative for type theory, one
has an underlying space of programs, with no restriction as to possible interactions: any program
can be applied to any other one. The rule-less society of untyped programs reveals itself indeed
quite wild, since unrestricted interactions between programs give rise to pathological cases of
non terminating computations. In a word, types discipline the contexts in which a program can
be put.

On the contrary, once programs are typed, i.e. once the socialization is regulated, pathological
cases are expelled from society; the typical example, again, is the one of autoapplication: if a
variable x in a program is declared of type σ → τ , then it cannot be applied to a program of
type σ → τ , and in particular it cannot be applied to itself. This is tantamount to say that the
λ-term λx.(x)x is not typable in simple type theory (in chapter (6) we discuss these properties
of typing from the abstract viewpoint of unification theory).

Remark that a peculiar feature of simple types is that the typing is in a sense rigid: terms are
called monomorphic, which means that they have a unique type. On the contrary, if a variable
can have, at the same time, different types, then one can find a way to correctly type an auto-
application (this polymorphism is indeed the central feature of higher-order type theories, see
chapters (5) and (6)).

82CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

Now, as the strong normalization theorem of the preceding section shows, the rigid discipline
of simply types provides the following properties:

1. All programs of variable type are strongly normalizing ;

2. If M and N are strongly normalizing programs and MN is well-typed, then MN is strongly nor-
malizing.

Remark that the two properties above strongly resemble the realizability-reducibility clauses;
in particular, property 2. implies that all programs are strongly normalizing: if M does not
have variable type, then it has type σ → τ , and for N = x, MN is well-typed and is strongly
normalizing, hence M is too. In a sense, the realizability-reducibility clauses express the norms
of “socialization” of simple type theory. [Joi11] discusses in detail the “social” features that can
be imported in logic from the experience on typed λ-calculi:

Ce qu’on pourra appeler “la bonne socialité dynamique des processus” prévaut donc en-
core dans le fragment typé correspondant au système de déduction naturelle concerné, et le
typage doit être vu non simplement comme découpant un sous-ensemble des termes (des pro-
grammes), mais au delà comme découpant un fragment de la dynamique (un sous-ensemble
des Ővaluations, une sous-dynamique) [...] [Joi11]

Krivine’s program pushes farther this reflection, since it aims at reconstructing the behavioral
content of mathematical theorems:

Nous avons écrit ce programme à partir d’une preuve d’une certaine formule Θ. Nous sommes
confrontés à ce que j’appelle le problème de la spécification, qui est, sans doute, le problème
le plus difficile mais aussi le plus fascinant posé par la correspondance de Curry-Howard:

Étant donné un théorème Θ (de la théorie des ensembles avec choix dépendant), quel est le
comportement commun à tous les programmes obtenus à partir des preuves de Θ?

In the following paragraph we try to sketch some of the features of an interpretation of proofs
and their validity based on this untyped (wild) vs typed (civilized) paradigm.

Untyped proofs and rules The two basic principles shared by the realizability and the
reducibility interpretation of derivations and programs are the following:

U1 Proofs are interpreted as untyped programs;

U2 Rules are interpreted by clauses disciplining the “socialization” of proofs.

Principle U1 is indeed the starting point of Kleene’s 1945 realizability interpretation, and prin-
ciple U2 is a consequence of the application of the realizability-reducibility clauses to the PasT
condition.

An immediate consequence of U1 is that the internal structure of proofs is not taken in
consideration by interpretations of this form; as a limit case, a proof of an atomic (true) formula
is interpreted by an arbitrary (strongly normalizing) program (this is the principle that we called
of proof-irrelevance). This blindness to the internal structure of proofs implies that an untyped
interpretation must assign a quite different role to rules with respect to proof-theoretic semantics.
The latter indeed assigned a role to rules which can be called constitutive6: there is simply no

6The constitutive/regulative distinction traces back to Kant, and was more recently retrieved by Searle ([Sea69].
We take here Searle’s definition: a rule is constitutive if the existence of the practice it disciplines depends on the
acceptance of the rule itself. It is regulative if it disciplines an activity which might exists independently from the
acceptance of that rule.

3.2. REALIZABILITY AND REDUCIBILITY 83

notion of proof without a definition of introduction and elimination rules (or left and right rules
in the case of sequent calculus).

On the contrary, in the untyped interpretation, so as in the related notion of eliminative
validity (see above), no mention is made to the rules of which a proof is made; in particular,
there is no space for a last rule condition, i.e. for a distinction between canonical and non
canonical proofs.

In the next chapter the question of the retrieval of a last rule condition within a reducibility
interpretation will be briefly discussed on the basis of a completeness theorem for Π1-reducibility.

A conception of the role of rules must indeed be developed in accordance with principle U2:
indeed, as it results from the strong normalization theorem, the rules (intended as typing rules)
internalize patterns of behavior, as they are described by means of the realizability-reducibility
clauses. As Joinet writes,

[...] chaque (type de) règle est moins une règle d’inference (règle de transition des énon-
cés vers les énoncés) qu’une règle d’interaction, règle déterminant une forme particulière
d’interaction avec le cotexte. [Joi11]

In particular, the principle of implicit definitions, i.e. that the meaning of the logical constants
is implicitly defined by (some of) the rules of logic has to be replaced by what we might call a
principle of behavioral definition, stating that the meaning of the logical constant is (explicitly)
defined by clauses describing the behavior of proofs of formulae containing such a constant as its
principal operator in fixed contexts.

Since untyped programs live in an independent space of computations, rules, following this
behavioral principle, assume a regulative role with respect to the “socialization” of programs.
Interpreting logical rules as regulative, rather than constitutive, amounts to viewing a “logic”
as a set of restrictions imposed on programs to discipline their interaction. For instance, the
“logic” of simple types (corresponding, through Curry-Howard, to intuitionistic propositional -
and, forgetfully, first-order - logic) is the one in which the interaction of a program with itself is
forbidden (“incestuous”, one might be tempted to say).

A “logic”, in this sense, induces a demarcation between “good” programs, i.e. the typed
ones, and “bad” programs, the untyped ones. Indeed, typed programs are exactly those that are
the image, under the forgetful translation, of actual derivations in sequent calculus or natural
deduction (this is what is indeedasserted by the faithfulness theorem (2.3.1)).

In chapter (5) we provide a stronger result, that we call Π1-completeness, which states that a
sequent calculus derivation d of ` A can be recovered from a termM which is a realizer of ∀αAF,
i.e. such that M ∈ Red∀αAF , where ∀αAF indicates the second order universal closure of AF.
Remark that, whereas faithfulness can be easily extended to second order systems, completeness
cannot, as a consequence of the incompleteness theorems (see below).

Meaning as use: second interpretation These remarks suggest a second way of interpreting
the meaning as use paradigm (with respect to the one recalled in subsection (3.1.1)). In proof-
theoretical semantics this motto is usually applied to sentences, and thus becomes “the meaning
of a sentence is given by its use”, where the expression “use” refers to the practice of justifying
assertions and drawing consequences from them, by means of arguments and proofs. From the
viewpoint of untyped semantics, the motto can be applied (as suggested by Girard in [Gir11]) to
proofs rather than to sentences: “the meaning of a proof is given by its use”, where the expression
“use” refers to the act of “applying” the proof, seen as a program, a method (in the BHK sense),
to other proofs-programs, to obtain a new proof-program as a result. In particular, the type
of a program is what disciplines the possible (admitted) uses one can make of it. This second

84CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

interpretation of Wittgenstein’s motto can be stated then in the following form: the meaning of
a (typed) program lies in its socializations.

Remark, furthermore, that the characteristic polymorphism of this approach (i.e. the fact that
a program may have several types) implies that the untyped program in itself has not enough
information as to uniquely determine its use. In particular, polymorphism implies a form of
polysemy : a program can have several meanings. We recall again Kleene’s 1945 remark:

A realization number by itself of course conveys no information; but given the form of
statement of which it is a realization, we shall be able in the light of our definition to read
from it the requisite information. [Kle45]

Indeed, internally, such a program could be a λ-term, a numerical code, an inhabitant whatsoever
of some pca. As Girard puts it,

The difference between “pure” and typed objects, this is the difference between things as
they are and things as they should be. [Gir11]

Finally, the epistemological role played by cut-elimination in the interpretation differs in some
important respects between proof-theoretic semantics and untyped semantics: in the first case
normalization is a means of reducing arbitrary proofs to proofs having a given (canonical) internal
structure; in the second case, the normalization procedure is itself a fundamental component of
the behavioral characterization of meanings. In a word, we might say that, whereas in the first
case cut-elimination confers meanings to non canonical proofs, in the second case cut-elimination
is itself part of the meaning: a logical constant is explained indeed in terms of how proofs in which
such a constant occurs behave with respect to cut-elimination; the latter constitutes indeed the
general arena where socialization occurs, i.e. where the interdictions which constitute behavioral
meanings take place.

Incompleteness A common feature of the untyped approaches is the fact that (intuitionistic)
derivability is incomplete with respect to them. In particular, whereas from every derivation in
natural deduction or sequent calculus it is possible to extract a realizer (soundness), it is not
true that from every realizer one can reconstruct a derivation. To recall again Kleene’s remark
(pag. 74), a realizer may lack relevant information to retrieve the underlying derivation.

A first source of incompleteness, as we have already remarked, is due to the trivial interpre-
tation of atomic propositions and types. In the case of realizability, proof-irrelevance is inherited
by all Harrop formulae. Harrop formulae are defined inductively as follows:

• every atomic true formula is a Harrop formula;

• if A,B are Harrop formulae, then A ∧B, A ∨B are Harrop formulae;

• if A is a formula and B is a Harrop formula, then A⇒ B is a Harrop formulae;

• if A is a Harrop formula, then ∀xA,∃xA are Harrop formulas.

These are sometimes called self-realizable formulae ([Cro04]) since they have trivial realizers.
We can look for their trivial realizers by using reducibility: indeed, simple types are the forgetful
image of Harrop formulae. We can show then that every simple type contains trivial realizer: a
simple type σ can be written as

σ1 → · · · → σk → α0 (3.2.7)

where the types σi are, in turn, of the form σi,1 → · · · → σi,ki → αi etc. Now, if M is an
arbitrary strong normalizing λ-term, then the term M ′ = λx1.λxk.M is a realizer of σ, and

3.2. REALIZABILITY AND REDUCIBILITY 85

by choosing M = λz.(z)z, M ′ will be untypable (since auto-application is a form of socialization
which is forbidden by simple types - see above). Then, in particular, M ′ can be taken as a
realizer of A.

In the next chapter we’ll show that this phenomenon can be fixed from a second order
perspective: in particular, if we replace the type σ with its universal closure ∀ασ, then the
reducibility candidate technique allows to eliminate trivial realizers. In particular, in chapter
(5) we will be able to prove a completeness theorem for Π1-reducibility (5.2.4), which somehow
echoes the theorem of Π1-completeness for second order logic (chapter (2)).

The second source of incompleteness is concerned with formulae and types which are beyond
the Π1 border: typically, a program M which computes a total recursive function f will be a
realizer of the Π0

2 arithmetical formula expressing its totality, and it will be in the reducibility of
the type N→ N. We end this chapter by sketching how the incompleteness of RedN→N can be
derived from Gödel’s incompleteness theorems:

Theorem 3.2.2 (Σ1-incompleteness). For every strongly normalizing type system T containing
F , there exists a λ-term M ∈ RedN→N such that `M : N→ N is not derivable in T .

Proof. Since T is strongly normalizing, there exists a total recursive function f which associates
with the code of a term typable in T the code of its normal form (and is 0 otherwise). Now, an
application of Gödel’s second incompleteness theorem (see [GLT89]) shows that for no λ-term
M simulating f , ` M : N → N can be derived in T . On the other hand, since f is total, once
can find a strongly normalizing pure λ-term Mf representing f such, for all strongly normalizing
term N of type N, MfN reduces to a Church integer, i.e to a normal term of type N (see
appendix (C)). Then M is a realizer of N→ N which does not have type N→ N in T .

86CHAPTER 3. INFERENTIALIST AND INTERACTIONIST INTERPRETATIONS OF PROOFS

Chapter 4

Around the second order Hauptsatz

The question we address in this chapter is the following: can second order cut-elimination play
the same role as first-order cut-elimination within a proof-theoretic theory of validity?

In the first section we first recall Girard’s reducibility argument for System F (which implies
the second order Hauptsatz). The logical complexity of this argument, which is measured by the
growing complexity of the set-theoretic comprehension principles exploited, is then contrasted
with the existence of an elementary procedure (described in [Sch60, Gir76, KT74]) to replace
cuts by means of instances of the comprehension rule. Indeed, this fact seems to indicate that
the distinction between cut-free and non cut-free derivation (so as the one between canonical
and non canonical derivations), in the second order case, has a purely formal content, as it does
not capture structural properties of derivations.

In the second section we discuss the usual objections against impredicative definitions, and
show how they are turned, within the proof-theoretic semantic tradition, into objections agains
the possibility of a proof-theoretic justification of the rules of second order logic. We argue that
the vicious circularity ascribed to the justification of second order logic does not correspond to
the circularity at work in the reducibility argument, and we show the substantial harmlessness
of these objections from the viewpoint of the untyped interpretation of proofs.

The last section is devoted to characterize the “epistemic” circularity at work in the proof of
the second order Hauptsatz ; in particular, we highlight the potentially catastrophic uses that can
be made of this circularity, by reconstructing the faulty normalization argument for Martin-Löf’s
inconsistent impredicative type theory [ML70b].

4.1 Reducibility and Takeuti’s conjecture

4.1.1 Reducibility

The Hauptsatz for second order sequent calculus was conjectured in 1953 by Takeuti ([Tak57]).
At that time the reducibility technique was not known and the question was attacked, and first
resolved, by means of semantical techniques ([Tai68], [Tak67], [Pra68]). The first syntactical
proof, in [Gir72], was obtained as a corollary of a strong normalization proof for System F ,
based on the notion of reducibility candidate we introduced in the preceding section.

A faulty extension Before proceeding to the actual definitions, it is instructive to first consider
an intuitive, though wrong, extension of the definition of reducibility given in the preceding

87

88 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

chapter. If we follow the pattern of realizability-reducibility clauses, based on elimination rules,
it is quite natural to propose an extension to the second order case as follows:

M is a realizer of ∀ασ if, for all type τ , M is a realizer of σ[τ/α].

and, in particular, to define the reducibility Red∀ασ as the intersection of all the reducibilities
Redσ[τ/α].

Apparently, one can reconstruct a great part of the reducibility argument with the definition
above. In particular, a “proof” reducibility enjoys properties R∞−3 as well as a“proof” of
strong normalization can be attempted as follows:

False lemma 4.1.1. Reducibility enjoys properties R1− 3.

Proof. The argument is by induction over types:

R1) Property R1 follows immediately from the fact that Red∀ασ ⊆ Redσ;

R2) if, for all τ , M ∈ Redσ[τ/α] and M →M ′, then, by induction hypothesis, M ′ ∈ Redσ[τ] for
all τ , hence M ′ ∈ Red∀ασ;

R3) let M be simple and, for all M ′ such that M →1 M
′, M ′ ∈ Red∀ασ. This implies that, for

all type τ , M ′ ∈ Redσ[τ] and then, by induction hypothesis, one argues that M ∈ Redσ[τ]

from property R3 applied to Redσ[τ/α]. Finally, one obtains that M ∈ Red∀ασ, since
M ∈ Redσ[τ], for all type τ

Strong normalization follows then from the following “lemma”:

False lemma 4.1.2. Let (x1 : σ1), . . . , (xk : σk) ` M : σ be derivable in F , with FV (σ) =
{α1, . . . , αn}. Then, for all choice of types τ1, . . . , τn and of terms N1, . . . , Nk, with, for 1 ≤ i ≤
k, Ni ∈ Redσi[τ1/α1,...,τn/αn], M [N1/x1, . . . , Nk/xk] ∈ Redσ[τ1/α1,...,τn/αn].

Proof. We just consider the case of the rules (∀I) and (∀E), since the other rules should be
treated similarly to the simply typed case.

(∀I)
Γ `M : σ α bindable in Γ

Γ `M : ∀βσ (4.1.1)

By induction hypothesis, we know that, for all choices of types τ1, . . . , τn, τ and terms
N1, . . . , Nk, with Ni ∈ Redσi[τ1/α1,...,τn/αn,τ/β], one has
M [N1/x1, . . . , Nn/xk] ∈ Redσ[τ1/α1,...,τn/αn,τ/β], but this means exactly that
M [N1/x1, . . . , Nk/xk] ∈ Red∀βσ[τ1/α1,...,τn/αn].

(∀E)
Γ `M : ∀βσ

Γ `M : σ[τ/β] (4.1.2)

By induction hypothesis, we know that M [N1/x1, . . . , Nk/xk] ∈ Redσ[τ1/α1,...,τn/αn,ρ/β] for
all types τ1, . . . , τn, ρ and terms N1, . . . , Nk, with Ni ∈ Redσi[τ1/α1,...,τn/αn,ρ/β], hence in
particular M [N1/x1, . . . , Nk/xk] ∈ Redσ[τ1/α1,...,τn/αn,τ/β].

4.1. REDUCIBILITY AND TAKEUTI’S CONJECTURE 89

The problem with the “proofs” above is that, as the reader should have already remarked,
they rely on an induction over a non well-founded order: the reducibility of the type ∀ασ is
defined in terms of the reducibility of all types τ (i.e. included ∀ασ)!

The definition of reducibility in simple type theory is by induction over types. In particular,
given a type σ, Redσ is defined as a function of the Redτ , for all subtype τ of σ. This is
tantamount to saying that the validity for derivations of a formula A in first-order logic is
defined in terms of the validity for derivations of the subformulae of A.

At second order the subformula order between formula is lost: since all A[B/X] should be
considered morally as “subformulae” of ∀XA, it follows that the order is not well-founded. As
a consequence, the definition of reducibility Red∀ασ as a function of all the Redσ[τ/α], for every
type τ , is by induction on a non-well-founded order over types.

We can detect this circularity in the “proof” of lemma (4.1.1): when proving the property
R3. For instance, if σ = α and τ = ∀αα, one assumes R3 for τ as induction hypothesis to prove
R3 for ∀αα, i.e. τ .

Remark that the proof of lemma (4.1.2), on the contrary, uses an induction over typing
derivations, and thus it does not collapse. However, the simply typed part of the proof (which is
the same as for theorem (3.2.1)), reposes over the fact that reducibility enjoys properties R1− 3,
i.e. over the wrong proof of lemma (4.1.1).

The circularity at work in these wrong arguments is of the same kind as the one at work in
Frege’s wrong proof in the Grundgesetze (see page 7). As we are going to see, the correct way to
fix the definition of reducibility involves a subtle trick: in a sense the circularity of second order
quantification is not eliminated, though it is reframed in a way that does not make the argument
viciously circular.

The theorem It was exactly to cope with the problem just presented that the notion of
reducibility candidate was created. Indeed, Girard’s solution amounts to replace, in the definition
of reducibility for a universal type, the quantification over all types with a quantification over
all reducibility candidates. In a word, the dependency of the reducibility over all reducibilities
is replaced by a dependency of reducibility over a (large) family of sets.

In order to reframe reducibility in this new setting, we need a notion of reducibility parametrized
by a set of reducibility candidates.

Definition 4.1.1 (parametric reducibility). Let σ be a type and, for each free variable αi oc-
curring in σ, let Ci be a reducibility candidate. Parametric reducibility Redσ[. . . Ci/αi . . .] is a
property over λ-terms defined by induction over σ as follows:

i. if σ = αi, then Redσ[. . . Ci/αi . . .](M) iff M ∈ Ci;

ii. if σ = τ → ρ, then Redσ[. . . Ci/αi . . .](M) iff for all N such that Redτ [. . . Ci/αi . . .](N),
Redρ[. . . Ci/αi . . .](MN) holds;

iii. if σ = ∀ασ′, then Redσ[. . . Ci/αi . . .](M) holds iff for every reducibility candidate C,
Redσ′ [. . . Ci/αi . . . , C/α](M) holds.

Now, since the parametric reducibility of ∀ασ is defined in terms of the parametric reducibility
of σ, we can now prove an analog of lemma (4.1.1) by a truly well-founded induction over types:

Lemma 4.1.1. Parametric reducibility enjoys properties R1− 3.

Proof. The argument is by induction over types. We limit ourselves to the case of universal
types, since the other ones require just a reformulation of lemma (3.2.2).

90 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

(R1) let Red∀ασ[. . . Ci/αi . . .](M) hold, then, Redσ[. . . Ci/αi . . . ,SN/α] holds and, by induction
hypothesis, M ∈ SN ;

(R2) letRed∀ασ[. . . Ci/αi . . .](M) hold andM →M ′; then, for all candidate C, Redσ[. . . Ci/αi . . . , C/α](M)
holds, and by i.h., Redσ[. . . Ci/αi . . . , C/α](M ′) holds, from which one concludes that
Red∀ασ[. . . Ci/αi . . .](M ′) holds;

(R3) letM be simple and, for allM ′ such thatM →1 M
′, Red∀ασ[. . . Ci/αi . . .](M ′) hold; then,

again, for all candidate C, Redσ[. . . Ci/αi . . . , C/α](M ′) holds for all the M ′ and, by i.h.,
Redσ[. . . Ci/αi . . . , C/α](M) holds. One concludes that Red∀ασ[. . . Ci/αi . . .](M) holds.

A consequence of this lemma is that, if σ is a closed type, then its reducibility Redσ is not
parametric and, with the help of an instance of the comprehension axiom, it can be shown that
it is a reducibility candidate. In the literature this trick goes under the name of Girard’s trick :
it states the fact that the family of reducibility candidates is closed under intersections indexed
by the family itself (for a more detailed mathematical digression on this topic see [Gal90]).

A direct application of Girard’s trick gives the following lemma:

Lemma 4.1.2 (substitution lemma). For all types σ, τ , for all candidates Ci and for every term
M , Redσ[τ/α][. . . Ci/αi . . .](M) holds if and only if Redσ[. . . Ci/αi . . . , Redτ [. . . Ci/αi . . .]/α](M)
holds.

Proof. The lemma is established by induction over σ. At each stage we use an instance of the
comprehension schema to establish that Redτ [. . . Ci . . .] is a set.

variable If σ = αi, then Redσ[τ/α][. . . Ci/αi . . .](M) holds iff M ∈ Ci iff
Redσ[. . . Ci/αi . . . , Redτ [. . . Ci/αi . . .]/α](M) holds; if σ = α, thenRedσ[τ/α][. . . Ci/αi . . .](M)
holds iff Redτ [. . . Ci . . .](M) holds iff Redσ[. . . Ci/αi . . . , Redτ [. . . Ci/αi . . .]/α](M) holds.

implication If σ = σ1 → σ2, then Redσ[τ/α][. . . Ci/αi . . .](M) iff for all N such that
Redσ1[τ/α][. . . Ci/αi . . .](N) holds, Redσ2[τ/α][. . . Ci/αi . . .](MN) holds. The thesis then
immediately follows by induction hypothesis.

universal If σ = ∀βσ′, then Redσ[τ/α][. . . Ci/αi . . .](M) holds iff for every candidate D,
Redσ′[τ/α][. . . Ci/αi . . . ,D/β](M) holds iff for every candidate D,
Redσ′ [. . . Ci/αi . . . , Redτ [. . . Ci/αi . . . ,D/β]/α,D/β](M) holds (by induction hypothesis),
iff Redσ[. . . Ci/αi . . . , Redτ [. . . Ci/αi . . .]/α](M) holds.

Before proceeding to the theorem, remark that the analogue of lemma (3.2.2) is indeed true
by definition: if M is a term and for all candidate D, Redσ[. . . Ci/αi . . . ,D/β](M) holds, then
Red∀βσ[. . . Ci/αi . . .](M) holds.

The theorem we prove below is a second order generalization of theorem (3.2.1) of the following
form: given a term M of type σ, we show that it is reducible for any choice of reducibility
candidates for the free variables of σ and of reducible terms for its free variables.

Theorem 4.1.1. Let (x1 : τ1), . . . , (xk : τk) ` M : σ be derivable in F and let FV (σ) =
{α1, . . . , αn}. Then, for every choice of reducibility candidates C1, . . . , Cn and of terms N1, . . . , Nk,
such that, for 1 ≤ i ≤ k, 1 ≤ j ≤ n, Redτi [. . . Cj/αj . . .](Ni) holds, Redσ[. . . Cj/αj . . .](M [. . . Ni/xi . . .])
holds.

4.1. REDUCIBILITY AND TAKEUTI’S CONJECTURE 91

Proof. We just consider the case of the rules (∀I) and (∀E):

(∀I)
Γ `M : σ α bindable in Γ

Γ `M : ∀βσ (4.1.3)

By induction hypothesis, we know that, for all reducibility candidate D,
Redσ[...Cj/αj . . . ,D/β](M [. . . Ni/xi . . .]) holds. Hence it follows then that
Red∀βσ[...Cj/αj . . .](M [. . . Ni/xi . . .]) holds.

(∀E)
Γ `M : ∀βσ

Γ `M : σ[τ/β] (4.1.4)

By induction hypothesis, we know that Red∀βσ[...Cj . . .](M [. . . Ni/xi . . .]) holds, i.e. that,
for all reducibility candidate D, Redσ[...Cj/αj . . . ,D/β](M [. . . Ni/xi . . .]) holds. In particu-
lar (comprehension axiom!) this holds for D = Redτ [. . . Cj/αj . . .], and by the substitution
lemma (4.1.2) this implies that Redσ[τ/β][. . . Cj/αj . . .](M [. . . Ni/xi . . .]) holds.

As usual, we obtain as an immediate corollary:

Corollary 4.1.1. If M has type σ in System F , then M is strongly normalizing.

The difference between the false theorem (4.1.2) and the correct one above is rather subtile.
To the consequences of this subtile difference is indeed devoted this entire chapter.

Second order realizability Kleene provided an extension of his interpretation to intuitionistic
analysis in [Kle59], by introducing the theory of countable functionals (see also [Kre59]). [TVD88]
contains the “standard” extension of realizability to second order arithmetics: the idea is to
consider formulae of second order logic parametrized by subsets S ⊆ N and to add atomic
sentences of the form n ∈ S, where n is an integer and S is a set. This requires to introduce two
new clauses: one for the new formulae of the form n ∈ S and one for universal quantification.
We follow the presentation in [VO08] and we let p represent a “pairing function” over codes (i.e.
an injective function from pairs of integers to integers):

v. e realizes n ∈ s if p(e, n) ∈ S;

vi. e realizes ∀XA if, for all S ⊂ N, e realizes A[S/X].

There are some evident analogies between the clauses above for (parametric) realizability and
the definition of (parametric) reducibility: by introducing parametrization one is able indeed to
adopt a clause with a (non circular) quantification over sets.

More explicitly, [Tai75] contains a realizability interpretation of second order intuitionistic
arithmetics built over Girard’s reducibility candidates technique. In particular, he defines a
forgetful translation from a derivation d of conclusion A to a λ-term d− (which is actually F(d))
of type F(A); then, he introduces, for each formula B a constant PB and defines realizability
parametrized to such constants. Clause vi. is replaced by a clause of the form

M realizes ∀ασ if, for every B and every constant PB, M realizes σ[PB/α]

Finally he shows that the set of realizers so defined are reducibility candidates in the sense of
Girard and proceeds in analogy with the proof of theorem (4.1.1).

92 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

4.1.2 Takeuti’s conjecture: an empty shell?

From the strong normalization theorem for System F one can derive a positive answer to Takeuti’s
conjecture, i.e. to the Hauptsatz for the second order sequent calculus (both intuitionistic and
classical, see [Gir72]); similarly, a strong normalization argument for natural deduction formula-
tions of (intuitionistic or classical) second order logic, with the rules below can be deduced

A
∀XA (∀I)

∀XA
A[P/X]

(∀E)
(4.1.5)

where, in the rule (∀I) one requires that X does not occur free in any open assumption. Proof-
theoretical definitions of validity, in the style of Prawitz’s [Pra71a], will be discussed in the next
section.

Before discussing, from an epistemological point of view, the significance of these results, it
is convenient to make a couple of remarks on cut-elimination in a second order framework.

First of all, second order rules satisfy Prawitz’s inversion principle; in a natural deduction
formalism the argument is as follows: a derivation as below

.... d
A
∀XA
A[P/X].... (4.1.6)

is reduced into the derivation below
.... d{P/X}

A[P/X].... (4.1.7)

Once more, whereas the inversion principle can be established in a local and elementary way, the
complete proof of cut-elimination is quite complex and demands for very strong logical principles
(the comprehension principles used in lemma (4.1.2)).

In a word, the inversion principle is fundamentally incapable of capturing the logical com-
plexity intrinsic to the normalization argument. In particular, since the derivation d is replaced
by the derivation d{P/X}, in which all occurrences of X are replaced by the predicate P , no con-
crete inductive measure can be imposed upon derivations in order to turn the local normalization
(i.e. invertibility) into a global normalization argument.

Poor and absorbing formulae Despite the fact that the Hauptsatz for second order logic is
a logically complex result, for a certain class of second order formulae (called poor formulae in
[Gir76]), cut-elimination can be proved in an elementary way: as it is remarked in [Sch60], if d is a
derivation of a formula F0 ⇒ A, where A is arbitrary and F0 is the formula ∀x∀X(X(x)⇒ X(x)),
then d can be transformed into a cut-free proof d′ in a primitive recursive way. Formulae like
F0 are called absorbing in [Gir76], since in a sense they absorb the cuts. Absorbing formulae are

4.1. REDUCIBILITY AND TAKEUTI’S CONJECTURE 93

dual to poor formulae. Let d have the following form

....
Γ ` A,∆

....
Γ′, A ` ∆′

Γ,Γ′ ` ∆,∆′
(cut)

....
F0 ` A
` F0 ⇒ A

(⇒ R)
(4.1.8)

Then the cut can be “absorbed” by means of a (⇒ L) rule plus a (∀L) rule and a successive
contraction:

Γ ` A,∆

....
Γ′, A ` ∆′

Γ,Γ′, A⇒ A,` ∆,∆′
(⇒ L)

Γ,Γ′, F0 ` ∆,∆′
(∀L)X,x

....
F0, F0 ` A
F0 ` A

(C)

` F0 ⇒ A
(⇒ R)

(4.1.9)

In a word, the comprehension on A “swallows” the cut on A.
It is interesting to reformulate the transformation above in type theory: suppose to have a

non normal term λz.M of type φ0 → ρ, where φ0 is the type ∀α(α → α), containing a redex
(λx.P)Q and whose typing derivation has the form below:

....
Γ′, (x : σ) ` P : τ

Γ′ ` λx.P : σ → τ

....
Γ′ ` Q : σ

Γ′ ` (λx.P)Q : τ....
Γ, (x : φ0) `M : ρ

Γ ` λz.M : φ0 → ρ (4.1.10)

Then we can transform the typing derivation of Γ′ ` Q : σ as follows (by using proposition (2.1.1)
i.):

Γ′, (z : φ0) ` z : φ0

Γ′, (z : φ0) ` z : σ → σ

....
Γ′, (z : φ0) ` Q : σ

Γ′, (z : φ0) ` (z)Q : σ (4.1.11)

Remark that, since (z)Q is simple, it cannot introduce new redexes in P as it is substituted for
x. We apply then lemma (2.1.1) and we finally obtain the derivation below:

....
Γ′, (z : φ0) ` P [(z)Q/x] : τ....

Γ, (z : φ0) `M ′ : ρ

Γ ` λz.M ′ : φ0 → ρ (4.1.12)

94 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

In definitive, by repeatedly applying this procedure we can recursively transform λz.M into a
normal term λz.M∗ having the same type φ0 → ρ.

[KT74] it is shown that Dedekind’s predicate N(x) is absorbing: let d be the following
derivation: d1

Γ, N(x), C ` A

.... d2

Γ ` C
Γ,Γ′, N(x) ` A

(cut)

Γ,Γ′ ` ∀x(N(x)⇒ A) (4.1.13)

Let then y be a variable that does not occur in C. We transform the cut as follows:
.... d1

Γ, N(x), C ` A

.... d2

Γ′ ` C
Γ,Γ′, N(x), C ⇒ C ` A

(⇒ L)

C ` C
` C ⇒ C

(⇒ L)

` ∀z(C ⇒ C)
(∀R)z

Γ,Γ′, N(x),∀z(C ⇒ C)⇒ (C ⇒ C) ` A
(⇒ L)

Γ,Γ′, N(x), N(x) ` A
(∀L)λy.C/X

Γ,Γ′, N(x) ` A
(C)

Γ,Γ′ ` ∀x(N(x)⇒ A) (4.1.14)

Now it is Dedekind’s predicate which swallows the cut. This fact has a surprising consequence:
by recursively applying the transformation above we can obtain an elementary proof of the
Hauptsatz for Π0

1 and Π0
2 arithmetical formulae1. The translation of the argument above in type

theory shows that, if λz.M is a term of type N→ N in system F , then λz.M can be recusively
transformed into a normal term λz.M∗ having the same type.

Since this elementary argument can clearly be formalized in HA2, one can prove in HA2 the
Hauptsatz for all second order derivations of Π0

2 formulae.
However, this does not contradict Gödel’s second incompleteness theorem nor the funda-

mental distinction between elementary and logically complex concepts, since the “trivial” cut-
elimination that we just presented does not imply consistency: the usual argument to derive
consistency from the Hauptsatz proceed from the hypothesis of the existence of a derivation d of
the falsity to the absurd conclusion that d can be reduced to a cut-free derivation; remark then
that, since falsity ⊥ is not a poor formula, the elementary cut-elimination argument cannot be
applied.

Indeed, if there were a derivation d of the absurd, then all that the argument above shows
is that d can be transformed into a cut-free derivation d′ of N(x) ` ⊥; if we now cut d′ with a
derivation of N(t) for a suitable term t (for instance t = 0), we obtain a new derivation d′′ of the
absurd, which might not be cut-free.

Thus, the method above recursively transforms an arbitrary derivation of a Π0
2 into a cut-

free second order one, in which the cuts are hidden behind occurrences of the (∀L) rule, i.e. of
instances of the comprehension schema. Equivalently, it recursively transforms an arbitrary term
of type N→ N into a normal one. In particular, since the cut-free derivation obtained violates
the subformula (as the cuts are transformed into witnesses for the universal quantifier), it is not
possible to apply the usual arguments for deducing semantical properties from cut-elimination
(in particular consistency).

1[Gir76] provides a systematic investigation of this phenomenon, by giving syntactic and semantic criteria to
recognize poor and absorbing formulae. In particular it contains a result named “poverty theorem”, which states
that if A is a second order formula which is 1-consistent with PA (with induction restricted to Π0

2 formulae), then
all formulae equivalent to A are poor. In particular, for instance, all Gödel’s sentences are poor (a result already
established in [KT74]).

4.2. THE VICIOUS CIRCLE PRINCIPLE 95

One could conclude then that the epistemological value of Takeuti’s conjecture is, after all,
quite limited: on the one hand, the proof of the Hauptsatz for second order logic must employ
set-theoretical comprehension principles in order to justify the comprehension rules within the
system (i.e. must rely on a “pragmatically” or “epistemically” circular argument, see below
subsection (4.3.1)); on the other hand, one can directly exploit comprehension rules within the
system, and eliminate cuts in an elementary, trivial, way!

The meaning of cut-free and canonical derivations in second order logic In the last
pages we presented a method which recursively transforms second order derivations into cut-
free ones but which does not imply consistency, as the usual Hauptsatz. This fact prompts
some challenges on the epistemological value of the distinction between cut-free derivations and
derivations with cut in second order logic.

In first-order logic cut-free derivations play a significant role in virtue of their structural
properties, connected with the subformula property. In second order logic, where the subfor-
mula property fails as a consequence of the comprehension rule (∀L), the structural properties
of cut-free derivations can hardly be distinguished from those of arbitrary derivations: as the
transformation above show, a cut in a derivation can always be replaced by an occurrence of a
(⇒ L) rule followed by a comprehension rule (∀L), which “swallows” the cut.

Similar remarks can be made for the distinction between canonical and non canonical deriva-
tions. As we recalled in the last chapter (subsection (3.1.3)) this distinction is connected with
an epistemological distinction between derivations that can be taken as immediately valid, or
valid in virtue of their form, and derivations whose validity requires for a reductive argument (a
justification, in Prawitz’s terminology).

Now, though the distinction canonical/non canonical can be formally extended to the sec-
ond order frame, it seems hard to maintain that the epistemological value of this distinction
is preserved in this setting. In particular, the argument of the preceding paragraph shows that
Dummett’s fundamental assumption (subsection (3.1.3)), i.e that every derivation can be reduced
in canonical form, can be proved in a purely formal way and does not provide the characterization
of a structurally peculiar class of proofs.

4.2 The vicious circle principle

4.2.1 The debate over impredicative definitions

The debate over non-predicative ([Rus06b]) or impredicative definitions arose in response to the
discovery of the paradoxes between the end of the 19th century and the beginning of the 20th
century. [Rus06b] is the first reference where the notion is presented and tentatively defined:
there Russell calls “non-predicative” the propositional functions which do not define a class and
takes the function “x is not a member of x” as an example.

The first argument As confirmed by Poincaré’s pitiless remarks in [Poi06], Russell’s [Rus06b]
shed no light on the source of the paradoxes, and provided no useful demarcation between
predicative and impredicative definitions. Poincaré proposed instead an analysis based on what
is usually called the “vicious-circle principle” VCP. [Poi06] does not contain an explicit definition
of the principle, but some examples and some remarks:

[...] leur définitions sont non prédicatives et présentent cette sorte de cercle vicieux caché
que j’ai signalé plus haut: les définitions non prédicatives ne peuvent pas être substituées
au terme défini. [Poi06]

96 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

Russell’s response to Poincaré, in [Rus06a], contained indeed the first explicit formulation of the
VCP:

I recognize [...] that the clue to the paradoxes is to be found in the vicious circle suggestion;
I recognize further this element of truth in M. Poincaré’s objection to totality, that whatever
in any way concerns all or any or some of a class must not be itself one of the members of
a class. [...]

In M. Peano’s language, the principle I want to advocate may be stated: “Whatever involves
an apparent variable must not be among the possible values of that variable”. [Rus06a]

Remark that, both Poincaré and Russell, expressed the idea of a vicious circle by means of
a substitutional criterion. In particular, Russell’s formulation of the VCP is strictly connected
with the substitutional principle RUS in [Rus08], giving rise to his formulation of type theory.

In addition to the pragmatical justification of the VCP, given by the fact that the principle
blocks the construction of the antinomies, an explanation of the principle can be found in [Poi06]:
Poincaré’s argument is based on a conception of what logic is, and in what logic differs from
mathematics. His idea was that a purely logical proof is one which, once the expressions involved
in it are replaced by their definitions, can be transformed into a series of tautological propositions.
Mathematical proofs, on the contrary, do not reduce to tautologies but to propositions the
acknowledgement of whose truth requires the appeal to intuition. For instance, he insists that, if
one has proved an equality of the form X = Y , then he must be able to reduce the equality into
the tautological form X = X. The proof itself should provide indeed the substitutions required.

Mais si l’on remplace successivement les diverses expressions qui y figurent par leur définition
at si l’on poursuit cette opération aussi loin qu’on le peut, il ne restera plus á la fin que
des identités, de sorte que tout se réduira à une immense tautologie. La Logique reste donc
stérile, à moins d’être fécondée par l’intuition. [Poi06]

It is on the basis of this conception of logic that Poincaré argues for the rejection of impred-
icative definitions. Indeed, he claims that, if an impredicatively defined concept occurs in the
proof, the replacement of it with its definition might fail to produce a series of tautologies.

Dans ces conditions, la Logistique n’est plus stérile, elle engendre l’antinomie. [Poi06]

In the next section we try to reconstruct Poincaré’s informal argument in the context of a natural
deduction frame.

The second argument Among the most well-known defenses of impredicative definitions
stands Ramsey’s [Ram31]: there he claims that such definitions surely imply some form of
circularity, but that this is harmless:

But, it will be objected, surely in this there is a vicious circle; you cannot include F (x) =
∀φ(f(φ(z), x)) among the φ’s, for it presupposes the totality of the φ’s. This is not, however,
really a vicious circle. The proposition F (a) is certainly the logical product of the proposi-
tions f(φ(z), x), but to express it like this is [...] is merely to describe it in a certain way,
by reference to a totality of which it may be itself a member, just as we can refer to a man
as the tallest in a group, thus identifying him by means of a totality of which he is himself
a member without there being any vicious circle. [Ram31]

In a word, Ramsey claims that there is nothing circular in defining an object by reference to a
tolatily to which that object belongs, if that totality is already well-defined. The application of
this argument, though, presupposes the platonistic thesis that the totality of sets is a well-defined
one, independently of the definitions that one can provide of one of its elements.

Carnap’s ([Car83]) contains an analysis of Ramsey’s argument which is very crude on this
point:

4.2. THE VICIOUS CIRCLE PRINCIPLE 97

Although this happy result is certainly tempting, I think we should not let ourselves be
seduced by it into accepting Ramsey’s basic premise; viz., that the totality of properties
already exists before their characterization by definition. Such a conception, I believe, is
not far removed from a belief in a platonic realm of ideas which exist in themselves. [...]

It seems to me that, by analogy, we should call Ramsey’s mathematics “theological mathe-
matics”, for when he speaks of the totality of properties he elevates himself above the actually
knowable and definable and in certain respects reasons from the standpoint of an infinite
mind which is not bound by the wretched necessity of building every structure step by step.
[Car83]

Gödel’s [G4̈4] contains a very lucid analysis of this contraposition:

[...] it seems that the vicious circle principle in its first form applies only if the entities
involved are constructed by ourselves. In this case there must clearly exist a definition
(namely the description of the construction) which does not refer to a totality to which the
object defined belongs, because the construction of a thing can certainly not be based on
a totality of things to which the thing to be constructed itself belongs. If, however, it is a
question of objects that exists independently of our constructions, there is nothing in the
least absurd in the existence of totalities containing members which can be described (i.e.
uniquely characterized) only by reference to this totality. [...]

So it seems that the vicious circle principle in its first form applies only if one takes the
constructivistic (or nominalistic) standpoint towards the objects of logic and mathematics
[...] [G4̈4]

In particular, from Carnap’s objection and, more clearly, from Gödel’s analysis, we can
retrieve a second argument, in addition to Poincaré’s one, for the VCP: if one adopts the “con-
structivistic” view that definitions create, or constitute the objects defined, rather than simply
describing pre-existing objects, then circular definitions should be avoided, since a construction
cannot depend on a totality to which the construction itself belongs.

In the next subsection similar arguments for the rejection of second order logic here presented
will be described in the context of proof-theoretic semantics; the difference is that, rather than
rejecting impredicative definitions, such argument will be addressed to the rejection of implicit
definitions by means of rules for impredicative quantification.

4.2.2 Proof-theoretic semantics

We reconstruct Prawitz’s definition of validity for second order logic (which follows an adapta-
tion of the reducibility candidate technique). Next we discuss some of the arguments against
impredicative quantification that can be found in the literature on proof-theoretic semantics. We
argue that some of those arguments seem to presuppose the faulty stipulation of the meaning of a
universally quantified formula ∀XA as a function of the meaning of all its substitution instances
A[P/X] (similarly to the faulty extension of reducibility presented above).

Second order validity The first works on proof-theoretic semantics were quite neutral on
second-order quantification: Prawitz’s program of “general proof-theory” was originally conceived
to include second order logic. In particular [Pra71a] contains an extension of the definition of
proof-theoretic validity to second order logic.

First observe that a naïve extension will run into problems similar to the naïve extension of
reducibility discussed above: let us add a condition V4 as follows:

98 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

(V4) A = ∀XB and d is canonical, i.e. of the form
.... d
′

A
∀XA (∀I)

(4.2.1)

and for all formula B, the derivation d′{B/X}
.... d
′{B/X}

A[B/X] (4.2.2)

is valid.

The reader will then easily recognize the vicious circularity of this definition: for instance, the
validity of a derivation of ∀XX is defined in terms of the validity of derivations of every formula!

To overcome this difficulty Prawitz adapts Girard’s technique of reducibility candidates to the
validity framework: he defines the notion of a regular set of derivation in analogy with Girard’s
reducibility candidates and introduces a new definition of validity for derivations relative to an
assignment N of regular sets to the predicate variables occurring in the derivations. The clauses
V1-V3 of the definition of validity in section (3.1.3) are then replaced by clauses V1′-V3′ when
the parametrization occurs, and two further clauses are added: a clause V0 for atomic formulae
and a clause V4′ for universal quantification:

Definition 4.2.1 (Relative validity for the ∀ ⇒-fragment of intuitionistic logic). Let d be a
natural deduction derivation of conclusion A. Let N be an assignment of regular sets to the
predicate variables occurring in d. d is valid relative to N if either:

(V0) A = P (t1, . . . tn) and d ∈ N , when N assigns the set N to the predicate P (x1, . . . , xn);

(V1′) A = B ⇒ C and d is canonical, i.e. of the form

[B]....
C

B ⇒ C
(⇒ I)

(4.2.3)

and for every derivation d′ valid relative to N , of conclusion B, the derivation
.... d
′

B....
C (4.2.4)

is valid relative to N ;

(V2′) d is not canonical and normal;

(V3′) d is not canonical and not normal, and for every derivation d′ such that d reduces to d′
in one step, d′ is valid relative to N ;

(V4′) A = ∀XB and d is canonical, i.e. of the form
.... d
′

B
∀XB (∀I)

(4.2.5)

4.2. THE VICIOUS CIRCLE PRINCIPLE 99

and for every predicate P and every regular set N , the derivation
.... d
′{P/X}

B[P/X] (4.2.6)

is valid relative to N ′, where N ′ differs from N only in that it assigns the set N to the
occurrences of the variable X.

