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Introduction

A central problem in equilibrium statistical mechanics is the derivation of phase diagrams

of fluids in which gas, liquid and solid regions are present and separated by coexistence

curves in the pressure-temperature plane (see Fig. 1). The challenge in the study of systems

of interacting particles in the continuum is therefore to find a good compromise between

a mathematical model which we are able to analyze rigorously and a model which has a

non trivial structure eventually responsible for the complex thermodynamic behaviour these

systems happen to have. Hence one should understand which are the relevant features of

the microscopic model that would give rise to the physical phenomena we want to look at,

such as phase transitions. This work is devoted to prove rigorously the existence of a liquid-

vapor branch in the diagram, when considering a system of particles in Rd interacting with

a reasonable potential with both long and short range contributions.

There are several ways to characterize phase transitions of first order with order parameter

the density. One is to say that there is a “forbidden interval” of densities, say (ρ′, ρ′′), so

that if we put a mass ρ|Λ| of fluid in the region Λ (where |Λ| denotes the volume of Λ)

with ρ ∈ (ρ′, ρ′′), then the fluid is separated into a part with density ρ′ and another one with

density ρ′′. Another one is to say that the free energy density is linear in (ρ′, ρ′′) and therefore

it is no more strictly convex in the forbidden interval.

Intermolecular forces are often described by Lennard-Jones interactions

V (r) = a r−12 − b r−6, a, b > 0 (0.0.1)

where r is the intermolecular distance (the molecules being represented by points of Rd).
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Figure 1: Phase diagram of fluids.

There is general agreement on the validity of the conjecture that simple fluids whose inter-

molecular forces are described by potentials like (0.0.1) behave according to the phase diagram

discussed above. Despite serious efforts no rigorous proof of this conjecture has yet been

found. The difficulty of handling Lennard-Jones (or more realistic) interactions has promoted

the introduction of several simplified models mostly designed to investigate the vapor-liquid

coexistence line, as the model introduced by Lebowitz, Mazel and Presutti, [38] and [39],

hereafter shorthanded by LMP. Other cases in which liquid-vapor phase transitions are proved

are the Widom-Rowlinson model of two component fluids, [62], studied by Ruelle [54] and the

one dimensional continuum systems with long range interaction studied by Johansson [33].

What makes the LMP theory strong is the good compromise between realistic models of

fluids and mathematically treatable systems. In fact the LMP hamiltonian, with a two body

repulsive interaction and a four body attractive part, is supposed to mimic the interaction

(0.0.1). The model is defined through Kac potentials, i.e. functions which scale in the

following way: Jγ(r, r′) = γdJ(γr, γr′), where J(r, r′) is a symmetric, translation invariant

(i.e. J(r, r′) = J(0, r′ − r)) smooth probability kernel supposed for simplicity to vanish for

|r−r′| ≥ 1. Thus the range of the interaction has order γ−1 (for both repulsive and attractive

potentials) and the “Kac scaling parameter” γ is assumed to be small. This choice of the

potentials makes the LMP model a perturbation of the mean field, in the sense that when

taking the thermodynamic limit followed by the limit γ → 0 the free energy is equivalent to

the free energy in the van der Waals description.
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Because of the long range interaction of the Kac potential, the LMP hamiltonian a priori

excludes the appearance of spatial patterns and the model only describes the vapor-liquid

transition, the solid phase being absent from the picture. Motivated by this consideration

we studied a variant of the LMP model obtained by adding to the hamiltonian a hard core

potential of radius R independent of γ. This kind of interaction acts on a scale much smaller

than γ−1. In fact, physically one expects that for densities much larger than the typical gas

phase density particles feel strongly the repulsive part of the interaction. Hence, the reasons

which lead us to implement the LMP result for this new model are of different nature. One

is due to the fact that we want to deal with a more realistic interaction and one is related

to the hope that one can get closer to answer to a fundamental open problem of statistical

mechanics: how to get to the solid phase. However, as we said at the beginning of the

introduction, this work is mainly devoted to prove liquid-vapor phase transition, the solid

phase being beyond our reach and at present still considered very hard. To be more specific

we prove perturbativly that by adding a hard core interaction to the LMP model, with the

hard core radius R sufficiently small, the LMP phase transition is essentially unaffected.

Note that we would have several problems in dealing with a stable hamiltonian where the

hard core interaction is the only repulsive potential, i.e. without the four body Kac repulsive

interaction. Indeed there is a poor control of the hard spheres gas, an obstacle at present

unsurmountable. It may very well be that it exhibits a order-disorder phase transition by

itself, as suggested by numerical computations in d = 3 dimensions. While in the regime of

small densities it is known, due to cluster expansion results, that the entropy of the hard

spheres is to leading order the same as in the ideal gas and their difference can be expressed

as a convergent power series of the density, nothing is known for large values of the density.

Unfortunately the values of the density appearing at the transition are exceeding the radius

of convergence of the cluster expansion and thus go beyond the region in which we have a

good control of the entropy for hard spheres.

Going back to the models in the continuum, it is indeed surprising that the theory of

equilibrium statistical mechanics does not yet include a rigorous derivation of the phase

diagram. Historically the first proof of liquid-vapor type phase transitions was given for lattice

systems, with the pioneering “argument of Peierls”, [52], in which is shown coexistence of
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different phases for the Ising model. In general discrete systems are much better understood,

also thanks to the development of the Pirogov-Sinai technique, [50], (hereafter shorthanded

by P-S) which applies in the low temperature regime. The key is to look at configurations

of the system for positive but small values of the temperature as of perturbations of the

two ground states, i.e. the configuration with all + and the configuration with all −, and

therefore study the so-called abstract contour model instead of the original one. In this new

description the goal is to prove Peierls bounds and hence phase transitions.

The extension of such theory from the lattice to the continuum systems seems very dif-

ficult, since the ground states are a lot more complex. Instead of being constant (as for the

Ising model) they will have a periodic structure as solids have. Therefore, when we raise the

temperature the ground states can evolve in too many ways as they have so many degrees of

freedom and it would be difficult to study the excitations of the system. In this scenario, by

proving closeness to the ground states one could prove existence of a solid phase and of the

formation of periodic patterns.

If instead one wants to take advantage of the techniques developed for the Ising model,

then we should look at the liquid-vapor coexistence line, where the liquid phase is character-

ized by a density essentially constant and the same happens for the gaseous phase. In the

LMP model what is perturbed are indeed the homogeneous states with densities ρβ,± which

appear in the mean field limit γ → 0. In this way by choosing γ small enough one is able

to adapt the P-S theory for the low temperature regime to the continuum model and prove

coexistence of liquid and gas phases as small perturbations at finite γ from the mean field

behavior. The idea of studying phase transitions by perturbative techniques around mean

field, had already been successfully exploited in lattice systems, where the Peierls argument

applies directly because of the spin flip symmetry of the models ([5], [4], [10]).

In our model we want to study perturbations of the LMP model by adding a hard core

interaction, i.e. allowing the point particles to have a “dimension” (or analogously forbid-

ding the point particles to be too close), the volume ε of the particles being the new small

parameter. Hence we have two small parameters, ε and γ, where the first is considered to be

fixed, while the latter is chosen small accordingly to the former. Again we have to think to

the mean field as the unperturbed model, for which we can carry out an heuristic analysis

(see Chapter 3) which shows that the critical temperature βc,ε for the model where the par-
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ticles are replaced by hard spheres is smaller than that for LMP. This is due to the fact that

introducing forbidden zones for the particles the entropy becomes smaller and this helps the

liquid-vapor transition to occur.

In the rest of this introduction we present a brief outline of our strategy, which at this stage

will result necessarily a little vague. Our proof will follow P-S theory in the version proposed

by Zahradńık, [63], which involves the notion of cutoff weights. The analysis requires first

of all the notion of coarse graining and contours which are introduced in Section 4.1. To

do a coarse graining for our model means to divide the space into cells whose size is much

larger than the radius of the hard core interaction but still smaller than the range of the

Kac potential γ−1. With this choice significant density fluctuations inside a single cell are

quite infrequent and we can reduce our analysis to the study of the model in the restricted

ensembles, i.e. where the admissible configurations are those whose empirical density in each

cube is close to the macroscopic density of one of the two phases. This equivalence between

models is true once we take into account the weight of the contours of the corresponding

abstract contour model. Hence we are dealing with a coarse grained system in which the

configurations we look at are those chosen in the restricted ensembles, roughly speaking

those which should be seen under the effects of a double well potential once we restrict to

its minima. In this scenario we are able to compute the effective hamiltonian for the coarse

grained system with a multi-canonical constraint (given by the fixed density in each cell).

This computation involves an integration over the positions of the particles in each cell leading

to a new Gibbs measure which depends only on the cells variables.

The computations which lead to the effective hamiltonian are in general very hard, nev-

ertheless due to the choice of the interaction they can be carried out. The crucial point here

is to show convergence for cluster expansion in the canonical ensemble (note that the fixed

density in each cell means a canonical constraint). This was not known before, as it was

only proved in the grand canonical ensemble, and is the content of the paper [53] written in

collaboration with D. Tsagkarogiannis. The paper in fact is for more general models, since

the only requirement is that the interaction is stable and tempered. We prove in the low

density - high temperature regime the validity of the cluster expansion for the canonical par-

tition function and that its convergence is uniform in the volume. Furthermore in the same
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regime the free energy can be expressed as a series in powers of the density which tends to

Mayer’s virial expansion in the thermodynamic limit. For simplicity we report this result in

the Appendix A directly for the hard spheres model, where convergence holds for ρε small

enough, leaving out the computation of the infinite volume limit. Analogously we carry out a

cluster expansion for the LMP model plus hard core in the coarse grained system in Chapter

7. The crucial observation is that the Kac interaction, due to its long range nature, results

more or less constant inside each box and therefore the part of the interaction which we have

to integrate over the boxes is the remaining part which is small.

Once we are left with a coarse grained description we still need to prove the most delicate

point which is the exponential decay of correlations in the restricted ensembles. More precisely

we want to see that the dependence of the particle density in each box on the boundary

condition decays exponentially with the distance from the boundary. The difficulty of this

part is related to the nature of the system, which has no analogue of the spin flip symmetry

shown in the Ising model. Hence after putting ourselves in the abstract contour model, we will

have to deal with expressions which involve not only the support of the contour, i.e. a “surface

term”, but also “bulk terms” involving its whole interior. To solve this point, in Chapter

8 a Dobrushin uniqueness theorem is proved through an analysis of the Vaserstein distance

between the two Gibbs measures with the same hamiltonian but with different boundary

conditions.
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1. The particle model

In this Chapter we define the microscopic particle model that we want to study.

1.1 Phase configurations and phase space

• We consider a system of identical point particles in Rd, d ≥ 2, and call particle config-

uration a countable, locally finite collection of points in Rd. The phase space QΛ is the

collection of all particle configurations in a bounded region Λ. We simply write Q when

Λ ≡ Rd. The particle configurations are denoted by q and sometimes by qΛ when we

want to specify that they are in QΛ. We write q = (q1, ...qn) to indicate a configuration

of |q| = n particles positioned at points q1, ..., qn (the order is unimportant) of Rd.

• Given any symmetric function f ∈ L∞(QΛ), Λ a bounded measurable set of Rd, we

define the free measure νΛ(dq) so that:∫
QΛ

νΛ(dq)f(q) =

∞∑
n=0

1

n!

∫
Λn
dq1 · · · dqn f(q1, ..., qn) (1.1.1)

• We will sometimes use the following compact notation, writing

1

n!

∑
i1 6=.. 6=in

F (qi1 , ..., qin) ≡
∫
dq⊗nF (1.1.2)

where we can interpret dq⊗n as a point measure on Rdn:

dq⊗n ≡ q⊗n(dr1...drn) =
1

n!

∑
i1 6=.. 6=in

δqi1 (r1) dr1 · · · δqin (rn) drn (1.1.3)

δr(r
′) being the delta function at r. Note that this measure represents the direct product

of n point measures dq⊗1, except for the n! taking into account the fact that particles

are indistinguishable and for deleting all the terms where the same particle appears
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The particle model

more than once. We can also define the analogous measure in the case of a profile

density ρ ∈ L∞(Rd,R+):

dρ⊗n(r1, ...rn) =
1

n!
ρ(r1) · · · ρ(rn)dr1 · · · drn (1.1.4)

• We conclude this section by observing that there is a natural notion of addition of two

particle configurations, q+ q′, being the configuration which collects all the particles of

q and q′. Notice that the notion is well defined because particles are indistinguishable.

1.2 Kac potentials and energy

As we explained already at the mean field level, we want to study a model which is a

perturbation of the LMP model obtained by adding a hard core interaction on a scale much

smaller with respect to the long range of the LMP interaction.

The local version of the mean field LMP energy is an example of many body Kac poten-

tials, while the hard core potential is defined already on a microscopic scale.

The idea behind Kac potentials is that one would like to describe phase transitions as a

perturbation of the mean field. The notion of “scaling” here plays an important role. We

have three basic lengths:

• the hard core radius R which is considered small but of order 1,

• the range of the interaction of the Kac potentials, denoted by γ−1, which is very large

since it mimics locally a mean field,

• the size of the regions, which is even larger, eventually tending to infinity.

Let us consider the energy (3.1.2) and, instead of setting the density ρ(r) identically

constant and equal to the total density n/|Λ| (where n is the number of particles and |Λ|

the volume of the region Λ), let us relax this assumption to a local condition. To do this we

first define a local particle density at r ∈ Rd given a configuration q and we use the notation

ρ(r; q). It is local in the sense that it depends only on the restriction of q to a neighborhood

of r. Then in analogy with (3.1.3) we define the hamiltonian for the LMP model as:

H(q) =

∫
e(ρ(r; q)) dr, (1.2.1)

2



1.2 Kac potentials and energy

J(x)

x

Figure 1.1: The function J(0, x).

where e(ρ(r; q)) is the local energy density and its integral represent the total energy of the

configuration q.

1.2.1 Local particle density

For ρ(r; q) we use the following definition:

Jγ ∗ q(r) :=
∑
qi∈q

Jγ(r, qi). (1.2.2)

To fix ideas, first think of Jγ(r, r′) as the indicator of the ball Bγ−1Rd(r) of radius γ−1Rd

divided by its volume:

Jγ(r, r′) =
1|r−r′|≤γ−1Rd

|Bγ−1Rd(r)|
(1.2.3)

where Rd is the radius of the ball in Rd having a unit volume and |Bγ−1Rd(r)| = γ−d. In such

a case:

Jγ ∗ q(r) =
|q ∩Bγ−1Rd(r)|
|Bγ−1Rd(r)|

(1.2.4)

is the “empirical” particle density in a ball Bγ−1Rd(r). The Kac parameter γ is thought very

small, so that many particles of the given configuration contribute to the average Jγ ∗ q(r).

It is convenient to generalize the definition of local particle density by introducing more

general convolution kernel as it may be convenient to have Jγ(r, r′) smooth rather than

discontinuous.

3



The particle model

The main property of Kac potentials is that they depend on the scale parameter γ in the

following way:

Jγ(r, r′) = γdJ(γr, γr′) (1.2.5)

where J is a symmetric, translation invariant, smooth probability kernel which we suppose

to vanish for |r − r′| ≥ 1 (see Fig. 1.1). This implies of course:∫
drJγ(r, r′) =

∫
drJ(r, r′) = 1. (1.2.6)

With this definition, (1.2.2) becomes the empirical density of a configuration q around a point

r weighted with the probability kernel Jγ , which involves only the particles which are in a ball

of radius γ−1Rd with centre r since it has compact support. Note that the scaling property

(1.2.5) means that when γ is small the model has a large but finite interaction range 2γ−1Rd,

but a small interaction intensity between any couple of particles.

The notation Jγ ∗ q(r) reminds one of convolutions and indeed the r.h.s. of (1.2.2) may

be interpreted as the convolution of the kernel Jγ with the sum of Dirac deltas
∑
δ(r − qi)

at the positions qi of the particles in the configuration q.

1.2.2 LMP hamiltonian

Let us now define the LMP part of the hamiltonian as the integral of the energy density

as in (1.2.1):

Hγ,λ(q) =

∫
e(Jγ ∗ q(r)) dr (1.2.7)

where the choice for e(ρ) in the LMP model is given by (3.1.3) (the quartic term to ensure

stability).

Note that the LMP interaction can be written in terms of one, two and four body poten-

tials in the following way:

Hγ,λ(q) = −λ|q| − 1

2!

∑
i 6=j

J (2)
γ (qi, qj) +

1

4!

∑
i1 6=... 6=i4

J (4)
γ (qi1 , ..., qi4), (1.2.8)

where

J (2)
γ (qi, qj) =

∫
Jγ(r, qi)Jγ(r, qj) dr (1.2.9)

J (4)
γ (qi1 , ..., qi4) =

∫
Jγ(r, qi1) · · · Jγ(r, qi4) dr,

4



1.2 Kac potentials and energy

i.e. J
(2)
γ is the convolution with Jγ with itself and J

(4)
γ is the convolution of 4 kernels. Note

that in the case of non smooth kernel as in (1.2.3), we have explicitly:

J (n)
γ (q1, ..., qn) = γnd

∫
dr

n∏
j=1

1|r−qj |≤γ−1Rd (1.2.10)

for n = 2, 4. From (1.2.6) we have that potentials J
(n)
γ (n = 2, 4) have the following general

properties:∫
dqn J

(n)
γ (q1, ..., qn) = J (n−1)

γ (q1, ..., qn−1),

∫
dq2 J

(2)
γ (q1, q2) = 1 (1.2.11)

and therefore ∫
dq2 · · · dqn J (n)

γ (q1, ..., qn) = 1. (1.2.12)

Furthermore, they depend on the scaling parameter γ in the following way:

J (n)
γ (q1, ..., qn) = γd(n−1)J (n)

γ (γq1, ..., γqn). (1.2.13)

Recalling the notation (1.1.3) we can also write the LMP hamiltonian in the form:

Hγ,λ(q) = −λ|q| −
∫
dq⊗2J (2)

γ +

∫
dq⊗4J (4)

γ . (1.2.14)

It is convenient to give a definition of the LMP hamiltonian when instead of a configuration

ρ is given a continuous density ρ ∈ L∞(Rd,R+):

Hγ,λ(ρ) = −λ
∫
drρ(r)−

∫
dρ⊗2J (2)

γ +

∫
dρ⊗4J (4)

γ (1.2.15)

where the measure is defined in (1.1.4).

1.2.3 Hard core interaction

In the model with hard cores the phase space is restricted like in (A.1.2). This is equivalent

to add an interaction which is = ∞ when the particles get too much close with each other

and is 0 when the particles are far, i.e. a potential V hc : Rd → R such that:

V hc(qi, qj) =

+∞ if |qi − qj | ≤ R

0 if |qi − qj | > R
(1.2.16)
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where |qi− qj | denotes the euclidean distance between the two particles in qi and qj . R is the

radius of the hard spheres and their volume is ε = Vd(R), i.e. the volume of the d-dimensional

sphere of radius R. The hard core potential depends on qi, qj only through their distance.

Note that the potential (A.1.2) is stable and tempered. Stability comes from its positivity

and temperedness follows from

C(ε) :=

∫
dq |e−βV hc(q) − 1| =

∫
dq 1{|q|≤R} = ε <∞. (1.2.17)

1.2.4 LMP-hard core hamiltonian

The hamiltonian of the model we want to consider is therefore the following:

Hγ,R,λ(q) =

∫
e(Jγ ∗ q(r)) dr +Hhc(q) (1.2.18)

where

Hhc(q) :=
∑
i<j

V hc(qi, qj). (1.2.19)

Given two configurations q and q̄, we will use the following notation,

Hγ,R,λ(q|q̄) = Hγ,R,λ(q + q̄)−Hγ,R,λ(q̄) (1.2.20)

to represent the energy of the particle configuration q in the field generated by q̄ and

Uγ,R,λ(q, q̄) = Hγ,R,λ(q|q̄)−Hγ,R,λ(q)−Hγ,R,λ(q̄) (1.2.21)

to indicate the interaction energy between q and q̄.

1.3 Gibss measures

The Gibbs grand canonical measure in the bounded measurable region Λ in Rd and

boundary conditions q̄ ∈ QΛc is the probability measure on QΛ given by the Gibbs formula:

µΛ
γ,β,R,λ(dq|q̄) = Z−1

γ,β,R,λ(Λ|q̄)e−βHγ,R,λ(q|q̄)νΛ(dq) (1.3.1)

where β is the inverse temperature, Zγ,β,R,λ(Λ|q̄) is the grand canonical partition function

(defined as the normalization factor for µΛ
γ,β,R,λ(dq|q̄) to be a probability) and νΛ(dq) the free

measure defined in (1.1.1).
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1.3 Gibss measures

The infinite volume Gibbs measures are probabilities µγ,β,R,λ on Q, such that for any

measurable region Λ

µγ,β,R,λ(dqΛ|q̄Λc) = µΛ
γ,β,R,λ(dqΛ|q̄Λc); for µγ,β,R,λ almost all q̄Λc (1.3.2)

where the expression on the l.h.s. is the conditional probability given the configuration q̄Λc

outside Λ.
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2. Main results

In this chapter we state our main theorem, Theorem 2.1.1, on the existence of two distinct

Gibbs states for suitable choice of chemical potential and temperature. It extends to the

model with the hard core interaction what is already proven for the LMP model (see [39]).

2.1 The main theorem

We shall consider the LMP model with additional hard core interaction (for definition

see Section 1.2.4), hereafter shorthanded by LMP-hc model. If the hard core radius R is

sufficiently small the LMP phase transition is essentially unaffected.

Theorem 2.1.1. Consider the LMP-hc model in dimensions d ≥ 2. For such a model there

are R0, βc,R, β0,R (as in Proposition 3.2.1) and for any 0 < R ≤ R0 and β ∈ (βc,R, β0,R)

there is γβ,R > 0 so that for any γ ≤ γβ,R there is λβ,γ,R such that:

There are two distinct DLR measures µ±β,γ,R with chemical potential λβ,γ,R and inverse tem-

perature β and two different densities: 0 < ρβ,γ,R,− < ρβ,γ,R,+.

In this work we will only prove the existence of two distinct states, which are interpreted

as the two pure phases of the system: µ+
β,γ,R describes the liquid phase with density ρβ,γ,R,+

while µ−β,γ,R describes the vapor phase, with the smaller density ρβ,γ,R,−.

Remark. ρβ,γ,R,± and λβ,γ,R have limit as γ → 0, the limit being ρβ,R,− < ρβ,R,+ and λ(β,R)

which are respectively densities and chemical potential for which there is a phase transition

in the mean field model (see the next chapter).

Remark. The DLR measures µ±β,γ,R have several properties one can prove:
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• the measures are obtained as weak limit of “diluted Gibbs measures” (see Section 4.3)

• the measures are translational invariant,

• any other translational invariant measure is a convex combination of the two,

• the measures have a trivial σ-algebra at infinity.

We refer to [52], Chapter 12, for the derivation of such properties which are carried out

for the LMP model, believing they are not affected too much by the presence of the hard core

interaction. We however skip the proof since it is not in the original purpose of this work.

2.2 Phase transitions in the canonical ensemble

From Theorem 2.1.1 it is clear that we prove phase transitions using a gran canonical

description of the equilibrium states. This implies that we either see a configuration with

density ρβ,γ,R,+ or with density ρβ,γ,R,− and there is no coexistence of the two phases in the

same configuration q but only on statistical average, except when the chemical potential is

chosen to be equal to λβ,γ,R.

The aim of this section is to reformulate the condition that there is a phase transition in

the system using a canonical description, intead of a gran canonical one. When we see phase

transitions in the canonical ensemble, they look different. In fact, the canonical constraint

forces the two phases to coexist in each configuration (which is typical, i.e. discarding a

certain number of bad configurations) for any value of ρ ∈ (ρβ,γ,R,−, ρβ,γ,R,+).

We already gave the definition of gran canonical Gibbs measure in (1.3.1) of Section 1.3.

Analogously we can introduce the canonical Gibbs measure as the probability measure on

QΛ, where each configuration q ∈ QΛ is such that |q| = N , defined as

µcan
β,N,Λ(dq) =

1

Zcan
β,N,Λ

1

N !
e−βH(q)

1{q∈QΛ}dq (2.2.1)

where dq is the Lebesgue measure and where we drop for simplicity the dependence of γ and

R from the hamiltonian and therefore from the measure. Indeed we can forget about our

model and give a formulation of the problem for a general model.

We do not discuss the case of phase transitions in the canonical ensemble, but we hope

to address this issue in a subsequent work. Nevertheless the picture we should have in mind
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can be made more clear with a thermodynamic description of phase transitions in terms of

“forbidden intervals”. We have a phase transition if there is a interval of densities, say (ρ′, ρ′′),

so that if we put a mass ρ|Λ| of fluid in the region Λ (where |Λ| denotes the volume of Λ)

with ρ ∈ (ρ′, ρ′′), then the fluid is separated into a part with density ρ′ and another one with

density ρ′′. It does not exist an equilibrium state with homogeneous density ρ, but inside Λ

one can go from one phase which occupies a region Λ′ to another phase in Λ \ Λ′ and see a

phase transition.

Hence we can reformulate the condition that there is a phase transition in the sense dis-

cussed above. The formulation involves “coarse graining”, a notion which will be extensively

used in the sequel.

Definition 2.2.1 (Partition D(`) of Rd). For any ` ∈ {2n, n ∈ Z} and any i ∈ `Zd, we set

C
(`)
i = {r ∈ Rd : ik ≤ rk < ik + `, k = 1, ..., d} (2.2.2)

(rk and ik being the kth coordinate of r and i) and call

D(`) = {C(`)
i , i ∈ `Zd} (2.2.3)

the corresponding partition of Rd.

We also denote C
(`)
r the cube of D(`) which contains r. Since ` has the form 2n, each cube

of D(`) is the union of cubes of D(`′) for ` > `′; D(`) is then coarser than D(`′) and D(`′) finer

than D(`).

A function f(r) is D(`)-measurable if it is constant on each cube C
(`)
i , i ∈ `Zd; a region

Λ is D(`)-measurable if its characteristic function is D(`)-measurable, or, equivalently, it is

union of cubes of D(`).

We want to define also empirical density profiles of particle configurations for every fixed

partition D(`):

Definition 2.2.2 (Empirical density). Given a particle configuration q we define its empirical

density profile on the scale ` the following average:

ρ`(r; q) =
|q ∩ C(`)

r |
`d

(2.2.4)

where is the number of particles of the configuration q which are in the cube C
(`)
r .
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From Definition 2.2.2 we can see that the empirical density ρ`(r; q) is a non negative

function constant on the atoms of D(`). Hence it is D(`)-measurable. We shall use the empir-

ical density ρ`(r; q) to quantify the definition of phase transition given from the viewpoint of

the“forbidden interval” (ρ′, ρ′′).

We will have to restrict to “large probability events” since the canonical Gibbs measure

gives positive probability to all open sets and therefore for any Λ there is a positive probability

to see configurations which are really atypical. Moreover even in the typical configurations

we should expect to see somewhere deviations from the expected behavior. We thus choose

an accuracy parameter ε > 0 and define the sets

G = {r ∈ Λ : |ρ`(r; q)− ρ′| > ε or |ρ`(r; q)− ρ′′| > ε} (2.2.5)

then the set of typical configurations in the phase transition case will be denoted by

Gpt
ρ,Λ,ε,` := {q ∈ QΛ : |G| ≤ ε|Λ|}. (2.2.6)

Definition 2.2.3. (ρ′, ρ′′) is a forbidden density interval if for any ρ ∈ (ρ′, ρ′′) and any

increasing sequence of cubes Λ invading Rd:

lim
ε→0

lim
`→∞

lim
Λ↗Rd

µcan
β,bρ|Λ|c,Λ

[
Gpt
ρ,Λ,ε,`

]
= 1. (2.2.7)

Thus in a first scenario ρ is far from the forbidden interval and with large probability

ρ`(r; q) is close to ρ in a large number of boxes and we do not have a phase transition. In

the other scenario if ρ is inside the forbidden interval then with large probability in a large

number of boxes ρ`(r; q) will be either equal to ρ′ or to ρ′′ being different from ρ. In this

second case we will have a phase transition.

Besides Theorem 2.1.1 we want to conclude this chapter with the following conjecture:

Conjecture 2.2.4. Consider the LMP-hc model in dimensions d ≥ 2. For such a model there

are R0, βc,R, β0,R (as in Proposition 3.2.1) and for any 0 < R ≤ R0 and β ∈ (βc,R, β0,R)

there is γβ,R > 0 so that for any γ ≤ γβ,R there is an interval (ρβ,γ,R,−, ρβ,γ,R,+) such that

(2.2.7) holds true (where µcanβ,bρ|Λ|c,Λ is referred to the LMP-hc model).
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2.3 The idea of Pirogov-Sinai

The idea of the proof is based on an argumend proposed by Pirogov-Sinai, which we will

discuss better in the next chapters and which relies (as for the Ising model) on the possibility

to rewrite the partition function of the model as the partition function of an abstract contour

model.

When dealing with phase transitions for systems in the continuum one has to think to

some analogies with models on the lattice, for instance the Ising model, which are understood

a lot better. In our case we want to establish a correspondence with phase transitions in the

Ising model at small temperatures for which one can prove Peierls bounds (see for instance

Chapter 9 of [52]). There are two reasons for this strategy: one is due to the fact that we want

to follow a perturbative argument, the other to the fact that reducing our continuum model

to a model on a lattice excitations have a discrete structure. In the Ising model the small

parameter is β−1 and the limit Gibbs measures concentrate respectively on perturbations

of the ground states, which are the all plus and all minuses spin configurations at zero

temperature. Analogously in the LMP-hc model the small parameter of the theory is γ and

the measures concentrate on perturbations of the homogeneous states with densities ρβ,γ,R,±

which appear in the mean field limit γ → 0. Also the proofs have analogies, they are both

based on probability estimates on contours, defined as regions which separate plus and minus

islands, namely where the configurations look typical of the two phases. The analogue in

Ising of the chemical potential is the magnetic field h: due to the spin flip symmetry in Ising

the critical magnetic field is h = 0. In LMP instead there is no symmetry between the two

phases and as a consequence the critical value of the chemical potential where there is a phase

transition has to be chosen and is part of the problem. Hence, the proof of Theorem 2.1.1

is perturbative, the mean field states being the ground states and the small parameter being

the inverse of the interaction length.

Here we want just to discuss the physical picture to have in mind while talking of phase

transitions. There is a special value λβ,γ,R of the chemical potential where the two phases

coexist. This means that the two minima of the free energy are equal and hence by selecting

the boundary conditions one gets one of the two possible phases. If instead we vary λ away

from λβ,γ,R in agreement with the selected boundary conditions then we run into the one

phase regions: one of the two phases present at λβ,γ,R persists becoming stable and the other
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one becomes metastable and disappears. We should think of a stable phase as a homogeneous

sea with rare and small islands of the other phase, separated from the sea by contours. On

the other side, when varying λ in opposition to the boundary conditions then we see the

formation of a large island of the truly stable phase. This island is large as the cost of the

surface of the contour is overcome by the volume gain of having the correct phase in the

bulk. So in this case large islands are quite probable in a typical configuration and this make

impossible a real computation which involves expansions. The theory of Pirogov-Sinai forbids

this scenario, hence the existence of such big contours, by definition of metastable states.

The metastable phase defined with the constraint that contours cannot be too large has

a free energy larger than in the truly stable phase. Thus stable and metastable phases are

recognized by their free energies and the right chemical potential is selected by requiring

equality of the two and phase coexistence then follows. As a consequence of this approach

we will need a computation of the free energy of states where contours are rare, since either

we are in a stable phase where they are improbable, or we are in a metastable phase where

they are rare by definition.

To implement this idea we shall follow the approach of Milos Zahradnik, which introduces

the notion of cutoff weights for the contours, which we will develop in Section 4.6.
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3. The mean field model

Mean field models are those in which the interaction range is of the same order as the

size of the region where the system is confined. This means in our case that two particles in

the system interact in the same way independently of their location. Under such assumption

one can see that the mean field model exhibits a phase transition once it reaches a certain

critical temperature and that the phase transition is described through the density which is

the order parameter.

3.1 The model

Let us start by describing the model in its mean field version.

First of all observe that the hard-core interaction restricts the phase space in the following

way:

XRΛ =
⋃
n

XRn,Λ, XRn,Λ = {(r1, ...rn) ∈ Λn : min
i 6=j
|ri − rj | > R} (3.1.1)

where Λ is a bounded region. The number of particles in finite volumes is then bounded by

the “close packing” density ρcp = ρcp(R). The constraint (A.1.2) is due to a pair interaction

which is equal to +∞ whenever the two particles are at distance ≤ R (R being the “hard-

core lenght”) and equal to zero otherwise. We will use ε to indicate the volume of the hard

spheres, ε = cdR
d, cd a coefficient depending on the dimension d.

The mean field hamiltonian given a configuration q ≡ (r1, ..., rn) in XRn,Λ is:

Hmf
Λ,R,λ(q) = |Λ|eλ(ρ) (3.1.2)

where ρ = |q|/|Λ| and eλ(·) has the meaning of an energy density and has the same form

as in the LMP model. It depends only on the total particle density ρ, with the constraint

ρ ∈ [0, ρcp]. The label R in the hamiltonian is to remember of the hard core condition.
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λ is interpreted as a chemical potential, so that eλ(ρ) = −λρ + e0(ρ). To mimic a fluid

of hard spheres, e0(ρ) should be a decreasing function of the density ρ from 0 till when the

energy reaches its minimum, which corresponds to an optimal disposition of the molecules.

An increase of ρ causes an increase of the energy, which will diverge when ρ → ρcp. The

choice which fulfills such requirements is (as already chosen for the LMP model):

eλ(ρ) = −λρ− ρ2

2
+
ρ4

4!
. (3.1.3)

The first term (−λρ), is the energy of the chemical potential λ, the term −ρ2/2 comes from

the attractive pair interaction and the term ρ4/4! is the four body repulsive interaction, which

has been added in the LMP model to stabilize the potential.

The mean field canonical partition function is defined in the following way:

Zmf
n,Λ =

1

n!

