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Introduction

Graphene is an atomically thick single layer of carbon atamanged according to a hon-
eycomb lattice. Its quite recent discovery, due to Geim anddselov, and the realization of
sufficiently large graphene flakes in the laboratory havewdfited an enormous outburst of both
experimental and theoretical investigatidi®f, 105 . Indeed in 2010, Geim and Novoselov
were awarded the Nobel Prize in Physios groundbreaking experiments regarding the two-

dimensional material grapherj&1, 103.

The electronic band structure of graphene consists of twd$an pristine graphene, they
touch each other at the Fermi level in a linear, cone-likhitasat the so-called Dirac poinfs
and K’. The low-energy electronic properties of graphene can &etore mapped onto those
of relativistic massless particles, thus allowing the obston of several effects predicted by
guantum electrodynamics in a solid state syst28) 34]. This in turn determines most of the
peculiar transport properties of graphene, including aimmah finite conductivity in the clean
limit at zero temperature2B], and a nearly constant optical conductivity over a larderival of

frequencies62, 138.

Transport measurements show that graphene has a rematkghlglectron mobility at
room temperature. Specifically, the electron mobility faaghene on a silicon dioxide (Sip
substrate isv 10° cn? V~! s7!, whereas for suspended grapheine. (vithout substrate) it is
~ 10 cm? V-1 s71 [16, 17, 135. These values are comparable with those obtained in more
complex systems, as a modulation-doped field transistor@MET) [14]1]. Besides a high
mobility, graphene presents a relatively high optical sgarency, in addition to a remarkable
flexibility, robustness and environmental stability. TB@soperties make graphene an attractive

material for applications also in photonics, optoeleatsmand plasmonicdlB, 79].
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Graphene is also notable for its remarkable mechanicalepties. In particular, recent
ab initio calculations 87] as well as experiment§¥] have demonstrated that graphene single
layers can reversibly sustain elastic deformations aglagy20%. In microelectronics, the
effect of strain is often used to modify the electronic arahsiport properties of materials in
order to improve the performance of the devicé$|] In graphene, the application of strain

(e.g.by stretching 19] or bending [7]) allows to tune its electronic propertiesdl, 123.

Recently, there has been a great interest towards the staltha realization of graphene-
based electronic devices designed by a suitable tailoririgeoelectronic structure exploiting
not only electric field effect but also applied strain. Botiege techniques allow to tune the
electronic properties of graphene in a reversible and al&ani.e. without adding any source

of disorder.

Therefore, an in-depth knowledge of the effects of thestwaigraphene could be exploited
to improve graphene-based devices. In this Thesis, we studistail the influence that applied
strain can have on several properties such as the opticeégies, the plasmonic properties,
and the transport properties. First of all, we focus on th@rsinduced modifications of the
optical conductivity. This quantity is observable by meahgansmittance or reflectivity mea-
surementsJ0]], and it allows to recognize the features of the electrotiigcsure which are
tightly related to the lattice symmetry and that can be mediéxploiting the strain. Moreover,
we study the changes of the plasmonic spectrum when thensystender strain. Due to its
low dimensionality and the large mean free path, grapheaa iateresting material for appli-
cations in plasmonics/B]. Hence, the application of strain for tuning the plasmapectrum
could have worthwhile technological implications. Fiyalwe devote the last part of the Thesis
to the effects that local strain can induce on ballistic $paort. Our study is motivated by the
possibility of realizing basic elements for all-graphefeeonics, which, by an engineering of

the local strain profile, could be integrated on a single lyeae sheet.
The outline of the Thesis is as follows.

In Chapterl, we present an overview of the main properties of grapheuneh & review is
far from being complete, but hopefully it should be suffitiemunderstand in which context

this work is inserted.



Introduction

In Chapter2, we introduce the tight binding model, which we have useddscdbe the
electronic structure of graphene. In addition, we show tlmadapproximation, which we have

exploited to obtain analytical results about the low enesiggtronic properties of graphene.

In Chapter3, we study the dependence of the electronic band structutefithe optical
conductivity of a graphene single layer on the modulus aretton of applied uniaxial strain
[110 113. In order to study the strain-induced modifications of tlee&onic structure we use a
tight binding model. Despite its simplicity, it providesa@ bf information about the electronic
properties which are tightly related to the lattice symméR8]. First of all, using the tight
binding model, we study whether it is possible to open a gaydxn conduction and valence
bands due to uniaxial strain. The presence of a gap betweetwthelectronic bands would
allow new applications in nanoelectronics. Moreover,adsewithin the tight binding model,
we recover that in the unstrained graphene there is a Van kiogailarity corresponding to
each electronic band] 28, 86]. Hence, we analyze how in graphene under uniaxial stran th
number of Van Hove singularities can increase as a functigtrain modulus and direction.
Therefore, we propose that these features may be observée iinequency dependence of
the longitudinal optical conductivity in the visible ranges a function of strain modulus and

direction, as well as of field orientation.

In Chapter4, we study the dependence of the plasmonic dispersionarlafi graphene
on applied uniaxial strain1fl1, 114. An in-depth analysis of the electronic bands allows to
study purely electronic quantities, such as the plasmagugctsum. In this Chapter, besides the
electron correlation at the random phase approximatiasl,lexe also include local field effects
specific for the honeycomb lattice. This improvement allbeviake into account the Umklapp
processes in the electron-electron scatterings, and goestly we can have information about

the plasmonic spectrum for any wavevector and any energy.

In Chapterb, starting from the tight binding model, we focus on the atiedy study of
the electronic properties at low energylp, 119. In particular, after deriving a general corre-
spondence between linear response correlation functiogiaphene with and without applied
uniaxial strain, we study analytically the dependence ersthain modulus and direction of se-

lected electronic properties, such as the plasmonic digperelation, the optical conductivity,
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as well as the static magnetic and electric susceptilsliti&pecifically, we study how the uni-
axial strain can change the dispersion of the recently preditransverse collective excitation
which exhibits an anisotropic deviation from the photonghavior Pg], thus facilitating its
experimental detection in strained graphene samples.

In Chapter6, we consider the effects of uniaxial strain on ballisticygport in graphene,
across single and multiple tunneling strain-induced besriL16 118. We therefore study the
angular dependence of the tunneling transmission acrasgla barrier, as well as on the con-
ductivity and Fano factor across a single barrier and a stipeture of several, periodically
repeated, such sharp barrie8[120. Our model is generalized to the case of nonuniform
barriers, where either the strain or the gate potential lpgofhay depend continuously on po-
sition. This should afford a more accurate description afiséic ‘origami’ nanodevices based

on graphenel2(, where ‘foldings’ are expected to embrace several latjzacings.



Chapter 1

Graphene: Generalities

Graphene is the name given to a two-dimensional single lafyearbon atoms. It can be
thought of as the building block of severaPdponded carbon allotropes, ranging from three-

dimensional graphite, to one-dimensional nanotubes,rtmdenensional fullerene2f.

Carbon is the sixth element in the Periodic Table. Thus, tivthe six electrons fill the
1s shell. These ones are called core electrons, whereas teearths are called valence elec-
trons. In graphene, threé€d 2p,, 2p,) of the four valence electrons get hybridized intg sp
states. These electrons are extended along the layer, entetd to a trigonal planar structure
with the formation of as-bond between nearest-neighbor carbon atoms which areasega
by 1.42 A. These bonds are responsible for the robustness of theybomd lattice structure.
The remaining two electrons, which occupy thestates in the free carbon atoms, form the
(bonding)w band, known as valence band, and the (anti-bondifidland, known as conduc-
tion band. In addition, these electrons are delocalizedgatbe plane and they are responsible
for transport and other long-range electronic propertigg@phene. Despite its simplicity, sin-
gle graphene layers have been obtained only recently (GaihiNavoselov, 2004104]) and it
exhibits many appealing properties that make it a promisiagerial for several technological

applications 48].



1.1 The discovery of a two-dimensional crystal

Theoretically, graphene has been studied for more thay gedrs. Specifically, graphene
has been used for describing properties of various carbseebmaterials. Already in 1947
Wallace published the first paper on the band structure girgmae 151]. In his work, Wallace
suggested a description of the transport properties ofhggapeglecting the out-of-plane de-
gree of freedom. Thus, he used a graphene layer as a simpkd matkescribe the electronic
properties of graphite. Before its discovery in 2004, geghwas regarded as experimentally
unrealizable 104, and it was thought merely as a theoretical object.

Indeed, already in the 30s, Landau and Peierls argued ftinatystwo-dimensional crys-
tals were thermodynamically unstable and therefore coatcerist at any finite temperature.
They stated that a divergent contribution of the thermaltfiatons should lead to such dis-
placements of the atoms that they become comparable t@ioteic distances at' # 0. In
addition, the existence of a two-dimensional crystal wdagdn contrast with a general theo-
rem of Statistical Field Theory: the Mermin-Wagner theorextcording to this theorem no
continuous symmetry can be spontaneously broken in dimmeggi< 3 at any finite temper-
ature p5]. In the case of a two-dimensional crystal, its formationwdorequire the breaking
of translational and rotational symmetries. Namely, unfilee space, a crystal is not invariant
with respect to each element of the Euclidean group, whiteiglirect product of the continu-
ous rotation group S@) and the continuous translational symmetry{T44. For this reason,
for long time atomic monolayers have been known only as agnat part of three-dimensional
structures, usually grown epitaxially either supportedablulk substrate or embedded in a
three-dimensional crystabp]. Without a three-dimensional basis, two-dimensionalariats
were presumed not to exist, until 2004, when there was thergrpntal discovery of graphene
[104] and other free-standing two-dimensional atomic cryqffalsexample, single-layer boron
nitride [105).

In 2004 Novoselov and Geim obtained, for the first time, ®ragid few layers of graphene
characterized by linear dimensions up1t® xm on top of non-crystalline substrates0H.
Moreover, not long after samples of graphene were obtaisesliagpended membranes on a

micro-fabricated scaffold in vacuum or aBq]. An important characteristic of these graphene
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1. Graphene: Generalities

samples is their high crystal quality.

At first sight, it may seem as if that there is a violation of khém-Wagner theorem. But,
in reality, the existence of graphene is compatible with tierWagner theorem. Indeed, two-
dimensional crystals become intrinsically stable by geotumpling in the third dimension.
Such ripples lead to a gain in elastic energy but supprebsesal vibrations, which above a
certain temperature can minimize the total free enedgy. [These ripples are observed both
in suspended graphene, by electron diffraction measuresmand in graphene on substrate,
by means of scanning tunneling microscopy (STM) measur&ng&iectron diffraction studies
of free-standing graphene indicate the presence of amsntrrippling, which is characterized
by a height on the order of 1 nm over a lateral scale df0 + 25 nm [97]. A comparable
height variation has also been measured in several stutlggaghene supported by insulating
substratesg3, 140. Hence graphene shows a slight extension in height, ansirscg it is not

exactly two-dimensional, and Mermin-Wagner theorem isviaiaited.

To obtain the first samples of graphene, Geim and Novoselet assimple but effective
procedure 105. The technique used is called micro-mechanical cleavagfegalso scotch-tape
method. Let us remind that graphite is a layered materiais thade by weakly interacting
ordered stacked graphene layers, which is the reason wisctiieh-tape method works well.
The top layer of an high quality graphite is removed by a detape, which is then pressed
against the chosen substrate, thus depositing severas fidkeeched to it. Among the resulting
flakes, single layers are usually found. A problem of thishudtis that most of the flakes
are not graphene monolayers but thick graphite flakes( graphene layers). Therefore one
should scan a huge area, typicallyl cm?, to find a micrometer-sized graphene monolayer. To
use directly atomic force microscopy (AFM) or scanning &t@t microscopy (SEM) to search
a graphene monolayers is unrealistl®f. A crucial point is that a graphene monolayer is
visible in an optical microscope if placed on a silicium (Bgfer with a suitable thicknes8(0
nm) of silicon dioxide (SiQ). In this way, it is possible to preliminarly identify thirekes, but
in order to be sure that a selected flake is a graphene layethefuanalysis is performed by

AFM or Raman microscopyib].



1.2 Main physical properties of graphene

The enormous outburst of both experimental and theordtigaktigation of graphene has
been fueled, mainly, by numerous remarkable propertigsntiake graphene an ideal candi-
date for applications in nanotechnologies. In this sectienlist several properties that make

graphene such an attractive material.

1.2.1 Transport properties

Due to its lattice symmetry, graphene is a zero-gap semiatndand is characterized by
a low-energy linear dispersion relatiodd. In other words, the low-energy quasi-particles are
massless and are characterized by an energy independmstivefivelocity. The dynamics of
the low-energy excitations is described by the Dirac-Weplation, which is used for massless
fermions [L34.

Intrinsic graphene disposes of no charge carriers. Howesgerg electric doping it is pos-
sible to have either electrons or holes as charge carrieqglofing the electric field effect, a
gate electrode can continuously change both the carriesitsteand type 104].

An attractive feature of graphene is its high carrier mojp#it room temperature. Mobility
in graphene on SiQis generally of the order af0000 = 15000 cn? V~! s~! [135. Moreover,
mobility on SiO, is almost a constant at low temperaty® < 300 K) and is limited by
disorder. Disorder in exfoliated graphene on $Si® mainly due to the charges trapped on
the surface of the substrate or adsorbed on graphene. Atémngperature’ ~ 300 K, most
properties of graphene are strongly dependent on temperaécause of the optical phonons
of the substratel]0q.

In the case of suspended graphene, removing the subsinatgets rid of extrinsic disorder
and so mobility increases of an order of magnitude with ressfmegraphene on substrate. In
suspended graphene it is possible to measure a mobilityghsa250000 cm? V! s~ at low
temperature andi20000 cn? V—! s~ at 240 K [16, 17]. Unlike in graphene on substrate, the
mobility in suspended graphene is strongly temperaturemggnt also at low temperatuds].

These large values of the mobility mean that in suspendgazhgree the mean free path is of the

1See§ 2.2for details about the low-energy electronic structure.
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Figure 1.1: Left Mobility as a function of temperature for graphene on S#Dcarrier density of0!!
cm~2 (blue and red), and suspended graphene at carrier dengity &8 ' cm~2 (purple). Adapted from
[48]. Right Comparison of mobility as a function of temperature for a MEET and for bulk GaAs
samples at different doping levels. Adapted frad]].

order of1um, which is comparable to the dimension of a typical devid 40].

For comparison, we consider the modulation-doped fieldceti@nsistor (MODFET). It
is based on an heterostructueeq. AlGaAs and GaAs), where the wide energy gap material
(e.g. AlGaAs) is doped and carriers diffuse to the intrinsic narttandgap layerg.g. GaAs),
at whose interface a two dimensional electron gas (chamhdétrmed [L41]. The physical
distance from channel and dopants allows to obtain an highilityo This methodology is
called modulation doping and it was invented by Horst StorateBell Labs B8]. The mod-
ulation doping represents the best technique to obtainyalaege value of electron mobility
in a bulk system. At cryogenic temperatures it is possibleeth a mobility of the order of
10 cm? V! s71, but at temperatures abo¥e~ 80 K the mobility of these systems falls down
to values of the order aof0* cm? V—! s! [141]. Fig. 1.1 compares the mobility as a function
of the temperature for graphene on $iGuspended graphene and a MODFET. Here, one can

see that at room temperature the mobility of graphene caargerithan that of a MODFET.

Due to the gapless energy spectrum, low carrier density tordia thickness, it is possi-
ble to modify the profile of carriers along a graphene laygri@ing the electric field effect.

For example, it is possible to realizepan or ap-n-p multi-polar configuration by electrostatic
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Figure 1.2: (a) Schemati@-n-p configuration of a graphene device. (b) Carriers densitjilpraround
the local-gate region fixed at y = 4V for various values of the back-gate,)/ Adapted from 102].

gates 157. Let us see the case of Naet al. [102, who have realized @-n-p structure.
Fig. 1.2 (a) schematically shows then-pconfiguration. One observes that the back-gatg)(V

is responsible of the electric doping in thaegions whereas the local-gate {Yis responsible

of the electric doping in th@-region. From the bottom to the top, the device is made by a
highly doped Si wafer (back-gate), an insulating Sl@yer where embedded inside there is a
poly-silicon layer (local-gate) which is conductive by itaptation of phosphorus ions. Finally,
above the substrate there is a graphene monolayer with eletdtodes (Ti/Au). Moreover,
Fig. 1.2(b) shows the profile of carriers density at\~= 4 V for different values of \;. Where

the density is positive, the regionnsdoped, whereas where the density is negative the region is
p-doped. In the case that we are taking into account the lgata-has a width af30 nm, which

is comparable to the mean free path of the sample. Indeed, éiah have found ballistic
and phase-coherent carrier transport. Ei§.shows the conductivity as a function of the local-
gate /¢ at fixed back-gate ). One observes an oscillating behavior due to the FabrgtPér
interference between the tymwn interfaces. Morever, there is an important interest tow#ne
theoretical study of the spectra and the electronic tramspmugh differently doped regions,
whose behavior differs from that of conventional two-dirsienal electron gased,[10]. Re-
cently, Rosset al. [131] used a microscopic model where the disorder is dominatezhbyge
impurities and transport properties are obtained fullyquan mechanically. In particular, they

have studied the effects of disorder on transport thrqughp junctions. The crossover from
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1. Graphene: Generalities
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Figure 1.3: Conductance as a function of Vat fixed Ve = —40V. Adapted from LL0Z].

the ballistic transport governed by Klein tunneling, to tieordered diffusive transport is found
to take place as the mean free path becomes of the order oistia@ck between the twmn
interfaces consistent with the experiments. These redeitoonstrate that the signatures of co-
herent transport are observable for impurity densitiesigis &s10'2cm~2, then the quantum

transport properties are sufficiently robust in graph&4g [

1.2.2 Optical properties

In addition to an high charge mobility, graphene is charaztd by an excellent optical
transparency. Such properties make graphene an attrawctterial for photonics and opto-
electronic devices such as displays, touch screen, ligiiitiag diodes (LEDs), and solar cells
[18].