Now, by an argument that closely follows the proof of theorem (4.1.1), Prawitz shows that,
if d is valid relatively to an assignment N of regular sets, then d is strongly normalizing. In
particular, one has to use a variant of the substitution lemma (4.1.2) to show that, if d is a
derivation of a formula of the form A[B/X], then d is valid relative to an assignment N if and
only if it is valid (as a formula of conclusion A) relative to the assignment N ′, which differs from
N only in that it assigns to X the set of derivation of B which are valid relative to N .

Intuitionistic type theory Martin-Löf’s original type theory ([ML70b]), discussed in the
next section, was a fully-fledged impredicative theory, admitting a type of all types. After the
discovery of Girard’s paradox, however (see section (4.3.2), chapter (6) and appendix (B)), his
research turned into a predicativist direction, based on a well-founded hierarchy of universes (see
[ML75, ML84]).

Martin-Löf’s later versions of intuitionistic type theory are based on a distinction between
sets and categories: a set is defined by specifying how its canonical elements are formed, and
when two non canonical elements are equal; a category, instead, is defined by specifying “what
an object of the category is and when two such objects are equal” [ML84]. In particular,

A category need not be a set, since we can grasp what it means to be an object of a given
category even without exhaustive rules for forming its objects. For instance, we now grasp
what a set is and when two sets are equal, so we have defined the category of sets [...] but
it is not a set. [ML84]

A second major difference between the two is that, whereas it is possible, in intuitionistic type
theory, to quantify over the elements of a set, it is not possible to quantify over the objects of
a category: thus, for instance, it is not possible to quantify over the category of sets, and thus
to introduce second order quantification. Martin-Löf claims that it is the ambiguïty about these
two notions, when defining types, which leads to the paradoxes of Russell’s and his original type
theory.

What about the word type in the logical sense given to it by Russell with his ramified (resp.
simple) type theory? Is type synonymous with category or with set? In some cases with
one, it seems, and in other cases with the other. And it is this confusion of two different
concepts which has led to the impredicativity of the simple theory of types. When a type is
defined as the range of significance of a propositional function, so that types are what the
quantifiers range over, then it seems that a type is the same thing as a set. On the other
hand, when one speaks about the simple types of propositions, properties of individuals,
relations between individuals etc., it seems as if types and categories are the same. The
important difference between the ramified types [...] and the simple types [...] is precisely
that the ramified types are (or can be understood as) sets, so that it makes sense to quantify
over them, whereas the simple types are mere categories. [ML84]

Martin-Löf’s argument seems to presuppose the claim that one cannot provide a non circular
definition of what a canonical object of the category of proposition: if such a definition were
given, then the category would be a set, and thus one would be entitled to define new canonical
elements of those set by quantifying over all of them.

100 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

Retrieval of the first argument On the same lines of Martin-Löf’s rejection are Dummett’s
views on impredicativity and the VCP: in several places (for instance in [Dum91a, Dum06]) he
explicitly endorses the VCP and in [Dum91b] he rejects the possibility of circular dependencies
in the description of the meaning of the logical constant (more below).

Impredicative quantification is a rather controversial theme in the literature on proof-theoretic
semantics. Still [Pra71a] contains the remark that Girard’s trick is a “wonderful example of
impredicativity”. Nevertheless, it is possible to find, within the context and the vocabulary of
this tradition, arguments against impredicativity which are very similar to the ones described
above.

For instance, Sundholm criticizes the meaning explanation of second order quantification, by
making reference to Poincaré’s argument on the eliminability of the defined notions:

A meaning-explanation for the second order quantifier begins by stipulating that (∀X ∈
Prop)A has to be a proposition under the assumption that A is a propositional function
from Prop to Prop, that is, that A ∈ Prop, provided X ∈ Prop. One then has to explain,
still under the same assumption, which proposition it is:

(∀X ∈ Prop)A is true if and only if A[P/X] is true, for each proposition P

In the special case of (∀X ∈ Prop)X one obtains

(∀X ∈ Prop)X is true =def P is true, for each proposition P

but (∀X ∈ Prop)X is (meant to be) a proposition, so it has to be considered on the right-
hand side. Accordingly (4.2.2) cannot serve as a definition of what it is for (∀X ∈ Prop)X
to be true; it does not allow for the elimination, effective or not, of

...is true

when applied to the alleged proposition (∀X ∈ Prop)X. [Sun99]

At the same time, behind Dummett’s conception of harmony we can recognize a view on
logical deduction as essentially self-explanatory (or “sterile”, to recall Poincaré’s quotation): we
recall below an aforementioned quotation:

The requirement that this criterion for harmony be satisfied conforms to our fundamental
conception of what deductive inference accomplishes. An argument or proof convinces us
because we construe it as showing that, given that the premisses hold good according to our
ordinary criteria, the conclusion must also hold according to the criteria we already have for
its holding. [Dum91b]

If we draw some consequences from a concept C that we have previously introduced (according
to its defining introduction rules) then it must be possible, by harmony, to draw the same
consequences from the concepts employed for the introduction of C; in a word, it should be
possible to eliminate the concept once we replace it by its definition (the introduction rule).
Here the similarity with Poincaré’s views on the elimination of defined concepts in a purely
logical proofs appears compelling.

The difference between predicative and impredicative second-order quantification is not
about a cautious and a bold assumptions about what mathematical entities exists: it is
between an axiomatization which is self-explanatory and one that is not. [Dum91a]

Indeed, in the case of an argument involving second order quantification, from the transfor-
mation involved in eliminating a cut between an introduction and an elimination rule, there is
no warranty that the “concept” introduced (a second order quantification) be eliminated, since

4.2. THE VICIOUS CIRCLE PRINCIPLE 101

it may occur (“circularly”) as the witness of the second order elimination rule, as in the example
below: d

X
∀XX (∀I)

∀XX (∀E)
.... (4.2.7)

which reduces to d{∀XX/X}
∀XX.... (4.2.8)

Retrieval of the second argument The second argument against impredicativity, the Ramsey-
Gödel one, can be found in several places: in [Dum06] Dummett explicitly endorses their argu-
ment

Quantification over a domain assumes a prior conception of what belongs to that domain:
by trying to specify what belongs to the domain by using quantification over that same
domain, we assume as already known what we are attempting to specify. [Dum06]

Elsewhere (for instance, in [Dum91a]) Dummett insists that the debate over impredicative quan-
tification reduces in definitive to the debate on whether mathematical entities are discovered or
invented, thus presupposing that, in the second case, the “constructivist” or “nominalist” one,
one should be bound to accept the VCP, in accordance with Gödel’s remarks.

Moreover, as already mentioned, in [Dum91b] he claims that, if we consider the meaning of
the logical constant as fixed by self-justifying rules, then an introduction rule which may involve
other logical constants of arbitrary complexity (as the second order existential quantifier) cannot
be taken as correctly fixing a meaning. Indeed, a speaker could not understand such a meaning
by learning to use the introduction rule, since such a use would presuppose the understanding of
all meanings (and in particular of that meaning itself). Dummett considers circular dependencies
in the meaning as violating the principle of compositionality of meaning, i.e. the principle that
the meaning of a complex sentence must be explained in terms of the meanings of the sentences
of which it is composes; he is finally led to require that

Compositionality demands that the relation of dependence imposes upon the sentences of
the language a hierarchical structure deviating only slightly from being a partial order.
[Dum91b]

It must be observed that this retrieval of the classical arguments against impredicativity in the
proof-theoretic domain seems to rely on a dubious assumption: the way in which Dummett de-
scribes the assignment of meaning to second order formulae recalls the faulty extension discussed
in the previous section. In particular, he seems to assume that the meaning of a universal formula
∀XA must be described as a function of the meanings of all its substitution instances A[B/X],
thus violating his compositionality-as-(quasi)-partial order requirement, so as Poincaré’s VCP.
One can argue in a similar way for Sundholm’s stipulation of truth for second order formulae.

As it was shown in the preceding section, this is not the correct way to define reducibility and
validity for second order formulae; in definitive, it is not the correct way of assigning meaning
(proof-theoretically) to the impredicative universal quantifier. By contrast, the definition of
validity, parametrized with respect to an assignment of regular sets, does not violate the VCP:
it is indeed a truly inductive definition, since the validity of derivations of ∀XA (parametrized

102 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

by N) is defined as a function of the validity of derivations of A (parametrized by apposite
extensions of N).

However, the reducibility argument relies on the substitution lemma (4.1.2) which, in turn,
presupposes set-existence principles (i.e. comprehension instances) asserting that to reducibilities
there actually correspond appropriate sets. In the next section (subsection (4.3.2)) an especially
problematic consequence of this fact will be explored.

4.2.3 Untyped semantics

The tradition that we called “untyped semantics” stands quite on the opposite position in the
dispute over impredicativity and higher order reasoning: Girard’s work on System F was the
starting point of a wide literature on impredicative type theories and their interpretations. In
particular, finer analyses of the circularity involved in second order quantification have come
from the mathematical interpretation of proofs. Just to name a few, the interpretation of im-
predicativity by means of direct limits in denotational semantics (see [GLT89]), or the dinatural
interpretation ([GSS92]) that will be discussed in the next chapter.

It can be claimed that the untyped setting is in several senses more “familiar” with a second
order frame; first of all, because polymorphism, a fundamental property of untyped programs,
happens to be one of the central aspects of second order type theories: a term M of a universal
type ∀ασ is indeed usually called polymorphic since it can be extracted, i.e. seen as a term of
type σ[τ/α] for all type τ . In particular variables in System F , contrarily to what happens
in Russellian type theories, are not statically typed: their type can change if an extraction is
performed.

For instance, let us consider the coding of pairs in System F : this is obtained by means of
terms of the form 〈M,N〉 = λz.(z)MN , where M and N are, respectively, terms of type σ and
τ , for certain types σ and τ . 〈M,N〉 has type σ ∧ τ =def ∀α((σ → τ → α) → α). Now, pairs
are fully characterized by the existence of two projections P1, P2, i.e two terms satisfying the
equations below:

P1〈M,N〉 =β (P1)MN =β M (4.2.9)
P2〈M,N〉 =β (P2)MN =β N (4.2.10)

From these equations it follows then that the subterm (z)MN can be seen at the same time as
a term of type σ and as a term of type τ . In a sense, the untyped setting is somehow already
built-in second order type theory.

A second reason comes from the proof-irrelevance of atomic types: as we have already seen, the
fact of interpreting atomic types as arbitrary reducibility candidates is a fundamental ingredient
in the formalization of second order reducibility. In particular, theorem (4.1.1) states that a
(closed) termM of type σ is in the reducibility Redσ[. . . Ci/αi . . .] for every choice of reducibility
candidates Ci for the free variables of σ. Since this is exactly the same as saying that M is in the
reducibility of ∀ασ, i.e. of the universal closure of σ, this means that the proof of reducibility is
carried over as if all type variables were universally quantified : this way of treating reducibility
(and validity) in a uniformly second order way has some important consequences that are explored
in the next chapter, and lead to an explanation of impredicative quantification (based on the
notion of parametric polymorphism) which is often ignored in the philosophical debate.

The untyped setting allows to reconsider the arguments against impredicativity discussed so
far. Let us start from Poincaré’s argument on the non eliminability of impredicative definitions.
We already observed that Sundholm’s version of Poincaré’s argument by his definition of truth
seems to trace the wrong definition of validity given by the clause V4: the whole interest of the

4.3. KALEIDOSCOPE EFFECTS 103

reducibility candidates technique is indeed to avoid this vicious circularity by discharging the
impredicativity over the set-theoretical frame in which the system is formalized.

As for the argument based on harmony, it can be said that the Hauptsatz expresses the fact
that a consequence drawn from a previously introduced concept could have been drawn already
from an instance of the concepts adopted for the introduction; the only problem is that this can
in no way be detected locally, since from a local viewpoint no reduction (or actual elimination
of concepts) is achieved (we already remarked - subsection (4.1.2) - that the complexity of
the second order Hauptsatz cannot be detected from the inversion principle). This is rather the
conclusion of a logically complex global argument. In a word, the second order Hauptsatz conveys
no information locally, but provides a global information about termination.

A conception of proofs as determined by their global behavior (irrespective of their internal
structure) seems then more akin to accepts this lack of local information, with respect to a
conception of proofs as determined by their construction (and their local properties like harmony
or the inversion principle).

The polymorphism of the untyped setting involves a different approach to the notion of
construction: indeed untyped programs are, by definition, effective methods that can be described
by means of an inductive definitions. For instance, the definition of λ-terms is given by a
predicatively acceptable induction:

• a variable x is a term;

• if M is a term and x is a variable, λx.M is a variable;

• if M,N are terms, then (M)N is a term.

In particular an untyped program is never defined by reference to the totality of untyped
programs. At the same time we remarked that a purely impredicative definition of the behavioral
norms would lead into a vicious circle: we cannot define a realizer of ∀ασ as a realizer of σ[τ/α]
for all α. That’s exactly the reason for the introduction of reducibility candidates (see above).

The reducibility clause given by quantification over reducibility candidates escapes Poincaré’s
vicious circle and blocks the Ramsey-Gödel’s argument on constructions depending on the totality
of constructions; however, circularity is not eliminated from the frame, but just rearranged in a
subtle way: an argument which justifies the fact that a program is a realizer of an impredicative
type must employ an impredicative comprehension principle. What did we gain by means of this
refinement?

4.3 Kaleidoscope effects

By means of Girard’s trick the vicious circularity of the (naïve) definition of reducibility is
transferred into the circularity of lemma (4.1.2), in which comprehension in logic by means of
comprehension outside logic, i.e. in instances of the comprehension schema of set theory.

One arrivers at a strange situation where one no longer knows who interprets who: does
reducibility interpret term t, or is it that t would eventually be a way to eninciate its own
reducibility? “When you gaze long into the abyss, the abyss also gazes into you”. [Gir11]

In this section we investigate this form of circularity which, as we remarked in the last section,
does not correspond to Poincaré’s notion of vicious circularity.

104 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

4.3.1 The Hauptsatz seen from within
“Pragmatic” and “epistemic” circularities In [Dum91b] Dummett makes a distinction
between two different ways in which an argument for the justification of a logical law can be
blamed of circularity: on one side he considers

[...] the ordinary gross circularity that consists of including the conclusion to be reached
among the initial premisses of the argument. [Dum91b]

On the other side, he considers arguments that purport

to arrive at the conclusion that such-and-such a logical law is valid; and the charge is not
that this argument must include among its premisses the statement that the logical law is
valid, but only that at least one of the inferential steps in the argument must be taken in
accordance with that law. We may call this a “pragmatic” circularity. [Dum91b]

A “pragmatically” circular argument is thus one which employs the rule it is up to justify. For
instance, an argument for the justification of the rule of modus ponens (i.e. (→ E)) will be
“pragmatically circular” if it employs somewhere an instance of the rule of modus ponens.

The substitution lemma (4.1.2) contains essentially the proof-theoretic validation of the com-
prehension rule (i.e. (∀E)) of second order logic: it implies in particular that a term in the
reducibility of ∀ασ must be in the reducibility σ[τ/α], for every type τ . At the same time there
is a passage in the proof which requires an instance of the comprehension schema of set-theory,
in order to state that the reducibility of τ , a property, actually defines a set. That is, at least one
passage in the argument which justifies comprehension over the type τ requires comprehension
over the reducibility of τ (by induction one can verify that the logical complexity of the property
of reducibility for τ is major or equal to the logical complexity of the type τ).

Speaking of circularity, take for instance comprehension: this schema is represented by
extraction, but the reducibility of extraction requires comprehension, reoughly the one under
study.

[...]

If one carefully looks at the proof of reducibility for system F , one discovers that the re-
ducibility of type A closely imitates the formula A. Which makes that the extraction on B
- the only delicate point - is justified by a comprehension on something which is roughly B.
[Gir11]

Coherently with his views on the VCP and on the meaning of universal quantification,
Dummett claims that the justification of second order quantification is a viciously circular one
(for instance in [Dum91a]). Nevertheless, as we discussed in the preceding section, the circularity
involved in Girard’s trick rather appears as a “pragmatic” one.

What is then the epistemological status of this apparently weaker notion of circularity? Here’s
Dummett’s view:

[...] if the justification is addressed to someone who genuinely doubts whether the law is
valid, and is intended to persuade him that it os, it will fail of its purpose, since he will
not accept the argument. If, on the other hand, it is intended to satisfy the philosopher’s
perplexity about our entitlement to reason in accordance with such a law, it may well do
so. [Dum91b]

In other words, “pragmatic” circularity is enough to make the reducibility argument powerless
in a debate over the legitimacy of second order quantification, but it is enough to reassure the
adept of the second order church of the goodness of his faith.

4.3. KALEIDOSCOPE EFFECTS 105

There exists a vast literature in epistemology over a similar notion of “epistemic circularity”:
in [Als86] Alston defines an argument for the reliability of a source of belief as “epistemically
circular” if the argument relies on premisses that are themselves based on the source. For instance,
Alston claims that arguments about the reliability of perception are usually epistemically circular,
since they are based on track-records of the form

S has the perceptual belief that p and p is true

and the acknowledgement of their truth presupposes the reliability of perception. Also in this
case, the argument is not a viciously circular one since that perception is reliable is not a premiss
of the argument. Alston’s (rather controversial) diagnosis is that epistemically circular arguments
are no harm, unless their purported conclusions actually are true:

Epistemic circularity does not in and of itself disqualify the argument. But even granting
this point, the argument will not do its job unless we are justified in accepting its premises.
[Als86]

Alston’s reliabilism is the starting point of a long debate that is not in the scope of this short
discussion. At the same time we can retain the notion of “epistemic circularity” to indicate those
arguments whose validity presupposes the truth of the conclusion they purport.

Internal approximations of the Hauptsatz Getting back to logic, a very interesting case
of epistemic circularity arises from the remark that, for any type σ, the reducibility Redσ can be
expressed by a predicate in the language of second order arithmetics. In particular, this implies
that, for any term M having type σ the entire argument for the reducibility of M can be proved
in second order arithmetics.

This can be seen from the definition of reducibility (or, similarly, from the definition of
validity relative to an assignment N): let M be a term having type σ in F ; then the parametric
reducibility predicates Redσ[C1, . . . , Cn] for the types σ occurring in the typing of M can all be
expressed by predicates Redσ[X1, . . . , Xn](n) (where n codes a λ-term) in the language of HA2,
by means of the following clauses:

Redαi [X1, . . . , Xn](n) := Xi(n) (4.3.1)

Redσ→τ [X1, . . . , Xn](n) := ∀m
(
Redσ[X1, . . . , Xn](m)⇒ Redτ [X1, . . . , Xn](@(n,m))

)
(4.3.2)

Red∀ασ[X1, . . . , Xn](n) := ∀Z
(
CR[Z]⇒ Redσ[X1, . . . , Xn, Z](n)

)
(4.3.3)

where @(n,m) is the code of the λ-term obtained by applying the λ-term coded by n to the one
coded bym and CR[Z] is the arithmetical first-order predicate (with parameter Z) corresponding
to the property “Z is a reducibility candidate”. Remark how the logical complexity of the
predicate Redσ grows along with the logical complexity of the type σ.

Then, starting from the proof of lemma (4.1.1) one can construct, for all closed type σ, a
derivation of CR[Redσ(n)]. Hence, one can reconstruct in HA2 the proof of the substitution
lemma (4.1.2); remark that the comprehension axioms used in that proofs are here replaced by the
comprehension rule of HA2: if Red∀ασ[X1, . . . , Xn](n) holds, then, since CR[Redτ (x)] holds, it
follows thatRedσ[X1, . . . , Xn, Redτ](n) holds, and finally (by induction) thatRedσ[τ/α][X1, . . . , Xn](n)
holds.

Hence, the reducibility argument showing that M ∈ Redσ can be formalized in second order
arithmetics (by means of some appropriate coding, see for instance [Gir72]).

More generally, if one takes a subsystem of F ′ of F generated by finitely many extractions,
one can formalize in HA2 the whole reducibility argument for F ′ (this is shown in [Gir72]). There

106 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

is a similarity here with the question of the derivability of reflection principles in arithmetics
(see [KL68], [Gir72]): one can show that, for each subsystem T of second order arithmetics with
a finite number of comprehension axioms, and for each formula A of second order arithmetics,
the reflexion principle ThmT (pAq)⇒ A is derivable in second order arithmetics.

A wonderful application of this idea is at work in the first part of the proof of theorem (2.3.2):
one has to recover, from a term M of type N→ N in System F computing a recursive function
f , a derivation in HA2 of the totality of the function f . Then one codes directly in HA2 the
reducibility argument for M , by relying on the fact that the latter can use just a finite number
of instances of the comprehension schema. Hence one proves in HA2 that, for any (Church)
integer n, there exists a (Church) integer m which corresponds to the normal form of the term
Mn. By some coding one recovers then a derivation of the totality of f .

However, as a consequence of Gödel’s second incompleteness theorem, it is not possible (if
we admit that HA2 is consistent) to formalize the whole reducibility argument for System F
within second order arithmetics. In other words, there exists no predicate R(n), depending on a
variable Z, in the language of second order arithmetics such that, for all type σ, there exists a
second order formula Bσ such that R[Bσ/Z] is equivalent to Redσ.

Remark that the definition of reducibility is given by means of an iterated inductive definition
over the types. In particular, since the induction is non-monotone, as shown by the implicative
clause

Redσ→τ (M) if and only if ∀N(Redσ(N)⇒ Redτ (MN))

it can be shown that, whereas for every type σ, the property Redσ can be expressed in second
order arithmetics, there is no formula of second order arithmetics that can express reducibility
of all types in a uniform way (such a problem in the formalization of reducibility is of the same
nature as the one in the formalization of the notion of truth, since the latter is defined by a
non-monotone induction over formulae).

In definitive, the Hauptsatz for second order logic can be approximated within second order
logic but cannot be globally formalized in it. These has at least two consequences: first, it reveals
that the reducibility argument for a derivations involving a certain set of rules can be simulated,
or coded, within the same logical system by using the same rules. In a sense, these results can
be seen as a concrete application of Dummett’s “pragmatic” circularity. Second, since the theory
in which the global argument is formalized must be able to code the rules of second order logic
(in order to formalize the global notion of reducibility), the validity, or reducibility, of the global
argument, by presupposing the validity of the stronger theory, already presupposes the validity,
or reducibility, of second order logic. In a word, it will be an epistemically circular one in Alston’s
sense.

On the class Π0
2 We show how epistemic circularity is at work in the explanation of the proofs

for Π0
2 formulae. Remark that these are the formulae which allow to express the Hauptsatz :

reducibility arguments essentially prove that, for all term M of a certain recursively encodable
system, the reduction sequences starting from M are all finite. This can be formalized as a Π0

2

arithmetical formula, i.e. as a Π2 logical formula.
Moreover, in chapter (2) we recalled that proofs of Π0

2 formulae correspond, under the forgetful
translation, to programs which compute a certain recursive function.

We are now able to collect a series of properties of this class of formulae, and of their proofs,
which can be useful to frame and to sum up the epistemological issues concerned with proof-
theoretic arguments for validity. Indeed, we first observed that, from the viewpoint of the BHK
interpretation of proofs, Π0

n formulae have a delicate epistemological content: technically, a proof
of ∀nA is taken to be a method µ which assigns, with each integer k, a proof µ(k) of A[k/n].

4.3. KALEIDOSCOPE EFFECTS 107

In the Π0
2 case this means that µ assigns, with each integer k, a proof of ∃mA[k/n], with A

quantifier free: for each k, µ picks up an integer h and a proof of A[k/n, h/m] (here we use
Σ0

1-completeness).
Constructively this clause appears quite problematic, since it reduces a problem apparently

involving infinite verifications into another one, which still requires infinite verifications: how
do we verify that µ actually produces, for every integer k, an integer h? Kreisel’s solution
([Kre65, Tro69]), as we saw, was to add a second term to the proof, i.e. a “verification” that µ
actually does the job. By the way, such a verification would still be an argument saying that,
for every n, there exists an m such that µ applied to n produces an m such that... In a word,
the verification would be a second proof of a Π0

2 formula. This appears as a real blindspot of the
theory of constructions.

We can appreciate the circularity involved if we look at this phenomenon from the viewpoint
of theorem (2.3.2): a proof of the totality of a certain recursive function f is a proof of a
Π0

2 statement. At the same time, by theorem (2.3.2), such a proof corresponds to a program
Mf which computes the function f . Now, from the viewpoint of the realizability/reducibility
interpretation, our proof will be valid exactly when, for all integer k, the program Mf applied
to the Church numeral k produces as output a Church numeral h. In other words, in order to
acknowledge the validity of the proof, one has to show that, for every integer k, there exists an
integer h such that Mfk reduces to h. That is, the argument for the validity of the proof which
shows the totality of f is in the end another argument for the totality of f !

Apparently, then, nothing seems to be gained from the proof-theoretic interpretation of proofs
of Π0

2 formulae: their explanation reproduces in the end exactly the same structure to be ex-
plained (i.e. that of the proof of totality of a recursive function). In the end, we are not that far
from the explanatory circularity that was reproached to the Tarskian explanation of validity.

Furthermore, as seen in section (4.1), it turns out that cut-elimination is of no help here: Π0
2

formulae are indeed poor, and enjoy a trivial Hauptsatz. This means that from a cut-free proof
of a Π0

2 formula we cannot extract more information than from an arbitrary one.
In the end, two different challenges can be posed with respect to these proofs (which extend

more generally to second order logic and its reducibility arguments): firstly, a technical question:
what kind of proof theory can be developed for epistemically circular proofs? We’ll try to develop
two possible and complementary answers in the next chapters. Secondly, a philosophical question,
which will be left open: what is the content of an epistemically circular proof?

4.3.2 A paradox of reducibility
We end this chapter by recalling an extension of the reducibility technique for a strongly im-
predicative type theory due to Martin-Löf, which was shown to be inconsistent in 1971 ([Gir72]).
Girard’s paradox is discussed in appendix (B), here we limit ourselves to provide a simplified
sketch of the reducibility argument for Martin-Löf’s theory. This rather elegant extension of
Girard’s technique can be seen, on the one hand, as an interesting exercise in the practice of
“pragmatic” or “epistemic” circularity; on the other hand, as a proof of the limited epistemo-
logical value of these results: the validity of these arguments depends on the reliability of the
(set-theoretical) frame in which this is formalized and the latter must be conceived as to “reflect”
the properties of the type system. This is why an inconsistent type theory could be proved
reducible, in an extremely clever way, within a likewise inconsistent set theory.

Always the propensity at making circles, illustrated by the faulty normalisation proof given
by Martin-Löf for its first system: the extraction on a rather dubious type was justified by
a comprehension on more or less the same thing...but the system was nevertheless contra-
dictory. [Gir11]

108 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

Dependent types and Martin-Löf’s impredicative type theory The most basic distinc-
tion in type theory is the one between two categories: the category of terms (let us call it λ) and
the category of types (let us call it ν). When we work in simple type theory we build elements of
the two categories inductively. In particular, the rules for the formation of types can be written
as typing rules which construct an element of the category ν given one or more elements of the
category ν. In the case of implication, we can write:

Γ ` σ : ν Γ ` τ : ν
Γ ` σ → τ : ν (4.3.4)

where Γ contains declarations of the form (αi : ν) for the free type variables occurring in σ and
τ . The implication → can then be seen as a constant of the category ν → ν → ν. In a word,
we can consider types, in addition to terms, as constructions themselves, and provide apposite
typing rules for them.

This frame suggests a very natural extension: one can consider types τ(x) depending on a
variable x which is declared of another type σ:

Γ, (x : σ) ` τ(x) : ν (4.3.5)

these dependent types were firstly discovered by [DB70] and constitute one of the main feature of
Martin-Löf’s intuitionistic type theory. Given a type σ and a type τ(x) depending on a variable
x of type σ, one can construct a dependent product (Πx : σ)τ , which is the dependent version of
an implication:

Γ ` σ : ν Γ, (x : σ) ` τ : ν

Γ ` (Πx : σ)τ : ν
(ΠI)

(4.3.6)

The introduction rule associated to the dependent product is a dependent extension of the λ-
introduction rule of simple type theory:

Γ, (x : σ) `M : τ(x)

Γ ` λx.M : (Πx : σ)τ(x)
(λI)

(4.3.7)

The elimination rule for Π is the dependent extension of the application rule of simple type
theory:

Γ `M : (Πx : σ)τ(x) Γ ` N : σ

Γ `MN : τ [N/x]
(λE)

(4.3.8)

Dependent products can be used to translate predicate calculus in type theory in a more
direct (and less forgetful) way than by F: the idea is first to translate individuals t into terms td
of an apposite type ι (in the case of the language of arithmetics, one chooses for the type ι the
type N and translates terms in an obvious way); then, predicates P (x1, . . . , xn) are translated
into dependent types P ∗(x1, . . . , xn), where the variables x1, . . . , xn are declared of the type of
the individuals. The translation of first-order formulae is then immediate:

P (t1, . . . , tn)d := P d(td1, . . . , t
d
n) (A⇒ B)d := (Πx : Ad)Bd (∀xA(x))d := (Πx : ι)A(x)d

(4.3.9)
where, in (Πx : Ad)Bd, x is a fresh variable, so that Bd does not actually depend on x.

Remark that, if τ does not depend on x, the typing rule for (Πx : σ)τ (λI) reduces to the
typing rule of the implication type σ → τ :

Γ, (x : σ) `M : τ

Γ ` λx.M : σ → τ
(λI)

(4.3.10)

4.3. KALEIDOSCOPE EFFECTS 109

In the following, when τ does not depend on x, we will note (Πx : σ)τ(x) simply as σ → τ .
The brilliant idea at the basis of Martin-Löf’s original type theory [ML70b] (that here we

abbreviate as ML70) was to simulate impredicative quantification (i.e. system F) by means of
dependent products: a type like, for instance, α→ α, depends indeed on the variable α (declared
of category ν). The impredicative quantification ∀α(α → α) of system F corresponds then to
a product over all types, i.e. all objects of the category ν. Observe that this quantification
over the objects of a category is forbidden in the successive (and more well-known) versions of
Martin-Löf’s type theory (see section (4.2.2)).

Indeed, in ML70, the category ν is a type, the type of all types. This allows to write the
second order type above as the product (Πα : ν)(α → α). Now, in order to formally construct
this impredicative type, in accordance with the rule (ΠI), he adds a very simple axiom, which
states that ν is indeed a type:

` ν : ν
(νI)

(4.3.11)

Now we can construct our impredicative type as follows:

` ν : ν
(νI)

(α : ν) ` α : ν (α : ν) ` α : ν

(α : ν) ` (α→ α) : ν
(ΠI)

` (Πα : ν)(α→ α) : ν
(ΠI)

(4.3.12)

The rules (λI) and (λE) simulate then the rules for universal quantification of system F , in its
original version “à la Curry” (see subsection (2.1.3)):

Γ, (α : ν) `M : σ

Γ ` λα.M : (Πα : ν)σ
(λI)

Γ `M : (Πα : ν)σ Γ ` τ : ν

Γ `Mτ : σ[τ/α]
(λE)

(4.3.13)

To give an example of how this theory works, we show how to build an inductive proof of
(Πx : Nd)σ, where Nd is the variant of the type N for Church integers (i.e. the dependent
translation of Dedekind’s predicate) in ML70:

Nd := (Πα : ν)
(
(α→ α)→ (α→ α)

)
(4.3.14)

Suppose now to have a term (or a construction, in Martin-Löf’s terminology) M0 of type σ,
for a certain σ : ν, and a construction Ms of type σ → σ; then we can build a construction of
type (Πx : Nd)σ as follows:

(x : Nd) ` x : Nd ` σ : ν

(x : Nd) ` xσ : (σ → σ)→ (σ → σ)
(λE)

....
`Ms : σ → σ

(x : Nd) ` (xσ)Ms : σ → σ
(λE)

....
`M0 : σ

(x : Nd) ` (xσ)MsM0 : σ
(λE)

` λx.(xσ)MsM0 : (Πx : Nd)σ
(λI)

(4.3.15)

The reader will remark that the term obtained is the same that he would have obtained in system
F (à la Curry).

Interestingly, ML70 contains a power-set operator P given by

P := (Πα ∈ ν)(α→ ν) (4.3.16)

of type ν → ν. With the aid of P we can construct, by recursion, a term Z := λx.(xν)PNd, of
type Nd → ν, which, when applied to a Church numeral k, produces the k-th power of the type
N, i.e. the type

(. . . ((N→ ν)→ ν) · · · → ν)→ ν︸ ︷︷ ︸
k times

(4.3.17)

110 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

remark that the existence of this function in set-theory requires the replacement axiom. This
gives a first approximation to the huge expressivity of ML70, which is far more expressive than
system F .

The reducibility proof We provide a simplified sketch of the reducibility proof for ML70
that was given in [ML70b]. The argument we present does not correspond directly to the one
in [ML70b], but is reconstructed in analogy with the definition of reducibility candidate given
in the last chapter. This proof is of great interest for two reasons: first, it constitutes a very
elegant extension of the reducibility technique, and a wonderful exploitation of the “pragmatic”
circularity of impredicative systems. Second, and most interestingly, the result of this proof is
false: as it is well-known, [Gir72] contains the proof that a not normalizing term can be typed
in ML70, obtained by reconstructing in the system a version of Burali-Forti’s paradox (more on
this in chapter (6)).

Indeed, as a result of the discovery of Girard’s paradox, Martin-Löf’s original system was
abandoned and his research on intuitionistic type theory was directed towards a purely predicative
development of dependent types (see [ML75, ML84]). Still, it seems very interesting to discuss
the details of his reducibility argument since, as we’ll see, its fault does not lie in the argument
itself (it is a very ingenious generalization of Girard’s trick), but rather in the assumptions to
be made with respect to the theory in which the argument is formalized: as we saw, by Girard’s
trick, the impredicativity of a type system is reflected into the impredicativity of the theory in
which the reducibility argument is formalized. Now, if the impredicativity of the type system
is problematic (or paradoxical, as in this case), such a fault will be transmitted to the theory
in which the argument is formalized: as a consequence of the fact that the argument is false, it
cannot be formalized in ZF or in other (thought to be) consistent set-theories.

In order to cope with dependent types, we have to enlarge the notion of reducibility candidate:
in the case of system F it was enough to associate, with each type σ, a set Redσ of λ-terms
satisfying properties R1− 3; now, in order to interpret a type τ(x) depending on a variable
x of type σ, we must take a function associating, with every element in the interpretation of
σ, a certain set of λ-terms satisfying R1− 3 (this idea is used for instance in the reducibility
argument for system Fω, see section (2.4)).

Let ∆ denote the set of “objects”, i.e. of all terms and type symbols of ML70 (in chapter (6)
we’ll see that we can take for ∆ the set Λ of λ-terms); we denote elements of ∆ indistinguishably
by small letters a, b, c, Let us call an extended reducibility candidate (simply e.r.c.) a pair
E = (s,R) made of a set s and a relation R(a, ξ) between objects and elements of the set s which
satisfies the following properties:

(ER1) R(a, ξ) implies that a is strongly normalizing;

(ER2) if R(a, ξ) and a→ a′, then R(a′, ξ);

(ER3) if, for all a′ such that a→1 a
′, R(a′, ξ), then R(a, ξ).

The idea of the interpretation is the following: whenever we have a typing statement of the
form a : b, we interpret b by means of an e.r.c. Ea = (sb, Rb) and a by means of a term αa(ξ) ∈ sb
(parametrized by an object ξ ∈ sb) such that Rb(a, αa(ξ)) holds. In a sense, the set s indicates
the “type” of the candidate, i.e. if it is a set of terms, a function from terms to terms, or a function
from functions ... whereas the property R corresponds intuitively to a reducibility predicate: it
states the reducibility of a, as a result of the construction ξ (that can be thought of as a realizer).

The interpretation of the objects in ∆ is the following:

1. if a is a variable, then Ea is an arbitrary e.r.c.;

4.3. KALEIDOSCOPE EFFECTS 111

2. if a is a variable, then αa(ξ) = ξ;

3. if a = (Πx : a1)a2(x) then Ea = (sa, Ra), where sa is the set of all functions η which, to an object
ξ ∈ sa1 , associate an object η(ξ) ∈ sa2(x)(ξ), and Ra(b, η) is defined by the following clause:

Ra(b, η) if, and only if ∀c∀ξ(Ra1(c, ξ)⇒ Ra2(x)(ξ)(bc, η(ξ))) (4.3.18)

4. if a = λx.a′, with x of type b1 and a′ of type b2, then αa(ξ) is the function which, to an object
ξ ∈ sb1 , associates αa′(x)(ξ).

5. if a = bc, then αa = αb(αc);

6. if a is ν, then Cν = αν = (sν , Rν), where sν is a class containing all pairs (s,R), where s is a set
and R a relation over ∆ and s, and Rν(a, (s,R)) holds when a is strongly normalizable and (s,R)
satisfies ER1− 3 (i.e. it is an e.r.c.).

The reducibility argument proceeds in this way: given a derivation of a typing judgement of
the form

(x1 : a1), . . . , (xn : an(x1, . . . , xn−1)) ` c(x1, . . . , xn) : a(x1, . . . , xn) (4.3.19)

one has to show, by induction on the derivation, two things:

• first, that for all choices of elements ξ1 ∈ sa1 , . . . , ξn ∈ san(x1,...,xn−1)(ξ1,...,ξn−1), the pair(
sa(x1,...,xn)(ξ1, . . . , ξn), Ra(x1,...,xn)(ξ1, . . . , ξn)

)
(4.3.20)

is an element of sν satisfying R1− 3; remark that this implies in particular showing that
the elements of the pair above are sets.

• second, that for all objects c1, . . . , cn(x1, . . . , xn−1) such that Ra1(c1, αc1), . . . ,
Ran(c1,...,cn−1)(αc1 , . . . , αcn−1

)(cn(c1, . . . , cn−1), αcn(c1,...,cn−1)),

Ra(c1,...,cn)(αc1 , . . . , αcn)(c(c1, . . . , cn), αc(c1,...,cn)(αc1 , . . . , αcn)) (4.3.21)

holds.

For the rules (ΠI), (λI), (λE), the proof is very painful to write, but essentially follows the
pattern of the reducibility arguments already presented (it is indeed more or less clear that the
clause (4.3.18) is a generalization to dependent types of the usual clause for the reducibility of
implication). Remark in particular that the only set-theoretical constructions needed to state
that the interpretations of types are e.r.c. are essentially two: the function-space construction,
i.e. the construction that, given two sets S, T , produces the set TS of all functions from S to T ,
and the cartesian product construction, i.e. the construction that, given two sets S, T , produces
the set S × T of all ordered pairs of elements of S and T . This means that this part of the
argument can be formalized in a very weak set-theoretical universe, like Vω+ω

2.
The really problematic part of the argument concerns the strongly impredicative axiom

` ν : ν: it must be shown indeed that the class sν of all pairs (s,R) made of a set s and of a
relation R ⊆ ∆× s is a set and, moreover, that Rν(ν, αν) holds, i.e. that (sν , Rν) is an e.r.c..

Let us start from the latter: let us suppose that sν is a set; we have to show that Rν(a, (s,R))
satisfies ER1− 3. R1 is immediate from the definition of Rν ; as for ER2, if Rν(a, (s,R))

2The Van Neumann universes Vα are defined, for α an ordinal number, by transfinite induction as follows:
V0 = ∅, Vα+1 = ℘(Vα) and for λ limit, Vλ =

⋃
β<λ Vβ .

112 CHAPTER 4. AROUND THE SECOND ORDER HAUPTSATZ

holds, then a is strongly normalizable and R satisfies ER1− 3; now, if a → a′, a′ is strongly
normalizable too and thus Rν(a′, (s,R)) holds. For ER3, let us suppose that, for all a′ such that
a→1 a

′, Rν(a′, (s,R)) holds; then a is strongly normalizable and (s,R) satisfies ER1− 3, hence
Rν(a, (s,R)) holds.

It finally remains to show that sν is a set. We proceed as follows: we fix a set-theoretical
universe V closed with respect to the basic operations of cartesian product and powerset operation
(it suffices to take V = Vα, with α ≥ ω), and we try to individuate the properties needed for V
to contain sν as a subset. Since sν contains all the pairs (s,R) where s is a set and R ⊆ ∆× s,
it follows that sν is contained in the class

V × ℘(∆× V) (4.3.22)

where we use the fact that V is transitive3. Thus, in order to assert that sν is a set, we must
require that V × ℘(∆× V) ∈ V (again, by transitivity). Now, since V is closed with respect to
the power-set and the cartesian product, this reduces to require

V ∈ V (4.3.23)

which is false for all universes Vα, for α an ordinal number. In other words, the strongly impred-
icative axiom ` ν : ν “circularly” looks for a strongly impredicative universe such that V ∈ V .

3I.e. the property that S ∈ T ∈ V implies S ∈ V .

Part III

Explaining how

113

Chapter 5

Impredicativity and parametric
polymorphism

The intuitive explanation of a proof of a universally quantified type ∀ασ as a function from types
to terms, so as the set-theoretic interpretation of quantification as an intersection over all sets,
run into some difficulties and paradoxes due to impredicativity. Rather, a proof of ∀ασ should be
thought as a proof of the (simple) type σ in which the type variable α stands for an “arbitrary”
or “generic” type.

This intuition (at the basis of Carnap’s defense of impredicativity in [Car83]) finds a robust
mathematical grounding in the theories of parametric polymorphism ([Rey83]) and in the dinat-
ural interpretation of polymorphism ([BFSS90, GSS92]). These approaches provide a powerful
explanation of impredicative quantification which, though having been widely known in the com-
puter science community since the eighties, has been substantially ignored in the philosophical
debate (with the sole exception of [LF97]). The fact that a second order proof cannot actually
discriminate between different types imposes indeed very strong constraints on the form that such
a proofs can have. These constraints allow then to reconstruct the internal structure of proofs
from the study of their semantics (this “magical” aspect of parametricity was indeed resumed by
Wadler’s slogan “Theorems for free!” [Wad89]).

In this chapter, we first recall the parametric and dinatural interpretation of polymorphism,
so as the paradoxes which arise from the violation of such “generic” quantification. Then we
present some technical results which highlight the finitary character of this explanation of im-
predicative quantification: first, a purely combinatorial description of the constraints imposed
by the parametricity and dinaturality conditions is provided, by coding both conditions through
the application to reducible terms of certain simply typed λ-terms Hσ,Kσ. This syntactical
criterion allows then to derive the main result of this chapter: the Π1-completeness theorem
(5.2.4) (conjectured in [Gir11]), which states that a closed normal term in the reducibility of a
closed type of the form ∀α(σ → τ) can be given the type σ → τ in simple type theory.

The proof of this theorem exploits the “magic” of parametric polymorphism, yielding a charac-
terization of the internal structure of reducible λ-terms. As a consequence, a bridge between the
interactionist and the inferentialist interpretation of proofs presented in chapter (3) is obtained:
a corollary of the theorem (5.2.4) is that one can recover a “last rule condition” for reducible
closed normal λ-terms.

115

116 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

5.1 Set-theoretic vs “generic” quantification

We recall Reynolds’s result that there exists no set-theoretical model of System F in which the
implication type is interpreted by the function space. This result provides a (quite neglected
in the philosophical literature) proof-theoretic argument against the identification of second
order quantification and set-theoretic intersection and contradicts Shapiro’s thesis (see subsection
(1.2.1)) of a substantial homogeneity between the proof-theory of second order logic and set
theory.

The set-theoretic intuition of second order quantification as a quantification over all sets must
be then replaced by a different one. We recall Carnap’s intuition that a proof of a second order
statement ∀XA is not built by “running all possible cases” but by producing an argument for
A in which the variable X stands for an “arbitrary property” ([Car83]). We recall then two
results which constitute (following [LF97]) a mathematical vindication of Carnap’s remark: first,
Girard’s remark in [Gir72] that, by adding to System F a non “generic” term Jσ, one obtains
a counterexample to reducibility; second, the genericity theorem (5.1.1), which asserts that two
terms which are equal on one type, must be equal on every type.

5.1.1 Reynolds’ paradox: why second order logic is not set-theory

We first provide an informal description of how impredicative quantification can be used to
produce non set-theoretic functions. Next we present in some more detail the idea of Reynolds’
proof.

Impredicativity produces “too many” functions In the previous chapter we recalled the
main objections against the use of impredicatively defined notions. For instance, if we define a
set N as the smallest set containing 0 and closed with respect to the successor function, and
then we wish to show that this set N is itself closed under the successor function, we run into
a form of circularity: on the one hand N is defined by reference to a totality of sets to which it
belongs (the totality of sets containing 0 and closed under the successor function); on the other
hand, we must use the fact that N belongs to that totality to show that N is closed under the
successor function.

Indeed, if we wished to verify the closure of N under the successor operation set by set, we
would stumble on a gross circularity: we should verify, for each set S, included N , that it is
closed under the successor function.

We can describe this kind of argument in a set-theoretic frame: let, for any set s, J(s) be
the set containing 0 and, for any x ∈ s, the set x ∪ {x} (i.e. the set-theoretic successor of x).
The application J(s) defines indeed a monotone operator from the category of sets to itself, i.e.
a map such that, for any two sets s, t such that s ⊆ t, J(s) ⊆ J(t).

The setN of natural numbers can then be defined as “the smallest set” N such that J(N) ⊆ N .
Indeed this definition imitates Dedekind’s definition since it states that N is the intersection of
all the sets containing 0 and closed under the successor operations, i.e. the intersection of all the
sets closed under the operator J . At the same time this definition immediately implies that N
is closed under the operator J .

Remark that definitions of sets by means of expressions like “the smallest set such that”
should be regarded with suspect from the viewpoint of set-theory: they presuppose indeed a
quantification over all sets which is not allowed in standard axiomatic set-theories.

