
i

i

“main” — 2009/2/24 — 11:04 — page i — #1 i

i

i

i

i

i

UNIVERSITÀ DEGLI STUDI

ROMA

TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Interoperability of Semantic
Annotations

Stefano Paolozzi

i

i

“main” — 2009/2/24 — 11:04 — page ii — #2 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page iii — #3 i

i

i

i

i

i

Interoperability of Semantic Annotations

A thesis presented by
Stefano Paolozzi

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

April 2009

i

i

“main” — 2009/2/24 — 11:04 — page iv — #4 i

i

i

i

i

i

Committee:
Prof. Paolo Atzeni

Reviewers:
Prof. Silvana Castano
Prof. Esperanza Marcos

i

i

“main” — 2009/2/24 — 11:04 — page v — #5 i

i

i

i

i

i

To Alessandra, whose strength has always
supported me in this PhD adventure.

i

i

“main” — 2009/2/24 — 11:04 — page vi — #6 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page vii — #7 i

i

i

i

i

i

Abstract

The Semantic Web is the new generation World Wide Web. It extends
the Web by giving information a well defined meaning, allowing it to be pro-
cessed by machines. This vision is going to become reality thanks to a set
of technologies which have been specified and maintained by the World Wide
Web Consortium (W3C), and more and more research efforts from the industry
and the academia. Therefore, the basis for the Semantic Web are computer-
understandable descriptions of resources. We can create such descriptions by
annotating resources with metadata, resulting in “annotations” about that re-
source. Semantic annotation is the creation of metadata and relations between
them with the task of defining new methods of access to information and en-
riching the potentialities of the ones already existent. The main goal is to
have information on the Web, defined in such a way that its meaning could be
explicitly interpreted also by automatic systems, not just by humans.

There is huge amount of interesting and important information represented
through semantic annotations, but there are still a lot of different formalisms
showing a lack of standardization and a consequent need of interoperability.

This growing need of interoperability in this field convinces us to extend
our first proposal, strictly related to database models, in order to address also
semantic annotations. Our proposal, mainly based on Model Management
techniques, focuses on the problem of translating schemas and data between
Semantic Web data models and the integration of those models with databases
models that are a more rigid and well-defined structure.

In this work we underline the main concepts of our approach discussing
a proposal for the implementation of the model management operator Model-
Gen, which translates schemas from one model to another focusing on semantic
annotation context. The approach expresses the translation as Datalog rules
and exposes the source and target of the translation in a generic relational dic-
tionary. This makes the translation transparent, easy to customize and model-
independent. The proposal includes automatic generation of translations as
composition of basic steps.

i

i

“main” — 2009/2/24 — 11:04 — page viii — #8 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page ix — #9 i

i

i

i

i

i

Acknowledgments

I would like to express my deep gratitude to everyone who helped me shape
the ideas explored in this dissertation, either by giving technical advice or
encouraging and supporting my work in many other ways.

I am grateful to Prof. Paolo Atzeni who supervised and guided my work.
He gave me the opportunity to conduct this doctoral research and helped me
make the right decisions.

I would like to thank my colleagues and friends in the Database Groups at
Roma TRE University, in particular to Giorgio and Piero who participated in
this adventure with me.

Finally, I owe very special thanks to my family.

ix

i

i

“main” — 2009/2/24 — 11:04 — page x — #10 i

i

i

i

i

i

Contents

List of Figures xii

1 Introduction 1
1.1 Background and Motivation . 1
1.2 Contribution . 4
1.3 Organization of the Thesis . 4

2 Semantic Annotations 7
2.1 Semantic Annotation - Why . 8
2.2 Semantic Annotation - How . 9
2.3 Semantic Annotations Issues 12
2.4 Discussion . 12

3 The Model Management Approach 15
3.1 Model Management . 15
3.2 Model Independent Schema and Data Translation 18
3.3 Discussion . 24

4 Motivating Scenarios 25
4.1 Interoperability for Semantic Annotation Platforms 25
4.2 NOMOS vs NITE XML Toolkit 28
4.3 RDF vs Topic Maps . 35
4.4 Discussion . 41

5 Bridging the Gap between Semantic Annotations and Databases 43
5.1 Motivation . 43
5.2 Related Work . 46
5.3 Discussion . 47

x

i

i

“main” — 2009/2/24 — 11:04 — page xi — #11 i

i

i

i

i

i

CONTENTS xi

6 OWL and Relational Database Mappings 49
6.1 Towards Ontology and Databases Integration 50
6.2 An Extended Supermodel . 60
6.3 From OWL Ontologies to Relational Databases 65
6.4 From Relational Databases to OWL ontologies 77
6.5 Information Loss . 84
6.6 Discussion . 85

7 A Tool Supporting Semantic Annotation Interoperability 87
7.1 The MIDST Tool . 87
7.2 Experimental Results . 92
7.3 Discussion . 93

Conclusion 95

Appendices 97

A. Datalog Rules for RDB to OWL translations 99

B. Datalog Rules for OWL to RDB translations 111

Bibliography 137

i

i

“main” — 2009/2/24 — 11:04 — page xii — #12 i

i

i

i

i

i

List of Figures

1.1 Correspondences between Model Management and Database termi-
nologies. 3

1.2 Structural organization of the thesis. 6

3.1 A simplified conceptual view of models and constructs. 19
3.2 The relational implementation of the dictionary (portion). 20
3.3 A simple Datalog rule. 23

4.1 Classification of Semantic Annotation Platforms. 26
4.2 The NOMOS Model. 28
4.3 The NXT Model. 29
4.4 The Nomos Metamodel. 30
4.5 The NXT Metamodel. 31
4.6 Correspondence between NOMOS and the supermodel. 33
4.7 Correspondence between NXT and the supermodel. 33
4.8 A simple translation from NXT to NOMOS. 34
4.9 A portion of the supermodel showing the RDF-related metacostructs. 38
4.10 A portion of the supermodel showing the TM-related metacostructs. 39
4.11 A simple RDF graph. 39
4.12 Topic Maps example. 41
4.13 Resulting RDF graph. 41

6.1 Relational Metamodel. 51
6.2 Relational Metamodel in terms of Supermodel metaconstructs. . . 52
6.3 The Semantic Web layer cake. 54
6.4 The main constructs of OWL Lite. 55
6.5 OWL Lite metamodel. 58
6.6 OWL Restriction for RelationshipBetweenClasses construct. 59

xii

i

i

“main” — 2009/2/24 — 11:04 — page xiii — #13 i

i

i

i

i

i

List of Figures xiii

6.7 Correspondences between OWL Lite elements and OWL data model
constructs. 61

6.8 Correspondences between OWL Model and the Supermodel. 62
6.9 A portion of the extended Supermodel. 65
6.10 The translation process. 66
6.11 Dictionary Tables for the OWL Example. 69
6.12 A portion of the Supermodel dictionary. 70
6.13 The inheritance process. 72
6.14 Results of step 5. 74
6.15 Results of step 6. 75
6.16 Translation within the Supermodel. 76
6.17 The resulting relational dictionary. 78
6.18 The resulting relational schema. 79
6.19 The relational schema to be translated. 79
6.20 The “copy” of the relational schema in the Supermodel. 80
6.21 The result of relational schema translation in the Supermodel. . . 82
6.22 Dictionary tables of resulting OWL schema. 83

7.1 Creation of a new construct in a model. 89
7.2 The visualization of the OWL model. 89
7.3 Specification of an OWL restriction through the relationshipBe-

tweenClasses construct. 90
7.4 The import/export tool. 91

i

i

“main” — 2009/2/24 — 11:04 — page xiv — #14 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page 1 — #15 i

i

i

i

i

i

Chapter 1

Introduction

“No matter what it is, there is nothing that cannot be done. If one mani-
fests the determination, he can move heaven and earth as he pleases. But
because man is pluckless, he cannot set his mind to it. Moving heaven
and earth without putting forth effort is simply a matter of concentra-
tion.”

Yamamoto Tsunetomo The way of the Samurai (1716)

1.1 Background and Motivation

Metadata is descriptive information about data and applications. Metadata
is used to specify how data is represented, stored, and transformed, or may
describe interfaces and behaviour of software components.

Metadata-related activities arise in data management, Web site and portal
management, network management, and in various fields of computer-aided
engineering.

Data integration is a main topic in several contexts. Solving a data integra-
tion problem requires the manipulation of metadata that describe the sources
and targets of the integration and mappings between those schemas. Work
on metadata problems goes back to at least the early 1970s, when data trans-
lation was a hot database research topic. However, until recently there was
no widely-accepted conceptual framework for this field, as there is for many
database topics.

The problem of translating schemas between data models is acquiring pro-

1

i

i

“main” — 2009/2/24 — 11:04 — page 2 — #16 i

i

i

i

i

i

2 CHAPTER 1. Introduction

gressive significance in heterogeneous environments. Applications are usually
designed to deal with information represented according to a specific data
model, while the evolution of systems (in databases as well as in other tech-
nology domains, such as the Web) led to the adoption of many representation
paradigms.

Heterogeneity arises because data sources are independently developed by
different people and for different purposes and subsequently need to be inte-
grated. The data sources may use different data models, different schemas, and
different value encodings.

A typical example of such “rich” data sources are semantic annotations
(SA). Semantic annotation is the creation of metadata and relations between
them with the task of defining new methods of access to information and en-
riching the potentialities of the ones already existent. The main goal is to
have information on the Web, defined in such a way that its meaning could be
explicitly interpreted also by automatic systems, not just by human beings.

A key objective of data integration is to provide a uniform view covering a
number of this kind of heterogeneous data sources.

Using such a view, the data that resides at the sources can be accessed in
a uniform way. This data is usually described using database schemas, such as
relational, or XML schemas. To construct a uniform view, source schemas are
matched to identify their similarities and discrepancies. The relevant portions
of schemas are extracted and integrated into a uniform schema. The translation
of data from the representation used at the sources into the representation
conforming to the uniform schema is specified using database transformations.

An interesting research area that has been recently exploited to address
these issues is called model management.

A central concept in generic model management is that of a model. A
model is a formal description of a metadata artifact. Examples of models
include relational database models, ontologies, interface definitions, object dia-
grams, etc. The manipulation of models usually involves designing transforma-
tions between models. Formal descriptions of such transformations are called
mappings. Examples of mappings are SQL views, XSL transformations, ontol-
ogy articulations, mappings between class definitions and relational schemas,
mappings between two versions of a model, etc. The key idea behind model
management is to develop a set of algebraic operators that generalize the trans-
formation operations utilized across various metadata applications. These op-
erators are applied to models and mappings as a whole rather than to their
individual elements, and simplify the programming of metadata applications.

We remark that in this dissertation we use the terms schema and data model

i

i

“main” — 2009/2/24 — 11:04 — page 3 — #17 i

i

i

i

i

i

1.1. Background and Motivation 3MODEL MANAGEMENTMETA-METAMODELMETAMODELMODEL DATABASEMETAMODELMODELSCHEMA
(a) (b)

Figure 1.1: Correspondences between Model Management and Database ter-
minologies.

as common in the database literature, though a recent trend in model manage-
ment follows a different terminology (and uses model instead of schema and
metamodel instead of data model [BM07] [BH07]). Figure 1.1 illustrates the
correspondences between the recent model management terminology (Fig. 1.1a)
and the one used in this dissertation (Fig. 1.1b).

An ambitious goal is to consider translations in a model generic setting
[AT96] [Ber03], where the main problem can be formulated as follows: given
two data models M1 and M2 (from a set of models of interest) and a schema
S1 of M1, translate S1 into a schema S2 of M2 that properly represents S1.

Our first work was specifically oriented to database model transforma-
tions [ACB06] [ACB05]. However the never-ending spread of Semantic Web
models is bringing new integration problems.

The Semantic Web comes from the idea of Tim Berners-Lee [BLHL01] that
the Web as a whole can be made more intelligent and perhaps even intuitive
about how to serve a users needs. Although search engines index much of the
Web’s content, they have little ability to select the pages that a user really
wants or needs. Berners-Lee foresees a number of ways in which developers
and authors, singly or in collaborations, can use self-descriptions and other
techniques so that the context-understanding programs can selectively find
what users want. The Semantic Web is specifically a Web of machine-readable
information whose meaning is well-defined by standards: it absolutely needs the
interoperable infrastructure that only global standard protocols can provide.

This need of interoperability convinces us to extend our first proposal, that
was strictly related to database models, to address also Semantic Web models
and in particular those models related to the wide research area of semantic

i

i

“main” — 2009/2/24 — 11:04 — page 4 — #18 i

i

i

i

i

i

4 CHAPTER 1. Introduction

annotations.
This dissertation focuses on the problem of translating schemas and data

between Semantic Web data models and the integration of those models with
databases models that have a more rigid and well-defined structure.

1.2 Contribution

The main contributions of this thesis that is a part of a research project at
Roma Tre University I have contributed are:

• the adoption of a general model to properly represent a broad range
of data models. The proposed general model is based on the idea of
construct : a construct represents a “structural” concept of a data model.
We find out a construct for each “structural” concept of every considered
data model and, hence, a data model can be completely represented by
means of its constructs set.

• the extension of the general model approach to properly represent all
(ideally) Semantic Web data models with particular attention to seman-
tic annotation models. For each model, we explain how its concepts are
represented by means of constructs and relationships between them. Sev-
eral semantic annotation formalisms have been considered (RDF, Topic
Maps, OWL, etc.) jointly with several SA platforms models.

• the definition of a set of brand new Datalog-like rules to perform the
translation between semantic annotation models an the integration of
those models and data in databases.

• the implementation of a flexible framework that allows to validate the
concepts of the approach and to test their effectiveness. The main com-
ponents of the tool, include a set of modules to support users in defining
and managing models, schemas, Skolem functions, translations, import
and export of schemas.

1.3 Organization of the Thesis

The thesis is organized into five main parts with several chapters each. Fig-
ure 1.2 shows the relations between these parts and chapters. The arrows
indicate the suggested path for reading.

i

i

“main” — 2009/2/24 — 11:04 — page 5 — #19 i

i

i

i

i

i

1.3. Organization of the Thesis 5

In Part I: Background, the first chapter introduces and motivates the pre-
sented research issues. Chapter 2.4 covers the needed background and basic
concepts of semantic annotations.

Part II: Semantic Annotations Interoperability starts with Chapter 3.3 de-
scribing the basics of our approach, exploiting Model Management techniques.
Chapter 4.4 illustrates a first application of our approach for semantic annota-
tion interoperability at two different levels, namely the platform level and the
language level. Chapters 5.3 and 6.6 cover the extension of the approach to
manage the integration of semantic annotations, defined by means of ontolo-
gies, and databases. In these chapters we supply an in-depth description of our
methodology.

Part III: Implementation presents the implemented tool to realize semantic
annotation interoperability.

Part IV: Discussion points out the scientific contributions, concludes the
work and discusses further research opportunities.

Part V: Appendices contains additional material like the mapping rules used
to perform translation between different semantic annotation models.

i

i

“main” — 2009/2/24 — 11:04 — page 6 — #20 i

i

i

i

i

i

6 CHAPTER 1. Introduction

Pa
rt I

 - B
ac

kg
rou

nd

Th
e M

od
el

Ma
na

ge
m

en
t A

pp
ro

ac
h

1.
 In

tro
du

ct
io

n
2.

 S
em

an
tic

 A
nn

ot
at

io
ns

Pa
rt I

I -
 Se

ma
nti

c A
nn

ota
tio

ns
 In

ter
op

era
bil

ity

4.
 M

ot
iva

tin
g

Sc
en

ar
io

s
5.
 B
rid

gi
ng

 th
e g

ap
 b
et
we

en
 S
em

an
tic

An
no

ta
tio

ns
 a
nd

 D
at
ab

as
es

6.
 O
W
L a

nd
 R
el
at
io
na

l D
at
ab

as
e

Ma
pp

in
gs

Pa
rt I

II
- I

mp
lem

en
tat

ion
7.
 A
 T
oo

l S
up

po
rti
ng

 S
em

an
tic

An
no

ta
tio

n
In
te
ro
pe

ra
bi
lit
y

Pa
rt I

V -
 D

isc
us

sio
n

8.
 C

on
clu

sio
n

Pa
rt V

 - A
pp

en
dic

es

(A
)D

at
alo

g R
ul

es
 fo

rR
DB

 to
 O

W
L

Tr
an

sla
tio

ns

(B
)D

at
alo

g R
ul

es
 fo

r O
W

L t
oR

DB
Tr

an
sla

tio
ns

Figure 1.2: Structural organization of the thesis.

i

i

“main” — 2009/2/24 — 11:04 — page 7 — #21 i

i

i

i

i

i

Chapter 2

Semantic Annotations

Semantic annotation can play a significant role in the broad area of the
Semantic Web. Indeed, using metadata that describes the content of
resources, is the way to perform operations, such as rich searching and
retrieval, over those resources. In addition, if rich semantic metadata
is supplied, those agents can then employ reasoning over the metadata,
enhancing their processing power. The main idea of this approach is the
provision of semantic annotations, both through automatic and human
means. In this section we describe semantic annotations showing the
main characteristics and underlining the open issues.

The Semantic Web vision, as proposed by Tim Berners-Lee [BL99], regards a
Web in which resources are accessible not only to humans, but also to machines
(e.g. computers, automated process roaming the Web, etc.). The automation
of tasks depends on elevating the status of the Web from machine-readable to
something we might call machine-understandable. The key idea is to have data
on the Web defined and linked in such a way that its meaning is explicitly inter-
pretable by software processes rather than just being implicitly interpretable
by human beings [BCG+02].

To realize this vision, it will be necessary to associate metadata (i.e., data
“about” data) with Web resources. One useful mechanism for associating such
metadata is annotation. Indeed, most of the information currently available on
the Web was produced to be used by people and it is therefore hardly suitable

7

i

i

“main” — 2009/2/24 — 11:04 — page 8 — #22 i

i

i

i

i

i

8 CHAPTER 2. Semantic Annotations

for automatic processing, with “anonymous syntax” rather than “explicit se-
mantic”. Semantic annotation refers to the use of metadata for the description
of Web resources, and the term is used to indicate both the metadata itself and
the process that produces the metadata [Han05].

Semantic annotations are used to enrich the informative content of Web
documents and to express in more formal way the meaning of a resource. The
result is Web pages with machine interpretable mark-up that provide the source
material with which agents and Semantic Web services operate. The goal is to
create annotations with well-defined semantics, however those semantics may
be defined.

2.1 Semantic Annotation - Why

The importance of semantic annotations relies on the capability to make the
content of those annotations from human-readable to machine-readable. Con-
sequently, applications can use those information and reason from them.

Manual annotation is more easily to perform, using available authoring tools
for simultaneously authoring and annotating text. However, human annotation
is often a complex and error-prone operation due to several factors, such as:
i) annotator familiarity with the domain; ii) amount of training; iii) personal
motivation and iv) complex schemas [BG03]. Manual annotation is also an
expensive process, and often does not consider that multiple perspectives of a
data source can be particularly useful to support the needs of different users. A
typical example is a vision-impaired user who can use annotations to improve
Web sites navigation [YHGS03]. Another problem with manual annotation is
the huge amount of existing contents on the Web that must be annotated in
order to be effectively used as a part of the Semantic Web. For this reason we
can assert that manual semantic annotation has lead to a knowledge acquisition
bottleneck [MS01].

To overcome the limitation of manual annotation, semi-automatic anno-
tation of contents has been proposed. We refer to semi-automatic means, as
opposed to completely automatic, because it is not possible yet to identify and
classify all entities in source documents in a total automatic way. Indeed, all
existing semantic annotation systems are based on human intervention during
the annotation process, using the paradigm of balanced cooperative model-
ing [MS01]. Automated annotation provides the scalability needed to annotate
existing documents on the Web and reduces the complexity in annotating new
resources.

i

i

“main” — 2009/2/24 — 11:04 — page 9 — #23 i

i

i

i

i

i

2.2. Semantic Annotation - How 9

2.2 Semantic Annotation - How

A semantic annotation method is characterized by a number of features, such
as the level of formality or the intended usage, that determine the kind of
annotation that can be performed. We briefly illustrate six key features and,
for each of them, examples of semantic annotation tools that cover such features
are given.

Kind of Resource to be Annotated

Different annotation tools may be used to add semantics to various kinds of
resources with the purpose of increasing their information content, for example:
documents corpora or part of them, Web pages, multimedia contents (images,
audio/video, etc.) or e-mails. One of the tool that supports such kind of
annotation is MnM [VVMD+02b].

Other kinds of resources that can be annotated are the Web services. In
this case, input and output parameters, but also pre-conditions and effects
that characterize a Web service could be annotated, to obtain their formal
description. Examples of tools that allow to annotate Web services are: IRS II
([MDCG03]) and METEOR-S ([POSV04] [SGR08]), that also uses SAWSDL,
the new W3C standard for describing Semantic Web Services [KVBF07].

Also data schemas can be annotated just like annotation of such structures
can be used for addressing interoperability problems among heterogeneous soft-
ware applications, in order to resolve their semantic clashes.

Target User

Annotations may be conceived for human users or processed by a machine. In
a human-oriented semantic annotation, the content of the resource is generally
represented in a descriptive way. On the other side, in a machine-oriented
annotation, the conceptual content of the resource is generally represented in
a formal way. For instance, Annotea provides a framework for human-oriented
annotations [KKPS02] [SHN07], while AeroDAML [Kog01a] provides machine-
oriented annotations.

Machine-oriented tools can be further categorized into two different cate-
gories:

• systems that need to be used by knowledge engineers (people that are
aware of formal languages)

i

i

“main” — 2009/2/24 — 11:04 — page 10 — #24 i

i

i

i

i

i

10 CHAPTER 2. Semantic Annotations

• systems that can be used by domain experts (people that are aware of
the application domain)

Typical examples of the first category tools are: MnM, Cohse [BHS04]
and SMORE [KGHP]. An example of tool for the second category is RAT-
O [MKH03].

Level of Formality

An annotation attaches some data to some other data: it establishes, within
some context, a (typed) relation between the annotated data and the annotat-
ing data.

We distinguish three levels of formality: informal, formal and ontological.
Informal annotations are not machine-understandable because they do not use
a formal language. Formal annotations are machine-understandable, but do
not use ontological terms. In ontological annotations the terminology has a
commonly understood meaning that corresponds to a shared conceptualization
of a particular domain (i.e. an ontology [Gru95]).

An informal annotation can be a phrase expressed in natural or controlled
language (such as CLCE 1).

Formal annotations have formally defined constituents and are machine-
readable. In this case an annotation can be defined with languages such as
XML.

Ontological annotation consists in an expression of a knowledge represen-
tation language (e.g. RDF(S), DAML 2, DAML+OIL 3 or OWL 4).

For instance, OntoMat-Annotizer [HSC02] [HSV03] and NOMOS [NG06]
allow to define ontological annotations, while Annotea allows to define informal
annotations.

Terminology Restriction

The language used to annotate a resource can be used in the following ways:

1Common Logic Controlled English (CLCE) is a formal language with an English-like
syntax. Anyone who can read ordinary English can read sentences in CLCE with little or
no training. Writing CLCE, however, requires practice in learning to stay within its syn-
tactic and semantic limitations. Formally, CLCE supports full first-order logic with equality
supplemented with an ontology for sets, sequences, and integers.

2DAML: http://www.daml.org/2000/10/daml-ont.html
3http://www.ontoknowledge.org/oil/
4OWL: Ontology Web Language, http://www.w3.org/TR/owl-features/

i

i

“main” — 2009/2/24 — 11:04 — page 11 — #25 i

i

i

i

i

i

2.2. Semantic Annotation - How 11

• without restriction: the terms that appear in the annotation expression
can be arbitrarily chosen among all the terms of the natural language

• suggested restriction: a restricted set of terms to be used for the semantic
annotation are submitted to the annotator. This set could be composed
from the terms of a glossary, a taxonomy, or a domain ontology. The an-
notator has an additional possibility of inserting further natural language
terms to express concepts not included in the proposed set.

• strict restriction: the annotator must use, in the composition of the se-
mantic annotation expression, only terms included in a glossary, or in a
reference ontology (for ontology-based annotation).

For example, Annotea allows to attach a free text annotation to a resource,
while MnM, allows suggested language restriction. Finally, OntoMat-Annotizer
and AeroDAML represent ontology-based annotations.

Position of Annotation

An annotation expression can be embedded in the body of the resource or
attached to it.

In the first situation the annotator has to modify the original document
in order to perform the annotation. In a different manner he can work on a
local copy of the document, but he will lose the possibility to make his/her
annotations available to other users.

If the annotation is attached, it is separately stored and linked to the anno-
tated resource via a pointer. In this case one must keep the reference pointer
always updated with the effective document location, to preserve a meaningful
annotation. For instance, in MnM we have embedded annotations, while in
Chose we have attached annotations.

Context

It indicates the context of the annotation: when it was made, by whom, and
within what scope. The annotation could, for example, be temporally scoped
(it is only valid in 2008) or even spatially scoped (it is only valid in Japan).
If the annotation is not about a document, then the context could also be the
document the annotation is derived from.

i

i

“main” — 2009/2/24 — 11:04 — page 12 — #26 i

i

i

i

i

i

12 CHAPTER 2. Semantic Annotations

Granularity

This criteria (also called “scope” [SP05] or “lexical span” [MTP06]) illustrates
the possibility to annotate a resource at different levels. Considering a tex-
tual document as an example of resource, it is possible to annotate the entire
document, a phrase in the document or even a particular word.

2.3 Semantic Annotations Issues

The evidence of the increasing interest in semantic annotations is also the
relevant number of tools developed in the last years. Several issues have been
addressed in this context, mainly concerning:

• Efficiency

• Scalability

• Flexibility

• Interoperability

Remarkable importance is covered by semantic interoperability, because it
introduces notable challenges. The semantic interoperability is, in general, the
ability to share the “meaning” of available information and of the applications
built on them. From the semantic annotations point of view, this opens the
possibility of operating with heterogenous resources by providing a bridge of
common techniques and methods.

However, several approaches exist to create and manage semantic anno-
tations, but, currently there is no formal model that can capture all these
approaches. The lack of such a model causes additional problems. Indeed
it complicates the comparison and evaluation of tools and, more important,
makes integration of annotations difficult.

Our approach focuses on this problem defining a formal way to solve se-
mantic interoperability for semantic annotations exploiting model management
techniques.

2.4 Discussion

Semantic annotation is information about which entities (or, more generally,
semantic features) appear in a resource and where they do. Formally, semantic

i

i

“main” — 2009/2/24 — 11:04 — page 13 — #27 i

i

i

i

i

i

2.4. Discussion 13

annotations represent a specific sort of metadata, which provides references to
entities in the form of URIs or other types of unique identifiers.

In this section we describe the fundamentals of semantic annotations also
showing the main research directions. In the next sections we present the
focus of this dissertation that is the study of interoperability and integration
of semantic annotations.

i

i

“main” — 2009/2/24 — 11:04 — page 14 — #28 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page 15 — #29 i

i

i

i

i

i

Chapter 3

The Model Management
Approach

Model management is a new approach to meta data management that of-
fers a higher level programming interface than current techniques. The
main abstractions are models (e.g., schemas, interface definitions) and
mappings between models. It treats these abstractions as bulk objects and
offers such operators as Match, Merge, Diff, Compose, Apply, and Mod-
elGen. In this chapter we describe the principles of Model Management
and how these techniques can be exploited to manage interoperability be-
tween heterogeneous models.

3.1 Model Management

Many information system problems involve the design, integration and mainte-
nance of complex application artifacts, such as application programs, databases,
Web sites, workflow scripts, formatted messages, and user interfaces. Engineers
who perform this work use tools to manipulate formal descriptions, or mod-
els, of these artifacts, such as object diagrams, interface definitions, database
schemas, Web site layouts, control flow diagrams, XML schemas and form defi-
nitions. This manipulation usually involves designing transformations between
models, which in turn require an explicit representation of mappings, which
describes how two models are related to each other.

15

i

i

“main” — 2009/2/24 — 11:04 — page 16 — #30 i

i

i

i

i

i

16 CHAPTER 3. The Model Management Approach

To address these issues, Bernstein et al. [Ber03] [BHP00] [Mel04] outlined
an environment to support development of metadata intensive applications in
different domains. They called the framework model management.

Model management is a generic approach to solve problems of data pro-
grammability where precisely engineered mappings are required. Applications
include data warehousing, e-commerce, object-to-relational wrappers, enter-
prise information integration, database portals, and report generators.

A first class citizen of this approach is the model. A model is a formal
description of a metadata artifact. Examples of models include databases and
XML schemas, interface specifications, object diagrams, UML-like diagrams,
device models, form definitions and also ontologies. In this work we use a
terminology that differs from the traditional one (which is adopted also by
OMG [OMG05] [OMG06]), indeed we use a database-like terminology, where
a schema is the description of the structure of the database and a data model
(briefly, a model) is a set of constructs you are allowed to use to define your
schemas; with this terminology, examples of models are the relational one or
(any variation of) the ER one. Bernstein [Ber03] uses the term model for what
we call schema and metamodel for what we call model. As a higher level is
also needed in this framework, then we will have a metamodel as well, which
he would call metametamodel.

We want to remark that in this dissertation we use the terms schema and
data model as commonly used in the database literature, though a recent trend
in model management follows a different terminology (and uses model instead
of schema and metamodel instead of data model).

The manipulation of schemas usually involves designing transformations
between them: formal descriptions of such transformations are called schema
mappings or, more simply, mappings. Examples of mappings are SQL views,
XQuery scripts, ontology articulations, mappings between class definitions and
relational schemas, mappings between two versions of a model, mappings be-
tween a Web page and the underlying database and many others.

The main idea behind model management is to develop a set of algebraic
operators that generalize the transformations across various metadata applica-
tions. These operators are applied to schemas and mappings as key elements,
rather than to their individual elements, and are generic; they can be used for
various problems and different kinds of metadata artifacts. The most important
model management operators are:

• Match - which takes as input two schemas and (automatically) returns a
mapping between them. The mapping identifies combinations of objects

i

i

“main” — 2009/2/24 — 11:04 — page 17 — #31 i

i

i

i

i

i

3.1. Model Management 17

in the input schemas that are either equal or similar, based on some
externally provided definition of equality and similarity.

• Compose - which takes as input two mappings between schemas and
returns a mapping that combines the two mappings.

• Extract - which takes as input a schema and a mapping and returns the
subsets of the schema involved in the mapping.