Current transparent conductors are semiconductor-bdspéd indium oxide (I§03), zinc
oxide (ZnO), tin oxide (Sng), or ternary compounds based on their combinatidi® [The
most widely used material is indium tin oxide (ITO), a dopetype semiconductor composed

of ~ 90% In,O3 and~ 10% SnQ; [63]. ITO is commercially available with trasmittance
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Figure 1.4: Transmittance for different transparent conductors: lgeag, single-walled carbon nan-
otubes (SWNTSs), ITO, ZnO/Ag/ZnO and TiAg/TiO,. Adapted from 18].

T ~ 80%. Moreover, ITO is brittle for applications involving bemdj, such as touch screens
and flexible displays. For this reason, there is intereshénrésearch of new transparent con-
ductor materials with improved performance. Metal gridgtailic nanowires or other metal
oxides have been explored as alternatives. Nanotubes apteagre are promising materials. In
particular, by the comparison in Fid@.4 one can see that graphene films have a higher trasmit-

tance over a wider wavelength range than single-walledocartanotube (SWNT) films, thin
metallic films, and ITO 18§].

Despite its thickness, Na#t al. have observed that graphene absorbs a significant fraction
(ra =~ 2.3%, wherea is the fine structure constant) of incident light, from thamimfrared to
violet [101]. In Fig. 1.5(Left) we observe an aperture of the Si€ubstrate that it is only par-
tially covered by suspended graphene, so that the opacftdifferent regions (with or without
graphene) can be compared. Fg (Right) shows transmittance measurements on monolayer
graphene obtained by standard spectroscopy using a xemgralsia light source (blue circles)
and by optical microscopy (red squares). Both experimelaiia sets are in agreement and yield

a constant value for transmittance { — 7«) in the energy range taken into accoub®]].
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Figure 1.5: Left Transmission electron microscopy (TEM) micrograph @bam aperture covered by
graphene.Right Transmittance spectrum of graphene over a range of phatergies from the near-
infrared to violet. The blue open circles show the data olethiusing standard spectroscopy. The red
squares are the spectrum measured using an optical mipesdde red line indicates the opacity of
wa. Adapted from 101].

1.2.3 Plasmonic properties

It has been said already that it is possible to modify the gype density of charge carriers
in graphene using an external voltage. This feature canfbetiekly exploited in plasmonics.
A doped graphene monolayer can sustain low-energy plasmbith are tunable by means
of the electric field effect. In particular, plasmons in doggaphene enable low losses and
significant wave localization of the light in the teraheffHg) and infrared (IR) domaingp).
These properties make graphene relevant for possiblecagiphs in plasmonics.

The recent attraction towards plasmonics is immediatelyivaied by the constant effort
towards improving the performance of devices. A limitatioran improvement of the speed of
digital circuits is due to electronic interconnections. @spible solution is offered by photonics
by implementing faster communication systems based oragdtbers and photonic circuits
[107]. However, the replacement of electric circuits by photoomes is hindered by the low
level of integration and miniaturization of the photoniaaonents. The wavelength of light
used in photonic circuits is of the orderdf00 nm, hence itis larger than the typical dimensions

of an electronic circuit. Thus, if the dimensions of the ogticomponents should be reduced
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further and become comparable with the wavelength of ligtapagation would be obstructed
by optical diffraction. One way to avoid this obstacle is gested by plasmonics. Surface
plasmons enable to confine light to within very small dimensj as electromagnetic waves
can be trapped near the surface due to their interactionthétlelectron plasma. Hence, the
idea is to use plasmonic guides instead of optical fibers.

To date, the noble metals are the materials mainly invesiigor developments in plas-
monics, but they are hardly tunable and have large ohmiesoggt limit their applicability. In
graphene both characteristics are improved, and the coméineof plasmons is much stronger
than that of surface plasmons in metals due to the two-dimeabknature of graphene. In par-
ticular, graphene plasmons are confined to volumes)® times smaller than the diffraction
limit, thus facilitating strong light-matter interactisii/§|

In aluminium, which is a relatively absorbing metal, the gmgation length i2 mm at a
wavelength o600 nm, whereas in silver, which is a low loss metal, at the sameelgagth the
propagation length i20 mm. For slightly longer wavelengths, suchlas mm, the propagation
length is around mm [8], whereas in graphene, the propagation distance can reaobswvell

abovel 00 plasmon wavelength§g, 78].

1.2.4 Mechanical properties

Tum 1.5m

Figure 1.6: Scheme of AFM nanoindentation on suspended graphene nyanokdapted from§2].

In addition to its electronic properties, graphene is a ratale material also for its mechan-

ical properties. Generally, carbon nanostructures cheniaed by sp bonds, such as carbon

16



1. Graphene: Generalities

nanotubes, show an exceptional resistance to mechanieas shotwithstanding low dimen-
sionality [158. Leeet al. have measured the mechanical properties of graphene usimica
force microscope (AFM) nanoindention, this technique hesnbused to study a single layer
suspended over an aperture of a substi@® [The experimental apparatus consists of an ar-
ray of circular holes in a substrate, on top of which graphapeolayers have been deposited.
Once a graphene sample placed over an hole was detectede¢hamical properties of the sus-
pended membrane have been measured by indenting with ARM1 Bischematically shows
the layout of the experiment. The measured breaking stnefgfraphene ig2 N m~. In order

to compare the mechanical properties of graphene with thiosther three-dimensional mate-
rials, Leeet al. consider a graphene sheet as a three-dimensional slalgleaveffective height
equal to the distance between two adjacent graphene plageaghite { = 3.35 A). Thus the
Young modulus of graphene s = 1.0 TPa and the third-order elastic stiffnesgis= —2.0

TPa. These values allow to list graphene among of the stebinggterials ever measuregy].

b Y

Figure 1.7: Schematic apparatus to induce strain in graphene by meaasstetchable substrate.
Adapted from 99].

Another methodology to study graphene under strain is tsfeat it onto a flexible substrate,
so that one can apply controllable (uniaxial or biaxialastito graphene by applying stress on

the supporting substrate (Fi@y.7) [77, 99]. Exploiting this technique, Kinet al. have found

17



that graphene can reversibly sustain elastic deformatisniarge af0% [77]. Theoretical
results are in agreement with these measurements. Indesafdang toab initio calculations

the graphene lattice is stable with respect to uniaxialmefions up to aroun?0% [87].

3 710 nm

P, ext

Graphene

Substrate

0nm

Figure 1.8: Left Scheme of the methodology to induce strain in graphenegyusipressure difference
(AP = P,,; — P.;;+). Right AFM image of a single layer graphene bubble. The laterdkessal;m.
Adapted from 160.

Graphene behaves as an impermeable membrane and can gupgsute differences larger
than1 atm. Exploiting this property it is possible to deform graepk P4, 160. Fig. 1.8
(Left) shows a scheme of the experimental setup, where tiperimeability of graphene is
used. There is a graphene layer suspended over a well in asbi®trate. The graphene
membrane is clamped to the substrate through the Van dersWsaataction. Inside the well
there is a gas at pressufg,;, whereas outside the pressutg; is different so the difference of
pressurd AP = P, — P.,;) allows to have a controlled deformation of graphene. A simil
methodology to have the desired amount of strain in grapieabtained by using a gate in a
configuration like in Fig1.8. In this case an electric field induces an electron conceorran
graphene and exerts on it a pressure of electrostatic natre

Uniaxial or biaxial strain induces modifications not onlytie phonon spectrum but also
in the electronic spectrum, and can be measured directhgi®aman spectroscop99, 160.

In graphene, Raman measurements give information not dlytagophonons but also about the
electronic properties since graphene is a non-polar dryata so Raman scattering involves
electronic excitations as intermediate stafjs [

Material science teaches that the presence of strain carfisantly affect the device perfor-
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1. Graphene: Generalities

mance. Indeed, sometimes strain is intentionally appbachprove mobility, as in the strained
silicon technology, which is used in modern microelectesnB4]. Recently, an appealing
challenge is to exploit the modifications of the electrortfa&ure due to the strain to realize
an all-graphene circuit where all the elements are madeapitgme with different amount and
types of strain 120 160. Further methodologies to accomplish this challenge andaive a
controlled strain profile in a graphene sample are obtairyethéans of an appropriate geo-
metrical pattern in a homogeneous substrate, or by meanketeaogeneous substrate so that
each region interacts with graphene in a different wagy 125 149. Among the experimental
methodologies to realize strain superstructures in graghane is based on the relatively large
and negative thermal coefficient of graphene (which is aldutimes larger than that of bulk
graphite in the basal plane). Babal. [6] have realized experimentally a strain superlattice in
graphene, it is possible to manipulate the orientation amekdsions of ripples exploiting the
boundary conditions and the difference in the thermal esjoancoefficients between graphene
and the substrate. The graphene membrane is annealed0p Ko so any pre-existing ripple
disappears. After this phase, the sample is cooled and #phgne layer exhibits ordered rip-
ples, whose geometry depends on the boundary conditiop&rticular, the necessary tension
to produce this structure is due to the different sign of tegrmal coefficients of graphene and
substrate].

Such recent ideas to exploit mechanical modifications tizesan all-graphene device is at-
tractive as strain engineering would allow to tailor elentc properties, in a controlled fashion,

without the introduction of disorded RQ.
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Chapter 2

Graphene: Model

Graphene is characterized by an honeycomb lattice. Thisdas not a Bravais lattice and
it can be described as a triangular lattice with a basis ofdavbon atoms per unit celb] 137.
Hence, the honeycomb lattice is equivalent to two interpratiag triangular sublatticesi(and
B, say), both sublattices being shifted with respect to edbbro The lattice of graphene is
characterized by hexagonal symmetry. The space group phgre is therefore thB;, group
[39. Moreover, since the space group of graphene is symmarjitdan be expressed as the
semi-direct product of the discrete translation grébpnd the point hexagonal symmetry group
Dgp,.

Fig. 2.1shows a partion of the direct lattice of graphene, wherehhéad region is the unit
cell. The basis vectors are defined as:

a = g (3, ﬁ) . ay= % (3, —\/5) , 2.1)

wherea =~ 1.42 A is the distance between two nearest neighbor carbon at&ash carbon
atom has three nearest neighbors, for example a generiorcatbm of theA sublattice is

connected to its nearest neighbors by the vectors:

5 = g<1¢§) (2.2a)
b5y — g<1,—\/§), (2.2b)
d; = a(—1,0). (2.2¢)
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Figure 2.1: Direct lattice of graphene. The shaded region is the unlitacel it is identified by the basis
vectorsa; anda,. The blue vectorg, (¢ = 1,2,3) connect a carbon atom with its nearest neighbors.
Adapted from B9].

In the case of graphene, the basis vectors of the reciprpaaksare given by

by = :23_2 (1, \/5) by — :23_2 (1, —\/3) . (2.3)

The space symmetry properties of the direct lattice areeptesso in reciprocal lattice. Indeed,
in the case of graphene, the reciprocal lattice and thetdatice are identical up to a rotation

of /2, how one can see in Fi@.2

2.1 Tight binding model

Once defined the graphene lattice, we can study the electbanid structure. In a generic

perfect crystal the Hamiltonian of the system has the falgvstructure:

Htot = Tel + Tnucl + ‘/el—el + Vnucl—nucl + ‘/el—nucl + Crel' (24)
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2. Graphene: Model

Figure 2.2: First Brillouin zone {BZ), wherel, M, K e K’ are the high symmetry point, 7' e A are
points located on high symmetry lines, amis a generic point inside theBZ. Adapted from 89].

In order, there are the kinetic energy of the electrons, ihetic energy of nuclei, the interaction
between the electrons, the interaction between the ntle&einteraction between electrons and
nuclei, and finally the relativistic correlation ternesd. spin-orbit term). In general, the many-
particle Hamiltonian in Eq.4.4) cannot be solved without a large number of simplifications.
The first approximation is to separate the electrons intogmaips: valence electrons and core
electrons. The core electrons are mostly localized arduedclei, so they are considered as a
part of the nuclei (globally they are called ion cores). Hemwehen considering an electron, we
will be usually referring to the valence electrons. The secapproximation is called the Born-
approximation. According to this approximation, the dymesyof the electrons is separated
from the dynamics of the ions. In the equation of motion fa #lectrons we consider that
ions are frozen in their equilibrium positions. Hence, trentitonian for the electrons can be
written in this form:
He = Ta + Ver—er + Ver—ion- (2.5)

To diagonalize the Hamiltoniak,; is still a prohibitive problem. It is helpful to use a further

drastic approximation known as the mean field approximatida assumed that every electron
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‘sees’ the same average potential[159. Using this approximation the electrons are treated
as non-interacting particles and the single-particle Hamian has the following form in the

coordinate space:
h2V?

2m

H = — -+ UC(I'), (26)

wherel. is called crystalline potential. The Hamiltonizhconsists of two terms: the first term
is the kinetic term and is invariant under every spatial sytmynoperation, the second term is
the crystalline potential and is invariant under each apmraf the space group of the crystal.
Hence, globally the HamiltoniakK is invariant under each operation of the space group of the

crystal.

In order to describe the electronic band structure we wal te tight binding approxima-

tion. The Hamiltonian obtained following this approach Hasform expressed in EQR.©).

For everysp? allotropic form of carbon with long range ordére{ nanotubes, graphene,
graphite) a calculation of the electronic bands based otightbinding approximation, despite
its simplicity, provides a lot of information about the dienic properties132. We assume
that the crystalline potentials can be written as the sunderftical potentials centered around

each atomic site:

Uer) = D > Uion(r — Rya), (2.7)

a=AB j
whereR,, identifies sitej of sublatticea (« = A, B). Using the basis vector defined in

Eq. 2.1), we can write a generic vector of thiesublattice as
Rja = jia1 + jras, (2.8)
wherej = (j1, j2) is an integer pair, whereas we write a generic vector of théastice B as
Rjp = jia1 + joas + 03, (2.9)

where we have used the shift vectyrdefined in Eqg. 2.29. The sublattice variable that can
assume either valué or B is called pseudospin, by analogy with thgrojection of the spin

1/2 of the electron.
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2. Graphene: Model

We assume to know the eigenfunctiofr) of the following atomic Hamiltonian

h*v?
Hion = - om + Uion(r)7 (210)
Hion¢(r) = egb(r). (211)

Using the wave function(r), we define a set of Bloch wave functions as
1 .
«kir) = — ek Ricg(r — R, 2.12
dallir) = —= Z o(r — Rja) (2.12)

whereq is the pseudospin and¥ is the number of unit cell in the crystal. We have defined
the Bloch wave function in terms of a linear combination @maic wave function. The atomic

wave functions are written in Dirac notation as
(rlja) = é(r — Rja), (2.13)

where the generig(r—R ;, ) is the eigenfunction of the atomic Hamiltonian E2.10 centered
around the sitg of the sublatticex. After a manipulation, one can rewrite the wave functions

in Eg. .12 as the product of a plane wave function and a periodic foncti

Vo (k;T) = ™ Uy (1), (2.14)
and
Uk (r) = \/LN Z e~ R Ria) g — R,). (2.15)

The wave functions just defined span the subsggageof the Hilbert space where we will
apply the Ritz variational metho®§]. Moreover, using this set of basis we neglect any
extension of the electronic wave functions. For each waaterk of the1BZ we must find the

extrema of the expectation value of the energy,

(NKIHAK)
5W — 0, (2.16)
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where the trial state has the following form:
k\) = uph [kA) + upy [kB). (2.17)

In the Hamiltonian that we are taking into account there ispio dependent term, hence the

z-component of spin is a good quantum number that we can negléte calculations.

For each wave-vectde we define the generic element of the transfer integral magix
H,s(k) = (ak|H|OK). (2.18)
Similarly, we define the generic element of the overlap irdbgnatrix as:
San(k) = (k| k). (2.19)

where both thev and indices can assume value eithéor B. Both matrices are Hermitian,
square, and of orde. Since the distinction betweefiand B carbon atoms is only mathemat-

ical, and not physical, one finds the following equalitiesNmen diagonal elements

Haalk) = Hpp(k), (2.20a)
Saak) = Spa(k). (2.20b)

Hence there are only two independent elements for eachxmatri

In this case, the variational probler2.16 is equivalent to solve the following generalized
eigenvalue problem
H(k)uk)\ = Ek)\S(k)uk,\. (221)

The solution of this problem gives eigenstates and eigegasfor each wave-vectdr. The

eigenenergies we obtain have the following form

E)\ (k) _ —€1 + (—1)>‘\/€% - 45280’ (222)

252
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2. Graphene: Model

where

eo = Hi,(k)— |[Hap(k),
g1 = Hyp(k)Sap(k) + Hap(k)Shp(k) — 2544(k)Haa(k),
g2 = Sha(k) —|San(k)*. (2.23)

In Eq. 2.23 )\ = 1 refers to the valence band, and= 2 refers to the conduction band.

