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Three quarks for Muster Mark!
Sure he has not got much of a bark

And sure any he has it’s all beside the mark.

- James Joyce, Finnegans Wake -
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Introduction

Photon-photon interactions are forbidden in classical electrodynamics. According toMaxwell’s

linear equations electromagnetic waves cross each other without any disturbance. In quantum

electrodynamics (QED), however, the uncertainty principle allows a photon of energy Eγ to

fluctuate into states of charged particle pairs with mass mpair and lifetime ∆t ≈ 2Eγ/m
2
pair,

and photon-photon scattering becomes possible due to the interaction of the intermediate par-

ticles. The cross section for photon-photon interactions is of the order α4, but increases with

the beam energy E like (logE/me)2, and therefore already dominates over the O(α2) e+e− an-

nihilation process for beam energies of a few GeV. Experimentally it is difficult to collide high

energy photon beams. A simple way of avoiding this problem is to use virtual particles, e.g.,

the quantum fluctuations of an electron into an electron-photon state. This is done at electron

and positron colliders. In the basic diagram of photon-photon reactions both the incoming e+

and e− radiate a photon, predominantly at small angles and with small energies, and the two

photons produce the final state X. Photon-photon production of neutral mesons provides basic

information on their internal structure. The strength of the coupling, measured by the partial

decay width Γ(X → γγ), is related to the quark content of the meson and gives information

on the relations between the hadronic state and its qq̄ representation. The measurement of the

radiative width of pseudoscalar mesons is indeed a crucial input for the determination of the

pseudoscalar mixing angle and for testing the valence gluon content in the η′ wavefunction.

Moreover, a precise study of the form factors of the transition γγ∗ → X, where one photon is

off-shell and the other is real, is of particular interest in evaluating the light-by-light contribu-

tion to the anomalous magnetic moment of the muon.

Photon-photon interactions in electron-positron colliderswere pioneered in the 1970s at ADONE

in Frascati and since then have been used to study the production of hadrons in almost all e+e−

colliders in a variety of conditions in low- and high-q2 processes. In particular, measurements

of the γγ partial width of η and η′ mesons have been done measuring the e+e− → e+e−η(η′)

cross section.

This thesis is focused on the measurement of the cross section e+e− → e+e−η and the extraction

of the partial width Γ(η → γγ) with the KLOE detector at the φ-factory DAΦNE. DAΦNE is

an e+e− collider that operates at the mass of the φ resonance, 1020 MeV. The measurement is

done with off-peak data, at
√
s = 1 GeV, to reduce the large background from φ decays, and

with an integrated luminosity of about 240 pb−1. The final state e+ and e− are not detected,

being emitted with high probability in the forward directions, outside the acceptance of the
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Introduction

detector. The production of the η meson is identified in two decay modes, η → π+π−π0 and

η → π0π0π0, that exploit in a complementary way the tracking and calorimeter of the detec-

tor. The most relevant background for both measurements is the radiative process e+e− → ηγ

when the monochromatic photon is emitted at small polar angles and escapes detection. The

cross section for e+e− → ηγ is measured in the same data sample with a dedicated analysis.

The cross section of the process e+e− → e+e−η is a convolution of the differential γγ lumi-

nosity and the γγ → η cross section. The η partial decay width Γ(η → γγ) is obtained by

extrapolating the value of σ(γγ → η) for real photons, using a parametrization for the η form

factor based on recent measurements.

The value obtained for the η partial decay width Γ(η → γγ) is in agreement with the world

average and is the most precise measurement to date.
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Chapter 1

Mesons in the quark model

1.1 The quark model

In the 1960s and 1970s the number of observed hadronic resonances rapidly grew. Several at-

tempts were made to build a new classification scheme for summarizing the regularities of the

quantum numbers of all the particles. In 1964 M. Gell-Mann and G. Zweig independently pro-

posed the “quark model” [1, 2, 3], which was the follow-up to a classification system known as

the Eightfold Way, or SU(3) flavour symmetry. According to the quark model, the hadrons are

composed of three fundamental particles: the “up”, “down” and “strange” quarks, denoted

as u, d and s. For every quark flavour there is a corresponding antiparticle, known as an an-

tiquark, that differs from the quark in that some of its quantum numbers have opposite sign.

The antiquarks corresponding to the u, d and s quarks are denoted as ū, d̄, s̄. Both quarks and

antiquarks are strongly interacting fermions with spin 1/2. Quarks have, by convention, posi-

tive parity, while antiquarks have negative parity. In the quark model, all known hadrons are

composed of quarks and antiquarks according to the following simple rules:

• each meson is a quark-antiquark pair;

• each baryon consists of three quarks, and each antibaryon of three antiquarks.

This simple model accounts to perfection for the properties of all the hadrons known in the

1960s. The electric charge, baryon number and isospin of the particles equal the sum of the

corresponding quantum numbers of the composing quarks. One of the outstanding features

of quarks is their electric charge. Contrary to all the previously discovered particles, they have

non-integer charges (in units of the proton charge): 2/3 for u and -1/3 for d and s. This is

a consequence of the fact that the baryon number of each quark is 1/3 (the resulting baryon

number for baryons is 1); as for strangeness, it is 0 for u and d, and -1 for s. The flavour

quantum numbers of the quarks are related to the charge Q through the Gell-Mann-Nishijima

formula Q = I3 + (B + S)/2 = I3 + Y/2, where I3 is the third component of the isospin, B is

the baryon number, S is the strangeness and Y is the hypercharge. The u and d quarks form

an isospin doublet (I = 1/2) with S = 0, where the u quark has I3 = +1/2 and the d quark

has I3 = −1/2. The s quark is an isospin singlet (I = 0) with S = −1. The flavor of a quark

3



Chapter 1. Mesons in the quark model

(Iz , S, B) has, by convention, the same sign as its charge Q. Therefore any flavor carried by a

charged meson has the same sign as its charge. Antiquarks have the opposite flavor signs. The

properties of quarks and antiquarks are summarized in Tab. 1.1. Mesons, consisting of a quark

Q I3 B S Y

u +2/3 +1/2 1/3 0 1/3

d -1/3 -1/2 1/3 0 1/3

s -1/3 0 1/3 -1 -2/3

ū -2/3 -1/2 -1/3 0 -1/3

d̄ +1/3 +1/2 -1/3 0 -1/3

s̄ +1/3 0 -1/3 +1 +2/3

Table 1.1: Properties of quarks. Q is the electric charge, I3 the third component of the isospin,
B the baryon number, S the strangeness, Y the hypercharge.

and an antiquark, have baryon number B = 0. If the orbital angular momentum of the qq̄ state

is l, then the parity is P = (−1)l+1, where the factor (−1)l comes from the orbital motion and

the factor −1 is due to the opposite intrinsic parities of quark and antiquark. The meson spin

J is given by the usual relation |l − s| ≤ J ≤ |l + s|, where s is 0 (antiparallel quark spins) or 1

(parallel quark spins). The charge conjugation, or C-parity, is C = (−1)l+s and is defined only

for the qq̄ states made of quarks and their own antiquarks. The C-parity can be generalized to

the G-parity G = (−1)I+l+s, where I is the isospin. Mesons are classified in JPC multiplets. The

l = 0 states are the pseudoscalars 0−+ and the vectors 1−−. The orbital excitations l = 1 are

the scalars 0++, the axial vectors 1++ and 1+−, and the tensors 2++. According to the SU(3)

symmetry, the nine possible qq̄ combinations containing the light u, d, and s quarks are grouped

into an octet and a singlet of light quark mesons: 3 ⊗ 3 = 8 ⊕ 1, as shown in Fig. 1.1 for the

pseudoscalar mesons. The singlet with Y = 0 and I = 0 contains all the quarks on an equal

Figure 1.1: Pseudoscalar mesons arranged in SU(3) octet and singlet.

footing. The normalized singlet state is

|1SU(3); |~I| = 0〉 ≡ ψ1 = 1/
√
3(uū + dd̄ + ss̄) , (1.1)

4



1.2. Mesons mixing

symmetric in flavour, where n is the dimensionality of the representation. Of the two states at

the centre of the octet, one belongs to an isospin triplet (isovector) and the other is an isospin

singlet (isoscalar), both have I3 = 0. The quark wavefunction of the I3 = 0 triplet state is

|8SU(3); |~I| = 1〉 ≡ ψV = 1/
√
2(uū− dd̄) . (1.2)

Since the s and s̄ quarks are isospin singlets, they cannot couple to give an I = 1 state. However,

they can couple to give an I = 0 state so that the I = 0 state at the center of the octet is a linear

combination of uū, dd̄ and ss̄. The properly normalized state, orthogonal to (1.1) and (1.2), is

|8SU(3); |~I| = 0〉 ≡ ψ8 = 1/
√
6(uū + dd̄− 2ss̄) . (1.3)

Pseudoscalar mesons have angular momentum J = 0: quark and antiquark are in the min-

imum energy state, with relative angular momentum l = 0, and have opposite spin. The

correspondence between pseudoscalar mesons and qq̄ states is: K+ = us̄, K0 = ds̄, π− = ūd,

K− = ūs, K0 = d̄s, π+ = ud̄. The pseudoscalar mesons π0, η, η′, that have quantum numbers

Q = 0, I3 = 0, Y = 0, are represented as orthogonal combinations Auuū + Addd̄ + Asss̄, with

normalized amplitudes |Au|2 + |Ad|2 + |As|2 = 1.

1.2 Mesons mixing

The mass splitting in the multiplets show that although flavour SU(3) describes the hadron

spectrum very well, it is not an exact symmetry. If it were, indeed, the states in a given mul-

tiplet would be degenerate. In the pseudoscalar sector, assuming that the π0 meson has no

strangeness component (mπ0 < ms) and is the (uūdd̄)/
√
2 state, SU(3)-breaking causes the

physical η0 and η′ mesons to be mixtures of the SU(3) octet and singlet states:

η = η8 cos θP − η1 sin θP ,

η′ = η8 sin θP + η1 cos θP , (1.4)

where η′ and η are the physical states, η1 and η8 are the singlet and octet state respectively

and θP is the mixing angle in the pseudoscalar nonet. The physical states η′ and η are re-

lated to the SU(3) singlet and octet states by a rotation of the angle θP. For small values of θP

the parametrization (1.4) implies that η′ is mainly a singlet state and η mainly an octet state.

Assuming the mass matrix elements to be quadratic rather than linear (according to chiral per-

turbation theory),

H

(
η1

η8

)
=

(
M2

11 M2
18

M2
18 M2

88

) (
η1

η8

)
. (1.5)

After diagonalization of the mass matrix one derives [2]:

tan2 θP =
M2

88 −m2
η

m2
η′ − M2

88

, (1.6)
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Chapter 1. Mesons in the quark model

with M2
88 = 1/3(m2

K − m2
π). Similar expressions exist for the vector and tensor meson nonets

in which there are φ − ω and f ′2 − f2 mixing respectively. The sign of the mixing angle is

negative (positive) according to whether the mass of the mainly octet member is smaller than

(greater than) that of the mainly singlet member. Important predictions about the dominant

decay modes of the isoscalar states come from the observation that the 1− and 2+ nonets are

almost “ideally mixed”. The singlet and octet wavefunctions for the isoscalar states are defined

in (1.1) and (1.3), and the octet-singlet mixing is, for the general case, parametrized by

m8 = ψ8 cos θ − ψ1 sin θ ,

m1 = ψ8 sin θ + ψ1 cos θ , (1.7)

where m1 and m8 are the physical, mainly singlet meson and the physical, mainly octet meson

respectively. If sinθ = 1/
√
3, where θ is the mixing angle, one has m1 ≈ uū + dd̄ and m8 ≈ ss̄.

In this case the nonet is said to be ideally mixed because the singlet state consists only of uū

and dd̄ quarks and the octet state only of ss̄ quarks. Ideal mixing happens for θ ≈ 35o, which is

approximately the case for the 1− and 2+ nonets but not for the pseudoscalar nonet. Therefore,

for themembers of these nonets, themainly singlet states decay predominantly to pseudoscalar

mesons consisting of u and d quarks (pions) and the mainly octet states to strange pseudoscalar

mesons (kaons): BR(φ → KK̄) ≈ 83%, BR(ω → π+π−π0) ≈ 89%, BR( f ′2 → KK̄) ≈ 89%,

BR( f2 → ππ) ≈ 85%.

1.3 γγ coupling of mesons

The nonet mixing angles can be measured in γγ collisions. The γγ couplings of mesons can

be expressed in terms of coupling constants gMγγ. For pseudoscalar and scalar resonances one

can define [4]:

ΓPγγ =
m3

P

64π
g2Pγγ ,

ΓSγγ =
m3

S

16π
g2Sγγ . (1.8)

In the quark model mesons are represented as

|M〉 = Σqcq|qq〉 . (1.9)

The coupling of two photons (with a given γγ helicity) to a quark-antiquark pair is proportional

to the square of the quark charge:

〈qq|γγ〉 ∼ e2qψq(0) (S wave) ,

〈qq|γγ〉 ∼ e2qψ′
q(0) (P wave) , (1.10)

6



1.3. γγ coupling of mesons

where ψq(0) is the radial quark wave function at the origin and ψ′
q(0) is the first derivative of

ψq(0) at zero. If ψq(0) is independent of the quark flavour the γγ coupling constant of a meson

M can be related to the quark charge through (1.9) and (1.10):

gMγγ ∼ 〈M|γγ〉 ∼ Σqcqe
2
q = 〈e2q〉 . (1.11)

The coefficients cq are given by the SU(3) representations shown in (1.1)-(1.3). The effective

squared charges defined in (1.11) are

〈e2q〉V = (e2d − e2u)/
√
2 = 1/(3

√
2) ,

〈e2q〉8 = (e2u + e2d − 2e2s )/
√
6 = 1/(3

√
6) , (1.12)

〈e2q〉1 = (e2u + e2d + e2s )/
√
3 = 2/(3

√
3) ,

where the indices 8 and 1 denote the flavour octet and flavour singlet isoscalars, while the

symbol V denotes the isovectors (e.g. π0, a2). Since the SU(3) symmetry is broken by the mass

of the s quark, the physical states are mixtures of the SU(3) singlet and octet states, as explained

in the previous section. Therefore, neglecting any possible mass dependence, the ratios of the

coupling constants depend only on the quark charges and on the mixing angle:

gπγγ : gηγγ : gη′γγ = ga2γγ : g f ′γγ : g fγγ =

〈e2q〉V : cos θ〈e2q〉8 − sin θ〈e2q〉1 : sin θ〈e2q〉8 + cos θ〈e2q〉1 =
√
3 : cos θ − 2

√
2 sin θ : sin θ + 2

√
2 cos θ . (1.13)

A possible mass dependence for the coupling constant gMγγ is strongly model dependent.

The first two-photon experiment proposed for e+e− storage rings was the measurement of the

π0 width [5]. The π0 → γγ decay played a fundamental role in the determination of the

number of color degrees of freedom of the quarks and therefore became a milestone for the

development of the color gauge theory, “quantum chromodynamics” (QCD). The γγ width of

the π0 is connected to the γγ widths of the η and the η′ mesons through the relations [6]:

Γη→γγ

Γπ0→γγ

=
1

3

m3
η

m3
π

[
fπ cos θP

fη8
−

√
8 fπ sin θP

fη1

]2

, (1.14)

Γη′→γγ

Γπ0→γγ

=
1

3

m3
η′

m3
π

[
fπ sin θP

fη8
−

√
8 fπ cos θP

fη1

]2

, (1.15)

where fπ is the pion decay constant, fπ ≈ 93 MeV, θP is the pseudoscalar mixing angle, fη1 and

fη8 are the decay constants for the combinations η1 and η8. The ratio f8/ fπ ≈ 1.25 has been

calculated using chiral perturbation theory. Therefore the measurement of the partial γγ width

Γ(X → γγ) is a crucial input for the determination of the pseudoscalar mixing angle.
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Chapter 1. Mesons in the quark model

1.4 Scalar mesons

Scalar mesons belong to the multiplet JP = 0+. They are grouped in a nonet, like the pseu-

doscalar mesons, but the mass spectrum is inverted, as shown in Fig. 1.2. This inversion

does not have any explanation within the usual description of mesons in terms of qq̄ couples.

Moreover, the scalar mesons have positive parity, which is not possible in a qq̄ combination

Figure 1.2: Mass spectrum of the scalar mesons (left) and pseudoscalar mesons
(right).

with angular momentum l = 0. One of the models used to describe the nature of the scalar

mesons is the “tetraquark model”, that predicts the existence of four valence quarks: a couple

of quarks (diquark) and a couple of antiquarks (antidiquark). This model explains the inverted

mass spectrum. In Tab. 1.2 the quantum numbers of the light scalar mesons (with mass < 1

GeV) are shown. In contrast to the vector and tensor mesons, the identification of the scalar

I I3 S Y composition

a+ 1 +1 0 0 [su][s̄d̄]

a0 1 0 0 0 1√
2
([su][s̄ū] − [sd][s̄d̄])

a− 1 -1 0 0 [sd][s̄ū]

f0 0 0 0 0 1
2([su][s̄ū] + [sd]s̄d̄)

σ 0 0 0 0 [ud][ūd̄]
K+ 1/2 +1/2 +1 +1 [ud][s̄d̄]
K0 1/2 -1/2 +1 +1 [ud][s̄ū]

K̄0 1/2 +1/2 -1 -1 [us][d̄ū]
K− 1/2 -1/2 -1 -1 [ds][d̄ū]

Table 1.2: Quantum numbers and scalar mesons composition in the diquark-antidiquark
model.

mesons is a long-standing puzzle. Scalar resonances are difficult to resolve because some of

them have large decay widths which cause a strong overlap between resonances and back-

ground. Scalar mesons can be produced in πN scattering, pp̄ annihilation, J/ψ, B-, D- and

K-meson decays, φ radiative decays and γγ interactions.
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Chapter 2

Photon-photon interactions

2.1 Physics with two photons

Light by light scattering [4, 7, 8, 9, 10] is forbidden in classical electrodynamics because accord-

ing to Maxwell’s classical linear equations electromagnetic waves cross each other without any

disturbance. In quantum electrodynamics (QED), however, the situation is different. The un-

certainty principle allows a photon of energy Eγ to fluctuate into states of charged particle pairs

with mass mpair. The lifetime of this intermediate state, ∆t ≈ 2Eγ/m
2
pair, can be very large for

high values of Eγ, and photon-photon scattering becomes possible due to the interaction of

the intermediate particles. In other words, the photons create virtual pairs by quantum fluc-

tuations of the vacuum. The simplest mechanism for elastic γγ scattering is given by the box

diagram (Fig. 2.1). Very intense sources of photons are electron and positron storage rings,

Figure 2.1: Box diagram for elastic γγ scattering.

which were built to investigate the annihilation of electrons and positrons. In the lowest order

of the electromagnetic coupling constant α, O(α2), this process can be seen as the annihilation

of e+e− into a virtual time-like photon, which then materializes into a final state X of hadrons

or leptons, as shown on the left side of Fig. 2.2. In the dominant diagram of the two-photon

mechanism (right side of Fig. 2.2), instead, electrons and positrons of both incident beams emit

virtual space-like photons that annihilate producing the final state X, which is some arbitrary

final state allowed by conservation laws. In particular, hadronic states with JPC = 0±+; 2±+

are directly produced through the γγ → X subprocess. The cross section of the process is of

the order α4 and is very small at low beam energies (up to several hundred MeV) if compared

with the e+e− annihilation cross section. However, the two-photon cross section increases with

9



Chapter 2. Photon-photon interactions

Figure 2.2: Feynman diagrams for e+e− annihilation (left) and γγ interactions (right).

the beam energy E like (logE/me)2, while the e−e− annihilation cross section decreases at least

like 1/E2. Therefore the two-photon process, despite of the order α4, already dominates over

the annihilation process (of the order α2) for beam energies of a few GeV. The structure of the

photon propagators in γγ reactions causes the photons to be radiated nearly on-mass-shell (al-

most real photons) and at small angles (∼ me/E) relative to the beam axis. The momentum

transferred to the system X is therefore small. Most γγ events produce a low invariant mass

final system, because of the typical bremsstrahlung spectrum of the emitted photons (∼ 1/Eγ).

