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Preface

Utere temporibus (Ovid)
To introduce the work reported in this thesis I start with three key words: Photonics,
Nonlinear and Time. Optics and photonics are two closely comnnected words. “Opticks
” was used by Newton in his treatise on light and -historically- is the word which defines
the science of light. “Photonics” is a term of our times, which reflects the mixing of
technology and science of modern age; initially introduced with the meaning “electronics
of photons”, it now possesses a broader significance for someone embracing optics itself.
The root of this word is found in the introduction to the concept of photon by Einstein,
in the first years of the last century; however, only the discovery of lasers in the sixties[1]
made possible the conversion of optics into photonics. The birth of this “new and old”
science triggered a revolution in several fields, like telecommunications, material science
and biology, with new developments dramatically linked to the understanding and the
control of phenomena in novel materials and structures. In this scenario a key role is
played by n onlinearity.

The adjective Nonlinear can be misleading, as it has a negative connotation, implying
the lack of something. On the conrary, it has to be regarded as positive, because the
nonlinear world possesses a larger number of degrees of freedom compared to the linear
one. In a certain sense nonlinearity helps photonics to be “more electronic”: when effects
can be mixed instead of “superimposed” as in the linear case, light can be controlled
by light itself. In addition, nonlinearity helps photonics to be “more interdisciplinary”,
some nonlinear phenomena being ubiquitous and shared by diverse physical systems.

Outstanding examples of universal phenomena are solitary waves, noticed for the first
time by Scott Russell in a shallow water channel near Edinburgh and later studied in
plasma physics, Bose-Einstein condensates, neuroscience and, of course, optics. Optical
bright spatial solitons are self-guided beams propagating without diffraction via self-
focusing[2]; they have been attracting attention since the early 60’s and represent one of
the most fascinating topics in nonlinear optics: the possibility of guiding and processing
light make spatial solitons promising for future applications in all optical networks and
has motivated great efforts towards designing and demonstrating soliton based devices
in several materials.

Wave dynamics in periodic structures represents another widespread topic, peculiar
of electrons in crystals and discovered in light about a decade ago in Photonic Crystals[3].
The latter are structures encompassing a modulation of the dielectric constant with pe-
riod of the order of the wavelength; as their electronic counterparts they can exhibit
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a band-gap, forbidding light propagation in certain directions at specific wavelengths.
Photonic Crystal-based structures can therefore enhance confinement, guidance, filter-
ing, switching and -generally- processing of light through its interactions with matter.

More interesting phenomena occur when nonlinear effects are connected with period-
icity. A field of primary importance in nonlinear optics is frequency conversion, mainly
investigated by using quadratic materials. The first experiment was carried out in 1961
(Franken et al.)[4], when the light of a ruby laser was converted to ultraviolet using a
quartz crystal; this effect is employed nowadays to generate a wide range of frequencies
otherwise impossible to obtain with conventional lasers. A popular technique to effi-
ciently convert light consists in creating a periodic quadratic coefficient in the material:
the induced grating helps momentum conservation in the photon conversion process,
playing an essential role in the efficiency. New geometries for light conversion can be
designed when the modulation of the quadratic coefficient takes place in more than one
dimension.

Nonlinear effects as those described above can be observed only using strong excita-
tions that must be properly dosed to unveil the sought phenomena. The pulse duration
of the light source can play a crucial role in the correct management between band-
width and energy, allowing the excitation of the desired effect. The work in this thesis
is mainly experimental, accompanied by theoretical-numerical analyses when needed. A
highly energetic picoseconds tunable source is the most appropriate tool for exciting the
effects reported here and touching upon a few areas of growing interest in nonlinear pho-
tonics. These effects are discussed, whenever possible, following a “logical flux” instead
of a chronological one, making the report more easily readable.

Chapter 1 addresses an experiment for in situ tuning of a Colloidal Opal; a brief
introduction to (linear) periodic structures and photonic crystals (PC) is provided. Opals
are the simplest and most accessible three dimensional photonic crystals, although their
band gap is often incomplete; their template consists of closely packed spheres which can
be infiltrated and used as a playground to test materials and concepts. In a photonic
scenario where several PC-elements are integrated to perform various signal-processing
functions, fine adjustment and control of the individual band-gaps and their resonance is
essential to the operation of these novel generations of optoelectronic chips. The sample
used in the experiments is a polystyrene opal doped with gold nanoparticles (Au-np),
with band gap in the C-band for telecommunications. By exploiting the Au-np plasmonic
resonance in the visible, fine and controllable band gap tuning in selected areas of the
composite opal is experimentally demonstrated, with resulting resonance shifts as large
as 30 nm in the near-infrared - following sample illumination with picosecond pulses at
532nm. The effect, somehow different from previous results on transient perturbations,
consists of a permanent blue shift of the resonance, the latter being associated to a
decrease of the refractive index. As the photonic crystal retains its lattice structure
after laser tuning, the opal can be effectively integrated in more complex photonic chips,
as its gap can be finely photo-adjusted in selected areas with picosecond pulses, even
after realization and/or during test procedures.
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Chapter 2 reports solitary propagation in a novel glass with an ultrafast and large
nonlinear response; an introduction to third order nonlinear materials and spatial solitary
propagation is given. The glass under study belongs to the family of Heavy Metal Oxides
(HMO), a promising class for ultrafast photonics thanks to its extended transmittance
and large linear (> 2) and Kerr nonlinear refractive indices with ultrafast response
times. When sustained by an intensity-dependent response, spatial solitons in bulk
tend to undergo catastrophic collapse unless additional effects intervene to arrest it.
This is the reason why, despite the conspicuous number of soliton-based applications
for all-optical signal processing, bulk solitary propagation in glass has been reported in
a few cases only, due to the unstable nature of two-dimensional solitary propagation
in Kerr materials. With this in mind, I studied theoretically and experimentally the
propagation of single and multiple spatial solitons on the glass, clarifying the stabilizing
role of nonlinear absorption in preventing catastrophic collapse. This first observation of
picosecond 2D+1 self-confined wave propagation in bulk solids opens up opportunities
for ultrafast soliton based signal processing in bulk glasses.

In Chapter 3 I report the investigation on quadratic processes in surface periodically
poled ferroelectrics. Surface periodic poling for quasi-phase matching in ferroelectrics
suchh as LiNbO3 and LiTaO3 was introduced as a technique to better control mark-to-
space ratios, due to the recent quest for short domain lengths for harmonic generation of
shorter wavelengths (as well as at counter-propagating wave mixing). This technology
is expected to push forward some of the frontiers in backward harmonic generation
by short period quasi phase matching, presently limited to high order interactions. I
contributed to the characterization of the first samples realized with this novel technique
in conjunction with proton exchanged waveguides in LiNbO3 for frequency doubling
from 1550nm and in LiTaO3 for UV generation; in the former case I help interpreting
the experimental results with a simple theoretical model, providing a useful tool for
characterizing and optimizing surface pe riodic poling and quasi-phase matching.

The last chapter is devoted to spatial solitary propagation sustained by a quadratic
nonlinearity in two-dimensional periodically poled crystals. The quadratic nonlinearity
can be responsible for self-confined propagation of multifrequency (e. g. fundamental
and second harmonic) spatial solitons or simultons. The recent advent of quadratic bidi-
mensional periodically-poled structures, i.e. bidimensional lattices in the second-order
susceptibility, has introduced novel and more versatile geometries for parametric inter-
actions. I worked on the first experimental observation of spatial solitons in nonlinear
2D photonic lattices. The hexagonally poled LiNbO3 sample, optimized for twin-beam
Second Harmonic Generation at 1550 nm, presented several new features unique to this
2D QPM configuration. A theoretical and numerical study and some considerations on
the stability of the solitary solution of the novel system of equations are also detailed.

Experimental setup

The source used in the experiments consists of an optical parametric amplifier/oscillator
(OPA/OPO) pumped by both an amplified frequency-doubled pulse train and single
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Figure 0.1: General Setup.

pulses coming from a picosecond Nd:YAG laser at 1.064µm, 50mJ peak energy, 25 ps
pulse-width and 10 Hz repetition-rate. These last two featrures minimize the detrimen-
tal effects of photorefractive damage [5] in ferroelectric crystals. The OPA/OPO output
is tunable in the ranges 0.72-1.064 and 1.064-2.1 µm for idler and signal beams, respec-
tively. Remarkably, this source produces nearly transform limited pulses with a linewidth
¡ 2cm−1 at 1550nm. Fig. 0.1 is a sketch of the typical experimental setup. The beam
used in the experiments was “cleaned up” through a spatial filter (SF)inorder to produce
a TEM00 spot; polarization and power were controlled with a half-wave plate(HW) and
a polarizer (P) and/or with neutral density filters; some of the beam energy was spilled
out with a beam splitter (BS) and measured with either a piroelectric energy meter(EM)
or a photodetector(PD) connected to a boxcar averager(BOX). Appropriate lenses (L,
OBJ) were used to shape the beam at the entrance of the sample under study (SAM) and
the input coupling was controlled by micropositioners and piezoelectric stages. The light
reflected and transmitted by the sample was measured with photodetectors connected
to the boxcar averager or imaged with a high sensitivity ccd/vidicon camera (CAM) for
visible and infrared wavelengths, respectively. Energy meter, boxcar averager and cam-
eras were interfaced with a computer. The computer programs developed in a Labview
platform were used to automatically collect and average single shot data.



Chapter 1

In situ tuning of a colloidal opal

with picosecond pulses

Photonic Crystals (PC) are structures which possess a periodic high-contrast refractive
index, with period of the order of the optical wavelength, in one two or three spatial
dimensions[3, 6]. These structures can exhibit a photonic band-gap (PBG), i. e. they
can forbid light propagation in certain directions at specific wavelengths. PC-based
structures can therefore enhance confinement, guiding, filtering, switching [7–10] and
-generally- processing of light and its interaction with matter, including lasing and non-
linear effects [11–15]. In a scenario where several PC-elements are integrated to perform
various signal-processing functions, fine adjustment and control of the individual PBGs
and their resonance is essential to the operation of these novel generations of optoelec-
tronic chips. Resonance tuning of a PBG can be pursued by acting either on the PC
lattice periodicity or on the refractive index of the material. The latter approach does
not require any structural change; hence, it is more suitable for control after integration,
in particular when a template is infiltrated with photo-active materials. Liquid crystals
[16], ferroelectrics [17] and electrochemically controlled materials [18] have been explored
with this aim, applying external voltages or temperature to modify their susceptibility.
In this Chapter I report on the use of picosecond pulses for tuning the PBG wavelength
of polystyrene opals doped with gold nanoparticles (Au-np). By exploiting the Au-np
plasmonic resonance in the visible, fine and controllable PBG tuning in selected areas
of the composite PC is demonstrated, with resulting resonance shifts as large as 30 nm
in the near-infrared around 1.7µm. The effect, at variance with previous results on
transient perturbations, consists of a permanent blue shift of the Bragg resonance asso-
ciated to a decrease of the refractive index. The phenomenon is attributed to absorption
induced reshaping of the Au-np embedded in the interstices, with a shift controlled by
the cumulative energy irradiated on the sample at 532 nm. As the photonic crystal
retains its lattice structure after laser tuning, PC’s can be effectively integrated in pho-
tonic chips, as their PBG can be finely photo-adjusted in selected areas with picosecond
pulses, even after realization and /or during test procedures.

9
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1.1 Au-np doped polystyrene opal

A simple and representative example of PC is a multilayer stack, consisting of peri-
odically alternating layers of materials with different refractive indices: a structure of
this sort is the well known Bragg mirror [3, 6]. Let us consider a beam of wavelength
λ orthogonally incident on the Bragg mirror and let us focus on the reflections of two
interfaces, separated by a multiple of the period D. When the optical path difference
between these two reflections is a multiple of λ (i.e. mλ = 2Dneff with m an integer
and neff the average refractive index) they interfere constructively. The energy of the
incident wave is reflected and its forward propagation in the structure is forbidden. The
forbidden wavelength is named Bragg wavelength.

A 3D PC is based on the same principle. An opal consisting in closely packed spheres
possesses a face centered cubic (fcc) structure (Fig. 1.1(a)): taking into account the
periodicity Di,j,k, of the structure along a crystallographic direction [i, j, k] the resonant
wavelength can be expressed by an approximated formula:

λB = 2Di,j,k,

√

n2
eff − sin2(θ) (1.1)

for a beam impinging at an angle θ and with the effective refractive index neff =√
ǫeff defined by:

ǫeff − 1

ǫeff + 2
= f

ǫsp − 1

ǫsp + 2
+ (1 − f)

ǫi − 1

ǫi + 2
(1.2)

ǫsp and ǫi are the dielectric constants of the spheres and the interstices respectively
and f is ratio of the volume occupied by the spheres on total volume[3].

Artificial opals are an intriguing playground to explore resonance tuning. The sample
used in this work is a colloidal opal grown with polystyrene spheres at the department of
Chemistry and Industrial Chemistry at University of Genoa, by Comoretto and cowork-
ers. Opal can be prepared with a cheap technology, named the meniscus technique based
on self- assembly of the colloidal spheres, allowing a fine control of the sample thickness.
The growth starts with a glass substrate is partially immersed in a water suspension
of polystyrene microspheres, and (Fig. 1.1(b)). A meniscus region is formed between
the liquid surface and the glass substrate due to wetting by the solution; evaporation
of the solvent leads to a constant solution influx, which draws colloids into the area of
film formation. During the solvent evaporation these colloids experience interparticle
capillary forces which organize them into close-packed arrays. The resulting opal has a
fcc structure oriented in the [111] direction.

The infiltrated opals are directly grown starting from a mixed suspension of poly-
stirene spheres and Au-np [19, 20]. Au-np are prepared by laser ablation in water
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with sodium dodecyl benzene sulfonate as a surfactant and their radius distribution
around 4 nm was controlled to a standard deviation < 50%[19, 21, 22]. The resulting
opal has some AuNp infiltrated in the interstices. As the spectral position of the PBG
reflectivity-peak is a function of the sphere size and the Au-np doping, composite PC’s
were prepared with polystyrene sphere diameters from 260 to 700 nm in order to span
Bragg wavelengths from visible to near infrared[3, 6, 19].