The elements of both the transfer integral matrix and thelapentegral matrix can be

expanded in the tight binding basis as

1

Hop(k) = 5 > e e Rl (jalH|j'B), (2.24)
33
1 R
Saplk) = 5 D e "R (jaj'5). (2.25)

33"

Exploiting the discrete translational invariance we caateothe terms of the expansions in
Eq. 2.29 and in Eq. .25 according to the distance from the origin of the lattice. Néwe
chosen the origi® = (0,0) as belonging to sublatticd. Thus, one finds that the diagonal

elements can be written as

Haa(k) = € + (0A|AU|0A) + ) e™Ri(0|H|jA), (2.26)
J#0
where
(r|AU[r") = [Uc(r) = Uion(r)] 0(r — 1),
and
Saa(k) =1+ e Ri(0A[jA). (2.27)
J#0

Similarly, we obtain the expansion for the off-diagonaheémnts

Hap(k) =) ™51 (0AH|jB), (2.28)

J
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Sap(k) =) ™ @t (0A|;B). (2.29)

J

The2p, electrons form the conduction bafd*) and the valence band). In a hydrogen-
like model the2p, wave-function is real and invariant with respect to the tiotaaround the
z-axis. Assuming thap(r) has these latter properties, we can formally expand theeslesof
the transfer integral matrix up to nearest neighbor termse fdhds for the diagonal elements
the following expression

Haa(k) =t +0(t?), (2.30)

where
t0 = (0A|H|0A) = € + (0A|AU,|0A), (2.31)

and one finds for the off-diagonal elements the followingregpion
Hyp(k) =ty + O(t?), (2.32)

where
tM) = (0A|H|0B), (2.33)

and we have introduced the complex structure function defase

3
T = Z o, (2.34)
I=1

Since the energy bands are defined up to a constant, we fixahssant by setting, = 0. With
this choice of truncation of the expansion of the transfeggral matrix elements, we have only

one hopping parameter. Thus we redefine the nearest neigbpping parameter as

t=tW, (2.35)

Similarly, we can expand the overlap integral matrix eletaeip to nearest neighbor terms
and thus one finds
Saak) =14 0(s9), (2.36)

Sap(k) = sWy + 0O(sY), (2.37)
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2. Graphene: Model

where
s = (0A|0B). (2.38)

Also for the overlap integral matrix elements only one pastenremains, thus the nearest

neighbor overlap parameter is redefined as

s = s, (2.39)

=
E/ Y

r M K r

Figure 2.3: Left. High symmetry pati'™-M-K-I" in the 1BZ. Right Conduction band and valence band
along the high symmetry path. The unit of energy is the alsalalue of the hopping parameterand
the overlap parameter is fixed at= 0.07.

Following this choice of truncation of the expansions of thatrix of the tight binding

model, we can write explicitly the electronic bands thusaoidd as

(L
RSP

Ex(K) (2.40)

where E; (k) is the dispersion relation of the valence band, wherédk) is the dispersion

relation of the conduction band.

Conduction and valence bands touch each other at the cafis1BZ, i.e. at theK and
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K’ points,

K = %(x/ﬁ) (2.41a)
K = 33%@ (ﬁ,—1). (2.41b)

This result does not depend on the particular approximatimsen but is an intrinsic property
of the electronic structure of graphene. The band degeypatabe X’ and K’ points is related
to the hexagonal symmetry of graphene. In terms of grouprgheme says that there is an
essential degeneracy.

Another intrinsic property of the electronic structure ofhene is the presence of saddle
points at the midpoints of the sides of thBZ for both the conduction and the valence band.

The positions of the midpoints of the sides of ttigZ are given by:

27 1 V3
27 1 V3
My = e (—5, 7) , (2.42b)
2
M, = — (1 . 2.42
3 3& ( aO) ( C)

The zero gradient of both electronic bands at the edge mitgpdi, is due to the time-reversal
symmetry and the inversion axis symmet8@]. Moreover, since a honeycomb lattice is sym-
metric with respect tat27/3 rotations each electronic band assumes the same valuehat eac
edge midpoint. Thus, there is a degeneracy at the edge midpad;.

At zero temperaturel{ = 0), since there are two (valence) electrons for each unit el
valence band is completely filled, whereas the conductiowl lgtotally empty. Fig2.3shows
both the electronic bands evaluated along the high symrpattyin thelBZ. One recovers the
features that we have just listed, and in addition one se¢stimduction and valence band have
no overlap and there is no gap. Hence, one says that graphareero-gap semiconductor.

We do not treat directly the single-particle Hamiltonign In other words, we do not find
the tight binding parameters by the calculation of any mattement. We have obtained an

analytic expression for the electronic bands taking intmaat the symmetry properties of the
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2. Graphene: Model

lattice. With our choice of truncation we have two paranmgtamose values have to be fixed.
A suitable solution is to choose these values in agreemehtexperimental measurements or
with ab initio calculations.

In the case of graphene, the most common practice is to fitighe binding dispersion
around theX" and K’ points [L129. This approach is excellent to describe the low-energg-ele
tronic excitations. In our case we have chosen the tightibgndarameters that better fit &

initio calculations, hence one finds&29:

t = —28¢eV, (2.43a)
s = 0.07. (2.43b)

0.3
0.25
0.2
0.15
0.1
0.05
0
-0.05
-0.1
-0.15
-0.2

=
(E-E)/E

KI

r M K r

Figure 2.4: Left High symmetry pati’-M-K-T" in the 1BZ. Right The blue line curve is the relative
difference[E} (k) — Eq(k)]/E2 (k) between conduction band neglectingarametett’, (k) and taking
into account itE, (k). Similarly, the red line curve is the relative differende; (k) — E1(k)]/E1 (k)
between valence band without and with the overlap paramgtéh curves are evaluated along the high
symmetry path in théBZ.

The hopping parameteris the energy scale of the model. For example, both the energy
bandwidths and the low-energy Fermi velocity are relatethi® parameter. The overlap pa-

rameters is a dimensionless term, a non-zero overlap parametgr() leads to the asymmetry
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between conduction and valence band. This term is negéigiblow energie$|E/t| <« 1).
Indeed, by comparison between the dispersion relatiorsamidl without the overlap parameter

shown in Fig.2.4, one sees thatis negligible close to thé& and K’ points.
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Figure 2.5: Density of states (DOS) as a function of energy (in unitg@fobtained by the dispersion
relation @.40.

Fig. 2.5 shows the density of stateggF) as a function of the energy. Positive energies
refer to the conduction band whereas negative energiestoefiee valence band. Close to the
neutrality point & = 0), the density of stateg(F) has a linear behavior. This is due to the
linearity of the electronic bands in proximity of the corpaints X' and K.

In each band there is a separatrix which passes throughddéegaoints)M, (¢ = 1,2, 3). A
separatrix is an isoenergetic line which separates regwthdifferent topology. A Fermi level
crossing these saddle points would imply the change in @ dgy of the Fermi surface, which
actually corresponds to a Lifshitz transition of the neckraption type. A Lifshitz transition
[86, 106, also known as electronic topological transition (ET $)aichange in the Fermi surface
topology occurring upon a continuous change of some eXtparameter, such as pressure,
magnetic field or, most naturally, doping. This transiti@esd not involve a symmetry breaking,

as in conventional phase transitions of the Landau typestiiLieads to observable singularities
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2. Graphene: Model

in thermodynamics, electron transport, sound propaggdiath the magnetic response of metals
[3, 14]. The hallmark of an ETT is provided, in a two-dimensionasteyn, by a logarithmic
cusp (Van Hove singularity) in the DOS. Indeed, FX5 shows that the DOS exhibits two
logarithmic divergences which are due to the separatrioesept in the electronic bands (one
for each band).

In addition to the knowledge of the dispersion relationshef ¢lectronic bands, it is useful

to obtain the eigenstates of the model. The eigenvectorg.?221) can be presented as

1 ((=1)*
Ugy = —= . ) 2.44
kA \/§ (e—zek ) ( )
where
et = — e (2.45)
|7k|

The norm of the eigenvector in EQ.44) is given by:
||| = KAKMNY2 =14+0(®) A=1,2, (2.46)

and consistently with our choice of truncation these eigetors are orthonormal.

i a) single-, r.=1.86 AT b) double-{, polarized] 10
2 5t + 15
% 0 0
FJQJ L

st A 1s
S 04 - A 04
[y I A
q 00 — e :;"--;:::__:-:::= Fzrt—] 00

r K Mr K M

Figure 2.6: (a) Top, full lines: ab initio result with a simple basis set (singj¢-and a radial cutoff
re = 1.86 A; dotted lines: nearest-neighbor tight binding band stmecEq. .40 with t = —2.8
eV ands = 0.07. Theab initio result shown by the full line coincides, in this energy scaléh the
third-nearest neighbor tight binding modBlottom dotted line: difference between thé initio and the
nearest neighbor tight-binding band structure shown irtdpgoanel. (b)Top, full lines: ab initio result
with a double¢ plus polarization basis set and a radial cutoff= 3.31 A; dashed lines: third-neighbor
tight-binding band structure®ottom difference between the two band structures above. Addpied

[129.
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In order to study the electronic properties of graphene tvemwhole bandwidth we will
use the model just presente@, the nearest-neighbor tight binding model.

In Fig.2.6(a), Reichet al. compare the nearest-neighbor tight binding band stru¢tiotéed
lines) with anab initio band structure (solid lines) and the third-nearest neigtigbt-binding
band structure (which coincides witb initio results) L29. In particular, for theab initio
band structure in Fig.2.6 (a), Reichet al. used a simple basis set (singlpwith a cutoff
radius of1.86 A. By a comparison between the dispersion relations in E4Q andab initio
calculations have obtained that there is a discrepancyyallesser than.4 eV over the whole
bandwidth for both the conduction bands and the valencesand

In Fig. 2.6 (b), Reichet al. compare the third-nearest neighbor tight-binding banatstre
(dashed lines) with a more accuratk initio band structure (solid linesiP9. In particular,
for the first principles band structure in Fig.6 (b), Reichet al. used two independent radial
functions to describe the orbitals, and included a shell of polarizéarbitals (double¢ plus
polarization basis set), and had a radial cutof8 Gfl A. By a comparison between the disper-
sion relations in Eq.4.40 andab initio calculations shown in Fig2.6 (b) the discrepancy is
maximum at the saddle point (M point) and it is arouneV, at the center of 1BZ{ point) the
discrepancy is aroun@3 eV, and the agreement is excellent in proximity of the Diramfs.

Although the nearest-neighbor tight binding model is qitatiely reliable to describe the
low energy (E£/t| < 1) properties, this model is qualitatively relevant becaitisentains all
the principal features of the electronic structure of geaph(i.e. Dirac points, saddle points,
finite bandwidths). In particular, our principal resultg airectly explainable in terms of these

features of the electronic system, which can be traced lattietlattice symmetry.

2.2 Massless Dirac fermions

Intrinsic graphene has a Fermi energy coinciding with thergn £ = 0 at the K and
K’ points. For experimentally realizable dopings, the Femnargy is much smaller than the
hopping energyFEr/t| < 1. Thus, it is useful to employ an effective model to descrie t
low-energy excitations. This model is obtained by the espanof the complete electronic

Hamiltonian around thel and K’ points [76].
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2. Graphene: Model

An arbitrary wave function)(r, z) involving only low-energy states can be written in terms

of a four component smooth envelope functibfr), or its Fourier transfornd’(p), as PJ

d? | |
v = / (2752 Ware(p)e P Une(x,2) + Wpge ()P U e (r, 2)+ (2.47)

+ Uapr (P)e B TP TU e (1, 2) + Ve (p) e TP U (v, 2).

The low-energy effective electronic Hamiltonian is defireeda matrix of orde# whose
element between any two smooth envelope functions,®(g) and¥’(r), coincides with the

matrix element of the complete Hamiltonian, between theesmonding full wave functions

W(r, z) andy/(r, z)

/dzr\IfT(r)H(—iV)\I/’(r) = /erdwT(r,z)H(—iV,r, —10,, 2)'(r, 2). (2.48)

If one uses as the complete Hamiltonian the one obtained ansnef the tight binding
approximation and expands the effective Hamiltonian in @@of the momentum, one obtains

as leading termplaz < 1) the following matrix
H(p) = hvpmoo - p, (2.49)

wherevr = 3ta/2h is the Fermi velocity. Moreovelwr = (o,,0,) is a vector consisting of
two Pauli matrices acting in the two-dimensional pseudospiace {4 and B), whereasr, is
an identity matrix of orde2 which acts in the two-dimensional valley spaé¢e &nd K'). The

Hamiltonian, Eq.2.49), acts on the generic four-component spinor

Uy = (Yar(P), Yer(P), Yex (D), —‘I’AK/(p))T . (2.50)

Using this particular choice of the form of the generic spirane has the most symmetric
form for the effective Hamiltoniand]. Moreover Basko, using symmetry considerations, has
demonstrated that the leading term of the effective Hamigto in powers op is unique and is

expressed by Eq2(49, independently of the microscopic model used.

In ideal graphene the valleys and K’ are decoupled. However, the presence of some

inhomogeneity can induce a coupling between the valleyspahticular, an inhomogeneity
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which is smooth at the atomic scale leaves the valleys intig@. Hence, an atomic-scale

inhomogeneitye.g. point-defects, can mix the states from different vallegg [L09.

In each valley [ or K’) the dynamics of the low energy massless quasiparticledean
effectively described by the Dirac-Weyl equation, ratlmert by the Schrodinger equation. This
is why the points of théBZ, where conduction and valence bands touch each othderaned

Dirac points .

The dispersion relations obtained by the Hamiltonian, Edt9j, are given by
Ex(p) = (—1)*hvgp, (2.51)

where)\ = 1 refers to the valence band, and= 2 refers to the conduction band. Hence, both
the conduction band and the valence band consist of twasictcones, one centered at tRe
point and the other one at th€’ point. According to the dispersion relations, ER.51), the
low energy excitations are massless, and characterized &yexgy independent Fermi velocity
vr. Hence, each eigenstate of the energy is identified by theentump, the valley label

or K'), and thez-projection of the real spin. The latter will be omitted.

By analogy with the spin of the electron, the pseudospinatpers defined as

1
S = Jno. (2.52)

Hence, a relevant quantity which characterizes the eig@ssis their helicity, which is defined
as the projection of the momentum operator along the pseiuddsection

P gwm = (-1)™(p),  A=12 (2.53)

One finds that electrons (holes) in graphene have parahéb@aallel) pseudospin along the

direction of motion 7).

Finally, using the conical relation dispersions, Ej5@), one can find the analytical expres-

sion of the DOS at low energies

o) = 28 1

— | E|. 2.54
T 7712U§| | ( )
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2. Graphene: Model

Hence, for energies near the neutrality poifit£ 0), the DOS behaves as a linear function of

the energy, and the slope is inversely proportional to theusgof the Fermi velocity.
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Chapter 3

Strain effect on the electronic bands

Graphene is an atomically thick membrane but, notwithstenis low dimensionality, it
is notable for its remarkable mechanical propertiég B7]. These properties suggested that
applied strain can induce substantial modifications of tedbstructure of graphene, such as
the opening of a gap at the Fermi level, thereby triggeringantum phase transition from a
semimetal to a semiconductor. While earlay initio calculations were suggestive of a gap
opening for arbitrary strain modulus and directiég]| both tight-binding modelsl21] as well
as more accuratb initio calculations 130 point towards the conclusion that the strain-induced
opening of a band gap in fact depends critically on the dwaaf strain.

In this Chapter, we will be concerned on the effects inducedgplied strain on the elec-
tronic bands. Although uniaxial strain will be included irs&ndard, non-interacting model
Hamiltonian at the tight-binding levalg. through the introduction of strain-dependent hopping
parameters]21], this will nonetheless capture the essential conseqsenicepplied strain on
the band structure of graphene.

Moreover, we will study the modifications of the optical cactivity due to the strain. This
quantity is related to measurable quantities, such as theabpransmittance or the optical
absorption. In the case of unstrained graphene, the opticaluctivity has been derived within
the Dirac-cone approximatior6®], and within a more accurate tight binding approximation
also for frequencies in the visible rangE3f. The effect of disorder has been considered by
Perest al. [124], and that of finite temperature by Falkovsky and Varlam#s8}.[ These studies

are consistent with the experimental observation of a peamstant conductivity ofre? /2h
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over a relatively broad frequency rand3][ 101]. Such a result demonstrates that impurities
and phonon effects can be neglected in the visible rangeeqtibncies93]. Hence, using the
tight binding model, we will analyze how the modificationstié electronic bands due to the

applied strain induce a direct effect on the optical respsid graphenel[L]].

3.1 Tight binding model for strained graphene

In this paragraph we deal with the strain effects on the tigiding model, which we have

derived in detail ir§ 2.1

Figure 3.1:. Lattice coordinate system. The abscissa coincides withathrchair direction and the
ordinate coincides with the zig-zag direction . The unibsigain is identified by a vector, whose modulus
is the longitudinal deformation and its directiord is that of the applied tension.

In particular, we are interested in uniformly strained dyape. The generalized Hooke’s

law, which relates the stress tensgrand strain tensay;;, has the general form
Eij = Z SiihkThi (3.1)
hk

whereS;;,; is the generic component of the compliance tenSbr In the case of a bidimen-
sional system with hexagonal symmetry, such as grapheaé; i tensor has only two inde-

pendent components, as in an elastic continuum sB8gi21]. Hence, if we take into account
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3. Strain effect on the electronic bands

to apply a uniform tensioff’ along a generic direction we have only a longitudinal defation
equal toS,.,, T, and a transversal deformation equabtq,,7". The strain tensor in the lattice

coordinate system, in Fi@.1, is written as

.. 00820—1/sin'29 (l'ty)cosﬁsine | (32)
(1+v)cosfsin® sin®6 — vcos? 0
wheree is the longitudinal deformatiory is the Poisson’s ratio{ = —S,.yy/Seaes), and

0 denotes the direction along which the tension is applieth waspect to the: axis in the
lattice coordinate system. In particular, for the Poissoatio we use the value = 0.14, as
determined fromab initio calculations for graphene§]. Such value is comparable with the
known experimental value = 0.165 for graphite L2]. We will focus on the uniaxial strain,
and in this case the tunable parameters are the strain mexdand the direction of the tension
0. According to Fig.3.1, the special value$ = mx/3 andf = 7/6 + nr /3, wherem andn

are any two integers, refer respectively to the armchairtheaig-zag directions.

Moreover, the form of the strain tensor in E§.2) is suitable also for biaxial deformation,
but in this case the parameters different from Poisson’s ratio and becomes a tunablerpara
eter. In particular, if one fixes = —1, we can treat the case of homogeneous deformation,

which, at variance with the other cases, preserves hexalgbiiee symmetry.