∫
XRn,Λ

e−β|Λ|eλ(n/|Λ|) = exp
{
− β

(
− n2

2|Λ|
+

n4

4!|Λ|3
− λn+

|Λ|
β
fhc

Λ

( n
|Λ|
)}
, (3.1.4)

where

fhc
Λ

( n
|Λ|
)

= − 1

|Λ|
logZhc

n,Λ, Zhc
n,Λ :=

1

n!

∫
XRn,Λ

dq1 · · · dqn (3.1.5)

while the grand canonical one is Ξmf
Λ =

∑∞
n=0 Z

mf
n,Λ. We omit the proof that in the thermo-

dynamic limit |Λ|, n→∞ the canonical mean field free energy is:

φβ,λ,R(ρ) = lim
|Λ|,n→∞: n|Λ|→∞

−1

β|Λ|
logZmf

n,Λ = eλ(ρ) +
1

β
fhc(ρ) (3.1.6)

where

fhc(ρ) := lim
|Λ|,n→∞: n|Λ|→∞

fhc
Λ

( n
|Λ|
)

= ρ(log ρ− 1)−
∑
n≥1

βn
n+ 1

ρn+1. (3.1.7)

The existence of the thermodynamic limit in (3.1.7) follows from general arguments, while

due to a cluster expansion argument (see for instance Theorem A.1.1 of Appendix A or for

more general interactions [53]) one can prove that the limit function fhc is analytic and

convex. Furthermore, the βn are the Mayer’s coefficients:

βn =
1

n!

∑
g∈Bn+1

V (g)3{1}

∫
(Rd)n

∏
{i,j}∈E(g)

(e−βV
hc(qi−qj) − 1)dq2 . . . dqn+1, q1 ≡ 0. (3.1.8)

Note that the hard-core free energy tends to ∞ for ρ→ ρhc.

The grand canonical pressure is the Legendre transform of φβ,0,R(ρ):

pβ,λ,R = lim
|Λ|→∞

− 1

β|Λ|
log Ξmf

Λ = sup
ρ∈[0,ρcp]

{λρ− φβ,0,R(ρ)} = sup
ρ∈[0,ρcp]

{λρ− e0(ρ)− 1

β
fhc(ρ)}

(3.1.9)
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3.2 Thermodynamics of the mean field

In this subsection we will state the main properties of φβ,λ,R(ρ) as a function of β, λ and

ρ. We will see that the mean field model has a phase transition, in this picture appearing as

a loss of convexity of φβ,λ,R(ρ), occurring at a value of β which is a correction of order ε of

the critical temperature of the LMP model.

The critical points of φβ,λ,R(ρ) as a function of ρ namely the solutions of the mean field

equation:
d

dρ

{
eλ(ρ) +

1

β
fhc(ρ)

}
= 0 (3.2.1)

have the form:

ρ = exp
{
− βe′λ(ρ)− f ′R(ρ)

}
:= Kβ,λ,R(ρ), (3.2.2)

where we define fR(ρ) to be the second term of (3.1.7), i.e. the free energy minus the entropy

of the free system.

We start by studying the convexity properties of φβ,λ,R(ρ) as a function of ρ for fixed β

and λ; since φβ,λ,R(ρ) = −λρ+φβ,0,R(ρ) they are independent of λ and in the next proposition

we set λ = 0.

Note that a multiplicity of minimizers of φβ,0,R(·) corresponds to a mean field phase

transition.

Proposition 3.2.1 (Convexity properties of φβ,0,R(·)). There is a critical inverse temperature

βc,R, such that φβ,0,R(ρ) is convex for β ≤ βc,R, while for β > βc,R it has two inflection points

0 < s−(β) < s+(β), being concave for ρ ∈ (s−(β), s+(β)) and convex for ρ /∈ (s−(β), s+(β)).

Remark. The critical temperature has the following expansion:

βc,R = βc − εβ2/3
c +O(ε2), (3.2.3)

where βc = 3/23/2 is the critical temperature for the LMP model (without hard core interac-

tion) and ε is the volume of the hard spheres with radius R.

The fact that the critical temperature is smaller than the LMP one, has the following

heuristic meaning. By adding a hard core interaction the point particles of the LMP model

have a smaller entropy. This is due to the fact that we have less ways of arranging the
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particles in the space since they already occupy a volume ε and hence the phase space is

smaller. When the entropy is smaller one should have “more easily” the occurrence of a

phase transition, as when one decreases the temperature in the system.

Let us prove the expansion (3.2.3). We want to calculate the critical temperature, i.e.

the value of β for which the second derivative:

φ′′β,λ,R(s) =
1

βs
− 1 +

s2

2
+

1

β
f ′′R(s) (3.2.4)

is equal to zero.

To fix ideas, let us first study the sign of the function without the contribution 1
β f
′′
R(s).

So one has to find βc such that:

φ′′β,λ(s) =
1

βs
− 1 +

s2

2
= 0. (3.2.5)

This is equivalent to study the sign of:

ψ(s, β) := 2− 2βs+ βs3. (3.2.6)

For every fixed value of β we can look at its derivative in s: ∂sψ(s, β) = −2β+3βs2. We have

that ψ has two critical points: s = ±(2/3)1/2, but since we are interested to the behaviour

for non negative values of s we only consider the positive solution. The function ψ(s, β) is

first equal to 2 for s = 0, then for 0 < s < (2/3)1/2 is decreasing until it reaches its minimum

in s0 = (2/3)1/2 and then it increases. With this behaviour in mind we have to find a value

of β for which its minimum crosses the s axis, i.e. such that

ψ(s0, β) = 2− 2β
(2

3

) 1
2

+ β
(2

3

) 3
2

= 0 (3.2.7)

holds. The solution of (3.2.7) is: βc = (3/2)3/2 and it is unique.

Let us now go back to the true function φ′′β,λ,R(s) and think of the hard core part as a

perturbation in ε:

φ′′β,λ,R(s) =
1

βs
− 1 +

s2

2
+

1

β
f ′′R(s). (3.2.8)

We want again to study the sign of the following function

ψR(s, β) := 2− 2βs+ βs3 + 2sf ′′R(s) (3.2.9)
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where:

f ′′R(s) = −
∑
n≥1

nβns
n−1 = −ε− 2ε2s+ o(ε3), f ′′′R (s) = −

∑
n≥2

n(n− 1)βns
n−2 = −2ε2 + o(ε3).

(3.2.10)

Even though one may confuse the inverse temperature β with the n-th Mayer’s coefficient βn,

we keep them in agreement with the literature. Let us fix β and study the sign of ψR(s, β)

in s, through its derivative:

∂sψR(s, β) = −2β + 3βs2 + 2[−ε− 2ε2s] + 2s(−2ε2) (3.2.11)

= −2β + 3βs2 − 2ε− 8sε2 = 0

where we kept at most the second order in ε. We can expand equation (3.2.11), supposing

that s has the following expression in powers of ε: s = s0 + s1ε+ ..., and get:

− 2β + 3β(s0 + s1ε)
2 − 2ε− 8ε2(s0 + s1ε) = 0. (3.2.12)

Hence at the order zero in ε we obtain:

− 2β + 3βs2
0 = 0 ⇒ s0 =

(2

3

)1/2
(3.2.13)

which gives the same minimum found in the case of the LMP model with no hard core

interaction (see discussion before), while at the first order in ε:

6βs0s1 − 2 = 0 ⇒ s1 =
1

3β

(3

2

)1/2
. (3.2.14)

Hence the minimum of (3.2.9) is:

s0,R = s0 + s1ε+ ... =
(2

3

)1/2
+

ε

3β

(3

2

)1/2
+ o(ε2). (3.2.15)

Analogously to what we have done for the case without hard core, we find β for which the

minimum of ψR(s, β) is touching the s axis. We do this perturbatively, considering that β

has the following expansion in powers of ε: β = b0 + b1ε+ ....

ψR(s0,R, β) = 2− 2(b0 + b1ε)
[(2

3

)1/2
+

ε

3(b0 + b1ε)

(3

2

)1/2]
+ (3.2.16)

+ (b0 + b1ε)
[(2

3

)1/2
+

ε

3(b0 + b1ε)

(3

2

)1/2]3
− 2ε

[(2

3

)1/2
+

ε

3(b0 + b1ε)

(3

2

)1/2]
= 0.

(3.2.17)
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The mean field model

If we only keep ε as higher order we get:

ψR(s0,R, β) = 2− 2
(2

3

)1/2
(b0 + b1ε)−

(2

3

)1/2
ε+
(2

3

)3/2
(b0 + b1ε) +

(2

3

)1/2
ε− 2ε

(2

3

)1/2
= 0

(3.2.18)

which gives at the zero order in ε:

2− 2
(2

3

)1/2
b0 +

(2

3

)3/2
b0 = 0 ⇒ b0 =

(3

2

)3/2
(3.2.19)

i.e. the critical temperature βc obtained in the LMP model. At the first order in ε we get:

b1

[(2

3

)3/2
− 2
(2

3

)1/2]
− 2
(2

3

)1/2
= 0 ⇒ b1 = −3

2
(3.2.20)

which gives that the critical value of β for the new model is:

βc,R = βc − εβ2/3
c +O(ε2) (3.2.21)

where βc is the critical temperature for the LMP model and the correction is of order ε, i.e.

the volume of the hard shperes. Note that unicity of b0 and b1 implies unicity of βc,R for each

fixed value of ε.

Proposition 3.2.2 (Phase transitions). For any β > βc,R, there is λ(β,R) so that φβ,λ(β,R),R(·)

has two global minimizers, ρβ,R,− < ρβ,R,+ (and a local maximum at ρβ,R,0). Moreover, there

is c so that for any ζ > 0 small enough:

φβ,λ(β,R),R(ρ) ≥ φβ,λ(β,R),R(ρβ,R,±) + cζ2, if min{|ρ−ρβ,R,+|, |ρ−ρβ,R,−|} ≥ ζ. (3.2.22)

Proof.

Let us consider φβ,λ,R(ρ) = −λρ + φβ,0,R(ρ) for β > βc,R. If ρβ,R,+ and ρβ,R,− are the two

inflection points of φβ,0,R(ρ), i.e. satisfying (3.2.1), then we can choose λ such that:

φβ,λ,R(ρβ,R,+)− φβ,λ,R(ρβ,R,−) = −λ(ρβ,R,+ − ρβ,R,−) + (φβ,0,R(ρβ,R,+)− φβ,0,R(ρβ,R,−)) = 0

(3.2.23)

i.e. such that the two local minimizers become global. This means that by adding a linear

function with some slope λ one can have the two minima at the same height. Moreover, by

expanding φβ,λ,R(ρ) around its minima, we get (3.2.22).
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3.2 Thermodynamics of the mean field

Proposition 3.2.3 (Critical points). For any β > βc,R there is an interval (λ−(β,R), λ+(β,R))

containing λ(β,R) and for any λ in the interval φβ,λ,R(·) it has two local minima ρβ,λ,R,±

which are differentiable functions of λ and d
dλ(φβ,λ,R(ρβ,λ,R,+)−φβ,λ,R(ρβ,λ,R,−)) = ρβ,λ,R,−−

ρβ,λ,R,+ < 0. For all β > βc,R,

d

dρ
Kβ,λ(β,R),R(ρ)

∣∣∣
ρ=ρβ,R,±

≡ K ′β,λ(β,R),R(ρβ,R,±) < 1, (3.2.24)

the condition (3.2.24) being equivalent to φ′′β,λ(β),R(ρβ,R,±) > 0. Moreover, there exists β0,R >

βc,R such that

K ′β,λ(β,R),R(ρβ,R,±) > −1, for all β ∈ (βc,R, β0,R). (3.2.25)

Proof.

Let s = ρβ,λ,R,± be the equilibrium densities, i.e. the solutions of

s = exp
{
− βe′λ(s)− 1

β
f ′R(s)

}
:= Kβ,λ,R(s). (3.2.26)

We can also write the function Kβ,λ,R as a composition of two functions:

Kβ,λ,R(s) = D−1 ◦ ψ(s), where: (3.2.27)

D(s) =
1

β
log s+

1

β
f ′R(s), ψ(s) = −e′λ(s).

To prove (3.2.27) it is enough to write the identity: D(s) = ψ(s) and to use relation (3.2.26).

Hence:∣∣∣ d
ds
Kβ,λ(β,R),R(s)

∣∣∣ =
∣∣∣(D′(ψ(s))

)−1dψ

ds

∣∣∣ =
∣∣∣β(− 1 +

s2

2

)[1

s
+ f ′′R(s)

]−1∣∣∣ (3.2.28)

and we want to prove the r.h.s. of (3.2.28) is < 1 for all β ∈ (βc,R, β0) and λ = λ(β,R).

From Proposition 3.2.1 we have:

φ′′β,λ,R(s) =
1

βs
− 1 +

s2

2
+

1

β
f ′′R(s) > 0 for s = ρβ,λ,R,± (3.2.29)

and β > βc,R. Hence, there is β0 > βc,R such that for all β ∈ (βc,R, β0) we have:

βs
(

1− s2

2

)
< 1 + sf ′′R(s), ⇒

(
1− s2

2

)
<
∣∣∣1 + sf ′′R(s)

βs

∣∣∣. (3.2.30)

On the other side, we also have:

φ′′β,λ,R(s) <
2(1 + sf ′′R(s))

βs
(3.2.31)
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The mean field model

hence:

− 1 +
s2

2
= φ′′β,λ,R(s)−

1 + sf ′′R(s)

βs
<

1 + sf ′′R(s)

βs
(3.2.32)

and therefore: (
1− s2

2

)
> −

∣∣∣1 + sf ′′R(s)

βs

∣∣∣. (3.2.33)

With estimates (3.2.30) and (3.2.33) we prove:∣∣∣ d
ds
Kβ,λ(β,R),R(s)

∣∣∣
s=ρβ,R,±

∣∣∣ < 1. (3.2.34)
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4. Contours and Peierls bounds

4.1 Phase indicators and contours

In this Chapter we will mainly refer to Definition 2.2.1 for the notion of partition D(`) on

scale `. First of all let us give some topological notions for the sets D(`)-measurable. Some

of the theorems listed in the following sections are reported without proof, as they are the

same as for the LMP model and we refer to [52], Section 10.5.

4.1.1 Connected sets

Two sets are connected if their closures have non empty intersection, thus two cubes with

a common vertex are connected and connection here is what it is usually called ∗-connection

when working in Zd. A maximal connected component B of a set A is a connected subset of

A which is “maximal” in the sense that if C ⊂ A is connected and C ⊃ B then C = B. Any

set is the disjoint union of its maximal connected components. A connected set A is simply

connected if its complement is connected.

4.1.2 Outer and inner boundaries of a set

The outer boundary δ`out[Λ] of a D(`)-measurable region Λ is the union of all the cubes

C ∈ D(`) not in Λ but connected to Λ. The inner boundary δ`in[Λ] of Λ is the outer boundary

of Λc. With reference to Fig. 4.6 in Section 4.2, if Λ is the region in the interior of the thick

line, δ`out[Λ] is the region between the thick and the dashed external lines; δ`in[Λ] between the

thick and the internal dashed lines.

Theorem 4.1.1. Let Λ be a bounded, connected D(`)-measurable region. Then
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Contours and Peierls bounds

• The maximal connected components of Λc are all bounded except one which is un-

bounded.

• Any bounded, maximal connected component of Λc is simply connected.

• If Λ is bounded and simply connected, then δ`out[Λ] and δ`in[Λ] are both connected.

4.1.3 The scaling parameters

Let us introduce the following scaling parameters:

`1,γ = γ−1/2, `2,γ = γ−(1−α), `3,γ = γ−(1+α), ζ = γa (4.1.1)

with 1 � α � a > 0 and, for simplicity, we suppose that `2,γ , `3,γ , γ
−1 ∈ {2n, n ∈ N+}. We

can forget about the first scaling parameter for what follows and use only `2,γ , `3,γ (it will be

useful in Chapter 6). For simplicity from now on we can drop γ from the notation of the two

scale parameters. For γ small, which is the regime we are interested in, 1� `2 � γ−1 � `3,

thus in the cubes of D(`2) there are typically many particles to make statistics reliable; yet

the cubes are so small that the interaction felt by particles in the same cube is approximately

the same. Local closeness (of the particles density in cubes of D(`2)) to ρβ,R,+ (or to ρβ,R,−)

with accuracy ζ must extend to regions of size `3 to call the configuration in the plus (or

minus) equilibrium.

4.1.4 The three phase indicators

To quantify the above considerations we introduce three phase indicators: η(ζ,`2)(q; r),

θ(ζ,`2,`3)(q; r) and Θ(ζ,`2,`3)(q; r). The values of the three functions will describe with in-

creasing degree of accuracy the local phase of the system. As we will see θ(ζ,`2,`3)(q; r) and

Θ(ζ,`2,`3)(q; r) depend on q only via η(ζ,`2)(q; ·), so that once the function η(ζ,`2)(q; ·) is specified

the other two phase indicators are completely determined, we may thus use only η(ζ,`2)(m; ·),

but the other indicators hopefully make the definitions more clear. Since in the whole sequel

ζ and `2, `3 are fixed as in (4.1.1) we drop them from the notation writing simply η, θ and Θ.
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4.1 Phase indicators and contours

Definition 4.1.2. Given β ∈ (βc, β0), γ, ζ and α, we define a function η(q; r), r ∈ Rd, q ∈ Q,

with values ±1, 0 by setting η(q; r) = ±1 if

∣∣∣ρ(`2)(q; r)− ρβ,R,±
∣∣∣ ≤ ζ, where ρ(`2)(q; r) =

|q ∩ C(`2)
r |

`d2
(4.1.2)

and η(q; r) = 0 otherwise.

If η(ζ,`2)(q; r) = ±1 we call the cube C
(`2)
r in ± equilibrium, otherwise η(ζ,`2)(q; r) = 0 and

in C
(`2)
r the system is off equilibrium. Thus η(ζ,`2)(q; r) indicates the phase, or its absence,

on the small scale `2.

Definition 4.1.3. θ(ζ,`2,`3)(q; r) and Θ(ζ,`2,`3)(q; r) are defined in terms of η(ζ,`2)(q; ·) as:

• θ(ζ,`2,`3)(q; r) = ±1 if η(ζ,`2)(q; r′) = ±1 constantly for all r′ in C
(`3)
r .

θ(ζ,`2,`3)(q; r) = 0 otherwise.

• Θ(ζ,`2,`3)(q; r) = ±1 if η(ζ,`2)(q; r′) = ±1 constantly for all r′ in C
(`3)
r ∪ δ`3out[C

(`3)
r ].

Θ(ζ,`2,`3)(q; r) = 0 otherwise.

θ(ζ,`2,`3)(q; r) = 1 means that the phase indicated by η(ζ,`2)(q; ·) on the small scale `2 is

constantly the plus phase in the whole [large] cube C
(`3)
r . Points r close to the boundary of

C
(`3)
r however may not be in local equilibrium but if Θ(ζ,`2,`3)(q; r) = 1 then θ(ζ,`2,`3)(q; ·) = 1

in all cubes of D(`3) connected to C
(`3)
r and since `3 > 1 all points of C

(`3)
r are in local

equilibrium. Thus, while η(ζ,`2)(q; r) and θ(ζ,`2,`3)(q; r) are “local” in the sense that their

values depend only on the restriction of q to C
(`2)
r and respectively C

(`3)
r , this is no longer true

for Θ(ζ,`2,`3)(q; r) which is “non local” as it depends on the restriction of q to C
(`3)
r ∪δ`3out[C

(`3)
r ].

Definition 4.1.4. A point r is correct (for the configuration q) if Θ(ζ,`2,`3)(q; r) 6= 0 and

called plus/minus (correct) if Θ(ζ,`2,`3)(q; r) = ±1. The plus/minus phases of q are the sets

of its plus/minus correct points, they are mutually disconnected and the regions in between

are “the spatial supports of the contours”.
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Contours and Peierls bounds

Definition 4.1.5. A contour of q is a pair Γ =
(
sp(Γ), ηΓ

)
, where sp(Γ), “the spatial support

of Γ”, is a maximal connected component of {r ∈ Rd : Θ(ζ,`2,`3)(q; r) = 0} and ηΓ is the

restriction to sp(Γ) of η(ζ,`2)(q; ·).

Γ =
(
sp(Γ), ηΓ

)
is “an abstract contour” if it is a contour of some q.

4.1.5 Geometry of contours

In the sequel we restrict to bounded contours, meaning that their spatial support is

bounded. Definitions and properties stated in this paragraph are exemplified and visualized

in Section 4.2.

The exterior, ext(Γ), of Γ is the unbounded, maximal connected component of sp(Γ)c. The

interior is the set int(Γ) = sp(Γ)c \ ext(Γ); we denote by inti(Γ) the maximal connected

components of int(Γ). Let

c(Γ) = sp(Γ) ∪ int(Γ), (4.1.3)

then, by Theorem 4.1.1, inti(Γ) and c(Γ) are both simply connected.

The outer boundaries of Γ are the sets

A(Γ) := δ`3out[sp(Γ)] ∩ int(Γ), Aext(Γ) := δ`3out[c(Γ)] (4.1.4)

We will also call Ai(Γ) = A(Γ) ∩ inti(Γ). The inner boundaries of Γ are the sets

Bi(Γ) = δ`3out[Ai(Γ)] ∩ sp(Γ), Bext(Γ) = δ`3in [c(Γ)] (4.1.5)

An easy but important consequence of the above definitions is the following theorem (the

reader may check its validity in the case of Figure 4.1).

Theorem 4.1.6. If q has a bounded contour Γ, Θ(ζ,`2,`3)(q; r) is a non zero constant on any

Ai(Γ) and Aext(Γ).

Proof. Θ(ζ,`2,`3)(q; r) 6= 0 for any r ∈ A, A either Aext(Γ) or Ai(Γ), because A is outside

sp(Γ) and being connected to sp(Γ) cannot intersect the spatial support of any other contour.

We will next prove that Θ(ζ,`2,`3)(q; r) is constant and non zero on A. Since A is connected

(by Theorem 4.1.1) it will suffice to prove that if two cubes C and C ′ of D(`3), are connected

26



4.2 Pictures and examples

to each other and both in A, then Θ(ζ,`2,`3)(q; r) has a constant value on the union C ∪ C ′.

Indeed, suppose for instance that Θ(ζ,`2,`3)(q; r) = 1, r ∈ C; then θ(ζ,`2,`3)(q; r′) = 1 for all

r′ ∈ δ`3out[C] and hence for all r′ ∈ C ′, thus Θ(ζ,`2,`3)(q; r′) = 1 on C ′ (as we already know that

Θ(ζ,`2,`3)(q; r′) 6= 0 on C ′).

Definition 4.1.7. Γ is a plus, minus, contour if Θ(q; r) = ±1 on Aext(Γ).

We add a superscript ± to Ai(Γ) writing A±i (Γ), i = 1, , ., n±, with ± chosen so that

ηΓ = 1 on B+
i (Γ) and ηΓ = −1 on B−i (Γ). We also write

A+(Γ) =

n+⋃
i=1

A+
i (Γ), A−(Γ) =

n−⋃
i=1

A−i (Γ) (4.1.6)

int±i (Γ) if inti(Γ) contains A±i (Γ),

int±(Γ) =

n±⋃
i=1

int±i (Γ), int(Γ) = int+(Γ) ∪ int−(Γ) (4.1.7)

4.2 Pictures and examples

To visualize the notions introduced in the last section we fix a configuration, compute

the phase indicators and draw pictures of the corresponding plus/minus correct regions and

contours. Let S ⊂ R2 be the coordinate square with bottom left corner the origin and side

21`3 In Figure 4.1 S is partitioned into 21 × 21 squares of side `3, we will denote by Cx,

x ∈ Z2 the square of side `3 with bottom left corner x`3, x the “lattice coordinate” of x`3.

We suppose that θ(`2,`3,ζ) ≡ 1 outside S while the values in S are as in Fig. 4.1.

Θ(`2,`3,ζ) is then completely determined. Its values on S are reported in Fig. 4.2, where the

plus (marked by +), minus (marked by −) correct regions and the support of the contours

(marked by 0) are separated by the discontinuity lines of Θ(`2,`3,ζ). Notice that Θ(`2,`3,ζ) ≡ 1

on δ`3in [S], δ`3in [S].

Thus the configuration we are considering is one of those which arise when computing the

plus diluted partition function in S, see next section.

The configuration of Fig. 4.1 has three contours, Γ1, Γ2 and Γ3: sp(Γ1) is the region

between the discontinuity lines of Fig 4.2 which contains C(17,3), sp(Γ2) the one which contains

C(16,17) and sp(Γ3) the one containing C(5,11) (i.e. the squares marked 0 in Fig 4.2). Γ1 and
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Figure 4.1: Values of θ(`2,`3,ζ) on S.
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Figure 4.2: Discontinuity lines of Θ(`2,`3,ζ) and regions where it is +, − and 0.
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4.3 Diluted Gibbs measures

Figure 4.3: The set c(Γ1).

Γ2 are both external, plus contours, Γ3 is a minus contour. c(Γ1) is drawn in Fig. 4.3 Γ1 has

three internal parts, int−(Γ1), int+
1 (Γ1) and int+

2 (Γ1), see Fig. 4.4, int−(Γ1) has a contour

inside, Γ3, see Fig. 4.5. The sets Bext(Γ1) and Aext(Γ1) are drawn in Fig. 4.6, the sets Bi(Γ1)

and Ai(Γ1) are drawn in Fig. 4.7, observe that B2(Γ1) ∩B3(Γ1) 6= ∅.

Values of η(ζ,`2) are reported by blowing up portions of S, see Fig. 4.8 and Fig. 4.9.

4.3 Diluted Gibbs measures

We will prove phase transitions by introducing two classes of boundary conditions and

showing that they give rise in the thermodynamic limit to two distinct measures. We consider

“diluted Gibbs measures”, their definition involves special boundary conditions as well as

constraints on the structure of the configurations close to the boundaries. The constraints

are such that contours cannot reach the boundaries, for this reason the partition functions

are called diluted.

Definition 4.3.1. A configuration q̄ is a plus boundary condition relative to a bounded D(`3)-

measurable region Λ if there is a configuration q+ ∈ Q+, i.e. such that η(q+; r) = 1 for all

r ∈ Rd and q̄ and q+ are the same in the region {r ∈ Λc : dist (r,Λ) ≤ 2γ−1}.
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_

+

+

+

Figure 4.4: int−(Γ1) is the region with −, int+1 (Γ1) is the + region on top left and int+2 (Γ1) the one

consisting of a single square.

o

_

Figure 4.5: int−(Γ1) with inside sp(Γ3).

30



4.3 Diluted Gibbs measures

Figure 4.6: Aext(Γ1) = δ`3out[c(Γ)] is the region between the external dashed and the thick line;

Bext(Γ1) = δ`3in [c(Γ)] is the region between the internal dashed and the thick line.

x

+++

x

x

x

xx

x

xxx

x

x x

x

xxx

xxxxx

xx

x

x

x

x x x

x

x x x x

x

x

x

x

x

Figure 4.7: Ai(Γ1) = δ`3in [inti(Γ1)] are the regions made of the x marked squares contained in inti(Γ1);

Bi(Γ1) = δ`3out[inti(Γ1)] are the region between the dashed lines and the thick lines inside.
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Figure 4.8: Blow up of the squares C(2,6) where θ(ζ,`2,`3) = 0 divided into squares of side `2 where

the values of η(ζ,`2) are reported.
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Figure 4.9: Blow up of the squares C(2,7) where θ(ζ,`2,`3) = 0 divided into squares of side `2 where

the values of η(ζ,`2) are reported.
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4.4 Weight of a contour

Definition 4.3.2. The plus diluted Gibbs measure in a bounded D(`3)-measurable region Λ

with plus boundary conditions q̄ is

µΛ,+
γ,β,R,λ(dqΛ|q̄) :=

1

Z+
γ,β,R,λ(Λ|q̄)

e−βHγ,R,λ(qΛ|q̄Λc )1
Θ((qΛ+q+

Λc );r)=1 r ∈ δ`3in [Λ]
νΛ(dqΛ) (4.3.1)

where q+ ∈ Q+, νΛ is defined in Section 1.1 and

Z+
γ,β,R,λ(Λ|q̄) =

∫
QΛ

e−βHγ,R,λ(qΛ|q̄Λc )1
Θ((qΛ+q+

Λc );r)=1 r ∈ δ`3in [Λ]
νΛ(dqΛ) (4.3.2)

is the plus diluted partition function.

Definition 4.3.3. Minus boundary conditions, minus diluted Gibbs measures and minus

diluted partition functions are defined analogously.

4.4 Weight of a contour

We refer again to Section 4.1 for notation and properties of contours, in particular for

the definition of the sets sp(Γ), c(Γ), int(Γ), Aext(Γ), A±(Γ) and int±(Γ). All these sets

in agreement with the notation are independent of which configuration q gives rise to the

contour Γ, namely which q ∈ Q(Γ), where

Q(Γ) =
{
q : Γ is a contour for q

}
(4.4.1)

Recall finally that Γ is a plus or minus a contour if Θ(q; r) = ±1 on Aext(Γ) = δ
`+,γ
out [c(Γ)].

Given a plus contour Γ and a plus boundary condition q+ for c(Γ), we define the weight

W+
γ,R,λ(Γ; q̄) of Γ as equal to

µ
c(Γ)
γ,β,R,λ,q+

(
η(qc(Γ); r) = ηΓ(r), r ∈ sp(Γ); Θ(qc(Γ); r) = ±1, r ∈ A±(Γ)

)
µ
c(Γ)
γ,β,R,λ,q+

(
η(qc(Γ); r) = 1, r ∈ sp(Γ); Θ(qc(Γ); r) = 1, r ∈ A±(Γ)

) (4.4.2)

where the measure µ
c(Γ)
γ,β,R,λ,q+ has been defined in Section 1.3. Thus the numerator is the

probability of the contour Γ conditioned to the outside of sp(Γ) while the denominator is the

probability with the same conditioning that the contour Γ is absent and replaced by the plus

configurations. The weight W−γ,λ(Γ; q−) of a minus contour Γ is defined analogously. Since

the range of the interaction is ≤ 2γ−1, we obviously have:
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Contours and Peierls bounds

Lemma 4.4.1. The weights W±γ,R,λ(Γ; q±) depend only on the restriction of q± to {r ∈ c(Γ)c :

dist(r, c(Γ)) ≤ 2γ−1}.

4.5 Peierls bounds

The main technical point in the proof of Theorem 2.1.1 is to prove that contours are

improbable. In particular we will prove Peierls estimates which prove that the probability of

a contour decays exponentially with its volume.

Let us introduce the notation:

NΓ =
|sp(Γ)|
`d3

(4.5.1)

to indicate the number of cubes of the partition D(`3) contained in sp(Γ). Then we want to

prove the following:

Theorem 4.5.1. It exists R0 such that for any R ≤ R0 and any β ∈ (βc,R, β0,R) there are c

γβ,R > 0 and λβ,γ,R, γ ≤ γβ, so that for any ± contour Γ and any ± boundary condition q±

relative to c(Γ),

W±γ,R,λ(Γ; q±) ≤ exp
{
− βc (ζ2`d2)NΓ

}
(4.5.2)

As a corollary of Theorem 4.5.1 we have:

Theorem 4.5.2. It exists R0 such that for any R ≤ R0 and any β ∈ (βc, β0) let c, γβ,R, γ

and λβ,γ,R as in Theorem 4.5.1, then for any bounded, simply connected, D(`3) measurable

region Λ, any plus/ minus boundary condition q± and any r ∈ Λ,

µΛ,±
γ,β,R,λβ,γ,R,q±

({Θ(q; r) = ±1}) ≥ 1 − exp
{
− β c

2
(ζ2`d−,γ)

}
. (4.5.3)

Theorem 4.5.2 implies that for any R ≤ R0 and γ small enough (chosen according to R)

the difference between the diluted Gibbs measures µΛ,+
γ,β,R,λβ,γ,R,q±

(dq) and µΛ,−
γ,β,R,λβ,γ,R,q±

(dq)

survives in the thermodynamic limit Λ ↗ Rd and a phase transition then occurs. The

implications of Theorem 4.5.2 on the structure of the DLR measures will not be discussed in

this work and we give as reference [52], Chapter 12, where it is proved for the LMP model
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4.6 Cutoff weights

that indeed there are a plus and a minus distinct DLR measures, that they are translational

invariant and that any translational invariant measure is a convex combination of the two.

We believe however the structure of these properties is not affected by the addition of the

hard core interaction (see remark at the end of Section 2.1).

We end this section by writing the ratio (4.4.2) of probabilities in the definition of the

weight of a contour as a ratio of two partition functions. Indeed referring for the sake of

definiteness to a plus contour Γ we have

W+
γ,R,λ(Γ; q+) =

N+
γ,R,λ(Γ, q+)

D+
γ,R,λ(Γ, q+)

(4.5.4)

where:

N+
γ,R,λ(Γ, q+) =

∫
qsp(Γ):η(qsp(Γ);r)=ηΓ(r),r∈sp(Γ)

e
−βHγ,R,λ,sp(Γ)(qsp(Γ)|q+

Aext
)

× Z−γ,β,R,λ(int−(Γ)|qsp(Γ))Z
+
γ,β,R,λ(int+(Γ)|qsp(Γ)) (4.5.5)

D+
γ,R,λ(Γ, q+) =

∫
qsp(Γ):η(qsp(Γ);r)=1,r∈sp(Γ)

e
−βHγ,R,λ,sp(Γ)(qsp(Γ)|q+

Aext
)

× Z+
γ,β,R,λ(int−(Γ)|qsp(Γ))Z

+
γ,β,R,λ(int+(Γ)|qsp(Γ)). (4.5.6)

4.6 Cutoff weights

The aim of this section is to introduce the notion of cutoff weights as required in the

approach proposed by Milos Zahradnik to the P-S theory (see Section 2.3).

The idea is that in the picture of P-S large contours are less likely to be observed. If

to implement this idea one fix a constraint which literally forbids contours larger than some

given value then also the stable phase would be modified, as any contour no matter how large

has anyways a positive probability to occur. It is thus convenient to allow for all contours,

but to give them a weight which is the true one only if the true weight is small, i.e. as in the

Peierls bounds; otherwise it is given a fictitiously small value. In the stable phase the cutoff

(if properly chosen) is not reached and the state is not modified by this procedure.