• Merge - which takes as input two schemas and returns a schema that cor-
responds to their “union” and two mappings between the original schemas
and the output schema. In other terms, the Merge operation returns a
copy of all objects of the input schemas, except that objects of the input
schemas that are collapsed into a single object in the output.

• Diff - which tales as input a schema and a mapping and returns the
subset of the schema that does not participate in the mapping.

• ModelGen - which takes as input a schema for a source model and a
target model and returns the translation of the schema into the target
model.

Model management operators can be used for solving schema evolution,
data integration and other complex problems using convenient programs ex-
ecuted by a model management system. A generic model management sys-
tem may improve productivity for metadata-intensive application. Some of
the most crucial questions on model management [BHJ+00] have been an-
swered recently. For example, a formal semantics has been given to most
of the aforementioned operators (e.g. Merge [PVM+02] [PB03], Compose
[MH03] [FKPT05] [NBM07] [BGMN08], Match [MBR01] [PVM+02]), but some
questions are still open. The most interesting researches are now related to the
ModelGen operator. Indeed there are few implementations of a general Mod-
elGen operator that are able to translate schemas between several data models
and that also consider the transformation of the instances. The reason is due to
the lack of rigorous semantics that explains what outputs should be produced
given a schema with its constraints. Moreover, if we consider less structured
data models such as the ones from Semantic Web (e.g. RDF, TopicMpas,
OWL, etc.) these problems become even more complex. This is particularly
due to the fact that, in these models, schema and instances coexist with no
clear distinction between them.

i

i

“main” — 2009/2/24 — 11:04 — page 18 — #32 i

i

i

i

i

i

18 CHAPTER 3. The Model Management Approach

3.2 Model Independent Schema and Data Translation

In this scenario, I have contributed to a large research project at Roma Tre
University whose goal is to develop a tool supporting the transformation of
schema and data among a large variety of formats and data models.

In this section we describe the fundamentals of our MIDST (Model Inde-
pendent Schema and Data Translation) approach.

Our approach is based on the idea of a metamodel, defined as a set of
constructs that can be used to define models, which are instances of the meta-
model. This idea is based on Hull and Kings observation [HK87] that the
constructs used in most known models can be expressed by a limited set of
generic (i.e., model-independent) metaconstructs: lexical, abstract, aggrega-
tion, generalization, function. In fact, we define a metamodel by means of a
set of generic metaconstructs [AT93]. Each model is defined by its constructs
and the metaconstructs they refer to.

The various constructs are related to one another by means of references
(for example, each attribute of an abstract has a reference to the abstract it
belongs to) and have properties that specify details of interest (for example,
for each attribute we specify whether it is part of the identifier and for each
aggregation of abstracts we specify its cardinalities).

A major concept in our approach is the supermodel, a model that has con-
structs corresponding to all the metaconstructs known to the system. Thus,
each model is a specialization of the supermodel and a schema in any model
is also a schema in the supermodel, apart from the specific names used for
constructs.

The supermodel gives us two interesting benefits. First of all, it acts like
a “pivot” model, so that it is sufficient to have translations from each model
to and from the supermodel, rather than translations for every couple of mod-
els. Therefore a linear, and not a quadratic, number of translations is needed.
Indeed, since every schema in any model is also a schema of the supermodel
(without considering constructs renaming), the only needed translations are
those within the supermodel with the target model in mind. A translation is
composed of (i) a “copy” (with construct renaming) from the source model into
the supermodel; (ii) an actual transformation within the supermodel, whose
output includes only constructs allowed in the target model; (iii) another copy
(again with renaming into the target model). The second advantage is related
to the fact that the supermodel emphasizes the common features of models.
Therefore, if two source models share a construct, then their translations to-
wards similar target models could share a portion of the translation as well.

i

i

“main” — 2009/2/24 — 11:04 — page 19 — #33 i

i

i

i

i

i

3.2. Model Independent Schema and Data Translation 19

MODEL CONSTRUCT SM-CONSTRUCT(0,N) (1,1) (1,1) (0,N)

MODELS SUPERMODEL
Figure 3.1: A simplified conceptual view of models and constructs.

In our approach, we follow this observation by defining elementary (or basic)
translations that refer to single constructs (or even specific variants thereof).
Then, actual translations are specified as compositions of basic ones, with sig-
nificant reuse of them.

A conceptual view of the main elements of this idea is shown in Figure 3.1.
The supermodel portion is predefined, but can be extended, whereas models
are defined by specifying their respective constructs, where each of them refers
to a construct of the supermodel (sm-Construct) and so to a metaconstruct.

It is important to observe that our approach is independent of the specific
supermodel that is adopted, as new metaconstructs and so sm-Constructs
can be added.

All the information about models and schemas is maintained in a dictionary
that we have defined in a relational implementation. In Figure 3.2 we show the
relational implementation of a portion of the dictionary that we used in our
tool.

The actual implementation has more tables and more columns for each of
them. We concentrate on the fundamentals omitting marginal details. The
sm-Construct table shows (a subset of) the generic constructs (which cor-
respond to the metaconstructs). We have for example: Abstract, Lexical,
BinaryAggregationOfAbstracts, etc.

Each construct in the Construct table refers to an sm-Construct (by
means of the sm-Constr column whose values contain foreign keys of sm-
Construct) and to a model (by means of Model). For example, the third
row in table Construct has value “mc003” for sm-Constr, in order to spec-
ify that “BinaryRelationship” is a construct (of the “ER” model, as indicated
by value “m001” in the Model column) that refers to the “BinaryAggrega-
tionOfAbstract” sm-Construct.

Tables sm-Property and sm-Reference describe, at the supermodel
level, the main features of constructs, properties and relationships among

i

i

“main” — 2009/2/24 — 11:04 — page 20 — #34 i

i

i

i

i

i

20 CHAPTER 3. The Model Management Approach

SM-CONSTRUCT LexicalAbstractBynaryAggregationOfAbstractAbstractAttribute... truefalsefalsefalse...mc002mc001mc003mc004...
OID sm-C-Name isLex

SM-PROPERTYLex-NameAbs-NameIsIdIsFunctional1mp002mp001mp003mp004mp005
OID sm-P-Name Typesm-Constr

IsFunctional2 mc002mc001mc003mc004mc005 stringstringboolboolbool
SM-REFERENCEAbstract001AbstractAbstract002mr002mr001mr003OID sm-P-Name sm-Constr...... ... sm-ConstrTomc003mc002mc003 ...mc001mc001mc001

MODEL OODBERm002m001OID M-Name... ... CONSTRUCTAttributeOfEntityEntityBinaryRelationshipClassco002co001co003co004co005
OID C-Name sm-ConstrModel

Field... ... m001m001m001m002m002... mc002mc001mc003mc001mc002...PROPERTY Att-NameEnt-NameIsKeyIsFunctional1pr002pr001pr003pr004pr005
OID P-Name TypeConstr

IsFunctional2... ... co002co001co002co003co003... stringstringboolboolbool...
sm-Propmp002mp001mp003mp004mp005...Fi-NameCl-NameIsIdpr010pr009pr011 co005co004co005 stringstringbool mp002mp001mp003...

REFERENCE Entity1EntityEntity2ref002ref001ref003OID R-Name ConstrToConstr... ... co003co002co003... co001co001co001... sm-Refmr002mr001mr003...Classref009 co005 co004 mr001...

SUPERMODELMODELS

Figure 3.2: The relational implementation of the dictionary (portion).

i

i

“main” — 2009/2/24 — 11:04 — page 21 — #35 i

i

i

i

i

i

3.2. Model Independent Schema and Data Translation 21

them. Each sm-Construct has some associated properties, described by sm-
Property, which will then require values for each instance of each construct
corresponding to it. For example, the second row of sm-Property describes
the fact that each “Abstract” (mc002) has a “Lex-Name” of “string” type,
whereas the third says that for each “Lexical” (mc002) we can specify whether
it is part of the identifier of the “Abstract” or not (property “IsId”). Cor-
respondingly, at the model level, we have that for each “AttributeOfEntity”
we can tell whether it is part of the key (third row in table Property). In
the latter case the property has a different name (“IsKey” rather than “IsId”).
Other interesting properties are specified in the fourth and fifth rows of sm-
Property. They allow for the specification of cardinalities of binary aggrega-
tions by saying whether the participation of an abstract is “functional” or not:
a many-to-many relationship will have two false values, a one-to-one, two true
ones and a one-to-many, a true and a false.

Table sm-Reference describes how each sm-Construct is related to an-
other by specifying the references between them. For example, the second and
the third row of sm-Reference tells us that each “BinaryAggregationOfAb-
stract” (construct mc003) involves two “Abstract” constructs (mc001). Again,
we have the issue repeated at the model level as well: the first row in table Ref-
erence specifies that “AttributeOfEntity” (construct “c002”, corresponding
to the “Lexical” sm-Construct) has a reference to “c001” (“Entity”).

The supermodel part (in the upper part of Figure 3.2) is the core of the
dictionary; it is predefined (but can be extended) and used as the basis for
the definition of specific models. Essentially, the dictionary is initialized with
the available sm-Construct, with their properties and references. Initially,
the model-specific part of the dictionary is empty and then individual models
can be defined by specifying the constructs they include by referring to the
sm-Construct they refer to. In this way, the model part (in the lower part of
Figure 3.2) is populated with rows that correspond to those in the supermodel
part, except for the specific names, such as “Entity” or “AttributeOfEntity”,
which are model specific names for the sm-Constructs “Abstract” and “Lex-
ical” respectively. This structure causes some redundancy between the two
portions of the dictionary, but this is not a great problem, as the model part
is generated automatically: the definition of a model can be seen as a list of
supermodel constructs, each with a specific name.

i

i

“main” — 2009/2/24 — 11:04 — page 22 — #36 i

i

i

i

i

i

22 CHAPTER 3. The Model Management Approach

Basic Translations

In the current implementation of MIDST tool, translations are implemented
by means of Datalog-variant rules with OID invention, where the latter feature
is obtained through the use of Skolem functors [HY90]. This technique has
several advantages:

• rules are independent of the main engine that interprets them, enabling
rapid development of translations;

• the system itself can verify basic properties of sets of transformations
(e.g., some form of correctness) by reasoning about the bodies and heads
of Datalog rules [AGC08];

• transformations can be easily customized. For example, it is possible to
add “selection condition” that specifies the schema elements to which a
transformation is applied.

Another benefit of using Skolem functors is that their values can be stored
in the dictionary and used to represent the mappings from a source to a target
schema.

Each translation is usually concerned with a very specific task, such as
eliminating a certain variant of a construct (possibly introducing another con-
struct), with most of the constructs left unchanged. Therefore, in our programs
only a few of the rules concerns real translations, whereas most of them just
copy constructs from the source schema to the target one.

We use a non-positional notation for rules, so we indicate the names of
the fields and omit those that are not needed (rather than using anonymous
variables). Our rules generate constructs for a target schema (tgt) from those
in a source schema (src). We may assume that variables tgt and src are bound
to constants when the rule is executed. Each predicate has an OID argument.
For each schema we have a different set of identifiers for the constructs. So,
when a construct is produced by a rule, it has to have a “new” identifier.
It is generated by means of a Skolem functor, denoted by the # sign in the
rules. An example of rule is presented in Figure 3.3. This rule generates a new
Abstract for each Abstract in the source schema.

We have the following restrictions on our rules. First, we have the standard
“safety” requirements [UW97]: the literal in the head must have all fields,
and each of them with a constant or a variable that appears in the body (in
a positive literal) or a Skolem term. Similarly, all Skolem terms in the head
or in the body have arguments that are constants or variables that appear in

i

i

“main” — 2009/2/24 — 11:04 — page 23 — #37 i

i

i

i

i

i

3.2. Model Independent Schema and Data Translation 23

Abstract(
OID:#abstract 0(absOid),
Abs-Name: name
Schema: tgt)

←
Abstract(

OID: absOid ,
Abs-Name: name
Schema: src)

Figure 3.3: A simple Datalog rule.

the body. Moreover, our Datalog programs are assumed to be coherent with
respect to referential constraints: if there is a rule that produces a construct
C that refers to a construct CO, then there is another rule that generates a
suitable CO that guarantees the satisfaction of the constraint.

Most of our rules are recursive according to the standard definition. How-
ever, recursion is only “apparent”. A really recursive application happens only
for rules that have atoms that refer to the target schema also in their body. In
our experiments, we have developed a set of basic translations to handle the
models that can be defined with our current metamodel.

More Complex Translations

Intuitively, complex translations can be performed by means of composition of
basic rules as clearly described in [ACT+08].

However, with many possible models and many basic translations, it be-
comes important to understand how to find a suitable translation given a source
and a target model. In this context we can find two main problems. The first
one is how to verify what target model is generated by applying a basic step
to a source model. The second problem is related to the “size” of the trans-
lations: due to the number of constructs and properties, we have too many
models (a combinatorial explosion of them, if the variants of constructs grow)
and it would be inefficient to find all associations between basic translations
and pairs of models.

We propose a complete solution to the first issue, as follows. We associate

i

i

“main” — 2009/2/24 — 11:04 — page 24 — #38 i

i

i

i

i

i

24 CHAPTER 3. The Model Management Approach

a concise description with each model, by indicating the constructs it involves
with the associated properties (described in terms of propositional formulas),
and a signature with each basic translation. Then, a notion of application
of a signature to a model description allows us to obtain the description of
the target model. With our basic translations written in a Datalog dialect
with OID-invention, as we will see shortly, it turns out that signatures can
be automatically generated and the application of signature gives an exact
description of the target model.

With respect to the second issue, the complexity of the problem cannot
be completely avoided, but we have defined algorithms that, under reasonable
hypotheses, efficiently find a complex translation given a pair of models (source
and target) (for more detail about complex translations see [ACT+08]).

3.3 Discussion

In this section we present the fundamentals of our approach to schema and
data interoperability. We have exploited model management techniques in
order to develop a tool that supports model-generic translation of schemas:
given a source schema S

′
expressed in a source model and a target model TM ,

it generates a schema S
′′

expressed in TM that is “equivalent” to S
′
. The

approach expresses the translation as Datalog rules and exposes the source
and target of the translation in a generic relational dictionary. This makes the
translation transparent, easy to customize and model-independent.

In the next sections we describe how this approach can be extended to
manage the interoperability of Semantic Annotations and their integration in
relational databases.

i

i

“main” — 2009/2/24 — 11:04 — page 25 — #39 i

i

i

i

i

i

Chapter 4

Motivating Scenarios

Interoperability is the “ability of two or more systems or components
to exchange information and to use the information that has been ex-
changed”. In this section we describe two interesting interoperability
contexts in which our approach can be successfully used. The first one
regards interoperability at system levels, the second one is instead based
on the language level.

The goal of semantic interoperability is to allow the (seamless) cooperation
of two software applications that were not initially developed for this purpose.
The cooperation will be possible without requiring the software applications to
modify their software or their data organization. Semantic interoperability, in
a broad vision, concerns process and information interoperability.

4.1 Interoperability for Semantic Annotation Platforms

The existence of various semantic annotation platforms (SAP) is interesting
but, at the same time, gives rise to a difficulty, as the various tools have been
developed independently from one another, and so it can become difficult to
take advantage of annotations produced in different environments. Indeed,
we have here an “interoperability” problem, similar to those we encounter in
various information systems or database areas. Here interoperability refers to
the possibility of sharing and exchanging annotations between different SAPs.

25

i

i

“main” — 2009/2/24 — 11:04 — page 26 — #40 i

i

i

i

i

i

26 CHAPTER 4. Motivating Scenarios

Discovery Rules Probabilistic InductionJava Annotation Pattern EngineTaxnomy labelmatching
Multistrategy

Pattern-based Machine learning-basedSeed expansion Hidden Markov ModelsN-gram analysis LinguisticStructural
Figure 4.1: Classification of Semantic Annotation Platforms.

SAPs can be classified on the basis of the annotation method used. There
are two primary categories, Pattern-based and Machine Learning-based, as
shown in Figure 4.1. In addition, platforms can use methods from both types
of categories, called Multistrategy, in order to take advantage of the strengths,
and compensate for the weaknesses of the methods in each category.

In order to exploit our approach to SAPs, we have analyzed several ap-
plications that are related to current research projects. We present the most
remarkable in the following.

AeroDAML

AeroDAML [Kog01b] is an annotation tool which applies information extrac-
tion techniques to automatically generate DAML annotations from Web pages.
The aim is to provide naive users with a simple tool to create basic annotations
without having to learn about ontologies, in order to reduce time and effort
and to encourage people to semantically annotate their documents. Aero-
DAML links most proper nouns and common types of relations with classes
and properties in a DAML ontology.

Amilcare

Amilcare [CW03] is a system which has been integrated in several different
annotation tools for the Semantic Web. It uses machine learning to learn to
adapt to new domains and applications using only a set of annotated texts

i

i

“main” — 2009/2/24 — 11:04 — page 27 — #41 i

i

i

i

i

i

4.1. Interoperability for Semantic Annotation Platforms 27

(training data). It has been adapted for use in the Semantic Web by simply
monitoring the kinds of annotations produced by the user in training, and
learning how to reproduce them. The traditional version of Amilcare adds
XML annotations to documents (inline markup); the Semantic Web version
leaves the original text unchanged and produces the extracted information as
triples of the form 〈annotation, startPosition, endPositioni〉.

MnM

MnM [VvMD+02a] is a semantic annotation tool which provides support for an-
notating Web pages with semantic metadata. This support is semi-automatic,
in that the user must provide some initial training information by manually
annotating documents. It integrates a Web browser, an ontology editor, and it
is Web-based and provides facilities for large-scale semantic annotation of Web
pages.

NOMOS

NOMOS (aNnotation Of Media with Ontological Structure) is a platform for
ontology-based semantic annotation of multimedia objects, developed at Stan-
ford University Laboratories [NG06] [GNP]. Ontologies are specified in a for-
mal way in OWL; this gives a rich meaning to the annotations and provides
inference capabilities which enhance the annotation process as well as the anno-
tations in many useful ways. NOMOS ontologies (or more precisely the termi-
nological components of these ontologies) are used as high level schemas for an-
notations. In particular NOMOS has a reference ontology (called corpora 2 0)
which is predefined, but can be extended. The reference ontology is based on
abstract data definition such as: event, entity, relations, etc., which represent
basic non-modifiable concepts.

NITE XML Toolkit

The NITE XML Toolkit (NXT) is an open source software tool for working
with language corpora, within the meetings domain [JSUJ06]. It is designed
to support the needs of human analysts as they work with a corpus, for tasks
such as hand-annotation, automatic annotation where that relies on complex
match patterns, data exploration, etc. NXT data model and query language are
oriented toward those users who build descriptive analysis of heavily annotated
multimodal corpora in preparation for defining appropriate statistical models.

i

i

“main” — 2009/2/24 — 11:04 — page 28 — #42 i

i

i

i

i

i

28 CHAPTER 4. Motivating Scenarios

Thing

Relation

Meeting

EventEntity

Record

Audio Video

Figure 4.2: The NOMOS Model.

In NXT, annotations are described by types and attribute-value pairs.
Moreover, they can be related to signals via start and end times, to represen-
tations of the external environment, and to each other via a graph structure.
NXT represents the data for one meeting as a related set of XML files, with
a metadata file that expresses information about the structure and location of
the files. The main element of NXT data model is corpus. A corpus consists of
a set of observations, each of which contains the data for one dialogue or inter-
action. Each of the dialogues or interaction types defined in a corpus involve a
number of human or artificial agents. An agent is one actor in an observation.
Each observation is recorded by one or more “signals” which consist of audio
or video data characterizing the duration of the interaction.

4.2 NOMOS vs NITE XML Toolkit

In this section we will show how our approach can be used to handle translations
between NOMOS and NXT which are clearly representative of the problems
and allow us to illustrate the major features of our technique. The ontology
concepts model of NOMOS is shown in Fig. 4.2, while the NXT model is shown
in Figure 4.3 (the arrows indicate the reference between models constructs)

The data models of NOMOS and NXT have a number of similarities and

i

i

“main” — 2009/2/24 — 11:04 — page 29 — #43 i

i

i

i

i

i

4.2. NOMOS vs NITE XML Toolkit 29

Corpus

Agent Observation

Signal

Annotation

Reserved
attribute

Reserved
element

Figure 4.3: The NXT Model.

a few major differences. The most important similarity is that, despite some
minor differences, it is possible to claim that the basic components of the two
models, Thing in NOMOS and Corpus in NXT are very similar to each other.
They correspond to notions we have in data models, at the instance level, such
as occurrences of entities in the ER model or objects, belonging to classes, in
object oriented models.

The way an annotation is described in terms of properties and related to
one another is indeed slightly different in the two models. Indeed, NOMOS has
an ontology concept to define the relation between things, whereas in NXT,
relations between different corpora are not explicitly defined.

The actors of an annotation can be represented in both models. In NXT
there is the Agent object, while in NOMOS we can use a specialization of the
concept Entity, the only difference is on the categorization of the agents.

The Event concept in NOMOS ontology can reflect the Observation data
object of NXT model, because they both represent a particular event of a
meeting that can be observed.

A complete development of the analysis sketched above would allow us to
understand which are the constructs in the two data models that are in close
correspondence and which are unique to one of the two. In order to achieve
this task it is useful to define a suitable metamodel (in ModelGen sense 3.2) of

i

i

“main” — 2009/2/24 — 11:04 — page 30 — #44 i

i

i

i

i

i

30 CHAPTER 4. Motivating Scenarios

Record

OID
 Name

isOptional

EventOID
MeetOID VideoRec

OID
 Name

isNullable

RecordOID

AudioRec

OID
 Name

isNullable

RecordOID

Meeting

OID
 Name

isNullable
isFunctional

EventOID

Entity

OID
 Name

isFunctional

ThingOID

Event

OID
 Name

ThingOID

Relation

OID
 Name

SubjThingOID
ObjThingOID

Thing

OID
 Name

Figure 4.4: The Nomos Metamodel.

NOMOS and NXT. Possible metamodels are reported in Figures 4.4 and 4.5
where each construct is identified by a unique OID (Object Identifier). This
would lead to the definition of a supermodel for this framework: a set of con-
structs, some of which appear (usually with different names) in both NOMOS
and NXT models, and the others in only one.

The metamodel we use includes a few of the basic features, which we use
essentially as representative of properties. For example minimum cardinalities
are represented by means of the boolean IsOptional, so that allowed cardinali-
ties are 0 (“true”) and 1 (“false”) and maximum cardinalities are represented by
IsFunctional, with 1 and N as possible cardinality values. Many other features
are omitted here for the sake of space (for example optionality or nullability)
but could be easily included.

i

i

“main” — 2009/2/24 — 11:04 — page 31 — #45 i

i

i

i

i

i

4.2. NOMOS vs NITE XML Toolkit 31

Agent

OID
 Name

isFunctional

ObservationOID

Corpus

OID
 Name

Observation

OID
 Name

isFunctional

CorpusOID

Signal

OID
 Name

isFunctional
isOptional

ObservationOID

Annotation

OID
 Name

isFunctional

ObservationOID

Figure 4.5: The NXT Metamodel.

Let us conclude the section by listing and commenting the metaconstructs
of interest, with the correspondences in the two models (it should be noted
that the correspondence is in some cases not really precise, but this could be
dealt with by considering “variants” of constructs, which are omitted in this
preliminary discussion):

sm-Abstract. (we use the prefix sm for this and the other constructs, as
they belong to the supermodel) The construct sm-Abstract is used to
describe all the kinds of objects, concrete or abstract. It corresponds to
constructs used in many models, such as ER model entities, semantic net-
work nodes, NOMOS things and NXT corpora. Each object must have
an identity to be uniquely identifiable. There are variants for this con-
struct, corresponding to classes, instances, and properties, distinguished
by means of attributes.

sm-Collection. It models collections of objects of the same type, with
variants corresponding to the specific form (such as set, list, or bag).
This is not really essential here, but could be needed for other platforms,
and we have included it here for the sake of completeness.

i

i

“main” — 2009/2/24 — 11:04 — page 32 — #46 i

i

i

i

i

i

32 CHAPTER 4. Motivating Scenarios

sm-Object. It is the generalization of sm-Abstractand sm-Collection,
described above.

sm-AggregationOfAbstract. It allows the definition of a relationship on
two or more sm-Abstract components and corresponds to relations in
NOMOS (as well as relationships in the ER model).

sm-ComponentOfAggregation. This construct allows the specification
of the participation of an object to an sm-AggregationOfAbstract,
this includes the definition of the role in NOMOS relation (i.e. Subject
or Object thing).

sm-ParticipantOfAbstract. It allows the definition of the actors of an
sm-Abstract. This models the Entity concept in NOMOS and the
Agent one in NXT.

sm-Signal. This construct corresponds to the constructs used in many mod-
els of semantic annotations to represent the different multimedia sources
that characterize the interaction that must be annotated.

sm-AttributeOfSignal. It describes a property of a signal. It can even be
represented by a literal, and also define signals features.

sm-Annotation. This construct models the concept of the annotation. It
can be either an abstract or even a literal.

sm-Type. An assertion is related to a class that expresses its meaning.

sm-Identity. It describes the correspondence between an sm-Object and a
form of identification for it.

Figures 4.6 and 4.7 show the correspondence between the constructs in the
two models of interest and those in the supermodel.

For the purposes of semantic annotations interoperability, translations from
a model to another can be carried out with the strategy defined in Chapter3.3,
namely:

a) import of the source data to the supermodel;

b) translation within the supermodel;

c) export of the data from the supermodel to the target model.

i

i

“main” — 2009/2/24 — 11:04 — page 33 — #47 i

i

i

i

i

i

4.2. NOMOS vs NITE XML Toolkit 33

NOMOS_Thing
NOMOS_Relation

NOMOS_Entity
NOMOS_Event

NOMOS_Meeting
NOMOS_Record

NOMOS_AudioVideo

SM_Abstract
SM_AggregationOfAbstract
SM_ParticipantOfAbstract
SM_Object
SM_Identity
SM_Annotation
SM_Signal
SM_AttributeOfSignal
SM_Type

Figure 4.6: Correspondence between NOMOS and the supermodel.

NXT_Corpus
NXT_Agent

NXT_Observation
NXT_Annotation

NXT_Signal

SM_Abstract
SM_ParticipantOfAbstract
SM_Object
SM_Annotation
SM_Signal
SM_AttributeOfSignal

Figure 4.7: Correspondence between NXT and the supermodel.

By definition of supermodel, the first and the third steps are essentially copy
operations and so they can be automatically managed once the correspondence
between the constructs of the models and the constructs of the supermodel is
built. In Fig. 4.6 the correspondences represented by a single arrow can be
implemented by a plain copy operation from the metamodel to the supermodel
tables. In the cases the figure shows a double arrow, the copy is slightly more
complex: an element of NOMOS Event has a correspondence with an element
in sm-Object and an element in sm-Identity: the identifier is represented in
sm-Object whereas in sm-Identity there are information on the identifying
mechanism.

Translations within the supermodel can then be carried out by eliminating
constructs that appear in the current set of data and are not allowed in the
target model.

The translations we are considering here can be implemented by noting

i

i

“main” — 2009/2/24 — 11:04 — page 34 — #48 i

i

i

i

i

i

34 CHAPTER 4. Motivating Scenarios

Figure 4.8: A simple translation from NXT to NOMOS.

which are the constructs available in one model and not available in the other.
Considering a translation from NOMOS to NXT we will have to eliminate
sm-AggregationOfAbstract by replacing them with other constructs, for
example new sm-Abstracts (see Figures 4.6 and 4.7). We can roughly state
that this is a translation similar to the standard translation in conceptual
models that replaces n-ary relationships by means of binary ones. A complete
translation can then be built by specifying the basic translations needed to
replace the constructs that are not available in the target model and then
composing them.

In Fig. 4.8 a simple example of translation is sketched.
Starting from an NXT schema model (Fig. 4.8(a)) the system performs

a few basic translations in order to obtain a model compliant to NOMOS
(Fig. 4.8(d)). The first step is the change of the connection of the AgentName
as shown in Fig. 4.8(b), in other words we must change the reference to the orig-
inal containing object. Fig. 4.8(c) shows intuitive sketches of the intermediate
schemas in this process. The translation into the NOMOS environment requires
the introduction of a new object (AudioRec) for the signal class of NXT model
associated to the annotation (AnnotationRef) and the SignalRef becomes a
child of this one. As we said before, translations are performed by composing el-
ementary steps translating NXT metaconstructs into NOMOS metaconstructs
via the supermodel constructs. The last step produces a schema in the NOMOS
model as shown in Fig. 4.8(d).

i

i

“main” — 2009/2/24 — 11:04 — page 35 — #49 i

i

i

i

i

i

4.3. RDF vs Topic Maps 35

4.3 RDF vs Topic Maps

To test the validity of our approach we have also considered two Semantic Web
languages for whom interoperability issues have been often addressed by the
research community, namely RDF and Topic Maps [Gar05] .

The Resource Description Framework (RDF)1 is a model that was born
as the base model for the Semantic Web. It is used for representing infor-
mation about resources in the World Wide Web. It is particularly intended
for representing metadata about Web resources. RDF aim is that of provid-
ing a tool to describe formally the information the Web contains to make it
machine-processable.

The key element of such a model is the resource. Together with the concept
of resource two other simple elements contribute to the RDF model: properties
and statements. A resource can be a Web page, an entire Web site, an element
within a document, or an abstract concept. It is identified uniquely by a URIref,
i.e. a URI [BLFM05] plus an optional anchor. A property is associated to a
resource and allows its description by means of a specific characteristic. A
statement is a triple formed by a subject, a predicate and an object in the
form of a triple < subject, predicate, object >, where the subject is always a
resource, the predicate is a property and the object is the value of the property.
Furthermore RDF defines a mechanism allowing the reification of statements,
that is a way to assert facts about a statement. To reify a statement means
to make a statement being the subject and object of other statements. Due
to the statement structure, an RDF document can then be seen as a directed
labeled graph.