More generally, let φ[α] be a type in which the variable alpha occurs positively and let Φ be
the type ∀α

(
(φ[α] → α) → α

)
. Intuitively, the type Φ can be though as “the smallest set” w

5.1. SET-THEORETIC VS “GENERIC” QUANTIFICATION 117

such that F (w) ⊆ w, i.e. closed with respect to the operator F over sets which is expressed by
the type φ[α].

It is possible to build terms inhabiting the following two types (see [Coq86] for a proof of this
fact):

Func(φ) :=∀α∀β
(
(α→ β)→ (φ[α]→ φ[β])

)
(5.1.1)

Ind(φ) :=∀α
(
(φ[α]→ α)→ (Φ→ α)

)
(5.1.2)

Set-theoretically, φ[α] corresponds to a monotone operator F : Set→ Set from the category
of sets to itself. This means that, for all sets s, t, if s ⊆ t, then F (s) ⊆ F (t). Now the type (5.1.1)
expresses the functoriality of the operator F : it states that, for all sets s, t and for all function
f : s→ t, there exists a function F (f) : F (s)→ F (t).

The type (5.1.2) corresponds to a generalized induction principle for F : it expresses the fact
that, if s is a set which is closed with respect to F , then w must be contained in s (since w is
contained in any set closed with respect to F). For instance, if s is a set containing 0 and closed
under the successor operation, then N ⊆ s.

Reynolds’ ingenious idea was to exploit this elegant theory in order to construct types which,
when interpreted set-theoretically, would contain “too many” functions. Consider the type
ω[α] := (α→ Bool)→ Bool, where Bool is any type with two elements. Set-theoretically, ω[α]
corresponds to the monotone operator O(s) = ℘(℘(s)); now, the type Ω = ∀α((ω[α]→ α)→ α)
should correspond to “the smallest set” closed under to operator O(s), i.e. to “the smallest set”
o such that O(o) = ℘(℘(o)) ⊆ o. Hence, the existence of such a set would imply the existence
of an (injective) function from the double power of a set to the set itself, contradicting Cantor’s
theorem.

“Polymorphism is not set-theoretic” This is indeed the title of a famous paper [Rey84] by
Reynolds, where he exploits the idea sketched above to prove that there exists no set-theoretic
model of System F . By a set-theoretic model he essentially meant an interpretation which assigns
sets to the types of system F and elements of those sets to typed terms in such a way that the
type σ → τ is interpreted as the set of functions from the interpretation of σ to the interpretation
of τ .

More formally, the idea is to consider an interpretation J_K parametrized by a map η, which
assigns sets to the type variables and, to any variable x declared of type σ, an element η(x) ∈ JσKη.
The interpretation of types must respect the clauses:

JαKη = η(α) (5.1.3)

Jσ → τKη = JτKη(JσKη) (5.1.4)

The interpretation of terms must respect the clauses below (we use superscripts to note the
types):

JxσKη = η(x) (5.1.5)
JMσ→τNσKη = JMσ→τ Kη(JNσKη) (5.1.6)

Jλxσ.Mτ Kη = {(u, v)|u ∈ JσKη and v = JMτ K(η ∪ {x 7→ u})} (5.1.7)

Remark that the definition of the sets JσKη and JMKη in Reynold’s set-theoretic interpre-
tation closely resembles, respectively, the definition of the Ra and of the αa in the reducibility
interpretation of Martin-Löf’s paradoxical type theory (see (4.3.2)). In particular, λ-abstracted
terms are interpreted as certain functions in the appropriate function space, and term appli-
cation is interpreted as function application. Several analogies can be indeed found between

118 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

Girard’s paradox (concerning Martin-Löf’s type theory) and Reynold’s argument (see [Coq86]
for a discussion).

We are now able to give a sketch of Reynold’s proof: let us first suppose that a set-theoretic
interpretation J_Kη in the sense above exists. The argument is developed in three steps:

1) There exists a set b with at least two elements. This is shown by taking as b the interpretation
of the Boolean type Bool =def ∀α(α→ α→ α). One indeed easily shows that to the two
distinct λ-terms λx.λy.x and λx.λy.y there must correspond two distinct elements of b.

2) One considers then the positive operator ω[α] = (α → Bool) → Bool. One can verify that
the λ-term func below

func := λf.λz.λu.z(λx.u(fx)) (5.1.8)

has type Func(ω) ≡ ∀α∀β((α→ β)→ (ω[α]→ ω[β])) and that the λ-term ind below

ind := λf.λu.uf (5.1.9)

has type Ind(ω) ≡ ∀α((ω[α]→ α)→ (Ω→ α)), where Ω is the type ∀α((ω[α]→ α)→ α).
By relying on the considerations above, the interpretation W (s) of ω[α] is shown to be
a functor from the category of sets to itself which satisfies a generalized induction prin-
ciple: this means that, for all sets s, t and function f : s → t, one can define a function
JfuncKη(f) : W (s)→ W (t), and that for all set s and function g : W (s)→ s, there exists
a function JindKη(g) : w → s, where w is the interpretation of Ω.

3) Finally, the terms func and ind above are used to construct the λ-term inj below

inj := λz.λf.f(func((ind)f)z) (5.1.10)

which has type ω[Ω]→ Ω.
Now, by summing up all the results, he can state the following: there exists a function
JinjKη : W (w)→ w such that, for any set s and for any function g : W (s)→ s, there exists
a function JindKη(g) : w → s which makes the following diagram commute:

W (w)

JinjKη

��

JfuncKη(JindKη(g)) // W (s)

g

��
w

JindKη(g) // s

(5.1.11)

Now, by means of general results on initial algebras (see [LS86]) it can be shown that
the function JinKη(g) is injective. Thus, there exists an injective function from b(b

w) to b,
contradicting Cantor’s theorem.

Reynolds’ paradox establishes the following fact: if we wish to interpret proofs of an impli-
cation A ⇒ B as functions from the interpretation of A to the interpretation of B, then the
naïve interpretation of universal quantification as a quantification (or an intersection) over all
sets must be abandoned: the interpretation of a universally quantified formula is definitely too
big to be itself a set.

Remark the difference with the case of the reducibility interpretation (section (3.2.2)): Gi-
rard’s trick states that the interpretation of a universally quantified formula (as an intersection
over all reducibility candidates) is actually a set. However the reducibility of an implication type
σ → τ is not the function space RedRedστ but the (much smaller) set Redσ → Redτ (see section
(3.2.2)).

5.1. SET-THEORETIC VS “GENERIC” QUANTIFICATION 119

5.1.2 Carnap’s defense of impredicativity

Reynolds’ result faces us with a compelling question: once we discard the set-theoretic intuition
of universal quantification as set-theoretical intersection, how can we make sense of a proof
involving an impredicatively defined concept? In particular, once we consider the second order
Dedekind’s predicate N(x), how can we justify the validity of the “circular” argument for the fact
that N(x) holds of 0 and is closed under the successor function, if we cannot rely on the intuition
that, in order to prove that N(t) holds, one has to prove that t belongs to any set containing 0
and closed under the successor function?

In his defense of impredicative definitions in [Car83], Carnap discusses this form of circular
arguments:

For example, to ascertain whether the number three is inductive, we must, according to
the definition, investigate whether every property which is hereditary and belongs to zero
also belongs to three. But if we must do this for every property, we must also do it for the
property “inductive” which is also a property of numbers. Therefore, in order to determine
whether the number three is inductive, we must determine among other things whether the
property “inductive” is hereditary, whether it belongs to zero and, finally - this is the crucial
point - whether it belongs to three. But this means that it would be impossible to determine
whether three is an inductive number. [Car83]

Unsatisfied by the predicativist answer that circularly defined concepts should be simply
abandoned, as this would imply the impossibility to prove as simple a fact as the one that three
is a natural number, Carnap tries to develop a different answer:

If we had to examine every single property, an unbreakable circle would indeed result, for
then we would run headlong against the property “inductive”. Establishing whether some-
thing had it would then be impossible in principle, and the concept would be meaningless.
But the verification of a universal logical or mathematical sentence does not consist in
running through a series of individual cases [...] The belief that we must run through all in-
dividual cases rests on a confusion of “numerical generality” [...] We do not establish specific
generalities by running through individual cases but by logically deriving certain properties
from certain others. [Car83]

Carnap’s argument is that the intuition that the verification of a universally quantified formula
consists in the verification of all its instances does not reflect the way in which proofs are actually
constructed:

[...] that the number two is inductive means that the property “belonging to two” follows
logically from the proeprty “being hereditary and belonging to zero”. In symbols, f(2) can
be derived for an arbitrary f from Her(f) ∧ f(0) by logical operations. [...] First, the
derivation of f(0) from Her(f) ∧ f(0) is trivial [...] The remaining steps are based on the
definition of the concept “hereditary”

Her(f) =def ∀n(f(n)⇒ f(n+ 1))

Using this definition, we can easily show that f(0 + 1) and hence f(1) are derivable from
Her(f) ∧ f(0) and thereby [...] we can derive f(1 + 1) and hence f(2) fro Her(f) ∧ f(0),
thereby showing that the number two is inductive. [Car83].

The derivation that Carnap is describing corresponds to the usual proof of N(2), the one which
translates forgetfully into the Church numeral 2 = λf.λx.f(fx) (remark indeed that he uses one
time the hypothesis f(0) - i.e. the variable x - and two times the hypothesis Her(f) - i.e. the
variable f).

120 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

The proof above represents thus a finite argument schema that can be reproduced for an
“arbitrary f ”; it is indeed not necessary, for Carnap, to run into all the possible instances of the
schema to recognize that it will work for them.

If we reject the belief that it is necessary to run through individual cases and rather make it
clear to ourselves that the complete verification of a statement means nothing more than its
logical validity for an arbitrary property, we will come to the conclusion that impredicative
definitions are logically admissible. [Car83]

The intuition behind these remarks is that the argument schema uses the property f as a pa-
rameter : for each choice of f , the argument can be reproduced uniformly with respect to f . In
[LF97] Carnap’s intuitions are compared with a remark by Herbrand on “prototype proofs” of a
universally quantified statement:

[...] when we say that a theorem is true for all x, we mean that for each x individually it
is possible to iterate its proof, which may just be considered a prototype of each individual
proof. [Her71]

Interestingly, in [LF97] it is also claimed that Carnap’s intuition

[...] seems very close to the “realizability interpretation” in Intuitionistic Logic [...] Carnap
seems to claim that the possibility of an analysis of provability justifies “logical admissibility”.
[LF97]

Carnap is indeed advocating the fact that the argument provides, for each property f , an actual
proof that f(2) holds, under the assumptions thatHer(f) and f(0) hold. In a sense, we might say
that his argument (or, better, the term 2) is a realizer of the second order formula ∀f(Her(f)⇒
f(0)⇒ f(2)).

In the next section we’ll try to give substance to Carnap’s intuition (following [LF97]) by
means of the notion of parametric polymorphism; in particular, it will be shown that, by imposing
a parametricity constraint over reducible λ-terms (i.e. by imposing that their dependence over
type variable be “prototypical”), we will show that we can obtain information over the form of
such terms, yielding a powerful proof-theoretical analysis of second order quantification.

5.1.3 The operator J and the genericity theorem

In [Gir72] the following argument is presented1: let us add to System F a constant 0 of type
∀αα and let us suppose that there exists a term J of type ∀α(σ → α), where σ is ∀ββ → ∀ββ
satisfying the following reduction rules:

JσM →M (5.1.12)
JρM → 0 if ρ 6= σ (5.1.13)

Remark that the reduction behavior of J depends on the type on which it is extracted.
Now, from the hypothesis of the existence of J , we can construct a counterexample to the

reducibility of System F : the reader will find below a typing derivation of the term O :=
(Jσλx.(x{σ})x)Λβ.(Jβ)λx.(x{σ})x.

1We discuss the argument in the original version à la Church of System F , see subsection (2.1.3).

5.1. SET-THEORETIC VS “GENERIC” QUANTIFICATION 121

(x : ∀ββ) ` x : ∀ββ
(x : ∀ββ) ` x : σ (x : ∀ββ) ` x : ∀ββ

(x : ∀ββ) ` (x{σ})x : ∀ββ
(@)

` λx.(x{σ})x : σ
(λ)

....
` Jσ : σ → σ

` (Jβ)λx.(x{σ})x : β
(@)

` (Jβ)λx.(x{σ})x : ∀ββ
(∀I)

` Jσλx.(x{σ})x : σ
(∀E)

(x : ∀ββ) ` x : ∀ββ
(x : ∀ββ) ` x : σ (x : ∀ββ) ` x : ∀ββ

(x : ∀ββ) ` (x{σ})x : ∀ββ
(@)

` λx.(x{σ})x : σ
(λ)

....
` Jβ : σ → β

` (Jβ)λx.(x{σ})x : β
(@)

` Λβ.(Jβ)λx.(x{σ})x : ∀ββ
(∀I)

` O : ∀ββ (@)

(5.1.14)
The reduction behavior of O is the following:

O →1 (λx.(x{σ})x)Jβλx.(x{σ})x→1 ((Λβ.(Jβ)λx.(x{σ})x){σ})(Jβλx.(x{σ})x→1 O (5.1.15)

It follows then that System F cannot contain terms discriminating between types. We can
also verify that J is not in Red∀α(σ→α): indeed, if it were, then, for all candidate of reducibility
C, J would be in the set Redσ → C; in particular, for all reducibility candidate C and for all
M ∈ Redσ, JM ∈ C. Now since, JσM = M , it follows that Redσ ⊆ C, for all C, which is false:
for instance, the term λx.(x)x is in Redσ but not in Redσ → Redσ (as this would imply that
(λx.(x)x)λx.(x)x ∈ Redσ, which contradicts R1).

A thorough analysis of the conditions underlying Girard’s example is contained in [LMS93].
There an extension Fc of System F is proposed which contains the following axiom:

Axiom C: if M has type ∀ασ and α /∈ FV (σ) then, for all τ, τ ′, M{τ} = M{τ ′} (5.1.16)

Axiom C states that the term M cannot depend on the type to be substituted for α if α
is not free in σ. Axiom C is compatible with System F , in the sense that there are models of
System F which satisfy Axiom C (furthermore, the authors of [LMS93] state that they know of
no non-trivial model of System F in which Axiom C is false).

Then, with respect to the system Fc the following theorem is proved:

Theorem 5.1.1 (Genericity theorem, [LMS93]). Let M and N have type ∀ασ. Then, if there
exists a type τ such that M{τ} = N{τ}, then M = N .

The genericity theorem states that polymorphic terms which are equal on one input type
must be equal on all input types. This result reveals a syntactical property of polymorphic
terms which, as it is advocated in [LF97], seems to vindicate Carnap’s intuition: if two distinct
proofs of a universally quantified formula ∀XA can be made equal to another proof of the same
formula when the two are applied to a certain predicate P , then the two proofs must be able
to discriminate between predicates. Hence the variable X cannot stand in those proofs for an
“arbitrary property”, since the “argument schema” of the two proofs changes according to the
predicate substituted for X.

Theorem (5.1.1) is a very strong theorem which tells that, in a sense, there are “not so many”
polymorphic terms. In the next section we’ll discuss some semantic and syntactic properties
which characterize this aspect of second order quantification and we’ll show their extreme power:
since a derivation of a universally quantified formula corresponds to a function over types which
is, in a sense, the same over all types, it follows that there are very few degrees of freedom for
defining such a function.

122 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

5.2 Parametricity and the completeness of simple type the-
ory

We present the two main formalizations of the intuitive idea of parametric quantification: Reynold’s
parametricity ([Rey83]) and the dinatural interpretation ([BFSS90, GSS92]). In particular we
show the very strong constraints that these conditions force on the “degrees of freedom” of terms.

As Reynolds’ parametricity is reformulated in the setting of reducibility candidates, it is
proved (theorem (5.2.2)) that a closed normal term in the reducibility of a universally closed
simple type must by parametric (which is obviously false for non closed simple types); moreover,
it is proved that a parametric reducible term must satisfy the dinaturality criterion (theorem
(5.2.3)). Finally, by relying on a syntactical formulation of the latter a Π1-completeness theorem
(5.2.4), which is the main result of this chapter, is proved: if M is a closed normal term in
Red∀α(σ→τ), with σ, τ simple types, then `M : σ → τ is derivable in simple type theory.

5.2.1 The mathematics of parametricity
Parametric families Let us consider the class of families δs, with s running over all sets, such
that, for all s, δs is a function from s to the cartesian product s × s. Since the families δs are
indexed over the class of all sets, the class just described appears to be too big to be contained
in usual set-theories.

However, suppose we want our families δs to depend “generically” with respect to their index-
set. The intuition is the following: δs should send an element x of an arbitrary set s into an
element of its cartesian product, in a way which does not depend on the information that x ∈ s.
Let now s, t be two arbitrary sets and f a function from s to t; if x is an arbitrary element of s,
then f(x) is an element of t whose only property “visible to δs” is its “relatedness” to x by means
of the function f . Now, the idea is that the action of δs should be so “generic” with respect to s
not to break the “relatedness” of x and f(x); in symbols, we should have

f × f(δs(x)) = δt(f(x)) (5.2.1)

which corresponds to require that the following diagram should commute for all sets s, t and
f : s→ t:

s
δs //

f

��

s× s

f×f
��

t
δt

// t× t

(5.2.2)

One can easily be convinced then that the requirement above is a very strong one: it collapses
a huge class of families into a set with just one element, the diagonal family δs given by

δs(x) = (x, x) (5.2.3)

To be convinced of that, it suffices to take s = t = 2, the set with two elements 0, 1: let us
suppose that, for a certain x ∈ 2, δ2(x) = (y1, y2) with y1 6= x or y2 6= x; for instance, let us
suppose δ2(0) = (1, 0) and let us choose as f : 2 → 2 the function with always returns 0. Now
the diagram above implies that δ2 should commute with f , whereas one has

(0, 0) = f × f(δ2(0)) 6= δ2(f(0)) = (1, 0) (5.2.4)

In definitive, the only thing a function “generically” sending sets into their cartesian product can
do is to take its argument as a “black box” and to duplicate it.

5.2. PARAMETRICITY AND THE COMPLETENESS OF SIMPLE TYPE THEORY 123

The remarks above illustrate the ideas at the heart of Reynolds’ notion of parametricity :
intuitively, if the action of δs does not really depend on s, then, if we take two sets s, t and an
arbitrary binary relation r ⊆ s × t, then the action of δs should not be able to “break” their
“relatedness”. More formally, let us first extend r to the cartesian products s × s and t × t: we
define a relation r × r ⊆ (s× s)× (t× t) by

(x, y)r × r(x′, y′) if and only if xrx′ and yry′ (5.2.5)

Reynolds’ parametricity corresponds then to ask that, for all x ∈ s, y ∈ t, if xry, then δs(x)r ×
rδt(y).

We can easily verify that parametricity implies the diagrammatic version of “genericity”
sketched above: let s, t be sets and f be a function f : s → t; let then rf ⊆ s × t be the
relation defined by

xrfy if and only if f(x) = y (5.2.6)

which codes the “relatedness” of the example above. Parametricity implies that, for all x ∈ s, y ∈
t, if f(x) = y, then

f
(
δs(x)

)
1

=
(
δs(y)

)
1
and f

(
δs(x)

)
2

=
(
δs(y)

)
2

(5.2.7)

and thus
f
(
δs(x)

)
1

=
(
δs(f(x))

)
1
and f

(
δs(x)

)
2

=
(
δs(f(x))

)
2

(5.2.8)

which is exactly what is expressed by diagram (5.2.2) and, in particular, implies δs(x) = (x, x).
This simple example illustrates the idea in the proof of theorem (5.2.3) which establishes that the
parametricity criterion implies the dinaturality criterion (see below), which is a generalization of
the diagrammatic criterion above.

Parametric polymorphism There exists a quite vast literature on semantical characteriza-
tion of the genericity of second order type quantification. The first informal remarks can be
found in [Str67], where a distinction is made between ad hoc polymorphism and parametric
polymorphism, from a computer science perspective:

In ad hoc polymorphism there is no single systematic way of determining the type of the
result from the type of the arguments. [...] All the ordinary arithmetic operators and
functions come into this category. [...]

Parametric polymorphism is more regular and may be illustrated by an example. Suppose
f is a function whose argument is of type α and whose results is of β (so that the type of f
might be written α→ β), and that L is a list whose elements are all of type α (so that the
type of L is αlist). We can imagine a function, say Map, which applies f in turn to each
member of L and makes a list of the results. Thus Map[f, L] will produce a βlist. We would
like Map to work on all types of list provided f was a suitable function, so that Map would
have to be polymorphic. However its polymorphism is of a particularly simple parametric
type which could be written

(α→ β, αlist)→ βlist

where α and β stand for any types. [Str67]

It must be observed that Strachey’s remarks anticipate Girard’s System F by five years and
Reynold’s work on parametric polymorphism by more than ten years.

An example of ad hoc polymorphism would be a program for addition which takes as input a
type for numbers: depending on whether numbers are of type integers, rationals or reals, it would
indeed perform a different algorithm for addition. On the other hand, parametric polymorphism
is the one we find in second order type theory.

124 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

The first formalization of parametric polymorphism is due to Reynolds’ [Rey83], in connection
with his set-theoretic semantics: his idea was to show that, given two different though “related”
set assignments η, ζ, the two interpretations of a term M will still be “related”. In the following
lines we reformulate Reynolds’ parametricity in the setting of reducibility candidates: the idea
will be to consider arbitrary binary relations over reducibility candidates, and to show that terms
M ∈ Red∀ασ preserve these relations.

In the following, when speaking of λ-terms, we will consider equivalence classes of β-equivalent
λ-terms; similarly, when speaking of relations, we will speak of relation over these equivalence
classes.

Let us consider arbitrary assignments N of reducibility candidates to type variables. Para-
metric reducibility can be redefined in terms of such assignments (as in the case of Prawitz’s
definition of validity relative to an assignment of regular sets, see section (4.2.2)): for instance, if
FV (σ) = {α1, . . . , αn} and, for 1 ≤ i ≤ n, N (αi) = Ci, then Redσ[N] is just Redσ[. . . Ci/αi . . .].

Let, for each pair of candidates C1, C2, the set Rel(C1, C2) := ℘(C1×C2) be the set of all binary
relations between elements of C1 and C2. A relation assignment R will be an assignment, for each
pair of reducibility candidates C1, C2, of a relation RC1,C2 ∈ Rel(C1, C2). Given two assignments
N1,N2, a relation assignment R and a simple type σ, we can then define the set RN1,N2

[σ],
which will be a binary relation over the candidates Redσ[N1] and Redσ[N2]:

• if σ ≡ αi, and Np(αi) = Cp for 1 ≤ p ≤ 2, then, for all M ∈ C1, N ∈ C2, MRN1,N2 [σ]N
holds if and only if MRC1,C2N holds;

• if σ ≡ τ → ρ, then, for all M ∈ Redσ[N1] and N ∈ Redσ[N2], MRN1,N2
[σ]N holds

if and only if, for all P ∈ Redτ [N1] and Q ∈ Redτ [N2], if PRN1,N2
[τ]Q holds, then

(MP)RN1,N2
[ρ](NQ) holds.

We can thus finally define parametricity for closed λ-terms in the reducibility of the universal
closure of a simple type as follows:

Definition 5.2.1 (parametricity). Let M be a closed λ-term in Red∀ασ, where σ is a simple
type. Then M is parametric if, for all assignments N1,N2 and for all relation assignment R,
MRN1,N2 [σ]M holds.

Let us try to see how parametricity works in a simple case: let M be in Red∀α(α→α). This
means that, for all reducibility candidate C and all N ∈ C, MN is still in C. Now parametricity
says that, for all pairs of candidates C1, C2, however we pick up a binary relation r on C1 and
C2 and two terms P,Q, respectively in C1 and C2, such that PrQ holds, then (MP)r(MQ) still
holds.

Given two arbitrary candidates C1, C2 and two terms P,Q, respectively in C1 and C2, let us
take as relation r = {(P,Q)}; from the fact that M ∈ Red∀α(α→α) it follows that MP ∈ C1 and
MQ ∈ C2; from parametricity it follows then that (MP)r(MQ), i.e. that either MP = P and
MQ = Q, either MP = Q and MQ = P . Hence, in particular, with C1 = C2 and P = Q, we
have that MP = P . Since this holds for all candidates C1, C2 and for all terms P ∈ C1, Q ∈ C2,
this means that M must send every λ-term into itself: it must thus behave like the identity term
id = λx.x2.

Reynolds’ abstraction theorem (see [Rey83]) states that all simply typed closed λ-terms are
parametric. We reprove his result in our formulation based on reducibility candidates:

Theorem 5.2.1 (abstraction theorem). If M is a closed normal λ-term such that ` M : σ is
derivable in simple type theory, then M is parametric.

2In particular, by applying Böhm’s theorem, it follows that M =β λx.x.

5.2. PARAMETRICITY AND THE COMPLETENESS OF SIMPLE TYPE THEORY 125

Proof. We show a more general result: if M is a normal term, with FV (M) = {x1, . . . , xn} and
(x1 : τ1), . . . , (xn : τn) ` M : σ1 → · · · → σk → α is derivable in simple type theory, then, for
any assignments N1,N2 and relation assignment R and for terms F1, G1, . . . , Fn+k, Gn+k such
that Fi ∈ Redτi [N1], Gi ∈ Redτi [N2], for 1 ≤ i ≤ n and Fi ∈ Redσi [N1] and Gi ∈ Redσi [N2] for
n+ 1 ≤ i ≤ n+ k, one has

FiRN1,N2
[τi]Gi (1 ≤ i ≤ n)⇒M [F1/x1, . . . , Fn/xn]RN1,N2

[σ1 → · · · → σk]M [G1/x1, . . . , Gn/xn]
(5.2.9)

We prove this by induction on the typing derivation d of M :

(ax) If d is the derivation

(x1 : τ1), . . . , (xn : τn) ` xi : τi (5.2.10)

then the thesis immediately follows from the assumption FiRN1,N2 [τi]Gi.

(λ) If d is the derivation

....
(x1 : τ1), . . . , (xn : τn), (z : σ1) ` P : σ2 → · · · → σk → α

(x1 : τ1), . . . , (xn : τn) ` λz.P : σ1 → · · · → σk → α (5.2.11)

then, by induction hypothesis, if FiRN1,N2
[τi]Gi, for 1 ≤ i ≤ n and Fn+1RN1,N2

[σ1]Gn+1,
then

P [F1/x1, . . . , Fn/xn, Fn+1/xn+1]RN1,N2
[σ2 → · · · → σk → α]P [G1/x1, . . . , Gn/xn, Gn+1/xn+1]

(5.2.12)
The thesis results from the fact that

(λz.P [F1/x1, . . . , Fn/xn])Fn+1 =β P [F1/x1, . . . , Fn/xn, Fn+1/xn+1] (5.2.13)

and similarly for Gn+1.

(@) If d is the derivation

....
(x1 : τ1), . . . , (xn : τn) ` P : σ0 → σ1 → · · · → σk → α

....
(x1 : τ1), . . . , (xn : τn) ` Q : σ0

(x1 : τ1), . . . , (xn : τn) ` PQ : σ1 → · · · → σk → α
(5.2.14)

then, by induction hypothesis, if FiRN1,N2
[τi]Gi, for 1 ≤ i ≤ n and F0RN1,N2

[σ0]G0, then(
P [F1/x1, . . . , Fn/xn]

)
F0RN1,N2

[σ1 → · · · → σk → α]
(
P [G1/x1, . . . , Gn/xn]

)
G0 and more-

over Q[F1/x1, . . . , Fn/xn]RN1,N2
[σ0]Q[G1/x1, . . . , Gn/xn]. The result follows then from

the identities(
P [F1/x1, . . . , Fn/xn]

)
Q[F1/x1, . . . , Fn/xn] = PQ[F1/x1, . . . , Fn/xn] (5.2.15)(

P [G1/x1, . . . , Gn/xn]
)
Q[G1/x1, . . . , Gn/xn] = PQ[G1/x1, . . . , Gn/xn] (5.2.16)

126 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

Reducibility and parametricity In the previous section we showed that Girard’s non generic
operator J is not reducible. In this section we investigate the relationship between the reducibility
of the universal closure of a simple type and the parametricity of its elements.

Remark first that, if we do not take into consideration the second order closure of a simple
type, then a reducible term need not be parametric: for instance, the term U := λx.δ, where
δ = λz.(z)z, is in Redα→α (here we consider the non parametric definition of reducibility in
section (3.2.2)) but in no way it can be considered parametric. Let P,Q be two closed normal
terms and let r be a relation over SN such that PrQ holds and for no other strongly normalizing
term N , NrN holds. Then parametricity would require that, since PrQ, also (UP)r(UQ) holds,
but UP = δ = UQ, so this is impossible.

The results proved below show then that parametricity is obtained as soon as one consider
reducibility with respect to the universal closure of simple types. This result is a first step towards
the Π1-completeness theorem of the following subsection: in order to show that a reducible term
is typable, we will need to pass from parametricity to the dinatural interpretation of simple type
theory (see below), which embodies the diagrammatic idea of genericity.

Since the idea of our proof is to show that we can, in a sense, code parametricity in reducibility
candidates, we start with a lemma which allows the definition of ad hoc candidates:

Lemma 5.2.1. Let s be a set of closed normal λ-terms and let Cs be the smallest reducibility
candidate containing s. Then, if M ∈ Cs is closed and normal, M ∈ s.

Proof. Let us suppose that M ∈ Cs− s is closed and normal. Let m be the set containing all the
λ-terms which are β-equivalent to M . Remark that all the terms in M are closed. We will show
that the set m′ := Cs −m is a reducibility candidate containing s, contradicting the hypothesis
that Cs is the smallest such candidate. We show then that m′ satisfies the properties R1− 3.

m′ satisfies R1 since it is contained in Cs. Moreover, if N ∈ m′ and N → N ′, since N is not
β-equivalent to M , N ′ is neither; moreover, by R2 applied to Cs it follows that N ′ ∈ Cs−m, i.e.
N ′ ∈ m′. Finally, let N be a simple term such that, for all N ′ such that N →1 N

′, N ′ ∈ m′; if
N is normal, then it must be an open term which belongs to Cs by R3; since N is open, N /∈ m
and thus N ∈ m′. If N is not normal, then all its immediate reducts are in Cs, hence N ∈ Cs;
moreover, since the N ′ are in m′, they are not β-equivalent to M and neither N is, so that
N ∈ m′.

We can now prove the parametricity theorem: in the proof we will use the abstraction theorem
(5.2.1) and lemma (5.2.1) to define ad hoc candidates.

Theorem 5.2.2 (parametricity). Let M be a closed λ-term in Red∀ασ, where σ is a simple type.
Then M is parametric.

Proof. Let σ ≡ σ1 → · · · → σk → α and let us suppose that M is not parametric: this means
that there exist two assignments N1,N2, a relation assignment R and terms F1, G1, . . . , Fk, Gk
such that Fi ∈ Redσi [N1], Gi ∈ Redσi [N2] and FiRC1,C2 [σi]Gi, for 1 ≤ i ≤ k and
(M)F1 . . . FkRN1,N2 [α](M)G1 . . . Gk does not hold.

By Reynold’s abstraction theorem, it follows that, for all terms P such that

(x1 : σ1), . . . , (xk : σk) ` P : α (5.2.17)

is derivable in simple type theory, either (M)F1 . . . Fk 6= P [F1/x1, . . . , Fk/xk], either (M)G1 . . . Gk 6=
P [G1/x1, . . . , Gk/xk].

5.2. PARAMETRICITY AND THE COMPLETENESS OF SIMPLE TYPE THEORY 127

Let s1, s2 be the following sets:

s1 := {P [F1/x1, . . . , Fk/xk]|(x1 : σ1), . . . , (xk : σk) ` P : α} (5.2.18)
s2 := {P [G1/x1, . . . , Gk/xk]|(x1 : σ1), . . . , (xk : σk) ` P : α} (5.2.19)

and let M1,M2 be assignments such that M1(α) = Cs1 and M2(α) = Cs2 . Remark that we
have to exploit the reducibility theorem for simple type theory in order to know that the terms
P [F1/x1, . . . , Fk/xk] and P [G1/x1, . . . , Gk/xk] have a normal form.

Let us show, by induction on σi, that Fi ∈ Redσi [M1] and Gi ∈ Redσi [M2]. If σi ≡
α, then xi[F1/x1, . . . , Fk/xk] = Fi ∈ M1(α) and xi[G1/x1, . . . , Gk/xk] = Gi ∈ M2(α). If
σi = ρ1 → · · · → ρr → α, then let Nj ∈ Redρj [M1], for 1 ≤ j ≤ r; then (Fi)N1 . . . Nr =
(xi)P1 . . . Pr[F1/x1, . . . , Fk/xk] ∈ Redα[M1] by induction hypothesis applied to the terms Nj .
One argues similarly to show Gi ∈ Redσi [M2].

Now, from the definition of reducibility, it follows that M ∈ Redσ[M1] and M ∈ Redσ[M2],
and this implies both (M)F1 . . . Fk ∈ Cs1 and (M)G1 . . . Gk ∈ Cs2 , contradicting the hypothesis.

5.2.2 The dinatural interpretation: new equations for polymorphic
terms

We introduce the dinatural interpretation of simple type theory ([BFSS90, GSS92]), which gen-
eralizes diagrams like (5.2.2). The interest of this interpretation is that, from the genericity
expressed by such diagrams we will be able to recover syntactic properties of typed λ-terms. In
the next section, from a syntactic formulation of the dinaturality criterion, we will derive an
equational characterization of reducible terms.

Let us restart from our example above, from the viewpoint of type theory: we consider a
term M of type ∀α(α→ α×α). The polymorphic nature of M means that, if we interpret types
as object of a ccc category C and terms as morphisms between those objects, M corresponds to
a family µA of morphisms A→ A×A, for any object A.

The genericity condition is given then by the following diagram, for every objects A,B of C
and morphism f : A→ B:

A
µA //

f

��

A×A

f×f
��

B
µB
// B ×B

(5.2.20)

which corresponds to the equation

µA ◦ (f × f) = f ◦ µB (5.2.21)

One of the main results of the interpretation we are going to sketch is that the equation
(5.2.21) implies a syntactic equation concerningM : the functional equality expressed by (5.2.21)
implies indeed the β-equivalence of the following terms (under the typing assumptions (f : σ →
τ), (x : σ), for arbitrary types σ, τ):

λu.(u)f(MxP1)f(MxP2) =β M(fx) (5.2.22)

where λu.(u)N1N2 is the usual construct for pairs, P1 = λx.λy.x, P2 = λx.λy.y are the usual
projections. It can be easily verified that the (only) choice forM is the term λx.λu.(u)xx (which
corresponds to the diagonal family δs(x) = (x, x).

128 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

This result is quite interesting: from a semantical property expressing the genericity of an
arbitrary polymorphic term of type α → α × α we recovered an equation which characterizes
such a (unique) term. As Wadler comments in a famous paper entitled “Theorems for free!”:

From the type of a polymorphic function we can derive a theorem that it satisfies. Every
function of the same type satisfies the same theorem. This provides a free source of useful
theorems, courtesy of Reynolds’ abstraction theorem for the polymorphic lambda calculus.
[Wad89]

Let us fix a ccc category C. The usual (let us call it “first grade”) category-theoretic interpre-
tation of simple type theory in ccc categories associates types σ with objects Aσ of the category
and closed terms M of type σ → τ with morphisms fM : Aσ → Aτ .

The idea of the so-called dinatural interpretation (or “second grade” interpretation) is to
interpret types as certain functors over the category C and terms as dinatural transformations
between these functors. Remark that the “first grade” interpretation is still an ingredient of the
dinatural one: closed terms of simple type theory correspond indeed to morphisms in C.

Let us first recall that a natural transformation ηA : F→ G between two (covariant) functors
F,G : C → C is a family of maps such that, for each objects A,B of C and each morphism
f : A→ B, the following diagram commutes:

FA
ηA //

Ff

��

GA

Gf

��
FB

ηB
// GB

(5.2.23)

For instance, we can interpret the types α and α × α as certain (covariant) functors FA,
GA = FA×FA: the intuition is that, if N is a term of type σ → τ , then any term of type σ or
σ× σ can be transformed, using N , into a term, respectively, of type τ or τ × τ . Then, our term
M of type α → α × α can be interpreted as a natural transformation µA from FA to GA: the
naturality condition corresponds indeed to diagram (5.2.20).

The problem with natural transformations arises with the interpretation of implication types:
seen as a functor, an implication α→ β is covariant on the variable β and controvariant on the
variable α (such functors are usually called multivariant). The notion of dinatural transformation
is then the extension of the idea of naturality to the case of multivariant functors: a dinatural
transformation ηA : F → G between two multivariant functors FAB,GAB (where the variable
A stands for the controvariant part of the functor, and the variable B for its covariant part), is
a family of maps such that, for each object A,B and each morphism f : A → B, the following
diagram commutes:

FAA
ηA // GAA

GAf

$$
FBA

FfA
::

FBf $$

GAB

FBB
ηB
// GBB

GfB

::

(5.2.24)

In the case of a functor with no contravariant variable, the definition above reduces immediately
to the one of natural transformations.

A surprising fact about dinatural transformations is that, unlike natural transformations,
they cannot be composed: in the diagram below, which virtually interprets a cut between two

5.2. PARAMETRICITY AND THE COMPLETENESS OF SIMPLE TYPE THEORY 129

proofs, represented by the dinatural transformations ηA, ζA, whereas the two inner hexagones
commute, the outer hexagon need not commute:

FAA
ηA // GAA

GAf

$$

ζA // HAA
HAf

$$
FBA

FfA
::

FBf $$

GBA

GfA
::

GBf $$

GAB HAB

FBB
ηB
// GBB

GfB

::

ζB

// HBB

HfB

::

(5.2.25)

As a result, the interpretation only works for normal terms, since the cut-rule cannot be inter-
preted. This implies that the result that we will get from the Π1-completeness theorem (5.2.4),
in particular the structural conditions on the form of reducible terms (corollary (5.2.1)), will be
limited to normal terms.

We won’t state in detail the interpretation of closed normal λ-terms in the dinatural calcu-
lus. The reader will find a detailed description in [GSS92], where the interpretation of natural
deduction derivations is considered too. In this paragraph we will limit ourselves to present some
interesting examples, in which from the dinaturality hypothesis we will derive equations charac-
terizing polymorphic typed λ-terms. In the next section we will provide a syntactic description
of the equations implied by dinaturality and we will prove the validity of such equations over
λ-terms as a consequence of the parametricity theorem (5.2.2).

The first example we consider concerns the type N: let M be a normal term of type N. The
interpretation of M will be then a dinatural transformation νA from the functor FBA = AB to
itself. The dinaturality of νA corresponds then, for all object A,B and morphisms f : A→ B, g :
B → A, to the commutation of the diagram below:

AA
νA // AA

fB

!!
AB

Af
==

fB !!

BA

BB
νB
// BB

Bf

==

(5.2.26)

from which we can derive the equation below:

νA(f ◦ g) ◦ f = f ◦ νB(g ◦ f) (5.2.27)

The only solutions for νA are the iterators, i.e. νA(f) = f ◦ f ◦ · · · ◦ f︸ ︷︷ ︸
k times

, for a certain k ∈ N.

Indeed, in this case equation (5.2.27) reduces to the valid equation below:

(f ◦ g) ◦ (f ◦ g) ◦ · · · ◦ f = f ◦ (g ◦ f) ◦ · · · ◦ (g ◦ f) (5.2.28)

Syntactically, equation (5.2.27) corresponds to the following equation for a closed normal
term M of type N (under the assumptions f : σ → τ , g : τ → σ, for arbitrary types σ, τ):

f((M)λu.g(fu)x) =β ((M)λu.f(gu))(fx) (5.2.29)

130 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

The (unique) solutions to equation (5.2.29) are precisely the Church numerals λf.λx.fnx
(which correspond to the iterators) and the identity id (see corollary (5.2.1)).

A second example concerns fixed points: supposeM is a closed normal term of type ∀α((α→
α) → α). The interpretation of M is then a dinatural transformation φA from the functor
FBA = AB to the identity functor IBA = A, i.e., for any object A,B and morphism f : A→ B,
the following diagram commutes:

AA
φA // A

f

��
AB

Af
==

fB !!

B

BB
φB

// B

B

??

(5.2.30)

Then, for all g : B → A, one has the equation below:

φA(f ◦ g) ◦ f = φB(g ◦ f) (5.2.31)

Now, if we choose B = A and g = idA, equation (5.2.31) reduces to

φA(f) ◦ f = φA(f) (5.2.32)

i.e., in set-theoretic notation, f(φA(f)) = φA(f), which means that φA is a uniform fixed point.
Syntactically, this means that, for any type σ, if f is declared of type σ → σ then the following
equation holds:

f(Mf) =β Mf (5.2.33)

and thus M must be a fixed point combinator at each type. In particular, since System F is
strongly normalizable, we can thus deduce that there is no closed normal term of type ∀α((α→
α)→ α).

5.2.3 A completeness theorem
In this subsection we will use the dinatural interpretation to derive the Π1-completeness theorem:
this theorem says that, ifM is a closed normal λ-term in the reducibility Red∀ασ of a universally
closed simple type, then `M : σ is derivable in simple type theory.

The theorem is obviously false if we do not take into account the second order universal
closure of the simple type σ: in chapter (3) (section (3.2.3)) one can find examples of reducible
though not typable terms. Thus the passage through impredicative quantification turns out to
be fundamental in order to have a finite enough description of λ-terms in terms of their behavior.
This rather counter-intuitive aspect will be briefly discussed in the next section.

The Π1-completeness theorem can be seen as a counterpart to the Π1-completeness theorem of
chapter (2). In particular, in virtue of the Σ1-incompleteness theorem (3.2.2) it provides an upper
bound for the completeness (or faithfulness) theorem (2.3.1) of the behavioral interpretation
of typing. Moreover, the theorem has several corollaries which allow to retrieve, for simple
type theories, equivalent of the canonicity condition which hold for valid derivations in natural
deduction in the sense of Prawitz’s validity (section (4.2.2)). Again, the interest of the result
lies in the fact that, in order to retrieve the canonicity conditions, one has to pass through an
impredicative interpretation of proofs.

5.2. PARAMETRICITY AND THE COMPLETENESS OF SIMPLE TYPE THEORY 131

Analogous completeness results can be found in the literature: for instance, in [Hin83], it
is proved that simple type theory is complete with respect to several variants of denotational
semantics. In [Coq05] the reader will find a brief historical reconstruction of the subject, along
with a reformulation of Hindley’s result under the form: if a closed normal λ-term M is in the
(impredicative) intersection of all the interpretations of the simple type σ, then ` M : σ is
derivable in simple type theory. As the author remarks,

This shows that the a priori impredicative intersection
⋂
X:Λ→H T (α = X)(t) has a predica-

tive description. [Coq05]

In particular, Coquand exploits this result to derive some results (in the line of corollary (5.2.1))
about terms in the Π1-fragment of System F .

The argument that follows, however, applies directly to the reducibility interpretation of Sys-
tem F and has the following structure: we first develop a syntactical formulation of the dinatural
interpretation; in particular we describe the equations forced by the dinaturality condition in full
generality by means of certain typed λ-terms Hσ,Kσ. Next we use these operators to show that
Reynolds’ parametricity implies the (syntactical consequences of the) dinaturality condition. In
particular, it will be shown that the terms Hσ,Kσ in a sense characterize the “degrees of free-
dom” left by the parametricity condition. As a consequence of the parametricity theorem (5.2.2),
this result implies that a closed normal λ-term in the reducibility Red∀α(σ→τ) must satisfy the
syntactic equations expressing dinaturality. Finally, we will prove our main theorem (5.2.4) by
defining an inductive argument which explicitly retrieves the typing of M from the fact that M
satisfies such equations.

Coding dinaturality in λ-calculus We start by a lemma which illustrates the general idea
of the Π1-completeness theorem: the equations for a closed normal λ-term M which come from
the dinaturality condition are of the form

f((M)P1 . . . Pk) = (M)P ′1 . . . P
′
k (5.2.34)

where f is a variable declared of type α→ β. Then, the validity of (5.2.34) forces very restrictive
conditions of the form of M :

Lemma 5.2.2. Let, for all 1 ≤ i ≤ k, Pi, P ′i be λ-terms of the same arity ki. Then, if M is a
closed normal λ-term which satisfies an equation of the form

f((M)P1 . . . Pk) = (M)P ′1 . . . P
′
k (5.2.35)

then M is of the form
M = λx1.λxh.(xi)Q1 . . . Qp (5.2.36)

for certain terms Q1, . . . , Qp, where h ≤ k, 1 ≤ i ≤ h, and p ≥ ki − (k − h).

Proof. Let us first show that h ≤ k: suppose indeed M = λx1.λxk.λy.M
′, then the equation

is not satisfied, since one obtains

f((M)P1 . . . Pk)→ f(λy.M ′[P1/x1, . . . , Pk/xk]) 6= λy.M ′[P ′1/x1, . . . , P
′
k/xk]← (M)P ′1 . . . P

′
k

(5.2.37)
Let us show now that p ≥ ki− (k−h): if p < ki− (k−h), then the term (M)P1 . . . Pk reduces

to
(Pi)Q

′
1 . . . Q

′
pPh+1 . . . Pk →1 λz(ki−(k−h))−p.λzki .W (5.2.38)

132 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

for a certain term W ; then equation (5.2.35) is not satisfied:

f((M)P1 . . . Pk)→ f(λz(ki−(k−h))−p.λzki .W) 6= λz(ki−(k−h))−p.λzki .W
′ ← (M)P ′1 . . . P

′
k

(5.2.39)

We pass now to the definition of typed terms Hσ,Kσ by which we will be able to code
dinaturality in λ-calculus in full generality.

