
i
i

“main” — 2009/2/24 — 16:07 — page i — #1 i
i

i
i

i
i

UNIVERSITÀ DEGLI STUDI

ROMA
TRE

Roma Tre University
Ph.D. in Computer Science and Engineering

Modeling and interoperability:
a high level perspective

Pierluigi Del Nostro

i
i

“main” — 2009/2/24 — 16:07 — page ii — #2 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page iii — #3 i
i

i
i

i
i

Modeling and interoperability:
a high level perspective

A thesis presented by
Pierluigi Del Nostro

in partial fulfillment of the requirements for the degree of
Doctor of Philosophy

in Computer Science and Engineering

Roma Tre University
Dept. of Informatics and Automation

February 2009

i
i

“main” — 2009/2/24 — 16:07 — page iv — #4 i
i

i
i

i
i

Committee:
Prof. Paolo Atzeni

Reviewers:
Prof. Ernest Teniente
Prof. Martine Collard

i
i

“main” — 2009/2/24 — 16:07 — page v — #5 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page vi — #6 i
i

i
i

i
i

Abstract

This thesis tackles modeling and interoperability issues in different con-
texts. We started by studying different Semantic Web models with the goal of
translating from one to another by means of a model independent approach.
The metamodel approach that we follow is called MIDST and is based on the
concept of supermodel, a generic model that we use to describe other models.
We have extended this approach, to allow the interoperability between Seman-
tic Web formalisms. MIDST leverage on a relational dictionary that we have
exploited as a repository for RDF documents. The logical organization that we
have defined, together with tuning techniques at the physical level, allows us
to obtain a framework for storing and querying RDF, that produced great re-
sults in terms of performance and scalability. Following the experience gained
in modeling Semantic Web models, we have produced a new enhancement in
MIDST expressivity, allowing the interchange of information between ontolo-
gies and databases. Changing context, this thesis finally describe a framework
for the modeling of time in data-intensive Web sites. We here developed a tool
that allows to automatically generate the Web site as a consequence of the
design choices.

i
i

“main” — 2009/2/24 — 16:07 — page vii — #7 i
i

i
i

i
i

Acknowledgments

I first would thank Prof. Paolo Atzeni, for the things I had learnt working
together. Thanks to my colleagues and friends Stefano Paolozzi, Giorgio Gian-
forme and Roberto De Virgilio with whom I have shared the PhD experience.
I will never thank enough my family, for the support that gave me. A special
thought to Michela, for choosing to share her life with me. Many thanks to
my friends Luigi Arlotta and Alessandro Kayed, that helped me during the
overburden periods of my work.

vii

i
i

“main” — 2009/2/24 — 16:07 — page viii — #8 i
i

i
i

i
i

Contents

Contents viii

List of Tables x

List of Figures xi

1 Introduction 1

2 Management of heterogeneous models 5
2.1 The context . 6
2.2 The MIDST approach . 7
2.3 Model independence . 7
2.4 The relational dictionary . 11
2.5 Conclusions . 14

3 Translation between Semantic Web annotation formalisms 17
3.1 RDF . 18
3.2 Topic Maps . 28
3.3 Models comparison . 35
3.4 Related works . 36
3.5 Extending MIDST to Semantic Annotations 54
3.6 Translation between RDF and Topic Maps 60
3.7 Conclusions . 65

4 A Scalable and Extensible Framework for the Management
of RDF data 67
4.1 Introduction . 68
4.2 Running Example . 70

viii

i
i

“main” — 2009/2/24 — 16:07 — page ix — #9 i
i

i
i

i
i

CONTENTS ix

4.3 Related Works . 72
4.4 Management of RDF data . 75
4.5 Experimental Results . 86
4.6 Conclusions . 92

5 Living with ontologies and databases 95
5.1 Introduction . 95
5.2 Related Work . 97
5.3 Extending MIDST supermodel to Semantic Web 98
5.4 From OWL ontology to Relational Database 101
5.5 From Relational Database to OWL Ontology 108
5.6 Conclusions . 112

6 Temporal aspects for data intensive Web sites 113
6.1 Introduction . 113
6.2 The Araneus models and methodology 116
6.3 Models for the management of temporal aspects of Web sites . 118
6.4 CMS support to T-Araneus . 130
6.5 An Example Application . 135
6.6 Conclusions . 139

Conclusion 141

Appendices 143

Appendix A 145

Appendix B 147

i
i

“main” — 2009/2/24 — 16:07 — page x — #10 i
i

i
i

i
i

List of Tables

3.1 Moore RDF-Topic Maps mapping 41
3.2 Relational table Person . 55

x

i
i

“main” — 2009/2/24 — 16:07 — page xi — #11 i
i

i
i

i
i

List of Figures

2.1 MIDST translation process. 8
2.2 Basic Datalog rules. 10
2.3 Relationships between models, constructs, meta-constructs 11
2.4 A portion of the MIDST relational dictionary 12
2.5 ER model dictionary . 13
2.6 Two samples of ER schemas . 14
2.7 Partition of the MIDST abstraction layers 14

3.1 RDF Example . 19
3.2 RDF Graph Example . 21
3.3 Statements in an RDF Graph representation 21
3.4 Structured information representation in RDF 23
3.5 Example of an RDF collection . 27
3.6 RDF example for the relation Person 56
3.7 RDF example representing only name and surname 57
3.8 The supermodel’s constructs used to represent RDF 60
3.9 The supermodel’s constructs used to represent Topic Maps 60
3.10 RDF Example . 62
3.11 MIDST Relational dictionary storing an RDF document 63
3.12 Topic Maps example . 65
3.13 Resulting RDF graph . 65

4.1 RDF classes and triple instances 71
4.2 The vertical partitioning tables for the running example. 74
4.3 RDF data Management with a 3-layer model 76
4.4 The three levels of abstraction . 76
4.5 The MRDF model . 79

xi

i
i

“main” — 2009/2/24 — 16:07 — page xii — #12 i
i

i
i

i
i

xii List of Figures

4.6 Conceptual representation of the running example 80
4.7 Logical representation of our model 81
4.8 Physical Organization of the running example 82
4.9 Logical representation of Containers 85
4.10 Performance comparison between triple-vertical-swim approaches . 90
4.11 Query Performance as number of triples scale 92
4.12 Maintenance Performance as number of triples scale 93

5.1 A portion of MIDST supermodel. 100
5.2 Correspondences between the OWL model and the supermodel. . . 103
5.3 MIDST Tables. 105
5.4 Correspondences between the relational model and the supermodel. 109

6.1 The Araneus design process . 117
6.2 The example of ER schema . 117
6.3 The example of N-ER schema . 118
6.4 The example of ADM schema . 119
6.5 Temporal notation example . 121
6.6 Versions for the TeacherPage . 123
6.7 Versions for the CoursePage . 124
6.8 Two examples of temporal navigation 125
6.9 The TARGET CHANGED feature 128
6.10 The TARGET CHANGED feature along a path 128
6.11 The SIMPLE VERSION STRUCTURE pattern 129
6.12 The LIST VERSION STRUCTURE pattern 129
6.13 The CHAIN VERSION STRUCTURE pattern 129
6.14 The SUMMARY VERSION STRUCTURE pattern 129
6.15 The tree of available choices . 130
6.16 Workflow model . 133
6.17 Architecture of the system. 134
6.18 A screenshot of the CASE tool design interface. 136
6.19 The example T-ER schema . 137
6.20 Temporal features in the N-ER model 137
6.21 A T-ADM page scheme. 138

A.1 The supermodel class diagram. 146

i
i

“main” — 2009/2/24 — 16:07 — page 1 — #13 i
i

i
i

i
i

Chapter 1

Introduction

Modeling is a major activity in the database field. In our research group
we are concentrating on two branches of interest concerning interoperability
between heterogeneous models and the modeling of Web site aspects. In these
two contexts my research activity has specifically produced contributions on
Semantic Web models and Temporal Web sites, respectively.

Semantic Web is based on the idea of assigning a shared, unambiguous,
machine computable meaning to the information, by means of descriptions of
data. To aim this goal many models have been defined, from the simpler lan-
guage to assign meta-data to the more sophisticated ontologies. In this work
we give our contribution in the reconciliation of this heterogeneity, providing
a means that ease the interoperability between different semantic representa-
tions. We pursue this goal by the use of a metamodelling technique and a
methodology, that allows to define a high level translation process that is in-
dependent from the specific model. The approach is part of a wider project
MIDST (Model Independent Schema and Data Translation), developed by the
Database group of the Roma Tre University of Rome, that tackles many aspects
of the model management area. We define a generic model (that we call super-
model) by means of which is possible to describe the other models capturing
the structural aspects. By means of rules, written in a Datalog variant, that
act on our meta-representations, the user can flexibly choose how to perform
the translation between a source and a target model in a generic manner.

We started our experiments with the translation between the two data-
models, RDF and Topic Maps, for which many approaches are presented in the
literature. After the study of the nature and the peculiarities of the two models,

1

i
i

“main” — 2009/2/24 — 16:07 — page 2 — #14 i
i

i
i

i
i

2 Chapter 1. Introduction

we have underlined which are the sharing points and the differences. We have
then applied our approach, translating from RDF to Topic Maps and viceversa,
with specific attention in reducing the likely loss of semantic that can occur
when translating between different models with different power of expressivity.
Interoperability between RDF and Topic Maps allows different groups, using
the two formalisms, to cooperate sharing the knowledge. Moreover, if one of the
two formalisms, let’s say RDF, become a universal standard, all the knowledge
created by means of Topic Maps will not be lost but reused (almost partially).

Beyond the translation issues that regard the heterogeneity of Semantic
Web models, we have faced with another problem of the Semantic Web com-
munity, related to the growth of meta-data over the Web. Data-sets of millions
of RDF triple, describing different contexts, are publicly available on the in-
ternet. Many proposals exist on how to store, manage and query large RDF
data-sets, exploiting a relational database, starting from simple triple represen-
tation, where data are organized in a unique table of triples, to some evolutions
that use different logical organization of data. The triple storage model is ob-
viously unsuitable to scale with the number of triples, due to the multitude of
self joins needed; its extreme simplicity goes to the detriment of performance.
The solution adopted by most of the recent proposals in this sense, consists
of providing logical and physical partitioning of the triple data to increase the
performance of storing and querying. After studying the state of the art of
these proposals, we have implemented the ones that we considered the most
significant and tested them against some representative queries. Experiment-
ing the translations between Semantic Web formalisms, we used a relational
database to store RDF data with the goal of translating them to Topic maps,
then we asked ourselves if the storage model that we exploit, could be also
suitable to reach good performances in querying and if the approach could be
scalable. We have tested our approach with the same data-set and queries used
to test the other approaches and the results comparison places our approach
in the top both for the query response time and the scalability.

The positive results that we gathered in the aforementioned scenarios sug-
gest us to expand the application of our approach. Starting from the transla-
tion between formalisms belonging to the same world, the Semantic Web, we
have come to the challenge of translating between different worlds, namely Se-
mantic Web and databases. More specifically we have studied the translation
between OWL ontologies and relational databases. This context has been also
studied intensively in the research community due to the variety of applica-
tions it involves. The two worlds have been conceived with different purposes:
databases are used to efficiently and effectively store and query data, whereas

i
i

“main” — 2009/2/24 — 16:07 — page 3 — #15 i
i

i
i

i
i

3

the Semantic Web aims at giving a unique interpretation of the meaning of
data. Semantic Web and relational databases live together in an evolving Web
where always more data intensive sites exist and where meta-data and ontolo-
gies are diffusing to increment the precision of the searches and to allow the
share and reuse of knowledge. In my opinion each of the technologies should be
used for the purpose they are conceived for, interacting, to let one exploit the
potentiality of the other. Thus we can employ databases to store large ontolo-
gies or meta-data documents, while ontologies can be used to automatically
enrich relational data to be published on the web with a semantic.

The other area of interest of my research activity regards the management
of temporal aspects in data-intensive Web sites. A Web site is called data-
intensive when its main purpose is the publishing of a large amount of data
and we consider data stored in relational databases. In our group a tool to au-
tomatically generate a Web site, starting from a relational database repository,
has been developed. It is based on a design process where the site structure
and its content are described by means of different models at different levels of
abstraction. We have enhanced these models with new constructs to manage
temporal aspects both at data and pages level, leveraging on the studies made
on temporal databases. With this tool we enable the site designer to express
design choices about how to manage the time coordinate and the content ver-
sions, along the design process. At the end of the process, the Web site and a
CMS system with features to manage time, are automatically generated by the
tool, together with the database schema that captures the time coordinate.

In this document we will illustrate which are the contributions that we
produced in these areas, tackling different topics with the same philosophy of
finding solutions basing on a modeling approach.

The rest of the document is organized as follows: in chapter 2 an intro-
duction to the MIDST approach is given; chapter 3 illustrates the translation
between RDF and Topic Maps; chapter 4 shows how our storage model reveals
a means for the efficient and scalable management of RDF data; in chapter 5
the translation between OWL and relational database is described; chapter 6
presents the work about the management of temporal data intensive Web sites.

i
i

“main” — 2009/2/24 — 16:07 — page 4 — #16 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page 5 — #17 i
i

i
i

i
i

Chapter 2

Management of heterogeneous
models

In this chapter we will illustrate MIDST, an implementation of the model
management operator ModelGen, which translates schemas and data from one
model to another [?].

To manage heterogeneous data, many applications need to translate data
and their descriptions from one model (i.e. data model) to another. The
common requirement of this interoperability scenario is the ability to translate
schemas and data across heterogeneous models.

To reconciliate this variety of representation standards, what we need is an
approach that is generic across models, and can handle the peculiarities of each
model.

The approach we propose here translates schemas from a model to another,
within a predefined, but large and extensible, set of models: given a source
schema S expressed in a source model, and a target model TM, it generates
a schema S’ expressed in TM that is “equivalent” to S. The different models
are precisely described by using a metamodel representation. Translations are
expressesed as Datalog rules and exposes the source and target of the transla-
tion in a generic relational dictionary. This makes the translation transparent,
easy to customize and model-independent.

5

i
i

“main” — 2009/2/24 — 16:07 — page 6 — #18 i
i

i
i

i
i

6 Chapter 2. Management of heterogeneous models

2.1 The context

The need of share and reuse of data among different applications implies the
arise of issues related to the heterogeneity of data modeling and description
standards that are so far diffused in the ICT community. Many organizations
developed their own models and often the same model appear in a variety of
declinations. Taking into account the database area, the evolution of technolo-
gies constantly enhance heterogeneity and therefore more need for translations.
The diffusion of XML as an interchange standard lead database vendors to
consider the introduction of functionality to directly manage XML data and
to transform flat Relational data into nested XML and vice versa. The se-
mantic Web context, even if younger than Databases, do not profit from the
past experience. Many languages for the management and the representation
of knowledge have been developed with different expressivity characteristics.
RDF, Topic Maps, the various OWL declinations, TMCL, RDF(S), are only
some, from the most popular, formalisms developed with the purpose of repre-
senting knowledge from the simpler meta-data to the ontologies. And the things
got worst considering that the different serialization languages available for the
same data-model. RDF, for example, can be serialized by using RDF/XML,
Notation 3 or others, less known. Moreover, the two worlds, databases and
semantic Web, compenetrate always more.

It should be clear that there is a growing need for translations in different
areas. This problems belongs to the larger context Bernstein [?] termed model
management, an approach to meta data management that considers schemas
as the primary objects of interest and proposes a set of operators to manipulate
them. In this thesis we consider the ModelGen operator [?], defined as follows:
given two models M1 and M2 and a schema S1 of M1, ModelGen translates S1

into a schema S2 of M2 that properly represents S1.
Along with the schemas, if the instance level is of interest, the approach is

applicable to data as well: given a database instance I1 of S1, the extended
operator produces an instance I2 of S2 that has the same information content
as I1. As there are many different models, what we need is an approach that
is generic across models and can handle the idiosyncrasies of each model. The
main goal is to have one single approach that works over a variety of models,
despite developing specific translations for each pair of models.

i
i

“main” — 2009/2/24 — 16:07 — page 7 — #19 i
i

i
i

i
i

2.2. The MIDST approach 7

2.2 The MIDST approach

The main concept over which we build our approach is the metamodel. A
metamodel is a set of generic constructs that can be used to define models, as
a consequence a model is an instance of the metamodel as well as a schema
is an instance of a model. We leverage on Hull and Kings intuition [?] that
the constructs used in most known models can be expressed by a limited set
of generic (i.e., model independent) metaconstructs: lexical, abstract, aggrega-
tion, generalization, function. We therefore define a metamodel by means of a
set of generic metaconstructs. Each model is defined by its constructs and the
metaconstructs they refer to. With respect to metaconstructs we can define
some popular models as follows:

Entity Relationship model (i) abstracts (the entities), (ii) aggregations of
abstracts (relationships), and (iii) lexicals (attributes of entities and, in
most versions of the model, of relationships);

Object Oriented model (i) abstracts (classes), (ii) reference attributes for
abstracts, which are essentially functions from abstracts to abstracts, and
(iii) lexicals (fields or properties of classes);

Relational model (i) aggregations of lexicals (tables), (ii) components of ag-
gregations (columns), which can participate in keys, (iii) foreign keys
defined over aggregations and lexicals;

RDF (i) abstracts (resources), (ii) abstract attributes of abstracts (proper-
ties), (iii) foreign keys defined over aggregations and lexicals.

Models and schemas descriptions are maintained in a relational dictionary
and references are used to store the connections between constructs. In section
2.4 some specific aspects of the dictionary implementation are illustrated.

2.3 Model independence

To implement an efficient translation system it is necessary to define a trans-
lation technique that can address the greatest possible number of models. For
this reason MIDST includes the concept of supermodel, i.e. a model that con-
tains all other models, more specifically, a model that contains the constructs
through which all possible models are defined. Indeed, each model can be rep-
resented as a set of meta-constructs belonging to a more general model, which

i
i

“main” — 2009/2/24 — 16:07 — page 8 — #20 i
i

i
i

i
i

8 Chapter 2. Management of heterogeneous models

is the supermodel. Thus, each model is a specialization of the supermodel and a
schema in any model is also a schema in the supermodel, apart from the specific
names used for constructs. In Appendix A, Fig.A.1 illustrate a Class Diagram
representing the supermodel as it was before the modifications produced during
my research activity.

The supermodel acts as a “pivot” model, so that it is sufficient to have trans-
lations from each model to and from the supermodel, rather than translations
for every pair of models. The benefit, in terms of computational complexity,
is that the number of translations needed is linear instead of quadratic. More-
over, since every schema in any model is also a schema of the supermodel,
the only needed translations are those within the supermodel: a translation is
composed of (a) a copy (with construct renaming) from the source model into
the supermodel; (b) an actual transformation within the supermodel, whose
output includes only constructs allowed in the target model; (c) another copy
(again with renaming into the target model).

The whole process is sketched in Fig. 2.1

Figure 2.1: MIDST translation process.

Another relevant benefit of exploiting the supermodel is that the common

i
i

“main” — 2009/2/24 — 16:07 — page 9 — #21 i
i

i
i

i
i

2.3. Model independence 9

aspects of models are emphasized. If two source models share a construct, then
their translations towards similar target models could share a portion of the
translation as well. In our approach, we follow this observation by defining ele-
mentary (or basic) translations that refer to single constructs (or even specific
variants thereof). Then, actual translations are specified as compositions of ba-
sic ones, with significant reuse. For example, assume we have as the source an
ER model with binary relationships (with attributes) and no generalizations
and as the target a simple OO model. To perform the task, we would first
translate the source schema by renaming constructs into their corresponding
homologous elements (abstracts, binary aggregations, lexicals, generalizations)
in the supermodel and then apply the following steps:

1. eliminate attributes from aggregations of abstracts;

2. eliminate many-to-many aggregations of abstracts;

3. replace aggregations of abstracts with references;

4. eliminate generalizations (introducing new references);

5. eliminate generalizations (introducing new aggregations of abstracts);

6. replace aggregations of abstracts with references;

7. replace abstracts and their aggregations with aggregations of lexicals;

8. replace abstracts and references with aggregations of lexicals.

Translation rules are written in a Datalog variant with Skolem functors
for the generation of new identifiers. Each translation rule usually execute
a specific task, such as eliminating a certain variant of a construct (possibly
introducing another construct), with most of the constructs left unchanged.
Most of the rules that appear in our programs concern copy operations, while
only few of them act as real translations. For example, the translation that
performs step (3) would involve the rules for the following tasks:

3-i copy abstracts;

3-ii copy lexical attributes of abstracts;

3-iii replace relationships (only one-to-many and one-toone) with reference
attributes;

i
i

“main” — 2009/2/24 — 16:07 — page 10 — #22 i
i

i
i

i
i

10 Chapter 2. Management of heterogeneous models

3-iv copy generalizations.

As en example of Datalog implementation of rules, Fig. 2.2 shows rules
(3-i), as an example of a copy rule; and (3-iii) as a translations rule, replacing
binary one-to-many (or one-to-one) relationships with reference attributes.

Figure 2.2: Basic Datalog rules.

Conditions for the applicability of the rule are placed in the body. Rule 3-i
has no condition, and so it copies all abstracts. Differently, Rule 3-iii shows, in
line 13, a condition that restrict its applicability only to aggregations that have
IsFunctional1=true, representing one-to-many and one-to-one relationships.
Row 2 of each rule generates a new construct instance in the dictionary with
a new identifier generated by a Skolem function; Rule 3-i generates a new
Abstract for each Abstract in the source schema (and it is a copy, except for
the internal identifier), whereas Rule 3-iii generates a new AbstractAttribute
for each BinaryAggregationOfAbstracts, with suitable features.

Since elementary translations refer to generic supermodel constructs, they
can be easily reused, because each of them can be applied to all constructs that
correspond to the same meta-construct. At the beginning of the translation
process, rules for copying schemas from the specific source model to the super-
model are performed, and a final one for going back from the supermodel to
the target model of interest.

Along with the schemas, it is possible to manage translations of actual data,
derived from the translations of schemas. This is made possible by the use of

i
i

“main” — 2009/2/24 — 16:07 — page 11 — #23 i
i

i
i

i
i

2.4. The relational dictionary 11

a dictionary for the data level, built in close correspondence with the schema
level dictionary.

Figure 2.3: Relationships between models, constructs, meta-constructs

2.4 The relational dictionary

We have previously explained that one of the main concepts of our approach is
the idea that a metamodel is a set of constructs (called metaconstructs) that can
be used to define models, which are instances of the metamodel. For us a model
is a set of elements called constructs, each of which with its own characteristics.
Each construct correspond to a metaconstruct and the correspondence is one
to one. Once we have defined the notions of model and metamodel, construct
and metaconstruct, and their relationships, let us give some details about what
a supermodel exactly represent. It is a model 1 that contains a construct for
each metaconstruct, in the most general version. Therefore, each model can be
seen as a specialization of the supermodel, except for renaming of constructs.
In Fig. 2.3 the aforementioned concepts are represented in a diagram.

The expressivity of the supermodel can be enhanced as new metaconstructs
and so sm-constructs can be added.

Let’s now go deeper in some implementation details, to explain how we
have concretely realized the overall approach. A portion of the relational dic-
tionary is illustrated in Fig. 2.4, as we have implemented in our tool. The
SM-Construct table contains the generic metaconstructs, in the picture are
shown “Abstract,” “AttributeOfAbstract,” “BinaryAggregationOfAbstracts,”
“AbstractAttribute,”.

The previous metaconstructs are used to classify each construct in the
Construct table. Each row in this table, has a reference to a sm-construct

1Remember that we are always talking about models, just at different levels of abstraction

i
i

“main” — 2009/2/24 — 16:07 — page 12 — #24 i
i

i
i

i
i

12 Chapter 2. Management of heterogeneous models

Figure 2.4: A portion of the MIDST relational dictionary

(by means of the sm-Constr column) and to a model (by means of the Model
column). For example the rows of the Construct table, with C-Name values
Entity and Class, shows that the two constructs are related with two different
models (namely ER and OODB) but with the same sm-construct Abstract.

Properties of each sm-construct are stored in the SM-Property table. This
table contains records with the name of the property, the reference to the
sm-construct and the type of the property. Going down at the underlying
abstraction level, we find the corresponding constructs properties, represented
by the Property table.

i
i

“main” — 2009/2/24 — 16:07 — page 13 — #25 i
i

i
i

i
i

2.4. The relational dictionary 13

The table SM-Reference is used to manage the relationships between the
various sm-constructs. In the picture we can see that the sm-construct “At-
tributeOfAbstract” is related to an “Abstract”, at the first row. The “Bina-
ryAggregationOfAbstracts” instead, is clearly exploited to define binary rela-
tionships between abstracts. Also in this case we have the model level repre-
sentation. So an “AttributeOfEntity” is related to an “Entity”, while a “Bina-
ryRelationship” involve two entities.

To define restrictions on a model we have the possibility of specifying con-
ditions on the properties for a construct. For example, to define an object
model that does not allow the specification of identifying fields, we could add a
condition that says that the property “IsId associated with “Field is identically
“false. These restrictions can be expressed as propositional formulas over the
properties of constructs.

Figure 2.5: ER model dictionary

The two layers, Supermodel and Models, have a quite similar structure. The
higher level represents the unique, generic supermodel, while at the lower level
we can find the different models that we are able to describe. The supermodel’s
set of constructs is defined but can be extended and one extension, with the
goal of enhancing the expressivity to the Semantic Web world, is one of the
tasks of my research activity.

Model specific dictionaries have one table for each construct, with their
respective properties and references. At this level we can specify the schemas

i
i

“main” — 2009/2/24 — 16:07 — page 14 — #26 i
i

i
i

i
i

14 Chapter 2. Management of heterogeneous models

of interest. The binary ER model representation is depicted in Fig. 2.5, it
includes tables Entity, AttributeOfEntity, and BinaryRelationship.

In these tables we have stored the information about the two schemas
sketched in Fig. 2.6.

Figure 2.6: Two samples of ER schemas

Concluding, we can see the relational dictionary as composed of four parts,
with two coordinates, as depicted in Fig. 2.6. We can distinguish schemas
(lower portion) versus models (upper portion) and model-specific (left portion)
versus supermodel (right portion).

Figure 2.7: Partition of the MIDST abstraction layers

2.5 Conclusions

This chapter has the goal of introducing to MIDST, an implementation of the
ModelGen operator that supports model-generic translation of schemas. The

i
i

“main” — 2009/2/24 — 16:07 — page 15 — #27 i
i

i
i

i
i

2.5. Conclusions 15

translation approach we here presented, is characterized by the ability of “mod-
eling models”, at different levels of abstraction. At the higher level the most
generic model, that we have defined as the supermodel, can be exploited to
describe more specific models, that actually are the ones involved in the trans-
lation process. Schemas and data can be transformed from a source to a target
model by executing Datalog programs. The choice of Datalog allows an inde-
pendence from any engine. The model independence is reached by referring
rules to the metaconstructs, instead of model specific. In the following of the
document we will propose extensions of MIDST that supports the interoper-
ability between Semantic Web formalism and to translate data and schemas
from databases to ontologies and viceversa.

i
i

“main” — 2009/2/24 — 16:07 — page 16 — #28 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page 17 — #29 i
i

i
i

i
i

Chapter 3

Translation between Semantic
Web annotation formalisms

The Semantic Web relies on semantic annotations which describe information
in a machine readable form. Two popular formalisms that have been conceived
for this aim are Resource Description Framework (RDF) [?] and Topic Maps
[?]. The Resource Description Framework is a model developed by the W3C
for representing information about resources in the World Wide Web. Topic
Maps is a standard for knowledge integration developed by the ISO. The two
specifications were developed in parallel during the late 1990s within their
separate organizations for what initially seamed very different purposes. The
results, however, turned out to have a lot in common and this stimulate the
interest for their unification. While unification has to date not been possible
(for a variety of technical and political reasons), a number of attempts have
been made to uncover the similarities between RDF and Topic Maps and to find
ways of achieving interoperability at the data level. There is a huge quantity
of interesting and useful information represented both in RDF and Topic Maps
and the trend is that the quantity of such information is increasing.

In this chapter, we first illustrate the RDF and Topic maps specification
then we present an analysis of the existing approaches about the translations
between RDF and Topic Maps. We then introduce the approach we choose to
follow to address this issue.

17

i
i

“main” — 2009/2/24 — 16:07 — page 18 — #30 i
i

i
i

i
i

18 Chapter 3. Translation between Semantic Web annotation formalisms

3.1 RDF

The Resource Description Framework (RDF) is a language for representing
information about resources in the World Wide Web. It is specifically used
for representing metadata about Web resources, such as the title, author, and
modification date of a Web page, copyright and licensing information about
a Web document. However, by generalizing the concept of a “Web resource”,
RDF can also be used to represent information about things that can be iden-
tified on the Web, even when they cannot be directly retrieved on the Web.
Examples include information about items available from on-line shopping fa-
cilities (e.g., information about specifications, prices, and availability), or the
description of a Web user’s preferences for information delivery.

RDF provides a common framework for expressing information so it can be
exchanged between applications without loss of meaning. Since it is a common
framework, application designers can leverage the availability of common RDF
parsers and processing tools. The ability to exchange information between
different applications means that the information may be made available to
many more applications other than those for which it was originally created.

Basics

RDF is based on the idea of identifying things using Web identifiers (called
Uniform Resource Identifiers, or URIs), and describing resources in terms of
simple properties and property values. This enables RDF to represent simple
statements about resources as a graph of nodes and arcs representing the re-
sources, and their properties and values. In Figure 3.1 let us give a simple
example of the RDF representation of the following statements “there is a Per-
son identified by http://www.w3.org/People/EM/contact#me, whose name is
Eric Miller, whose email address is em@w3.org, and whose title is Dr.” :

This example, although being small, gives the idea of how RDF uses URIs to
identify almost everything: individuals (Eric Miller), kinds of things (Person),
properties (mailbox), values of those properties (mailto:em@w3.org).