The focus of Topic Maps [GM05] is conceptual organization of information,
primarily with a view to “findability”, but the technology has much wider
applicability. A major difference with RDF is the greater focus on human
semantics in Topic Maps, as opposed to the “machine semantics” (or automated
reasoning) of RDF. Topic Maps consist of topics, each of which represents some
thing of interest, known as subjects (the definition of subject is deliberately
all-inclusive). Associations represent relationships between two or more topics,
they have a type (which is a topic) and consist of a set of (role type, role
player) pairs (where both elements are topics). Occurrences can be either
simple property-value assignments for topics, or references to resources which
contain information pertinent to a topic. Occurrences also have a type (which
is a topic). In addition, topics may have one or more names (which also may

1Resource Description Framework (RDF). http://www.w3.org/RDF

i

i

“main” — 2009/2/24 — 11:04 — page 36 — #50 i

i

i

i

i

i

36 CHAPTER 4. Motivating Scenarios

be typed).
As in RDF topics can have attached identifying URIs. The difference is

that each URI can be either a subject locator (which means that dereferencing
it produces the information resource the topic represents) or a subject identi-
fier (which when dereferenced produces an information resource describing the
subject). Another difference is that a topic can have any number of identifying
URIs of either type attached. There is a defined procedure for merging topic
maps based on these identifiers. Further, any construct can be reified (associ-
ations, occurrences, roles, and names), and any construct (except roles) may
have a scope, which is a set of topics representing the context in which the
construct is valid.

To enable the supermodel representing RDF and Topic Maps, reflecting the
above mentioned peculiarities, we have enriched some of the existing metacon-
structs with Semantic Web specific properties and other new metaconstructs
are introduced.

Devising a generic mapping can sound as the ideal way to perform transla-
tions, avoiding to force a model to behave as the other, implementing transla-
tions in a more natural way. But when we create the mappings between RDF
and Topic Maps, it arises the problem of a lack of information because of the
different expressivity of the two models.

Let us translate the RDF statement <S,P,O> in Topic Maps. It is an
assertion that can be translated in an Association, an Occurrence or a Name
and it cannot be known, a priori, which is the right choice. We need to evaluate
the meaning of the property P to select which is the right target construct.
The result is a vocabulary-specific mapping that nevertheless allows us to reach
satisfiable results in terms of keeping the expressiveness of the model and its
meaning during the translation process.

As we will demonstrate with the following example, the use of Datalog rules
allows us to naturally implement the vocabulary-specific mappings by means
of conditional expressions that select the target construct. Moreover rules are
written at the metalevel between the representations of source and target model
in terms of metaconstructs, keeping the independence from a given model and
allowing MIDST to involve new models reusing the previously made work.

The meaning of sm-Abstract is extended to represent symbols that are
used to describe the knowledge of interest in RDF and Topic Maps. With this
metaconstruct we describe both the nodes of an RDF graph and topics of a
Topic Map. To specify the node (topic) properties, as if it would be a resource
with an URI or a literal, we use the sm-Lexical metaconstruct. This allows
us to define a generic transformation between the structure of a graph and a

i

i

“main” — 2009/2/24 — 11:04 — page 37 — #51 i

i

i

i

i

i

4.3. RDF vs Topic Maps 37

map keeping the particular resources separated from the concept of resource.
sm-Lexicals are also used to express the different kinds of identification that
Topic Maps allow, namely SubjectIndicator and SubjectAddress. Exam-
ining the way RDF and Topic Maps relate concepts, we have noticed that
they can basically fall into already defined metaconstructs with some exten-
sions. For example, sm-BinaryAggregationOfAbstracts, can be used to
describe the Topic Maps Occurrence and Name relationships extending it with
an optional reference to an sm-Abstract that represents the scope that we
generically call Qualification. The same construct can describe the RDF
Statement, for this purpose we have introduced the isDirected property that
allows the representation of RDF directed arcs.

The sm-AggregationOfAbstracts metaconstruct has been extended
with two optional references to sm-Abstract that represent the type and
the qualification of the aggregation, this is used for the Association of Topic
Maps. The type and qualification are expressed as abstracts since they are
topics. Each sm-ComponentOfAggregationOfAbstract of the enhanced
supermodel has a reference to an abstract that is the role of the participa-
tion, a topic itself. The introduction of the new metaconstruct Type, which
expresses the typing relation between sm-Abstracts, allows us to model the
RDF construct rdf:type and the equivalent for Topic Maps that is instanceOf.

We have provided the supermodel with these new constructs through which
we can now illustrate how to perform a translation between Topic Maps and
RDF. Figures 4.9 and 4.10 shows the supermodel portion of interest respec-
tively for RDF and TopicMaps (each of them with their metaconstructs and
properties).

Let us consider the following simple RDF document that illustrates the
knowledge between two persons, one of which with an homepage. The example
uses the FOAF vocabulary 2.

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person>
<foaf:name>John Smith</foaf:name>
<foaf:homepage rdf:resource="http://www.john.sm"/>
<foaf:knows>

<foaf:Person>

2The Friend of a Friend (FOAF) project, http://www.foaf-project.org/.

i

i

“main” — 2009/2/24 — 11:04 — page 38 — #52 i

i

i

i

i

i

38 CHAPTER 4. Motivating Scenarios

SM-LexicalOIDNameisNullableisOptionalisIdentifiertypeAbstractOID

SM-AbstractOIDNametypeSM-AbstractOIDNametype

SM-AbstractAttributeOIDNameisOptionalisIdentifierAbstractOIDAbstractToOIDStructOfAttributesOIDAggregationOID
SM-AbstractAttributeOIDNameisOptionalisIdentifierAbstractOIDAbstractToOIDStructOfAttributesOIDAggregationOIDSM-TypeOIDNameAbstractAsTypeOIDAbstractToBeTypedOIDSM-TypeOIDNameAbstractAsTypeOIDAbstractToBeTypedOIDSM-SetOIDNameAbstractOIDAbstractTypeOIDSM-SetOIDNameAbstractOIDAbstractTypeOIDSM-ComponentOfSetOIDNameSetOIDComponentAbstractOIDSM-ComponentOfSetOIDNameSetOIDComponentAbstractOID

Figure 4.9: A portion of the supermodel showing the RDF-related meta-
costructs.

<foaf:name>Frank Red</foaf:name>
</foaf:Person>

</foaf:knows>
</foaf:Person>

</rdf:RDF>

The related graph in sketched in Figure 4.11:
When translating the RDF Statement into Topic Maps, the Datalog rules

generate a Name for the property foaf:name, an Occurrence for the property
foaf:homepage and an Association for the property foaf:knows. In the lat-
ter situation, we don’t have the information of the association roles in RDF
while Topic Maps miss the direction of the statement. We choose to assign
the roles values of rdf:subject and rdf:object to the association partici-
pants, in order to keep the semantic of the direction of the RDF arcs. As

i

i

“main” — 2009/2/24 — 11:04 — page 39 — #53 i

i

i

i

i

i

4.3. RDF vs Topic Maps 39

SM-LexicalOIDNameisNullableisOptionalisIdentifiertypeAbstractOID
SM-LexicalOIDNameisNullableisOptionalisIdentifiertypeAbstractOID

SM-ComponentOfAggregationOfAbstractOIDNameisOptionalisFunctionalisIdentifiedAbstractOIDAbstractAsRoleOIDAggregationOfAbstractsOID
SM-AbstractOIDNameTypeSM-AbstractOIDNameType

SM-GeneralizationOIDNameParentAbstractOID SM-ChildOfGeneralizationOIDNameGeneralizationOIDChildAbstractOIDSM-ChildOfGeneralizationOIDNameGeneralizationOIDChildAbstractOID

SM-AggregationOfAbstractsOIDNameAbstractAsTypeOIDAbstractAsQualifierOIDSM-AggregationOfAbstractsOIDNameAbstractAsTypeOIDAbstractAsQualifierOID

TypeOIDName
AbstractAsTypeOID
AbstractToBeTypedOID

TypeOIDName
AbstractAsTypeOID
AbstractToBeTypedOID

SM-BinaryAggregationOfAbstractsOIDNameAbstract1OIDAbstract2OID

Figure 4.10: A portion of the supermodel showing the TM-related meta-
costructs.

http://www... John Smith

type
type

Frank Red

Person

homepage name name

knows

Figure 4.11: A simple RDF graph.

i

i

“main” — 2009/2/24 — 11:04 — page 40 — #54 i

i

i

i

i

i

40 CHAPTER 4. Motivating Scenarios

result of the translation we obtain the following Topic Maps (we use the XTM
syntax [Top01]):

<topic id="id78">

<instanceOf>

<subjectIndicatorRef xlink:href="foaf:Person"/>

</instanceOf>

<baseName>

<baseNameString>John Smith</baseNameString>

</baseName>

<occurrence>

<instanceOf>

<subjectIndicatorRef xlink:href="foaf:homepage"/>

</instanceOf>

<resourceRef xlink:href="http://www.john.sm"/>

</occurrence>

</topic> <topic id="id32">

<instanceOf>

<subjectIndicatorRef xlink:href="foaf:Person"/>

</instanceOf>

<baseName>

<baseNameString>Frank Red</baseNameString>

</baseName>

</topic> <association>

<instanceOf>

<subjectIndicatorRef xlink:href="foaf:Knows"/>

</instanceOf>

<member>

<roleSpec><subjectIndicatorRef xlink:href="rdf:subject"/></roleSpec>

<topicRef xlink:href="#id18"/>

</member>

<member>

<roleSpec><subjectIndicatorRef xlink:href="rdf:object"/></roleSpec>

<topicRef xlink:href="#id32"/>

</member>

</association>

On the other side, considering the translation from Topic Maps to RDF,
specifically the case of translating an association, we have to translate n-ary
relationships to binary statements. In Fig. 4.12 there is a topic map that
represents the employment association between the company HiTech, with the
role of employer and two employees.

To translate the Topic Map of Figure 4.12 to RDF, we define a rule that
creates an sm-Abstract for each topic, with sm-Lexicals that represent the
identification and the names. Other simple rules are devoted to the creation of
an sm-Abstract without sm-Lexicals (blank node) for each participant, that
allows us to define an sm-BinaryAggregationOfAbstracts that links the
participant topic with the role topic. We then create an sm-Abstract for the
association and an sm-Abstract for the type that are linked by an sm-Type
metaconstruct.

Finally, members are linked to the association through the use of an sm-
BinaryAggregationOfAbstracts. Exploiting the correspondence between

i

i

“main” — 2009/2/24 — 11:04 — page 41 — #55 i

i

i

i

i

i

4.4. Discussion 41

Fred

employee

employment
John

role

employer

HiTech

association

role

instanceOf

role

Figure 4.12: Topic Maps example.

Fred

employee

employmentJohn
employer

HiTech

topic

role

topic

member

member
type role

topic

member

role

Figure 4.13: Resulting RDF graph.

the supermodel and RDF we can eventually generate the graph as illustrated
in Figure 4.13.

4.4 Discussion

We have shown how ModelGen approach can be at the basis of a framework
for the translation of annotations from a platform to another. In this chapter
two semantic annotation platforms, NOMOS and NXT have been addressed.
However, our approach can be extended to similar platforms which have a
schema-based structure.

We have also illustrated a typical scenarios in which Semantic Web for-
malisms (namely RDF and Topic Maps) can be described by our Supermodel

i

i

“main” — 2009/2/24 — 11:04 — page 42 — #56 i

i

i

i

i

i

42 CHAPTER 4. Motivating Scenarios

and how our framework can be used to define translations with a high-level,
model independent approach.

i

i

“main” — 2009/2/24 — 11:04 — page 43 — #57 i

i

i

i

i

i

Chapter 5

Bridging the Gap between
Semantic Annotations and
Databases

In the previous chapter we analyze two interesting examples of applica-
tion of our semantic annotation interoperability approach, one at system
level the other at language level. The focus of the next three chapters is
to enhance the aforementioned approach in order to manage interoper-
ability between (relational) databases and semantic annotations described
as OWL ontologies. In this chapter we present the main reasons of this
work and the most recent researches on this topic.

5.1 Motivation

Starting from the analysis of the available approaches that propose to face
the problem of the translations of schemes and data between ontologies and
databases, it is possible to underline several aspects that motivate our research.

From Database to Ontology

First of all we can consider the problem of integration of heterogeneous sources
of information. Ontologies play a key role in this process. The term “ontol-

43

i

i

“main” — 2009/2/24 — 11:04 — page 44 — #58 i

i

i

i

i

i

44CHAPTER 5. Bridging the Gap between Semantic Annotations and Databases

ogy” is borrowed from philosophy, where Ontology is a systematic account of
Existence. In computer science an ontology is formally a defined system of
concepts. An ontology is “a formal, explicit specification of a shared concep-
tualization” [Gru95]. Conceptualization corresponds to an abstract model of
a domain which identifies the relevant concepts and their relationships. Ex-
plicitly it means that the used concepts are unique and their usage is formally
confined. Formal refers to the fact that ontologies should be machine-readable.
Shared indicates that an ontology is accepted by a group of people and used
cooperatively.

Ontologies can be used to define semantic mapping between different in-
formation sources. A typical example is the integration of data coming from
old legacy systems. Autonomous database systems usually have incompati-
ble schemas making interoperability among them difficult. For a long time,
this has been recognized as a schema mapping and data integration prob-
lem [DH05] [Len02] [SE05]. In simplest terms, database integration requires
(i) mapping systems that define the relationships (mappings) among database
schemas and (ii) integration systems that use those mappings to answer queries
or translate data across database sources. In addition to the more expressive
representations offered by ontologies, they allow integration to cover a larger
variety of structured data in theory, although it raises the question of adequate
performance in real systems.

Another important aspect to consider is the acquiring of domain ontology
that still requires great efforts. Therefore, it is necessary to develop methods
and techniques that allow reducing the effort necessary for the knowledge ac-
quisition process. Database schemata, in particular the conceptual schemata
modeled in semantic data models such as the Entity-Relationship (ER) model
contains (implicitly) abundant domain knowledge. Extracting the knowledge
from them can thus profitably support the development of Web ontologies.

Also the so called Deep Web arises similar problems. Nowadays, indeed,
a large percentage of Web pages are not static documents. On the contrary,
the majority of Web pages are dynamic. Therefore the majority of information
on the Web is generated from underlying databases (i.e. the deep Web). To
discover content on the Web, search engines use Web crawlers that follow hyper-
links. This technique is ideal for discovering resources on the surface Web but
is often ineffective at finding deep Web resources. Moreover, it is not possible
to semantically annotate the dynamic pages generated from the data sources.
Existing tools can only produce semantic annotations for static Web pages and
how to annotate dynamic Web pages that are generated from the underlying
databases (the greater majority of current Web content [CHL+04]) when the

i

i

“main” — 2009/2/24 — 11:04 — page 45 — #59 i

i

i

i

i

i

5.1. Motivation 45

clients request the pages is still an open problem[RH05] [BC02]. This problem
has been referred to as deep annotation [VHS+04] [HSV03] that means the
process of creating ontological instances for the database-based, dynamic con-
tents by reaching out to the Deep Web and directly annotating the underlying
database of the dynamic Web site.

One of the research fields which has recently gained much scientific interest
within the database community are Peer-to-Peer databases, where peers have
the autonomy to decide whether to join or to leave an information sharing
environment at any time. The principle is: data stored on one single peer
has to be made accessible to other remote peers and vice versa. Afterwards
this data can be requested, queried, replicated, or integrated depending on the
purpose of the remote system. As a result, sharing relational data within a
Peer- to-Peer environment means to distribute not only data items themselves,
but also their schemas among multiple previously unknown peers. We thus
need an exchange format, which on the one side can be understood by a broad
community of peers without being explicitly arranged beforehand and which
on the other side has to be suitable for representing relational schemas and
their corresponding data instances. This can be suitably achieved through the
use of ontologies without having to define a schema and data exchange format
explicitly.

From Ontology To Database

The ontologies are important for the integrations of data and of applications,
besides they facilitate the communication between human beings and informa-
tive systems. However to benefit from the large amount of information stored
in ontologies it is necessary to have efficient and effective ways to manage and
query those data.

Large ontologies are often stored in database repositories in order to ex-
ploit their ability to handle secondary storage and to answer queries in efficient
ways. Actually, several tools for managing (building, inferring, querying, etc.)
ontology data and ontology-based data are available (e.g. Protégé [NFM00]
[NSD+01]). Usually, ontology-based data manipulated by these tools are stored
in the main memory. Thus, for applications manipulating a large amount of
ontology-based data, query performance becomes a new issue. Therefore, due
to the maturity of database systems, it is possible to efficiently store large
ontologies (with million of instances) getting benefit from the functionalities
offered by DBMSs (i.e. query performance, efficient storage, transaction man-
agement, etc.).

i

i

“main” — 2009/2/24 — 11:04 — page 46 — #60 i

i

i

i

i

i

46CHAPTER 5. Bridging the Gap between Semantic Annotations and Databases

5.2 Related Work

As stated in the previous section we are interested in semantic annotations that
have an high level of formality, i.e. those annotations that can be represented
by means of ontologies.

Various proposals exist that describe the translation between ontologies and
databases, but the majority of this approaches study only one-way transfor-
mations (i.e. ontology to database or database to ontology).

We can classify the different approaches in two main branch:

• dictionary-based

• dictionary-independent

In the first kind of approaches a sort of dictionary is used to define the
guideline of the transformations between ontology and database. To represent a
relational schema and its instances, ad-hoc ontologies are created as in [dLC05]
and [TBA06]. Both approaches describe the database schema and instances by
means of a suitable dictionary used in an ontology.

In [TBA06], the authors propose an approach that helps the domain experts
to quickly generate and publish OWL ontologies describing the underlying re-
lational database systems while preserving their structural constraints. The
generated ontologies are constructed using a set of vocabularies and structures
defined in schema that describes relational database systems on the Web so
they guarantees that user applications can work with data instances that con-
formed to a set of known vocabularies and structures.

Handschuh et al. [HSV03] apply a similar approach for annotating data
intensive Web sites. In these works, mappings are managed referring to specific
ontologies that describe the source relational model. Similar approaches are
followed by [Kri06] and [Lau08] for the generation of RDF documents. Das et
al. [DCES04] proposed a solution to extracting data from the OWL document,
and then storing data in relational database. It uses a reference ontology as a
dictionary. It also enables users to reference ontology data directly from SQL
using the semantic match operators.

Dictionary-independent approaches do not use a prefixed dictionary to per-
form the translations. This include approaches that use Description Logics or
machine learning techniques such as [Hab07]. These kind of approaches do not
use ad hoc ontologies but aim at representing the semantics of the information
in the relational database source.

Cullot et al. [CGY07] and Shen et al. [SHZZ06] are representative examples.

i

i

“main” — 2009/2/24 — 11:04 — page 47 — #61 i

i

i

i

i

i

5.3. Discussion 47

In [CGY07] the DB2OWL tool is described. It looks for some particular
cases of database tables to determine which ontology component has to be
created from which database component. The created ontology is expressed in
OWL-DL language 1 which is based on Description Logics.

Shen et al. [SHZZ06] propose the rules of mapping relational model to
OWL for the data integration, and they are classified as concepts, properties,
restrictions and instances. These rules can be applied to mapping relational
database to ontologies in OWL, whereby the mapping and transferring can
be performed (semi-)automatically. The rules for concepts, properties and
restrictions depict the correspondence at metadata level, which avoid migrating
the large amount of data. The rules for instances are applied to create data
for exchanging at running time. All the rules can also be applied to learning
ontologies from relational database.

A number of formal approaches based on description logics exist (see for
example [XCDS04] and [MHS07]). These cannot be compared with our work,
as we concentrate on structural aspects and so we do not refer to reasoning
capabilities. Moreover, these pieces of work refer to one specific data model,
ER or relational, whereas our approach applies to many different data mod-
els, belonging to many families, including relational, ER, object-oriented and
object-relational.

While the dictionary-based approaches are preferable in case of ontologies
creation as an interchange format, the dictionary-independent approaches find
their greatest in sharing knowledge, extrapolated from relational databases, on
a particular domain of interest.

5.3 Discussion

In this chapter we have introduced the motivations of translating between
databases and ontologies. Moreover we have discussed some of the most rel-
evant researches that we have used as a starting point for the definition and
extension of our MIDST project.

Comparing to these works, our approach aims at a greater generality. We
describe the models of interest by a metamodel, subsequently schema and in-
stances are treated. This allows us to be model independent, with a general
approach that is extensible to virtually any model. Moreover, translations are
not embedded but specified by means of high level rules and therefore they are
customizable according to the different needs.

1http://www.w3.org/TR/owl-features/

i

i

“main” — 2009/2/24 — 11:04 — page 48 — #62 i

i

i

i

i

i

48CHAPTER 5. Bridging the Gap between Semantic Annotations and Databases

Moreover, the majority of the aforementioned approaches considers transla-
tions in both directions, nor any form of model independence, as each of them
is tightly related to a specific data model and a specific translation approach.

i

i

“main” — 2009/2/24 — 11:04 — page 49 — #63 i

i

i

i

i

i

Chapter 6

OWL and Relational Database
Mappings

Interoperability of ontologies and databases has received a lot of atten-
tion recently. However, most of the work has concentrated on specific
problems (such as storing an ontology in a database or making database
data available to ontologies) and referred to specific models for each ones.
Here we describe how our approach can be exploited to manage also this
kind of transformations in both directions (ontologies to databases and
vice versa).

As we observed in Chapter 3.3, the starting point of our approach is the
idea that a metamodel is a set of constructs (called metaconstructs) that can
be used to define models, which are instances of the metamodel. Therefore,
we actually define a model as a set of constructs, each of which corresponds to
a metaconstruct. An even more important notion, is the Supermodel : it is a
model that has a construct for each metaconstruct, in the most general version.
Therefore, each model can be seen as a specialization of the supermodel, except
for renaming of constructs.

49

i

i

“main” — 2009/2/24 — 11:04 — page 50 — #64 i

i

i

i

i

i

50 CHAPTER 6. OWL and Relational Database Mappings

6.1 Towards Ontology and Databases Integration

In order to achieve the complex tasks of interoperability and integration of
databases and ontologies it is necessary to firstly define each model in term
of supermodel metaconstructs. In the following subsections we show our rep-
resentations of (relational) database and ontology data models by means of
metaconstructs. The first one is already present in the previous version of the
MIDST project, the second is completely new and it belongs to the work of
extending our approach to Semantic Web and in particular to Semantic Anno-
tation defined by means of ontologies.

Relational Data Model

The relational data model is the standard model for logical design of databases.
The most important construct is the relation, which consists of a heading and
a body. A heading is a set of attributes, while a body (of an n-ary relation)
is a set of n-tuples. Each relation is a table, therefore we consider a relational
model with tables constituted by columns of a specified type; each column
could allow null value or be part of the primary key of the table. Moreover
we can specify foreign keys between tables involving one or more columns.

The Figure 6.1 shows the constructs of the relational metamodel in a UML-
like class diagram.

Following the MIDST conventions each construct is made of four parts:

• the construct name, that is unique in the model;

• a list of required attributes. Generally we have:

OID that is the unambiguous identifier of each instance of the construct
Name the name that identifies the instance of the construct

• a list of properties that defines the characteristics of the construct

• a list of references to other constructs that establishes the relationships
between the different constructs in the model

In the following description, for each construct we show the correspondent
representation in terms of supermodel metaconstruct.

Table sm-Aggregation. Each table in the relational model can be seen
as a set (or “aggregation”) of columns. Therefore we map tables with
aggregations of lexicals.

i

i

“main” — 2009/2/24 — 11:04 — page 51 — #65 i

i

i

i

i

i

6.1. Towards Ontology and Databases Integration 51TableOIDNameTableOIDName
ColumnOIDNameisNullableisKeytypeTableOID
ColumnOIDNameisNullableisKeytypeTableOID

ComponentOfForeignKeyOIDNameForeignKeyOIDColumnFromOIDColumnToOID

ForeignKeyOIDNameTableFromOIDTableToOIDForeignKeyOIDNameTableFromOIDTableToOID

Figure 6.1: Relational Metamodel.

Column sm-Lexical. We can specify the data type of the column (type) and
whether it is part of the primary key (isIdentifier) or it allows null
value (isNullable). It has a reference toward an sm-Aggregation.

Foreign Key sm-ForeignKey and sm-ComponentOfForeignKey. With
the first construct (referencing two sm-Aggregations) we specify the
existence of a foreign key between two tables; with the second construct
(referencing one sm-ForeignKey and two sm-Lexicals) we specify the
columns involved in a foreign key.

The relational metamodel is shown in Figure 6.2.

OWL Synopsis

Before describing the OWL data model it is necessary to describe the charac-
teristics of the language in order to better understand our choices.

The Web Ontology Language (OWL) was designed to add the constructs of

i

i

“main” — 2009/2/24 — 11:04 — page 52 — #66 i

i

i

i

i

i

52 CHAPTER 6. OWL and Relational Database Mappings

SM-ComponentOfForeignKeyOIDNameForeignKeyOIDLexicalFromOIDLexicalToOID
SM-ComponentOfForeignKeyOIDNameForeignKeyOIDLexicalFromOIDLexicalToOID

SM-ForeignKeyOIDNameAggregationFromOIDAggregationToOIDSM-ForeignKeyOIDNameAggregationFromOIDAggregationToOID
SM-LexicalOIDNameisNullableisIdentifierTypeAggregationOID
SM-LexicalOIDNameisNullableisIdentifierTypeAggregationOID

SM-AggregationOIDNameSM-AggregationOIDName

Figure 6.2: Relational Metamodel in terms of Supermodel metaconstructs.

Description Logics (DL) to RDF1, significantly extending the expressiveness of
RDF Schema both in characterizing classes and properties. Description Logics
are a set of knowledge representation languages with formal semantics based
on their mapping to First Order Logic (FOL). Description Logics have been
extensively studied since the 1980s, including studies on the tradeoffs between
the expressivity of the chosen language and the efficiency of reasoning.

OWL has been designed in a way that it maps to a well-known Description
Logic with tractable reasoning algorithms. The Web Ontology Language is in
fact a set of three languages with increasing expressiveness: OWL Lite, OWL
DL and OWL Full. These languages are extensions of each other (OWLLite ⊆
OWLDL ⊆ OWLFull) both syntactically and semantically. For example, every
OWL Lite document is a valid OWL DL document and has the same semantics
when considered as an OWL DL document, e.g. it leads to the same logical
conclusions. The vocabularies of these languages extend each other and lan-
guages further up in the hierarchy only relax the constraints on the use of the
vocabulary.

Although it is generally believed that languages of the OWL family would
be an extension of RDF(S)2 in the same sense, this is only true for OWL Full,

1Resource Description Framework (RDF), http://www.w3.org/RDF/
2RDF Schema, http://www.w3.org/TR/rdf-schema/.

i

i

“main” — 2009/2/24 — 11:04 — page 53 — #67 i

i

i

i

i

i

6.1. Towards Ontology and Databases Integration 53

the most expressive of the family (RDF (S) ⊆ OWLFull).
The middle language, OWL DL was the original target of standardization

and it is a direct mapping to an expressive Description Logic. This has the
advantage that OWL DL documents can be directly consumed by most DL
reasoners to perform inference and consistency checking. The constructs of
OWL DL are also familiar, although some of the semantics can be surprising
mostly due to the open world assumption [RDH+04]. Description Logics do
not allow much of the representation flexibility introduced above (e.g. treating
classes as instances or defining classes of properties) and therefore not all RDF
documents are valid OWL DL documents and even the usage of OWL terms is
limited. For example, in OWL DL it is not allowed to extend constructs of the
language, i.e. the concepts in the RDF, RDF Schema and OWL namespaces.

In the case of the notion of a Class, OWL also introduces a separate
owl:Class concept as a subclass of rdfs:Class in order to clearly distinguish its
more limited notion of a class. Similarly, OWL introduces the disjoint classes
of object properties and datatype properties. The first refers to properties
that take resources as values (such as foaf:knows) and the latter is for prop-
erties ranging on literals such as foaf:name. OWL Full is a limitless OWL
DL: every RDF ontology is also a valid OWL Full ontology and has the same
semantics when considered as an OWL Full document. However, OWL Full is
undecidable, which means that in the worst case OWL Full reasoners will run
infinitely. OWL Lite is a lightweight sub-language of OWL DL, which maps
to a less expressive but even more efficient DL language. OWL Lite has the
same limitations on the use of RDF as OWL DL and does not contain some of
the terms of OWL DL. In summary, RDF documents are not necessarily valid
OWL Lite or OWL DL ontologies despite the common conviction (see also the
classical semantic Web layer cake in Figure 6.3). In fact, downgrading a typi-
cal RDF or OWL Full ontology to OWL DL is a tedious engineering task. It
typically includes many simple steps such as declaring whether properties are
object properties or datatype properties and importing the external ontologies
used in the document, which is mandatory in OWL but not in RDF.

However, the process often involves more fundamental modeling decisions
when it comes to finding alternate representations.21 Most existing Web on-
tologies make little use of OWL due to their limited needs, but also because
general rule-based knowledge cannot be expressed in OWL. The additional ex-
pressivity of OWL, however, is required for modeling complex domains such
as medicine or engineering, especially in supporting classification tasks where
we need to determine the place of a class in the class hierarchy based on its
description.

i

i

“main” — 2009/2/24 — 11:04 — page 54 — #68 i

i

i

i

i

i

54 CHAPTER 6. OWL and Relational Database Mappings

Figure 6.3: The Semantic Web layer cake.

In our experiments we consider the OWL Lite model, that is sufficient to
demonstrate the features of our approach and that can be simply encoded in
RDF. In the following, we always refer to OWL Lite also if some discussion
can be extended to OWL DL.

In Figure 6.4 the main constructs of OWL Lite are listed.
The most important construct of OWL is the Class. Classes provide an ab-

straction mechanism for grouping resources with similar characteristics. Each
class is generally associated with a group of individuals. These individuals are
instances of the class. Classes can be organized in a specialization hierarchy
using rdfs:subClassOf. There is a built-in most general class named Thing
that is the class of all individuals and is a superclass of all OWL classes. On
the contrary, Nothing is the class that has no instances and a subclass of all
OWL classes.

Properties can be used both to state relationships between individuals
(ObjectProperty) and from individuals to data values (DatatypeProperty).
Each property may have a domain and a range. A domain (rdfs:domain) of
a property limits the individuals to which the property can be applied. If a
property relates an individual to another individual, and the property has a

i

i

“main” — 2009/2/24 — 11:04 — page 55 — #69 i

i

i

i

i

i

6.1. Towards Ontology and Databases Integration 55

Figure 6.4: The main constructs of OWL Lite.

class as one of its domains, then the individual must belong to the class. The
range (rdfs:range) of a property limits the individuals that the property may
have as its value. If a property relates an individual to another individual, and
the property has a class as its range, then the other individual must belong
to the range class. Domain and range are called global restrictions since the
restriction is stated on the property and not just on the property when it is
associated with a particular class.