The two-photon production of lepton pairs can be used to test quantum electrodynamics (QED)

up to the order α4, while the production of hadronic final states gives the possibility of prob-

ing hadron dynamics and studying the coupling of the photons to quarks. In the regime of

large four-momentum transfer q2 of the photons and high transverse momenta of the pro-

duced hadrons, the elementary nature of the photon is emphasized and the two photons have

a pointlike coupling to a quark pair (high-pT jets, structure functions). The investigation of

the production of high transverse momentum particles, jets, and scattering of highly virtual

photons, allows for tests of QCD. In the regime of low four momentum transfer q2 and low

transferse momenta of the hadrons, the hadronic nature of the photon is emphasized, and al-

most real photons are emitted. In the vector meson dominance (VMD)model [11], which works

fairly well in most processes involving real or almost real photons, the photons turn into virtual

vector mesons (e.g. ρ, ω, φ) which then interact strongly with hadrons (Fig. 2.3).

Figure 2.3: The dual nature of the photon: QED coupling (left) and and VMD coupling (right).

The first theoretical papers related to two-photon physics at e+e− storage rings appeared in

1960. At the end of the 1960s and early 1970s the storage rings in Frascati, Novosibirsk, Or-

say, Stanford and Hamburg became available. The first experimental results were obtained by

ADONE in Frascati [12] and by VEPP-2 in Novosibirsk [13]. Since then, γγ interactions have

10



2.2. Kinematics and cross section of γγ reactions

been used to study the production of hadrons in almost all e+e− colliders in a variety of con-

ditions in low- and high-q2 processes [10]. Both γγ∗ (one almost real photon and one virtual

photon) and γγ (two almost real photons) reactions, exclusive and inclusive and for different

regimes of photon-photon center of mass energyW, give crucial information on hadronic struc-

ture. At low to medium W, the main goal of exclusive γγ studies is to extract the two-photon

widths of meson resonances that couple to two photons. The measurement of the radiative

width of pseudoscalar mesons Γ(X → γγ) is a crucial input for the determination of the pseu-

doscalar mixing angle (see sections 1.2-1.3) and for testing the valence gluon content in the

η′ wavefunction [14]. On the other hand, a precise study of the form factors of the transition

γγ∗ → X, F(Q2
γ∗ , 0), where one photon is off-shell and the other one is real, allows one to test

phenomenological models used for computing the light-by-light contribution to the (g − 2)µ

prediction in the Standard Model [15] and the dynamics of the π0 → e+e− transition [16].

2.2 Kinematics and cross section of γγ reactions

Two-photon scattering at e+e− storage rings can be observed through the reaction e+e− →
e+e−γ(∗)γ(∗) → e+e−X: an electron and a positron radiate photons, and these photons produce

the final system X with even C-parity. The kinematics of the reaction is completely determined

by the four-momenta of the incoming and of the scattered electron and positron (see Fig. 2.4).

The main goal is to find the amplitudes for the γγ → X process, both for virtual and almost

Figure 2.4: Kinematics of the two photon reaction e+e− → e+e−X.

real photons. The colliding photons with momenta q1 and q2 are space-like (q2 < 0) and may

have both a transverse (T) polarization and a longitudinal (L) polarization. The mass of the

produced system is W2 = (q1 + q2)2. The observed e+e− → e+e−X cross section is expressed

in terms of the γγ → X cross sections for the corresponding photons: σTT, σTL, σLT, σLL, e.g.

σTL is the cross section for the collision of a transverse photon q1 with a longitudinal photon

q2. Moreover, the result has four additional interfering terms: τTT, τTL, τa
TT, τa

TL, where τTT

is the difference between cross sections for scattering transverse photons with parallel (‖) and

11



Chapter 2. Photon-photon interactions

orthogonal (⊥) linear polarizations, and τa
TT is the difference between the cross sections for

scattering of transverse photons in states with total helicity 0 (σ0) and 2 (σ2):

τTT = σ‖ − σ⊥; τa
TT = σ0 − σ2; σTT = 1/2(σ‖ + σ⊥) = 1/2(σ0 + σ2) . (2.1)

The terms τTL and τa
TL are connectedwith the interference terms of amplitudes for the transition

γγ → X where both transverse and longitudinal photons participate. All these quantities

depend onW2, q21 and q22 only. The differential cross section for the two-photon production has

the form

dσ(e+e− → e+e−X) =
α2

√
(q1q2)2 − q21q

2
2

32π4E2q21q
2
2

× d3p′1d
3p′2

E′
1E

′
2

× [4ρ++
1 ρ++

2 σTT

+2ρ++
1 ρ002 σTL + 2ρ001 ρ++

2 σLT + ρ001 ρ002 σLL + 2|ρ+−
1 ρ+−

2 |τTTcos2φ̃

−8|ρ+0
1 ρ+0

2 |τTLcos2φ̃ + Aτa
TT + Bτa

TL] . (2.2)

Themixture of polarization states of the photon is given by a 3× 3 densitymatrix with elements

ρ
µν
i (i = 1, 2 for the two photons). The quantities ρab

1,2 are the elements of the density matrix of

the virtual photons in the γγ helicity basis (a, b = ±1 for transverse photons, 0 for longitudinal

photons), and can be expressed in terms of the momenta pi and qi and the particle form factors.

The transformation between the two different bases (linear polarization basis and helicity basis)

is derived in [9]. The term φ̃ is the angle between the lepton scattering planes in the γγ center-

of-mass system. Symmetry between photons requires σTL(W, q21, q
2
2) = σLT(W, q22, q

2
1), reducing

the number of independent functions to be determined. The coefficients of τTT and τTL both

vanish after the integration over φ̃. The terms τa
TT and τa

TL can only be measured with polarized

lepton beams, otherwise A = B = 0. All terms with an index L vanish if the corresponding

photon is on-shell. Only σTT and τTT survive as both photons become real.

2.3 Approximations for the cross section formula

The complicated helicity structure of the cross section in equation (2.2) can in some cases be

simplified [7, 8, 9]. Because of the photon propagators in γγ processes, the emitted photons are

almost real, and one can make the approximation that only transverse photons contribute. The

cross section 2.2 contains then only the term σTT (the term τTT vanishes after integrating over

φ̃):

dσ(e+e− → e+e−X) =
α2

√
(q1q2)2 − q21q

2
2

32π4E2q21q
2
2

× 4ρ++
1 ρ++

2 σTT ×
d3p′1d

3p′2
E′
1E

′
2

. (2.3)

The e+e− → e+e−X cross section has been approximated by a product of the transverse photons

densities and a cross section for the process γγ → X. Introducing a “two-photon luminosity
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2.3. Approximations for the cross section formula

function” for transverse photons, LTT
γγ , the cross section can be rewritten as

d5σ(e+e− → e+e−X)

dω1 × dω2 × dcosθ1 × dcosθ2 × dφ
=

d5LTT
γγ

dω1 × dω2 × dcosθ1 × dcosθ2 × dφ
× σTT , (2.4)

where ωi = Eγi/E. The differential luminosity function is

d5LTT
γγ

dω1 × dω2 × dcosθ1 × dcosθ2 × dφ
=

α2E′
1E

′
2

16π3q21q
2
2

× 4ρ++
1 ρ++

2

√
X , (2.5)

where X = 1/4(W2 − q21 − q22)
2 − q21q

2
2. The terms ρ++

i contain in general the variables of both

photons. However, for q2i → 0, q2i << W2, it is possible to write the photon luminosity function

as a product of two fluxes. Since q2i << W2, W2 depends only on the energies of the photons:

W2 = (q1 + q2)2 ≈ 4Eγ1Eγ2. After integrating over the angular distribution of the leptons, one

obtains the factorized luminosity function:

d2Lγγ

dω1 × dω2
=

dNγ(ω1)

dω1
× dNγ(ω2)

dω2
. (2.6)

The photon spectra, integrated between q2min and q2max << W2, become

dNγ(ω)

dω
=

α

2πω

{
[1+ (1− ω)2] ln

q2max

q2min

− (1− ω)

(
1− q2min

q2max

)}
. (2.7)

Keeping only the leading term in (2.7) the photon spectrum is approximated by

dNγ(ω)/dω = (α/π)(1/ω) ln(E/me)[1+ (1− ω)2] . (2.8)

The differential luminosity dLγγ/dz (where z = W/2E) can be obtained by integrating (2.6)

with the constraint ω1ω2 = z2 and with the approximation (2.8):

dLγγ

dz
=

(
2α

π

)2 (
ln

E

me

)2 f (z)

z
, (2.9)

where the “Low function” f (z) is defined as

f (z) = (2+ z2)2ln(1/z) − (1− z2)(3+ z2). (2.10)

For not too large values of z (z < 0.8), this formula overestimates the exact luminosity function

by about 10% to 20%, but reproduces quite well the shape of the function. The factorization (2.6)

is called “Equivalent Photon Approximation” (EPA) or “Weizsäcker-Williams Approximation”.

This approximation gives the exact cross section in the case where both scattered e+e− are

detected within small forward angles. Fig. 2.5 shows the luminosity function multiplied by

an integrated e+e− luminosity Lee = 1 fb−1, as a function of the γγ invariant mass for three

different center-of-mass energies.
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Chapter 2. Photon-photon interactions

Figure 2.5: Differential γγ luminosity as a function of the center- of-mass energy. Accessible
final states are also indicated.

2.4 Resonance production in γγ interactions

The total cross section for the production of a hadronic resonance R by two real photons is

given by the (relativistic) Breit-Wigner formula

σ(γγ → R) = 8π(2J + 1)
ΓΓγγ

(W2 − M2
R)2 + Γ2M2

R

, (2.11)

where J denotes the spin of the resonance, MR its mass, Γ and Γγγ its total and two-photon

decay width, and W the γγ center of mass energy. For a narrow resonance with J = 0 (e.g.

pseudoscalar mesons) the cross section is

σ(γγ → R) = 8π2 Γγγ

MR
δ(W2 − M2

R) . (2.12)

For almost real photons (Equivalent Photon Approximation) the cross section of the process

e+e− → e+e−R can be estimated from the expression:

σ(e+e− → e+e−R) =
∫

dz
dLγγ

dz
σγγ→R(z) . (2.13)

Implementing the cross section formula for a narrow resonance R, σ(γγ → R), in equation

(2.13) one obtains the resulting cross section:

σ(e+e− → e+e−R) =
16α2Γγγ

M3
R

(
ln

E

me

)2 [
(z2 + 2)2 ln

1

z
− (1− z2)(3+ z2)

]
, (2.14)
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2.5. Tagging of the photons

where the Low function has been used. This formula can be used to study the processes e+e− →
e+e−π0, η, η′. Tab. 2.1 shows the cross section values for pseudoscalar mesons production in

γγ interactions for different values of
√
s.

R
√
s = 1 GeV

√
s = 1.02 GeV

√
s = 1.2 GeV

√
s = 1.4 GeV

π0 266 271 317 364

η 43 45 66 90

η′ 3.3 4.9 20.0 39.7

Table 2.1: σe+e−→e+e−R [pb] calculated with the Equivalent Photon Approximation for different
values of

√
s.

2.5 Tagging of the photons

In experiments with two-photon interactions it is possible to “tag” the interacting photons by

detecting the scattered leptons. There are three different kinematical conditions: both scattered

leptons are detected (double-tag), only one scattered lepton is detected (single-tag), neither

of the leptons is detected (no-tag). In principle the double-tag condition is the best one for

measuring γγ processes because it gives complete information on the γγ system. However,

most of the photons are emitted at small angles with respect to the beam axis, and the rate of

events drops steeply when the leptons scatter away from the very forward direction. Tagging

at very small angles is in most cases not easy because of background problems (small angle

Bhabha scattering, beam-gas interaction). Furthermore, the energy loss of the scattered leptons

is measured less accurately at higher energies, and the resolution of the γγ center of mass

energy becomes worse. Most experimental results have been obtained with the single-tag or

no-tag conditions. Single-tag is required when the background from one-photon annihilation

events is not small or when one wants to determine the q2 dependence of resonance couplings

or of the total cross section (see section 2.6). Experimental experience has shown that if one

wants to study exclusive final states with almost real photons, tagging is often not necessary.

For the rejection of the background it is possible to take advantage of the fact that photons are

mainly radiated along the beam direction, and the transverse momentum of the γγ system is

small.

2.6 Form factors in meson-photon-photon transitions

The study of γγ interactions is useful to learn the properties of the strong interactions. Despite

the probe and the target are both photons that carry electromagnetic force, they can produce

a pair of quarks that interact strongly and are observed as hadrons, e.g. pseudoscalar mesons.

However, the transition between a meson and two photons cannot be calculated from QCD

directly, because at low energies the strong coupling constant αS is too large for a perturbative

approach to work, and approximations are needed. Therefore, the process is calculatedwithout
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Chapter 2. Photon-photon interactions

including the effects of quarks and gluons, and at the end these effects are taken into account in

an extra factor, known as “transition form-factor” (see Fig. 2.6). The form-factor connects three

Figure 2.6: General Pγ(∗)γ(∗) vertex described by a transition form factor, where P is a pseu-
doscalar meson.

particles and therefore depends on three variables, the squared momenta q2i of the photons and

the q2PS of the pseudoscalar. However, under the approximation that the quark mass is zero, the

pseudoscalar becomes mass-less, q2PS = 0 (unlike the photons, which can be virtual). Therefore

F(q21, q
2
2, q

2
PS) = F(q21, q

2
2, 0) = F(q21, q

2
2). The shape of the form-factor is not known exactly, but

there exist some constraints on it [19]. Three of them come from QCD calculations:

• when the two photons are real, q2i = 0, the transition can be seen as a point-like process

and the form-factor must fulfill the relation F(0, 0) = 1;

• when both photons are are highly virtual and with equal value of q2, q21 = q22 = q2 << 0,

the form factor is F(q21, q
2
2) = −8(π fπ)2/Ncq

2, where Nc is the number of colors in the

Standard Model, Nc = 3, and fπ is the pion decay constant;

• when one of the photons is real and the other one highly virtual, q2i = 0 and q2j = q2 << 0,

one must have F(0, q2) = −8(π fπ)2C/Ncq
2, where C is a constant.

A fourth constraint derives from the fact that one believes that quark and gluon effects (not

included in the pointlike description) correspond to intermediate states with other mesons,

like the ρ meson. Therefore it should be possible to explain the shape of the form factor within

the VMD model [20]. It is very difficult to find a form factor that satisfies all of these four

constraints. The form factor

F(q21, q
2
2) = 1 (2.15)

satisfies only the first constraint. In this case there is no form factor, and the reaction is seen as

pointlike. The form factor

F(q21, q
2
2) =

m4
ρ

(m2
ρ − q21)(m

2
ρ − q22)

(2.16)

satisfies the first and the fourth constraint, and with fπ = 92.4 MeV and mρ = 770 MeV it

satisfies the third constraint within the uncertainty on the constant parameter. The form factor

F(q21, q
2
2) =

m2
ρ

(m2
ρ − q21 − q22)

(2.17)
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2.6. Form factors in meson-photon-photon transitions

satisfies the first three constraints but not the fourth one. The last form factor,

F(q21, q
2
2) =

m4
ρ − 4π2F2π

NC
(q21 + q22)

(m2
ρ − q21)(m

2
ρ − q22)

, (2.18)

satisfies constraint one, two and four.

The cross section for the process γγ → R, where R is a narrow resonance, can be written as:

σγγ→R(q1, q2) = ΓR→γγ
8π2

MR
δ((q1 + q2)

2 − M2
R)|F(q21, q

2
2)|2 . (2.19)

If the photons are real the form factor dependence disappears. The transition form factors

associated to the meson-photon-photon vertex can be accessed in the space-like region (q2 < 0)

by single-tag two photon experiments, when the momentum q2i of one photon is varied and the

q2j of the other photon is kept small (single-tag condition). Available data on |Fπ0(q2, 0)| and
|Fη(q2, 0)| for low |q2| values are presented in Figs. 2.7 and 2.8 [21]. Both processes π0 → γγ∗
and η → γγ∗ can be described by the VMD model.

Figure 2.7: Single off-shell π0 meson transition form factor in the low |q2| region from SND [22]
and CMD-2 [23] data on the reaction e+e− → π0γ and CELLO [24] data on the reaction e+e− →
e+e−γ∗γ∗ → e+e−π0.
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Chapter 2. Photon-photon interactions

Figure 2.8: Single off-shell η meson transition form factor from NA60 [25] data on η → γµ+µ−

decay; from SND [22] and CMD-2 [23] data on the reaction e+e− → ηγ, and from CELLO [24]
data on the reaction e+e− → e+e−γ∗γ∗ → e+e−η.
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2.7. Measurements of radiative widths of mesons

2.7 Measurements of radiative widths of mesons

In this section some measurements of partial widths ΓR→γγ obtained with experiments at e+e−

storage rings are reported. With theMD-1 detector [17] at the VEPP-4 storage ring the following

processes have been studied:

• e+e− → e+e−a2, with a2 → π+π−γγ,

• e+e− → e+e−η′, with η′ → π+π−γ,

• e+e− → e+e−η, with η → γγ.

The center of mass energy is in the range [7.2-10.4] GeV, and the integrated luminosity is 20.8

pb−1. The results for the γγ widths are:

• Γ(a2 → γγ) = (1.26± 0.26± 0.18) keV,

• Γ(η′ → γγ) = (4.6± 1.1± 0.6) keV,

• Γ(η → γγ) = (0.51± 0.12± 0.05) keV.