Fig. 1.2 summarizes the properties of the Au-np-infiltrated opal used in the experi-
ments, with polystyrene spheres of diameter a=700nm. Fig. 1.2(a) is a scanning electron
micrograph of the sample surface showing the typical packing of the PS microspheres.
Fig. 1.2(b) is the measured reflectance around the Bragg resonance λB near 1.7µm.
From the dispersion of λB versus angle of incidence θ displayed in Fig. 1.2(c), the effec-
tive refractive index neff could be extrapolated using the Bragg-Snell expression for the
stop band diffracted [1,1,1] planes in the fcc structures (1.1), obtaining neff = 1.52. The
latter value is remarkably higher than in bare opals (neff = 1.4) owing to infiltration
[19]. The background in the spectrum Fig 1.2(b) shows the interference fringes due to
multiple reflections in the sample, witnessing its good optical properties. The fringes
were used to determine the sample thickness (d = 6.5µm), corresponding to about 11
layers of spheres.

1.2 Experiments and data reduction

Experiments were carried out by irradiating the opal in given locations with a fixed
number (1280) of pump pulses at 532 nm, varying the energy/pulse from 18 to 115µJ
(fluency from 4.5 to 30 · 10−3Jcm−2) in steps of approximately 9µJ . The source used is

(a) Fcc lattice and D1,1,1 direction (b) Scheme for the growth of a colloidal infiltrates
growth

Figure 1.1: Colloidal Opals: a face centered cubic photonic crystal
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(a) SEM micrograph

(b) Linear reflectance versus wavelength for an
angle of incidence of 30 with respect to the
normal

(c) Measured Bragg resonance versus angle of
incidence

Figure 1.2: Au-np infiltrated opal with a=700nm spheres

the single pulse line of the doubled laser Nd:YAG described in Fig. (0.1). PBG peak
in reflectance versus the cumulative energy Σ not exceeding 1.0J (fluency ≤ 260Jcm−2)
was measured. Fig. 1.3(a) displays a few representative scans and shows a blue shift
of the PBG, with Bragg tuning by as much as 30nm. The absence of shift in bare
samples (see Fig. 1.3(b)), even when irradiated with higher energies, shows that the
observed tuning is due to the infiltrated Au-np. Fig. 1.3(c) graphs the photo-induced
shift in reflectance corresponding to the PBG upper (1650 nm) and lower (1750 nm)
edges versus cumulative energy. As the PBG tuning could be revealed by a probe scan
well after pump illumination, the results underline the permanent nature of the effect,
with a resonance shift substantially linked to the overall pump energy Σ damped into
the sample.

This is clearly visible in Fig. 1.3(d) displaying the Bragg shift versus irradiation.
Since the measurements were carried out by varying the energy per pulse, the sub-
stantially linear trend with indicates that the latter rules the tuning with a rate of
≈ 30nm/J , although for Σ > 0.75J (fluency ≤ 200Jcm−2) the Bragg peak gets smeared
out by a permanent damage. The decrease in Bragg wavelength indicates an energy-
dependent reduction of the effective index neff due to Au-np; a rough estimate from
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(a) Scans from an Au-
np opal: scans af-
ter irradiation for 1280
pump pulses with en-
ergy increasing from 18
to 115µJ in 9µJ steps
and maximum cumula-
tive energy of 1.0J .

(b) Scans of a bare
opal PBG: scans af-
ter irradiation for 3200
pump pulses of energy
from 50 to 350µJ in
50µJsteps and maxi-
mum cumulative en-
ergy of 4.5J .

(c) Reflectivity versus
total pump energy
when probing near the
lower (dots) or upper
(circles) band-edges

(d) PBG peak Bragg
wavelength versus total
pump energy

Figure 1.3: Results from spectral scans of reflection from bare and infiltrated with Au-np
opals

expression (1.1) and neff = n0
eff + γΣ yields an overall reduction n0

eff − neff ≈ 0.025
with γ ≈ −25 · 10−3J−1.

In order to better understand the role of laser excitation at 532 nm, i. e. over the
plasmon absorption of the Au-np, the scanning electron microscopy of the sample were
performed in both irradiated and pristine areas, in Genoa. In particular, the irradiated
areas investigated are those exposed to maximum energies of 1.0 (experimental results
discussed above) and 0.6 J, the latter below the value causing a reduction in reflectance.
The areas irradiated by 1.0 J show a modified morphology with some melted spheres;
nonetheless the average lattice of the photonic crystal is not destroyed, as the PBG
could still be revealed. No differences can be detected, however, between pristine and
irradiated areas for Σ < 0.6J , consistently with the measurements above (Fig. 1.3(a)-
(c)) after the use of 98µJ pulses. These results confirm that the observed effects rest
on Au-np infiltration and their absorption. To ascertain the role of gold (in terms of
atoms or np) on the PBG tuning, using the energy dispersive x-ray spectroscopy (EDS)
probe the Au content was determined (Fig. 1.4(c)) in both illuminated (with Σ = 0.6J ,
dashed) and pristine areas (undashed). Clearly, the Au concentration does not vary with
position, thus ruling out the hypothesis of a selective laser ablation of Au atoms. The
dielectric properties of the system were probed by optical spectroscopy in the visible
region of Au-np plasmon absorption. After dissolving portions of the opal with toluene
in order to remove the PGB structure while retaining the Au-np, the average absorbance
spectra for pristine and irradiated areas ( Σ = 0.6J) were acquired, as displayed in Fig.
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(a) Scanning electron micro-
graphs of the Au-np opal after
irradiation with Σ = 1J

(b) Scanning electron micro-
graphs of the Au-np opal after
irradiation with Σ = 0.6J

(c) Au concentration versus position
(a.u.); the irradiated ( Σ = 0.6J) area
corresponds to the dashed region be-
tween 7 and 19, the pristine area is
from 0 to 6 and above 19.

(d) corresponding absorption spectra
after opal dissolution. Pristine (black
line), irradiated (grey line) areas,
and fits (circles) using the Mie-Gans
model.

Figure 1.4: Analysis of the irradiated sample

1.4(d). In pristine areas the spectrum is typical of absorption from both spherical and
spheroidal (aggregated) nanoparticles [21, 22], being the plasmon reasonance close to
530 nm the signature of the former, and the 680nm shoulder extending in the NIR
the signature of the latter [19, 20]. The role of spherical Au-np is detected in the
spectrum of the irradiated area: a fit from the Mie-Gans model [21, 22] performed by
the group of Meneghetti of University of Padua indicates that in pristine areas 80% of
Au-n p are aggregated, while in irradiated spots this reduces to 10%. These results
unambiguously prove that the observed photobleaching for Σ = 0.6J is due to Au-
np reshaping. The distortion in irradiated absorbance is consistent with the observed
reduction of the effective index neff .
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1.3 Conclusion

In conclusion, a colloidal photonic crystals infiltrated with Au nanoparticles can be
permanently and spatially-selectively tuned in Bragg resonance by irradiation with a ps
pulsed beam at 532nm. The photo-induced effect is related to a reshaping of Au-np,
which in turn reduces the effective index of the PC and results in a blue shift of the
Bragg reflectivity. A tuning in excess of 30nm was obtained, finely controllable with
the cumulative energy damped in the structure. The adjustable PBG of Au-np doped
polystyrene opals is promising for PC-based photonic circuits for wavelength division
multiplexing and optical processing.



Chapter 2

Transverse Nonlinear Optics in

Heavy Metal Oxide Glasses

Nonlinear glasses (NG) have been extensively studied in the past years[23, 24]. Heavy
Metal Oxides (HMOs) in particular are very promising material for ultrafast photonic
due to their high optical transmittance and large linear (> 2) and ultrafast Kerr refrac-
tive indices[23–25]. Bright spatial solitons are one of the most investigated phenomena
of nonlinear optics, demonstrated in media with different physical mechanism for their
ubiquitous nature[26–29]. Nevertheless, solitary propagation in NGs has been restricted
in a few cases. As understood and demonstrated in the first studies of light self-focusing
[2, 30], spatial solitons in intensity-dependent refractive index material are stable only
in planar (1D+1) system, while in (2D+1) self-confined beams undergo catastrophic
collapse: additional mechanism, such as index sa turation and non locality, are required
for their propagation[26, 28, 31]. Self confined propagation in NGs is then reported only
for femtosecond pulsed beams in the presence of multiphoton ionization [32, 33], for cw
excitation in self-focusing thermo-optic systems with a diffusive nonlocality [34] and in
photorefractive [35]. The lack of a glass for ultrafast self-confined propagation is en-
hanced by the great development in the last years of soliton based devices for all-optical
processing application[36–42]. Multiphoton absorption (MPA), often present when high
peak powers are employed, can play a remarkable role in nonlinear optics and in the
stabilization of self-confined beams in bulk [43–49].

Like solitons, modulation instability (MI) also stems from the combined effect of
nonlinearity and diffraction. Because of MI, small amplitude and phase perturbations
(due to noise) grow rapidly and, as a result, a broad and homogeneous beam tends to
disintegrate in propagation and break up into localized filaments, eventually generating
an array of solitons [27, 29, 50–52].

In this Chapter nonlinear propagation in Nb2O5 − PbO − GeO2 glass, fabricated
at the Laser Processing Group of Madrid, is reported, from catastrophic collapse and
transverse modulational instability at 1.064µm to single and multiple spatial solitons
in the presence of MPA at 0.82µm. The experiments were carried out with picosecond
pulses using both circular and elliptical transverse excitations over a set of propagation
distances and energies.

16
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2.1 Self-confined beam and catastrophic collapse

A beam propagating in a Kerr medium experiences a modification of refractive index
proportionally to its intensity: n = no + n2I(r), with n2 the Kerr coefficient.

When n2 is positive, a beam with a gaussian profile induces a focusing lens in the
medium. Being Io the peak intensity and Wo the beam waist, the focal plane of the
nonlinear lens is located in zsf ,which can be evaluated using with the Fermat’s principle:
at zsf the optical path of a ray propagating in the center of the beam (zsf (n0+n2Io)) must
be equal to the optical path of a marginal ray converging into the focus with an angle θsf

(n0zsf/cos(θsf )), i.e. θsf ≈
√

2n2Io/n0. When this angle matches the diffraction angle
θd ∝ λ/Wo, the beam propagates in a self-guided fashion, i.e. it is a spatial soliton. This
balances occurs at a critical power PCR = λ2/2πn0n2. The latter relation is completely
independent on the geometric beam parameters: for a power exceeding PCR by a small
amount, self-focusing dominates over diffraction and the beam collapses: the solitary
wave propagation is unstable. Nonlinear absorption, by acting on the portion of the
beam at higher intensities, can prevent catastrophic collapse by reducing the focusing
power of the nonlinear lens. A more rigorous treatment of laser beam propagation in
optical dielectrics with a Kerr response and dissipation can be derived from a Nonlinear
Schroedinger Equation (2.1) corrected for (multiphoton) absorption,

2ik∂uz + ∇2
⊥u +

n2k
2

η0

|u|2u + ikαK

( n0

2η0

)K−1|u|2K−2u = 0 (2.1)

with A being the slowly varying amplitude of the electric field

E(x, y, z, t) =
1

2
u(x, y, z, t)e(ikz−iωt) + cc., k the wavenumber, η0 the vacuum impedance.

αK is the coefficient of K-photon absorption as defined by ∂Iz = −αKIK . For the
numerics I employed a (2D+1) beam propagator with a standard Crank-Nicolson scheme
and Gaussian spatio-temporal excitation. [53]

2.2 Material Properties and Experimental Setup

HMO are characterized by phonon energies significantly lower than in silicate and bo-
rate glasses, although slightly higher than fluoride and chalcogenide systems; they are
transparent and maintain good mechanical properties over a wide interval of wavelengths
from the visible up to the mid-IR (7 − 8µm) [23, 24].

HMO glasses 25Nb2O5 − 25PbO − 50GeO2 mol% (nominal composition) were ob-
tained by mixing high-purity reagents and employing standard melting procedures. The
mixture was prepared in a platinum crucible and kept in a furnace at temperatures of
1100 − 1300◦C for one hour and then poured on a brass plate; this was followed by
thermal annealing for one hour at 450◦C and by slow cooling to room temperature at
1.5◦C/min. The resulting material was a transparent glass with a yellowish appeareance
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Figure 2.1: Refractive index (solid line) and linear transmittance (corrected for Fresnel losses)
(dashed line) of NPG versus wavelength, as obtained by spectroscopic ellipsom-
etry

at the eye. The glass was subsequently cut in blocks with parallel faces and polished
to optical grade. HMO transmittance and refractive index were determined by spectro-
scopic ellipsometry [54], as graphed in Fig. 2.1 after correction for reflection (Fresnel)
losses.

For the nonlinear characterization, a HMO sample of dimensions 5.7× 8.7× 11.5mm
was placed in front of the pulsed beam as described in section 0.1 .A 35mm-lens was
used to in-couple circularly symmetric beams for soliton excitation, whereas a pair of
cylindrical lenses with focal lengths f=15 and f=100mm, respectively, was employed to
shape the elongated (elliptical) input for the study of modulational instability. Images
of the output beam were collected by an infrared-enhanced CCD camera through a
microscope objective, while calibrated semiconductor photodiodes measured input and
transmitted power/energy with the aid of beam splitters.