For any simple type σ, whose free variables are γ1, . . . , γl, let σαβ (resp. σβα) denote the result
of replacing, in σ, all positive occurrences of γu, for 1 ≤ u ≤ l, by the variable αu (resp. βu), and
all negative occurrences of γu by the variable βu (resp. αu). Let then σα, σβ denote, respectively,
σ[α1/γ1, . . . , αl/γl] and σ[β1/γ1, . . . , βl/γl].

The idea of the definition below is the following: let us assume that M is in the reducibility
of ∀α(σ → τ). From the dinaturality of the associated family µA we wish to derive an equation
for M . In order to build such an equation we need to define four typed terms, constructed with
the help of l distinct variables fu declared of type αu → βu, for 1 ≤ u ≤ l:

Hσ : σα → σβα Kσ : σαβ → σα
Jσ : σαβ → σβ Iσ : σβ → σβα

(5.2.40)

We define simultaneously the operators Hα
β ,K

β
α by induction over σ:

• if σ ≡ αu, then Hσ := λx.fux : αu → βu and Kσ := λx.x : αu → αu;

• if σ = ρ1 → · · · → ρk → αu, then Hσ : σα → σβα is

Hσ := λg.λh1.λhk.fu
(
g(Kρ1h1)(Kρ2h2) . . . (Kρkhk)

)
(5.2.41)

and Kσ : σαβ → σα is

Kσ := λg.λh1.λhk.g(Hρ1h1)(Hρ2h2) . . . (Hρkhk) (5.2.42)

A crucial property of the terms Hσ,Kσ is the following:

Lemma 5.2.3. For every simple type σ, τ the equation below

Hσ(Kτg) = Kσ(Hτg) (5.2.43)

holds if and only if σ ≡ τ .

Proof. We argue by induction on σ: if σ ≡ τ ≡ αu, then Hαu(Kαug) = fug = Kαu(Hαug);
conversely, if σ 6≡ τ ≡ αu, then

Hσ(Kαg) = Hσg = λh1.λhk.fv
(
g(Kρ1hk) . . . (Kρkhk)

)
6=

λh1.λhk.(fug)(Hσ1
h1) . . . (Hρkhk) = Kρ(fug)

(5.2.44)

which is false for all 1 ≤ u, v ≤ l.
Similarly, one has

Hαu(Kσg) = fu(Kσg) = fu
(
λh1.λhk.g(Kρ1h1) . . . (Kρkhk)

)
6=

λh1.λhk.fv
(
g(Hρ1k1) . . . (Hρkhk)

)
= Hσg = Kα(Hσg)

(5.2.45)

for all 1 ≤ u, v ≤ l, since k = 0 only if σ is a variable.

5.2. PARAMETRICITY AND THE COMPLETENESS OF SIMPLE TYPE THEORY 133

For the induction step, remark that, if σ ≡ ρ1 → · · · → ρk → αu, then

Hσ(Kσg)→1 Hσ

(
λh1.λhk.g(Hρ1h1) . . . (Hρkhk)

)
→1 fu

(
g(Hρ1(Kρ1h1)) . . . (Hρk(Kρkhk)

)
(5.2.46)

and

Kσ(Hσg)→1 Kσ

(
λh1.λhk.fu

(
g(Kρ1h1) . . . (Kρkhk)

))
→1 fu

(
g(Kρ1(Hρ1h1)) . . . (Kρk(Hρkhk)

)
(5.2.47)

which implies that equation (5.2.43) holds if and only if the equations below all hold

Hρi(Kρihi) = Kρi(Hρihi) (5.2.48)

for 1 ≤ i ≤ k, so one can apply the induction hypothesis.
For the converse direction, let σ ≡ σ1 → · · · → σk → αu and τ = τ1 → · · · → τk′ → αv.

Suppose k′ = k + d, Hσ(Kτg) reduces to

λh1.λhk.fu
(
λhk+1.λhk′ .g(Kσ1

(Hτ1h1)) . . . (Kσk(Hτkhk))(Hτk+1
hk+1) . . . (Hτk′hk′)

)
(5.2.49)

and Kσ(Hτg) reduces to

λh1.λhk.λhk+1.λhk′ .fv
(
g(Hσ1

(Kτ1h1)) . . . (Hσk(Kτkhk))(Kτk+1
hk+1) . . . (Kτk′hk′)

)
(5.2.50)

Now the two terms are equal only if d = 0, u = v and, for all 1 ≤ i ≤ k, σi ≡ τi (by induction
hypothesis), i.e only if σ ≡ τ . A similar argument can be made for the hypothesis k = k′ + d.

By a similar construction, we can define simultaneously the terms Jσ, Iσ; in particular, it
turns out that, as pure λ-terms, Jσ = Hσ and Iσ = Kσ.

The diagram below will help the reader think of a termM ∈ Red∀α(σ→τ) in terms of dinatural
transformations:

σα
Mα // τα

Hτ

��
σαβ

Kσ

>>

Jσ

τβα

σβ
Mβ

// τβ

Iτ

??

(5.2.51)

The equation associated to the diagram above, given g : σαβ is then

Hτ (M(Kσg)) = Iτ (M(Jσg)) (5.2.52)

which, from an untyped perspective, is just the equation

Hτ (M(Kσg)) = Kτ (M(Hσg)) (5.2.53)

We can now refine lemma (5.2.2) as follows:

Lemma 5.2.4. Let M be a closed normal λ-term satisfying:

fu
(
(M)(Kσ1L1) . . . (KσnLn)

)
= (M)(Hσ1L1) . . . (HσnLn) (5.2.54)

then M has the form
M = λx1.λxh.(xi)Q1 . . . Qp (5.2.55)

for certain terms Q1, . . . , Qp, where h ≤ n, 1 ≤ i ≤ h, and p = ki − (n− h).

134 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

Proof. Let d be ki − (n− h). We just have to prove that p = d. Let us suppose p > d: the term
fu((M)(Kσ1L1) . . . (KσnL2)) reduces then in turn to:

fu
(
(KσiLi)W1 . . .Wp+(n−h)

)
(5.2.56)

for certain terms W1, . . . ,Wp+(n−h), and to

fu
(
Li(Hρ1W1)(Hρ2W2) . . . (Hρk1

Wki)Wki+1Wd

)
(5.2.57)

where σi = ρ1 → · · · → ρki → α.
The term (M)(Hσ1

L1) . . . (HσnLn) reduces in turn to

fu
(
(HσiLi)W

′
1 . . .W

′
p+(n−h)

)
(5.2.58)

for certain terms W ′1, . . . ,W ′p+(n−h), and to

fu
(
Li(Kρ1W

′
1)(Kρ2W2) . . . (Kρk1

Wki)
)
Wki+1Wd (5.2.59)

violating equation (5.2.35).

Parametricity implies dinaturality We will show that a parametric λ-term in Red∀α(σ→τ)

must satisfy equation (5.2.53). We first prove the following useful lemma, which states that the
terms Hσ,Kσ code the “degrees of freedom” left by parametricity: in particular, it says that
Reynolds’ criterion is blind to the transformations operated by these terms.

Lemma 5.2.5. Let σ be a simple type with FV (σ) = {γ1, . . . , γl} and f1, . . . , fu distinct vari-
ables. Let N1,N2 be two assignments and Rf a relation assignment such that, for all 1 ≤ u ≤ l,
if N1(γu) = Cu and N2(γu) = Du, then RfCu,Du is the relation rfu on Cu and Du given by

MrfuN if and only if fu(M) = N (5.2.60)

Then, if MRfN1,N2
[σ]N holds, HσM = KσN holds and moreover

(Kσg)RfN1,N2
[σ](Hσg) (5.2.61)

Proof. We show the two theses simultaneously by induction over σ.

• σ ≡ α: if MRfN1,N2
[αu]N , HαuM = (λx.fux)M = fuM = N = (λx.x)N = KαuN .

Moreover fu(Kαg) = fug = Hαg.

• σ ≡ σ1 → · · · → σk → αu: let us first suppose that MRfN1,N2
[σ]N ; this means that, if

FiR
f
N1,N2

[σi]Gi, then fu((M)F1 . . . Fk) = (N)G1 . . . Gk. By induction hypothesis, we know
that (Kσihi)R

f
N1,N2

[σi](Hσihi), hence

fu
(
(M)(Kσ1

h1) . . . (Kσkhk)
)

= (N)(Hσ1
h1) . . . (Hσkhk) (5.2.62)

and thus

λh1.λhk.fu
(
M(Kσ1

h1) . . . (Kσkhk)
)

= λh1.λhk.(N)(Hσ1
h1) . . . (Hσkhk) (5.2.63)

that is HσM = KσN .

5.2. PARAMETRICITY AND THE COMPLETENESS OF SIMPLE TYPE THEORY 135

It remains to show that (Kσg)RfN1,N2
[σ](Hσg), that is, that fu

(
(Kσg)F1 . . . Fk

)
= (Hσg)G1 . . . Gk,

under the assumption that FiR
f
N1,N2

[σi]Gi; by induction hypothesis the assumption implies
that HσiFi = KσiGi, and then

fu
(
(Kσg)F1 . . . Fk

)
= fu

(
g(Hσ1

F1) . . . (HσkFk)
)

(5.2.64)

is exactly
(Hσg)G1 . . . Gk = fu

(
g(Kσ1G1) . . . (KσkGk)

)
(5.2.65)

Now that we know that the terms Hσ,Kσ are well correlated with Reynolds’ parametricity,
we can state the main result of this paragraph:

Theorem 5.2.3 (parametricity implies dinaturality). Let M be in Red∀α(σ→τ) where σ is a
simple type. If for all assignment N1,N2 and relation assignment R, MRN1,N2

[σ → τ]M , then
Hτ (M(Kσg)) = Kτ (M(Hσg)).

Proof. Let us write σ → τ as τ0 → τ1 → . . . τk → αu; MRN1,N2
[σ → τ]M means that, for all

F0, G0, . . . , Fk, Gk such that FiRN1,N2
[τi]Gi, for 0 ≤ i ≤ k, fu((M)F0 . . . Fk) = (M)G0 . . . Gk.

In particular, by choosing the assignments N1 and N2 such that N1(α) = C1 and N2(α) = C2,
and the relation assignment RfN1,N2

, by lemma (5.2.5) we have that (Kτihi)R
f
N1,N2

[τi](Hτihi)
and then

fu
(
(M)(Kτ0h0)(Kτ1h1) . . . (Kτkhk)

)
= (M)(Hτ0h0)(Hτ1h1) . . . (Hτkhk) (5.2.66)

which is exactly the desired equation.

Π1-completeness We now have all the ingredients necessary to prove the Π1-completeness
theorem: the idea of the proof is to use lemma (5.2.4) to recursively reconstruct the typing of
M .

Theorem 5.2.4 (Π1-completeness). Let σ → τ be a simple type. If M is a closed normal term
such that M ∈ Red∀α(σ→τ), then `M : σ → τ is derivable in simple type theory.

Proof. From the fact that M satisfies equation (5.2.53) we will derive a typing of M .
Let σ = µ1 → · · · → µq1 → αu and τ = ρ1 → · · · → ρq2 → αv. We show, by induction over

the number of applications in M , that if M satisfies an equation of the form (5.2.53), then it is
a typed term of the form

λx0.λx1.λxh.(xi)M1 . . .Mp (5.2.67)

where the variable x0 has type ρ0 := σ, the variables xj , 1 ≤ j ≤ h have type ρj , ρi = λ1 →
· · · → λki → αw, for 0 ≤ i ≤ q2 + 1 and the Mj , for 0 ≤ j ≤ ki are typed terms of type λj .

Equation (5.2.53) reduces to the following

fv
(
(M(Kσg))(Kρ1h1) . . . (Kρq2

hq2)
)

= M(Hσg)(Hρ1h1) . . . (Hρq2
hq2) (5.2.68)

By lemma (5.2.4) this implies that M = λx0.λx1.λxh.(xi)M1 . . .Mp, where h ≤ q2 + 1,
0 ≤ i ≤ h and p = ki − (q2 − h)− 1.

If p = 0, then we are done; otherwise, equation (5.2.68) reduces to (where ρ0 is σ)

fv
(
(Kρihi)M

†
1 . . .M

†
p(Kρp+1

hp+1) . . . (Kρq2
hq2)

)
= (Hρihi)M

‡
1 . . .M

‡
p(Hρp+1

hp+1) . . . (Hρq2
hq2)

(5.2.69)

136 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

where M†i = Mi[(Kρjhj)/xj] and M
‡
i = Mi[(Hρjhj)/xj], for 1 ≤ i ≤ p; this in turn reduces to

fv
(
hi(Hλ1

M†1)(Hλ2
M†2) . . . (HλpM

†
p)(Hλp+1

(Kρh+1
hh+1)) . . . (Hλki

(Kρq2
hq2))

)
=

fv
(
hi(Kλ1

M‡1)(Kλ2
M‡2) . . . (KλpM

‡
p)(Kλp+1

(Hρh+1
hh+1)) . . . (Kλki

(Hρq2
hq2))

) (5.2.70)

Remark that, by lemma (5.2.3), the equation above implies that, for all 1 ≤ j ≤ q2 + 1− h,
one has ρh+j ≡ λp+j .

As a consequence of the remark above, equation (5.2.70) holds if and only if, for 1 ≤ j ≤ ki,
the equations

HλjM
†
j = KλjM

‡
j (5.2.71)

hold. Since FV (Mj) = {x1, . . . , xh}, we can restate the equations above as

Hλj

(
M∗j (Kρ1h1) . . . (Kρphp)

)
= Kλj

(
M∗j (Hρ1h1) . . . (Hρphp)

)
(5.2.72)

where M∗j = λx1.λxh.Mj , which reduce to

fw′
(
M∗j (Kρ1h1) . . . (Kρphp)(Kν1h

′
1) . . . (Kνrh

′
r)
)

= M∗j (Hρ1h1) . . . (Hρphp)(Hν1h
′
1) . . . (Hνrh

′
r)

(5.2.73)
for a certain integer w′, where λi = ν1 → · · · → νr.

We can now apply the induction hypothesis, since the number of applications inM∗j is strictly
smaller than the number of applications in M . It follows that M∗j has type ρ1 → · · · → ρp →
ν1 → · · · → νr → α and then Mj has type ν1 → · · · → νr → α.

The following corollary lists some easy consequences of theorem (5.2.4) which determine the
inner structure of closed normal reducible λ-terms and can be seen as introducing last rule
conditions for reducibility (see next section):

Corollary 5.2.1 (Last rule conditions). The following hold:

i. there are no closed normal terms in Red∀αα;

ii. the only closed normal term in Red∀α(α→α) is id := λx.x;

iii. the only closed normal terms in RedN are id and the Chuch numerals;

iv. for all simple types σ, τ , the closed normal terms in Red∀α(σ→τ) are of the form λz.M , where
M is a normal term such that, for all closed N ∈ Red∀ασ, M [N/z] ∈ Red∀ατ ;

v. for all simple types σ, τ , the closed normal terms in Red∀α((σ→τ→α)→α) (with α /∈ FV (σ) ∪
FV (τ)) are of the form λx.(x)MN , where M,N are, respectively, closed normal terms in
Redσ and Redτ ;

vi. for all simple types σ, τ , the closed normal terms in Red∀α((σ→α)→(τ→α)→α) (with α /∈
FV (σ)∪FV (τ)) are of the form λx.λy.(x)M or λx.λy.(y)N , where M,N are, respectively,
closed normal terms in Redσ and Redτ .

Proof. i. IfM ∈ Red∀αα, then λx.M ∈ Red∀α(α→α), where x is a fresh variable. Then, by lemma
(5.2.2), M must be either of the form λx.(x)M1 . . .Mp, either of the form (y)M1 . . .Mp; in
both cases it follows that M is not closed.

ii. By lemma (5.2.4), M = λx.(x)M1 . . .Mp and p = 0.

5.3. AN IMPREDICATIVE BRIDGE 137

iii. The only closed normal terms of type (α→ α)→ (α→ α) in simple type theory are id and
the Church numerals.

iv. If M has type σ → τ and is closed, then it has form λz.M ′ and its typing derivation has
form

(z : σ) `M ′ : τ

`M : σ → τ
(→ I)

(5.2.74)

Let N be a closed term in Red∀ασ; by theorem (5.2.4), ` N : σ is derivable and, by the
substitution lemma (2.1.1), `M [N/z]τ is derivable too; moreover, since M [N/z] is closed
too, `M [N/z] : ∀ατ is derivable in System F and, by the realizability theorem (3.2.1) for
System F , it follows that M [N/z] ∈ Red∀ατ .

v. IfM has type (σ → τ → α)→ α, then (lemma (5.2.4)) it has the form λx.(x)PQ, where P is a
normal term of type σ and Q is a normal term of type τ .Moreover, since α /∈ FV (σ)∪FV (τ)
and P,Q are normal terms, it follows that both terms are closed (i.e. x /∈ FV (P)∪FV (Q)):
indeed, if it were not the case, say if x ∈ FV (P), then there would exist a maximal subterm
P ′ of P of a type ρ such that α ∈ FV (ρ); maximality means here that P occurs in a subterm
of the form (z)P1 . . . PlPPl+2 . . . Pn, where P = λy1.λyk.P

′′ and z = yu for a certain
1 ≤ u ≤ k.
Indeed, if P ′ is not maximal, then it occurs in a subterm of the form (z)P1 . . . PlP

′Pl+2 . . . Pn
(otherwise α would appear in σ) where z 6= yu, for 1 ≤ u ≤ k. This implies the existence
of a subterm P ′′′ of P , of which (z)P1 . . . PlP

′Pl+2 . . . Pn is a subterm and whose type
contains α. By induction one finds then a maximal subterm P ′ with the desired property.

Now, if such a maximal subterm P ′ exists, it follows that α occurs in σ, since σ ≡ σ1 →
· · · → σk′ → α and z has type σu.

vi. If M has type (σ → α) → (τ → α) → α in simple type theory, then it has the from
λx1.λx2.(xp)P , where 1 ≤ p ≤ 2 and P is a normal term of type σ (if p = 1) or type τ (if
p = 2). Moreover, by the same argument as above, P must be closed.

5.3 An impredicative bridge

Theorem (5.2.4) and its corollaries (5.2.1) allow to retrieve structural conditions on the form of
λ-terms from the reducibility semantics, thus providing a bridge between the untyped interpre-
tation and proof-theoretic semantics. However, such a reconstruction heavily depends upon the
interpretation of second order universal quantification, i.e. on the acceptance of an impredicative,
non hierarchical, explanation of proofs.

In chapter (3) we discussed the main differences between the proof-theoretic semantics per-
spective and the untyped one arising from realizability and Tait-Girard reducibility. In partic-
ular, we insisted on the fact that the former focuses on the thesis that introduction rules are
self-justifying and provides a definition of validity based on a last rule condition, namely the fact
that a valid derivation should reduce to a derivation ending with an introduction rule for the
principal connective of its conclusion. In the untyped perspective, on the contrary, derivations
are interpreted by means of untyped programs and the focus is rather on the behavior of these
programs under the cut-elimination (or normalization) procedure, thus ignoring the internal
structure of derivations.

138 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

The results of the previous section allow then to define a bridge between the two perspectives,
in particular a way to retrieve structural conditions on the form of proofs (as the last rule
condition) starting from a behavioral description of untyped λ-terms. Such a bridge can be
illustrated by the schema below:

Behavioral norms + Parametricity ⇒ Last rule condition

The chain of arguments can be described as follows: let A be a propositional formula, σ be
AF andM be a closed normal λ-term in Red∀ασ. As a consequence of theorem (5.2.2) and (5.2.3)
M is parametric and satisfies the dinatural equations (5.2.53). Hence, from the Π1-completeness
theorem (5.2.4) it follows that ` M : σ is derivable in simple type theory; finally, from the
faithfulness theorem (2.3.1) it follows that there exists a normal derivation dM of conclusion A
such that F(dM) = M .

As a consequence of corollary (5.2.1), we can thus state the following characterization (that
we translate from sequent calculus to a natural deduction setting, more familiar to the proof-
theoretic semantics tradition):

• there exists no closed derivation of P , for any atomic formula P ;

• the only closed canonical derivation of P → P , for any atomic formula P , is the (valid)

derivation
[P]

P → P
(→ I)

;

• if M ∈ Red∀α(AF→BF) is closed and normal, then dM is a (valid) canonical derivation of
A⇒ B;

• if M ∈ Red∀α((AF→BF→α)→α) is closed and normal, dM is of the form

[A⇒ B ⇒ P]x

.... d1

A

B ⇒ P
(⇒ E)

.... d2

B
P

(⇒ E)

(A⇒ B ⇒ P)⇒ P
(⇒ I)x (5.3.1)

where d1 is a closed canonical derivation d1 of A and d2 a closed canonical derivation of B;

• if M ∈ Red∀α((AF→α)→(BF→α)→α) is closed and normal, then dM is either of the form

[A⇒ P]x

.... d1

A

P
(⇒ E)

[B ⇒ P]y

(B ⇒ P)⇒ P
(⇒ I)y

(A⇒ P)⇒ (B ⇒ P)⇒ P
(⇒ I)x (5.3.2)

where d1 is a closed canonical derivation d1 of A, either of the form

[B ⇒ P]y

.... d2

B

P
(⇒ E)

(B ⇒ P)⇒ P
(⇒ I)y

[A⇒ P]x

(A⇒ P)⇒ (B ⇒ P)⇒ P
(⇒ I)x (5.3.3)

where d2 is a closed canonical derivation of B;

5.3. AN IMPREDICATIVE BRIDGE 139

The truly remarkable fact about this bridge is that, in order to recover structural conditions
over the form of derivations, one has to pass through impredicative quantification. This might
appear quite counterintuitive at first, since, in order to decrease the “degrees of freedom” in the
construction of a normal λ-term up to a finite number, one has to impose a prima facie infinitary
condition like impredicative universal quantification.

More precisely, if we just consider simple types, then, as a consequence of the remarks in
section (3.2.3), it turns out that the closed normal λ-terms in Redσ are infinitely many and
cannot be characterized structurally: the hierarchical, “predicative”, definition of Redσ cannot
capture the internal structure of its terms. On the contrary, as soon as one introduces the
universal closure ∀ασ, things change radically: as a consequence of lemma (5.2.4), one can define
a sort of proof-search algorithm (used in the proof of theorem (5.2.4)) for enumerating all closed
normal reducible terms, following the subformula principle: indeed, ifM ∈ Redσ1→···→σk→α, then
lemma (5.2.4) provides a finite list of possible configurations for M depending on other terms
in the reducibility of the subtypes of the σi. In a word, an impredicative notion (reducibility for
universal types) is needed in order to recover the hierarchical, “predicative”, inner structure of
normal derivations.

The interest of this bridge is that it allows to combine the two interpretations of proofs into
a uniform frame (obviously, at the price of accepting the “epistemic circularity” - section (4.3.1)
- of second order quantification): we can at the same time think of proofs as programs and as
rule-based constructions. This issues the question of the compatibility of the two paradigms,
the one based on the analysis of the behavior of derivations, the other based on the distinction
between canonical and non canonical derivations.

140 CHAPTER 5. IMPREDICATIVITY AND PARAMETRIC POLYMORPHISM

Chapter 6

Vicious circles and typability

System F introduces a notion of typing which is not in accordance with Russell’s rejection of
vicious circles: polymorphic types allow the typing of terms containing variables applied to itself,
as the term δ = λx.(x)x. Hence the type discipline does not forbid, but rather controls the several
auto-applications that might occur in a term. Indeed, whereas the term δ can be typed in System
F , the term (δ)δ, which is not normalizing, cannot be typed: its two autoapplications are in a
sense incompatible and thus rejected by the type discipline.

This chapter is devoted to an analysis of polymorphic typability, i.e. of the polymorphic type
disciplines of System F and its extensions U− and N . The adoption of unification techniques
to investigate the typability problem is quite standard in the literature (see [GRDR91]) and
provides a geometrical interpretation of the vicious circles arising from the typability problem
for a λ-term containing auto-applications (see [LC89] and [Mal90]). Here this interpretation is
recalled and generalized, in order to investigate the possibility of an entirely combinatorial (i.e.
not relying on reducibility theorems) characterization of the typability problem.

The main results of this chapter are the following: a generalization of the notion of “compat-
ibility” (introduced in [Mal90] to investigate typability in System F) between constraints forced
by recursive type equations is given, and its is proved (theorem (6.2.1)) that all strongly normal-
izable λ-terms are compatible. Then the typability problem for System U− is considered and
it is conjectured that compatibility (a decidable property) fully characterizes typability in that
system. A generalized notion of constraint is introduced and some ideas towards the proof of the
conjecture are sketched (in particular concerning the necessity of an impredicative universe like
U = ∀XX in order to solve recursive equations in a general way).

Finally, some interesting consequences are drawn from the conjecture: first, such a charac-
terization of typability for System U− would imply that the terms typable in U− are exactly the
same which are typable in System N by means of types in normal form. Second, every strongly
normalizable λ-term would be typable in System U−. Third, a sketch is provided of the fact
that, if the conjecture were true, then, for every total unary recursive function there would exist
a λ-term computing the function and having type N→ N in U−.

6.1 Typing and unification
We recall in this section the equational characterization of the typing conditions for a pure λ-term
in simple type theory and in System F . This means that a typing of a term exists in one of the
two systems if and only if a solution can be found, among the types of the systems, to a finite
set of equations between schemes, a syntactical counterpart of types (see [GRDR91, GRDR88]).

141

142 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

This characterization reduces the typability problem to a problem of first-order (resp. second
order) unification, which is decidable in the first order case and undecidable in the second order
case.

The interest of this characterization lies in the fact that it allows to investigate a problem of
derivability within a formal system (as the systems of type inference are sequent calculus systems
which essentially come from logic, as shown in chapter (2)) as a problem of solvability of a system
of equations between functional terms. In particular, this provides a geometrical analysis of the
“vicious circles” of the polymorphic type discipline, that is, the possibility to give a type to terms
containing applications of a variable to itself, which is developed in the next section.

In the final subsection a new, equivalent, formulation of the equational characterization of
polymorphic typing is defined, based on the definition of a tree which captures the dependency
relations between type variables. This formulation will be used in the next section to investigate
the typability problem for System U .

6.1.1 Equations in the simple type discipline
Let σ = τ , for two types σ, τ , mean that σ and τ are the same type up to α-equivalence (i.e.
up to permutation of bound variables), and σ ≡ τ mean that σ and τ are syntactically equal
expressions. In the case of simple types, since there are no bound type variables, the two relations
are equivalent.

Schemes and principal derivations The equational approach to typing in simple type theory
arises as a consequence of the following two properties, which are easily established by induction
over typing derivations:

(T1) Γ ` λx.M : σ is derivable iff there exist types σ1, σ2 such that σ = σ1 → σ2 and Γ, (x : σ1) `M : σ2

is derivable;

(T2) Γ ` MN : σ is derivable iff there exist types σ1, σ2 such that Γ ` M : σ1 → σ and Γ ` N : σ2 are
both derivable and moreover σ1 = σ2.

On the basis of properties T1− 2, one can devise, for each λ-term M , a system of equational
specifications which characterizes all possible typings of M : this is usually done in two steps (see
[GRDR91]). First, one defines schemes: a scheme can be thought as the set of all possible types
that can be obtained from it by substitution. For instance, a scheme φ→ ψ indicates the set of
all types of the form σ → τ , for arbitrary σ, τ .

Next one defines, for each λ-termM , a principal typing derivation dM which characterizes all
possible typings ofM , in the sense that any typing ofM can be obtained from dM by substituting
types for the schemes occurring in it. From the derivation dM one finally extracts a finite set of
equations over schemes which characterize the derivation.

The syntax of (simple) schemes is the same as the one of simple types: one has a set of scheme
variables φ, ψ, . . . and defines schemes Φ,Ψ by the following grammar:

Φ,Ψ := φ|Φ→ Ψ (6.1.1)

Two schemes Φ,Ψ are disjoint, when the scheme variables occurring in them are pairwise distinct.
A scheme is linear if all the scheme variables occurring in it are pairwise distinct. Moreover, let
e be a set of equations between schemes of the form φ = Φ; then e is said a linear system if, for
all equation φ = Φ ∈ e, Φ is linear and φ and Φ are disjoint.

A ground substitution S is any map (that we will note ΦS) from schemes to simple types
preserving implication, i.e. such that

(Φ→ Ψ)S = ΦS → ΨS (6.1.2)

6.1. TYPING AND UNIFICATION 143

A scheme Φ can be though then as the set of all the simple types that can be obtained from
it by means of ground substitutions, i.e. as the set [Φ] of all types of the form ΦS , where S is
a ground substitution. For instance, [φ] is the set of all types, whereas [φ → ψ] is the set of all
types of the form σ → τ , ecc.

The principal typing derivation dM and the set eq(M) of equational specifications, for a λ-
term M with free variables x1, . . . , xn, are defined by induction on the construction of M as
follows:

• if M = xi, for a certain 1 ≤ i ≤ n, then dM is the derivation (x1 : φ1), . . . , (xn.φn) ` xi : ψ,
where φ1, . . . , φn, ψ are distinct scheme variables, and eq(M) = {φi = ψ};

• if M = λz.M ′, then dM is the following derivation:

.... dM ′
Γ, (x : φ1) `M ′ : φ2

Γ ` λz.M ′ : φ (6.1.3)

where φ is a fresh scheme variable, and eq(M) = eq(M ′) ∪ {φ = φ1 → φ2};

• if M = M1M2, then dM is the following derivation:

.... dM1

Γ `M1 : φ

.... dM2

Γ `M2 : ψ

Γ `M1M2 : χ (6.1.4)

where χ is a fresh scheme variable, and eq(M) = eq(M1) ∪ eq(M2) ∪ {φ = ψ → χ}.

One can easily verify by induction that eq(M) is a linear system.
Let us say that a ground substitution S satisfies a set e of equations over schemes if, for all

equation Φ = Ψ ∈ e, ΦS = ΨS . If a ground substitution S satisfies a system eq(M), then one
can define a typing derivation dSM in simple type theory, which is obtained by replacing, in dM ,
all schemes Φ by types ΦS .

For each λ-term M , let S be a ground substitution which satisfies eq(M); one can verify by
induction that dSM is a correct typing derivation in simple type theory. Indeed one can show the
following two properties of principal typing derivations (the proof can be found in [GRDR88]):

Proposition 6.1.1 (principal typing derivations, [GRDR88]). Let M be a λ-term, then the
following two hold:

i. if a ground substitution S satisfies eq(M), then dSM is a typing derivation of M in S;

ii. if d is a typing derivation of M in S, then there exists a ground substitution S satisfying
eq(M) and such that d = dSM .

Proof. Both parts are proved by a straightforward induction on the construction of dSM .

First order unification and the principal typing The interest of reducing the problem
of the simple typing of terms to the solution of a system of equational specifications for schemes
is that we can apply first-order unification to solve the problem in a decidable way. Indeed,
simple schemes can be represented by means of a first-order functional language, i.e. a language
for defining terms by means of variables x, y, . . . and a symbol f for a binary function (which

144 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

corresponds to implication). As a consequence, the systems eq(M) can be seen as systems of
equations of the form t = u between first-order terms.

First-order unification, a technique whose origins can be traced back to Herbrand’s thesis
[Her67] and was firstly formalized in [Rob65], is a standard approach to the solution of systems
of equations between first-order terms. Given a system E of first order equations ti = ui, for
1 ≤ i ≤ n, a unifier for E is a substitution θ (i.e. a map from first order variables to first order
terms), such that, for all 1 ≤ i ≤ n, tiθ = uiθ is a syntactic identity.

A possible way to implement the idea of unification is by means of a set of transformations
which simplify a system of first-order equations into one whose solution is trivial, similarly to
what happens when one applies Gaussian elimination to solve a system of linear equations (this
approach is developed for instance in [GS89]).

A system E is in solved form if all its equations are of the form xi = ti, where xi does not
occur in ti nor in the rest of E. A system in solved form admits the trivial solution defined by
θ(xi) = ti, for all 1 ≤ i ≤ n.

The simplification transformations are of three types:

identity Equations of the form xi = xi can be simply eliminated, since they carry no informa-
tion;

decomposition If E contains an equation of the form f(t1, . . . , tn) = f(u1, . . . , un), then we can
simplify the system by replacing the equation by the n simpler equations t1 = u1, . . . , tn =
un. If E contains an equation of the form f(t1, . . . , tn) = g(u1, . . . , um), then the algorithm
must output “FAILURE”, since no substitution can make the two terms equal;

variable elimination If E contains an equation of the form xi = ti, then two possible cases
occur: if xi occurs in ti, then the algorithm must output “FAILURE” since no substitution
can make xi and ti equal (this is the so-called occur-check); if xi does not occur in ti, then
the equation can be eliminated and the remaining system E′ = E − {xi = ti} transformed
into E′[ti/xi].

The transformations above, seen as inference rules, define a non deterministic algorithm which
either outputs “FAILURE” in all of its branches, either outputs a system in solved form in one of
them; since all branches can be shown to be finite, the unification algorithm is decidable. Remark
that variable elimination is responsible for the fact that different systems in solved form may
appear in different branches: this transformation corresponds intuitively, in the case of linear
systems, to the usual procedure of solving the system for a variable xi.

The two main features of first order unification are the fact that the algorithm is decidable
and the fact that, if at least one of the branches does not output “FAILURE”, then it produces
a most general unifier (m.g.u.): this means that all other unifiers θ′ for S can be factorized as
θ′ ◦ θ′′ for a certain substitution θ′′.

The systems which come from simple type theory correspond to a simplified case of unifica-
tion, since the language contains only one symbol for (binary) function. This implies that the
FAILURE case in the decomposition transformation never occurs, and thus the only case of
failure is provided by an occur-check. For instance, given the λ-term M = λx.(x)x, if ξ is the
type variable assigned to the variable x, then an equation of the form ξ = ξ → ξ′, which contains
an occur-check, is produced during the execution of the unification algorithm, which must output
FAILURE.

More generally, all systems from which a recursive equation (i.e. an equation of the form
ξ = Φ, where ξ occurs in the scheme Φ) is derivable, cannot be solved by first-order unification;
hence all terms inducing such systems cannot be typed in simple type theory. An example of

6.1. TYPING AND UNIFICATION 145

these terms are all terms containing an auto-application of the form

λx1.λxn.(xi)M1 . . .MpxiMp+1 . . .Mk (6.1.5)

for 1 ≤ i ≤ n. This is indeed tantamount to saying that the discipline of simple types forbids
any form of auto-application, i.e. of application of a variable to itself (this was indeed the reason
why Russell introduced this discipline).

From the properties of first-order unification one can derive two fundamental properties of
type inference in simple type discipline: first, typability and type-checking are both decidable;
second, if a termM is typable, then it has a principal typing (up to permutation of type variables),
namely the one which comes from a most general unifier of eq(M) (see [Hin69, Mil78]).

6.1.2 Equations in the polymorphic type discipline

One of the main features of the simple type discipline, as we have observed, is the “Russellian”
property that auto-applications cannot be typed or, equivalently, that recursive equations cannot
be unified. This restriction is overcome in the polymorphic type discipline: for instance, if a
variable x is declared of type ∀αα, then it can be extracted on two arbitrary types, for instance,
α→ α and α. Hence the term λx.(x)x can be given type ∀αα→ ∀αα in System F . At the same
time, the reducibility theorem (4.1.1) implies that the auto-applications typable in System F do
not lead to “paradoxical”, i.e. not normalizing typable terms.

Second order schemes The equational approach to typing in polymorphic type discipline
arises as a consequences of two properties T1′,T2′ which are established by induction:

(T1′) Γ ` λx.M : σ is derivable iff there exist variables α1, . . . , αn and types σ1, σ2 such that σ =
∀α1 . . .∀αn(σ1 → σ2), α1, . . . , αn are bindable in Γ and Γ, (x : σ1) `M : σ2 is derivable;

(T2′) Γ ` MN : σ is derivable iff there exist variables α1, . . . , αn and types σ1, σ2, τ, ρ such that σ =
∀α1 . . .∀αnρ, Γ `M : σ1 → τ and Γ ` N : σ2 are both derivable and moreover σ1 = σ2 and τ ≤ ρ.

where the relation ≤ is the transitive closure of the relation ≤1 defined, for all types σ, τ , by

∀ασ ≤1 σ[τ/α] (6.1.6)

The properties above lead to the definition of a syntax-directed type inference system for F
(see [GRDR91]): this means that, for all term M having a type in the system, every derivation
of a typing of M has a shape depending only on the structure of M .

(var) Γ, (x : σ) ` x : τ σ ≤ τ

(→ I)

Γ, (x : σ) `M : τ

Γ ` λx.M : ∀α.σ → τ (α bindable in Γ)

(→ E)

Γ `M : σ → τ Γ ` N : σ τ ≤ ρ
Γ `MN : ∀α.ρ (α bindable in Γ)

(6.1.7)

The system (6.1.7) is easily seen to be equivalent to the one given in chapter (2). In the
following, when referring to a typing derivation in F , we will refer to a derivation in the syntax-
directed system above.

In order to define (second order) schemes one needs the following sets:

146 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

• a countable set of sequence variables a, b, . . . which correspond, intuitively, to a (possibly
empty) finite package of type variables;

• a countable set of scheme variables φ, ψ, . . . ;

• for every sequence variable a, a countable set of pseudo-substitutions of domain a Ia, Ja,

The syntax of pseudo-schemes is then defined by the following grammar:

Φ := φ|Φ→ Ψ|∀aΦ|Ia(Φ) (6.1.8)

Two pseudo-schemes are disjoint if their sequence variables and scheme variables are pairwise
distinct. A pseudo-scheme is linear if all its subschemes are pairwise disjoint. The syntax of
schemes is the following:

Φ,Ψ := ∀aφ|Φ→ Ψ|∀aΦ|Ia(Φ) (6.1.9)

Disjointness and linearity for schemes is exactly the same as for pseudo-schemes.
Second order pseudo-schemes can be seen as sets of polymorphic types: let ΣF be the set of

types of System F ; a ground substitution S is given by

• a map aS from sequence variables to finite sequences (possibly empty) of type variables
such that, if a 6= a′, then aS ∩ a′S = ∅;

• a map ISa from pseudo substitutions of domain a to substitutions (i.e. functions from type
variables to ΣF) of domain aS

• a map φS from pseudo-schemes to types commuting with substitutions, → and ∀, i.e. such
that (

Ia(Φ)
)S

= ΦSISa (6.1.10)

(Φ→ Ψ)S = ΦS → ΨS (6.1.11)

(∀a.Φ)S = ∀aS .ΦS (6.1.12)

where ∀aS .σ is ∀α1 . . . ∀αnσ, where aS = (α1, . . . , αn) (remark that aS can be empty).

Given a pseudo-scheme Φ, the set [Φ] ⊆ ΣF can be defined as before as the set of all ΦS , for
S a ground substitution. For instance [φ] is the set Σ−F of non externally quantified types, and
[φ→ ψ] is the set of types of the form σ → τ . Remark that, since sequence variable can have an
empty interpretation, for all pseudo-scheme Φ, [∀aΦ] ⊆ [Φ]. The algebraic structure of the sets
of the form [Φ] is investigated in detail in [Mal92].

The principal typing derivation As in the first order case, we can define, for each λ-
term M , a principal typing derivation dM , defined over schemes and a set eq(M) of equational
specifications over pseudo-schemes with substitutions. Moreover, we will define a new set ct(M)
of constraints, i.e pairs of the form (a,B), where a is a sequence variable and B a finite set of
schemes. A constraint (a, (Φ1, . . . ,Φn)) will be interpreted as follows: the variables in aS must
be bindable in the context Γ = ΦS1 , . . . ,Φ

S
n .

The sets eq(M) along with ct(M) will be then enough to characterize any typing of M .

• ifM = xi, for a certain 1 ≤ i ≤ n, then dM is the derivation (x1 : ∀a1φ1), . . . , (xn.∀anφn) `
xi : ∀bψ, where ∀a1φ1, . . . ,∀anφn,∀bψ are disjoint scheme variables, eq(M) = {Iai(φi) =
ψ} and ct(M) = {(b, {∀a1φ1, . . . ,∀anφn})};

6.1. TYPING AND UNIFICATION 147

• if M = λz.M ′, then dM is the following derivation:

.... dM ′
Γ, (x : ∀a1φ1) `M ′ : ∀a2φ2

Γ ` λz.M ′ : ∀bφ (6.1.13)

where φ is a fresh scheme variable, and eq(M) = eq(M ′) ∪ {φ = ∀a1φ1 → ∀a2φ2} and
ct(M) = ct(M ′) ∪ {(b,Γ)};

• if M = M1M2, then dM is the following derivation:

.... dM1

Γ `M1 : ∀aφ

.... dM2

Γ `M2 : ∀bψ
Γ `M1M2 : ∀cχ (6.1.14)

where χ and c are fresh, and eq(M) = eq(M1) ∪ eq(M2) ∪ {φ = ∀bψ → ∀b′ψ′, Ib(ψ′) = χ},
where Ib is a fresh pseudo-substition and ct(M) = ct(M1) ∪ ct(M2) ∪ {(c,Γ)}.

We can redefine the notions of linear scheme and linear system: a (pseudo)-scheme Φ is
linear if all its sub-schemes are pairwise disjoint. A set of equations between pseudo-schemes
with substitutions is linear if e = {Φ = Ψi|1 ≤ i ≤ n}, where Φ and the Ψi are linear schemes,
Ψi is not externally quantified and FV (Φ) ∩ FV (Ψi) = ∅.

The following lemma describes the structures of the systems eq(M) in terms of its linear
subsystems.

Lemma 6.1.1. For each λ-term M , the system eq(M) is a union of linear systems, and the
following hold:

i. for all sequence variable a, if ∀aΦ and ∀aΨ occur in equations in the system, then Φ ≡ Ψ
(where ≡ denotes syntactic equality between schemes);

ii. for all schemes Φ,Ψ occurring in equations in the system, if FV (Φ)∩FV (Ψ) 6= ∅, then either
Φ is a subscheme of Ψ or viceversa.

Proof. See [GRDR91].

A simple corollary of the point i. above is that all equations of the form φ = ∀a1Φ→ ∀a2ψ,
that is all equations in which no pseudo-substitution occurs, so as all equations of the form Φ = φ
(where φ is a scheme variable) can be simplified: we can take such equations as a definition of φ,
and the lemma above remains valid for the simplified system so obtained, that we call eq∗(M)
(in [GRDR91] this is shown in detail by defining a UNIFY algorithm over schemes).

Using the simplified system eq∗(M) we can straightforwardly define a simplified derivation
d∗M , which differs from dM in the fact that all schemes are replaced by their simplified form.

A ground substitution satisfies a set e of equations between pseudo-schemes with substitution
if, for all equation Φ = Ψ, ΦS = ΨS holds; moreover, S satisfies a set c of constraints if, for all
constraint (a, {Φ1, . . . ,Φn}) ∈ C, aS is bindable in {ΦS1 , . . . ,ΦSn}.

If a ground substitution S satisfies a system eq∗(M), then one can define a typing derivation
dSM in System F , which is obtained by replacing in dM every scheme Φ by the type ΦS .

Let us consider a simple example to introduce the reader to the system eq∗(M):

148 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

Example 6.1.1. Let M be the λ-term λx.(x)x. As we saw, this term contains an auto-
application forbidden in the simple type discipline; on the contrary, it is quite easy to find solu-
tions to the equation below, which is the only element of eq∗(M):

Ia(φ) = Ja(φ)→ ∀bψ (6.1.15)

For instance, take ΦS = α, ISa (α) = α → ∀ββ, JSa (α) = α and (∀bψ)S = ∀ββ. Then M can be
typed ∀αα→ ∀ββ.

For second order principal typing derivations one can prove an analogue of proposition (6.1.1):

Proposition 6.1.2 (principal typing derivations, [GRDR91]). Let M be a λ-term, then the
following two hold:

i. if a ground substitution S satisfies eq∗(M) and ct(M), then dSM is a typing derivation of M
in F ;

ii. if d is a typing derivation of M in F , then there exists a ground substitution S satisfying
eq∗(M) and ct(M) and such that d = dSM .

Proof. Both parts are proved by a straightforward induction on the construction of dSM .

Remark 6.1.1. To a maximal application1 of the form (x)P1 . . . Pk there correspond equations
in eq∗(M) of the form

Ic1(Φ) = Ψ1 → ψ1 (6.1.16)
Ic2(ψ1) = Ψ2 → ψ2 (6.1.17)

... (6.1.18)
Ick(ψk−1) = Ψk → ψ (6.1.19)

where the Ψi, for 1 ≤ i ≤ k, are either schemes either pseudo-schemes of the form Idi(Ψ
′
i), for

a certain pseudo-scheme Ψ′i. It is convenient to put the equations above together into a single
equation of the form

Ick(. . . Ic1(Φ) . . .) = Ψ1 → · · · → Ψk → ψ (6.1.20)

Hence, we can consider eq∗(M) as the system generated by equations like (6.1.20) which corre-
spond to maximal applications in M .

Second order unification For solving second order systems two standard approaches based on
variants of unification can be found in the literature, depending on how one takes account of type
extractions. The first approach (see [Pfe88]) is based on second order unification, i.e. unification
over a language containing second order variables F,G,H, ... and an abstraction operator λ over
first-order variables. In particular, a second order unifier for a system S of equations ti = ui
between second order terms is a substitution (mapping first-order variables into first-order terms
and second order variables into second order terms) θ such that, for all 1 ≤ i ≤ n, tiθ is α-
equivalent to uiθ (remark that syntactic identity is replaced by α-equivalence to cope with the

1i.e. a sequence of applications (. . . ((x)P1) . . .)Pk in M such that, either M = (x)P1 . . . Pk, either M contains
the subterm λz.(x)P1 . . . Pk, for a certain variable z.