We will discuss the plus case, the minus one is completely analogous and not considered

explicitly. The starting point is to write the plus diluted partition functions as partition
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Contours and Peierls bounds

functions on the restricted ensembles

QΛ
+ = {q : η(q; r) = 1, r ∈ Λ}. (4.6.1)

4.6.1 The set of all contours as a graph

• We denote by {Γ}+ the collection of all plus contours with bounded spatial support.

Recalling that two sets are connected if their closures have non empty intersection, we

draw edges joining any two elements Γ and Γ′ of {Γ}+ if sp(Γ) is connected to sp(Γ′),

thus equipping {Γ}+ with a graph structure. (Notice that two connected contours

cannot appear in a configuration q).

• B+ is the space of all finite subsets of {Γ}+ made of elements which are mutually

disconnected. Elements of B+ are denoted by Γ.

• B+,ext is the subset of B+ made of mutually “external” contours: namely if Γ ∈ B+,ext

for any Γ 6= Γ′ in Γ, c(Γ) ∩ c(Γ′) = ∅.

• {Γ}+Λ , B+
Λ and B+,ext

Λ , (by default Λ denotes a bounded D(`+,γ)-measurable region)

denote the previous quantities with the additional restriction that all contours have

spatial support in Λ\ δ`+,γin [Λ], i.e. [the spatial support of the] contours is not connected

to Λc.

• Let W+
γ,R,λ(∅, q+) = 1 and let us write

W+
γ,R,λ(Γ, q+) =

∏
Γ∈Γ

W+
γ,R,λ(Γ, q+), Γ ∈ B+, q+ ∈ X+ (4.6.2)

• If Γ ∈ B+,ext we write

int(Γ) =
⋃
Γ∈Γ

int(Γ), ext(Γ) =
⋂
Γ∈Γ

ext(Γ). (4.6.3)
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4.6 Cutoff weights

4.6.2 Partition functions in restricted ensembles

A central point in P-S theory is a change of measure. The idea is to introduce a new

Gibbs measure simpler than the original one, but which gives the same pro

The diluted partition function in a region Λ can be written as a partition function in

QΛ
+ = {q ∈ XΛ : η(q, r) = 1, r ∈ Λ}:

Theorem 4.6.1. For any bounded D(`3)-measurable region Λ and any plus b.c. q+,

Z+
γ,β,R,λ(Λ|q+) =

∑
Γ∈B+

Λ

∫
qΛ∈QΛ

+

W+
γ,R,λ(Γ, qΛ) e−βHγ,R,λ(qΛ|q+

Λc ) (4.6.4)

where q+
Λc is made of all the particles of q+ which are in Λc.

4.6.3 Fictitious weights

Throughout the sequel Ŵ±γ,R,λ(Γ; q±), Γ ∈ {Γ}+, q± ± boundary conditions for c(Γ),

denote strictly positive numbers which, like the true weights, see Lemma 4.4.1, depend only

on the restriction of q± to {r ∈ c(Γ)c : dist(r, c(Γ)) ≤ 2γ−1}. Recalling (4.6.4) we then define

for any bounded, simply connected D(`3)-measurable region Λ and any ± b.c. q± for c(Γ),

Ẑ±γ,β,R,λ(Λ|q±) =
∑

Γ∈B±Λ

∫
QΛ

+

Ŵ±γ,R,λ(Γ, qΛ) e−βHγ,R,λ(qΛ|q±Λc ) (4.6.5)

(the integral over the free measure νΛ(dqΛ)) where, if Γ = (Γ1, ..,Γn),

Ŵ±γ,R,λ(Γ, q) =

n∏
i=1

Ŵ±γ,R,λ(Γi, q), Γ = (Γ1, ..,Γn). (4.6.6)

By (4.6.4) if the weights of the contours are the true ones, then Ẑ±γ,β,R,λ(Λ|q±) are the plus and

minus diluted partition functions. We should regard (4.6.5) as the definition of Ẑ±γ,β,R,λ(Λ|q±)

as a function of the variables {Ŵ±γ,R,λ(Γ; q), Γ a plus, respectively, minus contour, whose

spatial support is in Λ\δ`+,γin [Λ]}. We next define N̂+
γ,R,λ(Γ, q+) and D̂+

γ,R,λ(Γ, q+) as functions

of the weights Ŵ±γ,R,λ(·; ·) as:

N̂+
γ,R,λ(Γ, q+) =

∫
qsp(Γ):η(qsp(Γ);r)=ηΓ(r),r∈sp(Γ)

e
−βHγ,R,λ,sp(Γ)(qsp(Γ)|q+

Aext
)

× Ẑ−γ,β,R,λ(int−(Γ)|qsp(Γ)) Ẑ
+
γ,β,R,λ(int+(Γ)|qsp(Γ)) (4.6.7)
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Contours and Peierls bounds

D̂+
γ,R,λ(Γ, q+) =

∫
qsp(Γ):η(qsp(Γ);r)=1,r∈sp(Γ)

e
−βHγ,R,λ,sp(Γ)(qsp(Γ)|q+

Aext
)

× Ẑ+
γ,β,R,λ(int−(Γ)|qsp(Γ)) Ẑ

+
γ,β,R,λ(int+(Γ)|qsp(Γ)). (4.6.8)

N̂−γ,R,λ(Γ, q−), D̂−γ,R,λ(Γ, q−) are defined analogously. As said they are regarded as functions

of the weights Ŵ±γ,R,λ(·; ·) and like the true weights, also N̂±γ,R,λ(Γ, q±) and D̂±γ,R,λ(Γ, q±)

depend only on the restriction of q± to {r ∈ c(Γ)c : dist(r, c(Γ)) ≤ 2γ−1}.

4.6.4 The cutoff weights

We are now ready for the final step, the choice of the weights. We have:

Theorem 4.6.2. There is a unique choice of Ŵ±γ,R,λ(Γ; q±) such that for any ± contour Γ

and any q±,

Ŵ±γ,R,λ(Γ; q±) = min
{ N̂±γ,R,λ(Γ, q)

D̂±γ,R,λ(Γ, q)
, e−β

c
100

(ζ2`d−,γ)NΓ

}
(4.6.9)

with N̂±γ,R,λ(Γ, q) and D̂±γ,R,λ(Γ, q) as in (4.6.7)-(4.6.6) and (4.6.5) and hence dependent on

the weights Ŵ±γ,R,λ(·; ·). Moreover the weights Ŵ±γ,R,λ(Γ; q±) depend only on the restriction of

q± to {r ∈ c(Γ)c : dist(r, c(Γ)) ≤ 2γ−1}.

4.6.5 Recovering the true weights

As anticipated in the introduction to the section, an important point of the scheme is

that in within the context of “the fictitious cutoff weights model” we can decide whether it

is the true one.

Theorem 4.6.3. Suppose that for any plus or minus contour Γ

Ŵ±γ,R,λ(Γ; q±) < e−β
c

100
(ζ2`d−,γ)NΓ (4.6.10)

then

Ŵ±γ,R,λ(Γ; q±) = W±γ,R,λ(Γ; q±), Ẑ±γ,β,R,λ(Λ|q±) = Z±γ,β,R,λ(Λ|q±) (4.6.11)

where W±γ,R,λ(Γ; qA±) are the true weights, defined in (4.5.4) and Z±γ,β,R,λ(Λ|q±) the plus

minus diluted partition functions.
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4.6 Cutoff weights

Corollary 4.6.4. To prove Theorem 4.5.1 it suffices to show that for R < R0 and γ small

enough, for all Γ

Ŵ±γ,R,λ(Γ; q±) =
N̂±γ,R,λ(Γ, q±)

D̂±γ,R,λ(Γ, q±)
≤ e−βc (ζ2`d−,γ)NΓ (4.6.12)

Proof. By Theorem 4.6.3 if (4.6.12) holds then

W±γ,R,λ(Γ; q±) = Ŵ±γ,R,λ(Γ; q±) ≤ e−βc (ζ2`d−,γ)NΓ (4.6.13)

39





5. Outline of the proof

In this chapter we shall present a sketch of the proof of Theorem 4.5.1. We fix the inverse

temperature β in the open interval (βc,R, β0,R) and since it is fixed we shall often drop it

from the notation. By Corollary 4.6.4 it is enough to prove that for γ small (4.6.12) holds

for all contours Γ. Hence we can proceed using the cutoff weights Ŵ±γ,R,λ(Γ; q±) instead of

the original ones W±γ,R,λ(Γ; q±).

The main difficulty in proving (4.5.2) is that both N̂±γ,R,λ(Γ, q±) and D̂±γ,R,λ(Γ, q±) are

defined in terms of expressions which involve not only the support of Γ but also its whole

interior. They are therefore “bulk quantities” while the desired bound involves only the

volume of the support of Γ, which for some contours, at least, is a “surface quantity”. The

main issue here is to find cancellations of the bulk terms between N̂±γ,R,λ and D̂±γ,R,λ. This is

easy when special symmetries allow to relate the + and − ensembles, as in the ferromagnetic

Ising model. Such simplifications are not present here and this is the main issue which makes

continuum models difficult to be studied.

The analysis leading to (4.6.12) has been rather general and it has not used in any essential

way the specific features of the LMP-hc model, which instead enter massively in its proof.

The proof immediately follows from the three basic estimates below, which can be re-

garded as the three main steps.

5.1 Step 1: equality of pressures

Looking at the “bulk terms” involving the interior components of Γ one can see that up

to exponential surface correction terms, one can approximate the partition function by:

Ẑ±γ,β,R,λ(int±(Γ)|qsp(Γ)) ≈ eβP
±
γ,R,λ|int±(Γ)| (5.1.1)
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Outline of the proof

where P±γ,R,λ is the thermodynamic pressure given, for any van Hove sequence of D(`3)-

measurable regions Λn and any ± Λn-boundary conditions q±n , by the following limit:

lim
n→∞

1

β|Λn|
log Ẑ±γ,R,λ(Λn|q±n ) = P±γ,R,λ. (5.1.2)

Although (5.1.1) is a rough approximation, equality of pressures is necessary for the bulk

terms in Ŵ±γ,R,λ(Γ; q±) to cancel.

Hence we have to prove that the limit in (5.1.2) exists, that P±γ,R,λ depend continuously

on λ ∈ [λ(β,R) − 1, λ(β,R) + 1] and there are c′ and λβ,γ,R ∈ [λ(β,R) − 1, λ(β,R) + 1] so

that

P+
γ,R,λβ,γ,R

= P−γ,R,λβ,γ,R for all γ small enough. (5.1.3)

Chapter 6 is devoted to prove (5.1.3).

Existence of the thermodynamic limit is standard and we do not report it in this work.

It is indeed more complicate than in the Ising model since there is an additional term in the

partition function which takes into account the contribution of the weights of the contours.

We refer to [52], Sect. 11.7 for both the existence of the limit and the continuity of the

pressures as functions of λ.

The equality of the pressures follows from a coarse graining argument a la Lebowitz-

Penrose by which we prove closeness of the pressures to their mean field values p±;mf
R,λ :=

−φβ,λ,R(ρβ,λ,R,±). Then, since the difference of the plus and minus mean field pressures

changes sign when λ varies in an interval around λ(β,R), the same happens to the difference

P+
γ,R,λβ,γ,R

−P−γ,R,λβ,γ,R . Continuity of P+
γ,R,λβ,γ,R

−P−γ,R,λβ,γ,R in λ then implies the existence

of a zero. The uniqueness is a much deeper question which is, however, here unessential as

we just want to prove existence of phase transitions.

A crucial point in pursuing this program is to do a coarse graining on scale γ−1/2 with

both the Kac and the hard core interactions and prove that the logarithm of the partition

function with contours is close to the “mesoscopic” free energy on the given scale. The

“mesoscopic” free energy will be the sum of the coarse grained LMP hamiltonian and the

hard core free energy. The latter is computed in the canonical ensemble in the Appendix A

and is a consequence of [53]. When applying the Lebowitz and Penrose theory, we have no

problems for the LMP part of the hamiltonian because for its special structure it is easy to

write it as a function of the occupation numbers in each atom of the partition. On the other
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5.2 Step 2: energy estimates

side, the hard core interaction has a short range and hence it can make interact two particles

from contiguous atoms. We solve this problem with finding an upper and a lower bound.

A final remark is that in Step 1 the choice of cutoff weights is essential. In fact to have

Peierls bound (4.5.2) on the contours one needs to fix λ such that the pressures are equal.

However, to show equality of pressures one needs to show that the bound (4.5.2) holds and

by introducing the cutoff weights one escapes from this loop.

5.2 Step 2: energy estimates

We want to prove that there is c′ > 0 so that given γ small enough, for R < R0,

N̂+
γ,R,λβ,R,γ

(Γ, q+)

D̂+
γ,R,λβ,R,γ

(Γ, q+)
≤ e−β(cζ2−c′γ1/2−2αd)`d2NΓ

e
βI−
γ,λ(β,R)

(int−(Γ))
Ẑ−γ,R,λβ,γ,R(Λ|χ−Λc)

e
βI+
γ,λ(β,R)

(int−(Γ))
Ẑ+
γ,R,λβ,γ,R

(Λ|χ+
Λc)

(5.2.1)

for all plus contour Γ, with I±γ,λ(β,R)(Λ) defined in (5.3.4). An analogous bound holds for the

minus contours.

We do not prove explicitly estimate (5.2), but we refer to [52] where it is carried out for

the LMP model, assuming the proofs will not be affected too much by the addition of the

hard core interaction. We report here only an outline of the proof.

First we should mention that the validity of (5.2) is not restricted to the special value

λ = λβ,γ,R, but it holds as well for all λ ∈ [λ(β,R) − cγ1/2, λ(β,R) + cγ1/2] (c a positive

constant and γ small enough). However, since we do not need such a strong statement we

write (5.2) for this value of the chemical potential.

The proof is divided into two steps. In the first step one needs to prove that it is possible

to factorize with “negligible error” the estimate in int(Γ) from the one in sp(Γ). In this proof

one manage to bound the l.h.s. of (5.2) by a product of three factors: one is the fraction

appearing on the r.h.s., another factor is a constrained partition function in sp(Γ) and finally

the last one is the “negligible error” eβcγ
1/2−2α2d)`d2NΓ , c > 0 a constant. The second step

involves a bound on the above constrained partition function in sp(Γ) which yields the gain

factor e−β(cζ2−c′γ1/2−2α2d)`d2NΓ , c > 0 another constant. Combining the two one gets .

The main tool used in this part of the proof is a coarse graining argument and an analysis

a la Lebowitz and Penrose. The error in doing a coarse graining is bounded by eβcγ
1/2|sp(Γ)| =
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Outline of the proof

eβcγ
1/2−2αd`d2NΓ , which is the “negligible factor” mentioned above. Just as in the Ising model

the key point is that we can afford to make errors of this size, because it is a small fraction

of the gain term in the Peierls bounds. Thus in both steps we have a reduction, after coarse

graining, to variational problems with the LMP free energy functional. They involve two

different regions, one is at the boundary between interior and spatial support of Γ, the other

is in the bulk of the spatial support. In the former we exploit the definition of contours which

implies that the boundary of int±(Γ) is in the middle of a “large region” (of size `3) where

η(·; ·) is identically equal to ±1 respectively. By the strong stability properties of the LMP

free energy functional, the minimizers are then proved to converge exponentially to ρβ,R,±

with the distance from the boundaries. Here we use the assumption that β ∈ (βc,R, β0,R),

i.e. where the mean field operator Kβ,λ(β,R),R is a contraction, see Proposition 3.2.3. We

then conclude that with a negligible error we have “thick corridors” where the minimizers

are equal to ρβ,R,± thus separating the regions outside and inside the corridors.

After this step we have plus/minus partition functions in int±(Γ) with boundary con-

ditions ρβ,R,± and still a variational problem in the region sp(Γ) with the constraint that

profiles should be compatible with the presence of the contour Γ. The analysis of such a

minimization problem leads to the gain factor in the Peierls bounds.

5.3 Step 3: surface correction to the pressure

The last step consists in proving that there is c′ > 0 so that for any γ small enough the

following holds: for all plus contours Γ

∣∣∣ log
{eβI±γ,λ(β,R)

(int−(Γ))
Ẑ±γ,R,λβ,γ,R(int−(Γ)|χ±)

e
β|int−(Γ)|P±γ,R,λβ,γ,R

}∣∣∣ ≤ c′γ1/2`d3NΓ (5.3.1)

where we use the shorthand notation:

χ±∆(r) = ρβ,±1r∈∆, χ± = χ±Rd (5.3.2)

and where I±γ,λ(β,R)(Λ) is a surface term:

I±γ,λ(β,R)(Λ) =

∫
Λc
{eλ(β,R)(ρβ,R,±)− eλ(β,R)(Jγ ∗ ρβ,R,±1Λc)} (5.3.3)

−
∫

Λ
eλ(β,R)(Jγ ∗ ρβ,R,±1Λc). (5.3.4)
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5.3 Step 3: surface correction to the pressure

Analogous bound (with int+(Γ) instead of int−(Γ)) holds for minus contours.

Hence we want to prove that the leading term in the partition function is e
β|int−(Γ)|P±γ,R,λβ,γ,R

which is therefore the same for the two partition functions, and thus the whole point it to

estimate the next term, i.e. the surface corrections to the pressure, proving that they are

small as ec
′′γ1/2`d3NΓ at least when the boundary conditions “are perfect”, i.e. given by χ±.

This is definitely the most delicate point in the whole scheme and it is carried out in

Chapters 7 and 8. Furthermore (5.3.1) plus Step 1 (see Section 5.1) would imply:

Theorem 5.3.1 (Surface corrections to the pressure). It exists R0 such that for any R ≤ R0

and any β ∈ (βc,R, β0,R) there are c > 0, γβ,R > 0 and λβ,γ,R, γ ≤ γβ, |λ(β,R) − λβ,R,γ | ≤

cγ1/2, so that for any bounded D(`3)-measurable region Λ,

e
βI−
γ,λ(β,R)

(Λ)
Ẑ−γ,R,λβ,γ,R(Λ|χ−Λc)

e
βI+
γ,λ(β,R)

(Λ)
Ẑ+
γ,R,λβ,γ,R

(Λ|χ+
Λc)
≤ ecγ

1/2|δ`3out[Λ]| (5.3.5)

In the classical P-S models where we perturb the ground states, the partition functions

Ẑ±(int−(Γ)) have only the contribution of the contour weights (the restricted ensembles are

in fact singletons consisting each one of a ground state). The Peierls bounds which again

hold by definition (because the weights are cutoff weights!) prove the validity of a cluster

expansion, from which (5.3.1) then follows. A natural requirement for the extension of the

theory to the continuum where Q± has a non-trivial structure is to prove the validity of a

cluster expansion. We shall prove it in Chapter 7 where the constraints Q± induce an analysis

in the canonical ensemble. The idea is that (5.3.1) is implied by the following theorem (stated

for a generic D(`3) measurable region):

Theorem 5.3.2. Let Λ be a bounded D(`3) measurable region. Let xi be the centers of the

cubes C(`2) ∈ D(`2) then define

fx1,..,xn =

∫
{ri∈C

(`2)
xi

,1≤i≤n}
q⊗n(dr1..drn)J (n)

γ (r1, .., rn). (5.3.6)

There are positive constants δ, c′ and c so that for all fx1,..,xn∣∣∣Eµ1

(
fx1,..,xn

)
− Eµ2

(
fx1,..,xn

)∣∣∣ ≤ c′e−c[γ−δ`−1
3 dist(C

(`2)
x1

,Λc)] (5.3.7)
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Outline of the proof

where Eµi, i = 1, 2, are the expectations with respect to µi , i.e. finite volume Gibbs measures

in Λ with b.c. q̄i.

We compute the expectations in (5.3.7) in two steps: we first fix the number of particles

in the cubes C(`2) and integrate over their positions; then, in the second step, we sum over

the particle numbers. By its very nature, the Kac assumption makes the first step simple: to

first order in fact the energy is independent of the positions of the particles inside each cube.

Neglecting the higher orders terms, the energy drops out of the integrals (with fixed particle

numbers) which can then be computed explicitly. The result is the phase space volume of

the set of configurations with the given particle numbers: this is an entropy factor which,

together with the energy, reconstructs the mesoscopic energy functional.

By using cluster expansion techniques, we will show here that it is possible to compute

exactly the correction due to the dependence of the energy on the actual positions of the

particles in each cube. The correction, which is a function of the particle numbers, is a

hamiltonian with many body interactions of all orders. Even thought it has a complicated

expression, yet it is still a regular hamiltonian which becomes small as γ gets small.

For what concern the hard core part of the interaction we can use again a cluster expansion

technique, using the result [53] obtained for a system with a single canonical constraint and

therefore extending it to present case of multi-canonical constraints.

The expansion will involve therefore both the two kind of interactions, giving rise to a

complex set of diagrams with multiple links. We nevertheless manage to deal with it proving

convergence of the series in the form of Kotecký and Preiss, [34].

Once we are left with an “effective hamiltonian” we still have to sum over the particle

numbers. Since we work in a contour model, the particle densities are close to the mean field

values ρβ,R,± so that the marginal of the Gibbs measure over the set {ρ(`2)
x }x is Gibbsian

and it is a small perturbation of a hamiltonian given by the mean field free energy functional

restricted to a neighborhood of the mean field equilibrium density (i.e. we do not feel the

double well structure). In such a setup we manage to prove the validity of the Dobrushin

uniqueness condition (Chapter 8), where we take into account the contribution of the hard

cores as a cluster expansion sum, which is small because of the Kothecký-Preiss Theorem.
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6. Equality of the pressures

In this chapter we prove that the pressures in the + and − contour models can be made

equal by suitably tuning the chemical potential as a function of γ. Hence we select the value

λ = λβ,R,γ of the chemical potential for which the phase transition will be proved to occur.

We first restrict λ to the interval [λ(β,R) − 1, λ(β,R) + 1] and then we shall prove that

actually λβ,R,γ lies in the smaller interval [λ(β,R) − c′′γ1/2, λ(β,R) + c′′γ1/2] for all γ small

enough and c′′ a positive constant.

6.1 Definitions and results

We remind some definitions and notation.

In this chapter the temperature β is fixed in the open interval (βc,R, β0) and ζ > 0 is the

accuracy parameter which enters in the definition of the contours.

All the sets are bounded D(`3)- misurable regions of Rd. Plus/minus boundary conditions

are denoted by q±, where q± may stand either for a particle configuration or a density

function. The plus/minus restricted ensembles are denoted by:

QΛ
± = {qΛ ∈ QΛ : η(qΛ; r) = ±1, r ∈ Λ}; Q± = QRd± (6.1.1)

and the plus/minus partition functions with plus/minus b.c. q± are (like (4.6.5)):

Ẑ±γ,β,R,λ(Λ|q±) =

∫
QΛ
±

νΛ(dq)e−βHγ(q|q±)e−βH
hc(q|q±)Xγ,λ,qΛ(Λ) (6.1.2)

with Xγ,λ,qΛ(Λ) =
∑

Γ∈B±Λ
Ŵ (Γ|qΛ) and where Hhc(q|q̄) = Hhc(q) + Uhc(q, q̄).

Note that the two partition functions Z±γ,R,λ(Λ|q±) do not differ only by the boundary

conditions. They are in fact defined on different phase spaces, i.e. the restricted ensembles

QΛ
±, and the contour weights entering in their definition are also different.

The main result in this chapter is the following.
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Equality of the pressures

Theorem 6.1.1. For any λ ∈ [λ(β,R)− 1, λ(β,R) + 1] the following holds.

• For any van Hove sequence Λn of D(`3)-misurable regions and any sequence q±n of ±

b.c. the following limits exist:

lim
n→∞

1

β|Λn|
log Ẑ±γ,R,λ(Λn|q±n ) = P±γ,R,λ (6.1.3)

and they are independent of the sequence {Λn, q±n }.

• P±γ,R,λ depend continuously on λ and there is a constant c > 0 such that

P+
γ,R,λ − P

−
γ,R,λ > 0 if λ = λ(β,R) + cγ1/2 (6.1.4)

P+
γ,R,λ − P

−
γ,R,λ < 0 if λ = λ(β,R)− cγ1/2 (6.1.5)

As an immediate corollary of Theorem 6.1.1 we have:

Theorem 6.1.2. For all γ small enough there is λβ,R,γ such that

P+
γ,R,λβ,R,γ

= P−γ,R,λβ,R,γ , |λβ,R,γ − λ(β,R)| ≤ cγ1/2, (6.1.6)

with c as in (6.1.4).

6.2 Coarse graining

The equality of pressures follows from a coarse graining argument by which we shall prove

closeness of the pressures to their mean field values:

lim
γ→0

P±γ,R,λ = p±;mf
R,λ := −φβ,λ,R(ρβ,λ,R,±). (6.2.1)

Since the difference of the plus and minus mean field pressures changes sign when λ varies

in an interval around λ(β,R), the same happens to the difference P+
γ,R,λ − P

−
γ,R,λ. Then the

existence of a zero is proved, once we assure the continuity of P+
γ,R,λ − P

−
γ,R,λ in λ.

Existence of the thermodynamic limit for the two pressures P±γ,R,λ is standard and we skip

it. It can be proved as for the Ising model, since spin variables are here bounded because of

the hard-core interaction. One has only to take care of the contours which give contribution
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6.2 Coarse graining

in the partition function, but their contribution is exponentially small as in (7.4.15). For all

the details see [52], Sect. 11.7.

As already said for the equality of pressures we shall use a Lebowitz-Penrose approach via

coarse graining. Hence the main result in this section is an estimate on “constrained partition

functions” in terms of the mesoscopic free energy functional. Note that the coarse graining

in this chapter is intended to be done on a scale `1,γ (see Section 4.1) where for simplicity we

drop γ from the notation.

Definition 6.2.1. Let MΛ, Λ being a D(`1)-misurable region, be the space of non-negative,

D(`1)-misurable functions on Λ. Furthermore we define:

ρ(`1)(q; r) =
|q ∩ C(`1)

r |
`d1

, ρ(`1)(ρ; r) =
1

`d1

∫
C

(`1)
r

ρ(r′)dr′ (6.2.2)

and for any “constraint” B ⊂MΛ we define:

Zγ,R,λ,Λ,q̄(B) =

∫
qΛ:ρ(`1)(qΛ,·)∈B

e−βHγ,R(qΛ|q̄Λc ) (6.2.3)

where q̄ is a boundary condition.

Note that for the presence of the hard-core interaction in the hamiltonian we have that

the density is automatically bounded by the close-packing density (ρcp) of the hard-spheres.

Hence:

ρ(`1)(qΛ, r) ≤ ρcp, r ∈ Λ (6.2.4)

We also suppose that there is c so that for any “constraint” B ⊂ MΛ and for any ρΛ ∈ B

there is qΛ so that:

ρ(`1)(qΛ, ·) ∈ B, and |ρ(`1)(qΛ, ·)− ρΛ| ≤ cγd/2. (6.2.5)

We shall coarse grain with mesh `1 and call XΛ the set containing the centres of the cubes

C
(`1)
x contained in Λ, which from simplicity from now on will be just denoted by Cx. Let us

write the n-body coarse grained potentials J̃
(n)
γ as follows:

J̃ (n)
γ (r1, .., rn) =

1∣∣C(`1)
∣∣n
∫
C

(`1)
r1

dr′1...

∫
C

(`1)
rn

dr′nJ
(n)
γ (r′, ..., r′n). (6.2.6)
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Equality of the pressures

Analogously we will add a tilde to denote quantities which are computed with J̃
(n)
γ instead

of J
(n)
γ . In particular H̃γ,R and Z̃ are the coarse grained energy and partition function. For

any ρΛ ∈MΛ we define also the coarse grained mesoscopic free energy functional:

F̃γ,R,λ,Λ(ρΛ|q̄) = H̃γ(ρΛ|q̄Λc) + |Λ|fhc
Λ,R(ρΛ|q̄) = H̃γ(ρΛ|q̄Λc)−

1

β

∫
Λ
S(ρΛ) + |Λ|fΛ,R(ρΛ|q̄)

(6.2.7)

where S(ρ) = −ρ(log ρ− 1) is the entropy and:

fΛ,R(ρΛ|q̄) := − 1

β|Λ|
∑
π

zTR(π; ρΛ, q̄) (6.2.8)

is the contribution to the free energy coming from cluster expanding the canonical partition

function for the hard spheres over the boxes of the partition. See equation (A.4.16) and in

general Appendix A where we do a cluster expansion in a volume Λ with periodic boundary

conditions. The extension to the case with coarse graining over the boxes with side `1

is an easy generalization and nothing changes but the fact that the multi-indices are over

the particle labels which now refer to a precise box (as we do in the more general case of

Kac interaction plus hard core in Section 7.3). In the case with a more general class of

interactions, (i.e. stable and tempered), see [53] where we also prove convergence to Mayer’s

virial expansion at the thermodynamic limit. The notation used in (6.2.7) and (6.2.8) has

been introduced according to the mean field model, in order to have the analogous quantities

also in the mesoscopic description.

Hence we want to prove the following theorem:

Theorem 6.2.2. There is c > 0 so that for any q̄, any R and any B ⊂MΛ:∣∣∣ logZγ,R,λ,Λ,q̄(B) + β inf
ρΛ∈B

F̃γ,R,λ,Λ(ρΛ|q̄)
∣∣∣ ≤ cγ1/2|Λ| (6.2.9)

To prove Theorem 6.2.2 we use the following lemma which will be used to replace the

partition function in (6.2.9) by its tilde analogue.

Lemma 6.2.3. There is c > 0 so that for all q̄, all R and any B ⊂MΛ:

e−cγ
1/2|Λ| ≤

Zγ,R,λ,Λ,q̄(B)

Z̃γ,R,λ,Λ,q̄(B)
≤ ecγ1/2|Λ|. (6.2.10)
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6.2 Coarse graining

We skip the proof of Lemma 6.2.3 which is the same in the LMP model without extra

hard-core interaction. In the proof we use some energy bounds for the LMP hamiltonian,

hence the R-interaction gives no contribution except giving a natural cutoff for the values of

the density (we have ρcp instead of ρmax). For the reference see [52], Sect. 11.1.

Proof of Theorem 6.2.2.

By Lemma 6.2.3 we can replace Zγ,R,λ,Λ,q̄(B) with its tilde analogue with an error cγ1/2|Λ|;

it is therefore sufficient to prove (6.2.9) with the tilde partition function. Analogously as in

Sections 7.2 and 8.1 the energy H̃γ(qΛ|q̄Λc) depends only on the number of particles nx =

|qΛ ∩ Cx| in the cubes Cx, x ∈ XΛ. We shall write H̃γ(n|q̄Λc) for the γ-energy of any

configuration whose particle numbers are n = (nx)x∈XΛ
∈ NXΛ . Denoting by ρx = γd/2nx

the density in each cube and by ρ = (ρx)x∈XΛ
the function in MΛ which is constant in each

cube of the partition, we look for a lower and for an upper bound of log Z̃γ,R,λ,Λ,q̄(B). While

the γ-interaction in H̃γ,R depends only on the occupation numbers, the hard-core interaction

is a short range potential, hence it makes two particles coming from two contiguous boxes

interact. To avoid interactions among contiguous boxes we will use upper and lower bound

which create independence on the boxes.

For the upper bound we neglect interactions among contiguous boxes. Hence for the

positivity of the hard-core interaction we have the following:

Z̃γ,R,λ,Λ,q̄(B) ≤
∑
n:ρ∈B

e−βH̃γ(n|q̄Λc )

[∏
x

e−βγ
−d/2fCx,R(ρ|q̄) |Cx|nx

nx!

]
(6.2.11)

where fCx,R is defined in (6.2.8).

Now we write:
|Cx|nx
nx!

= exp{|Cx|S(ρx) + c(nx)} (6.2.12)

where:

c(nx) := log
( |Cx|nx

nx!

)
− |Cx|S(ρx), c(nx) ≤ c log γ−d/2 (6.2.13)

with c a positive constant and having used that nx ≤ ρcp`
d
2.

Since there are |Λ|γd/2 values of x and nx may take at most ρcp`
d
2 values, we have

(ρcp`
d
2)|Λ|γ

d/2
terms in the sum. Hence:

Z̃γ,R,λ,Λ,q̄(B) ≤ e−β infn:ρ∈B F̃γ,R,λ,Λ(ρ|q̄)
[
c′ρcp `

d
2 e

c log γ−d/2
]|Λ|γd/2

(6.2.14)
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Equality of the pressures

and therefore:

log Z̃γ,R,λ,Λ,q̄(B) ≤ −β inf
ρΛ∈B

F̃γ,R,λ,Λ(ρΛ|q̄) + c|Λ|γd/2 log γ−1. (6.2.15)

For the lower bound we neglect those configurations with particles in the frame of width

R/2 inside each cube Cx. Hence the partition function is larger than the one computed as

product over disjointed smaller cubes since in the last one we have reduced the volume of the

phase space. Let us call C ′x the cubes of side `1 −R, thus we have:

Z̃γ,R,λ,Λ,q̄(B) ≥
∑
n:ρ∈B

e−βH̃γ(n|q̄Λc )

[∏
x

e
−β(`1−R)dfC′x,R

(ρ|q̄) |C ′x|nx
nx!

]
(6.2.16)

We write again:
|C ′x|nx
nx!

= exp{|C ′x|S(ρx) + c′(nx)} (6.2.17)

where:

c′(nx) := log
( |C ′x|nx

nx!