OWL Lite allows (local) restrictions to be placed on how properties can
be used by instances of a class. There are two main kinds of restriction,
namely allValuesFrom and someValuesFrom. These restrictions (and the car-
dinality restrictions) are used within the context of an owl:Restriction. The
owl:onProperty element indicates the restricted property. The restriction al-
lValuesFrom is stated on a property with respect to a class. It means that
this property on this particular class has a local range restriction associated
with it. Thus if an instance of the class is related by the property to a second
individual, then the second individual can be inferred to be an instance of the
local range restriction class. The restriction someValuesFrom is stated on a
property with respect to a class. A particular class may have a restriction on a
property that at least one value for that property should be of a certain type.

There are special identifiers in OWL Lite that are used to provide infor-
mation concerning properties and their values. Besides inverse, symmetric

i

i

“main” — 2009/2/24 — 11:04 — page 56 — #70 i

i

i

i

i

i

56 CHAPTER 6. OWL and Relational Database Mappings

and transitive properties that are clear, we ave also functional and inverse
functional properties. Properties may be stated to have a unique value. If a
property is a FunctionalProperty, then it has no more than one value for each
individual (it may have no values for an individual). This characteristic has
been referred to as having a unique property. FunctionalProperty is shorthand
for stating that the property’s minimum cardinality is zero and its maximum
cardinality is 1. Properties may be stated to be inverse functional. If a prop-
erty is inverse functional then the inverse of the property is functional. Thus
the inverse of the property has at most one value for each individual.

OWL can also represent equality or inequality features. Despite to describe
all (in-)equality constructs we only want to focus on sameAs, differentFrom
and AllDifferent constructs. With the sameAs construct two individuals may
be stated to be the same. These constructs may be used to create a number
of different names that refer to the same individual. With differentFrom an
individual may be stated to be different from other individuals. Finally, a
number of individuals may be stated to be mutually distinct in one AllDifferent
statement.

OWL Lite allows intersections of named classes and restrictions by means
of the intersectionOf constructor. A typical example of intersection is sketched
in the following (using RDF/XML syntax):

<owl:Class rdf:ID="WhiteWine">
<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#Wine" />
<owl:Restriction>

<owl:onProperty rdf:resource="#hasColor" />
<owl:hasValue rdf:resource="#White" />

</owl:Restriction>
</owl:intersectionOf>

</owl:Class>

Classes constructed using the set operations are more like definitions than
anything we have seen to date. The members of the class are completely
specified by the set operation. The construction above states that WhiteWine
is exactly the intersection of the class Wine and the set of things that are
white in color. This means that if something is white and a wine, then it is
an instance of WhiteWine. Without such a definition we can know that white
wines are wines and white, but not vice-versa.

i

i

“main” — 2009/2/24 — 11:04 — page 57 — #71 i

i

i

i

i

i

6.1. Towards Ontology and Databases Integration 57

OWL Data Model

The most important construct of the OWL data model is Class that represents
the concept of class. In Figure 6.5 the metamodel of OWL Lite is shown.

The construct Class represents classes both named or restricted: to know
what type of class is identified by an instance of the construct, it is neces-
sary to take into account the references to other constructs. For example, a
class defined as a restriction on a property, will be referenced from the Clas-
sAsRestrictionOID of RelationshipBetweenClasses construct, which
represents relations between classes (both ObjectProperty and DatatypeProp-
erty). A class defined as a finite intersection of other classes will be referenced
from ClassOID of the Intersection construct. A class definition defined by
identifier instead is simply represented by its name valued in the name of the
Class construct.

The construct RelationshipBetweenClasses is used to represent an ob-
jectProperty and the equivalence between classes. In the case of an equivalence
relation, the instance of this construct should have:

• the property isEquivalence set to TRUE;

• the property isDirected set to FALSE (because the direction of an equiv-
alence relation is not important);

• references class1OID and class2OID refer to the two classes involved in
the equivalence relationship;

• other properties and references are not considered.

In the case of an object property, the instance of this construct should have:

• the property isSymmetric is set to TRUE if the object property is an
owl:SymmetricProperty;

• the property isTransitive is set to TRUE if the object property is an
owl:TransitiveProperty;

• the property isDirected set to TRUE (because the direction of the property
is established by the domain and range global restrictions);

• the property isFunctional1 is set to TRUE if the object property is an
owl:FunctionalProperty or the maximum cardinality is 1;

i

i

“main” — 2009/2/24 — 11:04 — page 58 — #72 i

i

i

i

i

i

58 CHAPTER 6. OWL and Relational Database Mappings

GeneralizationOIDNameParentClassOIDParentObjectPropertyOIDParentDatatypePropertyOID
GeneralizationOIDNameParentClassOIDParentObjectPropertyOIDParentDatatypePropertyOID

ClassOIDNameClassOIDName
ComponentOfIntersectionOIDNameIntersectionOIDClassOIDComponentOfIntersectionOIDNameIntersectionOIDClassOID

IntersectionOIDNameisAnonymousClassOID
IntersectionOIDNameisAnonymousClassOID

ChildOfGeneralizationOIDNameGeneralizationOIDChildClassOIDChildObjectPropertyOIDChildDatatypePropertyOID
ChildOfGeneralizationOIDNameGeneralizationOIDChildClassOIDChildObjectPropertyOIDChildDatatypePropertyOID

DatatypePropertyOIDNameisOptionalisFunctionalTypesomeValuesFromTypeClassOIDClassAsRestrictionOID
DatatypePropertyOIDNameisOptionalisFunctionalTypesomeValuesFromTypeClassOIDClassAsRestrictionOID

AssertionOnPropertyOIDNamerestrictionTypeisInverseisRestrictionisEquivalentRelBetweenClassesOID1RelBetweenClassesOID2DatatypeProperty1OIDDatatypeProperty1OID
AssertionOnPropertyOIDNamerestrictionTypeisInverseisRestrictionisEquivalentRelBetweenClassesOID1RelBetweenClassesOID2DatatypeProperty1OIDDatatypeProperty1OID

RelationshipBetweenClassesOIDNameisSymmetricisTransitiveisDirectedrole1isOptional1isFunctional1role2isOptional2isFunctional2isEquivalenceClass1OIDClass2OIDClassAsRestrictionOIDClassAsSomeValuesFromOID

RelationshipBetweenClassesOIDNameisSymmetricisTransitiveisDirectedrole1isOptional1isFunctional1role2isOptional2isFunctional2isEquivalenceClass1OIDClass2OIDClassAsRestrictionOIDClassAsSomeValuesFromOID

Figure 6.5: OWL Lite metamodel.

• the property isFunctional2 is set to TRUE if the object property is an
owl:InverseFunctionalProperty;

• references class1OID and class2OID refer respectively to the domain
class and to the range class;

The different kinds of restriction modify the instance of the Relationship-
BetweenClasses construct. The possibilities are summarized in Figure6.6.

Datatype properties are represented by the DatatypeProperty construct.
Each instance of this construct should have:

• the property isFunctional is set to TRUE if the object property is an
owl:FunctionalProperty;

i

i

“main” — 2009/2/24 — 11:04 — page 59 — #73 i

i

i

i

i

i

6.1. Towards Ontology and Databases Integration 59Restriction Type
owl:AllValuesFrom

owl:someValuesFrom

owl:MinCardinality

owl:MaxCardinality

owl:Cardinality

Class2OID

ClassAsSomeValuesFromOID

isOptional1

isFunctional1

isOptional1, isFunctional1

Refers to range classRefers to the class thast indicates the value of the OWL constructFALSE if the minimum cardinality is 1; TRUE otherwiseTRUE if the minimum cardinality is 1; FALSE otherwiseThe combinations of the two above situations
Attribute Value

Figure 6.6: OWL Restriction for RelationshipBetweenClasses construct.

• the property Type contains the data type of the property (e.g. int, bool,
etc.) ;

• reference class1OID refers to the domain class;

The construct AssertionOnProperty is used to represent the charac-
teristics of a property (object property or datatype property). Let P1 and
P2 two properties, with our construct it is possible to represent the following
situations:

• P1 is the inverse of P2;

• P1 is a restriction of P2, with the type of restriction

• P1 is equivalent to P2

The AssertionOnProperty construct has a boolean attribute for each of
the previous assertions, namely: isInverse, isRestriction, isEquivalent.

Through Intersection and ComponentOfIntersection constructs we
model the intersection of two or more OWL classes.

Let be C a class that is the intersection of the classes C1 and C2, in order
to represent this situation we need:

• to create an instance I of the construct Intersection in which ClassOID
is related to the class C;

• to create an instance of the construct ComponentOfIntersection for
each class that is a component of the intersection. In our case I1 that is

i

i

“main” — 2009/2/24 — 11:04 — page 60 — #74 i

i

i

i

i

i

60 CHAPTER 6. OWL and Relational Database Mappings

related to C1 and I2 that is related to C2. Both I1 and I2 must be related
to the intersection I by means of the reference IntersectionOID.

The attribute isAnonymous in ComponentOfIntersection construct is
set to FALSE value if the class defined as intersection is also defined by an URI.

The two OWL generalizations we consider (i.e. rdfs:subClassOf and
rdfs:subPropertyOf), are represented through Generalization and Child-
OfGeneralization. constructs. Generalization holds:

• the reference ParentClassOID, which referenced the Class construct, in
the event of class generalization (rdfs:subClassOf);

• the reference ParentObjectPropertyOID, which referenced the Rela-
tionshipBetweenClasses construct, in the case of generalization of
an object property (rdfs:subPropertyOf);

• the reference ParentDatatypeProperty, which referenced the Datatype-
Property construct, in the case of generalization of a datatype property
(rdfs:subPropertyOf);

ChildOfGeneralization refers to the elements (children) of the gener-
alization. For example, let C1 a sub-class of class C2, we have:

• an instance G of the Generalization construct in which the attribute
ParentClassOID belongs to the class C2;

• the instance CG of the construct ChildOfGeneralization in which
the attribute ChildClassOID belongs to the class C1.

The table in Figure 6.7 shows the correspondences between the constructs
of OWL Lite and our OWL data model constructs.

6.2 An Extended Supermodel

In the previous section we introduced both relational and owl metamodels.
Relational metamodel is already included in the previous work, and the reader
can find more details about it in [ACB06]. Here, we want to analyze the
extension of the Supermodel in order to consider also ontologies (in particular
OWL-compliant ontologies) and in general to address semantic annotation.

In order to show the generality of the approach we show how the supermodel
can be modified and enhanced to represent those semantic Web elements. Due

i

i

“main” — 2009/2/24 — 11:04 — page 61 — #75 i

i

i

i

i

i

6.2. An Extended Supermodel 61

trueisTransitiveRelationshipBetweenClassesowl:TransitiveProperty trueisSymmetricRelationshipBetweenClassesowl:SymmetricProperty trueisFunctional2RelationshipBetweenClassesowl:inverseFunctionalProperty trueisFunctional1 isFunctionalRelationshipBetweenClassesLexicalowl:FunctionalProperty trueisInverseAssertionOnPropertyowl:inverseOf trueisEquivalentAssertionOnPropertyowl:equivalentProperty Class2OID typeRelationshipBetweenClassesLexicalrdfs:domain Class1OID ClassOIDRelationshipBetweenClassesLexicalrdfs:domain GeneralizationChildOfGeneralizationrdfs:subPropertyOf Lexicalowl:DatatypeProperty RelationshipBetweenClassesowl:ObjectProperty Attribute ValueAttributeOWL Model ConstructOWL Lite Properties
trueisEquivalenceRelationshipBetweenClassesowl:equivalentClass GeneralizationChildOfGeneralizationrdfs:subClassOf Attribute ValueAttributeOWL Model ConstructOWL Lite Axioms

isFunctional1 isOptional1IntersectionComponentOfIntersectionowl:intersectionOf isOptional1RelationshipBetweenClassesowl:Cardinality isFunctional1RelationshipBetweenClassesowl:minCardinality ClassAsSomeValuesFromOIDRelationshipBetweenClassesowl:maxCardinality Class2OIDRelationshipBetweenClassesowl:allValuesFrom ClassRelationshipBetweenClassesAssertionOnPropertyowl:Restriction Classowl:Class Attribute ValueAttributeOWL Model ConstructOWL Lite Class Description

trueisTransitiveRelationshipBetweenClassesowl:TransitiveProperty trueisSymmetricRelationshipBetweenClassesowl:SymmetricProperty trueisFunctional2RelationshipBetweenClassesowl:inverseFunctionalProperty trueisFunctional1 isFunctionalRelationshipBetweenClassesLexicalowl:FunctionalProperty trueisInverseAssertionOnPropertyowl:inverseOf trueisEquivalentAssertionOnPropertyowl:equivalentProperty Class2OID typeRelationshipBetweenClassesLexicalrdfs:domain Class1OID ClassOIDRelationshipBetweenClassesLexicalrdfs:domain GeneralizationChildOfGeneralizationrdfs:subPropertyOf Lexicalowl:DatatypeProperty RelationshipBetweenClassesowl:ObjectProperty Attribute ValueAttributeOWL Model ConstructOWL Lite Properties
trueisEquivalenceRelationshipBetweenClassesowl:equivalentClass GeneralizationChildOfGeneralizationrdfs:subClassOf Attribute ValueAttributeOWL Model ConstructOWL Lite Axioms

isFunctional1 isOptional1IntersectionComponentOfIntersectionowl:intersectionOf isOptional1RelationshipBetweenClassesowl:Cardinality isFunctional1RelationshipBetweenClassesowl:minCardinality ClassAsSomeValuesFromOIDRelationshipBetweenClassesowl:maxCardinality Class2OIDRelationshipBetweenClassesowl:allValuesFrom ClassRelationshipBetweenClassesAssertionOnPropertyowl:Restriction Classowl:Class Attribute ValueAttributeOWL Model ConstructOWL Lite Class Description

Figure 6.7: Correspondences between OWL Lite elements and OWL data
model constructs.

i

i

“main” — 2009/2/24 — 11:04 — page 62 — #76 i

i

i

i

i

i

62 CHAPTER 6. OWL and Relational Database MappingsCLASSRELATIONSHIPBETWEENCLASSESDATATYPEPROPERTYGENERALIZATIONCHILDOFGENERALIZATION
OWL Model SupermodelSM-ABSTRACTSM-BINARYAGGREGATIONOFABSTRACTSSM-LEXICALSM-GENERALIZATIONSM-CHILDOFGENERALIZATION

Figure 6.8: Correspondences between OWL Model and the Supermodel.

to the complexity of the whole Supermodel we consider only the constructs that
are involved in the translation between semantic annotations and databases.
In the following we briefly describe some of the major extensions made to the
Supermodel.

The extendability of the Supermodel permits us to reuse some of the avail-
able constructs. Some of the most clear correspondences between the OWL
model construct and the Supermodel metaconstructs are shown in Figure 6.8.

As we can see in the Figure 6.8 the sm-Abstract can be used to repre-
sent the Class construct of OWL. Indeed, sm-Abstract is used to represent
abstract entities as it models, for example, the Entity construct of the Entity-
Relationship model or the RootElement construct of XML.

The sm-BinaryAggragationOfAbstracts metaconstruct is used to re-
present the concept of binary relationship between two different abstract en-
tities (sm-Abstract). It includes the attributes isOptional1, isOptional2,
isFunctional1 and isFunctional2) that allow the definition of relationship
cardinality in both sides. The attribute isDirected allows the definition of
the relationship direction, while Abstract1OID and Abstract2OID belong to
the sm-Abstracts participating in the relation, whose roles are defined by
role1 and role2 attributes.

The sm-Lexical metaconstruct represents the concept of lexical, i.e. a
property with a primitive type value. The isOptional attribute allows to
specify the minimum cardinality, the attribute isNullable specifies if it is
allowed or not to have a NULL value. Obviously, AbstractOID belongs to the
sm-Abstract that owns the sm-Lexical.

Both sm-Generalization and sm-ChildOfGeneralization are used to
represent the concept of generalization of sm-Abstracts.

i

i

“main” — 2009/2/24 — 11:04 — page 63 — #77 i

i

i

i

i

i

6.2. An Extended Supermodel 63

A more careful analysis of the Supermodel shows how some of the con-
structs of OWL model do not have a direct correlation with its constructs.
Moreover, some of the constructs for which that correspondence is present, do
not contain sufficient attributes to the representation of whole information. In
the following, we describe new constructs and how to extend the available ones.

Management of Intersections

To manage the intersections we introduce an sm-Set metaconstruct represent-
ing a generic set of abstracts. In order to consider also other sets (like OWL
DL unions or RDF collections) we add the Type attribute to determine the
kind of set we are considering. Elements of sm-Set (for example the classes
which participate to an OWL intersection) are represented by means of an
sm-ComponentOfSet metaconstruct. A set of sm-Abstract is an abstract
itself so we also introduce a reference to sm-Abstract (e.g. an intersection of
classes is a class itself in OWL).

Management of Restrictions

It was previously described that in the OWL model, the restrictions on object
properties can be represented through the RelationshipBetweenClasses
construct, while restrictions on datatype properties are dealt with the con-
struct DatatypeProperty. The two correspondent metaconstructs in the Su-
permodel are respectively sm-BinaryAggregationOfAbstracts and sm-
Lexical (see Figure 6.8). However, the old versions of those constructs must
be revised in order to properly handle the additional information defined by
the restrictions.

Recalling that a restriction in OWL is considered as a class, it is necessary
to add, to the sm-BinaryAggregationOfAbstracts metaconstruct, a ref-
erence to the class that represents the restriction. Moreover, to manage the
owl:someValuesFrom constraint we add an AbstractAsSomeValuesFromOID
that belongs to sm-Abstract. For the sm-Lexical metaconstruct we have a
similar situation except for the fact that the owl:someValuesFrom constraint
cab be represented as a simple attribute (someValuesFromType).

Finally we must add a completely new metaconstruct to indicate when
an sm-BinaryAggregationOfAbstracts is a restriction of a different sm-
BinaryAggregationOfAbstracts (the same for two sm-Lexicals) and
the kind of the restriction.

i

i

“main” — 2009/2/24 — 11:04 — page 64 — #78 i

i

i

i

i

i

64 CHAPTER 6. OWL and Relational Database Mappings

Classes Equivalence

The equivalence relation between classes can be seen as a binary relationship.
For this reason, the sm-BinaryAggregationOfAbstracts metaconstruct
is used to represent it within the supermodel. In this construct is added the
isEquivalence boolean attribute that determines whether the relationship is
an equivalence or not.

Properties Equivalence

The equivalence between properties (both object and datatype) is represented
by the construct sm-AssertionOnProperty. In this construct we added
the isEquivalent attribute that determines whether a property is considered
equivalent to another or not.

Object and Datatype Properties Generalization

The old release of the Supermodel was able to manage only generalization
between sm-Abstracts. In order to also manage the OWL properties gen-
eralizations we have enhanced the two generalization metaconstructs, i.e. sm-
Generalization and sm-ChildOfGeneralization. In particular, we intro-
duce two references in sm-Generalization, namely ParentBinAggrOID and
ParentLexicalOID. The last one belongs to sm-Lexical, the other belongs to
sm-BinaryAggregationOfAbstracts. Similarly we add two other refer-
ences to sm-ChildOfGeneralization: that is ChildBinAggrOID in case of
object property generalizations and LexicalOID in case of datatype property
generalizations.

Functional Datatype Properties

In OWL we can define functional datatype properties. This is managed adding
the boolean attribute isFunctional in the sm-Lexical metaconstruct.

Symmetric, Transitive and inverse Object Properties

Symmetric and transitive properties are easily managed in the Supermodel
adding the boolean attributes isSymmetric and isTransitive to the sm-
BinaryAggregationOfAbstracts metaconstruct.

For the inverse of a property we exploit the sm-AssertionOnProperty
metaconstruct again, adding to it the boolean attribute isInverse.

i

i

“main” — 2009/2/24 — 11:04 — page 65 — #79 i

i

i

i

i

i

6.3. From OWL Ontologies to Relational Databases 65

SM-AbstractOIDNameSM-AbstractOIDName
SM-ComponentOfSetOIDNameSetOIDAbstractOIDSM-ComponentOfSetOIDNameSetOIDAbstractOID

SM-SetOIDNametypeisAnonymousAbstractOID

SM-ChildOfGeneralizationOIDNameGeneralizationOIDChildAbstractOIDChildBinAggrOIDChildLexicalOID
SM-ChildOfGeneralizationOIDNameGeneralizationOIDChildAbstractOIDChildBinAggrOIDChildLexicalOID

SM-LexicalOIDNameisNullableisOptionalisIdentifierisFunctionaltypesomeValuesFromType3AbstractOIDBinaryAggregationOfAbstractOIDAbstractAsLexicalOID
SM-AssertionOnPropertyOIDNamerestrictionTypeisInverseisRestrictionisEquivalentBinaryAggregationOfAbstractOID1BinaryAggregationOfAbstractOID2Lexical1OIDLexical2OID
SM-AssertionOnPropertyOIDNamerestrictionTypeisInverseisRestrictionisEquivalentBinaryAggregationOfAbstractOID1BinaryAggregationOfAbstractOID2Lexical1OIDLexical2OID

SM-BinaryAggregationOfAbstractOIDNameisSymmetricisTransitiveisDirectedrole1isOptional1isFunctional1isIdentifiedrole2isOptional2isFunctional2isEquivalenceAbstractAsBinAggOfAbsOIDAbstract1OIDAbstract2OIDAbstractAsSomeValuesFromOID

SM-BinaryAggregationOfAbstractOIDNameisSymmetricisTransitiveisDirectedrole1isOptional1isFunctional1isIdentifiedrole2isOptional2isFunctional2isEquivalenceAbstractAsBinAggOfAbsOIDAbstract1OIDAbstract2OIDAbstractAsSomeValuesFromOID

SM-GeneralizationOIDNameisTotalParentAbstractOIDParentBinAggrOIDParentLexicalOID
SM-GeneralizationOIDNameisTotalParentAbstractOIDParentBinAggrOIDParentLexicalOID

Figure 6.9: A portion of the extended Supermodel.

In Figure 6.9 we show the portion of interest (for ontology and database
transformation) of the extended Supermodel.

6.3 From OWL Ontologies to Relational Databases

Our purpose is to translate an OWL ontology into a relational representation
trying to avoid information or semantics loss. The approach translates both
schemas and data: given a source instance IOWL of a schema SOWL ex-
pressed in the OWL data model MOWL, and the (relational) database model
MRDB, it generates a schema SRDB expressed in MRDB that is “equiva-
lent” to SOWL and an instance IRDB of SRDB “equivalent” to IOWL. A

i

i

“main” — 2009/2/24 — 11:04 — page 66 — #80 i

i

i

i

i

i

66 CHAPTER 6. OWL and Relational Database Mappings

SchemaS1SchemaS1 SchemaS2SchemaS2SourceModelSourceModel TargetModelTargetModel
SM_SourceSM_Source SM_TargetSM_Target

SM_S2SM_S2SM_S1SM_S1
translationrules

b. Translate

a. Copy c. Copy

co
rr

es
po

nd
en

ce
s correspondences

SUPERMODEL

InstanceI1InstanceI1 InstanceI2InstanceI2
Figure 6.10: The translation process.

translation is composed of

(a) a “copy” (with construct renaming) from the source model (OWL) into
the supermodel;

(b) an actual transformation within the Supermodel, whose output includes
only constructs allowed in the target model (RDB);

(c) another copy (again with construct renaming) into the target model (RDB),
as depicted in Figure 6.10 (in the figure we also include schema and data).

We will illustrate by a use case how the translation is performed.

i

i

“main” — 2009/2/24 — 11:04 — page 67 — #81 i

i

i

i

i

i

6.3. From OWL Ontologies to Relational Databases 67

Let us consider the OWL Lite example below:
<owl:Class rdf:ID="Employee"/>

<owl:Class rdf:ID="Project">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#managedBy"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="ProjectManager">

<owl:equivalentClass>

<owl:Class>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:ID="Employee"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#manages"/>

<owl:minCardinality rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

</owl:equivalentClass>

</owl:Class>

<owl:Class rdf:ID="SoftwareDeveloper">

<rdfs:subClassOf rdf:resource="#Employee"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#involvedIn"/>

<owl:allValuesFrom>

<owl:Class rdf:ID="SoftwareProject"/>

</owl:allValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="SoftwareProject">

<rdfs:subClassOf rdf:resource="#Project"/>

</owl:Class>

<owl:ObjectProperty rdf:ID="involves">

<rdfs:domain rdf:resource="#Project"/>

<rdfs:range rdf:resource="#Employee"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="involvedIn">

<owl:inverseOf rdf:resource="#involves"/>

<rdfs:domain rdf:resource="#Employee"/>

<rdfs:range rdf:resource="#Project"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="manages">

<rdfs:domain rdf:resource="#ProjectManager"/>

<rdfs:range rdf:resource="#Project"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="managedBy">

<owl:inverseOf rdf:resource="#manages"/>

<rdfs:domain rdf:resource="#Project"/>

i

i

“main” — 2009/2/24 — 11:04 — page 68 — #82 i

i

i

i

i

i

68 CHAPTER 6. OWL and Relational Database Mappings

<rdfs:range rdf:resource="#ProjectManager"/>

</owl:ObjectProperty>

<owl:FunctionalProperty rdf:ID="SSN">

<rdfs:domain rdf:resource="#Employee"/>

<rdfs:range rdf:resource="&xsd;positiveInteger"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:FunctionalProperty rdf:ID="Name">

<rdfs:domain rdf:resource="#Employee"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:DatatypeProperty rdf:ID="hobby">

<rdfs:domain rdf:resource="#Employee"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:FunctionalProperty rdf:ID="ProjectName">

<rdfs:domain rdf:resource="#Project"/>

<rdfs:range rdf:resource="&xsd;string"/>

<rdf:type rdf:resource="http://www.w3.org/2002/07/owl#DatatypeProperty"/>

</owl:FunctionalProperty>

<owl:DatatypeProperty rdf:ID="keyword">

<rdfs:domain rdf:resource="#Project"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

The serialization syntax chosen is RDF/XML. This simple example repre-
sents the relationships between employees and projects.

The Employee class is defined with the property involvedIn, to express
that an employee can be involved in one or more projects. The ProjectManager
class consists of all those employees who manage one Project at least.

For the sake of simplicity, we concentrate on schema translation omitting
the details of instance translations.

Copy in the Supermodel

In order to make things concrete, we show in Figure 6.11 relational implemen-
tation of a portion of the dictionary, as we defined it in our tool, for the OWL
example (the dictionary has been described in Chapter 3.2).