6.1. TYPING AND UNIFICATION 149

fact that first-order variables can be bound). Second order unification is an undecidable problem
(see [Gol81]) and moreover does not admit of m.g.u.s: for instance, the equation

F (f(x, y)) = f(F (x), y) (6.1.21)

admits infinitely incomparable unifiers of the form θ(F) = λx.f(. . . f(x, y), . . . , y).
The second approach is based upon a variant of first-order unification, called semi-unification

(see [Hen89, Hen88]): in this case one considers a system of inequations ti � ui between first-
order terms; a solution to the semi-unification problem for a system S of inequations ti � ui
is a set of substitutions θ, θ1, . . . , θn such that, for all 1 ≤ i ≤ n, the equality tiθθi = uiθ is a
syntactic identity.

The idea is that an equation of the form Ia(Φ) = Ψ is interpreted as the inequation ∀aΦ ≤ Ψ.
Semi-unification is an undecidable problem too ([KTU93]), and no notion of “most general semi-
unifier” holds for solutions to a semi-unification problem.

As a consequence of these approaches, we get that systems of equations over second order
schemes do not enjoy the two main properties of their simple type cousins: their solution con-
stitutes an undecidable problem2 and there are no principal solutions. For instance, all types
of the form ∀α(α → ψ),∀α((α → ψ) → ψ),∀α(((α → ψ) → ψ) → ψ) are solutions to equation
(6.1.15) and are thus types for λx.(x)x.

6.1.3 Another scheme system

We introduce in this subsection a slightly different formulation of the systems of equations over
second order schemes, equivalent to the one above. This formulation is based on the definition
of a tree, depending on the derivation d∗M , which allows to handle the dependencies between
sequence variables (i.e. the constraints in ct(M)) in a more synthetic way.

Let, for any scheme Φ, a tree T (Φ) be defined as follows:

• if Φ is ∀aφ, then T (Φ) is the tree
a

φ (6.1.22)

• if Φ is ∀a(Ψ→ Θ), then T (Φ) is the tree

a

T (Ψ)
T (Θ)

(6.1.23)

Definition 6.1.1. By induction on d∗M we define a tree T (M) whose nodes are labeled by sequence
variables and whose leaves are labeled by occurrences of scheme variables. Moreover, let the
scheme of M be Φ = ∀a1(Φ1 → ∀a2(Φ2 → · · · → ∀ak(Φk → ∀ak+1φ) . . .)); then T (M) has the
following properties:

• all the T (Φi), for 1 ≤ i ≤ k, occur “appended”, in order, to the first k nodes (of label
a1, . . . , ak) occurring in the rightmost path;

2The undecidability of typability for System F was first proved, independently from the equational approach,
in [Wel98].

150 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

• the scheme φ occurs “appended” to the last node (of label ak+1) occurring in the rightmost
path.

The tree T (M) has thus the shape illustrated below:

ak

φ

a1

T (Φ1)
ak+1

T (Φk) (6.1.24)

• if d∗M is of the form
Γ, (x : ∀aΦ) ` x : Ψ (6.1.25)

for a certain scheme Ψ, then T (M) is simply T (Ψ);

• if d∗M is of the form
....

Γ, (x : Φ) `M : Ψ

Γ ` λx.M : ∀a(Φ→ Ψ) (6.1.26)

for a certain scheme Φ, then T (λx.M) is of the form

a

T (Φ)
T (M)

(6.1.27)

• if d∗M is of the form
....

Γ `M1 : ∀a1(Φ→ ∀bφ)

....
Γ `M2 : Φ

Γ `M1M2 : ∀cΨ (6.1.28)

were eq∗(M) contains the equation Ib(φ) = Ψ, for a certain (non externally quantified)
scheme Ψ, then by induction hypothesis T (M1) is of the form

b

φ

a1

T (Φ) (6.1.29)

then T (M) is the tree below
a1

T (M2) T (∀cΨ)
(6.1.30)

6.1. TYPING AND UNIFICATION 151

Remark that a sequence variable or a scheme variable can occur several times in T (M).
However, we can bijectively associate a sequence variable a with the leftmost node of label a,
that we call n(a). Hence, given a sequence variable a, we can define its initial segment sBa as
the sequence of sequence variables (a0, . . . , ak) where a = ak and a0, . . . , ak are the sequence
variables which label (in this order) the leftmost oriented path from the root of T (M) to n(a).

Since any equation E in eq∗(M) corresponds to a maximal sequence of application rules, one
can associate with it a unique subtree of T (M): let d(E) be the subderivation of d∗M ending with
such a sequence of application rules. Then the construction above associates with d(E) a tree
T (E); remark that, since the sequence of application rules is maximal, one can verify that, by
construction, the tree T (E) is a subtree of T (M).

We must now reformulate the syntax of schemes. We still use sequence variables and scheme
variables but, instead of pseudo-substitutions, we will consider now, for each sequence variable
a, a countable set of substitution variables Fa, Ga, . . . which will be symbols for n-ary functions,
where n is the length of the initial segment sBa .

A substitution term is a first order term built by using sequence variables and substitution
variables.

An atomic scheme is an expression of the form φ(t1, . . . , tn), where φ is a sequence variable
and t1, . . . , tn are substitution terms. A substitution scheme Φ is defined by the grammar:

Φ,Ψ := φ(t1, . . . , tn)|Φ→ Ψ|∀aΦ (6.1.31)

The interest of the tree T (M) is that it allows to define a order relation over sequence variables
occurring in eq∗(M): for any two sequence variables a, b let a B1 b if there exists in T (M) an
oriented edge from n(a) to n(b), and aB b if there exists in T (M) and oriented path from n(a)
to n(b). Since T (M) is a tree, every node is connected to the root by a unique path labeled by
sequence variables a0, . . . , ak.

The intuition behind the order relation above is that a sequence variable a is to be viewed as
“bound” (resp. “free”) with respect to a sequence variable b if bB a (resp. (aB b)). This means
that, given a ground substitution S (to be defined below), if a substitution is applied to one of
the variables in (b)S (resp. (a)S), then this substitution can not introduce occurrences of the
variables in (a)S (resp. (b)S), since substitution cannot introduce bound variables.

A ground substitution S now is given by:

• a map aS from sequence variables to finite sequences (possibly empty) of type variables
such that, if a 6= a′, aS ∩ bS = ∅;

• a map FSa from substitutions variables of domain a to substitutions (i.e. functions from
type variables to ΣF) of domain aS . Remark that this induces a map θt from substitution
terms to substitutions defined as follows:

– αθSa = α, for α ∈ aS ;
– αθSFa(t1,...,tn) := αFSa θ

S
tn . . . θ

S
t1 , for α ∈ a

S .

• a map φS from substitution schemes to types commuting with substitutions, → and ∀, i.e.
such that (

φ(t1, . . . , tn)
)S

= φSθStn . . . θ
S
t1 (6.1.32)

(Φ→ Ψ)S = ΦS → ΨS (6.1.33)

(∀a.Φ)S = ∀aS .ΦS (6.1.34)

where ∀aS .σ is ∀α1 . . . ∀αnσ, where aS = (α1, . . . , αn) (remark that aS can be empty).

152 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

With the help of T (M) we will translate then the system eq∗(M) into a system sc(M) defined
over substitution schemes. In particular, to any pseudo-scheme Φ occurring in eq∗(M) we will
associate a substitution scheme sc(Φ). Moreover, from a ground substitution S satisfying sc(M)
we will show how to construct a ground substitution S∗ satisfying eq∗(M).

For every scheme variable φ, let us consider the leftmost leaf node aφ whose label is φ. Let
sBφ be the initial segment sBa = (a0, . . . , ak−1, a), where a is the only variable such that T (∀aφ)
is a subtree of T (M). Then

sc(φ) := φ(a0, . . . , ak−1, a) (6.1.35)

Let ι be any injective map from pseudo-substitutions to substitution variables such that,
for all sequence variable a, ι(Ia) is of the form Fa. We define an invertible map i from the
pseudo-schemes occurring in eq∗(M) to substitution schemes. If Fa a substitution variable and
Φ a substitution scheme, let ΦFa be obtained from Φ by replacing every occurrence of a in the
atomic schemes in Φ by Fa(a1, . . . , ak−1, a) (where (a1, . . . , ak−1, a) is sBa). Now we put:

i(φ) = φ(a1, . . . , an) ((a1, . . . , an) = sBφ1
) (6.1.36)

i(Ia(Φ)) =
(
i(Φ)

)ι(Ia) (6.1.37)
i(Φ→ Ψ) = i(Φ)→ i(Ψ) (6.1.38)
i(∀aΦ) = ∀a i(Φ) (6.1.39)

Finally, for any equation

Ick(. . . Ic1(Φ) . . .) = Ψ1 → · · · → Ψk → ψ (6.1.40)

occurring in eq∗(M), the system sc(M) contains the equation

i
(
Ick(. . . Ic1(Φ) . . .)

)
= i(Ψ1)→ · · · → i(Ψk)→ i(ψ) (6.1.41)

Hence all equations in sc(M) are of the form

ΦFa1 ...Fak = Ψ1 → · · · → Ψk → ψ (6.1.42)

for certain substitution schemes Φ,Ψ1, . . . ,Ψk, ψ, where, for 1 ≤ i ≤ k, Ψi is either a simple
substitution scheme, either of the form Θ

Fbi
i , for a certain substition variable Fbi of domain bi.

A ground substitution S satisfies the system sc(M) if, for all equation Φ = Ψ in sc(M), one
has ΦS = ΨS and moreover, for all scheme variable φ, the free variables of φS are among the
aS0 , . . . , a

S
n , where s

B
φ is the linear order a0 B1 · · · B1 an. The latter condition (see proposition

(6.1.3) below) allows to get rid of the set ct(M) of constraints.
Let S be a ground substitution (over substitution schemes). We can define a ground substi-

tution S∗ over schemes as follows:
Next we put:

aS
∗

:= aS (6.1.43)

IS
∗

a := (ι(Ia))S (6.1.44)

φS
?

:= φS (6.1.45)

(Φ→ Ψ)S
∗

:= ΦS
∗
→ ΨS∗ (6.1.46)

(∀aΦ)S
∗

:= ∀aS
∗
ΦS
∗

(6.1.47)

6.1. TYPING AND UNIFICATION 153

Proposition 6.1.3. If S satisfies sc(M), then S∗ satisfies eq∗(M).

Proof. One easily proves, by induction, that for all scheme Φ, ΦS
∗

=
(
i(Φ)

)S . The only inter-
esting case is Φ = Ia(φ): (

φι(Ia))S = φS(ι(Ia))S = φS
∗
IS
∗

a =
(
Ia(φ)

)S∗ (6.1.48)

Moreover, one can easily show by induction that, for any constraint (a,B) ∈ ct(M), and
any scheme variable φ occurring in a scheme in B, a /∈ sBi(φ); hence, from the fact that, for
all φ, FV (φS) ⊆ {aS0 , . . . , aSn}, it follows that, for any constraint (a, (Φ1, . . . ,Φk)) ∈ ct(M),
aS /∈ FV (ΦS1) ∪ · · · ∪ FV (ΦSk) and, as a consequence, aS

∗
/∈ FV (ΦS

∗

1) ∪ · · · ∪ FV (ΦS
∗

k).

Some properties of sc(M) A derivation dscM can be obviously defined starting from d∗M and
replacing every scheme Φ by i(Φ).

A declaration (x : Φ) occurring in dscM is said non trivial if Φ is not of the form ∀aφ, where φ
is a scheme variable. One can easily see that a non trivial declaration (x : Φ) in d∗M must come
from a trivial one (x : φ) in dM and an equation φ = Φ coming from a redex. Indeed one can
prove the following:

Lemma 6.1.2. If M is normal, then all declarations (x : Φ) occurring in dscM are trivial.

Proof. Induction on the construction of d∗M .

Let M be a λ-term and M ′ be a subterm of M ; let us say that M ′ has scheme Φ if a sequent
Γ ` M ′ : Φ occurs in the derivation d∗M (or, equivalently, in dscM). Moreover, if Φ is a scheme of
the form

∀b1Φ1 → ∀a2(∀b2Φ2 → · · · → ∀ak(∀bkΦk → ∀ak+1φ) . . .) (6.1.49)

then a term M is faithful to Φ if it is of the form λz1.λzk.M
′.

Let us define a well-founded order M ′ ≺ M ′′ on the subterms of M as follows: M ′ ≺ M ′′

holds if M ′′ has a free variable z with a non trivial declaration (z : Φ), M ′ has scheme Φ and
there exists a redex (λz.J)M ′ with J containing M ′′. To see that ≺ is well-founded, one uses
the fact that, by lemma (6.1.2), the declarations in the conclusion of d∗M are all trivial. The
definition below, so as the proof of proposition (6.1.4), will be given by induction on the order
≺.

Definition 6.1.2 (applied terms, becoming). Let us call a subterm M ′ of M applied if it occurs
in a subterm N of the form M ′N ′, and non applied if it doesn’t.

If M ′ is non applied then we say that M ′ becomes N in M under reduction if M ′ contains
some free variables x1, . . . , xn such that, for all 1 ≤ i ≤ n, M contains a redex of the form
(λxi.J)Qi, whereM ′ is a subterm of J , and N = M ′[Q′1/x1, . . . , Q

′
n/xn], where, for all 1 ≤ i ≤ n,

Qi becomes Q′i under reduction.

Lemma 6.1.3. Let M ′ be a subterm of a term M of scheme Φ and let x1, . . . , xn be the free
variables of M ′ which have non trivial declarations (x1 : Φ1), . . . , (xn : Φn) in d∗M . Then, if
Q1, . . . , Qn are terms which are faithful, respectively, for Φ1, . . . ,Φn, the termM ′[Q1/x1, . . . , Qn/xn]
is faithful to Φ.

Proof. Induction on M ′.

In order to study the behavior of redexes in M we introduce the notion of redex pair :

154 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

Definition 6.1.3 (redex pair). Given a scheme variable φ, a head redex pair of base φ in sc(M)
is a pair of equations

φFa1 ...Fak = Ψ
Ga1
1 → · · · → Ψ

Gah
h (6.1.50)

(Φ1 → · · · → ∀a1φ→ Φp)
Fb1 ...Fbh = Θ (6.1.51)

where {a1, . . . , ak} ∩ {b1, . . . , bh} = ∅ and b1 B a1.
A body redex pair of base φ in sc(M) is a pair of equations

φFa1 ...Fak = Ψ
Ga1
1 → · · · → Ψ

Gah
h (6.1.52)

Θ
Fv′1

...Fv′
h = Φ

Gb1
1 → · · · → (Ψ1 → · · · → ∀avφ→ Ψp)

Gbk → Φ
Gbk+1

k+1 (6.1.53)

where b1 B a1.

Remark 6.1.2. From a head redex pair (6.1.50) one can guess the existence of a redex (λx.P)Q
in M , where Q has scheme ∀a1(Φ1 → · · · → ∀akφ→ Φk) and P contains a subterm of the form
(x)P1 . . . Pk.

From a body redex pair (6.1.52) one can guess the existence of a redex (λx.P)Q in M ,
where Q has scheme ∀a1(Ψ1 → · · · → ∀ap−1φ → Ψp) and P contains a subterm of the form
(y)P1 . . . Pk−1x, where y is a variable declared of scheme Θ.

Indeed these are the only two possible cases of redex inM , if one excludes “weakening” redexes
(λx.P)Q, where x does not occur in P .

Remark 6.1.3. If M is normal, then sc(M) contains no redex pairs and all its equations are of
the form

φFa1 ...Fak = Ψ
Fb1
1 → · · · → Ψ

Fbk
k → ψ (6.1.54)

in particular, if φFa1 ...Fak and φ
Fa′1

...Fa′
k′ , for certain k, k′ ∈ N, occur in the lefthand side of two

equations in sc(M), then one must have a1 = a′1, . . . , amin(k,k′) = a′min(k,k′).
Conversely, one can easily show by induction on d∗M the following fact: suppose a head redex

pair occurs in sc(M) and suppose the two schemes Φ
Fa1 ...Fak
1 and Φ

Fb1 ...Fbh
2 (hence a1 6= b1)

occurring in the lefthand side of the equations of the redex pairs are not disjoint (so they have
at least a scheme variable φ in common); then, for any other occurrence in sc(M) of a scheme
ΨFc1 ...Fcl which contains φ, one has that either a1 = c1, . . . , amin(k,l) = cmin(k,l), either b1 =
c1, . . . , bmin(h,l) = cmin(h,l). Intuitively, this means that in sc(M) there can occur at most two
“incompatible” (i.e. containing substitution variables whose nodes are labeled by disjoint sets of
sequence variables, see below) occurrences of the substitution scheme φ.

Proposition 6.1.4. Let M be a λ-term. If Q is a non applied sub term of M having scheme

Φ = ∀b1Φ1 → ∀a2(∀b2Φ2 → · · · → ∀ak(∀bkΦk → ∀ak+1φ) . . .) (6.1.55)

then Q becomes Q′ in M under reduction, where Q′ is faithful to Φ.

Proof. We prove the following fact by induction on the complexity of λ-terms: if Q is non
applied and has scheme Φ1 → Φ2 in d∗M , then either Q is faithful, either Q becomes faithful
under reduction.

We argue by induction on the order ≺. If Q is not faithful, since it is not applied it must
contain free variables x1, . . . , xn with non trivial declarations (x1 : Φ1), . . . , (xn : Φn) and, for
each 1 ≤ i ≤ n, there must exist a non applied term Qi of scheme Φi and a redex of the form

6.2. VICIOUS CIRCLES AND TYPING 155

(λxi.Ji)Qi, where Ji contains Q. Now, since, for all 1 ≤ i ≤ n, Qi ≺ Q we can apply the
induction hypothesis: for all 1 ≤ i ≤ n, the Qi are faithful to Φi and Q becomes under reduction
the term Q[Q1/x1, . . . , Qn/xn], which is faithful by lemma (6.1.3).

Corollary 6.1.1. Suppose that a (head or body) redex pair of base φ occurs in sc(M). Then M
reduces to a term M ′ containing a redex of the form (λx.P)λz1.λzk.Q, with k ≥ p.

6.2 Vicious circles and typing

In this section we investigate the mathematical structure underlying the recursive equations
arising from auto-applications or, in Russell’s terminology, “vicious circles”. First we recall a
“geometrical” investigation of the vicious circles arising from type inference which arises from
the so-called Patterson-Wegman algorithm ([PW78]): to the recursive equations arising from
the unification algorithm there correspond cyclic paths in a “unification graph”; following this
interpretation, in [LC89], some properties of typability in System F are obtained from an analysis
of the structure of those graphs.

Next we recall some results, which can be found in [Mal90, Mal92], on the untypability of some
pure λ-terms in System F based on a notion of “compatibility” between the constraints induced
by recursive equations. The use of this combinatorial notion allows to prove the untypability of
certain λ-terms without relying on the reducibility theorem.

Finally Malecki’s notion of compatibility is generalized and it is proved (theorem (6.2.1)) that
a term forcing two incompatible constraints cannot be normalizing (hence a strong normalizing
λ-term cannot force incompatible constraints). This result constitutes the first step towards the
abstract characterization of typability that is obtained in the next section.

6.2.1 The geometry of vicious circles

The problem of autoapplications In subsection (6.1.1) it was shown that the first-order
unification algorithm, when applied to simple types, fails only when an occur-check is detected,
i.e. a recursive equation of the form φ = Φ, where φ occurs in Φ, is produced. Recursive equations
come from terms containing an auto-application of a variable x, i.e. containing subterms of the
form

(x)P1 . . . PkxPk+1 . . . Pn (6.2.1)

The polymorphic type discipline allows to type some λ-terms containing auto-applications.
Indeed, in addition to the already mentioned term δ (containing one auto-application) also the
terms

(λx.λy.(x)yx)λz.(z)z (6.2.2)
(λx.(x)xx1xxx2)λy1.λy2.λy3.λy4.(y4)y3y4yy1y2 (6.2.3)

are typable in F (see [Mal90]), though they contain more than one auto-applications.
On the contrary, the term (λx.(x)x)λy.λz.(y)zy, though being strongly normalizable, is not

typable in F and the terms (λx.(x)x)λx.(x)x and (λu.(u)u)λx.λy.(y)xyλx.λy.(y)xy are not even
normalizable.

156 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

First-order unification and vicious circles In this paragraph we investigate the vicious
circles arising in the system eq∗(M) (or, equivalently, sc(M)) from the viewpoint of first-order
unification. Indeed, by deleting quantifiers, sequence variables and substitution variables in all
equations the system eq∗(M) collapses into the system of equation over schemes that one obtains
from the first-order type inference technique described in subsection (6.1.1).

The interest of investigating second order systems from a first order perspective is twofold:
first, obviously, from a solution to the collapsed system one straightforwardly retrieves a solution
to the second order system; second, this collapse enables the use of first-order unification in order
to investigate the structure of the recursive (i.e. non unifiable) equations.

In [LC89] a geometrical interpretation of unification (based on the algorithm first described
in [PW78]) is given by associating, with a system E of equations between first order terms, a
graph U(E) which is invariant under the transformations defining the unification algorithm. In
particular, to the recursive equations derivable from E there correspond simple cycles in the
“unification graph” U(E), so that unifiability can be investigated as an acyclicity problem.

In order to define the unification graph, we first associate to a system E a dag (directed
acyclic graph) G(E) defined as follows: first, to each term t occurring in an equation in E we
associate its dag representation G(t)3 Then we consider the union graph of all the G(t), i.e. the
graph having as set of vertices the union of the sets of vertices of the G(t) (remark that these sets
are in general not disjoint) and as set of oriented edges the union of the sets of oriented edges
of the G(t). Finally, we obtain the graph G(E) by adding to the union graph, for any equation
t = u ∈ E, an oriented edge (called equational edge), with label e, from the root of t to the root
of u.

For instance, the graph G(E) for the system E = {x = f(x, x′), y = f(z, y′), y′ = f(y, y′′), x =
f(y, f(z, y′′))} is the one below (as reported in [LC89]):

x

x′

y z y′′

y′
0

1

0

1

0 1

0

1

1

0

e

e

e
e

(6.2.4)

The unification graph U(E) is defined as the quotient of G(E) under the smallest, downward
closed, equivalence relation on vertices generated by the equational edges. Hence, the definition
of U(E) induces an equivalence relation ∼ over the variables occurring in E. In the case above,
the unification graph is the following:

3This is a labeled dag (see [PW78]) that can be defined recursively as follows: if t = x then G(t) has a node
for the variable x and no directed edge; if t = f(t1, t2) then the nodes of G(t) are given by the nodes of G(t1),
the nodes of G(t2) (where these two sets might be not disjoint if t1 and t2 have some variable in common) and
a new node n for the occurrence of the function symbol f ; the directed edges of G(t) are given by the union of
the directed edges of G(t1) and those of G(t2) plus a directed edge with label 0 from n to the root of G(t1) and a
directed edge with label 1 from n to the root of G(t2).

6.2. VICIOUS CIRCLES AND TYPING 157

xyz

x′y′

y′′ (6.2.5)

In [LC89] it is shown that, if a system E is transformed into E′ by means of an identity,
decomposition or variable elimination step (see subsection (6.1.1)), then the graph U(E′) is the
same as U(E). In this sense the unification graph is an invariant of the unification algorithm.

Moreover, it is proved there that the simple cycles in U(E) correspond exactly to the recursive
equations that can be derived from E by applying standard equality rules plus other rules which
translate the transformations defining the unification algorithm. Hence simple cycles in U(E)
are in bijection with the recursive equations derivable from E. This result allows to speak in a
very general and abstract way of the set of “vicious circles” which are induced by a system of
first order equations (which are not limited to the recursive equations in the system, but include
also the recursive equations derivable from the system).

When considering first-order systems arising from polymorphic type inference we are not
interested in the existence of unifiers. Indeed, since such systems generally contain vicious circle,
they have no unifiers. This does not impedes to investigate the structure of those vicious circles
from the perspective of first-order unification.

First recall from subsection (6.1.1) that every sequence of the transformations of the unifi-
cation algorithm terminates, independently of the fact that it finds a unifier of the system. Let
us call irreducible a system to which no transformation can be applied; the termination of every
branch of the unification algorithm implies then that every system can be transformed into a
reducible system.

Observe that, as the application of the transformations is performed in a non deterministic
way, the same system can be reduced into distinct irreducible systems. For instance, the system
E = {(x = f(y, z), y = f(x, z′)} can be reduced to the two distinct systems E1 = {x =
f(f(x, z′), z)} and E2 = {y = f(f(y, z), z′)}. However, one has that U(E) = U(E1) = U(E2),
where U(E) is the graph below:

z

z′ (6.2.6)

The unification graph allows then to capture the properties which are shared by all of those
systems (in particular the equivalence classes of variables and the number of simple cycles).

We end this subsection by proving a result that will be used in subsection (6.3.2). First, since
any simple cycle c in U(E) corresponds to a recursive equation x = t derivable from E, we can
associate a pair (xc, σc) made of a variable xc = x and an address σc, i.e. a finite sequence of 0
and 1 corresponding to the leftmost path in G(t) from the root to x. Two cycles c1, c2 are said
coherent when either xc1 6= xc2 , either σc1 is not a subsequence of σc2 nor σc2 is a subsequence
of σc1 .

Let us call a splitting pair a pair (c1, c2) of coherent cycles such that xc1 = xc2 . Geometrically,
splitting pairs are pairs of cycles passing through the same vertex. The condition of coherence
assures that we can “decompose” the two cycles, by applying to the system the substitution θ
which sends x on a linear (i.e. all variables occur exactly once) term t defined with fresh variables
and such that the two addresses σc1 and σc2 are occupied by two (distinct) variables.

More formally, let us first define, for an address σ, a linear term tσ as follows:

158 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

• if σ = ε is the empty sequence, then tσ = x, where x is a fresh variable;

• if σ = e ∗ σ′, where e ∈ {0, 1}, then tσ is f(tσ′ , x), if e = 0, and f(x, tσ′) if e = 1, where x
is a fresh variable.

Now, given two distinct addresses σ1, σ2, we can define the term tσ1,σ2
as a most general unifier

of tσ1 and tσ2 (one can easily verify that such mgu is always defined and moreover tσ1,σ2 is still
linear).

Hence, given a splitting pair (c1, c2), the decomposition of the system corresponds to the
result of applying, to all equations in E, the substitution θ(x) = tσc1 ,σc2 . The new system Eθ
has then the following features:

1. for every simple cycle c in E there exists exactly one corresponding simple cycle cθ in Eθ;

2. every simple cycle in Eθ is of the form cθ for exactly one cycle c in E;

3. to every splitting pair (c′1, c
′
2) in E, except for the pair (c1, c2), there corresponds a splitting

pair (c′1θ, c
′
2θ) in Eθ and viceversa, every splitting pair in Eθ comes from a splitting pair

in E;

4. the cycles c1θ and c2θ have no variable in common.

The facts 1 − 3 are immediate consequences of the fact that the equations in Eθ have the
form tθ = uθ, where t = u ∈ E and where θ introduces linear terms with fresh variables. The
fact 4 comes from the fact that the cycles c1θ and c2θ pass now through distinct variables (since
the paths σc2 and σc2 correspond to distinct fresh variables in tσc1 ,σc2).

In other words, the splitting operation transforms the system E into a system Eθ having
the same number of cycles and the same type of intersections between cycles, except for the two
cycles c1, c2 which no more intersect.

As a consequence of the facts 1 − 4 and the fact that the number of splitting pairs strictly
decreases after splitting, after a finite iteration of the splitting operation one obtains a system
with no splitting pairs.

In the next paragraph it will be shown that the splitting operation is legitimate: from the
viewpoint of polymorphic typing this operation transforms the system into an equivalent one.

6.2.2 Recursive equations and typing constraints
Malecki’s lemma Since all normal terms are typable in System F , the problem with typability
must arise from the occurrence of a redex (λx.P)Q, which might make two distinct “vicious
circles” interact; the term (δ)δ, where δ = λx.(x)x provides a well-known example. A second
example is the term (ω)zω, where ω is λx.λy.(y)xy.

The existence of an auto-application in a term M corresponds to the existence of a recursive
equation in sc(M), i.e. an equation of the form

ΦFa1 ...Fak = Φ1 → Φ2 → · · · → ∀blΦF
′
a → · · · → Φk (6.2.7)

Now a simple argument shows that this equation forces a constraint on the form of the types
σ, τ1, . . . , τk which should satisfy it. In order to describe this argument we introduce addresses in
a type: for each type σ of System F and positive integer k ≥ 1 the address Πk(σ) is (partially)
defined by induction as follows:

• if σ ≡ α, then Π1(σ) = σ and Πk+1(α) ↑;

6.2. VICIOUS CIRCLES AND TYPING 159

• if σ ≡ τ → ρ, then Π1(σ) = τ and Πk+1(σ) = Πk(ρ);

• if σ ≡ ∀ατ then Πk(σ) = Πk(τ).

Let lr(σ) = max{k|Πk+1(σ) ↓} and H(σ) = Πlr(σ)+1(σ). Finally, let’s define, for k ≥ 0, the head
Hk(σ) of σ at address k + 1 as

Hk(σ) =

{
Hk(Πk+1(σ)) if k ≤ lr(σ)

H(σ) else
(6.2.8)

If Hk(σ) is the variable α, we say (as in [Urz97]) that α owns the path k.
Now, if the types σ, τ1, . . . , τk satisfy equation (6.2.7), then for some substitutions θ, θ′, one

has
σθ = Πl(σ)θ′ (6.2.9)

where τ is the type τ1 → ∀α2(τ2 → · · · → ∀τk). The lemma below says that, in that case, the
head at address k in σ must be in the domain of θ′.

Lemma 6.2.1 ([Mal90]). Let σ be a type which satisfies an equation of the form

τθ = Πk(τ)θ′ (6.2.10)

for certain substitutions θ, θ′ and a positive integer k. Then Hk−1(σ) ∈ dom(θ′).

Proof. Let Hk−1(σ) be α; let us define, for any type σ, a notion of k-depth lrk(σ), for k ≥ 0, as
follows:

lrk(σ) :=

{
lrk(Πk+1(σ)) + k + 1 if k ≤ lr(σ)

lr(σ) else
(6.2.11)

Clearly, if Hk(σ) /∈ dom(θ), then Hk(σθ) = Hk(σ) and lrk(σθ) = lrk(σ); hence, if we suppose
Hk−1(σ) /∈ dom(θ′), we get

lrk−1(Πk(σ)) = lrk−1(Πk(σ)θ′) = lrk−1(σθ) ≥ lrk−1(σ) (6.2.12)

where in the last step we used the remark that a substitution cannot decrease k-depth. From
the fact that lrk−1(σ) = lrk−1(Πk(σ)) + k we get then a contradiction.

Let us see a simple application of this lemma: the system sc((δ)δ) contains the two equations

φFa = φF
′
a → ψ (6.2.13)

(∀aφ→ ψ)Fb = (∀aφ→ ψ)F
′
b → χ (6.2.14)

Hence, is S satisfies sc(M), then, by letting σ = φS , τ = ψS and ρ = χS , one must have (where
α stands for a finite sequence of type variables)

σθSFa = σθSF ′a → τ (6.2.15)

(∀ασ → τ)θSFb = ∀β(∀ασ → τ)θSF ′b
→ ρ (6.2.16)

where the substitutions θSFa and θSFb have disjoint domain. Now from lemma (6.2.1) it follows
that H0(σ) ∈ dom(θSFa) ∩ dom(θSFb) = ∅, which is absurd.

The argument above shows that the combinator (δ)δ is not typable in System F without
relying on the reducibility theorem (4.1.1) (a similar argument can be found in [GV09] to show
that (δ)δ cannot be typed in System U−). Indeed we are going to generalize this form of
argument, in order to obtain results about the untypability of certain (not normalizing) λ-terms,
without relying on assumptions about reducibility.

160 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

The transport of head constraints Let us call a triple κ = (φ, k,A), where φ is a scheme
variable, k ≥ 1 a positive integer and A a finite non empty set of sequence variables occurring
in sBφ , a head constraint4. Intuitively the head constraint (φ, k,A) says that, for all ground
substitution S, Hk−1(φS) ∈ aS1 ∪ · · ·∪aSn , where A = {a1, . . . , an}. Two constraints κ = (φ, k,A)
and κ′ = (ψ, h,B) are incompatible if φ = ψ, k = h and A ∩B = ∅.

We first want to study how, following lemma (6.2.1), constraints (φ, k,A) can be forced by a
λ-term.

Let us say that a scheme variable φ occurs in a scheme Φ at address k if either Φ = φ, either
Φ is of the form

∀a1(Φ1 → ∀a2(Φ2 → · · · → ∀ak(∀bkφ→ Φk+1) . . .)) (6.2.17)

The simplest case in which a constraint (φ, p,A) is forced is when an equation of the form

ΦFa1 ...Fak = Ψ
Fb1
1 → · · · → Ψ

Fbp−1

p−1 → ΦF
′
a1 → · · · → Ψ

Fbk
k → ψ (6.2.18)

where φ occurs in Φ at address p, occurs in sc(M); however, we have to consider also the fact
that, if an equation of the form ΦFa = Ψ occurs in sc(M), then a constraint on a subscheme of Φ
(resp. of Ψ) can be “transported” to a subscheme of Ψ (resp. of Φ), as implied by the following
lemma:

Lemma 6.2.2 (transport of constraints, [Mal90]). Suppose that two types σ, τ satisfy an equation
σθ = τθ′, for certain substitutions θ, θ′, and that Hk(σ) /∈ dom(θ). Then two cases arise:

1. if Hk(σ) ∈ BV (σ), then either Hk(τ) ∈ domθ′, either Hk(τ) ≡ Hk(σ);

2. if Hk(σ) ∈ FV (σ), then either Hk(τ) ∈ domθ′, either Hk(τ) = Hk(σ).

Proof. Both results come from the remark that Hk(σ) = Hk(σθ) = Hk(τθ′).

Following lemma (6.2.2) we get to the following definition:

Definition 6.2.1 (forcing constraints). Let M be a λ-term. Given a simple substitution scheme
Φ, an integer k and a finite set of sequence variables A, M forces the constraint κ if one of the
following holds:

i. κ = (φ, p, {a1}) and sc(M) contains the equation

ΦFa1 ...Fak = Ψ
Fb1
1 → · · · → Ψ

Fbp−1

p−1 → ΦF
′
a1 → · · · → Ψ

Fbk
k → ψ (6.2.19)

where φ occurs in Φ at address p;

ii. κ = (φ, k,A) and there exist a scheme variable ψ and simple schemes Φ,Ψ,Φ1, . . . ,Φk−1,Φk+1

such that sc(M) contains the equation

ΨFa1 ...Fak = Φ
Fb1
1 → · · · → Φ

Fbk−1

k−1 → ΦFbk → Φ
Fbk+1

k+1 (6.2.20)

where φ occurs in Φ at address k, ψ occurs in Ψ at address k and the following holds:

• A = {bk}∪C ′∪D′ and M forces (ψ, k, C∪D), where for any sequence variable c ∈ C,
cB bk and for any sequence variable d ∈ D, bk B d and the sets C ′, D′ are defined as
follows: C ′ ⊆ C contains the c ∈ C such that c ∈ sBφ ; D′ contains, for any d ∈ D, the
sequence variable d′, if it exists, which occurs in Ψ at the same position as d in Φ;

4Unless there is ambiguity with the previously defined notion of constraint, we will simply call this a “con-
straint”.

6.2. VICIOUS CIRCLES AND TYPING 161

iii. κ = (ψ, k,A) and there exist a scheme variable φ and simple schemes Φ,Ψ,Φ1, . . . ,Φk−1,Φk+1

such that sc(M) contains the equation

ΨFa1 ...Fak = Φ
Fb1
1 → · · · → Φ

Fbk−1

k−1 → ΦFbk → Φ
Fbk+1

k+1 (6.2.21)

where φ occurs in Φ at address k, ψ occurs in Ψ at address k and the following holds:

• A = {a1}∪C ′∪D′ and M forces (φ, k, C∪D), where for any sequence variable c ∈ C,
cB bk and for any sequence variable d ∈ D, bk B d and the sets C ′, D′ are defined as
follows: C ′ ⊆ C contains the c ∈ C such that c ∈ sBψ ; D′ contains, for any d ∈ D, the
sequence variable d′, if it exists, which occurs in Φ at the same position as d in Ψ;

Accordingly, we define the notion of constraint path: this is a finite sequence of pairs (φi, κi)1≤i≤n,
where the φi are distinct scheme variables and the κi = (φi, ki, Ai) are constraints such that:

• M forces the constraint κ1 = (φ1, k1, A1) according to clause i. of the definition (6.2.1);

• for all 1 ≤ i ≤ n − 1, the constraint κi+1 is transported from the constraint κi according
to clause ii. or iii. of the definition (6.2.1).

Clearly M forces κ if and only if there exists a constraint path (of finite length k) leading to
κ. In such case we say that M k-forces κ.

Example 6.2.1. The reader can familiarize with the transport of constraints by computing the
constraint paths of the (non normalizing) term below

(λu.(u)u)
(
λy.((λz.(z)z)λx.(x)y)

)
(6.2.22)

and showing that it induces two incompatible constraints.

A term is said compatible if it forces no incompatible constraints, and incompatible if it forces
some. Thus one has the following proposition, which allows to prove the untypability of non
compatible λ-terms without appealing to reducibility:

Proposition 6.2.1. If M is not compatible, then it is not typable in System F .

Proof. Suppose M forces two incompatible constraints (φ, k,A), (φ, k,B) and S is a ground
substitution which satisfies sc(M). Let AS , BS denote, respectively, the union of all the sets
of the type variables of the form aS and bS , for a ∈ A and b ∈ B. Then one must have
Hk−1(φS) ∈ AS ∩BS = ∅, which is absurd.

The combinator (δ)δ induces two incompatible constraints, namely (φ, 1, a) and (φ, 1, c). (δ)δ
is a fixed point combinator, hence it is not normalizing. Since terms inducing incompatible
constraints cannot be typed in System F , as a consequence of Malecki’s lemma (6.2.1), it is
natural to ask whether there exist normalizing λ-terms inducing incompatible constraints, and
thus not normally typable. The main result of this section is theorem (6.2.1), which shows that
a λ-term inducing incompatible constraints cannot be normalizing, providing a negative answer
to this question.

A consequence of the results presented in this section is the following: if we look at the col-
lapsed first-order system, two compatible constraints (φ, k,A), (φ, h,B) correspond to a splitting
pair. Now, if A∩B = ∅, from lemma (6.2.1) we know that, if S is a ground substitution satisfying
sc(M), the two “paths” k, h in φS must be owned by distinct type variables. This remark justi-
fies, from a collapsed viewpoint, the introduction of the terms tσc1 ,σc2 in the previous paragraph
and the appeal to the system Eθ obtained by splitting. This technique of splitting compatible
constraints will be used in subsection (6.3.2).

162 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

6.2.3 Incompatible constraints and untypable terms
In the last subsection we considered an example of an incompatible λ-term, the combinator
(δ)δ, which is not normalizing (nor it has a head normal form). In this subsection we prove a
first result on typability which shows in full generality that an incompatible λ-term cannot be
normalizing. Remark that, as the λ-term λz.(z)(δ)δ shows, an incompatible λ-term can be not
normalizing though having a head normal form.

If M forces two incompatible constraints (φ, k,A), (φ, k,B), then M must contain a redex.
Our aim is to show that such a redex has an infinite reduction path.

Theorem 6.2.1. If M forces two incompatible constraints (φ, k,A), (φ, k,B), then M is not
normalizable.

Proof. We proceed by induction on the sum p+ q of the lengths of the constraint paths leading
to the two incompatible variable constraints (φ, k,A) and (φ, k,B). More precisely, we first show
that in the case p + q = 2 (since variable constraints have length at least 1) the term is not
normalizable and then we show by induction on p+ q that by reducing M all variable paths can
be reduced to length 1.

If p+ q = 2, then sc(M) must contain a head redex pair

φFa1 ...Fak = Ψ
Fc1
1 → · · · → Ψ

Fck−1

k−1 → φF
′
a1 → Ψ

Fck+1

k+1 (6.2.23)

ΨFb1 ...Fbk = Ψ
Fd1
1 → · · · → Ψ

Fdk−1

k−1 → ΨF ′b1 → Ψ
Fdk+1

k+1 (6.2.24)

where Ψ = Φ1 → ∀b2(Φ2 → · · · → ∀bk−1(Φk−1 → ∀bk(∀a1φ→ ∀bk+1Φk+1)) . . .).
From proposition (6.1.4) it follows then that M reduces to a term containing a redex M ′ of

the form
(λx.P)λy1.λyk.Q (6.2.25)

where P contains a subterm of the form

(x)P1 . . . Pk−1x (6.2.26)

and Q contains a subterm of the form

(yk)Q1 . . . Qk−1yk (6.2.27)

one can easily verify then that the head reduction of M ′ does not terminate.
If p + q = n + 3, then one of the two constraints, say (φ, k,A), is either derived from a

constraint (ψ, k,A′) through an equation of the form

ΨFa1 ...Fak = Φ
Fb1
1 → · · · → Φ

Fbk−1

k−1 → ΦFbk → Φ
Fbk+1

k+1 (6.2.28)

(where φ occurs in Φ at address k and ψ occurs in Ψ at address k), either it is derived from a
constraint (Ψk, k, A

′) through an equation of the form

ΦFa1 ...Fak = Ψ
Fb1
1 → · · · → Ψ

Fbk−1

k−1 → Ψ
Fbk
k → Ψ

Fbk+1

k+1 (6.2.29)

(where φ occurs in Φ at address k and ψ occurs in Ψ at address k). Here we just consider the
first case. The second one can be proved in a similar way.

Now, either Ψ is ψ, either it is of the form

∀a1(Ψ1 → · · · → ∀ak(∀bkψ → Ψk+1) . . .) (6.2.30)

6.2. VICIOUS CIRCLES AND TYPING 163

Suppose Ψ = ψ. By induction hypothesis, M reduces to a term M ′ such that sc(M ′) still
contains equation (6.2.28) and where (φ, k,B) and (ψ, k,A′) are 1-forced. This means that
sc(M ′) contains the equations

φ
Fa′1

...Fa′
k = Θ

Fb′1
1 → · · · → Θ

Fb′
k−1

k−1 → φ
F ′
a′1 → Θ

Fb′
k+1

k+1 (6.2.31)

(Ψ∗)Fc1 ...Fck = Ξ
Fd1
1 → · · · → Ξ

Fdk−1

k−1 → (Ψ∗)F
′
c1 → Ξ

Fdk+1

k+1 (6.2.32)

where φ occurs in Φ at path k and ψ occurs in Ψ∗ at path k. By proposition (6.1.4) M ′ reduces
then to a term M ′′ containing a redex (λx.P)λz1.λzk.Q where x has scheme ∀c1Ψ∗, P con-
tains a subterm of the form (x)P1 . . . Pk−1x, Q contains a subterm of the form (zk)Q1 . . . Qk−1R,
where R has scheme ∀e1Φ and is of the form λy1.λyk.R

′ and R′ contains a subterm of the
form (yk)R1 . . . Rk−1yk.

M ′′ has thus the form

(λx.
(
. . . (x)P1 . . . Pk−1x . . .

)
)λz1.λzk.

(
. . . (zk)Q1 . . . Qk−1(λy1.λyk.

(
. . . (yk)R1 . . . Rk−1yk . . .

)
. . .
)

(6.2.33)
and it reduces in two steps to a term containing

(λy1.λyk.
(
. . . (yk)R′1 . . . R

′
k−1yk . . .

)
)Q′1 . . . Q

′
k−1(λy1.λyk.

(
. . . (yk)R′1 . . . R

′
k−1yk . . .

)
)

(6.2.34)
which is not normalizable and moreover 1-forces the constraint (φ, k,A). Moreover, since the only
reduced redexes involved equations (6.2.28) and (6.2.36), all other equations are left unchanged.

Suppose now the ψ occurs in Ψ at path k, i.e. that Ψ is ∀a1(Ψ1 → · · · → ∀ak(∀bkψ →
Ψk+1) . . .). Again, by induction hypothesis, M reduces to a term M ′ such that sc(M ′) still
contains equation (6.2.28) and where (φ, k,B) and (ψ, k,A′) are 1-forced. This means that
sc(M ′) contains equations

φ
Fa′1

...Fa′
k = Θ

Fb′1
1 → · · · → Θ

Fb′
k−1

k−1 → φ
F ′
a′1 → Θ

Fb′
k+1

k+1 (6.2.35)

ψFc1 ...Fck = Ξ
Fd1
1 → · · · → Ξ

Fdk−1

k−1 → ψF
′
c1 → Ξ

Fdk+1

k+1 (6.2.36)

where, again, φ occurs in Φ at path k. By proposition (6.1.4) M ′ reduces then to a term
M ′′ containing a redex (λx.P)λz1.λzk.Q where x has scheme ∀a1Ψ, P contains a subterm
of the form (x)P1 . . . Pk−1R, where R has scheme ∀e1Φ, is of the form λy1.λyk.R

′ and R′

contains a subterm of the form (yk)R1 . . . Rk−1yk, and finally Q contains a subterm of the form
(zk)Q1 . . . Qk−1zk.

M ′′ has thus the form

(λx.
(
. . . (x)P1 . . . Pk−1(λy1.λyk.

(
. . . (yk)R1 . . . Rk−1yk . . .

)
) . . .

)
)λz1.λzk.

(
. . . (zk)Q1 . . . Qk−1zk . . .

)
(6.2.37)

which reduces in one step to a term containing

(λz1.λzk.
(
. . . (zk)Q1 . . . Qk−1zk . . .