2.2.1 Self-focusing and Spatial Solitons

When excited in the nonlinear regime at 1064nm with a beam of waist 18µm, the HMO
glass behaved as a purely Kerr medium and exhibited self-focusing. Although the output
spot-size decreased with excitation (Fig.2.2), spatial solitons of size comparable to the
input waist were not observed and, for pulse energies of 16µJ and beyond, the beam
collapsed and damaged the sample, visually resulting in a small and faint central spot
surrounded by an annular ring as in the inset of Fig. 2.2. Such an output profile could
also be imaged by launching a low-power beam in the damaged region of the sample,
confirming the permanent character of the effect. The damage and its dynamics can
be ascribed to plasma-induced avalanche-breakdown for self-focused picosecond pulses
in bulk solids [55, 56]. Specifically in HMO glasses, catastrophic self focusing involves
a collateral stress-induced material densification (bright halo region in the inset) due
to the high pressure generated in the collapsing region [57]. In order to evaluate the
nonlinear refractive index I numerically fitted the data on output beam size (full width
at half maximum, FWHM) versus energy by solving eq, 2.1 with αK = 0, obtaining n2 =
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Figure 2.2: Measured (circle) and numerically evaluated beam size versus input energy for
pulses at λ = 1064nm. The inset shows a case of optical damage induced by
pulses of energy > 16µJ .

1.6× 10−15cm2/W , corresponding to a critical power PCR = λ2/2πn0n2 ≈ 560KW [58];
Fig. 2.2 graphs both measured and evaluated output waist (FWHM) versus excitation.

Conversely, at a wavelength of 820nm a beam of waist 11µm could be launched
at the input and collected at the output of the sample after propagating for 5.7mm.
In this case, the output beam size (i.e. diffraction) decreased with excitation up to
2.8µJ , i.e. peak powers of 100kW , eventually generating a fundamental spatial soliton
(solitary wave), as visible in Fig.2.3(a). For excitations higher than 2.8µJ , a ring could be
observed around the central spot (see rightmost panel in the bottom row of Fig. 2.3(a)).
The latter is reminiscent of the transformation of a Gaussian into a Bessel beam in the
presence of nonlinear losses [44]. Furthermore, at variance with previous observations
at 1.064µm, the sample did not undergo any damage for energies as high as 5.4µJ , as
verified by launching a weak probe. (Damage at the input facet was ascertained by
microscope inspection for inputs > 5.4µJ .) The different behavior at 1.064 and 0.82µm
could be interpreted in terms of multiphoton absorption, as suggested by Fig. 2.4(c),
where the measured transmittance of an 11µm beam is plotted versus pulse energy for
propagation over a length of 11.2mm. The data, normalized to the linear transmittance
(which accounts for Fresnel reflection), exhibit a progressive throughput reduction before
permanent damage occurs. Fig. 2.3(b) shows intensity profiles at the input and after
propagation for 5.7mm (6 Rayleigh lengths).

Owing to the use of picosecond pulses, higher-order dynamics such as group veloc-
ity dispersion and plasma-induced defocusing can be neglected. Plasma formation in
self-confined propagation of ps pulses, in fact, would be accompanied by breakdown,
as reported in fused silica [55, 56]: once the plasma density is high enough to arrest
self-focusing (about 1018cm−3 [56]), strong avalanche ionization takes place with an am-
plified electron density up to the damage concentration (> 1019cm−3) [59, 60]. With
femtosecond pulses, conversely, their short duration prevents avalanche multiplication
and allows self-trapping without collapse [32].

Two and three-photon energies in bulk HMO at λ = 820nm are close to 3.02 and
4.54eV , respectively. However, due to the mixed valence states, the glass sample does



Transverse Nonlinear Optics in Heavy Metal Oxide Glasses 20

(a) Calculated (top) and observed (bottom) output pro-
files of an 11µm Gaussian beam at λ = 820nm prop-
agating for 5.7mm in HMO. The fitting parameters are
n2 = 5.5 × 10−15cm2/W and α3 = 3 × 10−4cm3/GW 2.

(b) (Top) Input and (bottom) out-
put beam profiles for a propaga-
tion length of 5.7mm and input en-
ergy 2.8µJ : photos (left) and graphs
of the radial intensity (right, thick
lines). The dotted (dashed) lines are
calculated radial profiles of the out-
put intensity after integration over
time (for cw excitation at the peak
value).

Figure 2.3: Self-confinement at 820nm.

not exhibit a sharp cut-off in transmittance, as in other HMO glasses [61]. For this
reason the evaluation of energy gap and Urbach tail [62] can be affected by a signifi-
cant error; hence, the leading contribution of nonlinear absorption was identified with
numerical simulations. A summary of the fits with 2PA or 3PA is presented in Fig. 2.4.
Consistently with the dispersion due to the blue-ultraviolet resonance [63], the extrapo-
lated Kerr coefficient n2 = 5.5× 10−15cm2/W at 820nm is higher than at 1064nm. Fig.
2.4 shows the experimental results and those calculated with the inclusion of 2PA (panel
(a)) or 3PA (panel (b)) for the output beam waist versus input energy after propagation
over 5.7mm. Although a point wise interpolation could be obtained using 2PA at given
powers, the 3PA term in eq. (2.1) allows to fit also the transmittance curve (Fig. 2.4(c))
and to reproduce the experimental trend in a noncritical fashion, as displayed in Fig.
2.4(d). Here the calculated maximum peak intensity in the whole beam propagation
is reported for pure kerr case without K-photon absorption (dotted line), in 2PA case
(dashed lines) and 3PA case (continuous lines). These data are obtained integrating eq.
(2.1) taking into account the peak power of the temporal profile and are normalized to
the input peak intensity. In the diffracting dominating regime (below the soliton thresh-
old 2.8µJ) the function is unitary for the normalization; at 2.8µJ the maximum peak
intensity is at the output section and the function value is comparable in 2PA and 3PA
case; above 2.8µJ the beam minimum waist falls inside the sample, moving towards the
entrance at growing energies: the asymptotic grow of the peak intensity in the 2PA case
for energies > 2.8µJ demonstrates the model instability, not supporting the absence of
damage experimentally observed. Only the 3PA model counteracts the beam collapse in
the whole excitation range, obtaining the best fit of the data for α3 = 3×10−4cm3/GW 2.
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Figure 2.4: Summary of experimental results and numerical evaluation for an 11µm circular
input at λ = 820nm. a-b): output beam waist (FWHM) versus excitation en-
ergy for propagation over 5.7mm. Data (open circles) and calculation for a Kerr
coefficient n2 = 5.5 × 10−15cm2/W in the presence of either (a) 2-photon ab-
sorption (2PA, dashed lines) or (b) 3-photon absorption (3PA, solid lines), time
integrating the Gaussian profile. Darker lines refer to higher nonlinear absorption
coefficients, which are respectively 1.2, 1.8, 2.4 × 10−2cm/GW for 2PA and 1.5,
3.0, 7×10−4cm3/GW 2 for 3PA. Best fits are obtained for α2 = 1.8×10−2cm/GW
and α3 = 3 × 10−4cm3/GW 2 in the two cases. c) Beam transmission through
an 11.2mm sample versus input energy: experimental (open circles) and cal-
culated data in the presence of 2PA (dashed lines) and 3PA (solid lines), time
integrating the Gaussian profile. The best fit is obtained considering 3PA with
α3 = 3 × 10−4cm3/GW 2. d) Computed peak intensity (normalized to the input
) versus excitation for pure Kerr (dotted black line) with no K-photon absorp-
tion, Kerr with 2PA (dashed lines) and Kerr with 3PA (solid lines), using the
coefficients and the gray scale above: only when accounting for 3PA the model
counteracts collapse in the whole excitation range.
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Figure 2.5: Propagation of an elliptically shaped beam launched at λ = 1064nm with size
15µm × 215µm: output profiles for propagation lengths of (a-b) 5.7mm and (c-
d) 11.2mm; (b) and (d) are the experimental results, (a) and (c) are numerical
simulations with n2 = 1.6 × 10−15cm2/W .

2.2.2 Modulation Instability and Multiple Filamentation

Modulation Instability (MI) is a precursor of individual and multiple soliton formation
[27, 29]: the interplay between nonlinearity and diffraction can break-up a homogeneous
beam into localized filaments, eventually generating an array of solitons [50–52]. The
unstable behavior observed at 1064nm was confirmed by investigating MI of a beam
of size 15µm × 215µm injected at the input of the HMO sample. By letting the beam
propagate through the three distinct lengths available in our glass block, the formation
of filaments along the major axis of the ellipse was recorded, with patterns determined
by both input position and propagation distance. Consistently with the theory [50], even
when the number of filaments changed owing to a localized perturbation (i.e., launching
the beam at a specific input location), for a given excitation energy the spacing between
filaments was conserved, as shown in Fig. 2.6. Filaments catastrophically collapsed for
energies higher than 160µJ when propagating through the shortest sample section and
than 130µJ through the longest one. Simulations performed with the model used for
propagation at 1064nm, adding white noise (10% of beam amplitude) to the input field
result in good agreement with the experimental data, as shown in Fig. 2.5.

Although 3PA plays the role of stabilizing mechanism for spatial solitons at 820nm,
it necessarily shortens the useful length for self-trapped propagation. This limitation
can be mitigated by a surrounding energy background, the latter able to ’refill’ the
energy lost by the beam(s) [44, 64]. I numerically investigated such nonlinear space
dynamics in those conditions under which MI and multiple filamentation were observed
in HMO. The resulting evolution pattern, presented in Fig. 2.7(a), suggests that the
propagating filaments undergo complex phenomena such as multiple focusing (breathing)
with conical emission from the foci and additional filament generation from the released
energy [65, 66]. The beam was launched from the left and superimposed to a white
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Figure 2.6: Output intensity distribution for an elliptically shaped beam propagating through
5.7mm at λ = 1064nm. The sample was excited with 0.14mJ per pulse and spot
size 15µm× 215µm in two distinct locations at the entrance facet: either two or
three filaments were generated with a separation of 30µm .

noise pattern to permit the (numerical) development of MI [50]. Fig. 2.7(b) sh ows the
energy evolution (dashed line) and the corresponding maximum transverse peak intensity
(solid line) versus z: the peak value increases by more than one order of magnitude
with respect to the initial sections where filaments are yet to be formed. The energy
trend demonstrates that the role of nonlinear absorption becomes more appreciable
(i.e. steeper decrease vs z) once self-focusing comes into play. Most filament energy is
released after collapse into ”spatial” (as compared to spatio-temporal) conical emission,
as previously observed also in other non dissipative media [65, 67, 68], notwithstanding
the role of multiphoton losses in transforming the Gaussian excitation into a Bessel-like
beam [44, 64, 69]. Finally, the radiated energy could seed a successive generation of
filaments as in Ref. [65].

In the experiments an elliptically shaped Gaussian beam of dimensions 13.5µm ×
130µm was focused at the input facet of the HMO sample; at variance with the 1064nm
excitation, the generated filaments did not undergo collapse or damage but their number
increased with input energy, in agreement with the predictions from standard treatments
of transverse modulational instability [50]. Fig. 2.8(b) shows the output intensity profiles

Figure 2.7: (a) Intensity distribution calculated in the plane xz for an elliptical beam at
820nm launched with size 13.5µm×130µm with energy 24µJ assuming n2 = 5.5×
10−15cm2/W and α3 = 3 × 10−4cm3/GW 2. As it propagates from left to right,
the beam undergoes multiple filamentation with conical emission, refocusing as
well as formation of new filaments. b) Input-normalized energy (dashed line) and
maximum transverse intensity (solid line) versus propagation
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Figure 2.8: (a) Calculated and b) acquired output cross-sections of elliptic beams launched at
λ = 820nm with size 13.5µm× 130µm after propagation over 5.7mm. c) and d):
as a) and b) but for input size 13.5µm × 130µm and propagation over 8.7mm.
e) and f): as a) and b) but for input size 13.5µm × 180µm and propagation
over 11.2mm. In the numerics I used n2 = 5.5 × 10−15cm2/W and α3 = 3 ×
10−4cm3/GW 2.

after propagation for 5.7mm: two and five filaments were formed at 20 and 27µJ ,
respectively. In the latter case, small rings appeared around the beam axes owing to
energy release via conical emission (details in Fig. 2.9(a)). Moreover, consistently with
their predicted evolution (Fig. 2.7), the filaments exhibited various sizes and intensities
due to maximum self-focusing at different propagation distances. The calculated profiles
(Fig. 2.8(a)), obtained with the actual input parameters, are in remarkable agreement
with the observed dynamics: self-focusing at low energies, break-up and splitting in two
filaments, conical emission etc. even though their transverse shape and locations depend
on the specific realization of a process (MI and multiple filamentation) which is seeded

Figure 2.9: Details on the filamentation of elliptic beams at λ = 820nm: (a) for input energy
of 27µJ and propagation through a distance of 5.7mm; (b) energy 22µJ and
distance 8.7mm; (c) energy 22µJ and distance 11.2mm.
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by noise. While the inclusion of 3PA allowed us to reproduce with remarkable fidelity
the observed behavior even for longer propagation distances (e.g. 8.7 and 11.2mm, Fig.
2.8(c-d) and Fig. 2.8 (e-f), respectively), no agreement was found with the experimental
results when excluding 3PA from the model (eq. (2.1)) and accounting for 2PA only.
This further confirms that three-photon absorption is the leading dissipative mechanism
at 820nm and the one responsible for soliton stabilization in this HMO.

2.3 Conclusions

In conclusion, in this chapter I presented a thorough investigating on the nonlinear re-
sponse of a novel heavy-metal-oxide glass of the ternary system Nb2O5GeO2PbO when
spatially self-focusing ps beams in the near infrared. The results, interpreted with the
aid of a nonlinear Schroedinger equation corrected for multiphoton absorption, indicate
that the glass has a purely Kerr response around 1064nm, whereas three-photon ab-
sorption plays a significant role around 820nm. At the latter wavelength 3PA prevents
catastrophic collapse and allows the formation of stable spatial solitary waves, even when
originated from a wide beam through modulational instability. Complex dynamics such
as conical emission and multiple filamentation were observed and numerically repro-
duced, confirming the Kerr-like nature of the HMO response. This HMO glass appears
to be an excellent candidate for self-confined propagation in ultrafast dielectrics.