)
− |C ′x|S(ρx), c′(nx) ≥ −c log γ−d/2 (6.2.18)

To reconstruct the mesoscopic free energy F̃γ,R,λ,Λ we replace |C ′x| with |Cx| paying for each

cube an error which goes like the surface, i.e. O(γ−(d−1)/2R):

Z̃γ,R,λ,Λ,q̄(B) ≥
∑
n:ρ∈B

e−βH̃γ(n|q̄Λc )

[∏
x

e−β|Cx|fCx,R(ρ|q̄)+|Cx|S(ρx)−c log γ−d/2−c′γ−(d−1)/2R

]
(6.2.19)

We can find a lower bound by choosing only one term in the sum over n, i.e. the term in

which F̃γ,R,λ,Λ takes its minimum. Hence, having again |Λ|γd/2 values of x,

log Z̃γ,R,λ,Λ,q̄(B) ≥ −β inf
n:ρ∈B

F̃γ,R,λ,Λ(ρ|q̄)− c log γ−1|Λ|γd/2 − c′|Λ|γd/2γ−(d−1)/2R. (6.2.20)

Let ρ̃ be the minimizer of F̃γ,R,λ,Λ(·|q̄) on the constraint B. Then by (6.2.5) there is n so that

ρ obtained from n is in B and furthermore there is c so that |ρ− ρ̃| ≤ cγd/2 on Λ. The lower

bound (6.2.2) then follows using that fhc
Λ,R (see (6.2.7)) is convex and analytic and hence:

|fhc
Λ,R(γd/2(n + t)) − fhc

Λ,R(γd/2n)| ≤ kγd/2 for all |t| ≤ c and n ≤ ρcp`
d
2. Note that the LMP

energy is differentiable hence it gives a contribution of order kγd/2.

6.3 Equality of the plus and minus pressures

In this section we will complete the proof of (6.1.4).
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6.3 Equality of the plus and minus pressures

First of all we have to analyze the variational problem with constraint we have in (6.2.2).

Observe that given any c > 0 for all γ small enough,

|ρβ,λ,R,± − ρβ,R,±| < ζ for |λ− λ(β,R)| ≤ cγ1/2 (6.3.1)

Hence, we prove the following proposition.

Proposition 6.3.1. Let λ be such that |ρβ,λ,R,± − ρβ,R,±| < ζ; then for all R,

inf
ρΛ:η(ρΛ;·)≡±1

Fγ,R,λ,Λ(ρΛ|ρβ,λ,R,±1Λc) = Fγ,R,λ,Λ(ρβ,λ,R,±1Λ|ρβ,λ,R,±1Λc) (6.3.2)

= φβ,λ,R(ρβ,λ,R,±)|Λ|+ I±γ,R,λ(Λ) (6.3.3)

where:

I±γ,R,λ(Λ) =

∫
Λc
{eλ(ρβ,λ,R,±)− eλ(ρβ,λ,R,±Jγ ∗ 1Λc)} −

∫
Λ
eλ(ρβ,λ,R,±Jγ ∗ 1Λc). (6.3.4)

The same result holds for F̃γ,R,λ,Λ with Jγ replaced by J̃γ.

Proof .

Denote by ρ the function equal to ρΛ on Λ and to ρΛc on Λc. Then regarding ρΛc = 0 on Λ

and recalling that S(0) = 0, so that S(ρΛc)1Λc ,

Fγ,R,λ,Λ(ρΛ|ρΛc) =

∫
Rd
{eλ(Jγ ∗ ρ)− eλ(Jγ ∗ ρΛc)}+ {fhc

Λ,R(ρ)− fhc
Λ,R(ρΛc)} (6.3.5)

=

∫
Rd
{φβ,λ,R(Jγ ∗ ρ)− φβ,λ,R(Jγ ∗ ρΛc)} − {fhc

Λ,R(Jγ ∗ ρ)− fhc
Λ,R(ρ)} (6.3.6)

+ {fhc
Λ,R(Jγ ∗ ρΛc)− fhc

Λ,R(ρΛc)} (6.3.7)

where φβ,λ,R is defined in (3.1.6) In our case ρΛc = ρβ,R,±1Λc so that we can write the integral

of the sum as the sum of the integrals, and in the integral with {fhc
Λ,R(Jγ ∗ ρ)− fhc

Λ,R(ρ)} we

can replace fhc
Λ,R(ρ) by Jγ ∗ fhc

Λ,R(ρ). Then Fγ,R,λ,Λ(ρΛ|ρΛc) becomes:∫
Rd
{φβ,λ,R(Jγ ∗ ρ)− φβ,λ,R(Jγ ∗ ρΛc)}+ {Jγ ∗ fhc

Λ,R(ρ)− fhc
Λ,R(Jγ ∗ ρ)} (6.3.8)

+{fhc
Λ,R(Jγ ∗ ρΛc)− fhc

Λ,R(ρΛc)}. (6.3.9)

Since ρΛc = ρβ,R,±1Λc and η(ρΛ; ·) ≡ ±1, for all γ small enough the first curly bracket is

minimized by setting ρΛ = ρβ,R,±; the second curly bracket by convexity is non-negative (in
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Equality of the pressures

the region of convergence of cluster expansion) and vanishes when ρΛ = ρβ,R,±1Λ; the third

one is independent of ρΛ and the first equality of (6.3.2) is proved.

To prove the second equality in (6.3.2) we have to look at the original expression for

Fγ,R,λ,Λ(ρβ,R,±1Λ|ρβ,R,±1Λc) and set ρΛ = ρβ,R,±. Recalling the definition of I±γ,R,λ(Λ) in

(6.3.1), we then get:

Fγ,R,λ,Λ(ρβ,λ,R,±1Λ|ρβ,λ,R,±1Λc) =

∫
Λ

{
eλ(ρβ,λ,R,±) + fhc

Λ,R(ρβ,λ,R,±)
}

+ I±γ,R,λ(Λ) (6.3.10)

= |Λ|φβ,λ,R(ρβ,λ,R,±) + I±γ,R,λ(Λ) (6.3.11)

The same proof works for J̃γ and F̃γ,R,λ.

Lemma 6.3.2. There is a constant c′ so that for any R and any λ such that |ρβ,λ,±−ρβ,±| ≤ ζ,

|P±γ,R,λ − p
±;mf
R,λ | ≤ c

′γ1/2 (6.3.12)

Proof.

Let ∆n be an increasing sequence of D`3-misurable cubes which invades Rd. Then using the

canonical partition function defined in (6.1.2) (by the existence of thermodynamic limit):

P±γ,R,λ = lim
n→∞

1

β|∆n|
log Ẑ±γ,R,λ(∆n|ρβ,λ,R,±). (6.3.13)

For the upper bound we have:

log Ẑ±γ,R,λ(∆n|ρβ,λ,R,±) ≤ logZγ,R,λ,Λ,q̄({η(·; ·) ≡ ±1}) +
|∆n|
`d3

log 2 (6.3.14)

≤ −β inf
ρ∆n :η(ρ∆n ;·)≡±1

Fγ,R,λ,∆n(ρ∆n |ρβ,λ,R,±1∆c
n
) + cγ1/2|∆n|+

|∆n|
`d3

log 2

(6.3.15)

≤ −βφβ,λ,R(ρβ,λ,R,±)|∆n| − βI±γ,R,λ(∆n) + cγ1/2|∆n|+ |∆n|γ(1+α)d log 2

(6.3.16)

≤ {β p±;mf
R,λ + cγ1/2}|∆n| − βI±γ,R,λ(∆n) (6.3.17)

where Zγ,R,λ,Λ,q̄(B) is defined in (6.2.3). The upper bound follows from Lemma 6.2.3, Theo-

rem 6.2.2 and Proposition 6.3.1, because limn→∞
I±γ,R,λ(∆n)

|∆n| = 0.
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6.3 Equality of the plus and minus pressures

For the lower bound we use that Xγ,λ,qΛ(Λ) ≥ 1 and get:

log Ẑ±γ,R,λ(∆n|ρβ,λ,R,±) ≥ logZγ,R,λ,Λ,q̄({η(·; ·) ≡ ±1}) (6.3.18)

and then the proof proceeds as in the upper bound.

Lemma 6.3.3. There are δ and a both positive such that

d

dλ
(p+;mf
R,λ − p

−;mf
R,λ ) > a, |λ− λ(β,R)| ≤ δ. (6.3.19)

Proof.
d

dλ
(p+;mf
R,λ − p

−;mf
R,λ )

∣∣∣
λ=λ(β,R)

= ρβ,R,+ − ρβ,R,− > 0. (6.3.20)

We are now going to show that:

Claim Let c be such that ca > 2c′, a as in (6.3.19) and c′ as in (6.3.12), then for all γ

small enough (in particular such that (6.3.1) holds):

P+
γ,R,λ(β,R)+cγ1/2 − P−γ,R,λ(β,R)+cγ1/2 > 0 (6.3.21)

P+
γ,R,λ(β,R)−cγ1/2 − P−γ,R,λ(β,R)−cγ1/2 > 0. (6.3.22)

Proof.

By Lemmas 6.3.2 and 6.3.3, writing λ′′ := λ(β,R) + cγ1/2, for all γ small enough

P+
γ,R,λ′′ − P

−
γ,R,λ′′ ≥ p

+;mf
R,λ′′ − p

−;mf
R,λ′′ − 2c′γ1/2 ≥ a(λ′′ − λ(β,R))− 2c′γ1/2 > 0, (6.3.23)

where we have done a Taylor expansion for both p+;mf
R,λ′′ and p−;mf

R,λ′′ around λ(β,R) and used

that p+;mf
R,λ(β,R) = p−;mf

R,λ(β,R). Analogously, if λ′ = λ(β,R)− cγ1/2,

P+
γ,R,λ′ − P

−
γ,R,λ′ ≤ p

+;mf
R,λ′ − p

−;mf
R,λ′′ + 2c′γ1/2 ≤ −a(λ(β,R)− λ′) + 2c′γ1/2 < 0. (6.3.24)
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7. Cluster expansion

This Chapter and the following will be entirely devoted to prove Theorem 5.3.2. Here

we use cluster expansion techniques to compute the expectations (5.3.6) as functions of the

number of particles in the cubes C(`2) that we think as of fixed. The aim of this Chapter is to

reduce our model to an effective model which depends only on the cell numbers (see Section

7.5).

7.1 Definitions and results

The setup is the following:

• We use the definitions in Section 4.1 and drop the γ in the notation `2,γ and `3,γ for

simplicity.

• Λ will denote a bounded connected D(`3) measurable region, S the set of cubes C(`3)

in Λ contiguous to Λc. ∆ = Λ \ S. Σ is the strip in Λ made of all the cubes C(`3)

contiguous to Λc and Λ0 = Λ/Σ.

• fx1,..,xn is a function defined as

fx1,..,xn =

∫
{ri∈C

(`2)
xi

,1≤i≤n}
q⊗n(dr1..drn)J (n)

γ (r1, .., rn) (7.1.1)

with the condition that C
(`2)
xi is in ∆ for some 1 ≤ i ≤ n and where the measure is

defined in (1.1.3).

• µ1 and µ2 are two probability measures. µ1 is a finite volume Gibbs measure in Λ with

boundary condition q̄1 outside Λ which is moreover conditioned to have all its contours

ω spatially supported in Λ0. µ2 is the same finite volume Gibbs measure with boundary

condition q̄2.
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Our aim is to prove that there are positive constants δ, c′ and c so that for all fx1,..,xn∣∣∣Eµ1

(
fx1,..,xn

)
− Eµ2

(
fx1,..,xn

)∣∣∣ ≤ c′e−c[γ−δγ1+αdist(C
(`2)
x1

,Λc)] (7.1.2)

7.2 Block spin hamiltonians

Let Λ and Λ0 be as in the previous section and we fix q̄ ∈ QΛc
+ . In this chapter we

will refer interchangeably to the measures µ1 or µ2. We split the hamiltonian into the LMP

part and the hard-core part, i.e. Hγ,R,λ(q|q̄) = Hγ(q|q̄) +Hhc(q|q̄) where Hγ shorthands the

hamiltonian Hγ,λγ,β . Furthermore for the hard-core part we give the following definition:

Hhc(q|q̄) = Hhc(q) + Uhc(q, q̄) (7.2.1)

where Hhc(q) is the energy of the particles inside Λ while (see (1.2.21)) Uhc(q, q̄) indicates the

interaction energy between a particle in Λ and one in Λc (remembering that the configuration

outside Λ is fixed q̄ ∈ QΛc
+ ).

We have

Ẑ+
γ,R,λ(Λ|q̄) :=

∑
Γ∈B±Λ

∫
QΛ

+

νΛ(dq)e−βHγ(q|q̄)e−βH
hc(q|q̄)Ŵ (Γ|q) (7.2.2)

which dropping all the suffixes will be denoted by Ẑ(Λ|q̄). Ŵ stands for the Zahradnik

weights with the corresponding parameters.

Our goal is to prove that Ẑ(Λ|q̄) can be written as the partition function of a hamiltonian

which depends on variables ρ
(`2)
x , x ∈ X(`2)

Λ , X
(`2)
Λ the set of centers of cubes C(`2) in Λ. To

simplify notation we drop the superscript `2 writing ρx, x tacitly supposed in X
(`2)
Λ . The new

energy of a density configuration ρ = {ρx}x∈X(`2)
Λ

is defined as

h(ρ|q̄) = − log
∑

Γ∈B±Λ

∫
QΛ

+

νΛ(dq)1ρ(`2)(q)=ρ e
−βHγ(q|q̄)e−βH

hc(q|q̄)Ŵ (Γ|q) (7.2.3)

so that

Ẑ(Λ|q̄) =
∑
ρ

e−h(ρ|q̄)

Setting nx = `d2ρx, we multiply and divide, inside the argument of the log in (7.2.3), by∏
x∈XΛ

`dnx2

nx!
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7.2 Block spin hamiltonians

We denote by {qx,i, i = 1, .., nx, x ∈ XΛ}, the particles in C
(`2)
x . Thus particles are now

labelled by the pair (x, i), x specifies the cube C
(`2)
x to which the particle “belongs”, i dis-

tinguishes among the particles in C
(`2)
x . The corresponding free measure, whose expectation

is denoted by E0
ρ , is the product of the probabilities which give uniform distribution to the

positions qx,i in their boxes C
(`2)
x divided by nx! since the particles in each box C

(`2)
x are

indistinguishable. Note that when we change from labeling of all particles in Λ to labeling

separately the particles in each box we have to multiply by N !∏
x∈X(`2)

Λ

nx! for all such possibil-

ities. For reasons to be clear in the sequel we define a new prior measure where we weight

the previous free measure by only the part of the short range potential which interacts with

the boundary configuration q̄ (i.e. Uhc(q, q̄)). To be more precise, for the particles in a given

box C
(`2)
x , x ∈ XΛ, the new measure will be:

dqx,1 · · · dqx,nxe−βU
hc(q(Cx),q̄)∫

dqx,1 · · · dqx,nxe−βU
hc(q(Cx),q̄)

Zx,q̄(ρx) (7.2.4)

where q(Cx) denotes the configuration of the particles in C
(`2)
x , each integral in the denominator

is over C
(`2)
x with the constraint QΛ

+ and where:

Zx,q̄(ρx) =

∫
QΛ

+

dqx,1

`d2
. . .

dqx,nx
`d2

e−βU
hc(q(Cx),q̄) (7.2.5)

is the extra factor coming from the change of measure and contributing for each cube, with:

Uhc(q(Cx), q̄) :=

nx∑
i=1

|q̄|∑
j=1

V hc(qx,i − q̄j). (7.2.6)

The corresponding expectation will be denoted by E0
ρ,q̄. We then have

h(ρ|q̄) = −
∑
x

log
`dnx2

nx!
−

∑
x:C

(`2)
x ∈∂Λint

logZx,q̄(ρx)−logE0
ρ,q̄

(
e−βHγ(q|q̄)e−βH

hc(q)
∑

sp(Γ) ⊆ Λ0

W (Γ|q)
)

(7.2.7)

where ∂Λint is the set of the D(`2) boxes adjacent to Λc (i.e., the interior boxes of Λ). Note

that the total normalization is a product of the normalizations in each cube and that, because

of the hard-core interaction, Zx,q̄(ρx) for a given box Cx gives the following contribution:

Zx,q̄(ρx) =
(∫

Cx

dq

`d2
1q∈C q̄x

)nx
=
|C q̄x|nx

`dnx2

(7.2.8)
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where: C q̄x = {r ∈ Cx : dist(r, q̄i) > R, ∀i}. This means that, because of the presence of the

hard-core, the new measure “reduces” the admissible volume for the particles in each box.

Let H(`2)(q|q̄) be the coarse-grained hamiltonian on scale `2. It is obtained by replacing

J
(n)
γ by J̃

(n)
γ , where:

J̃ (n)
γ (r1, ..., rn) =

1

|C(`2)|n

∫
C

(`2)
r1

dq1 · · ·
∫
C

(`2)
rn

dqn J
(n)
γ (q1, ..., qn) (7.2.9)

are the coarse-grained potentials.

It depends only on the particle numbers nx (or the densities ρx) and we can thus write

h0(ρ|ρ̄) = H(`2)(q|q̄), ρx = ρ(`2)
x (q), ρ̄x = ρ(`2)

x (q̄) (7.2.10)

Setting

∆H(q|q̄) = Hγ(q|q̄)−H(`2)(q|q̄) (7.2.11)

we have

h(ρ|q̄) = −
∑
x

log
`dnx2

nx!
−

∑
x:C

(`2)
x ∈∂Λint

logZx,q̄ + βh0(ρ|ρ̄) + δh(ρ|q̄) (7.2.12)

where

δh(ρ|q̄) = − logE0
ρ,q̄

(
e−β∆H(q|q̄)e−βH

hc(q)
∑

sp(Γ) ⊆ Λ0

W (Γ|q)
)

(7.2.13)

It is convenient to split δh(ρ|q̄) in three parts:

δh(ρ|q̄) =

3∑
i=1

hi(ρ|q̄), h1,2(ρ|q̄) =

2∑
i=1

hi(ρ|q̄) (7.2.14)

where

h1,2(ρ|q̄) = − logE0
ρ,q̄

(
e−β∆H(q|q̄)e−βH

hc(q)
)

(7.2.15)

h3(ρ|q̄) = − logEρ,q̄
( ∑

sp(Γ) ⊆ Λ0

W (Γ|q)
)

(7.2.16)

Eρ,q̄(f) =
E0
ρ,q̄

(
e−β∆H(q|q̄)e−βH

hc(q)f
)

E0
ρ

(
e−β∆H(q|q̄)e−βHhc(q)

) (7.2.17)
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7.3 Analysis of h1,2

In the sequel ρ = {ρx}x∈X(`2)
Λ

is a fixed density configuration and all q will be compatible

with ρ, i.e. |q ∩ C(`2)
x | = ρx`

d
2 = nx. To simplify notation, we denote here by i the particle

labels (instead of the pair (x, i) used before) so that the label i encodes the knowledge of

the cube C
(`2)
x where qi is; for such a reason we may also say that a label i is in some D(`2)

measurable set.

The “error part” of the hamiltonian is

∆H(q|q̄) = −
∑
i1,i2

[J (2)
γ (qi1 , qi2)− J̃ (2)

γ (qi1 , qi2)]

+
∑

i1,i2,i3,i4

[J (4)
γ (qi1 , qi2 , qi3 , qi4)− J̃ (4)

γ (qi1 , qi2 , qi3 , qi4)] (7.3.1)

We have used a shorthand notation: the sum is over distinct labels and runs over the particles

of q and q̄ with the condition that at least one of the particles of q should be present. For

simplicity we write qi also when the label i refers to the particle q̄i. The difference between

J̃γ and Jγ is small, namely there are constants cn, n = 2, 4, so that for all γ small enough

∣∣J (n)
γ (q1, .., qn)− J̃ (n)

γ (q1, .., qn)
∣∣ ≤ cnγα+(n−1)d

n∏
i=2

1|q1−qi|≤2γ−1 . (7.3.2)

With this in mind we set

w(2)
γ (qi1 , qi2) = eβ[J

(2)
γ (qi1 ,qi2 )−J̃(2)

γ (qi1 ,qi2 )] − 1 (7.3.3)

w(4)
γ (qi1 , qi2 , qi3 , qi4) = e−β[J

(4)
γ (qi1 ,qi2 ,qi3 ,qi4 )−J̃(4)

γ (qi1 ,qi2 ,qi3 ,qi4 )] − 1 (7.3.4)

where both are bounded by a constant times the right hand side of (7.3.2). Then we have

e−β∆H(q|q̄) =
∏
i1,i2

(
1 + w(2)

γ (qi1 , qi2)
) ∏
i1,i2,i3,i4

(
1 + w(4)

γ (qi1 , qi2 , qi3 , qi4)
)

(7.3.5)

with same convention as for the sums in (7.3.1). Similarly, for Hhc(q) we have

e−βH
hc(q) =

∏
i1,i2

(1 + v
(2)
R (qi1 , qi2)), where v

(2)
R (qi1 , qi2) := e−βV

hc(qi1 ,qi2 ) − 1 (7.3.6)

where we only consider the particles inside Λ, i.e. in (7.3.6) for each pair of indices i1, i2 we

must have qi1 , qi2 ∈ Λ. We next expand the products in (7.3.5), (7.3.6) and classify the terms

using the following notation:

61



Cluster expansion

• Let L(2) = (i1, i2) and L(4) = (i1, i2, i3, i4) denote a pair (resp. a quadruple) of mutu-

ally distinct particle labels and, given a labeled particle configuration q, we denote by

q(L(2)) = (qi1 , qi2) and q(L(4)) = (qi1 , qi2 , qi3 , qi4) the pair (resp. the quadruple) of the

positions of the corresponding particles.

• We will refer to the two types of 2-links by calling them respectively γ-links and R-links.

• Two links are connected if they have a common label.

• (Definition of Θ.) A diagram θ is a collection of 2- and 4-links, i.e., a ordered triple

θ ≡
(
L(2)
R (θ),L(2)

γ (θ),L(4)(θ)
)

, where we denote by L(2)
R (θ), L(2)

γ (θ) and L(4)(θ) the set

of 2-links (of type R and γ) and of 4-links in θ. Note that one can have a repetition of

links, i.e. a same link L(2) can belong to both sets L(2)
γ (θ) and L(2)

R (θ). We use L(2)(θ)

for the set of 2-links (which eventually contains twice a link when it is both a γ-link

and a R-link) and Θ for the set of all such diagrams.

• Two diagrams θ and θ′ are compatible (θ ∼ θ′) if the set of their common labels is

empty. A compatible collection of diagrams consists of mutually compatible diagrams.

When they are not compatible we will use the notation �.

• We define wγ,R(θ, q) as the product of w
(2)
γ (q(L(2))), v

(2)
R (q(L(2))) and w

(4)
γ (q(L(4))) over

all the links that contribute to θ:

wγ,R(θ, q) := vR(L(2)
R (θ), q)

∏
L(2)∈L(2)

γ (θ)

w(2)
γ (q(L(2)))

∏
L(4)∈L(4)(θ)

w(4)
γ (q(L(4))) (7.3.7)

where for any L ⊂ L(2)
R we have also defined:

vR(L, q) :=
∏

L(2)∈L

v
(2)
R (q(L(2))) (7.3.8)

From (7.2.15), (7.3.5) and (7.3.6) we get:

h1,2(ρ|q̄) = − logE0
ρ,q̄

( ∑
{θ1,...,θk}∼

k∏
j=1

wγ,R(θj , q)
)
, (7.3.9)

where the sum is over all the compatible collections {θ1, ..., θk} such that every θj , j = 1, ..., k,

has at least one particle inside Λ.
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The goal is to bring (7.3.9) into the form of the partition function of an abstract polymer

model for which one can prove the validity of the convergence condition. As far as the γ-links

is concerned, due to the smallness of their weight (see (7.3.3) and (7.3.4)) when we multiply

by the large number of such structures we will eventually be able to prove convergence. But,

for the case of R-links, such labeled graph structure is dangerous since their number grows

as en
2

for the case of n vertices. The way out is to consider new types of diagrams where

γ links may occur deliberately, but the R-links occur at most as a tree structure. Next, we

present this construction in two steps after which we will eventually arrive to a new type of

diagram for which we can prove convergence of the corresponding abstract polymer model.

We start with a definition: given a diagram θ and a label i such that θ � i, we provide

an abstract rooted graph structure according to the following algorithm. The root of the

graph is i. Links of θ which have i as an endpoint are links of the first generation. New links

may start at the endpoints of the links of the first generation and they will be links of the

second generation and so on. We define the graph distance of the label v (and we will use

the notation d(v)) as the minimum number of links that are necessary to construct a path

connecting v to the root. The m-th generation of the graph is the set of labels I such that

d(v) = m for all v ∈ I.

Step 1. We first get rid of all the R-links which appear over γ-links and we extract a

subdiagram θ̂. Let Θ̂ ⊂ Θ be the set of all the diagrams which do not have double 2-links,

i.e. Θ̂ := {θ̂ : L(2)
γ (θ̂) ∩ L(2)

R (θ̂) = ∅}.

Definition 7.3.1. We define a map φ : Θ → Θ̂, which to each diagram θ ∈ Θ associates a

diagram θ̂ = φ(θ) ∈ Θ̂, such that: Lγ(φ(θ)) = Lγ(θ) and L(2)
R (φ(θ)) = L(2)

R (θ) \ (L(2)
γ (θ) ∩

L(2)
R (θ)). Moreover, the set of all the possible diagrams θ can be obtained as the disjoint

unions of φ−1(θ̂) and θ̂, for all θ̂ ∈ Θ̂.

Given a diagram θ ∈ Θ, from Definition 7.3.1 we have:

wγ,R(θ, q) = wγ,R(φ(θ), q)vR(L(2)
R (θ) \ L(2)

R (φ(θ)), q). (7.3.10)
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Step 2. The next step is to obtain a diagram which is at most a tree in R.

Definition 7.3.2. (Partial ordering relation ≺ on a diagram θ). For L
(2)
1 , L

(2)
2 ∈ L(2)

R (θ) we

have that L
(2)
1 ≺ L

(2)
2 according to lexicographic ordering (i.e., we start by comparing the

first index and if the same we compare the next etc.). We say that a diagram is ordered if

the set of its R-links is ordered according to this definition.

Definition 7.3.3. (Redundant link). Given an ordered diagram θ, we say that a link L(2) ∈

L(2)
R (θ) is redundant in the following two cases:

• If L(2) = {i, j} with d(i) = d(j) (which we will call “horizontal”);

• If L
(2)
1 = {i1, j} with d(i1) = d(j) − 1 and it exists L

(2)
2 = {i2, j} ∈ L(2)

R (θ), with

d(i2) = d(j) − 1, such that: L
(2)
2 ≺ L

(2)
1 (i.e., i2 < i1). We call such a link “ vertical”

and redundant with respect to some other link that has the same endpoint in the

generation more distant from the root.

We denote the set of the redundant links of a diagram θ by: R(2)
R (θ).

We call Θ̄ ⊂ Θ̂ the set of diagrams with no double 2-links and with no redundant links.

In formulas: Θ̄ := {θ̄ : θ̄ ∈ Θ̂,R(2)
R (θ̄) = ∅}.

Definition 7.3.4. We define the map ψ : Θ̂→ Θ̄, which to each diagram θ̂ ∈ Θ̂ associates a

diagram ψ(θ̂) such that: L(2)
γ (ψ(θ̂)) = L(2)

γ (θ̂) and L(2)
R (ψ(θ̂)) = L(2)

R (θ̂) \ R(2)
R (θ̂). Moreover,

the set of all possible diagrams θ̂ ∈ Θ̂ is the disjoint union of all ψ−1(θ̄) and θ̄, for all θ̄.

From (7.3.10), for any θ ∈ Θ we have (recall also the definition in (7.3.8))

wγ,R(θ, q) = wγ,R(ψ(φ(θ)), q) v
(2)
R (L(2)

R (φ(θ)) \ R(2)
R (φ(θ)), q) v

(2)
R (L(2)

R (θ) \ L(2)
R (φ(θ)), q)

(7.3.11)

For θ̄ ∈ Θ̄ we define:

w̄γ,R(θ̄, q) := wγ,R(θ̄, q)
∑

θ̂:ψ(θ̂)=θ̄

v
(2)
R (L(2)

R (θ̂) \ R(2)
R (θ̂), q)

∑
θ:φ(θ)=θ̂

v
(2)
R (L(2)

R (θ) \ L(2)
R (θ̂), q)

(7.3.12)
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which using (7.3.11) yields∑
θ∈Θ

wγ,R(θ, q) =
∑
θ̄∈Θ̄

∑
θ̂:ψ(θ̂)=θ̄

∑
θ:φ(θ)=θ̂

wγ,R(θ, q)

=
∑
θ̄∈Θ̄

wγ,R(θ̄, q)
∑

θ̂:ψ(θ̂)=θ̄

vR(L(2)
R (θ̂) \ R(2)

R (θ̂), q)
∑

θ:φ(θ)=θ̂

vR(L(2)
R (θ) \ L(2)

R (θ̂), q)

=
∑
θ̄∈Θ̄

w̄γ,R(θ̄, q). (7.3.13)

We define the statistical weight of the diagram θ̄:

zγ,R(θ̄, q̄) := E0
ρ,q̄

(
w̄γ,R(θ̄, ·)

)
(7.3.14)

and we obtain:

h1,2(ρ|q̄) = − log
∑

{θ̄1,...,θ̄k}∼

k∏
j=1

zγ,R(θ̄j , q̄) (7.3.15)

where the sum is over compatible collections of diagrams as before. Hence, we are in the

context of the abstract polymer model on Θ̄ with activities zγ,R(θ̄) and we next prove the

convergence condition. Given θ̄ ∈ Θ̄, let |θ̄| be the number of distinct particle labels in θ̄ and

|Lγ(θ̄)| be the number of only the γ-links.

Lemma 7.3.5. For κ > 0 let

a(θ̄) := |θ̄|, and b(θ̄) := κ log γ−1|Lγ(θ̄)|+ |θ̄| (7.3.16)

Then ∀k < α and for all γ and R small enough,∑
θ̄ 6∼θ̄′
|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤ a(θ̄′). (7.3.17)

for any fixed θ̄′.

Proof. It suffices to prove ∑
θ̄: θ̄�i

|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤ 1, (7.3.18)

for every fixed i. We next bound (7.3.14): given θ̄ ∈ Θ̄ and some θ̂ ∈ ψ−1(θ̄), in order to

bound the last sum in (7.3.12) we recall that there is a one-to-one correspondence between
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an element θ ∈ φ−1(θ̂) and the union of θ̂ with the possible extra R-links (which have to be

chosen among the links L(2)
γ (θ̂)). Hence, recalling (7.3.8),∑

θ:φ(θ)=θ̂

vR(L(2)
R (θ) \ L(2)

R (θ̂), q) =
∑

A⊂L(2)
γ (θ̂)

vR(A, q) =
∑

A⊂L(2)
γ (θ̂)

∏
L(2)∈A

v
(2)
R (q(L(2)))

=
∏

L(2)∈L(2)
γ (θ̂)

[v
(2)
R (q(L(2))) + 1] ≤ 1 (7.3.19)

where in the last inequality we use the positivity of the potential, i.e., v
(2)
R (q(L(2))) + 1 ≤ 1

for every L(2).

To bound the second sum in (7.3.12) we define the set of all redundant links that one can

add to θ̄:

R(θ̄) = ∪θ̂∈ψ−1(θ̄)R
(2)
R (θ̂) (7.3.20)

Then, ∑
θ̂:ψ(θ̂)=θ̄

vR(L(2)
R (θ̂) \ R(2)

R (θ̂), q) =
∑

A⊂R(θ̄)

vR(A, q) =
∑

A⊂R(θ̄)

∏
L(2)∈A

v
(2)
R (q(L(2)))

=
∏

L(2)∈R(θ̄)

[v
(2)
R (q(L(2))) + 1] ≤ 1, (7.3.21)

again by the positivity of the potential. Thus, using (7.3.19) and (7.3.21), from (7.3.12) we

have reduced to diagrams which are at most trees in theR-links. To bound the activity, γ-links

are bounded uniformly in q using (7.3.2) while R-links can now be integrated independently

yielding:

zγ,R(θ̄, q̄) ≤ E0
ρ,q̄

(
wγ,R(θ̄, ·)

)
≤

∏
L∈L(2)

R (θ̄)

v̄
(2)
R (L, q̄)

∏
L∈L(2)

γ (θ̄)

w̄(2)
γ (L, q̄)

∏
L∈L(4)

γ (θ̄)

w̄(4)
γ (L, q̄)

(7.3.22)

where we have used the definitions:

v̄
(2)
R (L, q̄) := E0

ρ,q̄

(
vR(q(L), q̄)

)
, w̄(n)

γ (L, q̄) := max
q
w(n)
γ (q(L), q̄), n = 2, 4 (7.3.23)

Note the difference between v
(2)
R (·), vR(·, ·) and v̄

(2)
R (·, ·); similarly for w

(n)
γ,R(·, ·) and w̄

(n)
γ,R(·, ·),

n = 2, 4. From (7.3.2) we have:

|w̄(2)
γ (L, q̄)| ≤ cγα+d, |w̄(4)

γ (L, q̄)| ≤ cγα+3d. (7.3.24)
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For v̄
(2)
R (L, q̄) supposing that L ≡ {i, j}, if both labels correspond to particles in the same

box C we have:

|v̄(2)
R (L, q̄)| ≤

∣∣∣ ∫qi∈C dqie−βUhc(qi,q̄)
∫
qj∈C∩BR(qi)

dqj e
−βUhc(qj ,q̄)(e−βV

hc(qi,qj) − 1)
∣∣∣∣∣∣ ∫QΛ

+
dqj e−βU

hc(qj ,q̄)1qj∈C\∂RCint

∣∣∣2 (7.3.25)

where Uhc(q, q̄) is defined in (7.2.6) and ∂RC
int is the inner boundary of width R of the box

C. Calculating the denominator we obtain: (`2 − 2R)2d, because when qj is in C \ ∂RC int

the particle can not interact with the boundary and therefore Uhc(qj , q̄) = 0. The numerator

can be bounded by cRd`d2. Hence,

|v̄(2)
R (L, q̄)| ≤ c ε

`d2
(7.3.26)

where ε is the volume of a hard-sphere of radius R and c is a constant almost equal to 1. On

the other hand, if qi ∈ Cx and qj ∈ Cy we obtain:∣∣∣∣∣
∫
qi∈Cx

dqi

`d2
1qi∈∂RCx

∫
qj∈Cy∩BR(qi)

dqj

`d2
(e−βV

hc(qi,qj) − 1)

∣∣∣∣∣ ≤ (7.3.27)

`d2 − (`2 − 2R)d

`d2

Rd

`d2
≤ 2R

`2

Rd

`d2
≤ 2Rε

`d+1
2

which is of even lower order.