)
)P1 . . . Pk−1(λy1.λyk.

(
. . . (yk)R1 . . . Rk−1yk . . .

)
)

(6.2.38)
which is not normalizable and 1-forces the constaint (φ, k,A). Again, since the only reduced
redexes involved the equation (6.2.28), all other equations are left unchanged.

164 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

Contextual typing In the derivation dscM the schemes assigned to the free variables of M are
all of the form ∀aφ, where φ is a sequence variable. We were indeed interested in the typability
problem for λ-terms, i.e. the problem of finding an arbitrary type for the terms.

In order to consider also the type checking problem, we have to consider a scheme assignment
S(x), which associates a (not necessarily linear) scheme S(x) with every free variable x of M .
Indeed, for every free variable x, of scheme ∀aφ, we must add to the system eq(M) the equations
∀aφ = S(x). Let us call this system eqS(x)(M). One can define the systems eq∗(M) and
scS(x)(M) in the same way as in the subsections (6.1.2) and (6.1.3).

The following proposition is an immediate consequence of proposition (6.1.4):

Proposition 6.2.2. Let M be a λ-term and S(x) a scheme assignment for M . Let FV (M) =
{x1, . . . , xn} and let, for all 1 ≤ i ≤ n, Mi be a λ-term faithful to S(xi). If Q is a non applied
sub term of M having scheme

Φ = ∀b1Φ1 → ∀a2(∀b2Φ2 → · · · → ∀ak(∀bkΦk → ∀ak+1φ) . . .) (6.2.39)

then Q[M1/x1, . . . ,Mn/xn], as a subterm of M [M1/x1, . . . ,Mn/xn], becomes faithful to Φ under
reduction.

Let M be a λ-term and S(x) a scheme assignment for M . Let us say that M S(x)-forces
a constraint κ if κ is obtained from scS(x)(M) by means of the clauses i. − iii. of definition
(6.2.2). M is compatible relative to S(x) if it forces no incompatible constraint. In subsection
(6.3.3), given a termM with just a free variable x, we will consider the scheme assignment which
associates S(x) = ∀a1((φ → φ) → ∀a2(φ → φ), which allows to investigate a specific case of
type-checking, i.e. whether λx.M can be given type N→ N.

6.3 A conjecture on typability

In this section we investigate, from a technical viewpoint, the following conjecture:

Conjecture 6.3.1. Compatible λ-terms are typable in System U−.

The section is organized as follows: in subsection (6.3.1), we introduce the type inference of
System U−, as a generalization of the type inference introduced for System F , and we extend
to the former system lemma (6.2.1) and the notion of head constraint. In subsection (6.3.2) we
present some partial results and some examples intended to introduce the reader to the technical
content of the conjecture. In particular we try to show why System U− seems a good candidate
for a combinatorial characterization of typability. Finally, in subsection (2.4.3), we discuss some
technical consequences which would arise from it and which constitute its main motivations.

6.3.1 Type inference in System U−

A syntax-directed type inference system for U− can be devised, similarly to System F . The
system below differs from (6.1.7) only in the definition of the relation ≤, which must take account
of the β-equivalence of propositions. Moreover, we assume expressions σ, τ, ρ to be well-typed
propositions and denote by α finite sequences of constructor variables α1, . . . , αn, where, for

6.3. A CONJECTURE ON TYPABILITY 165

1 ≤ i ≤ n, αi has a well-specified universe κi.

(var) Γ, (x : σ) ` x : τ σ ≤ τ

(→ I)

Γ, (x : σ) `M : τ

Γ ` λx.M : ∀α.σ → τ (α bindable in Γ)

(→ E)

Γ `M : σ → τ Γ ` N : σ τ ≤ ρ
Γ `MN : ∀α.ρ (α bindable in Γ)

(6.3.1)

where α denotes a finite (possibly empty) sequence of variables α1, . . . , αn (and ∀ασ stands for
∀α1 . . . ∀αnσ) and the relation σ ≤ τ is the transitive closure of the relation ≤1 defined by

∀α.σ ≤1 σ
′ ⇔ σ′ =β σ[C/α] (6.3.2)

where σ and σ′ are well-typed propositions, α has universe κ and C is a well-typed constructor
of universe κ.

A ground substitution S for System U− is defined similarly to the case of System F :

• aS is a finite sequence (possibly empty) of constructor variables (of a certain universe) and,
if a 6= a′, thene aS ∩ a′S = ∅;

• FSa is substitution (i.e. a function which maps a constructor variable of universe κ into a
well-typed constructor of universe κ) of domain aS . This induces a map θt from substitution
terms to substitutions defined as follows:

– αθSa = α, for α ∈ aS ;
– αθSFv(t1,...,tn) := αFSv θ

S
tn . . . θ

S
t1 , for α ∈ a

S .

• ΦS is a well-typed proposition and one has(
φ(t1, . . . , tn)

)S
= φSθStn . . . θ

S
t1 (6.3.3)

(Φ→ Ψ)S = ΦS → ΨS (6.3.4)

(∀a.Φ)S = ∀aS .ΦS (6.3.5)

where ∀aS .σ is ∀α1 . . . ∀αnσ, where aS = {α1, . . . , αn} (remark that aS can be empty).

Since the system (6.3.1) is very similar to (6.1.7), the proposition (6.1.2) can be extended to
System U−:

Proposition 6.3.1 (principal typing derivations in System U−). Let M be a λ-term, then the
following two hold:

i. if a ground substitution S satisfies eq∗(M) and ct(M), then dSM is a typing derivation in U−
of M in F ;

ii. if d is a typing derivation in U− ofM in F , then there exists a ground substitution s satisfying
eq∗(M) and ct(M) and such that d = dSM .

Proof. The two parts are straightforwardly proved by induction on the derivation dSM .

166 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

Compatibility Lemma (6.2.1) can be easily adapted to System U−, by relying on the fact that
all propositions in U− have a (unique) normal form. Let us define addresses in a proposition:
for each proposition σ and positive integer k ≥ 1 the address Πk(σ) is defined by induction on
the normal form σ′ of σ as follows

• if σ′ ≡ (α)σ1 . . . σn, then Π1(σ) = α and Πk+1(σ) =↑;

• if σ′ ≡ (σ1)σ2, then Π1(σ) =↑ and Πk+1(α) =↑;

• if σ′ ≡ τ → ρ, then Π1(σ) = τ and Πk+1(σ) = Πk(ρ);

• if σ′ ≡ ∀ατ then Πk(σ) = Πk(τ).

lr(σ), H(σ) and Hk(σ) are defined (on the normal form σ′ of σ) as in subsection (6.2.1).

Lemma 6.3.1. Let σ be a proposition which satisfies an equation of the form

σθ = Πk(σ)θ′ (6.3.6)

for certain substitutions θ, θ′ and a positive integer k. Then Hk−1(σ) ∈ dom(θ′).

Proof. The argument proceeds exactly like for lemma (6.2.1).

Lemma (6.2.2), being a consequence of lemma (6.2.1), can be immediately transported to
System U−. Hence one obtains:

Proposition 6.3.2. If M is incompatible, then it is not typable in U−.

6.3.2 Around the conjecture
In this subsection we present some partial results and some examples which will help the reader
understand the content of conjecture (6.3.1) as well as some technical problems which must be
solved in order to prove it.

The discussion is divided in three parts:

1. the simplification of the system sc(M) by means of first-order unification can produce
recursive equations of the form

σθ = Πk1(Πk2(. . . (Πkn(σ)θn) . . .)θ2)θ1 (6.3.7)

i.e. where the address associated with the vicious circle is given by a finite sequence of
the form (k1, . . . , kn), where k1, . . . , kn are positive non zero integers. Hence, we introduce
a generalized notion of constraint (φ, s,A), where s is a finite sequence of integers, to be
interpreted as the infinite periodic path s ∗ s ∗ s ∗ Theorem (6.3.3) assures that one
can always find a set of generalized constraints which are pairwise compatible;

2. if two independent constraints (φ, k,A), (φ, h,B), i.e. such that A∩B = ∅, are forced byM ,
then, for any ground substitution satisfying sc(M), one must have Hk−1(φS) 6= Hh−1(φS),
hence φS must contain at least max{k, h} distinct non trivial addresses. We discuss a
“splitting” operation which performs this decomposition at the level of schemes, in order
to reduce sc(M) to a “completely split” system sc(M), in which every scheme occurs
in constraints whose sets of sequence variables are pairwise non disjoint. This “splitting”
algorithm should implement the “splitting” of cycles that was sketched in subsection (6.2.1)
in the case of first-order unification.

3. we investigate the definition of a ground substitution S satisfying a “completely split”
system. This allows to indicate the role of impredicative universes to provide a uniform
solution to recursive equations.

6.3. A CONJECTURE ON TYPABILITY 167

1. Generalized constraints In order to analyze the possible solutions to the system sc(M),
we must consider a generalized notion of constraint which naturally arises from the analysis of
scheme equation systems. This notion is an immediate consequence of the lemma below, which
generalizes lemma (6.3.1).

First we have to extend the notion of address: now an address s is a finite sequence (p0, . . . , pn−1),
with n ≥ 1, of positive non zero integers; given a proposition σ, the head Hs(σ) of σ at address
s is defined as follows:

Hk∗s(σ) =

{
Hs∗k(Πk(σ)) if k ≤ lr(σ)

H(σ) otherwise5
(6.3.8)

Intuitively, Hs(σ) looks for the variable which owns the infinite periodic path

p0, . . . , pn−1, p0, . . . , pn−1, . . . (6.3.9)

Remark that, if p0 = p1 = · · · = pn−1 = k, then Hs(σ) is just Hk(σ).
We can now state the lemma which leads to the notion of generalized head constraint.

Lemma 6.3.2. Let σ0, . . . , σn−1 be propositions satisfying a set of equations of the form

σ1θ0 = Πkn−1(σ0)θ′0

σ2θ1 = Πk0(σ1)θ′1
...

σn−1θn−2 = Πkn−3
(σn−2)θ′n−2

σ0θn−1 = Πkn−2
(σn−1)θ′n−1

(6.3.10)

for certain substitutions θ0, θ
′
0, . . . , θn−1, θ

′
n−1 and integers k0, . . . , kn−1. Then, one of the fol-

lowing holds:

H(kn−1,k0,...,kn−2)(Πkn−1
(σ0)) ∈ dom(θ′0) ∪ · · · ∪ dom(θ′n−1)

H(k0,...,kn−1)(Πk0(σ1)) ∈ dom(θ′0) ∪ · · · ∪ dom(θ′n−1)

...

H(kn−2,kn−1,k0,...,kn−3)(Πkn−2
(σn−1)) ∈ dom(θ′0) ∪ · · · ∪ dom(θ′n−1)

(6.3.11)

Proof. Let us suppose that all the conditions (6.3.11) are false. We define a notion of s−depth
lrs(σ), for σ a type and s a finite (non empty) sequence of positive non zero integers, as a “cyclic”
generalization of the notion of k-depth:

lrk∗s(σ) :=

{
lrs∗k(Πk+1(σ)) + k + 1 if k ≤ lr(σ)

lr(σ) otherwise
(6.3.12)

Clearly, if Hs(σ) /∈ dom(θ), then lrs(σθ) = lrs(σ). By using the remark that lr(k−1)∗s(σ) =
lrs∗(k−1)(Πk+1(σ)) + k we get the following list of disequations

lr(kn−1,k0,...,kn−2)(σ0) > lr(k0,...,kn−1)(Πkn−1
(σ0)) = lr(k0,...,kn−1)(Πkn−1

(σ0)θ′0) =

lr(k0,...,kn−1)(σ1θ1) ≥ lr(k0,...,kn−1)(σ1) > lr(k1,...,kn−1,k0)(Πk0(σ1)) = lr(k1,...,kn−1,k0)(Πk0(σ1)θ′1) =

lr(k1,...,kn−1,k0)(σ2θ2) ≥ lr(k1,...,kn−1,k0)(σ2) > . . .

· · · ≥ lr(kn−2,kn−1,...,kn−3)(σn−1) > lr(kn−1,k0,...,kn−2)(Πkn−2
(σn−1)) = lr(kn−1,k0,...,kn−2)(Πkn−2

(σn−1)θ′n−1) =

lr(kn−1,k0,...,kn−2)(σ0θ0) ≥ lr(kn−1,k0,...,kn−2)(σ0)

(6.3.13)

168 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

which is absurd.

Definition 6.3.1. A generalized head constraint is a triple (φ, s,A), where φ is a scheme vari-
able, s is a finite non empty sequence of positive non zero integers and A is a finite set of sequence
variables.

A usual constraint (φ, k,A) can be considered as a special case of a generalized constraint,
where s = (k).

We can now generalize the definition of (6.2.1) for generalized constraints: remark that,
due to the fact that lemma (6.3.2) proves a disjunction of conditions, a term does not force a
constraint, but rather a finite set of constraints.

Definition 6.3.2 (forcing generalized constraints). A set K of generalized constraints is said a
constraint set if its elements are all of the form (φ, (pγ(0), . . . , pγ(n−1)), A) for a fixed sequence
(p0, . . . , pn−1), a fixed set A of sequence variables and γ a cyclic permutation of n elements.

Let M be a λ-term and K a constraint set. M forces K if one of the following holds:

i. K = {(φ0, s0, A}), . . . , (φn−1, sn−1, A)}, where A = {a1
0, . . . , a

hn−1

n−1 } and sc(M) contains the
following non recursive equations:

Φ
F
a10
...F

a
h0
0

0 = Ψ1
0 → · · · → Ψp1−1

0 → Φ
F ′
a11

1 → Ψp1+1
0

...

Φ
F
a1
j
...F

a
hj
j

j = Ψ1
j → · · · → Ψ

pj−1
j → Φ

F ′
a1
j+1

j+1 → Ψ
pj+1
j

...

Φ
F
a1
n−1

...F
a
hn−1
n−1

n−1 = Ψ1
n−1 → · · · → Ψpn−1

n−1 → Φ
F ′
a11

0 → Ψpn+1
n−1

(6.3.14)

where, for 0 ≤ i ≤ n − 1, either Φi is φi and si = (pi, pγi(0), . . . , pγi(n−1)) (where γi(x) =
x+ i mod n), either Φi is of the form

∀b1(∀c1Θ1 → · · · → ∀cpi(∀dpiφi → ∀dpi+1Θpi+1) . . .) (6.3.15)

and si = (pγi(0), . . . , pγi(n−1), pi).

ii. the constraints in K are of the form (φj , sj , A) for 0 ≤ j ≤ n−1, where s0 = s′ ∗k, and there
exist a scheme variable ψ and simple schemes Φ,Ψ,Φ1, . . . ,Φk−1,Φk+1 such that sc(M)
contains the equation

ΨFa1 ...Fak = Φ
Fb1
1 → · · · → Φ

Fbk−1

k−1 → ΦFbk → Φ
Fbk+1

k+1 (6.3.16)

where φ1 occurs in Φ at address k, ψ occurs in Ψ at address k and and one of the two
holds:

• for all constraint (φj , sj , A) ∈ K, A = {bk} ∪ C ′ ∪ D′ and M forces the constraint
set made of (ψ, k ∗ s′, C ∪ D) and (φj , sj , C ∪ D), for 1 ≤ j ≤ n − 1, where for any
sequence variable c ∈ C, c B bk and for any sequence variable d ∈ D, bk B d and the
sets C ′, D′ are defined as follows: C ′ ⊆ C contains the c ∈ C such that c ∈ sBφ ; D′
contains, for any d ∈ D, the sequence variable d′, if it exists, which occurs in Ψ at
the same position as d in Φ;

6.3. A CONJECTURE ON TYPABILITY 169

iii. the constraints in K are (ψ, s′ ∗k,A) (where s0 = k∗s′) and the (φj , sj , A), for 1 ≤ j ≤ n−1
and there exist simple schemes Φ1, . . . ,Φk−1,Φk+1 such that sc(M) contains the equation

ΨFa1 ...Fak = Φ
Fb1
1 → · · · → Φ

Fbk−1

k−1 → ΦFw → Φ
Fbk+1

k+1 (6.3.17)

and one of the two holds:

• for all constraint (φj , sj , A) ∈ K, A = {bk} ∪C ′ ∪D′ and M forces the constraint set
made of the (φj , sj , C ∪D), for 0 ≤ j ≤ n− 1, where for any sequence variable c ∈ C,
cB bk and for any sequence variable d ∈ D, bk B d and the sets C ′, D′ are defined as
follows: C ′ ⊆ C contains the c ∈ C such that c ∈ sBψ ; D′ contains, for any d ∈ D, the
sequence variable d′, if it exists, which occurs in Φ at the same position as d in Ψ;

In order to generalize the notion of compatibility, we must take into account the infinite
periodic paths which are coded by addresses: the path π(s) of an address s = (p0, . . . , pn−1)
is the infinite periodic sequence p0, . . . , pn−1, p0, . . . , pn−1, Two constraints (φ, s,A) and
(ψ, s′, A′) are incompatible if φ = ψ, π(s) = π(s′) and A ∩A′ = ∅.

Hence, for two incompatible constraints (φ, s,A), (φ, s′, A′), two possibilities arise: either one
between s and s′, say s, is of the form s′ ∗ s′ ∗ · · · ∗ s′ (where ∗ here indicates concatenation of
sequences), either s and s′ are of the form (k, . . . , k︸ ︷︷ ︸

n times

), (k, . . . , k︸ ︷︷ ︸
m times

), for some n,m ∈ N.

Let us call a generalized constraint strict if it is of the form (φ, s,A), where s has length ≥ 2.
We will now prove that a term M never forces incompatible strict generalized constraints.

First we show two combinatorial lemmas, that will be used in the proof of proposition (6.3.3):

Lemma 6.3.3. Let m be a n× p matrix, where n, p ≥ 2 and suppose b is a coloring of the slots
of m (i.e. a map b : n× p→ S, where S is a set of m ≥ n colors) such that:

1. slots in the same column have different colors, i.e. b(i, j) 6= b(i, j′), for all 1 ≤ i ≤ n and
1 ≤ j, j′ ≤ p;

2. each color occurs at most twice, i.e., for all x ∈ S,](b−1(x)) ≤ 2.

Then, there exists an injective function f : n → S such that, for all 1 ≤ i ≤ n there exists
1 ≤ j ≤ p such that f(i) = b(i, j).

Proof. We prove the result by induction on n. If n = 2 the result is obvious. If n = n′ + 3,
then, by induction hypothesis there exists an injective function f : n′ + 2→ S such that, for all
1 ≤ i ≤ n+ 2 there exists a 1 ≤ j ≤ p such that f(i) = b(i, j). Let, for 1 ≤ i ≤ n, Ri be the set
Ri := {b(i, j)|1 ≤ j ≤ p}. Remark that, by the hypothesis 1., one has]Ri ≥ 2, for 1 ≤ i ≤ n.
If Rn is not contained in Im(f), then we can choose a color c0 in Rn − Im(f) and define an
injective function f ′ : n→ S as f(i) if i < n and c0 otherwise.

Suppose then Rn ⊆ Im(f) and choose a color c0 ∈ Rn; as c0 occurs at most twice, there
exists exactly a k1 < n such that f(k1) = c0. If Rk1 (Im(f) − {f(k1)}, then we can pick a
c1 ∈ Rk1 − Im(f)− {c0} and define an injective function f ′ : n→ S as f(i) if i < n and i 6= k1,
as c1 if i = k1 and c0 if i = n. Otherwise, we pick c1 ∈ Rk1 − {c0} and there exists exactly a
k2 < n such that k2 6= k1 and f(k2) = c1.

If the procedure does not produce an injective function f ′ : n → S after 1 < q < n − 1
iterations, we find a color cq−1 ∈ Rkq−1

and a kq < n such that f(kq) = cq−1. If Rkq (
Im(f) − {f(k1), . . . , f(kq−1)}, then we can pick a c1 ∈ Rkq − Im(f) − {c0, . . . , cq−1} (which

170 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

is non empty as all the occurrences of the c0, . . . , cq−1 are in the sets Rn, Rk1 , . . . , Rkq−1 and
because]Rk1 ≥ 2) and define an injective function f ′ : n→ S as follows

f ′(i) =


c0 if i = n

cr if i = kr (1 ≤ r ≤ q)
f(i) otherwise

(6.3.18)

In the worst case, i.e., at the n− 1-th iteration, we find a color cn−2 ∈ Rkn−2
and a kn−1 < n

such that f(kn−1) = cn−2. Now one must have Rkn (Im(f)−{f(k1), . . . , f(kn−1)} = Im(f)−
Im(f) = ∅, hence we can pick a cn−1 ∈ Rkn −{c0, . . . , cn−2} and define f ′ : n→ S by f ′(i) = ki,
if i < n and f ′(n) = c0.

Lemma 6.3.4. Let S be a finite set and ∼ be a symmetric non reflexive relation over S. Then
there exists a partition P1, . . . , Pn of S such that

1. for all 1 ≤ i ≤ n and for all x, y ∈ Pi, x ∼ y;

2. for all 1 ≤ i 6= j ≤ n and for all x ∈ Pi, y ∈ Pj, x � y.

Proof. Let cl(S) ⊆ ℘(S) be the set of cliques of S, i.e. the set of all subsets R ⊆ S such that,
for all x, y ∈ R, x ∼ y. Set inclusion defines an order relation over the finite set cl(S). We define
the partition P1, . . . , Pn recursively as follows:

1. let S0 := S and P0 be a maximal element of cl(S0);

2. let Sk+1 := Sk − Pk and Pk+1 be a maximal element of cl(Sk+1).

Property 1. is immediately verified by the Pi as they are cliques. For property 2. we argue
as follows: for all 1 < k ≤ n, let 1 ≤ i < k, k ≤ j ≤ n and x ∈ Pi, y ∈ Pj ; since Pi is maximal in
cl(Si) and Pi ∩ Pj = ∅, it follows that x � y.

Proposition 6.3.3. Let (Ki)1≤i≤k enumerate the constraint sets forced by a λ-term M and
suppose that M forces no incompatible (non generalized) constraint. Then there exists a choice
function f such that, for all 1 ≤ i ≤ k, f(i) ∈ Ki and the image of f is a set of compatible
constraints.

Proof. Let κ and κ′ be two incompatible constraints; if one of the two is not strict, then the
incompatibility will be called simple; otherwise, it will be called non simple.

First we show that there is no simple incompatibility: suppose κ and κ’ are incompatible,
where κ = (Φ, (k), A) and κ′ = (Φ, (k, . . . , k), B), with A∩B = ∅); if κ′ is 1-forced, let Φ1, . . . ,Φn
(where n ≥ 1) be the schemes occurring in the left in the equations giving rise to the constraint,
where Φ = Φ1. We claim that for all 2 ≤ p ≤ n no constraint of the form (Φp, (k), C), with
A ∩ C = ∅ is forced by M : if for some 1 ≤ p ≤ n, M forces the constraint (Φp, (k), C),
then, by transporting the constraint along the non recursive equations we obtain that M forces
(Φ1, (k), C ∪B′), where B′ ⊆ B, contradicting the (non generalized) compatibility of the system.

The case where κ′ is n−forced, for n ≥ 1, is treated in a similar way, by considering the fact
that the constraint (Φp, (k), C) can be transported (in the sense of definition (6.2.1)) through the
equations through which κ’ is transported, in the sense of definition (6.3.2) (since the address is
constant).

6.3. A CONJECTURE ON TYPABILITY 171

It remains to show the existence of a choice function over constraint sets. Two generalized
constraints (Φ, s, A), (Ψ, s′, A′) are independent when A ∩ A′ = ∅. Two constraint sets are
independent where their associated sets of sequence variables are disjoint.

Since independence between constraint sets is a symmetric non reflexive relation, we can
apply lemma (6.3.4) and find a partition P1, . . . , Pn of the constraint sets such that, for all
1 ≤ i 6= j ≤ n, the constraint sets in Pi are pairwise independent and two arbitrary constraint
sets, respectively in Pi and Pj , are not independent.

It suffices then to show how to define a choice function over a set of pairwise independent
constraint sets; indeed a choice function f over all constraint sets can be obtained by gluing
together choice functions f1, . . . , fn defined over the classes of the partition P1, . . . , Pn: if 1 ≤
i 6= j ≤ n, fi(p1) = (φ, s,A) and fj(p2) = (φ′, s′, A′), one must have A ∩A′ 6= ∅, so the image of
f is a set of compatible constraints.

Let then P be a set of pairwise independent constraint sets. We can assume w.l.o.g. n :=]P ≥
2 (the case]P = 1 is trivial); let p ≥ 2 be the minimum dimension of the systems of equations
associated with the constraint sets in P . Let S be the set of the scheme variables which occur
in the lefthand side of the equations in all the systems associated with the constraint sets in P
and b : n × p → S a function which associates, with 1 ≤ i ≤ n and 1 ≤ j ≤ p, the scheme
variable occurring at the j-th equation of the i-th system (we assume given a linear ordering of
the systems and, for each system, a linear ordering of its equations).

The function b(i, j) satisfies the hypotheses of lemma (6.3.3): property 1. is immediate,
whereas property 2. follows from remark (6.1.3). Hence, there exists an injective choice function
f : n→ S.

From now on, we will say that a system of equations forces a set of (compatible) generalized
constraints, rather than a set of constraint sets. That is, we will tacitly suppose that a choice
function from constraints sets to (compatible) generalized constraints is given.

2. (I) Simplifying sc(M) by first-order unification We define a variant of the first-order
unification algorithm (section (6.1.1)), in order to decompose non recursive equations in sc(M).

Let us define the notion of semi-congruence between substitution schemes inductively as
follows:

1. any two atomic substitution schemes are semi-congruent;

2. if φ is a scheme variable and Φ a substitution scheme in which φ occurs, then, for every
a1, . . . , ak, φFa1 ...Fak and Φ are semi-congruent;

3. Φ→ Ψ and Φ′ → Ψ′ are semi-congruent if Φ and Φ′ are semi-congruent and Ψ and Ψ′ are
semi-congruent;

4. ∀aΦ and ∀bΨ are semi-congruent if Φ and Ψ are semi-congruent.

The notion of congruence is obtained by eliminating the clause 2. of the definition of semi-
congruence.

An equation ΦFa = Ψ
Fb1
1 → · · · → Ψ

Fbk
k , where ΦFa and Ψ

Fb1
1 → · · · → Ψ

Fbk
k are semi-

congruent substitution schemes, induces an obvious map f from the subschemes of Φ to the
subschemes of Ψ and a map g from the sequence variables occurring (free or bound) in Φ to the
sequence variables occurring (free or bound) in Ψ. If Φ is of the form

Φ = ∀b1Φ1 → ∀a2(∀b2Φ2 → · · · → ∀ak(∀bkΦk → ∀ak+1φk+1) . . .) (6.3.19)

172 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

and Ψ of the form

Ψ = ∀d1Ψ1 → ∀c2(∀d2Ψ2 → · · · → ∀ck(∀dkΨk → ∀ck+1ψk+1) . . .) (6.3.20)

then, for 2 ≤ i ≤ k + 1, g(ai) = ci and, for 1 ≤ i ≤ k, g(bi) = di. The map g is then recursively
extended to the sequence variables occurring in the Φi, for 1 ≤ i ≤ k and in φi.

We define then a variant of the first-order unification algorithm sketched in section (6.1.1),
by which we will obtain a system UNIF (sc(M)) containing equations between semi-congruent
substitution schemes.

The variant of unification is obtained by taking, as inference rules, the transformations below
over a set e of equations over substitution schemes:

decomposition if e contains an equation of the form (Φ → Ψ)Fa = Φ′Fb1 → Ψ′Fb2 , then we
replace this equation by the two equations ΦFa = Φ′Fb1 and ΨFa = Ψ′Fb2 ;

variable elimination if e contains an equation of the form φFa1 ...Fak = Φ, where Φ = Ψ
Fb1
1 →

· · · → Ψ
Fbk
k , then two cases arise: if φ does not occur in Φ, then eliminate the equation

and replace, in the remaining equations in sc(M), every occurrence of the scheme variable
φ with the substitution scheme Φ (with amount at replacing atomic substitution schemes
φFb1 ...Fbk by ΦFb1 ...Fbk).

If φ occurs in Φ, leave the system unchanged.

The main difference between the algorithm above and the usual first-order unification algo-
rithm is that the former does not take the “occur-check” as a case of failure. It simply leaves
recursive equations of the form φFa1 ...Fak = Φ

Fb1
1 → · · · → Φ

Fbp
p → φF

′
a1 → Φ

Fbp+1

p+1 unchanged.
In a sense, this algorithm performs all the first-order operations that can be done.

Let us call a system e irreducible if no one of the rules above can be applied to e. If an
equation Φ = Ψ belongs to an irreducible system, then Φ and Ψ must be semi-congruent.

It is clear that the transformations above preserve solutions, in the sense that, once e is
transformed in e′ by means of one of the two rules, then a solution to e′ is still a solution
to e. Moreover, the termination of all transformation sequences is a direct consequence of the
termination of first-order unification. As in that case, distinct irreducible systems can be obtained
as the result of distinct transformation sequences: for instance, for a system containing the two
equations

φFa = ψFb → χ (6.3.21)

ψFc = φFd → χ′ (6.3.22)

the algorithm produces two distinct solutions, depending on whether it applies variable elimina-
tion to the first or to the second equation.

Remark 6.3.1. The system UNIF (sc(M)) induces a new derivation dUNIFM and a new tree
T (M)UNIF . The tree T (M) is a subtree of T (M)UNIF : the latter is indeed obtained by replacing
some leaves of T (M) by trees of the form T (Φ).

Finally, the result of the previous paragraph (proposition (6.3.3)) assures that the transfor-
mations above preserve compatibility: from a set of equations of the form

6.3. A CONJECTURE ON TYPABILITY 173

σ1θ0 = Πkn−1(σ0)θ′0

σ2θ1 = Πk0(σ1)θ′1
...

σn−1θn−2 = Πkn−3
(σn−2)θ′n−2

σ0θn−1 = Πkn−2
(σn−1)θ′n−1

(6.3.23)

as in the case of lemma (6.3.2), several applications of variable elimination and decomposition
allow indeed to derive, non deterministically, recursive equations of the form

σiθi = Πkγi(0)
(Πkγi(1)

(. . . (Πkγi(n−1)
(σi)θ

′
i) . . .)θ

′
(γi(1)−1 mod n))θ

′
(γi(0)+1 mod n) (6.3.24)

where, for 0 ≤ i ≤ n − 1, γi is the cyclic permutation over n elements given by γi(x) = x + i
mod n.

Remark that the choice function f of proposition (6.3.3) univocally determines one among
the several irreducible systems produced by the UNIF algorithm. Indeed, in any case in which
the algorithm can choose (i.e. when a constraint set like (6.3.23) occurs) the choice function in
a sense “chooses for him”.

2. (II) Decomposing schemes along compatible constraints The second transformation
we describe is based on the remark that, if a scheme variable φ occurs in k compatible constraints,
then the distinct addresses in the constraint must correspond to distinct subtypes of φS ; hence
we can replace, in the scheme system, the variable φ by a more complex scheme Φ where the
distinct addresses correspond to distinct subschemes of Φ, without altering solutions.

Given an address s and a scheme variable φ, we define the linear scheme φs, in which the
address s corresponds to a subscheme of φs:

φ(k) := ∀a1(∀b1φ1 → ∀a2(∀b2φ2 → · · · → ∀ak−1(∀bk−1φk−1 → ∀ak(φk))) . . .)

φk∗s′ := ∀a1(∀b1φ1 → ∀a2(∀b2φ2 → · · · → ∀ak−1(∀bk−1φk−1 → ∀ak(φs′ → ∀ak+1φk+1)) . . .)

(6.3.25)

where, at any stage, the a, a1, . . . , ak+1, b1, bk+1 and φ1, . . . , φk+1 denote, respectively, fresh se-
quence variables and fresh scheme variables.

Given n distinct addresses s1, . . . , sn, the scheme φs1,...,sn can be defined as a most general
unifier of φs1 , . . . , φsn (which is always defined and linear).

Given a scheme variable φ, let add(φ) be the set of all the addresses s1, s2 which occur in two
constraints (φ, s1, A), (φ, s2, B) ∈ κφ, with A ∩B = ∅.

Let then, for a system E, SPLIT (E) be the system obtained by replacing each occurrence of
a scheme variable φ by the scheme φs1,...,sn , if add(φ) = {s1, . . . , sn} is non empty. Remark that,
if two distinct addresses s1, s2 occur in constraints (φ, s1, A), (φ, s2, B) ∈ κφ, with A∩B 6= ∅, we
do not split φ on those addresses.

This splitting operation corresponds to the the transformation defined on splitting pairs
(subsection (6.2.1)) for first-order unification. In particular, all properties of that transformation
can be transported to the splitting operation just defined.

The constraints forced by SPLIT (E) can be easily defined: if (φ, k ∗ s,A) (resp. (φ, (k), A))
is forced by E, then (φk, s ∗ k,A) (resp. (φk, (k), A)) is forced by SPLIT (E); if ψ 6= φ, then
(ψ, s,A) is forced by E if and only if (ψ, s,A) is forced by SPLIT (E) (we use here the remark

174 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

that the recursive equations in SPLIT (E) are in bijection with those in UNIF (M), which is a
consequence of the remarks on splitting in subsection (6.2.1)).

Hence both the UNIF and the SPLIT transformation preserve compatibility. Moreover, as
a consequence of the termination of the alternate iteration of unification and splitting for first-
order unification, we get that, after a finite number of alternate iteration of UNIF and SPLIT ,
we end up with a (non unique) system sc(M) with the following properties:

• an equation in sc(M) is either a recursive one, either an equation between atomic substi-
tution schemes;

• for any scheme variable φ and for any two constraints (φ, s,A), (φ, s′, B) forced by sc(M),
A ∩B 6= ∅.

4. Typing a compatible term in System U− We investigate some of the aspects involved
in the typing of a compatible λ-term in System U−; in particular we highlight the necessity of
an impredicative universe in order to solve recursive equations in a uniform and general way.
In the construction sketched below we will make an essential use of the impredicative universe
U := ∀XX .

We will assume given a compatible λ-term M along with a fully reduced system sc(M).
Moreover we will assume that a choice function c is given, which assigns, with every set A of
sequence variables occurring in a constraint (φ, s,A) forced by M , a sequence variable a ∈ A
in such a way that, if M forces two constraints (φ, s,A), (φ, s,B), then c(A) = c(B) ∈ A ∩ B.
Given such a function c, we can replace every constraint (φ, s,A) by a singlet constraint, i.e. a
constraint of the form (φ, s, {c(A)}). Remark that the existence of this choice function was not
shown in the previous paragraphs.

Let H be the number of scheme variables occurring in sc(M). With each scheme variable φ
and each sequence variable a we associate a constructor variable αφa of universe U . Moreover,
for every sequence variable a, we denote by αa the sequence of the αφa , for an arbitrarily chosen
ordering of the set of scheme variables.

For all atomic scheme φ, the proposition φS is defined as follows: let sBφ = (a1, . . . , an) and
κφ be the set of all constraints (forced by sc(M)) of the form (φ, k, {a}).

• if κφ is empty, then φS is the proposition below

∀αan
(
αφan

)
(6.3.26)

which is well-typed, since αφan belongs to the universe prop.

• if κφ contains the (unique) constraint (φ, k, {b}) (remark that one must have b = ai, for a
certain 1 ≤ i ≤ n), then

∀αan
(
(αφai)αai+1

. . . αan
)

(6.3.27)

which is well-typed since αφai belongs to the universe U → · · · → U︸ ︷︷ ︸
(n−i)×H

→ prop.

The propositions ΦS , for every simple substitution scheme Φ, are defined inductively by

(∀aΦ→ Ψ)S := ∀αa(ΦS → ΨS) (6.3.28)

1. for any sequence variable a, we put aS := {αφa |φ scheme variable};

6.3. A CONJECTURE ON TYPABILITY 175

2. suppose sc(M) contains an equation of the form

ΦFc1 ...Fck = Ψ
Fd1
1 → · · · → Ψ

Fdk
k → ψ (6.3.29)

The substitutions θSFc1+l , for 1 ≤ l ≤ k−1 will be identity substitutions. We need to define

the substitutions θSFc1 , θ
S
Fd1

, . . . , θSFdk
. If the equation (6.3.29) is not recursive, then the two

equated schemes are semi-congruent and we can decompose the equation into a finite set
of atomic equations of the form

φFc1 ...Fck = χFdi (6.3.30)

for a certain 1 ≤ i ≤ k and for φ a scheme variable occurring in Φ and χ a scheme variable
either occurring in one of the Ψi, either equal to ψ. Let sBφ = (a0, . . . , an) and let c1 be
ar, for a certain 1 ≤ r ≤ n. Let sBχ = (b0, . . . , bm) and let the node di be bs, for a certain
1 ≤ s ≤ m .
Since equation (6.3.29) comes from a sequence of applications of the form (x)P1 . . . Pk, by
the construction of T (M) we must have either that m ≥ n and a0 = b0, . . . , ar−1 = br−1

(i.e. the paths from a0 to φ and from a0 to χ must split exactly at ar−1, as in the figure
below)

a0

ar−1

ar

φ

bs−i

bs

bt

c1

ci

ck

bt+1

χ

ψ

T (Φ)

T (Ψ1)

T (Ψi)

T (Ψk)
(6.3.31)

either n ≥ m and a0 = b0, . . . , as−1 = bs−1 (i.e. the paths a0 to φ and from a0 to χ must
split exactly at bs−1).
We will consider below only the first hypothesis, as the second one can be treated similarly.
The length of the sequence ar−1, . . . , an is equal to the length of the sequence bs, . . . bm
(this comes from the fact that the two schemes in (6.3.29) are semi-congruent).
We consider some relevant cases:

(a) there are no constraints on φ and χ. Then φS = χS by definition and moreover they
are closed types, so we can define θSFc1 and θSFdi arbitrarily;

(b) there is a constraint (φ, k, ap), for a certain sequence variable ap, with 1 ≤ p ≤ r − 1.
Then we look for substitutions θSFc1 , θ

S
Fdi

solving the equation

(αφap)αap+1
. . . αar−1

(αarθ
S
Fc1

)φαar+1
. . . αan = (αχbsθ

S
Fdi

)αbs+1
. . . αbm (6.3.32)

176 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

where (αarθ
S
Fa1

)φ stands for the sequence of the αψa , for all scheme variable ψ, where
αφa is replaced by αφaθSFc1 . Then we can put

αφarθ
S
Fc1

= αφar (6.3.33)

αχbsθ
S
Fdi

= λγ1.λγm−s.(α
φ
ap)αap+1

. . . αar−1
αarγ1 . . . γm−s (6.3.34)

where γi stands for sequence of H distinct variables γ1
i , . . . , γ

H
i and λγi.C is an ab-

breviation for λγ1
i λγ

H
i .C. Remark that the constructors above are all well-typed.

(c) there is a constraint (φ, k, ap), for a certain sequence variable ap, with r − 1 < p ≤ n.
Then p = r + l, for a certain integer 0 ≤ l < m − s. We have to find substitutions
θSFc1

, θSFdi
solving

(αφap)αap+1
. . . αan = (αχbsθ

S
Fdi

)αbs+1
. . . αbm (6.3.35)

and we put

αχbsθ
S
Fdi

= λγ1.λγm−(s+l+1).(γ
φ
s+l)γ1 . . . γm−(s+l+1) (6.3.36)

Again, the constructors above are well-typed.
(d) there is a constraint (φ, k, ar). Then, since equation (6.3.29) is not recursive, there

must be a constraint (χ, k, br′) and we must consider three cases:

i. if 0 ≤ r′ ≤ r − 1, then br′ = ar′ and we must solve

(αφarθ
S
Fc1

)αar+1 . . . αan = (αar′)αar′+1
. . . αarαbr+1 . . . αbs−1(αbsθ

S
Fdi

)χαbs+1 . . . αbm
(6.3.37)

where (αbsθ
S
Fdi

)χ stands for the sequence of the αψbs , for all scheme variable ψ,
where αχa is replaced by αχaθSFdi . Hence we put

αφarθ
S
Fc1

= λγ1.λγn−r.(α
φ
ar′

)αar′+1
. . . αarαbr+1 . . . αbs−1αbsγ1 . . . γn−r

(6.3.38)

αbχs θ
S
Fdi

= αbs (6.3.39)

ii. if r − 1 ≤ r′ ≤ s, then r′ = r + l and we must solve

(αφarθ
S
Fc1

)αar+1
. . . αan = (αχbr′)αbr′+1

. . . αbs−1
(αbsθ

S
Fdi

)χαbs+1
. . . αbn−q (6.3.40)

and we put

αφarθ
S
Fc1

= λγ1.λγn−r.(α
χ
ar′

)αbr′+1
. . . αbs−1

αbsγ1 . . . γn−r (6.3.41)

αχbsθ
S
Fdi

= αbs (6.3.42)

iii. Finally, if s < r′ ≤ m, then r′ = r + l for a certain 0 < l < n − s and we must
solve

(αarθ
S
Fc1

)αar+1
. . . αan = (αχbr+l)αbs+l+1

. . . αbm (6.3.43)

and we put

αφarθ
S
Fc1

= λγ1.λγn−r.(γ
χ
l−1)γl . . . γn−r (6.3.44)

6.3. A CONJECTURE ON TYPABILITY 177

The constructors defined above are all well-typed. Moreover, they could all have been typed
in Fω: given the full sequence a0, . . . , an of sequence variables occurring in a sequence
variable φ, one could type the constructor variables αai , for 1 ≤ i ≤ n, with a universe κi
defined as follows:

κn := prop (6.3.45)
κn−i := κn−i+1 → · · · → κn → prop (6.3.46)

By the way, the appeal to the impredicative universe U is fundamental when dealing with
recursive equations, as shown below.

If equation (6.3.29) is cyclic, then ΦFc1 is atomic and one has a constraint (φ, k, ar). We
must find θ, θ1, . . . , θk such that

(αarθ)αar+1 . . . αan = ΨS
1 θ1 → · · · → ΨS

k θk → ψS (6.3.47)

For all 1 ≤ i ≤ k a constructor Di := λγ1.λγn−r.Ci, of universe U → · · · → U︸ ︷︷ ︸
(n−r)×H

→ prop,

such that (Di)αar+1 . . . αan = ΨS
i can be defined. To do that we make use of the map g

associated with equation (6.3.29); remark that g sends the tree T (Φ) into an isomorphic
subtree of the tree T (Ξ), where Ξ is ∀bs−1(∀e1Ψ1 → ∀d2(∀e2Ψ2 → · · · → ∀ekΨk →
∀dk+1ψ).

Let χ be a leaf of Ξ; the linear order of the free sequence variables of χ is of the form

a0, . . . , ar−1, br . . . bs−1f(ar) . . . f(an)bs+n . . . bm (6.3.48)

Let χC be then like χS , but with the variables αf(ai), for r ≤ i ≤ n, replaced by the
variables γi−r. We define then

(Φ→ Ψ)C := ΦC → ΨC (6.3.49)

(∀αbs+lΦ)C := ∀αbs+lΦC (6.3.50)

for 1 ≤ l ≤ n− r. Finally we can put Ci := ΨC
i .

We can thus take as θSbi , for all 1 ≤ i ≤ k, the identical substitution and put

αφarθ
S
Fc1

= λγ1.λγn−r.
(
C1 → · · · → Ck+1

)
(6.3.51)

The typing of the propositions Ci cannot be done in System Fω: the variables αψr+l must be-
long to the two distinct universes U → · · · → U︸ ︷︷ ︸

(n−(r+l))×H

→ prop and U → · · · → U︸ ︷︷ ︸
(m−(r+l))×H

→ prop. This is possi-

ble only if they are assigned a universally quantified type like U or, for instance, ∀X (U → · · · → U︸ ︷︷ ︸
(n−(r+l))×H

→

X).
Two remarks on the solution of recursive equations can be done at this point. First, that

the substitution θ in equation (6.3.47) must have access to all the bound variables αr+1, . . . , αn,
that might occur in the righthand side type and that it could note introduce otherwise (since a
substitution cannot introduce bound variables). Hence, a completely uniform solution to such
equations cannot be devised in System F , where one cannot “stock” bound variables in the body
of an atomic type (since atomic types cannot contain applications).

178 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

Second, that simple universes are not enough to manage the application of a variable α to a
linear order of bound variables, as these linear orders (which correspond to the descending paths
from the sequence variable a such that α ∈ aS to the leafs of T (M)) can vary in length. The
impredicative universe U provides then a very simple solution to this problem.