The Crystal Ball detector [6] at DORIS II (DESY) has been used to study the process e+e− →
e+e−R, with R → γγ, where R is a generic narrow resonance with mass between 100 and 3000

MeV. With an integrated luminosity of 114 pb−1 and a center of mass energy between 9.4 and

10.6 GeV, three peaks are observed in the invariant γγ mass spectrum, corresponding to the

pseudoscalar mesons π0, η and η′ (see Fig. 2.9). The results obtained for the γγ widths are:

• Γ(π0 → γγ) = (7.7± 0.5± 0.5) keV,

• Γ(η → γγ) = (0.514± 0.017± 0.035) keV,

• Γ(η′ → γγ) = (4.7± 0.5± 0.5) keV.

The production of the η and η′ mesons in γγ interactions has also been observed with the

detector ASP [18] at the PEP storage ring (SLAC), with a data sample of 108 pb−1 and a center

of mass energy
√
s = 29 GeV. The process studied is e+e− → e+e−R, with R → γγ. After a

selection of 2287 η events and 547 η′ events, the following γγ partial widths are obtained:

• Γ(η → γγ) = (0.490± 0.010± 0.048) keV,

• Γ(η′ → γγ) = (4.96± 0.23± 0.72) keV.
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Chapter 2. Photon-photon interactions

Figure 2.9: Distribution of the invariant γγ mass in the region of the π0 mass (a), of the η mass
(b) and of the η′ mass (c) obtained with the Crystal Ball experiment at DORIS II.
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Chapter 3

The KLOE experiment at DAΦNE

The K LOng Experiment, KLOE, operates at the Frascati φ-factory DAΦNE. The main goal

of the experiment is to measure direct CP violation in the neutral kaon system, analyzing KK̄

couples produced in the φ meson decays. However, DAΦNE also produces a huge statistics of

ρ, ω, η, η′, f0, a0 mesons. The KLOE physics program goes thus beyond the study of symmetry

violations in kaons, and covers many other topics, among which high precision studies on light

hadron spectroscopy.

3.1 The collider DAΦNE

DAΦNE [26] (Double Annular Φ-factory for Nice Experiments) is an electron- positron collider

designed to work at a center of mass energy corresponding to the mass of the φ resonance,

Mφ = (1019.456± 0.020) MeV [1]. The accelerator complex consists of a LINAC, an accumu-

lator and a two-ring collider, as shown in Fig. 3.1. Electrons and positrons are accelerated up

to 510 MeV in the LINAC and are then stored in the accumulator, where they are prepared

for injection in the main rings. In order to reduce beam-beam interactions and to achieve high

Figure 3.1: Layout of the DAΦNE facility.

values of luminosity (≈ 1032 cm−1 s−2), in DAΦNE electrons and positrons are stored in two
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Chapter 3. The KLOE experiment at DAΦNE

different rings and cross at the interaction point, IP, in two interaction regions with an angle in

the horizontal plane (x-z) of 25 mrad, as shown in Fig. 3.2. This angle results in a small average

e+e−-momentum along the x-axis: < px,e+e− >≈ −12.7 MeV. Electrons and positrons circulate

ele pos

Figure 3.2: Layout of the DAΦNE main rings. The boxes indicate the two interaction regions.
The KLOE detector is located in the lower one.

in the rings grouped in bunches. If L0 is the single bunch luminosity, the total luminosity can

be expressed as:

L = n× L0 = n× νN+N−
4πσxσy

, (3.1)

where n is the number of bunches, N+ and N− the number of positrons and electrons per

bunch, ν the collision frequency, σx and σy the transverse (horizontal and vertical respectively)

dimensions of the bunch at the IP. The bunch dimensions are kept small at the IP by using

a triplet of quadrupoles, which focus the beam in the vertical direction. The bunch sizes are

σx = 0.2 cm, σy = 20 µm, σz = 3 cm. The beams collide with a frequency up to 370 MHz,

corresponding to a minimum bunch crossing period of Tbunch = 2.7 ns and amaximum number

of 120 bunches in each ring.

3.2 The KLOE detector

The KLOE detector was designed to collect the largest amount of neutral kaons from φ decays.

The size of the apparatus is driven by the decay length of the KL, which at DAΦNE is about 340

cm. The detectable decay products of neutral kaons are pions, electrons, muons and photons,

the latter coming mainly from neutral pion decays. The momentum spectra, limited by the

kaons low energy, range between 50 and 300 MeV/c for charged particles and between 20 and

300 MeV/c for photons [27]. The detector has to be efficient for these energy ranges, minimiz-

ing the losses due to geometrical acceptance. Fig. 3.3 shows a section of the detector. The main

components are:

• a large, highly efficient drift chamberwhichmeasures trajectories andmomenta of charged

particles;
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Figure 3.3: Vertical section of the KLOE detector.

• an electromagnetic calorimeter (barrel and endcaps) with excellent timing capabilities, to

measure the energy deposits and the impact points of photons;

• a second electromagnetic calorimeter located in the narrow space between the drift cham-

ber and the beam focusing quadrupoles, to improve acceptance and hermeticity;

• a superconducting coil which surrounds all the detectors and produces an axial magnetic

field B = 0.52 T.

The beam-pipe at the interaction point is made of a beryllium-aluminum alloy, 0.5 mm thick, to

reduce multiple scattering, kaon regeneration, energy loss of particles and photon conversion,

and encloses an interaction region made of a 10 cm radius sphere.

3.2.1 The drift chamber

The design of the KLOE drift chamber (DC) [28] was guided by the event topology of the KL

decays. Five main physics requirements have to be fulfilled:

• high and uniform reconstruction efficiency over a large volume;

• good momentum resolution (δpT/pT ≈ 0.4%) for low momentum tracks (50 < p < 300

MeV). The dominant contribution to the momentum resolution is multiple scattering:

δpT
pT

=
0.053

|B|Lβ

√
L

X0
, (3.2)
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Chapter 3. The KLOE experiment at DAΦNE

where pT is the transverse momentum in GeV, β is the velocity of the particle, L is the

track length in m, B is the magnetic field in T and X0 is the radiation length;

• transparency to low energy photons (down to 20 MeV), and minimization of KL regener-

ation;

• a track resolution in the transverse plane σRΦ ≈ 200 µm, a vertex resolution σvtx ≈ 1 mm,

and a z resolution σz ≈ 2 mm over the whole sensitive volume;

• fast trigger for neutral and charged particles.

The solution that meets the above requirements is a large cylindrical drift chamber, 3.3 m in

length and 2 m in radius, around the IP. The uniform filling of the chamber has been achieved

through a structure of drift cells almost square shaped, arranged in coaxial layers with alter-

nating stereo angles which increase in magnitude with the radius from ± 60 to ± 150 mrad

(Fig. 3.4). The stereo angle is defined as the angle between the wire and a line parallel to the

Figure 3.4: The KLOE drift chamber without the external wall.

z-axis passing through the point on the plate of the DC, where the wire is connected (Fig. 3.5).

Uniformity of response is obtained with a ratio of field to sense wires of 3:1, which is a satisfac-

ε

α
z

x

y Rp

0R

L

Figure 3.5: Scheme of the stereo angle geometry of the cells.
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3.2. The KLOE detector

tory solution that ensures good electrostatic properties of the drift cell while still maintaining

an acceptable track sampling frequency. Gold-plated tungsten wires are used as anodes (diam.

= 25 µm). For the field wires, silver-plated aluminum wires have been chosen (diam. = 80 µm).

There are 12 inner and 46 outer layers, the corresponding cell areas are (2×2) cm2 and (3×3)

cm2, respectively, for a total of 12582 single-sense-wire cells and 52140 wires. The gas used is a

90% helium, 10% isobutane mixture. The helium is the active component, its low atomic mass

reduces multiple scattering and regeneration. The isobutane acts as quencher, absorbing the

photons produced in recombination processes and avoiding the production of discharges in

the DC. The mixture has a radiation length X0 ≈ 1300 m. Taking into account also the presence

of the wires, the average radiation length in the whole DC volume is X0 ≈ 900 m. The sig-

nals coming from sense wire are amplified, discriminated and transmitted to read-out system:

ADC for dE/dx measurement and TDC for time meausurement. Samples of Bhabha-scattering

events allow evaluation of the momentum resolution for 510 MeV e± (Fig. 3.6), as well as the

beam energy at the IP, and the position and the shape of the luminous region. In the interval
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Figure 3.6: Momentum resolution for Bhabha tracks as a function of the polar angle.

50◦ < θ < 130◦ the momentum resolution is σp ≈ 1.3 MeV, σp/p = 2.5× 10−3.

3.2.2 The electromagnetic calorimeter

The KLOE electromagnetic calorimeter (EMC) [29] was designed to fulfill four main require-

ments:

• good time resolution (≈ 100 ps) and good spatial determination of the photon conversion

point (≈ 1 cm);

• hermeticity (98% of the solid angle), good energy resolution (≈ 5%/
√
E [GeV]) and high

efficiency over the range 20-300 MeV;

• particle identification power for electrons, muons and charged pions;
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Chapter 3. The KLOE experiment at DAΦNE

• fast first level trigger.

The above considerations have led to the choice of a lead-scintillating fiber sampling calorime-

ter. Scintillating fibers offer many advantages, in particular they provide good light transmis-

sion over the required distances, up to about 4.3 m. It is easy to adapt the calorimeter shape

(Fig. 3.7) to geometrical requirements, obtaining good hermeticity. The cylindrical barrel con-

Figure 3.7: The KLOE electromagnetic calorimeter.

sists of 24 modules 4.3 m long, 23 cm thick and trapezoidal in cross-section, with fibers running

parallel to the beam line. Each of the two endcaps consists of 32 vertical C-shaped modules 0.7

to 3.9 m long and 23 cm thick, with fibers running perpendicular to the beam line. The whole

structure has a 98% solid angle coverage. All modules are stacks of 0.55 mm thick lead foils

(passive material) alternating with layers of 1 mm diameter scintillating fibers (active material)

(Fig. 3.8). The average density is 5 g/cm3, the radiation length is about 1.5 cm and the over-

Figure 3.8: Schematic view of the fiber-lead structure of the electromagnetic calorimeter for a
barrel module.

all thickness of the calorimeter is about 15 radiation lengths. Light is collected at both ends

of the fibers through light pipes, which match almost square portions of the module to 4880
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3.2. The KLOE detector

photo-tubes (PMs). The read-out subdivides the calorimeter into five planes in depth, each

4.4 cm thick. In the transverse direction each plane is subdivided into cells 4.4 cm wide. The

resulting read-out granularity is about 4.4× 4.4 cm2. Signals from the PMs are split and sent

to ADC’s for energy measurements and trigger, and to the TDC’s for time measurements. The

time difference of the signal at both ends allows to reconstruct the coordinate along the fiber

with a resolution σ‖ ≈ 1.4 cm/
√
E [GeV]. The resolution in the orthogonal direction is σ⊥ ≈ 1.3

cm. Energy resolution and linearity have been measured using photons from radiative Bhabha

events. Event reconstruction from tracking informations determines the photon direction and

energy, Eγ, with good accuracy. The photon energy is then comparedwith themeasured cluster

energy Eclu. The resolution σE/Eγ and the deviation from linearity (Eγ − Eclu)/Eγ are shown

in Fig. 3.9 as a function of the photon energy. Linearity is better than 1% for Eγ > 75 MeV.

Figure 3.9: Top: linearity of the calorimeter energy response as a function of the photon energy.
Bottom: energy resolution of the calorimeter as a function of the photon energy.

By fitting the energy resolution with a function a/
√
E [GeV]+ b, one obtains a stochastic term

a = 5.7% and a negligible constant term, showing that the resolution is dominated by sampling

fluctuations:
σE

Eγ
=

0.057√
Eγ [GeV]

. (3.3)

The time resolution has been obtained from the analysis of Bhabha events and radiative φ

decays, and is shown in Fig. 3.10 as a function of the energy of the photon:

σt =
57 ps√
Eγ [GeV]

⊕ 100 ps , (3.4)
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Chapter 3. The KLOE experiment at DAΦNE

where the sampling fluctuation term is in agreement with test beam data. The second term is a

constant to be added in quadrature and is given by two contributions: the intrinsic time spread

due to the finite length of the luminous point in the beam direction, and the resolution of the

synchronization with the DAΦNE radiofrequency.

Figure 3.10: Time resolution of the calorimeter as a function of the photon energy.

3.2.3 The quadrupole calorimeters

The quadrupole tile calorimeters of KLOE (QCAL) [30] are two compact detectors, made of lead

plates and scintillator tiles, that surround the focusing quadrupoles (Fig. 3.11). Their aim is to

complete the hermeticity of the KLOE calorimeter for photons coming from the KL → π0π0π0

decays. Each sector contains 16 absorber plates made of 1.9 mm thick lead, alternating with

Figure 3.11: The KLOE QCAL.

16 scintillator layers 1 mm thick. The scintillator layers are divided into three equal tiles. In

the cylindrical section the tyles have rectangular shape, while in the conical section the shape

is trapezoidal. In each layer, four 190 cm long wavelength shifting (WLS) fibers run along the

sides of the tiles. Light is collected by PMs. The overall radial thickness is 5.5 X0.
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3.2. The KLOE detector

3.2.4 The trigger system

The KLOE trigger system [31] was designed to:

• produce a trigger signal for all φ decays;

• recognize Bhabha and cosmic-ray events;

• reject machine background.

The trigger is based on local energy deposit in the calorimeter and multiplicity information

from the DC. It is composed of two levels in order to both produce an early trigger with good

timing to start the acquisition operations and to use as much information as possible from the

DC. After the arrival of a first level trigger, additional information is collected from the DC,

which is used, together with the calorimetric information, to confirm the trigger and start the

data acquisition system.

The EMC trigger

For trigger purposes the fine granularity of the calorimeter is not needed, therefore adjacent

calorimeter columns are grouped together to form a “trigger sector” and their signals are

summed. In order to guarantee that each “particle” is fully contained in at least one sum,

the calorimeter signals form a set of totally overlapping sectors: “normal” and “overlap”. In

the barrel, each trigger sector is made of 5 cells × 6 columns, being the columns of each series

placed on top of the other by half sector width (see Fig. 3.12). Since the particle multiplicity is

Figure 3.12: Trigger sectors in the barrel.

higher in the forward region, mostly for background events, the geometry of the end caps is

more complex: they are segmented in groups of four columns in the zone close to the beam axis

and of five/six columns elsewhere. The outer layer of the entire calorimeter is used as a cos-

mic ray detector. The calorimeter triggers on local energy deposits larger than a programmable

threshold. Two thresholds are used, one for the barrel (≈ 50 MeV) and one for the endcaps

(≈ 150 MeV). In practice it is not easy to apply a threshold which corresponds to a constant

energy deposit, because the signal amplitude depends on the position along the fibers of the
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Chapter 3. The KLOE experiment at DAΦNE

incident particle. This is due to the attenuation of the scintillator light in the optical fibers. In

order to reduce the effect, the analog signals from both sides (A and B) of each calorimeter sec-

tor are compared to two thresholds (Tlow, Thigh). The threshold settings and comparator output

are shown in Fig. 3.13. This scheme allows to apply a large variety of effective thresholds.

Figure 3.13: Effective trigger threshold as a function of the z-coordinate (along the fiber) of the
incident particle.

The DC trigger

DC information can be used to produce a trigger for the π±,∓ and π±,00 channels, for which the

calorimeter trigger is less efficient. The DC trigger is based on the multiplicity of hit wires, i.e.

on the sum of all signals from the 12582 DC sense wires. The sense wire signals, after preampli-

fication, are brought to the ADS (Amplifier/Discriminator/Shaper) boards. On the ADS, each

signal is discriminated, buffered, and split into two different paths. The first path is directed to

the DC readout front-end; the second path is used for the trigger. In the trigger path, signals

are formed with a width of 250 ns. The signals coming from the DC wires are organized in

nine concentric ring sections called “superlayers”, which represent the multiplicity of hit wires

in eight, six or four (from the innermost to the outermost) contiguous planes. The superlayers

are defined in order to reduce the effect of low-momentum electrons spiralling inside the DC

volume, which produce a large number of hit wires in the inner region of the detector.

The two-level trigger logic

The KLOE trigger is composed of two levels. The first level trigger (T1) is activated if there are

two calorimeter fired sectors with barrel-barrel, barrel-endcap or endcap- endcap (not the same

endcap) topology OR 15 DC hits within 250 ns. The T1 trigger sets a ≈ 2 µs long acknowledge
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3.3. Data reconstruction

signal, which vetoes other T1 triggers and allows signals formation from the DC cells. The

second level trigger (T2) validates the T1 trigger and starts the data acquisition. Events with

two fired sectors in the external planes of the calorimeter (see Fig. 3.12) with barrel-barrel or

barrel-endcap topology are passed to a third level hardware algorithm, based onDC hits, which

recognizes cosmic-ray events and rejects them.

3.2.5 Data acquisition

The KLOE data acquisition (DAQ) [32] has been designed to cope with a rate of 104 events

per second, due to φ decays, downscaled Bhabha events, non vetoed cosmic rays and DAΦNE

machine background. An average event size of 5 kbytes is estimated, corresponding to a total

bandwidth requirement of 50 Mbytes/s. The DAQ readout system involves some 23000 chan-

nels of front end electronics (FEE) from EMC, DC and trigger system. For each event, relevant

data coming from the whole FEE system have to be concentrated in a single CPUwhere a dedi-

cated process builds the complete event. A three level scheme has been implemented. The first

level reads data from single FEE crates. The second level combines information from different

crates. The last level, responsible for final event building, relies on standard network media

and protocols (TCP/IP).

3.3 Data reconstruction

Data reconstruction starts immediately after the completion of the calibration jobs. The recon-

struction program, DATAREC [33], provides additional data-quality and monitoring informa-

tion, and consists of several modules, among which EMC reconstruction, DC reconstruction,

and track-to-cluster association.

3.3.1 Cluster reconstruction

The calorimeter is segmented into 2440 cells, which are read out by PMs at both ends (A, B).

