
 
 
 

Università degli studi ROMA TRE 
 
 

PhD School of Engineering 
 

Civil Engineering Section 
 

XXIV Ciclo 
 
 
 

                  Doctoral Thesis 
 

Multiscale analysis of masonry structures 
using homogenization 

 
 
 
 
 

Student: Alberto Mauro 

Tutors:  Prof. Gianmarco de Felice 

   Prof. Paulo B. Lourenço 

Ph.D. Coordinator: Prof. Leopoldo Franco 

 

Rome, February 2012 

  



 

 

 

ii

The work reported in the present thesis was carried out at the 
Department of Structures of the University Roma Tre, Italy, and at 
the Civil Engineering Department of the University of Minho, 
Portugal, in accordance with the agreement for a joint research 
doctoral thesis signed by the two Institutions on 23 November 
2009, Rep. N° 25, Prot. N° 37690. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Collana delle tesi di Dottorato di Ricerca 
In Scienze dell’Ingegneria Civile 
Università degli Studi Roma Tre 
Tesi n° 33 



  



 

 

 

iv

Sommario 
 
La valutazione della vulnerabilità sismica degli edifici in muratura secondo 

una prassi consolidata, affronta separatamente i meccanismi di collasso fuori dal 
piano delle pareti murarie ed il comportamento resistente dei setti murari rispetto 
alle azioni nel loro piano. I primi sono governati dalla dinamica dei corpi rigidi, i 
secondi dalla meccanica dei continui anisotropi non lineari. 

In questa tesi si vuole fornire un contributo alla comprensione e alla 
modellazione di ambedue questi meccanismi resistenti. 

Il comportamento fuori dal piano è affrontato nella prima parte della tesi 
(Capitolo 3) dove sono presentati i risultati di una campagna di prove su tavola 
vibrante condotta su una parete in muratura di tufo in scala reale, semplicemente 
accostata ai muri trasversali, e sollecitata fuori dal piano attraverso 
accelerogrammi naturali opportunamente selezionati e scalati. Le prove 
permettono di valutare la risposta dinamica della parete e le principali grandezze 
che ne influenzano il comportamento, gli effetti dovuti alla presenza dei giunti di 
malta e alle imperfezioni della struttura, la dipendenza dall’input, i meccanismi 
di dissipazione dell’energia. Successivamente viene presentata una strategia di 
modellazione basata sul metodo degli elementi distinti e validata attraverso il 
confronto con le prove sperimentali sia in termini di risposta massima sia in 
termini di storia temporale del moto. Infine, l’attendibilità delle procedure 
statiche equivalenti recentemente proposte dalle norme tecniche per la verifica 
sismica delle pareti rispetto ai meccanismi locali sono discusse in maniera critica 
sulla base dei risultati sperimentali e delle simulazioni numeriche effettuate. 

La seconda parte della tesi (Capitoli 4 e 5) affronta la modellazione delle 
pareti sollecitate nel piano attraverso l’impiego della teoria 
dell’omogeneizzazione di mezzi periodici. In prima battuta viene formulata una 
procedura per l’ identificazione in campo elastico della muratura come continuo 
di Cauchy. Tale procedura consente di ricavate delle formulazioni analitiche che 
esprimono le costanti elastiche della muratura in funzione delle proprietà 
geometriche e meccaniche delle componenti, tenendo conto sia dell’anisotropia 
indotta dalla tessitura muraria sia degli “effetti Poisson” derivanti dalla 
differente rigidezza della malta e del blocco. L’accuratezza di tali formulazioni è 
verificata attraverso un confronto con analisi ad elementi finiti e dati 
sperimentali di letteratura su un’ampia statistica di tessiture murarie regolari. 
Infine, il dominio limite elastico della muratura ottenuto attraverso la procedura 
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proposta è messo a confronto con i dati sperimentali disponibili in letteratura sia 
in termini di resistenza del materiale sia in termini di modalità di collasso. 

Successivamente viene trattata l’estensione al campo non lineare della 
teoria dell’omogeneizzazione nel contesto più generale degli approcci multi-
scala. Il problema viene formulato con riferimento ad un modello micro 
meccanico semplice in cui l’apparecchio murario è schematizzato come un 
insieme di blocchi elastici connessi da interfacce a comportamento elastoplastico 
secondo un criterio alla Mohr-Coulomb con flusso non associato. Attraverso 
l’ipotesi di moto affine dei blocchi, il problema viene definito rigorosamente 
nell’ambito della teoria dell’omogeneizzazione in funzione di un numero ridotto 
di parametri e risolto efficacemente a livello locale attraverso uno schema 
iterativo alla Newton-Raphson. L’algoritmo multi-scala è quindi implementato 
nel codice agli elementi finiti Abaqus e impiegato per lo studio del 
comportamento di pannelli murari caricati nel piano. I risultati ottenuti sono 
convalidati attraverso un confronto con modelli analitici basati sulla teoria 
dell’analisi limite e con prove di letteratura condotte su pareti in muratura a 
secco. Vengono quindi analizzati in maniera critica i limiti e le potenzialità del 
metodo proposto attraverso l’applicazione ad alcuni casi di studio reali. 
 
Parole chiave: Pareti in muratura, Meccanismi di collasso fuori dal piano, 
Prove tavola vibrante, Metodo degli Elementi Distinti, Meccanismi di collasso 
nel piano, Teoria dell’Omogeneizzazione, Approcci Multi-scala 
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Resumo 
 
Na avaliação da vulnerabilidade sísmica de edifícios de alvenaria é prática 

habitual abordar separadamente os mecanismos de colapso fora do plano e no 
plano das paredes estruturais. No primeiro caso, o mecanismo é descrito pela 
dinâmica dos corpos rígidos, enquanto que no segundo, é a mecânica dos meios 
contínuos anisotrópicos que rege o fenómeno. 

A presente tese pretende fornecer um contributo para a compreensão e a 
modelação de ambos os mecanismos de colapso. 

O comportamento das paredes de alvenaria solicitadas fora do plano é 
abordado na primeira parte da tese (Capítulo 3), onde se apresentam os 
resultados de um conjunto de ensaios realizados em plataforma sísmica em 
paredes de alvenaria de tufo, dispostas em forma de U, i.e., fachada adjacente às 
paredes transversais, tendo-se adoptado acelerogramas naturais adequadamente 
escalados para analisar o comportamento sísmico da fachada. Os ensaios 
permitem destacar os principais factores que influenciam o comportamento 
dinâmico da parede, os efeitos resultantes da presença de juntas de argamassa e 
de imperfeições da estrutura, a dependência dos parâmetros de input e os 
mecanismos de dissipação de energia. É apresentada uma estratégia de 
modelação baseada no Método dos Elementos Discretos que reproduz o 
comportamento experimental da estrutura em termos de rotação máxima e de 
história temporal do movimento. Finalmente, os resultados dos ensaios 
experimentais e das simulações efectuadas são comparados com o disposto nas 
normas Italianas de verificação sísmica. 

A segunda parte da tese (Capítulos 4 e 5) é dedicada à modelação das 
paredes de alvenaria solicitadas no plano através da teoria da homogeneização 
aplicada a meios periódicos. No âmbito da teoria de homogeneização, 
desenvolve-se um modelo para a alvenaria como contínuo de Cauchy, de onde 
resultam expressões analíticas para as constantes elásticas, tendo em 
consideração os efeitos de Poisson devidos à diferença de rigidez entre o bloco e 
a argamassa e a anisotropia resultante da disposição dos blocos. Os resultados 
são validados para um amplo domínio das propriedades geométricas e mecânicas 
dos constituintes através de uma análise por elementos finitos e de resultados 
experimentais. Finalmente é obtido um limite para o domínio elástico, que é 
comparado com os resultados de ensaios experimentais disponíveis na literatura, 
em termos de resistência macroscópica e correspondente modo de colapso. 
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A extensão ao domínio não linear das técnicas de homogeneização é então 
abordada no contexto geral de métodos multi-escala. O problema é formulado 
através de um modelo micromecânico simples no qual a alvenaria é 
esquematizada como um sistema de blocos elásticos ligados através de interfaces 
não lineares, obedecendo ao critério de Mohr-Coulomb com escoamento não 
associado. Na hipótese de movimento simplificado entre blocos, o problema de 
homogeneização não linear fica definido em função de um número reduzido de 
incógnitas e é resolvido localmente através de um esquema iterativo Newton-
Raphson. O método multi-escala é implementado no código de elementos finitos 
ABAQUS e adoptado no estudo do comportamento de painéis de alvenaria 
solicitados no plano. A aplicabilidade da metodologia proposta a problemas 
práticos de engenharia é analisada e discutida através da aplicação a casos de 
estudo reais. 

 
Palavras-chave: Paredes de alvenaria, Mecanismos de colapso fora do 

plano, Ensaios em plataforma sísmica, Método dos Elementos Discretos, 
Mecanismos de colapso no plano, Teoria de homogeneização, Métodos multi-
escala 
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Abstract 
 
It is common practice when performing seismic vulnerability assessment of 

masonry buildings to tackle separately out-of-plane and in-plane failure 
mechanisms developed by load-bearing walls. The former are governed by the 
dynamics of rigid bodies while the latter is governed by the mechanics of 
anisotropic continuum media. 

The present thesis intends to give a contribution to the understanding and 
modelling of both these failure mechanisms. 

The behaviour of masonry walls under out-of-plane loads is addressed in 
the first part of the work (Chapter 3), where the results of a shake-table 
laboratory campaign on a tuff masonry U-shaped assemblage (façade adjacent to 
transverse walls) are presented. Scaled natural accelerograms have been adopted 
in order to analyse the seismic behaviour of the façade. The tests highlight the 
main factors affecting the dynamic behaviour of the wall, the effects related to 
the presence of mortar joints and of imperfections, the dependency of the 
response on the input and the mechanisms of energy dissipation. A modelling 
strategy based on the Discrete Element Method is then presented, which is 
shown to reproduce the experimental behaviour of the wall in terms of 
maximum rotation and time-history response. Finally, test results and numerical 
time-history simulations are compared to the Italian seismic code assessment 
procedures. 

The second part of the thesis (Chapter 4 and 5) deals with modelling in-
plane loaded masonry walls by resorting to the homogenization theory for 
periodic media. First, a Cauchy identification for masonry is developed within 
the framework of the homogenization theory, which provides analytical 
expressions for the elastic constants and take into account Poisson effects 
deriving from the mismatch of brick/joint stiffness and anisotropy deriving from 
brick interlocking. The results are validated with finite element analyses and 
experimental data over a wide range of geometrical and mechanical properties of 
the constituents. Finally, a homogenized limit elastic domain is derived and 
compared with the experimental tests available in literature, in terms of 
macroscopic strength and corresponding failure mode. 

The extension to the non-linear range of homogenization techniques is then 
addressed within the framework of multi-scale methods. The problem is 
formulated by referring to a simple micro-mechanical model where masonry is 
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tackled as a system of elastic blocks connected by non-linear interfaces obeying 
to a Mohr-Coulomb criterion with non associative flow-rule. By introducing 
affine kinematics within the blocks, the non-linear homogenization problem is 
expressed in terms of few unknowns and is solved locally by means of an 
iterative Newton-Raphson scheme. The multi-scale procedure is implemented in 
the finite element code Abaqus and adopted for studying the in-plane behaviour 
of masonry panels. Finally, the main limits and the applicability of the proposed 
methodology to practical engineering problems are discussed by means of an 
application to real case studies. 

 
Keywords: Masonry walls, Out-of-plane failure mechanisms, Shake Table tests, 
Distinct Element Method, In-plane failure mechanisms, Homogenization theory, 
Multi-scale approaches    
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1. Introduction 

Typically, masonry is a composite material consisting of an assembly of 
units bonded with relatively thin mortar joints, which has been widely used over 
the past centuries as a building material. This means that the majority of building 
stock even in developed countries is made of masonry. Its use nowadays has 
been reduced due to the advent of new materials, but masonry may still 
constitute a valid economic and performance-based alternative to concrete and 
steel, for selected applications. Understanding the structural behaviour of 
masonry is thus a topic of great interest within the technical community, for the 
assessment of existing buildings and a more accurate design of new ones, and 
received a great attention in the last twenty years. 

It is well established that the mechanisms developed by unreinforced 
masonry structures to withstand a combination of vertical and horizontal loads 
may be subdivided in two categories namely, in-plane and out-of-plane 
mechanisms. In real cases it is unlikely that load-bearing walls undergo only one 
of them since a combination of in-plane and out-of-plane actions actually takes 
place. Nevertheless, it is common practice to analyze these mechanisms 
separately assuming that failure is mainly driven by one of them. This 
assumption, which allows a simplification of the problem, derives somehow 
from the inherent difficulties of analyzing the complete three-dimensional 
behaviour of masonry walls. Moreover, when dealing with regular masonry, the 
mechanical phenomena governing the response under in-plane actions prove 
different from those governing the response out-of-plane. As a matter of fact, in-
plane mechanisms are mostly related to the local strength of masonry 
assemblage and are usually characterized by small amplitude displacements. 
Conversely, out-of-plane mechanisms exhibit large displacement and, therefore, 
are strongly affected by second order effects while the influence of the local 
material strength proves negligible. These considerations hold true provided that 
the behaviour of the material in the out-of-plane direction may be regarded to as 
monolithic and disaggregation is unlikely to occur, which is reasonable for 
regular masonry walls.  

In agreement with this methodology, in the present thesis in-plane and out-
of-plane mechanisms of regular masonry walls are tackled separately. 

Concerning the out-of-plane mechanisms, many experimental campaigns 
have been conducted in the last 20 years. Nevertheless, all these investigations 
have been performed on artificial brick or block masonry or on single-block 
stone elements. So far, no forced vibration tests have been performed on natural 
stone masonry, which is more frequent in existing masonry buildings, especially 
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in the Mediterranean area. Additionally, no such tests have considered a panel 
laterally restrained on one side by transverse walls, which is the rule more than 
the exception in masonry buildings. On the modelling side, some approaches 
have been developed in the literature which account for this aspect. 
Nevertheless, owing to the lack of experimental tests, their reliability and 
accuracy still need to be investigated. 

The first part of the thesis intends to give a contribution in this direction. 
The results of a shake-table laboratory campaign on a tuff masonry U-shaped 
assemblage (façade adjacent to transverse walls) are presented. The tests, excited 
by scaled natural accelerograms, replicate the behaviour of external walls in 
existing masonry buildings undergoing out-of-plane rocking motion. A 
modelling approach based on the Discrete Element Method is then presented and 
its capability of reproducing the experimental tests investigated. Finally, 
experimental results and numerical time-history simulations are compared to the 
Italian seismic code assessment procedures. 

In-plane mechanisms of masonry walls have been studied by means of 
several experimental campaigns which, starting from 1950, investigated a wide 
variety of masonry typologies. Accordingly, the phenomena governing such 
mechanisms are well established in the literature. Therefore, in the last years the 
technical community focused on the development of modelling strategies for 
reproducing the essential feature of masonry behaviour while able to perform 
structural analysis with acceptable computational costs. Among the different 
approaches proposed, the ones based on the multi-scale methods and on the 
homogenization technique proves particularly attractive. Within this ambit, the 
methodology proposed so far proves too complex and their feasibility for the 
analysis of real size structures still needs to be investigated. Therefore, there is a 
gap between the procedure available in the literature and the actual need for a 
tool able to provide, with relative low computational effort, valuable information 
for common engineering problems. The second part of the thesis intends to give 
a contribution in order to partially reduce this gap by providing simplified 
homogenization procedures for the analysis of in-plane loaded masonry 
structures both in the elastic and non-linear range. 

In the linear elastic range a constitutive identification of the material is 
developed, which takes into account both Poisson effects deriving from the 
mismatch of brick/joint stiffness and anisotropy deriving from brick 
interlocking. The proposed formulation, based on simplifying assumptions 
concerning the kinematics of brick and joint phases, provides analytical 
expressions for the in-plane elastic constants of masonry seen as a Cauchy 
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homogeneous medium. The accuracy of the proposed scheme is investigated by 
means of a comparison with finite element analyses and experimental data. The 
homogenized limit elastic domain provided by the proposed approach is then 
compared with the experimental tests available in the literature. 

In the non-linear range, a multi-scale procedure based on first-order 
homogenization is presented. Masonry is regarded as an assembly of elastic 
bricks separated by elasto-plastic interfaces obeying to a Mohr-Coulomb yield 
criterion with non-associative flow rule. In order to reduce the computational 
costs and to make the procedure suitable for the implementation into general 
purpose finite element programs, an affine kinematics is introduced over the 
representative volume element. Accordingly, the non linear homogenization 
problem is formulated in terms of a reduced number of unknowns and solved at 
the microscopic scale by means of a Newton-Raphson iterative scheme. The 
effectiveness of the proposed method is evaluated by performing numerical tests 
on the representative volume element undergoing different macroscopic stress 
conditions. The multi-scale procedure is implemented in the finite element code 
Abaqus and validated against experimental results on dry-stack masonry walls. 
Eventually, the proposed methodology is adopted for evaluating the response of 
masonry arches, belonging to the Felice aqueduct in Rome, under non uniform 
ground settlement. 
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2. State of the art 

This chapter presents, in the first part, an overview on the mechanical 
characteristics of masonry wall derived by means of experimental tests. In the 
second part, a state of the art is reported, which deals with the different 
modelling strategies developed in the literature for simulating the behaviour of 
masonry structures under in-plane and out-of-plane actions. 

An overview on the experimental characterization of 
masonry  

Experimental investigations devoted to study the mechanical behaviour of 
masonry originated in Europe in the end of the XVIII century, when, with the 
advent of the industrial revolution, the modern society started to develop the 
need of optimizing the costs of building materials. Accordingly, structures 
became more and more slender and the level of mechanical stress sustained by 
load bearing elements remarkably increased. Additionally, the traditional 
methods and the rules-of-thumb, so far adopted for the design of masonry 
constructions, started to be replaced by newer procedures based on the theory of 
elasticity, according to which structural safety was related to the capability of the 
material to sustain the local stress produced by the external loads. These reasons 
drew the attention of the technical community on the determination of masonry 
strength through experimental tests. 

The earliest experimental investigations are described in Cavalieri (1845) 
and date back to 1774 and 1818 when Gauthey and Rennie, respectively, 
preformed the first compression tests on brick samples. Only in the middle of the 
XIX century masonry started to be seen as a composite material and test 
procedures, so far devoted to study only the behaviour of the strongest 
component, were extended to mortar samples. Curioni (1872) collected the 
results of experimental campaigns carried out on a wide variety of stones, bricks 
and mortars commonly adopted in Italy at that time. Only a few years later in 
Gabba and Caveglia (1876), Campanella (1926) and Donghi (1935), it is 
possible to find the earliest information concerning the compressive strength of 
masonry as a whole. 

 



 

 

 

5

Since the advent of new construction materials, i.e. steel and reinforced 
concrete, the use of masonry remarkably reduced and, consequently, the 
attention of the technical community decreased. Starting from 1930 the 
investigation activity on brickwork was abandoned, with the exception of the 
United Kingdom and the United States where load bearing masonry structures 
were still very common. It is in the latter countries, around 1970, that the 
modern experimental activity on masonry developed with the purpose of 
defining reliable codes of practice and regulations for new constructions.  

The pioneer work was by Hilsdorf (1968), followed by Francis et al. 
(1971), McNary and Abrams (1985), Schubert (1988) who investigated the 
compressive strength of masonry in direction perpendicular to the bed joints. In 
the following years the spread of numerical modelling gave the impulse for 
defining more sophisticated tests with the purpose of achieving a complete 
constitutive characterization of masonry. Therefore, experimental campaigns 
were conducted aiming at deriving the modulus of elasticity and the strength of 
masonry both under uni-axial compression, Plowman (1965), Lenczner (1978), 
Binda et al. (1988), and under multi-axial states of stress, Samarasinghe and 
Hendry (1980), Page (1981,1983), Dhanasekar et al. (1982). Thanks to the 
development of new testing apparatus designed for quasi-brittle material, in the 
last twenty years the technical community produced an increasing number of 
contributions investigating the complete stress-strain curve of masonry including 
either the post peak behaviour, Priestley and Elder (1983), Van der Pluijm 
(1993), Kaushik et al. (2007), Reyes et al. (2008), or loading-unloading cycles, 
Naraine and Sinha (1992), Oliveira et al. (2006). 

In the meanwhile, increasing interest grew in Europe towards the 
preservation of the architectural heritage: either for assessment purpose or for 
defining strengthening techniques compatible with the existing materials, 
extensive laboratory and in situ tests were carried out for the mechanical 
characterization of ancient masonry, Binda et al. (1991, 2006), Valluzzi et al. 
(2002), De Felice and De Santis (2010).  

Mechanical behaviour of mortar and brick 
As a composite material, masonry exhibits a behaviour which strongly 

depends on the type of components adopted and the workmanship process. As a 
consequence, tests on masonry have always been accompanied by tests on 
mortar and brick/stone samples, since the beginning of the XIX century, Curioni 
(1872). 
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Most of the experimental investigations on masonry unit were carried out 
mainly on brick samples, being well-known, since the time of Cavalieri (1845), 
that crushing failure of the block is unlikely to occur in stonework. Nowadays, 
the mechanical characterization of the brick is made identifying strengths and 
elastic modules measured with respect to the bed and header faces by means of 
direct compressive tests, Rilem (1994). Tensile strength can be defined from 
different testing techniques, namely, flexural, splitting and direct tension tests, 
UNI 8942 (1986). As pointed out by experimental evidences, masonry brick 
usually shows a brittle response often accompanied by a marked orthotropic 
behaviour due to the manufacturing process and the volume of perforations, Van 
Der Pluijm (1992). Despite the fact that biaxial tests in the tension-compression 
regime have been performed by Khoo and Hendry (1973) and Atkinson et al. 
(1985), there is a lack of information regarding the complete strength envelop of 
masonry brick. 

Mortar, in most cases, constitutes the weakest component of masonry 
assemblage. Standard compressive test, indirect tension and flexural tests are the 
most diffuse way to obtain a mechanical characterization of mortar samples. 
Experimental evidences outline a brittle behaviour characterized by a fracture 
energy which depends on the composition of the mixture adopted, Sahlin (1971). 
Khoo and Hendry (1973), Atkinson et al. (1985) and McNary and Abrams 
(1985) performed tri-axial compression tests showing that an increase of 
confining stress resulted in an increase in terms of material strength and 
ductility. The behaviour of mortar proved similar to the one of concrete, which 
has been widely investigate under multi-axial state of stress, Yurdas et al. 
(2004). 

Mechanical behaviour of in-plane loaded masonry  
Up to thirty years ago, the design of masonry structures was performed 

mainly with reference to vertical loads. So far, most of the interest of the 
scientific community was addressed to the determination of the compressive 
strength of masonry under uni-axial load normal to the bed joints. The 
experimental evidences show that brickwork behaviour is intermediate with 
respect to the behaviour of the constituents, and is characterized by a quasi-
brittle failure, Figure 2.1. The curve deviates from the initial linear elastic branch 
when vertical cracks initiate in the brick. For increasing loads, the cracks 
propagate trough the entire brickwork involving the mortar joints. Once the 
compressive strength is reached the capacity of the material to sustain external 
load falls rapidly to zero. 
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Since the work of Hilsdorf (1968), the phenomena accompanying the 
failure of brickwork in compression are well recognized and are related to the 
different deformability of mortar and brick, being usually the former more 
deformable than the latter. Accordingly, when masonry is loaded in compression 
mortar joints above and below each brick tend to expand laterally more that the 
brick itself. Therefore, mortar undergoes tri-axial compression stresses while the 
latter undergoes vertical compression combined with lateral tension. This 
interaction between the components, also named Poisson effects, are responsible 
for the splitting cracks that develop in the brick and initiate failure of masonry in 
compression. 

 

Figure 2.1 Stress-strain curves of mortar (EM), brick (EB) and masonry (MU6H) 
specimens, Binda et al. 1996a-b. 

Many researches have followed, which investigated the main factors 
affecting the compressive strength of masonry such as thickness of mortar joint, 
type of brick and mortar: Francis et al. (1971), McNary and Abrams (1985), 
Schubert (1988), Plowman (1965), Lenczner (1978), Binda et al. (1988,1996a-
b), Oliveira et al. (2006), De Felice and De Santis (2010) among others. 