Syntaxes

RDF also provides syntaxes for storing and exchanging these graphs, the most
common are Notation-3 [?] and an XML-based syntax called RDF/XML . In
the following there is a small chunk of RDF in RDF/XML corresponding to
the graph in Figure 3.1:

i
i

“main” — 2009/2/24 — 16:07 — page 19 — #31 i
i

i
i

i
i

3.1. RDF 19

Figure 3.1: RDF Example

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:contact="http://www.w3.org/2000/10/swap/pim/contact#">

<contact:Person rdf:about="http://www.w3.org/People/EM/contact#me">
<contact:fullName>Eric Miller</contact:fullName>
<contact:mailbox rdf:resource="mailto:em@w3.org"/>
<contact:personalTitle>Dr.</contact:personalTitle>

</contact:Person>

</rdf:RDF>

Notice that this RDF document also contains URIs, as well as properties like
mailbox and fullName (in an abbreviated form), and their respective values
em@w3.org, and Eric Miller.

This RDF/XML document is machine processable and, using URIs, can link
pieces of information across the Web. However, unlike conventional hypertext,
RDF URIs can refer to any identifiable thing, including things that may not
directly be findable on the Web (such as the person Eric Miller). The result

i
i

“main” — 2009/2/24 — 16:07 — page 20 — #32 i
i

i
i

i
i

20 Chapter 3. Translation between Semantic Web annotation formalisms

is that in addition to describing such things as Web pages, RDF can also
describe cars, businesses, people, news events, etc. In addition, RDF properties
themselves have URIs, to precisely identify the relationships that exist between
the linked items.

Statements

RDF is based on the idea that the things being described have properties which
have values, and that resources can be described by making statements, similar
to those above, that specify those properties and values. RDF uses a particular
terminology for talking about the various parts of statements. Specifically,
the part that identifies the thing the statement is about is called the subject.
The part that identifies the property or characteristic of the subject that the
statement specifies (creator, creation-date, or language in these examples) is
called the predicate, and the part that identifies the value of that property is
called the object.

To make these kinds of statements suitable for processing by machines it is
necessary to have a system of machine-processable identifiers for identifying a
subject, predicate, or object in a statement and a machine-processable language
for representing these statements and exchanging them between machines. For-
tunately, the existing Web architecture provides both these necessary facilities.

Let’s see how RDF uses URIs to make statements about resources. In
RDF, the English statement: “http://www.example.org/index.html has a cre-
ator whose value is John Smith” could be represented by an RDF statement
having:

• a subject http://www.example.org/index.html

• a predicate http://purl.org/dc/elements/1.1/creator

• and an object http://www.example.org/staffid/85740

Note how URIrefs are used to identify not only the subject of the original
statement, but also the predicate and object, instead of using the words ”cre-
ator” and ”John Smith”, respectively (some of the effects of using URIrefs in
this way will be discussed later in this section).

Graphs and triples

RDF models statements can be expressed as nodes and arcs in a graph. In
this notation, a statement is represented by a node for the subject, a node for

i
i

“main” — 2009/2/24 — 16:07 — page 21 — #33 i
i

i
i

i
i

3.1. RDF 21

the object and an arc for the predicate, directed from the subject node to the
object node. The subject must be a resource while the object can be either a
resource or a literal. So the RDF statement above would be represented by the
graph shown in Figure 3.2:

Figure 3.2: RDF Graph Example

An alternative way of writing down the statements, called triples, is also
used, mostly exploited to store rdf data in documents. In the triples notation,
each statement in the graph is written as a simple triple of subject, predicate,
and object, in that order. For example, the three statements shown in Figure
3.3

Figure 3.3: Statements in an RDF Graph representation

would be written in the triples notation as: b

<http://www.example.org/index.html>
<http://purl.org/dc/elements/1.1/creator>

<http://www.example.org/staffid/85740> .

i
i

“main” — 2009/2/24 — 16:07 — page 22 — #34 i
i

i
i

i
i

22 Chapter 3. Translation between Semantic Web annotation formalisms

<http://www.example.org/index.html>
<http://www.example.org/terms/creation-date>

"August 16, 1999" .

<http://www.example.org/index.html>
<http://purl.org/dc/elements/1.1/language>

"en" .

Each triple corresponds to an arc in the graph, with the arc’s beginning and
ending nodes (the subject and object of the statement). Unlike drawing the
graph, the triples notation requires that a node be separately identified for each
statement it appears in. So, for example, http://www.example.org/index.html
appears three times (once in each triple) in the triples representation of the
graph, but only once in the drawn graph. However, the triples represent ex-
actly the same information as the drawn graph, and this is a key point: what
is fundamental to RDF is the graph model of the statements. The notation
used to represent or depict the graph is secondary.

The full triples notation requires that URI references be written completely,
in angle brackets, which, as the example above illustrates, can result in very
long lines on a page. Due to space limitations, triples elements here are re-
ported on different lines but in the triple representation they actually should
be presented in a single line.

Blank nodes

With its structure made of triples, RDF seams not able to represent a compos-
ite attribute. Let’s consider the information concerning John’s address ”1501
Grant Avenue, Bedford, Massachusetts 01730” in a triple form:

exstaff:85740
exterms:address

"1501 Grant Avenue, Bedford, Massachusetts 01730" .

and we would like to have each element of the address separated. When it
is necessary to store structured information like this in RDF, it is possible to
consider the aggregate thing to be described (like John Smith’s address) as a
resource, and then making statements about that new resource. So, in the RDF
graph, in order to separate John Smith’s address into its components, a node
is created to represent the concept of John Smith’s address. RDF statements
(additional arcs and nodes) can then be written with that node as the subject,

i
i

“main” — 2009/2/24 — 16:07 — page 23 — #35 i
i

i
i

i
i

3.1. RDF 23

to represent the additional information, producing the graph shown in Figure
3.4:

Figure 3.4: Structured information representation in RDF

In the graph, a node without a URIref is used to stand for the concept of
”John Smith’s address”.

A node without an URI is commonly called blank node. This blank node
serves its purpose in the drawing without needing a URIref, since the node
itself provides the necessary connectivity between the various other parts of
the graph. However, some form of explicit identifier for that node is needed in
order to represent this graph as triples. To see this, it is enough to try to write
the triples corresponding to what is shown in Figure 3.4, it would produce
something like:

exstaff:85740 exterms:address ??? .

??? exterms:street "1501 Grant Avenue" .

??? exterms:city "Bedford" .

??? exterms:state "Massachusetts" .

??? exterms:postalCode "01730" .

where ??? stands for something that indicates the presence of the blank
node. Since a complex graph might contain more than one blank node, it is
necessary to differentiate between them. As a result, triples use blank node
identifiers (that are not universal but have a local scope), having the form

i
i

“main” — 2009/2/24 — 16:07 — page 24 — #36 i
i

i
i

i
i

24 Chapter 3. Translation between Semantic Web annotation formalisms

:name, to indicate the presence of blank nodes. For instance, in this example
a blank node identifier :johnaddress might be used to refer to the blank
node, in which case the resulting triples might be:

exstaff:85740 exterms:address _:johnaddress .

_:johnaddress exterms:street "1501 Grant Avenue" .

_:johnaddress exterms:city "Bedford" .

_:johnaddress exterms:state "Massachusetts" .

_:johnaddress exterms:postalCode "01730" .

In a triples representation of a graph, each distinct blank node in the graph
is given a different blank node identifier. Unlike URIrefs and literals, blank
node identifiers are not considered to be actual parts of the RDF graph (this
can be seen by looking at the drawn graph in Figure 6 and noting that the
blank node has no blank node identifier). Blank node identifiers are just a way
of representing the blank nodes in a graph (and distinguishing one blank node
from another) when the graph is written in triple form.

Typing

A relevant feature of RDF that find an interesting application on blank nodes
is the rdf:type property; we have already mentioned this in the examples, let
us give a more detailed explanation. When an rdf:type property is used, the
value of that property is considered to be a resource that represents a category
or class of things, and the subject of that property is considered to be an
instance of that category or class. It is common in RDF for resources to have
rdf:type properties that describe the resources as instances of specific types
or classes. Such resources are called typed nodes in the graph, or typed node
elements in the RDF/XML. With respect to blank nodes this feature comes
out particularly interesting. A blank node itself does not represent anything
but it is representative by the properties it is connected with. This is helpful in
representing real world things, since, for example, a person cannot be directly
represented by a URI but can be described by a node of type person with
properties name, surname, age, etc. etc.

Containers and collections

RDF provides a number of additional capabilities, such as built-in types and
properties for representing groups of resources.

i
i

“main” — 2009/2/24 — 16:07 — page 25 — #37 i
i

i
i

i
i

3.1. RDF 25

There is often a need to describe groups of things: for example, to say that
a book was created by several authors, or to list the students in a course, or
the software modules in a package. RDF provides several predefined (built-in)
types and properties that can be used to describe such groups.

First, RDF provides a container vocabulary consisting of three predefined
types (together with some associated predefined properties). A container is a
resource that contains things. The contained things are called members. The
members of a container may be resources (including blank nodes) or literals.
RDF defines three types of containers: rdf:Bag, rdf:Seq, rdf:Alt

A Bag (a resource having type rdf:Bag) represents a group of resources or
literals, possibly including duplicate members, where there is no significance
in the order of the members. For example, a Bag might be used to describe
a group of part numbers in which the order of entry or processing of the part
numbers does not matter.

A Sequence or Seq (a resource having type rdf:Seq) represents a group of
resources or literals, possibly including duplicate members, where the order of
the members is significant. For example, a Sequence might be used to describe
a group that must be maintained in alphabetical order.

An Alternative or Alt (a resource having type rdf:Alt) represents a group
of resources or literals that are alternatives (typically for a single value of a
property). For example, an Alt might be used to describe alternative language
translations for the title of a book, or to describe a list of alternative Internet
sites at which a resource might be found. An application using a property
whose value is an Alt container should be aware that it can choose any one of
the members of the group as appropriate.

To describe a resource as being one of these types of containers, the resource
is given an rdf:type property whose value is one of the predefined resources
rdf:Bag, rdf:Seq, or rdf:Alt (whichever is appropriate). The container resource
(which may either be a blank node or a resource with a URIref) denotes the
group as a whole. The members of the container can be described by defining
a container membership property for each member with the container resource
as its subject and the member as its object. These container membership
properties have names of the form rdf: n, where n is a decimal integer greater
than zero, with no leading zeros, e.g., rdf: 1, rdf: 2, rdf: 3, and so on, and are
used specifically for describing the members of containers. Container resources
may also have other properties that describe the container, in addition to the
container membership properties and the rdf:type property.

It is important to understand that while these types of containers are de-
scribed using predefined RDF types and properties, any special meanings as-

i
i

“main” — 2009/2/24 — 16:07 — page 26 — #38 i
i

i
i

i
i

26 Chapter 3. Translation between Semantic Web annotation formalisms

sociated with these containers, e.g., that the members of an Alt container are
alternative values, are only intended meanings.

A typical use of a container is to indicate that the value of a property
is a group of things. For example, to represent the sentence ”Course 6.001
has the students John, Lilian, Mark, Maria, and Phillip”, the course could be
described by giving it a s:students property (from an appropriate vocabulary)
whose value is a container of type rdf:Bag (representing the group of students).
Then, using the container membership properties, individual students could be
identified as being members of that group.

Since the value of the s:students property in this example is described as
a Bag, there is no intended significance in the order given for the URIrefs of the
students, even though the membership properties in the graph have integers
in their names. It is up to applications creating and processing graphs that
include rdf:Bag containers to ignore any (apparent) order in the names of the
membership properties.

RDF/XML provides some special syntax and abbreviations to make it sim-
pler to describe such containers as shown in the next example:

<?xml version="1.0"?>
<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:s="http://example.org/students/vocab#">

<rdf:Description rdf:about="http://example.org/courses/6.001">
<s:students>
<rdf:Bag>
<rdf:li rdf:resource="http://example.org/students/Amy"/>
<rdf:li rdf:resource="http://example.org/students/Mohamed"/>
<rdf:li rdf:resource="http://example.org/students/Johann"/>
<rdf:li rdf:resource="http://example.org/students/Maria"/>
<rdf:li rdf:resource="http://example.org/students/Phuong"/>

</rdf:Bag>
</s:students>
</rdf:Description>

</rdf:RDF>

A limitation of the containers is that there is no way to close them, i.e., to
say ”these are all the members of the container”. A container only says that
certain identified resources are members; it does not say that other members

i
i

“main” — 2009/2/24 — 16:07 — page 27 — #39 i
i

i
i

i
i

3.1. RDF 27

do not exist. Also, while one graph may describe some of the members, there is
no way to exclude the possibility that there is another graph somewhere that
describes additional members. RDF provides support for describing groups
containing only the specified members, in the form of RDF collections. An
RDF collection is a group of things represented as a list structure in the RDF
graph. This list structure is constructed using a predefined collection vocab-
ulary consisting of the predefined type rdf:List, the predefined properties
rdf:first and rdf:rest, and the predefined resource rdf:nil. The graph in
Figure 3.5 illustrate the usage of these constructs.

Figure 3.5: Example of an RDF collection

As already mentioned, RDF imposes no well-formed conditions on the use of
the collection vocabulary so, when writing triples, it is possible to define RDF
graphs with structures other than the well-structured graphs that would be
automatically generated by using rdf:parseType=”Collection”. For example,
it is not illegal to assert that a given node has two distinct values of the rdf:first
property, to create structures that have forked or non-list tails, or to simply
omit part of the description of a collection. Also, graphs defined by using the
collection vocabulary in longhand could use URIrefs to identify the components
of the list instead of blank nodes unique to the list structure. In this case,

i
i

“main” — 2009/2/24 — 16:07 — page 28 — #40 i
i

i
i

i
i

28 Chapter 3. Translation between Semantic Web annotation formalisms

it would be possible to create triples in other graphs that effectively added
elements to the collection, making it non-closed.

As discussed in the preceding sections, RDF is intended to be used to
express statements about resources in the form of a graph, using specific vo-
cabularies (names of resources, properties, classes, etc.). RDF is also intended
to be the foundation for more advanced languages, such as RDF Schema and
OWL.

To query RDF documents many languages have been developed but one of
the most popular is SPARQL. SPARQL can be used to express queries across
diverse data sources, whether the data is stored natively as RDF or viewed
as RDF via middleware. SPARQL contains capabilities for querying required
and optional graph patterns along with their conjunctions and disjunctions.
SPARQL also supports extensible value testing and constraining queries by
source RDF graph. The results of SPARQL queries can be results sets or RDF
graphs.

3.2 Topic Maps

Topic Maps provides an approach that unify the best of several worlds, includ-
ing those of traditional indexing, library science and knowledge representation,
with advanced techniques of linking and addressing.

Topic maps were originally developed in the late 1990’s as a way to repre-
sent back-of-the-book index structures so that multiple indexes from different
sources could be merged. However, the developers quickly realized that they
could create a model with potentially far wider application. The result of that
work was published in 1999 as ISO/IEC 13250-Topic Navigation Maps.

In addition to describing the basic model of topic maps and the require-
ments for a topic map processor, the first edition of ISO 13250 included an in-
terchange syntax based on SGML and the hypermedia linking language known
as HyTime. The second edition, published in 2002, added an interchange syn-
tax based on XML and XLink. This is the syntax with the widest support
in topic map processing products, and is the syntax that we adopt in this
document.

Basis

The Topic Maps paradigm describes a way in which complex relationships
between abstract concepts and real-world resources can be described and in-
terchanged using a standard XML syntax.

i
i

“main” — 2009/2/24 — 16:07 — page 29 — #41 i
i

i
i

i
i

3.2. Topic Maps 29

Topic

The model of Topic Maps is (intuitively) centered on the concept of topic. A
topic, in its most generic sense, can be anything whatsoever a person, an
entity, a concept, really anything regardless of whether it exists or has any
other specific characteristics, about which anything whatsoever may be asserted
by any means whatsoever.

Only a non-definition can be more general than this definition.
The topic stands for a subject, the term used for the real world thing that

the topic itself stands in for. Trying to go deeper in philosophy, the subject
corresponds to what Plato called an idea. A topic, on the other hand, is like the
shadow that the idea casts on the wall of Plato’s cave: It is an object within a
topic map that represents a subject. Strictly speaking, the term topic refers to
the object or node in the topic map that represents the subject being referred
to. However, there is (or should be) a one-to-one relationship between topics
and subjects, with every topic representing a single subject and every subject
being represented by just one topic. Then the two terms can, almost always,
be used interchangeably.

So, in the context of a dictionary of opera, topics might represent subjects
such as Tosca, Madame Butterfly, Rome, Italy, the composer Giacomo Puccini,
or his birthplace, Lucca: that is, anything that might have an entry in the
dictionary.

Topics can be categorized according to their kind. In a topic map, any
given topic is an instance of zero or more topic types. This corresponds to
the categorization inherent in the use of multiple indexes in a book (index of
names, index of works, index of places, etc.), and to the use of typographic and
other conventions to distinguish different types of topics.

Thus, Puccini would be a topic of type composer, Tosca and Madame But-
terfly topics of type opera, Rome and Lucca topics of type city, Italy a topic
of type country, etc. In other words, the relationship between a topic and its
type is a typical class-instance relationship.

Exactly what one chooses to regard as topics in any particular application
will vary according to the needs of the application, the nature of the informa-
tion, and the uses to which the topic map will be put: In a thesaurus, topics
would represent terms, meanings, and domains; in software documentation
they might be functions, variables, objects, and methods; in legal publishing,
laws, cases, courts, concepts, and commentators; in technical documentation,
components, suppliers, procedures, error conditions, etc.

Topic types are themselves defined as topics by the standard. You must

i
i

“main” — 2009/2/24 — 16:07 — page 30 — #42 i
i

i
i

i
i

30 Chapter 3. Translation between Semantic Web annotation formalisms

explicitly declare composer, opera, city, etc. as topics in your topic map if you
want to use them as types (in which case you will be able to say more about
them using the topic map model itself).

Topics have three kinds of characteristics: names, occurrences, and roles in
associations.

Names

Normally topics have explicit names, since that makes them easier to talk
about. However, topics don’t always have names: A simple cross reference,
such as see page 97, is considered to be a link to a topic that has no (explicit)
name.

Names exist in all the possible forms: as formal names, symbolic names,
nicknames, pet names, everyday names, login names, etc. The topic map
recognizes the need for some forms of name (that have particularly important
and universally understood semantics) to be defined in a standardized way, in
order for applications to be able to do something meaningful with them, and
at the same time the need for complete freedom and extensibility to be able to
define application-specific name types.

The standard therefore provides the facility to assign multiple base names
to a single topic, and to provide variants of each base name for use in specific
processing contexts.

The ability to be able to specify more than one topic name can be used
to indicate the applicability of different names in different contexts or scopes
(explained later), such as language, style, domain, geographical area, historical
period, etc. A corollary of this feature is the topic naming constraint, which
states that no two subjects can have exactly the same base name in the same
scope.

Occurrences, as we have already seen, may be of any number of different
types (we gave the examples of monograph, article, illustration, mention and
commentary above). Such distinctions are supported in the standard by the
concepts of occurrence role and occurrence role type.

Occurrences

A topic may be linked to one or more information resources that are deemed
to be relevant to the topic in some way. Such resources are called occurrences
of the topic.

i
i

“main” — 2009/2/24 — 16:07 — page 31 — #43 i
i

i
i

i
i

3.2. Topic Maps 31

An occurrence could be a monograph devoted to a particular topic, for
example, or an article about the topic in an encyclopaedia; it could be a picture
or video depicting the topic, a simple mention of the topic in the context of
something else, a commentary on the topic (if the topic were a law, say), or
any of a host of other forms in which an information resource might have some
relevance to the subject in question.

Such occurrences are generally external to the topic map document itself
(although they may also be inside it), and they are pointed at using what-
ever mechanisms the system supports, typically URIs (in XTM) or HyTime
addressing (in HyTM). Today, most systems for creating hand-crafted indexes
(as opposed to full text indexes) use some form of embedded markup in the
document to be indexed. One of the advantages to using topic maps, is that
the documents themselves do not have to be touched.

An important point to note here is the separation into two layers of the
topics and their occurrences.

The distinction between an occurrence role and its type is subtle but im-
portant (at least in HyTM). In general terms they are both about the same
thing, namely the way in which the occurrence contributes information to the
subject in question (e.g. through being a portrait, an example or a definition).
However, the role (indicated syntactically in HyTM by the role attribute) is
simply a mnemonic; the type (indicated syntactically by the type attribute),
on the other hand, is a reference to a topic which further characterizes the
nature of the occurrence’s relevance to its subject. In general it makes sense
to specify the type of the occurrence role, since then the power of topic maps
can be used to convey more information about the relevance of the occurrence.

Associations

Up to now, all the constructs that have been discussed have had to do with
topics as the basic organizing principle for information. The concepts of topic,
topic type, name, emphoccurrence and occurrence role allow us to organize
our information resources according to topic (or subject), and to create simple
indexes.

The really interesting thing, however, is to be able to describe relationships
between topics, and for this the topic map standard provides a construct called
the topic association.

A topic association asserts a relationship between two or more topics. Ex-
amples might be as follows:

Tosca was written by Puccini

i
i

“main” — 2009/2/24 — 16:07 — page 32 — #44 i
i

i
i

i
i

32 Chapter 3. Translation between Semantic Web annotation formalisms

Tosca takes place in Rome
Puccini was born in Lucca
Lucca is in Italy
Puccini was influenced by Verdi
Just as topics and occurrences can be grouped according to type (e.g., com-

poser/opera/country and mention/article/commentary, respectively), so too
can associations between topics be grouped according to their type. The associ-
ation type for the relationships mentioned above are written by, takes place in,
born in, is in (or geographical containment), and influenced by. As with
most other constructs in the topic map standard, association types are them-
selves defined in terms of topics.

The ability to do typing of topic associations greatly increases the expressive
power of the topic map, making it possible to group together the set of topics
that have the same relationship to any given topic. This is of great importance
in providing intuitive and user-friendly interfaces for navigating large pools of
information.

It should be noted that topic types are regarded as a special (i.e. syntacti-
cally privileged) kind of association type; the semantics of a topic having a type
(for example, of Tosca being an opera) could equally well be expressed through
an association (of type emphtype-instance) between the topic opera and the
topic emphTosca. The reason for having a special construct for this kind of
association is the same as the reason for having special constructs for certain
kinds of names (indeed, for having a special construct for names at all): The
semantics are so general and universal that it is useful to standardize them in
order to maximize interoperability between systems that support topic maps.

It is also important to note that while both topic associations and normal
cross references are hyperlinks, they are very different creatures: In a cross
reference, the anchors (or end points) of the hyperlink occur within the infor-
mation resources (although the link itself might be outside them); with topic
associations, we are talking about links (between topics) that are completely
independent of whatever information resources may or may not exist or be
considered as occurrences of those topics.

This is important because it means that topic maps are information struc-
ture that exist independently if actually connected to any information resources
or not. The knowledge that Rome is in Italy, that Tosca was written by Puccini
and is set in Rome, etc. etc. is useful and valuable, whether or not we have
information resources that actually pertain to any of these topics.

Also, because of the separation between the information resources and the
topic map, the same topic map can be overlaid on different pools of information,

i
i

“main” — 2009/2/24 — 16:07 — page 33 — #45 i
i

i
i

i
i

3.2. Topic Maps 33

just as different topic maps can be overlaid on the same pool of information to
provide different views to different users. Furthermore, this separation provides
the potential to be able to interchange topic maps among publishers and to
merge one or more topic maps.

Each topic that participates in an association plays a role in that association
called the association role. In the case of the relationship Puccini was born
in Lucca, expressed by the association between Puccini and Lucca, those roles
might be emphperson and place; for Tosca was composed by Puccini they might
be opera and composer. It will come as no surprise now to learn that association
roles can also be typed and that the type of an association role is also a topic!

Unlike relations in mathematics, associations are inherently multidirec-
tional. In topic maps it doesn’t make sense to say that A is related to B
but that B isn’t related to A: If A is related to B, then B must, by definition,
be related to A. Given this fact, the notion of association roles assumes even
greater importance. It is not enough to know that Puccini and Verdi partici-
pate in an emphinfluenced-by association; we need to know who was influenced
by whom, i.e. who played the role of influencer and who played the role of
influencee.

his is another way of warning against believing that the names assigned to
association types (such as was influenced by) imply any kind of directionality.
They do not! This particular association type could equally well (under the
appropriate circumstances) be characterized by the name influenced (as in
emphVerdi influenced Puccini).

Subject identity

The goal with topic maps is to achieve a one-to-one relationship between top-
ics and the subjects that they represent, in order to ensure that all knowledge
about a particular subject can be accessed via a single topic. However, some-
times the same subject is represented by more than one topic, especially when
two topic maps are being merged. In such a situation it is necessary to have
some way of establishing the identity between seemingly disparate topics. For
example, if reference works publishers from Norway, France and Germany were
to merge their topic maps, there would be a need to be able to assert that the
topics Italia, l’Italie and emphItalien all refer to the same subject.

The concept that enables this is that of subject identity. When the sub-
ject is an addressable information resource (an addressable subject), its identity
may be established directly through its address. However most subjects, such
as Puccini, Italy, or the concept of opera, are not directly addressable. This

i
i

“main” — 2009/2/24 — 16:07 — page 34 — #46 i
i

i
i

i
i

34 Chapter 3. Translation between Semantic Web annotation formalisms

problem is solved through the use of subject indicators (originally called emph-
subject descriptors in ISO 13250). A subject indicator is “a resource that is
intended ... to provide a positive, unambiguous indication of the identity of a
subject.” Because it is a resource, a subject indicator has an address (usually
a URI) that can be used as a subject identifier.

Any two topics that share one or more subject indicators (or that have the
same subject address, in the case of addressable subjects) are considered to be
semantically equivalent to a single topic that has the union of the characteristics
(the names, occurrences and associations) of both topics. In a processed topic
map a single topic node results from combining the characteristics of the two
topics.

A subject indicator could be an official, publicly available document (for
example, the ISO standard that defines 2- and 3-letter country codes), or it
could simply be a definitional description within (or outside) one of the topic
maps. A published subject indicator is a subject indicator that is published and
maintained at an advertised address for the purpose of facilitating knowledge
interchange and mergeability, either through topic maps or by other means.

Published subjects are a necessary precondition for the widespread use of
portable topic maps, since there is no point in offering a topic map to others if
it is not guaranteed to match with relevant occurrences in the receiver’s pool
of information resources. Activities are therefore underway, under the aegis of
OASIS and others to develop recommendations for the documentation and use
of published subjects.

Scope

The topic map model allows three things to be said about any particular topic:
What names it has, what associations it participate in, and what its occur-
rences are. These three kinds of assertions are known collectively as topic
characteristics.

Assignments of topic characteristics are always made within a specific con-
text, which may or may not be explicit. For example, if we mention tosca,
we should expect my readers to think of the opera by Puccini (or its principle
character), because of the context that has been set by the examples used so
far in this thesis. For an audience of bakers, however, the name tosca has quite
other and sweeter connotations: it denotes another topic altogether.

Given two such simple statements as Tosca takes place in Rome and Tosca
kills Scarpia, most of today’s computers would not be able to infer which of
the topics named Tosca was involved. In order to avoid this kind of problem,

i
i

“main” — 2009/2/24 — 16:07 — page 35 — #47 i
i

i
i

i
i

3.3. Models comparison 35

topic maps consider any assignment of a characteristic to a topic, be it a name,
an occurrence or a role, to be valid within certain limits, which may or may
not be specified explicitly. The limit of validity of such an assignment is called
its scope.

Scope is defined in terms of themes, and a theme is defined as a member
of the set of topics used to specify a scope. In other words, a theme is a topic
that is used to limit the validity of a set of assignments. The use of scope in
topic maps can also aid navigation, for example by dynamically altering the
view on a topic map based on the user profile and the way in which the map
is used.

3.3 Models comparison

The two formalisms we have chosen to consider in this thesis are RDF and Topic
Maps since they are commonly used in the Semantic Web context and a number
of significative works, approaching the interoperability between, can be found
in literature [?]. In this section we will give a brief description of both models,
underlying which are the main differences and the matching points. Topic Maps
and RDF have been conceived as a means to describe information resources
with some different perspectives. Topic Maps are used to support high-level
indexing to let information be easily findable for humans while RDF provides
structured metadata and a foundation for logical inferencing to allow machines
to interpret information resources. In Topic Maps the main construct is the
Topic that is used to describe the subjects the map is about. In RDF there is an
equivalent of the subject that is the resource represented by a node, both terms
are very general and can be everything. The main differences between the two
models arise when it is necessary to say something about the resources we are
describing. RDF has just one, simple way to make assertions on resources, by
statements on the form of a triple < subject, predicate, object >, where subject
is the resource of interest, predicate is a resource denoting the property we are
specifying and object represents the value of the property and can be a resource
or a literal. Due to the statement structure, an RDF document can then be
seen as a directed labeled graph. In Topic Maps there are mainly three ways to
assert something about subjects, namely associations, occurrences and names.
An association has a type and represents an n-ary, undirected relationship
between topics where each participant plays a specific role. Since all can be
described in a Topic Map is a topic, the association type and the participant role
are topics themselves. Another relevant difference between the two formalisms

i
i

“main” — 2009/2/24 — 16:07 — page 36 — #48 i
i

i
i

i
i

36 Chapter 3. Translation between Semantic Web annotation formalisms

can be found in the way resources can be addressed and consequently in the
way two elements can be considered identical. In RDF there can be three kinds
of nodes: literal, URI nodes and blank nodes. Literals are constant values in the
form of a string and the identity is established looking at the values. URI nodes
are resources identified by a URI so the same URI represents the same thing.
A blank node is an anonymous resource without URI. Considering that RDF
allows only binary properties the common use of the blank node is to associate
an URI node with a complex data (e.g. the address of a person composed by
street, city, postal code, etc.), the analogous of a multivalue attribute in the ER
model. To check if two blank nodes are the same, since they have no URI, it is
necessary to evaluate the statements defined on them. There can be a doubt
regarding identification of URI nodes: if the URI points to a document, the
RDF node represents the document itself or the object the document is about.
Topic Maps provide a mechanism to represent the two different possibilities. A
subject can be addressed by a topic with a subject address, which means that
the subject is identified by the resource or by a subject indicator that means
the subject is identified by what the resource is about.