This segmentation provides the determination of the position of energy deposits in r − φ for

the barrel and in x − z for the endcaps. Both charges QA,B
ADC and times tA,BTDC are recorded. For

each cell, the particle arrival time t and its coordinate s along the fiber direction (the zero being

taken at the fiber center) are obtained using the times at the two ends as

t(ns) =
1

2
(tA + tB − tA0 − tB0 ) − L

2v
, (3.5)

s(cm) =
v

2
(tA − tB − tA0 + tB0 ) , (3.6)

with tA,B = cA,B × tA,BTDC, where cA,B are the TDC calibration constants, tA,B0 are the overall time

offsets, L and v are the cell length and the light velocity in the fibers, respectively. The energy
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on each side of a cell i is obtained as

EA,B
i (MeV) = kE × gi(s) ×

SA,B
i

SA,B
MIP,i

, (3.7)

where S = QADC − Q0,ADC is the charge collected after subtraction of the zero-offsets (ADC

“pedestals”), and SMIP is the response to a minimum ionizing particle crossing the calorime-

ter center. The correction factor g(s) accounts for light attenuation as a function of the impact

position s along the fiber, while kE is the energy scale factor, obtained from showers of parti-

cles of known energy (for more information about global offsets and calibration constants see

refs. [29, 33]). The cell energy Ei is taken as the mean of the energies at each end:

Ei(MeV) =
EA
i + EB

i

2
. (3.8)

Calorimeter reconstruction starts by applying the calibration constants to transform the mea-

sured quantities QADC and tTDC into the physical quantities S and t. Position reconstruction

and energy/time corrections are applied to each fired cell. Then a clustering algorithm looks

for groups of cells contiguous in r − φ or x − z and groups them into pre-clusters. In a sec-

ond step, the longitudinal coordinates and arrival times of the pre-clusters are used for further

merging and/or splitting. The cluster energy, Eclu, is the sum of the energies of all cells assigned

to a cluster. The cluster position, {x, y, z}clu, and time, tclu, are evaluated as energy-weighted

averages over the contributing cells. Cells are included in the cluster search only if times and

amplitudes are available on both sides; otherwise, they are recorded as “incomplete” cells. The

available information from most of the incomplete cells is added to the existing clusters at a

later stage, by comparing the positions of such cells with the cluster centroid.

3.3.2 Track reconstruction

Track reconstruction is performed in three steps: pattern recognition, track fit, and vertex fit.

Each step is managed separately and produces the information for the following step.

Pattern recognition

The pattern recognition algorithm searches for track candidates. It begins by associating hits,

working inward from the outermost layer, and then obtains track segments and approximate

trajectories parameters. The DC wires form alternating positive and negative stereo angles

with respect to the z direction. When the hits are projected on the x − y plane, they are seen

in the stereo views as two distinct images. The pattern recognition procedure first associates

separately the hits of each projection, using only two dimensional information, and in a second

step combines the track candidates of the two views, according to their curvature values and

geometrical compatibility.
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Track fit

The track-fit procedure minimizes a χ2
trk function based on the comparison between the mea-

sured and the expected drift distance for each hit: χ2
trk = ∑

n
i=1(di − d

f it
i )2/σ2

i , where n is the

number of hits, di(tdri f t) is the drift distance, obtained via the space-time (s-t) relation from

the measured drift time, d
f it
i is the result of the fit and σ2

i is the estimate of the hit resolution.

The procedure is iterative because the s-t relation depends on the track parameters. At each

tracking step, the effects due to energy loss and multiple scattering are estimated.

Vertex fit

The track parameters are used to look for primary and secondary vertices. For each track pair, a

χ2
vtx function is computed from the distances of closest approach between tracks; the covariance

matrices from the track-fit stage are used to evaluate the errors. The vertex position is obtained

minimizing the χ2
vtx.

3.3.3 Track-to-cluster association

The track-to-cluster association module makes correspondences between tracks in the DC and

clusters in the EMC. The procedure starts by assembling the reconstructed tracks and vertices

into decay chains and by isolating the tracks at the end of these chains. For each of these tracks,

the measured momentum and the position of the last hit in the DC are used to extrapolate the

track to the EMC. The extrapolation gives the track length Lex from the last hit in the chamber

to the calorimeter surface, and the momentum pex and position xex of the particle at the surface.

The resulting impact point is then compared with the positions xcl of the reconstructed cluster

centroids. A track is associated to a cluster if the distance to the centroid in the plane orthogonal

to the direction of incidence of the particle on the calorimeter, D = |(xcl − xex) × pex/|pex||, is
less than 60 cm.
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Data and background sample

4.1 Data sample and preselection filter

The data used in this analysis were collected by the KLOE detector at DAΦNE in 2006 at
√
s = 1

GeV. The average data taking conditions are summarized in Tab. 4.1. The analysis is performed

√
s 1000.1 MeV

e+e− transverse momentum 12.7 MeV

e+ current 0.7 A

e− current 1.1 A

luminosity 7× 1031 cm−2 s−1

trigger rate 1.7 kHz

Table 4.1: Average values during the run.

on data taken at
√
s = 1 GeV to reduce background due to φ decays, and is based on an inte-

grated luminosity of 242.5 pb−1, measured with a precision of about 0.3% recording large angle

Bhabha scattering events [34]. The KLOE trigger uses both calorimeter and DC information.

For this analysis the events are selected by the calorimeter trigger, requiring two energy de-

posits with E > 50 MeV in the barrel or E > 150 MeV in the endcaps. The data were filtered

with the background rejection filter FILFO [33] before event reconstruction. FILFO is an offline

filter used to recognize and reject cosmic rays, machine background events and Bhabha scat-

tering events with electrons (positrons) emitted with polar angles θ < 20◦ that interact with the

low-beta focusing quadrupoles. To reject background events, cuts are applied on the number

of clusters, the number of DC hits, the total energy deposited in the calorimeter, the position of

the most energetic clusters, and the ratio of the number of hits in the internal DC layers to the

total number of hits. A 1/20th sample of unfiltered data is used to control the filter efficiency.

Usual analysis filters applied to the reconstructed data are dedicated to the analysis of kaons

and radiative φ−decays, and require a large amount of energy deposited in the final state. In

γγ interactions, on the contrary, most of the energy deposited in the final state is carried away

by positrons and electrons that go undetected in the beam direction. In this analysis a filter that
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optimizes the selection of γγ events has been used, which requires:

• at least two energy clusters, neutral (not associated to any track) and prompt (with |t−
r/c| < 5σt);

• all prompt neutral clusters are required to have energy Eγ > 15 MeV and polar angle

20◦ < θγ < 160◦;

• at least one prompt neutral cluster with energy greater than 50 MeV;

• a ratio of the energy of the two highest energy prompt clusters over the total calorimeter

energy R = ∑γ Eγ/Etot > 0.3;

• 100 MeV < Etot < 900 MeV, to reject low energy background events and the high rate

processes e+e− → e+e−γ, e+e− → γγ(γ).

4.2 Simulation of signal and background

The detector response for signal and background events is fully simulated with the program

GEANFI [33], based on the package GEANT3. For a given process, the momenta of the parti-

cles in the final state are generated according to the data taking conditions, and GEANFI sim-

ulates the detector response. Moreover, it allows one to simulate the machine background on

a run-by-run basis, i.e. simulation of accidental clusters and tracks follows the real data taking

conditions, and the accidental activity is monitored analyzing e+e− → γγ collinear events. The

beam-induced background events are added to simulated events in the Monte Carlo, MC. The

calorimeter clusters are simulated for all the particles, and also the DC hits for the charged par-

ticles. For the reconstruction of the events the same procedure applied to data (and explained

in section 3.3) is used. The trigger response is simulated as well. While GEANFI contains

the event generator for all background processes, a new generator for e+e− → e+e−X events

is developed and interfaced to the detector simulation. While the Equivalent Photon Approxi-

mation involves almost real photons, the simulation used in this analysis generates events with

exact matrix element according to full 3-body phase space distributions [35] (see Appendix A).

This results in the production of η mesons with non negligible transverse momentum. The rel-

ative error due to high-order radiative corrections is estimated to be 1% [36]. The η transition

form factor is parametrized as

Fη(q
2
1, q

2
2) =

(
1

1− bηq21

) (
1

1− bηq22

)
, (4.1)

where q2i are the 4-momenta of the virtual photons and bη is the slope parameter. The pa-

rameter bη for the η meson has been measured at high q2 values in γγ experiments with

single-tagging [37, 38, 24] and with measurements of the η leptonic radiative decays η →
ℓ+ℓ−γ [39, 25, 40] at low q2 values, closer to those of this measurement (see Tab. 4.2). The

results do not show appreciable dependence on q2, as shown in Fig. 4.1, and the average value
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4.2. Simulation of signal and background

assumed in this analysis is the weighted average out of the last three measurements in Tab. 4.2:

bη = (1.94 ± 0.15) GeV−2, with χ2/ndo f = 0.12/1. The kinematics shows that there is a

bη Experiment q2 range (GeV2)

1.67 ± 0.13 CLEO [37] 1.5-20

2.04 ± 0.46 TPC [38] 0.1-7

1.42 ± 0.21 CELLO [24] 0.3-3.4

1.9 ± 0.4 Lepton-G [39] 0.05-0.25

1.95 ± 0.17 ± 0.05 NA60 [25] 0.04-0.25

1.92 ± 0.35 ± 0.13 CB/TAPS [40] 0.025-0.25

Table 4.2: Measurements of bη performed by the quoted experiments.
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Figure 4.1: Measurements of bη performed by the quoted experiments as a function of the
average q2 value of the photons.

strong correlation between the η longitudinal momentum in the e+e− center of mass, pL, and

the squared missing mass M2
miss

M2
miss = s + M2

η − 2
√
s
√

M2
η + p2T + p2L = s + M2

η − 2
√
sET

√
1+ p2L/E

2
T (4.2)

and, for small values of pT (ET ≃ Mη),

M2
miss ≃ s + M2

η − 2Mη

√
s−

√
s
p2L
Mη

. (4.3)
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This correlation is shown in Fig. 4.2 for events generated according to the Equivalent Photon

Approximation, i.e. with negligible transverse momentum of the outgoing e+ e−, for events

generated with exact matrix element and for MC reconstructed events that pass the preselec-

tion cuts of the e+e− → e+e−η, η → π+π−π0 analysis. All background processes are simulated
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Figure 4.2: Correlation between the η longitudinal momentum and the squared missing mass
for events generated according to the EPA approximation (top left), for events generated with
exact matrix element (bottom left), and for the reconstructed events that pass the preselection
cuts of the e+e− → e+e−η, η → π+π−π0 analysis (right).

in GEANFI and have been extensively studied in other analyses. A source of irreducible back-

ground is originated by e+e− → ηγ when the monochromatic photon is emitted at small angles

and is not detected. The cross section for this process is measured in the same data sample and

is used for normalization of the e+e− → e+e−η cross section.

The MC energy scale has been corrected taking into account data-MC comparisons for the pro-

cesses e+e− → KSKL and e+e− → ηγ. The details of the procedure are described in Appendix B.

The effect of tracking efficiency has been studied on a clean sample of φ → ρπ → π+π−π0

events (purity > 99%), using 2002 and 2005 data [41]. The correction to the tracking efficiency

depends on the longitudinal (Pz) and transverse (PT) momentum of the track, and is given as a

function of PT in slices of Pz. A gaussian smearing [42] is applied as well to the momenta of the

reconstructed tracks.
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Cross section for e+e− → e+e−η with

η → π+π−π0

5.1 Event selection

In addition to the pre-selection described in section 4.1, candidate events γ(∗)γ(∗) → η →
π+π−π0 must fulfill the following requirements:

1. two and only two neutral prompt clusters with |t− r/c| < 3σt and polar angle 23◦ < θ <

157◦;

2. at least two trackswith opposite curvature extrapolated inside a cylinderwith ρ =
√

x2 + y2 <

8 cm and |z| < 8 cm centered on the average beam collision point;

3. distance of the first DC hit to the average beam collision point < 50 cm for both tracks (in

case of two ormore tracks with the same curvature, the trackwith best quality parameters

is chosen);

4. sum of the momenta |~p1| + |~p2| < 700 MeV.

To minimize any selection bias and to optimize the selection efficiency, there is no requirement

for the tracks to be associated to calorimeter clusters nor that they form a vertex. The number

of selected events is 3.9× 106. Events with fully neutral final states survive the tracks require-

ments, because of γN → e+e−N conversions or π0 Dalitz decays.

5.2 Background rejection

Many background contributions have been considered, of which themost important are e+e− →
ηγ, e+e− → ωπ0, e+e− → KSKL, e

+e− → K+K− and e+e− → e+e−γ.

• The e+e− → ηγ process is a source of irreducible background when η decays to π+π−π0

and the monochromatic photon, Eγ = 350 MeV, is emitted at small polar angles and is not
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Chapter 5. Cross section for e+e− → e+e−η with η → π+π−π0

detected. However, the correlation of M2
miss vs. pL is rather different from the signal since

pL = Eγ cos θ ≃ 350 MeV and M2
miss ≃ 0.

• The e+e− → ωπ0 process has four photons in the final state and therefore gives the

same final state of the signal only when two photons are lost. The cross section has

been measured by KLOE at
√
s = 1 GeV with data of the same run: σ(e+e− → ωπ0 →

π+π−π0π0) = (5.72± 0.05) nb [43].

• e+e− → KSKL events can mimic the signal either when the KL decays to π±l∓ν close

to the collision point and KS → π0π0 with one neutral pion not detected, or when the

KS → π0π0 decay gives rise to one e+e− pair from conversion or π0 Dalitz decay and the

KL escapes detection.

• e+e− → K+K− events can mimic the signal when both kaons decay close to the collision

point: either K± → π±π0 or semileptonic K± decays in coincidence with K∓ → µ∓ν

decays.

• e+e− → e+e−γ events have a very large cross section at
√
s = 1 GeV, about 400 nb, and

can be an important background source in case of accidental or split clusters.

5.2.1 Photon pairing

The difference between the γγ invariant mass and the π0 mass can be used to check if the two

photons come from the π0. This is performed using a pseudo-χ2 variable

χ2
γγ =

(mγγ −mπ0)2

σ2
mγγ

with
σmγγ

mγγ
=

1

2

(
σEγi

Eγi
⊕

σEγj

Eγj

)
. (5.1)

The energy resolution function is given in Tab. 5.1; the γγ invariant mass is dominated by

the calorimeter energy resolution while the angle measurement gives a negligible contribution.

Fig. 5.1 shows the distribution of the χ2
γγ variable for MC signal events and data. Candidate

σE/E 0.057/
√

E (GeV)

σt 57 ps/
√

E (GeV) ⊕ 100 ps

σxy (barrel), σxz (endcap) 1.3 cm

σz (barrel), σy (endcap) 1.4 cm/
√

E (GeV)

Table 5.1: Resolution function for the cluster measurements.

events are selected asking for χ2
γγ < 8.

5.2.2 Kinematic fit

The two tracks momenta are combined with the π0 to identify η → π+π−π0 decay candidates,

assigning the charged pion mass to the tracks. A kinematic fit is then performed, using La-

grange Multipliers (see Appendix C). The fit requires that the π+π−γγ invariant mass is equal
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Figure 5.1: χ2
γγ distribution for data (top) and MC signal events (bottom).

to the η mass. The function to be minimized is the following:

χ2
η =

N

∑
i=1

(Vi −Vmeas
i )2

σ2
i

+
M

∑
j=1

λk
jCj(V

k
1 , . . .V

k
N) , (5.2)

where Vmeas
i are the measured values of the Vi variable, Cj(Vi) are M constraints, λj are the

Lagrange Multipliers and k is the iteration index. The number of degrees of freedom is given

by the number of constraints. To search for the minimum of equation (5.2) the following 10

quantities are used:

• the energy, Ei;

• the time, ti;

• the cluster centroid position, xi, yi, zi.

for the two photons. The track momenta are not varied in the minimization since these are

measured with much better precision than the cluster energies. There are four constraints:

• promptness of the two photons assumed to originate at the IP, ti − ri/c = 0;

• η and π0 masses, Mπ+π−γγ = mη and Mγγ = mπ0 .

The resolution functions used in the fit are given in Tab. 5.1. Fig. 5.2 shows the distribution of

the χ2 of the kinematic fit, χ2
η , for data and MC signal events. The cut χ2

η < 20 is applied. This
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Chapter 5. Cross section for e+e− → e+e−η with η → π+π−π0

cut reduces the η(→ π+π−π0)γ background, which has has a long tail for χ2
η > 20 values,

due to events with the monochromatic photon in the detector acceptance and one undetected

photon coming from the π0 that are not rejected by the χ2
γγ < 8 requirement. Fig. 5.3 shows the
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Figure 5.2: Distribution of the χ2 of the kinematic fit for data (top) and MC signal events (bot-
tom).

correlation between the energy of the most energetic photon, Eγ1, and the χ2
η variable for MC

η(→ π+π−π0)γ events before and after the χ2
γγ < 8 requirement.

5.2.3 Track identification and rejection of the QED background

At this stage of the selection, radiative Bhabha scattering, e+e− → e+e−γ, and e+e− → γγ

annihilation followed by photon conversion are still a source of background. Separation of

charged pion from electron/positron tracks is done using a π-e likelihood method [42]. This

method is applicable when a cluster is associated to the track, i.e. the distance between the

centroid and the extrapolation of the track to the calorimeter wall is less than 60 cm. The

likelihood is based on the following variables:

• the time of flight difference t− ℓ/c, where t is the time assigned to the cluster, and ℓ is the

track length;

• the cluster energy deposited in the calorimeter;

• the fraction of energy deposited in the first and the fifth calorimeter layers.
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Figure 5.3: Correlation between Eγ1 and χ2
η for MC η(→ π+π−π0)γ events before (top) and

after (bottom) the χ2
γγ < 8 selection.

In this analysis events with a cluster associated to each track and a value of the likelihood

estimator logLπ/Le < 0 for both clusters are rejected. Bhabha radiative events, e+e− → e+e−γ,

are characterized by a small acollinearity, with small values of θ+ and large values of θ−, where

θ+ and θ− are the polar angle of the positive and the negative track, respectively. In the case of

γN → e+e−N conversions, instead, both tracks have either small or large values of θ. Fig. 5.4

shows the correlation between the polar angle of the positive and the negative track before

and after the cuts on the fit χ2 and on the likelihood estimator. Events along the diagonal,

θ+ + θ− ≃ 180◦, survive the cut on the likelihood estimator, because they are not the result of

QED reactions. These events are due to a peculiarity of the track reconstruction program that

does not assume that a track originates in the beam collision point. In fact, if a single track with

positive, or negative, curvature is split in two track segments, and both are extrapolated back

close to the collision point, it may happen that they are reconstructed as two opposite curvature

tracks with opposite momenta originated close to the point where the original track was split.

An example is shown in the event display of Fig 5.5 where a single track is split in two tracks
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Figure 5.4: Correlation between positive and negative track polar angles before (top) and after
(bottom) the cuts on the fit χ2 and on the likelihood estimator.

with origin far away from the collision point, thus with opposite curvature. These events are

characterized by

• large values of the angle α between the two candidate tracks, i.e. θ+ ≃ 180− θ−;

• opposite values of the momenta, i.e. ~p+ ≃ −~p−;

• small distance between the first DC hits of the two tracks.