In the following years, the behaviour of masonry under different 
combination of loads started to be investigated. The main purpose was to 
provide suitable design information for codes of practice to allow prediction of 
the capacity of walls acting either as a load bearing element or in conjunction 
with a reinforced concrete frame. 
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To this purpose, experimental tests were carried out on wall samples 
undergoing different combinations of vertical compression and shear acting 
along the middle plane of the panels. These loading conditions induce within the 
specimen non-uniform states of stress which aimed at representing the ones 
experienced by a masonry wall in a real structure when combinations of dead 
and live loads (wind or earthquake) are encountered. Several monotonic tests 
have been performed on a wide variety of walls built with different geometrical 
aspect ratios and masonry types. A comprehensive review of the experiments 
performed up to 1980 is reported in Page et al. (1982) and Mann and Muller 
(1982). Essentially three in-plane failure modes have been encountered: 

1. Flexural/Rocking failure: as horizontal load increase, bed joints crack 
in tension, and shear is carried by the compressed masonry; final failure 
is obtained by crushing of the compressed corner or, for large 
displacement, for overturning of the wall. 

2. Shear cracking: peak resistance is governed by the formation and 
development of inclined diagonal cracks, which may follow the path of 
bed- and head-joints or may go through the bricks, depending on the 
relative strength of mortar joints, brick-mortar interface, and bricks. 

3. Sliding: due to the formation of tensile horizontal crack in the bed 
joints potential sliding planes can form along the cracked bed joints; 
this failure mode is possible for low levels of vertical load and/or low 
friction coefficients. 

These results were confirmed by later researches which focused on the 
cyclical behaviour of the material. Within this ambit different testing techniques 
have been adopted in the literature, namely quasi-static cyclic tests, pseudo 
dynamic tests and dynamic shake table tests. According to Calvi et al. (1996), 
despite the latter tests simulate with accuracy the effects of earthquake on the 
structural elements, cyclic quasi-static tests enable more accurate measurements 
of forces and displacements on the specimen and therefore the record of the 
damage becomes easier. Different experimental researches followed both on 
brickwork Magenes and Calvi (1997), Anthoine et al. (1995), Bosiljkov et al. 
(2003) and on dry-stack stonework Ceradini (1992), Vasconcelos and Lourenço 
(2009). 

In the meanwhile, a different approach started to develop in 1980, when, 
aiming at deriving a constitutive identification of masonry as an homogeneous 
medium for performing more efficient numerical analyses, experimental tests on 
masonry panel were conducted by inducing within the specimen uniform in-
plane states of stress. Within this ambit, the most complete set of experimental 
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data on the in-plane behaviour of masonry are from Page (1981,1983) and 
Dhanasekar et al. (1982) who tested 102 half scale solid brick panels submitted 
to proportional biaxial loading, Figure 2.2. In the linear elastic range, no 
significant difference in stiffness in directions normal or parallel to the bed joint 
is found, Dhanasekar et al. (1982). On the other hand, in the non-linear range the 
material shows a remarkably anisotropic behaviour. In biaxial compression-
tension regime, the failure modes encountered are dependent on the direction of 
the applied loads with respect to the orientation of mortar joints. Crack 
propagation along the joints is encountered, which in some cases is accompanied 
by cracking of the bricks. 

 

 
a) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
         b) 

Figure 2.2 Strength envelop of masonry derived by Page (1981,1983) for different angles 
(θ) between the in-plane load (σ1, σ2) with respect to bed joint orientation: tension 

compression regime (a) and biaxial compression regime (b). 

When masonry is loaded in biaxial compression, the bed joint orientation 
does not play a significant role for most stress combinations and failure typically 
occurs by splitting of the specimen at mid-thickness, in a plane parallel to its free 
surface. However, when one of the principal stress dominates failure occurs by 
cracking and sliding of the joints and cracking of the bricks. The strength 
envelope obtained by Page is of limited applicability for cases in which different 
components or different geometry is encountered. The biaxial strength of other 
types of masonry has been investigated by Ganz and Thürlimann (1982) for 
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hollow clay masonry, Guggisberg and Thürlimann (1987) for clay and calcium-
silicate masonry and Lurati et al. (1990) for concrete masonry. 

All the abovementioned experimental tests show that joints cracking tends 
to localize in correspondence of the interface between mortar and brick, which 
constitutes the weakest link of masonry. Aiming at studying the behaviour of 
such interface, tensile and shear tests were carried out in the literature on small 
assemblage of mortar and bricks, see Atkinson et al. (1989), Van Der Pluijm 
(1993) and Jukes and Riddinton (1997) for a detailed description. The results so 
far collected show that the non-linear behaviour of the joint is governed 
essentially by two phenomena, namely tensile cracking and shear slip, which are 
both characterized by low values of fracture energy. The relation between shear 
and compressive load was found to be linear with a friction angle of about 36° 
while a ratio between tensile strength and cohesion varying from 1.3 to 2.4 was 
recorded.  

 

Figure 2.3 Shear peak strength of masonry joints as a function of the compressive stress 
applied, Van Der Pluijm (1993). 

 

Mechanical behaviour of out-of-plane loaded masonry 
Experimental tests on masonry walls undergoing out-of-plane actions are 

rather complex to perform. Within this ambit, static tests may be not 
representative of the phenomena that actually take place in real structures 
stroked by seismic shocks. Therefore the technical community in the last 20 
years mainly investigated the dynamic response of masonry wall under out-of-
plane inertial forces. 
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The first and probably the largest to date experimental campaign on walls 
dynamically tested out-of-plane is that performed by the Agbabian-Barnes-
Kariotis, ABK (1981). 22 vertical spanning strip walls, whose height ranged 
between 3.05 m and 4.88 m, and whose height-to-thickness ratio varied between 
14 and 25, have been subjected to both synchronous and non-synchronous 
accelerograms at the base and at the top. The authors have recognised the 
existence of a dynamic stability reserve, which explained why the walls, 
although cracked and rocked, did not collapse. Similarly, a vertical simply 
supported wall has been considered by Baggio and Masiani (1991), who tested 
out-of-plane small scale unreinforced masonry and unreinforced concrete walls, 
using harmonic excitations. Griffith et al. (2004) have considered harmonic, 
impulsive and earthquake ground motion while testing 14 vertical spanning strip 
walls, 1.5 m tall, having a height-to thickness ratio variable between 13 and 28 
approximately. Simsir et al. (2004) have tested three single cell, single storey 
prototypes, with reinforced masonry walls acted in-plane and unreinforced 
masonry walls acted out-of-plane, connected by horizontal diaphragms of 
varying stiffness. The walls were approximately 1.9 m tall, with a 21 height-to-
thickness ratio. The out-of-plane loaded wall cracked and rocked when the floor 
load has been reduced compared to the wall self-weight. Meisl et al. (2006) have 
performed tests on four simply supported walls. The unreinforced masonry 
consisted of three leafs brick ashlars, with header units every seven courses. The 
specimens were 4.25 m tall, and had a 12 height-to-thickness ratio. Two of the 
walls have been built without wetting the units before laying them on the mortar, 
in order to engender poor adhesion. Nonetheless, rocking mechanisms have been 
observed.  

Wilhelm et al. (2007), as part of a campaign involving six vertical spanning 
strip walls built using hollow clay bricks, being 2.4 m tall and with height-to-
thickness ratio varying between 12 and 19, have presented the results for the first 
specimen, laid with a very weak mortar. They observed the formation of a 
mechanism, whose hinge moved along the wall height. 

Unreinforced brick masonry parapet walls have been tested by Bariola et 
al. (1990) and by Lam et al. (1995). Rigid body rocking and sensitivity to 
ground motion details has been observed in both cases. Block-like stone 
elements have been tested by Liberatore and Spera (2001) and by Peña et al. 
(2006). The former investigators, who tested 12 blocks 0.6-1.2 m tall and with 
height-to-thickness ratio varying between 6 and 10, have investigated impulsive 
energy damping and the relevance of other degree of freedoms. The latter 
investigators, who tested 4 blocks 0.46-1.0 m tall and with height-to-thickness 
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ratio varying between 4 and 6, have focused on the comparison between an 
analytic model and a distinct element model. Recently, El Gawady et al. (2011) 
presented an experimental campaign on block masonry walls undergoing 
dynamic excitation. Two types of masonry and different slender ratios have been 
investigated. Additionally, different materials have been adopted for building the 
interface at base of the wall. The results outlined the strong influence of such 
material on the overall response of the system and on the dissipation of energy: 
the softer is the interface the higher is the dissipation of energy. Moreover such 
dissipation proves continuous when soft material is adopted while tends to 
concentrate on impact when stiff material is adopted. 

Strategies for modelling masonry under in-plane 
loads 

The experimental campaigns conducted in the last 30 years reveal that 
masonry shows different mechanical properties depending on the direction of the 
applied load with respect to the orientation of mortar joints, which act as plane 
of weakness. The main issue related to modelling of masonry in-plane loaded is 
to capture such anisotropic behaviour and may be addressed by following 
different strategies which are briefly described in the following paragraphs. 

Micro-modelling 
The most intuitive way for simulating masonry behaviour is to use a Finite 

Element model where each unit and mortar joint is represented by means of 
continuum elements. In this context many contributions were given in the 
literature by assigning to the constituents non linear constitutive relations based 
on damage and plasticity theories, Sayed-Ahmed and Shrive (1996), Litewka 
and Szojda (2006), Massart et al. (2004) and Berto et al. (2005), Lourenço and 
Pina-Henriques (2006). Additionally, mortar/brick interface may be accounted 
for in the model, see Rots (1991), aiming at achieving a further level of detail. 
This modelling approaches, regarded as refined micro-modelling, prove able in 
reproducing all the failure modes of masonry as progressive deterioration of the 
joints and compressive failure due to Poisson’s effect, Berto et al. (2005), 
Brenchich and Gambarotta (2005). On the other hand, this strategy is 
computationally intensive and can be adopted for reproducing the behaviour of 
limited portions of real structures, Figure 2.4a.  
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A simplification may be introduced by representing masonry as an 
assemblage of block modelled as continuum elements separated by joints 
modelled as zero-thickness interfaces, Figure 2.4b. The Distinct Element 
Method, which is based on this strategy, was originally proposed by Cundall 
(1971) for the analysis of rock masses and then applied to the case of masonry 
by Azevedo et al. (2000) and de Felice (2011) among others. The same approach 
was adopted within the framework of the Finite Element Method by Page 
(1978), Rots (1991), Lofti and Shing (1994), Gambarotta and Lagomarsino 
(1997a), among others. This modelling strategy, regarded as simplified micro-
modelling, reduces the computational costs of the analysis and makes it possible 
to reproduce failure modes of masonry related to cracking and sliding of the 
joints. On the other hand, the interface model does not give information on the 
Poisson’s interaction between mortar and brick and, therefore, cannot directly 
reproduce failure modes of masonry in compression. The latter limit may be 
overcome by lumping all the non-linear features of masonry behaviour within 
the interface and adopting ad hoc constitutive models which include cracking, 
sliding and crushing modes of failure, Lourenço and Rots (1997a), Chaimoon 
and Attard (2007). 

a)  
b) 

Figure 2.4 Examples of refined (a), Anthoine (1997) and simplified (b), Lourenço 
(1997a) micromodelling. 
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Macro-modelling 
Even by introducing simplifications concerning the behaviour of mortar 

joints, the computational effort needed to perform structural analysis precludes 
the use of micro-modelling approaches for engineering applications involving 
real size buildings. In the latter cases, macro-modelling approaches seem 
preferable since they may combine low computational costs and reasonable 
accuracy. The basic idea is to represent masonry assemblage as an homogeneous 
material by accounting for the presence of mortar joints in an average sense. 
Within this context, many strategies were developed in the literature. 

The least-refined strategy consists in dividing the structure in 
macroelements (i.e. shear walls, lintel beams) employing truss, beam or plate 
element and assigning them a proper constitutive relation expressed in terms of 
overall force-displacement, Brencich and Lagomarsino (1998), Magenes and 
Della Fontana (1998) among others. These models rely on a simple 
representation of the structure and require few essential information which make 
it possible to perform both static and time-history non linear analyses in a 
limited amount of time. For these reasons, the latter approach is adopted by the 
majority of commercial programs oriented to the analysis and design of masonry 
structures. Despite important developments occurred regarding the validation 
with respect to valuable experimental data, large errors in predicting structural 
behaviour may derive by adopting inadequate structural elements or constitutive 
relationships. 

A more refined approach makes use of the Finite Element Method, which 
requires a constitutive identification of masonry expressed in terms of local 
stress-strain relationship. In this context, many authors adopted the smeared 
crack model, originally developed for concrete, aiming at predicting cracking 
and failure of masonry walls. The limits of the latter approach are discussed in 
detail in Lofti and Shing (1991), Giordano et al. (2002). 

The first ad hoc constitutive model for masonry was developed by 
Dhanasekar et al. (1985) on the basis of the extensive experimental campaign 
conducted by the authors on masonry wallets under biaxial states of stress. 

Further failure criteria for masonry were derived by Ganz (1989), Alpa and 
Monetto (1994), Andreaus (1996) by means of mechanical reasoning on the 
interaction between masonry components within a wall subjected to in-plane 
loads. The cited authors proposed rather complex yield surfaces that almost 
preclude the use of modern numerical algorithms and an accurate representation 
of inelastic behaviour (hardening and softening). 
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Figure 2.5 Empirical strength criteria proposed by Dhanasekar et al. (1985). 

Lourenço et al. (1998) overcame this limitation proposing a composite 
criterion, obtained by the combination of Hill-type and Rankine-type criteria, 
which includes different hardening/ softening behaviour along different material 
axes, Figure 2.6.  

 

Figure 2.6 Combined strength criterion adopted for modelling in plane loaded masonry, 
Lourenço et al. (1998). 

Standing the good agreement with the experimental tests, the 
abovementioned constitutive relations take into account only in 
phenomenological way the effects of brick and mortar arrangement within the 
brickwork. Accordingly, models calibrated for specific type of masonry can be 
hardly adopted when different constituents and geometry are encountered. 
Therefore “phenomenological” criteria need to be calibrated either by 
performing experimental tests on wallet, which are usually costly due to the 
large size of the specimens and required testing equipment, or by performing 
numerical analysis based on micro modelling approaches. 
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Multi-scale approaches 
An alternative and less expensive approach to experimental tests is to 

measure the individual properties of unit and mortar on small samples and, then, 
to use a theoretical model that combines the information from the components 
and makes it possible to obtain masonry overall properties. Because of its 
importance, this latter issue has been the subject of many investigations during 
the last fifty years. One of the first attempts was made by Haller (1958), which 
developed a theoretical model suitable for predicting the deformation of a stack 
bonded masonry prism, by defining a set of compatibility and equilibrium 
equations between the components under simplifying assumptions, i.e. uniform 
stress fields within mortar and brick. A similar scheme was adopted by Shrive 
and England (1981) and Brooks (1990), with models that extend the formulation 
to the case of running bond masonry.  

The abovementioned approaches are limited to the case of masonry 
subjected to vertical loads in the elastic range. The analysis of structures 
subjected to vertical and horizontal loads, where brickwork acts either as load-
bearing elements or in conjunction with a structural frame, requires a better 
characterization of masonry as a continuum material both in the elastic and 
inelastic ranges. This can be achieved by resorting to multi-scale approaches. 
The basic idea derives from the intuition that the response of heterogeneous 
materials may be analyzed at different scales of observations passing from 
macroscopic scales to finer and finer microscopic scales. In the coarser level the 
material is represented roughly by means of a continuum model whose response 
is derived by bridging information at the proper underlying level. In this way it 
is possible to retain memory of the internal microstructure without forsaking the 
advantages deriving from a continuum scheme. In the case at hand, two different 
levels may be considered: the macroscopic one, which is comparable to the 
dimensions of the wall or of the structure under consideration, and the 
microscopic one, which is comparable to the dimensions of brick and mortar 
phases. 

 
The terms “multi-scale” includes many strategies developed in the literature 

that differ in terms of the up-scaling method, i.e. the method for transferring 
information at different scales, Weinan et al. (2009). In the present work 
attention is restricted to the multi-scale approaches that make use of the 
asymptotic homogenization theory Bensoussan et al. (1978), Sanchez-Palencia 
(1980), Suquet (1987). The latter theory is based on the asymptotic expansion of 
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the field variables in powers of a parameter representing the ratio between the 
characteristic length of the heterogeneities and the characteristic length of the 
whole domain under consideration. When the abovementioned ratio is small 
enough, the macroscopic constitutive relation of heterogeneous materials may be 
obtained by solving an auxiliary boundary value problem, also called 
localization problem, defined at the microscopic scale on a Representative 
Volume Element of the medium (RVE). Both first- and second-order 
homogenization were applied in the literature to the case of masonry. 

The first order asymptotic homogenization relies on the classical 
linearization of the macroscopic deformation map meaning that both micro- and 
macro- scales are represented as Cauchy continua. In the specific case of 
masonry the problem was addressed by Anthoine (1995) in a rigorous way and 
solved in the elastic range by means of the finite element method. The use of 
finite elements to solve the auxiliary boundary value problem in a full three-
dimensional manner usually requires intensive numerical computations so that 
the problem is usually tackled under plane conditions, by taking advantage of the 
small thickness of masonry walls with respect to the other dimensions. 

The opportunity of achieving an analytical solution of the localization 
problem proves particularly attractive. For this purpose the homogenization 
technique was applied in literature introducing simplifying assumptions that 
made it possible to handle the problem analytically. In most cases the constant 
strain, or Voigt assumption, is made together with simplifications concerning the 
brickwork geometry. 

One approach is to neglect the presence of head joints and to consider 
masonry as a periodic layered material made of alternating layers of brick and 
bed joint, Carbone and Codegone (2005). 

Another approach is to perform the homogenization in two steps, Pande et 
al. (1989), defining first the equivalent homogenous properties of the horizontal 
courses made of bricks and head joints and then representing running bond 
masonry as a periodic layered material made of bed joints and of the 
homogenous courses defined in the first step. Analogous assumptions have been 
made by Pietruszczak and Niu (1992). The above mentioned procedures do not 
fully address the influence of bond patterns on masonry overall behaviour, since 
the head or bed joints are not introduced simultaneously, Lourenço and Rots 
(1997b). 

A further approach consists in treating joints as zero-thickness interfaces, 
de Felice et al. (2001,2010), Cecchi and Sab (2002a). The simplification 
introduced makes it possible to derive masonry elastic properties in closed form 
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taking due account of the arrangement of units while losing the Poisson 
interaction between the constituents and its influence on masonry overall 
behaviour. 

Zucchini and Lourenço (2002) followed an “engineering” approach by 
introducing simplified deformations mechanisms over the basic cell which are 
derived from observations of finite element analyses results. The equivalent 
properties of masonry as a homogeneous material are then obtained by imposing 
a set of equilibrium and compatibility equations between each constituent.  

The extension of the asymptotic homogenization approach to the non linear 
range is not straightforward. An attractive solution consists in defining an 
homogenized yield surface delimiting the locus of the admissible macroscopic 
stress. The latter issue maybe achieved by applying the homogenization 
techniques within the framework of limit analysis. After the pioneer paper of De 
Buhan and de Felice (1997), Figure 2.7, many other works followed which 
applied either kinematic and static method for deriving, respectively, upper 
bound and lower bound estimates for the failure surfaces, Milani et al. (2006a, 
2006b, 2006c, 2008), Cecchi and Milani (2008).  

 

Figure 2.7 Strength domain of brick masonry as an homogenized material in space of 
macroscopic stresses, De Buhan and de Felice (1997). 

Despite the fact that limit analysis approach proved able in predicting the 
collapse of in-plane and out-of-plane loaded walls, it is unable to provide 
information in terms of displacement. In order to trace the complete equilibrium 
path of the structure, de Felice et al. (2010) endowed the domain obtained by 
means of the limit analysis with an elasto-plastic constitutive relation defined at 
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the macroscopic scale. The advantage of the cited approach is that the up-scaling 
process is performed once so that during the analysis the material is always 
treated as an homogeneous medium. The latter method makes it possible to 
apply the common integration scheme developed for multi-surface plasticity. On 
the other hand, in spite of the quasi-brittle behaviour of mortar and brick which 
would require non associative flow rule and finite ductility, perfect plasticity 
assumption and associated flow rule of the constituents is considered in this 
context. 

In order to use constitutive laws for the components covering the 
abovementioned phenomena, a transition between micro- and macro- scales is 
required at each step of the analysis. One of the earliest paper in this direction if 
from Luciano and Sacco (1997) who proposed a discrete damage evolution law 
for masonry obtained by schematizing the damage process by only few possible 
damaged state of the material. Each damaged configuration is characterized by a 
certain distribution of cracks and by an overall compliance matrix of the 
homogeneous material which may be evaluated by means of finite element 
analyses. Fixed paths of damage are then identified, i.e. the evolution from a 
damaged state to another.  From the macroscopic point of view the damage 
evolution is obtained by assigning to the homogeneous material the reduced 
compliance matrix which pertains to the damage state reached. More in general, 
the scale transition may be handled by means of computation homogenization 
procedure, Anthoine (1997), Ma et al. (2001), Massart et al. (2004, 2005). In 
order to reduce the typical high costs of the latter approach, transformation field 
analysis, originally proposed by Dvorak (1992), was adopted by Sacco (2009), 
Marfia and Sacco (2012) for deriving the non-linear behaviour of in-plane 
loaded masonry. The author assumed a linear elastic behaviour of the brick 
while introduced a constitutive law for the joints including damage and friction 
which makes it possible to reproduce the cyclical response of mortar. In order to 
reduce to the minimum the complexity of the problem, the scale transition may 
be defined explicitly a-priori. Masiani and Trovalusci (2003) assumed a direct 
relation between the macroscopic strain field and the microscopic displacement 
field defined on the RVE, where masonry is seen as a system of rigid block 
connected by frictional interfaces. The up-scaling process is then made by 
imposing the Hill-Mandel equality of the works computed on the two scales. 
This approach introduces a lack of equilibrium at the microscopic scale which is 
expected to have effects on the macroscopic scale too. For instance one effects is 
the mismatching between the deformability of the Cauchy and Cosserat 
identifications proposed by the cited authors in the limit case where the 
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dimensions of the blocks tends to be infinitely small with respect to the 
dimension of the structure, see Salerno and de Felice (2009) and Trovalusci and 
Masinai (2003). 

Another approach consists in handling the non linear homogenization by 
treating masonry as a stratified material. In this context the main contributors 
were Lourenço (1997b), who considered elasto-plastic behaviour of the 
constituents, Gambarotta and Lagomarsino (1997b) and Uva and Salerno (2006), 
who introduced ad-hoc constitutive relation for the joints which includes damage 
and plasticity and accounts for the cyclical response of mortar. By neglecting the 
presence of head joints, the latter models are thought to overestimate the 
response of masonry under shear loading. In order to overcome these limitations 
Zucchini and Lourenço (2004, 2007, 2009) proposed a non-linear 
homogenization procedure based on a micromechanical model for masonry 
which accounts for the whole set of mortar joints and introduces a coupled 
damage-plasticity model for the constituents. This approach may be referred to 
as “engineering” approach since the response of the RVE under a generic state 
of stress is derived as a superimposition of two mechanical problems defined 
separately, the first one in which the RVE undergoes normal axial loads and a 
second one where the RVE undergoes shear loads. Within this ambit falls the 
model developed by Calderini and Lagomarsino (2008) who performed the 
homogenization by treating the joints as interfaces and analyzing the response of 
the RVE under different deformation modes. The cited authors defined ad-hoc 
constitutive relation for the components which accounts for tensile cracking, 
sliding and compressive crushing and proves able to reproduce the cyclical 
behaviour of the materials. 

The first order homogenization approach is by now well-established and 
widely used in the scientific and engineering community but it presents two 
major disadvantages, Geers et al. (2011): 

 The method is based on the separation of scales and is, therefore, not 
suited for critical regions where high deformation gradient is expected. 
Thus, when softening behaviour is considered the model is affected by 
well-known localization and mesh dependency problems. 

 The separation of scale assigns an infinitely small size to the RVE so 
that the method neglects size effects. 

In order to overcome part of the mentioned limits, second-order 
homogenization techniques, based on a second order Taylor series expansion of 
the deformation map, were developed in the literature. The latter approach 
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couples a Cosserat continuum at the macroscopic scale with a classical 
continuum at the microscopic scale. In the linear elastic range Masiani et al. 
(1995) referred to a lattice model and derived an identification of the elastic 
constant of masonry as an analytical function of the shape, size and arrangement 
of the components. Recently, Salerno and de Felice (2009) compared the 
capability of Cosserat and Cauchy identification to reproduce the elastic 
deflection of masonry treated as a rigid blocky system. In the inelastic range 
Masiani and Trovalusci (1996) and Trovalusci e Masinai (2003) developed 
multi-scale procedures referring to a microstructural model consisting in rigid 
block connected by non-linear springs obeying to a Mohr-Coulomb criterion.  
Later, Salerno and Uva (2002) proposed a multi-scale procedure by assuming an 
explicit down-scaling process relating the Cosserat macroscopic strain measure 
with the strain measure at the local level. Here masonry is handled as a system 
of rigid block connected by interfaces, which are endowed with a constitutive 
law including damage and friction. Finally, the Hill-Mandell work equality is 
adopted by the cited authors for performing the up-scale process. More recently, 
starting from the original work by Sacco (2009), Addessi et al. (2010, 2012) 
proposed an enhanced non linear homogenization approach based on the 
transformation field analysis. The main benefits of the second-order approach 
are: 

 The method accounts for a microscopic length scale. 