Chapter 3

Guided-wave Second Harmonic

Generation in Surface Periodically

Poled Ferroelectrics

Despite their extensive use and numerous applications in quasi-phase-matched (QPM)
parametric interactions, Lithium Niobate (LN) and Lithium Tantalate (LT) remain
among the most investigated dielectrics for harmonic generation (HG)[70, 71] Several
techniques have been developed for periodic poling based on their ferroelectric properties,
including electric-field poling [72]. In addition, processes for waveguide fabrication in
LN have been mastered, the most successful being those based on Titanium in-diffusion
and proton exchange (PE)[73]. Recently, aiming at the realization of shorter and shorter
domain lengths for QPM-SHG at smaller wavelengths [74] as well as counter-propagating
wave mixing [75–78], Surface Periodic Poling (SPP) was introduced by Busacca et al. to
better control mark-to-space ratios [74, 79, 80]. SPP relies on overpoling a ferroelectric
substrate, with domain spreading and merging beneath the patterned photoresist layer,
thus creating a complete ferroelectric inversion with the exception of relatively shallow
unpoled domains at the LN surface under the pattern

This chapter summarizes the progresses of the SPP-PE technique for second har-
monic generation (SHG), from the first waveguides realized in LN for 1550nm frequency
doubling but suffering of limited ferroelectric domain depth, to the most recent samples
in LT for UV generation with a remarkable conversion efficiency of 7.5%W−1cm−2.

3.1 Surface periodically poled for frequency

doubling

Non-centrosymmetric materials exhibit a quadratic dependence of the polarization from
the electric field E , P = ǫon

2E+2ǫodE2, with ǫo vacuum permittivity and d the quadratic
strength. The latter relation rules the mixing of three waves with different frequency, i.e.,
in the frame of a quantum-mechanical description, it permits three photons of different
energies to interact. In an SHG process, two photons from the fundamental frequency

26
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wave (FF) and energy ~ω can annihilate into a photon of energy ~ω/π, generating the
second harmonic(SH) of the original frequency. An efficient conversion process takes
place when the total momentum of the interacting particles is also conserved. Due to
material dispersion, the latter occurrence is not generally satisfied[81]. QPM is a popular
method to phase match FF and SH and consists in creating a nonlinear lattice in the
material. When properly chosen, the momentum of the induced grating can compensate
the momentum mismatch of the interacting particles, helping the conversion[82].

In ferroelectric crystals like LN and LT a periodic sign change of the nonlinear co-
efficient d can be achieved through the reversal of the spontaneous polarization, thus
creating different “domains” alternating periodically with a given sign of d. SPP is a
technique for QPM based on electric field poling.

The samples studied in this work were fabricated by SPP at the Centro per la Ricerca
Elettronica in Sicilia (CRES) of Monreale (Italy). 500µm thick z-cut substrates of
congruent LN/LT were spin-coated with photoresist and UV exposed to define a proper
periodic pattern on the “-z” surface by standard photolitography. Then the samples
were electric-field poled using high voltage pulses to overcome the coercive field. For
waveguide fabrication, poled substrate were initially coated with a SiO2 layer, where
channel openings - from 1 to 7 µm in width - were defined by standard photolithography
and wet-etching in HF. Proton exchange was then carried out by the so-called sealed-
ampoule method [83] in a solution of benzoic acid (BA) and lithium benzoate (LB).
This yielded low proton concentration (α phase [84]) channel waveguides supporting
TM modes. The compatibility between SPP and PE was verified by chemically etching
the samples and using scanning electron microscopy. Fig. 3.1(a) is a micrograph of a
typical QPM channel after etching in HF.

3.2 Frequency doubling in SPP LN waveguides

@1550nm

The first batch of SPP-PE waveguides, designed for SHG from a 1550nm pump with
a QPM period of 16.8µm, was characterized by a limited depth of the non-inverted
domains. The sample was studied experimentally with the setup described in section
0.1. The OPO source was focused with a 20x microscope objective at the channel input
with circular beams of waist w0 ≈ 3.6µm. The output FF and SH profiles were imaged
with Vidicon and Si-CCD cameras, respectively, using a 63x microscope objective (see
Fig. 3.1(b)). Energy and peak power were measured with Ge and Si photodiodes.
All measurements were taken at room temperature with the aid of a Peltier cell and a
temperature controller.

SHG measurements were conducted either at a fixed wavelength by varying the FF
input power or by scanning the FF wavelength, ratioing the second-harmonic output
to the fundamental input to obtain the conversion efficiency. Typical results versus FF
wavelength are shown in Fig. 3.2(a) for an FF peak power of 2kW: even though the
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(a) Scanning electron microscope pho-
tograph of a LN sample: the PE channel
waveguide is clearly visible on the SPP
inverted domain grating.

(b) FF (top) and
SH (bottom) modes
as imaged by a Vidi-
con tube and a CCD
camera, respectively

Figure 3.1: LN sample for 1550nm frequency doubling

data (symbols) are plotted versus wavelength rather than detuning, the sinc-like shape
is in substantial agreement with the expected one for CW excitation (solid line). The
full width at half maximum is about 1nm, yielding an effective QPM grating length of
1cm, corresponding to the overall sample length. Despite the low efficiency, the latter
result confirmed the good uniformity of the PE poled sample in both QPM periodicity
and waveguide parameters [82].

By repeating the SHG scan at higher peak powers the wavelength of maximum
conversion (the FF resonance wavelength for SHG) shifted with excitation, as visible in
Fig. 3.2(b).

Light propagation and QPM in only a partially inverted medium can have detrimental
effects on SH generation and produce a nonlinear phase shift due to cascading under
phase-mismatch [85, 86]. Therefore, in order to quantitatively interpret the experimental
data, not only the periodically poled transverse region providing first-order QPM must
be taken into account, but also the homogeneously inverted portion of the waveguides
extending below the actual domains. The SH generated in this region is not expected
to alter the peak conversion efficiency, since it is phase mismatched; however, it can
play an important role on the phase coherently accumulated by the FF in propagation,
therefore on the peak wavelength of maximum conversion [85, 87, 88].

For monochromatic first-order TM-polarized guided-wave modes at FF and SH, the
electric field E of an x-propagating eigenmode is:

Eu(x, y, z, t) =
1

2
u(x, t)ẽu(y, z) exp[i(ωut − kux)] + c.c., (3.1)
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(a) SHG conversion efficiency versus FF
wavelength for a launched peak power of
2kW.

(b) SHG resonance shift in wave-
length for increasing peak excita-
tions 7.4, 8.9, 11.2 and 12.7 kW
from left to right, respectively.

(c) Peak SHG wavelength shift (top) and
maximum conversion efficiency versus FF
peak power (bottom).

Figure 3.2: Measurement of frequency doubling in LN sample. The experimental values
(open circles) are numerically interpolated using Eq. (3.2) (solid curves).

where u(x, t) is the slowly varying amplitude (in space and time) measured in
√

W ,
(|u(x, t)|2 is the optical power of the mode), ẽu(y, z) is the transverse profile measured
in

√
Ω/m and ku is the guided wave propagation-constant.

In the presence of a rectangular QPM grating with limited-depth inverted domains
and an intrinsic third-order response, assuming a negligible contribution from higher-
order modes at SH (non quasi-phase-matched to the FF mode), the coupled-mode equa-
tions for SHG take the form:
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∂xu +
∂tu

cu

= −u∗w[χ1 exp(−i∆k1x) + iχ2 exp(−i∆k2x)]

−in2
2π

λFF

(fuu |u|2 + 2fuw |w|2)u − αu

2
,

∂xw +
∂tw

cw

= u2[χ1 exp(i∆k1x) − iχ2 exp(i∆k2x)]

−in2
4π

λFF

(2fuw |u|2 + fww |w|2)w − αw

2
,

(3.2)

being u(x, t) and w(x, t) the amplitudes of FF and SH waves, respectively, cu and cw

(αu and αw) the group velocities (linear absorption coefficients) at FF and SH, respec-
tively, and n2 the non-resonant Kerr coefficient [89]. The third-order nonlinear effects,
i.e. self and cross-phase modulation, are weighed by the overlap integrals[81]

fjk ≡
∫ ∫ +∞

−∞
|ej(y, z)|2 |ek(y, z)|2 dydz

∫ ∫ +∞

−∞
|ej(y, z)|2 dydz

∫ ∫ +∞

−∞
|ek(y, z)|2 dydz

(j, k = u,w) (3.3)

As visible, the contributions from poled and unpoled regions of the waveguide are
distinct [90]. χ2 and ∆k2 = kw − 2ku are the nonlinear coefficient and the mismatch in
the unpoled region, respectively, while χ1 and ∆k1 = ∆k2 − G are the corresponding
ones in the poled region, being G = 2π/Λ the first-order wave vector contribution of the
QPM grating with period Λ. The nonlinear coefficients can be expressed as

χi = deffi
γi

√

8π2η0fSHG

λ2
FF N2

uNw

, (i = 1, 2) (3.4)

with overlap integral.

fSHG ≡

[

∫ ∫ +∞

−∞
e∗w(y, z)e2

u(y, z)dydz
]2

[

∫ ∫ +∞

−∞
|eu(y, z)|2 dydz

]2
∫ ∫ +∞

−∞
|ew(y, z)|2 dydz

. (3.5)

with deff1
= 2d33/π, deff2

= d33, and γi parameters accounting for the waveguide
cross-section:
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γ1 =

∫ +∞

−∞

∫ +∞

Z0

e∗w(y, z)e2
u(y, z)dydz

∫ +∞

−∞

∫ +∞

−∞
e∗w(y, z)e2

u(y, z)dydz
,

γ2 =

∫ +∞

−∞

∫ Z0

−∞
e∗w(y, z)e2

u(y, z)dydz
∫ +∞

−∞

∫ +∞

−∞
e∗w(y, z)e2

u(y, z)dydz
= 1 − γ1,

(3.6)

with Z0 delimiting the domain depth h.

Eqs. (3.2) model SHG in a partially poled QPM sample. They were solved nu-
merically, assuming a Gaussian profile for the FF pulses, a propagation length L=1cm,
propagation losses αu = αw = 0.2cm−1 at both wavelengths (accounting for both the
α-phase and the domain inversion [91, 92]) and an input coupling efficiency equal to
73% and consistent with the measured throughput of 60%. The overlap integrals were
calculated from the acquired intensity distributions (Fig. 3.1(b)), resulting in effective
areas 1/fuu = 52.99µm2 and 1/fww = 23.11µm2 for FF and SH self-phase modulation,
respectively, 1/fuw = 44.08µm2 for cross-phase modulation and 1/fSHG = 76.68µm2 for
SHG. Since both cubic and quadratic terms contribute to the shift (3.17), the Kerr co-
efficients previously measured by independent methods and reported in literature were
adopted to estimate the pertinent QPM quantities, i.e. the nonlinearity d33 and the
constant γ1 related to the depth h of the domains. The depth was extracted from γ1

using a modal solver. The index profile along z was reconstructed form the experimental
data (Fig. 3.1(b)).

A graph of the domain depth and of d33 versus the n2 coefficient is shown in Fig. 3.3.
The largest value of n2 ≈ 10 × 10−20m2/W [63] provided γ1 = 0.0104, corresponding to
d33 = 16.5pm/V and h ≈ 440nm. Conversely, the smallest reported n2 ≈ 5×10−20m2/W
gave γ1 = 0.0095, corresponding to d33 = 18pm/V and h ≈ 430nm. Therefore, while
the domain depth was marginally affected by the size of n2, the quadratic response
appeareds lower than previously reported [82]. Noticeably, by neglecting the third-
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Figure 3.3: Quadratic nonlinear coefficient d33 (solid line) and domain depth (dashed line)
obtained from data interpolation at variance of the Kerr coefficient n2
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order nonlinearity altogether (but keeping the propagation losses) we got γ1 = 0.0088,
with d33 = 19.5pm/V and h ≈ 420nm. These results are perfectly consistent with the
expression (3.17). Moreover, the found nonlinear values are in good agreement with
d33 = 19.5pm/V as measured at 1.313µm [93].

An interesting reduction of Eqs. (3.2), showing the role of the cascaded and Kerr contribution can
be obtained from the simplified system, neglecting absorption and temporal walk-off as well as the cubic
terms depending on the SH field [94, 95],

∂xu(x, τ) = − u∗w[χ1 exp(−i∆k1x) + iχ2 exp(−i∆k2x)]+

− in2

2π

λFF

fuu |u|2 u,

∂xw(x, τ) =u2[χ1 exp(i∆k1x) − iχ2 exp(i∆k2x)]+

− in2

8π

λFF

fwu |u|2 w,

(3.7)

having introduced τ = t − x/cu.