In the next section, we will see which are the main existing approaches to
implement the interoperability between these two formalisms.

3.4 Related works

Evaluation criteria

We examined five existing proposals that we considered the most significative.
They have been chosen as being sufficiently well documented to be suitable for
a detailed examination. Each translation proposal has been evaluated against
the following general criteria:

• Completeness: represents how each proposal is able to handle every se-
mantic construct that can be expressed in the source model and provide
a means to represent it without loss of information in the target model.

• Naturalness: expresses the degree to which the results of a translation cor-
respond to the way in which someone familiar with the target paradigm
would naturally express the information content. Naturalness is strictly
related to the readability of the result.

Naturalness is extremely important because the result of an unnatural transla-
tion is structurally different from data that was originally created in the target

i
i

“main” — 2009/2/24 — 16:07 — page 37 — #49 i
i

i
i

i
i

3.4. Related works 37

model. An uncomplete representation is evaluated with respect to the capacity
of the approach to be extended with features that complete its expressivity.

Types of mappings

All the existing approaches fall into two distinct categories that in [?] are called
object mappings and semantic mappings. The two approaches can be summed
up as follows:

• Object mappings use the low-level building blocks of one language to
describe the object model of the other. For example, assuming for now
that the structure of a simple binary association is a quintuple, consisting
of one (a)ssociation, two (r)ole types, and two role (p)layers (p-r-a-r-p),
that association would in an object mapping to RDF be represented as
four statements that relate five resources.

• Semantic mappings start from higher level concepts that carry the se-
mantics of each model and attempt to find equivalences between them.
Abinary association in Topic Maps would be seen to represent the same
kind of thing that is often represented by an RDF statement (i.e., a rela-
tionship between two entities) and would therefore be represented using
a single RDF statement. Where no direct semantic equivalent can be
found, the missing semantics are defined using the facilities available in
one of the two paradigms, i.e., classes, properties, or published subjects.

The advantage of an object mapping is that it is easy to make it generic
(provided, of course, that the object model on which it is based is complete)
and this ensures completeness without any additional effort. The disadvantage
is the unnaturalness of the result. Semantic mappings yield much more natural
results but suffer from the disadvantage that generality is much harder to ensure
and may in some cases require additional information not always present in the
source document.

Existing proposals

Five existing proposals are here analyzed. They will be referred to by the
names of their authors or, in the case of multiple authors, by the name of the
organization to which the authors are affiliated. Each proposal is characterized
here in terms of the translation directions that cover: i.e., RDF to Topic Maps

i
i

“main” — 2009/2/24 — 16:07 — page 38 — #50 i
i

i
i

i
i

38 Chapter 3. Translation between Semantic Web annotation formalisms

(RDF2TM), and Topic Maps to RDF (TM2RDF), respectively. They are, in
chronological order:

Moore RDF2TM and TM2RDF proposal described in [?]. Not implemented.

Stanford TM2RDF proposal described in [?]. Implemented.

Ogievetsky TM2RDF proposal described in [?]. Implemented in the XTM2RDF
Translator.

Garshol RDF2TM and TM2RDF proposal described in [?] and [?]. Doc-
umented in [?], [?], and [?], and implemented in Ontopia Knowledge
Suite.

Unibo RDF2TM and TM2RDF proposal described in [?] and [?]. Imple-
mented in Meta.

Two simple test cases are used to enable an evaluation of the criterion nat-
uralness. These test cases are not intended to be complete since their purpose
is just to give an intuition for the kind of results produced by the various
proposals.

Both test cases are separated into instance data (above the dotted line com-
ment) and ontology or schema data that might normally be expected to come
from a shared document, such as a topic map ontology or the RDF namespace
document respectively.
TM2RDF test case

[puccini : person = "Giacomo Puccini"]
[tosca : opera = "Tosca"]

{tosca, premiere-date, [[1900-01-14]]} {tosca, synopsis,
"http://www.azopera.com/learn/synopsis/tosca.shtml"}

composed-by(tosca : work, puccini : composer)

/* ------------------------------------- */

[person = "Person"
@"http://psi.ontopia.net/music/#person"]
[composer = "Composer"

i
i

“main” — 2009/2/24 — 16:07 — page 39 — #51 i
i

i
i

i
i

3.4. Related works 39

@"http://psi.ontopia.net/music/#composer"]
[opera = "Opera"
@"http://psi.ontopia.net/music/#opera"]
[work = "Work"
@"http://psi.ontopia.net/music/#work"]

[premiere-date = "Premire date"
@"http://psi.ontopia.net/music/#premiere-date"]
[synopsis =
"Synopsis" @"http://psi.ontopia.net/music/#synopsis"]
[composed-by = "Composed by"
@"http://psi.ontopia.net/music/#composed-by"]

RDF2TM test case

@prefix music: <http://psi.ontopia.net/music/#> .
@prefix rdf:
<http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@prefix rdfs:
<http://www.w3.org/2000/01/rdf-schema#> .

[rdf:type music:opera;
rdfs:label "Tosca";
music:premiere-date "1900-01-14";
music:synopsis
<http://www.azopera.com/learn/synopsis/tosca.shtml>;
music:composed-by [
rdf:type music:person;
rdfs:label "Giacomo Puccini"]

] .

music:person
rdfs:label "Person" .
music:opera
rdfs:label "Opera" .

i
i

“main” — 2009/2/24 — 16:07 — page 40 — #52 i
i

i
i

i
i

40 Chapter 3. Translation between Semantic Web annotation formalisms

music:composed-by rdfs:label "Composed by" . \\music:premiere-date
rdfs:label "Premire date" . \\music:synopsis rdfs:label "Synopsis"
.

Moore

[?] was the first paper to address the issue of interoperability between RDF
and Topic Maps. The paper starts out by presenting data models developed
by the author that “capture the isness [sic] of the two paradigms”. Having
presented the two models, Moore introduces the distinction between what he
calls “mapping the model” and “modelling the model”. The key difference
is that the first is “semantic”, whereas the second “uses each standard as a
tool for describing other models”. This become the basis for the definition of
“semantic mapping” and “object mapping”, respectively, that we have already
introduced.

Moore provides examples of both strategies but express a clear preference
for the semantic mapping. The reason for this is that a goal is to be able
to run, say, a TMQL query against an RDF model and get expected results.
Moore points out that this is only possible when a semantic mapping approach
is used.

Moore’s RDF2TM object mapping approach is based on defining PSIs for
every RDF construct in his model (i.e., resource, statement, property, sub-
ject, object, identity, literal, and model) and expressing RDF statements as
ternary associations of type rdf-statement using the role types rdf-subject,
rdf-property and rdf-object. This raises issues with the handling of literals
(since role players in associations cannot be strings) to which no solution is
proposed.

The TM2RDF object mapping approach is based on defining RDF prop-
erties for each TM construct as follows: topic, topicassoc, instanceof,
topicassocmember, roleplayingtopic, roledefiningtopic, topicoccur,
topicname, topicnamevalue, scopeset, subjindicatorref, resourceref.
An example of a simple binary association is given that involves five topics (for
the association type and role types, in addition to the role-playing topics). The
RDF equivalent of this requires 22 statements, three for each of the five topics,
and seven for the association itself.

Moore concludes that the object mapping approach, while interesting, is of
limited usefulness, and he goes on to describe a semantic mapping approach
(which he calls ”mapping the model”) based on the observation that RDF
is concerned with describing the arcs between entities with identity [whereas]

i
i

“main” — 2009/2/24 — 16:07 — page 41 — #53 i
i

i
i

i
i

3.4. Related works 41

Topic Maps is concerned with describing typed relationships between entities
with identity. A number of semantic equivalences are defined, as follows:

Table 3.1: Moore RDF-Topic Maps mapping

RDF Topic Maps
RDF model Topic Map

Identity SubjectIndicatorReference
Resource Topic

Statement Association (approximate)

The mapping from RDF statement to association is identified as being prob-
lematic because ”RDF has three pieces of information and Topic Map associ-
ations have five”, leading the author to suspect that a ”complete” semantic
mapping of the models may not be possible. The remainder of the paper is
devoted to examining how to represent RDF statements as associations and
vice versa.

RDF statements are viewed as binary associations whose role-players corre-
spond to the subject and object of the statement and have the role types ’sub-
ject’ and ’object’ respectively. The mechanism for representing the property of
the statement is not fully defined, since the text and the diagram contradict
each another. However, both text and diagram assign some significance to the
name of the topic that represents the subject role.

According to Moore, this approach has a problem in that ’arc’ is ”not a
first class entity in the TopicMap model”. Why this should be a problem is
not made clear, but Moore advocates solving it by extending the Topic Maps
model with the notion of arcs (and association templates).

A different approach is employed in order to view associations as RDF
statements. An incomplete example shows a binary association represented
as two RDF statements, with the role-playing topics being the subject and
object in the one and the object and subject in the other. This approach
is perhaps motivated by the recognition that RDF statements have direction
whereas associations do not. However this is not stated explicitly; nor is it
clear how the approach would work with associations that involve more than
two role players.

Moore’s object mapping approach is reasonably complete, whereas his se-
mantic mapping approach is just a sketch that focuses on RDF statements
and associations. Other constructs like names, occurrences and scope are not

i
i

“main” — 2009/2/24 — 16:07 — page 42 — #54 i
i

i
i

i
i

42 Chapter 3. Translation between Semantic Web annotation formalisms

covered. Neither approach is reversible. In the case of the object mapping
approach, the assumption is that one is working in one domain or the other,
but not in both. In the case of the semantic mapping approach, the fact that
a statement maps to a single association whereas an association maps to two
statements shows that translations cannot be reversed.

Semantic mappings are shown to be superior to object mappings in terms of
naturalness. The latter yields unnatural results in both directions. Whatever
the direction, a ”natural” source document leads to an ”unnatural” result and
achieving a ”natural” result is only possible if the starting point is ”unnatural”.
In the object mapping example given in the [?], a simple binary association
translates to 22 RDF statements.

Moore’s semantic mapping approach, on the other hand, achieves a more
natural result: Going from Topic Maps to RDF, a binary association requires
two RDF statements; going the other way, an RDF statement maps to a single
association.

Standford

Lacher and Decker [?] focus on making it possible to query Topic Maps using
an ”RDF-aware infrastructure” that was co-developed by one of the authors.
This proposal is thus TM2RDF only.

Reference is made to the layered integration model of data interoperabil-
ity which separates the data integration problem into three quasi-independent
layers: the syntax layer, the object layer, and the semantic layer. The idea is
to build an RDF representation of the topic map on the object layer and then
perform a ”bijective graph transformation” such that the topic map can be
viewed as RDF. Ignoring the syntax layer means that the approach will work
with both the SGML and the XML serialization syntaxes of Topic Maps. Ignor-
ing the semantic layer (i.e., adopting what we have termed an object mapping
approach) has the advantage, according to the authors, that all information is
preserved. (The authors point out that a semantic mapping ”could possibly
lead to a loss of information”.)

Instead of defining their own model for Topic Maps, Lacher and Decker use
PMTM4, the Processing Model for Topic Maps, proposed by Newcomb and
Biezunski in [PMTM4], which has since been superseded by [TMDM].

PMTM4 is a graph model consisting of three node types (for topics, asso-
ciations, and scopes), and four arc types: associationMember (aM), associa-
tionScope (aS), associationTemplate (aT), and scopeComponent (sC). The aM
arc is ”peculiar” in that it is both typed and labelled (and thus effectively has

i
i

“main” — 2009/2/24 — 16:07 — page 43 — #55 i
i

i
i

i
i

3.4. Related works 43

three ends) in order to connect the association with both the role-player and
its role (or role type). Names and occurrences are regarded as specializations
of associations; URIs and strings are not part of the model.

To illustrate their approach Lacher and Decker show a simple (untyped)
association between the country Denmark (which has a name) and the natural
resource petroleum. This is represented as a PMTM4 graph consisting of eight
t-nodes, two a-nodes, four aM arcs, and one aT arc. The (binary) association
between Denmark and petroleum requires two aM arcs (one for each role), and
so does the name ”Denmark” (since topic names are regarded in PMTM4 as a
kind of binary association).

Lacher and Decker define RDF classes and properties for each of the PMTM4
node types and arc types. The transformation consists essentially of replacing
a-, t-, and s-nodes with RDF nodes of corresponding types, and replacing arcs
with corresponding properties. However in order to handle the ”three-legged”
aM arcs, reification is necessary, thus introducing one new RDF node and
four new properties (rdf:subject, rdf:predicate, rdf:object and tms:roleLabel)
for each aM arc. The resulting ”RDF Topic Map graph” is shown as a figure
consisting of a total of 17 nodes and 20 arcs.

The authors opt to represent each undirected PMTM4 arc by a single, di-
rected RDF arc (rather than two arcs) in order to avoid consistency problems,
pointing out that while this is not a lossy transformation, it does require con-
sideration when formulating queries.

No syntax example is given in [?] to show the result of the transformation
but from the text it is clear that node identity is either based on source locators
(where XML IDs were specified in the source topic map) or else generated
(where no IDs were specified). Subject identifiers and subject locators are not
used presumably because the PMTM4 model does not extend to identifiers.

The Stanford approach is complete with respect to PMTM4, but the latter
is not a complete model for Topic Maps (since is does not handle URIs and
strings). The Stanford proposal itself is therefore not complete.

The proposal does not score well in terms of naturalness since it requires
upwards of 20 statements to represent information that would naturally be
modelled using two statements in RDF

Ogievetsky

[?] describes both a method for transforming topic maps expressed in XTM
syntax ([XTM1.0]) to RDF and the author’s XSLT-based implementation of
this approach in the XTM2RDF Translator. Transformations are described in

i
i

“main” — 2009/2/24 — 16:07 — page 44 — #56 i
i

i
i

i
i

44 Chapter 3. Translation between Semantic Web annotation formalisms

terms of the processing of XTM elements and the approach is thus very syntax-
oriented. The resulting RDF conforms to a vocabulary (called RTM) which
consists of 11 classes and 17 properties defined partly in terms of XTM itself
and partly in terms of PMTM4, the ”processing model” proposed by Newcomb
and Biezunski and described in the preceding section.

The classes and properties defined by the RTM vocabulary are:

rdfs:Class t-node, topic, scope, member, association, basename, variantname,
occurrence, class-subclass, class-instance, templaterpc

rdf:Property association-role, validIn, indicatedBy, constitutedBy, name, tem-
platedBy, role-topic, role-basename, role-variantname, role-occurrence,
role-superclass, role-subclass, role-class, role-instance, role-template, role-
role, role-rpc

Each <topic> element results in the creation of an RDF statement of type
rtm:topic. The topic’s subject locator (if any) becomes the URI of the subject
of the statement, otherwise a blank node is created. Subject identifiers (if any)
result in properties of type rtm:indicatedBy. The purpose of stating that
topics are of type rtm:topic seems to be the desire to use rtm:topic as an
element type name in order to aid readability.

Associations are represented as blank nodes whose type corresponds to the
association type. In addition, for each role in the association there is one
statement whose property corresponds to the role type; its value is a node of
type rtm:member that references the role player. Referencing is done through
an rtm:indicatedBy property when the role player has a subject identifier and
an rtm:constitutedBy property when the role player has a subject locator.
(The text does not state what form the reference takes when the role player
has neither.)

Having presented the methodology for translating XTM to RDF, Ogievet-
sky considers round-tripping from RDF to XTM and back to RDF. [?] is ac-
tually a continuation of earlier work for which only a set of slides ([?]) is
available. In the earlier work RDF data was translated into XTM, again using
XSLT stylesheets.

To demonstrate round-tripping [?] shows an example of a Dublin Core frag-
ment in RDF being translated to XTM according to the methodology in [?],
and then translated back to RDF according to the methodology in [?]. The
source document contains a single RDF statement asserting that the resource
ZARA.xml has the creator ”Jane M. Folpe”. This translates to a topic map
consisting of six TAOs (five topics and one association), which in turn trans-

i
i

“main” — 2009/2/24 — 16:07 — page 45 — #57 i
i

i
i

i
i

3.4. Related works 45

lates back to RDF as a set of no less than 26 RDF statements. ”Obviously we
accumulated a lot of semantic luggage during our roundtrip” is Ogievetsky’s
laconic comment.

The proposal appears to be fairly complete in that it covers more-or-less
every aspect of XTM syntax (which requires extending the underlying PMTM4
model in order to cater for identifiers). The example of round-tripping shows
clearly that this proposal in combination with the undocumented RDF2TM
translation fails the test of reversibility since a single RDF statement ends up
as 26 statements after the roundtrip.

The proposal requires seven statements to represent information content
that would naturally be modelled using one statement in RDF and thus rates
very low in terms of naturalness.

The Garshol Proposal

This proposal was originally presented in [?] as part of a comparative analysis of
the RDF and Topic Maps models. The analysis was further developed (and ex-
tended to partially address OWL) in [?]. The approach has been implemented
by the author in the Ontopia Knowledge Suite.

[?] starts by comparing RDF and Topic Maps through an examination of
concepts that are fundamental to both paradigms: ”symbols and things”, ”as-
sertions”, ”identity”, ”reification”, ”qualification”, and ”types and subtypes”.
For each concept, Garshol shows how they are expressed in each paradigm and
draws out the similarities and differences.

According to Garshol, RDF and Topic Maps are both ”identity-based tech-
nologies”; that is, the key concept in both is symbols representing identifiable
things about which assertions can be made. In Topic Maps, ”things” are called
”subjects”; in RDF they are called ”resources” and, despite different defini-
tions, they are essentially the same concept. Subjects are represented by top-
ics; resources are represented by RDF nodes (or ”nodes” for short). According
to Garshol, the correspondence between ”topic” and ”node” is close but not
exact; he does not explain why, but the reason is presumably that RDF nodes
can be literals, which would be represented as strings rather than topics in
Topic Maps.

Assertions express relationships between things and take the form of ”topic
characteristics” in Topic Maps and ”statements” in RDF. A topic characteristic
can be a name, an occurrence, or an association. An RDF statement can thus
in theory be mapped to any one of these three kinds of construct. Special
attention is paid to associations since these can be of any arity, whereas all

i
i

“main” — 2009/2/24 — 16:07 — page 46 — #58 i
i

i
i

i
i

46 Chapter 3. Translation between Semantic Web annotation formalisms

RDF statements are binary. A binary association maps fairly well to an RDF
statement, but a non-binary association does not.

In addition, RDF statements have direction but associations do not. Topic
Maps uses the notion of ”roles” to express the nature of each subject’s involve-
ment in the relationship; in RDF this involvement is implicit in the subject-
predicate-object structure of the statement.

For these reasons, the correspondence between topic characteristics and
statements is considered to be close, but not exact.

The issue of identity is considered to be ”quite a thorny problem for in-
teroperability between topic maps and RDF” since, although Topic Maps and
RDF both use URIs as identifiers, they do so in different ways. In RDF there
is only one kind of identifier and a node can have at most one of them (blank
nodes and literals have none). In Topic Maps, topics can have any number of
identifiers and a distinction is made between ”subject locators” (URIs which
identify the subject directly, formerly called ”subject addresses”) and ”subject
identifiers” (URIs which identify the subject indirectly, via a subject indicator).
Garshol refers the reader to a more in-depth treatment of the issue in [?].

Garshol’s discussion of reification brings out certain differences between
Topic Maps and RDF but does not reach any conclusion regarding the degree
of correspondence between the two, although the point is made that reification
is not a very commonly used feature. Qualification is seen as being related
to reification, since the built-in Topic Maps feature ”scope” is essentially a
mechanism for making certain kinds of assertions about other assertions, but
no proposal is made regarding how to express scope in RDF.

The concept of types and subtypes, on the other hand, is regarded as being
identical in Topic Maps and RDF (except for the fact that the subClassOf
property is part of RDF Schema rather than RDF itself).

Garshol summarizes his analysis by pointing to three fundamental differ-
ences between RDF and Topic Maps that ”make it technically very difficult
to merge” the two paradigms: identity, assertions, and reification (including
qualification). The rest of his paper therefore focuses on ways to “move data
between the two with as little effort as possible” (rather than on how to unify
the two models).

The object mapping approach taken by [?], [?], [?], and [?] is briefly consid-
ered and then rejected as being both heavy-weight and rather awkward to work
with. Any query or retrieval specified in end-user terms will have to explicitly
take into account topic map model features, and information from topic maps
will not interoperate cleanly with other RDF information.

Garshol’s conclusion is that ”although this [object mapping] approach is

i
i

“main” — 2009/2/24 — 16:07 — page 47 — #59 i
i

i
i

i
i

3.4. Related works 47

easy to use, the results do not meet the criterion of clean integration with
other RDF data.”

As an alternative, Garshol proposes to use vocabulary-specific mappings
underpinned by a generic mapping. Statements should in general be mapped
to names, occurrences or associations since this provides the most ”natural”
results. However, it is not possible to know which of these is most appropriate
for any given statement without an understanding of the semantics of the
property in question hence the need for vocabulary-specific mappings. For
example, the RDF statement:

<http://example.com/X>
<http://example.com/Y>
"foo" .

could be mapped in Topic Maps to either a name or an internal occurrence
(since the object is a literal). Similarly, the statement:

<http://example.com/X>
<http://example.com/W>
<http://example.com/Z> .

could be mapped to either an association or an external occurrence (since
the object is a resource). An optimal semantic translation cannot be performed
without knowledge of the semantics of the properties Y and W.

The solution according to Garshol is to provide additional mapping infor-
mation. This is done using an RDF vocabulary called RTM ([?]) which is used
to annotate RDF documents (or their schemas) and thus guide the transla-
tion process. The RTM vocabulary is used for translating from RDF to Topic
Maps and consists of the following RDF properties: maps-to, type, in-scope,
subject-role, object-role.

The maps-to property can have the following values:

rtm:basename maps a statement to a base name

rtm:occurrence maps a statement to an occurrence

rtm:association maps a statement to association

rtm:instance-of maps a statement to a class-instance association

rtm:subject-identifier maps the values of a statement to a subject identi-
fier

i
i

“main” — 2009/2/24 — 16:07 — page 48 — #60 i
i

i
i

i
i

48 Chapter 3. Translation between Semantic Web annotation formalisms

rtm:subject-locator maps the values of a statement to a subject identifier

rtm:source-locator maps the values of a statement to a source locator

Mappings that use rtm:occurrence or rtm:association will automati-
cally use the statement’s property to type the resulting Topic Maps construct,
unless rtm:type is used to override this behaviour. The rtm:in-scope prop-
erty can be used to specify scoping topics for base names, occurrences, and
associations. Finally, the rtm:subject-role and rtm:object-role proper-
ties are used to specify the types of role played by the subject and object of an
RDF statement when the statement maps to an association.

The vocabulary (and the implementations) go somewhat beyond what is
covered in [?]. For example, it is recognized that properties may be mapped
to various kinds of identifiers (source locators, subject identifiers, and subject
locators) or to the privileged instance-of relationship, in addition to names,
occurrences, and associations.

In addition, greater provision is made in the implementation for defaulting.
Resource URIs are always mapped to subject identifiers and RDF statements
can be imported as associations in the absence of role type information, in
which case the predefined topics subject and object are used as role types.

Going from Topic Maps to RDF is shown to require additional information
in order for optimal and/or predictable results to be achieved. The following
problems are identified:

Choosing properties when mapping names Choosing the subject when map-
ping associations Garshol points out a number of issues that are not addressed
in his analysis, including multiple identifiers, n-ary associations, reification
and scoping, unary associations, variant names, and a number of (unspeci-
fied) ”tricky edge cases”; for some of these he sketches possible solutions which
have since been implemented:

Multiple URIs for the same topic can be handled using the RDF properties
for equivalence found in OWL.

Associations with more than two roles can be turned into resources whose
type is the association type, and each role can then be represented as a separate
statement with the role type as the property and the association resource as
the subject.

Reification and scoping can in general be represented by using RDF reifica-
tion to represent the statement that would connect the topic characteristic with
the topic. A special property will have to be defined for representing scope.

i
i

“main” — 2009/2/24 — 16:07 — page 49 — #61 i
i

i
i

i
i

3.4. Related works 49

As for the reification this is done by simply merging the resource representing
the topic characteristic assignment with that representing the reifying topic.

Binary non-symmetric associations can be handled by having the mapping
contain one association from the association type to the preferred subject role.

Selection of name properties can be done by having the mapping contain
an association from the topic type to a topic representing the preferred RDF
name property.

A second vocabulary (called TMR, [?]), consisting of six published sub-
jects, addresses many of these issues. Name mapping is handled by tmr:name-
property, tmr:type, and tmr:property, and the problem of mapping associations
is solved using tmr:preferred-role, tmr:association-type, and tmr:role-type.

As with the RDF2TM translation, the implementations provide some level
of defaulting. Both subject identifiers and subject locators are automatically
mapped to resource URIs. In addition, associations can be exported to RDF
in the absence of mapping information about roles; in this case the choice of
subject and object for the resulting statement is arbitrary.

As currently specified the Garshol proposal provides an almost complete
solution and the author himself identifies most of the respects in which it is
incomplete. Those which are not mentioned include containers, collections,
XML literals and typed literals. A high degree of reversibility and round-
tripping is achievable, provided appropriate reverse mappings are generated
during the translation. An issue exists with subject locators that end up as
subject identifiers when round-tripping from Topic Maps to RDF and back to
Topic Maps.

The proposal scores well in terms of naturalness. Even when using default
mappings the results are quite natural. The TM2RDF test case results in an
RDF document containing 13 statements. The RDF2TM test case results in a
topic map containing nineteen topics, three associations, and three occurrences.

The Unibo Proposal

Ciancarini et al cite the work of Moore, Lacher and Decker, and Ogievetsky,
all of which, they claim, suffers from a common drawback, namely the ”rather
awkward appearance of the documents coming out of the conversion.” The au-
thors clearly prefer Garshol’s approach, which produces much more ”readable”
results and which is similar to their own. The main difference is that Garshol
does not utilize the ”standard RDF and RDFS predicates” and thus always
requires a mapping to be specified.

Like earlier authors, Ciancarini et al recognize that there are two fundamen-

i
i

“main” — 2009/2/24 — 16:07 — page 50 — #62 i
i

i
i

i
i

50 Chapter 3. Translation between Semantic Web annotation formalisms

tal approaches to tackling the problem of translation, corresponding to what
this survey calls object mapping and semantic mapping. The first of these is
seen to be problematic in that ”the converted document is necessarily very
different from the one that would have been written directly in the destination
language, and hardly readable.” The problem with the second one is that it
is ”not always possible” to identify semantic equivalences, and that doing so
often requires a case-by-case approach and thus has no general usefulness.

The authors therefore consider a hybrid approach to be the optimal solution
and their implementation in the Meta Converter combines a generic mapping,
which tries to stay as close as possible to the original semantics, with the ability
to define specific mappings using an XML vocabulary.

Identity
Like Garshol, Ciancarini et al assume a basic equivalence between topic and

resource (although they are less clear on the distinction between resources and
RDF nodes), but they differ in how identity is expressed. The default behaviour
in the Unibo proposal is to equate subject locators with resource URIs and to
represent subject identifiers using the RDFS property isDefinedBy. Examples
given in [?] (e.g., 3.8 and 4.2) show how this leads to resources that clearly
represent non-addressable subjects, such as ”Mario Rossi” and ”Format”, being
translated to addressable subjects (using ¡resourceRef¿ for subjectIdentity).

Topics that have no subject locator are translated to blank nodes whose ID
is generated from the topic’s base name. When going the other way, the ID of
a blank node becomes a topic name, which is clearly unnatural (since the ID
of a blank node and a topic name have different semantics).

Names
The Unibo proposal is alone in assuming a fundamental equivalence of se-

mantics between base names and the rdfs:label property: Names that have no
variants are thus easy to handle. Variant names are seen to represent a greater
challenge which is solved through the use of four RDF predicates: baseName,
variant, parameter, and variantName. A base name that has a variant is rep-
resented through a blank node with rdfs:label and tm2rdf:variant properties:
the former is a literal that corresponds to the value of the topic name (i.e., the
¡baseNameString¿ in XTM syntax); the value of the latter property is another
blank node that has variant and parameter properties. Thus a topic with a
base name and sort name:

[mario_rossi = "Mario Rossi";"rossi mario"] results in the following
statements:

i
i

“main” — 2009/2/24 — 16:07 — page 51 — #63 i
i

i
i

i
i

3.4. Related works 51

_:mario_rossi
tm2rdf:baseName _:bn1_mario_rossi .

_:bn1_mario_rossi
rdfs:label "Mario Rossi" ;
tm2rdf:variant _:v11_mario_rossi .

_:v11_mario_rossi
tm2rdf:variantName "rossi mario" ;
tm2rdf:parameter _:param1 .

_:param1
rdfs:isDefinedBy <http://www.topicmaps.org/xtm/1.0/core.xtm#sort> .

Associations: TM2RDF

Predictably, representing associations in RDF is regarded as difficult be-
cause of what the authors term RDF’s ”more primitive” (i.e., low level) nature
compared to Topic Maps. A generic translation is possible ”at the level of the
model,” but it is ”complex and artificial” and comes at the price of ”abusing
the RDF way of expressing relationships.” The basic approach is similar to
Ogievetsky’s in that the roles (or ”members”) are contained in an RDF bag of
blank nodes. However, whereas in Ogievetsky the bag is the association, the
Unibo proposal uses an additional resource to represent the association; this
resource has a tm2rdf:association property, the object of which is the bag of
members. All in all, nine RDF statements are required to represent a single
binary association.