 The problem of moderate localization is resolved along with the mesh 
dependency at the macroscopic scale. 

On the other hand, if localization appears with a band which is below the 
RVE size, even the second order homogenization fails in reproducing closely the 
kinematics of the problem. 

In the case of intense localization the continuous-discontinuous scale 
transition may be adopted. It consists in the definition of a localization band 
which allows for strain discontinuities at a macroscopic scale. The jump of 
displacement is driven by the resolution of a boundary value problem defined on 
the RVE. The first approach based on this concept was developed in Massart et 
al. (2007). An alternative consists in resorting to the substructuring or multigrid 
approach, Brasile et al. (2007), which is based on an iterative scheme using two 
different, local and global, modelling of the masonry mechanics simultaneously. 
The local model represents the interaction between adjacent bricks by means of 
the nonlinear response of mortar joints modelled as springs at contact. The latter 
model is a linearized Finite Element approximation of the previous model, 
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defined at the rough scale of the wall, and is used as iterative pre-conditioner to 
accelerate the iteration. 
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Strategies for modelling masonry under out-of-plane 
loads 

The dynamic behaviour of walls undergoing out-of-plane forces is rather 
complex, due to both the discontinuous and non-homogeneous nature of 
masonry, and the interaction with the remainder of the building. Bearing in mind 
that these types of mechanism usually develop large displacements and are 
affected by second order effects, the definition of models able to handle on the 
whole this set of aspects constitutes a true challenge for the technical 
community.  

The classical approaches adopted for modelling out-of-plane loaded walls 
rely on simple plane model where the wall is represented as a single or a system 
of rigid blocks. This assumption introduces important simplifications, since the 
number of parameters governing the problem strongly reduces and the equations 
of motion may be solved by accounting for finite displacement either under 
monotonic or dynamic loads. 

 Within this ambit, the pioneer work is from Housner (1963) who 
formulated an analytical model for evaluating the response of a free-standing 
rigid parallelepiped block, also named inverted pendulum, under free-
oscillations and acceleration pulses. The interface at the base of the wall is rigid 
and the kinematics of the system is expressed in terms of the rotation of the 
block only, Figure 2.8. 

 

Figure 2.8 Housner (1963) inverted pendulum. 

The dissipation of energy during the motion has been introduced when the 
block impacts the foundation, being the amount of energy lost expressed by 
means of a coefficient of restitution as a function of the velocity of the block 
immediately before the impact. The main findings of Housner research is that, 
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unlike the classical single-degree-of-foredoom oscillator, the inverted pendulum 
has a period of vibration that depends on the amplitude of the motion. This 
model, despite its simplicity, makes it possible to capture the essential features 
of the response of a monolithic wall undergoing out-of-plane actions since 
accounts for second order effects and for the energy dissipation over impacts. 

Later on, Housner inverted pendulum has been refined by many authors. 
Aslam et al. 1980 considered time-history acceleration at the base of the block 
instead of dynamic pulse. Plaut et al. (1996) studied the behaviour of a 
parallelepiped block resting on an inclined foundation, Figure 2.9a. These 
models proved not feasible for the analysis of real buildings where the presence 
of transversal walls introduces a further constrain to the out-of-plane motion of 
the walls. In order to include this aspect, Hogan (1992), Liberatore and Spera 
(2003) and Sorrentino et al. (2008) analyzed the case of free standing rigid 
blocks which on one side were free to rotate while on the opposite side were 
constrained by the presence of transversal elements, Figure 2.9b. 

 
a) 

 
b) 

Figure 2.9 Enrichments of Housner’s model: (a) block resting on inclined foundation, 
Plaut et al. (1996), and (b) block constrained on one-side by transversal walls, and 

Sorrentino et al. (2008). 

A major enrichment of Housner’s inverted pendulum has been introduced 
by Doherty et al. (2002) and Sorrentino et al. (2008). Starting from the 
discrepancies found between the original model and experimental evidences, the 
cited authors introduced some imperfections in the behaviour of the 
parallelepiped block by adopting a three-linear relation between the restoring 
force and the displacement of the block instead of the bilinear relation envisaged 
by Housner’s approach, Figure 2.10. In this way an initial finite stiffness and a 
reduced strength of the block are introduced, which made it possible to obtain a 
reasonable matching with experimental results. 
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Figure 2.10 Three linear relation between the resorting force and the out-of-plane 
displacement of the block proposed by Doherty et al. (2002) and Sorrentino et al. 

(2008). 

Other approaches assumes either a Winkler-type foundation, Phycaris and 
Jennings (1984), Blasi and Spinelli (1986) or that the base of the block has a 
cylindrical shape, Capecchi et al. (1996), Figure 2.11. Both this type of 
assumptions introduce a smooth transition between positive and negative 
rotation of the block, a finite initial stiffness and a reduced strength with respect 
to Housner’s inverted pendulum. More precisely, this smoothness is related to 
the progressive migration during the motion of the hinge point located at the 
base of the wall from one corner of the foundation to the other. 

 
a) 

 
 

                                     
b) 

Figure 2.11 Model proposed by (a) Phycaris and Jennings (1984) and (b) Capecchi et al. 
(1996). 
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The approaches developed so far assume that the behaviour of the wall 
under out-of-plane actions may be assumed as monolithic. This assumption 
holds true as far as transversal bond is ensured by a good interlocking of 
masonry unit throughout the thickness of the wall. When dealing with regular 
masonry the latter condition is usually encountered. Conversely when historical 
masonry is analyzed, the hypothesis of monolithic behaviour of the wall during 
rocking motion may not be acceptable anymore. 

The effect of masonry morphology on the behaviour of historical masonry 
out-of-plane loaded has been investigated by de Felice (2011) with reference 
both to regular dry block masonry (opus quadratum) and to rubble stonework. 
The methodology proposed, which is based on the distinct element method, 
relies on a plane model of the wall where masonry is represented as an assembly 
of rigid block separated by non-linear interfaces, Figure 2.12. This approach 
abandonees the hypothesis of monolithic behaviour of the material and accounts 
for the actual disposition of the units throughout the thickness of the wall. The 
use of the distinct element method may be regarded as the natural evolution of 
Housner’s approach. As a matter of fact, this method makes it possible to 
analyze the static and dynamic behaviour of a system made by several rigid 
blocks separated by non-linear interfaces by solving the equation of motion 
under the assumption of finite displacement.  

 

 

Figure 2.12 Rubble masonry walls out-of-plane loaded analyzed by means of the distinct 
element method, de Felice (2011). 
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De Felice and Giannini (2001) investigated the effects of the connections 
between the wall which experiences rocking and transversal walls assuming that 
at their intersection the bond is provided by unit interlocking. Two types of 
mechanisms have been considered: the overturning of the façade due either to a 
stair step vertical crack at the corner or a diagonal crack on the transversal wall, 
Figure 2.13. 

 

Figure 2.13 Mechanisms analyzed by de Felice and Giannini (2001) by accounting for 
façade-transversal wall bond. 

The models presented up to now, while taking into consideration in 
approximate way the arrangement of the units within the wall and the bond with 
other structural elements of the buildings, i.e. floors, transversal walls etc…, do 
not account properly for three dimensional effects. More complex failure 
mechanisms may be analyzed in a complete three dimensional framework by 
subdividing the structure in a system of rigid block, Restrepo-Velez (2004). 
Anyway the problem becomes increasing difficult so that the use of dynamic 
analysis is precluded in this case. 

In the last ten years new approaches have been developed which renounce 
to follow the complete motion of out-of-plane mechanisms under dynamic 
actions. For a given structure, their main goal is to define the minimum collapse 
load multiplied and the related mechanism, i.e. the portion of the structure that 
tends to fail out-of-plane, by performing static push-over finite element analysis 
under the assumption of small displacement. These approaches may account for 
the texture of the material, for three dimensional effects and for the interaction 
with the remainder of the structure but renounce to catch the features of the 
phenomenon related to second order effects. Within this ambit the same 
strategies presented for the case of in-plane loaded walls have been followed in 
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the literature, i.e.  macro-modelling and multi-scale approaches. An example of 
macro modelling approach is presented in Lourenço (2000) where the combined 
Hill-Rankine orthotropic model developed for in-plane loading has been 
extended to a multilayered shell in order to replicate the behaviour of masonry 
walls out-of-plane loaded.  

The homogenization technique has been widely used both in the elastic 
range, Cecchi and Sab (2002b,2004,2007), and in the framework of the limit 
analysis theory, Mistler et al. (2007), Milani et al. (2006c,2008), Cecchi et al. 
(2007), Figure 2.14. Within the ambit of multi-scale approaches, the main 
contribution has been provided recently by Mercatoris et al. (2009,2010) who 
performed a computational two scale homogenization where the localization of 
damage both at the microscopic and macroscopic scale is handled by a criterion 
based on acoustic tensor adapted to shell kinematics. Except for the 
methodologies based on the limit analysis theory, the remaining approaches still 
need to be validated in terms of their applicability to real size structures. 

 

 

Figure 2.14 Out-of-plane limit analysis of masonry walls based on homogenization 
technique, Milani et al. (2006). 
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3. Out-of-plane loaded masonry walls: 
experimental tests and distinct element 
modelling 

Damages observed after strong earthquakes have shown that perimeter 
walls are the most vulnerable elements of existing masonry buildings. Because 
of seismic ground motion, they are prone to separate from internal structures, 
such as transverse walls and horizontal floors, and to overturn out-of-plane, 
Figure 3.1.  

 

Figure 3.1. L’Aquila (Central Italy), after the April 6, 2009 earthquake. a) Church 
of San Pietro di Coppito; b) Oratory of San Giuseppe dei Minimi. 

 
The analysis of the dynamic behaviour of walls undergoing out-of-plane 

inertia forces is rather complex, because of both the discontinuous and 
nonhomogeneous nature of masonry and the interaction with the remainder of 
the building. Such a problem has been addressed in the past by means of 
experimental campaigns which have been mainly devoted to study the behaviour 
of artificial brick or block masonry or of single-block stone elements. So far, no 
forced vibration tests have been performed on natural stone masonry, which is 
more frequent in existing masonry buildings, especially in the Mediterranean 
area. Moreover, no such tests have considered a façade laterally restrained on 
one side by transverse walls (so called one-sided rocking), although analytic 
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models have been presented recently, Sorrentino et al. (2008) and references 
therein. All the previous investigations have shown the capacity of rocking 
mechanisms to survive earthquake ground motion although the wall was 
cracked. This suggests the importance of accounting for the post-cracking 
capacity of a wall. Attempts have been made both in technical literature, 
Doherty et al. (2002), and in seismic codes, CSLLPP (2009), by means of 
displacement based static procedures, as well as dynamic analyses de Felice and 
Giannini (2001) and Sorrentino et al. (2008). However, there is the need to 
develop experimentally validated dynamic models in order to perform non-linear 
time history analyses as well as to use them for the calibration of equivalent 
static procedures. 

The present chapter is devoted to study the out-of-plane seismic behaviour 
of a wall, from now on referred to as the façade, which on one side is restrained 
by two transverse walls. The façade is carrying its own weight only, as is the 
case in existing masonry building with floors resting on transverse walls. A 
shake table experimentation on a natural scale specimen is presented and the 
results of 34 tests under four recorded accelerograms scaled to different 
amplitudes are discussed. A non-linear dynamic approach based on the Distinct 
Element Method (DEM) is developed and the related numerical time histories 
analyses are compared to the experimental results. Finally, the Italian seismic 
assessment code procedure is checked against both experimental results and 
numerical time histories, obtained for a wider set of wall geometries. 
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Test summary  

The experimental results that are presented in this section are part of a 
wider experimental campaign investigating the behaviour of unreinforced 
masonry under out-of-plane seismic action. The campaign includes different 
wall specimens tested at different stages of their behaviour: undamaged, 
cracked, and strengthened. For the purpose of the present thesis, one specimen is 
considered, consisting of the façade, and two transverse walls, resulting in an 
overall U-shaped configuration. The specimen is in a cracked state, that is the 
façade is separated from the transverse walls, and is subjected to out-of-plane 
seismic input as shown in Figure 3.2. The choice of a pre-cracked specimen 
results in a safe assumption, which is justified in the practice, in view of the 
uncertainties on the effective quality and mechanical characteristics of the 
connections between walls in existing masonry structures. 

 

 

Figure 3.2 Test setup: each marker corresponds to an accelerometer and a displacement 
wire-transducer. All measurements are in meters. 
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The façade is 3.30 m long, 3.44 m height and 0.25 m thick; transverse walls 
have the same height and thickness as the façade and are 2.55 m long. The first 
masonry course is laid within a reinforced-concrete foundation, which is 3.38 m 
long , 2.63 m deep and has a 0.35×0.35 m cross section. A horizontal crack, 
located 0.44 m above the foundation, and two vertical cracks, between the 
façade and  the transverse walls, exist as a consequence of previous tests. The 
walls are built with 250×370×110 mm tuff units and hydraulic lime mortar. The 
tuff has the following mean properties: bulk specific weight 12.06 kN/m3, cubic 
compressive strength 5.98 MPa, elastic modulus 1575 MPa. The mortar has 
mean cubic compressive strength 4.08 MPa, elastic modulus 2038 MPa, tensile 
strength 0.84 MPa (bending test).  

The specimen is connected to the shake table through seven double UNP 
100 steel channels passing through the foundation and anchored to the shake 
table by means of steel rods (Figure 3.3). Six steel heels, namely four at the base 
of the façade and one at the base of each transverse wall, provide a further 
horizontal restraint against sliding of the foundation.  

 

Figure 3.3 View of the specimen with the anchor devices and the retaining structure: 
UPN 100 steel channel (dotted line) and steel heels (solid line) 

The transverse walls are prestressed through vertical rods, in order to avoid 
any out-of-plane damage. The façade is provided with a retaining structure, 
inclined outwards, consisting of a steel mesh stiffened with steel sections, in 
order to protect the shake table as well as to restore the vertical position of the 
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specimen once overturned. The shake table is located in the Department of 
Innovation of the ENEA Casaccia research centre in Rome: it has a 4.0 m wide 
square shape, six degrees of freedom and is able to provide displacement or 
acceleration time-history within a frequency range 0-500Hz, maximum 
acceleration of ±3g, maximum velocity of ± 500 mm/s and maximum 
displacement ± 125 mm. The table is controlled by four horizontal and four 
vertical hydraulic actuators. Because the main goal was recording the out-of-
plane motion of the façade, this has been instrumented with six wire transducers, 
measuring absolute displacements (Figure 3.2). Two additional transducers are 
placed on the foundation. Eight accelerometers are positioned as the same place 
of the transducers, in order to provide a refined description of the dynamic 
response as well as to identify the overall dynamic properties of the specimen. 
Acquisition was carried out with a 100 Hz frequency, through a National 
Instruments SCXI-1000 control unit. 

Selection of the records 
Italian records, related to normal faulting events, have been used in the 

tests. The accelerograms have been selected from a larger set, encompassing a 
wide range of PGV, Sorrentino et al. (2006), based on the results of numerical 
analyses performed using a one-sided rocking wall model, Sorrentio et al. 
(2008). Because the mechanism is asymmetric, each accelerogram has been 
considered also with a reversed polarity. The criteria for choice of the signals 
have been: a not-too-severe response (in order to observe rocking) and a smooth 
Incremental Dynamic Analysis (IDA) curve. As a result, the four accelerograms 
of Table 3.1 have been selected Each record has been applied to the specimen 
with different scale factors, ranging from 0.22 to 1.13.  

 

The sequence of tests (records and scale factors) was designed to 
progressively increase the dynamic response so as to investigate the wall’s 
dynamic reserve of stability, from the activation of motion up to overturning. 
Therefore, BagnirWE (negative polarity), CalitWE and R1168EW have been 

Table 3.1. Italian accelerograms selected to perform shake table tests. Data have been collected from 
SISMA database [http://151.100.4.92/] 

Earthquake Year Mw Station Soil type  
(EC8) 

Df 
(km)* 

Record PGA  
(g) 

PGV  
(cm/s) 

Irpinia 1980 6.9 Bagnoli Irpino  A 8.0 BagnirWE** 0.167 37.7 
Umbria-Marche 1997 6.0 Nocera Umbra  B 4.7 R1168EW 0.438 28.0 
Irpinia 1980 6.9 Calitri  B 20.5 CalitWE 0.181 31.7 
Irpinia 1980 6.9 Sturno  B 6.7 SturWE 0.313 70.0 
* Distance from the surface projection of the fault, ** Polarity has been inverted 
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used in the first tests, while SturWE has been used at later stage, because it was 
expected to induce a more severe response according to the preliminary 
simulations performed, Al Shawa et al. (2011). 

Experimental results 
On the whole, a set of 34 shake-table tests has been performed (Table 3.2). 

Up to test 9, the specimen displayed a pronounced out-of-plumb (of about 60 
mm) due to the presence of mortar fragments fallen within the cracked joint 
during repetition of tests. This was reduced in subsequent tests (10-34), by 
inserting shims in the horizontal cracked joint The acceleration time-histories 
recorded on the r.c. foundation have been processed by applying a baseline 
correction, and a 3rd order Butterworth band-pass filter, within the 0.35-9.00 Hz 
range. Moreover, a 2nd order band-stop filter proved necessary in the 2.0-2.1 Hz 
range of frequencies, due to noise introduced by the shake table. In Figure 3.4, 
pseudo-acceleration response spectra of input accelerograms are compared to 
response spectra of the signals recorded on the table (A1-A2 in Figure 3.2). The 
plots have similar shape, although the ordinates corresponding to the 
accelerations measured on the shake table are lower in the long-period range. 

 

Figure 3.4 Response spectra of signals imposed to the shake table and of accelerograms 
measured on the specimen’s foundation. 
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Table 3.2. Sequence of tests performed: main properties of the accelerogram recorded at the 
base of the wall and summary of the results. SF = Scale factor in terms of PGA with respect to 
the original earthquake (Table 3.1), IA = Arias Intensity, VSI = Velocity Spectrum Intensity 
within the range of periods (0-4) s, MIV = Maximum Incremental Velocity, η = initial out-of-
plumb recorded, θ = maximum values recorded for the rotation, α = internal angle of the wall 
(Figure 3.1), f = predominant frequency of the wall’s free vibrations measured at the end of the 
test. 

           PGA  Intensity Measures Test results 
TH Record SF Imposed Recorded PGV  IA VSI0-4 MIV η/α θ/α f  
- - - (g) (g) (cm/s) - (cm/s) (cm/s) (%) (%) (Hz) 
            
1 BagnirWE 0.24 0.04 0.037 4.7 0.05 25.1 5.1 7.9 27.7 0.7 
2 CalitWE 0.22 0.04 0.038 4.2 0.09 29.3 7.5 10.5 29.8 0.6 
3 R1168EW 0.91 0.4 0.364 17.2 1.34 66.8 31.6 16.0 44.2 0.6 
4 R1168EW 0.09 0.04 0.047 3.5 0.04 16.7 6.1 16.0 54.1 0.6 
5 BagnirWE 0.38 0.063 0.057 9.4 0.11 47.3 8.8 16.1 106.5** 0.6 
6 BagnirWE 0.38 0.063 0.057 7.9 0.09 40.3 9.6 17.7 117.1** 0.6 
7 BagnirWE 0.24 0.04 0.044 4.6 0.08 34.5 6.8 11.8 35.2 0.5 
8 CalitWE 0.22 0.04 0.041 5.1 0.13 42.8 9.5 10.3 23.5 0.6 
9 BagnirWE 0.38 0.063 0.066 8.9 0.35 43.9 9.7 1.9 11.7 2 
10*** BagnirWE 0.50 0.083 0.070 8.7 0.19 56.1 9.9 2.3 17.8 1.8 
11 BagnirWE 0.50 0.083 0.091 11.2 0.15 66.0 17.3 2.2 18.8 NA 
12 BagnirWE 0.62 0.104 0.090 9.9 0.18 57.4 13.7 2.6 18.2 2 
13 BagnirWE 0.75 0.125 0.185 17.2 0.26 94.5 19.9 2.8 22.2 2 
14 BagnirWE 0.87 0.146 0.120 18.1 0.29 83.6 17.4 2.9 28.9 2 
15 BagnirWE 1.00 0.167 0.151 18.6 0.31 87.7 20.2 3.5 31.0 1.7 
16 BagnirWE 1.13 0.188 0.171 22.5 0.39 114.6 22.9 4.1 33.8 1.8 
17 CalitWE 0.50 0.09 0.075 7.5 0.30 50.9 11.0 3.9 21.9 1.1 
18 CalitWE 0.38 0.068 0.091 7.7 0.21 41.7 9.7 3.7 16.8 1.5 
19 CalitWE 0.38 0.068 0.066 6.4 0.19 42.9 10.7 4.7 18.3 1.1 
20 CalitWE 0.50 0.09 0.190 10.9 0.34 54.2 15.2 3.9 32.3 1.3 
21 R1168EW 0.28 0.123 0.172 5.6 0.11 22.2 8.2 3.5 17.1 1.3 
22 R1168EW 0.42 0.185 0.145 9 0.24 34.2 12.0 3.7 34.1 1.1 
23 R1168EW 0.56 0.246 0.216 9.9 0.44 35.8 15.3 3.9 51.0 1.7 
24 SturWE 0.25 0.078 0.077 4.1 0.08 28.8 6.4 0.7 5.4 2.1 
25 SturWE 0.37 0.117 0.113 8.4 0.15 48.8 11.4 4.6 26.3 2.3 
26 SturWE 0.50 0.156 0.154 13.1 0.27 67.9 13.7 4.5 41.8 1.7 
27 SturWE 0.62 0.195 0.187 13.6 0.40 86.0 15.4 4.5 34.7 0.9 
28 SturWE 0.75 0.234 0.233 16.8 0.58 101.2 19.6 4.7 74.0 0.9 
29 CalitWE 0.75 0.136 0.128 13.7 0.66 84.2 20.1 5.9 52.5 1.1 
30 CalitWE 0.63 0.113 0.207 17.4 0.56 86.6 23.5 5.8 39.8 1.3 
31 R1168EW 0.70 0.308 0.309 15.2 0.92 56.3 28.2 5.7 74.1 1.1 
32 CalitWE 0.87 0.158 0.311 13.7 0.91 90.7 23.8 6.8 53.8 0.9 
33 CalitWE 1.00 0.181 0.298 19.6 1.14 102.7 31.0 7.4 68.2 0.9 
34 CalitWE 1.12 0.203 0.232 18.8 1.34 114.7 25.3 8.6 123.5*,**   0.9 
            
* Figure 3.5  
** The wall impacted the retaining structures.  
*** Out-of-plumb reduced by means of shims   
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The results of the tests are synthetically recalled in Table 3.2 in terms of 
predominant frequency f of the wall’s free vibrations, normalised initial out-of-
plumb η/α and normalised maximum rotation θ/α, with these parameters 
depicted in Figure 4.1. More detailed results are presented for tests 16, 27, 31, 
and 33 in Figure 3.5 and Figure 3.6, in terms of base acceleration and relative 
displacements of instrumented points. 

 

Figure 3.5 Time histories recorded during tests 16, 27. (a) Relative displacement δu 
measured between wire transducers vertically aligned T6-T1 and T3-T1; b) Relative 

displacement measured between wire transducers horizontally aligned T6-T7 and T8-T7; 
c) Acceleration measured on the foundation by accelerometer A1. g = gravity 

acceleration. 

In all experiments, the façade behaves approximately as a rigid body 
undergoing rocking motion. The time histories of horizontal displacement at 
different heights (Figure 3.5a, Figure 3.6a) indicate that the façade rocks, with 
an inward (negative) rotation, limited by the transverse walls, and a more 
pronounced outward (positive) rotation.  
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Figure 3.6 Time histories recorded during tests 31 and 33. (a) Relative displacement δu 
measured between wire transducers T6-T1 and T3-T1; (b) Relative displacement 

measured between wire transducers T6-T7 and T8-T7; (c) Acceleration measured on 
concrete foundation by accelerometer A1.g = gravity acceleration. 

 

Figure 3.7 View of the specimen at the beginning (a) and at the end (b) of test 34. 
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The inward rotation takes place thanks to the vertical gap between the 
façade and the transverse walls, resulting from both the out-of-plumb of the 
façade and the void caused by the debonding of the mortar in vertical joints. In 
addition to the primary rocking motion, a negligible sliding motion takes place 
on the horizontal crack plane and induces a cumulative slip of a few millimetres 
at the end of the test series. 