Defining |u|2 = u(0)2g(τ)2 for the input power in x = 0 and U, W and ∆κi as in the expressions

U = u exp

[

−i
2π

λFF

n2fuuu(0)2g(τ)2x

]

,

W = w exp

[

−i
8π

λFF

n2fwuu(0)2g(τ)2x

]

,

(3.8)

∆κi = ∆ki +
4π

λFF

n2u(0)2g(τ)2(2fuw − fuu) (i = 1, 2), (3.9)

the coupled-mode equations for U(x, τ) and W (x, τ) take the form

∂xU = −U∗W [χ1 exp(−i∆κ1x) + iχ2 exp(−i∆κ2x)] (3.10)

∂xW = U2[χ1 exp(i∆κ1x) − iχ2 exp(i∆κ2x)]. (3.11)

Finally, since ∆κ2 ≫ ∆κ1 (∆k1 ≈ 0) and χ2 ≫ χ1, neglecting the rapidly oscillating term sin[(∆κ2−
∆κ1)x], Eq. (3.11) reduces to

∂xxU + i∆κ2∂xU ∼= −χ2

2
(|U |2 − |W |2)U. (3.12)

In the small conversion limit (|W |2 ≪ |U |2), after defining the FF phase φ as in U = u(0)g(τ) exp(−iφ)
with g(τ) the FF temporal profile, Eq. (3.12) corresponds to:

(∂xφ)
2 − ∆κ2∂xφ − χ2

2
w(0)2g(τ)2 ∼= 0 (3.13)
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that admits the solution [86]

φ = −∆κ2x

2

(
√

1 +
4χ2

2
u(0)2g(τ)2

(∆κ2)2
− 1

)

≈ −χ2

2
u(0)2g(τ)2

∆k2

x, (3.14)

because for low powers u(0)2 ≪ ∆κ2/χ2

2
and, in the same limit, ∆k2 ≫ (8π/λFF )n2fuwu(0)2,

(4π/λFF )n2fuuu(0)2 (and so ∆κ2 ≈ ∆k2). The cascading contribution is self-defocusing [85–88, 96–
98]. The SH power at the output of the sample (of length L) is

|w|2 = |W |2 = χ2

1
u(0)4g(τ)4L2sinc2

[

(

∆k1 + ∆Cu(0)2g(τ)2
) L

2

]

, (3.15)

where

∆C =
8π

λFF

n2fuw − 4π

λFF

n2fuu +
2χ2

2

∆k2

. (3.16)

From Eq. (3.15), λ0 for peak efficiency, i.e. the SHG resonant wavelength in the limit of zero FF
power, corresponds to ∆k1 + ∆Cw(0)2g(τ)2 = 0; therefore, at first order,

λ = ∆C
λ0

G
u(0)2g(τ)2 + λ0. (3.17)

Expression (3.17) is consistent with the linear trend experimentally found (Fig. 3.2(c)) for a positive
∆C; thereby, cross-phase modulation (with a positive n2) and cascading (with ∆k2 > 0) dominate the
λ shift. Since no permanent or semipermanent material effects such as hysteresis, memory, or damage
could be detected, other effects (photorefractive, photovoltaic, higher order) potentially contributing to
a resonance-wavelength shift were entirely negligible in the waveguides.

3.3 Ultra-Violet Generation in Periodically-Poled

Lithium Tantalate Waveguides

The limitation to the efficiency of frequency doubling experienced in the previously
described case was overcome by Busacca and coworkers in next generations of samples.
Domains as deep as 40µm (visible in the microphotographs in Fig. 3.4(b)) were obtained
in PE SPP LT guided-wave parametric generators. These LT waveguides, featuring short
period QPM (2µm), are the first integrated optics coherent UV sources at 365.4 nm,
with remarkable conversion efficiencies exceeding 7.5%W−1cm−2.
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(a) Photograph of the periodic
domain pattern with 2µm pe-
riodicity as revealed by chemi-
cal etching in Hydrofluoric acid;
the dashed line indicates the
edge of the sample with the -Z
facet above it.

(b) Detail of a proton exchanged
channel waveguide (white trace)
on the etched sample.

(c) FF (top) and SH (bot-
tom) intensities profiles at
the output of a 7µm wide
LT channel.

Figure 3.4: LT sample for UV generation

For the nonlinear characterization, an Ar-ion pumped Ti-Sapphire laser, tunable
from 700 to 980nm and with a 40GHz line-width, was end-fired by a microscope ob-
jective into the channel waveguides, keeping the sample at a constant temperature of
250 ± 0.1oC in order to reduce or eliminate the chances of photorefractive damage. A
filter at the waveguide output helped eliminating the fundamental frequency (FF) pump
in the near-infrared while another filter suppressed the remaining Argon-ion light. The
generated second-harmonic (SH) power in the UV was measured with a calibrated (Sil-
icon) photodiode equipped with a chopper and a lock-in amplifier to reduce the noise
level, while both FF and SH modal profile were imaged by a CCD camera, as shown in
Fig. 3.4(c) for a 7 m-wide channel.

Fig. 3.5(a) graphs the generated SH power versus FF wavelength in 7µm-wide waveg-
uides. The SHG resonance occurred between fundamental-order TM modes for an input
wavelength close to 730.7nm. Although the PE channel was multimode in the UV and
the effective refractive index of some higher-order SH modes were rather close to the
TM00, the latter dominated the process owing to a significantly larger overlap integral.
Features in Fig 3.5 (a) are due to slight inhomogeneities in the QPM sample. The gen-
erated corresponding mode in the UV exhibited the expected quadratic growth versus
FF power, as displayed in Fig. 3.5(b) for a 2cm-long channel with a 1.0cm QPM (SPP)
region in the middle, equidistant from input and output facets. The values graphed in
Fig. 3.5(b) are purged of the external (Fresnel reflections) losses.

Fig. 3.5(a) graphs the generated SH power versus FF wavelength in 7µm-wide waveg-
uides. The SHG resonance occurred for an input wavelength close to 730.7nm. Although
the PE channel was multimode in the UV and the effective refractive index of some
higher-order SH modes were rather close to the TM00, the latter dominated the pro-
cess owing to a significantly larger overlap integral. The features in Fig 3.5 (a) are due
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(a) SH generated power versus wave-
length of the FF injected in a 7µm-wide
channel. The resonance is at λFF =
730.7nm.

(b) Quadratic trend of the generated
UV light versus FF input power at the
QPM resonant wavelength.

Figure 3.5: UV generation in LT waveguides

to slight inhomogeneities in the QPM sample. The generated corresponding mode in
the UV exhibited the expected quadratic growth versus FF power, as displayed in Fig.
3.5(b) for a 2cm-long channel with a 1.0cm QPM (SPP) region in the middle, at the same
distance from input and output facets. The values graphed in Fig. 3.5(b) are purged of
the external (Fresnel) reflections losses. From the SHG resonance in Fig. 3.5(a) with a
FWHM = 0.152nm, we could estimate the effective length of the surface-poled region
to exceed 9.5mm, the latter value indicating that nearly the whole poled region (10mm)
contributed to the parametric process; otherwise stated, the SPP process produced a
uniform QPM grating. The fitting of the experimental data in Fig. 3.5(b) was obtained
with a material nonlinearity d33 = 6.9pm/V , for an effective area 1/fSHG = 130µm2 as
extrapolated from the modal profiles in Fig. 3.4(c). In spite of neglecting the absorption
at SH and FF, the latter value is consistent with what reported by Meyn and coworkers
for bulk poled crystals. [99]

3.4 Conclusions

The recent progresses of the SPP-PE technology for SHG in ferroelectrics were summa-
rized in this Chapter. The first generation of samples, despite a good mark-to-space ratio
of 50:50, was negatively affected by the small depth of the non-inverted ferroelectric do-
mains, the latter reducing the conversion efficiency and introducing a sizable quadratic
cascading. The next samples, conversely, possessed domains as deep as 40µm for QPM
periods of 2µm. These waveguides are the first integrated optics sources of coherent UV
at 365.4 nm, with remarkable conversion efficiencies exceeding 7.5%W−1cm−2.



Chapter 4

Spatial Simultons in Quadratic

Nonlinear Lattice

In analogy to Kerr spatial solitons, parametric solitons in quadratic materials are well
known examples of spatial solitary waves in optics[100]. Following previous chapter,
where the mechanism of the χ(2) : χ(2) cascaded nonlinearity [85] is introduced, the in-
teraction between the FF and the SH in a χ(2) crystal can result in a net phase shift
as the one occurring in χ(3) media. In a broader sense than SHG cascading , the phase
exchange between the waves interacting in a second order process is responsible for
their “locking” in a quadratic soliton or “simulton”. Differently from the Kerr case,
a simulton does not define a waveguide that could be probed by another signal. The
first experimental works on spatial simultons appeared in 1995 (Torruellas et al. [101]
and Schiek et al. [102] for the cases of bulk KTP and LN planar waveguides, respec-
tively). The recent developments in the technology of periodically poled ferroelectrics
and the extension of QPM to the bidimensional case resulted in the fabrication of 2D
nonlinear lattices. This chapter is devoted to the study of simultons in these structures,
with particular reference to Hexagonally poled Lithium Niobate (HexLN), used for the
first experimental demonstration of simultons in 2D nonlinear lattices. The chapter is
organized as follows:

-General equations will be derived for two non-collinear concurrent QPM processes
defined by two reciprocal lattice vectors G10 and G01, specifically referring to the hexag-
onal geometry. The general system is equivalent to SHG in a transversely periodic
quadratic medium. These equations will be simplified in the undepleted SHG regime,
showing that the SHG process can be viewed as the superposition of two SHG interations
in opposite directions.

-A numerical and theoretical study will address the simultons resulting from the
general equations, demonstrating by the use of Lie symmetry that solitary propagation
can rigorously occur only along the mid-angle between the two lattice vectors. In this
regime the structure behaves as a quadratic nonlinear waveguide. A class of simultons
with a large stability domain will be showed, analytically demonstrating that the stability
threshold is decsribed by the classical VK criterion.

36



Spatial Simultons in Quadratic Nonlinear Lattice 37

-Using classical results of χ(2) cascaded processes, a regime will be defined where the
general equations support walking solitary waves, i.e. solitons that can be steered in
angle depending on the excitation; this leads to the existence of two spectral regions for
beam confinement and opposite lateral displacements, i.e. where the structure behaves
as a wavelength controlled (nonlinear) de-multiplexer.

-Reports on the experimental demonstrations of self-confined propagation in the two
regimes will follow.

4.1 Derivation of the Governing Equations

Multidimensional nonlinear lattices can allow PM with several vectors in reciprocal
space. The simplest interaction involves two of them. With no loss of generality, an
interesting structure is a triangular lattice with period Λ defined in the plane (X,Y) (see
fig. 4.1(a)).

The periodicity in direct (real) space is completely described by the primitive vectors

a10, a01, with |a10| = |a01| = Λ, forming an angle
2π

3
with one another. The latter vectors

are related to the primitive reciprocal vectors G10 and G10 through ai ·Gj = 2πδij, with

|G10| = |G01| = Go =
4π√
3Λ

. When the quadratic response is modulated in sign by such

a triangular lattice, it can be expanded in the Fourier series

d(X,Y ) =
∑

nm

dnmeiGnm·r, Gnm = nG10 + mG01

dn,m =
1

CellArea

∫∫

D

d(X,Y )e−iGnm·rdXdY
(4.1)

Since d(X,Y ) is a real and symmetric function, with a proper choice of the origin
d10 = d01 = do with do real. The reciprocal vectors can be conveniently expressed in an
(x, z) system rotated by a small angle θ with respect to (X,Y) (Fig. 4.1(a)), i.e.:

G10 = Go(

√
3

2
− θ

2
)ẑ + Go(

1

2
+

θ
√

3

2
)x̂

G01 = Go(

√
3

2
+

θ

2
)ẑ − Go(

1

2
− θ

√
3

2
)x̂

(4.2)

In the (1+1)D reference system (x, z), the coupled equations for SHG can be ex-
pressed as:
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(a) Triangular lattice. G10 and G01 are the reciprocal
vectors involved in the interaction, for a FF beam prop-
agating along z and forming an angle θ with the lattice
Z axis.

(b) Vectorial QPM relation
for two FF resonant wave-
lengths λ10 and λ01.

Figure 4.1: Geometry of SHG in a triangular lattice.

(∂zz + ∂xx)Eu + +k2
uEu + 4k2

od(x, z)E∗
uEw = 0

(∂zz + ∂xx)Ew + k2
wEw + 8k2

od(x, z)E2
u = 0 (4.3)

where ko = ω/c (2ko = 2ω/c) is the wave number of the FF (SH) in vacuum,
Eu = 1

2
Eue

−iωt + cc (Ew = 1
2
Ewe−2iωt + cc) is the electric field at FF (SH), nu (nw) and

ku = nuko (kw = 2nwko) are the refractive index and the wave number in the medium at

FF (SH), respectively. In the case under study the quantity kw − 2ku − Go

√
3

2
is small;

hence, the waves are close to PM owing to the two vectors G10 and G01.

4.1.1 No depletion plane-wave regime

In order to gain physical insight on multiple PM, the equations can be simplified by
assuming plane-wave propagation and an FF generating a weak SH. For a plane-wave
at FF launched along z and generating the superposition of two SH plane-waves:
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Eu =
1

2
Eue

−iωt + cc =
1

2
Uei(kuz−ωt) + cc

Ew =
1

2
Ewe−2iωt + cc =

1

2
(W10(z)eik10

w ·r + W01(z)eik01
w ·r)e−i2ωt + cc (4.4)

with
∣

∣k10
w

∣

∣ =
∣

∣k01
w

∣

∣ = kw. Under no FF depletion and paraxial approximation, the
equation for the SH reduces to:

2ik10
w · ẑ W

′

10e
ik10

w ·r + 2ik01
w · ẑ W

′

01e
ik01

w ·r + U28k2
odo(e

iG10·r+2kuz + eiG01·r+2kuz) = 0

(4.5)

Since W10, W01 and U do not depend on x, the solution to the above requires k10
w ·x̂ =

G10 · x̂ and k01
w · x̂ = G01 · x̂; hence, the equation can be re-cast in the system:

2ik10
w · ẑW ′

10 + 8k2
odoU

2e−i(k10
w ·ẑ−2ku−G10·ẑ)z = 0

2ik01
w · ẑW ′

01 + 8k2
odoU

2e−i(k01

W
·ẑ−2ku−G01·ẑ)z = 0

(4.6)

with the vectorial QPM condition for W10/01:

G10/01 · x̂ − k10/01
w · x̂ = 0

G10/01 · ẑ − k10/01
w · ẑ + 2ku · ẑ = 0

(4.7)

The first of (4.7) defines the transverse components of the vectors k10/01
w , i.e. the

propagation angle of the waves W10/01. This angle has to be small in the paraxial
approximation, implying Go << kw, usually verified in physically relevant cases. θ

introduces a correction on a small angle and can be neglected, leading to k10/01
w ·x̂ = ±Go

2

and k10/10
w · ẑ = k̃w, with k̃2

w +
G2

o

4
= k2

w.