To prove (7.3.18) we proceed by induction. We first prove (7.3.18) for θ̄ with `(θ̄) = 1.

Suppose that |L(2)
R (θ̄)| = k, |L(2)

γ (θ̄)| = n and |L(4)
γ (θ̄)| = m. The number of vertices in θ̄ is

at most 1 + k+ n+ 3m. Since the configurations are in Q+ there are at most c(ρβ,+ + ζ)γ−d

2-links and at most c(ρβ,+ + ζ)γ−3d 4-links passing through it. Analogously for the R-links,

one can consider that once we fix a label, there are at most c(ρβ,+ + ζ)`d2 particles which can

interact with it. We have:∑
θ̄�i:`(θ̄)=1

|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤
∑

n+k+m>0

[c(ρβ,+ + ζ)γ−d]n · [c(ρβ,+ + ζ)`d2]k · [c(ρβ,+ + ζ)γ−3d]m

γ(α+d)n+(α+3d)m ·
( ε
`d2

)k
· eκ log γ−1(n+m)+2(n+k+3m+1) ≤

≤ e2
∑
n+m

γ−κ(n+m)e2(n+3m)[c(ρβ,+ + ζ)γα]n+m

·
∑
k

e2k[c(ρβ,+ + ζ)ε]k (7.3.28)
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Note that the two sums can start either from 0 or from 1, but not both from 0, since we

are supposing that there is at least a point in the first generation. The 2 in the exponential

comes from both the contribution of a(θ̄) and b(θ̄) to |θ̄|. Thus, choosing κ < α, the following

inequality holds true for γ and R small enough∑
θ̄�i:`(θ̄)=1

|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤ e2[1 + x][1 + y][1 + z]− e2 ≤ 1 (7.3.29)

where:

x :=e(κ−α) log γ−1+2[c(ρβ,+ + ζ)] ≤ 1

y :=e(κ−α) log γ−1+6[c(ρβ,+ + ζ)] ≤ 1

z :=e2[c(ρβ,+ + ζ)]ε ≤ 1. (7.3.30)

We proceed by induction. We suppose that:

XN :=
∑

θ̄�i:`(θ̄)≤N

|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤ 1 (7.3.31)

and we prove it for θ̄ with `(θ̄) ≤ N + 1. Summing over the links of the first generation we

have:∑
θ̄�i:`(θ̄)≤N+1

|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤
∑

n+k+m>0

∑
A⊂L(2)

R
|A|=k

∑
B⊂L(2)

γ

|B|=n

∑
C⊂L(4)

γ

|C|=m

∏
L∈A
|v̄(2)
R (L, q̄)| ·

∏
L∈B
|w̄(2)
γ (L, q̄)|·

∏
L∈C
|w̄(4)
γ (L, q̄)| · [1 +XN ]1+k+n+3me2(1+k+n+3m)+κ log γ−1(n+m),

(7.3.32)

where 1 in the square bracket corresponds to the case in which nothing is “growing” from a

given endpoint of the first generation link while XN is the inductive estimate for the case of

nonempty subdiagrams growing from the given endpoint. Using again (7.3.31) and (7.3.28),

we have:∑
θ̄�i:`(θ̄)=1

|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤ 2e2
∑
n+m

e2(n+m)(2γ−κ)(n+3m)[c(ρβ,+ + ζ)γα]n+m· (7.3.33)

·
∑
k

(2e2)k[c(ρβ,+ + ζ)ε]k.
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Hence, again choosing κ < α, the following inequality holds true for γ and R small enough∑
θ̄�i:`(θ̄)=1

|zγ,R(θ̄, q̄)|ea(θ̄)+b(θ̄) ≤ 2e2[1 + x′][1 + y′][1 + z′]− 2e2 ≤ 1 (7.3.34)

where:

x′ := 2x ≤ 1, y′ := 8y ≤ 1, z′ := 2z ≤ 1, (7.3.35)

with x, y, z as in (7.3.30). Lemma 7.3.5 is proved.

By Lemma 7.3.5, it is a standard result (see e.g. [34]) that (7.3.15) becomes:

h1,2(ρ|q̄) = −
∑
π

zTγ,R(π; ρ; q̄) (7.3.36)

where π is a collection of non-compatible diagrams (repetitions are allowed) and zTγ,R(π; ρ) is

the Möbius inversion:

zTγ,R(π; ρ) :=
∑

π′:π′⊂π
(−1)|π|−|π

′| log
∑

{θ̄1,...,θ̄n}�,
θ̄j∈π′, ∀j

n∏
j=1

zγ,R(θ̄j), |π| := |{θ̄ : θ̄ ∈ π}| (7.3.37)

Note that zTγ,R(π; ρ) = 0 if π is not connected and from now on we will call π a cluster.

Moreover we have that for any fixed diagram θ̄′∑
π�θ̄′
|zTγ,R(π; ρ)|eb(π) ≤ a(θ̄′), where b(π) :=

∑
θ̄∈π

b(θ̄)π(θ) (7.3.38)

or ∑
π3θ̄′
|zTγ,R(π; ρ)|eb(π) ≤ |zγ,R(θ′)|ea(θ̄′) (7.3.39)

recalling also that b(θ̄) = κ log γ−1|Lγ(θ̄)|+ |θ̄| for some κ < α.

Geometrically a cluster is a diagram-like object with possibly some links entering more

than once. We underline that despite in diagrams the particles are labelled, the sum on the

r.h.s. of (7.3.36) becomes however independent of the labels, depending only on the number

of particles in each cube C(`2), i.e., on ρ.

7.4 Analysis of h3

We fix, for a while, Γ = {Γi}ni=1, where Γi ≡ (sp(Γi), ηΓi) and set f = W (Γ|q) =∏n
i=1W (Γi|q) in the numerator in (7.2.17). Recall that W (Γi|q) depends only on qDi := q∩Di
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where Di := {r ∈ c(Γi)c : dist(r, c(Γi)) ≤ 2γ−1} ∈ D(`2). We also let D := ∪ni=1Di. Condi-

tioning on the values of q in D, we are in the same setup as in the previous subsection with

Λ replaced by Λ \D, because W (Γ|q) does not depend on q ∩Dc. We then have

E0
ρ,q̄

(
e−β∆H(q|q̄)e−βH

hc(q)W (Γ|q)
)

= E0
ρD,q̄

(
W (Γ|q)e−h1,2(ρΛ\D|q̄∪qD)

)
(7.4.1)

with obvious meaning of the symbols.

We write h1,2 as a sum of clusters using (7.3.36). As we saw in the previous section, due

to the dependence of the prior measure on q̄ (now on both q̄ and qD), the clusters involving

a particle in a neighboring `2-cell to D will also depend on qD. We denote the union of the

set D with the frame consisting of the neighboring `2-cells by D∗ ∈ D(`2).

To distinguish between clusters we introduce D̄i := Di ∪ {r : dist(r,Di) ≤ `3/4} ∈ D(`2)

and we call Bi the set of all clusters π whose points are all in D̄i. As the distance between

contours is ≥ `3, the sets Bi are mutually disjoint; we call B their union. Note that they

depend on Γ through the domain where they are constructed.

By Ri we denote the set of π which have points both in D∗i (so that they depend on qD)

and in the complement of D̄i (such π are therefore not in Bi). There may be points of π ∈ Ri
which are in D∗j , j 6= i, hence also π ∈ Rj , so that the sets Ri are not disjoint. We call R

their union.

For any given Γ we do analogous splitting on the polymers appearing when developing

the denominator of (7.2.17) thus defining the sets B′i, B′, R′i, R′.

The clusters that appear in the numerator and denominator of (7.2.17) are different, how-

ever those not in B∪R (i.e., those that do not involve qD) are common to the corresponding

ones in the denominator (7.2.17) (i.e., those not in B′∪R′) and have same statistical weights,

hence they cancel in the formula below. We therefore get (F (qD) is defined later in (7.4.3))

h3(ρ|q̄) = − log
∑

Γ: sp(Γ) ⊂ Λ0

E0
ρD,q̄

(
F (qD)W (Γ|qD)

× exp
{
−
∑
π∈R

zTγ,R(π|q̄ ∪ qD) +
∑
π∈R′

zTγ,R(π|q̄)
})

. (7.4.2)

Recall that the clusters in R′ can have links also in the interior of D∗. The expectation E0
ρD,q̄

is over the positions qD of the particles in D, their numbers being specified by ρD and we
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also know which particles are in which box. We have also defined:

F (qD) =

n∏
i=1

F (qDi), F (qDi) := exp
{
−
∑
π∈Bi

zTγ,R(π|qDi) +
∑
π∈B′i

zTγ,R(π)
}

(7.4.3)

We have used that both sets Bi and B′i are mutually disjoint and the sets D̄i are in Λ0

hence away from Λc. Note that F (qDi) is a probability density: E0
ρDi

(F (qDi)) = 1, with the

normalization being the second sum (over π ∈ B′i in (7.4.3)). In fact, calling D0
i = D̄i \Di,

exp
{
−
∑
π∈Bi

zTγ,R(π|qDi)
}

= E0

ρD
0
i

(
e−β∆H(qD

0
i |qDi )e−βH

hc(qD
0
i )
)

where the energy ∆H(qD
0
i |qDi) is defined as in (7.2.12) with nothing outside D̄i. We then

get

E0
ρDi

(
exp

{
−
∑
π∈Bi

zTγ,R(π|qDi)
})

= E0
ρD̄i

(
e−β∆H(qD̄i )e−βH

hc(qD̄i )
)

which is exactly the second sum in (7.4.3), since:

exp
{
−
∑
π∈B′i

zTγ,R(π)
}

= E0
ρD̄i

(
e−β∆H(qD̄i )e−βH

hc(qD̄i )
)

hence E0
ρDi

(F (qDi)) = 1.

Both F (qD) and W (Γ|qD) are product of factors depending on the variables qDi , thus the

only interaction in (7.4.2) comes from the exponent in the last term (which represents the

interaction between the contours Γi). To decouple the variables qDi we define:

f±(π; q̄, qD) := e∓z
T
γ,R(π|q̄,qD) − 1, forπ ∈ R orR′ resp. (7.4.4)

and in (7.4.2) we expand the products obtaining:

exp
{
−
∑
π∈R

zTγ,R(π|q̄, qD) +
∑
π∈R′

zTγ,R(π|q̄)
}

=
∏
π∈R

(1 + f+(π; q̄, qD))
∏
π∈R′

(1 + f−(π; q̄))

=
∑

π1,...,πk,
πi∈R∪R′

k∏
i=1

f±(πi; q̄, q
D) (7.4.5)

If we plug it into (7.4.2) we obtain products of F (qD)W (Γ|qD) and f±(π) for π ∈ R or R′.

To integrate, it might occur that there is an element f±(π) with labels which belong to the

sets D∗i and D∗j (i 6= j), i.e., the “frames” around two contours Γi and Γj in Γ. Hence, to

71



Cluster expansion

formulate the problem into the general context of the abstract polymer model we define as

connected polymer P a set of contours with “connections” consisting of elements of R ∪ R′

which necessarily “connect” all contours in the given set and “decorations” consisting of

clusters in R∪R′ not necessarily connecting contours. We denote by P the space of all such

elements:

P :=
{
P ≡ (Γ(P ), R(P )),∀Γi,Γj ∈ Γ(P ),∃π ∈ R(P ) ⊂ R ∪R′

connecting D∗i , D
∗
j ∈ D∗(Γ)

}
(7.4.6)

We use D(P ), D∗(P ) to denote the set of frames corresponding to the contours in P and

R(P ) to denote the set of clusters. We also introduce A(π) to denote the union of the C(`2)

cells which correspond to the labels of π. Similarly, let A(P ) := ∪Γ∈Γ(P )D
∗(Γ)∪π∈R(P ) A(π).

We say that two polymers P and P ′ are compatible, P ∼ P ′, if

sp(Γ) ∩ sp(Γ′) = ∅, ∀Γ ∈ Γ and Γ′ ∈ Γ′, and{
D∗(P ) ∩A(P ′)

}
∪
{
D∗(P ′) ∩A(P )

}
= ∅

A compatible collection of polymers consists of mutually compatible polymers. The statistical

weight of P is

ζγ,R(P ) := E0
ρD(P ),q̄

( ∏
D∈D(P )

[F (qD)W (Γ(D)|qD)]
∏

π∈R(P )

f±(π; q̄, qD)
)

(7.4.7)

where f±π is one of the two appearing in (7.4.4), which one being specified by the clusters in

R(P ). Expressed in terms of polymers, the expectation in (7.4.2) becomes

h3(ρ|q̄) = − log
∑

{P1,...,Pk}∼
Pi∈P

k∏
i=1

ζγ,R(Pi) (7.4.8)

where the sum is over compatible collections of diagrams.

We have an analogue of Lemma 7.3.5. We define n(π) and n(Lγ(π)) to be respectively the

number of distinct particle labels and of γ-links in π; n(P ) := n(∪π∈R(P )π) and n(Lγ(P )) :=

n(∪π∈R(P )Lγ(π)) of those in R(P ). Moreover, let NΓ be the total number of cubes C(`3) in

sp(Γ), m(P ) =
∑

Γ∈Γ(P )NΓ.
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Lemma 7.4.1. For any b > 0 let

|P | := n(P ) +m(P ), gb(P ) := b[log γ−1n(Lγ(P )) + γ2a−(1−α)dm(P )] (7.4.9)

Then there is b? > 0 so that for all γ and R small enough

∑
P 6∼P ′

|ζγ,R(P )|e|P |+gb? (P ) ≤ |P ′| (7.4.10)

for any fixed P ′ ∈ P.

Proof. We claim that it suffices to prove that there is δ > 0 (to be determined) so that

for all x ∈ X(`3)
Λ ∑

P : sp(Γ(P ))⊃C(`3)
x

|ζγ,R(P )|e|P |+gδ(P ) ≤ 1 (7.4.11)

It is straightforward that (7.4.11) further implies

∑
P : sp(Γ(P ))⊃C(`3)

x

|ζγ,R(P )|e|P |+gδ1 (P ) ≤ exp
{
− δ1γ

2a−(1−α)d
}

(7.4.12)

where δ1 = δ
2 and δ as in (7.4.11). With this result at hand we first prove the claim.

Recalling the definition of compatibility, our goal is to bound the following (for some b∗ to

be determined):

∑
P 6∼P ′

|ζγ,R(P )|e|P |+gb? (P ) ≤
∑

x∈X(`3)
Λ :

C
(`3)
x ⊂sp(Γ(P ′))

∑
P : sp(Γ(P ))∩C(`3)

x 6=∅

|ζγ,R(P )|e|P |+gb? (P )

+
∑

x∈X(`2)
Λ :

C
(`2)
x ⊂A(P ′)\D∗(P ′)

∑
P :D∗(P )⊃C(`2)

x

|ζγ,R(P )|e|P |+gb? (P )

+
∑

x∈X(`2)
Λ :

C
(`2)
x ⊂D∗(P ′)

∑
P :A(P )\D∗(P )⊃C(`2)

x

|ζγ,R(P )|e|P |+gb? (P )(7.4.13)

In the first term, the first sum can be bounded by m(P ′), while the second by (7.4.12), for

b∗ = δ1. In the second term, the first sum is bounded by the number of labels in R(P ′) (i.e.,

n(P ′)), while the second sum can be bounded by the second sum of the first term, i.e., again
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by (7.4.12). For the third term, the first sum is bounded by m(P ′) like before. The second

sum we further bound it by:

sup
x

∑
y∈XΛ: y 6=x

∑
P :A(P )⊃C(`2)

x

∃π∈R(P ):A(π)⊃C(`2)
y

|ζγ,R(P )|e|P |+gb∗ (P )

≤ sup
x

∑
y∈XΛ: y 6=x

∑
π:π⊃C(`2)

x ∪C(`2)
y

|zTγ,R(π)|e(1+b∗ log γ−1)n(π)
∑

P̃ :D∗(P̃ ′)⊃C(`2)
y

|ζγ,R(P̃ ′)|e|P̃ ′|+gb∗ (P̃ ′)

≤ C sup
x

∑
y∈XΛ: y 6=x

exp
{
− δ1γ

2a−(1−α)d
}

(7.4.14)

for some constant C > 0. In the second line we wrote the polymer P as the union of a cluster

π with π ⊃ C
(`2)
x ∪ C(`2)

y and of another polymer P̃ with D∗(P̃ ) ⊃ C
(`2)
y . Then using that

|ζγ,R(P )| ≤ |ζγ,R(P̃ )| · |zTγ,R(π)| going to the third line we applied (7.3.38) for b∗ ≤ κ∗ and

(7.4.12) for b∗ ≤ δ1. Then, overall, from (7.4.13) using (7.4.14) and the fact that κ∗ < α, we

choose b∗ < min{α2 ,
δ
2} and conclude the proof of the Lemma, pending the proof of (7.4.11).

Proof of (7.4.11): we endow the polymer P with a graph structure with vertices the set

{Γ : Γ ∈ Γ(P )} and edges {Γi,Γj} whenever there is at least one cluster π ∈ R(P ) such that

A(π) ∩D∗(Γi) 6= ∅ and A(π) ∩D∗(Γj) 6= ∅. (Recall that a polymer may have more clusters

attached to a contour, which however do not end to some other contour.) Choosing some Γ0

to be the root of the graph, we define the level `(P ) of the polymer P to be the maximum

distance (see the definition given before) of some vertex Γ ∈ Γ(P ) from the root.

We prove (7.4.11) by induction: we first prove it by summing over all polymers P with

`(P ) = 1. We start with the case `(P ) = 0, i.e., when P consists of only a contour that we

call it Γ0. Using the uniform bound:

sup
qD0

|W (Γ0|qD0)| ≤ exp{−βcζ2`d2NΓ0} (7.4.15)
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where NΓ0 = |sp(Γ0)|/`d3 we get (notice that for each Γ0 we have 3|sp(Γ0)|`−d2 choices of ηΓ0)

∑
P :`(P )=0, sp(Γ(P ))⊃C(`3)

x

|ζγ,R(P )|e|P |+gδ(P )

≤
∑

sp(Γ0)⊃C(`3)
x

e−βcγ
2a−(1−α)dNΓ0 3|sp(Γ0)|`−d2 e(1+δγ2a−(1−α)d)NΓ0

≤
∑

sp(Γ0)⊃C(`3)
x

eNΓ0(−βcγ2a−(1−α)d+log 3γ−(1+α)d+(1−α)d+1+δγ2a−(1−α)d)

≤
∑

sp(Γ0)⊃C(`3)
x

exp
{
−NΓ0γ

2a−(1−α)d[
1

2
− δ]

}
≤ exp

{
− γ2a−(1−α)d[

1

4
− δ]

}
(7.4.16)

for δ < 1/4 and all γ small enough. The last inequality follows from a known estimate (see

Errico, Enzo).

We next consider the contribution of links of the first level and prove (choosing δ < κ∗)

∑
P : sp(Γ(P ))⊃C(`3)

x

`(P )=1

|ζγ,R(P )|e|P |+gδ(P ) ≤
∑

sp(Γ0)⊃C(`3)
x

exp
{
−NΓ0γ

2a−(1−α)d[
1

2
− δ]

}
×

(
1 + 2

∑
n≥γ`3/4

γ−δnγκ
∗necγn

)c|D∗(Γ0)|
(7.4.17)

where cγ is defined in (7.4.18) below. A polymer P with `(P ) = 1 consists first of the root,

say Γ0, which contributes the first factor in (7.4.17) and it is obtained as in (7.4.16). Once

Γ0 is fixed, we have a given number of particles in D∗(Γ0), which cannot exceed c|D∗(Γ0)|,

c = ρβ,+ + ζ, as we are in a contour model. From each particle it may or may not grow a

cluster π, the latter case contributes by 1. Otherwise there are two possible types of clusters

π (∈ R or R′), hence the factor 2. Note that n(Lγ(π)) ≥ γ `34 and that card(R′) > card(R)

so it suffices to consider the sum over π ∈ R′ (with the factor 2). From each point of the

cluster π it may (or may not) start another contour. This can happen only once for each π

and in such a way that the new contour does not intersect the contour in the root, hence

only for clusters whose labels are far enough (more than a distance of order `3). Then, for

the statistical weight (7.4.7) we recall that F (qD) is a probability density and bounding all

75



Cluster expansion

the other factors uniformly in qD we obtain:

|ζγ,R(P )| ≤
∏

Γ∈Γ(P )

|W (Γ, qD)|
∏

π∈R(P ):
A(π)∩D∗(Γ0)6=∅

|f±π |

where we bounded by 1 all other factors of the type |f±π | that correspond to clusters which

start from the contours of the first generation. Thus, following the above argumentation we

have

∑
P : sp(Γ(P ))⊃C(`3)

x

`(P )=1

|ζγ,R(P )|e|P |+gδ(P ) ≤
∑

sp(Γ0)⊃C(`3)
x

exp
{
−NΓ0γ

2a−(1−α)d[
1

2
− δ]

}
×

∏
i∈D∗(Γ0)

(
1 + 2

∑
π∈R′, π3i

|fπ|en(π)+n(Lγ(π))δ log γ−1
(1 +

∑
Γ∈Γ(P ):

D∗(Γ)∩A(π)6=∅

|W (Γ, qD)|eNΓ(1+δγ2a−(1−α)d))
)

which is a quite generous upper bound. To estimate the last parenthesis we use again (7.4.16)

and obtain:

1 +
∑

Γ∈Γ(P ):
D∗(Γ)∩A(π)6=∅

|W (Γ, qD)|eNΓ(1+δγ2a−(1−α)d) ≤ 1 + exp{−γ2a−(1−α)d[
1

4
− δ]} =: ecγ (7.4.18)

where cγ → 0 as γ → 0. For the sum over the clusters π we sum over the values n(Lγ(π))

recalling that, by definition, n(Lγ(π)) ≥ γ`3/4. Using (7.3.38) we obtain:

∑
π:π3i

n(Lγ(π))=n

|f±π |en(π)+δ log γ−1n(Lγ(π)) = γ−δnγκ
∗n

∑
π:π3i

n(Lγ(π))=n

|f±π |en(π)γ−κ
∗n ≤ Cγ−δnγκ∗n

(7.4.19)

Note that |f±π |, defined in (7.4.4), can be bounded by zTγ,R(π; ρ) since the latter is small.

In this way we prove (7.4.17), details are omitted. By taking δ < κ∗, the r.h.s. of (7.4.17) is

bounded by 1 for all γ small enough, and with this we conclude the case `(P ) = 1.

We then suppose that the inequality holds for `(P ) ≤ N for some N and we are going

to prove that it then remains true for N + 1. We sum over the first level and get exactly

the same bound as in (7.4.17) except for replacing the factor ecγn by [1 + ecγ ]n, the extra 1

coming from the induction assumption. By taking γ small enough this term is bounded by 1

in a similar manner. This proves the induction assumption and (7.4.11).

76



7.5 Reduction to a density model

By Lemma 7.4.1, using KP we obtain:

h3(ρ|q̄) = −
∑
C

ζTγ,R(C; ρ) (7.4.20)

having denoted by C the new clusters associated to the polymers P and ζTγ,R(C; ρ) are the

coefficients of the new cluster expansion.

7.5 Reduction to a density model

In this section we will prove the following lemma:

Lemma 7.5.1. Let fx1,..,xn be as in (7.1.1), then:

Eµi
(
fx1,..,xn

)
= Eµi(gN ) +Ri, i = 1, 2 (7.5.1)

where gN is a function of {ρx} with x ∈ XΛ contained in one of the cubes C
(N`3)
xi , i = 1, .., n;

N is the integer part of N ′ such that: dist(C
(`2)
xi ,Λc)/2 = dist(C

(N ′`3)
xi ,Λc); Ri are remainder

terms. Moreover, there are δ > 0 and constants c1, c2, c so that

‖gN‖∞ ≤ c1, ‖Ri‖∞ ≤ c2e
−cγ−δN (7.5.2)

Proof.

Let us start from the identity

Eµi
(
fx1,..,xn

)
=

d

du
logZ(u)(Λ|q̄)

∣∣∣∣
u=0

(7.5.3)

where

Z(u)(Λ|q̄) =
∑

Γ: sp(Γ) ⊂ Λ0

∫
QΛ

+

νΛ(dq)e−βHγ(q|q̄)e−βH
hc(q|q̄)+ufx1,..,xnW (Γ|q) (7.5.4)

By the measurability properties of gN , the measures µi in Eµi(gN ) can be replaced by their

marginals on {ρx}, so that the proof of (7.1.2) will be reduced, using (7.5.1), to an analysis

of the two Gibbs measures with hamiltonian h(ρ|q̄) (see (7.2.3)) and different boundary

conditions.

We proceed as in Section 7.2, we fix a density profile {ρx} and study the multi-canonical

partition function (7.2.3) with the extra energy term ufx1,..,xn .
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We rewrite the extra factor eufx1,..,xn as:

eufx1,..,xn = euf̃x1,..,xneu(fx1,..,xn−f̃x1,..,xn ) (7.5.5)

where:

f̃x1,..,xn :=
1

n!

∑
qij∈C

(`2)
xj

j=1,...,n

J̃ (n)
γ (qi1 , ..., qin) (7.5.6)

so that the term euf̃x1,..,xn does not see the integration and gives an extra contribution to h0

of the same kind as in (7.2.10). The new energy is given by (7.2.12) with δh as in (7.2.13)

and with u(fx1,..,xn − f̃x1,..,xn) added to ∆H and HR. We divide again the hamiltonian δh

into three parts as in (7.2.14) and we first do the analysis of h1,2 and then of h3.

Following Section 7.3 we expand the extra term, as well as the ones coming from ∆H and

HR, and we rewrite it as:

eu(fx1,..,xn−f̃x1,..,xn ) =
∏

qij∈C
(`2)
xj

j=1,...,n

[eu
1
n!

(J
(n)
γ −J̃

(n)
γ )(qi1 ,...,qin ) − 1 + 1]

:=
∏

qij∈C
(`2)
xj

j=1,...,n

[w̃(u)
γ (qi1 , ..., qin) + 1] (7.5.7)

where we will have contributions for n = 2 or n = 4. In giving the definition of the

new diagrams for the expansion we have to take into account that now we have three

kind of possible links (γ-, R- and u- links). Hence, we will give a slightly different def-

inition of a diagram θ: it will be a collection of 2- and 4-links, i.e., a ordered quintuple

θ ≡
(
L(2)
R (θ),L(2)

γ (θ),L(4)
γ (θ),L(2)

γ,u(θ),L(4)
γ,u(θ)

)
, where L(2)

γ,u(θ) and L(4)
γ,u(θ) denote the set of

2-links and of 4-links in θ of the new type, i.e. carrying a weight w̃
(u)
γ . Furthermore, we will

have the same definition as (7.3.7), but with two more terms chosen in the last two set of

links. Hence:

wγ,R,u(θ, q) := vR(L(2)
R (θ), q)

∏
L(2)∈L(2)

γ (θ)

w(2)
γ (q(L(2)))

∏
L(4)∈L(4)

γ (θ)

w(4)
γ (q(L(4))) ·

·
∏

L(2)∈L(2)
γ,u(q(L(2)))

w̃(u)
γ (θ)

∏
L(4)∈L(4)

γ,u(q(L(4)))

w̃(u)
γ (θ) (7.5.8)

We proceed as before following the Step 1, i.e. getting rid of the R-links which have the

same endpoints as other γ-links or/and u-links.
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7.5 Reduction to a density model

Hence, analogously to (7.3.15), we obtain again:

h1,2(ρ|q̄) = − log
∑

{θ̄1,...,θ̄k}∼

k∏
j=1

zγ,R,u(θ̄j , q̄;x1, ..., xn) (7.5.9)

where x1, ..., xn is the n-uple which appears in the definition of fx1,..,xn and where zγ,R,u is

the obvious generalization of zγ,R defined in (7.3.14). Given any γ > 0, for u small enough

the new links satisfy the same bound as the old ones and the analogue of Lemma 7.3.5 holds

as well. We then obtain the expression:

h1,2(ρ|q̄) = −
∑
π

zTγ,R,u(π; ρ; q̄;x1, ..., xn) (7.5.10)

like in (7.3.36), but where the polymers on the r.h.s are not only those considered in Section 7.2

but also those containing the new u-links. The analysis of [the analogue of] h3 is unchanged,

provided we consider all polymers π, including those with the new u-links. Hence we have:

h3(ρ|q̄) = −
∑
C

ζTγ,R,u(C; ρ;x1, ..., xn) (7.5.11)

instead of (7.4.20). Thus (7.3.36) and (7.4.20) still hold, with the sums on their r.h.s. including

the new polymers. In conclusion

Z(u)(Λ|q̄) =
∑
{ρx}

exp
{∑

x

log
`dnx2

nx!
−

∑
x:C

(`2)
x ∈∂Λint

logZx,q̄ − βh̃0(ρ|ρ̄)

+
∑
π 6∈Λc

zTγ,R,u(π; ρ; q̄;x1, ..., xn) +
∑

C/∈(Λ0)c}

ζTγ,R,u(C; ρ;x1, ..., xn)
}

(7.5.12)

where in h̃0 there are both the contributions coming from the old term h0 and the new one

(see (7.5.6)). By (7.5.3) we have:

Eµi
(
fx1,..,xn

)
= E

( ∑
π 6∈Λc

d

du
zTγ,R,u(π; ρ; q̄;x1, ..., xn)

∣∣∣
u=0

+
∑

C/∈(Λ0)c

d

du
ζTγ,R,u(C; ρ;x1, ..., xn)

∣∣∣
u=0

)
(7.5.13)

where the expectation on the r.h.s. is over the Gibbs measure with hamiltonian

h(ρ|q̄) = −
∑
x

log
`dnx2

nx!
+ βh0(ρ|ρ̄)−

∑
π 6∈Λc

zTγ,R(π; ρ; q̄)−
∑

C/∈(Λ0)c

ζTγ,R(C; ρ) (7.5.14)

where zTγ,R and ζTγ,R are the old weights (since the square bracket term in (7.5.7) gives 1 for

u = 0). Notice that this expectation is the same as Eµi , since passing to the Gibbs measure

with hamiltonian h(ρ|q̄) one has only a dependence over the cell variables {ρx}.
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Since the derivative w.r.t. u of the weights, on the r.h.s. of (7.5.13) is computed at u = 0,

only polymers with a single u-link contribute and the derivative is obtained by replacing, in

the computation of the weight, the original square bracket term [eu
1
n!

(J
(n)
γ −J̃

(n)
γ )(qi1 ,...,qin ) − 1]

by 1
n!(J

(n)
γ − J̃ (n)

γ )(qi1 , ..., qin). In fact using an analogous of formula (7.3.37) with the new

activities we get:∑
π 6∈Λc

d

du
zTγ,R,u(π; ρ; q̄;x1, ..., xn)

∣∣∣
u=0

=
∑
π 6∈Λc

z̃Tγ,R(π; ρ; q̄;x1, ..., xn) (7.5.15)

where (using the definition x = x1, ..., xn):

z̃Tγ,R(π; ρ; q̄;x) :=
∑

π′:π′⊂π
(−1)|π|−|π

′| log
∑

{θ̄1,...,θ̄n}�,
θ̄j∈π′, ∀j

n∏
j=1

z̃γ,R(θ̄j ; ρ; q̄;x), |π| := |{θ̄ : θ̄ ∈ π}|

(7.5.16)

and where:

z̃γ,R(θ̄j ; ρ; q̄;x) = E0
ρ,q̄

[
w̄γ,R(θ̄, ·) 1

n!
(J (n)
γ − J̃ (n)

γ )(·)
]
. (7.5.17)

with the link given by (J
(n)
γ − J̃ (n)

γ ) belonging to the connected diagram θ̄ and carrying the

indices x1, ..., xn.

Note that since:

|z̃γ,R| ≤ |zγ,R| (7.5.18)

where in the r.h.s. there are only the old weights, then (using (7.3.39)):∑
π3θ̄′
|z̃Tγ,R(π; ρ; q̄;x)|eb(π) ≤

∑
π3θ̄′
|zTγ,R(π; ρ; q̄;x)|eb(π) ≤ |zγ,R(θ′; ρ; q̄;x)|ea(θ̄′) (7.5.19)

hence we can use the corollary of Lemma 7.3.5 also for the new sum (7.5.15).

We divide the sum in (7.5.15) into two parts: the polymers which are entirely contained

in the box C
(N`3)
xi for i = 1, ..., n (which will contribute to the definition of gN ) and the

remaining polymers. Hence we define:

g1
N :=

∑
π⊂C(N`3)

xi
π3x

z̃Tγ,R(π; ρ; q̄;x) (7.5.20)

and using (7.5.19), (7.3.39) and Lemma 7.3.5 we get:

||g1
N ||∞ ≤

∑
θ3xi

∑
π3θ

π⊂C(N`3)
xi

|z̃Tγ,R(π; ρ; q̄;x)|eb(π)e−b(π) ≤
∑
θ3xi

|zγ,R(θ; ρ; q̄;x)|ea(θ̄) ≤ c′1. (7.5.21)
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7.5 Reduction to a density model

For the remaining terms,

R1 :=
∑

π∩(C
(N`3)
xi

)c 6=∅

z̃Tγ,R(π; ρ; q̄;x) (7.5.22)

instead, we exploit the exponential decay given by (7.3.39):

||R1||∞ ≤
∑
θ3xi

∑
π3θ

π∩(C
(N`3)
xi

)c 6=∅

|z̃Tγ,R(π; ρ; q̄;x)|eb(π)e−b(π) ≤ c′2e−cγ
−αN (7.5.23)

where we remind that: b(π) =
∑

θ∈π b(θ)π(θ) and where |θ| > N`3γ (if there is at least one

γ-link) in order for the polymers to exit from the box C
(`2)
xi .

Observe that if in zγ,R(θ; ρ; q̄;x) there are only R-links one has to do the estimate dif-

ferently, but the result is even better, since for every R-link which crosses a box `2 we get

a term of order 1/`2, see (7.3.26), in addition to the exponential term e−cN`3R
−1

. Hence we

can keep estimate (7.5.23) as the relevant term.