Dynamic modelling of a masonry wall rocking on an 
inclined foundation 

In order to reproduce the experimental out-of-plane dynamic behaviour 
observed during the tests, a modelling strategies based on the Distinct Element 
Method (DEM) is presented, by taking advantage of the intrinsic discrete 
character of the specimen, consisting of a façade separated from the transverse 
walls. The cited method, originally proposed by Cundall (1971), is the most 
common tool to analyse the behaviour of rock masses and assemblages of 
blocks. The method is particularly suitable for problems in which the dynamic of 
the system is mainly governed by relative motion and by creation and loss of 
contacts between adjacent blocks. Because of these features, DEM has been 
widely applied in the literature for studying the dynamics of rocking motion 
induced by earthquakes on block structures, Azevedo et al. (2000), 
Papantonopoulos et al. (2002), Peña et al. (2007). 

The program UDEC, Itasca (2003), is adopted for the numerical 
simulations. The specimen described in the previous section is represented by a 
plane model consisting of two rigid bodies as depicted in Figure 4.7. One body 
represents the portion of the façade that experienced the rocking motion during 
the tests. The other body consists of the remaining part of the specimen together 
with the foundation, which is assumed to move rigidly under ground motion. In 
order to reproduce the actual configuration of the specimen during each test, a 
gap d at the vertical interface is considered, accounting for the space left by the 
mortar fallen during test repetition. Moreover, an initial out-of-plumb is 
introduced by tilting the horizontal interface by an angle η. Within the horizontal 
and vertical joints, separating the two bodies, two sets of contact points, which 
obey a Mohr-Coulomb yield criterion, are evenly distributed. Due to existing 
cracks, the joints have zero tensile strength, no cohesion, no dilatancy, while the 
friction angle was set high enough to avoid excessive sliding. In the elastic range 
the behaviour of the joints is governed by normal and tangential stiffnesses, 
denoted as kn and kt, respectively, with kt= 0.4kn, corresponding to a mortar 
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Poisson ratio equal to 0.25. Moreover, because the bed joint is 3.3 m long, while 
the two head joints are 0.25 m deep, the stiffness of the vertical contacts is 15% 
that of the bed contacts. 

 
Figure 3.8 Distinct element model of masonry specimen. (a) Configuration before each 

test: initial out-of-plumb η and gap d related to mortar vertical joint. (b) Kinematic 
descriptors of the motion: out-of-plane rotation of the façade wall measured with respect 

to the vertical (θ) and to the titled foundation (θr). 

In order to investigate the effects of the interface properties, which may 
dramatically influence the dynamic response as shown in El Gawady et al. 
(2011), a sensitivity analysis has been performed on the number n of contact 
points, the normal stiffness kn and the initial out-of-plumb η. The results, in 
terms of moment–rotation curves, obtained by varying the number of contacts of 
the bed interface from 2 to 15 are plotted together with the analytical curves of a 
rigid and Winkler-type foundations (Figure 3.9a).  

The expressions for the Winkler foundation are derived following the 
approach in Blasi and Spinelli (1986): 
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(3.3) 

where MR is the restoring moment, W the self-weight of the façade, R the 
distance of the centroid from the corner of the base, θr=θ-η the relative rotation 
with respect to the tilted foundation (Figure 3.8), and θr,cr is the relative rotation 
corresponding to lift-off of the block, i.e. when the contact is lost in one of the 
corners of the base. 

The response curve obtained for n=2 is close to the rigid foundation case, 
except for the initial elastic response (Figure 3.9a). As the number of contacts 
increases, the response of the interface gets closer to that of a Winkler-type 
foundation: the initial stiffness, the peak load and the ultimate rotation tend to 
decrease and a smoother transition is found from the initial elastic phase towards 
the softening branch. A two-contacts scheme proved suitable for reproducing the 
rocking motion of granite blocks Peña et al. (2007) and may be calibrated for 
reproducing the time-varying response of a Winkler type foundation Psycharis 
and Jennings (1983). However, the proposed equivalence is amplitude dependent 
and the model is unable to reproduce the smooth moment-rotation relationship of 
a masonry mortar joint, as the one obtained experimentally in Doherty et al. 
(2002).Therefore, in the following, 15 contact points are used, both in bed and 
head joints, which provide a reasonable approximation of the limit case n=∞ 
corresponding to the Winkler foundation (a). In Figure 3.9b the response curves 
obtained by varying the stiffness of the contacts at the base of the block are 
plotted against the frequency f0, related to small-amplitude rocking motion and 
evaluated on the initial branch of the curves, i.e. up to 50 % of the peak restoring 
moment. The larger the stiffness, the larger are the peak strength and the 
ultimate rotation. For kn=135 GPa, the behaviour is that of a block on a rigid 
foundation, while a value of 1.35 GPa is necessary to obtain an initial frequency 
close to those measured during the tests (1-2 Hz). Bearing in mind the depth of 
the joint, such stiffness is approximately 1/5 of the elastic modulus of uncracked 
mortar. Finally, sensitivity analyses on the initial out-of-plumb in the range 
η/α=0.04-0.08 have shown a negligible effect on maximum restoring moment 
and ultimate rotation. 
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Figure 3.9 Normalized response curves in terms of restoring moment (MR)- rotation (θr) 
relationships, varying: (a) number n of contacts, and (b) normal stiffness kn. f0 denotes 

the frequency of small amplitude rocking motion. 

Dynamic analyses have been performed in two subsequent steps. First 
gravity is applied and the system is allowed to evolve until convergence is 
achieved. Then the ground velocity experimented by the base of the specimen is 
assigned to the block consisting of the transverse wall and the foundation. The 
equations of motion are integrated explicitly in the time domain, and the contacts 
that are made or lost during the analysis are automatically recognised, Itasca 
(2003). The energy loss that takes place during the motion results from slippage 
and a stiffness-proportional viscous damping; a mass-proportional damping is 
neglected, because it may over-damp the response of the block, 
Papantonopoulos  et al. (2002). Accordingly, the damping is described by the 
ratio ξ at the frequency fc =p / (2π) (Peña et al. (2007), de Felice (2011)), where 

 is the frequency parameter of an homogeneous and 
parallelepiped rocking block Housner (1963). The value of ξ has been calibrated 
in order to obtain the best fit of the experimental results. 

In order to measure the differences between numerical, θnum(t), and 
experimental, θexp(t), time histories, two error estimators have been used. The 
first, RMS*, is based on the Root Mean Square evaluated as: 
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The second estimator is the Weighted Mean Error, WME, computed as 
follows: 

 The numerical signal is time-shifted by a lag Δt ranging within a ±0.5s 
interval; 

 A threshold is introduced so that only values higher then 20% of the 
maximum rotation (experimental or numerical, whichever is largest) are 
considered. Such a threshold is useful to avoid numerical divergences 
related to small-amplitude oscillations and to estimate the accuracy of 
the model in predicting the large-amplitude oscillations, which are of 
practical interest for seismic vulnerability assessment; 

 The WME is finally defined as the minimum value of the error evaluated 
over the interval of lag Δt under consideration: 

 

(3.5) 

In Figure 3.10a comparison between the experimental and numerical time 
histories is plotted. The model is able to reproduce reasonably the dynamic 
response for different initial configurations and under different ground motions. 
The value of the damping ratio ξ fitting the tests is found to increase, from 0.025 
tan α to 0.10 tan α, with α defined in Figure 3.8. The increase in damping seems 
related to the accumulation of damage during test repetitions. For the purpose of 
estimating the sensitivity of the simulations to joint stiffness and damping ratio, 
a parametric analysis has been performed. The results are plotted in Figure 3.11 
as greyscale error maps in terms of RMS* and WME. It is possible to identify 
different combinations (kn, ξ) that allow reproducing the experimental time 
histories reasonably well (RMS* < 0.3, WME < 0.7). It is worth noting the 
presence of a region, at the bottom of the maps, where the system is under-
damped and is likely to overturn. 
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Figure 3.10 Comparison between experimental and numerical time histories. d= 4 mm;  
n= 15, kn = 1.35 GPa, kt = 0.4 kn, fc= p / (2π). 

 

Figure 3.11 Parametric analysis with respect to the damping ratio (ξ) and the stiffness 
(kn) of the bed joint: synthetic comparison between numerical and experimental time 

histories for test 27, in terms of RMS* and WME  (Eqs.3.4 -3.5). 
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Comparison between experimental and numerical 
results 

A direct comparison between experiments and numerical simulations has 
been carried out in terms of maximum rotations. For each test, UDEC numerical 
results have been obtained computing the mean max,θDEM  of the maximum 
rotation over twenty responses when varying the damping ratio ξ in the range 
0.02 tan α - 0.1 tan α. A reasonable agreement, taking into consideration the 
usual scatter in these measurements, between numerical and experimental results 
is obtained, as shown in Figure 3.12. 

 

Figure 3.12 Comparison between experimental and DEM numerical results in 
terms of normalized maximum rotation assuming d = 4 mm; n = 15, kn = 1.35 GPa, 

kt = 0.4 kn, fc = p / (2 π). 

Comparison with code assessment procedures 

In order to compare the experimental results to the Italian code’s equivalent 
static procedure CSLLPP (2009), normalised maximum rotations are plotted 
against code demand/ capacity ratios. The code suggests two possible 
assessment procedures: 1) strength-based, 2) displacement-based. In order to 
apply these procedures, let us refer to a simple representation of the wall 
consisting in a monolithic block resting on a rigid foundation as depicted in 
Figure 3.13. The base of the block is reduced so as to obtain an equivalence 
between the latter model and the DEM model in terms of ultimate rotation 
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capacity. To this purpose bi = 0.94 b. Standing these considerations, the 
acceleration capacity defined by strength-based procedure writes: 

 
(3.6) 

with  static collapse load multiplier of the mechanism at rest 
(Figure 3.13), g gravity acceleration, e* fraction of participating mass, CF 
confidence factor. In the case at hand e* = 1.0, while it has been assumed CF = 
1.0. The corresponding acceleration demand, for a mechanism located on the 
foundation, is equal to the expected peak acceleration divided by a behaviour 
factor q = 2.0.  

 
Figure 3.13 Rigid-block model adopted for evaluating the response according to 

code procedures, CSLLPP (2009). 
Experimental and code demand/capacity ratios are presented in Figure 

3.14a. In both the approaches here considered, the demand has been derived from 
the acceleration measured on the foundation of the wall. It is possible to observe 
that, with just two exceptions, both referred to marked out-of-plumb, the code 
procedure is conservative, i.e. points are well below the π / 4 line.  

The displacement-based procedure defines a displacement capacity du*, 
which for the wall under consideration (Figure 3.13), is equal to 40% of the 
collapse displacement of the centre of mass: 

 (3.7) 
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Figure 3.14 Comparison between experimental and code demand / capacity ratios. (a): 

strength-based, linear, and (b): displacement-based, nonlinear, code procedures, 
CSLLPP (2009).  

The corresponding displacement demand Δd, for a mechanism located on 
the foundation, is equal to the spectral displacement SDe(Ts) evaluated for the 
secant period (Ts) of the local mechanism: 

 
(3.8) 

with  ds
* = 0.4 du

*, and as
* acceleration of the bilinear response curve for d* = ds

*. 
In the case examined here, accounting for the indented rocking hinge, the secant 
period is: 

 
(3.9) 

Such a definition has a conventional meaning, because it is well known that in 
such oscillators the period is amplitude-dependent, Housner (1963), CSLLPP 
(2009). 

The comparison between experimental and code demand/capacity ratios is 
presented in Figure 3.14b. It is possible to observe that only in three cases, out of 
34, the code is unconservative. The mean value of the experimental/code ratios 
is 42%, which is very close to the coefficient applied by the code to define the 
displacement capacity du

*. Thus, the code procedure seems able to capture, on 
average, the behaviour observed in the tests. The choice of the 40% threshold 
remains debatable; however, given the scattered behaviour of out-of-plane 
loaded walls, it is probably careful to guarantee an adequate safe margin. Such 
comparison is the result of conventional assumptions, with regard to both the 
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period of the mechanism and the acceleration-displacement relationship. If the 
three-branches relationship previously defined, Sorrentino et al. (2008), is used, 
the plots do not change markedly. As expected, the strength-based procedure 
becomes more restrictive, because the acceleration capacity is noticeably 
reduced. On the contrary, the displacement-based procedure is much less 
affected, because the displacement capacity is weakly influenced by the change 
of the moment-rotation relationship. Therefore, the use of the refined three-
branches moment-rotation relationship does not seem to improve significantly 
the equivalent static procedure assessment methods.  

With a view to extending the comparison to walls with different 
geometries, additional time histories have been generated by means of the non 
linear dynamic model previously presented. Four walls, having (b, h) (Figure 
3.8, Figure 3.14) = (0.125, 1.5), (0.20, 3.0), (0.25, 3.0), (0.375, 3.0) have been 
considered. The same four accelerograms of Table 3.1, whose amplitudes have 
been scaled with ten coefficients varying between 0.2 and 2.0, have been used 
togheter with 12 spectrum-compatible accelerograms artificially generated as 
addressed next. For each signal three horizontal elastic response spectra have 
been derived according to EuroCode 8 and considering the ground type of the 
record and different design peak ground accelerations (0.15, 0.25, 0.35 g). Then, 
the original records have been scaled in order to match the corresponding spectra 
within the 0.8- 1.8 s range of periods, containing the secant periods of the four 
walls considered. Both positive and negative polarities have been considered. On 
the whole 416 numerical analyses have been performed. In order to follow up 
the comparison with the code even when overturning occurs, the 
demand/capacity ratio, provided by numerical analyses, has been evaluated as 
addressed next. The capacity EC is defined as the maximum variation of the 
potential energy of the block Ep, reached for θ = αi.  

)cos1()( iiipC WREE   (3.10) 

The demand ED is evaluated as the maximum potential energy Ep recorded 
during the motion when θmax < α: 

)cos1()( maxmax  ipD WREE  (3.11) 

or otherwise as the sum of potential Ep and kinetic energies Ec evaluated at θ = 
αi: 

)()( icipD EEE   (3.12) 
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Finally the demand/capacity ratios expressed in terms of kinetic and potential 
energies, writes: 
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It is worth noting that, in a linearised kinematic framework, when no overturning 
takes place, the ratio EC/ ED = θmax / α.  

 
Figure 3.15 Comparison between non linear dynamic and code (CSLLPP 2009) demand 

/ capacity ratios. (a): strength-based, and (b): displacement-based code procedures 
adopting the DEM model. Empty (solid) marker is referred to Negative (Positive) 

polarity; coloured (grayscale) marker is referred to natural (artificial) accelerograms. 

When neglecting the results in which both, numerical analyses and code 
estimates, give demand/capacity ratio greater than one, the strength-based 
procedure is conservative in 99% of cases and the displacement-based procedure 
is conservative in 82% of cases.  

The scatter between non-linear dynamic results and code estimates, in 
terms of Coefficient of Determination, is equal to 0.38 and 0.49 for strength- and 
displacement-based approaches, respectively. The larger scatter of strength-
based approach justifies the larger safety margin; as a matter of fact, by using a 
behaviour factor q of about 4, the strength base approach is still conservative in 
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70% of cases, Figure 3.16.  

 
Figure 3.16 Behaviour factor q versus the percentage of conservative cases evaluated by 

means of numerical analyses. 

The two code procedures may yield very different results, depending on 
ground motion characteristics; for instance, a record such as R1168EW with a 
large PGA but very small spectral displacements, gives a conservative estimate 
in the strength-based approach while it leads to a rather unconservative estimate 
in the displacement-based approach. Due to the asymmetry of the collapse 
mechanism, the response to the same accelerogram, with reversed polarity, is 
usually different, as in the case of BagnirWE record. Such behaviour escapes 
static procedures. 
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4. A homogenization approach for the in-
plane analysis of masonry in the linear 
elastic range 

A macroscopic constitutive description of masonry may be achieved by 
means of experimental campaigns, which usually are costly due to the large size 
of the specimens and required testing equipment. An alternative and less 
expensive approach is to measure the individual properties of unit and mortar on 
small samples and, then, to use a theoretical model that combines the 
information from the components and makes it possible to obtain the overall 
properties of the assemblage. When the arrangement of the unit within the 
brickwork may be regarded to as periodic, the latter issue may be tackled in the 
literature by resorting to the homogenization theory of periodic media, Suquet 
(1987).  

Referring to in-plane loaded masonry in the elastic range, the problem has 
been solved by resorting to the finite element method, Anthoine (1995). 
Nevertheless, the derivation of closed form expressions for the compliance 
matrix of masonry has always been attractive and different attempts have been 
made in the literature by introducing assumptions which make it possible to 
handle the problem analytically. The simplified homogenization techniques 
proposed so far rely on: 

 simplification assumptions concerning the mortar joints; 

 the Voigt kinematics hypothesis, i.e. uniform strain within the mortar 
and brick phases; 

 plane stress assumption at a microscopic level. 

 For instance, by neglecting the presence of the head joint, masonry may be 
regarded as a stratified material, Carbone and Codegone (2005). The head joint 
may be introduced in a second step by following the so called two step 
homogenization approach proposed by Pande et al. (1989). Alternatively, the 
whole set of joints may be accounted for in one step by treating them as zero-
thickness interfaces, Cecchi and Sab (2002a), de Felice (1995, 2001). These 
simplifications are thought to introduce some errors in predicting the properties 
of the equivalent homogeneous continuum, Lourenço and Rots (1997b). 
Moreover, the simplified techniques fail in reproducing the microscopic stresses 
arising within the phases either depending on the bond pattern, which is 
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neglected in multi-step approaches, or related to the Poisson interaction between 
mortar and brick, which is not accounted for when joints are treated as 
interfaces. Additionally, the plain stress assumption is in disagreement with the 
exact three-dimensional solution, as showed by Anthoine (1995). All this 
arguments suggest that the extension of the abovementioned models to the non-
linear range may leads to erroneous estimation of the mechanical behaviour of 
masonry. Some of the limits of previous formulations may be overcome 
following an “engineering” approach by introducing simplified deformations 
mechanisms over the basic cell, Lopez et al. (1999), Zucchini and Lourenço 
(2002). 

Referring to the case of masonry walls in-plane loaded, a novel approach is 
followed in the present chapter, which gets rid of ad-hoc engineering 
assumptions and applies rigorously the homogenization theory of periodic 
medium in one step considering three-dimensional effects, the actual thickness 
and the whole set of mortar joints. In the first part the boundary value problem 
attached to the Representative Volume Element (RVE) is formulated. A linear 
elastic behaviour is assumed for the constituents, i.e. mortar and brick, and the 
problem is formulated by introducing a simplified kinematics for the RVE: the 
hypothesis of piece-wise constant strain field allows us to handle the localization 
problem analytically and to derive the elasticity tensor of masonry as a function 
of mortar and brick geometrical and mechanical properties. Furthermore, 
relevance is given to the tensors of strain and stress localization which make it 
possible to derive the microscopic fields for a given macroscopic load. The 
results obtained are compared with the analytical formulations available in 
literature, with the results of finite element analyses and with experimental data 
collected in the literature. Eventually, the proposed scheme is applied to provide 
an estimate of the limit elastic domain of masonry under in-plane loads which is 
compared with experimental data, Page (1981,1983), in terms of both failure 
surface and triggering failure mode. 
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Formulation of the localization problem 

Let us consider as a domain of reference  the single leaf masonry wall 
depicted in Figure 4.1a, consisting of bricks, with dimensions hb and lb, arranged 
regularly so as to reproduce a running bond pattern, and of two families of 
orthogonal mortar joints. The bed joints, which are laid horizontally with a 
thickness of tm , separate adjacent courses of brick and span the whole brickwork 
without interruptions; the head joints, which are laid vertically with a thickness 
of th , separate contiguous bricks on the header faces and are staggered between 
adjacent courses; the cross joints are located at the intersection between bed 
joints and head joints. 

 

Figure 4.1 Domain of reference Ω  (a) and corresponding representative volume element 
RVEΩ (b). 

The whole domain Ω  can be reproduced by repetition along the directions 
of periodicity of a representative volume element, RVEΩ , identified as the 
lozenge with vertex located in the centre of four adjacent bricks and extruded 
throughout the whole thickness T of the wall. With respect to the system of 
reference Oe1e2e3 depicted in Figure 4.1b, the pattern of the domain proves 
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periodic only in the Oe1e2 plane. Thus two directions of periodicity i1 and i2 are 
found, expressed as: 

 
(4.1) 

The boundary of RVEΩ may be divided into two different regions, 
RVERVERVE  ΩΩΩ


  (Figure 4.1): the former ( RVEΩ


 ), which is internal to 
the wall and separates adjacent RVEs, can be divided into pairs of opposite 
sides, i.e. that correspond by periodicity; the latter region ( RVEΩ


 ) consists of the 

boundary of the RVE that lies on the two external faces of the wall which, unlike 
the previous case, can not be referred to as opposite sides. 

Since the brick-laying process does not ensure that the vertical joints are 
perfectly filled with mortar, it may be convenient to characterize bed joints 
separately from cross joints and head joints. For this purpose RVEΩ  has been 
divided into 11 sub-domains iΩ , as reported in Figure 4.2: hence the regions 
that pertain to the brick have index i ranging from 1 to 4, whereas the sub-
domains pertaining to mortar joints have index i ranging from 5 to 8 for the bed 
joints, equal to 9 for the head joint and ranging from 10 to 11 for the cross joints. 

Brick and mortar are assumed to be elastic so that for a given point 
RVEΩx the stress σ(x) and strain ε(x)  are related by means of the following 

constitutive relationship: 
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where bC and mC  are fourth order tensor representing the elasticity tensors of 
brick and bed joints, respectively, while hC  is the elasticity tensor assumed for 
both head joints and cross joints. It is worth noting that each component may be 
characterized separately provided that the resulting function (x)C  is periodic on 
opposite sides of RVEΩ


 . Moreover, no hypotheses are made concerning the level 

of anisotropy of each component, leaving the possibility to assume either an 
isotropic or orthotropic behaviour for the bricks in order to take into account for 
the presence of holes or other.  

When the dimensions of the brick are small compared with those of the 
domain Ω , it is convenient to describe masonry as an equivalent homogeneous 
continuum; hence, microscopic stress σ(x) and strain ε(x) , which act on each 
constituent, are not accounted directly and relevance is given to macroscopic 
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stress Σ  and strain E , which act on the composite material as a whole and read: 


RVEΩRVE

Ω
Ω

d σ(x)1σ(x)Σ  (4.3) 


RVEΩRVE

Ω
Ω

d ε(x)1ε(x)E  (4.4) 

where   denotes the average operator over the representative volume 
element. The latter assumption introduces an important simplification in 
modelling masonry, since bricks and mortar joints should no longer be explicitly 
reproduced within the domain Ω .The constitutive identification of the 
equivalent homogeneous medium, i.e. relationshipmay be derived by 
resorting to the homogenization theory, Suquet (1987), by solving a boundary 
value problem that is attached to RVEΩ , also called localization problem. 

 

 

Figure 4.2 Division of RVEΩ in brick ( iΩ  with i=1,..,4) and mortar ( iΩ  with i=5,..,11) 
sub-domains, together with the respective centres ig . 

In the present work, in order to define the overall in-plane properties of 
masonry assemblage, the abovementioned problem is stated referring to the case 
in which the lateral faces of the wall are stress-free and the macroscopic loads 
act only along the Oe1e2 plane so as to maintain the symmetry with respect to the 
middle plane of the domain. From the macroscopic point of view the latter 
conditions correspond to a plane stress statement of the problem in which the 
following components of tensor Σ  vanish: 
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0332313  ΣΣΣ  (4.5) 

The respective macroscopic strain, on the contrary, is a three-dimensional 
field in which the components E13 and E23 vanish, owing to the symmetry of the 
problem, while the component E33 assumes a finite value. It should be noted that 
the local strain σ(x)  and stress x are fully three-dimensional fields and that 
the plane stress condition at macroscopic level only implies, by virtue of Eqs. 
(4.3)-(4.4), that the averages of the out-of-plane component are zero: 

03,33,23,13,23,1   (4.6) 

Given the consideration made above, the localization problem, attached to 
RVE and related to the in-plane behaviour of the homogeneous material, reads:  

 

0σ(x) div   (4.7) 

nσ(x)   anti-periodic on opposite sides of RVEΩ


  (4.8) 

0nσ(x)   on RVEΩ


  (4.9) 

ε(x):(x)σ(x) C  (4.10) 

u(x) symε(x)   (4.11) 

(x)ûxEu(x)   (4.12) 

(x)û  periodic on opposite sides of RVEΩ


   (4.13) 

where u(x)and (x)û  are local displacement fields defined on RVEΩ . The 
problem can be solved by means of a strain controlled loading by imposing the 
components Eij with i,j=1,2 of the macroscopic strain. Noteworthy, according to 
the macroscopic plane stress assumption, the normal out-of-plane strain E33 is 
workless and therefore the solution of the localization problem does not depend 
on the latter component, the value of which can be evaluated a posteriori as the 
average over RVEΩ of the microscopic strain (x)33 , Eq. (4.4). 