In this first phase, the schema, initially represented in term of OWL data
model constructs, is copied in the Supermodel in terms of metaconstructs.
Referring to the correspondences between the constructs of the OWL model
and the Supermodel metaconstructs the result of this phase is a copy of the
scheme represented by the relational dictionary shown in Figure 6.12 (we report
only a simplified portion of the dictionary due to space limitation).

i

i

“main” — 2009/2/24 — 11:04 — page 69 — #83 i

i

i

i

i

i

6.3. From OWL Ontologies to Relational Databases 69

IntersectionClass1c9 RestrictionClass3c8 RestrictionClass2c7 RestrictionClass1c6 SoftwareProjectc5 SoftwareDeveloperc4 ProjectManagerc3 Projectc2 Employeec1 NameOIDOWL_Class

IntersectionClass1c9 RestrictionClass3c8 RestrictionClass2c7 RestrictionClass1c6 SoftwareProjectc5 SoftwareDeveloperc4 ProjectManagerc3 Projectc2 Employeec1 NameOIDOWL_Class c9Intersectionin1 ClassNameOIDOWL_Intersection c9Intersectionin1 ClassNameOIDOWL_Intersection c7in1CompRestr2ci2 c1in1CompRestr1ci1 ClassIntersectionNameOIDOWL_ComponentOfIntersection c7in1CompRestr2ci2 c1in1CompRestr1ci1 ClassIntersectionNameOIDOWL_ComponentOfIntersection

-c2falsetruestringKeyworddp4 -c1falsetruestringHobbydp3 -c1truetruestringNamedp2 -c1truetrueintSSNdp1 ClassAsRestrClassisFuncisOptTypeNameOIDOWL_DatatypeProperty

-c2falsetruestringKeyworddp4 -c1falsetruestringHobbydp3 -c1truetruestringNamedp2 -c1truetrueintSSNdp1 ClassAsRestrClassisFuncisOptTypeNameOIDOWL_DatatypeProperty

-c9c3truefalsefalsefalsefalsefalsefalsefalseequivalencer8 c8c5c1falsefalsetruefalsefalsetruefalsefalseinvolvedInRestrr7 c7c2c1falsefalsetruefalsefalsetruefalsefalsemanagesRestrr6 c6c1c2falsefalsetruetruefalsetruefalsefalsemanagedByRestrr5 -c1c2falsefalsetruetruetruetruefalsefalsemanagedByr4 -c2c1falsefalsetruefalsetruetruefalsefalsemanagesr3 -c2c1falsefalsetruefalsetruetruefalsefalseinvolvedInr2 -c1c2falsefalsetruefalsetruetruefalsefalseinvolvesr1 ClassAsRestrClass2Class1isEquivisFunc2isOpt2isFunc1isOpt1isDirectisTransisSymmNameOIDOWL_RelationshipBetweenClasses

-c9c3truefalsefalsefalsefalsefalsefalsefalseequivalencer8 c8c5c1falsefalsetruefalsefalsetruefalsefalseinvolvedInRestrr7 c7c2c1falsefalsetruefalsefalsetruefalsefalsemanagesRestrr6 c6c1c2falsefalsetruetruefalsetruefalsefalsemanagedByRestrr5 -c1c2falsefalsetruetruetruetruefalsefalsemanagedByr4 -c2c1falsefalsetruefalsetruetruefalsefalsemanagesr3 -c2c1falsefalsetruefalsetruetruefalsefalseinvolvedInr2 -c1c2falsefalsetruefalsetruetruefalsefalseinvolvesr1 ClassAsRestrClass2Class1isEquivisFunc2isOpt2isFunc1isOpt1isDirectisTransisSymmNameOIDOWL_RelationshipBetweenClasses

--r3r4-falsetruefalseAssertion5as5 --r1r2-falsetruefalseAssertion4as4 --r2r7allValuesFromfalsefalsetrueAssertion3as3 --r3r6minCardinalityfalsefalsetrueAssertion2as2 --r4r5cardinalityfalsefalsetrueAssertion1as1 Datatype2Datatype1Rel2Rel1restrictionTypeisEquivalentisInverseisRestrictionNameOIDOWL_AssertionOnProperty

--r3r4-falsetruefalseAssertion5as5 --r1r2-falsetruefalseAssertion4as4 --r2r7allValuesFromfalsefalsetrueAssertion3as3 --r3r6minCardinalityfalsefalsetrueAssertion2as2 --r4r5cardinalityfalsefalsetrueAssertion1as1 Datatype2Datatype1Rel2Rel1restrictionTypeisEquivalentisInverseisRestrictionNameOIDOWL_AssertionOnProperty

--c2Gen4g4 --c8Gen3g3 --c1Gen2g2 --c6Gen1g1 ParentDataPropParentObjPropParentClassNameOIDOWL_Generalization

--c2Gen4g4 --c8Gen3g3 --c1Gen2g2 --c6Gen1g1 ParentDataPropParentObjPropParentClassNameOIDOWL_Generalization

--c5g4Child4ch4 --c4g3Child3ch3 --c4g2Child2ch2 --c2g1Child1ch1 ChildDataPrChildObjPrChildClassGenNameOIDOWL_ChildOfGeneralization

--c5g4Child4ch4 --c4g3Child3ch3 --c4g2Child2ch2 --c2g1Child1ch1 ChildDataPrChildObjPrChildClassGenNameOIDOWL_ChildOfGeneralization

Figure 6.11: Dictionary Tables for the OWL Example.

i

i

“main” — 2009/2/24 — 11:04 — page 70 — #84 i

i

i

i

i

i

70 CHAPTER 6. OWL and Relational Database Mappings

IntersectionClass1a9 RestrictionClass3a8 RestrictionClass2a7 RestrictionClass1a6 SoftwareProjecta5 SoftwareDevelopera4 ProjectManagera3 Projecta2 Employeea1 NameOIDSM_Abstract

IntersectionClass1a9 RestrictionClass3a8 RestrictionClass2a7 RestrictionClass1a6 SoftwareProjecta5 SoftwareDevelopera4 ProjectManagera3 Projecta2 Employeea1 NameOIDSM_Abstract a9Intersections1 AbsNameOIDSM_Set a9Intersections1 AbsNameOIDSM_Set a7s1CompRestr2cs2 a1s1CompRestr1cs1 ClassSetNameOIDSM_ComponentOfSet a7s1CompRestr2cs2 a1s1CompRestr1cs1 ClassSetNameOIDSM_ComponentOfSet

-a2falsetruestringKeywordL4 -a1falsetruestringHobbyL3 -a1truetruestringNameL2 -a1truetrueintSSNL1 AbsAsLexicalAbsisFuncisOptTypeNameOIDSM_Lexical

-a2falsetruestringKeywordL4 -a1falsetruestringHobbyL3 -a1truetruestringNameL2 -a1truetrueintSSNL1 AbsAsLexicalAbsisFuncisOptTypeNameOIDSM_Lexical

-a9a3truefalsefalsefalsefalsefalsefalsefalseequivalenceba8 a8a5a1falsefalsetruefalsefalsetruefalsefalseinvolvedInRestrba7 a7a2a1falsefalsetruefalsefalsetruefalsefalsemanagesRestrba6 a6a1a2falsefalsetruetruefalsetruefalsefalsemanagedByRestrba5 -a1a2falsefalsetruetruetruetruefalsefalsemanagedByba4 -a2a1falsefalsetruefalsetruetruefalsefalsemanagesba3 -a2a1falsefalsetruefalsetruetruefalsefalseinvolvedInba2 -a1a2falsefalsetruefalsetruetruefalsefalseinvolvesba1 AbsAsBinAggrAbs2Abs1isEquivisFunc2isOpt2isFunc1isOpt1isDirectisTransisSymmNameOIDSM_BinaryAggregationOfAbstracts

-a9a3truefalsefalsefalsefalsefalsefalsefalseequivalenceba8 a8a5a1falsefalsetruefalsefalsetruefalsefalseinvolvedInRestrba7 a7a2a1falsefalsetruefalsefalsetruefalsefalsemanagesRestrba6 a6a1a2falsefalsetruetruefalsetruefalsefalsemanagedByRestrba5 -a1a2falsefalsetruetruetruetruefalsefalsemanagedByba4 -a2a1falsefalsetruefalsetruetruefalsefalsemanagesba3 -a2a1falsefalsetruefalsetruetruefalsefalseinvolvedInba2 -a1a2falsefalsetruefalsetruetruefalsefalseinvolvesba1 AbsAsBinAggrAbs2Abs1isEquivisFunc2isOpt2isFunc1isOpt1isDirectisTransisSymmNameOIDSM_BinaryAggregationOfAbstracts

--ba3ba4-falsetruefalseAssertion5as5 --ba1ba2-falsetruefalseAssertion4as4 --ba2ba7allValuesFromfalsefalsetrueAssertion3as3 --ba3ba6minCardinalityfalsefalsetrueAssertion2as2 --ba4ba5cardinalityfalsefalsetrueAssertion1as1 Lex2Lex1BinAggr2BinAggr1restrictionTypeisEquivalentisInverseisRestrictionNameOIDSM_AssertionOnProperty

--ba3ba4-falsetruefalseAssertion5as5 --ba1ba2-falsetruefalseAssertion4as4 --ba2ba7allValuesFromfalsefalsetrueAssertion3as3 --ba3ba6minCardinalityfalsefalsetrueAssertion2as2 --ba4ba5cardinalityfalsefalsetrueAssertion1as1 Lex2Lex1BinAggr2BinAggr1restrictionTypeisEquivalentisInverseisRestrictionNameOIDSM_AssertionOnProperty

--a2Gen4g4 --a8Gen3g3 --a1Gen2g2 --a6Gen1g1 ParentLexicalParentBinAggrParentAbsNameOIDSM_Generalization

--a2Gen4g4 --a8Gen3g3 --a1Gen2g2 --a6Gen1g1 ParentLexicalParentBinAggrParentAbsNameOIDSM_Generalization

--a5g4Child4ch4 --a4g3Child3ch3 --a4g2Child2ch2 --a2g1Child1ch1 ChildLexChildBinAggrChildAbsGenNameOIDSM_ChildOfGeneralization

--a5g4Child4ch4 --a4g3Child3ch3 --a4g2Child2ch2 --a2g1Child1ch1 ChildLexChildBinAggrChildAbsGenNameOIDSM_ChildOfGeneralization

Figure 6.12: A portion of the Supermodel dictionary.

i

i

“main” — 2009/2/24 — 11:04 — page 71 — #85 i

i

i

i

i

i

6.3. From OWL Ontologies to Relational Databases 71

After the first “copy” operation, we have obtained database tables that
fully describe the ontology structure, exploiting a logical organization that
reflects the constructs of the ontology language. Once the ontology is trans-
lated in terms of a relational representation, it can be queried, modified and
converted back to the source ontology language. Since all the characteristics
of the constructs used to define the source ontology are stored into the re-
lational representation, it is possible to perform the reverse transformation
from the relational representation back to the original ontology. Moreover, our
meta-representation of an OWL ontology can subsequently be used to perform
translations to other formalisms.

Translation within the Supermodel

The “real” transformation is made within the Supermodel as previously stated.
The main objective is to perform the translation reducing the information loss
at minimum.

The flexibility of our approach allows the user to choose the form of the
translation, defining how to generate the target model. For example, it is
possible to define a translation where a relation is generated for each kind of
class and another translation where only the named classes are transformed in
relations. Furthermore, generalization can be mapped to the relational model
in many ways and all the choices are available to the user.

In the following, we describe the different steps of a chosen translation that
are realized through the application of convenient Datalog rules.

Step 1. In this step, we identify the Named Abstracts, that represent those
sm-Abstracts belonging to OWL named classes. More precisely, let A
an sm-Abstract. It is also a Named Abstract if:

• A OID does not appear as value of AbstractAsBinAggrOfAbsOID
attribute of any sm-BinaryAggregationOfAbstracts metacon-
structs;

• A OID does not appear as value of AbstractAsLexicalOID at-
tribute of any sm-Lexical;

• A OID does not appear as value of AbstractOID attribute of any
sm-Set;

In the example Employee, Project, ProjectManager, SoftwareDveloper
and SoftwareProject classes belong to Named Abstract family.

i

i

“main” — 2009/2/24 — 11:04 — page 72 — #86 i

i

i

i

i

i

72 CHAPTER 6. OWL and Relational Database Mappings

Figure 6.13: The inheritance process.

Step 2. Let be BAA an sm-BinaryAggregationOfAbstracts and BAAG

a generalization of BAA, therefore BAA inherits some attributes values
from BAAG; namely they are (we consider only the attributes that are
relevant in this context):

• isFunctional1 that indicates if the relation is functional or not;

• isFunctional2 that indicates if the relation is inverse functional or
not;

• Abstract1OID that indicated the domain of the relation

• Abstract2OID that indicates the range of the relation

The situation of the inheritance process is shown in Figure 6.13, where
BA2 is the generalization of BA1. We remark that the same process can
be recursively applied if there are more generalizations (e.g. BA3 is the
generalization of BA2 that is a generalization of BA1).

Step 3. As for the previous step there can be also generalization of sm-
Lexical metaconstructs. We adopt in this case a similar inheritance
process.

Step 4. In this step the sm-Abstracts that are subsumed in another sm-
Abstract are identified. Let be A1 and A2 two sm-Abstracts. A1 is
subsumed in A2 if:

• there exists an sm-Generalization that explicitly relates A1 and
A2 or

• there are an sm-Generalization that relates A1 and an sm-Abstract
that is an intersection in which one element is A2 or

i

i

“main” — 2009/2/24 — 11:04 — page 73 — #87 i

i

i

i

i

i

6.3. From OWL Ontologies to Relational Databases 73

• there is an equivalence relation between A1 and an sm-Abstract
that is an intersection in which one element is A2. We remark that
the equivalence relation is specified by means of a convenient sm-
BinaryAggregationOfAbstracts with the isEquivalence at-
tribute set to TRUE.

With regard to the considered example, it appears that sm-Abstracts
ProjectManager and SoftwareDeveloper are subsumed in Employee
and SoftwareProject is subsumed in Project.

Step 5. This step is devoted to the identification of the restricted binary re-
lations. A restricted binary relation RBA1 is a binary relation between
sm-Abstracts with constraints in isOptional and isFunctional at-
tributes and Abstract2OID reference.

A restricted sm-BinaryAggregationOfAbstracts is associated with
an sm-Abstract, composed of all those instances involved in the re-
stricted relation. In this context we define the concept of owner of a
restricted relation (that we simply call restriction).

A named sm-Abstract A is an owner of a restriction that involves the
sm-Abstract RA in the following situations:

• there exists an equivalence relation between A and RA.

• there exists an sm-Generalization from A to RA

• there exists an equivalence relation between A and an sm-Abstract
that is an intersection in which one element is RA.

• there exists an sm-Generalization that relates A and an sm-
Abstract that is an intersection in which one element is RA.

Referring to the example we can say that SoftwareDeveloper is the
owner of the restriction InvolvedInRestricted, which in turn is a
restriction of the InvolvedIn relation. ProjectManager also owns
the restriction ManagesRestricted defined on the Manages relation.

Then we can identify when a named sm-Abstract A assumes the role
of domain of a relation RA. The possibilities are:

• A is explicitly defined as a domain of BA

• A owns a binary relation RBA defined on BA

i

i

“main” — 2009/2/24 — 11:04 — page 74 — #88 i

i

i

i

i

i

74 CHAPTER 6. OWL and Relational Database Mappings

Domain Abstract BinAggrOfAbstract

Figure 6.14: Results of step 5.

Referring to the example we can report the results of this step in Fig-
ure 6.14.

Step 6. We define in this step the characteristics of each sm-Abstract de-
rived from the previous step.

Let be C an sm-Abstract that is subsumed in the sm-Abstract B
that is, in turn, subsumed in the sm-Abstract A. Let also be true the
following conditions:

• A is related to the sm-BinaryAggregationOfAbstracts BA
with the isFunctional attribute set to FALSE;

• B has a domain role in the relation BA

• C has a domain role in the relation BA

The situation is shown in Figure 6.15, which also refers to the example.

Step 7 and 8. These steps are similar to steps 5 and 6, but we refer to sm-
Lexicals instead of sm-BinaryAggregationOfAbstracts.

Step 9. This is the first “real” transformation step, which exploits the in-
formation extracted in the previous steps. In this step the Named sm-
Abstracts, identified in Step 1, will be transformed into different sm-
Aggregations. For each sm-Aggregation also creates an sm-Lexical.

Referring to the example, Employee is translated in the homonymous
sm-Aggregation and also the sm-Lexical EmployeeId will be created.

Step 10. The sm-BinaryAggregationOfAbstractss are translated. Con-
sidering a binary relation with domain D1 and range R1 it is translated

i

i

“main” — 2009/2/24 — 11:04 — page 75 — #89 i

i

i

i

i

i

6.3. From OWL Ontologies to Relational Databases 75

Domain Abstract

Figure 6.15: Results of step 6.

in an sm-Lexical belonging to an sm-Aggregation that corresponds
to the sm-Abstract D1. This sm-Lexical is also involved in an sm-
ForeignKey that belongs to an sm-Aggregation corresponding to
R1.

It should be noted that in case of two binary relations, which is one
inverse of the other, only one is transformed, while the other is not con-
sidered. This is to avoid the creation of two cross-references between
sm-Aggregations.

Step 11. In this step we exploit the results of Step 4. If an sm-Abstract A
is subsumed in an sm-Abstract B, an sm-ForeignKey belonging to
B is created.

The application of the aforementioned translation steps causes the gen-
eration, within the Supermodel, of a new schema defined in terms of meta-
constructs that is compatible with the relational data model, as depicted in
Figure 6.16.

From Supermodel To Relational Data Model

In this third and final phase we perform a copy of the schema generated from
the previous translation, in a schema defined in terms of the relational model
constructs.

i

i

“main” — 2009/2/24 — 11:04 — page 76 — #90 i

i

i

i

i

i

76 CHAPTER 6. OWL and Relational Database Mappings

Keywordvalueag9 HobbyValueag8 SoftwDevInvolvedInSoftProjag7 EmpInvolvedInProjectag6 SoftwareProjectag5 SoftwareDeveloperag4 ProjectManagerag3 Projectag2 Employeeag1 NameOIDSM_Aggregation

Keywordvalueag9 HobbyValueag8 SoftwDevInvolvedInSoftProjag7 EmpInvolvedInProjectag6 SoftwareProjectag5 SoftwareDeveloperag4 ProjectManagerag3 Projectag2 Employeeag1 NameOIDSM_Aggregation

ag2ag5ForeignKey10fk10 ag1ag4ForeignKey9fk9 ag1ag3ForeignKey8fk8 ag2ag9ForeignKey7fk7 ag1ag8ForeignKey6fk6 ag5ag7ForeignKey5fk5 ag4ag7ForeignKey4fk4 ag2ag6ForeignKey3fk3 ag1ag6ForeignKey2fk2 ag3ag2ForeignKey1fk1 xAggrFromNameOIDSM_ForeignKey

ag2ag5ForeignKey10fk10 ag1ag4ForeignKey9fk9 ag1ag3ForeignKey8fk8 ag2ag9ForeignKey7fk7 ag1ag8ForeignKey6fk6 ag5ag7ForeignKey5fk5 ag4ag7ForeignKey4fk4 ag2ag6ForeignKey3fk3 ag1ag6ForeignKey2fk2 ag3ag2ForeignKey1fk1 xAggrFromNameOIDSM_ForeignKey

falsetruestringValueag9l17 falsetrueintProjectag9l16 falsetruestringValueag8l15 falsetrueintEmployeeag8l14 falsetrueintSoftwareProjectag7l13 falsetrueintSoftwareDeveloperag7l12 falsetrueintProjectag6l11 falsetrueintEmployeeag6l10 falsetrueintSoftwareProjectIdag5l9 falsetrueintSoftwareDeveloperIdag4l8 falsetrueintProjectManagerIdag3l7 falsefalseintManagedByag2l6 truefalsestringProjectNameag2l5 falsetrueintProjectIdag2l4 truefalsestringNameag1l3 truefalseintSSNag1l2 falsetrueintEmployeeIdag1l1 isNullableisIdentifierTypeNameAggregationOIDSM_Lexical

falsetruestringValueag9l17 falsetrueintProjectag9l16 falsetruestringValueag8l15 falsetrueintEmployeeag8l14 falsetrueintSoftwareProjectag7l13 falsetrueintSoftwareDeveloperag7l12 falsetrueintProjectag6l11 falsetrueintEmployeeag6l10 falsetrueintSoftwareProjectIdag5l9 falsetrueintSoftwareDeveloperIdag4l8 falsetrueintProjectManagerIdag3l7 falsefalseintManagedByag2l6 truefalsestringProjectNameag2l5 falsetrueintProjectIdag2l4 truefalsestringNameag1l3 truefalseintSSNag1l2 falsetrueintEmployeeIdag1l1 isNullableisIdentifierTypeNameAggregationOIDSM_Lexical
l4l9Component10fk10cfk10 l1l8Component9fk9cfk9 l1l7Component8fk8cfk8 l4l16Component7fk7cfk7 l1l14Component6fk6cfk6 l9l13Component5fk5cfk5 l8l12Component4fk4cfk4 l4l11Component3fk3cfk3 l1l10Component2fk2cfk2 l7l6Component1fk1cfk1 LexicalToLexicalFromNameForeignKeyOIDSM_ComponentOfForeignKey

l4l9Component10fk10cfk10 l1l8Component9fk9cfk9 l1l7Component8fk8cfk8 l4l16Component7fk7cfk7 l1l14Component6fk6cfk6 l9l13Component5fk5cfk5 l8l12Component4fk4cfk4 l4l11Component3fk3cfk3 l1l10Component2fk2cfk2 l7l6Component1fk1cfk1 LexicalToLexicalFromNameForeignKeyOIDSM_ComponentOfForeignKey

Figure 6.16: Translation within the Supermodel.

i

i

“main” — 2009/2/24 — 11:04 — page 77 — #91 i

i

i

i

i

i

6.4. From Relational Databases to OWL ontologies 77

The results of the transformation for the considered example are shown
in the relational dictionary of Figure 6.17, therefore the resulting relational
schema is depicted in Figure 6.18.

6.4 From Relational Databases to OWL ontologies

The purpose is to translate a relational database schema into an OWL-compliant
one. The three main phases are the same ones described in Section 6.3 and also
in this case we refer to an example. The relational schema to be transformed
is shown in Figure 6.19.

Copy in the Supermodel

As for the inverse translation, the first operation is substantially a copy of the
schema in the Supermodel by means of metaconstructs. The results for the
proposed example are shown in Figure 6.20.

Translation within the Supermodel

Also in this case the translation is made by means of metaconstructs transfor-
mation within the Supermodel.

In particular we describe the different steps of the translation that are
realized through the application of our Datalog-like rules.

Step 1. This step is devoted to the translation of the sm-Aggregation meta-
construct that does not have direct correspondences with OWL data
model construct.

An sm-Aggregation is generally translated into an sm-Abstract with
the same name. In our example, this is the situation of Student, Work-
erStudent, Course, Exam and Professor.

If the sm-Aggregation is related with two sm-Lexical that are also
related to an sm-ForeignKey, we have to perform the following opera-
tions:

• an sm-BinaryAggregationOfAbstracts BA1 is created to re-
present the relation between the sm-Abstracts;

• an sm-BinaryAggregationOfAbstracts BA2;

i

i

“main” — 2009/2/24 — 11:04 — page 78 — #92 i

i

i

i

i

i

78 CHAPTER 6. OWL and Relational Database Mappings

Keywordvaluet9 HobbyValuet8 SoftwDevInvolvedInSoftProjt7 EmpInvolvedInProjectt6 SoftwareProjectt5 SoftwareDevelopert4 ProjectManagert3 Projectt2 Employeet1 NameOIDRel_Table

Keywordvaluet9 HobbyValuet8 SoftwDevInvolvedInSoftProjt7 EmpInvolvedInProjectt6 SoftwareProjectt5 SoftwareDevelopert4 ProjectManagert3 Projectt2 Employeet1 NameOIDRel_Table

t2t5ForeignKey10fk10 t1t4ForeignKey9fk9 t1t3ForeignKey8fk8 t2t9ForeignKey7fk7 t1t8ForeignKey6fk6 t5t7ForeignKey5fk5 t4t7ForeignKey4fk4 t2t6ForeignKey3fk3 t1t6ForeignKey2fk2 t3t2ForeignKey1fk1 AggrToAggrFromNameOIDRel_ForeignKey

t2t5ForeignKey10fk10 t1t4ForeignKey9fk9 t1t3ForeignKey8fk8 t2t9ForeignKey7fk7 t1t8ForeignKey6fk6 t5t7ForeignKey5fk5 t4t7ForeignKey4fk4 t2t6ForeignKey3fk3 t1t6ForeignKey2fk2 t3t2ForeignKey1fk1 AggrToAggrFromNameOIDRel_ForeignKey

falsetruestringValuet9c17 falsetrueintProjectt9c16 falsetruestringValuet8c15 falsetrueintEmployeet8c14 falsetrueintSoftwareProjectt7c13 falsetrueintSoftwareDevelopert7c12 falsetrueintProjectt6c11 falsetrueintEmployeet6c10 falsetrueintSoftwareProjectIdt5c9 falsetrueintSoftwareDeveloperIdt4c8 falsetrueintProjectManagerIdt3c7 falsefalseintManagedByt2c6 truefalsestringProjectNamet2c5 falsetrueintProjectIdt2c4 truefalsestringNamet1c3 truefalseintSSNt1c2 falsetrueintEmployeeIdt1c1 isNullableisIdentifierTypeNameAggregationOIDRel_Column

falsetruestringValuet9c17 falsetrueintProjectt9c16 falsetruestringValuet8c15 falsetrueintEmployeet8c14 falsetrueintSoftwareProjectt7c13 falsetrueintSoftwareDevelopert7c12 falsetrueintProjectt6c11 falsetrueintEmployeet6c10 falsetrueintSoftwareProjectIdt5c9 falsetrueintSoftwareDeveloperIdt4c8 falsetrueintProjectManagerIdt3c7 falsefalseintManagedByt2c6 truefalsestringProjectNamet2c5 falsetrueintProjectIdt2c4 truefalsestringNamet1c3 truefalseintSSNt1c2 falsetrueintEmployeeIdt1c1 isNullableisIdentifierTypeNameAggregationOIDRel_Column
c4c9Component10fk10cfk10 c1c8Component9fk9cfk9 c1c7Component8fk8cfk8 c4c16Component7fk7cfk7 c1c14Component6fk6cfk6 c9c13Component5fk5cfk5 c8c12Component4fk4cfk4 c4c11Component3fk3cfk3 c1c10Component2fk2cfk2 c7c6Component1fk1cfk1 LexicalToLexicalFromNameForeignKeyOIDRel_ComponentOfForeignKey

c4c9Component10fk10cfk10 c1c8Component9fk9cfk9 c1c7Component8fk8cfk8 c4c16Component7fk7cfk7 c1c14Component6fk6cfk6 c9c13Component5fk5cfk5 c8c12Component4fk4cfk4 c4c11Component3fk3cfk3 c1c10Component2fk2cfk2 c7c6Component1fk1cfk1 LexicalToLexicalFromNameForeignKeyOIDRel_ComponentOfForeignKey

Figure 6.17: The resulting relational dictionary.

i

i

“main” — 2009/2/24 — 11:04 — page 79 — #93 i

i

i

i

i

i

6.4. From Relational Databases to OWL ontologies 79

Figure 6.18: The resulting relational schema.

Figure 6.19: The relational schema to be translated.

• it is necessary that BA2 is inverse of BA1. To represent this property
an sm-AssertionOnProperty is created.

This is the situation of Attend.

Step 2. If an sm-Aggregation A1 (translated into sm-Abstract A1) is
related to an sm-Lexical that is an identifier of A1 and is also a compo-
nent of a foreign key to another sm-Aggregation A2 (translated into
sm-Abstract A2), then a sm-Generalization between A2 and A1

(sm-ChildOfGeneralization) is created.

i

i

“main” — 2009/2/24 — 11:04 — page 80 — #94 i

i

i

i

i

i

80 CHAPTER 6. OWL and Relational Database Mappings

SM_Aggregation
OID Name

ag1 Student
ag2 Professor
ag3 Course
ag4 Attend
ag5 Exam
ag6 WorkerStudent

SM_Lexical
OID Aggregation Name Type isIdentifier isNullable

l1 ag1 ID int true false
l2 ag1 Name string false false
l3 ag1 Surname string false false
l4 ag1 NationalID string false false
l5 ag1 Address string false true
l6 ag2 idProfessor int true false
l7 ag2 Name string false false
l8 ag2 Surname string false false
l10 ag3 idCourse int true false

l11 ag3 Name string false false
l12 ag3 idProfessor int false false
l13 ag4 ID int true false
l14 ag4 idCourse int true false
l15 ag5 ID int true false
l16 ag5 idCourse int true false
l17 ag5 Date string false false
l18 ag5 Score int false false
l19 ag6 ID int true false
l20 ag6 Company string false false
l21 ag6 Job string false true

SM_ForeignKey
OID Name AggrFrom AggrTo

fk1 Foreign Key 1 ag4 ag1
fk2 Foreign Key 2 ag4 ag3
fk3 Foreign Key 3 ag3 ag2
fk4 Foreign Key 4 ag5 ag1
fk5 Foreign Key 5 ag5 ag3
fk6 Foreign Key 6 ag6 ag1

SM_ComponentOfForeignKey
OID ForeignKey Name LexicalFrom LexicalTo

cfk1 fk1 Component 1 l13 l1
cfk2 fk2 Component 2 l14 l10
cfk3 fk3 Component 3 l12 l6
cfk4 fk4 Component 4 l15 l1
cfk5 fk5 Component 5 l16 l10
cfk6 fk6 Component 6 l19 l1

Figure 6.20: The “copy” of the relational schema in the Supermodel.

i

i

“main” — 2009/2/24 — 11:04 — page 81 — #95 i

i

i

i

i

i

6.4. From Relational Databases to OWL ontologies 81

This is the case of Student and WorkerStudent.

Step 3. For each sm-Lexical L that belongs to an sm-ForeignKey we must
perform the following operations:

• an sm-BinaryAggregationOfAbstracts BA1 is created between
the sm-Abstract that belongs to the sm-Aggregation that is re-
lated to L and the sm-Abstract that represents the foreign key;

• an sm-BinaryAggregationOfAbstracts BA2;
• an sm-AssertionOnProperty that defines the inverse relation be-

tween B2 and B1 is created.

In the example, the elements involved in this step are ProfessorID of
Course and ID and CourseID of Exam.

Step 4. Each sm-Lexical we consider, that does not belong to a particular
sm-ComponentOfForeignKey is translated into another sm-Lexical
with the attributes isOptional and isFunctional set to TRUE.

Step 5. In this step the cardinality constraints are added to both the sm-
BinaryAggregationOfAbstractss and sm-Lexicals metaconstructs
that have been created in the previous steps. More precisely, for each sm-
Lexical of the source schema that are defined as not-nullable we have
the two following possibilities:

• if an sm-Lexical L has been translated, as described in Step 3, into
an sm-BinaryAggregationOfAbstracts BA1:

– an sm-BinaryAggregationOfAbstracts BA2 that repre-
sents the inverse of BA1 is created;

– to represent the inverse property an sm-AssertionOnProperty
is created;

– an sm-Abstract R that represents a restriction that contains
all instances that belongs to BA2 is created;

– an sm-Generalization between R and the sm-Abstract de-
rived from the sm-Aggregation related to L is created.

• if an sm-Lexical L has been translated, as described in Step 4, into
another sm-Lexical L1:

– an sm-Lexical L2 that is a restriction of L1, with the same
characteristics is created;

i

i

“main” — 2009/2/24 — 11:04 — page 82 — #96 i

i

i

i

i

i

82 CHAPTER 6. OWL and Relational Database Mappings

SM_Abstract
OID Name

a1 Student
a2 Professor
a3 Course
a4 Exam
a5 WorkerStudent
a6 RestrictionClass1
a7 RestrictionClass2
a7 RestrictionClass3
... ...

SM_BinaryAggregationOfAbstract
OID Name isSymm isTrans isDirect isOpt1 isFunc1 isOpt2 isFunc2 isEquiv Abs1 Abs2 AbsAsBinAggr

ba1 Attend false false true true false true false false a1 a3 -

ba2 InvAttend false false true true false true false false a3 a1 -

ba3 idProfessor false false true true true true false false a3 a2 -

...

ba4 idProfessorRestr false false true false true true false false a3 a2 a8

SM_Lexical

OID Name Type isOpt isFunc Abs AbsAsLex

l1 ID int true true a1 -

l2 Name string true true a1 -

l3 Surname string true true a1 -

l4 Address string true true a1 -

...

l5 IDRestricted int false true a1 a6

l6 NameRestricted string false true a1 a7

SM_AssertionOnProperty
OID Name isRestriction isInverse isEquivalent restrictionType BinAggr1 BinAggr2 Lexical1 Lexical2

as1 Assertion1 false true false - ba2 ba1 - -
as2 Assertion2 true false false minCardinality ba4 ba3 - -
as3 Assertion3 true false false minCardinality - - l5 l1
as4 Assertion4 false true false minCardinality - - l6 l2
...

SM_Generalization

OID Name ParentAbs ParentBinAggr ParentLexical

g1 Gen1 a1 - -
g2 Gen2 a6 - -
g3 Gen3 a7 - -
g4 Gen4 a8 - -

...

SM_ChildOfGeneralization

OID Name Generaliz ChildAbs ChildBinAggr ChildLexical

ch1 Child1 g1 a5 - -
ch2 Child2 g2 a1 - -
ch3 Child3 g3 a1 - -
ch4 Child4 g4 a3 - -

...

Figure 6.21: The result of relational schema translation in the Supermodel.

– an sm-AssertionOnProperty is created to state that L2 is a
restriction of minimum cardinality on L1;

– an sm-Abstract R that represents a restriction that contains
all instances that belongs to L2 is created;

– an sm-Generalization between R and the sm-Abstract de-
rived from the sm-Aggregation related to L is created.

At the end of the aforementioned step we have, in the Supermodel, a situ-
ation similar to the one shown in Figure 6.21 (we omit the details due to the
lack of space).

i

i

“main” — 2009/2/24 — 11:04 — page 83 — #97 i

i

i

i

i

i

6.4. From Relational Databases to OWL ontologies 83

OWL_Class
OID Name

c1 Student
c2 Professor
c3 Course
c4 Exam
c5 WorkerStudent
c6 RestrictionClass1
c7 RestrictionClass2
c8 RestrictionClass3
... ...