For the second sum in (7.5.13) we do exactly the same procedure defining:

g2
N :=

∑
C⊂C(N`3)

xi
C3x

ζ̃Tγ,R(C; ρ; q̄;x) (7.5.24)

for ζ̃T the analogous of z̃T (see (7.5.16)) in the case with contours. Then, using Lemma 7.4.1

we get:

||g2
N || ≤ c′′1 (7.5.25)

while for the remaining terms:

R2 :=
∑

C∩(C
(N`3)
xi

)c 6=∅

ζ̃Tγ,R(C; ρ; q̄;x) (7.5.26)

we have:

||R2||∞ ≤
∑
P3xi

∑
C3P

C∩(C
(N`3)
xi

)c 6=∅

|ζ̃Tγ,R(C; ρ; q̄;x)|egb(C)e−gb(C) ≤ c′′2e−γ
2a−(1−α)dN (7.5.27)

where gb(C) :=
∑

P∈C gb(P )C(P ) and gb(P ) is defined in (7.4.9). In the last inequality we

have used the fact that if a contour exceeds the box C
(N`3)
xi then it must have a number of

C(`3) cubes which is larger than N .

Hence estimates (7.5.2) and Lemma 7.5.1 are proved with:

Eµi(gN ) = Eµi(g
1
N + g2

N ), Ri = Eµi(R
1 +R2). (7.5.28)
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8. Dobrushin condition

8.1 Setting and Vaserstein distance

Let’s consider the space:

XΛ =
{
n = (nx)x∈XΛ

∈ NXΛ : |`−d2 nx − ρβ,+| ≤ ζ, for all x ∈ XΛ

}
(8.1.1)

and the following effective hamiltonian:

h(ρ|q̄) =
∑
x∈XΛ

{−`d2S(ρx) + c(nx)}+ βh0(ρ|ρ̄) + h1,2(ρ|q̄) + h3(ρ|q̄) (8.1.2)

where ρx and nx are used interchangeably, since:

ρx = `−d2 nx, `2 = γ−1+α, ρ = (ρx)x∈XΛ
(8.1.3)

q̄ ∈ QΛc
+ is a boundary condition and:

c(nx) = − log
`dnx2

nx!
+ `d2S(ρx) = log

√
2πnx +

1

12nx
+ 0(n−3

x ) (8.1.4)

is the remainder of the Stirling formula, where S(ρ) := −ρ(log ρ − 1) is the entropy. The

effective hamiltonian is given by:

h(ρ|q̄) = h({ρ, q̄})− h(q̄) (8.1.5)

where the first term on the r.h.s. is the energy of the configuration {ρ, q̄} (with ρ in Λ and q̄

outside Λ), while the second term is only the energy given by q̄ outside Λ. We remind that:

• h0(ρ|ρ̄) is the hamiltonian H(`2)(q|q̄), obtained in Section 7.2 (see (7.2.10)) by replacing

J
(n)
γ by J̃

(n)
γ in the LMP hamiltonian.
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Dobrushin condition

• h1,2(ρ|q̄) is the cluster expansion of the quantity in (7.2.15), i.e. the series in (7.3.36)

that we recall for simplicity:

h1,2(ρ|q̄) = −
∑
π

zTγ,R(π; ρ, q̄). (8.1.6)

We separate the contribution of the hard cores from the terms in the sum which contain

both R and γ obtaining by an abuse of notation:

h1,2(ρ|q̄) = hR(ρ|q̄) + h1,2
γ,R(ρ|q̄) (8.1.7)

where:

hR(ρ|q̄) := −
∑
π

zTR(π; ρ, q̄). (8.1.8)

Note that h1,2
γ,R(ρ|q̄) is at least of order γ.

• h3(ρ|q̄) is the cluster expansion of the quantity in (7.2.16), i.e. the series in (7.4.20):

h3(ρ|q̄) = −
∑
C

ζTγ,R(C; ρ, q̄) (8.1.9)

and analogously to h1,2:

h3(ρ|q̄) = hR,C(ρ|q̄) + h3
γ,R(ρ|q̄) (8.1.10)

where the notation C reminds of the contribution coming from the contour model:

hR,C(ρ|q̄) := −
∑
C

ζTR(C; ρ, q̄). (8.1.11)

Notice that h1,2
γ,R(ρ|q̄) and h3

γ,R(ρ|q̄) are at least of order γ.

We want to bound the Vaserstein distance between two Gibbs measures with the same

hamiltonian (8.1.2) but with different b.c. q̄i, i = 1, 2. It is convenient to define the Vaserstein

distance in terms of the following cost function:

d(n1, n2) =
∑
x∈XΛ

d(n1
x, n

2
x), d(n1

x, n
2
x) = |n1

x − n2
x| (8.1.12)

Following Dobrushin, we need to estimate the Vaserstein distance between conditional prob-

abilities at a single site. We thus fix arbitrarily x ∈ Λ, ni, i = 1, 2, in XΛ\x, call ρi := `−d2 ni;

q̄i are the b.c. outside Λ. The energy in x plus the interaction with the outside is, as usual,

h(ρx|ρi, q̄i) = h
(
{ρx, ρi}|q̄i

)
− h(ρi|q̄i) (8.1.13)
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8.1 Setting and Vaserstein distance

where the first term on the r.h.s. is the energy of the configuration {ρx, ρi} (with q̄i outside

Λ). The second term is the energy in Λ \ x of ρi with nothing in x and q̄i outside Λ. We also

set, recalling the decomposition of the energy h into a sum of hk, k = 0, 1, 2, 3 (see (8.1.2)),

hk(ρx|ρi, q̄i) = hk
(
{ρx, ρi}|q̄i

)
− hk(ρi|q̄i), k = 0, 1, 2, 3. (8.1.14)

The conditional Gibbs measures are then the following probabilities on X x (for i = 1, 2):

p(nx|ρi, q̄i) =
1

Zx(ρi, q̄i)
exp

{
− h(ρx|ρi, q̄i)

}
, (8.1.15)

and their Vaserstein distance is

R
(
p(·|ρ1, q̄1), p(·|ρ2, q̄2)

)
:= inf

Q

∑
n1
x,n

2
x

Q(n1
x, n

2
x)d(n1

x, n
2
x) (8.1.16)

where the inf is over all the joint representations Q of p(ρx|ρi, q̄i), i = 1, 2.

The key bound for the Dobrushin scheme to work is the following:

R
(
p(·|ρ1, q̄1), p(·|ρ2, q̄2)

)
≤

∑
z∈XΛ,z 6=x

rγ,R(x, z)d(n1
z, n

2
z) +

∑
z∈XΛc

rγ,R(x, z)Dz(q̄
1, q̄2) (8.1.17)

complemented by suitable conditions on the parameters rγ,R(x, z), like those proved in the

next theorem. Dz(q̄
1, q̄2) in (8.1.17) is the distance of two configurations, i.e. the number of

discrepancies in C
(`2)
z between q̄1 and q̄2. In formulas, if we suppose: q̄1 = (q̄1

1, ..., q̄
1
n) and

q̄2 = (q̄2
1, ..., q̄

2
n+p),

Dz(q̄
1, q̄2) := p+ min

{j`}

n∑
`=1

1q̄1
` 6=q̄

2
j`

, (8.1.18)

the min being over all the subsets {j`} of {1, ..., n+ p} which have cardinality n.

Theorem 8.1.1. The bound (8.1.17) holds and there are positive constants u < 1 and ci so

that for all x ∈ Λ, ∑
z

rγ,R(x, z) ≤ u (8.1.19)

rγ,R(x, z) ≤ c1e
−c2γ|z−x|, |z − x| ≥ `3 (8.1.20)

Proof.

By using triangular inequalities we can reduce to two cases: when we change the single nz

by 1 and when we change the b.c. q̄i in C
(`2)
z , z ∈ XΛc . Let n1, n2 and n be such that:

n2 = n; n1
y = ny for all y 6= z, n1

z = nz + 1 (8.1.21)
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Dobrushin condition

We also suppose q̄1 = q̄2 =: q̄.

Let t ∈ [0, 1] and, recalling (8.1.13) and (8.1.14), we define the following interpolated

hamiltonians:

ht(ρx|n, q̄) = t h(ρx|n2, q̄) + (1− t)h(ρx|n1, q̄)

hkt (ρx|n, q̄) = t hk(ρx|n2, q̄) + (1− t)hk(ρx|n1, q̄), k = 0, .., 3. (8.1.22)

We call pt(nx) the density of the corresponding Gibbs measure (without making explicit the

dependence on n and q̄, often omitted in the sequel):

pt(nx) =
1

Zt
exp

{
− ht(ρx)

}
. (8.1.23)

Again pt is normalized and we call Zt its normalization, with Z1 = Zx(ρ1) and Z0 = Zx(ρ2).

In general one can prove an upper bound for the Vaserstein distance given in the following

lemma:

Lemma 8.1.2. For every antisymmetric function φt : X x ×X x → R, t ∈ [0, 1] such that:∑
n1
x

φt(n
1
x, n

2
x) =

dpt
dt

(n2
x), (8.1.24)

we have:

R
(
p(·|ρ1), p(·|ρ2)

)
≤ 1

2

∫ 1

0
dt

∑
(n1
x,n

2
x)∈(Xx)2

|φt(n1
x, n

2
x)|d(n1

x, n
2
x). (8.1.25)

Because of bound (8.1.25), our goal is now t construct a function φt with the above

properties.

If we define the following quantities:

At(nx) = −dpt
dt

(nx)1{ dpt
dt

(nx)<0}

Bt(nx) =
dpt
dt

(nx)1{ dpt
dt

(nx)>0}, (8.1.26)

we have:
dpt
dt

(nx) = Bt(nx)−At(nx). (8.1.27)

Also, since φt is antisymmetric, ∑
nx

dpt
dt

(nx) = 0 (8.1.28)
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and this implies: ∑
nx

Bt(nx) =
∑
nx

At(nx) = I (8.1.29)

and:

φt(n
1
x, n

2
x) =

At(n
1
x)Bt(n

2
x)−Bt(n1

x)At(n
2
x)

I
. (8.1.30)

So if we manage to have a sharp cntrol of where dpt/dt(nx) is positive or negative we can

easily construct φt(nx) as in (8.6).

In the next section we will investigate the expression of dpt/dt(nx) with its sign and, as

we will see, it will be easier to write it as a sum of terms each one having 0 sum and apply

the above procedure to each of them separately.

8.2 Contribution of h0

We remind that h0 is the hamiltonian obtained by replacing J
(n)
γ by J̃

(n)
γ , with J̃

(n)
γ as in

(7.2.9) satisfying bound (7.3.2).

Hence with a more compact notation we can write:

h0(ρ) = −λ
∑
x

nx −
1

2!

∑
x1,x2

J̃ (2)
γ (x1, x2)g(nx1 , nx2) +

1

4!

∑
x1,...,x4

J̃ (4)
γ (x1, ..., x4)g(nx1 , ..., nx4)

(8.2.1)

where g is the Poisson polynomial, defined as followed. Let us consider A = A(XΛ) the set

of all xi ∈ XΛ where every xi is repeated a certain number of times. Let I(xi) ∈ {0, 1, 2, ...}

be the moltiplicity of each xi in A and supp(A) = {xi ∈ A : I(xi) > 0} be the support of the

set A. Then for each B ⊂ A:

g(B) =
∏

xi∈supp(B)

G(nxi ; I(xi)) (8.2.2)

where: G(a, k) = a(a− 1) · · · (a− k + 1). By (8.1.14) we have (for i = 1, 2):

h0(ρx|ρi) = −λnx −
∑
y

J̃ (2)
γ (x, y)g(nx, ny) +

1

3!

∑
x1,x2,x3

J̃ (4)
γ (x, x1, x2, x3)g(nx, nx1 , nx2 , nx3)

(8.2.3)

where all the variables on which we sum are varying in Λ\x and ny = ρiy`
d
2 for all y 6= x. Note

that from the normalization of J̃
(2)
γ (i.e.

∫
dr1J̃

(2)
γ (r1, r2) = 1), one has

∑
x J̃

(2)
γ (x, y) ' `−d2
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Dobrushin condition

while J̃
(2)
γ (x, y) itself is of order γd. One can do the same kind of estimates for the 4-bodies

interaction in order to establish the order of the terms in (8.2.3).

Setting n1
z − n2

z = 1, the interpolated hamiltonian is:

h0
t (ρx) = h0(ρx|ρ2) + t[h0(ρx|ρ1)− h0(ρx|ρ2)] =

= −λnx −
∑
y

J̃ (2)
γ (x, y)g(nx, ny) +

1

3!

∑
x1,x2,x3

J̃ (4)
γ (x, x1, x2, x3)g(nx, nx1 , nx2 , nx3)

+ t
[
− J̃ (2)(x, z)nx +

1

2!

∑
x1,x2

J̃ (4)
γ (x, z, x1, x2)g(nx, nx1 , nx2)

]
. (8.2.4)

Setting:

λ∗ = λ+
∑
y 6=x

J̃ (2)
γ (x, y)ny +

1

3!

∑
x1,x2,x3 6=x

J̃ (4)(x, x1, x2, x3)g(nx1 , nx2 , nx3)+

+ t
[
− J̃ (2)(x, z) +

1

2!

∑
x1,x2 6=x

J̃ (4)
γ (x, z, x1, x2)g(nx1 , nx2)

]
. (8.2.5)

we get:

h0
t (ρx) = −λ∗nx +

3∑
i=1

a0
i γ
d(i−1)nix (8.2.6)

where a0
i = a0

i (γ, n, q̄) and there is c > 0 so that

|a0
1| ≤ cγd, |a0

i | ≤ c, i > 1 (8.2.7)

Similarly:

dh0
t (ρx)

dt
=− J̃ (2)(x, z)nx +

1

2!

∑
x1,x2

J̃ (4)
γ (x, z, x1, x2)g(nx, nx1 , nx2)

=J̃ (2)
γ (x, z)

(
b01nx + b02γ

dn2
x + b03γ

2dn3
x

)
, |b0i | ≤ c (8.2.8)

where we write explicitly the coefficient of nx:

b01J̃
(2)
γ (x, z) = −J̃ (2)

γ (x, z)+
1

2

∑
x1,x2 6=x

J̃ (4)
γ (x, z, x1, x2)g(nx1 , nx2) := −J̃ (2)

γ (x, z)+
1

2
J̃ (2)
γ (x, z|n)

(8.2.9)

Since:

J̃ (2)
γ (x, z)(ρβ,+ − ζ)2 ≤ J̃ (2)

γ (x, z|n) ≤ J̃ (2)
γ (x, z)(ρβ,+ + ζ)2, (8.2.10)
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we can write:

J̃ (2)
γ (x, z)

[1

2
(ρ2
β,+−2ζρβ,+)−1

]
≤ 1

2
J̃ (2)
γ (x, y|n)−J̃ (2)

γ (x, z) ≤ J̃ (2)
γ (x, z)

[1

2
(ρ2
β,+ +2ζρβ,+)−1

]
(8.2.11)

and therefore, neglecting the orders ζ2:∣∣∣1
2
J̃ (2)
γ (x, y|n)− J̃ (2)

γ (x, z)− J̃ (2)
γ (x, z)

(1

2
ρ2
β,+ − 1

)∣∣∣ ≤ ζρβ,+J̃ (2)
γ (x, z) (8.2.12)

Hence: ∣∣∣b01 − (− 1 +
1

2
ρ2
β,+

)∣∣∣ ≤ ζρβ,+. (8.2.13)

8.3 Contribution of hR

We want now to consider the contribution of hR to dpt/dt. Given a cluster π, let us define

the area of the polymer A(π) := ∪θ̃∈πV (θ̃). From (8.1.8) we have (i = 1, 2):

hR(ρx|ρi) = −
∑

π:A(π)∩Lx 6=∅

zTR(π; ρx, ρ
i) (8.3.1)

where with Lx, we denote the set of labels of the particles in the box Cx. We remind that

|Lx| = nx. Hence in (8.3.1) we are summing over all the clusters which have at least one

vertex in the box labelled with x.

Let us sum first on a generic label j belonging to the box x and then sum over the clusters

that contain that label (dividing, however, by the number of points of the clusters which are

in the box, i.e. |A(π) ∩ Lx|):

hR(ρx|ρi) =
∑
j∈Lx

∑
π:A(π)3j

1

|A(π) ∩ Lx|
zTR(π; ρx, ρ

i) = nx
∑

π:A(π)31

1

|A(π) ∩ Lx|
zTR(π; ρx, ρ

i)

(8.3.2)

where, with the constraint A(π) 3 j, the condition A(π) ∩ Lx 6= ∅ is automatically satisfied,

so we can drop it. Notice that in the second equality we have fixed the label j to be the label

1 (which belongs to Cx) multiplying by a factor nx.

For reasons that will be clear later, we want to emphasize the dependence on the number

of particles nxi of each box Cxi that the polymers cross. Hence we use the following notation:

hR(ρx|ρi) = nx
∑

{y1,...,yk}:
y1=x, yi∈XΛ

∑
{m1,...,mk}
mi∈N,mi>0

Ṽ (y1, ..., yk;m1, ...,mk) (8.3.3)
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Dobrushin condition

where:

Ṽ (y1, ..., yk;m1, ...,mk) =

(
ny1 − 1

m1 − 1

)(
ny2

m2

)
· · ·
(
nyk
mk

) ∑
π:π∼{y1,...,yk;m1,...,mk}

A(π)31

zTR(π; ρx, ρ
i)

|A(π) ∩ Lx|

(8.3.4)

We are first summing over the sequence of boxes {y1, ..., yk} and over the sequence of fre-

quencies {m1, ...,mk} with which the corresponding box is crosses by the polymers and then

to sum over all the polymers compatible with these constraints we use the symbol ∼. With

specifying the boxes and the frequencies, one has to multiply by the binomial coefficients

counting the ways to collect mi labels from each box containing nyi labels. Notice that we

already performed the choice of one label from the box y1 = x, hence we have one choice less

for that box. Now we write:

Ṽ (y1, ..., yk;m1, ...,mk) = V (y1, ..., yk;m1, ...,mk)ñ
m1−1
y1

· · · ñmkyk (8.3.5)

with:

ñmiyi := G(nyi ;mi), (8.3.6)

ñmi−1
yi := G(nyi − 1;mi) (8.3.7)

where the definition of the quantity G(a; k) is given in Section 8.2 and:

V (y1, ..., yk;m1, ...,mk) =
1

(m1 − 1)!
∏
i>1mi!

∑
π:π∼{y1,...,yk;m1,...,mk}

A(π)3{1}

zTR(π; ρx, ρ
i)

|A(π) ∩ Lx|
. (8.3.8)

Then using (8.3.3) and (8.3.5), and considering that the difference between hR(ρx|ρ1) and

hR(ρx|ρ2) is nonzero only if we are summing on polymers long enough to go from x to z, the

R contribution to dpt/dt is:

dhRt
dt

(ρx) =
∑

{y1,...,yk}:
y1=x,yk=z

∑
{m1,...,mk}
mi∈N,mi>0

V (y1, ..., yk;m1, ...,mk)· (8.3.9)

· ñm1
y1
· · · ñmk−1

yk−1

[
ñmkyk −

(
ñyk + 1

)mk]
Hence, using the approximation:

ñmkyk −
(
ñyk +

1

`d2

)mk
' −mkñ

mk−1
yk

(8.3.10)

90
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γ,R and h3

γ,R

we have:

dhRt
dt

(ρx) = −
∑

{y1,...,yk}:
y1=x,yk=z

∑
{m1,...,mk}
mi∈N,mi>0

V (y1, ..., yk;m1, ...,mk) ·mkñ
m1
y1
· · · ñmk−1

yk−1 ñ
mk−1
yk

(8.3.11)

8.4 Contributions of h1,2
γ,R and h3

γ,R

From (8.1.7) and (8.1.8) we have:

h1,2
γ,R(ρ|q̄) = h1,2(ρ|q̄)− hR(ρ|q̄) = −

∑
π

zTγ,R(π; ρ, q̄) +
∑
π

zTR(π; ρ, q̄) (8.4.1)

Note that hR(ρ|q̄) is exactly the cluster expansion sum for a model of particles in the canonical

ensemble which interact only via a hard-core potential of order R (see [53]), but in this case

the multi-indices are defined over the set of all trees (instead of vertices sets). On the other

side, h1,2
γ,R(ρ|q̄) is given by the remaining terms, i.e. the sum of diagrams where the γ-links

appear either by themselves or attached to some R-link, with the prescription that R-links

appear at most as trees in the structures and never form diagrams by themselves.

We now write the hamiltonian as a sum
∑∗ which encodes the above constraints and we

separate the hamiltonian in two parts, by fixing a large enough integer N and setting:

h1
γ,R(ρ|q̄) = −

∗∑
π 6∈Λc,L(π)≤N

zTγ,R(π; ρ, q̄), h2
γ,R(ρ|q̄) = −

∗∑
π 6∈Λc,L(π)>N

zTγ,R(π; ρ, q̄) (8.4.2)

where L(π) denotes the number of γ-links that appear in the polymer π.

We call h1
t (ρx) (which depends on n and q̄) the contribution of h1 to ht, as in (8.1.22).

h1
t (ρx) is therefore the sum over all the polymers with at most N γ-links and such that at

least one of the endpoints of π belongs to C
(`2)
x . It then follows that

h1
t (ρx) =

3N∑
i=1

a1
i γ
d(i−1)+iα/3nix, |a1

i | ≤ c (8.4.3)

To prove (8.4.3) we represent the polymers by a tree structure with root a label of a particle

in C
(`2)
x . When in the tree there is a 2-link, we attach to the descendant the weight γd+α

times the characteristic function that it should be at distance ≤ γ−1 from the ascendant.

If we have a 4-link we attach to each descendant the weight γd+α/3 times the characteristic

function that it should be at distance ≤ γ−1 from the ascendant. Then the weight of the

whole polymer is bounded by a constant times the product of these weights.
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Dobrushin condition

We call here equivalent two polymers which differ by a permutation of labels such that

any label in C
(`2)
x is still in C

(`2)
x after the permutation. There are finitely many classes of

equivalence and summing over all the polymers inside each class we get (8.4.3). Analogously

dh1
t (ρx)

dt
= γd1|x−z|≤Nγ−1

3N∑
i=1

b1i γ
d(i−1)+α/3inix, |b1i | ≤ c (8.4.4)

which is proved by taking as a root the special particle in C
(`2)
z and imposing that at least one

of the endpoint of the polymer is in C
(`2)
x . As this is not possible if |x− z| > Nγ−1 (because

the polymer has at most N links) we get the characteristic function in (8.4.4), which is then

proved by an argument analogous to that used in the proof of (8.4.3).

Calling h2
t (ρx) the contribution of h2 to ht, as in (8.1.22), there are two positive constants

c and b such that:

|h2
t (ρx)| ≤ c`d2γbN , (8.4.5)

h2
t (ρx) is in fact given by the sum over all the polymers π with at least N links and an

endpoint in C
(`2)
x . (8.4.5) then follows from Lemma 7.3.5 and (7.3.38).

We also have

|dh
2
t (ρx)

dt
| ≤ c`d2γbN/2γbγ|x−z|/2, (8.4.6)

The t derivative is in fact the interaction of the “extra particle” in C
(`2)
z with those in C

(`2)
x .

We thus have to sum over all polymers that have as an endpoint the extra particle and that

have another endpoint in C
(`2)
x . They must also have at least N links and since each link

connects particles at distance not larger than γ−1 there must be at least γ|x − z|. We thus

get an upper bound by summing over all polymers that start from the special particle and

have at least the maximum between N and γ|x− z|, hence (8.4.6).

The other contribution we want to consider in this section is given by h3. From (8.1.9)

and (8.1.10) we have:

h3
γ,R(ρ|q̄) = h3(ρ|q̄)− hR,C(ρ|q̄) = −

∑
C

ζTγ,R(C; ρ, q̄) +
∑
C

ζTR(C; ρ, q̄) (8.4.7)

Repeating the same argument as we did for h1,2
γ,R to the interpolated hamiltonian h3

t and its

derivative dh3
t /dt, we get the same expressions as in (8.4.5) and (8.4.6) respectively.
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8.5 Contribution of hR,C

We want now to consider the contribution of hR,C to dpt/dt, where hR,C is defined in

(8.1.11) and analogously to hR (see (8.3.1)) we have:

hR,C(ρx|ρi) = −
∑

C:A(C)∩Lx 6=∅
A(C)∩Lcx 6=∅

ζTR(C; ρx, ρ
i). (8.5.1)

where A(C) is the set of particles labels in the cluster C. Unlike hR, this contribution has

a much smaller weight in the effective hamiltonian. Indeed, if we look at Lemma 7.4.1. we

see that since every polymer which appear in the cluster sum (8.5.1) contains at least one

contour, the interpolated hamiltonian can be bounded by:∣∣∣hR,Ct (ρx)
∣∣∣ ≤ c`d2e−bγ2a−(1−α)d

(8.5.2)

On the other side, we write:

dhR,Ct (ρx)

dt
= −

∑
C:A(C)∩Lx 6=∅
A(C)∩Lz 6=∅

ζTR(C; ρx, ρ
i) (8.5.3)

since, again, the derivative is the interaction of the “extra particle” in C
(`2)
z with those in

C
(`2)
x . Thus, repeating the argument for dh3

t /dt and using Lemma 7.4.1 with Lγ(P ) = ∅ we

get:

|dh
R,C
t (ρx)

dt
| ≤ c`d2e−bγ

2a−(1−α)d·|x−z|`−1
3 . (8.5.4)

where we used the fact that to reach the extra particle in C
(`2)
z one needs a contour which

contains |x− z|`−1
3 cubes C(`3).

8.6 Construction of φt

Denoting by 〈·〉t the expectation w.r.t. pt, we have:

dpt(nx)

dt
= pt(nx)

{
dh0

t (ρx)

dt
−
〈dh0

t (ρx)

dt

〉
t
+
dhRt
dt

(ρx)−
〈dhRt
dt

(ρx)
〉
t

+
dhR,Ct

dt
(ρx)−

〈dhR,Ct

dt
(ρx)

〉
t
+

3∑
i=1

[dhit
dt

(ρx)−
〈dhit
dt

(ρx)
〉
t

]}
(8.6.1)
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Dobrushin condition

and substituting the contributions given in the above sections we get:

dpt(nx)

dt
= pt(nx)

{
J̃ (2)
γ (x, z)β

(
b01[nx − 〈nx〉t] + b02γ

d[n2
x − 〈n2

x〉t] + b03γ
2d[n3

x − 〈n3
x〉t]
)

+γd1|z−x|≤Nγ−1

3N∑
i=1

b1i γ
d(i−1)γα/3i[nix − 〈nix〉t]

+
∑
i

V(x, z, i)[ñix − 〈ñix〉t] +
[dhR,Ct

dt
(ρx)−

〈dhR,Ct

dt
(ρx)

〉
t

]
+
[dh2

t (ρx)

dt
−
〈dh2

t (ρx)

dt

〉
t

]
+
[dh3

t (ρx)

dt
−
〈dh3

t (ρx)

dt

〉
t

]}
(8.6.2)

where we shortened the notation:

dhRt
dt

(ρx) = −
∑

{y1,...,yk}:
y1=x,yk=z

∑
{m1,...,mk}
mi∈N,mi>0

V (y1, ..., yk;m1, ...,mk) ·mkñ
m1
y1
· · · ñmk−1

yk−1 ñ
mk−1
yk

:=
∑
m

V(x, z,m)ñmx . (8.6.3)

The r.h.s. of (8.6.2) has 3N+7 terms that we call consecutively pt(nx)δ`(nx), ` = 1, .., 3N+7:

dpt(nx)

dt
=

3N+7∑
`=1

pt(nx)δ`(nx) (8.6.4)

Let us drop the index x from now on, always remembering that we are working in the box

C
(`2)
x . Since pt(n)δ`(n) is centered, i.e. its sum over n is 0, we can construct the function

φt(n, n
′) in analogy with (8.6) as follows. We call A`(n) and B`(n) minus the negative and

resp. the positive parts of pt(n)δ`(n) and set,

φt(n, n
′) =

3N+7∑
`=1

φ
(`)
t (n, n′), φ

(`)
t (n, n′) =

[A`(n)B`(n
′)−A`(n′)B`(n)]∑
nA`(n)

(8.6.5)

where φt(n, n
′) obviously satisfies (8.1.24). Substituting in the r.h.s. of inequality (8.1.25)

the contributions for ` ≤ 3N + 7 we have:

R
(
p(·|ρ1), p(·|ρ2)

)
≤ 1

2

3N+7∑
`=1

∫ 1

0

∑
n,n′

|φ(`)
t (n, n′)||n− n′| (8.6.6)

• We now want to investigate the terms with ` ≤ 3N + 3. For each term pt(n)δ`(n) is

equal, up to a multiplicative constant, to

pt(n)[nk − 〈nk〉t], (8.6.7)
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hence, if we let n̄ be such that n̄k = 〈nk〉t, then one can define:

A(n) = pt(n)[〈nk〉t − nk]1n≤n̄ (8.6.8)

B(n) = pt(n)[nk − 〈nk〉t]1n>n̄ (8.6.9)

Since pt(n)[nk − 〈nk〉t] is centered∑
n

A(n) =
∑
n

B(n) =: I (8.6.10)

where, again, the sum over n above and in the sequel is always, tacitly, restricted to

n ∈ X x.

Thus the generic contribution of these terms to the r.h.s. of (8.6.6) gives:

1

2

∑
n,n′

I−1|A(n)B(n′)−A(n′)B(n)||n− n′|

=
∑

n<n̄, n′>n̄

I−1A(n)B(n′)
(
[n′ − n̄] + [n̄− n|

)
=
∑
n′>n̄

B(n′)[n′ − n̄] +
∑
n<n̄

A(n)[n̄− n]

=
∑
n

pt(n)[nk − 〈nk〉t][n− n̄] =
∑
n

pt(n)[nk − 〈nk〉t][n− 〈n〉t](8.6.11)

We will prove in Section 8.8 that for all 1 < k ≤ 3N∑
n

pt(n)[nk − 〈nk〉t][n− 〈n〉t] ≤ (`d2)k (8.6.12)

and for the second moment there are a∗ and c such that:∑
n

pt(n)[n− 〈n〉t]2 ≤ (`d2)
{ 1

ρ∗
+ `−d2 hR

′′
(ρ∗)

}−1
(1 + cγa

?
) (8.6.13)

where ρ∗ is the minimum of the functional Ft(ρ) defined in (8.8.4). Hence, by using

these bounds for the first 3 + 3N terms in (8.6.6) we get:

1

2

3N+3∑
`=1

∫ 1

0

∑
n,n′

|φ(`)
τ (n, n′)||n− n′|

≤ tJ̃ (2)
γ (x, z)

{
|b01|`d2β

[ 1

ρ∗
+ `−d2 hR

′′
(ρ∗)

]−1
(1 + cγa

?
) + c

[
γd(`d2)2 + γ2d(`d2)3

]}
+γα/3γd1|x−z|≤Nγ−1c`d2

3N∑
i=1

γd(i−1)`
d(i−1)
2 (8.6.14)
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Dobrushin condition

There are u? and c = c(N) so that for all ζ and γ small enough

1

2

3N+3∑
`=1

∫ 1

0

∑
n,n′

|φ(`)
τ (n, n′)||n− n′| ≤ J̃ (2)

γ (x, z)`d2u
? + cγα/3γd`d21|x−z|≤Nγ−1 (8.6.15)

where, because of the contraction property (see (3.2.24) and (3.2.28)), we have:

u∗ ≤
∣∣∣(− 1 +

1

2
ρ2
β,R,+

)∣∣∣[ 1

ρβ,R,+
+ fR

′′(ρβ,R,+)
]−1

(1 + cγa
?
) < 1, (8.6.16)

being fR(ρ) the mean field hard core free energy (see (3.1.7)) and using (8.8.11) and

(8.8.4).

• We now want to estimate the contribution coming from the term 3N + 4 in (8.6.2), i.e.∑
i

V(x, z, i)[ñix − 〈ñix〉t] (8.6.17)

where we used the notation in (8.6.3). If we write:

ñix − 〈ñix〉t = c(nix − 〈nix〉t) (8.6.18)

where c < 1, we have again a term which is, up to a multiplicative constant of order

one, equal to (8.6.7). Hence, it is centered and analogously to (8.6.11) we can write its

contribution to (8.6.6) in the following way:

1

2

∑
n,n′

|φ(`)
τ (n, n′)||n− n′| = c

∣∣∣∑
m

V(x, z,m)
∣∣∣∑
n

pt(n)[nm − 〈nm〉t][n− 〈n〉t] (8.6.19)

where in the l.h.s. ` = 3N + 4 and where we dropped the index x from nx. Instead of

using directly bound (8.6.12) we write:

∑
n

pt(n)[nm − 〈nm〉t][n− 〈n〉t] = 〈n〉mt
m∑
i=1

∑
n

pt(n)[n− 〈n〉t]i+1〈n〉−it ≤

≤ 〈n〉mt
m∑
i=1

c`−di2 `
d
2

(i+1)

2 ≤ 〈n〉mt (1 +O(`−d2 )), (8.6.20)

where in the last inequality we used (8.8.30) (see Section 8.8).