The localization problem may be stated in a weak form by introducing 
suitable test fields (x)û test , Suquet (1987):  
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where perV  and )( RVE
1 ΩH denote the space of periodic and fluctuating 

displacement fields and a Sobolev space defined over RVEΩ , respectively. By 
introducing the constitutive relations of mortar and brick, Eq. (4.3), the 
resolution of the localization problem amounts to find the admissible 
displacement field perV)x(û fulfilling the following relation: 

  per
test 

Ω

test

RVE

Ω V )x(û0d  )x(û:ûE:)x(C  (4.15) 

A simplified kinematics for the Representative 
Volume Element 

In order to obtain an analytical solution of the localization problem, Eq. 
(4.15), simplifying assumptions are made concerning the kinematics within the 
representative volume element. Let us assume that the fluctuating part (x)û of 
the displacement field can be approximated by a piecewise function belonging to

1H as addressed next. Bricks, bed and head joints are supposed to undergo an 
affine displacement, while cross joints are supposed to undergo a displacement 
field described by a second order polynomial function of the position x. 

9,..,1x)g(xH)(gû(x)û  iΩiiii  (4.16) 
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(4.17) 

where ig  is the centre of each sub-domain depicted in Figure 4.2, Hi is a second 
order tensor and Bi a symmetric third order tensor of R3. In order to represent an 
admissible displacement field, (x)û  has to fulfil the boundary conditions, Eq. 
(4.13) which express the periodicity on opposite sides of RVEΩ


 , together with 
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the compatibility conditions between each sub-domain, which ensure that the 
displacement field is continuous on RVEΩ ,, i.e. )((x)û 1

RVEΩH . 

Periodicity conditions 
In order to express explicitly the restrictions on the kinematics that derive 

from the periodicity conditions, let us consider two homologue points ii Ωp  
and jj Ωp  that belong to the boundary RVEΩ


  and correspond each other by 

periodicity, that is:  

2211 iipp mmji   (4.18) 

where 1i  and 2i  are the directions of periodicity, Eq. (4.1), and 21,mm  are 
integer coefficients in the range [-1,1], Figure 4.3. 

 

Figure 4.3 Example of points pi and pj that correspond by periodicity, Eq. (4.18). 

It is worth noting that the centres ig  and jg  of the domains iΩ  and jΩ  
are homologues too and fulfil the following condition:  

jiji ggpp   (4.19) 

According to Eq. (4.16) the relative displacement between points ip and jp
reads:  

)g(p)HHgûgûpûpû iijijiji  ()()()()(  (4.20) 

According to the periodicity of the fluctuating displacement field (x)û , 
Eq.(4.13), the quantities )()( ji pûpû   and )()( ji gûgû   vanish, meaning that

ji HH  . 
Following the same reasoning for all the couples of points that fulfil Eq. (4.18), 
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it is straightforward to prove that the restriction on the kinematics given by the 
periodicity conditions reduces to:  

4,..,1HH  ii  (4.21) 

75 HH   (4.22) 

86 HH   (4.23) 

where H denotes from now on the gradient of the displacement field that takes 
place within all the bricks. 

Compatibility conditions 
The compatibility of the displacement field requires that the piecewise 

function introduced for (x)û  is continuous within RVEΩ . Referring to the bed 
joints, let us consider, for instance, two points 25q ΩΩi  and

47q ΩΩj  that fulfil the following relationships, Figure 4.4:  

)g(qgq 75  ji  (4.24) 

)g(qgq 42  ji  (4.25) 

The relative displacement of the abovementioned points according to Eqs. 
(4.16),(4.21),(4.22) writes:  

)()( 7555 gqHgqH)(qû)(qû  jiji  (4.26) 

)()( 42 gqHgqH)(qû)(qû  jiji  (4.27) 

Now, by exploiting Eqs. (4.24)-(4.25) and equating the above expressions, 
the following relationship is obtained:  

)()( 255 gqHgqH  ii  (4.28) 

It is possible to recast Eq. (4.28) by choosing three points iq  in order to 
obtain a linear system of nine independent equations, the resolution of which 
makes it possible to express the components of tensor 5H and 7H  as a function 
of the components of tensor H , Eq. (4.29). 
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Figure 4.4 Example of points qi and qj that fulfil Eqs. (4.24)-(4.25). 

33332332311331

32232222211221

31132112111111
75

ee ee 
 2

)(ee          

ee ee 
 2

)(ee          

ee ee 
 2

)(ee H






 











 















HH
t
hH

t
tlH

HH
t
hH

t
tlH

HH
t
hH

t
tlH

m

b

m

hb

m

b

m

hb

m

b

m

hb

 (4.29) 

Similarly, referring to 6Ω  and 8Ω , the following relationships for tensor 
6H  and 8H  are obtained, Eq. (4.30).
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A similar reasoning can be followed with respect to the kinematics of the 
head joint, for which the relationship found for 9H  reads:
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Concerning the cross joints, let us consider, for instance, two points 
ii ΩΩ  10q and jj ΩΩ  10q  pertaining to the borders that 10Ω  has in 

common with the bricks, i,j=1,..,4. 
According to Eqs. (4.16)-(4.17) the relative displacement between points iq  

and jq reads: 
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By writing Eq. (4.32) choosing nine pairs of points iq  and jq , it is possible 
to obtain a linear system of 27 independent equations and thus to define tensors 

10H  and 10B , as a linear function of H : 
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By following an analogous reasoning, one would find the following 
expressions for tensors 11H  and 11B  : 

1011 HH   (4.35) 

1011 BB   (4.36) 

Some considerations on the main simplifications deriving from the 
kinematics adopted prove necessary.Apart from the quadratic terms pertaining to 
the cross joints, Eq. (4.17), the fluctuating displacement field (x)û  may be 
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expressed as a linear function of tensor H, that is:  

111)gx() H:()(gû(x)û ,..,iiii  A  (4.37) 

where iA  is a fourth order tensor of 3R  that reduces to the identity tensor for 
41,..,i  , Eq. (4.21), while for 115,..,i  , Eqs. (4.29)-(4.35), depends on the 

geometrical properties of mortar and brick phases. The full kinematics of RVEΩ
is then defined by the nine components of tensor H, which further reduce to four 
provided that, owing to the symmetry of the problem with respect to the middle 
plane of the wall, iiii

32233113 H,H,H,H  are null. Accordingly, the microscopic 
strain and stress fields reduces to piece-wise constant fields:  

ii Ω  xσσ(x)  (4.38) 

ii Ω  xεε(x)  (4.39) 

where ii ε,σ  are the stress and the strain that take place within the generic sub 
domain iΩ . 

From tensor to Voigt notation 

The tensor notation adopted until now proves suitable to exploit both 
periodicity and compatibility conditions in a rather simple way in terms of the 
displacement field (x)û . Alternatively, the same conditions may be imposed 
directly on the strain fields pertaining to each sub-domain, see Zucchini and 
Lourenço (2002) and Lopez et al. (1999). The latter approaches require a bigger 
effort since periodicity and compatibility equations are derived, first, by 
analysing the deformation of the basic cell for different loading conditions, then, 
by superimposing the results obtained. Conversely, when solving the localization 
problem, the fourth order tensors obtained in the previous paragraphs prove 
difficult to handle. Therefore, once the kinematics of RVEΩ has been defined, 
Eq.(4.37), it is convenient to adopt a Voigt-type notation as explained next. The 
non-null components of the displacement’s gradient iH , of the microscopic 
stress iσ  and strain iε , that pertains to each sub-domain iΩ , are collected into 
vectors:  

T
12332211 }{ σ iiiii τσσ σ  (4.40) 

T
12332211 } { ε iiiii εεε   (4.41) 
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T
2112332211 }{ H iiiiii HHHH H  (4.42) 

The same applies to the macroscopic strain: 

T
12332211 } { E EEE E  (4.43) 

The relation between the gradient of displacement iH  and the deformation 
of the sub-domain iε , Eq. (4.12), writes: 
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Higher order linear applications, i.e. iA  and iC , are collected into second 
order tensor. Accordingly, the constitutive relation of the sub domain iΩ , Eq. 
(4.2), writes as reported in Eq. (4.45). 
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In the latter expression i , i are the Lamé’s constants. The compatibility of the 
displacement fields among the sub-domain of the RVEΩ , Eq.(4.37), may be 
expressed as:  

HA H  ii  (4.46) 

where matrixes Ai are reported in the following. 
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A closed form solution for the localization problem 

In order to solve the boundary value problem attached to RVEΩ the Galerkin 
method is adopted here. The test function (x)ûtest

 is assumed to have the same 
shape of (x)û  as defined in Eq. (4.37). By adopting the Voigt-like notation, the 
weak formulation of the localization problem , Eq. (4.14), writes: 

 RH  0HAMσ dx  )x(ˆ)x(σ 5
s

T,

RVE

  test

i

testiii

Ω

test Ωu  (4.51) 

The latter equality holds for all the possible choice of the test function testH  
over 5R , so that it is possible to write:

 
 

  0AMσ s
T, 

i

iiiΩ  (4.52) 

which is a system of five equations expressing, in average sense, the equilibrium 
over RVEΩ  in terms of the microscopic stress components. By introducing the 
constitutive relation of the phases, Eq.(4.45), into the weak formulation, one 
obtains:
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After some manipulations, the latter expression may be rewritten as: 

0HA M C M A E C  MA i
s

T
s

T, T
s

T 
















 

i

iii

i

ii,i ΩΩ  (4.54) 

which corresponds to a linear system of five equations in terms of the five 
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components of H. Provided that the coefficient matrix of the latter system is 
non-singular, the solution of the localization problem writes as:  
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By introducing the average operator over RVEΩ  defined  for piecewise 
constant fields:
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Eq. (4.55) reduces to:
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 iiii  (4.57) 

The solution of the localization problem makes it possible to define, apart from a 
rigid translation, the complete kinematic of the RVE for a given macroscopic 
strain E. Noteworthy, the component E33 remain workless and does not affect the 
solution of the problem. Accordingly, by neglecting the affine terms pertaining 
to cross joints and by virtue of Eq. (4.44), the microscopic strain may be 
expressed as: 
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where  I is the identity tensor and iD  is the tensor of strain localization, Suquet 
(1987). The macroscopic stress corresponding to a prescribed macroscopic strain 
E may be derived by resorting to Eqs. (4.3), (4.45):  

ECEDCεCσ hom  iiiii  (4.59) 

Thus the elasticity tensor of the homogeneous material writes:
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Finally, the relationship that yields the microscopic stress (x)  in terms of 
macroscopic stress   may be obtained by combining Eqs. (4.45), (4.59):  

1homCDCSwhere111Sσ  iiiii ,..,i  (4.61) 

where iS  is the tensor of stress localization pertaining to sub-domain iΩ . 
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Discussion and validation of the results  

As an alternative to the weak formulation, a variational approach may be 
followed and the solution of the localization problem may be found by imposing 
the minimization of the internal strain energy attached to RVEΩ . The two 
approaches would coincide provided that the constituents exhibit an elastic 
behaviour. Since the solution of the localization problem is obtained by adopting 
a compatible approach, the minimization of the strain energy would be 
performed on a sub-space of perV , i.e. the space of the admissible displacement 
fields. Thus the elasticity tensor homC  provided by Eq. (4.60) constitutes an 
upper bound estimate of the actual elastic tensor of the material. Moreover, the 
microscopic stress envisaged by the proposed scheme is constant through the 
thickness of the wall and fulfils the out-of-plane equilibrium only from the 
macroscopic point of view, 0(x)3 iσ  with 3,2,1i , while it violates 
locally the conditions that the lateral faces of the domain are stress-free, Eq. 
(4.9). Such an assumption corresponds to the generalized plane strain (GPS) 
scheme, which is representative of the behaviour of the material located far from 
the external faces of the wall, see also Anthoine (1997) and Massart et al. 
(2005). For these reasons the upper bound solution obtained is found to be 
independent of the actual thickness of the wall T,Figure 4.1. 

Alternatively, it is possible to solve the localization problem in plane stress 
(PS) condition assuming that the local stress components (x)3iσ , 3..,1,i  , are 
zero, handling the microscopic fields as second order tensors defined on 2R , 
Eqs. (4.62)-(4.65), adopting a proper elasticity tensor for the constituents and 
defining tensors Ai and Ms accordingly: 

T
122211PS } { σ iii τσ σ  (4.62) 

 } { ε T
122211PS
iiii γε ε  (4.63) 

T
21122211PS }{ H iiiii HHH H  (4.64) 

T
122211 } { E EE E  (4.65) 

The solution found in the latter case is thought to be representative of the 
behaviour of the material located in correspondence to the external faces of the 
wall. The differences between the PS and the GPS statement of the localization 
problem are discussed in subsequent sections together with a comparison with 
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standard finite element analyses and with formulations previously proposed in 
literature for the homogenization of masonry. 

Parametrical analysis 
A parametrical analysis was performed in order to investigate the 

influences of joint thickness and of elastic properties of the components (mortar 
and brick) on the macroscopic properties of masonry assemblage. The bricks 
adopted have a length of 250 mm, height of 55 mm and width of 120 mm, and 
reflect the dimensions of the most common typology of units adopted in Italy 
and produced in accordance with UNI 5628/65. The Young modulus Yb and the 
Poisson coefficient of the brick νb were assumed equal to 11000 MPa and 0.20, 
respectively. No distinction was made between the properties of head and bed 
joints, which have the same thickness t. Mortar properties were defined in terms 
of the Young Modulus Ym and the Poisson coefficient νm, with the latter assumed 
as equal to 0.25. By keeping the properties of the brick constant, the elastic 
properties of masonry as a homogeneous material were evaluated in plane stress 
(PS) and in generalised plane strain (GPS) conditions, varying the thickness of 
the joint from 0 to 30 mm and for different Yb / Ym ratios ranging from 1.1 to 10. 
To be noted that the mortar was assumed more deformable than the brick in 
order to reflect the most common case of ancient and modern brickwork. The 
results of the parametrical analysis are reported in Figure 4.5 and in Figure 4.6 
where masonry elastic constants are plotted as relative values of the elastic 
constants of the brick. According to the proposed model, masonry is 
characterized by a high degree of anisotropy, with a stiffer behaviour in the 
horizontal direction compared to the vertical direction. This is due to the fact 
that in the horizontal direction, the staggered configuration involves normal 
stress in brick and head joint combined with shear transfer in the bed joints 
while in vertical direction bricks and bed joints can be assimilated to a chain 
association. The overall elastic modulus of the material decreases as the mortar 
joint deformability or thickness increases. Note that three-dimensional modelling 
of the RVE proves slightly stiffer compared to the plane stress condition except 
for the shear modulus, the expression of which remains unchanged passing from 
the PS to the GPS condition, in agreement with the observation made by 
Anthoine (1995). 
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Figure 4.5 Elastic moduli of masonry in horizontal (a) and vertical (b) directions versus 
the thickness of the joints t evaluated in plane stress (PS) and in generalised plane strain 

(GPS) conditions for different ratios of the Young moduli of brick and mortar, Yb/Ym. 

 

Figure 4.6 Shear modulus of masonry versus the thickness of the joints t evaluated in 
plane stress (PS) and in generalised plane strain (GPS) conditions for different ratios of 

the Young moduli of brick and mortar, Yb/Ym. 
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Comparison with closed-form solutions given in the 
literature 

In order to test the robustness of the proposed approach, the solution of the 
localization problem obtained in the present work is now studied in the limit 
conditions where the joints reduce to interfaces, i.e. the thickness t reduces to 
zero. Let us then distinguish two cases. In the first case let us consider a 
perfectly cohesive interface in which the continuity of the displacement field 
between adjacent bricks is ensured, that is:
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In the second case let us assume that the elastic properties of mortar vary with t 
so that in the limit the joint maintains a finite stiffness:
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(4.69) 

where nK  and tK  denote the normal and tangential stiffness of the interface. In 
these conditions the joint behaves as an elastic interface that allows a 
displacement jump between adjacent bricks, see also Cecchi and Sab (2002a). 

In the simple case in which both head and bed joints reduce to perfectly 
cohesive interfaces the heterogeneity of the material induced by the presence of 
mortar joints vanishes and the macroscopic elasticity tensor provided by Eq. 
(4.60) reduces to that of the brick bC : 

b
t

CC  lim hom
0




 (4.70) 

In the case where only the head joint reduces to perfectly cohesive 
interface, masonry reduces to a stratified material (SM) made of alternating 
horizontal layers of mortar and brick. The elastic constants obtained by the 
proposed model are reported hereafter and result in agreement with those 
originally proposed by Salomon (1968) and then extended to the case of 
masonry by Pande et al. (1989), Eqs. (3.71)-(4.74). 
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(4.74) 

Finally, when the whole set of joints reduces to elastic interfaces, the elastic 
constants of masonry provided by Eq. (4.60) reduce to: 
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where the subscript “IM” stands for interface model. Note that the expressions 
given in Eqs. (4.75)-(4.78) generalize those obtained by de Felice et al. (1995, 

(4.73) 

              (4.71) 
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2001, 2010) and Mauro (2008), who referred directly to a system of bricks 
connected by elastic interfaces under plane stress condition.  

A comparison between the elastic modulus given in Eqs. (3.71)-(4.78) and 
those provided by Eq. (4.60) in GPS condition is shown in Figure 4.7 and Figure 
4.8.  Please note that the stratified material introduces a small error in predicting 
the elastic modulus in the vertical direction and the shear modulus. On the 
contrary, a higher discrepancy is found concerning the elastic modulus in the 
horizontal direction which is influenced by the deformability of the head joint. 

 

Figure 4.7 Elastic moduli of masonry in horizontal (a) and vertical (b) directions 
versus the thickness of the joints t evaluated for different ratios of the Young moduli of 
brick and mortar Yb/Ym, referring to the generalized plain strain (GPS) condition, to the 

stratified model (SM) and to the cohesive interface model (IM). 
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Figure 4.8 Shear modulus of masonry versus the thickness of the joints t evaluated for 
different ratios of the Young moduli of brick and mortar Yb/Ym, referring to the 

generalized plain strain (GPS) condition, to the stratified model (SM) and to the cohesive 
interface model (IM). 

 
The model of bricks connected by elastic interfaces can be applied 

rigorously only for very thin joints since out of this range the hypothesis of the 
model no longer holds true. In the case of joints having finite thickness it is 
possible to overcome this limitation by enlarging the dimensions of the brick (

tlth bb  , ), in order to include the surrounding half-layers of mortar, and 
assigning the following values to the normal and tangential stiffnesses of the 
interfaces, see Lourenço and Rots (1997): 
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By introducing the abovementioned modifications a high discrepancy still 
holds as regards the modulus hom

11Y  (Figure 4.7a) because of the incapability of 
the interface model to reproduce the deformation 11ε  that develops throughout 
the thickness of the joint, the contribution of which becomes important in the 
presence of horizontal macroscopic loads. It is worth noting that, even if the 



 

 

 

74

results displayed in terms of elastic modulus are similar, the three models may 
differ by large amounts in terms of the local stresses acting within each 
component, giving rise to different predictions when extended to the non-linear 
range. More precisely, the interface model is unable to reproduce the Poisson 
interaction between the components deriving from the different stiffness of 
mortar and brick. This interaction has marginal effects on the elastic moduli of 
the homogeneous material but plays a relevant role as regards the strength of 
masonry under compression. In fact, as outlined by Hilsdorf (1969), when 
mortar is more deformable than the brick the former undergoes a tri-axial 
compression stresses while the latter undergoes a vertical compression combined 
with lateral tension which initiates splitting cracks in the brick that are 
responsible for the failure of masonry. The stratified material takes into account 
the Poisson interaction between mortar and brick, while is unable to reproduce 
crack propagation among the head joints, which constitutes the weakest link 
within the horizontal courses of brick. By adopting the proposed formulation 
both the Poisson type interaction and the presence of the head joint are properly 
taken into account. 

Comparison with finite element analysis 
The localization problem was solved in a standard finite element code for 

the purpose of testing the accuracy of the proposed model. The RVE reported in 
Figure 4.9 was adopted owing to its particular properties, i.e. the cell has two 
orthogonal planes of symmetry and is defined by a frame of two orthogonal 
vectors, that makes it possible to model only a portion of the domain and to 
reduce the periodicity conditions to ordinary Dirichlet conditions, Anthoine 
(1995). The three-dimensional problem was defined on one-eighth of the RVE 
which was divided into 3960 twenty–node hexahedron finite elements, Figure 
4.9. The analyses under plane stress condition were carried out on a quarter of 
the vertical section of the RVE subdivided into 792 eight-node rectangular finite 
elements, Figure 4.9. Elastic analyses were performed for thickness of the joints 
varying from 2.5 to 20 mm and reducing Young modulus of mortar so as to 
obtain Yb / Ym ratios ranging from 1 to 1000. Commonly, the initial elastic 
stiffness of the components leads to relatively low values of the abovementioned 
ratio in the cases of both new and historic masonry; however, when inelastic 
behaviour and degradation occur in the joints, the ratio Yb / Ym, evaluated 
referring to the secant stiffness of mortar, may even reach much higher values, 
explaining the wide range considered for the numerical simulations. The Poisson 
coefficient of mortar and brick were assumed equal to 0.25 and 0.20 
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respectively. The relative errors between the proposed model and the finite 
element analyses are plotted hereafter for three-dimensional (Figure 4.10) and 
plane stress (Figure 4.11) cases. The comparison confirms that the proposed 
formulation provides an upper bound estimate for the in-plane behaviour of 
masonry. For the whole set of analyses performed a good agreement is found in 
predicting the elastic moduli in the vertical and horizontal directions and the in-
plane shear modulus, since the discrepancies are always lower than 7% and 5% 
for three-dimensional and plane stress conditions, respectively. The Poisson 
coefficient displays much higher errors, which may reach the magnitude of 50% 
in the case of lower mortar stiffness and higher joint thickness. These errors, 
however, are considered of limited importance since the structural analyses are 
almost independent of this parameter.  

 

Figure 4.9  Finite element mesh defined on one-eighth of the total volume of the RVE 
adopted for three-dimensional analysis (a); finite element mesh defined on a quarter of 

the total RVE adopted for plane stress analysis (b).  
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Figure 4.10 Error introduced by the proposed model in evaluating horizontal (a), vertical 
(b) , shear moduli (c) and Poisson coefficient (d) with respect to three-dimensional finite 
element analyses performed for different ratios between the height of the brick hb and the 

thickness of the joints t, varying the ratio between the Young moduli of brick and 
mortar, Yb/Ym. 
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Figure 4.11 Error introduced by the proposed model in evaluating horizontal (a), vertical 
(b) , shear moduli (c) and Poisson coefficient (d) with respect to plane stress finite 
element analyses performed for different ratios between the height of the brick hb  
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The scatter found with finite element analyses derives from the 
approximation of the strain and strain fields introduced in the proposed 
homogenization approach. As a matter of fact, this approach accounts for piece-
wise constant stress distribution over the RVE, thus, information concerning the 
stress concentration within mortar and brick is lost, Figure 4.12 . A further issue 
would consist in evaluating the level of roughness of the model in reproducing 
the stress fields that develops within the RVE for a given macroscopic stress. 
For this purpose finite element analysis were conducted applying an unitary 
macroscopic vertical stress to the RVE considering the joint 10 mm thick and 
varying the ratio Yb / Ym from 1.5 to 1000. The Poisson’s ratios of mortar and 
brick were kept constant and equal to 0.25 and 0.20 respectively  For each sub-
domain pertaining to the RVE, the microscopic stress field have been phase-
averaged and compared with the microscopic stress predicted by Eq. (4.61).   

 

Figure 4.12 Comparison between three dimensional finite element analysis and the 
simplified homogenization procedure proposed: component 11 of the microscopic stress 

field for running bond masonry under uniaxial macroscopic compression 22=-1 MPa. 

A rather small scatter is found in evaluating bed joint and brick average 
stresses while an higher discrepancy is found in predicting the microscopic stress 
acting within the head joint, Figure 4.13. The results shows that when masonry 
is in compression, the head joint develops transversal tension stresses ( 3311,σσ ) 
analogous to those experienced by the brick. Conversely, the former does not 
benefit, even for moderate Yb / Ym ratios, of the vertical compression ( 22σ ) which 
may explain why vertical joints is the first component to crack when masonry 
assemblage is loaded in compression perpendicular to bed joints. 
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Figure 4.13 Comparison between the phase-averaged stresses evaluated from finite 
element analyses and the ones predicted by the model for a unitary macroscopic vertical 

stress Σ22. 