The tm2rdf:association property is characterized as a ”supporting predi-
cate” whose purpose is to ”add a little legibility” to the resulting document. A
variation on this is also suggested in which the bag of members and the associa-
tion become a single node: This is effectively the same solution as Ogievetsky’s.

[?] also describes two alternative approaches in which n-ary associations
are decomposed into a number of binary relations. Both of these require six
RDF statements in order to represent a single ternary association. Given the
following association:

X(A : rA , B : rB , C : rC) (i.e. an association of type X between topics
A, B, and C playing the roles rA, rB, and rC respectively), the first of these
alternative approaches results in the following six statements:

A X B . A X C . B X A . B X C . C X A . C X B . Role types are lost.
In addition, the fact that each pair of role players is related through the same

i
i

“main” — 2009/2/24 — 16:07 — page 52 — #64 i
i

i
i

i
i

52 Chapter 3. Translation between Semantic Web annotation formalisms

predicate twice (both as subject and object and as object and subject) means
that only symmetrical relationships would be represented correctly. Finally,
the semantic of A, B, and C all being involved in the same relationship is also
lost; this may or may not involve real loss of information depending on the
nature of the relationship.

The second alternative approach involves predicates that correspond to role
types and results in the following statements:

B rA A . C rA A . A rB B . C rB B . A rC C . B rC C . While role types
are now preserved, the association type is lost (although it could in theory
be preserved through additional statements relating it to rA, rB, and rC). In
addition, it seems doubtful that the original semantics are correctly preserved.
For example: Can it be assumed to be the case that the relationship between
role players B and A (rA) is the same as that between C and A? Finally, the
point made above about losing the semantic of the involvement of A, B, and
C in the same relationship also pertains here.

Having considered these alternatives, the Unibo proposal comes down in
favour of the approach that uses the tm2rdf:association property, at least in
the absence of more specific mapping information.

Associations: RDF2TM
When translating in the opposite direction, from RDF to Topic Maps, the

generic solution proposed by Unibo is to translate RDF statements to asso-
ciations. The example given in [?] results in a typed binary association with
untyped roles and does not take into consideration the case in which the object
of the RDF statement is a literal. However, it is conceded that ”it might be
preferable, in certain contexts, to apply other types of conversion” and this
leads into a discussion of ”attributes” and the role of schema information.

The Unibo proposal recognizes that certain RDF statements are more ap-
propriately mapped to either internal or external occurrences, with the occur-
rence type corresponding to the property of the statement, but knowing when
to do this requires some kind of schema information. This is essentially the
same as Garshol’s approach, except for the fact that Unibo uses an XML vo-
cabulary rather than an RDF vocabulary to specify the mapping information.

Scope
In this context a proposal is put forward for representing scoped occurrences

in RDF: An rdfs:seeAlso property has a blank node as its object; the blank
node has an rdfs:isDefinedBy property (whose object is the URI of an external
occurrence) and one or more tm2rdf:scope properties. This results in a con-
struct whose ”shape” is very different from that of an unscoped occurrence. In
addition, given that the range of the rdfs:isDefinedBy property is rdf:Resource,

i
i

“main” — 2009/2/24 — 16:07 — page 53 — #65 i
i

i
i

i
i

3.4. Related works 53

it is unclear how this approach would work with internal occurrences.
A ”not very elegant” way to represent scoped names is suggested that in-

volves defining a property, whose rdf:type is tm2rdf:baseName, that corre-
sponds either directly or indirectly (it is not clear which) to each scoping topic.
In addition to being inelegant, this would not work with scopes comprised
of multiple scoping topics. The alternative is the same as that proposed by
Garshol: i.e., to qualify reified statements. To do this, Unibo defines the
tm2rdf:scope property.

For scoped associations, reification in the RDF sense is not necessary since
associations are already represented as resources (at least in the default map-
ping). Thus, all that is required is to assign one or more tm2rdf:scope properties
to that resource. The downside to this is that scoping is now handled in three
different ways (for generically mapped associations, for occurrences, and for
names and specifically mapped associations, respectively).

Reification, typing, and subtyping
Neither reification, typing, or subtyping are regarded by Unibo as posing

problems since both RDF and Topic Maps support all three concepts in es-
sentially the same way: instanceOf equates to rdf:type; the supertype-subtype
relationship (represented in Topic Maps using an association with a predefined
type) equates to rdfs:subClassOf, and reification is essentially the same in Topic
Maps and RDF.

Specific mappings
The description above has focused on the Unibo proposal’s approach to

generic translations. However, it is recognized that a generic approach will
not always produce optimal results and so a method is provided for ”guiding”
the translation process. This consists of a simple XML vocabulary that allows
the user to specify how to translate a (binary) association to a single RDF
statement (and vice versa). As in the Garshol proposal, this involves specifying
correspondences between association role types and the statement’s subject and
object. In addition, a user can specify which RDF properties should be mapped
to occurrences rather than to associations. The following extract shows how
mappings for the TM2RDF test case would be specified:

<?xml version="1.0"?> <xtm2rdf>
<property_associations>
<li id="composed-by">
<domain_role id="work"/>
<range_role id="composer"/>

i
i

“main” — 2009/2/24 — 16:07 — page 54 — #66 i
i

i
i

i
i

54 Chapter 3. Translation between Semantic Web annotation formalisms

</property_associations>
<property_occurrences>
<li id="premiere-date"/>
<li id="synopsis"/>

</property_occurrences>
</xtm2rdf>

These mappings would cause the composed-by association to be represented
as a single statement in RDF, with Tosca (”work” = domain) as the subject and
Puccini (”composer” = range) as object. In addition, the mapping contains
information that would cause properties of type premiere-date and synopsis to
be mapped to occurrences when going from RDF to Topic Maps. (Although
not stated explicitly, this information is presumably not required when going
the other way.)

The Unibo proposal is fairly complete but some features, e.g., language
tags and data typing in RDF, and reification of roles and topic maps, are
not covered explicitly. The proposal permits some degree of reversibility, but
the result of a roundtrip may not always be the same as the starting point.
For example, using the generic mappings, most RDF statements would be
translated to typed associations with untyped roles, each of which would result
in several statements when translated back to RDF.

The approach produces somewhat natural results in both directions pro-
vided mapping information is supplied. Generic translations are far less satis-
factory, with a single binary association resulting in nine RDF statements.

3.5 Extending MIDST to Semantic Annotations

In Chapter 2 we have illustrated the MIDST approach on translation between
heterogeneous models, exploiting a metamodel technique, developed by our
group. In this section we will show how the MIDST framework can be suit-
ably extended to solve interoperability issues between semantic Web languages
in different domains, such as the semantic annotations formalisms RDF and
Topic Maps. In the MIDST approach all the models, involved in the translation
process, are described by means of the higher level, generic model (the super-
model) that builds on metaconstructs. A metaconstruct has properties allowing
the description of models constructs and references to other metaconstructs to
define the relationships between them. The expressivity of our approach can
be flexibly extended by adding new metaconstructs to the supermodel or just
adding properties or references to the existing ones.

i
i

“main” — 2009/2/24 — 16:07 — page 55 — #67 i
i

i
i

i
i

3.5. Extending MIDST to Semantic Annotations 55

The supermodel has been originally defined with respect to a variety of
models, for which translations can be applied by our approach (E-R, Rela-
tional, Object-Oriented, Object-Relational, XSD). The supermodel, as it is,
isn’t enough expressive to describe Semantic Web formalisms, where there are
some specificities that distinguish them from the data models we have involved
till now in our approach. One of the most interesting characteristic to take into
account is the generality of some of the constructs that are used in Semantic
Web models. Looking specifically at the two formalisms we consider, RDF has
the concept of resource, that can be a web resource, a predicate, a specific per-
son, the concept of person and all the things that can be described. A similar
idea is at the basis of Topic Maps where (quite) everything is a topic, like the
described subjects, the types, the association roles etc. Therefore, RDF and
Topic Maps are underpinned on the knowledge element, that is described by
resources and topics respectively, and everything is considered knowledge. This
causes the collapse of some of the instance level and conceptual level informa-
tion. To introduce the ability to express schema information other models have
been developed, RDF(S) and OWL extending RDF, TMCL extending Topic
Maps. Differently, the data models that we have considered till now, have a
well marked distinction between the different layers: schema, instances. For
example, in the database context we have the concept of person with attributes
at the schema level and the specific values for the attributes at the instance
level. To clarify which is the impact in our approach, let’s see how MIDST can
be used to represent the Relational table Person(Name, Surname) with the
instances George, Russel and John, Smith.

Table 3.2: Relational table Person

Name Surname
George Russel
John Smith

Referring to the supermodel representation of the Relational model, the
Abstract metaconstruct is used to represent the Relational model construct
Table that can be used to define the schema element Person. By means
of the metaconstruct Lexical it is possible to describe the Relational model
construct Attribute (of the table Person). The table Person is used to define
the schema elements Name, Surname and at the instance layer there are the
actual attributes values. In the RDF/Topic Maps context, you do not start
from a schema level, that act as a constrain on the instance level but the

i
i

“main” — 2009/2/24 — 16:07 — page 56 — #68 i
i

i
i

i
i

56 Chapter 3. Translation between Semantic Web annotation formalisms

starting point are the resources/subjects that needs to be described with an
extreme freedom. The knowledge expert can choose how to use the model’s
constructs to describe resources. So for example in RDF you will start from a
blank nodes representing the actual persons and linking them with a property
rdf:type that has object the node Person, then adding the properties Name
and Surname. The possible RDF representation, using the FOAF vocabulary,
is shown in the next chunk of code and the correspondent graph is sketched in
Figure 3.6.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
<foaf:Person>
<foaf:name>John</foaf:name>
<foaf:surname>Smith</foaf:surname>

</foaf:Person>
<foaf:Person>
<foaf:name>George</foaf:name>
<foaf:surname>Russel</foaf:surname>

</foaf:Person>
</rdf:RDF>

Figure 3.6: RDF example for the relation Person

i
i

“main” — 2009/2/24 — 16:07 — page 57 — #69 i
i

i
i

i
i

3.5. Extending MIDST to Semantic Annotations 57

Nevertheless, it is also valid to express only the information about name and
surname, without specifying that the elements we are describing are of type
person. The RDF code, that can be produced with respect to this modification,
is reported in the following and the correspondent graph is sketched in Figure
3.7.

<rdf:RDF xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">
<rdf:Description>
<foaf:name>John</foaf:name>
<foaf:surname>Smith</foaf:surname>

</rdf:Description>
<rdf:Description>
<foaf:name>George</foaf:name>
<foaf:surname>Russel</foaf:surname>

</rdf:Description>
</rdf:RDF>

Figure 3.7: RDF example representing only name and surname

The meaning of the above example is that there is someone (or something)
with name John and surname Smith, and someone (or something) with name
George and surname Russel. In this case, nowhere is specified that the Name
and the Surname are attributes of a Person but they are directly related to
the instances. In our approach we cannot have attributes (lexicals) without a

i
i

“main” — 2009/2/24 — 16:07 — page 58 — #70 i
i

i
i

i
i

58 Chapter 3. Translation between Semantic Web annotation formalisms

related concept (abstract). Since we operate at different levels of abstraction,
we need to extract a sort of structure from the RDF and Topic Maps graphs
that is suitable with our way of representing models, schemas and instances.

To enable the supermodel representing RDF and Topic Maps, reflecting the
above mentioned peculiarities, we have enriched some of the existing metacon-
structs and new metaconstructs are introduced.

Figure X illustrate the extended supermodel, red elements corresponds to
the added features.

In the following there is a brief description of the extended supermodel’s
metaconstructs, details about the specific RDF and Topic Maps representation
will be discussed later.

Abstract
The meaning of Abstract is extended to represent the symbols that are

used to describe the subjects of interest in RDF and Topic Maps. With the
term Abstract we generically describe the nodes of an RDF graph as well as
the topics of a Topic Map. To specify the node (resource or topic) properties,
as if it would be a resource with an URI or a Literal, we use the Type property
of Abstract. This allows us to define a generic transformation between the
structure of the graphs.

BinaryAggregationOfAbstracts
With BinaryAggregationOfAbstracts we can describe the Topic Maps

Occurrence and Name relationships extending it with an optional reference to
an abstract that represents the scope (that we generically call Qualification).

AbstractAttribute
This metaconstruct is used to describe the properties of RDF. Another

metaconstruct that could candidate to describe RDF properties could be the
BinaryAggregationOfAbstracts but this is used to represent the binary
relationship that are bidirectional. For this purpose, this metaconstruct is
endowed with the ability of expressing the functionality and optionality in
both directions. The AbstractAttribute, instead, is used to assert that an
Abstract is linked to another Abstract via a property, that is, the name of
the AbstractAttribute. This is exactly correspond to RDF properties.

Lexical
The Lexical metaconstructs are used to express the different kinds of iden-

tification that Topic Maps allows, namely SubjectIndicator and SubjectAddress.

i
i

“main” — 2009/2/24 — 16:07 — page 59 — #71 i
i

i
i

i
i

3.5. Extending MIDST to Semantic Annotations 59

AggregationOfAbstracts
The AggregationOfAbstracts has been extended with two optional refer-

ences to abstracts that represent the type and the qualification of the aggre-
gation, this is used for the n-ary Association of Topic Maps. The type and
qualification are expressed as abstracts since they are topics.

ComponentOfAggregationOfAbstract
Each ComponentOfAggregationOfAbstract of the extended supermodel

has a reference to an abstract that is the role of the participation, a topic itself.

Type
The introduction of the new metaconstruct Type, which expresses the typ-

ing relation between abstracts, allows us to model the RDF construct rdf:type
and the equivalent for Topic Maps that is instanceOf.

Set
This is a new construct we have introduced in the extension, is used to map

the collections and containers of the RDF model. The attribute Type allows
the distinction between the different kind of sets.

ComponentOfSet
This metaconstruct references the Abstract with the Set of which is a

component.

Figures 3.8 and 3.9 gives an idea of which constructs are used to represent
RDF and Topic Maps, respectively. We don’t aim at covering completely all
the constructs of the two considered models, since we demonstrate how the
supermodel is extensible. We here want to demonstrate that our approach is
suitable to work with so different kind of models.

We have provided the supermodel with these new capabilities through which
we can now illustrate how to perform a translation between Topic Maps and
RDF.

i
i

“main” — 2009/2/24 — 16:07 — page 60 — #72 i
i

i
i

i
i

60 Chapter 3. Translation between Semantic Web annotation formalisms

Figure 3.8: The supermodel’s constructs used to represent RDF

Figure 3.9: The supermodel’s constructs used to represent Topic Maps

3.6 Translation between RDF and Topic Maps

As illustrated in Section 3.4, there are many ways to implement interoperability
between Topic Maps and RDF: creating virtual views that make RDF appear
to be Topic Maps (or vice versa) when viewed through a particular interface

i
i

“main” — 2009/2/24 — 16:07 — page 61 — #73 i
i

i
i

i
i

3.6. Translation between RDF and Topic Maps 61

(object mapping) or doing a conversion of data from one formalism to the other
by means of a somehow expressed mapping (semantic mapping).

Devising a generic mapping can sound as the ideal way to perform trans-
lations, avoiding to force a model to behave as the other, implementing trans-
lations in a more natural way. But when we create the mappings between
RDF and Topic Maps, it arises the problem of a lack of information because of
the different expressivity of the two models. Let’s say that we want to trans-
late the RDF statement <S,P,O> in Topic Maps. It is an assertion that can
be translated in an Association, an Occurrence or a Name and it cannot be
known a priori which is the right choice. We need to evaluate the meaning
of the property P to select which is the right target construct. The result is
a vocabulary-specific mapping that nevertheless allows us to reach satisfiable
results in terms of keeping the expressiveness of the model and its meaning
during the translation process.

As we demonstrate with the example below, the use of Datalog to write
translation rules allows us to naturally implement the vocabulary-specific map-
pings by means of conditional expressions that select the correct target con-
struct. Moreover rules are written at the metalevel between the representations
of source and target model in terms of metaconstructs, keeping the indepen-
dence from a given model and allowing MIDST to involve new models reusing
the previously made work.

The first step when translating with MIDST is to describe the source and
target model’s constructs in terms of the supermodel metaconstructs, then
to define the source schema that can be imported into the supermodel by
a copy operation. Following the correspondences presented in section 4 we
can represent both RDF and Topic Maps using the supermodel and write the
translation rules at the metalevel.

Let us consider the simple RDF document that follows that illustrate the
knowledge between two persons one of which with a homepage, using the foaf
vocabulary.

i
i

“main” — 2009/2/24 — 16:07 — page 62 — #74 i
i

i
i

i
i

62 Chapter 3. Translation between Semantic Web annotation formalisms

<rdf:RDF
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:foaf="http://xmlns.com/foaf/0.1/">

<foaf:Person>
<foaf:name>John Smith</foaf:name>
<foaf:homepage rdf:resource="http://www.john.sm"/>
<foaf:knows>
<foaf:Person>
<foaf:name>Fred Red</foaf:name>

</foaf:Person>
</foaf:knows>

</foaf:Person>
</rdf:RDF>

The related graph in sketched in figure 3.10:

Figure 3.10: RDF Example

The supermodel representation of the above document, stored in our rela-
tional dictionary, is illustrated in Fig. 3.11.

It can be noticed that while in the AbstractAttribute table there is the
specification of the actual names of the properties, the Abstract table stores
generic RDF nodes and the Type columns specificate the kind of node. The
values of the literals and URIs are not relevant during the translation and are
represented at the instance level.

When translating the RDF statements into Topic Maps, the Datalog rules
generate the constructs

i
i

“main” — 2009/2/24 — 16:07 — page 63 — #75 i
i

i
i

i
i

3.6. Translation between RDF and Topic Maps 63

Figure 3.11: MIDST Relational dictionary storing an RDF document

• BinaryAggregationOfAbstracts for the property foaf:name, that will
subsequently be mapped to Name

• BinaryAggregationOfAbstracts for the property foaf:homepage, that
corresponds to Occurrence

• AggregationOfAbstracts for the property foaf:knows

For the last case, we don’t have the information of the association roles
in RDF while Topic Maps misses the direction of the statement. We choose
to assign the roles values of rdf:subject and rdf:object to the association
participants, in order to keep the semantic of the direction of the RDF arc. As
result of the translation we obtain the following Topic Maps, the syntax we use
is XTM:

<topic id="id18">
<instanceOf>
<subjectIndicatorRef xlink:href="foaf:Person"/>

</instanceOf>
<baseName>
<baseNameString>John Smith</baseNameString>

</baseName>
<occurrence>
<instanceOf>
<subjectIndicatorRef xlink:href="foaf:homepage"/>
</instanceOf>
<resourceRef xlink:href="http://www.john.sm"/>

</occurrence>
</topic> <topic id="id32">

i
i

“main” — 2009/2/24 — 16:07 — page 64 — #76 i
i

i
i

i
i

64 Chapter 3. Translation between Semantic Web annotation formalisms

<instanceOf>
<subjectIndicatorRef xlink:href="foaf:Person"/>

</instanceOf>
<baseName>
<baseNameString>Frank Red</baseNameString>

</baseName>
</topic>
<association>
<instanceOf>
<subjectIndicatorRef xlink:href="foaf:Knows"/>

</instanceOf>
<member>
<roleSpec><subjectIndicatorRef

xlink:href="rdf:subject"/></roleSpec>
<topicRef xlink:href="#id18"/>

</member>
<member>
<roleSpec><subjectIndicatorRef

xlink:href="rdf:object"/></roleSpec>
<topicRef xlink:href="#id32"/>

</member>
</association>

Some of the rules, that we employed during the translation are reported in
Appendix B.

On the other side, considering the translation from Topic Maps to RDF,
specifically the case of transforming an association, we have to transform n-
ary relationships to binary statements. In Fig. 3.12 there is a topic map that
represents the employment association between the company HiTech, with the
role of employer and two employees.

To translate this map to RDF, we define a Datalog rule that creates an
Abstract for each topic, with lexicals that represent the identification and
the names. Other simple rules are devoted to the creation of an Abstract
without lexicals (blank node) for each participant, that allows us to define
BinaryAggregationOfAbstracts that link the participant topic with the role
topic. We then create an Abstract for the association and an Abstract for
the type that are linked by a Type metaconstruct. Finally members are linked
to the association by BinaryAggregationOfAbstracts. Exploiting the corre-
spondence between the supermodel and RDF we can eventually generate the

i
i

“main” — 2009/2/24 — 16:07 — page 65 — #77 i
i

i
i

i
i

3.7. Conclusions 65

Figure 3.12: Topic Maps example

graph as illustrated in Fig. 3.13.

Figure 3.13: Resulting RDF graph

The results of the experiments produced in this field have been published
in [?].

3.7 Conclusions

We have illustrated how Semantic Web formalisms can be described by our
supermodel and how our framework can be used to define translations with a
high-level, model independent approach. Data models and schemas are cur-
rently defined using the framework interface, we are developing a plug-in that
allows to automatically import external documents of the source model inside
the tool and to export the result of the translation in the target model. More-
over, we are developing a visual interface that allows users to query documents
exploiting our logical organization.

i
i

“main” — 2009/2/24 — 16:07 — page 66 — #78 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page 67 — #79 i
i

i
i

i
i

Chapter 4

A Scalable and Extensible
Framework for the Management
of RDF data

The Semantic Web is gaining interest to fulfill the need of sharing and reusing
information. In this context, RDF has been conceived to provide an easy
way to represent any kind of data and metadata, according to a graph-based,
lightweight model and a straight XML serialization. Although RDF has the
advantage of being general and simple, it cannot be used as a storage model
as it is, since it can be easily shown that even simple management operations
involve serious performance limitations.

Starting from an analysis of the current state of the art for RDF data
management, we present in this thesis a novel approach for storing, managing
and processing RDF data in an effective and efficient way. The approach is
based on an organization that is particularly suited for RDF constructs, but it
can be easily extended to other models that relies on RDF, like RDFS and/or
OWL. We refer to real world scenarios where large RDF data repositories need
to be navigated and processed, even if the schema is not known in advance.
We consider complex data management operations, which go beyond simple
selections or projections, and involve the navigation of huge portions of data
sources.

A tool has been developed to test the feasibility of the approach over large
RDF repositories (datasets of millions of triples). We compare the performance
of the proposed framework with prior solutions and present experimental results

67

i
i

“main” — 2009/2/24 — 16:07 — page 68 — #80 i
i

i
i

i
i

68
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

supporting its effectiveness and efficiency.

4.1 Introduction

From the origins of the World Wide Web the activity of publishing information
has been so intense that a huge amount of data is currently available over the
internet. The technologies that have become standards for the creation of Web
content are oriented to human users. Moreover, the absence of a unique point of
reference for the semantic of data do not allows the use of software agents that
understand the meaning of data, performing advanced searches, inferencing,
wrapping, etc. The interpretation of the meaning of data is competence of
the reader, with the obvious consequence of misunderstandings. This initial
approach reveals a lack for the share and reuse of information, needs that
continuously grow up with the increasing of available data over the Web.

In 2001 Tim Berners Lee [?] proposed the concept of Semantic Web, a world
where information is processable by machines other than humans, opening new
interesting perspectives. The principle to let a rough data be unambiguously
interpreted by a computer, is to describe it by means of metadata that associate
a well defined meaning. For this purpose the W3C developed the Resource De-
scription Framework (RDF) [?] that is commonly used as the data model for
the Semantic Web. It is a family of specifications used to express statements
on Web resources, uniquely identified by an URI (Uniform Resource Identi-
fier). The statement is in the form of a triple 〈Subject, Predicate, Object〉
expressing that a resource (Subject) is related to another resource or to a value
(Object) through a property. An RDF document can then be seen as a di-
rected labeled graph where nodes are resources or literals and arcs represent
predicates, also called properties in RDF terminology. Nodes without content
(blank nodes) are used in order to express incomplete information or queries or
resources with a complex structure (specified via other triples). Many serial-
izations of the abstract model of RDF exist, to allow the exchange of metadata
across applications, the most diffused are RDF/XML and Notation 3. To pro-
vide a datatyping model for RDF, the W3C defined RDF Schema that allow
the knowledge designer to define classes with subclasses, properties with range
and domain, containers and other elements to define a slight more advanced
knowledge structure.

Due to its simplicity RDF is easily manageable by applications and in-
creasingly used over the Web. However the rise of Semantic Web technologies
requires a growing number of meta-information to be managed, transformed

i
i

“main” — 2009/2/24 — 16:07 — page 69 — #81 i
i

i
i

i
i

4.1. Introduction 69

and queried. The maintenance and querying of RDF documents represent cru-
cial activities to profit from available semantic information. The concept of
maintenance is related to the insertion or deletion of a node in an RDF docu-
ment. Insertion operations add new knowledge to the RDF document, through
inference or explicit insertions. Deletion operations represent the elimination
of information from the RDF document, adding some complex problems be-
cause of potentially dangerous operations due to existing dependencies between
nodes. In this thesis we will consider maintenance related to scalability issues
by applying our approach to a growing RDF document. Querying an RDF
document is also an active field of research, as shown by the large number
of languages developed to this aim (see [?] for a recent survey). To perform
queries, RDF data can be stored in different kinds of repository. As we will
detail in the following, proposals in this sense mainly concentrate on a triple
organization of data with some tuning operations to improve query execu-
tion. Managing RDF triples in one table, however, compromise scalability and
performances because of the high number of self-joins needed. To avoid this
problem, some approaches present a different data organization. For example
3Stores [?] separates literals from resource values while in [?] different RDF
storage schemes are considered (i.e. vertical partitioning, property tables, col-
umn oriented DBMS).

In this thesis we propose a storage system that is specifically suited to
work with huge RDF documents as published in [?]. We address the issues
of storing and querying RDF exploiting a metamodel technique. Differently
from the approaches in literature, that provide implementation solutions, we
follow a process that starts with the definition of a meta-representation of the
RDF datamodel at a conceptual level. In this phase we find out the structural
aspects of interest of RDF. The next step is a logical translation of the con-
ceptual model for a relational database. Eventually, at the physical level, we
choose optimization techniques based on indexing and partitioning. We here
concentrate on pure RDF (with no schema information) but the representation
technique that we use is extensible: the model can be enriched to represent
structural aspects of more complex models like RDF(S) and OWL.

The approach we propose here can be used for an agile management of RDF
documents. More precisely, the most relevant contributions of our work are:

(i) The creation of a high level description model to represent the information
stored in RDF document, pointing out the implicit semantics of elements
through constructs.

i
i

“main” — 2009/2/24 — 16:07 — page 70 — #82 i
i

i
i

i
i

70
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

(ii) A logical organization of data, based on the constructs structure of the
model, referring to a relational database.

(iii) Optimizations based on indexing and partitioning of relational implemen-
tation to allow high performance querying and mantaining.

We compare our experimental results with two other approaches: the stan-
dard RDF triple [?] and Vertical Partitioning [?]. The aspects that we have
measured are the scalability of the approaches and query performance over a
set of representative queries.

The chapter is structured as follows. In Section 2 we present a motivating
example. In Section 3 we discuss some related works. in Section 4 we illustrate
the details of our design process to manage RDF data. In Section 5 we show
experimental results of performance and scalability and in Section 6 we sketch
concluding remarks and future works.

4.2 Running Example

Commonly, an RDF document is organized in a set of triples that can be
stored in one single relational table using a three-column schema. Let us con-
sider the Figure 4.1 showing RDF classes (left side) and corresponding triple
instances (right side) of an RDF document. We consider both properties (re-
lations between a resource and a literal) and predicates (relations between two
resources). More in detail, each class Person has a property, Name, and two
predicates, Child and Brother, representing family relationships between per-
sons. There are four instances of the class Person (with URI1, URI2, URI3 and
URI4 as URIs1, respectively), each one with a corresponding instance of the
property Name (with values Priam, Hector, Astyanax and Paris, respectively)
and linked by two instances of predicate Child and one instance of predicate
Brother representing that Hector and Paris are sons of Priam and brothers,
and Astyanax is son of Hector.

The RDF instance can be stored in a relational table people, as shown at
the right side of Figure 4.1. We can perform various operations on the RDF
data regarding both queries and update/maintainance. For example, we can
formulate the SQL query to find all of the persons that have a child whose
name is ’Paris’ as follows:

1RDF exploits Universal Resource Identifiers (URIs), which appear as URLs that often
use sequence of numbers as identifier. In this thesis, our examples will use more intuitive
names.

i
i

“main” — 2009/2/24 — 16:07 — page 71 — #83 i
i

i
i

i
i

4.2. Running Example 71

Figure 4.1: RDF classes and triple instances

SELECT p4.obj FROM people AS p1, people AS p2, people AS p3, people
AS p4 WHERE p1.prop="Child" AND p1.obj=p2.subj AND
p2.prop="rdf:type"

AND p2.obj=’Person’ AND p1.obj=p3.subj AND p3.prop="Name"
AND p3.obj="Paris" AND p4.subj=p1.subj AND p4.prop=’Name’

This query performs many self-joins over the same table. Since the ta-
ble people could contain a relevant amount of statements, the entire process
potentially presents a high execution complexity. Indeed, the execution time
increases as the number of triples scales, because each filtering or join condition
will require a scan or index lookup.