Conversely, θ plays an important role in the second of (4.7). Using Go << kw and
θ << 1, the second of (4.7) can be rewritten as:



Spatial Simultons in Quadratic Nonlinear Lattice 40

G10/01 · ẑ − k10/01
w · ẑ + 2ku · ẑ =

(

√
3

2
∓ θ

2
)Go + 2ku −

√

k2
w − G2

o

4
(1 ± 2

√
3θ + o(θ2)) ≈

(

√
3

2
∓ θ

2
)Go + 2ku − kw − G2

o

8k2
w

(1 ± 2
√

3θ) ≈

(

√
3

2
∓ θ

2
)Go + 2ku − kw − G2

o

8k2
w

=

∆ko ∓
θ

2
Go

(4.8)

where ∆ko is the mismatch:

∆ko =

√
3

2
Go + 2ku − kw − G2

o

8k2
w

≈
√

3

2
Go + 2ku − kw (4.9)

Summarizing the above, the generated SH can be expressed as the superposition of
two plane waves propagating at opposite angles with respect to the FF direction. Such
angles are defined by the QPM resonance with the two reciprocal lattice vectors:

Ew =
1

2
Ewe−2iωt + cc =

1

2
W (x, z)eik̃wz−2iωt + cc

W (x, z) = W10(z)ei Go

2
x + W01(z)e−i Go

2
x (4.10)

with transverse and longitudinal SH wave-vector components such that:

k̃2
w +

G2
o

4
= k2

w
(4.11)

The two SH plane waves satisfy the two separate equations

2ik̃10
w W

′

10 + 8k2
odoU

2ei∆k10
z = 0

2ik̃01
w W

′

01 + 8k2
odoU

2ei∆k01
z = 0

(4.12)

with the two phase mismatches
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∆k10/01 = ∆ko ∓
θ

2
Go (4.13)

4.1.2 General case

After describing the system in the no depletion approximation, the general case can be
addressed. The fields are cast as

Eu =
1

2
Eue

−iωt + cc =
1

2
U(x, z)eikuz−iωt + cc

Ew =
1

2
Ewe−2iωt + cc =

1

2
W (x, z)eik̃wz−i2ωt + cc (4.14)

The SH wavenumber is conveniently expressed as k̃w, defined by the previous relation
(4.11). In the paraxial approximation, using the definitions 4.9 with ∆ko small, Eqs.
(4.3) are written in the form:

2iku∂zU + ∂xxU + 8k2
odo cos(

Go

2
(x − θz))U∗We−i∆koz+i

√
3

2
Goθx = 0

2ik̃w∂zW + ∂xxW +
G2

o

4
W + 16k2

odo cos(
Go

2
(x − θz))U2ei∆koz−i

√
3

2
Goθx = 0 (4.15)

As in the previous section, the term ei
√

3

2
Goθx can be neglected (it induces small varia-

tions on the SH phase and propagation direction as compared to
G2

o

4
and θ, respectively,

as it can be verified with the substitution W = W ′e−i
√

3

2
Goθx). Owing to paraxiality,

since nu ≈ nw, the approximation 2ik̃w∂zW ≈ 2ikw∂zW ≈ 4iku∂zW is allowed.

Using the standard substitutions and normalizations
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x = xxo

z = z 2LR = z kux
2
o

U(x, z) =
1

2dok2
ox

2
o

u(x, z)

W (x, z) =
1

2dok2
ox

2
o

w(x, z)ei∆koz

γ =
Goxo

2
ϑ = kuxoθ

∆o = x2
oku∆ko

∆ = ∆o −
γ2

4

(4.16)

the system reduces to the form:

i∂zu +
∂xxu

2
+ 2 cos(γ(x − ϑz))u∗w = 0

i∂zw +
∂xxw

4
− ∆w + 2 cos(γ(x − ϑz))u2 = 0

(4.17)

4.2 Analysis of the governing Equations

A powerful and general approach for studying differential equations is the theory of the
local Lie group [103, 104]. Roughly speaking, a variational symmetry of an equation is
a transformation in the space of dependent and independent variables that transforms
a solution of the equation in another solution of the same. Each variational symmetry,
through Noether’s theorem, is connected to a conserved quantity of the system. Fol-
lowing a standard procedure, [103, 104], it is possible to find all the symmetries of a
system. As an example, let us consider the system modeling SHG in a homogeneous
material (SHG-hom), in the general case of non collinear FF and SH, with the previ-
ous convention on the fields and with ∆ and ϑ the phase mismatch and the walkoff,
respectively:

i∂zu +
∂xxu

2
+ u∗w = 0

i∂zw +
∂xxw

4
− iϑw − ∆w + u2 = 0

(4.18)
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This system possesses three symmetries associated to the conserved quantities[100]:
i) The energy associated to phase invariance:

Q = Qu + Qw =

∫

|u|2 + |w|2 dx (4.19)

ii) The momentum associated to translational invariance in x:

M = Mu +
1

2
Mw =

i

2

∫

u(∂xu
∗ − u∗∂ux) +

1

2
(w∂xw

∗ − w∗∂xw)dx (4.20)

iii) The Hamiltonian associated to translational invariance in z:

H =
1

2

∫

|∂xu|2 +
|∂xw|2

4
− (u∗2w + u2w∗)dx +

∆

2
Qw − ϑ

2
Mw (4.21)

where

∂zu = iδu∗H ∂zu
∗ = −iθuH

∂zw = 2iδw∗H ∂zw
∗ = −2iθwH

From eqs. (4.17), since the phase invariance is preserved and therefore the energy (4.19),
the translational invariances with respect to x and z are no longer independent for the
presence of an explicit dependence from (x− θz). The momentum for a solution of eqs.
(4.17) is defined as eq. (4.20) and the Hamiltonian as

H =
1

2

∫

|∂xu|2 +
|∂xw|2

4
− 2 cos(γ(x − θz))(u∗2w + u2w∗)dx +

∆

2
Qw (4.22)

These two quantities are no longer independent, since the translational invariance
with respect to x′ = x− θz requires the conservation of the new quantity H ′ = H − θM .

Important simplifications can be obtained looking for a solution that preserves the
symmetry of the equation. From the classification approach [103, 104], a general class
of solutions for eqs. (4.18) is u = uo(x − cz)eiβz and w = wo(x − cz)ei2βz, with β and
c two free parameters[100]; hence, invariant solutions of eqs. (4.18) can propagate in
any direction. The classification problem for eqs. (4.17) leads to solutions of the form
u = uo(x−θz)eiβz and w = wo(x−θz)ei2βz, possessing just one free parameter β. In the
general case, invariant solution in propagation (solitary waves) are expected only in the
direction x′ = x−zθ, with H’ the Hamiltonian of the system. This class of solutions can
be used in the ODE system derived from eqs. (4.17) with x′ = x − θz, u = uo(x

′)eiβz

and w = wo(x
′)ei2βz:
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u
′′

o

2
− iϑu

′

o − βuo + 2 cos(γx′)u∗
owo = 0

w
′′

o

4
− iϑw

′

o − (∆ + 2β)wo + 2 cos(γx′)u2
o = 0

(4.23)

equivalent to the variational problem [100, 105] for the eigenvalue β:

δ(H ′ + βQ) = 0 (4.24)

4.2.1 Symmetric case

Let us first analyze the case θ = ϑ = 0, when the vectorial QPM condition (4.7) is
symmetric:

i∂zuo +
∂xxuo

2
− βuo + 2 cos(γx)u∗

owo = 0

i∂zwo +
∂xxwo

4
− (∆ + 2β)wo + 2 cos(γx)u2

o = 0
(4.25)

Eqs. (4.25) have too many independent parameters, but their number can be reduced
by applying a standard transformation: [100]

z =
z̃

β
x =

x̃√
β

uo = βũ wo = βw̃

γ = γ̃
√

β

α =
∆

β
+ 2 =

∆o

β
+ 2 − γ̃2

4

(4.26)

The resulting equations can be cast in the form:

i∂z̃ũo +
∂x̃x̃

2
ũo − ũo + 2 cos(γ̃x̃ + φ)ũ∗

ow̃o = 0

i∂z̃w̃o +
∂x̃x̃

4
w̃o − αw̃o + 2 cos(γ̃x̃ + φ)ũ2

o = 0
(4.27)
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The conserved quantities Q̃ and H̃ are defined similarly to (4.19) and (4.22), respec-
tively; the relationship Q = β

√
βQ̃ holds.

z-invariant solutions satisfy the ODE system:

ũ
′′

2
− ũ + 2 cos(γ̃x̃ + φ)ũw̃ = 0

w̃
′′

4
− αw̃ + 2 cos(γ̃x̃ + φ)ũ2 = 0

(4.28)

and can be taken real because all the involved parameters are real. Equivalently,
the system (4.18) with no walk-off for SHG-hom reduces to (4.28) with γ = 0 [100].
Solitary solutions depend on position relative to the lattice, consequently on the lack
of translational symmetry of eqs. (4.28) in x̃ . Let us consider the solitary solution
centered in x̃ = 0 and allow the parameter φ, accounting for the position relative to the
lattice, to vary in the interval [0 π/2]. φ can always be brought in this interval with a
transformation involving just the sign of functions ũ and w̃. The parameter γ̃ refer to
the transverse size of the soliton with respect to the lattice period.
Let us focus on the case of bright one-hump FF solutions. Some preliminary considera-
tions can be done in specific limits.

In the limit γ̃ → 0 the soliton width is small compared to the periodicity. The
system can be considered as homogeneous with a perturbation of the nonlinear quadratic
coefficient: the momentum is conserved and a particle-like approach can be adopted for
a soliton falling in the classic family of non-walking simultons. It is known that this
system allows bright solitary waves for α > 0: a family of one-hump spatial solitons
exists for every α > 0 and classes of multi-hump unstable solitons can be found in the
interval α = [0 1]. The one-hump solitary family has peculiar properties to be described
in the context of the following analysis, the most important being the range of instability
restricted to α < αc ≈ 0.1 [106]. For φ = 0 and the beam is centered in the maximum
of the nonlinearity, the first order perturbation to the homogeneous system is zero, and
then the soliton can exist and be stable. For φ 6= 0 the solitary wave experiences a
gradient in nonlinearity; following Baronio et al. and Capobianco et al.,[107, 108] it can
be stated that the soliton moves towards the maximum nonlinearity, then stable solitons
are not expected in this approximation for φ 6= 0. Note that, since the system is power
normalized, it will always exist a power level large enough to make γ̃ small.

Kerr limit

Interesting results are obtained in the Kerr limit, when α >> 1. Eqs. (4.28) reduce to
the usual NLS: [100]
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ũ
′′

o

2
− ũo +

4

α
cos(γ̃x̃ + φ)2ũ3

o = 0

w̃o =
2

α
cos(γ̃x̃ + φ)ũ2

o

(4.29)

The nonlinear coefficient is periodic with γ̃ and the SH changes sign according to
it. While a great effort has been devoted to investigating structures with both linear
and nonlinear periodic refractive indices, [109], only a few studies have considered a
periodicity exclusively in the nonlinear coefficient and none of them addressed physical
structures in optics. [110, 111] Some theoretical results can be found in Refs. [111, 112]
and adapted to this case.

The case with γ̃ small has also been previously addressed: solitary waves can always
be found and are stable when centered in the maximum of the nonlinear refractive index
(φ = 0). Solitary waves centered in the minimum (φ = π/2) can also be found, but are
unstable as they tend to move towards regions with higher nonlinearity.

In the limit γ̃ >> 1, the soliton is wide compared to the period and the average non-
linearity plays an important role. Solitary solutions can be derived from the NLS using
mean nonlinear properties, the periodicity intervening only as a second-order correction
in 1/γ̃. The solutions are stable.[112].

Families of solitary solutions for α > 0

Eqs. (4.28) can be numerically solved for any α with a relaxation method. [53]
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Figure 4.2: Asymmetric solitary solution in the Kerr limit for large periods. In this simulation
γ̃ = 20, α = 10 and φ = π/4. The thin line is the SH, which follows the grating
periodicity as visible by the gray pattern reproducing the modulation of the
quadratic nonlinearity cos(γ̃x̃+φ). The thick line is the FF, a sech-type function
with a small correction due to the periodicity , visible in the inset where the FF
(thick line) is reported with the nonlinear refractive index cos(γ̃x̃ + φ)2 (dashed
line) .
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Figure 4.3: Family of solitary solutions symmetric with respect to the origin

In the limit γ̃ >> 1 and α >> 1 sech-type solutions are found for the FF at any
φ, while the SH exhibits the zeroes of the periodicity. As previously pointed out, even
the FF possesses a small correction due to the grating. Fig. 4.2 shows an example with
γ̃ = 20 and α = 10.

Far from the limit of large γ̃ and large α, solitary solutions exist for φ = 0 and
φ = π/2. In these cases, since the structure possesses a symmetry with respect to the
origin, it is convenient to look for odd and even solutions. The SH must follow the parity
of the nonlinear periodicity, as the nonlinear term in the Hamiltonian

∫

cos(γ̃x̃+φ)ũ2w̃dx̃
has to be nonzero. If this term were null, the equivalent variational problem 4.24 would
be linear and would not support solitary waves.

Two classes of solution adiabatically varying with α are found for every α > 0 and
even and odd grating symmetries. Fig 4.3 summarizes the properties of such solutions.
For large γ̃ and large α both classes fall in the case of Fig. 4.2. As the mismatch
parameter α decreases, the energy of the SH increases compared to the FF energy and
the number of zeroes in the SH decreases. For small α the SH profile has one or two-
humps in even and odd cases, respectively, while the FF has no zeroes. For γ̃ → 0,
even and odd classes fall back in the one-hump solitary waves of SHG-hom and in the
null solution, respectively. Some general features of the simultons are preserved: energy
and relative weight of the SH increase as the mismatch α decreases. Larger energies are
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required to obtain solitary waves for larger γ̃ at given α, as the transverse grating makes
the SH diffract more than in homogeneous media.