Comparison with experimental data 
In order to asses the capability of the proposed formulation to reproduce 

experimental results, data concerning the elastic modulus of masonry 
perpendicular to bed joints were collected from literature. A common practice in 
the research field is to perform compressive tests on masonry specimens and 
separately on small samples of the constituents in order to derive their 
mechanical properties in term of strength and stiffness. Referring then to the 
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actual geometry of the brickwork and the individual properties of mortar and 
brick, a comparison between the predicted elastic modulus and that measured on 
masonry samples was made as shown in Figure 4.14.  

 

Figure 4.14 Comparison between the elastic modulus in the vertical direction measured 
on masonry samples, Y22,meausured , and the respective modulus predicted by the proposed 

procedure, Y22,preducted, referring to mortar and unit properties measured separately. 

A fairly good agreement is found with the experimental data. The scatter 
observed may be related to the different behaviour of unbounded mortar 
specimens, used in standard tests, and the behaviour of mortar within masonry 
joints; in fact, the latter is thought to be more deformable because of a weak 
zone located at brick/mortar interface where diffuse shrinkage cracks occur due 
to the water suction of the unit, see also Brooks and Abu Baker (1998) for an 
exhaustive discussion concerning this topic. 
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Estimate of the homogenized limit elastic domain 

A difficult issue in modelling masonry is to deal with the anisotropic 
behaviour induced by the mortar joints which act as inherent planes of weakness. 
In fact, as shown experimentally by Page (1981,1983), the strength and the 
failure mode of masonry panels subjected to proportional biaxial loading are 
dependent on the direction of the applied load with respect to the orientation of 
the joints. As usual in cohesional-frictional materials, masonry is found to be 
much more resistant in compression than in tension. Concerning the failure 
mode, bed joint cracking and sliding are observed for biaxial tension regimes. 
Vertical and diagonal cracking of the brick are encountered when vertical 
compression is accompanied by lateral tension. Finally, when biaxial 
compressive stresses are applied masonry panels tend to split along the mid-
thickness plane showing a transition from in-plane to out-of plane failure. 

In literature several attempts have been made to reproduce the directional 
behaviour of masonry by defining its strength domain. Some approaches, that 
may be defined as “heuristic”, have been followed by Ganz (1989), Dhanasekar 
et al. (1985) and Andreaus (1996) referring to experimental evidence. 
Introducing non-linear constitutive laws for mortar and brick, the 
homogenization techniques have been used widely both in an approximate way 
(Maier et al. 1991, Pietruszcazk and Niu 1992, Calderini and Lagomarsino 
2008) and in a more rigorous way either within the framework of limit analysis 
(De Buhan and de Felice 1997, Milani et al. 2006 and Kawa et al. 2008) or 
accounting for the progressive damage of the constituents (Massart et al. 2005). 

The following part does not concentrate on the extension to the non-linear 
range of the proposed scheme but intends to test the capability of the latter to 
reproduce the limit elastic domain and the triggering failure mode of masonry 
subjected to in-plane loading under the assumption that the maximum capacity 
of the homogeneous material is reached whenever the stress acting within one of 
the components reaches the respective failure criterion. 

Statement of the problem 
Let us introduce the local strength domain )x(S  defined in the space of 

microscopic stresses:  

}x,0)x,(|{)x( RVEΩFS   (4.81) 

where the yield function )x,(F is a periodic function on RVEΩ  defining the 
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boundary of the domain of the admissible stress states, i.e. that can be physically 
sustained by the material. In our case, assuming that each sub-domain iΩ is 
characterized by a proper yield function )(iF , Eq. (4.81) reduces to:  

}11,..,1,x,0)(|{)x(  iΩFS ii  (4.82) 

where according to periodicity: 

4,..,1,)()(  jiFF ji  (4.83) 

)()( 75  FF  (4.84) 

)()( 86  FF  (4.85) 

Let us assume that the maximum capacity of the homogeneous material is 
reached whenever the stress acting within one of the components reaches the 
respective limit criterion. Therefore, the aim is to derive the limit elastic domain 

homS  defined as the set of macroscopic stresses which correspond to an elastic 
response of masonry: 

}0)(|{ homhom  FS  (4.86) 

where 0)(hom F  is the yield function of the homogeneous material. Before 
yielding occurs, the behaviour of the material is elastic and the local stress field 
σ(x) can be expressed as a function of the macroscopic stress   by means of the 
relationship of stress localization, Eq. (4.61); accordingly the macroscopic 
domain homS  can be expressed as: 

}11,..,1,0):L(|{hom  iFS ii  (4.87) 

which ensures that in none of the sub-domains iΩ  that constitute the RVE, the 
stress goes beyond its strength domain. For the purpose of deriving the 
homogenized limit elastic domain, let us refer to an increasing proportional 
macroscopic loading λ , where λ  is the load multiplier and   defines the 
loading direction in the space of the macroscopic stresses, the limit multiplier is 
given by: 

}11,..,1,0)L(|min{lim  iλFλλ ii  (4.88) 

and the function iF  corresponding to the minimum of λ , singles out the first 
sub-domain iΩ  that reaches a limit condition and thus the failure mode occurring 
under the given macroscopic loading path.  
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This hypothesis reflects the behaviour of an elastic-brittle materiel and, 
thereby, in the case of masonry may lead to an underestimation of the actual 
strength since it neglects the possible reserve of strength deriving from an 
internal redistribution of stresses among the phases of RVEΩ . On the contrary, 
on a microscopic scale the effects of the stress concentration is not taken into 
account when evaluating the failure of brick or mortar joints, since the stress 
field within RVEΩ  is approximated to a piecewise constant function, Eq. (4.61). 
The latter assumption may lead to an overestimation of the actual strength for 
non-perfectly plastic behaviour, which is the case of brick and mortar. In order 
to investigate to what extent the proposed limit elastic domain given in Eq. 
(4.87) can be used for predicting the failure of masonry under in-plane loads, a 
phenomenological discussion of the results is given in the next section followed 
by a comparison with experimental data available in literature. 

Description of the failure modes 
In Figure 4.15a the limit elastic domain obtained assuming a Mohr-

Coulomb criterion for mortar and brick is plotted in the space of the in-plane 
macroscopic stresses. The geometrical and mechanical parameters adopted are 
reported in Table 4.1, where cf  and tf  denote respectively the compressive and 
the tensile strength of the materials.  

 
     Mortar 

MPa  2200mY  250ν .m  mm 10mt  mm 10ht    MPa5 cf   

  MPa50 .f t   
Brick 

  MPa11000bY  200ν .b  mm 55bh  mm 250bl   MPa15 cf

  MPa51 .f t   

Table 4.1 Geometrical and mechanical properties of the phases adopted in defining the 
limit elastic domain of masonry reported in Figure 4.15 
 
The domain obtained clearly reproduces the anisotropy of masonry. Remarkably, 
its shape is in close agreement with those of the domains proposed in literature 
by Dhanasekar et al. (1985) and Andreaus (1996) by referring to experimental 
evidences. Note that, unlike the latter models, which rely upon somewhat 
heuristic arguments, the one proposed in the present approach was developed in 
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a rigorous mechanical framework starting from the individual properties of 
mortar and brick. 

 

Figure 4.15 Limit elastic domain of masonry with iso-shear stress lines plotted in the 
space of the macroscopic stress Σ11- Σ22- Σ12 considering the head joint filled (a) and 

unfilled (b) together with abacus of the failure modes (c). 
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Please note that the boundary of the domain is made of a set of surfaces each 
corresponding to a failure mode. Failure of the bed joints (modes I-II, Figure 
4.15c) is predominant when shear is combined with low biaxial confinement, as 
well as under biaxial tension regime; cracking of the head joint (mode III, Figure 
4.15c) takes places under horizontal traction combined with vertical 
compression. Out-of-plane splitting of the bricks (mode IV, Figure 4.15c) is 
encountered under biaxial compression combined with low shear stress. These 
failure modes are in agreement with the experimental evidence except the head 
joint failure that usually does not correspond to a failure condition for the overall 
material since the system is still able to equilibrate increments of the external 
load relying on the contribution of the bed joints and of the bricks. 

In order to evaluate the influence of the vertical joint on the failure of 
masonry, the limit elastic domain was evaluated also considering the latter joint 
as unfilled, Figure 4.15b. This assumption is obtained by neglecting the 
contribution of the head joint to the macroscopic strain energy density, which 
affects the definition of both the elasticity and stress localization tensors. A 
remarkable change of the resulting limit elastic domain is obtained, unlike the 
two step-homogenization approach where only a marginal effect of the head 
joint is detected, Pietruszczak and Niu (1992). The most important difference, 
compared to the condition of filled vertical joint, is found under vertical 
compression combined with horizontal traction, where cracks develop in the 
bricks along the 21eOe plane (mode VII, Figure 4.15c). The latter mode of 
failure is in agreement with the experimental tests in which a progressive failure 
that envisages firstly the opening of the head joint (mode III Figure 4.15a) then 
the failure of the material due to cracking of the bricks (mode VII Figure 4.15b) 
is encountered. Clearly, this progressive crack development may be reproduced 
only by introducing non-linear constitutive relationships for brick and mortar, 
which is outside the scope of the present chapter. 

Comparison with experimental tests from literature 
The most complete set of experimental data carried out to investigate the 

in-plane behaviour of masonry are from Page (1981,1983) who tested 112 half-
scale panels of solid bricks and submitted to proportional biaxial loading. The 
bricks measure 110x50x35 mm3 and are separated by mortar head and bed joints 
10 mm thick. In order to derive the macroscopic limit elastic domain, a Mohr-
Coulomb  criterion was assumed for mortar and brick considering a tensile 
strength tf  of about 1/10 of the compressive strength cf , being the latter 
provided by the author (Table 4.2).  
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     Mortar 

  MPa3900mY a 250ν .m
a   mm 10mt  mm 10ht   MPa085 .f c   

  MPa50 .f t 
a 

Brick 

  MPa6600bY a 200ν .b a mm 53bh  mm 101bl   MPa4515 .f c 

  MPa21 .f t  a 
       a: Values assumed in the present work. 

Table 4.2 Properties of masonry constituents adopted for reproducing the experimental 
data from Page (1985).  
 

The elastic moduli of the phases were defined such as to fit the overall 
elastic properties measured on masonry panels during the tests and reported by 
Dhanasekar et al. (1982), Table 4.3. The limit elastic domain obtained applying 
the proposed procedure for both plane stress (PS) and generalized plane strain 
(GPS) conditions is compared in Figure 4.16 with the experimental data. 

 
                Measured elastic constants 

  MPa570011 homY     MPa560022 homY     MPa235012 homµ    190ν12 .hom   

Predicted elastic constants 

 MPa577211 homY       MPa565122 homY     MPa228312 homµ    210ν12 .hom   

a: Values assumed in the present work. 

Table 4.3 Comparison between the elastic constants measured on masonry panel 
Danasekar et al. (1982) and the elastic constants predicted introducing in the proposed 
model the properties of the constituents reported in Table 4.2. 

 
The limit elastic domain provided by the present approach under GPS 

condition agree reasonably well with experimental data. On the contrary the PS 
assumption gives reliable results only in the case of low compressive stresses 
since it is unable to capture the transition from the in-plane to the out-of-plane 
failure mode under biaxial compression, as already shown by Anthoine (1997) 
and Massart et al. (2005). 
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c) 

Figure 4.16 Homogenized limit elastic domain evaluated in plane stress (PS) and 
generalized plane strain (GPS) conditions versus the experimental data from Page 

(1981,1983). Angles between principal stresses Σ11- Σ22 and bed joint orientations 0° (a), 
22.5° (b) and 45° (c). 
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5. A multi-scale approach for the analysis of 
masonry in the non linear range. 

Experimental evidences show that masonry behaviour may deviates from 
linearity even for low levels of the applied load. As a consequence, when 
studying the behaviour of real structures, linear elastic analyses are of limited 
applicability and non linear strategies may be required for reproducing the 
response under both severe and serviceability load conditions. 

Bearing in mind that the use of micro-modelling strategies is precluded in 
this context, the attention of the technical community focused on the 
development of equivalent continuum models able to capture the behaviour of 
masonry beyond the elastic limit. Among the different strategies proposed in the 
literature, the multi-scale approach based on the homogenization theory became 
increasing popular in the last ten years. The latter strategy, is based on the 
identification of two scales, which, in the case at hand, are the macroscopic 
scale, pertaining to the dimensions of the whole structure, and the microscopic 
scale, pertaining to the dimensions of brick and mortar joints. The basic idea 
consists in handling masonry as an homogeneous medium at the structural scale 
where relevance is given to macroscopic stress and strain which act on the 
composite material as a whole. Accordingly, the analysis of the entire structure 
reduces to a boundary value problem defined in terms of the sole macroscopic 
quantities. During the analysis the response of the homogeneous medium is 
derived at each material point by performing a scale transition from the 
macroscopic to the microscopic level and vice versa. More precisely, according 
to the homogenization theory, the scale transition is governed by an additional 
boundary value problem, named of localization, which is defined at the 
microscopic scale and is attached to a representative volume element of masonry 
where mortar and brick are accounted for as separate entities. 

Within this ambit, different strategies have been proposed in the literature 
which solve the localization problem by resorting to the finite element method. 
The latter approach, while able to capturing the essential feature of masonry 
behaviour, Massart et al. (2005), is still accompanied by high computational 
costs when performing analysis on real size structure since for each load step, 
non linear finite element analyses need to be performed at each material point, 
i.e. at each gauss point if the macroscopic domain is discretized into finite 
elements. For these reasons, the development of simple and effective techniques 
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able to solve the nonlinear localization problem received great attention in the 
technical literature, see Pietruzscak and Niu (1992), Gambarotta and 
Lagomarsino (1997), Uva and Salerno (2006), Calderini and Lagomarsino 
(2008), Sacco (2009), Addessi and Sacco (2010), Marfia and Sacco (2011). 

The present chapter intends to give a contribution in this direction. A multi-
scale algorithm based on the homogenization theory is developed for studying 
the in-plane behaviour of masonry structures. A micromechanical model is 
adopted as addressed next: bricks are assumed to exhibit an elastic behaviour 
and mortar joints are treated as elasto-plastic interfaces obeying to a Mohr-
Coulomb yield criteria with non-associative flow rule. A simplified kinematics is 
introduced over the representative volume element, which makes it possible to 
express the localization problem in terms of a reduced number of unknowns. An 
iterative scheme based on Newton-Raphson method is then adopted to solve the 
latter problem at the microscopic level. The proposed procedure is designed to 
be implemented into a global incremental-iterative scheme defined at the 
structural level and thus provides for a prescribed macroscopic strain the 
respective macroscopic stress and the elasto-plastic tangent operator. Eventually, 
numerical tests performed on the representative volume element undergoing 
different macroscopic loading conditions are presented and discussed. 
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Formulation of the localization problem for the 
elasto-plastic interface model 

Let us consider a wall made of bricks having width lb and height hb 
separated by mortar bed and head joints having thickness mt  and ht  
respectively, Figure 5.1a. The vertical joints are staggered within the wall 
reproducing a running bond pattern. Since the thickness of the joints is usually 
small when compared to the height of the bricks it is reasonable to model the 
former by using zero-thickness interface elements, located at joint mid-
thickness. A geometrical transformation proves necessary so as to preserve the 
original geometry of the brickwork. Therefore, an expanded brick is considered, 
hereafter referred as the unit, that includes a brick and the surrounding half-
layers of mortar, Figure 5.1b. Definition of unit height a and length b  is trivial: 

hbmb tlbtha   (5.1) 

 

Figure 5.1 Geometrical transformation introduced at the microscopic level: (a) model of 
joints treated as continuum element and (b) model of joints treated as interfaces.  

In these conditions, the full medium may be obtained by repetition of the 
RVE along the directions of periodicity, defined by the vectors: 

21
21

221
41

1 e e
2

ie e
2

i abggabgg   (5.2) 
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In the above expression, ig  are the vertex of four adjacent bricks iΩ  with 
i=1,..,4, (Figure 5.2). The boundary of RVEΩ  may be divided into two different 
regions, RVERVERVE  ΩΩΩ


 and: the former ( RVEΩ


 ), which is internal to the 

wall and separates adjacent RVEs, can be divided into pairs of opposite sides, 
i.e. that correspond by periodicity; the latter region ( RVEΩ


 ) consists of the 

boundary of the RVE that lies on the two external faces of the wall which, unlike 
the previous case, can not be referred to as opposite sides. 

 

Figure 5.2 Identification of the sub-domains pertaining to the RVE adopted in the 
present work. 

The kinematics of the representative volume element is described in terms 
of the displacement field u(x) which is continuous within each unit iΩ  and 
admits jumps of displacement (x)wij

 on the boundary between two adjacent 
units ji ΩΩ  : 

4,..,1x(x)uu(x)  iΩii
 (5.3) 

4,..,1x(x)u(x)u(x)w  iΩΩ jijiij  (5.4) 

The unit is assumed to exhibit an elastic behaviour equal to that of the brick 
and is thus characterized by the elasticity fourth order tensor Cb:  

4,..,1 xxε:xσ  iΩ ib )(C)(  (5.5) 

where )(xσ and )(x are respectively the stress and strain fields defined over 
REVΩ . 
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Figure 5.3 Jump of displacement (wij) and traction (ij) acting on the interface. 

Noteworthy, the stress filed acting within the RVE is continuous. Accordingly, 
the traction acting on the interface (x)σij

 may be expressed in terms of the 
microscopic stress field acting in the unit σ(x)  as follows: 

jijiijij ΩΩ  x(x)nσ(x)(x)nσ(x)(x)σ  (5.6) 

where ijn  and jin  denote the outward normal vectors of the joint corresponding 
to the border belonging respectively to iΩ and jΩ ,  Figure 5.3. 

The joints are assumed to exhibits an elasto-perfect plastic behaviour. 
Accordingly, the relation between the jump of displacement )x(wij

 and the 
traction (x)σij  acting on the interfaces reads: 

4,..,1, x(x)]w(x)[wK)x( ,  jiΩΩ jipijijijij  (5.7) 

where (x)w p,ij is the plastic jump of displacement and ijK is the elasticity tensor 
pertaining to the joint, expressed in Eq. (5.8). 

)KK ijijijij
t

ijij
n

ij
2211 ttt(t nn K   (5.8) 

where ij
1t , ij

2t  represent the unitary vectors normal and parallel to the interface 
ji ΩΩ  and nK , tK  are respectively the normal and tangential stiffness 

which are assumed equal for the whole set of joints.  
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The non linear behaviour of the joints is governed by the yield criterion 
]σ[ ijF  delimiting a convex set of admissible traction, i.e. which fulfils the 

following condition:  

0] σ [ ijF  (5.9) 

The evolution of plastic strain pij ,w  is controlled by a non-associated flow rule 
driven by the plastic potential ] σ [ ijG : 

ij

ij
ijp,ij G

σ 
] σ [ γw




   (5.10) 

In the above relation 0ij is the plastic multiplier and is subject to the so-called 
Kuhn-Tucker complementary condition and to the consistency condition:  

0] σ [ γ0] σ [ γ  ijijijij F,F   (5.11) 

In analogy with the previous chapter, let us consider as a domain of 
reference a masonry wall loaded along its middle plane. Bearing in mind that the 
latter assumption correspond to a plane stress condition from the macroscopic 
point of view, Eq. (4.5), the derivation of the response of masonry seen as an 
homogeneous medium is equivalent to define the relation between macroscopic 
stress Σ and strain E  given by: 


RVEΩRVE

Ω
Ω

d σ(x)1σ(x)Σ  (5.12) 


RVEΩRVE

Ω
Ω

d ε(x)1ε(x)E  (5.13) 

According to the homogenization theory of periodic medium, the latter issue can 
be achieved by solving the localization problem, which, in the case at hand and 
for a prescribed macroscopic strain E, reads:  

REVΩ  x         0σ(x) div  (5.14) 

n(x)σ(x)   anti-periodic on opposite sides of RVEΩ


  (5.15) 

0n(x)σ(x)   on RVEΩ


  (5.16) 
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ε(x):(x)σ(x) bC  (5.17) 

u(x) symε(x)   (5.18) 

(x)uxEu(x) ˆ  (5.19) 

(x)û  periodic on opposite sides of RVEΩ


   (5.20) 

4,..,1, x             (x)u)x(u)x(w  jiΩΩ jijiij  (5.21) 

(x)]w(x)[wK(x)σ p,ijijijij   (5.22) 

0(x)]σ[ ijF  (5.23) 

ij

ij
ijpij G





 

(x)][ )x(w ,   (5.24) 

0] σ [ γ0] σ [ γ0γ  ijijijijij F,F   (5.25) 

By introducing suitable test fields (x)u testˆ , the localization problem may be 
stated in a weak form as follows:  
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(5.26) 

where perV  and )(1 iΩH denote the space of periodic displacement fields and a 
Sobolev space defined over iΩ , respectively. 

A simplified kinematics for the Representative 
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Volume Element 

In order to obtain an approximate solution of the localization problem, 
Eq.(5.26), simplifying assumptions are made concerning the kinematics within 
the representative volume element. Similarly to the approach followed in the 
previous chapter, the fluctuating part of the displacement field (x)û  is 
approximated by a piecewise function, defined within each sub-domain i as:  

4,..,1x)g(xH)(gû(x)û  iΩ iiii  (5.27) 

where gi are the centre of each sub-domain, as depicted in Figure 5.2, and Hi is a 
second order tensor. 

In order to express explicitly the restrictions on the kinematics deriving 
from the periodicity conditions, let us consider two homologue points ii Ωp  
and jj Ωp  that belong to the boundary RVEΩ


  and correspond each other by 

periodicity, that is:  

2211 iipp mmji   (5.28) 

where 1i  and 2i  are the directions of periodicity, Eq. (5.1), and 21 , mm  are 
integer coefficients in the range [-1,1] . It is worth noting that the centres ig  and 

jg  of the domains iΩ  and jΩ  are homologues too and fulfil the following 
condition:  

jiji ggpp   (5.29) 

According to Eq. (5.27), the relative displacement between points ip and jp
reads:  

)g(p)HHgugupupu iijijiji ˆˆˆˆ  ()()()()(  (5.30) 

Moreover, according to the periodicity of the fluctuating displacement field 
(x)û , Eq.(5.20), the quantities )()( ji ˆˆ pupu   and )()( ji ˆˆ gugu   vanish, meaning 

that ji HH  . Following the same reasoning for all the couples of points that 
fulfil Eq. (5.30), it is straightforward to prove that the restrictions on the 
kinematics given by the periodicity conditions reduce to: 

41HH ,..,ii   (5.31) 

According to the above expression, no relative rotation and no independent 
deformation of the units is admitted if periodicity is imposed. It is 
straightforward to prove that the jump of displacement ijŵ  along the interface 
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between two adjacent units is given by:  

4,3,2,1, x  )(:H)x(ŵ  jiΩΩgg jijiij  (5.32) 

Noteworthy, because of the periodicity condition, it is possible to identify two 
pairs of joints which correspond by periodicity:  

3412 ŵŵ   (5.33) 

4123 ŵŵ   (5.34) 

From tensor to Voigt notation 

According to the kinematics assumptions made, the stress within the unit 
and the jump of displacement along each interface belonging to the 
representative volume elements are constant. Owing to the symmetry of the 
problem under consideration, i.e. a wall in-plane loaded, the out-of-plane shear 
components 3iσ  with 21,i  acting within the unit vanish. Furthermore, since the 
interface model does not account for the thickness of the joint, the component 

33σ  vanishes too. Accordingly, the problem can be stated in a plane stress 
condition both from a macroscopic and microscopic point of view. At this stage, 
it is convenient to adopt a Voigt-type notation as explained next, where the non 
null components of microscopic fields are collected into vectors:  

T
122211 }{ σ τσ σ  (5.35) 

 }{ ε T
122211  εε

 (5.36) 

T
21122211 }{ H HHH H  

(5.37) 

 }{ w T 
2

 
1

ijijij ww
 (5.38) 

 }σσ{ σ T 
2

 
1

ijijij 
 (5.39) 

where H , σ and ε  represent the gradient of displacement, the stress and strain 
pertaining to the unit and  wij and 

 ij are the jump of displacement and the 
traction acting on the generic interface separating iΩ  and jΩ .  
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The same applies to the macroscopic strain:  

 }{ E T
122211 EE E  (5.40) 

The constitutive relation of the unit in terms of the Lamé’s constants b , b
writes:
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The relation between the gradient of displacement and the deformation of the 
unit, Eqs. (5.18), (5.19) , reads:
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The jump of displacement on the interface may be expressed as a linear 
application to the gradient of displacement of the unit, Eq. (5.32), which reads: 

4,3,2,1, x  HA)x(ŵ  jiΩΩ jiijij  (5.43) 

where matrixes ijA  assume the following expressions: 



















2
-00  

0 0
2

-
AA 4312

ba

ab
 (5.44) 



















2
  00

 0  0
2

 
AA 1423

ba

ab
 (5.45) 






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


b
b

- 000
 0  00- 

 A             13  (5.46) 

The kinematics restrictions adopted in the previous paragraph allow us to 
recast the weak formulation expressed by Eq. (5.26). The Galerkin method is 
adopted, according to which the test functions are assumed to have the same 
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shape of the field (x)û as expressed by Eq. (5.27). According to the Voigt-type 
notation presented and exploiting Eqs.  (5.31)-(5.34) the weak formulation of the 
localization problem reads: 

4
4

1

T
S

T RxH    0HA(E)σ HMσ(E)  


)(lΩ testtestij

j,i

ijijtest
RVE  (5.47) 

5.14)-(5.13 Eqs. fulfilling)Ex,(σ
5.23)-(5.20 Eqs. fulfilling)Ex,(σ

x)x(û)x(û)x(ŵ ,,

ij

jijtestitesttest ΩΩ 

 (5.48) 

which may be simplified in the following system of four equations: 

0A)E(σ  M)E(σ 
4

1,

T
S

T 


ij

ji

ijij
RVE lΩ  (5.49) 

where ijl  represents the length of the generic interface ji ΩΩ  . 