In terms of the strain tensor, the deformed lattice distarare related to the relaxed (un-
strained) ones by:
R=(I+¢)-RY, (3.3)

whereR(©) is a generic vector in the relaxed graphene lattice. Hemeethree vectorﬁgo)
which connect any carbon atom to its nearest neighbors,atefinEqgs. 2.2), are modified by

the previous linear transformation as
_ . 5(0)
o,=(I+e)-0,”. (3.4)

The deformation of the direct lattice according to the EB33)(leads to a modification of the
reciprocal lattice vectors
G=>O+e)'- GO, (3.5)
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A modification of the lattice, and in particular the changebond lengths 3.4), leads to
different hopping parameters and overlap parameters eetnearest neighbors. In the previous
Chapter, we have shown that, within the tight binding appnation, the energy dispersion

relationsEy, can be obtained as the solutions of the generalized eigenpabblem
Hyuyy, = EjSgugn,

where

(3.6b)

(0 f
_ L gk
Sk = (gfi 1) .

The off-diagonal elements of the two matrices are relatebdedollowing complex functions

3

fu = Zteeik'ée, (3.7a)
/=1
3

g = > se™% (3.7b)

(=1

wheret, = t(d,) ands, = s(d,) are respectively the hopping parameters and the overlap
parameters between two nearest neighbors connected bytheeioree vectorg, (¢ = 1,2, 3).
The complex functions in Eqs3(7) can be expressed in terms of the wavevectors of unstrained

graphene. Exploiting Eqs3(4) and (3.5) one can write

3

fe = Zteeik(o)'é‘SO), (3.8a)

(=1
3

g o= > s, (3.8b)

(=1

wheret, = t(d,) ands, = s(d,) are respectively the hopping parameters and the overlap

parameters used in EqS.7).

So far, we have not chosen the analytical form of the atomieewianction¢(r), but we
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3. Strain effect on the electronic bands

have only assumed that it has some general properties. Dihe tovo-dimensionality of the
graphene sheet, we can safely neglect that extension dleraxis orthogonal to the graphene,
z say [L09. One possible choice of the atomic wave function is suchite@quare modulus is

a normalized gaussian function
o(r) = (1/\/7o,) exp(—r2/203), (3.9

wherel/o, = Z,/2+/3a, and the valueZ, = 11.2 is fixed by the condition that the relaxed
overlap parameter be= 0.07 [109, 129. Thus, the strain-dependent overlap parametease

defined as
2
Sp = /dr¢(r)¢(r +6y) = exp (—%) ) (3.10)

g
Correspondingly, the hopping parameteérsare defined as the transition amplitudes of the
single-particle Hamiltonian, = —(h?/2m)V? — Ze? /r, between two lattice sites beirdy
apart from each other. Herg,is chosen so that= —2.8 eV in the unstrained limit. One finds

ty = |: e (1 + 55 ) - M[O (ﬁ)} Sy, (311)

2 2 2
2mo; 4oy o 8oy

wherely(x) is a modified Bessel function of the first kinBg). One findsdt,/dj, = 7.6 eV/A
for ¢ = 0, which is comparable with the valget eV/A obtained in Ref.121] within Harrison’s
approach 7]. In the unstrained limit{ = 0), Egs. 8.7) reduce tofx — ty andgx — sk,

respectively. The solution of the generalized eigenvatoblpm gives the dispersion relations

— B + (1) F2 + 4Gy ] fx |2

Fiy = A2
o Yen (312)
where)\ = 1 refers to the valence band, ahd= 2 refers to the conduction band, and
F = o/ + nfx (3.13a)
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The associated eigenvectargs, can be presented as

COS Pxn
= . , 3.14
Ut <€—z0k sin ¢k)\> ( )
where
% = fi/| fil, (3.15)
and
coS ey = — B v/ : (3.16a)
\/ |fk|2 + GkElzcj\
| fidl

sin gZﬁkA = — s (316b)
\/ |fk|2 + GkEi;\

with cos(¢x1 — ¢k2) = 0. In the limit of no strain, one findgy; — 37/4 and¢y s — m/4.

Here and below) = 2 when)\ = 1, and vice versa. In the unstrained limit£ 0), one recovers

the band dispersion in ER.40).

The band dispersion relatioits ,, Eq. 3.12), are characterized by Dirac poinig. points
in k-space around which the dispersion is linear, wiigre= 0. As a function of strain, such a

condition is satisfied by two inequivalent point&k, only when the ‘triangular inequalities’
‘tél - t€2| < |t€3‘ < |t€1 +t€2| (317)

are fulfilled [68], with (¢4, {5, (3) a permutation of1, 2, 3). Around such points, the dispersion

relationsEy, can be approximated by cones, whose constant energy seateellipses.

The location oftkp, in the reciprocal lattice satisfies

2 2 2
tﬂd - tél - téQ

COS (kD . (6g1 — 6[2)) = 2t£ t£

: (3.18)

with (¢, (2, (3) a permutation of1,2,3). While in the unstrained limit the Dirac points are
located at the vertices of thd8Z, i.e. kp — K = and—kp — K’ = — K, when either of the
limiting conditions in Eqs.3.17) is fulfilled as a function of strain, say whepn = t,, +t,, the

would-be Dirac points coincide with the middle points of #ees of thelBZ, sayk, — M,,.
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3. Strain effect on the electronic bands

0 5 10 15 20 25 30
0 [degrees]

Figure 3.2: Critical value of the longitudinal deformatiari as a function of the direction of the applied
tensiond. In this plot, a limited interval of values of the directidrare taken into account because any
other value can be obtained exploiting the lattice symmgtoperties.

In this limit, the dispersion relations cease to be lineaaispecific direction, and the cone
approximation fails. For each directiérihere is a critical value of the longitudinal deformation
¢* at which the Dirac points coincide with the middle pointstoé sides of théBZ, and thus
for larger deformationsz(> ¢*) there is a gap opening. Fig.2shows the critical value* as

a function of the direction of the applied tension. One firid# the zig-zag direction gives the
minimum value of the critical deformatiat = 22.8%, whereas for the armchair directieh
diverges, this implying that in this case it is impossiblé&ve a gap opening. These results are

in excellent agreement witb initio calculations 82.

In order to make a comparison between the electronic bantisawriwithour strain it is
useful to express thie-dependences in terms of the unstrained reciprocal latiqaoiting re-
lations in Egs. 8.4) and @.5). Under the conditions given by Eg8.17), the band dispersions,
Egs. 8.12), can be expanded ds,, = Ex, around either Dirac point, with = k, + q, as:

_ —q-d+ ()@ dP + 1G4 Vil
- QGkD ’

Eon (3.19)
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where
d= ngfo:D + gltDkaD. (320)

Eqg. B.19 defines a cone, whose sectif, = E at a constant energy levelis an ellipse. Its

equation can be cast in canonical form as

(x Agmo) L B;Iyo) _ g (3.21)

The centel¢,o, g,0) With respect tdc,, of the ellipse evolves linearly with enerdy according

to

1
qz0 = §A2(dz cosn — dysinn)E (3.22a)

1
o = §B2(dx sinn + d, cosn)E. (3.22b)

The ellipse semiaxed, B are given by

% _ %(7_,/—a2+52) (3.23a)
= sV ), (3.23b)

In the above equations, we have made use of the followingitefia:

1/2

. 5
sinn = 3.24b
7 2 cosny/a? + (32 ( )

2

a = —%(tfﬂg—%g) (3.24c)

3v/3a2
= — 5 (2 —12) (3.24d)

3a 2, 42, 42

One findsa, 3 — 0, while v — 9t2a?/2, in the limit of no strain,e — 0. Further in-
sight into the anisotropic character of the low-energy cdispersion relations around the

Dirac points, Eg. .19 can be obtained by recasting them in polar coordingies), where
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3. Strain effect on the electronic bands

V(@ sin(g)

1 05 0 05 1
V@V cos(g)

Figure 3.3: Polar plot ofvy (¢) (with A = 2, i.e. for the conduction band) arourd, v)(¢), normalized

with respect to its value in the absence of strajg@. Strain is here applied at a generic fixed angle
0 = m /4. The anisotropy of the Fermi velocity increases with insheg strain, until the shape of (¢)
breaks at = 0.28. This corresponds to the existence of a direction (dashezlllvie), Eq. 8.25), along
which the dispersion relatiofi,, displays a nonlinear character.

q = (gcos ¢, gsin ¢). One finds thereforé,, = v,(¢)q, the anisotropic prefactar, (¢) de-
pending on the Dirac point around which one is actually penfog the expansion. Fig.3
showsw,(¢) for the conduction band\(= 2) centered arounét,. One notices that applied
strain increases the anisotropy of thelependence, until a critical value is reached, at which
the cone approximation breaks down. This corresponds tmbnear behavior o, along a
specific directionp,, characterized by the vanishing©f(¢) and given explicitly by

V3t F i

-— 3.25
3ttty ( )

cotgpo = —

when|ts| = |t; F t2| in Egs. B.17), and to the opening of a finite gap around zero energy in the

DOS. In that case, the Fermi velocity vanishes along a dineet, given by

1 _
(1 + £40)cotgdo — ay (3.26)

cotgph = )
&% (14 eyy) — eyzcotgdy

Fig. 3.4 compares the tight binding model electronic band struatdirgtrained graphene

(red continuous lines), with strain modulus=0f= 0.18 along the generic directiofh = 7 /4,
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E/ Y

r M K r

Figure 3.4: Left. High symmetry pati'™-M-K-I" in the 1BZ. Right Conduction band and valence band
along the high symmetry path in graphene with a strain madofa = 0.18 applied along = 7 /4 (red
continuous lines), and without strain applied (blue dotieels). The unit of energy is the absolute value
of the hopping parameter= —2.8 eV.

and that of unstrained graphene (blue dotted lines). InF#we evaluate the electronic bands
along the high symmetry path-M-K-I' in the 1BZ, one can see that uniaxial strain causes
a shrinking of the electronic bands. Actually, this modifica of the electronic bands appear
for any directiond. Indeed, in Fig3.4the Dirac point disappears. Both Dirac points are still
well-defined, but they are not placed in special symmetmy{soi

Fig. 3.5shows contour plots ofy,, Eq. 3.12), at constant energy levels, with strain mod-
ulus ofe = 0.18 along the generic directiofh= 7 /4. One can see that the Dirac poiatk
are shifted from the corners of ti8Z, and they do not appear in Fig.4 because they are not
placed along the high symmetry pdth\/-K-I". Moreover, for fixed strain, each of these lines
can be interpreted as the Fermi line corresponding to a gikkemical potential. One may ob-
serve that the various possible Fermi lines can be groupedanr families, according to their
topology. In particular, from Fig3.50one may distinguish among (i) closed Fermi lines around
either Dirac pointtk (and equivalent points in theBZ), (ii) closed Fermi lines around both
Dirac points, (iii) open Fermi lines, (iv) closed Fermi Ismaroundl” = (0,0). The transition

between two different topologies takes place when the Fienetouches the midpoints of the
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3. Strain effect on the electronic bands

Figure 3.5: Contour plots of the dispersion relations within the 1BZ floe valence bandfy, (left
panel), and conduction bandy- (right panel). Here, we are depicting the situation comesing to

a strain modulus of = 0.18 along the generic directiofh = 7 /4. Solid blue lines are separatrix
lines and occur at an electronic topological transitiomidilng groups of contours belonging to different
topologies. Either line passes through one of the criticahts M, (¢ = 1,2, 3), defined as the middle
points of the 1BZ edge (solid black hexagon).

boundary of thd BZ (solid black hexagon in Fig.5), and is marked by a separatrix line. Each
separatrix line corresponds to an electronic topologieaddition (ETT) B6)], i.e. a transition
between two different topologies of the Fermi line. Herethe case of strained graphene,
we surmise the existence of at most three, possibly degen&aTs, whose effect on observ-
able quantities may be evidenced by the application of seiffity intense strain along specific

directions.

3.2 Density of states of strained graphene

Making use of Eq.3.21), one can derive the low-energy expansion of the densityadés

(DOS), which turns out to be linear in energy,
p(E) = pl|E], (3.27)

with
4
o= ;[(t% 124127 =20t 4 th )]V, (3.28)

where the factor of four takes into account for the spin arlgéyaegeneracies.
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Figure 3.6: Showing the DOS prefactgr;, Eq. 3.28), normalized with respect to its valwéo) in the
absence of strain, as a function of the strain moda|u®r various strain angles. The strain direction
0 increases fron® = 0 (armchair direction, corresponding to the lowest curve)) te 7/6 (topmost
curve). All other cases can be reduced to one of these exgjaite symmetry properties of the lattice.

Fig. 3.6shows the prefactqr;, Eq. 3.28, as a function of the strain modulasfor various
strain angleg). One finds in general that; increases monotonically with increasing strain.
Such a behavior suggests that applied strain may be used gbfyathe DOS close to the
Fermi level. When the equality sign in Eq8.17) is reached, the prefacter in Eq. 3.28
diverges, meaning that the cone approximation breaks dbwthis case, the band dispersions
still vanish, but now quadratically along a specific direntthrough the would-be Dirac point,
and a nonzero gap in the DOS opens arofing 0.

This behavior is confirmed by the energy dependence of the@®@&he whole bandwidth,
as numerically evaluated from the detailed band dispessigq. 38.12. In particular, Fig.3.7
showsp(E) for increasing strain, at fixed strain angle= 0 (armchair) and) = 7 /6 (zig-zag).

In both cases, for sufficiently low values of the strain modythe DOS depends linearly on
E, according to Eq.3.27), and the DOS slope increases with increasing strain, ieesgent
with Eq. 3.28 and Fig.3.6. However, while the spectrum remains gapless at all stiains
the armchair case, a nonzero gap is formed at a criticahsinaihe zig-zag casé = =/6,
corresponding to the breaking of the cone approximatiomwatdnergy. Such a behavior is

confirmed by Fig3.8, showing the dependence of the DOS over the whole bandwidth at
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3. Strain effect on the electronic bands

0.4 - 0.4
€=0.00 ——
0.35 | 811)&23 - 0.35 |
0.3} ‘ 018 —— 03¢
) 0.25
G025 ¢ ‘ S 025 ¢
> | >
2 02f 2 02f
[11] [11]
& 015 | & 015
0.1} 0.1}
0.05 | 0.05 |
0 ‘ 0 ‘
8 6 -4 -2 -8 6 -4

E [eV]

Figure 3.7: Energy dependence of the DOS over the whole bandwidth, reasing strain modulus
e = 0 — 0.25 and fixed strain armchair direction (left panel) and zig-dagction (right panel). In each
case, the DOS slope close to the Fermi energy increases astmfuof strain. However, while the DOS
remains gapless for armchair case, a nonzero gap opengdakben( at a critical strain for any other
case.

fixed strain modulus and varying strain angle.
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Figure 3.8: Energy dependence of the DOS over the full bandwidth, fodfsteain modulug = 0.25
and varying strain direction.

At sufficiently high energies, beyond the linear regime, @S exhibits Van Hove singu-
larities both in the valence and in the conduction bands.misigated, these correspond to the

occurrence of an ETT in the constant energy contours of reitaed dispersion relatiofy,,
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Eq. B.12. As shown by Fig3.7, the DOS is characterized by a single logarithmic cusp in
each band in the unstrained limit € 0), that is readily resolved into two logarithmic spikes,
both in thed = 0 (armchair) and in thé = 7/6 (zig-zag) cases, as soon as the strain modulus
becomes nonzera (> 0). The low-energy spike disappears as soon as a gap is fonoed;
sponding to the breaking of the cone behavior around thecpicent. Fig.3.8 shows that the
situation is indeed richer, in that the application of sudfntly intense strain along generiog(

non symmetry-privileged) directions allows the developtred three logarithmic singularities

in the DOS for each band, corresponding to the three inetnv&TTs described if§ 3.1
Again, the lowest energy Van Hove singularity disappeat ihe gap edge when the energy

spectrum ceases to be linear around the Dirac points.

3.3 Optical conductivity of strained graphene

In order to obtain the optical conductivity in strained drape we will use the linear re-
sponse theoryZ3, 46, 54]. First of all, we choose a particular gauge such that thiaspaten-
tial is fixed

w =0, (3.29)

and thus the electric field can be written only in terms of tbetor potential as

0A

(3.30)

Thus, one takes into account the presence of a genericateagnetic field adding a new term
in the Hamiltonian
HA = — /er(r,t) - A(r,t), (3.31)

where the vector potential is coupled with the current dgnactor. One can split the current

density vector in two terms, the paramagnetic and the diaetagterm:

J=JV+J4 (3.32)
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3. Strain effect on the electronic bands

which can be written respectively in terms of the field openats

JV(r) = % [Tl (r)V(r) — (VUi(r)) ¥(r)], (3.33)
JAr) = —iA(r)\I/T(r)\I/(r), (3.34)

m

wherem is the bare electron mass anek is the electron charge.

We assume to have an electric field sufficiently weak suchdhatcan treat it as a weak
perturbation. This hypothesis allows us to use the lineggarse theory, and thus the response
of the system to an external perturbation is linear in theesparturbation. The current density
vector induced by the perturbation can written as

(I, 1)) et = (I(r, 1)) Z/ dt'([I(r, 1), HA ()] o, (3.35)

T

where(...), is an equilibrium average with respect to the unperturbechiianian, and the
symbol|...,...]_ is a commutator. Taking into account only the linear termshim vector

potential, one finds
1 +oo
(Jn(r, 1)) ear = _4_2 / dr’ / dt' Npi(r, v/ t — ) Ap(x', 1), (3.36)
m
k —00

where the kernel of the integral equation is invariant wahpect to any time translation be-
cause the unperturbed Hamiltonian has no explicit time niégece. Exploiting a well-known
theorem on the Fourier transform of a convolution, one camite the previous expression in

monochromatic components as

AT p——

4w

Z Z 5q’,q+GNhk(q + G, —q, W)gk(q, w), (3.37)
kG

where the Fourier transform of the external vector potémiaritten in terms of the Fourier
transform of the external electric field. Since we are takimg account a crystal, the momen-
tum of the responsq’ is equal to the momentum of the perturbatipror at mosiy’ can differ
from q by a vector of the reciprocal lattice. We are interested iredernal homogeneous

electric field, which means we take into account only ¢he- 0 component. In addition, we
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neglect in the response the components characterized byedength of the order of the lattice
distance, meaning that we take into account the responkgling only theq’ = 0 component.