Fig. 5.6 shows the correlation between the opening angle of the two candidate tracks α (close

to 180◦) and the momentum difference ∆p (centered around zero) for data and for signal sim-

ulated events. Indeed also the simulation shows the same split-track pathology, though much

less abundant. The characteristics of these events suggest a way to reject a large part of them

by cutting on the tracks opening angle α and the distance between the first hit of the positive

track and the first hit of the negative track, as shown in Fig. 5.7. Also the cut απ+π− < 176◦

has been applied. Additional cuts to suppress specifically e+e− → γγ(γ) events and to reduce
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5.2. Background rejection

Figure 5.5: Display of an event characterized by a large angle between the two tracks and a
small difference between the absolute values of the momenta.

η(→ π+π−γ)γ events where the monochromatic photon is mis-identified as coming from the

neutral pion are

• a cut on the energy of the most energetic photon, Eγ1 < 230 MeV,

• a cut on the polar angle of the most energetic photon, 27.5◦ < θγ1 < 152.5◦,

• a cut on the angle between the tracks, απ+π− > 50◦, which is useful in reducing γ conver-

sions into an e+e− pair and background from kaons.

Fig. 5.8 shows the correlation between the energy and the polar angle of the most energetic

photon. Fig. 5.9 shows the distribution of the angle between the tracks, απ+π− , for data, MC

K+K− events , MC signal events and MC KSKL events.

5.2.4 Time and energy quality cuts

Improved time and energy measurements, derived using the kinematic fit described in sec-

tion 5.2.2, are compared with the direct measurements from the calorimeter so that the follow-

ing pull statistics are defined

χ2
t = ∑

2γ

(
tmeas − timpr

σt

)2

, (5.3)

χ2
E = ∑

2γ

(
Emeas − Eimpr

σE

)2

, (5.4)
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Figure 5.6: Correlation between themomentum difference ∆p and the two tracks opening angle
α for data (top) and for signal simulated events (bottom).

where the superscript meas and impr indicate the values measured and returned by the fit,

respectively. These variables are used to further suppress background events from KSKL and

K+K−. In fact, deviations from time intervals expected for photons coming from the collision

point and from energy deposits expected for the η decay products are a signature of kaon

decays. The cuts applied are χ2
t < 7, χ2

E < 8. Figs. 5.10 and 5.11 show the time and energy pulls

of the two photons for data, MC K+K− events, MC signal events and MC KSKL events.
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Figure 5.7: Correlation between the tracks opening angle α and the distance between the first hit
of the positive track and the first hit of the negative track for data (top) and for signal simulated
events (bottom). The cut to reject pathological events is indicated by the straight line.
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5.3 Selection efficiency for signal and backgrounds

The selection efficiencies are evaluated with the MC simulation described in section 4.2. The

number of MC events after each analysis cut is shown in Tabs. 5.2- 5.4 for the signal and the

backgrounds. The first row lists the number of generated events; the second row, selection,

includes FILFO, trigger, and the filters described in sections 4.1 and 5.1. The trigger efficiency

is controlled by comparison of the calorimeter trigger with a complementary trigger based on

the DC hit patterns. The e+e− → η′γ and e+e− → a0(980)γ background processes do not

survive the analysis cuts. Despite the number of e+e− → e+e−γ generated events is very large,

the number of events surviving the cut on the π − e likelihood is not sufficient for the analysis.

Then, in this case, this cut is not applied since there is no correlation between the likelihood

estimator and the variables used in the fit. Tab. 5.5 lists the number of data events after the

same analysis cuts of Tabs. 5.2 - 5.4. The signal is simulated with different values of the bη

MC signal η(→ π+π−π0)γ ωπ0 e+e−γ

generated 19150 4907485 9208930 95580900

selection 6587 654119 283859 427533

χ2
γγ < 8 6487 254487 156846 133280

χ2
η < 20 5528 135791 5162 1366

likelihood 4760 122670 4286 -

split tracks 4524 119755 3866 1037

Eγ1 < 230 MeV 4492 115009 3691 692

27.5◦ < θγ1 < 152.5◦ 4306 106341 3595 599

χ2
t < 7, χ2

E < 8 4077 101090 2404 379

απ+π− > 50◦ 3974 94704 2083 356

Table 5.2: Number of MC events after each analysis cut.

K+K− KSKL η(→ π+π−γ)γ η(→ neutrals)γ

generated 29487300 19872200 1024527 9822290

selection 124604 33632 449625 18170

χ2
γγ < 8 118713 21083 68784 1615

χ2
η < 20 7813 5977 548 292

likelihood 6913 4712 463 208

split tracks 5032 4080 344 184

Eγ1 < 230 MeV 4664 3768 170 70

27.5◦ < θγ1 < 152.5◦ 4500 3625 148 60

χ2
t < 7, χ2

E < 8 2741 2448 93 47

απ+π− > 50◦ 2200 1170 92 29

Table 5.3: Number of MC events after each analysis cut.
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5.3. Selection efficiency for signal and backgrounds

π+π−γ γγ(γ) π+π−π0 π+π−π0γ

generated 71939100 142775000 6057553 2964527

selection 204772 54278 2356549 984584

χ2
γγ < 8 107532 18851 2318201 938952

χ2
η < 20 382 1462 169 1294

likelihood 372 444 155 1138

split tracks 334 362 120 503

Eγ1 < 230 MeV 322 45 81 450

27.5◦ < θγ1 < 152.5◦ 313 40 75 391

χ2
t < 7, χ2

E < 8 207 20 57 258

απ+π− > 50◦ 111 1 42 213

Table 5.4: Number of MC events after each analysis cut.

data sample

filtered 1.4×108

selection 3886001

χ2
γγ < 8 2555196

χ2
η < 20 16539

likelihood 10210

split tracks 6788

Eγ1 < 230 MeV 5687

27.5◦ < θγ1 < 152.5◦ 5057

χ2
t < 7, χ2

E < 8 3516

απ+π− > 50◦ 2977

Table 5.5: Number of data events after each analysis cut.

parameter of the form factor, varying in the range (0.7–2.24) GeV−2 and the fit to derive the

signal yield is repeated for each value. The values of the efficiencies shown in Tabs. 5.2 - 5.4

correspond to bη = 1.94 GeV−2.
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5.4 Cross section evaluation

To evaluate the number of signal events and the cross section, a 2-dimensional fit (see Ap-

pendix D) of the data is performed. The distributions fitted are the π+π−γγ transverse mo-

mentum, pT, and the squared missing mass, M2
miss, in the window pT < 300 MeV and -0.15

GeV2 < M2
miss < 0.25 GeV2. The 2-dimensional distributions used in the fit are shown in

Fig. 5.12. The pT variable is preferred with respect to the longitudinal π+π−γγ momentum,

pL, because it allows a better separation between kaons and signal events, as can be deduced

by comparing Figs. 5.12 - 5.13. The number of data events in this window is 2720, and the

number of MC signal events is 3970. The signal efficiency is (20.73± 0.29)%. The weights are

left free for the signal and the backgrounds, except for the η(→ π+π−π0)γ background, whose

cross section, measured in the same data sample (see chapter 9), is implemented by adding the

following χ2-like term in the 2-dimensional fit:

− 2 lnL → −2 lnL +

(
fηγNdata/(ǫηγL)− σηγ

δσηγ

)2

, (5.5)

where σηγ = σe+e−→ηγ→π+π−π0γ = (194.7± 3.3) pb is the measured ηγ cross section, and the

other quantities refer to ηγ events as selected in the present measurement. The fit returns the

fraction of data events fi = ni/ntot with the constraint ∑i fi = 1. Tab. 5.6 lists the fraction

of events returned by the fit. The error on fηγ is constrained by the χ2-like term of equation

fsignal (14.49± 1.06)%

fηγ (32.02± 0.54)%

fωπ0 (20.48± 1.81)%

fK+K− (15.13± 1.81)%

fKSKL
(11.36± 1.70)%

fe+e−γ (7.54± 0.87)%

χ2/ndo f = 2670/2637

ndata = 2720

Table 5.6: Fit results

(5.5). Other contributions either do not survive the analysis cuts or result in fractions by far

negligible compared to sensitivities in Tab. 5.6. The projections of the fit are shown in Fig. 5.14

for data and backgrounds weighted by their fractions fi, and the distribution of pL is shown

in Figure 5.15. The most relevant background is e+e− → ηγ, characterized by M2
miss ≃ 0

and pL ≃ ±350 MeV. The fit returns 394±28 signal events, that correspond to a cross section

σ(e+e− → e+e−η → e+e−π+π−π0) = (7.84± 0.57stat) pb. Fig. 5.16 shows the distributions of

χ2
γγ and χ2

η with signal and backgrounds weighted by their fractions fi.
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Figure 5.12: Top: 2-dimensional distributions of M2
miss versus pT for MC signal events (top

left), MC ηγ events (top right), MC e+e−γ events (center left), MC ωπ0 events (center right),
MC K+K− events (bottom left), and MC KSKL events (bottom right). Bottom: 2-dimensional
distribution of M2

miss versus pT for data.
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Figure 5.13: Top: 2-dimensional distributions of M2
miss versus pL for MC signal events (top

left), MC ηγ events (top right), MC e+e−γ events (center left), MC ωπ0 events (center right),
MC K+K− events (bottom left), and MC KSKL events (bottom right). Bottom: 2-dimensional
distribution of M2

miss versus pL for data.
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Figure 5.14: Projections of the 2-dimensional fit. Top: distribution of the transverse momentum
of the π+π−γγ system. Bottom: distribution of the squared missing mass. The contribution of
the signal is blue, e+e− → ηγ is red, e+e− → ωπ0 is black, e+e− → e+e−γ is green, e+e− →
K+K− is light blue and e+e− → KSKL is purple.
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Figure 5.15: Distribution of the longitudinal π+π−γγ momentum. The contribution of the
signal is blue, e+e− → ηγ is red, e+e− → ωπ0 is black, e+e− → e+e−γ is green, e+e− → K+K−

is light blue and e+e− → KSKL is purple.
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Figure 5.16: Distributions of the χ2
γγ variable (left) and the χ2 of the kinematic fit (right). The

contribution of the signal is blue, e+e− → ηγ is red, e+e− → ωπ0 is black, e+e− → e+e−γ is
green, e+e− → K+K− is light blue and e+e− → KSKL is purple.
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Fig. 5.17 shows the distributions of the sum of the energies of the two photons, Eγ1 + Eγ2, the

π+π− invariant mass, Mπ+π− , the angle between the two photons, αγ1γ2, and the polar angle

of the two photons system, θπ0 . In all the distributions there is good agreement between data

and MC.
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Figure 5.17: Distributions of Eγ1 + Eγ2 (top left), Mπ+π− (top right), αγ1γ2 (bottom left) and θπ0

(bottom right). The contribution of the signal is blue, e+e− → ηγ is red, e+e− → ωπ0 is black,
e+e− → e+e−γ is green, e+e− → K+K− is light blue and e+e− → KSKL is purple.
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5.4.1 Estimates of background yields from a control region

The background weights, defined as fXNdata/N
cuts
X,MC, for the X background with Ncuts

X,MC events

after analysis cuts, are left free in the 2-dimensional fit. To check these weight values, a second

2-dimensional fit is performed in a sideband region. This independent control region is selected

by the requirements:

• 20 < χ2
η < 60,

• no cuts on the pulls variables,

• pT > 150 MeV.

The fit is performed using the pT and M2
miss variables in the window 150 MeV < pT < 320 MeV

and -0.05 GeV2 < M2
miss < 0.25 GeV2. The 2-dimensional distributions used in the fit are shown

in Fig. 5.18. The η(→ π+π−π0)γ cross section is constrained by the χ2-like term described in

equation (5.5). Tab. 5.7 shows the fit results. The projections of the fit are shown in Fig. 5.19

for data and backgrounds weighted by their fractions fi. There is good agreement between the

weights obtained with the “standard” fit and those obtained with the fit in the sideband region,

as shown in Tab. 5.8.

fωπ0 (21.11± 4.31)%

fK+K− (57.90± 5.63)%

fKSKL
(20.16± 4.06)%

χ2/ndo f = 787/774

ndata = 582

Table 5.7: Fit results.

standard fit weights (%) sideband weights (%)

e+e− → ωπ0 28.2 ± 2.5 23.9 ± 4.9

e+e− → K+K− 21.6 ± 2.6 23.9 ± 2.3

e+e− → KSKL 26.8 ± 4.0 31.0 ± 6.2

Table 5.8: Background weights. Comparison between standard fit and control region.
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Figure 5.18: 2-dimensional distributions of M2
miss versus pT in the control region for MC ηγ

events (top left), MC ωπ0 events (top right), MC K+K− events (center left), MC KSKL events
(center right), and data (bottom).
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Figure 5.19: Projections of the 2-dimensional fit in the control region. Top: distribution of the
transverse momentum of the π+π−γγ system. Bottom: distribution of the squared missing
mass. The contribution of e+e− → ωπ0 is black, e+e− → K+K− is light blue and e+e− → KSKL

is purple.
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5.5. Evaluation of the systematic uncertainties

5.5 Evaluation of the systematic uncertainties

The possible contributions to the systematic error are investigated by varying the analysis cuts

by the r.m.s. width of the distributions of each variable. The results are shown in Tab. 5.9,

where δσ/σ(%) is the percentage variation of the signal cross section. The total positive and

negative variations are +2.6% and -2.4%, and 2.6% is taken as final systematic fractional er-

ror. To this the MC simulation statistical error of 1.4% is added in quadrature, and the

fsignalNdata ǫsignal(%) δσ/σ(%)

χ2
γγ < 6.6 396 20.70 +0.67

χ2
γγ < 10.8 391 20.73 -0.73

χ2
η < 18.5 393 20.72 +0.06

χ2
η < 23.5 393 20.82 -0.68

Eγ1 < 210 MeV 385 20.54 -1.17

Eγ1 < 250 MeV 393 20.78 -0.33

26.5◦ < θγ1 < 153.5◦ 403 20.96 +1.21

28.5◦ < θγ1 < 151.5◦ 390 20.46 +0.46

χ2
t < 6 393 20.46 +1.10

χ2
t < 8 391 20.87 -1.22

χ2
E < 7 395 20.42 +1.89

χ2
E < 9 395 21.10 -1.39

απ+π− > 48◦ 394 20.79 -0.21

απ+π− > 52◦ 394 20.69 +0.20

Table 5.9: Systematics for the σ(e+e− → e+e−η → e+e−π+π−π0) measurement.

errors due to knowledge of the form factor and to the branching ratio are kept separate to

account for correlations between the two η decay modes. The changes of the result due to

the variation of bη in the transition form factor formula are shown in Tab. 5.10. A ±1σ varia-

tion of bη leads to a 2.0% fractional error. The final result for the cross section is σ(e+e− →
e+e−η → e+e−π+π−π0) = (7.84 ± 0.57stat ± 0.23syst ± 0.16FF) pb at

√
s = 1 GeV. Using

for the branching fraction the value BR(η → π+π−π0) = 0.2274 ± 0.0028 [1], one derives

σ(e+e− → e+e−η) = [34.5± 2.5stat ± 1.0syst ± 0.7FF ± 0.4BR(η→π+π−π0)] pb.
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Chapter 5. Cross section for e+e− → e+e−η with η → π+π−π0

bη NMC signal efficiency (%) signal yield (%) cross section (pb)

0.7 18807 20.16 14.161 34.65

1.5 18441 20.63 14.467 34.59

1.64 18994 20.53 14.058 33.77

1.8 18749 20.68 14.743 35.17

1.94 19150 20.73 14.487 34.47

2 18997 20.75 14.208 33.78

2.2 18909 20.28 14.396 35.01

2.24 18662 20.50 14.548 35.01

Table 5.10: Signal efficiency, event yield and cross section as a function of the bη parameter.
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Chapter 6

Cross section for e+e− → e+e−η with

η → π0π0π0

6.1 Event selection

In addition to the pre-selection described in section 4.1, candidate decays γ(∗)γ(∗) → η →
π0π0π0 must fulfill the following requirements:

• six and only six neutral prompt clusters with |t− r/c| < 3σt and polar angle 23◦ < θ <

157◦;

• no tracks in the DC.

The number of selected events is 9857.

6.2 Background rejection

Many background contributions have been considered, of which themost important are e+e− →
ηγ, e+e− → ωπ0, e+e− → KSKL and e+e− → a0(980)γ.

• the e+e− → ηγ process, as for the charged η decay, is a source of irreducible background

when η decays to π0π0π0 and the monochromatic photon, Eγ = 350 MeV, is emitted at

small polar angles and is not detected. Anyway, also in this case the correlation of M2
miss

vs. pL is rather different from the signal.

• The e+e− → ω(→ π0γ)π0 process has 5 photons in the final state and therefore is impor-

tant only in case of accidental or split photons. The cross section has been measured by

KLOE at
√
s = 1 GeVwith the same data set: σ(e+e− → ωπ0 → π0π0γ) = (0.550± 0.005)

nb [43].

• e+e− → KSKL events mimic the signal when KS → π0π0, the KL is not detected and there

are two additional split or accidental clusters.
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Chapter 6. Cross section for e+e− → e+e−η with η → π0π0π0

• The e+e− → a0(980)γ → ηπ0γ process can mimic the signal only when η → π0π0π0,

with undetected photons, or η → 2γ, in presence of split or accidental clusters. Similar

arguments apply to the e+e− → η′γ background with η′ → neutrals topologies, more

suppressed by products of branching fractions: BR(η′ → ηπ0π0) × BR(η → neutrals) or

BR(η′ → ωγ) × BR(ω → π0γ) as the major components.

6.2.1 Photon pairing

The six photons are paired chosing the combination that minimizes the difference between

the γγ invariant masses and the masses of the three neutral pions. This is performed using a

pseudo-χ2 variable

χ2
γγ = ∑

γγpair

(mγγ −mπ0)2

σ2
mγγ

with
σmγγ

mγγ
=

1

2

(
σEγi

Eγi
⊕

σEγj

Eγj

)
. (6.1)

The energy resolution function is given in Tab. 5.1. Fig. 6.1 shows the distribution of the χ2
γγ

variable for MC signal events and data. In the following analysis events with χ2
γγ < 14 are

selected.
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Figure 6.1: Distribution of χ2
γγ for data (top) and MC signal events (bottom).
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6.2.2 Kinematic fit

A kinematic fit is then performed, requiring the 6γ invariant mass to be equal to the η mass.

The function to be minimized is the same used for the charged channel (equation (5.2)). To

search for the minimum of equation (5.2) 30 variables are used:

• the energy, Ei;

• the time, ti;

• the cluster centroid position, xi, yi, zi.

for the six photons. There are seven constraints:

• ti − ri/c = 0 for the six photons;

• M2
6γ = M2

η , where M2
6γ is the invariant mass of the six photons and M2

η is the invariant

mass of the η meson.