Multi-Scale algorithm 

The simplified weak formulation obtained for the localization problem 
makes it possible to define a simple multi-scale algorithm which proves 
particular attractive for the implementation into general purpose finite element 
programs. 

Let us consider a generic material point of the structure under 
consideration, which undergoes a prescribed strain history )E(t defined within the 
time interval [t0,tf]. The aim is to derive the response of the material in terms of 
the macroscopic stress history )(t .  

To this purpose, an incremental approach is adopted, which consists in 
subdividing the time domain in discrete increments t . Let us refer to the strain 
increment nE  assigned to a generic time tn belonging to [t0,tf], for which all 
the state variables are known, i.e ij,p

nw , nH , nE . The purpose is to derive the 
response of the homogeneous material at the time ttt nn 1  in terms of the 
macroscopic stress 1n .  

The localization problem expressed by Eq. (5.49) is thus solved in terms of 
1H n and ij,p

n 1w   by means of an iterative Newton’s scheme as addressed next. 
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1. For the first iteration (k = 1) let us assume that all the state variables are 
frozen except the strain of the brick which is incremented by nE : 

n
k

n   HH )1(
1 

  

n
)1(

1 Eε  ε 
 n
k

n

 ij
n

kij
n ww   )1(

1 
  

(5.50) 

2. The response of the brick is evaluated by resorting to Eq. (5.5): 
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(5.51) 

3. The response of the joint is evaluated by integrating the elasto-plastic 
constitutive relation  Eqs. (5.23)-(5.25) which provides the traction 

)k(ij
1nσ  and  the tangent moduli 

)(
1K~

kij
n :  

)(

1

)(
1

)(,
1

)(
1

)(
1n

 w

 
K~

)ww( K 
k

n
ij

ij
kij

n

kpij
n

kij
n

ijkij














 
(5.52) 

4. The residual is evaluated starting from Eq. (5.49): 
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(5.53) 

5. If the modulus of the residual ||R|| )(
1n

k
 is higher than the tolerance 

accepted for convergence, the solution of the problem needs to be 
updated and the procedure is restarted from point 2: 
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(5.54) 
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6. When the modulus of the residual ||R|| )(
1n

k
 is lower than the tolerance 

accepted for convergence, the solution of the localization problem is 
obtained. The macroscopic stress 1n can be evaluated by resorting to 
Eq. (5.12) which, standing the simplifications introduced for the 
kinematics of the representative volume elements, reduces to: 

111 σ(x)σ   nnn

 
(5.55) 

The Jacobian matrix needed for solving the localization problem is 
evaluated as addressed next. 
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(5.56) 

The latter expression can be simplified by introducing Eqs. (5.10): 

ij)k(ij
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As an alternative to use of the updated Jacobian (k)
1nJ  ,the solution may be 

found by using an approximation of Eq. (5.57), for instance by using the 
Jacobian evaluated by considering the elastic behaviour of the components. 

Derivation of the elasto-plastic tangent moduli  

A tangent operator consistent with the integration algorithm is needed to 
improve the rate of convergence of the incremental - iterative scheme adopted at 
the macroscopic level. Bearing in mind that a single surface yield criterion is 
adopted for the joints, let us consider the total variation of the stress acting 
within the brick and within the interfaces: 
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(5.59) 

where   ij  and    ijG are defined in Eq. (5.24) and represent the plastic 
multiplier and the plastic potential of the joint ji ΩΩ  . The consistency 
conditions expressed by Eq. (5.25) reads: 
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(5.60) 

Upon substitution of Eq. (5.59) into the above expression one obtains 
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(5.61) 

Accordingly, Eq. (5.59) may be rewritten as: 
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(5.62) 

where introducing the elasto-plastic stiffness tensor defined for the joint ij
n 1K~   

one would obtain: 
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(5.63) 

Let us now exploit the weak formulation obtained for the localization problem 
by introducing the above expression into Eq. (5.49) which reads: 
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By solving the equation with respect to 
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Since the microscopic stress acting within the unit corresponds to the 
macroscopic stress acting on the whole RVE, Eq. (5.55), the tangent moduli of 
masonry as an homogeneous material 1nC~  can be obtained by introducing the 
latter expression into Eq. (5.58): 
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In the specific case in which the whole sets of joints provides a null tangent 
operator it follows from Eq. (5.64) that: 
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(5.67) 

and consequently according to Eq. (5.66) the tangent operator of masonry 1nC~ 

is null. For instance, by referring to a Mohr-Coulomb criteria, the latter 
condition correspond to the case in which the stresses within all the joints reach 
the apex. 

Discussion and validation of the results  

The multi-scale procedure presented makes it possible to reproduce in a 
rather simple way the response of masonry for strain-driven loads by exchanging 
information between the macroscopic and microscopic levels. 

Under the assumption of elasto-perfect plastic behaviour of the 
constituents, which is the case under consideration, Suquet (1987) has shown 
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that the behaviour of the material from the macroscopic view point is 
characterized by a strain hardening effect. The latter phenomenon is related to 
the residual stresses, i.e. self equilibrated states of stress, that arise at the 
microscopic scale when plastic strains start to develop within the components.  

Standing the considerations made above, it is possible to identify three 
different stages of masonry behaviour when the homogenization technique is 
applied. In the first stage the material is elastic.  For increasing levels of load one 
or more components reach the limit condition and start to develop plastic strain. 
The behaviour of the material becomes plastic and shows strain hardening 
related to the development of residual stresses. Finally when all the components 
achieve the limit conditions, complete yielding of the homogeneous material is 
reached and masonry behaves as an elastic perfect plastic material. 

Within the elastic range the response of the material is governed by the sole 
stiffness tensor homC  and the relation between macroscopic stress and strain 
reads: 

EC hom 

 
(5.68) 

An analytical expression for the stiffness tensor can be obtained by adopting the 
proposed approach. More precisely, in the case at hand, the macroscopic elastic 
strain energy  EW  assumes the following explicit form: 
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(5.69) 

where the four elastic constants introduced ( homhomhomhom µ,ν,Y,Y 12122211 ) may be 
written in terms of the properties of the joints ( tn K,K ) and of the blocks (

bb µ,b,a, λ ) as follows: 
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Noteworthy, the elastic constants obtained are the superimposition of the ones 
found by de Felice (1995) for the case of rigid blocks connected by interfaces 
and the elasticity tensor of the unit. 

Additionally, it is possible to obtain analytically the relations of stress 
localization, i.e. the relations that yield the microscopic stress field σ  for a given 
macroscopic stress  . Bearing in mind that, according to the simplified 
kinematics adopted, the stresses acting within the components are constant, the 
relations of stress localization write: 
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(5.74) 

The behaviour of the homogeneous material is linear until one of the 
interfaces starts to yield, which is:  

4,..,1,0)(  jiF ij

 
(5.75) 

Let us assume for the whole set of joints a Mohr-Coulomb yield criterion, which 
in the case at hand reads: 
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(5.76) 

while the plastic potential adopted in the present work assumes the following 
expression: 
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(5.77) 

where ijn and ijt  are the normal and tangential vector of the interface while µ ,
 ψ and c

 
are the coefficient of friction, the coefficient of the dilantancy and the 

cohesion, respectively. By exploiting Eqs. (5.74)-(5.76) it is possible to obtain 
an analytical expression for the limit elastic domain of the material defined as 
the set of macroscopic stress inducing a linear elastic response within the 
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components. The elastic limit domain proves bounded by a set of surfaces, each 
of them corresponding to the yielding of one of the interfaces belonging to the 
RVE, Figure 5.4. 

 

Figure 5.4 Limit elastic domain of masonry in the macroscopic state of stress. 

For instance, the surface defined by the points P1-P2-P4-P5 corresponds to the 
yielding of bed joints 32 ΩΩ  and 14 ΩΩ  , Figure 5.2. The surfaces 
delimiting the limit elastic domain may be derived by the following expressions 
which define the vertex of the surfaces depicted in Figure 5.4: 
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(5.78) 

where the following constants have been introduced b/am 2 , tn K/Kξ . 
By referring to the same micro-mechanical model of units connected by 

interfaces obeying to a Mohr-Coulomb criterion, it is possible to obtain an 
analytical expression for the yield surface of masonry, i.e. which delimits the set 
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of the admissible macroscopic stress for the material. More precisely by 
following the approach presented in De Buhan and de Felice (1997), the 
macroscopic yield domain may be defined in terms of the strength parameters of 
the joints ( c,µ ), on the aspect ratio of the units b/am 2  and is bounded by a 
set of planes )(iF  intersecting in a non smooth way, Figure 5.5. When 

µm /1  , which is the most relevant case for masonry, the domain comprises i 
=4 number of planes which can be written in terms of the macroscopic stress 
components as follows: 
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(5.79) 

Conversely, for the case µm /1 , the yield surface comprises six planes as 
describe in the cited paper.  

Both the elastic limit and the yield domain reproduce the anisotropic 
behavior of the material deriving from the arrangement of the blocks within the 
masonry assemblage and result unbounded in the compressive regimes since 
failure of the unit is not accounted for in the model. The two domains are 
compared in Figure 5.5 where it is shown that the elastic-limit domain obtained 
in two limit cases, where we assume 0  and  , falls inside the yield 
domain proposed by De Buhan and de Felice (1997). Since Eqs. (5.78) are 
monotonic with respect to  , the latter finding confirms that the analytical 
expressions found for the two domains are consistent since the limit elastic 
surface falls always inside the co-respective domain obtained adopting the yield 
design homogenization, as it was expected. Moreover, only in some cases the 
two domains have points in common where the hardening effect does not take 
place. 
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a) 
b) 

Figure 5.5 Comparison between the yield surface (thin line) by De Buahn and de Felice 
(1996) and the elastic limit surface (thick line) evaluated for ξ = 0 (a) and ξ =+∞ (b).  

The surfaces presented delimit in the space of macroscopic stresses the 
three phases of masonry behaviour. In order to describe the complete response of 
the material undergoing a prescribed loading history it is possible to follow 
different strategies. One possible approach consists in assuming that the material 
behaves elastically in accordance with Eq. (5.70)-(5.73) up to the complete 
yielding. This approach proves attractive since, by assuming at the macroscopic 
level an elasto-perfect plastic behaviour with associated flow rule, the classical 
integration schemes for multi-surface plasticity may be adopted for predicting 
the response of the homogenized material, see de Felice et al. (2010).  On the 
other hand this method neglects the strain hardening deriving from residual 
stresses and may be applied rigorously only when the joints show an high 
dilatancy, which represents the exception rather than the norm. In order to 
overcome these limitations it is possible to follow a different approach by 
adopting the multi-scale algorithm presented, which allows us to trace the 
equilibrium path of the material from the initialization of plastic microscopic 
strains up to complete yielding and to account for the presence of joints with 
different levels of dilatancy. Some applications of the latter approach are 
discussed in the subsequent part where numerical tests are performed on the 
RVE undergoing different macroscopic loading conditions. 
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Response of the RVE under macroscopic loading 
conditions 

Let us consider a brickwork made with units having height 055.0a  m 
and length 1250.b  m, which corresponds to an aspect ratio 880.m  . The 
Lame’s constants of the unit are assumed equal to 183λ .b  GPa and 291.µb 
GPa. The whole set of joints has normal and tangential stiffness equal to 

630 .K n  GPa/m and 8.12nK  GPa/m, while the cohesion and the 
coefficient of friction are assumed equal to 010 .c   KPa and 6.0µ , 
respectively. In order to outline the effects of the dilatancy, two values for ψ are 
adopted, namely 0.0 and 0.6. 

Let us refer to a generic material point initially unloaded, which undergoes 
an increasing applied load expressed as ̂λ , where ̂  represents a direction 
within the space of macroscopic stresses and λ is a scalar representing the load 
multiplier. The aim is evaluating the response of the material point in terms of 

E  relation along the load direction ̂λ . To this purpose the multi scale 
algorithm has been implemented in Matlab and the problem solved numerically 
by adopting an arch-length incremental-iterative procedure, Riks (1979).  

The first test performed at the microscopic level refers to the case of a 
material point undergoing an increasing traction applied in the horizontal 
direction. The macroscopic stress-strain curves obtained by varying the dilatancy 
are plotted in Figure 5.6 together with the transversal deformation recorded 
during the loading history. 

 

 
 

 

Figure 5.6 Masonry under pure horizontal traction: comparison between the stress-strain 
relations and the ratios between horizontal and vertical strains obtained for ψ=0.6 and 

ψ=0.0. 
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As it was expected, the dilatancy does not affect locally the strength of the 
material, which is trivial since the problem is stress-driven and no constraint are 
imposed on the vertical deformation upon the application of the load. The results 
would be remarkably different if strain-driven approach is followed. The 
deformed shapes of the RVE, obtained for the two values of dilatancy 
considered in the present work, are plotted in Figure 5.7. 

a) b) 

Figure 5.7 Masonry under pure horizontal traction: comparison between the deformed 
shapes of the RVE obtained for ψ=0.6 (a) and ψ=0.0 (b). 

Three phases of the material response are clearly identified. In the first and 
second phases there is a transversal deformation related to the Poisson-type 
contraction of the unit, which behaves elastically, Figure 5.6. In the third phase 
the vertical deformation keeps constant in absence of dilatancy while remarkably 
increase in the case where dilatancy is accounted for in the model, as it was 
expected. Noteworthy, the curves obtained are piece-wise constant since the 
behaviour of the material is governed by a discrete number of parameters, which 
derives from the restrictions imposed on the kinematics of the RVE. In order to 
better outline the interaction between the components under increasing 
horizontal traction, the forces acting within the unit, bed and head interfaces are 
plotted together in Figure 5.8.  

 

 

 

 

Figure 5.8 Masonry under pure horizontal traction: Comparison between the force acting 
within the unit and mortar joints, the curves are independent on the dilatancy assumed. 
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According to Figure 5.8, the elastic phase ends in correspondence to the 
opening of the vertical joint. Under increasing loads the horizontal joints tend to 
bear more shear stress since the overall material can not rely anymore on the 
contribution of the head interface. Finally, the homogenous material reaches the 
complete yielding when the bed joints reach their respective limit domain. 

The second numerical test conducted at the microscopic level, considers a 
material point undergoing a pure macroscopic shear stress. The responses 
obtained in case of associated and non-associated plasticity are reported in 
Figure 5.9. Analogously to the previous test, the strength of the material is 
unaffected by the level of the dilatancy angle assumed which affects only the 
deformed shapes, Figure 5.10.  

 

 

 
 

 

Figure 5.9 Masonry under pure shear: comparison between the stress-strain relations and 
the ratios between horizontal and vertical strains obtained for ψ=0.6 and ψ=0.0. 

 

a) b) 

Figure 5.10 Masonry under pure shear: comparison between the deformed shapes of the 
RVE obtained for ψ=0.6 (a) and ψ=0.0 (b). 
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The third numerical test conducted at the microscopic level, refers to a 
material point undergoing macroscopic shear stress combined with horizontal 
traction. A proportional load is applied by keeping constant the ratio 1/ 1211 
. The results are plotted in Figure 5.11- Figure 5.12. 

 

 

 
 
 

 

Figure 5.11 Masonry under horizontal traction combined with shear: comparison 
between the stress strain curves obtained for ψ=0.6 and ψ=0.0. The markers delimit the 

phases of masonry behaviour. 

With respect to the previous cases presented, masonry stress –strain curve 
depends on the level of dilatancy adopted for the joints. To better investigate this 
aspect, the microscopic stress-strain curves recorded in the joints under 
increasing macroscopic load are reported in Figure 5.13. On the whole it is 
possible to distinguish three different phases: 

Phase 1: The linear elastic phase, ending when the joint (23-41), which 
undergoes combined tensile stress and shear, reaches the yield domain ( ). 

Phase 2:  At this stage, the capability of the RVE to sustain increasing loads 
rely upon the head joint. The slip developed by the joint (23-41), which is driven 
by the macroscopic shear stress, induces a tensile stress on the former interface 
which cumulates with the tensile stress induced by the horizontal traction 
applied to the RVE. Moreover, when dilatancy is accounted for in the model, the 
normal displacement developed by joint (23-41) induces an additional shear 
stress on the head interface, Figure 5.12. Under the abovementioned state of 
stress the head joint reaches suddenly the limit conditions and start to develop 
plastic strain ( - ). 
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a) b) 

Figure 5.12 Masonry under horizontal traction combined with shear: comparison 
between the deformed shapes of the RVE obtained for ψ=0.6 (a) and ψ=0.0 (b). 

Phase 3: In this phase, the head interface tends to open completely and to 
bear lower and lower level of shear. This is clarified in Figure 5.14 where the 
stress paths experienced by the interfaces are plotted against the Mohr-Coulomb 
criterion. Accordingly, the head joint in this stage tends towards the apex of the 
yield criterion. When this condition is achieved the latter joint is not able to bear 
anymore shear and the system reaches the complete yield condition ( - ). The 
main differences between the cases analyzed arise here: the development of 
normal displacements on bed and head interfaces due to the dilatancy results in 
an overall lower stiffness of the homogeneous material in this phase when 
compared to the stiffness exhibited in the case where dilatancy is set equal to 
zero, Figure 5.11. The final strength of the material remains anyway unaffected. 

 

 

Figure 5.13 Masonry under shear combined with horizontal traction: Comparison 
between the stress-strain history recorded on the joints for ψ=0.6 and ψ=0.0. 
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Figure 5.14 Masonry under shear combined with horizontal traction: Comparison 
between the equilibrium paths followed by the components and plotted in the space of 

microscopic stress together with the Mohr Coulomb yield surface. 

Numerical simulations and applications 

The multi-scale algorithm formulated in the previous paragraphs has been 
implemented as an UMAT subroutine in the general purpose finite element 
program Abaqus, Simulia (2011). To test the feasibility of the proposed 
approach, finite element analyses of in-plane loaded walls are presented and the 
results compared against experimental tests on dry-stack masonry and analytical 
approaches based on the yield design theory. Eventually the methodology is 
applied to evaluate the response of masonry arches under non-uniform ground 
settlement. 

Wall under vertical compression and horizontal traction 
Let us consider a masonry wall bearing its self weight, a vertical pressure q 

applied at the top and undergoing a prescribed horizontal displacement u 
imposed at the later sides, Figure 5.15. The aim is to derive the maximum 
allowable horizontal traction which the wall can sustain under increasing 
horizontal displacement. 
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Figure 5.15 Masonry wall subjected to gravity load, vertical pressure q and horizontal 
displacement u imposed at the later sides. 

The problem admits an analytical lower bound solution which expresses the 
horizontal tensile force corresponding to the complete yielding of the wall. In 
accordance with the approach followed in de Felice et al. 2010, let us assume 
that each block of the wall experiences the stress state shown in Figure 5.16.  

 

Figure 5.16 Stress state experienced by the unit located in correspondence of the course i 
of the wall. 

The gravity and the vertical load applied induce on the bed joint a vertical 
compression which varies linearly along the height of the wall. More precisely, 
according to equilibrium conditions, denoting by i the number of block tiers 
above the bed joint under consideration, the vertical stress v

iσ  is uniform and 
reads: 

aiqv
i 

 
(5.80) 

Conversely, the horizontal traction applied at the edge of the wall induces 
shear stresses on the bed joints iτ

 

and vertical traction on the head joints h
iσ . 
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When the complete yielding of the wall is achieved all the components are 
supposed to provide their maximum contribution. Therefore, it is reasonable to 
assume that the stress h

iσ  is uniform along the head joint and that the shear stress 
iτ  is piece-wise constant with opposite sign in two half sides of each unit. By 

cumulating the contribution of the whole set of n tiers, the resultant of the 
traction T, applied at the lateral edge of the wall and which is in equilibrium with 
the stress state acting on the units, reads: 
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(5.81) 

In order to derive the maximum allowable horizontal traction limT per unit 
depth of the wall, let us impose that the stress state acting on the whole set of 
joint fulfils the Mohr-Coulomb condition: 
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(5.82) 

where the first two terms account for the cohesive contribution of head and bed 
joints, respectively, and the second terms account for the frictional contribution 
of bed joints provided by the self weight and the applied load q. In order to 
perform a comparison with the results obtained by applying the proposed 
homogeneous model, let us evaluate the maximum traction acting on the wall in 
the limit case where the dimensions of the unit tend to be small compared to the 
dimensions of the wall. By expressing the height and the width of the block as 
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and by substituting into the Eq. (5.82), one would obtain: 
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In the limit condition where n  the latter expression reads: 
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In the above expression, the cohesive contribution of head joint cumulates with 
the cohesive and frictional contributions of bed joints properly scaled by the 
internal angle of the brickwork m. The numerical simulation is carried out on 
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one-half of the specimen by exploiting the symmetry of the problem. 
Accordingly, the wall is simply supported at the base; one of the lateral edges is 
free to move in both directions while the opposite one is constrained in the 
horizontal direction. The finite element mesh adopted consists in 900 four nodes 
compatible finite elements, as reported in Figure 5.18. The analysis is then 
carried out in two subsequent step. First the gravity load is applied together with 
the pressure q located at the top of the wall. Then, an uniform increasing 
horizontal displacement is imposed on the free lateral side until complete 
yielding of the system is achieved. The geometrical and mechanical properties 
adopted for defining the finite element model are reported in the Table 5.1. The 
response of the wall may be expressed in terms of the resultant of the reactions 
applied at the constrained edge versus the imposed horizontal displacement. 
The force-displacement curve per unit depth of the wall is plotted in Figure 5.18 
together with the analytical result provided by Eq. (5.85) , F=25.42 KN/m. 
 

 

Figure 5.17 Masonry wall under vertical load and horizontal traction: finite element 
mesh. 

 

Table 5.1 Geometrical and mechanical properties of the phases adopted in the numerical 
simulation. 

Heigth of the wall H 0.98 m Normal Stiffness of the interface K n 3.06E+07 KPa/m

Length of the wall L 3.0 m Tangential Stifness of the interface K t 1.28E+07 KPa/m

Thickness of the wall s 0.12 m Cohesion of the joints c 5 KPa 

Heigth of the unit a 0.04 m Coefficient of friction µ 0.6 -

Length of the unit b 0.09 m Coefficient of dilatancy ψ 0.0 -

Density γ 15 KN/m3 Yound modulus of the unit Y b 3.18E+06 KPa 

Applied pressure q 10 KPa Poisson coeffcient of the unit ν b 0.23 -
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Figure 5.18 Comparison between the force-displacement curve obtained by the proposed 
approach and the analytical solution obtained by applying the yield design method. 

The main feature of the multi-scale approach consists in the chance to 
derive for each Gauss point of the wall directly information on the opening of 
the joints induced by the external load. In the case at hand, owing to the 
symmetry of the problem, the plastic slip developed within the two couple of 
bed joints coincide and, owing to the compatible kinematics adopted in the 
present work for the RVE, their sum proves equal to the opening of the head 
interfaces, see for instance Figure 5.7. Accordingly, it is sufficient to report the 
plastic jump of displacement developed by the head interfaces. 

 

Figure 5.19 Normal plastic jump of displacement of the head interface 13
nw  (in cm) for a 

displacement imposed at the lateral edge of the wall equal to 2 cm. 