OWL_RelationshipBetweenClasses
OID Name isSymm isTrans isDirect isOpt1 isFunc1 isOpt2 isFunc2 isEquiv Class1 Class2 ClassAsRestr

r1 Attend false false true true false true false false c1 c3 -

r2 InvAttend false false true true false true false false c3 c1 -

r3 idProfessor false false true true true true false false c3 c2 -

...

r4 idProfRestr false false true false true true false false c3 c2 c8

OWL_DatatypeProperty

OID Name Type isOpt isFunc Class ClassAsRestr

dp1 ID int true true c1 -

dp2 Name string true true c1 -

dp3 Surname string true true c1 -

dp4 Address string true true c1 -

...

dp5 IDRestricted int false true c1 c6

dp6 NameRestricted string false true c1 c7

OWL_AssertionOnProperty
OID Name isRestriction isInverse isEquivalent restrictionType Rel1 Rel2 Datatype1 Datatype2

as1 Assertion1 false true false - r2 r1 - -
as2 Assertion2 true false false minCardinality r4 r3 - -
as3 Assertion3 true false false minCardinality - - dp5 dp1
as4 Assertion4 false true false minCardinality - - dp6 dp2
...

OWL_Generalization

OID Name ParentClass ParentObjProp ParentDataProp

g1 Gen1 c1 - -

g2 Gen2 c6 - -

g3 Gen3 c7 - -

g4 Gen4 c8 - -

...

OWL_ChildOfGeneralization

OID Name Generaliz ChildClass ChildObjProp ChildDataProp

ch1 Child1 g1 c5 - -

ch2 Child2 g2 c1 - -

ch3 Child3 g3 c1 - -

ch4 Child4 g4 c3 - -

...

Figure 6.22: Dictionary tables of resulting OWL schema.

From Supermodel to OWL Data Model

The last phase of the translation process is a “copy” operation that produces
the target schema using the constructs of the OWL model. The process is the
same of the inverse translation (from relational to OWL) and the results are
shown in Figure 6.22 (only a portion of the dictionary is presented).

i

i

“main” — 2009/2/24 — 11:04 — page 84 — #98 i

i

i

i

i

i

84 CHAPTER 6. OWL and Relational Database Mappings

6.5 Information Loss

From Database To Ontology

As many constraints, relationships and other semantics in relational data-base
are implicit, or even lacking, the ontologies mapped from relational model are
maybe not complete in semantics.

However, thanks to the characteristics of our approach, we have minimum
loss of information at the end of the translation. A typical example is the
database primary key concept that can not be properly represented in ontolo-
gies. We avoid this problem exploiting the inverse functional properties of
OWL. Properties may be stated to be inverse functional. If a property is in-
verse functional then the inverse of the property is functional. Thus the inverse
of the property has at most one value for each individual.

We can exploit this characteristic to refer to an unambiguous property. For
example, hasITTaxCode (a unique tax identifier for Italy residents) may be
stated to be inverse functional (or unambiguous). The inverse of this property
(which may be referred to as isTheTaxCodeFor) has at most one value for any
individual in the class of tax code numbers. Thus any one person’s tax code
number is the only value for their isTheTaxCodeFor property. From this a
reasoner can deduce that two different individual instances of Person can not
have the identical IT Tax Code Number. Also, a reasoner can deduce that
if two instances of Person have the same Tax Code Number, then those two
instances refer to the same individual.

In this way we can simulate the concept of primary key also in OWL on-
tologies.

From Ontology To Database

Translating from a more expressive model (ontology) to a less expressive one
(database) always involves a loss of information. In our approach we try to
reduce this loss at minimum, at the same time, some dynamical aspects in
relational model, such as triggers, storage procedure cannot be mapped. In
particular we are taking into account the following information.

someValuesFrom Restrictions

someValuesFrom is stated on a property with respect to a class. A particular
class may have a restriction on a property that at least one value for that
property is of a certain type. More precisely, it defines a property that should

i

i

“main” — 2009/2/24 — 11:04 — page 85 — #99 i

i

i

i

i

i

6.6. Discussion 85

have at least one value of a certain type, but also could have other values,
possibly of different types. Obviously, this is incompatible with the relational
model, in which the type of a column must be unique and defined at the time of
its creation. Consequently, while the other types of restrictions are considered
in the transformation process, we choose to ignore someValuesFrom restrictions
at the moment.

Equivalence

In OWL it is possible to define two classes as equivalent, in other terms, which
have the same instances. In the relational model it is not possible to set up
two tables as equivalent, so this type of information is not taken into account
during translation process, except for some particular cases. For example, the
equivalence between a named class and a class defined by a restriction on a
certain property is managed considering the named class as the owner of the
restricted property. Moreover, in case of equivalence between a class C and a
class composed of the intersection of classes C1 and C2 we consider that C is
subclass of both C1 and C2 creating fictitious generalizations. Therefore we
apply the aforementioned methodology of translation.

In the same way we don’t model the equivalence relation between properties.

Properties Generalization

The concept of subclass is represented in a relational schema through a foreign
key defined in the table corresponding to the child class and referred to the
table corresponding to the parent class.

On the other side the concept of subproperty can not be represented in the
relational model. This is because during the transformation we translate OWL
properties in relational tables or columns, losing the generalization information.

6.6 Discussion

In this chapter we described the extension of our approach to manage data
and schema translation between OWL ontologies and (relational) databases.
We have described also how the MIDST supermodel can be extended to repre-
sent the OWL model and the needed rules to perform the translation in both
directions.

Because many constraints, relationships and other semantics are implicit, or
even lacking, the translations are not always “complete”. However exploiting

i

i

“main” — 2009/2/24 — 11:04 — page 86 — #100 i

i

i

i

i

i

86 CHAPTER 6. OWL and Relational Database Mappings

the metamodel approach we can provide convenient translations with minimum
information loss, as demonstrated by our experiments.

i

i

“main” — 2009/2/24 — 11:04 — page 87 — #101 i

i

i

i

i

i

Chapter 7

A Tool Supporting Semantic
Annotation Interoperability

In this chapter we present our customizable and extensible tool to im-
plement ModelGen, the model management operator that translates data
and schema from one model to another. The approach is interesting be-
cause the tool exposes the dictionary that stores models, schemas, and the
rules used to implement translations. In this way, the transformations
can be customized and the tool can be easily extended.

7.1 The MIDST Tool

We developed a tool to validate the concepts in previous chapters and to test
their effectiveness. The main parts of the MIDST tool are the generic data
dictionary, the rule repository and a Java plug-in-based application that han-
dles the components in a modular way. The main components include a set of
modules to support users in defining and managing models, schemas, Skolem
functions, translations, import and export of schemas, extraction of signatures
from rules (see [AGC08]) and models and generation of translation plans.

The tool offers functions for three categories of users, corresponding to three
different levels of expertise. Namely they are (from less expert to more expert):

• The designer - can define or import/export schemas for available models
and perform translations over them.

87

i

i

“main” — 2009/2/24 — 11:04 — page 88 — #102 i

i

i

i

i

i

88 CHAPTER 7. A Tool Supporting Semantic Annotation Interoperability

• The model engineer - can define new models by using the available meta-
constructs.

• The metamodel engineer can add new metaconstructs to the metamodel
and define translation rules for them; in this way she can extend the set
of models handled by the system.

All of the above activities can be done without touching the tools source
code. The definition of a model or of a schema involves populating tables of the
dictionary, whereas the definition of translations involves inserting elements in
the rule repository.

Let us describe the tool by showing how the main activities are performed.
First of all we describe the typical activity of the model engineer (MoE), the
definition of a model. This is done by “creating” a new model, giving it a
name, and then specifying its constructs. This latter activity is the more
interesting one, and it is done (interactively) in two main steps: (i) choosing
a metaconstruct from a pop-up menu and giving it a name within the model,
and (ii) adding the desired properties available for the chosen metaconstruct.
For example, suppose the user is creating a version of the RDF model. The
MoE, in order to define the first construct, will probably specify that he wants
to add a construct corresponding to the Abstract metaconstruct RDFNode (see
Section 4.3) as shown in Figure 7.1.

During the definition process, the MoE can add, remove, and alter con-
structs and construct properties. When the model is complete, the user re-
quests a finalization, during which the system creates the corresponding dic-
tionary structure. It is always possible to have a graphical representation of
the model through our visualization tool as shown in Figure 7.2.

Then we can describe the operation of building schemas through an inter-
active interface, that is usually performed by designers (De). After choosing
the model, De can define the various elements, one at the time, by choosing a
construct of the model and then giving a name and the associated properties
and references, if needed. For instance, the De can define Student and Person
corresponding to the Class construct and then he can define that Student is a
restriction of Person through the relationshipBetweenClasses construct.
In Figure 7.3 the last of these steps is presented.

The interactive definition has been useful for testing elementary steps (or
for changes to existing schemas), but it would not be effective in practical set-
tings. Therefore, as a major option,we have developed an import (and export)
module. It relies on a persistence manager for the supermodels constructs.

i

i

“main” — 2009/2/24 — 11:04 — page 89 — #103 i

i

i

i

i

i

7.1. The MIDST Tool 89

Figure 7.1: Creation of a new construct in a model.

Figure 7.2: The visualization of the OWL model.

i

i

“main” — 2009/2/24 — 11:04 — page 90 — #104 i

i

i

i

i

i

90 CHAPTER 7. A Tool Supporting Semantic Annotation Interoperability

Figure 7.3: Specification of an OWL restriction through the relationshipBe-
tweenClasses construct.

Data are handled in an object representation, where each construct is rep-
resented by a class. Then, according to the external system of interest, the
persistence manager interacts with specific components. Therefore we add to
the existing XML and IBM DB2 import/export tools three other tools able to
import/export RDF, TopicMaps and OWL ontologies in RDF/XML syntax.
Figure 7.4 shows some screenshots of the import/export tool.

After the schema definition phase, the user has to choose how to translate
the schema. The designer has just to specify the source schema (and so its
model) and the target model, and the system finds a translation.

Finally we can consider the activities of the metamodel engineer (MeE).
MeE can define new basic transformations by writing Datalog rules or reusing
some of the existing ones. The main task is the definition and management of
the supermodel. This is a very delicate task and requires a good knowledge
of data models as well as of the supermodel itself. Because of the nature of
the supermodel, such tasks are quite infrequent: after a transitory phase where
metaconstructs are introduced into the supermodel, translations and Skolem
functions involving the new metaconstructs are created, modifications should
tend to zero and reuse should be total.

Translation rules are stored in plain text files. A tool to support the user

i

i

“main” — 2009/2/24 — 11:04 — page 91 — #105 i

i

i

i

i

i

7.1. The MIDST Tool 91

importer

exporter

Figure 7.4: The import/export tool.

i

i

“main” — 2009/2/24 — 11:04 — page 92 — #106 i

i

i

i

i

i

92 CHAPTER 7. A Tool Supporting Semantic Annotation Interoperability

in the definition of translation rules has been developed. It supports Data-
log syntax highlighting and auto-completion of literals, Skolem functions and
variables used in the rule. These help functions are possible by leveraging on
the metadata associated with the constructs and the Skolem functions stored
in the repository. A Datalog translation rule uses Skolem functions. The tool
provides a search feature to look up already defined Skolem functions for a
specific construct, and allows the creation of new ones by selecting the target
construct, giving the function a name and adding a number of parameters.
Once a Skolem function is defined, its description is stored as metadata in the
dictionary.

Actually we do not much care on the overall performance of the transla-
tion process, because this is not the focus of this work. However, it is worth
mentioning that we decided to implement our own Datalog engine, because of
the need for the OID invention feature and for the ease of integration with
our relational dictionary. The algorithm that generates SQL statements from
Datalog rules performs well. It generally takes seconds and it has a linear cost
in the size of the input (i.e. number of rules). Performance of the translation
executions depends on the number of SQL statements (number of rules) to be
executed and on the number of join conditions each rule implies. Moreover,
the structure of the dictionary and the materialization of Skolem functions do
not help performance. In any case, even if efficiency can be improved, the
translation of schemas is performed in a few seconds.

7.2 Experimental Results

To test all the features of the tool we mainly used synthetic schemas (for
semantic annotations in various formats) and databases, in order to be cost-
effective in the analysis of the various features of models and schemas.

We have tested the tool using two different points of views, one “in-the-
small” and the other “in-the-large”.

For the testing in-the-small, we performed two sets of experiments. The
first set was driven by the rules: we tested every single Datalog rule of each
basic translation, to verify the results of the individual substeps (An example
of the set of rules wee use in our experiments is reported in the Appendices).
The second set was driven by model features: we defined many (a few hundred)
ad hoc schemas (for different kind of semantic annotations), each one with a
specific pattern of constructs, in order to verify that such a pattern is handled
as required. In this way, we have verified the results of basic translations.

i

i

“main” — 2009/2/24 — 11:04 — page 93 — #107 i

i

i

i

i

i

7.3. Discussion 93

For the testing in-the-large, we used a set of more complex schemas. We
considered some significant models, representatives of the various families of
semantic annotations we have considered, and defined one schema for each of
them, with all the features of such a model. Then, we translated them into
other models of interest. In this case, the translation process for these schemas
required the application of a number (from three to eight) of basic translations.
Here, we initially built complex translations by manually composing basic ones
(as this was the only way in the first version of our tool) and then experi-
mented with the automatic generation, and obtained the same sequences of
basic translations. In some cases, when there are various acceptable sequences,
the tool generated one of them. A complete transformation example has been
already presented in Chapter 6.6.

As stated before, due to the presence of many constraints, relationships
and other “implicit” semantics, or even lacking, the translations are not always
“complete”. In a few cases the result of the translations can be manually edited
by domain experts to improve the quality. However exploiting the metamodel
approach we can provide convenient translations with minimum information
loss, as demonstrated by our experiments.

7.3 Discussion

In this section we have presented the implementation of MIDST (Model In-
dependent Data and Schema Translation), a framework for the development
of an effective implementation of a generic (i.e., model independent) platform
for schema and data translation. We have used this tool to perform a number
(many hundred) of translations in the semantic annotation context.

Actually we do not much care on the overall performance of the translation
process. However we are currently working to improve the tool and to make
more efficient the overall translation process.

i

i

“main” — 2009/2/24 — 11:04 — page 94 — #108 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page 95 — #109 i

i

i

i

i

i

Conclusion

“Midway upon the road of our life I found myself within a dark wood,
for the right way had been missed. Ah! how hard a thing it is to tell
what this wild and rough and dense wood was, which in thought renews
the fear! So bitter is it that death is little more.”

Dante Alighieri Inferno Canto I

The Semantic Web is the new generation World Wide Web. It extends
the Web by giving information a well defined meaning, allowing it to be pro-
cessed by machines. This vision is going to become reality thanks to a set
of technologies which have been specified and maintained by the World Wide
Web Consortium (W3C), and more and more research efforts from the industry
and the academia. Therefore, the basis for the Semantic Web are computer-
understandable descriptions of resources. We can create such descriptions by
annotating resources with metadata, resulting in “annotations” about that re-
source.

Semantic annotation is the creation of metadata and relations between them
with the task of defining new methods of access to information and enriching
the potentialities of the ones already existent.

Therefore, semantic annotations are used to enrich the informative content
of Web documents and to express in more formal way the meaning of a resource.
The goal is to create annotations with well-defined semantics, however those
semantics may be defined.

A remarkable issue in the context of semantic annotations Remarkable im-
portance is covered by semantic interoperability, because it introduces notable

95

i

i

“main” — 2009/2/24 — 11:04 — page 96 — #110 i

i

i

i

i

i

96 Conclusion

challenges. The semantic interoperability is, in general, the ability to share
the “meaning” of available information and of the applications built on them.
From the semantic annotations point of view, this opens the possibility of oper-
ating with heterogenous resources by providing a bridge of common techniques
and methods.

In this dissertation we focused on “model-generic” interoperability by means
of translation of schemas and data. We discussed our recent results and our
contributions to the development of the MIDST platform that allows the spec-
ification of the models of interest (mainly semantic annotation formalism and
database), with all relevant details, and the generation of translations of their
schemas from one model to another.

The usefulness of the MIDST proposal relies on the expressive power of its
supermodel, that is the set of models handled and accuracy and precision of
such models representation. In order to improve the expressive power of the
supermodel, we extended it with more complex structured elements (such as
collections) in order to properly represent semantic annotation data models.

We have exploited MIDST features in order to manage semantic annotation
interoperability and integration extended the supermodel capabilities.

In practice, the contribute can be summarized as follows:

• we have introduced the concept of a general model to properly represent
a broad range of data models. The proposed general model is based on
the idea of construct : a construct represents a “structural” concept of
a data model. We find out a construct for each “structural” concept of
every considered data model and, hence, a data model can be completely
represented by means of its constructs set.

• we have extended the general model approach to properly represent all
(ideally) Semantic Web data models with particular attention to semantic
annotation models.

• we have devised a set of brand new Datalog-like rules to perform the
translation between semantic annotation models an the integration of
those models and data in databases.

• we implemented a flexible framework that allows to validate the concepts
of the approach and to test their effectiveness.

Currently, we are working on the following aspects:

i

i

“main” — 2009/2/24 — 11:04 — page 97 — #111 i

i

i

i

i

i

97

• the improvement of the rules system in order to augment the translation
process;

• the re-engineering of the tool to improve the performance and the usabil-
ity;

• the customization of translation, data level translations and applications
of the technique to typical model management scenarios, such as schema
evolution and ontology evolution

i

i

“main” — 2009/2/24 — 11:04 — page 98 — #112 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page 99 — #113 i

i

i

i

i

i

Appendices

99

i

i

“main” — 2009/2/24 — 11:04 — page 100 — #114 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page 101 — #115 i

i

i

i

i

i

A. Datalog Rules for RDB to
OWL translations

In order to give an idea of how our Datalog rules (with OID invention) are
defined, we report in this appendix the set of rules needed to translate relational
database schemas into OWL ones. Due to space limitation we only report the
most significative portion of this set.

We firstly report the macro rules and then specify the corpus of each basic
rule.

Macrorules

1. Replace SM-Aggregations with Abstracts.

2. Generalizations for SM-Aggregations which have SM-Lexicals refe-
rencing only one table.

3. Replace SM-Aggregations with Lexicals referencing two different ta-
bles with two SM-BinaryAggregationOfAbstractss.

4. Replace SM-Aggregations which have only one foreign key with two
SM-BinaryAggregationOfAbstractss.

5. Replace SM-Aggregations which do not have only one foreign key with
two SM-BinaryAggregationOfAbstractss.

6. Creation of SM-AssertionOnProperty to address inverse relations.

7. Management of restriction for SM-Lexicals (Datatype properties) which
are not foreign keys.

101

i

i

“main” — 2009/2/24 — 11:04 — page 102 — #116 i

i

i

i

i

i

102 A. Datalog Rules for RDB to OWL translations

8. Management of restrictions for SM-Lexicals (Object properties) which
are foreign keys.

Basic rules

The basic rules for each of the previous points are presented in the following:

1.
SM_Abstract (

OID: #AbstractOID_3*(oid),

Name: name

)

<- SM_Aggregation (

OID: oid,

Name: name

), !TMP_AggWithTwoKeyReferencesWithoutOtherLexicals(

OID: oid

) ;

2. SM_Generalization (

OID: #GeneralizationOID_1*(aggToOID),

Name: aggToName,

ParentAbstractOID: #AbstractOID_3(aggToOID)

)

<-

TMP_AggWithSingleKeyReference(

OID: aggOID

), SM_Lexical(

OID: lexOID,

isIdentifier: "true",

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

LexicalFromOID: lexOID,

ForeignKeyOID: fkOID

) , SM_ForeignKey(

OID: fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

) , SM_Aggregation (

OID: aggToOID,

Name: aggToName

) ;

SM_ChildOfGeneralization (

OID: #ChildOfGeneralizationOID_1*(aggOID),

Name: aggName,

GeneralizationOID: #GeneralizationOID_1(aggToOID),

ChildAbstractOID: #AbstractOID_3(aggOID)

)

<-

TMP_AggWithSingleKeyReference(

OID: aggOID

) , SM_Lexical(

OID: lexOID,

isIdentifier: "true",

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

i

i

“main” — 2009/2/24 — 11:04 — page 103 — #117 i

i

i

i

i

i

103

LexicalFromOID: lexOID,

ForeignKeyOID: fkOID

) , SM_ForeignKey(

OID: fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

) , SM_Aggregation (

OID: aggOID,

Name: aggName

) , SM_Aggregation (

OID: aggToOID,

Name: aggToName

) ;

3. SM_BinaryAggregationOfAbstracts (

OID: #BinaryAggregationOfAbstractsOID_6*(aggOID,agg1ToOID,agg2ToOID),

Name: aggName+"_"+agg1ToName,

isSymmetric: "false",

isTransitive: "false",

isDirected: "true",

isOptional1: "false",

isFunctional1: "false",

isOptional2: "true",

isFunctional2: "false",

Abstract1OID: #AbstractOID_3(agg1ToOID),

Abstract2OID: #AbstractOID_3(agg2ToOID)

)

<*-

SM_Aggregation (

OID: aggOID,

Name: aggName

) , TMP_AggWithTwoKeyReferencesWithoutOtherLexicals(

OID: aggOID

) , SM_Lexical(

OID: lex1OID,

isIdentifier: "true",

AggregationOID: aggOID

) , SM_Lexical(

OID: lex2OID,

isIdentifier: "true",

AggregationOID: aggOID

), SM_ComponentOfForeignKey(

LexicalFromOID: lex1OID,

ForeignKeyOID: fk1OID

) , SM_ComponentOfForeignKey(

LexicalFromOID: lex2OID,

ForeignKeyOID: fk2OID

) , SM_ForeignKey(

OID: fk1OID,

AggregationFromOID: aggOID,

AggregationToOID: agg1ToOID

) , SM_ForeignKey(

OID: fk2OID,

AggregationFromOID: aggOID,

AggregationToOID: agg2ToOID

) , SM_Aggregation (

OID: agg1ToOID,

Name: agg1ToName

) , SM_Aggregation (

OID: agg2ToOID,

Name: agg2ToName

), agg1ToOID<>agg2ToOID ;

i

i

“main” — 2009/2/24 — 11:04 — page 104 — #118 i

i

i

i

i

i

104 A. Datalog Rules for RDB to OWL translations

SM_AssertionOnProperty (

OID: #AssertionOnPropertyOID_1*(aggOID,agg1ToOID,agg2ToOID),

Name: binAggFromName+"_InverseOf_"+binAggToName,

isInverse: "true",

BinaryAggregationOfAbstracts1OID:

#BinaryAggregationOfAbstractsOID_6(aggOID,agg1ToOID,agg2ToOID),

BinaryAggregationOfAbstracts2OID:

#BinaryAggregationOfAbstractsOID_6(aggOID,agg2ToOID,agg1ToOID)

)

<-

SM_Aggregation (

OID: aggOID,

Name: aggName

) ,

TMP_AggWithTwoKeyReferencesWithoutOtherLexicals(

OID: aggOID

) , SM_Lexical(

OID: lex1OID,

isIdentifier: "true",

AggregationOID: aggOID

) , SM_Lexical(

OID: lex2OID,

isIdentifier: "true",

AggregationOID: aggOID

), SM_ComponentOfForeignKey(

LexicalFromOID: lex1OID,

ForeignKeyOID: fk1OID

) , SM_ComponentOfForeignKey(

LexicalFromOID: lex2OID,

ForeignKeyOID: fk2OID

) , SM_ForeignKey(

OID: fk1OID,

AggregationFromOID: aggOID,

AggregationToOID: agg1ToOID

) , SM_ForeignKey(

OID: fk2OID,

AggregationFromOID: aggOID,

AggregationToOID: agg2ToOID

) , SM_Aggregation (

OID: agg1ToOID,

Name: agg1ToName

) , SM_Aggregation (

OID: agg2ToOID,

Name: agg2ToName

), agg1ToOID<>agg2ToOID , SM_BinaryAggregationOfAbstracts [DEST] (

OID: #BinaryAggregationOfAbstractsOID_6(aggOID,agg1ToOID,agg2ToOID),

Name: binAggToName

) , SM_BinaryAggregationOfAbstracts [DEST] (

OID: #BinaryAggregationOfAbstractsOID_6(aggOID,agg2ToOID,agg1ToOID),

Name: binAggFromName

) ;

4. SM_BinaryAggregationOfAbstracts(

OID: #BinaryAggregationOfAbstractsOID_7*(lexOID,lex2OID),

Name: lexName,

isSymmetric: "false",

isTransitive: "false",

isDirected: "true",

isOptional1: "true",

isFunctional1: "true",

isOptional2: "true",

i

i

“main” — 2009/2/24 — 11:04 — page 105 — #119 i

i

i

i

i

i

105

isFunctional2: "false",

Abstract1OID: #AbstractOID_3(aggOID),

Abstract2OID: #AbstractOID_3(aggToOID)

)

<-

SM_Aggregation (

OID: aggOID

) , !TMP_AggWithSingleKeyReference (

OID: aggOID

) , SM_Lexical(

OID: lexOID,

Name: lexName,

isNullable: isnull,

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) , SM_ForeignKey(

OID:fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

), SM_Abstract [DEST] (

OID: #AbstractOID_3(aggOID)

) , SM_Abstract [DEST] (

OID: #AbstractOID_3(aggToOID)

) ;

SM_BinaryAggregationOfAbstracts(

OID: #BinaryAggregationOfAbstractsOID_7*(lex2OID,lexOID),

Name: "InverseOf"+lexName,

isSymmetric: "false",

isTransitive: "false",

isDirected: "true",

isOptional1: "true",

isFunctional1: "false",

isOptional2: isnull,

isFunctional2: "true",

Abstract1OID: #AbstractOID_3(aggToOID),

Abstract2OID: #AbstractOID_3(aggOID)

)

<-

SM_Aggregation (

OID: aggOID

) , !TMP_AggWithSingleKeyReference (

OID: aggOID

) , SM_Lexical(

OID: lexOID,

Name: lexName,

isNullable: isnull,

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) , SM_ForeignKey(

OID:fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

i

i

“main” — 2009/2/24 — 11:04 — page 106 — #120 i

i

i

i

i

i

106 A. Datalog Rules for RDB to OWL translations

), SM_Abstract [DEST] (

OID: #AbstractOID_3(aggOID)

) , SM_Abstract [DEST] (

OID: #AbstractOID_3(aggToOID)

) ;

5. SM_BinaryAggregationOfAbstracts(

OID: #BinaryAggregationOfAbstractsOID_7*(lexOID,lex2OID),

Name: lexName,

isSymmetric: "false",

isTransitive: "false",

isDirected: "true",

isOptional1: "true",

isFunctional1: "true",

isOptional2: "true",

isFunctional2: "false",

Abstract1OID: #AbstractOID_3(aggOID),

Abstract2OID: #AbstractOID_3(aggToOID)

)

<-

TMP_AggWithSingleKeyReference (

OID: aggOID

) , SM_Lexical(

OID: lexOID,

Name: lexName,

isIdentifier: "false",

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) , SM_ForeignKey(

OID:fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

) , SM_Abstract [DEST] (

OID: #AbstractOID_3(aggOID)

) , SM_Abstract [DEST] (

OID: #AbstractOID_3(aggToOID)

) ;

SM_BinaryAggregationOfAbstracts(

OID: #BinaryAggregationOfAbstractsOID_7*(lex2OID,lexOID),

Name: "InverseOf"+lexName,

isSymmetric: "false",

isTransitive: "false",

isDirected: "true",

isOptional1: "true",

isFunctional1: "false",

isOptional2: "true",

isFunctional2: "true",

Abstract1OID: #AbstractOID_3(aggToOID),

Abstract2OID: #AbstractOID_3(aggOID)

)

<-

SM_Aggregation (

OID: aggOID

) , TMP_AggWithSingleKeyReference (

OID: aggOID

) , SM_Lexical(

i

i

“main” — 2009/2/24 — 11:04 — page 107 — #121 i

i

i

i

i

i

107

OID: lexOID,

Name: lexName,

isIdentifier: "false",

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) , SM_ForeignKey(

OID:fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

), SM_Abstract [DEST] (

OID: #AbstractOID_3(aggOID)

) , SM_Abstract [DEST] (

OID: #AbstractOID_3(aggToOID)

) ;

6. SM_AssertionOnProperty (

OID: #AssertionOnPropertyOID_2*(lex1OID,lex2OID),

Name: binAggFromName+"_InverseOf_"+binAggToName,

isInverse: "true",

BinaryAggregationOfAbstracts1OID: #BinaryAggregationOfAbstractsOID_7(lex2OID,lex1OID),

BinaryAggregationOfAbstracts2OID: #BinaryAggregationOfAbstractsOID_7(lex1OID,lex2OID)

)

<-

SM_Aggregation (

OID: aggOID

) , !TMP_AggWithSingleKeyReference (

OID: aggOID

) , SM_Lexical(

OID: lex1OID,

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lex1OID,

LexicalToOID: lex2OID

) , SM_ForeignKey(

OID:fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

), SM_Abstract [DEST] (

OID: #AbstractOID_3(aggOID)

) , SM_Abstract [DEST] (

OID: #AbstractOID_3(aggToOID)

) , SM_BinaryAggregationOfAbstracts [DEST] (

OID: #BinaryAggregationOfAbstractsOID_7(lex2OID,lex1OID),

Name: binAggFromName

) , SM_BinaryAggregationOfAbstracts [DEST] (

OID: #BinaryAggregationOfAbstractsOID_7(lex1OID,lex2OID),

Name: binAggToName

) ;

SM_AssertionOnProperty (

OID: #AssertionOnPropertyOID_2*(lex1OID,lex2OID),

Name: binAggFromName+"_InverseOf_"+binAggToName,

isInverse: "true",

BinaryAggregationOfAbstracts1OID: #BinaryAggregationOfAbstractsOID_7(lex2OID,lex1OID),

BinaryAggregationOfAbstracts2OID: #BinaryAggregationOfAbstractsOID_7(lex1OID,lex2OID)

)

<-

i

i

“main” — 2009/2/24 — 11:04 — page 108 — #122 i

i

i

i

i

i

108 A. Datalog Rules for RDB to OWL translations

SM_Aggregation (

OID: aggOID

) , TMP_AggWithSingleKeyReference (

OID: aggOID

) , SM_Lexical(

OID: lex1OID,

isIdentifier: "false",

AggregationOID: aggOID

) , SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lex1OID,

LexicalToOID: lex2OID

) , SM_ForeignKey(

OID:fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

), SM_Abstract [DEST] (

OID: #AbstractOID_3(aggOID)