Thus one can rewrite the previous expression as

ie’n 1 =
(0N =TV 0.0) + 3 L G0.00060.0). (339
k

mw

where in the right-hand side there appears the Fourierforlanf the electron density;, and

the Fourier transform of the retarded current-currentatation function, which is defined as
I (r, ' 1) = —if(t) ([ ) (x, 1), JY (v, 0)] _)o. (3.39)

Taking a space average of the current density

1

J(w):NA p

/dr(J(r, W) exts (3.40)

one cancels out the atomic scale fluctuati®@®.[Hence, the current density response is related

to a homogeneous external electric field by means of the ativity tensor

Jh(w) == 7hk(w)é’k(w), (341)

which is explicitly written by means of the Kubo’s formula as

.2 .
PN e°n 1

o hk(w) == m hk -+ Mﬁ}:}k(o, 0,(4)), (342)

wheren is the electron densityy is the number of the unit cells in the graphene sample under

consideration, andl..; is the area of the unit cell. Uniaxial strain changes the afe¢he unit

cell as

3V3
g 4

Acen = (1 +e)(1 —ve) (3.43)

wherea = 1.42 A. In addition, we are mainly interested in the dissipatiaetf the optical

conductivity B4, i.e. its real part

Tus(0) = 1 15,(0,0,). (3.44)

a hWNAcell
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3. Strain effect on the electronic bands

According to the linear response theory, the optical cotiditicis an equilibrium quantity, and
it is dependent on the Fermi leve] the temperatur&’, and frequency of the perturbation
(i.e. the electric field). Since we consider a finite temperatueeuse the Matsubara formalism
[23].

The paramagnetic component of the current density vectmioimentum space reada3|

~ e dp
JV(p/> - _% (27T)2 (2p + p,)ci)cp-l-p’? (345)

wherec, (cI,) are destruction (creation) operators in the plane waveesgmtation. In the
homogeneous limit (zero transferred momentpms- 0), one has10§

(&

JV(0) -

[H,r] = —er, (3.46)

whereH is the system’s Hamiltonian. EcB.46) allows to project the operatd¥ (0) onto the
tight binding subspace, which is spanned by the basis deimgd. 2.12. Thus, similarly to
what has been done with the Hamiltonian in E86], one obtains the operatorin the tight

binding subspace. The generic matrix element fads
(ka|rlk'f) = duwras(k), (3.47)

whereq, § are pseudospin indices, and it is diagonal inkhariable. The operataris explic-

itly written, in the tight binding subspace,'as

1V % (Vigx) + 9xiVi

A ¥ : 3.48
. <% (Vo) + 91iVik iV ) (3.48)

Writing explicitly Eq. 3.44), one finds

_ 2i 1 Fv FAY nr(§en) — 1r(kn)
on(w) = Re Aceythw N %: [(Jh (k)>>\5\ <Jl (k)>5\)\ hw + &en — &ex + 2’0*} ’ (3.49)

whereéy, = Fx, — pandng(£) denotes the Fermi function at temperatiliteln the direction

1The form of the matrix in Eq.3.48 is independent of the particular choice of the atomic fiomp(r), indeed
we have used only the equivalenfer¢(r)rg(r — 8) = 16 [ drg(r)¢(r — &), which is valid for any rotational
invariant two dimensional wave function.
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Figure 3.9: Polar plots of the longitudinal optical conductivity; /oy, Eq. 6.25, as a function of
frequencyw > 0 (polar axis) and electric field orientatien(azymuthal direction). Here, we set= 0
and kT = 0.025 eV. Strain is applied along th& = 0 (armchair) direction, and the strain modulus
increases from left to right, and from top to bottom= 0,0.075,0.175,0.275).

of the external fieldi.e. for h = [, one find$

oul) g smhGihe) Ls B0 (5, - 5y, (a50)
o i hw N 4=~ cosh (28&) cosh (18&5)

where = (kpT)! is the inverse temperaturdy (k) = e (k), oy = me?/(2h) is propor-
tional to the quantum of conductivity, > = (1 + ¢)(1 — ve)16t%/(3v/37h?).

We have numerically evaluated the longitudinal opticaldartivity oy (w), Eq. .25 as a
function of frequency > 0 at fixed temperaturég’ = 0.025 eV, for several strain moduli
¢ and directiond), as well as field orientations, here parametrized by theeapletween the
applied electric field and the latticedirection.

Figs. 3.9 and3.10show our results in the case of strain applied in the armakiegction

2In this Chapter, we neglect the contribution of the Drudekpea
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3. Strain effect on the electronic bands
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Figure 3.10: Longitudinal optical conductivityr;; /oo, EQ. 6.25), as a function of frequency > 0,
for fixed strain modulus = 0.1 and strain directio® = 0 (armchair). Different lines refer to various
orientations of the electric field(= 0, 7 /4, 7/2).

(0 = 0). Fig. 3.9 shows a contour plot of the longitudinal optical condudyivi; /o, as a
function of frequencw (radial coordinate) and applied field angle (polar angle}hk relaxed
limit (¢ = 0), 0,/ 0 IS isotropic with respect to the applied field angle, and eitha maximum
at a frequency that can be related to the single Van Hove kiriuin the DOS (cf. Fig3.7).
Such a maximum is immediately split into distinct maximageneral, as soon as the strain
moduluss becomes nonzero. This can be interpreted in terms of apgtiiash partly removing
the degeneracy among the inequivalent underlying ETTsh Soeffect is however dependent
on the field directiony, as is shown already by the anisotropic pattern developed, by, in
Fig. 3.9 for ¢ # 0. Indeed, Fig3.10shows plots ofr; /o, as a function of frequency for fixed
strain modulug = 0.1 and varying field orientatio = 0 — 7/2. The relative weight of
the two maxima depends on the relative orientation betwgamsand applied field. Here and
below, we consider the cage= 0. A nonzero value of the chemical potential would result in a

vanishing conductivity below a cutoff at~ |u|, smeared by finite temperature effect8§.

An analogous behavior is recovered when strain is appliedgaihe zig-zag directioft =
7/6, as shown in Figs3.11and3.12 Again, applied strain breaks down the original isotropy

of the optical conductivity with respect to the field orieita in the relaxed case, with two
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Figure 3.11: Same as Fig3.9, but for strain applied thé = 7 /6 direction. In the last panel, the strain
modulus is equal te = 0.275, which is larger than critical valug® ~ 0.228, thus at low-energies there
is a dark spot, because the optical conductivity is vangshime to the presence of gap.

maxima appearing as a function of frequency (Bd.l). The optical weight of the different
maxima depend in general, again, on the relative oriemdteiween strain and applied field.
While the presence of the two peaks can be traced back to isierse of inequivalent ETTS,
whose degeneracy is here removed by applied strain, thpdast in Fig.3.11shows that at a
sufficiently large strain modulus (here= 0.275), a gap opens in the low-energy sector of the
spectrum, which is signalled here by a vanishing opticaticetivity (dark spot at the origin in

last panel of Fig3.11).

Finally, Figs.3.13and3.14show the longitudinal optical conductivity in the case afrgas-
ing strain applied along a generic directimg. # = 7/4. Like in the previous cases, applied
strain removes the isotropy ef, /o, with respect to the field orientatian However, the degen-
eracy among the three inequivalent ETTs is here lifted cetepyl, and three peaks in general

appear in the longitudinal optical conductivity as a fuaotof frequency, as shown also by
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Figure 3.12: Same as Fig3.10Q but for strain applied thé = 7/6 direction.

Fig.3.14 The redistribution of optical weight among the three paakew more complicated,

as it in general depends on both the strain diredfiand the field orientation.

Pereiraet al. have obtained the electronic bands and the optical conlyodif uniaxially
strained graphene from first principles (DFT calculationthim LDA approximation) 22,
130. They have considered strain applied upste= 0.1, they have found that the spectrum
remains gapless for all strain configurations studied, haat tesults are well comparable with

those obtained using the tight binding model.

Using group theory, it is possible to obtain the analytioaif of the optical conductivity for
both relaxed and strained grapheB8][ In a two dimensional lattice with hexagonal symmetry
such as relaxed graphene, there is only one independemi@rafor a symmetric second rank

tensor such as the optical conductivity tensor
O'hk(w) = O'(W)(Shk, (351)

thus, one recovers that the longitudinal optical respofiselaxed graphene(w) is indepen-
dent of the polarization of electric field. In a two dimensblattice with rhombic symmetry
there are two independent parameters for a symmetric seaokdensor. This is the case of

graphene with strain applied along one of the two specia&lctions (armchair or zig-zag). In
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Figure 3.13: Same as Fig3.9, but for strain applied thé = = /4 direction.

these special cases the longitudinal optical conducteaty be written as
on(w) = ogg(w) cos(¢p — 0)? + ogg(w) sin(¢p — )%, (3.52)

whereg is the direction of the electric field,is the stress direction, arfds the complementary
angle off (i.e. = 6 + w/2). Graphene strained along a generic (not special) dinebias only
inversion spatial symmetry and consequently its opticalcmtivity tensor has three indepen-
dent components. Therefore, the longitudinal optical catidity along the electric field has a

more complicated form

oy(w) = oge(w) cos(¢p — 0)? + ogs(w) sin(¢ — 0)* + (Ugé((d) + U;§(w)) sin(¢ — ) cos(¢p — ).
(3.53)

The, optical conductivity is related to measurable quesstisuch as the transmittance or the

reflectance 113. For instance, we consider light scattering across twoiaeuth refraction
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3. Strain effect on the electronic bands
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Figure 3.14: Same as Fig3.10Q but for strain applied thé = 7/4 direction.

indexn; = \/€; (i = 1,2), separated by a graphene monolayer. In the case of noroidéirce,
the incident component of the electric figdgis related to the reflected componéht= r¢&;,
and to the transmitted componeft= t&;, by the following boundary condition obtained by

use of the Maxwell’s equations
E =& +&,. (3.54)

Moreover, in this system energy conservation reads

ieleogf = ieleogf + i@eogf +E&-7J, (3.55)
nq nq o

wherec is the speed of light, is the vacuum permittivity, andl is the induced current density
vector in graphene. The component of the current densityovet, parallel to the electric
field is related to the same electric field by the relatibn= o4, (w)E. Using Egs. 8.54 and

(3.595, one obtains the transmittance and reflectance of suchtansys/hich can be written

respectively as
no o 4niny
T — 22 3.56
(w) ny [Tbl +7TOZO'¢¢(W)/O’0 +n2]2’ ( )
2
R(w) =12 = (nl + oy (w) /o0 — ng) ' (3.57)
ny + 7T0é0¢¢(u})/0'0 -+ oy

wherea = ¢?/(4megch) is the fine structure constant. In the case of suspended gmaeph
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substituting:; = ny = 1 one finds

T(w) ~1-— 7TO(O'¢¢(W)/O’Q, (358)

R(w) & = (040(w)/00)" (3.59)

Hence, we have seen how uniaxial strain can deeply modifgitieal response of graphene.
The asymmetry induced by uniaxial strain in the optical ecantity causes an observable de-
gree of dichroism. Indeed, the optical response of unigxg&itained graphene to a linearly
polarized light depends on the direction of the polariza{ib2Z]. Moreover, the optical re-
sponse of graphene can give a measure of the magnitude ahé dfréction of strain in a

graphene sample.
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Chapter 4

Strain effect on the plasmonic spectrum

Most of the electronic properties of graphene are encodtialectron polarization, which
has been studied within the Dirac cone approximation at Zeflcand finite temperaturel47]
for pristine graphene, as well as for doped graph@&0el55. These results have been recently
extended beyond the Dirac cone approximatb3d.

In this Chapter, we are concerned with the dynamical pa@#on of graphene within the
full first Brillouin zone of the honeycomb lattice. While eteon correlations are treated at the
level of the random phase approximation (RPA), we explidittlude local field effects (LFE)
[2], which are characteristic of the lattice structure of dgwape. The importance of LFE have
been shown to be more important in graphene than in bulk sgdictors, in connection with
the static dielectric properties of grapherddd 148. By discussing the singularities of the
polarization, we can identify the longitudinal collectm®des of the correlated electron liquid.
We are mainly interested in the plasmon modes, which domitiegt long wavelength charge
density fluctuations. The role of electron-plasmon inteoacin renormalizing the (especially
low-energy) quasiparticle dispersion relation has beephasized 20, 22], and plasmons in
graphene are potentially interesting for applicationsanaphotonics{2].

Specifically, we are interested in the dependence of thenglasnodes on applied uniaxial
strain. To this aim we use the tight binding model modifiedamsirain, that we have presented
in the previous Chapters. Despite its simplicity, the tigimding model is successful because
it is tightly related to the symmetry properties of grapherie particular, the tight-binding

approximation allows to include important features of tlee®onic band dispersion, such as a
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finite bandwidth and the occurrence of Van Hove singulaitiehese features play an essential

role in deriving some of the characteristics of the plasmispetsion.

4.1 Local field effects on the electron polarization

Within linear response theory, plasmon modes can be destcab poles of the density-
density correlation functioni,e. the polarization. The random phase approximation (RPA) is
then the simplest, infinite order, diagrammatic procedaredlude electron correlations in the
dielectric screening giving rise to the polarizati&@4], Besides electron-electron correlations,
another source d&-space dependence of the dielectric function is providdddsl field effects
(LFE) [134]. This is due to the generally atomic consistence of mattdy en the case of solids,
to the periodicity of the crystalline lattice. An accounttbé LFE on the dielectric function of
crystalline solids dates back at least to the original pap&dler [2, 64, 65|, and is generalized

below to the case of graphene, including both valence andumtion bands.

We start by considering the polarization, which for a nosiatting system at finite temper-

atureT reads

19, (3, %', iwy,) = thﬂ 2 2 YiaK)GK iwn) v () ion (IG5 (K dwon it o (x),

iwn kAK/ N (41)
where ¢y, (x) is the two-dimensional eigenfunctiody (k,iw,) = (iw, — & /h)~! is the
Green’s function for the noninteracting system, &g = (2n + 1)wkgT [hw,, = 2mmkgT]
denote the fermionic [bosonic] Matsubara frequenciesraptgaturel’, with 2 Planck’s con-
stant andcg Boltzmann’s constant. In treating systems at finite tentpegs, it is convenient to
use the grand canonical enseml3€][ Hence we use as a natural variable the single-patrticle
energyéy,, which is defined agy, = Fix, — 1, wherey is the chemical potential, anfly, is
the electronic dispersion relation whexe= 1 refers to the valence band and= 2 refers to

the conduction band. Fourier transforming into momentuatsfeqg. 4.1), and performing the
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4. Strain effect on the plasmonic spectrum

summation over the Matsubara frequencies, one finds

ng(q +G,—q — Giw,) = (2m)?A_3,6(q — q)

cell

1 . i s
X% D Tax—ax (iwn) (k — gN|e 7O [RN) (kA Tk — q)'),
kAN

(4.2)

where
np (Ek—qv) — e (&)
ihwp, + Ek—qv — &k

Here,np(w) is the Fermi functionA..; = 3v/3a?/2 is the area of the unit celdy, g’ belong to

(4.3)

Tier k—qx (iwn,) =

the first Brillouin zone (1BZ)(, G’ are vectors of the reciprocal lattice, and LFE are embedded

in the Adler’s weights?2]

(= aXfe ") = [ dxe @O () (x)
1
>

(4.4)

12

)\ ; _ _ . S- _ 2 2
[(_1))\ N 4 (il a—t)=iG8s | —oflatGI?/a

where in the last line only the onsite overlap between pdiegamic orbitals 8.9), centered on
either sublattices, has been retained, on account of theatized character, we have retained
only the lowest (zeroth) order contributions in the overfiapction gy, ande® = — f, /| fi|.

Using a more compact notation, one may also write
ng(qu G,—q — G iw,) = (21)?A Ce” (a—d qua aﬁ (q, zwm)pqﬁ(G’) (4.5)

where

B, cux B .
aﬁ (q, iwy,) = E Use\ Ugr U v U q)\/Tk,\,k_q,\/(zwm), (4.6)
k,\x

with u;, the components ofix,, which are solutions of the generalized eigenvalue problem
(2.21), and
paa(G) = exp(—iG - 6, — oolq + G[*/4) (4.7)

are the LFE weights. The indicesand/ refer to the pseudo-spin spagee 7 = A, B), whereas
the indices\ and\’ refer to the conduction and valence bafis\’ = 1, 2). Moreover, we also

setd 4, = 0 andd i = 8. The continuum limit is recovered whé&rn = G’ = 0.

65



q,w
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Figure 4.1: Diagrammatic representation of the random phase appréiximéRPA), including local
field effects (LFE), for the electron polarization. The eaxsge momentum in the interaction terms can
be outside the first Brillouin zone (1BZ). Indeaglbelongs to the 1BZ, whereds, G’ are vectors of
the reciprocal lattice.