Let us consider a more complex query. We want to find the family relation
between Astyanax and Hector as follows:

SELECT t1.prop FROM people AS t1, people AS t2, people AS t3, people
AS t4,

people AS t5
WHERE t1.subj=t2.subj AND t2.prop=’Name’ AND t1.subj=t3.subj

AND t3.obj=’Person’ AND t1.obj=t4.subj AND t4.prop=’Name’
AND t1.obj=t5.subj AND t5.obj=’Person’ AND
((t2.obj=’Hector’ AND t4.obj=’Astyanax’)
OR (t4.obj=’Hector’ AND t2.obj=’Astyanax’))

Also in this case the number of self-joins increases as the number of scan
or index lookups.

i
i

“main” — 2009/2/24 — 16:07 — page 72 — #84 i
i

i
i

i
i

72
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Real world executions does not only involve a lot of joins or filters, which
make critical the selectivity and optimization of query (i.e. limiting the ben-
efit of using indexes), but also maintaining operations as insertion, deletion
and update of triples. The maintenance of large RDF datasets represents a
complex problem because of potentially dangerous operations due to existing
dependencies between nodes: it is important to identify, for instance, which
other nodes must be deleted as the effect of a single deletion.

4.3 Related Works

Managing RDF information represents a important and wide area of research
and a number of methodologies and techniques, along with many tools have
been developed [?]. In this section we discuss the current researches concerning
the management of RDF documents.

We distinguish among three main direction in RDF management based
studies, namely: i) storing, that can be a complex activity, due to the fact that
some storage systems requiring fixed schemas may be unable to handle general
data such as that from RDF, where the terms are not known in advance; ii)
querying, that might be seen as more complex than “conventional” querying,
because the meaning conveyed by RDF data has to be properly “understood”
and processed; iii) maintaining, that is the set of update/deletion operations
on RDF documents.

In this thesis we mainly focus on storing, because through our representa-
tion it is possible to perform querying and maintaining of RDF documents via
SQL statements.

RDF storing approaches can be divided into two main areas: the first one is
based on native store system development while the second one focuses on the
use of relational (or object-relational) databases to store RDF data. Comparing
the two approaches, native store systems (such as AllegroGraph2 or OWLLIM
[?]) are more efficient in terms of load and update time. On the contrary,
DBMS-based approach are more efficient in querying due to the availability of
many query management features. However, native storing approaches have
the drawback of having to redefine important database features such as: query
optimization, transaction processing, etc.

To efficiently query RDF data is important to organize these information
in a convenient way. Some interesting studies were focuses on the physical or-
ganization of RDF Data. Storing RDF in relational (and/or object-relational)

2AllegroGraph RDF-Store, available at http://www.franz.com/products/allegrograph/

i
i

“main” — 2009/2/24 — 16:07 — page 73 — #85 i
i

i
i

i
i

4.3. Related Works 73

database management systems has been the main topic of much research. In-
deed it seems that a relational model is a natural fit for RDF. The RDF model
is a set of statements about Web resources, identified by URIs. The state-
ments have the form < subject, predicate, object >, then an RDF model can
be easily implemented as a relational table with three columns. Many RDF
storage systems have used this kind of approach such as the ICSFORTH RDF-
Suite [?], the Sesame schema-based repository and querying system [?], the
KAON3 Project, the TAP4 suite, Jena [?], Oracle [?], and many others. Most
of the aforementioned systems use storing techniques that do not involve entire
strings in the triples table; instead they store shortened versions. Oracle and
Sesame map string URIs to integer identifiers so the data is normalized into
two tables, one triples table using identifiers for each value, and one mapping
table that maps the identifiers to their corresponding strings. 3store [?] uses
a similar approach, the only difference is on the fact that the identifiers are
created by applying a hash function to each string.

Nevertheless, these approaches present various limitations. For instance,
considering the NULL values (possibly many) management in case of blank
nodes or the awkward expression of multi-valued attributes in a flatted rep-
resentation. Therefore the typical triple store approach cannot leverage this
higher-level knowledge. In order to overcome some of the aforementioned hin-
drances we propose an approach that can take into account also the blank
nodes as described in the rest of the chapter.

For scalability and high-performance, we believe that the triple-store ap-
proach must be augmented by other storage strategies that can be efficient and
sufficiently general.

Another work that can be compared with our approach is the research of
Abadi et al. [?]. Like them we propose a logical model to represent and manage
the RDF information but their approach is based on the vertical partitioning
of RDF. Practically the triples table is rewritten into n two-column tables
where n is the number of unique properties in the data. In these tables, the
first column contains the subjects that define that property and the second
column contains the object values for those subjects. In Figure 4.2 the tables
of vertical partitioning representation for the example of Section 2 are depicted.
Therefore, their approach is based on the “semantic” of the properties. On the
other side our approach is based on the particular meta-constructs used to

3KAON - the Karlsruhe Ontology and Semantic Web Tool Suite.
http://kaon.semanticweb.org/.

4TAP project, 2002. http://tap.stanford.edu/.

i
i

“main” — 2009/2/24 — 16:07 — page 74 — #86 i
i

i
i

i
i

74
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Figure 4.2: The vertical partitioning tables for the running example.

represent the RDF elements.
Referring to the example of Section 2, we can formulate the SQL query to

find all the name of the persons that have a child whose name is ’Paris’ as
follows:

SELECT N.obj FROM Name AS N, Name AS N2, Child AS C WHERE
N.subj=C.subj AND C.obj=N2.subj

AND N2.obj="Paris"

As we can see the number self-joins are significantly reduced. However, et
us analyze the second and more complex query (i.e. to find the family relation
between Astyanax and Hector). Using the vertical partitioning approach, we
must firstly extract the tables list (because each table represents a property),
insert them in a view and perform the joins with this view. In this case the
query becomes more complex (and we omit it for the sake of brevity) and the
total number of joins will significantly increase.

To overcome some of the aforementioned problems, we develop an approach
which main characteristics can be summarized in two features: strong flexibility
and extendibility. The proposed approach represents concepts of RDF pointing
out semantics of elements. We also take into account both blank nodes and
RDF containers (i.e. Bag, Seq and Alt) In this way information stored in an
RDF document are properly grouped making effective the querying process.

i
i

“main” — 2009/2/24 — 16:07 — page 75 — #87 i
i

i
i

i
i

4.4. Management of RDF data 75

4.4 Management of RDF data

Overview

An RDF model is comparable to a directed labeled graph. However, it allows
the presence of multiple edges between two nodes, and different edges between
two nodes can share the same label. The nodes, representing resources, can be
classified as URI references or blank nodes or literals (strings). The edges in
the graph represent properties.

Formally, we can define the following sets: the set of resources R, the set
of URI references U , the set of blank nodes B, the set of literals L, and the
set of properties P . At RDF level these sets present the following properties:
R = U ∪B, P ⊂ R, and U , B, and L are pair-wise disjoint. In P the property
rdf:type defines the type of a particular resource instance: any resource can
be the target of an rdf:type property. Therefore an RDF model M is a finite
set of triples (i.e. statements) as

M ⊂ R× U × (R ∪ L).
Each triple or statement in an RDF model contains a resource, an URI

reference (which stands for a property), and a resource or literal. The properties
in an RDF model are the middle element of a triple, or they are a resource with
an rdf:type property to the rdf:Property resource. So the set of properties
of an RDF model M is

P = {p|(s, p, o) ∈M ∨ (p, rdf:type, rdf:Property) ∈M}
The graph model GRDF corresponding to an RDF model M is
GRDF = (NRDF , ERDF , f lNRDF

, f lERDF
)

flNRDF
= NRDF → R ∪ L

flERDF
= ERDF → P

using the following construction mechanism (NRDF and ERDF denote nodes
and edges respectively, flNRDF

and flERDF
their labels). For each (s, p, o) ∈M ,

we add the nodes ns, no to NRDF (different only if s 6= o) and label them as
flNRDF

(ns) = s, flNRDF
(no) = o, and add ep to ERDF as a directed edge

between ns and no and label that as flERDF
(ep) = p. In the case that s and/or

o are in B, then flNRDF
(ns) and/or flNRDF

(no) are not defined: blank nodes
do not have labels. Nodes that have a label have a unique one, edges always
have a label but can share it with other edges.

Although an RDF model has the advantage of being general and simple,
it cannot be used as a storage model as it is since even simple management
operations involve serious performance limitations.

The management of a relevant amount of RDF data requires, in our ap-

i
i

“main” — 2009/2/24 — 16:07 — page 76 — #88 i
i

i
i

i
i

76
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Figure 4.3: RDF data Management with a 3-layer model

Figure 4.4: The three levels of abstraction

proach, a specific storing process, as shown in Figure 4.3.
This process can be characterized by three steps:

• The first step of the process is the parsing of RDF documents. We con-
sider RDF data represented with different syntaxes (e.g. RDF/XML and
N3). As a result of this step we obtain a triple representation of the
documents (i.e. 〈s, p, o〉 statements).

i
i

“main” — 2009/2/24 — 16:07 — page 77 — #89 i
i

i
i

i
i

4.4. Management of RDF data 77

• In the second step the system maps the triple representation into an
internal organization. It presents

– a conceptual level, proposing a simple conceptual model where a set
of constructs properly represents RDF concepts. Each construct is
used to properly represent elements of RDF documents, with the
same semantics;

– a logical level, implementing our conceptual model into a logical one.
In our case we use the relational model;

– a physical level, defining the physical design of the logical represen-
tation of previous level. There, we illustrate a special partitioning
technique that relevantly increases the performance of the entire
process.

• In the last step the storing in a specific DBMS is performed. In our case
we use a relational DBMS.

In the following we exploit our organization of RDF data, from the concep-
tual to the physical organization, through the logical one. We close the section
highlighting the advantages of such data organizations.

Conceptual level

Our approach is inspired by works of Atzeni et al. [?, ?] that propose a frame-
work for the management of heterogeneous data models in an uniform way.
They leverage on the concept of metamodel that allows a high level description
of models by means of a generic set of constructs. The various constructs have
an identifier, are related each other by means of mandatory references and may
have attributes that specify details of interest. Formally, a model can be rep-
resented as M = {C1, C2, . . . , Cn} where the Ci’s are constructs, that have the
following structure:

C = (OID, attr1, . . . , attrf , ref1, . . . , refm)
where OID is the object identifier, the attrj ’s are the properties of the

construct and the refk’s are the references of the construct.
Following this idea, we propose a simple model where a set of constructs

properly represent concepts expressible with RDF. The main differences with
respect to the approach of Atzeni et al. are:

i
i

“main” — 2009/2/24 — 16:07 — page 78 — #90 i
i

i
i

i
i

78
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

• they consider a set of constructs able to represents several data mod-
els, while we consider a reduced set of constructs because we use those
constructs to represent just the RDF model;

• they consider a well marked distinction between schema and instance
level. Constructs and rules for the instance level are automatically de-
rived from structures at schema level. For our purposes, we need to man-
age only instances, since RDF documents contain essentially data. RDFS
is devoted to specify schemas for RDF documents, but the modeling of
such standard is beyond the focus of this work.

In order to represent the basic concept of a triple, two constructs should be
enough, one to represent resources and one to represent statements involving
two resources. The concept of resource is clearly defined and can’t be sub-
sequently specified, while the concept of statement allows for a more precise
modeling. In fact, we can distinguish between two kinds of statement on the
basis of its object, that can be a literal with a primitive type value or a resource
with its own URI. We named these constructs Property and Predicate, respec-
tively. More in details the Resource construct has a URI attribute to store
the URI of the resource (we use the internal OID representation as URI for a
blank node); the Property construct has a reference to the Resource it belongs
to and has a value attribute to store the value of the object; the Predicate
construct has two Resource references to represent the subject and the object
of a statement.

Formally we define

MRDFbasic = {CResource, CProperty, CPredicate}

where the constructs have the following structure:

CResource = (OID, URI)
CProperty = (OID, Name, V alue, ResourceOID)
CPredicate = (OID, Name, SubjectResourceOID,

ObjectResourceOID)

Referring to an RDF Model M and its corresponding graph representa-
tion GRDF , we have the following correspondences with our conceptual model
MRDF

{R ∪ U ∪B} 7→ CResource

i
i

“main” — 2009/2/24 — 16:07 — page 79 — #91 i
i

i
i

i
i

4.4. Management of RDF data 79

Figure 4.5: The MRDF model

{p ∈ P |(s, p, o) where s, o ∈ R} 7→ CPredicate

({p ∈ P |(s, p, o) where o ∈ L}, L) 7→ CProperty

where A 7→ Ci means that the instances of Ci represent the elements of the
set A. Moreover the labels flNRDF

and flERDF
correspond respectively to the

attributes URI of CResource and Name of CPredicate and CProperty.
This simple model can be extended in order to manage also RDF collections;

this is done with the addiction of three new constructs. They are Container,
SimpleElement and ResourceElement. We use the first one to specify that a
blank node (represented with a resource as well) is in practice a collection:
this is done by means of the reference ResourceOID of the construct toward a
resource. The construct Container has also a property Type to denote the type
of collection (i.e. Seq, Alt, Bag). The others constructs represent elements of
a collection that can be, respectively, literals and resources; a literal element
has a Value attribute to store the value of the object while a resource element
has a reference toward a resource (to specify to which resource the elements of
the collection belong to) and both have a reference to the container to which
they belong to. Formally we define

MRDF = {CResource, CProperty, CPredicate, CContainer,

i
i

“main” — 2009/2/24 — 16:07 — page 80 — #92 i
i

i
i

i
i

80
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Figure 4.6: Conceptual representation of the running example

CSimpleElement, CResourceElement}

where the new constructs have the following structure:

CContainer = (OID, Type, ResourceOID)
CSimpleElement = (OID, Name, V alue,

ContainerOID)
CResourceElement = (OID, Name,ResourceOID,

ContainerOID)

In Figure 4.5 an UML diagram of our MRDF model is represented, where
enclosed in the dashed box there is the MRDFbasic model.

For instance, through our approach, we can represent the RDF document,
presented in Section 2, as depicted in Figure 4.6, where we omit the OIDs
for the sake of simplicicty and represent references only by arrows. In the

i
i

“main” — 2009/2/24 — 16:07 — page 81 — #93 i
i

i
i

i
i

4.4. Management of RDF data 81

Figure 4.7: Logical representation of our model

figure URI1, URI2, URI3 and URI4 represent the URIs of the instances of the
resources Person.

Logical Level

We use a relational implementation of our conceptual model. For each con-
struct we create a table and for each field of a construct we add a column to
the table corresponding to such construct.

Then we add an integrity constraint for each reference, from the pointer
construct to the pointed one (i.e. from the column corresponding to the refer-
ence field toward the OID column of the referenced construct). In Figure 4.7
some tables of our logical organization are depicted (we omit the tables devoted
to represent collections for the sake of simplicity, because there are no collec-
tions in our running example). The value of the rows are those corresponding
to our running example.

i
i

“main” — 2009/2/24 — 16:07 — page 82 — #94 i
i

i
i

i
i

82
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Figure 4.8: Physical Organization of the running example

Physical level

The resulting tables of logical level could be very large. To this aim we use
a partitioning technique referring to splitting what is logically one large table
into smaller physical pieces.

The partitioning is based on table inheritance. Each partition represents a
child table of a single parent table. The parent table itself is normally empty; it
exists just to represent the entire data set. The child table inherits the structure
of the parent (i.e. attributes). The partitioning of a table is processed by the
range defined on it. In other words the table is divided into different partitions
defined by a key column or set of columns, with no overlap between the ranges
of values assigned to different partitions.

In detail we set up a partitioned table by following steps:

1. We create the parent table, from which all of the partitions will inherit.

2. The parent table will contain no data. We can define several constraints

i
i

“main” — 2009/2/24 — 16:07 — page 83 — #95 i
i

i
i

i
i

4.4. Management of RDF data 83

on this table (e.g. key, foreign key and so on) to be applied equally to all
partitions.

3. We choose the range from the parent table (a single attribute or a set).
Then based on this range, we create several child tables that each in-
herit from the parent table. The child tables inherit the structure of the
parent(i.e. attribute and constraints). Normally, these tables will not
add any columns to the set inherited from the parent. Though they are
partitions of the parent tables, in every way they are normal tables.

4. We add table check constraints to the child tables to define the allowed
key values in each partition.

5. We create an index on the key column(s) in each partition (as well as any
other indexes we might want).

6. Finally we define a trigger or rule to redirect data inserted into the parent
table to the appropriate partition.

7. Optionally we can iterate the partitioning on the resulting child tables.

In our case we defined the following ranges:

• CPredicate: the key column is the Name attribute. It redirects data into
respective partition respect to a unique value. Then we can create indexes
on the SubjectResourceOID and ObjectResourceOID attributes.

• CProperty: the key column is the Name attribute (as well as for CPredicate)
and we can create indexes on the ResourceOID and V alue attributes.

• CResource. the key column is the URI attribute. It redirects data into
respective partition respect to a range of values (e.g. alphabetical ranges).

Let’s consider the example depicted in Figure 4.8. It illustrates the phys-
ical design of the running example, described in Section 2. For instance the
CPredicate table was partitioned into two tables respect to the two key values of
Name as Child and Brother. Also the CResource table was partitioned into two
tables respect to the range values of URI (in this case respect to alphabetical
ranges [a− h] and [p− z]).

i
i

“main” — 2009/2/24 — 16:07 — page 84 — #96 i
i

i
i

i
i

84
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Remarks

We have described our idea of modeling RDF data at different levels: con-
ceptual, logical and physical level. Each level provides relevant benefits. The
novelty introduced at conceptual level is a characterization of RDF elements.
Whatever is the syntax used in an RDF documents, all the elements are repre-
sented in a uniform way. We distinguish between resources and triples; then we
characterize the triples on the basis of their object and we use a specific repre-
sentation to address RDF containers and their elements. At logical level, the
choice of a relational implementation grants us all the advantages of the most
used model. In particular, it is possible to use several specific tools and SQL
querying facilities. At physical level, partitioning gives serious advantages. The
benefits will normally be worthwhile only when a table would otherwise be very
large. Let’s consider query performance that can be improved dramatically in
certain situations. In particular partitioning helps when most of the heavily
accessed rows of a table are in a single partition (or a small number of parti-
tions). Also update operations (e.g. deletion) exploits the partition accessing
only the corresponding portion of table to update. Normally the set of parti-
tions established when initially defining the tables are not intended to remain
static. It is common to want to remove old partitions of data and periodically
add new partitions for new data. One of the most important advantages of
partitioning is precisely that it allows this otherwise painful task to be exe-
cuted nearly instantaneously by manipulating the partition structure, rather
than physically moving large amounts of data around. This kind of partition
can reduce the number of the joins and also reduces the number of unions that
otherwise would make much more complex the query process.

Moreover the three level we consider define also the typology of user that
can access to the system, from less expert (i.e. the conceptual level) to more
expert (i.e physical level).

Other advantages of the proposed idea are listed in the following.
In RDF documents a property/predicate may appear more than once with

the same subject resource but different object resource (this is called multi-
valued attribute). The management of multi-valued attributes is easily imple-
mented in our approach. At conceptual level, each object value corresponds
to a new instance of the property/predicate construct. At logical level, a new
instance of a construct corresponds to the addiction of a row in the construct
table.

In our approach, as stated in previous sections, blank nodes are managed
like other resources. A blank node differs from a common resource in the value

i
i

“main” — 2009/2/24 — 16:07 — page 85 — #97 i
i

i
i

i
i

4.4. Management of RDF data 85

Figure 4.9: Logical representation of Containers

i
i

“main” — 2009/2/24 — 16:07 — page 86 — #98 i
i

i
i

i
i

86
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

of the URI attribute. The blank node has a fake URI equal to the internal OID
representation.

Let us consider a variant of the example of Section 2, where we represent
the children of a person with an RDF container (namely a Seq container).
This situation is depicted in Figure 4.9(a). With our model, we can ad-
dress RDF collections exploiting the constructs Container, SimpleElement
and ResourceElement. In particular, we represent a collection with an in-
stance of Resource construct (a blank node) and each element of the collection
with an instance of SimpleElement or ResourceElement construct (depend-
ing on the type of elements). An instance of Predicate construct links the
container with the proper resource. The logical representation is presented in
Figure 4.9(b) (where we omit not relevant constructs). We define a new in-
stance of a construct for each element of an RDF document. Therefore every
construct instance always has a value for each field (i.e. OID, properties and
eventually references).

Like Abadi et al., we have a fixed structure that does not require any kind
of clustering. In other words, we can refine our model, adding new constructs,
but there is not the need to change already defined constructs (i.e. the number
of fields of a construct will not change).

4.5 Experimental Results

In this section, plenty of experiments have been done to evaluate the perfor-
mance of our framework. We illustrate the RDF Benchmark chosen (i.e. a
public available dataset and a set of seven representative queries). Then we
compare performance and scalability of our approach with Triple and Vertical
Partitioning. We will call our approach Semantic Web Information Manage-
ment (SWIM).

RDF Benchmark

We used the public available Barton Libraries dataset5, provided by the Simile
Project6. This dataset is a collection of RDF documents (i.e. around 11.000)
containing records (formatted according to the RDF data model specifications)
acquired from a dump of the MIT Libraries Barton catalog. This collection
of files was derived from diverse sources. Therefore the structure of the data

5Library catalog data. http://simile.mit.edu/rdf-test-data/barton/
6Simile website. http://simile.mit.edu/

i
i

“main” — 2009/2/24 — 16:07 — page 87 — #99 i
i

i
i

i
i

4.5. Experimental Results 87

is quite irregular and often presents RDF malformed URIs. We converted the
Barton dataset from RDF/XML syntax to triples using the Jena parser and
then we made a soft cleaning of data (i.e eliminating duplicate triples and
malformed URIs). The parser phase resulted a total of 60.578.683 triples. As
documented by Abadi et al. [?], the dataset contains 260 predicates and 23
properties. Many of them are multi-valued: they appear more than once for a
given subject. Respect to Abadi et al. we maintained triples with particularly
long literal values (as the property abstract in the dataset) and triples with
properties or predicate with few occurrences (as the predicate 1953). This is
because we want to prove our experiments with the real unstructured nature
of Semantic Web data.

Our experiments want to compare the SWIM methodology with the com-
mon Triple storage technique and in particular with the Vertical Partitioning
approach, which revealed itself one of the most performing approach. Therefore
we implemented the seven representative queries used by Abadi et al. The full
queries are briefly described at a high level here. We illustrate the complexity
of each one and later we will discuss how these queries are executed by the
different approaches.

Query 1 (Q1) This query counts the number of different resources, object
of the predicate type. This requires a scan for the triples with predicate type
and a counting for the different objects of these triples. In this case, in each
triple, the object resource is the variable to be processed.

Query 2 (Q2) This query counts the occurrences of all properties or predi-
cates coming out from resources that are subject of triples with predicate type
and object a resource named Text. In this case the property or predicate for
each triple is the variable to be processed .

Query 3 (Q3) Following the query Q2, Q3 counts the occurrences of all
properties or predicates (and corresponding objects) coming out from resources,
subject of triples with predicate type and object a resource named Text. The
complexity of this query is similar to the previous.

Query 4 (Q4) Starting from the counting of all properties (predicates)-
object from Q3, this query recalculates these counts where the subject of triples
with predicate type and object a resource named Text has also an outcoming
property language with value fre (i.e. French). This query is thus similar to

i
i

“main” — 2009/2/24 — 16:07 — page 88 — #100 i
i

i
i

i
i

88
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Q3, but has a higher level of result selectivity comporting a more larger space
of searching.

Query 5 (Q5) Here the query results a subject s and an object o such that
s has an outcoming predicate origin with object a resource named DLC and
an outcoming predicate records having an object that is also subject of a triple
with predicate type and object o. Also this query has a high level of selectivity
where resources are the variables to process.

Query 6 (Q6) This query combines Q2 and Q5. It returns all the predicates
or properties coming out from a resource or subject of a triple with predicate
type and object a resource named Text or subject of a triple with predicate
records having an object that is also subject of a triple with predicate type
and object Text. This query presents a relevant complexity due to the high
selectivity and huge amount of data to process in the dataset. Also in this case
in each triple predicate and properties are variables to process.

Query 7 (Q7) This final query presents a selection of three types of re-
sources, respectively r1, r2 and r3 such that r1 is the subject as of a triple with
predicate point and object a resource named end as of a triple with predicate
type and object r2 as of a triple with predicate encoding and object r3. In this
case resources are variables to process.

Platform Environment

Our benchmarcking system is a dual quad core 2.66GHz Intel Xeon, running
Debian, with 8 Gbytes of memory, 6 MB cache, and a 2-disk 1Tbyte striped
RAID array.

We implemented our experiments using Postgres. As Beckmann et al. [?]
experimentally showed, it is relevantly more efficient respect with commercial
database products.

Our Postgres implementation of the Triple storage provides a table con-
taining three columns: subject, property and object. We defined a primary key
on the columns triple (subject, property, object) and used B+ tree indices.
One clustered on (subject, property, object), three unclustered respectively on
subject, predicate and object7.

7These indexes were experimentally determined to achieve the best performing results

i
i

“main” — 2009/2/24 — 16:07 — page 89 — #101 i
i

i
i

i
i

4.5. Experimental Results 89

We implemented the Vertical Partitioning storage using one table per prop-
erty. Each table contains two columns: subject and object. The primary key
is the columns couple (subject, object). We used two indexes: a clustered B+
tree index on subject, and an unclustered B+ tree index on object.

The SWIM storage exploits the native partitioning technique of Postgres.
We used three tables for Resource, Predicate and Property with the relational
schema described in Section 4.3. They represent the parent tables partitioned
respect to the ranges described in the Section 4.4. On the Resource table (and
relative partitions), we used a constraint of unique value on the URI attribute.
On the Property and Predicate tables we used an unclustered B+ tree index on
the Name attribute and for each partitions we used clustered B+ tree indexes
on the SubjectResourceOID and ResourceOID attributes, and unclustered B+
tree indexes on the ObjectResourceOID and Value attributes. Each partition
has a check constraint and a rule to redirect data inserted into the parent table.

Evaluating Results

Performance Results The seven queries have been tested on the three im-
plementations and the resulting query execution times are shown in Figure x.
Each number is the average of three runs of the query. Internal database cache
and operating system cache can cause false measurements then before each
query execution we have restarted the database and cleaned any cache.

In the following we will explain the obtained results for the execution of
each query.

Q1 The Triple approach presents a relevant response time, compared to the
other approaches, due to several self-joins needed. Vertical Partitioning and
SWIM, instead, have comparable results. In the Vertical approach only the
type table is accessed, performing a count operation on the different values
of the object attribute. To answer this query, SWIM has to access the join
between the predicate and resource tables. Not the whole tables are involved
in the join operation thanks to the partitioning technique. It automatically
redirects to the partitions corresponding to the type predicate and the Text
resource.

Q2 The Triple approach needs to extract all the subjects from the triple with
property type and object Text. Then a self-join on the subject is performed to
extract all other properties and count them.

i
i

“main” — 2009/2/24 — 16:07 — page 90 — #102 i
i

i
i

i
i

90
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Figure 4.10: Performance comparison between triple-vertical-swim approaches

The Vertical accesses the table type selecting the subject for all the tuples
with object Text. Then a scan for all the other tables is performed to join on
the subject and count. This is a typical case where the property is unknown
then the Vertical Partitioning needs to scan all the database tables that refer
to properties. This is due to the fact that the name of the table is the property,
therefore a query to the database metadata is needed. Finally all the results
are collected by a union operation.

The SWIM approach queries the predicate table and, relying the partition-
ing mechanism, accesses directly the type partition to select the subjects for
the object Text. Then the previous result is used in a nested query to extract
all the properties and predicates with the corresponding subjects. The parti-
tioning techniques avoid to scan the whole tables (millions of tuples) and access
only the portions of interest. Moreover we avoid the huge amount of unions
executed by the Vertical.

Q3 Since the query Q3 is similar to Q2, we don’t illustrate all the details. In
this case the Vertical approach presents similar response time. The additional
operation on the objects costs a 25% more to the Triple approach. The execu-
tion time of SWIM increases consistently due to the necessity of join with the

i
i

“main” — 2009/2/24 — 16:07 — page 91 — #103 i
i

i
i

i
i

4.5. Experimental Results 91

resource table. However, also in this case, the partitioning mechanism supports
the performance of this operation.

Q4 Respect to Q3, Q4 introduces a higher level of selectivity. This allows the
tree approaches to exploit the indexing mechanisms and reduce the response
time. We benefit more than the others exploiting the combination between
indexing and partitioning.

Q5 In this case, Triple needs to perform three heavy self-joins. Since the
properties are known, Vertical obtains the best result. It directly accesses the
specific tables selecting subjects and objects. SWIM presents a comparable
time but higher due to the join operations with the resource table.

Q6 This query has the highest complexity due to the explicit union opera-
tion between the results of two subqueries. Triple dramatically suffers in this
case. In both subqueries the property is unknown then Vertical needs to ap-
ply each to every table and make union of the results. This is the case where
SWIM can exploit at best its logical representation combined with the physical
optimization.

Q7 Like Q1 and Q5, properties are known and the resources related to the
properties should be selected. Again, in this case, Vertical is the most perform-
ing due to the aforementioned advantages.

Summarizing, the Triple approach presents the worst results, due to its
unprofitable storage model. Vertical obtains best results in the queries where
the properties are known (i.e. Q1, Q5, Q7) because the corresponding tables
are accessed directly. The results of SWIM are better in the other cases due to
its internal data organization (conceptual, logical, physical). However, in Q1,
Q5, Q7 SWIM response times are comparable with Vertical.