The resolution functions used in the fit are given in Tab. 5.1. Fig. 6.2 shows the distribution

of the χ2 of the kinematic fit for data and MC signal events. The cut applied is χ2
η < 20.

Fig. 6.3 shows the distribution of the χ2 of the kinematic fit for the backgrounds e+e− → ηγ,

e+e− → ωπ0, e+e− → KSKL and e+e− → a0(980)γ.
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Figure 6.2: Distribution of the χ2 of the kinematic fit for data (top) and MC signal events (bot-
tom).
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Figure 6.3: Distribution of the χ2 of the kinematic fit for e+e− → ηγ (top left), e+e− → ωπ0 (top
right), e+e− → KSKL (bottom left) and e+e− → a0(980)γ (bottom right).

6.2.3 Cut on the energy of the most energetic photon

Also in this analysis the e+e− → ηγ → π0π0π0γ background has a very big tail for bad χ2
η

values (i.e. greater than 20). This is due to events with the monochromatic photon in the

detector acceptance. Fig. 6.4 (left) shows the distribution of the energy of the most energetic

photon, Eγ1, for data, MC ηγ events and MC signal events; the peak of the monochromatic

photon, which is visible in the data and in the MC ηγ events, is shifted due to the preselection

requirement Etot < 900 MeV. On the right side of Fig. 6.4 the correlation between Eγ1 and χ2
η

for ηγ events is shown. It is possible to see that the ηγ events with the monochromatic photon

in the detector acceptance (e.g. Eγ > 300 MeV) have a bad χ2
η value. To eliminate these events,

in addition to the χ2
η requirement, the cut Eγ1 < 260 MeV is performed. Fig. 6.5 shows a good

data-MC agreement also in the sideband region, selected requiring χ2
η > 20 and Eγ1 > 260

MeV.
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Figure 6.4: Left: distribution of the energy of the most energetic photon, Eγ1, for data (top), MC
ηγ (center) and MC signal events (bottom). The peak of the monochromatic photon, which is
visible in the data and in the MC ηγ distribution, is shifted due to the preselection requirement
Etot < 900 MeV. Right: Correlation between Eγ1 and χ2

η for MC ηγ events.
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Figure 6.5: Distribution of Eγ1 in the sideband region (χ2
η > 20, Eγ1 > 260MeV). Data are black,

MC ηγ events are red.
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6.2.4 Cut on the 6γ invariant mass

Fig. 6.6 shows the invariant mass distribution of the 6γ, M6γ, for data, MC signal events and

MC ηγ events. A long tail at high values of M6γ is visible in the data. This tail is not well re-

produced by the signal and neither by the ηγ background. The cut M6γ < 630 MeV is therefore

applied. The systematics due to this cut are small (see section 6.5).
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Figure 6.6: Invariant mass distribution of the 6γ for data (top), MC signal events (center) and
MC ηγ events (bottom).
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6.3 Selection efficiency for signal and backgrounds

The selection efficiencies are evaluated with the MC simulation described in section 4.2. The

number of MC events after each analysis cut is shown in Tabs. 6.1-6.2 for the signal and the

backgrounds. The first row lists the number of generated events; the second row, selection,

includes FILFO, trigger, and the filters described in sections 4.1 and 6.1. The e+e− → γγ(γ)

events do not survive the selection cuts. Tab. 6.3 lists the number of data events after the same

analysis cuts of Tabs. 6.1-6.2.

MC signal η(→ π0π0π0)γ ω(→ π0γ)π0

generated 27159 6293520 914472

selection 8386 689018 1328

χ2
γγ < 14 8231 585297 906

χ2
η < 20 8184 228699 274

Eγ1 < 260 MeV 8024 142578 103

M6γ < 630 MeV 7768 134788 70

Table 6.1: Number of MC events after each analysis cut.

KSKL a0(980)γ f0(980)γ η′γ

generated 19571400 53340 129115 43865

selection 2468 1440 190 934

χ2
γγ < 14 2143 1243 134 815

χ2
η < 20 1566 900 42 337

Eγ1 < 260 MeV 1552 802 15 120

M6γ < 630 MeV 1437 453 9 93

Table 6.2: Number of MC events after each analysis cut.

data sample

filtered 3.77× 108

selection 9857

χ2
γγ < 14 6794

χ2
η < 20 3297

Eγ1 < 260 MeV 2405

M6γ > 630 MeV 2166

Table 6.3: Number of data events after each analysis cut.
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6.4 Cross section evaluation

To evaluate the number of signal events and the cross section, a 2-dimensional fit of the data

is performed. The variables used to discriminate the signal from the background are the 6γ

longitudinal momentum, pL, and the squared missing mass, M2
miss, in the interval -0.15 GeV2

< M2
miss < 0.35 GeV2 and -450 MeV < pL < 450 MeV, that contains 2166 events. The signal

efficiency is (28.60± 0.27)%. The fit to the data is done using the simulated shapes for the signal

and backgrounds and the fit returns the fraction of data events fi = ni/ntot with the constraint

∑i fi = 1. The weights are left free for the signal and the backgrounds. Background yields from

ω(→ π0γ)π0, a0(980)γ and η′γ result in the fractions estimated using the MC efficiencies from

Tabs. 6.1- 6.2:

L σωπ0(
√
s = 1 GeV) ǫωπ0 → fωπ0 = 0.47% (6.2)

σa0(980)γ(
√
s = 1 GeV) < σηγ(

√
s = 1 GeV)

BRφ→a0γ

BRφ→ηγ
→ fa0(980)γ < 0.34% (6.3)

ση′γ(
√
s = 1 GeV) ≤ σηγ(

√
s = 1 GeV)

BRφ→η′γ

BRφ→ηγ
→ fη′γ ≤ 0.02% (6.4)

where the estimate of equation (6.2) comes from the knowledge of the ωπ0 cross section value [43],

and the estimates of equations (6.3, 6.4) are based on phase space arguments whenmoving from√
s = Mφ to

√
s = 1 GeV, together with the knowledge of the ηγ cross section value (see chap-

ter 9). These background contributions are by far below the expected statistics sensitivity of

about 4-5% and are neglected. Fits with the ωπ0 contribution left free are performed resulting

in a negligible fωπ0 value. The 2-dimensional distributions used in the fit are shown in Fig. 6.7.

The contribution of the KSKL background turns out completely negligible. Only the signal and

the η(→ π0π0π0)γ background are left. Tab. 6.4 shows the fit results. The projections of the

fsignal (33.4± 1.5)%

fηγ (66.6± 1.9)%

χ2/ndo f = 1140/1536

ndata = 2166

Table 6.4: Fit results

M2
miss × pL distribution are shown in Fig. 6.8 for the data and the backgrounds weighted by

their relative factors fi, and the pT distribution is shown in Fig. 6.9. From 2166 data events,

723±33 signal events are obtained, and a cross section σ(e+e− → e+e−η → e+e−π0π0π0) =

(10.43± 0.48stat) pb. The fit also returns the fraction of ηγ events, resulting in 1442±41 events

and a cross section σ(e+e− → ηγ → π0π0π0γ) = (278.0± 8.1stat) pb. Fig. 6.10 shows the dis-

tributions of the variables χ2
γγ and χ2

η , where the MC distributions have the weights obtained

from the fit. In all the distributions there is good agreement between data and MC.
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Figure 6.7: 2-dimensional distributions of M2
miss versus pL for data (top left), MC signal events

(bottom left), MC ηγ events (top right), and MC KSKL events (bottom right).
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Figure 6.9: Distribution of the transverse momentum. The signal is blue and e+e− → ηγ is red.
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6.5 Evaluation of the systematic uncertainties

The contributions to the systematic error are evaluated by varying the analysis cuts by the r.m.s.

width of the distributions of the variables χ2
γγ, χ2

η and M6γ. The results are shown in Tab. 6.5,

where δσ/σ(%) is the percentage variation of the signal cross section. In subsection 6.2.3 it was

shown that in the Eγ1 sideband region there is a very good data-MC agreement (see Fig. 6.5),

both in shape and normalizazion, therefore a negligible systematic error is expected from the

cut on this variable. The total positive and negative variations are +2.6% and -1.5%, and 2.6%

is taken as final systematic fractional error. To this the MC simulation statistical error of 1.0% is

fsignalNdata ǫsignal(%) δσ/σ(%)

central value 723 28.60 –

χ2
γγ < 12 716 28.46 -0.51

χ2
γγ < 16 732 28.69 +0.83

χ2
η < 17 716 28.41 -0.26

χ2
η < 23 730 28.66 +0.68

M6γ < 610 686 27.49 -1.33

M6γ < 650 754 29.13 +2.38

Table 6.5: Systematics for the σ(e+e− → e+e−η → e+e−π0π0π0) measurement.

added in quadrature, and the errors due to knowledge of the form factor and to the branching

ratio are kept separate. The changes of the result due to the variation of bη in the transition form

factor formula are shown in Tab. 6.6. The changes of the result due to the variation of bη in the

bη NMC signal efficiency (%) signal yield (%) cross section (pb)

0.7 27413 27.51 32.974 32.87

1.5 27425 28.42 33.332 32.16

1.64 27011 28.93 32.882 31.18

1.8 27416 28.70 33.290 31.81

1.94 27159 28.60 33.409 32.03

2 27239 28.40 32.969 31.84

2.2 27051 28.22 33.169 32.24

2.24 27291 28.67 32.986 31.56

Table 6.6: Signal efficiency, event yield and cross section as a function of the bη parameter.

transition form factor formula lead to a 0.7% fractional error. The final result for the cross sec-

tion is σ(e+e− → e+e−η → e+e−π0π0π0) = (10.43± 0.48stat ± 0.29syst ± 0.07FF) pb at
√
s = 1

GeV. Using the value BR(η → π0π0π0) = 0.3257± 0.0023, one obtains σ(e+e− → e+e−η) =

[32.0± 1.5stat ± 0.9syst ± 0.2FF ± 0.2BR(η→π0π0π0)] pb. Similar systematics measurements are per-

formed for the σ(e+e− → ηγ) cross section, as shown in Tab. 6.7. The total positive and nega-
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6.5. Evaluation of the systematic uncertainties

fηγNdata ǫηγ(%) δσ/σ(%)

central value 1442 2.14 –

χ2
γγ < 12 1421 2.12 -0.36

χ2
γγ < 16 1451 2.16 -0.20

χ2
η < 17 1429 2.11 +0.43

χ2
η < 23 1446 2.15 -0.44

M6γ < 610 1390 2.07 -0.17

M6γ < 650 1470 2.18 +0.13

Table 6.7: Systematics for the σ(e+e− → ηγ → π0π0π0γ) measurement.

tive variations are +0.5% and -0.6%, and 0.6% is taken as final systematic fractional error. The

result for the cross section is σ(e+e− → ηγ → π0π0π0γ) = (278.0 ± 8.1stat ± 1.7syst) pb at√
s = 1 GeV. With the same η → π0π0π0 branching fraction value, one obtains σ(e+e− →

ηγ) = [853± 25stat ± 5syst ± 6BR(η→π0π0π0)] pb. This e
+e− → ηγ cross section is in agreement

with the value measured in the dedicated analysis (see chapter 9).
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Chapter 7

Combination of the two cross section

values

The cross section values from the e+e− → e+e−η → e+e−3π0 and e+e− → e+e−η → e+e−π+π−π0

processes are combined accounting for the following sources of correlation:

a) systematic uncertainties are correlated due to the photon requirement, i.e. the features

of photons reconstructed in the calorimeter, essentially the cluster energy scale and so

the derived efficiency, energy resolution and time resolution that are in common to the

results of the two selections;

b) the common systematics due to the transition form factor, i.e. the bη parameter;

c) each exclusive cross section is divided by the appropriate branching fraction fromPDG [1],

and their correlation coefficients are accounted for.

The correlation coefficient for the type a) is evaluated varying the data/MC energy scale cor-

rection to the MC cluster from 0.5% to 1.1% in steps of 0.1%, in such a way to have seven signal

efficiencies for each analysis (see Tab. 7.1) and to perform statistical regression, resulting in

ρsyst = −0.37, obtained with the formula:

ρ =
∑i(xi − x̄)(yi − ȳ)√

∑j(xj − x̄)2 ∑k(yk − ȳ)2
. (7.1)

The same formula is used to estimate the correlation coefficient for the type b), due to the form

factor, evaluated by varying bη as in Tabs. 5.10 - 6.6. The correlation coefficient obtained is

ρFF = 0.34. The correlation due to the branching fraction, ρBR = −0.73, is taken from PDG [1].

The covariance matrices have the form

Vcovariance =

(
δ2
3π0 ρ δ3π0 δπ+π−π0

ρ δ3π0 δπ+π−π0 δ2
π+π−π0

)
. (7.2)
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Chapter 7. Combination of the two cross section values

ǫdata/MC ǫη→π+π−π0 (%) ǫη→3π0 (%)

0.5% 20.73107 28.65349

0.6% 20.74151 28.64244

0.7% 20.72585 28.62771

0.8% 20.73107 28.60194

0.9% 20.73107 28.57616

1.0% 20.72585 28.56143

1.1% 20.75196 28.52830

Table 7.1: Signal efficiencies for different values of the data/MC energy scale correction.

The following covariance matrices, whose elements are the cross section errors, are used:

Vstat =

(
δ2
3π0 0

0 δ2
π+π−π0

)
, Vsyst =

(
δ2
3π0 −0.37 δ3π0 δπ+π−π0

−0.37 δ3π0 δπ+π−π0 δ2
π+π−π0

)
, (7.3)

VFF =

(
δ2
3π0 0.34 δ3π0 δπ+π−π0

0.34 δ3π0 δπ+π−π0 δ2
π+π−π0

)
, VBR =

(
δ2
3π0 −0.73 δ3π0 δπ+π−π0

−0.73 δ3π0 δπ+π−π0 δ2
π+π−π0

)
.

(7.4)

The resulting combination covariance matrix, Vcomb = Vstat +Vsyst +VFF +VBR,

Vcomb =

(
δ2
3π0 ρ δ3π0 δπ+π−π0

ρ δ3π0 δπ+π−π0 δ2
π+π−π0

)
, (7.5)

displays all the elements for determining the average cross section value

σcomb(e
+e− → e+e−η) = w σ3π0 + (1− w) σπ+π−π0 , (7.6)

where the weight w is given by

w =
δ2

π+π−π0 − ρ δ3π0 δπ+π−π0

δ2
3π0 + δ2

π+π−π0 − 2ρ δ3π0 δπ+π−π0

(7.7)

and ρ is the total correlation coefficient. The uncertainty is

δ2comb =
(1− ρ2) δ2

3π0 δ2
π+π−π0

δ2
3π0 + δ2

π+π−π0 − 2ρ δ3π0 δπ+π−π0

. (7.8)

The values computed forw and δ2comb arew = 0.7 and δ2comb = 2 pb2, resulting in σcomb(e
+e− →

e+e−η) = (32.7± 1.4) pb = (32.7± 1.3stat ± 0.7syst) pb. The total correlation between the two

measurements is found to be small, and the result obtained for the combined cross section is

comparable to the average value obtained assuming independent uncertainties.
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Chapter 8

Extraction of the partial width

Γ(η → γγ)

In order to extract the partial width Γ(η → γγ) ≡ Γηγγ each σ(e+e− → e+e−η) ≡ σobs
X measure-

ment, done in the charged (CD) or neutral (ND) η decay channel, is divided for the theoretical

value σ(e+e− → e+e−η | bη ; Γηγγ) ≡ σth. The theoretical cross section value is obtained from a

MC code with exact QED matrix element [36] (see Appendix A), using the form factor

Fη(q21, q
2
2) =

(
1

1− bηq21

) (
1

1− bηq22

)
, (8.1)

and Γηγγ = 1 keV. The width is obtained from

Γηγγ =
σobs
X

σth
=

NX

ǫBRXLσth
, (8.2)

where NX is the number of e+e− → e+e−η → e+e−π+π−π0/ e+e− → e+e−η → e+e−π0π0π0

events observed, ǫ is the total efficiency, L the integrated luminosity and BRX the branching

fraction for each decay channel. In this formula, the form factor enters both in the σobs
X mea-

surement, i.e. in the signal efficiency and in the shape used for fitting data (events are generated

using the same form factor of equation (8.1)), and in the theoretical cross section σth(bη). In or-

der to exploit possible compensations, the width Γηγγ is extracted conditional to the bη value,

consistently used in both σobs
X and σth. Since the values of the 4-momenta q1 and q2 sampled in

the two decay modes analyzed in chapters 5 and 6 can be slightly different, the partial width

is determined separately for the two decays. Tab. 8.1 shows the cross sections and the partial

width values as a function of the bη parameter. Using the reference bη = 1.94 GeV−2 value, one

obtains:

ΓCD
ηγγ[from π+π−π0] = (548± 40stat ± 16syst ± 7BR ± 14FF) eV , (8.3)

ΓND
ηγγ[from π0π0π0] = (509± 23stat ± 14syst ± 4BR ± 8FF) eV . (8.4)
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Chapter 8. Extraction of the partial width Γ(η → γγ)

bη ( GeV−2) σobs
CD (pb) σobs

ND (pb) σth (pb/1 keV) ΓCD
ηγγ (eV) ΓND

ηγγ (eV)

0.70 34.65 32.87 66.49 521.20 494.37

1.50 34.59 32.16 64.04 540.23 502.29

1.64 33.77 31.18 63.67 530.36 489.64

1.80 35.17 31.81 62.27 555.84 502.72

1.94 34.47 32.03 62.93 547.69 509.02

2.00 33.78 31.84 62.73 537.97 507.05

2.20 35.01 32.24 62.34 561.62 517.11

2.24 35.01 31.56 62.25 562.37 506.92

Table 8.1: Observed cross section, theoretical cross section and partial width as a function of
the bη parameter.

Using the criterion of taking the largest fractional difference between the partial width evalu-

ated at the bη = 1.94 GeV−2 reference and the ones evaluated at bη = (1.8− 2.2) GeV−2, the

systematic error due to the form factor gets slightly modified with respect to the one assigned

to the cross sections. It is relevant to notice that upon combining the two partial widths, also

the form factor covariance matrix gets modified:

VFF =

(
δ2
3π0 0.34 δ3π0 δπ+π−π0

0.34 δ3π0 δπ+π−π0 δ2
π+π−π0

)
→ VFF =

(
δ2
3π0 0.77 δ3π0 δπ+π−π0

0.77 δ3π0 δπ+π−π0 δ2
π+π−π0

)
.