Many-body correlations are then included within RPA, yietgda renormalized polarization
pr(q+ G, _q, - Glaiwm) = (2 ) cell q q qua Qaﬁ q, Zwm)qu(G/)a (4.8)

where now
Q(Qa Z‘L‘Jm) = ngO(q> Zwm) []l - gsAcellV( )QO(CL Zwm)} o ) (4.9)

where matrix products are being understapd+- 2 is a factor for spin degeneracy, and

Vas(@) =D 0 (G)Vo(a + G")pas(G”) (4.10)
<

is the renormalized Coulomb potenti&},(q) = €*/(2g4¢,q), Now a matrix over band indices.
Here,e, = (e,1 + €2)/2 denotes the average relative dielectric constants of tieentedia
surrounding the graphene laygiz. air for suspended grapheng,(= ¢, = ¢, = 1). In the
case of a stronger dielectric substrate, we expect therefepftening of the correlation effects
on the plasmon frequency. It is relevant to note that therraabzed potential already includes
LFE. Finally, the approximation used to obtain the eleciotarization in Eq. 4.8) is shown

diagrammatically in Fig4.1
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4. Strain effect on the plasmonic spectrum

4.1.1 Plasmons

Plasmons are defined as collective excitations of the elediguid corresponding to poles

of the retarded polarization,
pr(q7 Ld) = pr(qa _qa 7;Wm — W + 7;0+)7 (411)

whereq € 1BZ. Here and in what follows we shall restrict to the cése- G’ = 0. Indeed, it
is apparent from the definition éf,,(q, w) that its poles can only arise from the vanishing of
det[T1—V(q)Q%q,w)] in Eq. @.9), which already contains LFE via the renormalized Coulomb
potential, Eq. 4.10. We therefore define the dispersion relatioriq) of the ¢-th plasmon

branch as
I (q, we(q)) = 0. (4.12)

This clearly involves vanishing of both real and imaginaaytp of the inverse polarization. It

will be useful to define the dispersion relationq) of damped plasmons through

Re [IT,) (q,@(q))] = 0. (4.13)

Correspondingly, the inverse lifetime *(q,w) of such damped plasmons is proportional to
—ImII,,(q,w), forw = &y(q).

Fig.4.2shows our numerical results for the plasmon dispersiotioalan doped suspended
grapheney = 1 eV, ¢1 = 60 = 1, p = 1 eV) at finite temperaturel{ = 3 K) along a
symmetry contour in the 1BZ, without LFES" = 0 in Eq. @.10), left panel] and including
LFE (right panel). At small wavevectors and low frequenci@se recognizes a square-root
plasmon modev;(q) ~ /g, typical of a 2D system§4]. This is in agreement with earlier
studies of the dynamical screening effects in graphene Atl&RI, employing an approximate
conic dispersion relation for electrons around the Diraasd70, 155. Such a result has been
confirmed also for a tight-binding ban@g, 139, and is here generalized with the inclusion of
LFE.

The high energyq — 20 eV) pseudo-plasmon mode, extending throughout the whole 1B
is rather associated with a logarithmic singularity of tlaeebpolarizatior)°(q, w) in Eq. @.9),
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Figure 4.2: Plasmon dispersion relation for suspended doped graphegael(eV, ¢,.1 = ¢,.0 = 1) at fi-
nite temperaturel( = 3 K), not including (left panel) and including (right panellFE. Results are shown
along a symmetry contour in the 1BZ, with= (0, 0), M = (27/3a,0), andK = (27/3a,27/3+/3a).
Energiesiw are in eV. The shaded background is a contour plot-bhII,,(q,w) (arbitrary scale),
while continuous lines are the dispersion relation of dan@asmonsw,(q), Eq. @.13, is shown as a
dotted line.

and therefore does not correspond to a true pole of the patayn. This collective mode can
be related to an interband transition between the Van Hawgufarities in the valence and

conduction bands of graphene, and has been identified with-ar* transition 9, 139.

At large wavevectors, specifically along the zone boundatyveen theM and the K
(Dirac) points, full inclusion of LFE determines the apmeare of a second, high-frequency

(20 — 25 eV), optical-like plasmon mode,(q), weakly dispersing ag — 0.

Multiple plasmon modes are a generic consequence of thébigf interband transi-
tions, whenever several such bands are available. Thagighe case of quasi-2D quantum
wells (2DQW), whose energy spectrum is characterized bytiged levels in the direction
perpendicular to the plane of the well, while electrons aamnr freely within the planesd]. In
this case, collective modes arise as zeroes of the detantroh¢he dielectric function. At low
temperatures, at most the two lowest subbands need to belemt One usually obtains an
‘acoustic’ mode associated to intrasubband coupling, aogtecal’ mode associated to inter-
subband couplingll4g. Such a situation is here paralleled by the case of graphieeeole of
the two subbands of 2DQW being here played by the valence amdliction bands, touching
at the Dirac points in the neutral material. It should be cedithat the plasmon mode due to

interband coupling is suppressed when LFE are neglect&D@WV, the discrete nature of the
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4. Strain effect on the plasmonic spectrum

electronic subbands is due to the real-space confinemehe@léctron liquid in the direction
perpendicular to the planee. to thequast2D character of the quantum well. In graphene, the
origin of the two bands ultimately lies in the specific lagtgtructure of this material. Therefore,
the high-energy, ‘optical’ plasmon mode disappears in beeace of LFE (Figd.2, top panel),

as expected whenever the lattice structure of graphengjisated. In other words, while in the
absence of LFE only scattering processes with momentamwiti@ 1BZ are considered, LFE
allow to include all scattering processes with arbitraldyw wavelengths, thereby taking into
account the discrete nature of the crystalline lattice hSustructure needs not be considered in
the case of a 2DQW. Our finding of a high-energy ‘optical’ phas branch, as a generic conse-
guence of the two-band electronic structure of graphermyldistimulate further investigation
of the electronic collective modes in graphea&, [69], in view of the role of electron-electron

correlations in interpreting the results of electron spsttopy for interband transition$2§.

Beyond two dimensionality

Usually the electronic system in graphene is consideredas-aimensional electron gas.
In this paragraph, we take into account a full three dimeraioepresentation for the wave
functions of the single particles. The generic electron evlunction, corresponding to a

band, is written as

Uien (1) = i (%) Pra (2), (4.14)
where ., (x) is the two-dimensional eigenfunction, which has been presly defined, and
., (2) describes the-dependence of the electron wave function.

Neglecting the:-dimension is equivalent to approximate thg, (=) so that its square mod-
ulus is a Dirac delta function

|Prr(2)]? ~ §(2). (4.15)

A simple approximation to describe the finite extension efélectron wave function along the

z-direction is an exponential function

D (2) = sn (2) \E (4.16)
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where we considet, as a constant. In particular we sgt= 3 A=1, whichis in good agreement
with ab initio calculations 153. In limit x, — oo, the square modulus dfy, (z) becomes the
Dirac delta function. In addition, one can see that the sdactvave functions are odd under
reflection symmetry with respect to the basal plane, likepth@ave functions.

Taking into account the finite extension of the electron wlawetion along the:-direction,
the renormalized polarization maintains the expressioBgn @.8), but the two dimensional

Coulomb potentialy(q) = €?/[eo(e,1 + €2)q] is replaced by a more complex formula

62 /{z(2ﬁz + CI) (Erl - €r2)2 K-2q
v _ + , 417
o(a) co(€1 + €2)q | 2(k. + q)? 8er1€0  (Ky+q)? ( )

wheree,; ande,» denote the relative dielectric constants of the two medraosading the
graphene layer. The correction to the Coulomb potentialgn @.17) is negligible at small
momentag < k., whereas its contribution is sizable for large moments; ~.. Hence, the
scattering processes with large exchange momentum areybarty interested by the correction
in Eq. @.17).

30

Figure 4.3: Plasmon dispersion relation for suspended doped grapherel( eV, ¢,1 = €¢,0 = 1) at
finite temperaturel = 3 K), not including (left panel) and including (right paneljetz-extension of
the electron wave functions, considering the LFE. Resutisshown along a symmetry contour in the
1BZ, withT" = (0,0), M = (27/3a,0), andK = (27/3a,27/3+/3a). Energieshw are in eV. The
shaded background is a contour plot-afm I1,,(q,w) (arbitrary scale), while continuous lines are the
dispersion relation of damped plasmods(q), Eq. @.13), is shown as a dotted line.

Fig. 4.3shows our numerical results for the plasmon dispersiotioelan suspended doped
graphene = 1 eV,¢1 = €2 = 1) at finite temperature7( = 3 K) along a symmetry

contour in the 1BZ, without (left panel) and with (right p&nile z-extension of the electron
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4. Strain effect on the plasmonic spectrum

wave functions, and both including the LFE. By a comparisiimodh panels in Fig4.3, at low
energies and small wavevectors the contribution due to:tbetension of the electron wave
functions has no appreciable effect. On the other hand gatdmergies there is a quantitative,
but not qualitative, modification of the plasmon dispersielation due to the-extension of
the electron wave functions. In particular, there is an gnéwering of the ‘optical’ plasmon
branch because of the correction on the Coulomb potentiatiin@.17). Moreover, one may
observe that the high energy plasmon branch maintains the &am, since the features of this

collective excitation are related to the LFE, more gengialithe lattice symmetry.

Moreover, a quantitative improvement for the descriptibthe high energy collective exci-
tations could be obtained adding in the tight binding moldelriext neighbors terms, or further
terms. However, these terms would make the model more coatet without adding new
features of ther electronic structure. Indeed, our tight binding model eam all principal

properties of ther electronic structure,e. the Dirac cones and the saddle points.

Finally, a qualitative improvement for the description béthigh energy plasmon branch
could be obtained taking into account theslectrons beyond the electrons. In particular,
these further electronic bands could heavily change thetstre of the high energy plasmon
dispersion relation, and they could induce a finite lifetimthese collective excitations because

of the further promotion of electrons from the valence bartd the higher{*) energy band.

4.1.2 Asymptotic behaviors

In certain limiting regimes, one may derive the asymptogbdwior of the polarization in
close form. At low energiesiv < |t|) and small wavevectorg (— 0, i.e. ga < 1), LFE
andz-extension can be neglected. The matrix product enterimgéfinition of the polarization

through Eq. 4.9) then reduces to
9:AaV(@Q(qw) = gAVola)d Qs(qw)
af

%i q'VkEk,\)2 (4.18)

q_a N 5T(§k)\) < hw
kA
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whereV, = ¢,(87/3v/3)(ao/a) Ry, ay being Bohr's radius, andly(¢) = —dny (€)/de — 6(e),

asT — 0. In the latter limit, the)-function effectively restricts the integration over wagetors
along the Fermi line. Whenever the cone approximation hpkelsfor sufficiently low chemical
potential and strain; see Chap8ythis can be taken as the constant-energy ellipse ind&z2yl)(

Thek-integration in Eq.4.18 can then be performed analytically, and the retarded zalion,

Eq. @.11), then reads

-1 ‘/0—1”*2 2.2

~ gSAcell wig-a
wherew™ = w + 0", and
) - 1/2
har = (Vopw)  [VaEaa/al, (4.20)

with p(u) the density of states (DOS) at the Fermi level. To leadingoirga, from Eq. @.19

one thus obtains

wi(q) = wiy/qa (4.21)

for the acoustic-like plasmon dispersion relation. Onestlecovers the square-root behavior
of the plasmon dispersion relation, as is typical in 2D etatisystemsg4]. Moreover, one
recovers the dependence of the coefficiant- n'/* on the carrier density, rather thanv n'/2,

as is the case for a parabolic dispersion relation of theipadgles B5, 70]. The acoustic-like
plasmon mode may be related to the Drude wei@htthus enabling the observation of strain
effects from optical measurementklf]. In the case of graphene on a dielectric substrate
(e, > 1), one has a reduction af;, thus a softening of the plasmon mode. From Bdl9 one
may also read off the imaginary part of the retarded polidmawhich close to the ‘acoustic’

plasmon modey ~ w;(q)] reads

cell

ImII,,(q, wh) ~ —ggsA_1 \70_1/2&)1(qa)3/25 (w—wi(q)). (4.22)

We now turn to the asymptotic behavior of the second brancheplasmonic spectrum,
wo(q). We have already established that it displays an optikaldharacter, withuy(q) —
wo(0), asq — 0. Here,w,(0) is greater than the distance between the top of the conductio

band and the bottom of the valence band. At small wavevedtois useful to consider the
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4. Strain effect on the plasmonic spectrum

expansions of the relevant terms in E41.9), which to leading order ig; (i = z, y) read

Q?LXA((L w) ~ QAA + Z %ym %7 (4233)

Q?LXB((L w) ~ _QAA + Z qZZ’Lj %a (423b)

wherey;;(w), z;;(w) are real valued functions of the frequengyand

0 L rlG) — ne(ée)
Qia 0:20) = 5 2 00+ 6 — r (@24

The asymptotically constant value of the optical-like plas frequency is then implicitly given
by
1
1 —4Q% 4 (0,w2(0)) g AL Z Vo(G) sin? <§G : 53) =0, (4.25)
G

whereas the imaginary part of the retarded polarizatiovsecko the second plasmon branch

[w ~ wy(0)], to leading order iny, reads

-1
nr(&a) — ne (&)
Imep(q> w+) ~ 71'95 cell 4]\/‘ Z k:‘ §k>\ §k>\)

X Z @iqn(2ij — Yii) (2nk + Yni) 4510 (w0 — wa(0)) - (4.26)

ijhk

In particular, it follows that the spectral weight bfi IT,, close tow,(0) decreases as ¢*, as
q¢ — 0, rather than as- ¢*/2, as is the case for the acoustic-like plasmon mode, £82\
This justifies the reduced spectral weight associated \wigrsecond plasmon branch at small

wavevector in Fig4.3,

In the case of graphene on a dielectric substrgtex( 1), inspection of Egs.4.24) and
(4.29 yields a reduction af»(0).

Usually, experimental methodologies to detect plasmgpeiiggon relation, such as electron
energy loss spectroscopy (EELS), measure the collectioigagion at small wavevector limit
(¢ — 0) [4]]. In graphene, to date there are measurements about thenkngyeplasmon3o,
59 and the pseudo-plasmon excitatigHl], whereas there is no clear experimental evidence

about the high energy plasmon. The detection of the highggrtaanch at small wavevector
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could be difficult not only because of the reduced spectragmeassociated with the high
energy branch, but also because these plasmons could beeddyphe further promotions
of electrons from the valence band into the higher) nergy band. In this Thesis we have
not considered the electronic bands due todtetectrons, and this possible correction will be

subject of future work.

4.2 Effect of strain on the plasmon dispersion relation

We now turn to consider the effect of strain on the plasmopatsion relation. As in
Refs. [L10 121], applied uniaxial strain can be modeled by explicitly ddiesing the depen-
dence on the strain tenserof the tight-binding parametets = ¢(d,) through the vectorg,
connecting two NN site(= 1, 2, 3). A linear dependence @ on e is justified in the elastic
limit. Such an assumption is however quite robust, due te@xtieeme rigidity of graphendf],
and is supported bgb initio calculations 27, 75].

Below, the strain tensar will be parametrized by a strain modulgisand by the anglé be-
tween the direction of applied strain and thaxis in the lattice coordinate system. Specifically,
one hag = 0 [resp.,0 = /6] for strain applied along the armcharepp.,zig-zag] direction.

Fig. 4.4shows the dispersion relation of the plasmon branchesestudg 4.1.1, including
LFE andz-extension, along a symmetry contour of the 1BZ, for str@pli@d along the arm-
chair direction § = 0), with increasing strain modulus & 0 — 0.275). The low-frequency,
‘acoustic’ plasmon mode; (q) is not qualitatively affected by the applied strain. In padar,
the dominant square-root behavior is independent witheesp the opening of a gap. On the
other hand, one observes an increase of spectral weigltiasbwith the high-frequency, ‘op-
tical’ plasmon modev;(q) at small wavevectors. The overall flattening of the secoadmbn
branch over the symmetry contour under consideration carabed back to the strain-induced
shrinking of both valence and conduction bands.

A qualitatively similar analysis applies to the case ofistepplied along the zig-zag direc-
tion (9 = 7/6, Fig. 4.5, and for strain applied along a generic direction< = /4, Fig. 4.6),
with w»(q) dispersing more weakly as the strain increases.

Finally, we turn to study theg-dependence of the low-frequency, ‘acoustic’ madéy) =
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4. Strain effect on the plasmonic spectrum

Figure 4.4: Plasmon dispersion relation for suspended doped graphere { eV, ¢,1 = €0 = 1),
including LFE and:-extension, with strain applied along the= 0 (armchair) direction. Strain increases
(from left to right, from top to bottom) as= 0, 0.075, 0.175, 0.275.

w1 (g, pq) under applied strain, whete= |q| andy, denotes the angle betwegiand thet axis.
Fig. 4.7 shows then the dispersion relation of the lower plasmondbras a function of for
several values op,, for increasing strain applied along the armchair direc{to= 0). While
the overall square-root shape ~ @;,/qa, Eq. @.21), is maintained in all cases, one observes
a stiffening of such plasmonic mode with increasing straid a maximum of the coefficient
w1, EQ. @.20, wheny, — 0 ~ 7 /2. The same description qualitatively applies also to thesas
of strain applied along the armchair £ 7/6), and along a generid (= 7 /4) direction. Such a
behavior can be justified analytically in the limit of no LF&.(Sec.4.1.2, and corresponds to
the strain dependence obtained for the optical condug{itit(. Indeed, from Eq.4.20), one
may notice that all the strain dependence is contained imtiaulus square of the quasiparticle

dispersion relation of the conduction band at the Fermille¥&, Ex./a|. One finds

B cos? (g — sin?(pq — 1/2
w10<|VqEq2|:< (j‘; m (";1 n)) , (4.27)
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Figure 4.5: Plasmon dispersion relation for suspended doped grapheael(eV, ¢,1 = ¢, = 1), in-
cluding LFE and:-extension, with strain applied along the= /6 (zig-zag) direction. Strain increases
(from left to right, from top to bottom) as= 0, 0.075, 0.175, 0.275.

where A and B denote the semiaxes of the constant energy ellipse, whighlteen defined in
Egs. 3.23, whereas the anglgis a function of the hopping parameters which has been defined
in Egs. @.24). It follows thatw,; attains its maximum values wheneve[ — n = 7/2 (modulo

7), and its minimum values whenevey, — n = 0 (modulo). It turns out that) = 6 in the

zig-zag and armchair cases (cf. Hg7), whereas) ~ 0 in the generic case.
In the previous Chapter, we have not considered the Drudeipéehe optical conductivity.
The Drude peak appears in the optical conductivityfor 0 in doped graphene as

olw—0)=Di(w), (4.28)

whereD is called Drude weight. The Drude weight can be connected égn® of an effective
f-sum rule to the dispersion relation of plasmohs\vhich has been studied also under applied
strain [L14].
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4. Strain effect on the plasmonic spectrum

Figure 4.6: Plasmon dispersion relation for suspended doped grapheael(eV, ¢,1 = ¢, = 1), in-
cluding LFE and:-extension, with strain applied along the= /4 (generic) direction. Strain increases
(from left to right, from top to bottom) as= 0, 0.075, 0.175, 0.275.