Stability

The stability can be discussed by studying the evolution of a small perturbation of
the solitary solutions and solving the resulting linearized eigenvalue problem. This is
a standard approach, [29, 105] introduced in 1973 by Vakhitov-Kolokolov [113] in a
seminal work on the stability of Kerr-like solitons and used in 1981 by Kanahsov and
Rubenichik in a pioneering paper on solitary waves in quadratic media. [114]; the same
approach was later applied to stability of (type I, type II) SHG quadratic non-walking
and walking solitons [106, 115–117]. Eqs. 4.27 are linearized by the substitutions:
ũ = ũo + δũeλz, w̃ = w̃o +2δweλz with δu, δw small with respect to the solitary solutions
ũo, w̃o. Expressing the solutions in real and imaginary parts as δu = uR + iuI and
δw = wR + iwi, the eigenvalue system is obtained for v = vR + ivI , with vR = (uR, wR)
and vI = (uI , wI):

L+vR = λSvI

L−vI = −λSvR

(4.30)

with null boundary conditions at x → ±∞ for the functions and their derivatives,

being S =

(

1 0

0 2

)

and

L± =







∂x̃x̃

2
− 1 ± 2wo cos(γ̃x̃ + φ) 4uo cos(γ̃x̃ + φ)

4uo cos(γ̃x̃ + φ)
∂x̃x̃

2
− 2α






(4.31)

self-adjoint operators.

It is important to underline that system 4.30 can be obtained without assuming
δw/wo << 1 (and then δw = 0) at the zeroes of the SH, as they correspond to the
zeroes of the nonlinearity and there the perturbation δw is completely general. Although
the two operators are self-adjoint, the complete eigenvalue problem is not. Nonetheless,
several general comments can be made. The kernel of the problem consists of a number
of solutions equal to the number of symmetries of the original nonlinear problem (4.28);
it possesses just one vector vK associated to the conservation of energy, with vK

R = 0 and
vK

I = (uo, wo), the latter solution to the problem L−vI = 0. The operator L+ has a void
kernel, as the numerical analysis confirms. For γ̃ = 0, due to translational symmetry, it
has (∂xuo, ∂xwo/2) as kernel.

In significant cases L− is defined positive in the space orthogonal to its kernel vK
I .

The numerical analysis shows that this happens for the class of even solutions previously
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presented for φ = 0: when both uo and wo have no zeroes (small α), this occurrence is
rigorously stated by the oscillation theorem. [118]

When L− is positive, it is invertible and its inverse is positive;, then system (4.30)
can be rewritten as the generalized eigenvalue problem L+vR = −λ2SL−1

− SvR with
eigenvalue λ2 always real. As a consequence, system (4.30) possesses purely imaginary
or real eigenvalues λ, the latter defining unstable solutions. The stability threshold is
defined by the eigenvalue λ = 0 at α = αc and γ̃ = γ̃c; the corresponding eigenvector
belongs to the kernel of system (4.30), i. e. it is proportional to vK (in the case γ̃ = 0 it
can be demonstrated that the eigenvector corresponding to α = αc is always orthogonal
to vR = (∂xuo, ∂xwo/2) and vI = 0).[106] The solvability condition for a slightly unstable
solution (i.e. for small λ ) provides a criterion for the instability threshold. [106] Close
to threshold, the unstable eigenvector can be expanded in series of λ as v = v(0)+λv(1)+
λ2v(2) + o(λ3). The solution at the zero-th order is v(0) = vK . At the first order the

equation L+v
(1)
R = SvK

I holds valid. An analytical solution for this correction is:

u
(1)
R = uo + (2 − α)∂αuo +

x

2
∂xuo − γ̃∂γ̃uo

w
(1)
R =

1

2
(wo + (2 − α)∂αwo +

x

2
∂xwo − γ̃∂γ̃wo)

(4.32)
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At next order the equation is L−v
(2)
I = −Sv

(1)
R . Owing to the Fredholm alternative,

the solution of this problem requires the orthogonality between SvR and vK and the
following condition holds:

∫

uou
(1)
R + 2wow

(1)
R dx = 0 → (4.33)

3

4
Q̃ +

(2 − α)

2
∂αQ̃ − γ̃

4
∂γ̃Q̃ =

1

2
√

β
∂βQ = 0 (4.34)

The latter equality considers the energy Q defined in physical units, and can be
easily checked by a direct expansion. Remarkably, the relation (4.34) requires ∂βQ = 0,
which is the VK criterion applied to a wide class of solitary waves. The stability domain
obtained from this relation and numerically checked by direct integration of system
(4.30) is shown in Fig. 4.4(a). While decreasing with γ̃, the stability region remains
remarkably large for any γ̃.

For odd solutions when φ =
π

2
, the operator L− is not defined positive and, then, only

direct numerical integrations of system (4.30) are possible. A positive eigenvalue λ exists
for every γ̃ in a wide α range and the solutions are mostly unstable. The numerically
evaluated maximum eigenvalues are graphed in Fig. 4.4(b). The rate of instability λ
decreases asymptotically, converging to a stable condition for growing γ̃ and α.

The linearized system L−vK
I = 0, solved by vK

I = (uo, wo), gives information on the
existence range of bright solitary waves. For x → ±∞ uo and wo → 0, the solution vK

I

tends towards (e∓Ωux̃, e∓Ωwx̃), with Ωu =
√

2 and Ωw = 2
√

α. In the case of the FF, the
solution always decays, correctly describing the behavior of the function uo. Conversely,
for the SH when α < 0, a decay does not occur: the solution wo must oscillate at infinity,
in contrast to the hypothesis of a bright soliton. α < 0 is therefore the non-existence
condition of all bright solitary waves, as in the SHG-hom case.

Other classes of solutions

Before concluding this section, a few comments need be made on other classes of solution
found by numerical integration of system (4.28), for both even and odd perturbations.
It is known that, for simultons of a homogeneous nonlinearity, other multi-hump solitary
solutions can be found for α in [0 1] and are unstable. In the same range and in the
presence of the grating, some classes of unstable solutions can be found but, due to the
periodicity, they are hardly classified as one-hump or multi-hump;, two examples are
shown in Fig. 4.5.

Concluding this section, several families of solitary bright solutions are found for
ϑ = 0. The class of even solitary solutions centered in the maximum of the nonlinearity
is the most interesting for its extended range of stability. This class exists for every
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Figure 4.5: Two families of solitary solutions symmetric with respect to the origin for α < 1

α > 0 which, in physical terms, defines the nonlinear phase cut-off for soliton formation
βcut = max(0, 1

2
[(γ

2
)2−∆o]). This βcut is the same for walking solitons propagating along

the FF, when the SH exhibits a walk-off angle of |γ/2|,[115, 117, 119] the modulus of
the walk-off angles of the two plane waves in which the SH can be formally decomposed
in the linear regime, as described in section 4.1.1.

4.2.2 Asymmetric case

In the case of ϑ 6= 0 eqs. (4.23) hold. The previously studied solutions can be readily
transposed to this system, noting that eqs. (4.23) admit solutions of the form uo =
um(x)eiϑx and wo = wm(x)e2iϑx, with um and wm real. With this assumption and the
previous transformation with ϑ =

√
βϑ̃, the system can be recast as:

ũ
′′

o

2
− (1 − ϑ̃2

2
)ũo + 2 cos(γ̃x̃ + φ)ũow̃o = 0

w̃
′′

o

4
− (α − ϑ̃2)w̃o + 2 cos(γ̃x̃ + φ)ũ2

o = 0

(4.35)
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Evidently it shares the properties (and solutions) of eqs. (4.28) after a suitable
normalization. It is worth commenting briefly on the existence of solitary waves of
eqs. (4.35). Following the previous approach, two conditions defineg the domain of
non-existence for bright solitary waves: ϑ̃ <

√
2 and α > ϑ̃2. [115, 119] In physical

coordinates, the relations become βcut = 1
2
max(ϑ2, (γ

2
)2 + ϑ2 − ∆o) which, even in this

case, is the cut-off threshold of a soliton walking at an angle ϑ with respect to the FF,
with an SH propagating with a walk-off of modulus γ/2 with respect to the fundamental.
[115, 119]

Large θ case

A physically relevant situation is obtained when the angle θ is large enough to markedly
separate in wavelength the two PM conditions associated with the two reciprocal vectors
G10 and G01. It is then convenient to go back to eqs. (4.17) using physical quantities.
Specifically, when ∆o ∓ γϑ ≈ 0 and γϑ >> 1 (i.e. in PM for G10(G01) and in cascading
for G01 (G10)), respectively), performing a multiscale expansion as in Conti et al.[120]
and with the substitution w = w′e±iγx, eqs. (4.17) can be recast in the following form,
where the out of resonance condition ∆o ± γϑ plays the role a cubic role via cascading
(of different signs in the two cases):

i∂zu +
∂xxu

2
+ u∗w′ +

1

∆o ± γϑ
(|u|2 − |w′|2)u = 0

i∂zw
′ +

∂xxw
′

4
± i

γ

2
∂xw

′ − (∆o ∓ γϑ)w′ + u2 − 2

∆o ± γϑ
|u|2 w′ = 0

(4.36)

Here u and w represent the zero order approximation to the original function for an
expansion in 1/(∆o ± γϑ). System (4.36) is translationally invariant in x and z; it also
conserves Hamiltonian and momentum. The equations are reduced to a classical problem
of competing nonlinearities, largely addressed in literature [100], where the quadratically
induced Kerr effect is asymmetric versus FF and SH [120, 121], being equivalent to XPM
for both waves and SPM for the FF (with different sign). System (4.36) falls among the
standard equations for quadratic walking solitary waves[119] when γϑ is large enough to
completely neglect the resonant interaction. The Kerr-like cascaded term is peculiar of
QPM structures, because the nonlinear periodicity always provides high order momenta
far from PM and in the cascading approximation. [122] In this case, the Kerr effect is
generated by a momentum of the same order of magnitude of the resonant vector and
can be generally stronger than in standard 1D QPM gratings.[122] It is interesting to
note, when taking into account these terms, the asymmetry of the structure for θ 6= 0
is included in the description as the Kerr ruling term ∆o ± γϑ ≈ ±γϑ is of opposite
signs for the two resonances. Therefore, even if eqs. (4.17) admit transverse invariant
solutions when propagating in the ϑ direction, it is possible to find an approximated
system which admits standard walking solitary waves.
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It is important to stress that eqs. (4.17) are not equivalent to the following eqs.
(4.37) obtained by superimposing two SH waves satisfying PM conditions at the two
angles, with w = w10e

iγx + w01e
−iγx:

i∂zu +
∂xxu

2
+ u∗(w10 + w01) = 0

i∂zr +
∂xxw10

4
+ i

γ

2
∂xw10 − (∆o − γϑ)w10 + u2 = 0

i∂zw01 +
∂xxw01

4
− i

γ

2
∂xw01 − (∆o + γϑ)w01 + u2 = 0

(4.37)

Eqs. (4.37) lead to similar approximation of eqs. 4.17 in the no-depletion regime and
when at least one of the nonlinear resonances is in the cascading regime (e.g. in the case
of eqs. (4.36)). Eqs. (4.37) require the conservation of Q′ =

∫

|u|2 dX +
∫

|w10|2 dX +
∫

|w01|2 dX which is not the energy of the system, apart from some specific cases as
previously mentioned. Hamiltonian and momentum are conserved also. Eqs. (4.37)
lead to walking solitary solutions in every regime but, since the phases of FF and SH’s
are locked in this condition, the quantity Q′ has no physical meaning unless one of the
two SH’s w10 and w01 is negligible, i.e. in the cascading limit for one of the resonances.

Figure 4.6: Sketch of a HexLN planar waveguide.
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4.3 Experiments on simultons in a 2D nonlinear

lattice: HexLN

4.3.1 HexLN planar waveguide and experimental setup

The sample used for the experiments described in the next paragraphs is an Hexagonally
poled Lithium Niobate (HexLN) waveguide fabricated at the Optoelectronic Research
Centre, University of Southampton.

Fig. 4.6 is a 3D sketch of an actual HexLN planar waveguide. The 2D QPM structure
was obtained in a 500 µm-thick congruent z-cut LN crystal, using electric field poling via
liquid electrodes and a photoresist mask with a hexagonal pattern (8 mm wide and 18
mm long) of period Λ = 16.4µm. The planar waveguide was fabricated by the sequence
of PE in benzoic acid for 29 h at 170◦C, thermal annealing at 200◦C for 13 h and at
330◦C for 7 h. Finally the slab was reverse proton exchanged (RPE) in an eutectic melt
of LiNO3, NaNO3 and KNO3 at 320◦C for 28 h. These steps resulted in a buried planar
waveguide 2.9 µm beneath the crystal surface, supporting only one mode (TM0) at the
pump wavelengths in the C-band for optical communications. In such a structure the

Fourier coefficient d10 = d01 = do =
3

π2

Measurements in the no-depletion regime were performed by Gallo et al. [123] The
resulting SHG resonant wavelengths λ10 and λ01 versus FF incidence angle θ are graphed
in Fig. 4.7(b). From the relation (4.13) and, since for small values ∆ko is linear with
wavelength, a linear trend exists for λ versus θ, with:

(a) Micrograph of an HexLN sample (b) SHG resonant wavelengths (λ) versus FF
incidence angle (θ): measurements (diamonds)
and linear fits (solid lines). [123]

Figure 4.7: HexLn Sample
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∆k10/01|cm−1 = −1.54π(λFF − λ0)|nm ∓ 12.3πθ|deg. (4.38)

For θ > 0, if λ = λ01 then ∆k10 < 0; if λ = λ10 then ∆k01 < 0. By defining λ− = λ01

and λ+ = λ10, it easy to keep in mind the sign of the out of resonance mismatch for
θ > 0. For the experiments, the HexLN waveguide was mounted on a piezo-electrically
controlled stage, temperature stabilized at ∼ 85◦C to prevent photorefractive damage.
The setup (Fig.0.1) is similar to the one described in the previous chapter. The main
differences are the presence of a goniometer (to adjust the FF angle of incidence) and of a
cylindrical lens to shape the FF beam into a cylindrical Gaussian spot, end-fire coupled
to launch the TM0 waveguide mode. The FF beam had lateral and vertical waists
of 27.5 µm and 3.4 µm, respectively and its propagation in the 18 mm-long sample
amounted to ∼ 5.4 Rayleigh lengths. At the sample output, FF and SH were monitored
by time-gated photodiodes and imaged with either 10x or 5x microscope objectives onto
a Vidicon camera or a CCD, respectively. The images were filtered to reduce background
noise.