The other correlation coefficients remain the same. Using the formulas given in the previous

chapter, one finds w = 0.7 and

Γcomb(η → γγ) = w ΓND + (1− w) ΓCD = (520± 20stat ± 13syst) eV , (8.5)

resulting at present as the best determination of the Γηγγ partial width. Tab. 8 and Fig. 8.1

show the experimental results for the Γηγγ partial width measurement obtained studying the

process e+e− → e+e−η.
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Γη→γγ (keV) Experiment Year

0.56 ± 0.16 Crystal Ball 1983 [44]

0.64 ± 0.14 ± 0.13 TPC-2◦ 1986 [46]

0.53 ± 0.04 ± 0.04 JADE 1985 [45]

0.514 ± 0.017 ± 0.035 Crystal Ball 1988 [6]

0.490 ± 0.010 ± 0.048 ASP 1990 [18]

0.51 ± 0.12 ± 0.05 MD-1 1990 [17]

0.510 ± 0.026 PDG average1 [1]

0.520 ± 0.020 ± 0.013 KLOE 2012

1 The first two measurements are not taken into ac-
count for the calculation of the PDG average.

Table 8.2: Measurements of the Γηγγ partial width performed by different experiments studying
the decay e+e− → e+e−η.

) (keV)γγ→η(Γ
0.2 0.3 0.4 0.5 0.6 0.7 0.8

Graph

Crystal Ball 1983Crystal Ball 1983Crystal Ball 1983

TPC 1986TPC 1986TPC 1986

JADE 1985JADE 1985JADE 1985

Crystal Ball 1988Crystal Ball 1988Crystal Ball 1988

ASP 1990ASP 1990ASP 1990

MD1 1990MD1 1990MD1 1990

PDGPDGPDG

KLOE 2012KLOE 2012KLOE 2012

Figure 8.1: Experimental points for the measurement of the Γηγγ partial width. The statistical
error is black, while the total error is green. For the Crystal Ball 1983 measurement and the
PDG average only the total error is quoted. The main contribution to the total KLOE error
comes from the statistical error.
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Chapter 9

Measurement of the cross section for

e+e− → ηγ

The most relevant background in the measurement of the e+e− → e+e−η cross section is due

to the radiative process e+e− → ηγ. The value of the cross section at
√
s = 1 GeV has been

used as a constraint in the fit in case of the η → π+π−π0 decay while it has been derived as

a by-product of the analysis of the η → π0π0π0 decay. The cross section has been measured

by the SND experiment [47] at VEPP-2M in the range
√
s = (0.6 − 1.38) GeV, but with less

precision than needed for this analysis.

9.1 Event selection

The cross section for e+e− → ηγ is measured exploiting the η → π+π−π0 decay using the same

data sample and the same pre-selection and selection procedures described in sections 4.1, 5.1

and 6.1 with the only difference that in this case events with three and only three neutral

prompt clusters are selected. The event selection aims at finding two tracks of opposite cur-

vature, compatible with being due to π±, two neutral prompt clusters compatible with being

originated by a π0 decay, and a third neutral prompt cluster compatible with the photon recoil-

ing against the π+π−π0 system.

9.2 Background rejection

Many background contributions have been considered:

• e+e− → ωπ0 events followed by the decay ω → π+π−π0 are characterized by two

tracks and four photons and can simulate the signal if one photon is not detected. The

contribution from the decay ω → π0γ is negligible since there are no tracks in the final

state.

• e+e− → π+π−π0γ events (including e+e− → ωγ events, with ω → π+π−π0) have the

same final state of the signal, with two photons and two tracks. The e+e− → ωγ cross
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Chapter 9. Measurement of the cross section for e+e− → ηγ

section at
√
s = 1 GeV has not been measured. According to the MC code Phokhara [48]

σ(e+e− → ωγ → π+π−π0γ,
√
s = 1 GeV) = 1.4 nb.

• e+e− → e+e−γ events have a very large cross section at
√
s = 1 GeV, about 400 nb, and

can be an important background source when an electron/positron track is recognized as

a pion track. The two extra photons in the final state may come from split or accidental

clusters.

• e+e− → KSKL events can mimic the signal when the KL decays to π±l∓ν close to the

collision point and KS → π0π0 but one photon is not detected.

• e+e− → K+K− events can mimic the signal when both kaons decay close to the collision

point: K± → π±π0 and K∓ → π∓π0, with four photons in the final state and one photon

undetected, or K± → π±π0 and K∓ → µ∓ν, with two photons in the final state plus one

accidental or split cluster.

• e+e− → ηγ with η → π+π−γ events (BR = 0.046) have only two photons in the final

state, but one extra photon may come from split or accidental clusters. The presence of

the monochromatic photon, Eγ = 350 MeV, and of the η meson makes this contribution

not easily distinguishable from the signal.

• e+e− → π+π−π0 events can mimic the final state of the signal in case of accidental or

split clusters.

• e+e− → π+π−γ events can mimic the final state of the signal in case of at least two

accidental or split clusters.

• e+e− → γγ may become important in case of conversions in the material close to the

beam line and when there are split or accidental clusters.

• e+e− → ηγ with η → π0π0π0 events have seven photons and no tracks in the final state.

This can become an important background only in case of conversions; in most cases

however there are some undetected photons.

9.2.1 Photon pairing

In this analysis the same pseudo-χ2 variable introduced in chapter 5 is used to identify the π0

meson by selecting two out of the three total photons detected. Photons are paired choosing

the combination that minimizes the difference between the γγ invariant mass and the mass of

the neutral pion. No cut is applied to the value of χ2
γγ.

9.2.2 Kinematic fit

A kinematic fit is then performed, using Lagrange Multipliers. The function to be minimized

is the same used for the γ(∗)γ(∗) → η analyses (equation (5.2)), but in this case the leading
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requirement is to satisfy energy and momentum conservation. To search for the minimum of

equation (5.2) 15 variables are used:

• the energy, Ei;

• the time, ti;

• the cluster centroid position, xi, yi, zi.

for the three photons. The track momenta are not varied in the minimization since these are

measured with much better precision than the cluster energies. There are seven constraints:

• ti − ri/c = 0 for the three photons;

•
√
s = ∑3γ Eγ + Eπ+ + Eπ− ;

• ∑3γ ~pγ +~pπ+ +~pπ− = ~pe+e− .

The resolution functions used in the fit are given in Tab. 5.1. Fig. 9.1 shows the distribution

of the χ2 of the kinematic fit for data, MC signal events, MC e+e− → K+K− events and MC

e+e− → KSKL events. The cut χ2 < 50 is applied. The improved variables are used to fit the

distribution of the recoil photon energy. Fig. 9.2 shows the pull statistics

Eimpr − Emeas

σE
,

timpr − tmeas

σt
, (9.1)

ximpr − xmeas

σx
,

zimpr − zmeas

σz
, (9.2)

for the energy and the z, x, t coordinates of the unpaired photon. The pairing procedure is

repeated after the fit, to minimize the events in which the selected unpaired photon is one

of the photons coming from the π0. This is shown in Fig. 9.3, where the distributions of the

“improved” (after the fit) energy of the unpaired photon, before, in black, and after, in red, the

second pairing procedure are compared. Figs. 9.4 - 9.5 show the distributions of the energy of

the unpaired photon and of the π+π−π0 invariant mass before and after the kinematic fit for

data and MC signal events.

9.2.3 Track identification and rejection of the QED background

The background of e+e− → e+e−γ and e+e− → γγ is reduced using the π-e likelihood esti-

mator as described in subsection 5.2.3. Fig. 9.6 shows the correlation between the polar angles

of the positive and negative tracks before and after the cuts on the fit χ2 and on the likelihood

estimator. Split-track events are completely removed at this stage of the analysis. Additional

cuts to reduce e+e− → e+e−γ events are a cut on the angle between the tracks, απ+π− < 160◦,

and a cut on the angles between any photon pair, αγiγj
> 20◦. The last cut aims to reduce

e+e− → e+e−γ events with one or more split photons. Fig. 9.7 shows the distribution of the

angle between the two tracks for e+e− → e+e−γ events and for the signal, while Figs. 9.8 and

9.9 show some αγiγj
distributions for data, MC e+e− → e+e−γ events and MC signal events.
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Figure 9.1: Distribution of the χ2 of the kinematic fit for data (top left), MC signal events (top
right), MC e+e− → K+K− events (bottom left), MC e+e− → KSKL events (bottom right).

9.2.4 Cut on the sum of the photon energies

A cut on the sum of the photon energies requires ∑ Eγ < 660 MeV. This cut is performed

to suppress the background e+e− → ηγ → π0π0π0γ with conversions. Fig. 9.10 shows the

distribution of the sum of the photon energies for MC signal events and MC e+e− → ηγ →
π0π0π0γ events with conversions.

9.2.5 Cut on the sum of the track momenta

A cut on the sum of the momenta of the tracks requires |~p(π+)| + |~p(π−)| < 440 MeV. This

cut is performed basically to suppress the backgrounds e+e− → π+π−π0 and e+e− → η(→
π+π−γ)γ, but it also reduces the contribution of e+e− → π+π−π0γ and e+e− → ωπ0. Fig. 9.11

88



9.2. Background rejection

(Eimpr-Ecalo)/σE

ev
en

ts
/0

.1

(zimpr-zcalo)/σz

(ximpr-xcalo)/σx

ev
en

ts
/0

.1

(timpr-tcalo)/σt

0

1000

2000

3000

4000

5000

6000

7000

8000

-4 -2 0 2 4
0

2000

4000

6000

8000

10000

12000

-4 -2 0 2 4

0

5000

10000

15000

20000

25000

-4 -2 0 2 4
0

2000

4000

6000

8000

10000

-4 -2 0 2 4

Figure 9.2: Pull statistics for the energy (top left) and the z (top right), x (bottom left), t (bottom
right) coordinates of the unpaired photon.

shows the distribution of the sum of the tracks momenta for MC signal events andMC e+e− →
π+π−π0 events, and the distribution of the energy of the unpaired photon for data before and

after the cut on the sum of the tracks momenta. The e+e− → ωγ peak is visible, with Eγ = 194

MeV.
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Figure 9.3: Distribution of the improved energy of the unpaired photon, before, in black, and
after, in red, the second pairing procedure.
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Figure 9.4: Distribution of the energy of the unpaired photon before (left) and after (right) the
kinematic fit for data (top) and MC signal events (bottom). The peaks of the monochromatic
photons γη and γω (from the processes e+e− → ηγη and e+e− → ωγω respectively) are clearly
visible in the data distribution after the fit.
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Figure 9.5: Distribution of the π+π−π0 invariant mass before (left) and after (right) the kine-
matic fit for data (top) and MC signal events (bottom). The η and ω peaks are clearly visible in
the data distributions.
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Figure 9.6: Correlation between positive and negative track polar angles in data before (top)
and after (bottom) the cuts on the fit χ2 and on the likelihood estimator. Split-track events are
completely removed at this stage of the analysis.
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Figure 9.7: Distribution of the angle between the two tracks for MC e+e− → e+e−γ events (top)
and MC signal events (bottom).
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Figure 9.8: Distribution of the angle between the two paired photons (top), the angle between
the most energetic paired photon and the unpaired photon (center) and the angle between the
least energetic paired photon and the unpaired photon (bottom) for data.
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Figure 9.9: Left: distribution of the angle between the two paired photons (top) and the angle
between the most energetic paired photon and the unpaired photon (bottom) for MC signal
events. Right: distribution of the angle between the least energetic paired photon and the
unpaired photon for MC signal events (top) and MC e+e− → e+e−γ events (bottom).
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Figure 9.10: Distribution of the sum of the photon energies for MC signal events (top) and for
the MC of the process e+e− → ηγ → π0π0π0γ with conversions (bottom).
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Figure 9.11: Distribution of the sum of the tracks momenta for MC signal events (top) and MC
e+e− → π+π−π0 events (center). The plot at the bottom shows the distribution of the energy
of the unpaired photon for data before (black) and after (red) the cut on the sum of the tracks
momenta. The e+e− → ωγ peak is clearly visible, with Eγ = 194 MeV.
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9.3 Selection efficiency for signal and backgrounds

The selection efficiencies are evaluatedwith theMC simulation described in section 4.2. Tabs. 9.1

- 9.2 list the number of MC events after each analysis cut for the signal and the backgrounds.

The first row lists the number of generated events. The second row, selection, includes FILFO,

trigger, and the filters described in sections 4.1 and 9.1. Table 9.3 lists the number of data events

after the same analysis cuts of Tabs. 9.1 - 9.2.

η(→ π+π−π0)γ π+π−π0γ ωπ0 e+e−γ K+K− KSKL

generated 4907485 2964527 9208930 95580900 29487300 19872200

selection 1801423 180205 1823023 28605 11113 76347

χ2 < 50 1609974 131916 226126 7125 128 1663

likelihood 1498948 129999 220610 2109 108 1378

θπ+π− < 160◦ 1492246 122018 203795 910 105 715

θγγ > 20◦ 1467958 116472 199770 706 103 714

∑ Eγ < 660 MeV 1408102 116221 199464 513 103 714

∑ pπ < 440 MeV 1407643 35356 98116 353 84 714

Table 9.1: Number of MC events after each analysis cut.

η(→ π+π−γ)γ η(→ neutrals)γ π+π−γ γγ(γ) π+π−π0

generated 1024527 9822290 71939100 142775000 6057553

selection 7406 10919 7757 2710 34042

χ2 < 50 3333 6641 657 395 8087

likelihood 3193 6054 655 258 8067

θπ+π− < 160◦ 3144 5744 539 211 8021

θγγ > 20◦ 1172 5715 79 194 500

∑ Eγ < 660 MeV 1149 215 77 94 499

∑ pπ < 440 MeV 712 214 9 93 15

Table 9.2: Number of MC events after each analysis cut.

9.4 Cross section evaluation

The number of signal events is derived with a 2-dimensional fit to the data. The distributions

used to discriminate the signal from the background are the energy of the unpaired photon,

Eγ, and the invariant mass of the two charged pions, Mππ, in the interval 50 MeV < Eγ <

400 MeV and 280 MeV < Mπ+π− < 520 MeV that contains 55150 events. The signal efficiency

is (28.68± 0.02)%. The fit to the data is done using the simulated shapes for the signal and

backgrounds and the weights are left free. The fit returns the fraction of data events fi =

ni/ntot with the constraint ∑i fi = 1. The 2-dimensional histograms used in the fit are shown

in Fig. 9.12. The projections of the Eγ × Mπ+π− distribution are shown in Fig. 9.13 for the data
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data sample

filtered 1.4×108

selection 811043

χ2 < 50 177618

likelihood 166365

θπ+π− < 160◦ 154989

θγγ > 20◦ 142449

∑ Eγ < 660 MeV 141271

∑ pπ < 440 MeV 55408

Table 9.3: Number of data events after each analysis cut.

and the backgrounds weighted by their relative factors fi. The result of the fit gives 13536± 121

signal events resulting in a cross section σ(e+e− → ηγ → π+π−π0γ) = (194.7± 1.8stat) pb.

The only relevant backgrounds are from e+e− → π+π−π0γ and e+e− → ωπ0. Figs. 9.14 - 9.17

show some data-MC comparisons. Fig. 9.14 shows the distribution of the cosine of the polar

angle of the monochromatic photon, cos θ, where in the right plot the region around the signal

peak, 320 MeV < Eγ < 380 MeV, is selected. Fig. 9.15 shows the distributions of the χ2 of

the kinematic fit. The invariant mass of the π+π−π0 system, reconstructed with the improved

energies, is shown in Fig. 9.16. Fig. 9.17 shows the distributions of the energy of the two paired

photons, where γ1 stands for the most energetic one and γ2 for the least energetic one. In all

these distributions there is good agreement between data and MC.

9.5 Evaluation of the systematic uncertainties

The distributions of e+e− → π+π−π0γ and e+e− → ηγ are well reproduced by simulation both

in shape and relative normalization, while the fraction of ωπ0 events results slightly higher

than expected. The e+e− → ωπ0 cross section can be introduced as a constraint by adding the

following χ2-like term in the 2-dimensional fit:

− 2 lnL → −2 lnL +

(
fωπ0Ndata/(ǫωπ0L) − σωπ0

δσωπ0

)2

, (9.3)

where σωπ0 ± δσωπ0 = (5.72± 0.05) nb is the measured value [43], while the other quantities

refer to ω(→ π+π−π0)π0 events as selected in the present measurement. After including the

term of eq. (9.3), a result higher by 1.36% is obtained for the e+e− → ηγ cross section. This

difference is accounted for in the systematic error. Other possible contributions to the system-

atic error are investigated by varying the analysis cuts by the r.m.s. width of the distributions

of χ2, θπ+π− , θγγ, ∑ Eγ, and |~p(π−)| + |~p(π+)|, as shown in Tab. 9.4. This results in a relative

error of ±1.45% and σ(e+e− → ηγ → π+π−π0γ) = (194.7 ± 1.8stat ± 2.8syst) pb. Using

for the branching fraction the value BR(η → π+π−π0) = 0.2274 ± 0.0028 [1], one obtains

σ(e+e− → ηγ) = [856± 8stat ± 12syst ± 11BR(η→π+π−π0)] pb. This value, obtained from a direct
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Figure 9.12: Distribution of the energy of the unpaired photon, Eγ, versus the invariant π+π−

mass, Mππ, for data (top left), MC signal events (top right), MC ωπ0 events (bottom left), MC
π+π−π0γ events (bottom right).

measurement, agrees well with the value obtained from the analysis of γγ → η → π0π0π0.

The result interpolates well with the measurements of the SND experiment [47] and has a bet-

ter precision. Fig. 9.18 shows the KLOE value for σ(e+e− → ηγ) at
√
s = 1 GeV compared to

the SND results [47] for several values of
√
s.
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Figure 9.13: Projections of the 2-dimensional fit. Top: distribution of the energy of the unpaired
photon. Bottom: distribution of the invariant mass Mπ+π− . The contribution of the signal
e+e− → ηγ is blue, e+e− → ωπ0 is green and e+e− → π+π−π0γ is purple.

100



9.5. Evaluation of the systematic uncertainties

cosθ

ev
en

ts/
0.