Through the continuity equation, one obtains

ie? . w?
Tp(w) = " (1113(1) ?pr(q, —q,w). (4.29)

Lettingw — w + 90", and extracting the real part, one recognizes the Drudehvag)

Ld2
Dy = 7e? lim lim —
w—0q9—0 q2

Rell,,(q, —q,w). (4.30)

Using the asymptotic limit of the polarizatiod.@9, one finds

_ cos?(¢p — sin?(¢ —
Dy = 4oy |:7TAce%lp1 ( (AQ il + (;; 77))} ) (4.31)

whereo, = me?/2h is the so-called universal interband electrical conditytiof neutral
graphenel01], A..; = (1 + ¢)(1 — ve)3v/3a?/2 is the area of the unit celp; is the strain-

dependent prefactor in the linear dependence of the DOSeochimical potential at low en-
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Figure 4.7: Plasmon dispersion relation for suspended doped graphere [ eV, ¢,1 = €9 = 1),
with strain applied along thé = 0 (armchair) direction. Strain increases (from left to rightm top to
bottom) as= = 0, 0.075, 0.175, 0.275. In each graph, different panels referdg(q) = wi(q, ¢q), with
g = 0°,20°,40°,...160°.

ergy,p(u) = p1|p| [110, and¢ is the direction of the normally incident monochromaticélie
field.

In Eq. @.3)), the quantity between square brackets goes to unity inrnfied — 0, where
in particularp, = 4/(7+/3t?). From Eq. #.3)), it follows that D,, attains its maximum values
wheneverp — n = n/2 (modulor), and its minimum values whenever— n = 0 (modulo
7). The ellipse semiaxed and B depend on strain, whose role is that of increasing the ellips
anisotropy according to Eqs3.23. In the unstrained limit; = 0, one hasA = B, hence one
recovers that the Drude weight is independent of polaoratf incident electromagnetic field.
Such a dependence of the Drude weight on applied uniaxa&hds amenable to experimental
verification. Finally, the prefactap, in the long-wavelength dispersion relation of low-energy
plasmons in graphené&14, w, = ©,/qa, is related to the Drude weight througt] [

Dy 27mepe,
(ml)% N h ’

(4.32)
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Chapter 5

Electronic linear response functions in
strained graphene within the Dirac model

In graphene, the low-energy quasiparticles can be descabanassless Dirac fermions,
with a cone dispersion relation in reciprocal space arobedirac points. Such a linear spec-
trum and reduced dimensionality yield remarkable behawabteady in the non-interacting limit
of several electronic properties of graphene. These ieglater alia, the reflectivity, the opti-
cal conductivity, the plasmon dispersion relation, as w&elh newly predicted transverse elec-
tromagnetic mode98]. These properties can be extracted from the study of theopppte
correlation functions within linear response thedt®7, 155. This description, which is called
Dirac approximation, allows an analytical study of sevetattronic properties at low energies
and small momenta. At these limits, the corrections dueda-xtension of the electron wave
functions are negligible. Hence the electronic systemeiatéd as a two dimensional electron

gas.

In this Chapter, we consider the effect of strain on the werielectronic properties that
may be described by linear response correlation functiattimthe Dirac model. Usually,
the main effect on the low energy electronic properties efuhiaxial strain which has been
considered is a strain-induced shift of the position of tha®points in reciprocal spacél],
88]. In other terms, the main effect of strain can be descrilssdaating an effective gauge field
vector potentialA to each Dirac point. These effective vector potentials logpposite signs for

graphene’s two valley& andK”, which means that elastic deformations, unlike magnetid,fie
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do not violate the time-reversal symmetry of a crystal as alav[61].

This description of the interplay of structural and elestegoroperties has been confirmed
experimentaly. Indeed, recent experiments demonstrageddssibility to have Landau levels
associated to strain in grapher@&l]. Moreover, there are several ideas to exploit strain as a
fictitious gauge field. For example, de Juetnal. [36] have proposed a device to measure
microstresses in graphene based on a scanning-tunneiangstopy setup, which is able to
measure Aharonov-Bohm interferences at the nanometer. Sda¢ interferences to be observed
in the local density of states are created by the fictitiougmatic field associated to elastic

deformations of the sample.

Here, we explicitly consider not only the strain-inducesidiacement of the Dirac points in
reciprocal space, but also a strain-induced deformatidgheoDirac cones, resulting in a strain-
dependent anisotropic Fermi velocity. We also show that kffects are of the same order on

the applied strain intensity.

In this Chapter, we take into account the case of homogen&toais. In this case, the
modifications of the electronic linear response corretafionction at low energies are related
to the strain-induced deformation of the Dirac cones. Omther hand, the Dirac cone shifts do
not induce any change of the linear response correlatioctifums in homogeneously strained
graphene. Hence, here, we deal with an analytical studyeofrtbdifications of several low-

energy electronic properties of graphene under strain.

5.1 Massless Dirac fermions in strained graphene

In momentum space, the effect of uniaxial strain on the Hami&n is likewise accounted

for by the strain tensor, Eq3(2). The strain tensor can be written in a more compact form as
1
€= 55[(1 — )+ (1+v)A(8)], (5.1)

where
A(f) = cos(20)0, + sin(20)o,. (5.2)
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5. Electronic linear response functions in strained graphee within the Dirac model

In Eq. (.1), 6 denotes the angle along which the strain is applied, withaetsto ther axis
in the lattice coordinate system, in accordance with Bid, ¢ is the strain modulus, andis

Poisson’s ratio.

The effect of uniaxial strain in graphene is usually desatibs a shift in momentum space
of the location of the Dirac points. However, starting frohe tmore general, tight-binding
Hamiltonian, expanding to first order in the strain moduéug] to second order in the impulses,
one may show that applied strain also induces a deformafitimeoDirac cones, at the same

(first) order ine. Explicitly, one finds

1 — 2k 1— 1—

e(1—v)+

H = hvpo, Kl + Oc(1+v) cos(20)) Pz + Oc(1+v) sin(2¢9)py}

1-2 11—
+ hvpoy, {( KO e(1—v)— 2%5(1 +v) cos(20)) Dy +

- thTzaz(mo/a) ( v)sin(26) — hvpt,oy(ko/a)e(1 + v) cos(20)
[

01 4 0) sin(ZQ)px]

- _hUFTz py + Qpr:cpy} s

(5.3)

whereuvy is the Fermi velocity in the unstrained graphemg(i = x, vy, z) are the Pauli matrices
which act on the pseudospin spacednd B), whereasr; (i = z,y, z) are the Pauli matrices
which are associated with the two-dimensional valley sgd€eand K’). Moreover, kg =
(a/2t)|0t/0a| =~ 1.6 is related to the logarithmic derivative of the nearesgghbor hopping at
e = 0. Eq. 6.3) acts on the four-component spinors which we have just shiotre Eq. 2.50).

Our model is based on the tight-binding approximation fa biand structure, including
only nearest-neighbor hopping. We have studied in detaititiht-binding approximation for
graphene under uniaxial strain in the ChaggeiTo this level of approximation, one does not
observe any strain-induced modification of the work funttid. This effect is equivalent to a
rigid vertical shift of the electronic bands. In order tolumbe also such effects, one also needs
to consider next-nearest neighbor hoppi§|[ Making use of the expression for the hopping

function between two neighboring carbpforbitals involved in ar bond, as a function of the
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bond lengttY, V. (¢) = toe=337¢/ =1 "with t, = —2.7 eV [121], one finds

H — %(1 —v)V3a Wppr(0) er1.7eV xe¢, (5.4)
2 dﬁ (=v/3a

viz. a scalar term, going linear with the strain modwyus/hose order of magnitude agrees with
theab initio results of Ref. 32]. At any rate, the work function, Eq5(4), can be absorbed in
an effective scalar potentiél, which is diagonal both in the valley space and in the psqudos
space.
The spectrum of the strained Hamiltonian, E§ 3], is still linear, but now around the shifted
Dirac points
apa = F(kee(1 + ) sin(26), roe(1 + v) cos(26)) . (5.5)

In particular, setting; = p F qp, with g measuring now the vector displacement from the
shifted Dirac point, the Fermi velocity, defined as the slopihe Dirac cone in the direction of
q, will now have anisotropic componentgur, ¢, vr along the direction of applied strain and

the direction orthogonal to it, respectively, with

q = 1 — 2ke, (5.6&)

¢, = 14 2kve, (5.6b)

wherer = kg — 3.
Thus, the low-energy Hamiltonian maintains a linear forrarein the presence of strain,
and can still be written as
H = hvpryo - (¢, (5.7)

where
q' = R(0)S(e)R(-0)aq, (5.8)

with R(0) the rotation matrix in the direction of applied strain, &@d) = diag (|, c, ) the ma-
trix describing the deformation of the Dirac cone. Explicifor the compound transformation
matrix R(0)S(e) R(—6) mappingg ontoq’ one finds

R(0)S(e)R(—0) =1 — 2ke. (5.9)
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5. Electronic linear response functions in strained graphee within the Dirac model

As is emphasized at length, the effect of applied strain aplyene is two-fold. Within the

Dirac approximation, applied strain amounts to adding mter
—hvpT.0 - qp

to the Hamiltonian. We remind that the shifted Dirac pajntis proportional to the deforma-

tion. Hence, such a term is analogous to a coupling term wgtuaye fieldA, say
_hUFTOO' . A,

a part from the fact that, is replaced by the identity, (i.e. there is no time-reversal breaking).
Moreover, the second effect of the applied strain inducearaton of the Fermi velocity. In

particular, uniaxial strain implies a Fermi velocity artiapy.

While the first effect,i.e. Dirac points shift, dominates at low energies, and is tloeeef
the focus of most previous investigations in this area, #wosd effectj.e. Fermi velocity
anisotropy, is usually neglected. If one takes into accounht the first term, it can be adsorbed
in a unitary gauge transformation, and should not produsemiable effects, unless the vector
qp IS non-irrotationalj.e. V x qp # 0, as is the case considered by Guinea, Katsnelson and
Geim [6]]. In the case of homogeneous strain, we are in the rotatasdV x qp = 0, where
no effect should be observalper sg it is a strain-induced modification of the velocity, which

is the only source of the effects on the linear response ledioa functions.

A central result of this Chapter is that a correspondencdshbetween a generic linear
response functiory(q, w) under applied strain, with respect to its unstrained limit)(q, w)
[115. This follows from the fact that any linear response fuoiti(q,w) of a noninteracting
electron system can be expressed as an integral over thBrfltstiin zone (1BZ) of a suitable
matrix operator over pseudospins, which is itself a functibq. Such an operator then admits
a unique expression in terms of the Pauli matriegss,, 0., and the identity matrix,,. The

simplest cases are then given by the density operator ancuthent density operator, which,
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for the unstrained case, in reciprocal space read

Pa) = D W o0l (5.10a)
k

JZ(O)(q) = —evp Z \IIL_qO-Z'\I}kJ 1=, (510b)
k

respectively, Wheré/ll = (1qa, YqB), andy, destroys a quasiparticle with momentupand
pseudospinr = A, B, and summations run over the 1BZ. While the density opeiddes not

change under applied strain, for the generic componeneatdirent density operator one has
[ — 7(0)
Ji = [1 - 2rel;; J;". (5.11)

Here and below a summation will be understood over repeatiides ( = x, y). Both opera-
tors are diagonal in valley space, hence here we can nefjiscfuantity because its only effect

is a degeneracy analogously to the spin.

Defining now eigenvalues and eigenvectors in pseudospaesgddahe Hamiltonian with and
without applied strain, Eqs2(49 and 6.7), asH© |/, \)© = E§2,|q’, MO andHlq, \) =
E\qla, \), respectively, withh a band index, it follows that both,, and|q, A\) under applied
strain are mapped ontES;), and|q’, \)(©, respectively, wherey is given in terms ofq by
Eq. 6.8). Performing such a linear change of variables in the irtlegefining the correlation
function of interest, in the cases of the density-density@mrent-current correlation function,
it follows therefore that

Myp(q,w) = [det S(e)] TP (¢, w), (5.12a)

0

;(qw) = [det S(e)] ™[I — 2ke]nIlY (g, w)[I — 2kely;, (5.12b)

wheredet S(e) = (1 — 2ke)(1 + 2kve). From Eq. 6.129, in the case of the density-density
correlation function, it follows in particular that the eét of applied strain is that of trans-
forming the momentum variablginto an ‘effective’ onay’, plus the introduction of an overall
scale factofdet S()] ', which is isotropic with respect with the strain directi®uch a scale

factor is directly related to the slope of the electronicsignof states at the Fermi level. As
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5. Electronic linear response functions in strained graphee within the Dirac model

is well known, this goes linearly with the chemical potehtiaand it has been shown that its
steepness increases with increasing strain, for modgtatelstrain modulus11d. In the case
of the current-current correlation function, such an olWesffect is then superimposed to an

anisotropic deformation, depending on the angle of apieain,d, as shown by Eq5(12h.
Linearizing Eq. $.12 with respect te, one finds

aH(O)
P (qa W)

I,,(q,w) = [1+2k(1 — v)e] Hfj”(q, w) —2 T

0

Enkqk, (5.13a)

oMY (q,w)

(g, w) = [1+ 26(1 — v)e] I (q, w) —2k
J th

ennqe—2k{e, IV (q,w)}i5, (5.13D)

where the curly brackets in the last term denote a matrixamtmutator.

5.1.1 Density-density correlation function

We now specifically turn to consider the density-densityeation function within linear
response theory.e. the electron polarizatiol,,(q,w). Plasmon modes are then recovered as
poles of the polarization, and the effect of strain on th&pdrsion relation has been studied in
Chapterd.

In given limits, the asymptotic form of the noninteractinglgrization in the absence of
strain, sa;HEf,?(q, w) is known explicitly. For instance, in the long wavelengthili (hvgq/ 1 —
0), one finds 155

- zg@(m —ou)|, (5.14)

2
0 C9s9uq” |2 1 2p — hw
100 00 B0 [ 2 12—

whereg, = g, = 2 take into account for spin and valley degeneracies, resspéct In other
words,Hff,],)(q — 0,w) = Z(w)q¢?, at a givenw, with the complex factoZ (w) implicitly defined
by Eq. 6.14.
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Longitudinal collective excitation and plasmarons

In the case of applied strain, but still in the noninteragtimit, this is then readily modified

through the linearized Eg5(13), yielding
I,,(q — 0,w) = [1 — 2k(1 + v)e cos(20 — 2¢)] Z(w)q?, (5.15)

whereq = ¢(cos ¢,sin¢). Within the random phase approximation (RPA), the inténact
polarization readsl,,(q,w) = II,,(q,w)/(1 — V(¢)II,,(q,w)), whereV(q) = €*/(2¢.€0q)

is the (bare) Coulombic electron-electron interactiorg gnis the dielectric constant of the
medium. Here, we use the two dimensional Coulombic potdmigause in the limitvgq/ 1 <

1 we can neglect the-extension of the electron wave functions, singe. < 1. Moreover,
we remind thak. is reciprocal to the decay length aloaglirection, which has been defined in
Eq. @.16. Solving for the plasmon dispersion relatidty f[;pl(q, w) = 0, at low energies one

finds

hwp = 4/ ;—;M [1 — k(1 +v)ecos(20 — 2¢)] /q
= han(e)v/qa. (5.16)

One thus finds that the prefactor(¢) in the /g-dependence is maximum [resp., minimum] for
o»—0=m7/2[¢p—6 = 0], i.e.wavevector orthogonal [parallel] to the direction of applstrain.
Correspondingly, one also finds for the imaginary part ofrétarded polarizability along the

low-energy plasmon branch

Im T, (quw + i0") = — %M (1 = 5(1 + v)e cos(20 — 26)] (ga)*/25(hw — hw(q)).

2
(5.17)
Therefore, one recovers a dependence of the plasmon dpeeight on the angle of applied
strain, similar to that shown by, (¢) in Eg. 6.16. These results are in agreement with the
analogous analysis shown in ChaplerMoreover, one can note that the angledefined in
Eq.(3.24), which characterizes the anisotropy of low energy plasmoimcides with the stress

directiond at first order ire and at zeroth order in energy.
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5. Electronic linear response functions in strained graphee within the Dirac model

The composite elementary excitations arising from the bkogpof charge carriers and
plasmons, the so-called plasmarons, have been considesedeneral context earlier on by
Lundqvist PO, 91]. Recently, plasmarons have been experimentally obsenvgthphene by
means of angular resolved photoemission spectroscopy ESIRR1], and their dispersion re-

lation described theoretically within th&, 1/ -RPA approximation126.

In n doped graphene, a plasmaron mode with momerikurasults from the relatively
strong coupling of a quasihole with momentlkmt q, and a plasmon with momentumq,
the quasihole-plasmon coupling being stronger when theetwedations have the same group

velocity [126. At k = 0, the plasmaron relative momentum modulus turns out to be

2

e p
= — 5.18
= Sre (hvg)?’ (5-18)

wherey is the chemical potential. Therefore, the plasmaron bipéimergy with respect to the
Fermi energy can be estimated, in first approximation, astine of the energies of the bare
quasihole and plasmon, both having momentum modylviz.