A slight variation of the plastic strain developed by the joints is found over 
the height of the wall. In fact, when complete yielding is reached the joints 
located at the top exhibits an higher plastic slip with respect to the joints located 
at the base of the wall because of the contribution provided by the frictional 
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terms in Eq. (5.85). Therefore these differences derive from the elastic jump of 
displacements which are maximum at the bottom and decrease while 
approaching the top of the wall. 

Wall under gravity load and uniform horizontal 
acceleration 

 In the present part the proposed methodology is adopted to reproduce the 
tests by Ceradini (1992), who conducted an experimental campaign for studying 
the behaviour of dry stack masonry walls under uniform in-plane vertical and 
horizontal accelerations. The tests aimed at defining the modes of failure and the 
collapse load multiplier lim , i.e. the ratio between vertical and horizontal 
accelerations that triggers the collapse, of a variety of walls which differs in 
terms of masonry texture and geometrical aspect ratio (=H/L). More precisely, 
the units adopted, which have dimensions 0.04x0.0175x0.08 m3, have been 
arranged in two different ways so as to obtain masonry textures characterized by 
an internal angle m equal to 0.427 and 0.875, respectively, Figure 5.20.  

 

Figure 5.20 Masonry textures investigated by Ceradini (1992). 

For each texture considered, walls having ratio= H/L ranging from 0.12 
to 2 have been tested, Figure 5.21a. Additionally, the effects of openings and of 
the presence of tie bars have been investigated as well by the cited authors. 

In order to induce the in-plane collapse of the wall, the load has been 
applied by progressively inclining the laying plane of the specimen, Figure 
5.24b, which reduces the component of the gravity in the direction perpendicular 
to the bed joints while increasing the component in the direction parallel to the 
bed joints. Finally, the collapse load multiplier was recovered by measuring the 
inclination of the laying plane at which the wall collapsed.  

The problem admits an analytical solution which provides an upper bound 
estimate for the horizontal load multiplier corresponding to the collapse of the 
wall, De Buhan and de Felice (1997). More precisely, the yield design theory is 
applied by assuming a kinematically admissible collapse mechanisms, identified 
by the discontinuity line OO’ depicted in Figure 5.22. 
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a) 

 
 

b) 

Figure 5.21 Masonry walls under uniform vertical and horizontal accelerations:(a) view 
of the walls,(b) system of application of the load adopted by Ceradini (1992). 

The work of the external forces is computed by assuming a rigid body 
motion for the portion of the wall above the discontinuity line OO’. Conversely, 
the maximum resisting work is evaluated by integrating the work spent along the 
crack OO’ by assuming the homogenized failure surface of masonry derived in 
the same paper by the cited author, Figure 5.5. 

 

Figure 5.22 Rigid block failure mechanism assumed by De Buhan and de Felice (1997) 
for the homogenized wall undergoing uniform vertical and horizontal accelerations. 
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By minimizing the ratio between the maximum resisting work and the 
external work, an upper bound estimate for the collapse load multiplier is 
obtained and reads: 
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(5.86) 

in case a rigid rotation around the centre O is assumed, and reads: 

lim

 
(5.87) 

in case a rigid horizontal translation of the wall is assumed. 
Finite element analyses are conducted in order to reproduce the behaviour 

of three types of walls which have the same area, equal to 16 m2, and different 
aspect ratios =H/L, equal to 0.5, 1.0 and 2.0. Only one of the two texture 
investigated by Ceradini (1992) is adopted here. More precisely an aspect ratio 
for the unit  875.0m  is assumed. The Lame’s constants of the unit are 
assumed equal to 1.1b GPa and 291.µb  GPa. The whole set of joints has a 
normal and tangential stiffness equal to 630.K n  GPa/m and 8.12tK  
GPa/m, while the cohesion and the coefficient of friction are assumed equal to 

0.0c  KPa and 6.0µ , respectively. Finally, a small value of dilatancy, 
2.0Ψ , is assigned to the interfaces between the units.  

The three walls are constrained at the base both in the horizontal and 
vertical directions. The meshes adopted consist in 800 four nodes compatible 
finite elements. The problem is tackled in plane stress condition and the loads 
are imposed in two subsequent steps: first the gravity is applied, then an 
increasing horizontal acceleration is imposed uniformly over the model until the 
collapse mechanisms is achieved. 

The response of the wall having H/L ratio equal to 0.5 is plotted in Figure 
5.23 in terms of the horizontal load multiplier  and the horizontal displacement 
u measured at a control point located at the top-right corner of the model. The 
results are compared against the average of the load multiplier evaluated 
experimentally and the one predicted by the analytical model proposed in De 
Buhan and de Felice (1997). 
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Figure 5.23 Horizontal load multiplier versus the displacement measured at the top of the 
wall (H/L =0.5). 

According to experimental evidences, the collapse is triggered by the 
development of a stair-step crack which propagates from the top edge towards 
the bottom-right corner of the wall. Noteworthy, only a small portion of the 
entire specimen is involved by the mechanism while the remaining part of the 
stonework is unaffected by the external load. A comparison between 
experimental and numerical outcomes is reported in terms of deformed shape of 
the wall together with the plastic displacement experienced by the joints, Figure 
5.24.  

In the finite element analysis conducted by means of the multi-scale 
approach, the crack observed during the test is reproduced by a band where the 
plastic strains develop. In this band, the plastic displacement exhibited by the 
bed joint 12 proves negligible with respect to the displacements which occur in 
the other joints. In fact, while the former experiences shear and compression 
stresses upon the imposition of the load, the latter undergo shear combined with 
traction. Accordingly, since the proposed approach relies on a compatible 
scheme at the microscopic scale, the slip experienced by the bed joint 23 results 
equal to the normal strain experienced by the head joint, and therefore is 
sufficient to describe the plastic deformation exhibited by the material, see for 
instance Figure 5.12. 
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a) 

b) 
 

c) 

Figure 5.24 Wall having H/L =0.5: Comparison between experimental test (a) and 
numerical outputs in terms of the deformed shape at collapse (b) and plastic slips of bed 

interfaces 
23
tw  (c), expressed in m. 

The result of the analysis conducted on the wall having H/L ratio equal to 
1.0 are reported in Figure 5.25. The collapse load multiplier obtained by the 
experimental tests slightly decrease with respect to the previous case. 
Conversely the prediction made by the analytical formulation and the numerical 
analysis proves almost unchanged. A quite satisfactory reproduction of the 
deformed shape and the failure mode of the wall under increasing level of 
horizontal acceleration is found, Figure 5.27. 
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Figure 5.25 Horizontal load multiplier versus the displacement measure at the top of the 
wall (H/L =1.0). 

  

Figure 5.26 Collapse mechanisms of the wall having H/L=1 and amplified deformed 
mesh obtained by applying the multi-scale approach proposed. 

The plastic strains develop in a band which is analogous to the one 
encountered for the wall with H/L=0.5, Figure 5.27, which may explain the 
negligible variation of the collapse load multiplier provided by the two 
numerical tests.  
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Figure 5.27 Contour plot of (a) the plastic slip 23
tw  developed within the bed interface, 

expressed in m (H/L=1). 

Finally, the last wall considered has an aspect ratio H/L =2. In this case an 
higher discrepancy is encountered between the proposed model and the 
experimental results, Figure 5.28. The contour plot of the plastic displacement 
exhibited by the bed joints at collapse is reported together with the deformed 
shape of the wall in Figure 5.29. 

Figure 5.28 Horizontal load multiplier versus the displacement measure at the top of the 
wall (H/L =2.0). 
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a) (b) c) 

Figure 5.29 Contour plot of (a) the plastic slip 23
tw and  (b) normal displacement 23

nw  of 
bed interfaces, expressed in m, and amplified deformed shape at collapse (c), (H/L=2). 

The overestimation of the collapse load multiplier reflects the mismatching 
between the observed collapse mechanism and the one predicted by the proposed 
model. According to Ceradini (1992), the wall tends to overturn by forming a 
crack analogous to that observed in the previous cases, which develops on the 
top of the specimen and isolates a small portion of the wall that overturns. On 
the contrary in the proposed model the plastic strains develop on the lateral edge 
of the wall and propagate towards the opposite corner at the base, Figure 5.29. 
Accordingly, the collapse predicted by the finite element analysis involves a 
bigger portion of the structure which may explain the higher collapse load 
multiplier obtained. 

The results obtained can be summarized in the following plot where both 
the analytical and finite element solutions are compared against the whole set of 
experimental results obtained by Ceradini (1992). A good agreement is found 
between the analytical and finite element results, which is not surprising since 
they both originate from an homogenization approach applied to the same micro-
mechanical model of block connected by interfaces. Moreover they both 
represent an upper bound estimate for the exact solution of the problem under 
consideration. 
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Figure 5.30 Comparison between the horizontal load multiplier evaluated by mean of the 
analytical solution by De Buhan and de Felice (1997) and by finite element analyses 

against the experimental tests by Ceradini (1992). 

On the contrary some discrepancy may be found with the experimental tests 
in terms of the load multiplier. The latter discrepancy may be related to second 
order effects and to a “size” effect deriving from the finite number of bricks 
involved in the tests. The latter cannot be accounted for in the model since a first 
order homogenization approach is adopted here which relies on the hypothesis 
that the dimensions of the units are small when compared to the dimension of 
the structural element under consideration. In the latter condition, the following 
convergence result has been obtained (De Buhan 1986): 

hom
limlimlim 

n
 

(5.88) 

Anyway, it is not possible to state if lim  approaches from below or from above 
the value of hom

lim since it may depend on the boundary condition applied to the 
problem. For instance, following the reasoning by de Felice et al. (2010) , let us 
refer to the problem of the wall under vertical load and horizontal traction 
analyzed in the previous section of the chapter. Under the hypothesis that the 
wall at the base is able to provide either friction and cohesion, the maximum 
allowable horizontal traction decreases as the number of courses increases, Eq. 
(5.84).  
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Conversely, if the boundary conditions are change by removing the cohesion and 
friction at the base, the expression of the maximum horizontal traction reads: 



















 






 





1

1
2lim

)1()1( n

i n
nqi

n
H

m
µ

m
nc

µ
cHT

 
(5.89) 

which in the limit n convergences to the same value of the previous case, 
Eq. (5.85), with an opposite trend since the horizontal traction increases as the 
number of courses increases, indicating that the boundary conditions may affects 
the results for a finite number of courses n.  

Response of masonry arches under non uniform ground 
settlements 

Verification of existing structures to soil settlement is a topic of great 
interest in the technical community. Among others, masonry arches prove 
particularly sensitive to this kind of problems. In this context, the proposed 
multi-scale approach may be a valuable tool for the assessment of the damage 
induced by settlement on this type of structure. To this purpose let us analyse the 
case study of the Felice aqueduct. This structure was built between 1583 and 
1585 from the Pope Sisto V and supplied water to two neighbourhoods in Rome, 
namely Viminale and Quirinale. In the area of Lodi square, the aqueduct was 
composed by a sequence of semi-circular tuff masonry arches having span of 2.3 
m. Around 1930 because of the expansion of the city and of the needs for larger 
streets, five of the original arches of the aqueduct where demolished and 
replaced with solid brick masonry arches having span of 5.5m, Figure 5.31. 

 

Figure 5.31 View of the Felice aqueduct in the area of Lodi square. Low span arches are the 
originals ones built with tuff masonry in XVI century while large span arches were built in 

1930 with solid brick masonry, Sebastianelli (2011). 
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a) 

 

b) 

Figure 5.32 Details of brick (a) and tuff (b) masonry arches belonging to the Felice 
aqueduct, Sebastianelli (2011). 

Recently, two galleries have been made at a depth of 20 m from the ground 
level for the construction of a new tube line. This intervention is thought to 
produce non uniform ground settlements which may induce cracking on the 
structure. Therefore, the aqueduct is currently under observation in order to 
monitor the development and, in case, the evolution of local damage. 

In the following, numerical analyses are conducted in order to compare the 
behaviour of the two types of arcade belonging to the aqueduct. To this purpose 
let us consider the two portions of the latter structure as depicted in Figure 5.33. 
The first one reproduces a series of three tuff masonry semicircular arches 
having a span of 2.3 m; the piers are 8 m high and the height of the spandrel wall 
measured from the impost of the arches is 2.85 m. The second structure consists 
in a series of three solid brick masonry semicircular arches having span of 5.5 m; 
the piers are 5 m high and the height of the spandrel wall is 4.25 m. For the sake 
of simplicity, the thickness of the whole set of elements is assumed unitary in the 
out-of-plane direction. The aim is to analyse the response of these structures 
under a non uniform ground settlement. The finite element models adopted for 
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reproducing these portions of the structures are reported in Figure 5.33 and 
consist in a set of four node compatible elements. The models are constrained at 
the bottom of the piers both in the vertical and horizontal directions while only 
the horizontal direction is constrained at the lateral sides of the structure aiming 
at reproducing the interaction with the remaining part of the aqueduct. The 
ground settlement is reproduced as addressed next: once the gravity load has 
been applied, an increasing vertical displacement is imposed at the bottom of the 
central pier. 

 
a) 

 

 
b) 

Figure 5.33 Finite element meshes adopted for modelling the arches of the Felice 
aqueduct: (a) small span arches, (b) large span arches. 

The whole set of structural elements is modelled through the proposed 
multi-scale methodology. For properly modelling the behaviour of the arches, 
the local axes of the finite elements have been rotated in order to align the bed 
joints perpendicularly in each point to the direction of the arch. Conversely, the 
alignment of bed joints in the remaining part of the structure is kept parallel to 
the horizontal direction. The mechanical properties of the two types of masonry 
encountered have been adopted referring to the results of in-situ tests performed 
by G. Morelli from University La Sapienza, Roma, Sebastianelli (2011), which 
are reported in Table 5.2. As outlined by the plots, shear slips develop in a 
section of the arches located at the right side of the keystone. This is not 
surprising, since the settlement is thought to produce a reduction of the thrust in 
the arches which allows adjacent blocks to slide. Then, plastic bands initiate 
from the abovementioned sections of the arches and develop, under increasing 
displacement, towards the top edge of the spandrel wall. These plastic bands 
isolate one portion of the structure, so that the settlement does not affect 
considerably the wall and the arches beyond this region, Figure 5.34. 
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Table 5.2 Geometrical and mechanical properties of the masonries belonging to the 
Felice aqueduct. 

a) b) 

c)  

Figure 5.34 Contour plot of (a) the plastic normal displacement 23
nw  , (b) the plastic slip 

23
tw developed within the bed interfaces, expressed in m, and (c) the deformed mesh of 

low span arches. The plastic displacements experienced by bed joint 12 prove specular to 
the one here reported. 

Heigth of the unit a 0.05 m a 0.04 m

Length of the unit b 0.30 m b 0.25 m

Yound modulus of the unit Y b 2.00E+06 KPa Y b 1.50E+06 KPa

Poisson coeffcient of the unit ν b 0.23 - ν b 0.23 -

Normal Stiffness of the interface K n 30.6 KPa/m K n 15 KPa/m

Tangential Stifness of the interface K t 12.8 KPa/m K t 6.3 KPa/m

Cohesion of the joints c 0.01 KPa c 0.01 KPa 

Coefficient of friction µ 0.6 - µ 0.6 -

Tuff MasonrySolid brick masonry
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The analysis conducted on brick masonry arches having a larger span 
shows analogue results, which are reported in Figure 5.35 in terms of plastic 
displacements experienced by bed joint (23) and the deformed mesh recorded. In 
the case at hand, plastic bands develop from a section on the left side of the 
keystone and show an analogous inclination to the previous case discussed.  

a) 

 b) 

c)  

Figure 5.35 Contour plot of (a) the plastic normal displacement 23
nw  and (b) the plastic 

slip 23
tw developed within the bed interfaces, expressed in m, together with (c) the 

deformed mesh for large span arches. The plastic displacements experienced by bed joint 
12 prove specular to the one here reported. 
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In order to make a comparison between the responses of the two types of 
arches analysed, the total maximum jump of displacement 22

max tn www   
recorded on the interfaces within each structure is plotted against the ground 
deflection imposed, i.e. the ratio between the settlement imposed at the base of 
the central pier δ and two times the span of the arches 2 L.  

 

Figure 5.36 Comparison between the maximum jump of displacement recorded in the 
models versus the imposed settlement deflection, δ/2L. 

The comparison shows to what extent arches having a longer span are more 
sensible to differential settlement with respect to arches having a smaller span 
and provides information on the level of damage that the structures may exhibit 
for different level of ground movements. The results collected have not a general 
validity and are applicable only to the structures analysed in the present work. 
Nevertheless, the aim is to show to what extent the multi-scale approach 
presented may be a valuable tool for the analysis of historical masonry structure 
and may provide direct and useful information for the designer. For instance, for 
a given design scenario, i.e. position and depth of the tube’s gallery, it is 
possible to estimate the expected ground settlement and curvature at the base of 
the aqueduct by adopting the theory developed by Peck (1969). Then, the 
expected level of damage which the arches are supposed to undergo may be 
deduced by using Figure 5.21 and, accordingly, the level of safety of the design 
scenario may be established. 
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6. Conclusions 

The present thesis deals with the mechanical behaviour of unreinforced 
masonry structures. 

The first part of the work provides a contribution to the study of out-of-
plane seismic behaviour of masonry walls by means of both experimental shake-
table tests and a reliable modelling approach. An experimental campaign on a 
natural scale U-shaped assemblage, consisting of a façade and two transverse 
walls, has been carried out. A set of 34 shake-table tests is presented, in order to 
analyse the seismic behaviour of the façade, from the beginning of rocking up to 
overturning. The tests confirm the existence of a significant dynamic reserve of 
stability, which allows the wall to be set into motion without necessarily 
collapsing. Such reserve should not be neglected in assessment procedures, 
whenever it is necessary to limit either costs (large urban districts involved) or 
interventions (e.g., because the strengthening could imply cultural loss). The 
above considerations hold provided that the wall behaves monolithically, which 
is the case under consideration. When poor quality masonry is encountered and 
disaggregation occurs, the out-of-plane capacity of the wall is expected to 
strongly reduce. 

A modelling approach, based on the Distinct Element Method, is developed 
for reproducing the non-linear dynamic behaviour of the wall. It takes into 
account the asymmetry of motion caused by the impact against the transverse 
walls, a smooth restoring moment–rotation relationship, and the effect of 
imperfections, such as tilted foundation or gap in existing cracks. A comparison 
with the presented experiments shows that contact points should be enough to 
match the push-over curve of a block on an elastic foundation, that the contact 
stiffness is about 1/5 of the mortar elastic modulus, and that the damping ratio 
lies in the range 0.02 tan α - 0.10 tan α, depending on the damage level. The 
methodology adopted is capable of reproducing the tests, in terms of both entire 
time history and maximum rotation, even if model parameters are roughly 
assumed. 

Experimental and numerical data, generated through the established model, 
are used to check the current Italian seismic code assessment procedures. The 
comparison reveals a rather large scatter in code procedures, which is related to 
the simplifications in the two approaches. However, this scatter is accounted for 
by an adequate safety margin. As a matter of fact, the strength-based assessment 
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proves to be conservative in 99% of cases, while the displacement-based 
approach is conservative in 82% of cases. Eventually, code procedures may give 
controversial results when compared one against the other, and fail to capture 
significant features of the response. Therefore, dynamic models prove valuable 
both for validating code procedures, and for delivering more accurate physical 
representation of seismic behaviour of masonry walls.  

The second part of the thesis gives a contribution to the development of 
simplified homogenization procedures for describing the behaviour of masonry 
structures both in the elastic and non linear range. 

Within the elastic range, a novel approach is followed for the constitutive 
identification of elastic masonry, which applies rigorously the homogenization 
theory in one step considering three-dimensional effects, the actual thickness and 
the whole set of mortar joints. A simplified kinematics for the representative 
volume element of the material (RVE) is adopted: the hypothesis of piece-wise 
constant strain field makes it possible to handle the problem analytically and to 
derive the elasticity tensor of masonry as a function of mortar and brick 
geometrical and mechanical properties. Relevance is then given to the tensors of 
strain and stress localization which make it possible to derive the microscopic 
fields for a given macroscopic load.  

The formulations found include, as particular limit cases, some of the 
models previously proposed in literature, i.e. in which masonry is regarded as a 
stratified material or in which joints are treated as interfaces. 

The error introduced by the model compared to finite element analysis is 
particularly low both in terms of elastic modules and microscopic stresses fields, 
even when large differences between mortar and brick stiffness are considered, 
or when thick joints are taken into account. Furthermore, good agreement is 
found with experimental data in predicting the elastic modulus under vertical 
compression.  

The proposed method is then applied to evaluate the limit elastic domain of 
masonry under in-plane loads. The results are in agreement with the 
experimental tests available in literature, Page (1985). The anisotropic behaviour 
induced by the internal microstructure of the material is well represented and 
direct information is given on the triggering failure mode related to different 
combinations of in-plane loads. 

Within the non linear range a multi-scale methodology is set up for 
evaluating the response of in-plane loaded masonry. More precisely, a first order 
homogenization is performed where Cauchy continua are adopted for 
representing both the equivalent medium at the macroscopic scale and the 
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components at the microscopic scale. In order to reduce the complexity of the 
problem, a micromechanical model is adopted, where masonry is treated as an 
assembly of elastic blocks connected by elasto-plastic interfaces obeying to a 
Mohr-Coulomb criterion with non-associative flow rule. A simplified kinematics 
is thus introduced over the representative volume element of the material, which 
assumes an affine displacement for the block and makes it possible to express 
the localization problem, i.e. the problem that governs the transition from the 
macroscopic to the microscopic scales, in terms of a reduced number of 
unknowns. The solution of the latter problem is found efficiently and with low 
computational effort by resorting to an iterative Newton-Raphson scheme. 
Accordingly, the proposed algorithm provides for a prescribed macroscopic 
strain the co-respective macroscopic stress and the elasto-plastic tangent 
operator taking into account the non linearities that develop at the microscopic 
scale. 

To test the capability of the proposed approach in solving the non linear 
localization problem, numerical analyses have been carried out on the RVE 
undergoing monotonically increasing macroscopic loads. The results show that 
the proposed scheme is able to reproduces the progressive development of 
plastic strain and the redistribution of internal stresses within the block and the 
interfaces for different types of load condition. 

Finally, the multi-scale algorithm is implemented in the finite element code 
Abaqus and some applications have been discussed. In particular, the analysis of 
dry-stack masonry walls under gravity and horizontal accelerations has been 
presented. The results show a reasonable agreement with experimental tests from 
literature in terms of collapse load multiplier and mode of failure. The small 
discrepancy found may be related to size effects which are not accounted for in 
the model since a first order homogenization is adopted for deriving the response 
of the material or to second order effects, deriving from large displacements. 
Eventually, the proposed approach proves consistent with analytical 
formulations obtained for selected applications within the ambit of the yield 
design theory.  

The results collected demonstrate the feasibility of the proposed multi-scale 
algorithm and its capability in reproducing the behaviour of dry-stack masonry 
structures. Being aware that the methodology discussed treats only some aspects 
of masonry behaviour which are mainly related with the friction that develops 
within the joints, it may be reasonable extended to the analysis of historical 
masonry too, provided that regular arrangement of the block, small thickness of 
the joints and poor quality mortar are encountered.  
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The proposed methodology is then adopted for evaluating the response 
under non-uniform ground settlements of masonry arcades which belong to the 
Felice aqueduct in Rome. The analyses provide a direct relation between the 
expected damage on the structure, which is measured in terms of opening and 
sliding of the joints, and the level of ground settlement. The results collected do 
not have a general validity since only few cases are discussed. Nevertheless, 
they suggest to what extent the proposed methodology proves a valuable tool for 
the analysis of historical construction in selected engineering applications.  

Conversely, when dealing with modern masonry the proposed approach 
would manifest its main limits and an improvement would be necessary. 
Noteworthy, it is possible to include in a straightforward way more sophisticated 
constitutive relations that reproduce progressive cracking of the joints. 
Nevertheless, the representation of the joint as zero-thickness interfaces proves 
to be not satisfactory in reproducing the failure of masonry in compression and a 
micro model which accounts for the finite thickness of the joint would be 
necessary. 

The future developments of the work are oriented towards these directions: 
starting from the algorithm here presented the aim is to improve it by including 
finite thickness of the joint, by referring to the micromechanical model presented 
in Chapter 4, and more refined constitutive relations for the components so as to 
obtain a computational tool for the analysis of historic and modern masonry 
structures which is reliable and low time consuming. In the meanwhile, proper 
measures to handle convergence difficulties and the well-known problems of 
mesh-dependency and localization of strain are evaluated among the different 
solution proposed in the literature, i.e. the use of finite element based on a mixed 
formulation, the use of a Cosserat identification at the macroscopic level, use of 
non-local integral model among others. 
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