Scalability Results To measure the scalability of each approach, we have
performed an incremental import. The Barton file have been divided into small
subsets of triples and subsets are imported separately. The import of a subset,
corresponds to adding new knowledge to the RDF graph. We have measured
the time needed to insert the new triples in each approach... After the import
of each subset, the queries are executed for the three approaches measuring the
query answer time. Figure X

i
i

“main” — 2009/2/24 — 16:07 — page 92 — #104 i
i

i
i

i
i

92
Chapter 4. A Scalable and Extensible Framework for the Management of

RDF data

Figure 4.11: Query Performance as number of triples scale

Although the magnitude of query performance is important, an arguably
more important factor to consider is how performance scales with size of data.
In order to determine this, we varied the number of triples we used from the li-
brary dataset from one million to fifty million (we randomly chose what triples
to use from a uniform distribution) and reran the benchmark queries. Figure
4 shows the results of this experiment for query 6. Both vertical partition-
ing schemes (Postgres and C-Store) scale linearly, while the triple-store scales
super-linearly. This is because all joins for this query are linear for the vertically
partitioned schemes (either merge joins for the subject-subject joins, or index
scan merge joins for the subject-object inference step); however the triple-store
sorts the intermediate results after performing the three selections and before
performing the merge join. We observed similar results for all queries except
queries 1, 4, and 7 (where the triple-store also scales linearly, but with a much
higher slope relative to the vertically partitioned schemes).

4.6 Conclusions

Due to the growing importance of Semantic Web, a number of applications
that uses RDF data has been developed. This large amount of data must
be rapidly accessed in order to be effectively used. Storing and maintaining
RDF data represent a crucial activity to achieve this complex purpose. The
classical “triple-stores” approaches are not good enough because most of the

i
i

“main” — 2009/2/24 — 16:07 — page 93 — #105 i
i

i
i

i
i

4.6. Conclusions 93

Figure 4.12: Maintenance Performance as number of triples scale

queries require a high number of self-joins on the triples table. In order to
overcome these problems we proposed a model-based approach to store and
maintain large amount of RDF data and showed that it achieves performance
results similar to other well-known approaches. Moreover, the scalability tests
performed have shown the quality of the overall approach.

The expressive power of the proposed model depends on the number of
constructs we have introduced. If the need to represent new concepts arises,
we have just to add proper constructs to the model. In particular, the goal of
our current work involves the management of both RDF (data level) and RDFS
(schema level) via an extended model. Another issue we are studying regards
the possibility to integrate the management of OWL from a data management
perspective.

i
i

“main” — 2009/2/24 — 16:07 — page 94 — #106 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page 95 — #107 i
i

i
i

i
i

Chapter 5

Living with ontologies and
databases

Interoperability of ontologies and databases has received a lot of attention re-
cently. However, most of the work has concentrated on specific problems (such
as storing an ontology in a database or making database data available to
ontologies) and referred to specific models for each of the two. Here we pro-
pose an approach that aims at being more general and model independent. In
fact, it works for different dialects for ontologies and for various data models
for databases. Also, it supports translations in both directions (ontologies to
databases and vice versa) and it allows for flexibility in the translations, so
that customization is possible. The proposal extends recent work for schema
and data translation (the MIDST project, which implements the ModelGen
operator proposed in model management), which relies on a metamodel ap-
proach, where data models and variations thereof are described in a common
framework and translations are built as compositions of elementary ones.

5.1 Introduction

The availability of mature Semantic Web technologies and the definition of
standards encourage the development of applications that exploit this ap-
proach. While Semantic Web formalisms are conceived to define ontologies
or simple annotations with the purpose to share and reuse knowledge [?],
databases are built to store (and retrieve) information effectively and effi-
ciently. Even if the prerequisites and the general goals are rather different,

95

i
i

“main” — 2009/2/24 — 16:07 — page 96 — #108 i
i

i
i

i
i

96 Chapter 5. Living with ontologies and databases

Semantic Web and (relational) database applications coexist with a growing
need of interoperability. Large ontologies are often stored in database reposito-
ries in order to exploit their ability to handle secondary storage and to answer
queries in efficient ways. Semantic Web query languages can also be translated
to SQL thus to allow Semantic Web applications to keep on using their own
query languages over data that is both internal and external. Moreover, the
visibility of data stored in databases can be extended to Semantic Web ap-
plications, automatically generating a new ontology from the source data or
mapping to an existing ontology. Another interesting aspect about Semantic
Web and Database interoperability regards Web sites. Nowadays many Web
sites are dynamically generated from a database, therefore it would be useful
to let this content be available for Semantic Web applications [?, ?].

Many forms of mappings between ontologies and database have been pro-
posed in the literature. Most of them use an OWL ontology to describe the
database structure and data. The rules to implement the correspondences are
often embedded in the tool. Moreover, to the best of our knowledge, each work
focuses either on the translation from ontologies to databases or on the reverse
one, but does not covers both at the same time.

We propose here a completely different approach that allows the translation
between Semantic Web formalisms and databases and backwards. Moreover,
we aim at supporting different models both for ontologies and for databases.
We pursue this goal by adopting a technique based on a metamodel approach, as
proposed in MIDST (Model Independent Schema and Data Translation) [?, ?].
The metamodel is the set of constructs that are available, and a model is defined
by indicating the constructs (and their variations) it includes. The metamodel
we need here is an extension of the one used in MIDST, with many common
constructs and a few additional ones, needed to discuss features that appear in
ontologies and not in traditional database models. In this framework, we have
a special model, called the supermodel, that includes all possible constructs,
and so generalizes all models of interest. A major benefit of the supermodel is
the fact that all translations of interest can be performed within it, by means of
compositions of elementary steps that refer to the specific features of the vari-
ous constructs. Such a framework allows for the specification of many different
models and for the support to the translation between each of them. Trans-
lation rules are defined in a Datalog variant with OID invention, and so they
are independent of the engine that executes them and also easily customizable
and extendible. Within this framework we are now conducting various exper-
iments, and we discuss in this thesis how we can handle translations between
OWL-Lite ontologies and relational databases (in both directions). We choose

i
i

“main” — 2009/2/24 — 16:07 — page 97 — #109 i
i

i
i

i
i

5.2. Related Work 97

OWL-Lite for these preliminary experiments because it is currently the most
commonly used variant of OWL.

The main contributions of this work are:

• The extension of the metamodels and of the supermodel to properly rep-
resent Semantic Web formalisms

• The possibility to operate translations between Semantic Web languages
and the relational model in both directions

• A flexible framework that allows the user to manipulate translation rules
with a powerful language.

The rest of the chapter is organized as follows. In Section 5.2 we review
related work in the literature. In Section 5.3 we illustrate the extensions we
need for MIDST supermodel in order to deal with Semantic Web features. In
Section 5.4 we show how our approach covers translations from ontologies to
relational databases and in Section 5.5 we cover the converse. Section 5.6 is
devoted to brief final remarks.

5.2 Related Work

Many proposals exist that address interoperability issues between Semantic
Web and relational databases. Several branches can be identified, and we
briefly comment here on some of them. The ability of generating an ontology
from relational data has been faced by [?, ?]. Both approaches describe the
database schema and instances by means of a suitable dictionary used in an
ontology. Handschuh et al. [?] apply a similar approach for annotating data
intensive Web sites. In these works, mappings are managed referring to specific
ontologies that describe the source relational model. A similar approach is
followed by [?] for the generation of RDF documents. A more recent approach
[?] discusses various possibilities for the mapping between relational databases
and RDF. Our approach aims at a greater generality: we describe the models of
interest by a meta-model, subsequently schema and instances are treated. This
allows us to be model independent, with a general approach that is extensible
to virtually any model. Moreover, translations are not embedded but specified
by means of high level rules and therefore they are customizable according to
the different needs.

A number of formal approaches based on description logics exist [?, ?].
These cannot be compared with our work, as we concentrate on structural

i
i

“main” — 2009/2/24 — 16:07 — page 98 — #110 i
i

i
i

i
i

98 Chapter 5. Living with ontologies and databases

aspects, and so we do not refer to reasoning capabilities. However, these pieces
of work each refer to one specific data model, ER or relational, whereas our
approach applies to many different data models, belonging to many families,
including relational, ER, object-oriented and object-relational.

Another related direction of research concerns the storage of ontologies.
Since storing ontologies into flat files results in a loss of scalability and perfor-
mance, recent proposals have considered the adoption of relational databases
as repositories. In [?] the framework MINERVA is presented with the goal of
storing large ontologies into a relational database. The tool achieves scalabil-
ity and performance issues exploiting a relational schema tailored on the OWL
model. Our work addresses the storage of ontologies by exploiting a logical
organization of data that is not bound to a specific model, and customization
of the translations is possible.

Moreover, none of the above approaches considers translations in both di-
rections, nor any form of model independence, as each of them is tightly related
to a specific data model and a specific translation approach.

A related, but different problem is considered in [?], who study mappings
between databases and ontologies, as a tool to support evolution and capture
change. However it provides no support to building the mapping.

5.3 Extending MIDST supermodel to Semantic Web

In this section we propose an extension of MIDST that supports the inter-
operability of Semantic Web formalism to translate data and schemas from
databases to ontologies and viceversa. The supermodel has been defined with
respect to a variety of models for which translations can be applied by our
approach (E-R, Relational, Object-Oriented, Object-Relational, XSD, etc.).
The structure of the supermodel is relatively compact. In our relational im-
plementation, it has a table for each construct. We currently have a plenty of
constructs, which are sufficient to describe a large variety of models. However
Semantic Web formalisms required a bit more work to be addressed in our
approach.

In our preliminary works on definition of Semantic Web models (and con-
sequently the related mapping rules) we have addressed semantic annotation
platforms [?] and two formalisms, namely RDF and TopicMaps [?]. In these
works the supermodel has been extended to consider the constructs of the
aforementioned contexts.

Despite of its generality, the previous version of the supermodel could not

i
i

“main” — 2009/2/24 — 16:07 — page 99 — #111 i
i

i
i

i
i

5.3. Extending MIDST supermodel to Semantic Web 99

be used to represent the broad range of formalisms coming from the Semantic
Web field. For this purpose, and also to bridge the gap between databases and
ontologies, we propose a more general version of the supermodel extending its
capabilities.

The supermodel has been redefined to take into account Semantic Web
models, maintaining the possibility of using the variety of models so far con-
sidered. Therefore we introduce a set of new meta-constructs that can address
also ontologies (RDF, RDF(S), OWL, etc.), we also define a set of new rules
able to perform the translations between the new models and the old ones. In
this thesis we focus on translation between relational databases and ontologies.

A simplified version of the extended supermodel presenting only the con-
structs of interest is shown in Fig. 5.1. In the diagram for each construct
we show the attributes, the properties and the references. In order to bet-
ter understand the supermodel and its features we briefly introduce the most
important constructs with their associated properties (the prefix SM indicates
that the constructs belongs to the supermodel):

• SM Abstract - Abstract is used to describe all kinds of concepts. It
corresponds to constructs used in many models, such as ER model entities
and OWL classes. Each object must have an identity to be uniquely
identifiable (i.e. the OID).

• SM Aggregation - This construct is used to represent aggregation of lexi-
cals. For example a relational table can be represented as an aggregation
of lexicals where each lexical represents one column.

• SM BinaryAggregationOfAbstracts - This construct is used to represent
all kinds of binary relation between abstracts. For example they are used
to map relationships in ER and owl:objectproperties in OWL.

• SM ForeignKey - We use this construct to represent the relation between
the from table and the to table and we use SM ComponentOfForeignKey
to describe columns involved in the foreign key.

• SM InverseOfBinaryAggOfAbs - This construct represents the inverse of
a SM BinaryAggregationOfAbstract. In particular it can be used to
map the inverse of an OWL property.

• SM Generalization - It is used jointly with the construct SM ChildOfGeneralization
to represent generalization. For example it is used to map ER generaliza-

i
i

“main” — 2009/2/24 — 16:07 — page 100 — #112 i
i

i
i

i
i

100 Chapter 5. Living with ontologies and databases

Figure 5.1: A portion of MIDST supermodel.

tions and also to describe the concepts of subClassOf and subPropertyOf
in OWL-Lite.

• SM Lexical - Lexical construct is used to represent each lexical elements,
that is an element with an associated value [?]. If we are considering the
instance level they contains the instance data (such as the individuals of
OWL).

• SM Set - This construct is used to represent sets of abstracts. Each ele-
ment of the set is represented through the SM ComponentOfSet construct.
The type property specifies which kind of set we are considering. For ex-
ample we can represent collections such as the RDF containers or even
the OWL construct intersectionOf.

Each model is defined by its constructs and the meta-constructs they refer
to. Simple versions of models could be seen as follows (omitting some details,
but keeping the main features):

i
i

“main” — 2009/2/24 — 16:07 — page 101 — #113 i
i

i
i

i
i

5.4. From OWL ontology to Relational Database 101

• the relational model (under a reasonably simplified view) involves (i)
tables, that are represented by the meta-construct Aggregation, with
columns
(the ComponentOfAggregation). Some specification for the columns can
be expressed, for example whether they are part of the key or whether
nulls are allowed; (ii) foreign keys defined over components of aggrega-
tions;

• the OWL-Lite model at a simple level involves (i) the main element are
the classes (which correspond to abstracts); (ii) BinaryAggregationOfAbstracts
that represents the properties (i.e. binary relation between classes).

The proposed extension of the supermodel and the consequent extension of
the MIDST tool has permitted to analyze the interoperability issues also for
Semantic Web models.

5.4 From OWL ontology to Relational Database

Our purpose is to translate an OWL ontology into a relational representation
trying to avoid any information or semantics loss. We will illustrate by a use
case how the translation takes place. Let us consider the OWL-Lite example
below:

:Person a owl:Class . :Surname a owl:FunctionalProperty ,
<http://.../owl#DatatypeProperty> ;
rdfs:domain :Person ;
rdfs:range <http://.../XMLSchema#string> .

:Score a owl:FunctionalProperty ,
<http://.../owl#DatatypeProperty>;
rdfs:domain :SoccerPlayer ;
rdfs:range <http://.../XMLSchema#int> .

:Name a owl:FunctionalProperty ,
<http://.../owl#DatatypeProperty>;
rdfs:domain :Person ;
rdfs:range <http://.../XMLSchema#string> .

:SoccerPlayer a owl:Class ;
rdfs:subClassOf :Person ;
owl:equivalentClass
[a owl:Class ;

owl:intersectionOf
([a owl:Restriction ;

owl:allValuesFrom :SoccerTeam ;
owl:onProperty :worksIn

] [a owl:Restriction ;
owl:maxCardinality
"1"^^<http://.../XMLSchema#int> ;
owl:onProperty :worksIn

i
i

“main” — 2009/2/24 — 16:07 — page 102 — #114 i
i

i
i

i
i

102 Chapter 5. Living with ontologies and databases

])] .
:hasCaptain a owl:FunctionalProperty ,

<http://.../owl#ObjectProperty> ;
rdfs:domain :SoccerTeam ;
rdfs:range :SoccerPlayer ;
owl:inverseOf :inverse_of_hasCaptain .

:hasPlayed a owl:ObjectProperty ;
rdfs:domain :Person ;
rdfs:range :SoccerTeam .

:worksIn a owl:ObjectProperty ;
rdfs:domain :Person .

:TeamName a owl:DatatypeProperty ;
rdfs:domain :SoccerTeam ;
rdfs:range <http://.../XMLSchema#string> .

:inverse_of_hasCaptain a owl:InverseFunctionalProperty ,
<http://.../owl#ObjectProperty> ;
rdfs:domain :SoccerPlayer ;
rdfs:range :SoccerTeam ;
owl:inverseOf :hasCaptain .

:SoccerTeam a owl:Class ;
rdfs:subClassOf <http://.../owl#Thing> ;
rdfs:subClassOf
[a owl:Restriction ;

owl:minCardinality "1"^^<http://.../XMLSchema#int> ;
owl:onProperty :hasCaptain] .

The serialization syntax chosen is N3 [?], that is more compact and readable
than RDF/XML. To save more space we have abbreviate the URIs with ”...”,
when the address is too long.

This example represents the relationships between soccer players and soccer
teams. A general class Person is defined with the property worksIn, to express
that a person works somewhere. Each person has a Name and a Surname of type
string.
The class SoccerPlayer is obtained as the persons that work in one SoccerTeam.
The ontology also tells us that a soccer player could have past relationships
with other teams, by the property PlayedInThePast. The functional prop-
erty hasCaptain represents that each soccer team has exactly one captain
(as soccer player). Moreover, hasCaptain is also inverseFunctional then an
inverseOfhasCaptain represents that a soccer player is captain of a single
team with the same value as hasCaptain. Soccer players have a Score of type
integer. Soccer teams have a TeamName of type string.

OWL To Supermodel

Following the translation process in our approach, the first step is to de-
scribe the OWL-Lite constructs in terms of the supermodel constructs. By
the MIDST tool it is possible to add models and, for each model its constructs,

i
i

“main” — 2009/2/24 — 16:07 — page 103 — #115 i
i

i
i

i
i

5.4. From OWL ontology to Relational Database 103

defining them by means of the meta-constructs. The result of this phase is
a meta-representation of the OWL-Lite model that is stored in the relational
dictionary. Fig. 5.2 sketches some of the correspondences to explain how the
OWL-Lite constructs are mapped into the supermodel.

Figure 5.2: Correspondences between the OWL model and the supermodel.

Once the correspondences between the OWL-Lite model and the super-
model are defined, we can exploit them to import an OWL-Lite schema in our
relational representation. Due to space limitations, we will not illustrate all
the facets of the import process but, referring to the example of section 5.4, we
explain some major cases that are representative.

Let us recall, for the sake of completeness, the major feature of OWL we
refer to.

Beside the named classes (e.g. Person), OWL allows to specify a class as
the result of a set operation (equivalence, intersection, etc.). Moreover a class
can be defined as all the elements that comply a restriction. A restriction can
be on values, when it bounds the range of a property or on cardinality, when
it limits the number of values of a property.

Let us now consider the non trivial definition of the class SoccerPlayer
that is obtained by means of operations on named and unnamed classes. Let
C, C1 and C2 be unnamed OWL-Classes. Be C1 the class of objects that
comply the restriction on the property worksIn, to have all the values from
the class SoccerTeam. Be C2 the class defined as a restriction on the property
worksIn, to have 1 as the maximum cardinality. The class C is obtained as the
intersection of the classes C1 and C2 and represents all the things that work in
exactly one soccer team. We eventually have all the elements to describe the
class SoccerPlayer, that is defined as a subclass of Person and to be equivalent
to the class C, therefore all the persons that work in exactly one soccer team.

i
i

“main” — 2009/2/24 — 16:07 — page 104 — #116 i
i

i
i

i
i

104 Chapter 5. Living with ontologies and databases

Let us illustrate how the elements involved in the SoccerPlayer definition are
imported into the MIDST tool. The class C1 is mapped by creating an abstract
called ThingWorksInRestricted, that is the sub class of the Thing class where
all the elements works in a soccer team. Then a BinaryAggregationOfAbstracts
called worksInRestricted is defined, that relates ThingWorksInRestricted
to the class SoccerTeam. At last a generalization can be defined, to espress
that worksInRestricted is a subproperty of worksIn.

For the class C2, defined as all the things that have at most one value for
the property worksIn, the mapping process is similar to the previous.

Defining a Set of type intersection, that refers to the class C, with the
classes C1 and C2 as ComponentOfSet, we can express that C is the intersec-
tion of C1 and C2. We finally use a binary aggregation of abstract, defined as
owl:equivalentClass, to relate the class SoccerPlayer to the class C. In sec-
tion 2.4 we have illustrated a portion of the relational dictionary that is used to
store all the models information, another part of the dictionary allows to store
the schema information. During the importing of an OWL document, for each
model construct that appears in the dictionary (the rows of the MM Construct
table), the system creates a table that is used to manage the schema elements.
For example, we have the owl:Class construct stored in the MM Construct
table and the schema element Person stored in the OWL Class table. A small
example that illustrates the hierarchy of some tables used is illustrated Fig.
5.3.

After the first “copy” operation, we have obtained database tables that
fully describe the ontology structure, exploiting a logical organization that
reflects the constructs of the ontology language. Once the ontology is trans-
lated in terms of a relational representation, it can be queried, modified and
converted back to the source ontology language. Since all the characteristics
of the constructs used to define the source ontology are stored into the re-
lational representation, it is possible to perform the reverse transformation
from the relational representation back to the original ontology. Moreover, our
meta-representation of an OWL ontology can subsequently be used to perform
translations to other formalisms.

Translation within the Supermodel

As a result of the copy operation, we have achieved the goal to store the
structural aspects of an ontology into a relational database avoiding semantic
loss.

By means of rules, written in a Datalog variant, it is also possible to define

i
i

“main” — 2009/2/24 — 16:07 — page 105 — #117 i
i

i
i

i
i

5.4. From OWL ontology to Relational Database 105

Figure 5.3: MIDST Tables.

the translation between the source ontology language and a specific target
relational model, chosen by the user, rather than using our meta-representation.

The flexibility of our approach allows the user to choose the form of the
translation, defining how to generate the target model. For example, it is pos-
sible to define a translation where a relation is generated for each kind of class
and another translation where only the named classes (the ones with rdf:ID)
are transformed in relations. Furthermore, generalization can be mapped to
the relational model in many ways and all the choices are available to the user.

We choose the following translation process. The description we provide
here refers to the constructs of the source and the target models, to clarify
how the translation is performed but we remark that the actual translation
steps are defined on the meta-representation. Some samples of Datalog rules
are illustrated at the end of this section. For each named class C a relation
C ′ is created with an assigned OID as primary key. The attribute OID is

i
i

“main” — 2009/2/24 — 16:07 — page 106 — #118 i
i

i
i

i
i

106 Chapter 5. Living with ontologies and databases

generated automatically and has the role of filling the absence of primary keys
in the OWL-Lite model. The single value datatype properties a are mapped
to the columns a′, while multivalued properties became a separated relation
A′ with a reference column to the relation C ′. If the class C is subclass of D,
the relations D′ and C ′ are created but C ′ has not an OID column assigned
because it is externally identified by the relation D′. If there are two classes
C and D related by an object property b. The classes C and D are translated
to the relations C ′ and D′. If the object property b is functional from C to
D, it is mapped into a foreign key column b′ assigned to C ′, that refers to the
OID of the relation D′ and is NOT NULL. If b is also inverseFunctional, then b′ is
defined UNIQUE, NOT NULL. If the property that relates two classes, C and D, is
a simple owl:ObjectProperty, it can be seen as a many to many relationship,
then will be mapped in a separate relation B′ that has two attributes c′, d′,
with foreign keys to the OIDs of the relations C ′ and D′.

The above process is executed as a Datalog program that is composed by
simple rules that represent each step.

The two examples of simple rules we provide here, refer to the cases of
translating named classes:

SM Aggregation(
OID :#AggregationOID 1*(oid),
Name: name

)
←
SM Abstract(

OID : oid,
Name: name

),
SM Lexical(

OID : lexicalOID,
Name: ”rdf:ID”,
isIdentifier : ”true”,
abstractOID : oid

)

and a functional owl:ObjectProperty:

i
i

“main” — 2009/2/24 — 16:07 — page 107 — #119 i
i

i
i

i
i

5.4. From OWL ontology to Relational Database 107

SM ComponentOfForeignKey(
OID : #ComponentOfForeignKeyOID 1

*(oid, lexOID),
Name: name,
foreignKeyOID : #ForeignKeyOID 1(oid),
lexicalFromOID : #LexicalOID 1(oid,lexOID),
lexicalToOID : lexOID

)
←
SM BinaryAggregationOfAbstracts(

OID : oid,
isFunctional1 : ”true”,
abstract2OID : abs2OID

),
SM Lexical [DEST] (

OID : lexOID,
Name: name,
isIdentifier : ”true”,
type: t,
aggregationOID : #AggregationOID 1(abs2OID)

),
SM Abstract(

OID : abs2OID
)

The meaning of the Datalog rules should be quite intuitive for the reader
but let us explain some details. The terms that are preceded by the # char-
acter, are the skolem functors that have the role of generating an invented
identifiers, that is always the same when passing the same argument. The first
rule selects all the SM Abstract that have a SM Lexical with the name rdf:ID
and generates a correspondent SM Aggregation. The second rule generates a
SM ComponentOfForeignKey

The execution of the rules generates the target schema but still expressed in
terms of meta-constructs. The last step is a simple transformation that copies
this meta-representation into a one that is expressed in terms of the target
model.

Supermodel To Relational

Exploiting the correspondences between the supermodel and the relational
model (that are sketched in figure 5.4), it is possible to generate the rela-

i
i

“main” — 2009/2/24 — 16:07 — page 108 — #120 i
i

i
i

i
i

108 Chapter 5. Living with ontologies and databases

tional schema that is illustrated in the following:

Person(OID, Name, Surname)
SoccerPlayer(PersonOID, Score, SoccerTeamOID)
SoccerTeam(OID, TeamName, SoccerPlayerOID)

PlayedInThePast(SoccerPlayerOID, SoccerTeamOID)

with the following constraints:

SoccerPlayer.SoccerTeamOID references SoccerTeam.OID

SoccerTeam.SoccerPlayerOID references SoccerTeam.OID

PlayedInThePast.SoccerPlayerOID references SoccerPlayer.OID

PlayedInThePast.SoccerTeamOID references SoccerTeam.OID

As we previously underlined, the obtained schema is only an example of
relational schema that can be generated, choosing a different set of rules will
lead to a different result, following the user needs.

5.5 From Relational Database to OWL Ontology

As we briefly said in the introduction, an important issue about interoperability
between Semantic Web and databases regards the exportation of information
stored in databases to a form that is interpretable from Semantic Web appli-
cations.

In this section we aim at explaining how our approach is suitable to perform
translations between relational databases and OWL ontologies. As we stated
in the previous section the approach is not dependent from the specific model
as the translations are made within the supermodel.

The three steps of the translation process in this case are: i) importing
relational constructs in the supermodel, ii) translation between supermodel
constructs, iii) exporting from the supermodel to OWL.

Let us consider the following relational example:

Professor(ID, Name, Surname)
Course(CourseID, CourseName, ProfID)
Project(IDProj, ProjName)

Participate(ProfessorID, ProjectID)

with the following constraints:

i
i

“main” — 2009/2/24 — 16:07 — page 109 — #121 i
i

i
i

i
i

5.5. From Relational Database to OWL Ontology 109

Course.ProfID references Professor.ID

Participate.ProfessorID references Professor.ID

Participate.ProjectID references Project.IDProj

The example describes the relationship between Professors and their Courses
and Projects.

Relational to Supermodel

In this step we want to describe the relational constructs in terms of the su-
permodel constructs. Due to the fact that all modifications we have applied
to the supermodel only augment its capabilities, keeping a backward compat-
ibility, we don’t need to re-write the correspondences between the relational
model and the supermodel but just reuse the previously defined ones. There-
fore for the initial step of “copying” information from the relational model to
the supermodel we can take advantage of the previous work (for more details
see [?]).

The correspondences between the relational model and the supermodel are
sketched in Fig. 5.4

Figure 5.4: Correspondences between the relational model and the supermodel.

Translation within the Supermodel

The second step is the real translation that must be made in term of supermodel
constructs.

As the relational model was already considered in the previous work, the
translation rules were partially reused, some were updated and only few rules
have been written from scratch.

i
i

“main” — 2009/2/24 — 16:07 — page 110 — #122 i
i

i
i

i
i

110 Chapter 5. Living with ontologies and databases

At a simple level, we can state that each relational table can be translated
in an OWL class. Therefore, for each relation R in the relational model, we
must have a class C in the OWL model. The attributes of the relations (the
columns) a1, that are not foreign key, are mapped to datatype property a′

1 in
OWL. Each attribute a2 of a relation R1, that is foreign key of a relation R2,
is mapped as an object property a′

2 that relates the two classes C1 and C2,
derived respectively from relations R1 and R2.

As the concept of primary key is not present in OWL-Lite, we loose this
construct during the translation. Actually the only case where it is possible
to keep the concept of relational primary key in an OWL ontology is when
the primary key is composed by a single attribute. Let ak be the primary key
of a relation R. The naif method to translate it to OWL-Lite is to define a
class to map the relation CR, another class to map the key attribute Ck. Then
a functional object property O from CR to Ck and its inverse functional O′,
implement the meaning of the primary key. Since it is not possible to generalize
this approach to cases when the key is composed by more attributes, we choose
not to keep the primary keys in OWL-Lite.

<owl:ObjectProperty rdf:ID="participate">

<rdfs:domain rdf:resource="#Professor"/>

<rdfs:range rdf:resource="#Project"/>

<owl:inverseOf rdf:resource="#inverseOf_participate"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="inverseOf_participate">

<rdfs:domain rdf:resource="#Project"/>

<rdfs:range rdf:resource="#Professor"/>

</owl:ObjectProperty>

All steps we have described (and some other that we omit for the lack of
space) are realized through a Datalog program, that is composed of simple
rules that execute each elementary step. In order to give an idea of the rules
for this kind of translation we present two examples.

The first rule is used to translate a relation into an OWL class. At the
supermodel level we have that each relation can be mapped as Aggregation
and each OWL class to Abstracts. Therefore we need to define a rule to map
the SM Aggregation construct to SM Abstract construct as follows:

i
i

“main” — 2009/2/24 — 16:07 — page 111 — #123 i
i

i
i

i
i

5.5. From Relational Database to OWL Ontology 111

SM Abstract(
OID :#AbstractOID 3*(oid),
Name: aggregationName

)
←
SM Lexical(

OID : lexicalOID,
Name: lexicalName,
isNullable: isNullable,
isIdentifier : ”false”,
aggregationOID : aggregationOID

),
!SM ComponentOfForeignKey(

lexicalFromOID : lexicalOID
),
SM Aggregation(

OID : oid,
Name: aggregationName

)

The second rule is used to translate the attributes of a relation that are not
foreign keys of other relations.
Therefore each Lexical of an Aggregation, which is not a ComponentOfForeignKey,
is translated into a Lexical (in other words an attribute of a relation which is
not a foreign key in relational model can be translated into an
owl:DatatypeProperty. The rule is defined as follows:

i
i

“main” — 2009/2/24 — 16:07 — page 112 — #124 i
i

i
i

i
i

112 Chapter 5. Living with ontologies and databases

SM Lexical(
OID :#LexicalOID 0*(lexicalOID),
Name: lexicalName,
isOptional : isNullable,
isIdentifier : isId,
type: type,
abstractOID :#AbstractOID 3(aggregationOID)

)
←
SM Lexical(

OID : lexicalOID,
Name: lexicalName,
isNullable: isNullable,
isIdentifier : isId,
aggregationOID : aggregationOID

),
!SM ComponentOfForeignKey(

lexicalFromOID : lexicalOID
),
SM Aggregation(

OID : aggregationOID)
)

Supermodel to OWL

This step is quite similar to the one described in section 5.4. Indeed the last step
of the translation process is a copy operation that produces the target schema
using the constructs of the target model. The final result is an OWL-compliant
ontology that maintains the semantics of the source relational database.