4.3.2 Observation of Quadratic Spatial Solitons in a HexLN

waveguide

The angular position of the sample with respect to the input beam was verified by
performing an SHG efficiency measurement versus detuning (i.e. wavelength) as, as
described for SPP-LN channel waveguides in chapter 4. Fig. 4.8 shows two examples of
SHG efficiency data versus FF wavelength in the no depletion regime, for symmetric and
asymmetric excitation cases, respectively. The small oscillations in wavelength are due
to a Fabry-Perot interference in the beam-splitter used to spill a portion of the input
power. Due to the finite width of the resonance curve, the angle of the sample could be
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Figure 4.8: SHG efficiency in the nodepletion regime for the symmetric (θ < 0.1◦, top) and
asymmetric cases (θ ≈ 0.5◦, bottom), respectively.
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Figure 4.9: Nearly symmetric case. Top: simulated output profiles obtained from eqs. (4.17)
with an input Gaussian FF beam and γ = 6.1, θ = 0.05◦, λ = λ+ + 1.5nm with
peak u2

peak equal 0.2, 2.9, 5.7 and 8, respectively. The abscissa is x expressed in
measurable units. Bottom: acquired output profiles for input powers of 3, 50,
100, and 140 kW, respectively, at λ = 1551nm

determined with a lower accuracy in the symmetric case than in the asymmetric case.
From relation (4.38), an error of 2nm on the peak wavelength corresponds to about 0.1◦

on the angle. Eqs. (4.17) was used for the numerical fit of the experimental data. The
size of the beam with respect to the QPM period determined γ ≈ 6 normalized units
in system (4.17). In the following, it is convenient to express the simulation parameters
ϑ and ∆ in the observable angle θ and wavelength λ, easily linked to mismatch using
(4.38).

Symmetric Case

In this case, spatial solitons as described in the paragraph 4.2.1 are expected. The first
experimental measurements were carried out at a wavelength of 1551nm, approximately
1.5nm above the resonance shownd in Fig. 4.8 (top) in order to obtain a small positive
mismatch ∆k. The simulated and measured output intensity profiles for the FF (thick
line) and the SH (thin line) are displayed in fig. 4.10. The actual images were collected
using a Vidicon camera. the simulations were performed using a BPM method similar
to the one described in the previous chapters, assuming the experimental quantities
and an FF angle of incidence θ = 0.07◦. At low power the FF beam diffracted. As
foreseen, the SH resembled two beams propagating with opposite angles with respect to
the FF excitation: two lateral wings and interference fringes in the center are apparent
in the intensity profiles, despite the blooming effect of the camera. The calculated beam
propagation in the no-depletion regime is shown in Fig. 4.10(a), with white dashed lines
indicating the output section of the actual sample.
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(a) Calculated FF (top) and SH (bottom) intensity evolution of an input
FF Gaussian beam with peak u2

peak = 0.2: diffractive regime.

(b) Calculated FF (top) and SH (bottom) intensity evolution 4.17 for an
input FF Gaussian beam with peak u2

peak = 8. Quasi solitary regime.

Figure 4.10: Nearly symmetric case. Calculated intensity evolution from eqs. (4.17) for
γ = 6.1, θ = 0.05◦, λ = λ++1.5nm. The coordinates are x and z, in measurable
units for convenience. The white dashed lines indicate the output of the actual
sample.

At higher powers the FF reduced its waist and a small lateral shift occurred. The SH
dynamics was more complex: the central part of the beam, where interference fringes
were still visible, remained confined in a region of the same size of the FF. The number
of lateral wings increased; this was visible at powers > 100kW and indicated that FF
and SH were exchanging energy in propagation. Firstly, the FF generated the SH; part
of the SH diffracted in two external lateral wings but, when the SH intensity overlapping
the FF was high enough, the energy flow was reversed and the SH downconverted in
FF. Then the FF upconverted again and the two internal lateral wings were generated.
This is visible in the simulations of Fig. 4.10(b), where it is apparent that when the
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Figure 4.11: Nearly symmetric case with PFF = 25 kW. Void circles: Evolution (top) of the
FF output beam FWHM waist and (bottom) of the lateral displacement versus
pump wavelength. Oscillations in waist are due to interference due to the two
surfaces of the beam splitter BS. The solid line is a fit obtained 4.17 for γ = 6.1,
θ = 0.07◦ and u2

peak = 2.2

FF increases its energy no lateral generation occurs in the SH. Eventually FF and SH
approach the simulton solution, in which no power exchange occurs between the two
waves, beside energy sheds into radiation modes. In the simulations with u2

peak = 8
(corresponding to 140kW ), it can be appreciated that the central part of the coupled
FF-SH intensity is nearly constant in propagation, and it progressively decreases the
propagation losses. The excited solitary wave contains almost 60% of the input power
and the ratio between the energies of SH and FF is close to 15%. The measured output
strongly overlapped with the calculated solitary solution. The dimension of the FF waist
at the output was approximately 44µm for powers of 100kW and 140kW , indicating that
the beam approached a solitary solution of larger size than the input beam. It is worth
noticing that the beam was laterally shifted, following the orientation of the sample, as
described in the first part of paragraph (4.2.2); the lateral shift was about 20µm for
powers > 100kW and a sample at an angle θ = 0.05◦. The latter is the value used in
the simulations, in remarkable agreement with the acquired profiles. Note that in such
conditions eqs. (4.37) would not conserve the total power and the two SH waves would
not interfere in the solitary regime.

The variation of the FF output waist (FWHM) at a fixed input power of 25kW
is shown in Fig. 4.11 versus wavelength: self-focusing occurs for positive mismatches
close to resonance. The lateral beam displacement measured as a mean value of the
intensity distribution is also plotted. The simulations were performed with the previous
parameters and for u2

peak = 4, in line with the experiments but higher than the previous
set owing to the better coupling of light into the sample. Notice that the lateral dis-
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placement is positive (opposite to the angle of orientation θ) for negative mismatches
approaching the threshold.

(a) Simulated FF (top) and SH (bottom) intensity evolution for a Gaus-
sian input FF beam with peak u2

peak = 25, quasi solitary propagation:
the simulton is shifted towards the direction of propagation of the SH in
the no-depletion regime. Interference fringes are visible on the SH due to
non collinear beam propagation due to the angle θ of sample orientation.

(b) Simulated FF (top) and SH (bottom) intensity evolution for a Gaus-
sian input FF beam with peak u2

peak = 144, quasi solitary propagation:
the simulton propagates at the angle θ of sample orientation. No inter-
ference fringes are visible at the SH.

Figure 4.12: Asymmetric case. Simulated intensity evolution obtained with eqs. (4.17) for
γ = 6.1, θ = 0.6◦, λ = λ+ + 1.nm. The coordinates are x and z, in measurable
units for convenience. The white dashed lines indicate the output section of the
actual sample.
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(a) Simulated FF (top) and SH (bottom) intensity evolution for a Gaus-
sian input FF beam with peak u2

peak = 100, quasi solitary propagation:
the simulton is shifted towards the SH direction of propagation in the
no-depletion regime. Interference fringes are visible at SH due to non
collinear propagation in the sample at angle θ of orientation.

(b) simulated FF (top) and SH (bottom) intensity evolution for a Gaus-
sian input FF beam with peak u2

peak = 780, quasi solitary propagation:
the simulton propagates at the angle θ of orientation of the sample. No
interference fringes are visible at SH.

Figure 4.13: Asymmetric case. Simulated intensity evolution from eqs. (4.17) for γ = 6.1,
θ = 0.6◦, λ = λ− + 1.nm. The coordinates are x and z, in measurable units.
The white dashed lines indicate the output section of the actual sample.

Asymmetric Case

In paragraph 4.2.2 two different scenarios were addressed in the asymmetric case. Strictly
speaking solitons can be excited only along the direction of propagation θ, following the
symmetry of the sample, and the solutions are of the same kind of those previously
observed. Nonetheless, for large angles and for λ = λ+(λ−) the system can be recast in
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an approximated form that supports walking solitons, with one of the resonance in PM
and the other in the cascaded limit. When excited by SHG, walking solitons propagate
at an intermediate direction between the FF and the SH; hence, simultons propagating
with positive and negative angles with respect to the FF can be expected forλ+ and
λ−, respectively. In these two cases the contribution of the term out of resonance has
opposite signs: for λ+ the mismatch is positive and the cascaded term acts as a positive
Kerr effect on the fundamental frequency, helping so liton formation when excited by
SHG; for λ− the mismatch is negative. Otherwise stated, when excited at λ+ the solitary
wave moves towards θ where the only profile-invariant solution exists, while in the other
case the beam moves to the opposite direction. This intrinsic asymmetry of the resonant
condition is explored numerically in figs. 4.12 and 4.13, for an angle θ = 0.6◦, as used
in the next set of experiments. At λ ≈ λ+ with u2

peak = 25 a nearly undiffracting beam
propagates along the direction of the SH in the undepleted regime. The envelope is
not constant in propagation, as the walking solitary solution results from a first order
approximation of the system. This also occurs for a higher excitation u2

peak = 100 at
λ ≈ λ−. Increasing the excitation for λ+, the self-confined beam moves till the solitary
solution is formed at the angle θ with u2

peak = 144. In the λ− case, the quasi invariance
vanishes. At an excitation u2

peak = 780, a solitary solution in the only available direction
is excited also in this case.

The experimental study of the asymmetric case must be conducted carefully. To
obtain a symmetric shift of the FF beam at the two resonant wavelengths, a large angle
θ is required. Taking into account the overall efficiency, an angle of propagation of

Figure 4.14: Asymmetric case with PFF = 22 kW and θ = 0.6◦. Symbols: (top) FF output
waist (FWHM) and (bottom) lateral displacement versus input wavelength.
Oscillations in waist are due to interference from the surfaces of the beam
splitter. The solid line is a fit from eqs. (4.17) for γ = 6.1, θ = 0.6◦ and
u2

peak = 1.4
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Figure 4.15: Asymmetric case. Experimental results for FF beam self-focusing at 1556nm
at θ ≈ 0.5◦. Simulations were performed from eqs. (4.17) with a Gaussian FF
input and γ = 6.1, θ = 0.5◦, λ = λ+ + 2.nm. Circles: (left) FF output beam
waist (FWHM) and (right) lateral displacement versus input power (bottom
abscissa). The solid line is calculated versus u2

peak (top abscissa).

0.6◦ was adopted. For a peak power of 22kW self-focusing and shift of the FF beam
were observed, as visible in Fig. 4.14. The simulations with u2

peak = 1.4 are in good
agreement with the experimental results. The structure operates as at a wavelength
controlled de-multiplexer with a self-confined output.

The beam self-confinement was investigated varying the input power at a fixed wave-
length of 1556nm, close to λ+. Self-confinement and lateral shift in the quasi solitary
regime was demonstrated, as visible in Fig. 4.15. Similar considerations apply to the
SH.

For wavelengths close to λ− a similar trend was never observed. This can be ascribed
to the small deviation in the FF propagating angle due to the rotation of the half-wave
plate used to control the input power. The deviation translates in a variation of the
resonance. Self-confined beams with positive angles of propagation could be excited at
almost every wavelength > λ+; completely different is the situation for deviations to neg-
ative angles, with solitary propagation occurring only for a small range for wavelengths
> λ−.
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4.4 Conclusions

This Chapter presented the first results on quadratic spatial solitons in a two-dimensional
purely nonlinear lattice. The general equations were derived for two non-collinear con-
current QPM processes defined by two lattice vectors G10 and G01, specifically addressing
the analysis of a hexagonal geometry. Solitary propagation was investigated with the
aid of the general equations, using Lie symmetry to demonstrate that solitary propaga-
tion can rigorously occur only along the bisector between the two lattice vectors. The
numerical study of solitary propagation in these transversely periodic quadratic media
yielded the existence of a class of simultons with a large stability domain, as analytically
defined by the standard VK criterion. In this regime the structure behaves as a quadrat-
ically nonlinear waveguide. Extending known results on χ(2) cascading, a regime could
be identified where the general equations support walking solitary propagation, leading
to the existence of two spectral regions for beam self-confinement and opposite displace-
ments, where the structure operates as a wavelength controlled nonlinear de-multiplexer.
The experimental demonstrations of self-confined propagation in the two regimes were
summarized and interpreted. These results disclose a new richer scenario in the area of
quadratic solitons as compared to solitons in uniform and 1D QPM quadratic media.



Chapter 5

Conclusions

In conclusion, in this dissertation I investigated, theoretically and experimentally, the
propagation of picosecond light pulses in several materials of interest in nonlinear pho-
tonics. I studied the permanent effects of high energy pulses in colloidal opals doped with
gold nanoparticles, resulting in a blue shift of the optical bang gap; I examined spatial
solitons, filamentation and conical emission in the ps regime in a novel heavy metal oxide
glass, clarifying the role of nonlinear absorption in preventing catastrophic collapse; I
performed second-harmonic generation using proton-exchanged channel waveguides in
surface periodically poled lithium niobate and tantalate, modeling the effect of a limited
depth in the induced nonlinear grating; I contributed to demonstrating quadratic multi-
color spatial solitons in a nonlinear photonic lattice, finding new classes of simultons in
a degenerate multiple quasi phase matching geometry.

In this PhD work new technologies and new materials were successfully employed in
various nonlinear optics phenomena. The experimental results, after comparison with
theoretical-numerical models and data analysis, have provided a quantitative evaluation
of important physical features.
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