02

0

200

400

600

800

1000

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

cosθ
ev

en
ts/

0.
02

0

25

50

75

100

125

150

175

200

225

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
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Figure 9.15: Distribution of the χ2 of the kinematic fit. The contribution of the signal e+e− → ηγ

is blue, e+e− → ωπ0 is green and e+e− → π+π−π0γ is purple.
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Figure 9.16: Distribution of the invariant mass of the π+π−π0 system, obtained using the im-
proved energies after the kinematic fit. The contribution of the signal e+e− → ηγ is blue,
e+e− → ωπ0 is green and e+e− → π+π−π0γ is purple.
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Figure 9.17: Left: distribution of the energy of the most energetic paired photon, Eγ1. Right:
distribution of the energy of the least energetic paired photon, Eγ2. The contribution of the
signal e+e− → ηγ is blue, e+e− → ωπ0 is green and e+e− → π+π−π0γ is purple.
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nsignal ǫsignal(%) δσ/σ(%)

ωπ0 fixed 13720 28.68 +1.36

χ2 < 45 13489 28.54 +0.12

χ2 < 55 13583 28.79 -0.04

θπ+π− < 157◦ 13518 28.64 -0.01

θπ+π− < 163◦ 13548 28.70 -0.01

θγγ > 18◦ 13601 28.79 +0.09

θγγ > 22◦ 13482 28.55 +0.03

∑ Eγ < 610 12232 25.80 +0.44

∑ Eγ < 710 13927 29.62 -0.38

∑ pπ < 435 13551 28.65 +0.21

∑ pπ < 445 13522 28.68 -0.11

Table 9.4: Systematics for the σ(e+e− → ηγ → π+π−π0γ) measurement.
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Figure 9.18: Cross section result for the KLOE σ(e+e− → ηγ) measurement (red point) com-
pared to SND [47] for several values of

√
s. On this scale, errors of the present measurement

are not visible.
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Conclusions

The cross section σ(e+e− → e+e−η) is measured at
√
s = 1 GeV with the KLOE detector,

using an integrated luminosity of about 240 pb−1. The η mesons are selected through the two

decays η → π+π−π0 (charged decay, CD) and η → π0π0π0 (neutral decay, ND) that exploit

in a complementary way the tracking and the calorimeter measurements. Many background

processes are considered, the most relevant being e+e− → ηγ when the photon is emitted at

small polar angles and escapes detection.

The cross section for e+e− → e+e−η is obtained independently for the two η decay modes

with a 2-dimensional fit to the squared missing mass and the η momentum projections. The

results are σ(e+e− → e+e−η)CD = (34.5 ± 2.5stat ± 1.3syst) pb and σ(e+e− → e+e−η)ND =

(32.0± 1.5stat ± 0.9syst) pb. Combining the two measurements, the value σ(e+e− → e+e−η) =

(32.7± 1.3stat ± 0.7syst) pb is obtained.

The cross section of the irreducible background e+e− → ηγ is measured in the same data

sample with a dedicated analysis, and yields σ(e+e− → ηγ) = (856± 8stat ± 16syst) pb. This

value interpolates well the previousmeasurements by the SND experiment and is more precise.

The e+e− → ηγ cross section is used as a constraint in the fit for the η → π+π−π0 case. In the

case of η → π0π0π0 decay, instead, it is measured as a by-product of the main analysis, and

yields σ(e+e− → ηγ) = (853± 25stat ± 8syst) pb, in agreement with the value obtained in the

dedicated analysis.

Since the values of the four-momenta q1 and q2 sampled in the two decay modes can be slightly

different, the partial width is extracted separately for the two decays, and then combined. The

results obtained separately for the two decay channels are ΓCD
ηγγ = (548± 40stat ± 22syst) eV and

ΓND
ηγγ = (509± 23stat ± 17syst) eV. The final result for the γγ width of the η meson is

Γ(η → γγ) = (520± 20stat ± 13syst) eV. (9.4)

This value is in agreement with the world average of (510 ± 26) eV and is the most precise

measurement to date.

These results are encouraging in view of the forthcoming data taking campaign of the KLOE-2

project [49], when analyses of the data collected at the φ-peak will be possible with the informa-

tion coming from two dedicated e± tagging detectors: the low energy taggers (LET), located in

the region between the two low-beta focusing quadrupoles inside KLOE, and the high energy

taggers (HET), located at the exit of the first bending magnet.
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Appendix A

AMonte Carlo generator for

e+e− → e+e−η

Several MC generators have been developed for γγ physics (see ref. [36] for a detailed list). The

simulation used in this analysis generates events with exact matrix element according to full

3-body phase space distributions, includes both s- and t-channel amplitudes and their interfer-

ence, and allows user-defined form factors. The cross section for the process e+e− → e+e−η

can be written as

σ(e+e− → e+e−η) ∝

∫
1

4

1

2s ∑ |M|2dL3, (A.1)

where 1
4 is the spin averaging factor, 2s is the flux factor, M is the matrix element, and dL3 is

the 3-body Lorentz invariant phase space. The Feynman diagrams for s- and t- channels are

shown in Fig. A.1.

Figure A.1: Feynman diagrams for the process e+e− → e+e−η. Left: t-channel. Right: s-
channel.

The kinematic invariants used are

s = (p1 + p2)
2, (A.2)

t1 = (p1 − q1)
2, (A.3)

t2 = (p2 − q2)
2, (A.4)
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where t1 and t2 are the four-momenta of the photons in the t-channel. Photons in s-channel

have four-momenta s1 = s = (p1 + p2)2 and s2 = (q1 + q2)2. The matrix element for the

t-channel can be written in the form

Mt ∝ gηγγ × geγ × i

t1t2
× F(t1, t2) × ǫµναβ(q1 − p1)

α(q2 − p2)
β(ν̄(p1)γµν(q1))(ū(q2)γνu(p2)),

(A.5)

where gηγγ refers to the ηγγ coupling, geγ to the eγ coupling, F(t1, t2) is the form factor, and

1/t1, 1/t2 are the photon propagators. The last part of the matrix element contains the currents

product. ǫµναβ is the Levi-Civita completely antisymmetric tensor. The couplings are defined

as

g2ηγγ =
4πΓηγγ

m3
η

, (A.6)

g2eγ = (4πα)2, (A.7)

(A.8)

where Γηγγ is the γγ partial width of the η meson, and α ≈ 1/137 is the fine structure constant.

The η transition form factor is parametrized as

Fη(t1, t2) =

(
1

1− bηt1

) (
1

1− bηt2

)
, (A.9)

where bη is the slope parameter. The matrix element for the s-channel has the form

Ms ∝ gηγγ × geγ × i

s1s2
× F(s1, s2) × ǫµναβ(p1 + p2)

α(q1 + q2)
β(ν̄(p1)γµu(p2))(ū(q2)γνν(q1)),

(A.10)

where the form factor F(s1, s2) has the same analytical expression as in the t-channel (equation

(A.9)). The s-channel amplitude has a peak at small invariant masses of the final e+e− pair, and

is much smaller than the t-channel amplitude. With this MC code it is possible to calculate the

total cross section with the only contribution of the t-channel, or with both s- and t- channels.

For the analyses described in this thesis only the t-channel has been considered, as at a center

of mass energy of 1 GeV the s-channel contribution is less than 0.5%.
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Appendix B

Energy scale correction

B.1 e+e− → KSKL

MC e+e− → KSKL events with KS → π0π0 and with the KL interacting in the calorimeter are

selected by requiring:

• four prompt neutral clusters with polar angle 23◦ < θ < 157◦;

• one neutral delayed cluster with 0.06 < β∗ < 0.13, where β∗ is the KL velocity in the KLKS

system (expected value ≈ 0.1);

• no tracks in the DC.

A pseudo-χ2 variable is then defined, to pair the four photons:

χ2
ππ =

(mπ0 −mij)
2

σ2
ij

+
(mπ0 −mkl)

2

σ2
kl

with
σij

mij
=

1

2

(
σEγi

Eγi
⊕ σEγj

Eγj

)
, (B.1)

where mij is the invariant mass of the two photons, mij =
√

2EiEj(1− cosθij), and the energy

resolution is σE/E = 0.057/
√

E (GeV). The cut χ2
ππ < 4 is applied. Fig. B.1, left, shows the

four photons invariant mass distribution for data and for MC e+e− → KSKL events. By super-

imposing the two distributions (bottom left part of Fig. B.1) it is possible to see that there is a

small shift between data and MC events. A correction of 0.8% has been therefore applied to the

MC clusters energy, Eclu = 1.008 × Eclu. The corrected MC spectrum and its superimposition

with data are shown on the right side of Fig. B.1.

109



Appendix B. Energy scale correction

data - M4γ (MeV)

Mean
RMS
ALLCHAN

  489.3
  39.69
  5459.

dN
/d

M
4γ

 (
3 

M
eV

)-1

MC KS KL - M4γ (MeV)

Mean
RMS
ALLCHAN

  487.9
  38.75

 0.6463E+06

dN
/d

M
4γ

 (
3 

M
eV

)-1

M4γ (MeV)

dn
/d

M
4γ

0

50

100

150

200

350 400 450 500 550 600 650

0

5000

10000

15000

20000

350 400 450 500 550 600 650

0

0.01

0.02

0.03

0.04

350 400 450 500 550 600 650

data - M4γ (MeV)

Mean
RMS
ALLCHAN

  489.3
  39.69
  5459.

dN
/d

M
4γ

 (
3 

M
eV

)-1

MC KS KL - M4γ (MeV)

Mean
RMS
ALLCHAN

  491.0
  38.98

 0.6497E+06

dN
/d

M
4γ

 (
3 

M
eV

)-1

M4γ (MeV)

dn
/d

M
4γ

0

50

100

150

200

350 400 450 500 550 600 650

0

5000

10000

15000

20000

350 400 450 500 550 600 650

0

0.01

0.02

0.03

0.04

350 400 450 500 550 600 650

Figure B.1: Left: Distribution of the four photons invariant mass for data (top), and for MC
e+e− → KSKL events (center). In the bottom plot the two distribution are superimposed (black
= data, red = MC e+e− → KSKL events). Right: same distributions, but after the energy correc-
tion on MC clusters energy.
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B.2 e+e− → ηγ → 3π0γ

MC e+e− → ηγ → 3π0γ events are selected by requiring:

• at least five prompt neutral clusters with polar angle 23◦ < θ < 157◦;

• no tracks in the DC;

• χ2
ππ < 4. This is the same variable as defined for the e+e− → KSKL process described in

section B.1, and is used in this case to pair the four “best” photons, i.e. the photons that

better reconstruct two out of the three neutral pions;

• pT > 200 MeV, where pT is the transverse momentum of the four “paired” photons.

The γγ-filter described in Section 4.1 cuts out e+e− → ωπ0 events with five photons in the

final state. Fig. B.2 shows the 2γ invariant mass distribution (inclusive on the four photons) for

data and for MC e+e− → ηγ events, where the MC cluster energies are corrected by 0.8%. The

bottom part of Fig. B.2 shows the data andMC distributions superimposed after the correction.
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Figure B.2: Top: distribution of the 2γ invariant mass for data. Center: distribution of the 2γ

invariant mass forMC e+e− → ηγ events after energy correction. Bottom: the two distributions
are superimposed (black = data, red = MC e+e− → ηγ events).
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Appendix C

The Lagrange Multipliers method

C.1 The Least-Squares method

A set of N independent, experimental values yi(xi) with variances σ2
i are given. The true values

η1, η2, ..., ηN of the observables are not known, but it can be assumed that some theoretical

model exists, which associates the true values ηi with each xi through a functional dependence,

fi = fi(xi|θ1, θ2, ..., θL) , (C.1)

where xi are independent variables, and (θ1, θ2, ..., θL) is a set of parameters, L≤N. According

to the Least-Squares (LS) Principle [53] the best values of the unknown parameters are those

which minimize the quantity

χ2 =
N

∑
i=1

wi(yi − fi)
2 , (C.2)

where wi = 1/σ2
i is the weight of the i-th observation, and describes the accuracy of the mea-

surement yi. If the observations are corrrelated and a covariance matrix V(ȳ) is given, equation

(C.2) can be written as

χ2 =
N

∑
i=1

N

∑
j=1

(yi − fi)V
−1
ij (yj − f j) , (C.3)

or, in terms of matrix notation,

χ2 = (ȳ− f̄ )TV−1(ȳ− f̄ ) . (C.4)

If there is a linear dependence on the parameters f̄ = Aθ̄, equation (C.4) becomes

χ2 = (ȳ− Aθ̄)TV−1(ȳ− Aθ̄) . (C.5)

In many situations the quantities to be estimated are not the θ̄ parameters, but the true ob-

servables η̄. The observations ȳ with covariance matrix V(ȳ) are taken as initial estimates of

the true, but unknown, η̄ values. The best estimates of η̄ are the values which minimize the
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quantity

χ2 = ǭTV−1ǭ , (C.6)

where ǭ is the difference between the measured and true values, ǭ = ȳ − η̄. When the LS

minimization has been performed, the final estimates ̂̄η of the true η̄ are called “improved

measurements”, or “fitted variables”. The “residuals” ̂̄ǫ of the LS estimate are defined as the

differences between the original measurements and the “improved measurements”, ̂̄ǫ = ȳ− ̂̄η.
If the N measurements yi are uncorrelated, independent and normally distributed with vari-

ance σ2
i around the true values ηi, and in the hypothesis that the observables ηi were known,

the quantity

χ2 =
N

∑
i=1

(
ǫi
σi

)2

=
N

∑
i=1

(
yi − ηi

σi

)2

(C.7)

would be a sum of N independent squared normal variables, distributed as a χ2 variable with

N degrees of freedom. However, in practice, the true, unknown ηi values should be replaced

by their estimated values η̂i, thus obtaining a weighted sum of squared residuals

χ2
min =

N

∑
i=1

(
ǫ̂i
σi

)2

=
N

∑
i=1

(
yi − η̂i

σi

)2

, (C.8)

which, in the case of a linear model with L parameters, is distributed as a χ2 variable with (N-L)

degrees of freedom.

C.2 Fitting with constraints: Largange Multipliers

In some cases the observables η̄ can be related through algebraic constraint equations. This

happens, for instance, when one measures independently the three angles of a triangle and

wants the LS estimates of the true values to satisfy the requirement that their sum be equal to

180◦. In this case the method of Lagrange Multipliers [53] may be used. This method increases

the number of unknows in the minimization by adding a set of Lagrange Multipliers, one for

each constraint equation. Given N observables yi, L parameters θi, and K linear constraints, the

constraint equations can be written as

Bθ̄ − b̄ = 0 , (C.9)

where B is a K×L matrix and b̄ is a K-component vector. If one introduces a Lagrange Multi-

pliers K-component vector λ̄ = (λ1,λ2, ...,λK), the quantity to be minimized becomes

χ2(θ̄, λ̄) = (ȳ− Aθ̄)TV−1(ȳ− Aθ̄) + 2λ̄T(Bθ̄ − b̄) , (C.10)
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which is the analogous of equation (C.5) for the unconstrained case. By equating the χ2 deriva-

tives to zero with respect to θi, i = 1, 2, ..., L and λi, i = 1, 2, ...,K one obtains

▽θ χ2 = −2(ATV−1ȳ− ATV−1Aθ̄) + 2BTλ̄ = 0̄ ,

▽λχ2 = 2(Bθ̄ − b̄) = 0̄ . (C.11)

These are L+K linear equations for the unknowns. By introducing the abbreviations

C ≡ ATV−1A, c̄ ≡ ATV−1ȳ , (C.12)

equations (C.11) become

Cθ̄ + BTλ̄ = c̄ ,

Bθ̄ = b̄ . (C.13)

If the inverse of the C matrix exists, one can multiply the first of these equations by BC−1 and

substitute Bθ̄ from the second equation, obtaining

b̄ + BC−1BTλ̄ = BC−1c̄ . (C.14)

Writing

VB ≡ BC−1BT , (C.15)

and assuming that the inverse of the VB matrix exists, the solutions for the Lagrange Multipli-

ers, for the parameters θ̄, and for the “improved measurements” are

̂̄λ = V−1
B (BC−1c̄− b̄) ,

̂̄θ = C−1c̄− C−1BTV−1
B (BC−1c̄− b̄) ,

̂̄η = Â̄θ = A[C−1c̄− C−1BTV−1
B (BC−1c̄− b̄)] . (C.16)

The χ2
min variable is, in this case, distributed as a χ2 variable with (N-L+K) degrees of freedom.

If the number of observables is equal to the number of parameters, the number of degrees of

freedom is equal to the number of constraints K.
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Appendix D

The 2-dimensional fit

The code used in this analysis fits the MC 2-dimensional distributions to the data using a

binned maximum likelihood fit, which takes into account the finite statistics both from data

and fromMC samples and allows to determine the fraction yield for each component. The dis-

tribution is described by 2-dimensional histogramswith n×m bins. This gives a set of numbers

d11, d12...dnm, where dij is the number of events in data that fall into the bin ij. pij is the predicted

number of events in the bin, and is given by the predicted fraction of signal and background

events in data fs, fb, and by the number of MC signal and background events sij, bij, in bin ij:

pij = ND

(
fs
sij

NS
+ fb

bij

NB

)
≡ wssij + wbbij, (D.1)

where ND is the total number of data and NS, NB the total number of MC signal events andMC

background events, respectively. In D.1 ws and wb are the normalized weights for signal and

background. The probability for observing a particular dij is given by the Poisson distribution:

P(dij|pij) = e−pij
p
dij
ij

dij!
(D.2)

and the estimates of theweightsws,wb are found bymaximizing the likelihoodL = ∏ij P(dij|pij).
For each source, in each bin, there is some (known with limited statistics) expected number of

events Sij, Bij such that pij = wsSij + wbBij. The likelihood to be maximized is the combined

probability for observing dij, sij and bij given Sij, Bij [50]:

L =
n

∏
i=1

m

∏
j=1

P(dij|wsSij + wbBij)P(sij|Sij)P(bij|Bij) (D.3)
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Expanding equation (D.3) in terms of three expressions of type in equation (D.2) one obtains

the following function:

lnL =
n

∑
i=1

m

∑
j=1

(dij − pij − dij ln
dij

pij
+ sij − Sij − sij ln

sij

Sij
+ bij − Bij − bij ln

bij

Bij
) (D.4)

To find the maximum of equation (D.4) one has to differentiate lnL and set the derivatives to

zero. The differentials with respect to the 2× n×m variables Sij, Bij give Sij, Bij expressed as

functions of the observables si and bi:

Bij =
bij

1+ wb(1−
dij

wssij+wbbij
)

Sij =
sij

1+ ws(1− dij
wssij+wbbij

)
(D.5)

The derivative of lnL with respect to the free parameters fs, fb is obtained numerically. Cus-

tomized versions of the routines HMCLNL and HADJUST (included in the HBOOK package [51]) are

used, adapted to fit data with the superposition of 2-dimensional MC histograms, to obtain the

−2 lnL value for a given set of fs, fb fractions.

Also possible constraints are accounted for, such as the knowledge of a cross section value σb

for the b component, obtained in similar analyses:

− 2 lnL → −2 lnL +

(
fbNdata/(ǫbL) − σb

δσb

)2

(D.6)

where ǫb is the analysis efficiency fromMonte Carlo. The procedure is iterated with the MINUIT

routines [52] and determines the best estimate for the parameters fs and fb, the statistical error,

the likelihood maximum and the minimum value of χ2 = −2 lnL.
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