Example 6.3.1. The λ-term M = (λx.(x)x)λy.λz.(y)zy was shown in [Mal90] to be untypable
in System F . The tree T (M) is the following (where ∀c0φy and ∀c1φz denote, respectively, the
schemes of the variables y and z):

a0

b0

c0

φy

b1

c1

φz

b2

c1

φz

b3

c0

φy

b4

ψ

a1

b0

c0

φy

b1

c1

φz

b2

c1

φz

b3

c0

φy

b4

ψ

a2

d2

χ1

a3

χ2

(6.3.52)

The system sc(M) is made of the following two equations:

φ
Fc0Fc′0
y = φ

Fc1
z → φ

F ′c0
y → ψ (6.3.53)

∀c0φ
Fb0
y → ∀c1φ

Fb1
z → ψ = ∀b0

(
∀c0φ

F ′b0
y → ∀c1φ

F ′b0
z → ψ

)
→ ∀d2χ2 → ∀a3χ3 (6.3.54)

Which force the two compatible constraints (φy, (2), {c0}) and (φy, (1), {b0}); hence we must
split ∀c0φy into the scheme Φ(1),(2) below

Φ(1),(2) = ∀c0
(
∀e0φ0 → ∀c′1(∀e1φ1 → ∀c′2φ2)

)
(6.3.55)

with the new constraints (φ1, 2, {c0}) and (φ0, 1, {b0}). Equations (6.3.53) become now

Φ
Fc0Fc′0
(1),(2) = φ

Fc1
z → Φ

F ′c0
(1),(2) → ψ (6.3.56)

∀c0Φ
Fb0
(1),(2) → ∀c1φ

Fb1
z → ψ = ∀b0

(
∀c0Φ

F ′b0
(1),(2) → ∀c1φ

F ′b0
z → ψ

)
→ ∀d2χ2 → ∀a3χ3 (6.3.57)

which induce, after decomposition, the following equations

∀e0φ
Fc0
0 = φ

Fc1
z (6.3.58)

∀e1φ
Fb0
1 = ∀c1φ

F ′b0
z (6.3.59)

The equations above force, by transport, the compatible constraints (φz, 1, {b0, c1}) and (φz, 2, {b0, c0}).
Since {b0, c1} ∩ {b0, c0} 6= ∅ we do not split the scheme φz and we can define our ground substi-
tution by picking H = 2:

φSy = ∀αc0(α
φy
b0

)αc0 → ∀αc′1
(
∀αe1(αφyc0)αc′1αe1 → ∀αc′2α

φy
c′2

)
(6.3.60)

φSz = ∀αc1(α
φy
b0

)αc1 (6.3.61)

The complete definition of S can now be obtained from the definition of φSy and φSz .

6.3. A CONJECTURE ON TYPABILITY 179

6.3.3 Some consequences of the conjecture

We present three interesting applications of conjecture (6.3.1) which constitute its main motiva-
tions.

A combinatorial characterization of typability The interest of the notion of compatibility
in [Mal90] is that it provides a purely combinatorial way to treat some cases of non typability in
System F . The general notion of compatibility presented in this chapter was developed in order
to generalize this aspect. In particular, all the results and the arguments discussed so far are
of a purely combinatorial nature. In particular, the property of being compatible can be easily
shown to be decidable.

The validity of conjecture (6.3.1) would then yield an entirely combinatorial characterization
of the typability problem. Moreover, since from theorem (6.2.1) it follows that a strongly nor-
malizing λ-term must be compatible, we would get that every strongly normalizable λ-term is
typable in System U−.

Remark that, as the property of strong normalization is undecidable, we cannot expect that
the notion of compatibility characterizes normalization. Indeed, an example of a not normalizing
term typable in System U− (and hence, by proposition (6.3.2), compatible) is given in [Coq94];
similarly, Girard’s paradox (appendix (C)) provides an example of a not normalizing term which
is typable in System U .

Moreover, we remarked in the last section that the notion of compatibility does not char-
acterize solvable terms either, as the λ-term λz.(z)(δ)δ is incompatible just like the term (δ)δ
though being in head normal form, contrarily to the latter.

Typing recursive functions in System U− We show an important application of conjecture
(6.3.1): we show that, if compatible terms are typable, then for every total unary recursive
function f , there exists a λ-term which computes f and which has type N→ N in System U−.

To this end we rely on a representation of partial recursive functions in λ-calculus which
comes essentially from [BGP94], where it is shown that every partial recursive function can be
simulated by a λ-term of the form λx.M , whereM is in head normal form (indeedM is normal).
A slightly simplified version of this construction is presented in appendix (C).

In order to investigate the typability of recursive functions in System U−, we consider then the
typability of a λ-term M in head normal form with a single free variable x, with the constraints
that both x and M must receive type N (in other words, we consider a subcase of the type
checking problem).

We first show a simple lemma:

Lemma 6.3.5. Let M be a λ-term in head normal form which does not start by an abstraction;
if M is typable in U− then, for any type σ, there exists a context Γ such that Γ ` M : σ is
derivable in U−.

Proof. If M is a variable z, then it suffices to put Γ = (z : σ).
If M is an application (z)M1 . . .Mk, then the scheme ofM is a scheme variable φ that occurs

in only one equation of sc(M) of the form

φ
Fa1 ...Fak
z = Φ1 → · · · → Φk → φ (6.3.62)

hence, given an arbitrary typing of M in U−, we can choose φS = σ.

180 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

We investigate now how the assignment S(x) = ∀a((φ → φ) → (φ → φ)) reflects on the
compatibility of the induced system.

Let ∀a1φ be the scheme of the variable x; we have to consider the assignment S(x) = ∀a1((φ→
φ)→ (φ→ φ)); furthermore, we must add to the set of forced constraints a constraint (φ, 1, {a1}).
Let us first remark that, either a constraint (φ, k,A), with a1 ∈ A, is already forced by M , either
M forces no constraint on φ: since x is a free variable, the scheme φ can only occur in equations
of the form

φFa1 ...Fak = Ψ
Gb1
1 → · · · → Ψ

Gbk
k → ψ (6.3.63)

or of the form
ΨFa1 ...Fak = Φ

Gb1
1 → · · · → φFa1 → · · · → Ψ

Gbk
k → ψ (6.3.64)

Hence, all constraints on φ must be of the form (φ, k,A), with a1 ∈ A.
Due to the non linearity of the scheme ∀a1((φ → φ) → (φ → φ)), by clauses ii., iii. of

definition (6.2.2), the adjunction of the constraint (φ, 1, {a1}) might induce new constraints: in
caseM contains a subterm of the form (x)PQ, then sc(M) must contain an equation of the form

φFa1Fa2 = Ψ
Gb1
1 → Ψ

Gb2
2 → ψ (6.3.65)

If φ is replaced by S(x) one gets

((φ→ φ)→ (φ→ φ))Fa1Fa2 = Ψ
Gb1
1 → Ψ

Gb2
2 → ψ (6.3.66)

By decomposition this implies

(φ→ φ)Fa1 = Ψ
Gb1
1 → Ψ

Gb1
1 (6.3.67)

(φ→ φ)Fa1Fa2 = (Ψ
Gb1
1 → Ψ

Gb1
1)Fa2 = Ψ

Gb2
2 → ψ (6.3.68)

Hence, a constraint (ψ2, k, A) (where ψ2 occurs in Ψ2 at path k) will be transported into a
constraint κ = (ψ1, k, A

′ ∪ {b1, a2}), (where ψ1 occurs in Ψ1 at path k), where A′ is obtained
from A following definition (6.2.1).

We wish to show that, if M already forces a constraint κ′ = (ψ1, k, B) incompatible with κ,
then, for a certain Church integer k, the term M [k/x] is not normalizing: indeed for any k ≥ 1,
M [k/x] contains the subterm (k)PQ which reduces to P kQ = P k−1(PQ). One easily verifies
then that the term PQ forces the two incompatible constraints κ and κ′ and cannot then, by
theorem (6.2.1), be normalizing.

Remark that if, moreover, M is in head normal form and does not begin by an abstraction,
then, by proposition (6.3.5), a ground substitution S forM such that (∀a1φ)S = N and ΦSM = N
(where ΦM is the scheme of M) can be defined following the examples discussed in the previous
subsection, with some slight modifications, due to the non linearity of the scheme ∀a1((φ →
φ)→ (φ→ φ)).

In particular, we must consider a new case (e) for the definition at pag. 175:

(e) there is a constraint (φ, k, ar) which was transported from a constraint (ψ, k, br′) on another
occurrence of φ in Φ. Then, by clause (d), the substitution θSFc1 has already been defined,
and we must find a substitution θSFdi satisfying

(αφarθ
S
Fc1

)αar+1 . . . αan = (αχbsθ
S
Fdi

)αb1 . . . αbm (6.3.69)

and we can put
αχbsθ

S
Fdi

= λγ1.λγm.(α
φ
arθ

S
Fc1

)γ1 . . . γm (6.3.70)

6.3. A CONJECTURE ON TYPABILITY 181

In definitive, the construction sketched should convince the reader that, if conjecture (6.3.1)
is true, then one should be able to prove the following fact: let M be a λ-term with exactly one
free variable x, in head normal form and not starting by an abstraction; suppose further that,
for all integer k, M [k/x] is strongly normalizable. Then, λx.M can be given type N → N in
System U−.

On the basis of the representation of recursive functions in λ-calculus given in (C), this implies
then that, for every total unary recursive function f there exists a λ-term f̂ which computes f
and which has type N→ N in System U−.

Typability in System N The type inference of System N is directly inherited from the one of
System U−. The syntax-directed type inference system is just the one in (6.3.1), when one drops
the requirement of well-typedness for propositions and constructors and in the definition of the
relation ≤. A ground substitution S is defined exactly like for System U−, again by dropping
well-typedness.

As a consequence, one can prove the analogue of proposition (6.1.2) also for naïve type theory:

Proposition 6.3.4 (principal typing derivations in System N). Let M be a λ-term, then the
following two hold:

i. if a ground substitution S satisfies eq∗(M) and ct(M), then dSM is a typing derivation in U−
of M in F ;

ii. if d is a typing derivation in U− ofM in F , then there exists a ground substitution s satisfying
eq∗(M) and ct(M) and such that d = dSM .

Proof. Once more, the two parts are straightforwardly proved by induction on the derivation
dSM .

As the main source of expressivity of SystemN is provided by fixed-point types (see subsection
(2.4.3)), we first recall some well-known results on typability in the presence of fixed point types,
then we will turn our attention towards types having a normal form.

A quite general result connecting fixpoint operators with the typability of not normalizing
combinators is in [Men87]: Mendler considers an extension Srec of simple type theory with types
satisfying recursive equations. This means that, for all type σ containing a free variable α, a
type µα.σ is admitted with the typing rules:

Γ `M : σ[µα.σ/α]

Γ `M : µα.σ
(µ− I)

Γ `M : µα.σ

Γ `M : σ[µα.σ/α]
(µ− E)

(6.3.71)

Remark that the existence inN of a fixpoint operator fix allows the definition of a type fix(λα.σ)
satisfying the same rules as µα.σ.

Given a set of k equations of the form

σi = τi (ei)

for 1 ≤ i ≤ k, such that a cyclic equation σi = τ , where σi occurs negatively in σ is derivable
from it, Mendler assumes given a ground substitution s (i.e. a map from variables to types in
Srec) that satisfies all equations (ei); then he shows how to build a not normalizing λ-term which
is typable by means of these types.

This result shows that, as soon as a negative recursive equation occurs, the existence of a
fixpoint solution implies the existence of a “paradoxical term” in the type system. In particular

182 CHAPTER 6. VICIOUS CIRCLES AND TYPABILITY

this implies that one will not find fixpoint solutions for negative recursive equations in reducible
type systems like F or Fω.

Since not normalizing types allow the typing of all λ-terms in a trivial way, it is natural to
turn to consider typability by means of types having a normal form. Though the type discipline
of System N is less restrictive than the one of System U−, a consequence of conjecture (6.3.1) is
that the terms typable in N by means of types having a normal form are exactly those that are
already typable in System U−.

In order to adapt Lemma (6.2.1) to the case System N , we must take into account the fact
that a proposition might not have a normal form. However, if σ has a normal form, we can keep
the definitions of lr(σ), H(σ), Hk(σ) given for System U− and prove:

Lemma 6.3.6. Let σ be a type of System N satisfying an equation of the form

σθ = Πk(σ)θ′ (6.3.72)

for certain substitutions θ, θ′ and a positive integer k. Then either Hk−1(σ) ∈ dom(θ′) either σ
has no normal form.

Proof. It suffices to reproduce the argument of lemma (6.3.1).

Lemma (6.2.2), being a consequence of lemma (6.2.1), can be immediately transported to
System N . Hence one has

Proposition 6.3.5. If M is incompatible, then it is not typable in N by types having a normal
form.

For the converse side, it suffices to remark that a term that is typable in System U− must be
typable by means of types having a normal form in System N ; hence, by the conjecture (6.3.1)
we get that a term is typable in N by means of types having a normal form if and only if it is
compatible.

This simple result shows an apparently counter-intuitive fact: if conjecture (6.3.1) is true,
then, as soon as one does not consider fixpoint (i.e. not normalizing) types, the impredicativity
of System U− is exactly as powerful as the one of full naïve type theory.

Part IV

Perspectives

183

Chapter 7

Towards a proof theory of
“uncertain” proofs

In this final chapter we sketch some possible lines of research which arise from the perspectives
and results of this thesis. The ideas here presented go in the direction, indicated throughout the
text, of a proof-theoretic investigation of “uncertain” proofs: these are proofs whose computa-
tional content can be entirely described in a recursive way, but whose logical meaning (validity,
reducibility) demands for complex and somehow circular (see section (4.3.1)) arguments, whose
reliability can be endlessly questioned (and, in some unfortunate cases - see prelude at page 7
and section (4.3.2) -, disproven).

In the first section we try to highlight the subtle difference between the combinatorial and
non combinatorial aspects connected with typing pure λ-terms. In the second section we give a
(very sketchy) idea of the proof-theoretical perspectives which arise from the approach developed
in chapter (6) on System U−.

From the viewpoint of “how proof theory”, we sketch an argument to derive, from the ty-
pability of total recursive functions in U−, derivations of totality for total recursive functions
in an extension of higher order arithmetics UA, which reflects the type structure of U−. The
argument is thought of as an extension of the usual technique (described in section (4.3.1)) of
expressing the reducibility of single typed λ-terms by means of arithmetical predicates. Remark
that, in order to extend the argument to U−, one must adopt a notion of reducibility which
cannot, globally, be defined in set-theory (as it leads to the paradoxes discussed in section (4.3.2)
and section (5.1.1)).

From the viewpoint of “why proof theory” we sketch some possible directions to answer the
question: how much of System U− can we actually justify?

7.1 The why and the how of typing

The acknowledgement of the recursive content of proofs constituted one of the spines of last
century proof theory. In chapter (2) and chapter (3) we reconstructed the correspondence by
which proofs can be seen as programs. This correspondence is illustrated by the table below:

185

186 CHAPTER 7. TOWARDS A PROOF THEORY OF “UNCERTAIN” PROOFS

PROOF THEORY TYPE THEORY
proofs programs

formulae types
rules typing rules

Gentzen transformations execution of programs

From the interactionist perspective (chapter (3)) it is through typing that we attach meaning
to programs, by getting to know how we can use them (by applying them to other programs or
by applying other programs to them).

Part (III) contains the characterization of some recursive aspects related to typing in poly-
morphic type systems. In chapter (5) it is shown that terms having a universally quantified type
must satisfy certain “genericity equations” which allow to characterize the shape of those terms
in a finite, combinatorial, way. In chapter (6) the property of having a type in System U− is
investigated by means of a property concerning the “compatibility” of the vicious circles present
in the λ-term.

By exposing some combinatorial features of typing, those investigations indicate then that
the line between the “how” content of typing and its “why” content (giving meaning, assuring
validity) is indeed quite subtle.

As we noted in chapter (6), the problem of verifying whether a program has a given type
(type-checking), reduces to the prima facie more complex problem of finding a type for a program
(typability). Indeed, the problem of verifying whether a given λ-term codes a recursive function,
i.e. has type N → N, reduces to the problem of finding types on which to extract the type
variable occurring in the type N.

From an arithmetical viewpoint this corresponds to the fact that a proof of ∀nA can be
constructed by appeal to induction axioms over arbitrarily complex formulae. From a proof-
theoretical viewpoint this corresponds to the fact that a proof of ∀x(N(x) ⇒ A) can be con-
structed by appeal to comprehension rules (i.e. (∀E) rules) containing witnesses of arbitrary
logical complexity. In a word, this is linked to the loss of the subformula property in second
order logic.

Hence we encounter a well-known (see [Poh89, Lei90, Lei01]) phenomenon which should
interest the why proof theorist: to a growth in the logical complexity of the comprehension
rules admitted (or of the formula occurring in induction axioms) there corresponds a growth in
the expressive power of the logic obtained.

A very instructive example of this phenomenon is at work in the trick used by Gentzen in
[Gen69] to prove transfinite inductions of growing complexity in first-order arithmetics (section
(2.2.3)). Remark that, whereas Gentzen has to use more and more complex formulae, so that his
proofs in the end exploit all the logical strength of first-order arithmetics, the “trick” by which
he can construct more and more complex proofs is of a combinatorial nature. The moral to
be drawn is the following: on the one hand, transfinite induction for more and more complex
ordinal numbers requires more and more complex arithmetical predicates to be proved; on the
other hand, the fact that by appealing to more and more complex inductions one can construct
more and more complex proofs can be explained in purely combinatorial terms.

The Curry-Howard content of this phenomenon lies in the fact that we can control the
computational complexity of the typable (resp. provably total) functions by controlling the
logical complexity of the types (resp. formulae) occurring in the extractions over the type N
(resp. in induction axioms) - for a detailed description see [Lei01, Lei90]. Hence, on the one
hand, in order to justify the totality of these typed functions one has to rely over more and
more logically complex notions of reducibility; on the other hand, the fact that more and more
complex functions can be typed by means of more and more complex types can be justified in

7.2. A CURRY-HOWARD PERSPECTIVE ON SYSTEM U 187

purely combinatorial terms (an interesting example of this fact within System Fω can be found
in the introduction of the paper [Urz97]).

In the light of the equational characterization of typing described in chapter (6), it might
be then of interest to investigate the following question: can the appeal to types (i.e., logically,
predicates) of growing complexity be explained by a growth in number and nesting of the recursive
equations induced by λ-terms?

Indeed, the coding in λ-calculus of recursive functions growing faster and faster results in an
augmentation of the number and nesting of auto-applications in the λ-terms obtained. Hence, the
systems of equational specification of types arising from such λ-terms will force more and more
head constraints (section (6.2.1)); as a consequence it is natural to expect, in the types arising
from the solutions to such systems, a growth in the number of addresses and, consequently, in
the number of occurrences of quantifiers and implication symbols: in short, a growth in logical
complexity.

7.2 A Curry-Howard perspective on System U

In chapter (6) we investigated a recursive characterization of the typability problem for λ-terms
within an inconsistent type system which extends System F . The appeal to inconsistent sys-
tems was justified by the major uniformity that such extremely expressive systems offer for the
investigation of the solvability of systems of equational specifications of types.

7.2.1 System U− and “how-proof theory”

The proof that, from a term M of type N → N computing a function f , one can recover a
proof of the totality of f in second order arithmetics constitutes a wonderful example of the
“kaleidoscopic” nature of second order logic (see section (4.3.1)). Indeed, one relies on the fact
that the reducibility of M , depending on a finite number of comprehension instances, can be
expressed directly within second order logic.

Here we provide a sketch of how an extension of this well-known technique to System U− could
be developed. First, one defines an (inconsistent) extension of second order Heyting arithmetics
HA2, that we might call UA. UA must have a notion of universe, defined like for System U−,
as well as predicate variables and quantifiers for any universe. Typed predicates are defined by
means of typing rules obtained from the rules for typing constructors in U−. In addition to
typing rules for predicates UA must contain the two logical schemas:

Γ ` A A bindable in Γ
Γ ` ∀κXA (∀κI)

Γ, A[Cκ/X] ` ∆

Γ,∀κXA ` ∆
(∀κE)

(7.2.1)

We retain for UA the notation P ∈ Q to state that the predicate Q over objects of universe κ,
holds of P (of universe κ).

Second, one has to devise a notion of reducibility for System U−. This can be done along
the lines of Martin-Löf’s type theory or along those of Reynolds’ set theoretical interpretation:
in section (2.4) it was remarked that the reducibility interpretation of System U− corresponds
to the set-theoretic interpretation of System F .

Remark that neither Martin-Löf’s reducibility nor Reynolds’s interpretation can be formalized
in set-theory, as they entail paradoxical results. By the way, for our purpose it is of no importance
that reducibility be defined in a consistent and set-theoretically acceptable way: all that matters
is that, locally (i.e. for any specific term of System U−), reducibility be definable in UA (which

188 CHAPTER 7. TOWARDS A PROOF THEORY OF “UNCERTAIN” PROOFS

is inconsistent). Here is one of the most striking aspects of how-proof theory: one can use
inconsistent theories and inconsistent proofs to obtain (valid) results.

The idea of the construction comes from Martin-Löf’s proof in section (4.3.1): an extended
reducibility candidate e.r.c. can be now thought of as a pair (κ, S) made of a universe κ and a
set S over κ (i.e. a constructor of type κ→ prop) which satisfies the properties below:

Rκ1) if C belongs to κ and C ∈ S, then C is strongly normalizing;

Rκ2) if C belongs to κ, C ∈ S and C reduces to C′, then C′ ∈ S;

Rκ3) if C belongs to κ and, for all its immediate reducts C′, C′ ∈ S, then C ∈ S.

For a fixed universe κ and a variable X of type κ→ prop, the properties Rκ1−3 can be expressed
in UA by means of a formula CRκ[X], with parameter X.

Let U be the impredicative universe ∀XX ; then, if S is a set over κ, for an arbitrary universe
κ, since S also belongs to the universe U → prop, CRU [S] is well typed and expresses, intuitively,
the fact that, for a certain universe κ, S satisfies the properties Rκ1 − 3. Hence, in a sense,
CRU [S] expresses the fact that, for a certain κ, (κ, S) is an e.r.c..

With this impredicative construction, one should then associate, with each closed universe κ,
a predicate κ in UA, of universe κ → prop such that, for all constructor C, C belongs to κ if
and only if C ∈ κ is derivable in UA (where C denotes a coding of the constructors of System
U− in UA which is sketched below). The predicates κ, parametrized by a set Z1, . . . , Zn of
fresh variables of universe κ′ → prop, for κ′ arbitrary, should be defined by inductive clauses
resembling the ones below:

prop[Z1, . . . , Zn] := λX.CRprop[X] (7.2.2)

Xi[Z1, . . . , Zn] := Zi (7.2.3)

κ→ κ′[Z1, . . . , Zn] := λXκ→κ′ .∀κY
(
Y ∈ κ[Z1, . . . , Zn]⇒ (XY) ∈ κ′[Z1, . . . , Zn]

)
(7.2.4)

∀X .κ[Z1, . . . , Zn] := λX∀X .κ.∀U→propY
(
CRU [Y]⇒ X ∈ κ[Z1, . . . , Zn, Y]

)
(7.2.5)

Now, to any constructor C of System U−, of universe κ, we can associate a constructor C
in UA such that C ∈ κ is (hopefully) derivable in UA. The case in which C is a proposi-
tion σ corresponds essentially to the one analyzed in section (4.3.1) for System F (since C is
Redσ[Z1, . . . , Zn] and κ[X] is CR[X]); a hypothesis to define the remaining cases could be the
following:

λγi.C := λXi.C (7.2.6)

CD := C D (7.2.7)

It would remain then to show that, for any proposition σ and any (closed) λ-term M of
(closed) type σ, the argument for the reducibility of M can be entirely coded in UA by means
of the notions introduced above.

Given a reducibility interpretation for System U−, one could then reproduce the usual argu-
ment to show that, if M codes a partial recursive function f and has type N → N in System
U−, then we can recursively extract from it a derivation in UA of the totality of f .

If the argument just sketched works, we would get (by relying on conjecture (6.3.1)), through
the systems U− and UA, a recursive battery of sequent calculus derivations which is complete
(at least) for true Π0

2 formulae. Hence one would get a new proof theoretic realization of the idea
of the library of Babel, with a direct application to the understanding of Gödel’s theorems: the
fact that one cannot recursively describe a consistent system in which all true Π0

2 formulae are
provable does not imply that one cannot recursively describe the proofs of those true statements
in an (inconsistent) Curry-Howard extension of second order arithmetics.

7.2. A CURRY-HOWARD PERSPECTIVE ON SYSTEM U 189

7.2.2 System U− and “why-proof theory”

From the viewpoint of the why-proof theorist one is interested in drawing a clear line between
correct and incorrect proofs. Since U− is inconsistent, it must contain trivial terms inhabiting any
type. Proof-theoretically, this should imply that UA contains trivial proofs of every proposition.
One would like then, at least, a criterion telling the “untrivial” terms from the trivial ones which
arise from paradoxes. Similarly, one would like a criterion telling the “untrivial” derivations in
UA from the trivial ones.

A first option comes from the Curry-Howard correspondence: from a derivation of the totality
of (possibly partial) recursive function obtained from a paradox one cannot extract, by the
forgetful functor, a term computing the function. Hence, a derivation of a certain formula
should be rejected as trivial unless it comes from a typed λ-term computing the right function
(determined by the type associated with the formula). In this sense, the approach of chapter (6)
leads towards an extension of the Curry-Howard connection between proofs and programs to a
class of incorrect derivations.

By the way, this approach does not allow to characterize valid derivations: from a term M of
type N→ N we get, by the procedure sketched in the previous paragraph, a derivation d of the
totality of a certain recursive function, computed by M . Hence, this derivation would satisfy the
Curry-Howard criterion but, since reducibility fails for System U−, we cannot rule out that M
computes, indeed, a partial function, that is, that for some integer k, the term Mk, of type N,
is not reducible. In a word, the derivation d would be Curry-Howard, but its conclusion would
be false!

Here we stumble once more against the fact that, whereas proof-theoretic validity is a logically
complex notion, the Curry-Howard criterion exclusively concerns the recursive content of the
derivations.

In addition to the Curry-Howard criterion, one might then ask that the term extracted from
the proof be reducible. For instance, the term extracted from a totality proof should be in the
reducibility RedN→N. This would be enough to exclude, in the Π0

2 case, totality proofs for partial
functions, as in the case just examined.

By the way, if we wish to extend this criterion to all UA derivations, we stumble upon the
fact that reducibility for System U− is an inconsistent notion. Thus, we would be trying to
commit the task of evaluating possibly inconsistent derivations to a yet more problematic, since
inconsistent, judge.

A third option comes from the remark that, in order to avoid Curry-Howard proofs of totality
for partial recursive functions, appeal to the whole reducibility theory is not necessary: all that
is needed is the result that typed λ-terms are (strongly) normalizing. This requirement can be
expressed by a Π0

2 arithmetical statement. For instance one could require that, if M has type
N → N in System U− and, moreover, M codes a total recursive function, then its typing must
be done within a reducible subsystem of U−.

Hence, our criterion would become: a derivation is correct if its extracted λ-term is typable
in a reducible subsystem of System U−. In a word, the why-proof theory of System U− could
well correspond to the question: how much of it can we justify?

The search for a hierarchy of more and more complex reducible subsystems of U− (or of
reducible extensions of System F) is compatible with the principles of why-proof theory: to
the reducibility of more and more complex systems there should correspond the use of logical
principles (e.g. comprehension axioms) of growing logical complexity.

However, such investigations would be of limited interest from an epistemological viewpoint:
they would not provide a reduction of complex problems to simpler ones, as the totality of a
recursive function would be vindicated by appeal to logical principles of complexity well beyond

190 CHAPTER 7. TOWARDS A PROOF THEORY OF “UNCERTAIN” PROOFS

Π0
2

1. One could here make a comparison with Gentzen’s consistency proof for arithmetics and
quote the remark that Girard reports from Kreisel in [Gir00]

Gentzen a établi la cohérence de l’induction jusqu’á ω au moyen de l’induction jusqu’á ε0.
[Gir00]

1One could cite Feferman’s work on transfinite progressions of arithmetical theories [Fef62] as an example of a
similar enterprise.

Part V

Appendices

191

Appendix A

Properties of System N

We list without proof some basic properties of system N (all provable by induction on the term
M) which will be implicitly adopted in the remaining proofs of this section:

Proposition A.0.1 (basic properties). i. If Γ ` M : σ is derivable, then Γ′ ` M : σ, with
Γ ⊆ Γ′, is too;

ii. If Γ `M : σ is derivable, then, if x ∈ FV (M), (x : τ) ∈ Γ, for some type σ;

iii. If Γ ` x : σ is derivable, then (x : σ′) ∈ Γ for some σ′ such that σ′ � σ;

iv. Properties 1 and 2 of the previous section hold for N ;

v. If Γ `M : σ is derivable and M ′ is a subterm of M , then Γ `M ′ : τ is derivable for some τ .

Remark that system N explicitly takes account of reduction over the types only in the case
of extractions; anyway, for the case of types containing a redex the following holds:

Proposition A.0.2 (Redex elimination). If Γ `M : σ is derivable in N and σ σ′, then there
exists a type σ′′ such that σ′ σ′′ and Γ `M : σ′′ is derivable in N .

Before proceeding to the proof of the lemma, we prove the following:

Lemma A.0.1. If Γ, (x : τ) `M : σ is derivable in N and τ τ ′ then there exists σ′ such that
σ σ′ and Γ, (x : τ ′) `M : σ′ is derivable in N .

Proof. By induction on M :

(var) Let Γ, (x : τ) ` x : σ be derivable; then τ � σ, i.e. (τ)ρ σ for a certain ρ. By applying
confluence we obtain then a σ′ such that σ σ′ and (τ ′)ρ σ′:

(τ)ρ → σ
↓ ↓

(τ ′)ρ → σ′
(A.0.1)

We finally have τ ′ � σ′ and thus Γ, (x : τ ′) `M : σ′.

(λ) We have Γ, (x : τ) ` λy.M : ∀β(τ → σ). It is enough to show that if Γ, (x : τ), (y : ρ) `M : σ
is derivable, then Γ, (x : τ ′), (y : ρ) ` M : σ is derivable, which is true by induction
hypothesis.

193

194 APPENDIX A. PROPERTIES OF SYSTEM N

(@) We have Γ, (x : τ) ` MN : σ, which implies Γ, (x : τ) ` M : ρ → σ′ (with σ′ � σ) and
Γ, (x : τ) ` N : ρ; again, we apply the induction hypothesis and obtain Γ, (x : τ ′) ` M :
ρ → σ∗, with σ′ σ∗; now, since σ′ � σ means that (σ′)µ σ for a certain µ. By the
same argument of the case (var) we find then a σ′′ such that σ σ′′ and σ∗ � σ′′.

Proof of proposition (A.0.2). Again, by induction on M :

(var) We have Γ, (x : τ) ` x : σ; frome τ � σ and σ σ′, one has τ � σ′, and thus Γ, (x : τ) `
x : σ′.

(λ) We have the following derivation:

.... d
Γ, (x : τ) `M : σ τ � σ

Γ ` λx.M : ∀β(τ → σ) (A.0.2)

We have ∀β(τ → σ) ∀β(τ ′ → σ′), with τ τ ′ and σ σ′. From lemma (A.0.1) it
follows that we can replace d with the derivation d′ below

.... d
′

Γ, (x : τ ′) `M : σ∗ τ ′ � σ∗

Γ ` λx.M : ∀β(τ ′ → σ∗) (A.0.3)

With σ σ∗. Since σ � σ∗ and σ σ′, by confluence there exists σ′′ such that σ σ′′

and σ∗ σ′′; since τ ′ � σ∗ and σ∗ σ′′ implies τ ′ � σ′′ we can finally derive Γ ` λx.M :
∀β(τ ′ → σ′′).

(@) We have Γ ` MN : σ and thus Γ ` M : τ → σ and Γ ` N : τ ; by induction hypothesis
there exists τ ′ and σ′′ such that σ′ σ′′, τ τ ′ and Γ `M : τ ′ → σ′′ is derivable; again,
by induction hypothesis there exists τ ′′ such that τ τ ′′ and Γ ` N : τ ′′ is derivable. By
confluence we finally find τ ′′′ and σ′′′ such that τ ′, τ ′′ τ ′′′, σ′′ σ′′′ and Γ ` MN : σ′′′

is derivable.

Lemma A.0.2. If Γ `M : σ is derivable in N , then Γ[τ/α] `M : σ[τ/α] is derivable in N .

Proof. Induction on M :

(var) From Γ, (x : σ1) ` x : σ it follows that σ1 = ∀β.σ′1 and σ′1[ρ/β] σ for a certain n ∈ N and
types ρ1, . . . , ρn; remark that, for β = β1, . . . , βk, for 1 ≤ i ≤ k, βi /∈ FV (τ). As a conse-
quence, σ′1[τ/α][ρ[τ/α]/β] ≡ σ′1[ρ/β][τ/α]; from general lambda calculus consideration we
know that σ′1[ρ/β] σ implies σ′1[ρ/β][τ/α] σ[τ/α]; we finally deduce σ′1[τ/α] � σ[τ/α],
hence Γ[τ/α], (x : σ1[τ/α]) ` x : σ[τ/α].

(λ) From Γ ` λx.M : σ we deduce σ = ∀β(σ1 → σ2) and Γ, (x : σ1) ` M : σ2 and σ1 � σ2; by
induction hypothesis we deduce Γ[τ/α], (x : σ1[τ/α]) ` M : σ2[τ/α]; remark, again, that
β /∈ FV (τ) (abuse of notation), hence we derive Γ[τ/α] ` λx.M : σ[τ/α].

195

(@) From Γ ` MN : σ we deduce Γ ` M : σ1 → σ2, Γ ` N : σ1 and σ2 � σ; by induction
hypothesis we have Γ[τ/α] ` M : σ1[τ/α] → σ2[τ/α] and Γ[τ/α] ` N : σ1[τ/α]; since
σ2 = ∀β.σ′2 and there exist types ρ such that σ′2[ρ/β]; remark that β /∈ FV (τ), hence
σ′2[τ/α][ρ[τ/α]/β] ≡ σ′2[ρ/β][τ/α]; from general lambda calculus consideration we know
that σ′2[ρ/β] σ implies σ′2[ρ/β][τ/α] σ[τ/α]; we finally deduce σ′2[τ/α] � σ[τ/α],
hence Γ[τ/α] `MN : σ[τ/α].

Since in system N one cannot assume types to be already in normal form (since such a normal
form may not exists), the substitution lemma and the subject reduction lemma (see [BAGM92])
must be reformulated as stating that typability is preserved (under substitution or reduction) up
to some reduction of the types. Clearly, if types are already in normal form, the reformulation
below of these results becomes equivalent to the usual one.

Lemma A.0.3. If Γ ` M : σ is derivable in N and σ � σ′, then there exists σ′′ such that
σ′ σ′′ and Γ `M : σ′′.

Proof. Induction on M :

(var) From Γ, (x : τ) ` x : σ one has τ � σ and σ � σ′, hence τ � σ′ by transitivity and thus
Γ, (x : τ) ` x : σ′.

(λ) From Γ ` λx.M : σ it follows σ = ∀α(σ1 → σ2) and Γ, (x : σ1) ` M : σ2. From σ � σ′

it follows that σ1[τ/α] → σ2[τ/α] σ′ for a certain n ∈ N and types τ = τ1, . . . , τn; by
applying the lemma (A.0.2) and remarking that α /∈ FV (Γ) we find Γ, (x : σ1[τ/α]) `M :
σ2[τ/α], hence Γ ` λx.M : σ1[τ/α]→ σ2[τ/α]; by proposition (A.0.2) we have the thesis.

(@) From Γ ` MN : σ it follows Γ ` M : σ1 → σ2, Γ ` N : σ1 and σ2 � σ; by transitivity,
σ2 � σ′ and we have the thesis.

Proposition A.0.3 (substitution lemma in [BAGM92]). If Γ, (x : σ) `M : τ and Γ ` N : σ are
derivable, then Γ `M [N/x] : τ ′ is derivable for some τ ′ such that τ τ ′.

Proof. By induction on the generation of Γ, (x : σ) `M : τ .

(var) We have Γ, (x : σ) ` x : τ , σ � τ and Γ ` N : σ; by lemma (A.0.3) we derive Γ ` N : τ ′

with τ τ ′.

(λ) We have Γ, (x : σ) ` λy.M : τ , and thus τ = ∀α.(τ1 → τ2) and Γ, (x : σ), (y : τ1) `M : τ2; by
induction hypothesis we find Γ, (y : τ1) ` M [N/x] : τ ′2 for a certain τ ′2 such that τ2 τ ′2,
and thus Γ ` λy.M [N/x] : ∀α(τ1 → τ ′2).

(@) We have Γ, (x : σ) ` M ′M ′′ : τ , hence Γ, (x : σ) ` M ′ : τ1 → τ2, Γ, (x : σ) ` M ′′ : τ1
and τ2 � τ . By induction hypothesis we have Γ ` M ′[N/x] : τ ′1 → τ ′2, for τ ′1, τ ′2 such that
τ1 τ ′1 and τ2 τ ′2; similarly we find τ ′′1 such that τ1 τ ′′1 and Γ `M ′′[N/x] : τ ′′1 ; remark
that, by confluence, we can replace τ ′1 and τ ′′1 by a type τ∗1 such that τ ′1 τ∗1 and τ ′′1 τ∗1 ,
thus concluding Γ ` M ′[N/x] : τ∗1 → τ ′2 and Γ ` M ′′[N/x] : τ∗1 ; since (τ2)ρ1 . . . ρn τ ,
for certain ρ1, . . . , ρn, and τ2 τ ′2, by confluence there is a type τ ′ such that τ τ ′ and
τ ′2 � τ ′. We conclude Γ `M [N/x] : τ ′.

196 APPENDIX A. PROPERTIES OF SYSTEM N

Proof of Proposition 2.4.1 . We first show the theorem for the relation 1; the extension is made
by induction on the lenght of the reduction.

We consider the prime case, i.e. M = (λx.P)Q and M ′ = P [Q/x]. From Γ ` M : σ it
follows Γ ` λx.P : τ → σ′ for certain τ, σ′ such that σ′ � σ and Γ ` Q : τ ; again, we deduce
Γ, (x : τ) ` σ′ and, from lemma (A.0.3) we find Γ ` P [Q/x] : σ′′ for a certain σ′′ such that
σ′ σ′′; as usual, by confluence, we find a type σ∗ such that σ σ∗ and σ′′ � σ∗.

For the general case, we use the fact that if a redex (λx.P)Q occurs in M , then there exists
a subderivation of the type derivation d with conclusion Γ′ ` (λx.P)Q : τ with Γ ⊆ Γ′; by the
argument above we find Γ′ ` P [Q/x] : τ ′ with τ τ ′. By repeatedly applying proposition
(A.0.2), we build a derivation d∗ with conclusion Γ `M ′ : σ∗ for a certain σ∗ such that σ σ∗.

Appendix B

Girard’s paradox

We already encountered Girard’s paradox for System U in chapter (4). In this appendix we
describe a (simplified) version of the paradox in order to investigate its computational content:
in particular, we extract from the paradox specifications for typing a not normalizing λ-term.
This analysis is intended as an introductory example of the approach that is developed in full
generality in chapter (6).

The interest of this paradox, with respect to Russell’s antinomy, is that the typing of a
diverging combinator is obtained in a type system (System U) whose types satisfy a strong
normalization theorem (indeed the types of U are essentially terms of System F). In particular,
such a paradox shows that the fact that a term is typed by means of types in normal form does
not assure the normalization of the typed term. This is yet another clue to the fact that, when
investigating typability in an abstract way, one is led to make abstraction from the normalization
of typed terms (that is why, indeed, inconsistent systems like U or N are of especial interest to
the matter).

Burali-Forti’s paradox and the “powerful universe” Girard’s original argument (see
[Gir72]) is obtained from a variant of Burali-Forti’s paradox: the latter is a paradox found
in naïve set theory in 1897 by Cesare Burali-Forti ([BF97]) based on the ordinal numbers.

An ordinal number was there defined as the order type of a well-ordered set. Any element x
of a well-ordered set a induces an initial segment ax := {y ∈ a|y < x} ∈ ℘(a). One can show
then that the “set” of order types of well-ordered sets is well-ordered by the relation α < β which
holds if there exists a monotone function from α to an initial segment of β. Let then Ω be the
order type of this well-ordered “set”; then, for every well-ordered set a, there exists a monotone
function from the order type α of a to an initial segment of Ω, so that one has α < Ω. In
particular, one has then Ω < Ω, which contradicts the fact that Ω is a well-order.

Remark that in the argument above one passes from the “set” of order types Ω to the “set” of
all initial segments of Ω (contained in ℘℘Ω) and back. In the argument below, we define a non
set-theoretic universe V (in the sense of Reynolds, see section (5.1.1)) and we define two maps
s, t which allow to pass from V to ℘℘V and back. If we think of the map s as the map which
associates, with each element x ∈ V, the set of all sets X ∈ ℘V which contain all the predecessors
of x, then we can define, following [Hur95], a order relation x < y over V given by

x < y iff ∀X ∈ ℘V(X ∈ sx⇒ y ∈ X) (B.0.1)

that is, x is less than y if y belongs to any set which contains all predecessors of x. We can then

197

198 APPENDIX B. GIRARD’S PARADOX

define a notion of inductive set :

Ind(X) := ∀x ∈ CV (X ∈ sx⇒ x ∈ X) (B.0.2)

that is, X is inductive if all its elements belong to any set which contains all their predecessors.
Finally, an element x ∈ V can be said well-founded when, as usually, it is in the intersection of
all inductive sets. Formally,

WF (x) := ∀X ∈ ℘V(Ind(X)⇒ x ∈ X) (B.0.3)

The universe V we consider is called “powerful” in [Hur95] and is the following:

V := ∀X ((℘℘X → X)→ ℘℘X) (B.0.4)

In the following we adopt the following conventions: we use small variables x, y, . . . for elements
of V and capital variables X,Y, . . . for elements of ℘V. In order to avoid confusion, we will
use letters u, v, w, . . . to denote term variables, i.e. variables occurring in “proof-like” λ-terms.
Moreover, c 6< d we will indicate the type c < d→ ⊥, where ⊥ := ∀propαα.
V is paradoxical in the sense of Reynolds’ result, since we can build a constructor t in the

universe ℘℘V → V:
t := λf.λx.λy.(x)λz.(y(f(zf))) (B.0.5)

Moreover we can build a constructor s in the universe V → ℘℘V

s := λx.(x)λy.ty (B.0.6)

such that, for all set X in ℘℘V, the following holds

stX = λy.(X)λz.(y)tsz (B.0.7)

or, in set notation
stX = {y : ℘V|{z : V|tsz ∈ Y } ∈ X} (B.0.8)

The notions of predecessor, inductive set and well-founded element are defined follows:

x < y := ∀℘VX((sx)X → Xy) (B.0.9)

Ind(X) := ∀Vx((sx)X → Xx) (B.0.10)

WF (x) := ∀℘VX(Ind(X)→ Xx) (B.0.11)

We have now all the elements to proceed to the paradoxical argument.

The paradox The analysis that follows is organized in this way: we describe the paradoxical
argument in three steps; at each step we make the reasoning correspond to the typing of a
combinator (by relying on the analysis in [Hur95]); next we show that the types used in the
argument must satisfy some equational specifications which constitute necessary (and sufficient)
conditions for the typing of the combinator. The application of the three combinators will
produce in the end a typable, though not normalizing, λ-term, the following:

W := (λw.w(λu.λv.(v)uv)w)λu.(u)u (B.0.12)

Remark that W has no head normal form and reduces to itself in a finite number of steps.
Let Ω be t{X : ℘V|Ind(X)}, which is an element of V. In the first step, corresponding to the

combinator λu.(u)u, we show that the set Ω is well-founded; in the second step, corresponding

199

to the combinator λu.λv.(v)uv, we show that the set e = {y : V|tsy 6< y} is inductive. Finally,
in the third step, corresponding to the combinator λw.w(λu.λv.(v)uv)w we show that Ω is not
well-founded (by relying on the inductivity of e). As a consequence, one has that the term W is
well-typed in System U . Moreover, in the end we can describe the conditions for the typing of
W by a finite set of equational specifications.

Step 1 We show that Ω is well-founded: suppose X is inductive; in order to prove that Ω ∈ X,
it suffices to prove X ∈ sΩ. From equation (B.0.8) if follows that

sΩ = {X : ℘V|Ind({y : V|tsy ∈ X})} (B.0.13)

and thus we have to show that the set {y ∈ V|tsy ∈ C} is inductive. Let then x be in V;
since X is inductive, if X ∈ stsx, then tsx ∈ X.

We show then that from the argument above we can extract a typing of the combinator
λu.(u)u:

(X : ℘V), (u : Ind(X)) ` Ind(X)

....
(X : ℘V), (u : Ind(X)) ` Ω : V

(X : ℘V), (u : Ind(X)) ` u : X ∈ sΩ→ Ω ∈ X
(∀E)V

(X : ℘V), (u : Ind(X)) ` u : Ind(X)

....
(X : ℘V), (u : Ind(X)) ` tsx : ℘V

(X : ℘V), (u : Ind(X)) ` u : X ∈ sΩ
(∀E)V

(X : ℘V), (u : Ind(X)) ` (u)u : Ω ∈ X
(X : ℘CV) ` λu.(u)u : Ind(X)→ Ω ∈ X

` λu.(u)u : WF (Ω)
(∀I)℘V

(B.0.14)
The crucial part in the typing above is represented by the two extractions performed over the

variable u of type Ind(X). Indeed, in order to type the auto-application (u)u one has to extract
the variable u over two different types σ1, σ2 satisfying an equation of the form

σ1 = σ2 → τ (B.0.15)

for a certain type τ . In the next section we’ll develop this intuition in full generality. For the
moment we can remark that the type Ind(X) can be written under the form ∀VyΦ(y,X), to
stress the fact that the open type Φ depends on the variables y (of universe V) and X (of universe
℘V). Since an extraction corresponds to the application of a substitution F over a bound variable,
we can rewrite the constraint above under the following form

Φ(F1(y), X) = Φ(F2(y), X)→ τ (B.0.16)

Now, the constraint above is satisfied by the type Φ(y,X) := X ∈ sy → y ∈ X and the two
substitutions F1(y) = Ω and F2(y) = tsy.

Step 2 Before we actually prove that Ω is not well-founded, so giving rise to the antinomy, we
show that the set e := {y|tsy 6< y} is inductive. Suppose E ∈ sx, for a certain x ∈ V;
then we show that tsx 6< x: indeed, suppose tsx < x; this means that, for all X ∈ ℘V, if
X ∈ sx, then tsx ∈ X. In particular, since e ∈ sx, one has tsx ∈ e, hence tstsx 6< tsx. On
the other hand, we show that tstsx < tsx, so that we can conclude that tsx 6< x. From the
assumption tsx < x it follows that, by letting d := {y|tsy ∈ X}, if d ∈ sx, then tsx ∈ d;
by equation (B.0.8), this means that, if X ∈ stsx, then tstsx ∈ X, i.e. that tstsx < tsx.