) , SM_Abstract [DEST] (

OID: #AbstractOID_3(aggToOID)

) , SM_BinaryAggregationOfAbstracts [DEST] (

OID: #BinaryAggregationOfAbstractsOID_7(lex2OID,lex1OID),

Name: binAggFromName

) , SM_BinaryAggregationOfAbstracts [DEST] (

OID: #BinaryAggregationOfAbstractsOID_7(lex1OID,lex2OID),

Name: binAggToName

) ;

7. SM_Lexical (

OID: #LexicalOID_0*(lexOID),

Name: lexName,

isOptional: "true",

isFunctional: "true",

Type: type,

AbstractOID: #AbstractOID_3(aggOID)

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

Type: type

) , !SM_ComponentOfForeignKey(

LexicalFromOID: lexOID

) ;

8. SM_Abstract (

OID: #AbstractOID_5*(lexOID),

Name: lexName+"_Restriction"

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), !SM_ComponentOfForeignKey(

i

i

“main” — 2009/2/24 — 11:04 — page 109 — #123 i

i

i

i

i

i

109

LexicalFromOID: lexOID

) ;

SM_Lexical (

OID: #LexicalOID_9*(lexOID),

Name: lexName+"_Restricted",

isOptional: "false",

isFunctional: "true",

type: type,

AbstractOID: absOID,

AbstractAsLexicalOID: #AbstractOID_5(lexOID)

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Lexical[DEST](

OID: #LexicalOID_0(lexOID),

Name: lexName,

isFunctional: isFunc,

AbstractOID: absOID,

type: type

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), !SM_ComponentOfForeignKey(

LexicalFromOID: lexOID

) ;

SM_AssertionOnProperty (

OID: #AssertionOnPropertyOID_3*(lexOID),

Name: "MinCardRestrOn_"+lexName,

isRestriction: "true",

restrictionType: "MinCardinality",

lexical1OID: #LexicalOID_9(lexOID),

lexical2OID: #LexicalOID_0(lexOID)

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), !SM_ComponentOfForeignKey(

LexicalFromOID: lexOID

) ;

SM_Generalization (

OID: #GeneralizationOID_2*(lexOID),

Name: "ChildOf_"+lexName+"_Restriction",

ParentAbstractOID: #AbstractOID_5(lexOID)

)

<-

SM_Lexical(

i

i

“main” — 2009/2/24 — 11:04 — page 110 — #124 i

i

i

i

i

i

110 A. Datalog Rules for RDB to OWL translations

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), !SM_ComponentOfForeignKey(

LexicalFromOID: lexOID

) ;

SM_ChildOfGeneralization (

OID: #ChildOfGeneralizationOID_2*(lexOID),

Name: absName,

ChildAbstractOID: #AbstractOID_3(aggOID),

GeneralizationOID: #GeneralizationOID_2(lexOID)

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID),

Name: absName

), !SM_ComponentOfForeignKey(

LexicalFromOID: lexOID

) ;

8. SM_Abstract (

OID: #AbstractOID_5*(lexOID),

Name: lexName+"_Restriction"

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), SM_BinaryAggregationOfAbstracts[DEST](

OID: #BinaryAggregationOfAbstractsOID_7(lexOID,lex2OID)

), SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) ;

SM_BinaryAggregationOfAbstracts(

OID: #BinaryAggregationOfAbstractsOID_8*(lexOID,lex2OID),

Name: lexName+"_Restricted",

isSymmetric: "false",

isTransitive: "false",

isDirected: "true",

isOptional1: "false",

isFunctional1: "true",

isOptional2: "true",

isFunctional2: "false",

i

i

“main” — 2009/2/24 — 11:04 — page 111 — #125 i

i

i

i

i

i

111

Abstract1OID: abs1OID,

Abstract2OID: abs2OID,

AbstractAsBinAggOfAbsOID: #AbstractOID_5(lexOID)

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_BinaryAggregationOfAbstracts[DEST](

OID: #BinaryAggregationOfAbstractsOID_7(lexOID,lex2OID),

Abstract1OID: abs1OID,

Abstract2OID: abs2OID

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) , SM_ForeignKey(

OID:fkOID,

AggregationFromOID: aggOID,

AggregationToOID: aggToOID

) ;

SM_AssertionOnProperty (

OID: #AssertionOnPropertyOID_3*(lexOID),

Name: "MinCardRestrOn_"+lexName,

isRestriction: "true",

restrictionType: "MinCardinality",

binaryAggregationOfAbstracts1OID:

#BinaryAggregationOfAbstractsOID_8(lexOID,lex2OID),

binaryAggregationOfAbstracts2OID:

#BinaryAggregationOfAbstractsOID_7(lexOID,lex2OID)

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_BinaryAggregationOfAbstracts[DEST](

OID: #BinaryAggregationOfAbstractsOID_7(lexOID,lex2OID),

Abstract1OID: abs1OID,

Abstract2OID: abs2OID

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) ;

SM_Generalization (

OID: #GeneralizationOID_2*(lexOID),

Name: "ChildOf_"+lexName+"_Restriction",

ParentAbstractOID: #AbstractOID_5(lexOID)

i

i

“main” — 2009/2/24 — 11:04 — page 112 — #126 i

i

i

i

i

i

112 A. Datalog Rules for RDB to OWL translations

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID)

), SM_BinaryAggregationOfAbstracts[DEST](

OID: #BinaryAggregationOfAbstractsOID_7(lexOID,lex2OID)

), SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) ;

SM_ChildOfGeneralization (

OID: #ChildOfGeneralizationOID_2*(lexOID),

Name: absName,

ChildAbstractOID: #AbstractOID_3(aggOID),

GeneralizationOID: #GeneralizationOID_2(lexOID)

)

<-

SM_Lexical(

OID: lexOID,

Name: lexName,

AggregationOID: aggOID,

isNullable: "false"

), SM_Abstract[DEST](

OID: #AbstractOID_3(aggOID),

Name: absName

), SM_BinaryAggregationOfAbstracts[DEST](

OID: #BinaryAggregationOfAbstractsOID_7(lexOID,lex2OID)

), SM_ComponentOfForeignKey(

OID: compFKOID,

ForeignKeyOID: fkOID,

LexicalFromOID: lexOID,

LexicalToOID: lex2OID

) ;

i

i

“main” — 2009/2/24 — 11:04 — page 113 — #127 i

i

i

i

i

i

B. Datalog Rules for OWL to
RDB translations

In this appendix, we show the set of rules needed to translate OWL Semantic
Annotation in relation databases. As for Appendix 7.3, due to space limitation,
we only report the most significative portion of this set.

We firstly report the macro rules and then specify the corpus of each basic
rule.

Macrorules

1. Preliminary selections

a) Find named classes

b) Find object property restrictions

c) Find datatype property restrictions

d) Find inverse object properties

2. Object properties hierarchy computation

a) Object property hierarchy creation

b) Find hierarchy roots

c) Find object properties characteristics

3. Datatype properties hierarchy computation

a) Datatype property hierarchy creation

b) Find hierarchy roots

c) Find Datatype properties characteristics

113

i

i

“main” — 2009/2/24 — 11:04 — page 114 — #128 i

i

i

i

i

i

114 B. Datalog Rules for OWL to RDB translations

4. Class hierarchy computation

a) Create parent-child relations

b) Create class hierarchy

5. Selection of object properties that can be translated in the relational
model

a) Find object property owners

b) Find object property characteristics

c) Find the object properties that can be translated (with not NULL
range)

6. Translation in relational model

a) Translate object properties

b) Translate datatype properties

c) Translate generalizations

Basic Rules

The basic rules for each of the previous points are presented in the following:

1.
TMP_NamedClass [SOURCE](

OID: oid

) <- SM_Abstract(

OID: oid

) , !SM_BinaryAggregationOfAbstracts(

AbstractAsBinAggOfAbsOID: oid

) , !SM_Lexical (

abstractAsLexicalOID: oid

), !SM_Set(

AbstractOID: oid,

isAnonymous: "true"

) ;

TMP_ObjectPropertyRestriction [SOURCE] (

PropOID: propOID,

RestrPropOID: oid,

RestrClassOID: absOID

) <- SM_BinaryAggregationOfAbstracts(

OID: oid,

AbstractAsBinAggOfAbsOID: absOID

), SM_Abstract(

OID: absOID

), SM_AssertionOnProperty (

isRestriction: "true",

BinaryAggregationOfAbstracts1OID: oid,

BinaryAggregationOfAbstracts2OID: propOID

i

i

“main” — 2009/2/24 — 11:04 — page 115 — #129 i

i

i

i

i

i

115

) ;

TMP_DatatypePropertyRestriction [SOURCE] (

PropOID: propOID,

RestrPropOID: oid,

RestrClassOID: absOID

) <- SM_Lexical(

OID: oid,

AbstractAsLexicalOID: absOID

), SM_Abstract(

OID: absOID

), SM_AssertionOnProperty (

isRestriction: "true",

Lexical1OID: oid,

Lexical2OID: propOID

) ;

TMP_ObjectPropertyInverse [SOURCE] (

Prop1OID: prop1OID,

Prop2OID: prop2OID

)

<-

SM_BinaryAggregationOfAbstracts (

OID: prop1OID

), SM_BinaryAggregationOfAbstracts (

OID: prop2OID

), SM_AssertionOnProperty (

BinaryAggregationOfAbstracts1OID: prop1OID,

BinaryAggregationOfAbstracts2OID: prop2OID,

isInverse: "true"

) ;

TMP_ObjectPropertyInverse [SOURCE] (

Prop1OID: prop2OID,

Prop2OID: prop1OID

)

<-

SM_BinaryAggregationOfAbstracts (

OID: prop1OID

), SM_BinaryAggregationOfAbstracts (

OID: prop2OID

), SM_AssertionOnProperty (

BinaryAggregationOfAbstracts1OID: prop1OID,

BinaryAggregationOfAbstracts2OID: prop2OID,

isInverse: "true"

), !TMP_ObjectPropertyInverse (

Prop1OID: prop2OID,

Prop2OID: prop1OID

) ;

2.
TMP_ObjectPropertyHierarchy [SOURCE] (

ParentOID: parentOID,

ChildOID: childOID

)

<-

i

i

“main” — 2009/2/24 — 11:04 — page 116 — #130 i

i

i

i

i

i

116 B. Datalog Rules for OWL to RDB translations

SM_Generalization (

OID: genOID,

parentBinAggrOID: parentOID

), SM_ChildOfGeneralization (

generalizationOID: genOID,

childBinAggrOID: childOID

), SM_BinaryAggregationOfAbstracts (

OID: parentOID,

isEquivalence: "false"

), SM_BinaryAggregationOfAbstracts (

OID: childOID,

isEquivalence: "false"

) ;

TMP_ObjectPropertyRoot [SOURCE] (

OID: oid

)

<-

SM_BinaryAggregationOfAbstracts (

OID: oid,

isEquivalence: "false"

), !TMP_ObjectPropertyHierarchy (

ChildOID: oid

), !TMP_ObjectPropertyRestriction (

restrPropOID: oid

) ;

TMP_ObjectPropertyIsFunctional1 [SOURCE](

PropOID: propOID,

IsFunctional1: "true"

)

<-

SM_BinaryAggregationOfAbstracts (

OID: propOID,

isFunctional1: "true",

isEquivalence: "false"

), !TMP_ObjectPropertyRestriction (

restrPropOID: propOID

);

TMP_ObjectPropertyIsFunctional2 [SOURCE](

PropOID: propOID,

IsFunctional2: "true"

)

<-

SM_BinaryAggregationOfAbstracts (

OID: propOID,

isFunctional2: "true",

isEquivalence: "false"

), !TMP_ObjectPropertyRestriction (

restrPropOID: propOID

);

TMP_ObjectPropertyDomain [SOURCE](

PropOID: propOID,

i

i

“main” — 2009/2/24 — 11:04 — page 117 — #131 i

i

i

i

i

i

117

Abstract1OID: domainOID

)

<-

SM_BinaryAggregationOfAbstracts (

OID: propOID,

Abstract1OID: domainOID,

isEquivalence: "false"

), SM_Abstract (

OID: domainOID

), !TMP_ObjectPropertyRestriction (

restrPropOID: propOID

);

TMP_ObjectPropertyRange [SOURCE](

PropOID: propOID,

Abstract2OID: rangeOID

)

<-

SM_BinaryAggregationOfAbstracts (

OID: propOID,

Abstract2OID: rangeOID,

isEquivalence: "false"

), SM_Abstract (

OID: rangeOID

), !TMP_ObjectPropertyRestriction (

restrPropOID: propOID

);

TMP_ObjectPropertyIsFunctional1 [SOURCE] (

PropOID: childOID,

isFunctional1: isFunc1

)

<-

TMP_ObjectPropertyIsFunctional1 (

PropOID: parentOID,

isFunctional1: isFunc1

), TMP_ObjectPropertyHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ObjectPropertyIsFunctional1 (

PropOID: childOID

), SM_BinaryAggregationOfAbstracts (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: childOID

) ;

TMP_ObjectPropertyIsFunctional2 [SOURCE] (

PropOID: childOID,

isFunctional2: isFunc2

)

<-

TMP_ObjectPropertyIsFunctional2 (

PropOID: parentOID,

i

i

“main” — 2009/2/24 — 11:04 — page 118 — #132 i

i

i

i

i

i

118 B. Datalog Rules for OWL to RDB translations

isFunctional2: isFunc2

), TMP_ObjectPropertyHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ObjectPropertyIsFunctional2 (

PropOID: childOID

), SM_BinaryAggregationOfAbstracts (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: childOID

) ;

TMP_ObjectPropertyDomain [SOURCE] (

PropOID: childOID,

Abstract1OID: domainOID

)

<-

TMP_ObjectPropertyDomain (

PropOID: parentOID,

Abstract1OID: domainOID

), TMP_ObjectPropertyHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ObjectPropertyDomain (

PropOID: childOID

), SM_BinaryAggregationOfAbstracts (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: childOID

) ;

TMP_ObjectPropertyRange [SOURCE] (

PropOID: childOID,

Abstract2OID: rangeOID

)

<-

TMP_ObjectPropertyRange (

PropOID: parentOID,

Abstract2OID: rangeOID

), TMP_ObjectPropertyHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ObjectPropertyRange (

PropOID: childOID

), SM_BinaryAggregationOfAbstracts (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: childOID

) ;

3.
TMP_DatatypePropertyHierarchy [SOURCE] (

ParentOID: parentOID,

ChildOID: childOID

)

<-

SM_Generalization (

i

i

“main” — 2009/2/24 — 11:04 — page 119 — #133 i

i

i

i

i

i

119

OID: genOID,

parentLexicalOID: parentOID

), SM_ChildOfGeneralization (

generalizationOID: genOID,

childLexicalOID: childOID

), SM_Lexical (

OID: parentOID

), SM_Lexical (

OID: childOID

), !TMP_DatatypePropertyRestriction (

restrPropOID: parentOID

), !TMP_DatatypePropertyRestriction (

restrPropOID: childOID

) ;

TMP_DatatypePropertyRoot [SOURCE] (

OID: oid

)

<-

SM_Lexical (

OID: oid

), !TMP_ObjectPropertyHierarchy (

ChildOID: oid

), !TMP_DatatypePropertyRestriction (

restrPropOID: oid

) ;

TMP_DatatypePropertyIsFunctional [SOURCE] (

PropOID: propOID,

IsFunctional: "true"

)

<-

SM_Lexical (

OID: propOID,

IsFunctional: "true"

), !TMP_DatatypePropertyRestriction (

restrPropOID: propOID

) ;

TMP_DatatypePropertyRange [SOURCE] (

PropOID: propOID,

Type: type

)

<-

SM_Lexical (

OID: propOID,

Type: type

), !TMP_DatatypePropertyRestriction (

restrPropOID: propOID

), type<>"’null’" ;

TMP_DatatypePropertyDomain [SOURCE] (

PropOID: propOID,

AbstractOID: domainOID

)

i

i

“main” — 2009/2/24 — 11:04 — page 120 — #134 i

i

i

i

i

i

120 B. Datalog Rules for OWL to RDB translations

<-

SM_Lexical (

OID: propOID,

AbstractOID: domainOID

), !TMP_DatatypePropertyRestriction (

restrPropOID: propOID

), SM_Abstract(

OID: domainOID

) ;

TMP_DatatypePropertyIsFunctional [SOURCE] (

PropOID: propOID,

IsFunctional: isFunc

)

<-

TMP_DatatypePropertyRoot(

OID: propOID

), SM_Lexical (

OID: propOID,

IsFunctional: isFunc

), !TMP_DatatypePropertyIsFunctional (

PropOID: propOID

) ;

TMP_DatatypePropertyRange [SOURCE] (

PropOID: propOID,

Type: type

)

<-

TMP_DatatypePropertyRoot (

OID: propOID

), SM_Lexical (

OID: propOID,

Type: type

), !TMP_DatatypePropertyRange (

PropOID: propOID

) ;

TMP_DatatypePropertyDomain [SOURCE] (

PropOID: propOID,

AbstractOID: domainOID

)

<-

TMP_DatatypePropertyRoot (

OID: propOID

), SM_Lexical (

OID: propOID,

AbstractOID: domainOID

), !TMP_DatatypePropertyDomain (

PropOID: propOID

) ;

TMP_DatatypePropertyIsFunctional [SOURCE] (

PropOID: childOID,

isFunctional: isFunc

i

i

“main” — 2009/2/24 — 11:04 — page 121 — #135 i

i

i

i

i

i

121

)

<-

TMP_DatatypePropertyIsFunctional (

PropOID: parentOID,

isFunctional: isFunc

), TMP_DatatypePropertyHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_DatatypePropertyIsFunctional (

PropOID: childOID

), SM_Lexical (

OID: parentOID

), SM_Lexical (

OID: childOID

) ;

TMP_DatatypePropertyRange [SOURCE] (

PropOID: childOID,

Type: type

)

<-

TMP_DatatypePropertyRange (

PropOID: parentOID,

Type: type

), TMP_DatatypePropertyHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_DatatypePropertyRange (

PropOID: childOID

), SM_Lexical (

OID: parentOID

), SM_Lexical (

OID: childOID

) ;

TMP_DatatypePropertyDomain [SOURCE] (

PropOID: childOID,

AbstractOID: domainOID

)

<-

TMP_DatatypePropertyDomain (

PropOID: parentOID,

AbstractOID: domainOID

), TMP_DatatypePropertyHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_DatatypePropertyDomain (

PropOID: childOID

), SM_Lexical (

OID: parentOID

), SM_Lexical (

OID: childOID

) ;

4. TMP_ParentChildHierarchy [SOURCE] (

ParentOID: parentOID,

ChildOID: childOID

i

i

“main” — 2009/2/24 — 11:04 — page 122 — #136 i

i

i

i

i

i

122 B. Datalog Rules for OWL to RDB translations

)

<-

TMP_NamedClass (

OID: parentOID

), TMP_NamedClass (

OID: childOID

), SM_Generalization (

OID: genOID,

parentAbstractOID: parentOID

), SM_ChildOfGeneralization (

OID: childGenOID,

GeneralizationOID: genOID,

ChildAbstractOID: childOID

), SM_Abstract (

OID: parentOID

), SM_Abstract (

OID: childOID

) ;

TMP_ParentChildHierarchy [SOURCE] (

ParentOID: parentOID,

ChildOID: childOID

)

<-

TMP_NamedClass (

OID: childOID

), TMP_NamedClass (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

Abstract1OID: childOID,

Abstract2OID: intersOID,

isEquivalence: "true"

), SM_Set (

OID: setOID,

AbstractOID: intersOID

), SM_ComponentOfSet (

SetOID: setOID,

AbstractOID: parentOID

), SM_Abstract (

OID: parentOID

), SM_Abstract (

OID: childOID

), !TMP_ParentChildHierarchy (

ParentOID: parentOID,

ChildOID: childOID

) ;

TMP_ParentChildHierarchy [SOURCE] (

ParentOID: parentOID,

ChildOID: childOID

)

<-

TMP_NamedClass (

OID: childOID

), TMP_NamedClass (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

i

i

“main” — 2009/2/24 — 11:04 — page 123 — #137 i

i

i

i

i

i

123

Abstract1OID: childOID,

Abstract2OID: intersOID,

isEquivalence: "true"

), SM_Set (

OID: setOID,

AbstractOID: intersOID

), SM_ComponentOfSet (

SetOID: setOID,

AbstractOID: parentOID

), SM_Abstract (

OID: parentOID

), SM_Abstract (

OID: childOID

), SM_Generalization (

OID: genOID,

parentAbstractOID: intersOID

), SM_ChildOfGeneralization (

OID: childGenOID,

GeneralizationOID: genOID,

ChildAbstractOID: childOID

), !TMP_ParentChildHierarchy (

ParentOID: parentOID,

ChildOID: childOID

) ;

TMP_ExtendedClassHierarchy [SOURCE] (

ParentOID: parentOID,

ChildOID: childOID

) <- TMP_ParentChildHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), SM_Abstract (

OID: childOID

), SM_Abstract (

OID: parentOID

) ;

TMP_ExtendedClassHierarchy [SOURCE] (

ParentOID: grandparentOID,

ChildOID: childOID

)

<*-

TMP_ParentChildHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), TMP_ParentChildHierarchy (

ParentOID: grandparentOID,

ChildOID: parentOID

), !TMP_ExtendedClassHierarchy (

ParentOID: grandparentOID,

ChildOID: childOID

), SM_Abstract (

OID: childOID

), SM_Abstract (

OID: parentOID

), SM_Abstract (

OID: grandparentOID

) ;

TMP_ClassAncestor [SOURCE](

i

i

“main” — 2009/2/24 — 11:04 — page 124 — #138 i

i

i

i

i

i

124 B. Datalog Rules for OWL to RDB translations

ChildOID: childOID,

AncestorOID: ancestorOID

)

<*-

TMP_ExtendedClassHierarchy (

ChildOID: childOID,

ParentOID: ancestorOID

), TMP_ExtendedClassHierarchy (

ChildOID: childOID,

ParentOID: parentOID

), TMP_ExtendedClassHierarchy (

ChildOID: parentOID,

ParentOID: ancestorOID

), SM_Abstract (

OID: childOID

), SM_Abstract (

OID: parentOID

), SM_Abstract (

OID: ancestorOID

) ;

TMP_DirectClassHierarchy [SOURCE] (

ChildOID: childOID,

ParentOID: parentOID

)

<-

TMP_ParentChildHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ClassAncestor (

ChildOID: childOID,

AncestorOID: parentOID

), SM_Abstract (

OID: childOID

), SM_Abstract (

OID: parentOID

) ;

5. TMP_ObjectPropertyRestrictionOwner [SOURCE] (

ClassOID: oid,

PropOID: propOID,

RestrPropOID: restrProp1OID

)

<-

SM_Abstract (

OID: oid

), TMP_NamedClass (

OID: oid

), SM_Abstract (

OID: intersOID

), SM_BinaryAggregationOfAbstracts (

Abstract1OID: oid,

Abstract2OID: intersOID,

isEquivalence: "true"

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrProp1OID

), SM_Set (

i

i

“main” — 2009/2/24 — 11:04 — page 125 — #139 i

i

i

i

i

i

125

OID: setOID,

isAnonymous: "true",

AbstractOID: intersOID

), SM_ComponentOfSet (

SetOID: setOID,

AbstractOID: comp1OID

), TMP_ObjectPropertyRestriction (

PropOID: propOID,

RestrClassOID: comp1OID,

RestrPropOID: restrProp1OID

) ;

TMP_ObjectPropertyRestrictionOwner [SOURCE] (

ClassOID: oid,

PropOID: propOID,

RestrPropOID: restrProp1OID

)

<-

SM_Abstract (

OID: oid

), TMP_NamedClass (

OID: oid

), SM_Abstract (

OID: intersOID

), SM_Generalization (

OID: genOID,

ParentAbstractOID: intersOID

), SM_ChildOfGeneralization (

generalizationOID: genOID,

childAbstractOID: oid

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrProp1OID

), SM_Set (

OID: setOID,

isAnonymous: "true",

AbstractOID: intersOID

), SM_ComponentOfSet (

SetOID: setOID,

AbstractOID: comp1OID

), TMP_ObjectPropertyRestriction (

PropOID: propOID,

RestrClassOID: comp1OID,

RestrPropOID: restrProp1OID

) ;

TMP_ObjectPropertyRestrictionOwner [SOURCE] (

ClassOID: oid,

PropOID: propOID,

RestrPropOID: restrPropOID

)

<-

SM_Abstract (

OID: oid

), TMP_NamedClass (

OID: oid

), SM_Abstract (

OID: restrClassOID

i

i

“main” — 2009/2/24 — 11:04 — page 126 — #140 i

i

i

i

i

i

126 B. Datalog Rules for OWL to RDB translations

), SM_BinaryAggregationOfAbstracts (

Abstract1OID: oid,

Abstract2OID: restrClassOID,

isEquivalence: "true"

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrPropOID

), TMP_ObjectPropertyRestriction (

PropOID: propOID,

RestrClassOID: restrClassOID,

RestrPropOID: restrPropOID

) ;

TMP_ObjectPropertyRestrictionOwner [SOURCE] (

ClassOID: oid,

PropOID: propOID,

RestrPropOID: restrPropOID

)

<-

SM_Abstract (

OID: oid

), TMP_NamedClass (

OID: oid

), SM_Abstract (

OID: restrClassOID

), SM_Generalization (

OID: genOID,

ParentAbstractOID: restrClassOID

), SM_ChildOfGeneralization (

generalizationOID: genOID,

childAbstractOID: oid

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrPropOID

), TMP_ObjectPropertyRestriction (

PropOID: propOID,

RestrClassOID: restrClassOID,

RestrPropOID: restrPropOID

) ;

TMP_ObjectPropertyRestrictionOwner [SOURCE] (

ClassOID: oid,

PropOID: propOID,

RestrPropOID: restrProp1OID

)

<-

SM_Abstract (

OID: oid

), TMP_NamedClass (

OID: intersOID

), SM_Abstract (

OID: intersOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrProp1OID

), SM_Set (

i

i

“main” — 2009/2/24 — 11:04 — page 127 — #141 i

i

i

i

i

i

127

OID: setOID,

isAnonymous: "false",

AbstractOID: intersOID

), SM_ComponentOfSet (

SetOID: setOID,

AbstractOID: comp1OID

), TMP_ObjectPropertyRestriction (

PropOID: propOID,

RestrClassOID: comp1OID,

RestrPropOID: restrProp1OID

) ;

TMP_OBJECTPROPERTYOWNER [SOURCE] (

PropOID: propOID,

ClassOID: classOID

)

<*-

SM_Abstract (

OID: classOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), TMP_ObjectPropertyRestrictionOwner (

PropOID: propOID,

ClassOID: classOID

) ;

TMP_OBJECTPROPERTYOWNER [SOURCE] (

PropOID: propOID,

ClassOID: classOID

)

<-

SM_Abstract (

OID: classOID

), TMP_ObjectPropertyDomain (

PropOID: propOID,

Abstract1OID: classOID

), !TMP_ObjectPropertyRestriction(

RestrPropOID: propOID

), !TMP_OBJECTPROPERTYOWNER (

PropOID: propOID,

ClassOID: classOID

) ;

TMP_OBJECTPROPERTYOWNER [SOURCE] (

PropOID: propOID,

ClassOID: classOID

)

<-

SM_Abstract (

OID: classOID

), TMP_ObjectPropertyDomain (

PropOID: propOID,

Abstract1OID: domainOID

), TMP_NamedClass(

OID: classOID

), !TMP_OBJECTPROPERTYOWNER (

i

i

“main” — 2009/2/24 — 11:04 — page 128 — #142 i

i

i

i

i

i

128 B. Datalog Rules for OWL to RDB translations

PropOID: propOID,

ClassOID: classOID

), !SM_Abstract (

OID: domainOID

), !TMP_ObjectPropertyRestriction (

restrPropOID: propOID

), !TMP_ParentChildHierarchy (

ChildOID: classOID

) ;

TMP_ObjectPropertyOwnerWithParentOwner [SOURCE] (

ClassOID: classOID,

PropOID: propOID

)

<-

TMP_ObjectPropertyOwner (

ClassOID: classOID,

PropOID: propOID

), TMP_ParentChildHierarchy (

ParentOID: parentOID,

ChildOID: classOID

), TMP_ObjectPropertyOwner (

ClassOID: parentOID,

PropOID: propOID

), SM_Abstract (

OID: classOID

), SM_Abstract (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

) ;

TMP_ObjectPropertyRootOwner [SOURCE] (

ClassOID: classOID,

PropOID: propOID

) <-

TMP_ObjectPropertyOwner (

ClassOID: classOID,

PropOID: propOID

), !TMP_ObjectPropertyOwnerWithParentOwner (

ClassOID: classOID,

PropOID: propOID

), SM_Abstract (

OID: classOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

) ;

TMP_ObjectPropertyRange4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

Abstract2OID: abs2OID

)

<-

TMP_ObjectPropertyOwner (

ClassOID: classOID,

PropOID: propOID

), SM_AssertionOnProperty (

i

i

“main” — 2009/2/24 — 11:04 — page 129 — #143 i

i

i

i

i

i

129

BinaryAggregationOfAbstracts1OID: restrPropOID,

BinaryAggregationOfAbstracts2OID: propOID,

isRestriction: "true",

restrictionType: "AllValuesFrom"

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyRestrictionOwner (

ClassOID: classOID,

PropOID: propOID,

RestrPropOID: restrPropOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrPropOID,

Abstract2OID: abs2OID

), SM_Abstract (

OID: abs2OID

) ;

TMP_ObjectPropertyIsOptional4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

isOptional1: isOpt

)

<-

TMP_ObjectPropertyOwner (

ClassOID: classOID,

PropOID: propOID

), SM_AssertionOnProperty (

BinaryAggregationOfAbstracts1OID: restrPropOID,

BinaryAggregationOfAbstracts2OID: propOID,

isRestriction: "true",

restrictionType: "MinCardinality"

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyRestrictionOwner (

ClassOID: classOID,

PropOID: propOID,

RestrPropOID: restrPropOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrPropOID,

isOptional1: isOpt

) ;

TMP_ObjectPropertyIsFunctional4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

isFunctional1: isFunc

)