5.6 Conclusions

In this thesis we showed how MIDST, an implementation of the ModelGen op-
erator that supports model-generic translations of schemas and their instances
within a large family of models, can be extended to address the large family
of Semantic Web formalism. In particular we show how our approach can be
suitable to perform translation from relational databases to OWL ontologies
and viceversa. Following the research illustrated in this chapter, we published
the article “Ontologies And Databases: Going Back And Forth” (see [?] for
details).

i
i

“main” — 2009/2/24 — 16:07 — page 113 — #125 i
i

i
i

i
i

Chapter 6

Temporal aspects for data
intensive Web sites

The adoption of high-level models, for temporal, data-intensive Web sites is
proposed together with a methodology for the design and development through
a content management system (CMS). The process starts with a traditional E-
R scheme; the various steps lead to a temporal E-R scheme, to a navigation
scheme and finally to a T-ADM scheme. The logical model allows the definition
of page-schemes with temporal aspects (which could be related to the page as
a whole or to individual components of it). Each model considers the temporal
features that are relevant at the respective level. A content management tool
associated with the methodology has been developed: from a typical content
management interface it automatically generates both the relational database
(with the temporal features needed) supporting the site and the actual Web
pages, which can be dynamic (JSP) or static (plain HTML or XML), or a
combination thereof. The tool also includes other typical features of content
management all integrated with temporal feature.

6.1 Introduction

The systematic development of Web sites has attracted the interest of the
database community as soon as it was realized that the Web could be used
as a suitable means for the publication of useful information of interest for
community of users (Atzeni et al. [?], Ceri et al. [?], Fernández et al. [?],
Brambilla et al. [?]). Specific attention has been devoted to data-intensive

113

i
i

“main” — 2009/2/24 — 16:07 — page 114 — #126 i
i

i
i

i
i

114 Chapter 6. Temporal aspects for data intensive Web sites

sites, where the information of interest has both a somehow regular structure
and a possibly significant volume; here the information can be profitably stored
as data in a database and the sites can be generated (statically or dynamically)
by means of suitable expressions (i.e. queries) over them (Merialdo et al. [?]). In
this setting, the usefulness of high-level models for the intensional description of
Web sites has been advocated by various authors, including Atzeni et al. [?, ?]
and Ceri et al. [?, ?], which both propose logical models in a sort of traditional
database sense and a model-based development for data intensive Web sites.

When accessing a Web site, users would often get significant benefit from
the availability of time-related information, in various forms: from the history
of data in pages to the date of the last update of a page (or the date the content
of a page was last validated), from the access to previous versions of a page
to the navigation over a site at a specific past date (with links coherent with
respect to this date). As common experience tells, various aspects of a Web
site often change over time: (i) the actual content of data (for example, in a
University Web site, the instructor for a course); (ii) the types of data offered
(at some point we could decide to publish not only the instructor, but also the
teaching assistants, TAs, for a course); (iii) the hypertext structure (we could
have the instructors in a list for all courses and the TAs only in separate detail
pages, and then change, in order to have also the TAs in the summary page);
(iv) the presentation. Indeed, most current sites do handle very little time-
related information, with past versions not available and histories difficult to
reconstruct, even when there is past data. Clearly, these issues correspond to
cases that occur often, with similar needs, and that could be properly handled
by specific techniques for the support to time-related aspects. We believe that
a general approach to this problem, could generate a significant benefit to many
data-intensive Web applications.

Indeed, we have here requirements that are analogous to those that led to
the development of techniques for the effective support to the management of
time in databases by means of temporal database (see [?], [?], [?] and [?] for
interesting discussions).

It is well known that in temporal databases there are various dimensions
along which time can be considered. Beside user-defined time (the semantics
of which is “known only to the user”, and therefore is not explicitly handled),
there are valid time (“the time a fact was true in reality”) and transaction time
(“the time the fact was stored in the database”).

In order to highlight the specific aspects of interest for Web sites, we con-
centrate on valid time, which would suffice to show the main ideas. Transaction
time would have similar requirements, plus some specific, additional facets.

i
i

“main” — 2009/2/24 — 16:07 — page 115 — #127 i
i

i
i

i
i

6.1. Introduction 115

In a Web site, the motivation for valid time is similar to the one in temporal
databases: we are often interested in describing not only snapshots of the
world, but also histories about its facts. However, there is a difference: in
temporal databases the interest is in storing histories and in being able to
answer queries about both snapshots and histories, whereas in Web sites the
challenge is on how histories are offered to site visitors, who browse and do not
query. Therefore, this is a design issue, to be dealt with by referring to the
requirements we have for the site. The natural (and not expensive) redundancy
common in Web sites could even suggest to have a coexistence of snapshots
and histories.

Temporal Web sites require the management of temporal data and espe-
cially its collection. In this respect, it is worth noting that most Web sites are
supported by applications that handle their data (and the updates to them).
These applications are often implemented with the use of a Content Manage-
ment System (CMS). We claim that the extension of CMSs with the explicit
management (acquisition and maintenance) of time-related data can provide a
significant contribution to our goal. This would obviously require the repre-
sentation, in the CMS repository, of the temporal aspects of the information
to be published.

This work aims at giving a contribution to the claim that the management of
time in Web sites can be effectively supported by leveraging on the experiences
made in the database field, and precisely by the combination of the three
areas we have briefly mentioned: temporal databases, content management
systems and model-based development of Web sites. In particular, attention
is devoted to models and design: models in order to have a means to describe
temporal features and design methods to support the developer in his/her
decisions on which are the temporal features of interest to the Web site user.
The approach relies on a CASE tool that handles the various representations
and transformations and so it gives significant support to the designer in the
development of the various components.

This section of the thesis extends the experiences in the Araneus project [?,
?, ?, ?] where models, methods and a CMS prototype for the development of
data-intensive Web sites were developed. Indeed, we propose a logical model
for temporal Web sites, a design methodology for them and a tool to support
the process. A first version of the tool has been recently demonstrated (Atzeni
and Del Nostro [?]). We refer here to a new version that also provides a CMS-
style interface to support the user’s modifications to the site content and gets
temporal information from these actions.

The rest of the chapter is organized as follows. Section 6.2 is devoted

i
i

“main” — 2009/2/24 — 16:07 — page 116 — #128 i
i

i
i

i
i

116 Chapter 6. Temporal aspects for data intensive Web sites

to a brief review of the aspects of the Araneus approach that are needed as
a background. Then, Section 6.3 illustrates the temporal extensions for the
models we use in our process and Section 6.4 the specific CMS features. In
Section 6.5 the methodology with the associated tool is illustrated by means
of an example of usage. Finally, in Section 6.6 we briefly sketch possible future
developments.

6.2 The Araneus models and methodology

The Araneus approach (Merialdo et al. [?]) focuses on data-intensive Web sites
and proposes a design process (with an associated tool) that leads to a com-
pletely automatic generation of the site extracting data from a database. The
design process is composed of several steps each of which identifies a specific
aspect in the design of a Web site. Models are used to represent the intensional
features of the sites from various points of view:

1. the Entity Relationship (ER) model is used to describe the data of interest
at the conceptual level (then, a translation to a logical model can be
performed in a standard way, and is indeed handled in a transparent way
by the associated tool);

2. a “navigational” variant of the ER model (initially called NCM and then
N-ER) is used to describe a conceptual scheme for the site. The main
constructs in this model are the major nodes, called macroentities, repre-
senting significant units of information, which often consolidate concepts
from the ER model (one or more entities/relationships), and navigation
paths, expressed as directed relationships. Nodes of an additional type,
called aggregations, are used to describe the hierarchical access structure
of the hypertext;

3. a logical scheme for the site is defined using the Araneus Data Model
(ADM), in terms of page schemes, which represent common features of
pages of the same “type” with possibly nested attributes, whose values
can come from usual domains (text, numbers, images) or be links to other
pages.

The design methodology (sketched in Figure 6.1, see Atzeni et al. [?]),
supported by a tool called Homer (Merialdo et al. [?]), starts with conceptual
data design, which results in the definition of an ER scheme, and then proceeds

i
i

“main” — 2009/2/24 — 16:07 — page 117 — #129 i
i

i
i

i
i

6.2. The Araneus models and methodology 117

with the specification of the navigation features, macroentities and directed
relationships (that is, a N-ER scheme). The third step is the description of the
actual structure of pages (and links) in terms of our logical model, ADM.

Figure 6.1: The Araneus design process

Three simple schemes for the Web site of a University department, to be
used in the sequel for comments, are shown in Figures 6.2, 6.3, and 6.4, respec-
tively.

Figure 6.2: The example of ER schema

A fourth step is the specification of the presentation aspects, which are not
relevant here. In the end, since all the descriptions are handled by the tool
and the various steps from one model to the other can be seen as algebraic
transformations, the tool is able to generate, in an automatic way, the actual
code for pages, for example in JSP or in plain HTML, with access to a relational
database built in a natural way from the ER scheme.

i
i

“main” — 2009/2/24 — 16:07 — page 118 — #130 i
i

i
i

i
i

118 Chapter 6. Temporal aspects for data intensive Web sites

Figure 6.3: The example of N-ER schema

6.3 Models for the management of temporal aspects of
Web sites

Temporal aspects appear in all phases of the design process and therefore each
of our models needs a suitable extension. We consider the point of views of both
types of users that are involved in a Web site content evolution: final users, who
access the site and would have tools to explore the content (and its changes),
and content administrator, who apply content modifications. In our approach
the designer can specify how temporality should be managed and presented to
the final user and, at the end of the process, a temporal web site is automatically
produced together with the related content management application that can
be used by content administrator. Our goal is to have a “standard” Web site
with features that simplify the management of temporal aspects. Considering
that the most common use of the Web site will involve current values, the
introduction of temporal aspects should not negatively impact the site structure
complexity. We start with brief comments on the models we use for describing
our data and then illustrate the conceptual and logical hypertext models that
have been properly extended to allow the representation of temporal aspects.

Models for the representation of data

Different kinds of representations have been proposed to manage temporal as-
pects at a conceptual level, each of which with its specific features. Some of
the models (see Gregersen and Jensen [?] for a survey) represent a temporal
object in the schema and allow users to define temporal elements by rather

i
i

“main” — 2009/2/24 — 16:07 — page 119 — #131 i
i

i
i

i
i

6.3. Models for the management of temporal aspects of Web sites 119

Figure 6.4: The example of ADM schema

complex visual notation that is not suitable for users with no specific compe-
tence or that need a steep learning curve. Other approaches are based only on
textual notation that is used to specify temporal properties beside the snapshot
conceptual modeling. While the schema readability is not compromised, users
need to jump between the two models to know which concept has temporal
features.

i
i

“main” — 2009/2/24 — 16:07 — page 120 — #132 i
i

i
i

i
i

120 Chapter 6. Temporal aspects for data intensive Web sites

As is illustrated by Artale et al. [?], there is a gap between the modeling
solutions provided by researchers and the real needs of the users. A conceptual
model should be simple and expressive, in order to allow users to represent con-
cepts, properties and relations by a visual interface with intuitive constructs.
The diffusion of the ER model is based right on this characteristics. Therefore,
in the conceptual design phase, we choose an extension of the ER model where
temporal features are added to the scheme, by indicating which are the enti-
ties, relationships and attributes for which the temporal evolution is of interest.
With our conceptual model proposal we don’t aim at covering all the aspects
that can arise when facing with temporal evolution of content but providing
users with some intuitive tools that allow the management of temporal aspects
within a site design process. For each object in a scheme, the model allows
to specify whether it is temporal. To keep the conceptual model as simple as
possible we separate the specification of temporal elements from the definition
of temporal properties for which we provide a textual notation. We briefly
illustrate the main temporal constructs we have considered in our framework.
A temporal object 0T can be defined either as a single attribute, entity, re-
lationship. In the schema, temporal objects are identified by an uppercase T
as a superscript. To allow users to define a time granularity for an object, we
provide the chronos construct with the syntax CHRONOS(G, 0T) where G is the
time granularity and 0T is the temporal object. Examples of time granularity
G are “day”, “week”, “month”, “year”. For example, if an object is defined
as temporal and the month chronos is specified, then one value per month will
be considered for publishing. So looking at the so defined temporal schema, it
can be immediately noticed which are the objects for which the evolution is of
interest, keeping the schema simplicity without compromising readability. A
separated textual notation is devoted to the refining of temporal properties, as
is in the standard ER model where concepts are illustrated graphically while
constraints are specified in a textual way. In Figure 6.5 an example usage of
the notation is sketched.

Let’s start a quick explanation of what the schema express. The designer
wants to keep the Project.duration evolution that can be changed, for example
due to an extension of the ending time. Notice that in this model it is possible
to specify temporal elements at different levels of granularity either for single
attributes or for an entity (or a relationship) as a whole. Moreover, as illus-
trated in Figure 6.5, an entity and its attributes can be independently defined
as temporal: this is the case for Teacher and its attributes. Temporality of
the entity means that we are interested in its life cycle: in the example, in
the instants when an individual became a teacher in our school and when he

i
i

“main” — 2009/2/24 — 16:07 — page 121 — #133 i
i

i
i

i
i

6.3. Models for the management of temporal aspects of Web sites 121

Figure 6.5: Temporal notation example

quits or retires (but we will keep information after that). If an entity is not
temporal, we are not interested in its evolution; should it be deleted, it would
be completely discharged. For the attributes, the interest in the evolution of
values (the address, in the example).

If a single attribute is marked as temporal, its evolution is maintained
with independently of other attributes. For example if every year the project
manager can be changed then the designer specify that the CHRONOS for the
Manage relation is Y (year).

The database used to handle the data for our Web sites is relational, as in
the Araneus approach, with temporal features added to it (if using our tool
the temporal features are generated automatically and the developer need not
have any specific competence). Optimization aspects for temporal databases
are beyond our focus, thus a simple relational schema for temporal tables has
been chosen. When an entity is specified as temporal, then two timestamps are
added to the relational representation, in order to define the beginning and the
end of the validity interval and the original primary key is extended including
those timestamps. For each temporal attribute an additional table is created
to manage its modifications separately.

Models for the representation of Web sites

We use two models to describe the structure of a Web site at different levels
of abstraction: the N-ER model considers concepts whereas ADM refers to
the actual structure of pages. The same distinction applies to their temporal

i
i

“main” — 2009/2/24 — 16:07 — page 122 — #134 i
i

i
i

i
i

122 Chapter 6. Temporal aspects for data intensive Web sites

extensions and (as they are tightly related) to the specific CMS aspects that
concern modifications management. Therefore the conceptual representation
of the Web site (N-ER model) is extended to allow the selection of the versions
of interest for a concept. Then, in the logical model (ADM), new constructs
are introduced to give the designer the possibility to choose how to organize
versions in pages.

Temporal aspects of Web sites at a conceptual level

The temporal N-ER model allows the specification of whether versions have
to be managed for the concepts (macroentities and directed relationships) of
interest for the site, and how.

There are two main versioning aspects involved in this model. The first
refers to the possibility that an object can be modified and the second concerns
the inclusion of the evolution of changes in the site. These two points of
view do not necessarily coincide. Based on the choices expressed in the T-ER
model, different possibilities exist. If an object is identified as snapshot, it is
here possible to choose whether it can change or not. Specifying here that a
snapshot object is modifiable means that updates are allowed but the temporal
database will not store the history of changes. In our example we could have
that the description attribute of the Project entity is defined as snapshot in
the T-ER model, because there is no interest in keeping track of its versions,
but we want the system to allow changes and the Web user to be informed
when the last changes happened (logical level aspects will be detailed in the
next section). This is an example of whether a snapshot object should be
considered as modifiable in the T-NER model.

In this model it is possible to define the temporality features for each of the
temporal concepts (macroentities, direct relationships, and attributes). A con-
cept can be defined as temporal if its origin in the T-ER scheme is a temporal
component, but not necessarily vice versa. Therefore, we could have macroen-
tities that are not defined as temporal even if they involve temporal elements,
for example because the temporality is not relevant within the macroentity
itself (indeed, Web sites often have redundancy, so an attribute or an entity
of the ER scheme could contribute to various macroentities, and, even if tem-
poral, it need not be temporal in all those macroentities). Consider the case
where the designer needs to keep the history of all the modifications to the
project information then the Project entity is defined as temporal in the T-ER
model. The project data are used in two macroentities, ProjectsListPage and
ProjectPage. The ProjectsListPage macroentity is just a list of projects with

i
i

“main” — 2009/2/24 — 16:07 — page 123 — #135 i
i

i
i

i
i

6.3. Models for the management of temporal aspects of Web sites 123

the project name as a link label, and therefore will not have any version man-
agement. The ProjectPage macroentity gives the user all the details about a
project and it is here interesting to have a management of versions in order to
let the user know about the changes.

It is worth noting that these are essentially ”patterns”, which correspond
to solutions, and others can be added if needed.

For macroentities and attributes, a major facet is relevant here: which
versions are of interest from the Web site conceptual point of view? We consider
this as a choice from a set of alternatives, which currently include (i) none; (ii)
the last version; (iii) all versions.

Till now we have considered temporal aspects of each concept separately
(how to manage versions for each temporal element) but this need not be the
only approach. An alternative would be navigation with respect to a specific
instant, neglecting the others. Let us explain the idea by an example. Consider
the following situation of the university Web site where both the Teacher page
and the Course page are temporal: the teacher Smith page has two versions
each of which with its validity interval as in Figure 6.6, the Database course
given by Smith has the two versions illustrated in Figure 6.7 (dashed boxes
highlight the changes).

Figure 6.6: Versions for the TeacherPage

If visiting the site we are on the Smith page we can select to view only
information valid in a specific day. Then, we might want to keep on navigating
with reference to that same day. Following the link to the Database course
page, only data valid in the previously selected instant should be published.
Navigating the site at the current time the navigation path is shown in the

i
i

“main” — 2009/2/24 — 16:07 — page 124 — #136 i
i

i
i

i
i

124 Chapter 6. Temporal aspects for data intensive Web sites

Figure 6.7: Versions for the CoursePage

upper part of Figure 6.8. Choosing the validity instant 04/04/2007 the cor-
rect navigation path is sketched in the lower part of Figure 6.8. This kind of
navigation is called “time-based selective navigation” between pages.

Temporal aspects of Web sites at a logical level

The logical design of a temporal Web site has the goal of refining the de-
scription specified by a temporal N-ER scheme, by introducing all the details
needed at the page level: how concepts are organized in pages and how ver-
sions of temporal elements are actually published. The temporal extension
of ADM (hereinafter T-ADM) includes all the features of ADM (and so al-
lows for the specification of the actual organization of attributes in pages and
the links between them), and those of the higher level models (the possibil-
ity of distinguishing between temporal and non-temporal page schemes, and
for each page, the distinction between temporal and non-temporal attributes;
since the model is nested, this distinction is allowed at various levels in nesting,
apart from some technical limitations), and some additional details, on which
we concentrate. A major choice here is the implementation of the versioning
requirement specified at the conceptual level.

As this model can be obtained as a translation from the higher level mod-
els, the temporal choices expressed on the previous models drive the various
alternatives offered:

(a) No versioning

i
i

“main” — 2009/2/24 — 16:07 — page 125 — #137 i
i

i
i

i
i

6.3. Models for the management of temporal aspects of Web sites 125

Figure 6.8: Two examples of temporal navigation

(b) Last version

(c) All versions in the same page

(d) All versions in separate pages

(e) Time based selective navigation

i
i

“main” — 2009/2/24 — 16:07 — page 126 — #138 i
i

i
i

i
i

126 Chapter 6. Temporal aspects for data intensive Web sites

In case (a) no version management is required; this is actually a consequence
of the decision of not considering versions in the temporal N-ER model. When
only the last version is of interest, then the designer expresses choice (b). This
can regard either temporal elements, when the designer does not want to pub-
lish previous versions but only the current value, or snapshot elements in the
case the modification information are needed in the page. When the N-ER
design choice for a temporal element is to manage all versions, the alterna-
tive (c) allows the possibility to include them together in the same T-ADM
page scheme. This means that the designer gives all the versions the same
importance thus the user will catch them in a single view. If the current and
the previous versions have different browsing priority, it is possible to separate
the “current value” from the previous, correlated by means of links, choosing
alternative (d). Various browsing structures, which will be detailed later on,
allow different ways to publish versions according to the designer choices. A
completely different organization is the “time-based selective navigation”, rep-
resented by option (e). In this case the user selects, for a page, the instant
of interest and sees the corresponding valid versions. The navigation between
temporal pages can then proceed keeping reference to that instant.

Additional features allow for the emphasization of recent changes (on a page
or on pages reachable via a link). The above features are expressed in T-ADM
by means of a set of constructs, which we now briefly illustrate.

We first illustrate the T-ADM extensions that allow the designer to choose
which meta data have to be published with versions: creator, modifier,
description, as we briefly illustrate in the following:

creator Represents the creator of a content. This information can just be
associated with the current value of an information or (introducing a bit
of redundancy) with each of its versions.

modifier This attribute is related to a version and represents the author of
the change to a data element.

description It can be related to an element that can be changed (temporal
or snapshot with the differences illustrated in the previous section) to
publish the reason of the modification.

We also have two constructs representing two different temporal pieces of
information that can be associated with the content version:

last modified This is a special, predefined attribute used to represent the
date/time (at the granularity of interest) of the last change applied to a

i
i

“main” — 2009/2/24 — 16:07 — page 127 — #139 i
i

i
i

i
i

6.3. Models for the management of temporal aspects of Web sites 127

temporal element. This is a rather obvious, and widely used technique,
but here we want to have it as a first class construct offered by the
model (and managed automatically by the support tool) and also we
think it should be left to the site designer to decide which are the pages
and/or attributes it should be actually used for, in order to be properly
informative but to avoid overloading.

validity interval This is another standard attribute that can be associated
with any temporal element.

The next is a major feature of the model, as it is the basis for the time-based
selective navigation:

time point selector It can be associated with pages and with links within
them, in such a way that navigation can proceed with reference to the
same time instant; essentially, in this way the user is offered the site with
the information valid at the specified instant.

Another feature is used to highlight a link when the destination is a page
that includes temporal information which has recently (according to a suitable
metric: one day, one week, or whatever the designer chooses) changed:

target changed This property can be used in association with last mod-
ified to add the time the modification has been applied.

The target changed feature is illustrated in Figure 6.9: a Department
page (source) has a list of links to teacher pages (target). In a teacher page
the office hours have been modified. When the user visits the department page
he is informed which teacher pages have been modified (and when) so he can
follow the link to check what is new. The example refers to just one source and
one target page, but things may become more interesting when we consider
non-trivial hypertextual structures: this gives the opportunity to propagate
this kind of information through a path that leads to the modified data (see
Figure 6.10). When a new lecture is introduced, then both the teacher and
the department page are informed (and highlight the change) so the user can
easily know which are the site portions with modified data.

We now illustrate the additions brought to the model to implement the
different ways versions can be presented to the user:

revision list This feature allows for the specification that all versions of a
temporal element are shown in the same page as a list of revisions.

i
i

“main” — 2009/2/24 — 16:07 — page 128 — #140 i
i

i
i

i
i

128 Chapter 6. Temporal aspects for data intensive Web sites

Figure 6.9: The TARGET CHANGED feature

Figure 6.10: The TARGET CHANGED feature along a path

link to versions This is a special type of link that has as a target a ver-
sion structure (to be illustrated shortly), handling the versions of a
temporal element. It is used when the designer chooses to have just the
last version in the main page and the others held in other pages.

version structure These are “patterns” for pages and page schemes, used
to organize the different versions of a temporal element and referred to
by the link to versions attribute. There are various forms for this
construct involving one or more pages:

• simple version structure: a single page presenting all the ver-
sions for the temporal element with timestamps.

• list version structure: an “index” page with a list of links
labeled with the validity intervals that point to pages showing the
particular versions and include links back to the index.

• chain version structure: this is a list of pages each of which
refers to a specific version. It is possible to scan versions in chrono-
logical order, by means of the “previous” and “next” links available
in each page.

• summary version structure: similar to the previous case but
the navigation between versions is not chronological. Each version
page has a list of links that works as an index to all versions.

i
i

“main” — 2009/2/24 — 16:07 — page 129 — #141 i
i

i
i

i
i

6.3. Models for the management of temporal aspects of Web sites 129

Figure 6.11: The SIMPLE VERSION STRUCTURE pattern

Figure 6.12: The LIST VERSION STRUCTURE pattern

Figure 6.13: The CHAIN VERSION STRUCTURE pattern

Figure 6.14: The SUMMARY VERSION STRUCTURE pattern

i
i

“main” — 2009/2/24 — 16:07 — page 130 — #142 i
i

i
i

i
i

130 Chapter 6. Temporal aspects for data intensive Web sites

As we mentioned earlier, the designer is guided during the design process.
The tree of available choices, along the T-Araneus process, that can be ex-
pressed at each abstraction level is sketched in Figure 6.15.

Figure 6.15: The tree of available choices

6.4 CMS support to T-Araneus

The need for Content Management Systems (CMS) as fundamental tools for
handling the information to be published in Web sites was recognized soon after
the establishment of the Web as a strong communication medium [?, ?, ?]. In
data-intensive Web sites this would mean that the updates to the database
should be controlled in a rigorous way. From our point of view, it is worth
noting some features usually available in CMSs and a special requirement often
neglected by them.

One of the goals of a CMS is to support users in the changes to the content,
allowing the management of the whole life cycle of these contents also through
workflow management capabilities.

The most relevant feature of these systems, which is very important for our
purposes, is that they can handle the history of a site and of its contents (and
the associated responsibilities: “who changed a piece of content and when?”).

i
i

“main” — 2009/2/24 — 16:07 — page 131 — #143 i
i

i
i

i
i

6.4. CMS support to T-Araneus 131

However CMSs usually have a lack of flexibility in handling content granu-
larity. In particular they consider pages or documents as the granularity of
interest. Instead, we believe that, in many cases, especially for data-intensive
Web sites, different levels of granularity are needed: individual pieces of data,
corresponding to atomic fields in databases, a table in the related database,
the whole page or even the entire site.

Starting from the Araneus tool, whose approach is discussed in Section 6.2,
used to generate a site from the definition of the aforementioned models, we
have developed a new CASE tool that also handles the temporal information of
a site. Moreover, to take profit from the CMS features this tool now generates
both the site and the temporal CMS that is required to manage the site itself.
In other words, an instance of our CMS is generated along with the Web site.

In particular we extend the functionality related to the management of tem-
poral features that can be associated to content at different level of granularity.

Temporal Content Management

In our work, we have extended the typical features of CMSs focusing on two
aspects: the management of data-intensive sites and the management of tem-
poral information at different level of granularity, from the finest (single piece
of data in the underlying database) to the coarsest (potentially the entire site).

Our CMS guarantees the needed support for handling histories of data at
the needed granularity. Moreover, with a fine granularity, also the structure of
pages in the CMS could become complex and delicate to design, but it can be
supported by the models and methodology we have discussed earlier.

The high level models we explained in the previous sections are fully sup-
ported through the CMS features. Given the fine granularity of data and the
possible redundancy in the data in the site, non-trivial design choices arise for
the definition of the pages of the CMS: which pages are needed (for example,
the instructor for a course appears in various pages; do we want to have CMS
pages for updating it corresponding to each of the Web site pages or just one of
them suffices?), with what attributes, and so on. At the same time, by incorpo-
rating the CMS in our methodology, we can derive some decision on structures
by considering the temporal properties of pieces of data: if an attribute cannot
change, then there is no need for a form to handle the updates.

The use of our CMS can greatly improve the integration of time into the
World Wide Web. This should enable the user to reconstruct historical content
and follow its evolution.

From the CASE tool interface it is possible to design the entire site, there-

i
i

“main” — 2009/2/24 — 16:07 — page 132 — #144 i
i

i
i

i
i

132 Chapter 6. Temporal aspects for data intensive Web sites

fore the designer can define all temporal features from the different scheme
views (from ER to N-ER and finally to ADM). Therefore the site is auto-
matically generated from the data stored in the underlying database and the
necessary tables for storing of the temporal features are also created. Then the
CMS pages are generated and from this point all contents of the site can be
managed through the CMS functionalities.

As the CMS is automatically generated on the basis of the designer’s choices
at the time he/she specifies the temporal features of the site, these choices also
modify both the presentation forms (all versions in a page, versions in separated
linked pages) and the update/deletion forms of the content.

An important observation is that, by managing all updates, our CMS can
easily produce and maintain the meta-data of interest for the generation of the
pages of our sites, some of which have been mentioned in the previous sections:
the author and modifier of a piece of data, the time information for a given
change, the motivation for it.

Moreover, our temporal CMS supports some typical and useful features of
a standard CMS, namely: workflow management, user administration.