From the argument above we can extract the following typing of the combinator λu.λv.(v)uv:
(x : V), (u : e ∈ sx), (v : tsx < x) ` v : tsx < x

(x : V), (u : e ∈ sx), (v : tsx < x) ` v : e ∈ sx→ tstsx 6< tsx
(∀E)℘V

(x : V), (u : r ∈ sx), (v : tsx < x) ` u : e ∈ sx
(x : V), (u : e ∈ sx), (v : tsx < x) ` (v)u : tstsx 6< tsx

(@)
(x : V), (u : r ∈ sx), (v : tsx < x) ` v : tsx < x

(x : V), (u : e ∈ sx), (v : tsx < x) ` v : tstsx < tsx
(∀E)℘V

(x : V), (u : e ∈ sx), (v : tsx < x) ` (v)uv : ⊥
(@)

(x : V), (u : e ∈ sx) ` λv.(v)uv : tsx 6< x
(λ)

(x : V) ` λv.λu.(v)uv : e ∈ sx→ x ∈ e
(λ)

` λv.λu.(v)uv : Ind(e)
(∀I)V

(B.0.17)

200 APPENDIX B. GIRARD’S PARADOX

Similarly to the case above, the crucial part in the typing is constituted by the two extractions
performed over the variable v of type tsx < x, that is, ∀℘V(x∈stsx→tsx∈x). Given a type Ψ(x),
the constraint for the typing of the combinator has the following form:

Ψ(G1(x)) = Θ(x)→ Ψ(G2(x))→ ⊥ (B.0.18)

for two substitutions G1, G2. Then the choice Ψ(x) = x ∈ stsx → tsx ∈ x, Θ(x) := e ∈ sx and
G1(x) = e, G2(x) = d provides a solution to the equation above.

Step 3 We finally prove that Ω is not well-founded: suppose WF (Ω) holds; since the set E is
inductive, it follows that Ω ∈ E, i.e. that tsΩ 6< Ω. On the other hand, from the assumption
WF (Ω), i.e. ∀℘VX(Ind(X)→ Ω ∈ X) it follows that if the set F is inductive, then it is in
Ω; this means, by equation (B.0.8), that if X ∈ sΩ, then tsΩ ∈ X, i.e. tsΩ < Ω.

From the argument above we extract the following typing of the combinator λw.w(λu.λv.(v)uv)w:

(w : WF (Ω)) ` w : WF (Ω)

(w : WF (Ω)) ` Ind(e)→ tsΩ 6< Ω
(∀E)℘V

....
(w : WF (Ω) ` λu.λv.(v)uv : Ind(e)

(w : WF (Ω) ` w(λu.λv.(v)uv) : tsΩ 6< Ω
(@)

(w : WF (Ω)) ` w : WF (Ω)

(w : WF (Ω) ` w : tsΩ < Ω
(∀E)℘V

(w : WF (Ω)) ` w(λu.λv.(v)uv)w : ⊥
(@)

` λw.w(λu.λv.(v)uv)w : ¬WF (Ω)
(λ)

(B.0.19)
Once more, the core of the typing above lies in the extractions performed over the variable w

of type WF (Ω). WF (Ω) can be written under the form ∀℘VX(∀VxΦ(x,X) → Ξ(X)), and the
constraint has then the form

∀VxΦ(x,H1(X))→ Ξ(H1(X)) = ∀Vy(Θ(y)→ Ψ(y)→ ⊥)→ (∀VxΦ(x,H2(X))→ Ξ(H2(X)))→ ⊥
(B.0.20)

and one can choose the substitutions H1(X) = e and H2(X) = d.
In definitive, we can sum up the three steps by saying that a typing of the not normalizing

combinator W arises as soon as one can find types Φ(x,X),Ψ(x),Θ(x),Ξ(X) (under the as-
sumptions x ∈ V and X ∈ ℘V) and substitutions F1, F2, H1, H2, G1, G2 such that the following
specifications are satisfied:

Φ(F1(x), X) = Φ(F2(x), X)→ τ (B.0.21)
Ψ(G1(x)) = Θ(x)→ Ψ(G2(x))→ ⊥ (B.0.22)

Φ(x,H1(X)) = Θ(x)→ Ψ(x)→ ⊥ (B.0.23)

Ξ(H1(X)) = ∀Vx(Φ(x,H2(X))→ Ξ(H2(X))→ ⊥ (B.0.24)

Appendix C

Simulating recursive functions by
normal λ-terms

The representation of recursive function in lambda calculus that we’ll adopt is a slight variation
of the one in [BGP94].

C.1 A modified HGK-computability

In what follows, first we present a definition of recursive functions (which can be seen as a
modified version of Herbrand-Gödel-Kleene computability) and we show its equivalence with the
usual definition by means of minimalization; next, we show how to build a λ-representation of a
recursive function defined in this way.

Definition C.1.1 (canonical system of equations). Let Σ be the union Σ0 ∪ Σ1 of two disjoint
sets of function symbols (of fixed arity m) Σ0 = {0, s} (of arity respectively 0 and 1) and Σ1 =
{f1, . . . , fk} that we call, respectively, the data constructors and the programs. Let L(Σ) be
the language made of a countable set of variables x, y, z, . . . and the function symbols in Σ. A
canonical system of equations E in L(Σ) is given by, for all 1 ≤ u ≤ k, two equations eu,1, eu,2
of the form

fu(0, y1, . . . , ym) = bu,1 (eu,1)
fu(s(x), y1, . . . , ym) = bu,2 (eu,2)

where 1 ≤ u ≤ k, fu ∈ Σ1, n ≥ 0 and, for p ∈ {1, 2} and bu,p is a term in L(Σ) depending on
the (all distinct) variables y1, . . . , yn (plus x in case p = 2) which belongs to the set B ⊆ L(Σ)
inductively defined below:

i. 0 ∈ B;

ii. s(b) ∈ B, if b ∈ B;

iii. yl ∈ B, for 1 ≤ l ≤ m;

iv. fu(x, b1, . . . , bm) ∈ B, if b1, . . . , bm ∈ B;

v. fv(b, b1, . . . , bm) ∈ B, if b, b1, . . . , bm ∈ B and 1 ≤ v ≤ k.

201

202 APPENDIX C. SIMULATING RECURSIVE FUNCTIONS BY NORMAL λ-TERMS

For all 1 ≤ u ≤ k, we call the first variable in the definition of fu the u−recursive variable, and
the other variables y1, . . . , ym the u-parameters.

Remark that the definition of the terms in B is such that the u−recursive variable x appears
as first argument of fv only for v = u: this means that fu is the only function having the right
to perform recursion over x.

We say that a recursive function f is defined by a canonical system of equations E if, for all
positive integers n,m, the equation f(n) = m is derivable from the equations in E (in the sense
of Herbrand-Gödel-Kleene computability, see [Lei90] Appendix I) if and only if f(n) is defined
and equal to m.

Proposition C.1.1. For every partial recursive function f there exists a canonical system of
equations E(f) defining it.

Proof. First remark that it is enough to show the theorem without requiring that the function
symbols fu have a fixed arity (as in the definition), since any system of this kind can be turned
into a canonical system by introducing “dummy” parameters in the equation so to fix an arity
m = max{arity(fu)|1 ≤ u ≤ k}.

The cases of the zero, the successor and the projection functions are trivial. The composi-
tion h(z0, z1, . . . , zm) of f(x, y1, . . . , yn) with g0(z0, ~z), . . . , gn(z0, ~z) is obtained by adding to the
equations of f and the gi, 1 ≤ i ≤ n the equations

h(0, ~z) = f(g0(0, ~z), . . . , gn(0, ~z))

h(s(x), ~z) = f(g0(s(x), ~z), . . . , gn(s(x), ~z))
(C.1.1)

Let us show how to define the minimalization µf(y1, . . . , yn) of a function f(x, y1, . . . , yn), for
n ≥ 1: let’s define a new function h(x, y1, . . . , yn, yn+1) as follows

h(0, y1, . . . , yn, yn+1) = 0

h(s(x), y1, . . . , yn, yn+1) = s
(
h(f(s(yn+1)), y1, . . . , yn, s(yn+1))

) (C.1.2)

we can now define µf(y1, . . . , yn) by composition as h(f(0), y1, . . . , yn, 0).

C.2 Recursive functions by normal λ-terms
We pass now to show how to build normal solutions to canonical systems in pure lambda cal-
culus. By a solution we mean a representation of the signature Σ by normal lambda terms
0B , sB , f1, . . . , fk satisfying the equations in E(f). The crucial aspect of this representation is
that also numerals will receive a non standard representation (as one can guess, the translation of
Church numerals into such numerals will correspond to the “up” part of the accessibility proof).

The terms 0B , sB are defined as follows

0B := λe.(e)U2
1

sB := λx.λe.(e)U2
2x

(C.2.1)

For every n ∈ N, the BGP integers nB (from the authors of [BGP94]) is then the term below:

nB := λe.(e)U2
2

(
λe.(e)U2

2

(
. . . λe.(e)U2

2︸ ︷︷ ︸
n times

0B
)
. . .
)

(C.2.2)

C.2. RECURSIVE FUNCTIONS BY NORMAL λ-TERMS 203

which are the normal forms of the terms (sB)n0B .
We define now, for every term t ∈ B, a representation t which will be a normal term in

lambda calculus. Let’s fix k + m distinct variables z1, . . . , zk, y1, . . . , ym (remark here again an
abuse of notation, since yl is at the same time a first-order variable and a variable in λ-calculus);
we proceed by induction on the terms t and show that, unless t is a Church numeral, it does not
begin with a lambda:

i. if t is 0, then t is just 0;

ii. if t is s(t′) for a certain term t′, then t is λf.λx.t′f(fx), i.e. the Church successor of t′, if
t is not a Church numeral, else it is just its successor; remark that, if t is not a Church
numeral, then by i.h. t′ does not begin with a λ, so t is normal;

iii. if t is yl, for a certain 1 ≤ l ≤ m, then t is yl;

iv. if t is fu(x, t1, . . . , tm) for certain terms t1, . . . , tm, then t is (x)zuz1 . . . zkt1 . . . tm (which
does not begin with a λ);

v. if t is fv(t0, t1, . . . , tm) for certain terms t0, t1, . . . , tm and 1 ≤ v ≤ k, then three subcases
arise:

• if t0 = 0, then t is (zv)U
2
1 z1 . . . zkt1 . . . tm (which is the normal form of

(0B)zvz1 . . . zkt1 . . . tm);
• if t0 = (s)t′0, then t is (zi)U

2
2 t′0z1 . . . zkt1 . . . tm (which is the normal form of

(sBt0)zvz1 . . . zkt1 . . . tm);
• in all other cases t is ((t0)sB0B)z1 . . . zkt1 . . . tm (remark that in this case t0 does not

begin with a λ, thus t is normal).

In all three cases t does not begin with a λ.

By the translation above we can define, for all 1 ≤ u ≤ k, 1 ≤ p ≤ 2 a (closed) lambda term
Mu,p as follows

Mu,1 := λz1.λzk.λy1.λym.bu,1

Mu,2 := λx.λz1.λzk.λy1.λym.bu,2
(C.2.3)

We fix then, for 1 ≤ i ≤ k,

Mu := 〈Mu,1,Mu,2〉 = λz.(z)Mu,1Mu,2 (C.2.4)

and finally
fu := 〈Mu,M1, . . . ,Mk〉 = λz.(z)MuM1 . . .Mk (C.2.5)

We prove now that the fu are indeed a representation of the functions fu:

Proposition C.2.1. The terms 0B , sB along with the fu, for 1 ≤ u ≤ k, satisfy the system E(f);

Proof. For the first point let
fu(s(x), y1, . . . , yn) = bu,2 (C.2.6)

be an equation in E(f); we treat only the case with p = 2, the case with p = 1 being a mere
reformulation of the former.

(fu)(sBx)y1 . . . yn (sBx)MiM1 . . .Mky1 . . . yk (Mu)U2
2xMiM1 . . .Mky1 . . . yk

 (U2
2)Mu,1Mu,2xMuM1 . . .Mky1 . . . yk (Mu,2)xMuM1 . . .Mky1 . . . yk

 bu,2[M1/z1, . . . ,Mk/zk]

(C.2.7)

204 APPENDIX C. SIMULATING RECURSIVE FUNCTIONS BY NORMAL λ-TERMS

Now, if b∗u,2 is the term obtained by substituting in bu,2 all the occurrences of terms in Σ with
their representations, one easily verifies that b∗u,2 is β-equivalent to bu,2[M1/z1, . . . ,Mk/zk].

Finally, in order to let our desired representation work over Church numerals, we have to
define a coding] from Church to BGP numerals, and define, for 1 ≤ u ≤ k,

f̂u := λz0.λz1.λzm.fu(]z0)z1 . . . zm =β λz0.λz1.λzm.(]z0)MuM1 . . .Mkz1 . . . zm (C.2.8)

The coding function is easily defined by iteration:

]x = (x)sB0B (C.2.9)

In definitive f̂ provides our desired representation (remark that f̂ is a normal λ-term).

Bibliography

[AL91] Andrea Asperti and Giuseppe Longo. Categories, types and structures: an intro-
duction to category theory for the working computer scientist. The M.I.T. Press,
1991.

[Als86] William P. Alston. Epistemic circularity. Philosophy and Phenomenological Research,
47(1):1–30, 1986.

[BAGM92] Henk Barendregt, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum. Lambda
calculi with types. In Handbook of Logic in Computer Science, pages 117–309. Oxford
University Press, 1992.

[Bar85] Henk Barendregt. Lambda calculus, its syntax and semantics. North-Holland, 1985.

[BBJ07] George S. Boolos, John P. Burgess, and Richard C. Jeffrey. Computability and logic.
Cambridge University Press, 2007.

[Ber88] Stefano Berardi. Towards a mathematical analysis of the Coquand-Huet calculus of
constructions and the other systems in Barendregt’s cube. Technical report, Depart-
ment of Computer Science, CMU and Dipartimento di Matematica, Università di
Torino, 1988.

[BF97] Cesare Burali-Forti. Una questione sui numeri transfiniti. In Rendiconti del Circolo
Matematico di Palermo, volume 11, pages 154–164, 1897.

[BFSS90] E.S. Bainbridge, Peter J. Freyd, Andre Scedrov, and Philip J. Scott. Functorial
polymorphism. Theoretical Computer Science, 70:35–64, 1990.

[BGP94] Corrado Bohm, Stefano Guerrini, and Adolfo Piperno. λ-definition of funcion(al)s
by normal forms. In Programming Languages and Systems - ESOP ’94, number 188
in Lecture Notes in Computer Science, pages 135–149, 1994.

[Bog96] Paul Artin Boghossian. Analyticity reconsidered. Noûs, 30(3):360–391, 1996.

[Bog03] Paul Artin Boghossian. Epistemic analyticity: a defense. Grazer Philosophische
Studien, 66(1):15–35, 2003.

[Boo75] George Boolos. On second order logic. The journal of philosophy, 72(16):509–528,
1975.

[Bor00] Jorge Luis Borges. The library of Babel. In The total library: Non-fiction 1922-1986,
pages 214–216. Allen Lane The Penguin Press, 2000.

[Car37] Rudolf Carnap. The Logical Syntax of Language. K. Paul Trench, 1937.

205

206 BIBLIOGRAPHY

[Car83] Rudolf Carnap. The logicist foundations of mathematics (1931). In Paul Benacerraf
and Hilary Putnam, editors, Philosophy of Matemathics: selected readings, pages
41–52. Cambridge University Press, 1983.

[CC91] Felice Cardone and Mario Coppo. Type inference with recursive types: syntax and
semantics. Information and Computation, 92:48–80, 1991.

[CF58] Haskell B. Curry and Robert Feys. Combinatory logic. Vol. I. North-Holland, 1958.

[Chu40] Alonzo Church. A formulation of the simple theory of types. Journal of Symbolic
Logic, pages 56–68, 1940.

[Cof91] Alberto Coffa. The semantic tradition from Kant to Carnap. Cambridge University
Press, 1991.

[Coq86] Thierry Coquand. An analysis of Girard’s paradox. In LICS, 1986.

[Coq90] Thierry Coquand. Metamathematical investigations of a Calculus of Constructions.
In P. Odifreddi, editor, Logic in Computer Science. Academic Press, 1990.

[Coq94] Thierry Coquand. A new paradox in type theory. In 9th International Conference
on Logic, Methodology and Philosophy of Science, pages 555–570, 1994.

[Coq05] Thierry Coquand. Completeness theorems and λ-calculus. In Typed Lambda Calculi
and Applications, volume 3461 of Lecture Notes in Computer Science, pages 1–9.
Springer Berlin Heidelberg, 2005.

[Cro04] Tristan Crolard. A type theory which is complete for Kreisel’s modified realizabil-
ity. In Third workshop on automated verification of critical systems (AVoCS’2003).
Springer-Verlag, 2004.

[DB70] Nicolaas Govert De Bruijn. The mathematical language AUTOMATH, its usage
and some of its extensions. In Symposium on Automatic Demonstration (Versailles
1968), volume 125 of Lecture Notes in Mathematics, pages 29–61. Springer, 1970.

[Ded96] Richard Dedekind. Was sind und was sollen die Zahlen? (english translation). In
William Erwald, editor, From Kant to Hilbert: a source book in the Foundations of
Mathematics, vol. 2, pages 787–833. Clarendon Press, 1996.

[Dos] Kosta Dosen. Inferential semantics. To appear in: H. Wansing ed., Dag Prawitz on
Proofs and Meaning, Springer, Berlin.

[Dum91a] Michael Dummett. Frege: philosophy of mathematics. Duckworth, 1991.

[Dum91b] Michael Dummett. The logical basis of metaphysics. Columbia University Press,
1991.

[Dum06] Michael Dummett. The vicious circle principle. In Cambridge and Vienna: Frank
P. Ramsey and the Vienna Circle, volume 12 of Vienna Circle Institute Yearbook,
pages 29–33. Springer, 2006.

[Fef62] Solomon Feferman. Transfinite recursive progressions of axiomatic theories. Journal
of Symbolic Logic, 27(3):259–316, 1962.

[Fre50] Gottlob Frege. The foundations of arithmetic. Basil Blackwell, 1950.

BIBLIOGRAPHY 207

[Fre80] Gottlob Frege. Philosophical and mathematical correspondence. Basil Blackwell,
1980.

[Fre13] Gottlob Frege. The Basic Laws of Arithmetic (1893). Oxford University Press, 2013.

[Fri78] Harvey Friedman. Classically and intuitionistically provably recursive functions.
Higher Set Theory, 669:21–28, 1978.

[G4̈4] Kurt Gödel. Russell’s mathematical logic. In P. A. Schilpp, editor, The philosophy
of Bertrand Russell, pages 123–153. Northwestern University, 1944.

[G5̈8] Kurt Gödel. über eine bisher noch nicht benütze Erweiterung des finiten Standpunk-
tes. Dialectica, pages 280–287, 1958.

[Gal90] Jean Gallier. On Girard’s "candidats de réductibilité". Logic and Computer Science,
1990.

[Gal95] Jean Gallier. Proving properties of typed λ-terms using realizability, covers and
sheaves. Theoretical Computer Science, 142, 1995.

[Gen64] Gerhard Gentzen. Investigations into logical deduction (1934). American Philosoph-
ical Quarterly, 1(4):288–306, 1964.

[Gen69] Gerhard Gentzen. Provability and nonprovability of restricted transfinite induction in
elementary number theory. In M. E. Szabo, editor, The Collected Papers of Gerhard
Gentzen. North-Holland, 1969.

[Gir72] Jean-Yves Girard. Interprétation fonctionnelle et élimination des coupures de
l’arithmetique d’ordre supérieur. PhD thesis, Université Paris VII, 1972.

[Gir76] Jean-Yves Girard. Three-valued logic and cut-elimination: the actual meaning of
Takeuti’s conjecture. Dissertationes mathematicae, 1976.

[Gir85] Jean-Yves Girard. Introduction to Π1
2-logic. Synthese, 62(2):191–216, 1985.

[Gir86] Jean-Yves Girard. The System F of variable types, fifteen years later. Theoretical
Computer Science, 45(2):159–192, 1986.

[Gir87] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1–102, 1987.

[Gir89a] Jean-Yves Girard. Geometry of interaction I: interpretation of system f. In Ferro,
Bonotto, Valentini, and Zanardo, editors, Logic colloquium, 1989.

[Gir89b] Jean-Yves Girard. Proof theory and logical complexity, vol. 2. (unpublished), 1989.

[Gir89c] Jean-Yves Girard. Towards a geometry of interaction. Contemporary Mathematics,
92, 1989.

[Gir90a] Jean-Yves Girard. Geometry of interaction II: deadlock-free algorithms. In Interna-
tional Conference on Computational Logic, Tallinn, 1990.

[Gir90b] Jean-Yves Girard. Proof theory and logical complexity, Vol. 1. Studies in proof theory.
Elsevier Science, 1990.

[Gir91] Jean-Yves Girard. A new constructive logic: classical logic. Technical report, INRIA,
1991.

208 BIBLIOGRAPHY

[Gir95] Jean-Yves Girard. Geometry of interaction III: accomodating the additives. In
Advances in Linear Logic, London Mathematical Society, Lecture Note Series. Cam-
bridge University Press, 1995.

[Gir00] Jean-Yves Girard. Du pourquoi au comment: la théorie de la démonstration de 1950
á nos jours. In Developments of mathematics 1950-2000, pages 515–545. Birkhäuser,
Basel, 2000.

[Gir06] Jean-Yves Girard. Geometry of interaction IV: the feedback equation. In Logic
Colloquium 2003, Association of Symbolic Logic, 2006.

[Gir10] Jean-Yves Girard. Geometry of interaction V: logic in the hyperfinite factor. Theo-
retical Computer Science, 2010.

[Gir11] Jean-Yves Girard. The blind spot. European Mathematical Society, 2011.

[Gir13] Jean-Yves Girard. Geometry of interaction VI: a blueprint for transcendental syntax.
Under consideration for publication in Mathematical Structures in Computer Science,
2013.

[GLT89] Jean-Yves Girard, Yves Lafont, and Paul Taylor. Proofs and Types, volume 7 of
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
1989.

[Gol81] Warren D. Goldfarb. The undecidability of the second-order unification problem.
Theoretical Computer Science, 13(2):225–230, 1981.

[GRDR88] Paola Giannini and Simona Ronchi Della Rocca. Characterization of typings in
polymorphic type discipline. In Proceedings of the 3-th Annual IEEE Symposium on
Logic in Computer Science, pages 61–70, Edinburgh, 1988.

[GRDR91] Paola Giannini and Simona Ronchi Della Rocca. Type inference in polymorphic
type discipline. Theoretical Aspects of Computer Software, International Conference
TACS ’91, Sendai, Japan, 1991.

[GS89] Jean Gallier and Wayne Snyder. Higher-order unification revisited: complete sets of
transformations. Journal of Symbolic Computation, 8(1-2):101–140, 1989.

[GSS92] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Normal forms and cut-free
proofs as natural transformations. In Y. Moschovakis, editor, Logic from Computer
Science, volume 21, pages 217–241. Springer-Verlag, 1992.

[GV09] Herman Geuvers and Joep Verkoelen. On fixed point and looping combinators in
type theory. http://www.cs.ru.nl/~herman/PUBS/TLCApaper.pdf, 2009.

[Hen88] Fritz Henglein. Type inference and semi-unification. In Proceedings of the 1988 ACM
Conference on Lisp and Functional Programming, pages 184–197. ACM press, 1988.

[Hen89] Fritz Henglein. Polymorphic type inference and semi-unification. PhD thesis, The
State University of New Jersey, 1989.

[Her67] Jacques Herbrand. Investigations in proof theory. In Jean Van Heijenoort, editor,
From Frege to Gödel: a source book in mathematical logic, 1879-1931. Harvard Uni-
versity Press, 1967.

http://www.cs.ru.nl/~herman/PUBS/TLCApaper.pdf

BIBLIOGRAPHY 209

[Her71] Jacques Herbrand. On the consistency of arithmetics (1931). In Warren D. Goldfarb,
editor, Jacques Herbrand, Logical Writings. Harvard University Press, 1971.

[Hey56] Arend Heyting. Intuitionism, an introduction. North-Holland, 1956.

[Hil96a] David Hilbert. The logical foundations of mathematics (1923). In William Erwald,
editor, From Kant to Hilbert: a source book in the Foundations of Mathematics.
Clarendon Press, 1996.

[Hil96b] David Hilbert. Mathematical problems (1900). In William Ewald, editor, From Kant
to Hilbert: a source book in the Foundations of Mathematics, volume II. Clarendon
Press, 1996.

[Hin69] Roger J. Hindley. The principal type scheme of an object in combinatory logic. In
Transactions of the American Mathematical Society, volume 146, pages 29–60, 1969.

[Hin83] Roger J. Hindley. The completeness theorem for typing λ-terms. Theoretical Com-
puter Science, 22(1-2):1–17, 1983.

[How80] William A. Howard. The formula-as-types notion of construction (1969). In To H.B.
Curry. Essays on Combinatory Logic, Lambda Calculus and Formalism. Academic
Press, 1980.

[Hur95] Antonius J. C. Hurkens. A simplification of Girard’s paradox. In TLCA 95, Second
International Conference on Typed Lambda Calculi and Applications, pages 266–278,
1995.

[Hyl82] Martin Hyland. The effective topos. In Troelstra and Van Dalen, editors, The L.E.J.
Brouwer Centenary Symposium, volume 216, 1982.

[Joi07] Jean-Baptiste Joinet. Logique et interaction. Thèse d’habilitation à diriger des
recherches, Université Denis Diderot (Paris 7), 2007.

[Joi09] Jean-Baptiste Joinet. Ouvrir la logique au mond. In Ouvrir la logique au mond:
Philosophie et Mathématique de l’interaction. Hermann et CCI-Cerisy, 2009.

[Joi11] Jean-Baptiste Joinet. Logique et métaphysique. In O que è metafisica? Editora da
Universidade Federal do Rio Grande do Norte, 2011.

[KL68] Georg Kreisel and Azriel Levy. Reflection principles and their use for establishing
the complexity of axiomatic systems. Mathematical Logic Quarterly, 14(7-12):97–142,
1968.

[Kle45] Stephen Cole Kleene. On the interpretation of intuitionistic number theory. Journal
of Symbolic Logic, 10(4):109–124, 1945.

[Kle52] Stephen Cole Kleene. Introduction to meta-mathematics. North-Holland, 1952.

[Kle59] Stephen Cole Kleene. Countable functionals. In Arend Heyting, editor, Constructivity
in mathematics, pages 81–100. North-Holland, 1959.

[Kle73] Stephen Cole Kleene. Realizability, a retrospective survey. In Cambridge Summer
School in Mathematical Logic (1971), volume 337 of Lecture Notes in Mathematics,
pages 95–112. Springer, 1973.

210 BIBLIOGRAPHY

[Kre59] Georg Kreisel. Interpretation of analysis by means of constructive functionals of
finite types. In Arend Heyting, editor, Constructivity in mathematics, pages 101–
128. North-Holland, 1959.

[Kre60] Georg Kreisel. Foundations of intuitionistic logic. In Proceedings of the 1960 Inter-
national Congress on Logic, Methodology and Philosophy of Science, pages 198–210.
Stanford University Press, 1960.

[Kre65] Georg Kreisel. Mathematical logic. In Lectures on modern mathematics, Vol. III,
pages 95–195. Wiley, 1965.

[Kre70] Georg Kreisel. Church’s thesis: a kind of reducibility axiom for constructive mathe-
matics. In Intuitionism and Proof Theory: proceedings of the summer conference at
Buffalo, N.Y. North-Holland, 1970.

[Kri] Jean-Louis Krivine. On the structure of classical realizability models of ZF .
arXiv:1408.1868 [cs.LO].

[Kri93] Jean-Louis Krivine. Lambda calculus, types and models. Ellis Horwood, 1993.

[Kri09] Jean-Louis Krivine. Realizability in classical logic. In Interactive models of com-
putation and program behaviour. Panoramas et synthèses. Société Mathématique de
France, 2009.

[Kri11] Jean-Louis Krivine. Realizability algebras: a program to well order R. Logical
Methods in Computer Science, 3(2):1–47, 2011.

[Kri12] Jean-Louis Krivine. Du programme de hilbert aux programmes informatiques. Leçons
de mathématiques d’aujourd’hui, Bordeaux, 2012.

[KT74] Georg Kreisel and Gaisi Takeuti. Formally self-referential propositions for cut free
analysis and related systems. Dissertationes mathematicae, 118, 1974.

[KTU93] Assaf J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. The undecidability of the semi-
unification problem. Information and Computation, 102(1):83–101, 1993.

[LC89] Philippe Le Chenadec. On the logic of unification. Journal of Symbolic Computation,
8(1-2):141–199, 1989.

[Lei83] Daniel Leivant. Reasoning about functional programs and complexity classes as-
sociated with type disciplines. In 24th Annual Symposium on the Foundations of
Computer Science, pages 460–469, 1983.

[Lei90] Daniel Leivant. Contracting proofs to programs. In P. Odifreddi, editor, Logic and
Computer Science, volume 11, pages 279–327. Academic Press, 1990.

[Lei94] Daniel Leivant. Higher order logic. In D. M. Gabbay, C. J. Hogger, and J. A.
Robinson, editors, Handbook of logic in artificial intelligence and logic programming,
volume 2, pages 229–231. Oxford University Press, 1994.

[Lei01] Daniel Leivant. Peano’s lambda calculus: the functional abstraction implicit in arith-
metic. In Logic, meaning and computation, Essays in Memory of Alonzo Church,
volume 305 of Synthese Library, Studies in Epistemology, Logic, Methodology and
Philosophy of Science, pages 313–329. Springer Netherlands, 2001.

BIBLIOGRAPHY 211

[LF97] Giuseppe Longo and Thomas Fruchart. Carnap’s remarks on impredicative defini-
tions and the genericity theorem. In Logic, Methodology and Philosophy of Science:
Logic in Florence. Kluwer, 1997.

[LMS93] Giuseppe Longo, Kathleen Milsted, and Sergei Soloviev. The genericity theorem and
the notion of parametricity in the polymorphic λ-calculus. Theoretical Computer
Science, 121:323–349, 1993.

[LS86] Joachim Lambek and Philip J. Scott. Introduction to higher order categorical logic.
Cambridge University Press, 1986.

[Mal90] Sophie Malecki. Generic terms having no polymorphic types. In Automata, Lan-
guages and Programming, 17th International Colloquium Warwick University, Eng-
land. Springer Berlin Heidelberg, 1990.

[Mal92] Sophie Malecki. Quelques résultats sur la typabilité dans le système F. PhD thesis,
Université Paris 7, 1992.

[Mal97] Sophie Malecki. Proofs in system Fω can be done in system F 1
ω . In Computer Science

Logic, volume 1258 of Lecture Notes in Computer Science, pages 297–315. Springer,
1997.

[MD82] R. Milner and L. Damas. The principal type schemes for functional programs. In
Symposium on Principles of Programming Languages, ACM, 1982.

[Men87] Paul Francis Mendler. Inductive definitions in Type Theory. PhD thesis, Cornell
University, 1987.

[Mil78] Robin Milner. A theory of type polymorphism in programming. Journal of Computer
and System Science, 17:348–374, 1978.

[Min78] G. E. Minc. Finite investigations of infinite derivations. Journal of Soviet Mathe-
matics, 10:548–596, 1978.

[Mit86] John C. Mitchell. A type-inference approach to reduction properties and semantics
of polymorphic expressions. In Proceedings of the 1986 ACM Symposium on Lisp
and Functional Programming, pages 308–319, 1986.

[ML70a] Per Martin-Löf. Hauptsatz for the intuitionistic theory of iterated inductive defini-
tions. In J.E. Fenstad, editor, Proceedings of the 2nd Scandinavian Logic Symposium
(Oslo), 1970.

[ML70b] Per Martin-Löf. A theory of types. Unpublished manuscript, 1970.

[ML75] Per Martin-Löf. An intuitionistic theory of types: predicative part. In Proceedings of
the Logic Colloquium 1973, Bristol, volume 80 of Studies in logic and the foundations
of mathematics, pages 73–118. North-Holland, 1975.

[ML84] Per Martin-Löf. Intuitionistic type theory. Bibliopolis, 1984.

[ML86] Per Martin-Löf. Unifying scott’s theory of domains for denotational semantics and
intuitionistic type theory (abstract). In CLUEB, editor, Atti del congresso di logica
e filosofia della scienza, San Gimignano 7-11 settembre 1983, 1986.

212 BIBLIOGRAPHY

[ML87] Per Martin-Löf. Truth of a proposition, evidence of a judgement, validity of a proof.
Synthese, 73:407–420, 1987.

[ML98] Per Martin-Löf. Truth and knowability: on the principles c and k of Michael Dum-
mett. In H.G. Dales, editor, Truth in mathematics. Clarendon Press, 1998.

[NPS14] Alberto Naibo, Mattia Petrolo, and Thomas Seiller. On the computational meaning
of axioms. halshs.archives-ouvertes.fr/hal-00930222/, 2014.

[Pal90] Erik Palmgren. Domain interpretations of martin-löf’s partial type theory. Annals
of Pure and Applied Logic, 48:135–196, 1990.

[Par93] Michel Parigot. Classical proofs as programs. In Kurt Gödel Colloquium, volume 713
of Lecture Notes in Computer Science, pages 263–276. Springer-Verlag, 1993.

[Pea93] Cristopher Peacocke. Proof and Truth. In J. Haldane and C. Wright, editors, Reality,
Representation and Projection. Oxford University Press, 1993.

[Pfe88] Frank Pfenning. Partial polymorphic type inference and higher-order unification.
In Proceedings of the ACM Conference on Lisp and Functional Programming, pages
153–163. ACM press, 1988.

[Poh89] Wolfram Pohlers. Proof theory: the first step into impredicativity, volume 1407 of
Lecture Notes in Mathematics. Springer, 1989.

[Poi06] Henri Poincaré. Les mathématiques et la logique. Revue de Métaphysique et de
Morale, 14(3):294–317, 1906.

[Pra65] Dag Prawitz. Natural deduction, a proof-theoretical study. Almqvist & Wiskell, 1965.

[Pra68] Dag Prawitz. Hauptsatz for higher order logic. The Journal of Symbolic Logic,
33(3):452–457, 1968.

[Pra71a] Dag Prawitz. Ideas and results in proof theory. In J.E. Fenstad, editor, Proceedings
of the 2nd Scandinavian Logic Symposium (Oslo), Studies in logic and foundations
of mathematics, volume 63. North-Holland, 1971.

[Pra71b] Dag Prawitz. Towards a foundation of a general proof theory. Logic, Methodology
and Philosophy of Science, VI, 1971.

[Pra74] Dag Prawitz. On the idea of a general proof theory. Synthese, 27:63–77, 1974.

[Pra02] Dag Prawitz. Problems for the generalization of a verificationist theory of meaning.
Topoi, 21(2-1):87–92, 2002.

[Pra12] Dag Prawitz. Truth as an epistemic notion. Topoi, 31(1):9–16, 2012.

[Pri67] Arthur Prior. The runabout inference ticket. In Peter Strawson, editor, Philosophical
logic, pages 38–39. Oxford University Press, 1967.

[PW78] Michael S. Paterson and Mark N. Wegman. Linear unification. Journal of Computer
and System Science, 16:158–167, 1978.

[Qui53] Willard Van Orman Quine. Two dogmas of empiricism (1951). In From a logical
point of view. Harvard University Press, 1953.

halshs.archives-ouvertes.fr/hal-00930222/

BIBLIOGRAPHY 213

[Qui76] Willard Van Orman Quine. Truth by convention (1936). In The ways of paradox.
Harvard University Press, 1976.

[Qui80] Willard Van Orman Quine. Logic and the reification of universals. In From a logical
point of view, pages 102–129. Harvard University Press, 1980.

[Qui86] Willard Van Orman Quine. Philosophy of logic. Harvard University Press, 1986.

[Ram31] Frank Plumpton Ramsey. Foundations - Essays in Philosophy, logic, mathematics
and economics. Humanities Press, 1931.

[Rey74] John C. Reynolds. Towards a theory of type structure. In Programming Symposium,
pages 408–423. Springer-Verlag, 1974.

[Rey83] John C. Reynolds. Types, abstraction and parametric polymorphism. In R.E.A.
Mason, editor, Information Processing ’83, pages 513–523. North-Holland, 1983.

[Rey84] John C. Reynolds. Polymorphism is not set-theoretic. In Semantics of data types,
International Symposium Sophia-Antipolis, France, June 1984, volume 173 of Lecture
Notes in Computer Science, pages 145–156. Springer Berlin Heidelberg, 1984.

[Rob65] Alan Robinson. A machine-oriented logic based on the resolution principle. Journal
of the ACM, 12(1):23–41, 1965.

[Rus06a] Bertrand Russell. Les paradoxes de la logique. Revue de Métaphysique et de Morale,
14(5):294–317, 1906.

[Rus06b] Bertrand Russell. On some difficulties in the theory of transfinite numbers and order
types. In Proceedings of the London Mathematical Society, volume 4, pages 29–53,
1906.

[Rus08] Bertrand Russell. Mathematical logic as based on the theory of types. Americal
Journal of Mathematics, 30(3), 1908.

[Sch56] Kurt Schütte. Ein system des verknüpfeden Schliessens. Archiv für mathematische
Logic und Grundlagenforschung, 2(2-4):55–67, 1956.

[Sch60] Kurt Schütte. Syntactical and semantical properties of simple type theory. The
Journal of Symbolic Logic, 25(4):305–326, 1960.

[Sco68] Dana Scott. Constructive validity. In Symposium on Automatic Demonstration,
Lecture Notes in Mathematics. Springer Berlin Heidelberg, 1968.

[Sea69] John Searle. Speach acts: an essay in the philosophy of language. Cambridge Uni-
versity Press, 1969.

[SH91] Peter Schroeder-Heister. Uniform proof-theoretic semantics for the logical constants,
abstract. Journal of Symbolic Logic, 56:1142, 1991.

[SH06] Peter Schroeder-Heister. Validity concepts in proof-theoretic semantics. Synthese,
148:525–571, 2006.

[SH12] Peter Schroeder-Heister. Proof-Theoretic Semantics. Entry for the Stan-
ford Encyclopedia of Philosophy, http://plato.stanford.edu/entries/
proof-theoretic-semantics/, 2012.

http://plato.stanford.edu/entries/proof-theoretic-semantics/
http://plato.stanford.edu/entries/proof-theoretic-semantics/

214 BIBLIOGRAPHY

[Sha00] Stewart Shapiro. Foundations without foundationalism: a case for second order logic.
Oxford Logic Guides. Oxford University Press, 2000.

[ST00] Helmut Schwichtenberg and Anne Sjerp Troelstra. Basic proof theory. Cambridge
University Press, 2000.

[Sta73] John Staples. Combinator realizability of constructive finite type analysis. In Cam-
bridge Summer School in Mathematical Logic (1971), pages 253–273. Springer, 1973.

[Str67] Christopher Strachey. Fundamental concepts in programming languages. Higher
Order and Symbolic Computation, 13:11–49, 1967.

[SU06] Morten Heine Sorensen and Pawel Urzyczyn. Lectures on the Curry-Howard isomor-
phism, volume 149 of Studies in logic and the foundations of mathematics. Elsevier
Science, 2006.

[Sun83] Göran Sundholm. Construction, proofs and the meaning of the logical constants.
Journal of Philosophical Logic, 12(2):151–172, 1983.

[Sun98] Göran Sundholm. Proofs as acts and proofs as objects: some questions for Dag
Prawitz. Theoria, 64(2-3):187–216, 1998.

[Sun99] Göran Sundholm. Intuitionism and logical tolerance. In Alfred Tarski and the Vienna
Circle, volume 6 of Vienna Circle Institute Yearbook, pages 135–148. Springer, 1999.

[Tai67] William W. Tait. Intensional interpretation of functionals of finite type I. Journal
of Symbolic Logic, 32(2):198–212, 1967.

[Tai68] William W. Tait. A nonconstructive proof of Gentzen’s Hauptsatz for second order
predicate logic. Journal of Symbolic Logic, 33(2):289–290, 1968.

[Tai75] WilliamW. Tait. A realizability interpretation of the theory of species. In Proceedings
of the Logic Colloquium, volume 435 of Lecture Notes in Mathematics, pages 240–251,
1975.

[Tak57] Gaisi Takeuti. On a generalized logical calculus. Journal of Symbolic Logic,
22(4):351–352, 1957.

[Tak67] Moto-o Takahashi. A proof of cut-elimination theorem in simple type-theory. Journal
of the Mathematical Society of Japan, 19(4):399–410, 1967.

[Tar83] Alfred Tarski. On the concept of logical consequence. In Logic, Semantics, Meta-
mathematics, (translation of "Uber den Begriff der logischen Folgerung", in Actes
du Congrès International de Philosophie Scientifique, fasc. 7, Paris, Hermann et Cie,
1936). Hackett, 1983.

[Tro63] Anne Sjerp Troelstra. Metamathematical investigations of intuitionistic arithmetic
and analysis. Springer, 1963.

[Tro69] Anne Sjerp Troelstra. Principles of intuitionism. Lecture Notes in Mathematics.
Springer-Verlag, 1969.

[TVD88] Anne Sjerp Troelstra and Dirk Van Dalen. Constructivism in mathematics, vol. 2,
volume 123 of Studies in logic and the foundations of mathematics. North-Holland,
1988.

BIBLIOGRAPHY 215

[Urz97] Pawel Urzyczyn. Type reconstruction in Fω. Mathematical Structures in Computer
Science, 7(4):329–358, 1997.

[Vaa01] Jouko Vaananen. Second-order logic and foundations of mathematics. Bulletin of
Symbolic Logic, 7(4):504–520, 2001.

[VO02] Jaap Van Oosten. Realizability: a historical essay. Mathematical Structures in Com-
puter Science, 12:239–263, 2002.

[VO08] Jaap Van Oosten. Realizability: an introduction to its categorical side, volume 152
of Studies in logic and the foundations of mathematics. Elsevier, 2008.

[Wad89] Philop Wadler. Theorems for free! In Proceedings of the fourth international confer-
ence on functinoal programming languages and computer architecture - FPCA ’89,
1989.

[Wel98] J. B. Wells. Typability and type checking in System F are equivalent and undecidable.
Annals of Pure and Applied Logic, 98:111–156, 1998.

[Wit78] Ludwig Wittgenstein. Remarks on the Foundations of Mathematics (1956). Black-
well, 1978.

[Wit89] Ludwig Wittgenstein. Lectures on the Foundations of Mathematics (1939). Cam-
bridge University Press, 1989.

[Wit01] Ludwig Wittgenstein. Tractatus logico-philosophicus (1921). Routledge, 2001.

[Wit09] Ludwig Wittgenstein. Philosophical Investigations (1953). Wiley-Blackwell, 2009.
German text, with an English translation by G.E.M. Anscombe, P.M.S. Hacker and
Joachim Schulte.

	Prelude: Frege's Grundgesetze
	I Introduction
	Explaining why vs explaining how
	The library of Babel and logical complexity
	The Quinean critic and proof theory
	Philosophical disputes over second order logic
	Type theory ``in sheep's clothing''

	Outline of the thesis

	Arithmetics, logic and type theory
	The proof-theoretic notion of ``logic''
	From Hilbert's program to structural proof theory
	Second order arithmetics and logic
	System F

	The Dedekind functor
	``Was sind und was sollen die zahlen''
	The functor D
	Arithmetics and logic

	The forgetful functor
	The functor F
	Arithmetics in type theory

	Beyond System F
	From Curry's type theory to System F
	The systems U and U-
	A naïve type theory

	II Explaining why
	Inferentialist and interactionist interpretations of proofs
	Proof-theoretic validity
	Meaning and implicit definitions
	Consistency and the inversion principle
	Proof-theoretic semantics

	Realizability and reducibility
	Realizability semantics
	Tait-Girard reducibility
	Untyped semantics

	Around the second order Hauptsatz
	Reducibility and Takeuti's conjecture
	Reducibility
	Takeuti's conjecture: an empty shell?

	The vicious circle principle
	The debate over impredicative definitions
	Proof-theoretic semantics
	Untyped semantics

	Kaleidoscope effects
	The Hauptsatz seen from within
	A paradox of reducibility

	III Explaining how
	Impredicativity and parametric polymorphism
	Set-theoretic vs ``generic'' quantification
	Reynolds' paradox: why second order logic is not set-theory
	Carnap's defense of impredicativity
	The operator J and the genericity theorem

	Parametricity and the completeness of simple type theory
	The mathematics of parametricity
	The dinatural interpretation: new equations for polymorphic terms
	A completeness theorem

	An impredicative bridge

	Vicious circles and typability
	Typing and unification
	Equations in the simple type discipline
	Equations in the polymorphic type discipline
	Another scheme system

	Vicious circles and typing
	The geometry of vicious circles
	Recursive equations and typing constraints
	Incompatible constraints and untypable terms

	A conjecture on typability
	Type inference in System U-
	Around the conjecture
	Some consequences of the conjecture

	IV Perspectives
	Towards a proof theory of ``uncertain'' proofs
	The why and the how of typing
	A Curry-Howard perspective on System U
	System U- and ``how-proof theory''
	System U- and ``why-proof theory''

	V Appendices
	Properties of System N
	Girard's paradox
	Simulating recursive functions by normal -terms
	A modified HGK-computability
	Recursive functions by normal -terms

	Bibliography