<-

TMP_ObjectPropertyOwner (

ClassOID: classOID,

PropOID: propOID

), SM_AssertionOnProperty (

BinaryAggregationOfAbstracts1OID: restrPropOID,

BinaryAggregationOfAbstracts2OID: propOID,

isRestriction: "true",

restrictionType: "MaxCardinality"

i

i

“main” — 2009/2/24 — 11:04 — page 130 — #144 i

i

i

i

i

i

130 B. Datalog Rules for OWL to RDB translations

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyRestrictionOwner (

ClassOID: classOID,

PropOID: propOID,

RestrPropOID: restrPropOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrPropOID,

isFunctional1: isFunc

) ;

TMP_ObjectPropertyIsOptional4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

isOptional1: isOpt

)

<-

TMP_ObjectPropertyOwner (

ClassOID: classOID,

PropOID: propOID

), SM_AssertionOnProperty (

BinaryAggregationOfAbstracts1OID: restrPropOID,

BinaryAggregationOfAbstracts2OID: propOID,

isRestriction: "true",

restrictionType: "Cardinality"

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyRestrictionOwner (

ClassOID: classOID,

PropOID: propOID,

RestrPropOID: restrPropOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrPropOID,

isOptional1: isOpt

) ;

TMP_ObjectPropertyIsFunctional4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

isFunctional1: isFunc

)

<-

TMP_ObjectPropertyOwner (

ClassOID: classOID,

PropOID: propOID

), SM_AssertionOnProperty (

BinaryAggregationOfAbstracts1OID: restrPropOID,

BinaryAggregationOfAbstracts2OID: propOID,

isRestriction: "true",

restrictionType: "Cardinality"

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyRestrictionOwner (

ClassOID: classOID,

PropOID: propOID,

i

i

“main” — 2009/2/24 — 11:04 — page 131 — #145 i

i

i

i

i

i

131

RestrPropOID: restrPropOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: restrPropOID,

isFunctional1: isFunc

) ;

TMP_ObjectPropertyRange4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

Abstract2OID: rangeOID

)

<*-

TMP_ObjectPropertyRootOwner (

ClassOID: classOID,

PropOID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), TMP_ObjectPropertyRange (

PropOID: propOID,

Abstract2OID: abs2OID

), SM_Abstract (

OID: classOID

), !SM_Abstract (

OID: abs2OID

), !TMP_ObjectPropertyRange4Owner (

PropOID: propOID,

ClassOID: classOID

), SM_Abstract (

OID: rangeOID

), TMP_NamedClass (

OID: rangeOID

), !TMP_ParentChildHierarchy (

ChildOID: rangeOID

) ;

TMP_ObjectPropertyRange4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

Abstract2OID: abs2OID

)

<*-

TMP_ObjectPropertyRootOwner (

ClassOID: classOID,

PropOID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), TMP_ObjectPropertyRange (

PropOID: propOID,

Abstract2OID: abs2OID

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyOwner (

PropOID: propOID,

ClassOID: classOID

), !TMP_ObjectPropertyRange4Owner (

PropOID: propOID,

i

i

“main” — 2009/2/24 — 11:04 — page 132 — #146 i

i

i

i

i

i

132 B. Datalog Rules for OWL to RDB translations

ClassOID: classOID

) ;

TMP_ObjectPropertyIsOptional4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

isOptional1: isOpt

)

<*-

TMP_ObjectPropertyRootOwner (

ClassOID: classOID,

PropOID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID,

isOptional1: isOpt,

isEquivalence: "false"

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyOwner (

PropOID: propOID,

ClassOID: classOID

), !TMP_ObjectPropertyIsOptional4Owner (

PropOID: propOID,

ClassOID: classOID

) ;

TMP_ObjectPropertyIsFunctional4Owner [SOURCE] (

PropOID: propOID,

ClassOID: classOID,

isFunctional1: isFunc

)

<*-

TMP_ObjectPropertyRootOwner (

ClassOID: classOID,

PropOID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), TMP_ObjectPropertyIsFunctional1 (

PropOID: propOID,

isFunctional1: isFunc

), SM_Abstract (

OID: classOID

), TMP_ObjectPropertyOwner (

PropOID: propOID,

ClassOID: classOID

), !TMP_ObjectPropertyIsFunctional4Owner (

PropOID: propOID,

ClassOID: classOID

) ;

TMP_ObjectPropertyRange4Owner [SOURCE] (

ClassOID: childOID,

PropOID: propOID,

Abstract2OID: abs2OID

)

<-

TMP_ObjectPropertyRange4Owner (

i

i

“main” — 2009/2/24 — 11:04 — page 133 — #147 i

i

i

i

i

i

133

ClassOID: parentOID,

PropOID: propOID,

Abstract2OID: abs2OID

), TMP_DirectClassHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ObjectPropertyRange4Owner (

ClassOID: childOID,

PropOID: propOID

), SM_Abstract (

OID: childOID

), SM_Abstract (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

) ;

TMP_ObjectPropertyIsOptional4Owner [SOURCE] (

ClassOID: childOID,

PropOID: propOID,

isOptional1: isOpt

)

<-

TMP_ObjectPropertyIsOptional4Owner (

ClassOID: parentOID,

PropOID: propOID,

isOptional1: isOpt

), TMP_DirectClassHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ObjectPropertyIsOptional4Owner (

ClassOID: childOID,

PropOID: propOID

), SM_Abstract (

OID: childOID

), SM_Abstract (

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

) ;

TMP_ObjectPropertyIsFunctional4Owner [SOURCE] (

ClassOID: childOID,

PropOID: propOID,

isFunctional1: isFunc

)

<-

TMP_ObjectPropertyIsFunctional4Owner (

ClassOID: parentOID,

PropOID: propOID,

isFunctional1: isFunc

), TMP_DirectClassHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), !TMP_ObjectPropertyIsFunctional4Owner (

ClassOID: childOID,

PropOID: propOID

), SM_Abstract (

OID: childOID

), SM_Abstract (

i

i

“main” — 2009/2/24 — 11:04 — page 134 — #148 i

i

i

i

i

i

134 B. Datalog Rules for OWL to RDB translations

OID: parentOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

) ;

TMP_ObjectPropertyTransformableNoConsider2 [SOURCE] (

DomainOID: domain1OID,

PropOID: prop1OID,

RangeOID: range1OID

)

<-

SM_BinaryAggregationOfAbstracts (

OID: prop1OID

), SM_BinaryAggregationOfAbstracts (

OID: prop2OID

), SM_Abstract (

OID: domain1OID

), SM_Abstract (

OID: domain2OID

), SM_Abstract (

OID:range1OID

), SM_Abstract (

OID: range2OID

), TMP_ObjectPropertyTransformable (

DomainOID: domain1OID,

PropOID: prop1OID,

RangeOID: range1OID

), TMP_ObjectPropertyTransformable (

DomainOID: domain2OID,

PropOID: prop2OID,

RangeOID: range2OID

), !TMP_ObjectPropertyTransformableNoConsider (

DomainOID: domain1OID,

PropOID: prop1OID,

RangeOID: range1OID

), !TMP_ObjectPropertyTransformableNoConsider (

DomainOID: domain2OID,

PropOID: prop2OID,

RangeOID: range2OID

), SM_AssertionOnProperty (

BinaryAggregationOfAbstracts1OID: prop1OID,

BinaryAggregationOfAbstracts2OID: prop2OID,

isInverse: "true"

), domain1OID = range2OID, domain2OID = range1OID ;

TMP_ObjectPropertyToTransform [SOURCE] (

DomainOID: domain1OID,

PropOID: prop1OID,

RangeOID: range1OID

)

<-

TMP_ObjectPropertyTransformable (

DomainOID: domain1OID,

PropOID: prop1OID,

RangeOID: range1OID

), !TMP_ObjectPropertyTransformableNoConsider (

DomainOID: domain1OID,

PropOID: prop1OID,

i

i

“main” — 2009/2/24 — 11:04 — page 135 — #149 i

i

i

i

i

i

135

RangeOID: range1OID

), !TMP_ObjectPropertyTransformableNoConsider2 (

DomainOID: domain1OID,

PropOID: prop1OID,

RangeOID: range1OID

), SM_Abstract (

OID: domain1OID

), SM_Abstract (

OID: range1OID

), SM_BinaryAggregationOfAbstracts (

OID: prop1OID

) ;

TMP_ManyToManyRelationship [SOURCE] (

DomainOID: domainOID,

PropOID: propOID,

RangeOID: rangeOID

)

<-

SM_Abstract (

OID: domainOID

), SM_Abstract (

OID: rangeOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), TMP_ObjectPropertyIsFunctional2 (

PropOID: propOID,

isFunctional2: "false"

), TMP_ObjectPropertyToTransform (

DomainOID: domainOID,

PropOID: propOID,

RangeOID: rangeOID

), !TMP_ObjectPropertyInverse (

Prop1OID: propOID

), TMP_ObjectPropertyIsFunctional4Owner (

ClassOID: domainOID,

PropOID: propOID,

isFunctional1: "false"

) ;

TMP_ManyToManyRelationship [SOURCE] (

DomainOID: domainOID,

PropOID: propOID,

RangeOID: rangeOID

)

<-

SM_Abstract (

OID: domainOID

), SM_Abstract (

OID: rangeOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID

), SM_BinaryAggregationOfAbstracts (

OID: propInvOID

), TMP_ObjectPropertyToTransform (

DomainOID: domainOID,

PropOID: propOID,

RangeOID: rangeOID

), TMP_ObjectPropertyInverse (

Prop1OID: propOID,

i

i

“main” — 2009/2/24 — 11:04 — page 136 — #150 i

i

i

i

i

i

136 B. Datalog Rules for OWL to RDB translations

Prop2OID: propInvOID

), TMP_ObjectPropertyIsFunctional4Owner (

ClassOID: domainOID,

PropOID: propOID,

isFunctional1: "false"

), TMP_ObjectPropertyIsFunctional2 (

PropOID: propOID,

isFunctional2: "false"

), TMP_ObjectPropertyIsFunctional4Owner (

ClassOID: rangeOID,

PropOID: propInvOID,

isFunctional1: "false"

), TMP_ObjectPropertyIsFunctional2 (

PropOID: propInvOID,

isFunctional2: "false"

) ;

6. SM_Lexical (

OID: #Lexical4BinAggOfAbsAndDomainAbsAndRangeAbsAndRoleOID_4

*(propOID,domainOID,rangeOID,role1),

Name: "InverseOf"+propName,

IsIdentifier: "false",

IsNullable: isOpt,

type: type,

AggregationOID: #Aggregation4AbsOID_1(domainOID)

)

<-

SM_Abstract (

OID: domainOID

), SM_Abstract (

OID: rangeOID

), SM_BinaryAggregationOfAbstracts (

OID: propOID,

Name: propName,

Role1: role1

), TMP_OneToOneOrManyRelationship (

DomainOID: domainOID,

PropOID: propOID,

RangeOID: rangeOID,

isDirect: "false"

), TMP_ObjectPropertyIsOptional4Owner (

ClassOID: domainOID,

PropOID: propOID,

isOptional1: isOpt

), SM_Lexical [DEST] (

OID: #Lexical4AbsWithoutKeyOID_1(rangeOID),

Type: type

) ;

SM_ForeignKey (

OID: #ForeignKey4DomainAbsAndRangeAbsAndBinAggrOfAbsAndRoleOID_4

*(domainOID,rangeOID,propOID,role1),

Name: aggName+"_To_"+domainName,

AggregationFromOID:

#Aggregation4AbsAndAbsAndBinAggOfAbsOID_3(domainOID,rangeOID,propOID),

AggregationToOID: #Aggregation4AbsOID_1(domainOID)

)

<-

TMP_ManyToManyRelationship (

DomainOID: domainOID,

i

i

“main” — 2009/2/24 — 11:04 — page 137 — #151 i

i

i

i

i

i

137

RangeOID: rangeOID,

PropOID: propOID

), SM_Abstract (

OID: domainOID,

Name: domainName

), SM_Abstract (

OID: rangeOID,

Name: rangeName

), SM_BinaryAggregationOfAbstracts (

OID: propOID,

Name: propName,

Role1: role1

), SM_Aggregation [DEST] (

OID: #Aggregation4AbsAndAbsAndBinAggOfAbsOID_3

(domainOID,rangeOID,propOID),

Name: aggName

) ;

SM_Lexical (

OID: #Lexical4LexAndAbsOID3_2*(propOID,domainOID),

Name: "Value",

isIdentifier: "true",

isNullable: "false",

type: type,

AggregationOID: #Aggregation4AbsAndLexOID_2(domainOID,propOID)

)

<-

SM_Abstract (

OID: domainOID

), SM_Lexical (

OID: propOID

), TMP_DatatypePropertyMultiValued (

DomainOID: domainOID,

PropOID: propOID

), TMP_DatatypePropertyRange4Owner (

PropOID: propOID,

ClassOID: domainOID,

Type: type

) ;

SM_ForeignKey (

OID: #ForeignKey4AbsParentAndAbsChild_2*(parentOID,childOID),

Name: name2+"_isChildOf_"+name1,

AggregationFromOID: #Aggregation4AbsOID_1(childOID),

AggregationToOID: #Aggregation4AbsOID_1(parentOID)

)

<-

TMP_ParentChildHierarchy (

ParentOID: parentOID,

ChildOID: childOID

), SM_Abstract (

OID: parentOID,

Name: name1

), SM_Abstract (

OID: childOID,

Name: name2

) ;

i

i

“main” — 2009/2/24 — 11:04 — page 138 — #152 i

i

i

i

i

i

i

i

“main” — 2009/2/24 — 11:04 — page 139 — #153 i

i

i

i

i

i

Bibliography

[ACB05] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. A
multilevel dictionary for model management. In ER, pages 160–
175, 2005.

[ACB06] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. Model-
independent schema and data translation. In EDBT, pages 368–
385, 2006.

[ACT+08] Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A.
Bernstein, and Giorgio Gianforme. Model-independent schema
translation. VLDB J., 17(6):1347–1370, 2008.

[AGC08] Paolo Atzeni, Giorgio Gianforme, and Paolo Cappellari. Rea-
soning on data models in schema translation. In Sven Hartmann
and Gabriele Kern-Isberner, editors, FoIKS, volume 4932 of Lec-
ture Notes in Computer Science, pages 158–177. Springer, 2008.

[AT93] Paolo Atzeni and Riccardo Torlone. A metamodel approach for
the management of multiple models and translation of schemes.
Inf. Syst., 18(6):349–362, 1993.

[AT96] Paolo Atzeni and Riccardo Torlone. Management of multiple
models in an extensible database design tool. pages 79–95.
Springer, 1996.

[BC02] Richard V. Benjamins and Jesús Contreras. Six challenges for
the semantic web. 2002.

[BCG+02] Sean Bechhofer, Les Carr, Carole A. Goble, Simon Kampa,
and Timothy Miles-Board. The semantics of semantic anno-
tation. In On the Move to Meaningful Internet Systems, 2002 -

139

i

i

“main” — 2009/2/24 — 11:04 — page 140 — #154 i

i

i

i

i

i

DOA/CoopIS/ODBASE 2002 Confederated International Con-
ferences DOA, CoopIS and ODBASE 2002, pages 1152–1167,
London, UK, 2002. Springer-Verlag.

[Ber03] Philip A. Bernstein. Applying model management to classical
meta data problems. In CIDR, 2003.

[BG03] Petra S. Bayerl and Ulrike Gut. Methodology for reliable schema
development and evaluation of manual annotations. In Proceed-
ings of the Workshop on Knowledge Markup and Semantic An-
notation at the Second International Conference on Knowledge
Capture (K-CAP 2003, 2003.

[BGMN08] Philip A. Bernstein, Todd J. Green, Sergey Melnik, and
Alan Nash. Implementing mapping composition. VLDB J.,
17(2):333–353, 2008.

[BH07] Philip A. Bernstein and Howard Ho. Model management and
schema mappings: Theory and practice. In VLDB, pages 1439–
1440, 2007.

[BHJ+00] Philip A. Bernstein, Laura M. Haas, Matthias Jarke, Erhard
Rahm, and Gio Wiederhold. Panel: Is generic metadata man-
agement feasible? In VLDB, pages 660–662, 2000.

[BHP00] Philip A. Bernstein, Alon Y. Halevy, and Rachel Pottinger. A
vision of management of complex models. SIGMOD Record,
29(4):55–63, 2000.

[BHS04] Franz Baader, Ian Horrocks, and Ulrike Sattler. Description
logics. In Handbook on Ontologies, pages 3–28. 2004.

[BL99] Tim Berners-Lee. Weaving the Web. Texere Publishing Ltd.,
November 1999.

[BLFM05] Tim Berners-Lee, R. Fielding, and L. Masinter. RFC
3986, Uniform Resource Identifier (URI): Generic syntax.
http://tools.ietf.org/html/rfc3986, 2005.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, May 2001.

i

i

“main” — 2009/2/24 — 11:04 — page 141 — #155 i

i

i

i

i

i

[BM07] Philip A. Bernstein and Sergey Melnik. Model management 2.0:
manipulating richer mappings. In SIGMOD ’07: Proceedings of
the 2007 ACM SIGMOD international conference on Manage-
ment of data, pages 1–12, New York, NY, USA, 2007. ACM.

[CGY07] Nadine Cullot, Raji Ghawi, and Kokou Ytongnon. Db2owl : A
tool for automatic database-to-ontology mapping. In Michelan-
gelo Ceci, Donato Malerba, and Letizia Tanca, editors, SEBD,
pages 491–494, 2007.

[CHL+04] Kevin Chen-Chuan Chang, Bin He, Chengkai Li, Mitesh Patel,
and Zhen Zhang. Structured databases on the web: observations
and implications. SIGMOD Rec., 33(3):61–70, 2004.

[CW03] Fabio Ciravegna and Yorick Wilks. Designing adaptive informa-
tion extraction for the semantic web in amilcare. In Annotation
for the Semantic Web, Frontiers in Artificial Intelligence and
Applications. IOS. Press, 2003.

[DCES04] Souripriya Das, Eugene Inseok Chong, George Eadon, and Jaan-
nathan Srinivasan. Supporting ontology-based semantic match-
ing in rdbms. In VLDB ’04: Proceedings of the Thirtieth inter-
national conference on Very large data bases, pages 1054–1065.
VLDB Endowment, 2004.

[DH05] Anhai Doan and Alon Y. Halevy. Semantic integration research
in the database community: A brief survey. AI Magazine, 26:83–
94, 2005.

[dLC05] Cristian Pérez de Laborda and Stefan Conrad. Relational.owl:
a data and schema representation format based on owl. In
APCCM ’05: Proceedings of the 2nd Asia-Pacific conference
on Conceptual modelling, pages 89–96, Darlinghurst, Australia,
Australia, 2005. Australian Computer Society, Inc.

[FKPT05] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and
Wang Chiew Tan. Composing schema mappings: Second-
order dependencies to the rescue. ACM Trans. Database Syst.,
30(4):994–1055, 2005.

[Gar05] Lars Marius Garshol. A model for topic maps: Unifying rdf and
topic maps. In Extreme Markup Languages, 2005.

i

i

“main” — 2009/2/24 — 11:04 — page 142 — #156 i

i

i

i

i

i

[GM05] Lars Marius Garshol and Graham Moore.
Iso/iec 13250-2: Topic maps data model.
http://www.isotopicmaps.org/sam/sam-model/, 2005.

[GNP] Alexander Gruenstein, John Niekrasz, and Matthew Purver.
Meeting structure annotation - annotations collected with a gen-
eral purpose toolkit. In Recent Trends in Discourse and Di-
alogue, volume 39 of Text, Speech and Language Technology,
pages 247–271.

[Gru95] Thomas R. Gruber. Toward principles for the design of ontolo-
gies used for knowledge sharing. Int. J. Hum.-Comput. Stud.,
43(5-6):907–928, 1995.

[Hab07] Benjamin Habegger. Mapping a database into an ontology : an
interactive relational learning approach. In ICDE, pages 1443–
1447, 2007.

[Han05] Siegfried Handschuh. Creating Ontology-based Metadata by An-
notation for the Semantic Web. PhD thesis, University of Karl-
sruhe (TH), 2005.

[HK87] Richard Hull and Roger King. Semantic database modeling:
survey, applications, and research issues. ACM Comput. Surv.,
19(3):201–260, 1987.

[HSC02] Siegfried Handschuh, Steffen Staab, and Fabio Ciravegna. S-
cream - semi-automatic creation of metadata. In EKAW ’02:
Proceedings of the 13th International Conference on Knowledge
Engineering and Knowledge Management. Ontologies and the
Semantic Web, pages 358–372, London, UK, 2002. Springer-
Verlag.

[HSV03] Siegfried Handschuh, Steffen Staab, and Raphael Volz. On deep
annotation. In WWW, pages 431–438, 2003.

[HY90] Richard Hull and Masatoshi Yoshikawa. Ilog: declarative cre-
ation and manipulation of object identifiers. In Proceedings of
the sixteenth international conference on Very large databases,
pages 455–468, San Francisco, CA, USA, 1990. Morgan Kauf-
mann Publishers Inc.

i

i

“main” — 2009/2/24 — 11:04 — page 143 — #157 i

i

i

i

i

i

[JSUJ06] J. Carletta, S. Evert, U. Heid, and J. Kilgour. The nite xml
toolkit: data model and query language. Language Resources
and Evaluation Journal, June 2006. AMI-1.

[KGHP] Aditya Kalyanpur, Jennifer Golbeck, James Hendler, and Bijan
Parsia. Representation formalisms and methods .

[KKPS02] José Kahan, Marja-Riitta Koivunen, Eric Prud’hommeaux, and
Ralph R. Swick. Annotea: an open rdf infrastructure for shared
web annotations. Computer Networks, 39(5):589–608, 2002.

[Kog01a] Paul Kogut. Aerodaml: Applying information extraction to gen-
erate daml annotations from web pages. In First International
Conference on Knowledge Capture (K-CAP 2001). Workshop
on Knowledge Markup and Semantic Annotation, 2001.

[Kog01b] Paul Kogut. Aerodaml: Applying information extraction to gen-
erate daml annotations from web pages. In First International
Conference on Knowledge Capture (K-CAP 2001). Workshop
on Knowledge Markup and Semantic Annotation, 2001.

[Kri06] Madhav Krishna. Retaining semantics in relational databases by
mapping them to rdf. In WI-IATW ’06: Proceedings of the 2006
IEEE/WIC/ACM international conference on Web Intelligence
and Intelligent Agent Technology, pages 303–306, Washington,
DC, USA, 2006. IEEE Computer Society.

[KVBF07] Jacek Kopecký, Tomas Vitvar, Carine Bournez, and Joel Farrell.
Sawsdl: Semantic annotations for wsdl and xml schema. IEEE
Internet Computing, 11(6):60–67, 2007.

[Lau08] Georg Lausen. Relational databases in rdf: Keys and foreign
keys. pages 43–56, 2008.

[Len02] Maurizio Lenzerini. Data integration: a theoretical perspective.
In PODS ’02: Proceedings of the twenty-first ACM SIGMOD-
SIGACT-SIGART symposium on Principles of database sys-
tems, pages 233–246, New York, NY, USA, 2002. ACM.

[MBR01] Jayant Madhavan, Philip A. Bernstein, and Erhard Rahm.
Generic schema matching with cupid. In VLDB, pages 49–58,
2001.

i

i

“main” — 2009/2/24 — 11:04 — page 144 — #158 i

i

i

i

i

i

[MDCG03] Enrico Motta, John Domingue, Liliana Cabral, and Mauro Gas-
pari. Irs-ii: A framework and infrastructure for semantic web
services. pages 306–318. Springer-Verlag, 2003.

[Mel04] Sergey Melnik. Generic Model Management: Concepts And Al-
gorithms (Lecture Notes in Computer Science). Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 2004.

[MH03] Jayant Madhavan and Alon Y. Halevy. Composing mappings
among data sources. In VLDB, pages 572–583, 2003.

[MHS07] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap
between owl and relational databases. In WWW ’07: Proceed-
ings of the 16th international conference on World Wide Web,
pages 807–816, New York, NY, USA, 2007. ACM.

[MKH03] Kamil Matousek, Zdenek Kouba, and Petr Husták. Resource
annotation and outline creation tool (rat-o). In DEXA Work-
shops, pages 80–83, 2003.

[MS01] Alexander Maedche and Steffen Staab. Ontology learning for
the semantic web. IEEE Intelligent Systems, 16(2):72–79, 2001.

[MTP06] Alexander Mikroyannidis, Babis Theodoulidis, and Andreas
Persidis. Parmenides: Towards business intelligence discov-
ery from web data. In WI ’06: Proceedings of the 2006
IEEE/WIC/ACM International Conference on Web Intelli-
gence, pages 1057–1060, Washington, DC, USA, 2006. IEEE
Computer Society.

[NBM07] Alan Nash, Philip A. Bernstein, and Sergey Melnik. Composi-
tion of mappings given by embedded dependencies. ACM Trans.
Database Syst., 32(1):4, 2007.

[NFM00] N.F. Noy, R.W. Fergerson, and M.A. Musen. The knowledge
model of protégé-2000: Combining interoperability and flexibil-
ity. Lecture Notes in Computer Science, 1937:69–82, 2000.

[NG06] John Niekrasz and Alexander Gruenstein. NOMOS: A semantic
web software framework for annotation of multimodal corpora.
In Proceedings of the 5th International Conference on Language
Resources and Evaluation (LREC), Genoa, Italy, May 2006.

i

i

“main” — 2009/2/24 — 11:04 — page 145 — #159 i

i

i

i

i

i

[NSD+01] Natalya F. Noy, Michael Sintek, Stefan Decker, Monica Crubézy,
Ray W. Fergerson, and Mark A. Musen. Creating semantic web
contents with protégé-2000. IEEE Intelligent Systems, 16(2):60–
71, 2001.

[OMG05] Omg model driven architecture. Internet document,
http://www.omg.org/mda/, 2005.

[OMG06] Mof: Omg’s metaobject facility. Internet document,
http://www.omg.org/mof/, 2006.

[PB03] Rachel Pottinger and Philip A. Bernstein. Merging models based
on given correspondences. In VLDB, pages 826–873, 2003.

[POSV04] Abhijit A. Patil, Swapna A. Oundhakar, Amit P. Sheth, and
Kunal Verma. Meteor-s web service annotation framework. In
WWW ’04: Proceedings of the 13th international conference on
World Wide Web, pages 553–562, New York, NY, USA, 2004.
ACM.

[PVM+02] Lucian Popa, Yannis Velegrakis, Renée J. Miller, Mauricio A.
Hernández, and Ronald Fagin. Translating web data. In VLDB,
pages 598–609, 2002.

[RDH+04] Alan Rector, Nick Drummond, Matthew Horridge, Jeremy
Rogers, Holger Knublauch, Robert Stevens, Hai Wang, and
Chris Wroe. Owl pizzas: Practical experience of teaching owl-dl:
Common errors & common patterns. pages 63–81. 2004.

[RH05] Lawrence Reeve and Hyoil Han. Survey of semantic annotation
platforms. In SAC ’05: Proceedings of the 2005 ACM symposium
on Applied computing, pages 1634–1638, New York, NY, USA,
2005. ACM.

[SE05] Pavel Shvaiko and Jérôme Euzenat. A survey of schema-based
matching approaches. pages 146–171. 2005.

[SGR08] Amit P. Sheth, Karthik Gomadam, and Ajith Ranabahu. Se-
mantics enhanced services: Meteor-s, sawsdl and sa-rest. IEEE
Data Eng. Bull., 31(3):8–12, 2008.

i

i

“main” — 2009/2/24 — 11:04 — page 146 — #160 i

i

i

i

i

i

[SHN07] Ronald Schroeter, Jane Hunter, and Andrew Newman. Annotat-
ing relationships between multiple mixed-media digital objects
by extending annotea. In ESWC, pages 533–548, 2007.

[SHZZ06] Guohua Shen, Zhiqiu Huang, Xiaodong Zhu, and Xiaofei Zhao.
Research on the rules of mapping from relational model to owl.
In Bernardo Cuenca Grau, Pascal Hitzler, Conor Shankey, and
Evan Wallace, editors, Proceedings of the OWLED ’06 Work-
shop on OWL: Experiences and Directions, pages 21–29, 2006.

[SP05] Peyman Sazedj and H. Sofia Pinto. Time to evaluate: Targeting
annotation tools, November 2005.

[TBA06] Quang Trinh, Ken Barker, and Reda Alhajj. Rdb2ont: A tool
for generating owl ontologies from relational database systems.
In AICT-ICIW ’06: Proceedings of the Advanced Int’l Confer-
ence on Telecommunications and Int’l Conference on Internet
and Web Applications and Services, page 170, Washington, DC,
USA, 2006. IEEE Computer Society.

[Top01] TopicMaps.org. Xml topic maps (xtm) 1.0. Technical report,
TopicMaps.org, 2001.

[UW97] Jeffrey D. Ullman and Jennifer Widom. A First Course in
Database Systems. 1997.

[VHS+04] Raphael Volz, Siegfried Handschuh, Steffen Staab, Ljiljana Sto-
janovic, and Nenad Stojanovic. Unveiling the hidden bride: deep
annotation for mapping and migrating legacy data to the seman-
tic web. Journal of Web Semantics, 1(2):187–206, 2004.

[VvMD+02a] Maria Vargas-vera, Enrico Motta, John Domingue, Mattia Lan-
zoni, and Fabio Ciravegna. Mnm: Ontology driven semi-
automatic and automatic support for semantic markup. pages
379–391. Springer Verlag, 2002.

[VVMD+02b] Maria Vargas-Vera, Enrico Motta, John Domingue, Mattia Lan-
zoni, Arthur Stutt, and Fabio Ciravegna. Mnm: Ontology driven
semi-automatic and automatic support for semantic markup. In
EKAW, pages 379–391, 2002.

i

i

“main” — 2009/2/24 — 11:04 — page 147 — #161 i

i

i

i

i

i

[XCDS04] Zhuoming Xu, Xiao Cao, Yisheng Dong, and Wenping Su. For-
mal approach and automated tool for translating er schemata
into owl ontologies. In PAKDD, pages 464–475, 2004.

[YHGS03] Yeliz Yesilada, Simon Harper, Carole Goble, and Robert
Stevens. Ontology based semantic annotation for enhancing mo-
bility support for visually impaired web users. In In K-CAP
2003 Workshop on Knowledge Markup and Semantic Annota-
tion, 2003.