One of the most typical features of a CMS is the possibility to access the
content at various levels and with different rights, through a user management
systems. Our system is based on the definition of different classes of users, that
can be managed through the CMS interface. In particular there are three main
classes: (i) Administrator: the users of this class have access to all managing
features and to all contents without restriction. They can also define new users
or users classes and define the respective authorizations. (ii) Editor: these users
will be the managers of individual sites, and can be considered as administrators
of their sites; (iii) Author: they are users that can create or modify only the
contents of a specific area of a site (assigned by an Editor). Each change
creates a temporal version of a content according to the chosen aforementioned
methods. Our CMS has also a Workflow System that enables the collaborative
management of contents and temporal information. A workflow instance can
be represented through the model shown in Figure 6.16. An activity represents
the needed operation to complete the workflow task; namely we distinguish
between (i) atomic activities i.e. a set of operations required by the workflow,
that can be combined so that they appear to the rest of the system to be
a single operation, (ii) complex activities that imply the existence of nested
workflows. Unlike traditional workflow systems that are available to a CMS,
our workflow activities may affect the contents manipulation at different levels
of granularity, from the coarsest (the single Web page) to the finest (the single
record in the database).

i
i

“main” — 2009/2/24 — 16:07 — page 133 — #145 i
i

i
i

i
i

6.4. CMS support to T-Araneus 133

Transition conditions define the modalities of transformation from one state
to another of an activity. The possible transition are (i) Inactive: the activity
has been created but not activated; (ii) active: the activity has been created
and activated; (iii) suspended : the activity is suspended and can not complete
the operations.

Figure 6.16: Workflow model

Architecture of the system

In Figure 6.17 a sketch of the architecture of our implemented prototype is
presented.

The architecture is characterized by three different layers, namely: i) repos-
itory, ii) application and iii) user.

i
i

“main” — 2009/2/24 — 16:07 — page 134 — #146 i
i

i
i

i
i

134 Chapter 6. Temporal aspects for data intensive Web sites

Figure 6.17: Architecture of the system.

i
i

“main” — 2009/2/24 — 16:07 — page 135 — #147 i
i

i
i

i
i

6.5. An Example Application 135

The repository is managed through a relational DBMS (MySQL in our pro-
totype implementation but it can be easily replaced by any other relational
databases) that stores contents, temporal information and user’s information.
The communication with the CASE tool is realized via JDBC, while the con-
nection with CMS (and obviously the underlying sites) is made through an
Apache Web Server.

Therefore we have the Application layer that implements the aforemen-
tioned methodologies to manage contents and their temporal metadata. As we
can see in the figure the elements this level includes the CASE tool through
which the designer can define the structure of a site and the temporal choices
for the management of the contents. On the basis of these choices the CASE
tool generates the site along with the CMS for the management of the site
itself.

Our tools can manage the whole content life-cycle, starting from their cre-
ation, by means of definition of the three main models (ER, N-ER and ADM
through the CASE tool, see Figure 6.18 for a screenshot of the site design in-
terface). Our CMS is fully accessible through a standard Web browser and is
completed with the traditional features of workflow and user management.

The upper layer is the user layer. The CASE tool can be accessed offline
by the designer of the site with a J2SE interface. With the CMS a user access
and manage the contents and temporal data through a common Web browser.
Each user, depending on the different role can access to the CMS function-
ality through a customized interface. We distinguish between internal (site
designers, administrators, authors, etc.) and external (or final) users of the
CMS.

6.5 An Example Application

Let us now exemplify the design process by referring to the example introduced
in Section 6.2 which, despite being small, allows us to describe the main issues
in the methodology. We also sketch how the tool we are implementing supports
the process itself. Rather than showing a complete example, where it would be
heavy to include all the temporal features, we refer to a non-temporal example,
and comment on some of its temporal extensions.

The first step is to add temporal features to the snapshot ER schema. Let
us assume that the requirements specify that we need: (i) to know the state
(with all attribute values) of the entity Project when a change is applied to
one or more attribute values; and (ii) to keep track of the modifications on

i
i

“main” — 2009/2/24 — 16:07 — page 136 — #148 i
i

i
i

i
i

136 Chapter 6. Temporal aspects for data intensive Web sites

Figure 6.18: A screenshot of the CASE tool design interface.

the office hour attribute for the Teacher entity. The first point means that the
whole Project entity needs to be temporal, whereas for the second point, indeed,
the designer has to set the temporality only for the attributes office hour in
the Teacher entity.

In Figure 6.19 we illustrate the portion of interest of the resulting T-ER
schema: the elements tagged with T are those chosen as temporal (with no
chronos specified).

With respect to the conceptual design of the navigation, we have already
shown in Section 6.2 the overall N-ER scheme. Let us concentrate here on the
temporal features: at this point it is possible to choose how to manage ver-
sions for each macroentity and attribute. We have defined the Project entity

i
i

“main” — 2009/2/24 — 16:07 — page 137 — #149 i
i

i
i

i
i

6.5. An Example Application 137

Figure 6.19: The example T-ER schema

as temporal in the T-ER model so the temporal database will handle the mod-
ifications but we don’t want the site to show all versions so we choose here to
have only the last version with a timestamp in the Project macroentity. It will
be possible in the future to change this choice and add versions for projects
by simply modifying this property. For the temporal attribute office hour in
Teacher we want all the versions to be managed and the snapshot attribute
title should be modifiable via CMS. In Figure 6.20 the temporal N-ER scheme
is shown with explicit indication of the version management choices (with the
following codes: AV: all versions; LV: last version; SU: snapshot updatable).

Figure 6.20: Temporal features in the N-ER model

Let us then consider the logical design. As we have discussed in Section 6.2,
a standard ADM scheme can be automatically generated as an algebraic trans-
formation based on the conceptual models (it can then be restructured if
needed). During this automatic generation, for each temporal element in a
page scheme, it is possible to specify how to present versions starting from the
choices made in the N-ER scheme. It is also possible, in this phase, to specify
whether to include meta-information and how to show it in pages. On the
basis of the requirements, we could decide to handle versions for CoursePage
by means of a chain version structure. For the TeacherPage page scheme

i
i

“main” — 2009/2/24 — 16:07 — page 138 — #150 i
i

i
i

i
i

138 Chapter 6. Temporal aspects for data intensive Web sites

we could choose to handle the last version in the main page for the office hour
attribute with an associated simple version structure page presenting all
versions. The Teacher page should also present information about the last
update for the title attribute.

The T-ADM page scheme for the TeacherPage is illustrated in Figure 6.21.
The office hour attribute is associated with the validity interval informa-
tion and a link to version that point to the simple version structure
page scheme presenting all the versions each with a validity interval. The
snapshot attribute title has instead been associated with a last modified
meta-information.

Figure 6.21: A T-ADM page scheme.

At the end of the design process, the tool can be used to generate the actual
site, which can be static (that is, plain HTML) or dynamic (JSP); actually
some of the features (such as the time point selector) are allowed only in the
dynamic environment. It is worth noting that the sites we generate with our

i
i

“main” — 2009/2/24 — 16:07 — page 139 — #151 i
i

i
i

i
i

6.6. Conclusions 139

approach are completely standard, as they require common http servers, with
just ordinary JSP support.

The temporal Web site generation comes with the automatic generation of
the CMS to manage the contents. Initially a predefined user, with adminis-
trator privileges, is created to allow the designer to define all the users/groups
and rights of access to information.

6.6 Conclusions

In this thesis we have focused on one of the aspects of interest for the manage-
ment of temporal evolution: the content. Other dimensions are obviously of
interest for real-world, complex Web sites, and we plan to consider them in the
near future. They include: (i) the presentation; (ii) the hypertext structure;
(iii) the database structure. Among them, the most challenging is probably
the last one: as we consider data intensive Web sites, the hypertext structure
is obviously strongly related to the database structure so it could be very im-
portant to keep track of the schema evolution. If you change the ER schema
(and, as a consequence, the underlying database schema), for example delet-
ing an entity and a relationship, it can result in a change in the hypertext
structure and/or the presentation. Essentially, this would be a variation of a
maintenance problem, with the need to keep track of versions.

i
i

“main” — 2009/2/24 — 16:07 — page 140 — #152 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page 141 — #153 i
i

i
i

i
i

Conclusion

In this thesis, the contributions produced during my PhD, are presented. Var-
ious are the activities that have been conducted in different areas.

The main effort have been concentrated on the interoperability of Semantic
Web formalisms. Here we have demonstrated the generality and the versatility
of the MIDST approach, that has been extended to allow translations between
Semantic Web models. The supermodel, that is at the base of the MIDST
approach, was thought to work with some kind of models. Its expressivity
needs to be enhanced to allow the description of the new models of interest.
The two extensions produced in this thesis, regard the translation between
RDF and Topic Maps and a preliminar work on the interoperability between
ontologies and databases. Keeping on studying Semantic Web issues, we have
then tackled the problem of storing and querying RDF data.

The relational dictionary, that MIDST uses to store schema and instance
data, exploit a logical organization that perform a partition basing on the
nature of the model’s constructs. This kind of storage model, tuned with
indexing and partitioning techniques produced results that are (almost always)
better than the actual RDF storage systems, both in terms of performance and
scalability.

The last topic, described in this thesis, regards the management of time in
data intensive Web sites. We here produced a framework and a methodology
for the modeling of the various aspects of a Web site, in particular the ones
whose main purpose is the publication of data extracted from a relational
database. In this context, we have introduced the design features that allow
the designer to choose which are the time varying information, how to manage
different versions and how to present them to the final user. The tool we have
developed, automatically generate the final Web site, together with the schema
of the Temporal Database and the CMS to modify contents. All the various
subjects that are described in this thesis, have the common thread that is the

141

i
i

“main” — 2009/2/24 — 16:07 — page 142 — #154 i
i

i
i

i
i

142 Chapter 6. Conclusion

management of models and their interoperability, that we tackle with an high
level approach, avoiding specific solutions.

i
i

“main” — 2009/2/24 — 16:07 — page 143 — #155 i
i

i
i

i
i

Appendices

143

i
i

“main” — 2009/2/24 — 16:07 — page 144 — #156 i
i

i
i

i
i

i
i

“main” — 2009/2/24 — 16:07 — page 145 — #157 i
i

i
i

i
i

Appendix A

145

i
i

“main” — 2009/2/24 — 16:07 — page 146 — #158 i
i

i
i

i
i

146 Chapter . Appendix A

INITIAL SUPERMODEL CLASS DIAGRAM

Figure A.1: The supermodel class diagram.

i
i

“main” — 2009/2/24 — 16:07 — page 147 — #159 i
i

i
i

i
i

Appendix B

147

i
i

“main” — 2009/2/24 — 16:07 — page 148 — #160 i
i

i
i

i
i

148 Chapter . Appendix B

DATALOG RULES

Here we illustrate some of the representative datalog rules that we have de-
fined for the translation RDF-TM

RDF-TM pre-rules

Pre-rules to introduce the abstracts subject and object, used as roles for Topic
Maps.

SM_Abstract(
OID:#CreateAbstractOID_1*("’subject’"),
Name:"’Subject’",
type:"’URI’"

) <-

SM_Abstract(
OID:#CreateAbstractOID_1*("’object’"),
Name:"’Object’",
type:"’URI’"

) <-

i
i

“main” — 2009/2/24 — 16:07 — page 149 — #161 i
i

i
i

i
i

149

Resource to Topic

This rule represent the one-to-one correspondence between RDF resources and
Topic Maps topics.

SM_Abstract(
OID:#AbstractOID_0*(absOID),
Name:absName,
type:type

)

<-

SM_Abstract(
OID:absOID,
Name:absName,
type:type

);

Type to Instance Of

One-to-one correspondence between rdf:type and Topic Maps association.

SM_Type(
OID:#TypeOID_0*(typeOID),
Name:typeName,
AbstractAsTypeOID:#AbstractOID_0(childOID),
AbstractToBeTypedOID:#AbstractOID_0(parentOID)

)

<-

SM_Type(
OID:typeOID,
Name:typeName,
AbstractAsTypeOID:childOID,
AbstractToBeTypedOID:parentOID

i
i

“main” — 2009/2/24 — 16:07 — page 150 — #162 i
i

i
i

i
i

150 Chapter . Appendix B

);

Property to Association

An AbstractAttribute, representing an RDF property (all except for rdf:type),
is translated into an AggregationOfAbstracts (representing a Topic Maps as-
sociation).

SM_AggregationOfAbstracts(
OID:#CreateAggregationOfAbstractsOID_1*("’abstractAttribute’",
propertyOID),
Name:propertyName

)

<-

SM_AbstractAttribute(
OID:propertyOID,
Name:propertyName

);

The two abstracts, corresponding to the subject and the object of the prop-
erty, are translated into two ComponentOfAggregationOfAbstracts having
the roles ”subject” and ”object”, respectively.

SM_ComponentOfAggregationOfAbstracts(
OID:#CreateComponentOfAggregationOfAbstractsOID_1*(absOID,
"’subject’", propertyName, absToOID),
Name:"’Subject’",
AbstractOID:#AbstractOID_0(absOID),
AggregationOfAbstractsOID:#CreateAggregationOfAbstractsOID_1*
("’abstractAttribute’", propertyOID),
AbstractAsRoleOID:#CreateAbstractOID_1("’subject’")

)

<-

i
i

“main” — 2009/2/24 — 16:07 — page 151 — #163 i
i

i
i

i
i

151

SM_AbstractAttribute(
OID:propertyOID,
Name:propertyName,
AbstractOID:absOID,
AbstractToOID:absToOID

);

SM_ComponentOfAggregationOfAbstracts(
OID:#CreateComponentOfAggregationOfAbstractsOID_1*(absOID,
"’object’", propertyName, absToOID),
Name:"’Object’",
AbstractOID:#AbstractOID_0(absToOID),
AggregationOfAbstractsOID:#CreateAggregationOfAbstractsOID_1*
("’abstractAttribute’", propertyOID),
AbstractAsRoleOID:#CreateAbstractOID_1("’object’")

)

<-

SM_AbstractAttribute(
OID:propertyOID,
Name:propertyName,
AbstractOID:absOID,
AbstractToOID:absToOID

);

Container to Association

An RDF container is translated into a Topic Maps association. Therefore
the following rule creates an AggregationOfAbstracts for each Set.

SM_AggregationOfAbstracts(
OID:#CreateAggregationOfAbstractsOID_1*("’set’", setOID),
Name:setName

)

i
i

“main” — 2009/2/24 — 16:07 — page 152 — #164 i
i

i
i

i
i

152 Chapter . Appendix B

<-

SM_Set(
OID:setOID,
Name:setName

);

The components of the container are then translated into components of the
aggregation.

SM_ComponentOfAggregationOfAbstracts(
OID:#CreateComponentOfAggregationOfAbstractsOID_1*(componentOID,
"’set’", componentName, absOID),
Name:componentName,
AbstractOID:#AbstractOID_0(absOID),
AggregationOfAbstractsOID:#CreateAggregationOfAbstractsOID_1*
("’set’", sOID),
AbstractAsRoleOID:#CreateAbstractOID_1("’member’")

)

<-

SM_ComponentOfSet(
OID:componentOID,
Name:componentName,
SetOID:sOID,
AbstractOID:absOID

);

i
i

“main” — 2009/2/24 — 16:07 — page 153 — #165 i
i

i
i

i
i

Bibliography

[ACB06] Paolo Atzeni, Paolo Cappellari, and Philip A. Bernstein. Model-
independent schema and data translation. In EDBT, pages 368–
385, 2006.

[ACG07] Paolo Atzeni, Paolo Cappellari, and Giorgio Gianforme. Midst:
model independent schema and data translation. In Chee Yong
Chan, Beng Chin Ooi, and Aoying Zhou, editors, SIGMOD Con-
ference, pages 1134–1136. ACM, 2007.

[ACK+01] Sofia Alexaki, Vassilis Christophides, Gregory Karvounarakis,
Dimitris Plexousakis, and Karsten Tolle. The ics-forth rdfsuite:
Managing voluminous rdf description bases. In SemWeb, 2001.

[ACT+08] Paolo Atzeni, Paolo Cappellari, Riccardo Torlone, Philip A. Bern-
stein, and Giorgio Gianforme. Model-independent schema trans-
lation. VLDB Journal, 2008. To appear, available from the first
author’s Web site.

[AMH07] Daniel J. Abadi, Adam Marcus 0002, Samuel Madden, and Kather-
ine J. Hollenbach. Scalable semantic web data management using
vertical partitioning. In Christoph Koch, Johannes Gehrke, Mi-
nos N. Garofalakis, Divesh Srivastava, Karl Aberer, Anand Desh-
pande, Daniela Florescu, Chee Yong Chan, Venkatesh Ganti, Carl-
Christian Kanne, Wolfgang Klas, and Erich J. Neuhold, editors,
VLDB, pages 411–422. ACM, 2007.

[AMM97] Paolo Atzeni, Giansalvatore Mecca, and Paolo Merialdo. To weave
the web. In 23rd Conference on Very Large Database Systems,
pages 206–215, Athens, Greece, 1997.

153

i
i

“main” — 2009/2/24 — 16:07 — page 154 — #166 i
i

i
i

i
i

154 BIBLIOGRAPHY

[AMM01] Paolo Atzeni, Paolo Merialdo, and Giansalvatore Mecca. Data-
intensive web sites: Design and maintenance. World Wide Web,
4(1-2):21–47, 2001.

[AN04] Paolo Atzeni and Pierluigi Del Nostro. T-araneus: Management
of temporal data-intensive web sites. In Elisa Bertino, Stavros
Christodoulakis, Dimitris Plexousakis, Vassilis Christophides,
Manolis Koubarakis, Klemens Böhm, and Elena Ferrari, editors,
EDBT, volume 2992 of Lecture Notes in Computer Science, pages
862–864. Springer, 2004.

[AN06] P. Atzeni and P. Del Nostro. Management of heterogeneity in the
semanticweb. icdew, 0:60, 2006.

[APN08] Paolo Atzeni, Stefano Paolozzi, and Pierluigi Del Nostro. Ontolo-
gies and databases: Going back and forth. In ODBIS, pages 9–16,
2008.

[APS07] Alessandro Artale, Christine Parent, and Stefano Spaccapietra.
Evolving objects in temporal information systems. Ann. Math.
Artif. Intell, 50(1-2):5–38, 2007.

[AT07] Y. An and T. Topaloglou. Maintaining semantic mappings between
database schemas and ontologies. In SWDB-ODBIS07, Vienna,
2007.

[BCCF06] Marco Brambilla, Stefano Ceri, Sara Comai, and Piero Frater-
nali. A CASE tool for modelling and automatically generating
web service-enabled applications. 2:354–372, July 20 2006.

[BCF+07] Marco Brambilla, Stefano Ceri, Federico Michele Facca, Irene
Celino, Dario Cerizza, and Emanuele Della Valle. Model-driven de-
sign and development of semantic Web service applications. ACM
Transactions on Internet Technology (TOIT), 8(1), 2007.

[Ber03] Philip A. Bernstein. Applying model management to classical meta
data problems. In CIDR, 2003.

[BGJ06] Michael H. Bhlen, Johann Gamper, and Christian S. Jensen. Multi-
dimensional aggregation for temporal data. In Yannis E. Ioannidis,
Marc H. Scholl, Joachim W. Schmidt, Florian Matthes, Michael
Hatzopoulos, Klemens Bhm, Alfons Kemper, Torsten Grust, and

i
i

“main” — 2009/2/24 — 16:07 — page 155 — #167 i
i

i
i

i
i

BIBLIOGRAPHY 155

Christian Bhm, editors, EDBT, volume 3896 of Lecture Notes in
Computer Science, pages 257–275. Springer, 2006.

[BHKN06] Jennifer L. Beckmann, Alan Halverson, Rajasekar Krishnamurthy,
and Jeffrey F. Naughton. Extending rdbmss to support sparse
datasets using an interpreted attribute storage format. In Ling Liu,
Andreas Reuter, Kyu-Young Whang, and Jianjun Zhang, editors,
ICDE, page 58. IEEE Computer Society, 2006.

[BKvH02] Jeen Broekstra, Arjohn Kampman, and Frank van Harmelen.
Sesame: A generic architecture for storing and querying RDF and
RDF schema. In I. Horrocks and J. Hendler, editors, Proceedings of
the First Internation Semantic Web Conference, number 2342 in
Lecture Notes in Computer Science, pages 54–68. Springer Verlag,
July 2002.

[BL98] T. Berners-Lee. Notation 3. Technical report, W3C, 1998.

[BLHL01] T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web.
Scientific American, 284(5):28–37, 2001.

[Boi] Bob Boiko. Content Management Bible. Wiley Publishing Inc.,
Indianapolis.

[CDES05] Eugene Inseok Chong, Souripriya Das, George Eadon, and Jagan-
nathan Srinivasan. An efficient SQL-based RDF querying scheme.
In Klemens Böhm, Christian S. Jensen, Laura M. Haas, Martin L.
Kersten, Per-Åke Larson, and Beng Chin Ooi, editors, VLDB,
pages 1216–1227. ACM, 2005.

[CFB+02] Stefano Ceri, Piero Fraternali, Aldo Bongio, Marco Brambilla, Sara
Comai, and Maristella Matera. Designing Data-Intensive Web Ap-
plications. Elsevier, Amsterdam, Netherlands, December 2002.

[CGP+03] Paolo Ciancarini, Riccardo Gentilucci, Marco Pirruccio, Valentina
Presutti, and Fabio Vitali. Metadata on the web: On the integra-
tion of rdf and topic maps. In Extreme Markup Languages, 2003.

[com03a] Lars Marius Garshol: A comparison. Living with topic maps and
rdf, 2003.

[com03b] Lars Marius Garshol: A comparison. The rtm rdf to topic maps
mapping: Definition and introduction, 2003.

i
i

“main” — 2009/2/24 — 16:07 — page 156 — #168 i
i

i
i

i
i

156 BIBLIOGRAPHY

[FFLS00] Mary F. Fernández, Daniela Florescu, Alon Y. Levy, and Dan Su-
ciu. Declarative specification of web sites with strudel. VLDB J,
9(1):38–55, 2000.

[FLB+06] Tim Furche, Benedikt Linse, François Bry, Dimitris Plexousakis,
and Georg Gottlob. RDF querying: Language constructs and eval-
uation methods compared. In Pedro Barahona, François Bry, En-
rico Franconi, Nicola Henze, and Ulrike Sattler, editors, Reasoning
Web, volume 4126 of Lecture Notes in Computer Science, pages
1–52. Springer, 2006.

[Gar01] Lars Marius Garshol. Topic maps, rdf, daml, oil: A comparison,
2001.

[Gar02] Lars Marius Garshol. An rdf schema for topic maps, 2002.

[Gar05] Lars Marius Garshol. A model for topic maps: Unifying rdf and
topic maps. In Extreme Markup Languages, 2005.

[Gen02] Marco Gentilucci, Riccardo; Pirruccio. Metainformazioni sul world
wide web: Conversione di formato e navigazione. Master’s thesis,
University of Bologna, 2002.

[GJ99] Heidi Gregersen and Christian S. Jensen. Temporal entity-
relationship models - A survey. IEEE Trans. Knowl. Data Eng,
11(3):464–497, 1999.

[GVP+08] Giorgio Gianforme, Roberto De Virgilio, Stefano Paolozzi, Pier-
luigi Del Nostro, and Danilo Avola. A novel approach for practical
semantic web data management. In KES (2), pages 650–655, 2008.

[HG03] Stephen Harris and Nicholas Gibbins. 3store: Efficient bulk RDF
storage. In Raphael Volz, Stefan Decker, and Isabel F. Cruz, ed-
itors, PSSS, volume 89 of CEUR Workshop Proceedings. CEUR-
WS.org, 2003.

[HK87] Richard Hull and Roger King. Semantic database modeling:
survey, applications, and research issues. ACM Comput. Surv.,
19(3):201–260, 1987.

[HSV03] Siegfried Handschuh, Steffen Staab, and Raphael Volz. On deep
annotation. In WWW, pages 431–438, 2003.

i
i

“main” — 2009/2/24 — 16:07 — page 157 — #169 i
i

i
i

i
i

BIBLIOGRAPHY 157

[JS99] Christian S. Jensen and Richard T. Snodgrass. Temporal data
management. IEEE Trans. Knowl. Data Eng, 11(1):36–44, 1999.

[KOM05] Atanas Kiryakov, Damyan Ognyanov, and Dimitar Manov.
OWLIM - A pragmatic semantic repository for OWL. In Mike
Dean, Yuanbo Guo, Woochun Jun, Roland Kaschek, Shonali Kr-
ishnaswamy, Zhengxiang Pan, and Quan Z. Sheng, editors, WISE
Workshops, volume 3807 of Lecture Notes in Computer Science,
pages 182–192. Springer, 2005.

[Kri06] Madhav Krishna. Retaining semantics in relational databases by
mapping them to RDF. In WI-IATW ’06, pages 303–306, 2006.

[Lau07] Georg Lausen. Relational databases in RDF. In SWDB-ODBIS07,
Vienna, 2007.

[MAM+00] Paolo Merialdo, Paolo Atzeni, Marco Magnante, Giansalvatore
Mecca, and Marco Pecorone. HOMER: a model-based CASE tool
for data-intensive Web sites. In Weidong Chen, Jeffery Naughton,
and Philip A. Bernstein, editors, Proceedings of the 2000 ACM
SIGMOD International Conference on Management of Data: May
16–18, 2000, Dallas, Texas, volume 29(2) of SIGMOD Record
(ACM Special Interest Group on Management of Data), pages 586–
586, pub-ACM:adr, 2000. ACM Press.

[MAM03] Paolo Merialdo, Paolo Atzeni, and Giansalvatore Mecca. Design
and development of data-intensive web sites: The araneus ap-
proach. ACM Trans. Internet Techn, 3(1):49–92, 2003.

[MG05] Garshol L. M. and Moore G. Topic maps data model, 2005.

[MHS07] Boris Motik, Ian Horrocks, and Ulrike Sattler. Bridging the gap
between OWL and relational databases. In WWW, pages 807–816,
2007.

[MM04] Frank Manola and Eric Miller. Rdf primer, 2004.

[Moo01] G. Moore. RDF and Topic Maps: An exercise in convergence.
XML Europe 2001, 2001.

[MS01] Lacher M. and Decker S. On the integration of topic map data
and rdf data. In Extreme Markup Languages 2001 Conference,
Montreal, Canada, 2001.

i
i

“main” — 2009/2/24 — 16:07 — page 158 — #170 i
i

i
i

i
i

158 BIBLIOGRAPHY

[Nak01] R. Nakano. Web Content Management - A Collaborative Approach.
Addison Wesley, Indianapolis, 2001.

[Ogi01a] Nikita Ogievetsky. Harvesting xml topic maps from rdf, 2001.

[Ogi01b] Nikita Ogievetsky. XML Topic Maps through RDF glasses. Markup
Languages: Theory & Practice, 3(3):333–364, Summer 2001.

[Ont03a] Ontopia. Rtm: An rdf-to-tm mapping, 2003.

[Ont03b] Ontopia. Tmr: A tm-to-rdf mapping, 2003.

[PA07] Stefano Paolozzi and Paolo Atzeni. Interoperability for semantic
annotations. In DEXA Workshops, pages 445–449, 2007.

[PC05] Cristian Pérez de Laborda and Stefan Conrad. Relational.OWL -
A Data and Schema Representation Format Based on OWL. In
APCCM2005, volume 43 of CRPIT, pages 89–96. ACS, 2005.

[PDN08] Paolo Atzeni Pierluigi Del Nostro, Stefano Paolozzi. Extending
midst to semantic annotation. In DEXA ’08: Proceedings of the
2008 19th International Conference on Database and Expert Sys-
tems Application, pages 207–211, Washington, DC, USA, 2008.
IEEE Computer Society.

[PS02] David Thiemecke James Ellis Phil Suh, Dave Addey. Content Man-
agement Systems. Glasshaus, Indianapolis, 2002.

[RK05] Mahesh S. Raisinghani and Christopher Klassen. Temporal
databases. In Laura C. Rivero, Jorge Horacio Doorn, and Vi-
viana E. Ferraggine, editors, Encyclopedia of Database Technolo-
gies and Applications, pages 677–682. Idea Group, 2005.

[SLH06] Nigel Shadbolt, Tim Berners Lee, and Wendy Hall. The semantic
web revisited. IEEE Intelligent Systems, 21(3):96–101, 2006.

[Sno99] Richard T. Snodgrass. Developing Time-Oriented Database Appli-
cations in SQL. Morgan Kaufmann, 1999.

[SP03] Sylvia Schwab Steve Pepper. Curing the web’s identity crisis: Sub-
ject indicators for rdf, 2003.

[TA01] Riccardo Torlone and Paolo Atzeni. A unified framework for data
translation over the web. In WISE (1), pages 350–358, 2001.

i
i

“main” — 2009/2/24 — 16:07 — page 159 — #171 i
i

i
i

i
i

BIBLIOGRAPHY 159

[TBA06] Quang Trinh, Ken Barker, and Reda Alhajj. Rdb2ont: A tool for
generating OWL ontologies from relational database systems. In
AICT/ICIW, page 170, 2006.

[W3C] W3C. The resource description framework.

[W3C06] W3C. Notation 3, 2006.

[WSKR04] Kevin Wilkinson, Craig Sayers, Harumi Kuno, and Dave Reynolds.
Efficient RDF storage and retrieval in jena2. Technical Report
HPL-2003-266, Hewlett Packard Laboratories, January 14 2004.

[XCDS04] Zhuoming Xu, Xiao Cao, Yisheng Dong, and Wenping Su. For-
mal approach and automated tool for translating er schemata into
OWL ontologies. In PAKDD, pages 464–475, 2004.

[XZD06] Zhuoming Xu, Shichao Zhang, and Yisheng Dong. Mapping be-
tween relational database schema and OWL ontology for deep an-
notation. In WI ’06, pages 548–552, Washington, DC, USA, 2006.
IEEE Computer Society.

[ZML+06] Jian Zhou, Li Ma, Qiaoling Liu, Lei Zhang, Yong Yu, and Yue Pan.
Minerva: A scalable OWL ontology storage and inference system.
In ASWC, pages 429–443, 2006.