Since n, 〈n〉t ∈ `d2[ρβ,+ − ζ, ρβ,+ + ζ], we have the following bound:

〈n〉t
n
≤
ρβ,+ + ζ

ρβ,+ − ζ
(8.6.21)
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8.6 Construction of φt

which implies:

〈n〉t ≤ n(1 + ζ) (8.6.22)

and that if c is a constant then:

〈n〉mt (1 +O(`−d2 )) ≤ c ñm(1 + ζ)m. (8.6.23)

Now we want to estimate:

c
∣∣∣∑
m

V(x, z,m)
∣∣∣ñm(1 + ζ)m :=

∣∣∣dh̃Rt
dt

(ρx)
∣∣∣ (8.6.24)

which up to a multiplicative constant is expression (8.6.3). We have:∣∣∣dh̃Rt
dt

(ρx)
∣∣∣ ≤ ∣∣∣ ∑

{y1,...,yk}:
y1=x,yk=z

∑
{m1,...,mk}
mi∈N,mi>0

V (y1, ..., yk;m1, ...,mk) ñ
m1−1
y1

ñm2
y2
· · · ñmkyk

∣∣∣ ·
·em1 log(1+ζ)+logmked(x,z)e−d(x,z) (8.6.25)

where we use the notation d(x, z) to indicate the euclidean distance between Cx and

Cz and where:

em1 log(1+ζ)+logmked(x,z) ≤ em1+mked(x,z) (8.6.26)

if γ is small enough. On the other side one can say that:

em1+mked(x,z) ≤ e(1+R)(
∑k
i=1mi) (8.6.27)

for some constant b. In fact one has d(x, z) ≤ R(
∑k

i=1mi) for a cluster going from

Cx to Cz crossing k boxes with multiplicities mi, i = 1, ..., k. Therefore, expression in

(8.6.25) has been bounded by:∣∣∣dh̃Rt
dt

(ρx)
∣∣∣ ≤ ∣∣∣ ∑

{y1,...,yk}:
y1=x,yk=z

∑
{m1,...,mk}
mi∈N,mi>0

V (y1, ..., yk;m1, ...,mk) · (8.6.28)

· ñm1−1
y1

ñm2
y2
· · · ñmkyk · e

(1+R)(
∑k
i=1mi)e−d(x,z)

∣∣∣ (8.6.29)

and we can state the following lemma:

Lemma 8.6.1. It exists a constant C such that:∣∣∣dh̃Rt
dt

(ρx)
∣∣∣ ≤ C e−d(x,z)

`2
. (8.6.30)
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Dobrushin condition

Lemma 8.6.1 will be proven in Section 8.7.

Hence, we have a bound for (8.6.19) which is given by (8.6.30) and we get for ` = 3N+4

the following contribution:

1

2

∑
n,n′

|φ(`)
τ (n, n′)||n− n′| ≤ C e

−d(x,z)

`2
. (8.6.31)

• For the term with ` = 3N + 5 in (8.6.2) we simply write:∑
n,n′

|φ(`)
τ (n, n′)||n− n′| ≤

∑
n,n′

I−1[A`(n)B`(n
′) +A`(n

′)B`(n)](n+ n′)

≤
∑
n

A`(n)n+
∑
n

B`(n)n ≤ c(`d2)2[c`d2e
−bγ2a−(1−α)d·|x−z|`−1

3 ] (8.6.32)

the bracket being the l.h.s. of (8.5.4). We have used that n ≤ c`d2 and, consequently,

Card(X x) ≤ c`d2.

• Analogously to estimate (8.6.32), for last the two terms in (8.6.2), i.e. those with

` = 3N + i, i = 6, 7, we have:∑
n,n′

|φ(`)
τ (n, n′)||n− n′| ≤ c(`d2)2[c`d2γ

bN/2γbγ|x−z|/2] (8.6.33)

where in the bracket we used (8.4.6) and again: n ≤ c`d2, Card(X x) ≤ c`d2. For γ small

enough we have:

γbγ|x−z|/2 = exp{− log γ−1 b

2
γ|x− z|} ≤ e−γ|x−z| (8.6.34)

and for N large enough

c(`d2)2[c`d2γ
bN/2] ≤ `−d3 γ (8.6.35)

so that: ∑
n,n′

|φ(`)
τ (n, n′)||n− n′| ≤ γ`−d3 e−γ|x−z|. (8.6.36)

Putting all the contributions together (see estimates (8.6.15), (8.6.31), (8.6.32), (8.6.36))

we have:

1

2

∫ 1

0

3N+7∑
`=1

∑
n,n′

|φ(`)
τ (n, n′)||n− n′| ≤ rγ(x, z) (8.6.37)
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8.7 Proof of Lemma 8.6.1

where

rγ(x, z) = J̃ (2)
γ (x, z)`d2u

? + cγα/3γd`d21|x−z|≤Nγ−1 + c`−1
2 e−|x−z|

+c`3d2 e
−bγ2a−(1−α)d·|x−z|`−1

3 + γ`−d3 e−γ|x−z| (8.6.38)

We then have∑
z

rγ(x, z) ≤ u? + cNdγα/3 + cγ(d+1)(1−α) + cγd[(1−α)d−2a+2α] + γd+1 < 1 (8.6.39)

so that (8.1.19) is satisfied. We have used:

γ`−d3

∑
z 6=x

e−γ|x−z| ≤ γ`−d3

∑
z∈Zd

e−γ`2|z| ≤ γ`−d3

∫
e−γ`2|r|dr ≤ γ`−d3 (γ`2)−d = γd+1 (8.6.40)

for the last sum and an analogue estimate for the third and the forth term. (8.1.20) follows

obviously from (8.6.38), since for |x− z| > `3 the first two terms give 0 contribution.

8.7 Proof of Lemma 8.6.1

From the definition of V (y1, ..., yk;m1, ...,mk), see (8.3.8), and (8.6.28) we get:∣∣∣ ∑
{y1,...,yk}:
y1=x,yk=z

∑
{m1,...,mk}
mi∈N,mi>0

V (y1, ..., yk;m1, ...,mk) ñ
m1−1
y1

ñm2
y2
· · · ñmkyk e(1+R)(

∑k
i=1 mi)

∣∣∣ =

=
∣∣∣ ∑
π:A(π)31
A(π)∩Lz 6=∅

1

|A(π) ∩ Lx|
zTR(π; ρx, ρ

1)eb(π)
∣∣∣ (8.7.1)

where b(π) :=
∑

θ∈π b(θ)π(θ) with π a generic cluster connecting Cx and Cz having the

multiplicities m1, ...,mk, with m1 multiplicity of the box Cx and mk multiplicity of Cz. We

also remind the definition b(θ) = κ log γ−1|Lγ(θ)| + |θ|, which for a tree without γ links

becomes: b(θ) = |θ|.

Hence,∣∣∣ ∑
π:A(π)31
A(π)∩Lz 6=∅

1

|A(π) ∩ Lx|
zTR(π; ρx, ρ

1)eb(π)
∣∣∣ ≤ ∑

π:A(π)31
A(π)∩Lz 6=∅

1

|A(π) ∩ Lx|

∣∣∣zTR(π; ρx, ρ
1)
∣∣∣eb(π) (8.7.2)

An upper bound for the r.h.s. of (8.7.2) can be found by first summing over all the polymers

θ such that contain the label 1 and that exit the box Cx with only a label, e.g. the label
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Dobrushin condition

2 in the adjacent box Cy, and then over the clusters that contain such polymers. Hence we

obtain:

ny
∑

θ:|V (θ)∩Lcx|=1
θ31,V (θ)∩Ly={2}

∑
π:π3θ

1

|A(π) ∩ Lx|

∣∣∣zTR(π; ρx, ρ
1)
∣∣∣eb(π) (8.7.3)

where ny is given by the fact that we chose the label 2 in Cy among all the labels Ly, with

|Ly| = ny. By the corollary of the cluster expansion (see (7.3.38)), one has:∑
π:π3θ

∣∣∣zTR(π; ρx, ρ
1)
∣∣∣eb(π) ≤

∣∣∣zR(θ; ρx, ρ
1)
∣∣∣ea(θ) (8.7.4)

with a(θ) = |θ|, and therefore:

(8.7.3) ≤ ny
∑

θ:|V (θ)∩Lcx|=1
θ31,V (θ)∩Ly={2}

∣∣∣zR(θ; ρx, ρ
1)
∣∣∣ea(θ). (8.7.5)

Let us start bounding
∣∣∣zR(θ; ρx, ρ

1)
∣∣∣ once we fixed θ such that satisfies the constraints in the

sum in (8.7.6) and with |θ| = n. Using the definitions in Section 7.3 we have:∣∣∣zR(θ; ρx, ρ
1)
∣∣∣ =

∣∣∣ ∫ ∏
i∈V (θ)

dqi

`d2

∏
`∈E(θ)

v
(2)
R (q(`))

∣∣∣ ≤ 1

`
d(n−2)
2

[ ∫
Cx

dq v
(2)
R (q)

]n−2
·

·

∣∣∣∣∣
∫
q1∈Cx

dq1

`d2
1q1∈∂RCx

∫
q2∈Cy∩BR(q1)

dq2

`d2

(
e−βVR(q1,q2) − 1

)∣∣∣∣∣ (8.7.6)

where we are again using the convention that the label i encodes the knowledge of the box in

which the particle qi is. In bounding the activity zR(θ; ρx, ρ
1) once we fixed a given polymer,

we group all the remaining n− 2 coordinates in the box Cx once we exclude the label 1 and

we change variables by considering only the relative distance with respect to the label 1 or

2, considered as fixed. Hence we obtain n− 2 equal contributions. We are left with only one

link with endpoints 1 and 2 which we integrate in the second term of (8.7.6). Like in (7.3.27)

we have: ∣∣∣zR(θ; ρx, ρ
1)
∣∣∣ ≤ εn−2

`
d(n−2)
2

2Rε

`d+1
2

(8.7.7)

Hence:

ny
∑

θ:|V (θ)∩Lcx|=1
θ3{1},V (θ)∩Ly={2}

∣∣∣zR(θ; ρx, ρ
1)
∣∣∣ea(θ) ≤ 2`d2ρy

∑
n>1

(
nx − 1

n− 2

)
nn−2 εn−1

`
d(n−1)
2

R

`2
en (8.7.8)
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8.8 Estimates of the k-th moment

where instead of summing over the polymers θ we sum over the number of vertices of such

polymers, but paying a factor which is given by all the choices of n − 2 labels among the

nx− 1 labels of the box Cx (we already chose the label 1 in the box Cx and the label 2 in the

box Cy) and by nn−2, i.e. the number of trees which can be constructed over n vertices. We

have:

(8.7.8) ≤ 2R

`2
ρy
∑
n>1

nn−2

(n− 2)!

(nx
`d2

)n−2
εn−1en

≤ 2Rρy
`2ερ2

x

∑
n>1

e2n

√
2πn

ρnxε
n (8.7.9)

where we used the approximation
(
n
k

)
' nk

k! and Stirling’s bound: n! ≥ nne−n
√

2πn. By

choosing R small enough, ρxε < e−2 and therefore:∣∣∣ ∑
{y1,...,yk}:
y1=x,yk=z

∑
{m1,...,mk}
mi∈N,mi>0

V (y1, ..., yk;m1, ...,mk) ρ̃
m1−1
y1

ρ̃m2
y2
· · · ρ̃mkyk e

(1+R)(
∑k
i=1 mi)

∣∣∣ ≤ 2Rρy
`2ερ2

x

(8.7.10)

Hence we can bound the r.h.s. of (8.6.28) with the following quantity:

2Rρy
`2ερ2

x

e−d(x,z) ≤ C e
−d(x,z)

`2
(8.7.11)

proving the lemma.

8.8 Estimates of the k-th moment

To prove the estimates (8.6.12) and (8.6.13) we first write:

nk − 〈nk〉t =
k∑
i=1

[〈n〉t]k−i[n− 〈n〉t]i (8.8.1)

hence we are reduced to estimates of∑
n∈Xx

pt(n)[n− 〈n〉t]k. (8.8.2)

Letting ρ = ρx below, we write the interpolated hamiltonian (8.1.22) with all its terms in the

following way:

ht(ρ) = `d2

{
Ft(ρ) + `−d2 [h2

t (ρ) + h3
t (ρ)]

}
+ c(nx) (8.8.3)
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Dobrushin condition

with:

Ft(ρ) = −βλ?ρ+ ρ(log ρ− 1) + β
3∑
i=1

a0
i ρ
iγαd(i−1)

+

3N∑
i=1

a1
i ρ
iγαd(i−1)+α/3i + FRt (ρ) (8.8.4)

where λ∗ is defined in (8.2.5) and:

FRt (ρ) := `−d2

(
hRt (ρ) + hR,Ct (ρ)

)
. (8.8.5)

Let us consider hRt (ρ) in (8.8.5) and do the following approximation:

`−d2 hRt (ρ) = `−d2

(
hR(ρ|ρ2) + t

dhRt
dt

(ρ)
)

= `−d2 hR(ρ) +O(`−1
2 ) (8.8.6)

where hR(ρ|ρ2) is defined in (8.3.1), dhRt /dt in (8.3.9) and:

hR(ρ) := −
∑

π:A(π)⊂Lx

zTR(π; ρ) (8.8.7)

is the R-cluster expansion in a single box Cx with 0-boundary conditions. The one-body

approximation in the measure is quite reasonable. Let us define:

|R(ρ, ρ2)| := `−d2 |h
R(ρ|ρ2)− hR(ρ)| = `−d2

∣∣∣ ∑
π:A(π)∩Lx 6=∅
A(π)∩Lcx 6=∅

zTR(π; ρ)
∣∣∣. (8.8.8)

Let us sum first on a generic label j belonging to the box x and then sum over the clusters

that contain that label (dividing, however, by the number of points of the clusters which are

in the box, i.e. |A(π) ∩ Lx|):

|R(ρ, ρ2)| = `−d2

∣∣∣ ∑
j∈Lx

∑
π:A(π)3j
A(π)∩Lcx 6=∅

1

|A(π) ∩ Lx|
zTR(π; ρ, ρi)

∣∣∣ =

= `−d2

∣∣∣n ∑
π:A(π)31
A(π)∩Lcx 6=∅

1

|A(π) ∩ Lx|
zTR(π; ρ, ρi)

∣∣∣ ≤ C R

`2ε
(8.8.9)

where, with the constraint A(π) 3 j, the condition A(π) ∩ Lx 6= ∅ is automatically satisfied,

so we can drop it. Notice that in the second equality we have fixed the label j to be the label

1 (which belongs to Cx) multiplying by a factor n. See (8.7.2) - (8.7.10) for the proof.
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8.8 Estimates of the k-th moment

Because of estimate (8.5.2) the hamiltonian hR,Ct in the functional (8.8.5) can be neglected,

hence:

FRt (ρ) = `−d2 hRt (ρ) +O(e−bγ
2a−(1−α)d

) = `−d2 hR(ρ) +O(`−1
2 ). (8.8.10)

Note that one can make the following infinite volume approximation:

FRt (ρ) = `−d2 hR(ρ) +O(`−1
2 ) = fR(ρ) +O(`−1

2 ) (8.8.11)

by paying with an error which is of the same order as the surface and where (see (3.1.7)):

fR(ρ) := −
∑
n≥1

βn
n+ 1

ρn+1 (8.8.12)

is the hard core free energy in the mean field model without the entropy part (ρ(log ρ− 1)).

Denoting by F ′t and F ′′t derivatives w.r.t. ρ, we have, for all ζ and γ small enough,

F ′t(ρβ,+ + ζ) > 0, F ′t(ρβ,+ − ζ) < 0 (8.8.13)

F ′′t (ρ) > 0, for all |ρ− ρβ,+| ≤ ζ (8.8.14)

Then there is ρ? so that

F ′t(ρ
?) = 0, |ρ? − ρβ,+| < ζ (8.8.15)

ρ? being the unique minimizer of Ft(ρ) in |ρ− ρβ,+| ≤ ζ. When |ρ− ρ?| ≤ `−
d
2

+δd

2 (δ > 0 is a

small parameter which will be specified later) we have, by a Taylor expansion,

`−d2 ht(ρ) = Ft(ρ
?) +

1

2
F ′′t (ρ?)(ρ− ρ?)2 + R̃t(ρ)(ρ− ρ?)3 + `−d2 c(nx) (8.8.16)

where R̃t(ρ) contains both the rest of the Taylor expansion and the contributions coming

from h2
t and h3

t :

R̃t(ρ) =
∞∑
k=3

F
(k)
t (ρ∗)(ρ− ρ∗)k−3 + `−d2 [h2

t (ρ) + h3
t (ρ)](ρ− ρ∗)−3. (8.8.17)

There is C > 0 such that:

sup
|ρ−ρ∗|≤`−d/2+δd

2

∣∣∣ ∞∑
k=3

F
(k)
t (ρ∗)(ρ− ρ∗)k−3

∣∣∣ ≤ C (8.8.18)

and therefore:

sup
|ρ−ρ∗|≤`−d/2+δd

2

|R̃t(ρ)(ρ− ρ∗)3| ≤ C (`
− 3

2
d+3δd

2 + γb) =: R. (8.8.19)
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Dobrushin condition

we are supposing γ so small that the set |ρ−ρ?| ≤ `−d/2+δd
2 is contained in the set |ρ−ρβ,+| ≤ ζ.

By (8.8.14)

`−d2 inf
|ρ−ρ?|≥`−d/2+δd

2

ht(ρ) ≥ Ft(ρ?) +
1

2
F ′′t (ρ?)`−d+2δd

2 − c`−
3
2
d+3δd

2 − c`−d2 log `2

≥ Ft(ρ?) +
1

4
F ′′t (ρ?)`−d+δd

2 . (8.8.20)

Calling n? = `d2ρ
?, we will first prove that there is c > 0 so that

|n? − 〈n〉t| ≤ c. (8.8.21)

The small parameter in the following analysis is

ξ := `
−d/2
2 (8.8.22)

We write:

〈n〉t − n∗ =

∑
n e
−ht(ρ)(n− n∗)∑
n e
−ht(ρ)

=
∆

m0
ξ−1 (8.8.23)

where:

∆ = eξ
−2Ft(ρ?)[2πn?]1/2ξ

∑
n

e−ht(ρ)ξ(n− n?), (8.8.24)

the sum over n is always meant to be extended over n ∈ X x, and where:

m0 = eξ
−2Ft(ρ?)[2πn?]1/2ξ

∑
n

e−ht(ρ). (8.8.25)

We write

∆ = ∆′ + ∆′′, m0 = m′0 +m′′0

the primed variables being obtained by restricting the sum over n in (8.8.24) and (8.8.25) to

{n : |n−n?| ≤ ξ−1−δ}, while the double primed ones are restricted to {n : |n−n?| > ξ−1−δ}.

By (8.8.16)

∆′ = ξ
∑

|n−n?|≤ξ−1−δ

[ξ(n− n?)]
√
n∗

n
exp

{
− F ′′t (ρ?)

2
[ξ(n− n?)]2

−R̃t(ρ)ξ[ξ(n− n?)]3 − ξ2ϑ(ρ)
}

ϑ(ρ) comes from the remainder of the Stirling formula: there is c so that for all ρ

|ϑ(ρ)| ≤ c
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8.8 Estimates of the k-th moment

We are now going to prove that

|∆′| ≤ cξ. (8.8.26)

Let us shorthand the following quantity:

ψ = R̃t(ρ)ξ[ξ(n− n?)]3 + ξ2ϑ(ρ)

and write:

e−ψ
√
n∗

n
=

√
n∗

n
+ (e−ψ − 1)

√
n∗

n

so that we can bound the terms as follows:∣∣∣√n∗

n

∣∣∣ ≤ cξ|ξ(n− n?)|
∣∣∣(e−ψ − 1)

√
n∗

n

∣∣∣ ≤ c[ξ2 + ξ|ξ(n− n?)|3].

Hence we have:

|∆′| ≤ cξ
∑

|n−n?|≤ξ−1−δ

e−F
′′
t (ρ?)[ξ(n−n?)]2/2

{
ξ2|ξ(n− n?)|+ ξ|ξ(n− n?)|4 + ξ|ξ(n− n?)|2

}
≤ cξ

which proves (8.8.26). Since:

m′0 = ξ
∑

|n−n?|≤ξ−1−δ

√
n∗

n
e−F

′′
t (ρ?)[ξ(n−n?)]2/2e−ψ

by analogous procedure ∣∣∣m′0 −
√

2π

F ′′t (ρ)

∣∣∣ ≤ cξ. (8.8.27)

In fact the leading term in m′0 is given by:

ξ
∑

|n−n?|≤ξ−1−δ

e−F
′′
t (ρ?)[ξ(n−n?)]2/2 ≤ ξ

∑
n

e−F
′′
t (ρ?)[ξ(n−n?)]2/2 ≤ ξ

∫
dn e−F

′′
t (ρ?)[ξ(n−n?)]2/2+cξ

(8.8.28)

By (8.8.20)

|∆′′| ≤ ξ
∑

|n−n?|≥ξ−1−δ

|ξ(n− n?)| exp
{
− F ′′t (ρ?)

4
ξ−4δ

}
so that

|∆′′| ≤ ξ(cξ−2)ξ−1 exp
{
− F ′′t (ρ?)

4
ξ−4δ

}
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Dobrushin condition

as the sum over n contains at most cξ−2 terms and |ξ(n− n?)| ≤ ξ−1. Analogously

m′′0 ≤ ξ(cξ−2) exp
{
− F ′′t (ρ?)

4
ξ−4δ

}
and we conclude

|∆|
m0
≤

cξ + cξ−2 exp
{
− F ′′t (ρ?)

4 ξ−4δ
}

√
2π

F ′′t (ρ?)
− cξ − cξ−1 exp

{
− F ′′t (ρ?)

4 ξ−4δ
} ≤ cξ

and (8.8.21) follows from (8.8.23). Analogously to (8.8.25) we write

mk = eξ
−2Ft(ρ?)[2πn?]1/2ξ

∑
n

e−ht(ρ)[ξ(n− 〈n〉t)]k (8.8.29)

and ∑
n

pt(n)[n− 〈n〉t]k =
mk

m0
ξ−k (8.8.30)

As before (details are omitted) for any there is c so that

|mk|
m0
≤ c (8.8.31)

then, by (8.8.1), for k > 1,

∑
n

pt(n)[nk − 〈nk〉t][n− 〈n〉t] ≤
k∑
i=1

[〈n〉t]k−icξ−i−1

≤
k∑
i=1

[c`d2]k−i[c`
d/2
2 ]i+1 ≤ c`dk2

(8.6.12) is proved.

We need a more accurate estimate when k = 1 in. We write

[n− 〈n〉t]2 = [n− n?]2 + [n? − 〈n〉t]2 + 2[n− n?][n? − 〈n〉t] (8.8.32)

and use it in (8.8.29), having three contributes for m2. We write explicitly the main contribu-

tion m̃2, which is given by the first one in (A.1.5) where the sum in m2 is over |n−n∗| ≤ ξ−1−δ.

Recalling (8.8.21) one can easily see that all the other terms give corrections of order ξ.

m̃2 = eξ
−2Ft(ρ?)[2πn?]1/2ξ

∑
|n−n?|≤ξ−1−δ

e−ht(ρ)[ξ(n− n∗)]2 (8.8.33)
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8.9 Changing boundary conditions

and again:

|m̃2| ≤ ξ
∑

|n−n?|≤ξ−1−δ

√
n∗

n
e−F

′′
t (ρ?)[ξ(n−n?)]2/2[ξ(n− n∗)]2 + cξ (8.8.34)

where the cξ comes from the part arising from |ψ| in the expansion of e−ψ. Dividing by m0,

and considering that the leading term in m0 is given by
√

2π
F ′′t (ρ)

as proved in (8.8.27), we

have: ∣∣∣m2

m0
− 1

F ′′t (ρ?)

∣∣∣ ≤ cξ (8.8.35)

which implies of course:

∑
n

pt(n)[n− 〈n〉t]2 ≤ ξ−2
( 1

F ′′t (ρ?)
+ cξ

)
. (8.8.36)

8.9 Changing boundary conditions

We complete here the proof of Theorem 8.1.1 by showing that for any ρ = {ρy}, y ∈ XΛ/x,

and any q̄1 and q̄2

R
(
p(·|ρ, q̄1), p(·|ρ, q̄2)

)
≤
∑
z∈XΛc

rγ,R(x, z)Dz(q̄
1, q̄2) (8.9.1)

For the sake of definitiness let us suppose that

∣∣q̄2 ∩ C(`2)
z

∣∣ = m,
∣∣q̄1 ∩ C(`2)

z

∣∣ = m+ p,
∣∣q̄1 ∩ q̄2 ∩ C(`2)

z

∣∣ = n

with m, p, n non negative. Then, by (8.1.18)

Dz(q̄
1, q̄2) = p+m− n

Let q1..qp be particles of q̄1 which are not in q̄2 and

q̄1
0 = q̄1, q̄1

j = q̄1 − (q1 + ..+ qj)

meaning that we take out of q̄1 the particles q1..qj . Then

R
(
p(·|ρ, q̄1), p(·|ρ, q̄2)

)
≤

p−1∑
j=0

R
(
p(·|ρ, q̄1

j ), p(·|ρ, q̄1
j+1)

)
+R

(
p(·|ρ, q̄1

p), p(·|ρ, q̄2)
)

(8.9.2)
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Dobrushin condition

Let q′1...q
′
m−n be the particles in q̄1

p which are not in q̄2 and q′′1 ...q
′′
m−n the corresponding ones

in q̄2 and not in q̄1
p. We set

q̄2
0 = q̄2, q̄2

j = q̄2 + (q′1 + ..+ q′j)− (q′′1 + ..+ q′′j )

so that

R
(
p(·|ρ, q̄1), p(·|ρ, q̄2)

)
≤

p−1∑
j=0

R
(
p(·|ρ, q̄1

j ), p(·|ρ, q̄1
j+1)

)

+
m−n−1∑
j=0

R
(
p(·|ρ, q̄2

j ), p(·|ρ, q̄2
j+1))

)
(8.9.3)

The total number of terms in (8.9.3) is exactly equal to Dz(q̄
1, q̄2), it will thus be enough to

prove that each single term is bounded by rγ(x, z). The terms in the first sum are treated

exactly as when z ∈ Λ. For the terms in the second sum we observe that h0 is the same

in both configurations. The change of the energies hk, k 6= 0, is due to the difference

between the interaction of the special particle with the others in the two distinct positions.

Such contributions to the Vaserstein distance are again those computed above and we get the

previous bound with a factor 2 (we do not need compensations between the two contributions

and we just sum them up).

(8.8.35) then follows, once we recall that Dz(q̄
1, q̄2) = k + m, where k is the difference

between the number of particles in C
(`2)
z and m the optimal number of shifts of particles, and

k +m is the same as the number of triangular inequalities used to reduce to the case where

we either add a particle or shift one.

8.10 The Dobrushin method for constructing couplings

In the following we refer again to (8.1.1) for the definition of the state space and in general

to Section 7.1 and Section 8.1 for the setting.

Claim 8.10.1. We are going to prove that there exists a joint representation P(n1, n2|q̄1, q̄2)

of the marginals of µ1 and µ2 on XΛ such that, for any x ∈ XΛ and denoting by E the

expectation w.r.t. to P,

E
[
(d(n1

x, n
2
x)
]
≤

∑
z∈XΛ,z 6=x

rγ,R(x, z)E
[
d(n1

z, n
2
z)
]

+
∑
z /∈XΛ

rγ,R(x, z)γ−dc (8.10.1)
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8.10 The Dobrushin method for constructing couplings

For simplicity from now on we will drop the dependence on q̄1 and q̄2 from P(n1, n2|q̄1, q̄2).

The existence of such joint representation relies on the algorithm proposed by Dobrushin (for

the reference see [52]) based on a local optimization strategy. We can also state it in a more

general setting, but for the purpose of this section and to make the approach easier for the

reader we will apply such strategy directly to our problem.

The key point of the entire theory is that “local bounds can be made global”, as proved

in the next theorem.

Let us first suppose that we have already found a “good” coupling for the conditional

probabilities: p(·|ρ1, q̄1) and p(·|ρ2, q̄2) with ρi = {ρy}, y ∈ XΛ/x, i = 1, 2. We call it

Qx,ρ1,ρ2,q̄1,q̄2(·, ·) as a probability on X x ×X x. We remind again that the Vaserstein distance

is defined through a cost function, i.e. a pseudo-distance on X x defined in (8.1.12), and we

define: dI(n
1, n2) :=

∑
x∈I d(n1

x, n
2
x), I ⊂ XΛ.

Theorem 8.10.2. Suppose that there are non-negative functions Kx(n1, n2) = Kx(ρ1, q̄1, ρ2, q̄2)

such that: ∑
n1
x,n

2
x

d(n1
x, n

2
x)Qx,ρ1,ρ2,q̄1,q̄2(n1

x, n
2
x) ≤ Kx(ρ1, q̄1, ρ2, q̄2) (8.10.2)

Then there is a coupling P of µ1 and µ2 such that,

∑
n1,n2

dx(n1, n2)P(n1, n2) ≡
∑
n1,n2

d(n1
x, n

2
x)P(n1, n2) ≤

∑
n1,n2

Kx(ρ1, q̄1, ρ2, q̄2)P(n1, n2).

(8.10.3)

Proof.

Let P0 be a coupling of µ1 and µ2. Let us divide ni into nix and ρi, i = 1, 2, and call

P0(ρ1, ρ2) :=
∑
n1
x,n

2
x

P0(n1
x, ρ

1, n2
x, ρ

2) (8.10.4)

namely P0(ρ1, ρ2) is the marginal distribution of the components ρ1, ρ2. Define next

P (n1, n2) := Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x)P0(ρ1, ρ2). (8.10.5)

We claim that P (n1, n2) is also a coupling of µ1 and µ2: since Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x) is a
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Dobrushin condition

coupling of the conditional probabilities,

∑
n2

P (n1, n2) =
∑
ρ2

∑
n2
x

Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x)P0(ρ1, ρ2) (8.10.6)

=
∑
ρ2

p(n1
x|ρ1, q̄1)P0(ρ1, ρ2) (8.10.7)

=
∑
ρ2

p(n1
x|ρ1, q̄1)

∑
n3
x,n

2
x

P0(n3
x, ρ

1, n2
x, ρ

2) (8.10.8)

We first sum over n2 = (ρ2, n2
x), and, since P0 is a coupling, we get:

∑
n2

P (n1, n2) =
∑
n3
x

µ1(ρ1, n3
x|q̄1)p(n1

x|ρ1, q̄1) = µ1(n1). (8.10.9)

The same argument applies to the second component completing the proof that P (n1, n2)

is a coupling of µ1 and µ2. Since a convex combination of couplings is still a coupling,

P1(n1, n2) :=
1

M

∑
x

Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x)P0(ρ1, ρ2) (8.10.10)

is also a coupling, where M is the cardinality of the set XΛ. By iteration

Pk+1(n1, n2) :=
1

M

∑
x

Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x)Pk(ρ

1, ρ2) (8.10.11)

are all couplings of µ1 and µ2. Then:

Pk(n1, n2) :=
1

k + 1

k∑
h=0

Ph(n1, n2) (8.10.12)

is a coupling and, by letting k → ∞ along a convergent subsequence kj (the space XΛ is

finite), also

P(n1, n2) := lim
kj→∞

Pkj (n
1, n2) (8.10.13)

is a coupling. Moreover, since limkj→∞ Pkj (n1, n2) = P(n1, n2),

P(n1, n2) = lim
kj→∞

1

M

∑
x

Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x)Pkj (ρ

1, ρ2) (8.10.14)

=
1

M

∑
x

Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x)P(ρ1, ρ2), (8.10.15)
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8.10 The Dobrushin method for constructing couplings

so that if y ∈ XΛ

∑
n1,n2

dy(n
1, n2)P(n1, n2) (8.10.16)

=
∑
n1,n2

dy(n
1, n2)

1

M

∑
x 6=y

Qx,ρ1,ρ2,q̄1,q̄2(n1
x, n

2
x)P(ρ1, ρ2) (8.10.17)

+
∑
n1,n2

dy(n
1, n2)

1

M
Qy,ρ1

(y)
,ρ2

(y)
,q̄1,q̄2(n1

y, n
2
y)P(ρ1

(y), ρ
2
(y)) (8.10.18)

where ρi(y) := {ρz}, z ∈ XΛ/y, i = 1, 2, and following this notation ρi ≡ ρi(x). We rewrite the

first term on the r.h.s. of (8.10.16) as follows. We fix x 6= y and sum over n1
x, n

2
x, getting

1

M

∑
x 6=y

∑
ρ1,ρ2

dy(ρ
1, ρ2)P(ρ1, ρ2) =

1

M

∑
x 6=y

∑
n1,n2

dy(n
1, n2)P(n1, n2) (8.10.19)

Analogously, in the second term on the r.h.s. of (8.10.16) we write∑
ρ1

(y)
,ρ2

(y)

P(ρ1
(y), ρ

2
(y))

∑
n1
y ,n

2
y

Qy,ρ1
(y)
,ρ2

(y)
,q̄1,q̄2(n1

y, n
2
y)d(n1

y, n
2
y) (8.10.20)

≤
∑

ρ1
(y)
,ρ2

(y)

P(ρ1
(y), ρ

2
(y))Ky(ρ

1
(y), q̄

1, ρ2
(y), q̄

2) (8.10.21)

=
∑
n1,n2

P(n1, n2)Ky(ρ
1
(y), q̄

1, ρ2
(y), q̄

2). (8.10.22)

Collecting the above estimates we get from (8.10.16)∑
n1,n2

dy(n
1, n2)P(n1, n2) ≡

∑
n1,n2

d(n1
y, n

2
y)P(n1, n2) (8.10.23)

≤ M − 1

M

∑
n1,n2

d(n1
y, n

2
y)P(n1, n2) +

1

M

∑
n1,n2

P(n1, n2)Ky(ρ
1
(y), q̄

1, ρ2
(y), q̄

2) (8.10.24)

hence (8.10.3), once changed y into x.

An immediate consequence of Theorem 8.10.2 is the following corollary:

Corollary 8.10.3. Suppose there are constants Cx and r(x, z) so that (8.10.2) holds with

Kx(ρ1, q̄1, ρ2, q̄2) ≤ Cx +
∑
z 6=x

r(x, z)d(n1
z, n

2
z). (8.10.25)
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Let P as in Theorem 8.10.2 and v(x) :=
∑

n1,n2 d(n1
x, n

2
x)P(n1, n2).

Then

v(x) ≤
∑
z 6=x

r(x, z)v(z) + Cx, (8.10.26)

hence v(·) ≤ u(·), where:

u(x) =
∑
z 6=x

r(x, z)u(z) + Cx. (8.10.27)

Proof of (8.12.1).

Let us show how Corollary 8.10.3 implies (8.12.1). By a general theorem (see for instance

Theorem 3.2.1.1 of [52]), the inf in (8.1.16) is a min. Hence, there is a coupling of p(·|ρ1, q̄1)

and p(·|ρ2, q̄2) which attains the Vaserstein distance on the l.h.s. of (8.1.17) and (8.10.25)

holds with

Cx =
∑
z /∈XΛ

rγ,R(x, z)Dz(q̄
1, q̄2) (8.10.28)

and r(x, z) = rγ,R(x, z). Hence, using the bound Dz(q̄
1, q̄2) ≤ cγ−d and (8.10.26), one

obtains (8.12.1) by setting: v(x) :=
∑

n1,n2 d(n1
x, n

2
x)P(n1, n2) = E

[
(d(n1

x, n
2
x)
]

where the last

expression is the expectation w.r. to P.

8.11 Equations for the first moments and decay properties

We study here the linear system of the |XΛ| equations:

u(x) =
∑
z 6=x

r(x, z)u(z) + Cx, x ∈ XΛ (8.11.1)

where Cx must be of the form:

Cx = C ′x +
∑
z /∈XΛ

r(x, z)ψ(z), sup |ψ(z)| <∞. (8.11.2)

v(x), x ∈ XΛ, is a sub-solution of (8.11.1) if:

v(x) ≤
∑
z 6=x

r(x, z)v(z) + Cx. (8.11.3)
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Theorem 8.11.1. Let r(x, z) ≥ 0 satisfy

sup
x

∑
z 6=x

r(x, z) := r < 1. (8.11.4)

Then (8.11.1) has the unique solution

u(x) =
∑
y∈XΛ

gΛ(x, y)Cy (8.11.5)

where

gΛ(x, y) :=
∑
n≥0

rnΛ(x, y), rΛ(x, y) = r(x, y)1x,y∈XΛ
(8.11.6)

with r0
Λ(x, y) := 1x=y and rnΛ(x, y) the n-convolution of rΛ(x, y). The series in (8.11.6) is

convergent and

gΛ(x, y) ≤ 1

1− aΛ
, aΛ := sup

x∈XΛ

∑
y∈XΛ,y 6=x

rΛ(x, y) ≤ r < 1. (8.11.7)

Finally, if v is a sub-solution of (8.11.1), then v ≤ u.

For the proof of Theorem 8.11.1 see [52], Chapter 3.

Let us now investigate the decay properties of the Green function gΛ. We define:

g(x, y) :=
∑
n≥0

rn(x, y) (8.11.8)

and notice that gΛ ≤ g point-wise, so that the decay properties of g immediately are reflected

in the decay properties of gΛ and then of u.

To deduce good decay properties of u(x) we use a strong assumption on the decay rate

of r(x′y) as |x− y| → ∞. Suppose there is a metric δ(x, y) such that δ(x, y) ≥ a > 0 for all

x 6= y, and

sup
x

∑
y 6=x

r(x, y)eδ(x,y) ≤ r′ < 1 (8.11.9)

then (8.11.9) implies (8.11.4) with r < e−a.

Theorem 8.11.2. Suppose that (8.11.9) holds, then for any x, any set A ⊂ XΛ and any

non-negative function f on A,∑
y∈A

g(x, y)f(y) ≤ 1

1− r′
sup
y∈A
{e−δ(x,yf(y)}. (8.11.10)
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Dobrushin condition

Then we have the following corollary:

Corollary 8.11.3. Let u satisfy (8.11.1); then, if (8.11.9) holds,

u(x) ≤ 1

1− r′
sup
y∈XΛ

{e−δ(x,y)C ′y}+
b

1− r′
sup
y∈Λc

e−δ(x,y). (8.11.11)

8.12 Conclusions

Coming back to:

E
[
(d(n1

x, n
2
x)
]
≤

∑
z∈XΛ,z 6=x

rγ,R(x, z)E
[
d(n1

z, n
2
z)
]

+
∑
z /∈XΛ

rγ,R(x, z)γ−dc (8.12.1)

we can apply Corollary 8.11.3 obtaining that there are three positive constants δ, c, c′ so that:

E
[
(d(n1

x, n
2
x)
]
≤ c exp

{
− c′γ−δ`−1

3 dist(x,Λc)
}

(8.12.2)

with c1, c2 suitable positive constants.

Proof of (8.12.2).

We have from Theorem 8.1.1:

rγ,R(x, z) ≤ c1e
−c2γ|z−x|, |z − x| ≥ `3. (8.12.3)

First we want to prove that this condition implies (8.11.9). Chosing δ(x, y) = κγ |x− y|,

sup
x

∑
y 6=x

r(x, y)eδ(x,y) = sup
x

{ ∑
|x−y|≤`3

r(x, y)eκγ |x−y| +
∑

|x−y|>`3

r(x, y)eκγ |x−y|
}
≤

≤ ecγγ`3 +
∑

|x−y|>`3

c1e
−c2γ|x−y|+cγγ|x−y| < 1 (8.12.4)

where we used: κγ ≡ cγγ. In order to bound it with 1 the second term in (8.12.4) implies

cγ < c2 while the first one implies cγ = γα
′
2 with α′2 ≥ α. Hence we can apply Corollary

8.11.3 for v(x) := E
[
(d(n1

x, n
2
x)
]
, v(x) being a sub-solution of (8.11.1), where Cx, being as

in (8.10.28), is of the form (8.11.2) with C ′x ≡ 0 and ψ(z) := Dz(q̄1, q̄2) ≤ cγ−d. Hence we

obtain (8.12.2) by putting δ := α− α′2 > 0.
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8.12 Conclusions

Proof of (7.1.2).

In this proof we are going to use Lemma 7.5.1 of Section 7.5 and (8.12.2). We remind that

Eµi
(
fx1,..,xn

)
= Eµi(gN ) +Ri, i = 1, 2 (8.12.5)

where gN and Ri satisfy bounds (7.5.2).

We also remind that gN is defined summing the two contributions (7.5.20) and (7.5.24),

and setting y = {y1, ..., ym}, x = {x1, ..., xn}, we can rewrite it as follows:

gN :=
∑

π⊂C(N`3)
xi

π3x

z̃Tγ,R(π; ρ; q̄;x) +
∑

C⊂C(N`3)
xi

C3x

ζ̃Tγ,R(C; ρ; q̄;x) =
∑
y⊃x

gy (8.12.6)

where:

gy :=
∑

π⊂C(N`3)
xi

π3y

z̃Tγ,R(π; ρ; q̄; y) +
∑

C⊂C(N`3)
xi

C3y

ζ̃Tγ,R(C; ρ; q̄; y) (8.12.7)

Hence:

|Eµ1(gN )− Eµ2(gN )| =
∣∣∣ ∑
n1,n2

P(n1, n2|q̄1, q̄2)
[
gN (n1)− gN (n2)

]∣∣∣ = (8.12.8)

=
∣∣∣ ∑
n1,n2

P(n1, n2|q̄1, q̄2)
∑
y⊃x

[
gy(n

1)− gy(n2)
]∣∣∣ ≤ (8.12.9)

≤
∑
y

∑
n1,n2

P(n1, n2|q̄1, q̄2)
∣∣∣gy(n1)− gy(n2)

∣∣∣ ≤ (8.12.10)

≤
∑
y

‖gy‖∞
∑
n1,n2

P(n1, n2|q̄1, q̄2)
m∑
i=1

1n1
i 6=n2

i
≤ (8.12.11)

≤
∑
y

‖gy‖∞E
[ m∑
i=1

d(n1
i , n

2
i )
]
≤ (8.12.12)

≤ max
i

∑
y

‖gy‖∞m E
[
d(n1

i , n
2
i )
]

(8.12.13)

Using (8.12.2) and (7.5.2) we get (7.1.2).
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Conclusions and open problems

As we see from Chapters 7 and 8, we manage to carry out some computations which

imply the decay of correlations as required by the third step of Chapter 5 (see Section 5.3),

by controlling the difference of the two expectations in equation (5.3.7). Hence the hardest

part is to calculate these expectations. We first use cluster expansion to reduce our system

to a spin block model through the derivation of an effective hamiltonian and then Dobrushin

uniqueness theory to prove exponential decay.

Anyways, the exponential decay of correlations does not imply estimate (5.3.1) when the

two local functions fx1,..,xn defined in (5.3.6) are too close to the boundary of Λ. In that case

the difference of expectations becomes of order 1 and we have to change strategy. We shall

address this issue in a subsequent work, adapting to our model the techniques developed by

Presutti in [52].

Another issue which we hope to address later concerns the σ-algebra at infinity and

the derivation of some properties for the two Gibbs measures representing the two phases.

While we think these properties can again be derived as in [52] (Chapter 12), to prove phase

transition in the canonical ensemble is still an open problem. As we said in Chapter 2, one

would like to prove closeness to one of the two phases in the coarse grained picture.

In the more abstract context of a system of particles interacting in the continuum via

a stable and tempered pair potential we are able to compute the free energy by cluster

expanding the canonical partition function, as we do in [53]. A question arising is wether

one is able to compute the correlations and to compare the behaviour in the canonical with

that in the gran canonical ensemble, expecting that the decay is not exponential anymore
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Dobrushin condition

even though small as 1 over the volume. See [56] for the correlation functions in the gran

canonical ensemble.

We want to conclude this section by introducing a problem which seems at first very

different from the topic we dealt with in this work and which is related to the quantum

version of a system of particles in the continuum. We refer to the set of results obtained

by Ginibre in the context of quantum gases, see [24], [25] and [26], where there have been

computed the correlation functions performing a cluster expansion as for the virial series. As

these results are carried out using the formalism of the gran canonical ensemble we should be

able to obtain similar results working in the canonical, adapting to the quantum model the

methods in [53]. Hence, a first step in this direction would be to perform a cluster expansion

in the canonical ensemble for a quantum gas, while a second more ambitious project would

be to prove phase transitions for the same quantum model, to have similar results as we

have in the present work. In this regards there is an unpublished paper by Kuna, Merola

and Presutti which proves gas-liquid phase transitions for a quantum gas with the Boltzman

statistics. The main issue is whether we are able to prove the same transition in the case of

a system of bosons when the density is far from the regime in which there is condenstation,

using the Ginibre results and [53].
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A. Cluster expansion in the canonical ensemble

A.1 Model and result

This chapter is devoted to the theory of cluster expansion in the canonical ensemble when

the system is composed of hard spheres in d dimensions. In the following we refer to the paper

[53] where the interaction is more general, i.e. stable and tempered, but we report the result

directly in the case of hard core interactions for simplicity of notation.

We consider a configuration q ≡ {q1, . . . , qN} of N particles (where qi are the position of

the ith particle), confined in a box Λ(`) := (− `
2 ,

`
2 ]d ⊂ Rd (for some ` > 0), which we will also

denote by Λ when we do not need to explicit the dependence on `.

We assume periodic boundary conditions since it is a general result (see e.g. [56] and [21])

that the thermodynamic limit is independent of the choice of the boundary conditions. This

particular choice in the present section is not essential, periodic boundary conditions are used

in order to obtain translation invariance in some cases (see e.g. Lemma A.4.1). Furthermore,

our result remains valid with other boundary conditions by slightly changing the proof (see

Appendix B for estimates of the finite volume corrections).

We obtain the periodic boundary conditions by covering Rd with boxes Λ and adding all

interactions. Let

V per(qi, qj) :=
∑
n∈Zd

V hc(qi − qj + n`) (A.1.1)

with

V hc(qi − qj) =

+∞ if |qi − qj | ≤ R

0 if |qi − qj | > R
(A.1.2)

where |qi− qj | denotes the euclidean distance between the two particles in qi and qj . R is the

radius of the hard spheres and their volume is ε = Vd(R), i.e. the volume of the d-dimensional

sphere of radius R. The hard core potential depends on qi, qj only through their distance.
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Cluster expansion in the canonical ensemble

The canonical partition function of the system with periodic boundary conditions is given

by

Zβ,Λ,N :=
1

N !

∫
ΛN

dq1 . . . dqN e
−βHΛ(q), (A.1.3)

where HΛ is the energy of the system given by

HΛ(q) :=
∑

1≤i<j≤N
V per(qi, qj). (A.1.4)

Remark. Note that the following is proved also for more general interactions, i.e. when the

pair potential is stable and tempered. This means that there exists B ≥ 0 such that:∑
1≤i<j≤N

V (qi − qj) ≥ −BN, (A.1.5)

for all N and all q1, ..., qN and the integral

C(β) :=

∫
Rd
|e−βV (q) − 1|dq (A.1.6)

is convergent for some β > 0 (and hence for all β > 0). Hence the hard core interaction is a

particular case where B = 0 and C(β) = ε independent of the temperature.

Given ρ > 0 we define the thermodynamic free energy by

fβ(ρ) := lim
|Λ|,N→∞, N=bρ|Λ|c

fβ,Λ(N), where fβ,Λ(N) := − 1

β|Λ|
logZβ,Λ,N . (A.1.7)

The main result, given in Theorem A.1.1, is that, for values of the hard core volume ε

small enough, the thermodynamic free energy is an analytic convex function of the density.

In addition, the coefficients of the resulting series are given by the well-known irreducible

coefficients of Mayer that we will denote by βn

βn :=
1

n!

∑
g∈Bn+1

V (g)3{1}

∫
(Rd)n

∏
{i,j}∈E(g)

(e−βV
hc(qi−qj) − 1)dq2 . . . dqn+1, q1 ≡ 0 (A.1.8)

where Bn+1 is the set of 2-connected graphs g on (n+ 1) vertices and E(g) is the set of edges

of the graph g. We define a 2-connected graph to be a connected graph which by removing

any single vertex and all related edges remains connected. The precise definitions are given

in the next section. In the literature such a graph is also known as irreducible. Note the

unfortunate coincidence of notation between the inverse temperature β and the irreducible

coefficients βn, which however we keep in agreement with the literature.
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Cluster expansion in the canonical ensemble

Theorem A.1.1. There exists a constant c0 > 0 independent of N and Λ such that if ρ ε < c0

then
1

|Λ|
logZβ,Λ,N =

1

|Λ|
log
|Λ|N

N !
+
N

|Λ|
∑
n≥1

Fβ,N,Λ(n), (A.1.9)

with N = bρ|Λ|c and in the thermodynamic limit

lim
N,|Λ|→∞, N=bρ|Λ|c

Fβ,N,Λ(n) =
1

n+ 1
βnρ

n+1, (A.1.10)

for all n ≥ 1 and βn given in (A.1.8). Furthermore, there exist constants C, c > 0 such that,

for every N and Λ, the coefficients Fβ,N,Λ(n), n ≥ 1, (which are given by the explicit formulas

in (A.4.14) and (A.4.15)) satisfy

|Fβ,N,Λ(n)| ≤ Ce−cn. (A.1.11)

Note that Theorem A.1.1 proves the validity of the cluster expansion for the canonical

partition function in the regime where the volume ε of the hard spheres is small enough. The

convergence is uniform in the volume and in the thermodynamic limit it reproduces Mayer’s

virial expansion providing an alternative and more direct derivation which avoids the deep

combinatorial issues present in the original proof. Hence taking the thermodynamic limit

term by term, we have the following:

Corollary A.1.2.

βfβ(ρ) = ρ(log ρ− 1)−
∑
n≥1

1

n+ 1
βnρ

n+1. (A.1.12)

In this Appendix we will only prove convergence for the cluster expansion, while we will

leave out the proof of the thermodynamic limit, which is however contained in the paper [53].

A.2 Reduction to an abstract polymer model

We view the canonical partition function Zβ,Λ,N as a perturbation around the ideal case,

hence normalizing the measure by multiplying and dividing by |Λ|N in (A.1.3) we write

Zβ,Λ,N = ZidealΛ,N Zintβ,Λ,N , (A.2.1)

where

ZidealΛ,N :=
|Λ|N

N !
and Zintβ,Λ,N :=

∫
ΛN

dq1

|Λ|
. . .

dqN
|Λ|

e−βHΛ(q). (A.2.2)
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Cluster expansion in the canonical ensemble

For Zintβ,Λ,N we use the idea of Mayer in [44] which consists of developing e−βHΛ(q) in the

following way

e−βHΛ(q) =
∏

1≤i<j≤N
(1 + fi,j) =

∑
E⊂E(N)

∏
{i,j}∈E

fi,j , (A.2.3)

where E(N) := {{i, j} : i, j ∈ [N ], i 6= j}, [N ] := {1, ..., N} and

fi,j := e−βV
hc(qi−qj) − 1 (A.2.4)

Note that in the last sum in equation (A.2.3) we have also the term with E = ∅ which gives

1.

A graph is a pair g ≡ (V (g), E(g)), where V (g) is the set of vertices and E(g) is the set of

edges, with E(g) ⊂ {U ⊂ V (g) : |U | = 2}. A graph g = (V (g), E(g)) is said to be connected

if for any pair A,B ⊂ V (g) such that A ∪B = V (g) and A ∩B = ∅, there is a link e ∈ E(g)

such that e∩A 6= ∅ and e∩B 6= ∅. Singletons are considered to be connected. We use CV to

denote the set of connected graphs on the set of vertices V ⊂ [N ].

Two sets V, V ′ ⊂ [N ] are called compatible (denoted by V ∼ V ′) if V ∩ V ′ = ∅; otherwise

we call them incompatible (�). This definition induces in a natural way the notion of compat-

ibility between graphs with set of vertices V (g), V (g′) ⊂ [N ], i.e., g ∼ g′ if V (g) ∩ V (g′) = ∅.

With these definitions, to any set E in equation (A.2.3) we can associate a graph, i.e., a

pair g ≡ (V (g), E(g)), where V (g) := {i : ∃e ∈ E with i ∈ e} ⊂ [N ] and E(g) = E. Note

that the resulting graph does not contain isolated vertices. It can be viewed as the pairwise

compatible (non-ordered) collection of its connected components, i.e., g ≡ {g1, . . . , gk}∼ for

some k, where each gl, l = 1, . . . , k, belongs to the set of all connected graphs on at most N

vertices and it contains at least two vertices. Hence,

e−βHΛ(q) =
∑

{g1,...,gk}∼
gl connected

k∏
l=1

∏
{i,j}∈E(gl)

fi,j , (A.2.5)

where again the empty collection {g1, ..., gk}∼ = ∅ contributes the term 1 in the sum. There-

fore, observing that integrals over compatible components factorize, we get

Zintβ,Λ,N :=
∑

{g1,...,gk}∼
gl connected

k∏
l=1

z̃Λ(gl) =
∑

{V1,...,Vk}∼
|Vl|≥2,∀l

k∏
l=1

zΛ(Vl), (A.2.6)
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Cluster expansion in the canonical ensemble

where

zΛ(V ) :=
∑
g∈CV

z̃Λ(g), z̃Λ(g) :=

∫
Λ|g|

∏
i∈V (g)

dqi
|Λ|

∏
{i,j}∈E(g)

fi,j . (A.2.7)

We also denote by |g| the cardinality of V (g), i.e., |g| := |V (g)|. Both expressions in (A.2.6)

are in the form of the abstract polymer model which we specify next.

A.3 Abstract polymer model

An abstract polymer model (Γ, GΓ, ω) consists of (i) a set of polymers Γ := {γ1, ..., γ|Γ|},

(ii) a binary symmetric relation ∼ of compatibility between the polymers (i.e., on Γ × Γ)

which is recorded into the compatibility graph GΓ (the graph with vertex set Γ and with an

edge between two polymers γi, γj if and only if they are an incompatible pair) and (iii) a

weight function ω : Γ → C. Then, we have the following formal relation which will become

rigorous by Theorem A.3.1 below (see [34], [6] and [47]):

ZΓ,ω :=
∑

{γ1,...,γn}∼

n∏
i=1

ω(γi) = exp

{∑
I∈I

cIω
I

}
, (A.3.1)

where

cI =
1

I!

∑
G⊂GI

(−1)|E(G)|, (A.3.2)

or equivalently ([6])

cI =
1

I!

∂
∑
γ I(γ) logZΓ,ω

∂I(γ1)ω(γ1) · · · ∂I(γn)ω(γn)

∣∣∣
ω(γ)=0

. (A.3.3)

The sum in (A.3.1) is over the set I of all multi-indices I : Γ → {0, 1, . . .}, ωI =∏
γ ω(γ)I(γ), and, denoting suppI := {γ ∈ Γ : I(γ) > 0}, GI is the graph with

∑
γ∈suppI I(γ)

vertices induced from GsuppI ⊂ GΓ by replacing each vertex γ by the complete graph on I(γ)

vertices.

Furthermore, the sum in (A.3.2) is over all connected subgraphs G of GI spanning the

whole set of vertices of GI and I! =
∏
γ∈suppI I(γ)!. Note that if I is such that GsuppI is not

connected (i.e., I is not a cluster) then cI = 0.

Remark. Note that one can also use the following notation (following [34]):

ZΓ,ω :=
∑

{γ1,...,γn}∼

n∏
i=1

ω(γi) = exp

{∑
I∈I

ωT (I)

}
(A.3.4)
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Cluster expansion in the canonical ensemble

where π is a collection of non-compatible diagrams (repetitions are allowed) and ωT (I) is

given by the Möbius inversion formula:

ωT (I) :=
∑

I′: I′⊂I
(−1)|I|−|I

′| log
∑

{γ1,...,γn}�,
γj∈I′, ∀j

n∏
j=1

ω(γj), |I| := |{γ : γ ∈ I}| (A.3.5)

Note that ωT (I) = 0 if I is not a cluster.

We state the general theorem as in [6], [47] but in a slightly different form. Let

L = L(δ) = sup
x∈(0,δ)

{
− log(1− x)

x

}
=
− log(1− δ)

δ
, (A.3.6)

for δ ∈ (0, 1). Notice that for δ small we have L = 1 + O(δ). The optimal bound for the

convergence radius is beyond our scope, however we hope to come back to this issue in a

subsequent work.

Theorem A.3.1. Assume that there are two non-negative functions a, c : Γ → R such that

for any γ ∈ Γ, |ω(γ)|ea(γ)+c(γ) ≤ δ holds, for some δ ∈ (0, 1). Moreover, assume that for any

polymer γ′ ∑
γ�γ′
|ω(γ)|ea(γ)+c(γ) ≤ 1

L
a(γ′), (A.3.7)

where L is given in (A.3.6). Then, for any polymer γ′ ∈ Γ the following bound holds∑
I: I(γ′)≥1

|cIωI |e
∑
γ∈suppI I(γ)c(γ) ≤ L|ω(γ′)|ea(γ′)+c(γ′), (A.3.8)

where cI are given in (A.3.3).

Proof. Apply Theorem 1 in [6] with activities ω(γ)ec(γ).

In view of (A.2.6) we can represent the partition function Zintβ,Λ,N both as a polymer

model on connected graphs with weights z̃Λ and as a polymer model on V(N) := {V : V ⊂

{1, . . . , N}, |V | ≥ 2} with weights zΛ and compatibility graph GV .

A.4 Convergence of the cluster expansion

In this section we check the convergence condition of Theorem A.3.1. We work in the case

where polymers are subsets of vertices, which in the abstract polymer formulation is given

by the space (V(N), GV , ζΛ). Then, as a corollary of Theorem A.3.1 we prove (A.1.11).
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Cluster expansion in the canonical ensemble

Lemma A.4.1. There exists a constant c0 > 0 such that for ρε < c0 there exist two positive

constants a, c and δ ∈ (0, 1) such that

sup
Λ⊂Rd

sup
V ∈V(N)

|zΛ(V )|ea|V |+c|V | ≤ δ (A.4.1)

holds, where N = bρ|Λ|c. Moreover, for any set V ′ ∈ V(N):

sup
Λ⊂Rd

∑
V : V 6∼V ′

|zΛ(V )|ea|V |+c|V | ≤ 1

L
a|V ′|. (A.4.2)

where L is given in (A.3.6).

Proof. Let α := a + c. To bound |zΛ(V )| we use a version of the tree-graph inequality

(proved in this form in [51], Proposition 6.1(a)) which states that for a hard core potential,

we have the following bound:∣∣∣ ∑
g∈Cn

∏
{i,j}∈E(g)

fi,j

∣∣∣ ≤ ∑
T∈Tn

∏
{i,j}∈E(T )

|fi,j |, (A.4.3)

where Tn and Cn are respectively the set of trees and connected graphs with n vertices. Note

that in the case of a stable and tempered interaction we would have a coefficient e2βBn on

the r.h.s. of (A.4.3) multiplying the sum over trees, where B is the stability constant. Then,

considering a fixed V with |V | = n,

|zΛ(V )|eα|V | ≤ eαn
∑
T∈Tn

∫
Λn

dq1

|Λ|
· · · dqn
|Λ|

∏
{i,j}∈E(T )

|fi,j |. (A.4.4)

Given a rooted tree T let us call (i1, j1), (i2, j2), ..., (in−1, jn−1) its edges. We have:∫
Λn

dq1

|Λ|
· · · dqn
|Λ|

∏
{i,j}∈E(T )

|fi,j | =
1

|Λ|n
∫

Λn
dq1 · · · dqn

n−1∏
k=1

|fik,jk |

≤ 1

|Λ|n
∫

Λ
dqi1

∫
Λ
dy2 · · ·

∫
Λ
dyn

n∏
k=2

|e−βV hc(yk) − 1|

≤ |Λ|
|Λ|n

[∫
Λ
dx|e−βV hc(x) − 1|

]n−1

=:
|Λ|
|Λ|n

εn−1,

where we considered qi1 as the root and we used the change of variables:

yk = qik − qjk , ∀k = 2, ..., n. (A.4.5)
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We choose ρ ε such that:

δ′ := ρeαε < 1, α = a+ c (A.4.6)

Then, since the number of all trees in Tn is nn−2, from (A.4.4) we obtain (recalling that

N = bρ|Λ|c):

|zΛ(V )|eα|V | ≤ nn−2

|Λ|n−1
eαnεn−1 ≤ 1

2
ρ εe2α, (A.4.7)

by using the bound 2 ≤ n ≤ N and the fact that ρeαε < 1. Then defining δ := 1
2ρ ε e

2α,

(A.4.1) is satisfied.

Moreover, for any fixed i we have:∑
V : V 3i

|zΛ(V )|eα|V | ≤
∑
n≥2

(
N − 1

n− 1

)
nn−2

|Λ|n−1
eαnεn−1

≤ eα
∑
n≥2

nn−2

(n− 1)!

(
N

|Λ|

)n−1

(eαε)n−1

≤ 1

2
√
π

e2δ

1− eδ′
, (A.4.8)

where in the last inequality we have used Stirling’s bound: n! ≥ nne−n
√

2πn.

Choosing a = 1 and δ′ such that (for any given c > 0)

1 +
e2

2
√
π

log(1− 1

2
e1+cδ′) ≥ eδ′ (A.4.9)

we obtain that 1
2
√
π

e2δ
1−eδ′ ≤

1
L , where L is given in (A.3.6). A sufficient condition for (A.4.9)

is that e1+cδ′ ≤ 0.45796 in which case c0 = 0.45796 e−2(1+c) for any given c > 0. Then, since

{V 6∼ V ′} ⊂
⋃
i∈V ′{V 3 i} we get (A.4.2) and conclude the proof of the lemma.

The way we chose to present the cluster expansion as well as its convergence can by no

means give the best radius of convergence. Our goal was merely to obtain (giving up the

seek for the best radius) the consequence of the cluster expansion theorem, given in (A.3.8),

which we use in order to establish (A.1.9).

After proving the convergence condition in Lemma A.4.1, an immediate consequence of

Theorem A.3.1 is that for all V ′ ∈ V(N) and by choosing c(V ) := c|V | and a(V ) := |V | the

following bound is true:∑
I: I(V ′)≥1

|cIzIΛ|ec‖I‖ ≤ L|zΛ(V ′)|eα|V ′|, ‖I‖ :=
∑

V ∈suppI

I(V )|V |, (A.4.10)
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where we also remind that α = 1 + c.

Proof of (A.1.9) and (A.1.11). Let [N ] ≡ {1, . . . , N} and A(I) := ∪V ∈suppIV ⊂ [N ] be

the area of the union of V ’s in the support of I. Noticing that cI 6= 0 only if |A(I)| ≥ 2, we

have:

1

|Λ|
∑
I

cIz
I
Λ =

1

|Λ|
∑
n≥1

∑
A⊂[N ]
|A|=n+1

∑
I:A(I)=A

cIz
I
Λ

=
N

|Λ|
∑
n≥1

1

n+ 1

∑
A31

|A|=n+1

∑
I:A(I)=A

cIz
I
Λ =

N

|Λ|
∑
n≥1

1

n+ 1

∑
I:A(I)31
|A(I)|=n+1

cIz
I
Λ. (A.4.11)

Passing to the second line, we replaced the sum over sets A ⊂ [N ] by N times the sum over

classes of equivalence of sets A under permutations that can be pinned down by choosing a

point from A and fixing it to equal 1 (over-counting, however, by |A| = n+ 1). This leads to

the following definition:

Fβ,N,Λ(n) :=
1

n+ 1

∑
I:A(I)31
|A(I)|=n+1

cIz
I
Λ (A.4.12)

and hence we obtain the representation (A.1.9). The function Fβ,N,Λ(n) is uniformly bounded

for all N,Λ as well as absolutely summable over n, namely from (A.4.10) with V ′ ≡ {1} we

get:

|Fβ,N,Λ(n)| ≤ e−cn

n+ 1

∑
I:A(I)31
|A(I)|=n+1

|cIzIΛ|ecn ≤ e−cnLeα, (A.4.13)

which concludes the proof of (A.1.11).

Having proved (A.1.11), by dominated convergence we can look at the thermodynamic

limit of each individual term Fβ,N,Λ(n). The sum in the definition of these terms does not

depend on the labels of the extra n particles (we have already chosen label 1). Thus,

Fβ,N,Λ(n) =
1

n+ 1

(
N − 1

n

) ∑
I:A(I)=[n+1]

cIz
I
Λ =

1

n+ 1
PN,|Λ|(n)Bβ,Λ(n), (A.4.14)

where

PN,|Λ|(n) :=
(N − 1) . . . (N − n)

|Λ|n
and Bβ,Λ(n) :=

|Λ|n

n!

∑
I:A(I)=[n+1]

cIz
I
Λ. (A.4.15)
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While obviously PN,|Λ|(n)→ ρn, for Bβ,Λ(n) is more complicate to show that it will give βn

at the thermodynamic limit. We leave out the investigation of the cancellations which are

eventually responsible for the cluster expansion to give at the limit Mayer’s virial expansion

(see [53]).

Remark. We can also write, using notation (A.3.4) and (A.3.5):

1

|Λ|
logZβ,Λ,N =

1

|Λ|
log
|Λ|N

N !
+

1

|Λ|
∑
π

zTΛ(π) (A.4.16)

where π is varying in the family of multi-indices over the vertices set V(N) and

zTΛ(π) :=
∑

π′:π′⊂π
(−1)|π|−|π

′| log
∑

{V1,...,Vn}�,
Vj∈I′, ∀j

n∏
j=1

zΛ(Vj), |π| := |{V : V ∈ π}|. (A.4.17)
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B. Finite volume corrections to the free energy

Let us put ourselves in the setting of Appendix A and recall the definition of the thermo-

dynamic free energy:

fβ(ρ) := lim
|Λ|,N→∞, N=bρ|Λ|c

fβ,Λ(N), where fβ,Λ(N) := − 1

β|Λ|
logZβ,Λ,N , (B.0.1)

Zβ,Λ,N being the canonical partition function defined in (A.1.3). From Corollary A.1.2 we

have:

βfβ(ρ) = ρ(log ρ− 1)−
∑
n≥1

1

n+ 1
βnρ

n+1 (B.0.2)

where for simplicity we recall the definition of Mayer’s coefficients:

βn :=
1

n!

∑
g∈Bn+1

V (g)3{1}

∫
(Rd)n

∏
{i,j}∈E(g)

(e−βV
hc(qi−qj) − 1)dq2 . . . dqn+1, q1 ≡ 0. (B.0.3)

This section is devoted to find a bound for the difference between the free energy (B.0.2)

and its finite volume version. The estimate of the difference is used in Section 8.8, where we

want to compute the k-th moment of the number of occupation in the site x of our effective

model. In this case is essential to approximate the measure by substituting in the exponential

the free energy for the hard cores in a single box with zero boundary conditions with the

mean field free energy (see (8.8.11)).

In what follows we will consider two different models. One is the model defined in Section

A.1 for which we have chosen periodic boundary conditions and the other one is the same

model with zero boundary conditions.

Let us denote by Zpβ,Λ,N and Z0
β,Λ,N the canonical partition function in the two cases, i.e.

periodic-b.c. and zero-b.c. respectively. Note that for the notation in Appendix A we have

Zpβ,Λ,N = Zβ,Λ,N .

We want to prove the following result:
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Finite volume corrections to the free energy

Theorem B.0.2. It exists a constant c > 0 independent of N and Λ such that:∣∣∣ 1

|Λ|
logZ0

β,Λ,N − βfβ(ρ)
∣∣∣ ≤ c`d−1

`d
(B.0.4)

Proof.

Here we give a sketch of the proof. It can be divided into two steps:

• The first step consists in showing closeness between the finite volume free energy with

zero and periodic boundary conditions, i.e.:

Lemma B.0.3. Let Λ := (− `
2 ,

`
2 ]d and let C be the frame of width δ = 2R (where R is

the hard core length) around Λ. Then:

Zpβ,Λ,N ≤ Z
0
β,Λ,N ≤ Z

p
β,Λ∪C,N (B.0.5)

• Once we have done the periodic boundary condition approximation, we are in the same

case as Appendix A and using convergence of cluster expansion we want to show:

Lemma B.0.4. Let Λ := (− `
2 ,

`
2 ]d. There exist two constants C ′, C ′′ > 0 such that:∣∣∣ 1

|Λ|
logZpβ,Λ,N − βfβ(ρ)

∣∣∣ ≤ C ′ (log |Λ|)4

|Λ|
. (B.0.6)

and ∣∣∣ 1

|Λ ∪ C|
logZpβ,Λ∪C,N − βfβ(ρ)

∣∣∣ ≤ C ′′ (log |Λ ∪ C|)4

|Λ ∪ C|
. (B.0.7)
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