Ep=—-p—a"t (5.19)
Vg QET

wherea is the fine structure constant. In the realistic case of ggaplon a Si@ substrate,
Eq. 6.19 yields Ep ~ —1.25u. A more accurate estimate, including the contribution ef th
quasihole-plasmon interaction at tligV-RPA level [L126, yields Ep ~ —1.3u, in better
agreement with the experimental resul4][ In this Chapter we have seen that the uniaxial
strain on the graphene sheet induces a modification of tee@héc bands and of the plasmonic
spectrum. Therefore, it can be expected that strain alswtafthe energy dispersion of the

plasmaronic modes.

In particular, the quasiparticle dispersion relationjner order ire, reads
€q = thopq[(1 — k(1 —v)e) — k(1 4+ v)e cos(20 + 2¢)], (5.20)

where thet (—) sign refers to the conduction (valence) band, and wherglésenon dispersion

relation under strain is expressed by Eg.1¢). Deriving the corresponding group velocities
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from the above Eqs5(20 and 6.16), Egs. 6.18 and 6.19 for the plasmaron momentum and

energy, respectively, get modified into

¢ = (14261 —v)el— (o) (5.21a)
Ep(¢) = —p— avi2u 14 k(1 —v)e — k(1 + v)ecos(20 — 2¢)], (5.21b)
F <€

to linear order in the strain modulus Eg. (.21 shows that, in the presence of applied
uniaxial strain, the plasmaronic energykat 0 acquires an explicit dependence on the angle
¢ of the quasihole momentuop This is due to the anisotropy of both the electronic and the

plasmon spectrum. Correspondingly, the plasmaron ensrgjyaracterized by a central value

Ef, = —p— a—H 1+ k(1 —v)e], (5.22)
Vg 2€r
and a strain-induced energy width
ABp = oLyl +v)e. (5.23)
VF €y

Considering again the realistic case of graphene on aSifstrate, one can estimate the central
plasmaron energy in the unstrained caséa¢: = 0) = —1.25u = —125 meV, for p =

100 meV, with zero energy width. Correspondingly, in the casaro&pplied straim = 10 %,
one finds a central plasmaron energyiif(¢ = 10 %) = —127.4 meV, with an energy width
AEp(e = 10 %) = 6.27 meV. Hence, the effect of applied uniaxial strain on graghisn
therefore that of shifting and broadening the plasmarongsneroportionally to the strain
modulus 19. Therefore, by suitably applying uniaxial strain, onergafurther control on
the energy of the plasmaronic excitation, besides the pidigsbf tuning the relative dielectric

constant, [152.
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5. Electronic linear response functions in strained graphee within the Dirac model

Optical conductivity and the transverse collective excitéion

Another quantity of interest which is related to the densliénsity correlation function is

the optical conductivity, which can be obtained as

ie? w2
Ops(w) = - zlzlg(l) ?pr(q, w). (5.24)

Making use of Eqs.H.13 and 6.14) one therefore finds the optical conductivity in the pregenc

)

(5.25)

whereo, = me?/2h is proportional to the quantum of conductivity. In the hystatic limit,

of applied strain as

2 — hw
2p + hw

Opp(w) = 09 [1 — 26(1 + v)e cos(260 — 2¢)] <@(hw —2u) + Zéi + 4 log '

The 7

v = —1, 04, does not depend on strain, as may be expected, as the uedtralation does
not contain the Fermi velocity. The expression of opticatdurctivity in Eg. 6.25 has the
form typical for a rhombic two dimensional lattice, whichegpressed in Eq.3(52. If the
stress is applied along one special direction (armchairgozag) the lattice becomes rhombic,
hence the optical conductivity has the angular dependeqmessed in Eq.5.25 also at high
energies |£/t| = 1, wheret is the characteristic energiye. the hopping parameter). On
the other hand, if the stress is applied along a generic tdhrecthe angular dependence of
the optical conductivity in Eq.529 is valid only at low energies. Indeed, in general the
angular dependence of the optical conductivity is more dmaed, and its form is expressed
in Eg. 3.53.

The above expression for the conductivity, E5.2§), can be exploited to study the strain
dependence of the transverse electromagnetic mode, thdelea recently predicted theoreti-
cally in grapheneg8], and in a graphene bilaye7d] . In a 2D electron gas, the spectrum of

self-consistent electromagnetic modes obeys the eqation

UWC (gw) = 0, (5.26a)

A A} (5.26b)



for the longitudinal and transverse collective excitasiorespectively, wheré?(q,w) = ¢* —
(w/c)?, wherec is the velocity of light in vacuum. In Eqs5(26) we take into account the case
of suspended graphene, hence the dielectric constanttey@i. = 1). Also here, we do not

consider any correction due teextension of the electron wave functions siqg¢e, < 1.

While conventional 2D electron systems cannot sustainnswexrse electromagnetic mode,
it has been predicte®§] that graphene can develop a transverse collective moda,cas-
sequence of a negative imaginary part in the interband iboritvn to its optical conductivity,
Eqg. 6.25. Its logarithmic divergence asv/p — 2 is in turn related to the discontinuous
behavior of the interband absorption of radiation at fregesiw > 2u. Such a feature is a
generic consequence of causality, and is related througram&rs-Kronig transformation to
the step-like behaviour of the real part of the optical cartiity. This is in turn due to the
existence of a Fermi surface, which is however expected tenieared at finite temperature,

thus implying the reduction of the logarithmic singulatityo a pronounced (but finite) peak.

Observing Egs.5.26) one can state that both collective excitations are not @éahoply if
the real part of the optical conductivity is zero. In ordeffudill this condition, the graphene
sample must be doped. Hence the energy range, where bo#cttoal excitations are not
damped, i5[0; 2u[. Moreover, from Eqgs. §.26), one can observe that the solution for the
longitudinal collective excitation (plasmon) is possibldy if the imaginary part of the optical
conductivity is positive, whereas the solution for the gnarse collective excitation is possible
only if the imaginary part of the optical conductivity is regtye. Hence, these two kinds of col-
lective excitations can exist in two different energy rasmde other words, at a certain energy a

doped graphene sample cannot sustain at the same time Hietttice excitations.

Making use of Eq.%.25 in Eqg. 6.263, one consistently recovers Ed.16 for the low
energy plasmons. On the other hand, substituting &E@5(in Eq. (6.268, one obtains the
strain-dependence of the dispersion relation of the tensgvelectromagnetic mode implicitly

as

S_ZC(Q"“) = (1 — 2k(1 4+ v)e cos(20 — 29¢)) {@1 ‘M

2p
wherea = ¢%/(4meghe) is the fine structure constant.

-2 5.27
b } (5.27)

Because of the small facter in the left-hand side of Eq.5(27), the dispersion relation
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5. Electronic linear response functions in strained graphee within the Dirac model
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Figure 5.1: Showing deviations from linearity of the frequency of thenigverse plasmon, E&.R7), as
a function ofg modulus, for strain modulus = 0.1, and strain direction ranging from— 6 = 0 (top)
to ¢ — 0 = w/2 (bottom).

of such a transverse mode is close to the linear dispersiatiom of the electromagnetic ra-
diation itself,w — ¢¢ < 0. However, one may expect that applied strain enhancesti®ssa
from linearity (.e.,from the photon’s dispersion relation), as a consequenaestrfiin-induced
modification of the band dispersion. FiB1 shows indeed deviations from linearity,— cq of
the transverse collective excitation, fpm the allowed range, for strain modulas= 0.1, and
strain directior) < ¢ — 0 < 7/2. One finds indeed that, in the case of applied strain, dewiati
of the transverse mode dispersion relation from that of thetgn become significant over a

sufficiently wide window inicq /e < 2, especially whew — 0 = /2.

Therefore, applied strain should help the experimentadiemn of this elusive collective
mode. Indeed, the fact that the transverse mode disperdation is close to the corresponding
light dispersion implies that such a transverse collea@xatation would have a marked pho-
tonic character, and a small linewidth would therefore birits observationq4]. On the other
hand, at finite temperature, the real part of the optical aotidty is nonzero also foliw < 2pu,
so that the transverse mode does acquire a finite, albeit, smelvidth [98]. In particular, this
applies to energies such thak 2, — hw < kgT'. This is exactly where the transverse mode
dispersion relation deviates most from its photonic conate, the deviation being enhanced,

and shifted away from the limiting cage = 2y, in the case of applied strain, fqrperpendic-
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ular to the strain direction. Finally, one therefore expaeavevectors of the order btq < 2y,

or equivalentlyy/kr < 2vr/c < 1, so that it is justified to employ Eq5(27) [98, 155.

5.1.2 Current-current correlation functions

In the case of an applied vector fiekld.,an electric field;), one may in general decompose

the linear response function in a longitudinal and a trarsereomponent as

4i4; qi4;

whereq = |q|, for a homogeneous syste®d. In particular, in the case of the current-current
correlation function, the latter being proportional to {heeudospin-pseudospin counterpart,

this can be further simplified as

M9 (q,w) = T (g, )55 + 1 (g, ) Agi (), (5.29)
where
1
(g, w) = 57 (¢.w) £ T (g, ). (5.30)

Making use of Eq.%.13b, one finds

Mij(a,w) = T (qw) = 2en(1 + ) [T (g, w) cos(20 — 26)8;,+
+ Hf)(q, w)A;(6) + H_O)(q, w)Aij(¢ +m/4) sin(20 — 2¢) | +

an(f) (q,w) o (q,w)
dq dq

—k[(1 —v) 4+ (1 + v)cos(20 — 2¢)]e dij +q Aii(9)

(5.31)

In the static limit v = 0), Eq. 6.31) can be further simplified, by considering the analytic lesu
of Ref. [127), with 1| (q, 0) = 0, and

SIU 2 2
H(f) (q,0) = g f6jiqu® (1—2x) {1 - [arcsin(x) —xv1— xz} } ) (5.32)

wherex = 2u/hvgrq. In particular, one recovers a vanishing respoigg,(q,0) = 0, with
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5. Electronic linear response functions in strained graphee within the Dirac model

11,4 denoting the current-current correlation function fortbeector potential and response
field aligned withq, whenq is aligned with the applied field also in the presence of sirai
as expected in the static limit. Indeed, the statie~ 0 longitudinal response describes the
response of the system to a static longitudinal vector piatemvhich can always be removed

via a gauge transformation. Therefore, such a contributidhe linear response must be zero.

5.2 Electric and magnetic susceptibilities

The results obtained in the previous paragraph allow tovdeegveral measurable quantities.
In particular, in this paragraph we consider the magneticedactric susceptibilities.

First of all, we study the response of strained graphene tatee &and homogeneous mag-
netic field, which is normal to the graphene plane. A magrfetid applied in the direction
perpendicular to the graphene plane can be describBd,a8)) = B..:(q)z = iq x A, where
A =i(q,, —q:)Best/ ¢, in reciprocal space. The linear response to such a magdieddids then
given by a current/;, which in turn produces a magnetization tefl = y,,,B..:.

In the case of a static, uniform magnetic field, oriented m direction orthogonal to the

graphene sheet, one is interested in the magnetic sustigptibfined as

. do
v = lin [ 5%%,(0,0) 533)

Making use of Eq.%.32, one obtains

1 Ho 9| Lo
XM = 1111—I>I(1) (—?) [1 — k(1 — V)aqa—q} 1+ (q,0). (5.34)
In the strained case, this reads

G202
xar = —poll = 26(1 = V) L5 (), (5.35)

One therefore obtains a qualitatively similar result to¢hse of undeformed graphene, treated
within the Dirac approximation and neglecting the electetectron interactionds, 127. On
the other hand, applied strain causes a reduction of the etiagasponse, Eq5(34). Although

Eq. (.35 would imply no response to a static, uniform magnetic fieléha from half-filling,
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one expects that finite-temperature effects would brodded-function, already in the nonin-
teracting limit. A qualitatively similar smearing of theadein the dependence on the chemical
potential may also be induced by disord@é®][ Still at zero temperature and in the noninter-
acting limit, one recovers a nonzero magnetic responseaalsy from half-filling, when the
honeycomb lattice structure is consider&@|[ The effect of the interactions has been consid-
ered in Ref. 127], where it is shown that an interacting 2D Dirac electroruitidevelops a

magnetic response also at finite doping.

An analogous procedure may be followed to derive the etestrsceptibilityy., entering
the relationshipE = y.E..; between the electric polarization and an external eletitid,
which is oriented along the graphene plane. One is theresited in the staticy = 0) limit of
the density-density polarization. In the presence of ggjdtrain, at arbitrary chemical potential
1, using Eq. 5.13, one explicitly finds

gsGuh 9s9uq
,,(q,w=0) = [1+2k(1—r)] 52,2 -+ SWHUFGI ()O(1 —x)
F

—k[(1 = v) + (1+v)cos(20 — Mkéﬁ%ﬁ G- (z)O(1 — 2),
(5.36)
wherexr = 2u/hvpq and [L37, 155
GE(z) = V1 — 22 — arccosw, |z| < 1. (5.37)
In particular, at zero doping«(= 0, G£(0) = —=/2), one finds in general that
Xe(a,0) = Vi(g)Il,(q,0). (5.38)

It should be emphasized that, while E§.38 describes the response of the system to a static

electric field lying in the same graphene layer. More expicin the undoped case, E.39

reads
= lim ve(q,0) = 900
Xe = q—0 Xl N 326067~FLUF
X [14+ k(1 —v)e — k(1 4 v)ecos(20 — 2¢)] , (5.39)
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5. Electronic linear response functions in strained graphee within the Dirac model

where¢ is the direction of the electric field on the graphene plahes tshowing that uniaxial
strain introduces a modulation in the angle of applied str@ibserving Eq.5.39, one can state
that uniaxial strain reduces the susceptibility along thess direction, whereas it enhances the
susceptibility along the direction orthogonal to the sréisection.

Using Eqg. 6.39 and considering the case of doped graphene, one obtairnthé¢helectric
susceptibility in the long wavelength limity (< 2kr) assumes the typical form for a two-
dimensional electron gas

Xel,0) = ——L, (5.40)

wheregrr is the Thomas-Fermi wavevectdi(]. In particular, in the case of a strained graphene

monolayer, the Thomas-Fermi wavevector takes the follganm

2

_e K
qre = — (iop)? [1+2k(1 —v)el. (5.41)

Hence one can observe that is possible to tune the Thomas-wavevector, and consequently

the screening properties, not only by doping, but also byieggtrain.
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Chapter 6

Ballistic transport in strained graphene

Both the low dimensionality and the high mobility make grapé an attractive material
for electronic applications. It is possible to measure iespive values of the mobility both
in suspended graphené&q 17] and in graphene devices on suitable substrates, such as on
single crystal hexagonal boron nitride (h-BNB7]. Moreover, low dimensionality allows to
realize a source-graphene-drain configuration where thetrehic mean free path is longer
than the distance between the source and drain, so thatsiéemse ballistic properties34].
Exploiting the electric field effect, using nano-gate getias, it is possible to subject the
system to potentials varying on a short length sc2h [Using these techniques, recently it has
been possible to experimentally study transport thropghjunctions andp-n-p junctions in
graphene102 150, 157]. In these devices, resistance measurements show dissicitiations,
arising from the Fabry-Pérot interference between thepgwanterfaces. These effects can be
explained in terms of ballistic transport.

In the previous Chapters we have seen how strain can modifeldttronic properties of
graphene. Moreover, recent interest is directed towargstilndy and realization of graphene-
based electronic devices designed by a suitable tailoririgeoelectronic structure exploiting
not only the electric field effect but also applied strainttBthese techniques would give liberty
to modify the transport properties of graphene without agdiny source of disorder. Hence,
by exploiting strain engineering, as well as the electridfedfect, it is possible to realize a new
class of ballistic deviceslp0 123. Indeed, a considerable amount of work has been devoted

to the study of the transport properties in graphene actoasmgnduced single and multiple

97



barriers R9, 50, 116, 118,

In this Chapter, we will study the effect of a strain-inducaddulation profile on several
transport properties of graphene, such as the angular depea of the tunneling transmission,
the conductivity, and the Fano factdid. After considering the cases of a single sharp tunnel-
ing barrier, and of a superstructure of several, perioljicapeated, such sharp barriers, we will
specifically study the case in which both the modulus of a&gpliniaxial strain, and possibly
an applied gate potential, depend continuously on positidareover, we will generalize our
analysis to embrace the case of a genadouniformstrain, and possibly a scalar potential,

profile.

6.1 Transmission across a single strain-barrier

€,0,V

Figure 6.1: One-dimensional single tunneling barrier along theirection. Region 11() < z < D) is
characterized by applied strairalong thef) direction, as well as by a gate voltabg.

In the whole Chapter we will deal with a one-dimensional ui@bstrain profile, hence we
fix the directionf, along which the tension is applied, with respect to thexis in the lattice
coordinate system in Fi@.1, whereas the longitudinal deformatieis generally a function of
the position. Hence, it will be convenient to work in the refece frame with the new axis
along the direction of applied strain.

In order to describe the electronic properties of graphemeulocal strain it is useful to

remind that the kinetic part of the Hamiltonian for graphenbjected to uniform strain, which
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6. Ballistic transport in strained graphene

is characterized by and6, has the following form
H— / dr 0 (x) v, [Touf(e)aj%vjuw) U O (0)| UE),  (6.1)

where ¥ (r) = (Uax(r), Upk(r), ¥pr(r), —Var(r))" is a four-component spino; =
vp(l — Aje), v is the Fermi velocity in unstrained grapheng, = 2k, A, = —2xv, o;

(1 = x,y, ) are the Pauli matrices which act on the pseudospin sphaedB), 7; (i = x, ¥, 2)
are the Pauli matrices which act on the valley spdac@a0dK”), 7, is an identity matrix of order
2 which acts in the two-dimensional valley spaqg, is the shifted Dirac point with respect to
the K point, defined in Eq.8.5), and the summation over the repeated ingexx, y is under-
stood. The choice of the suitable reference frame withitagis along the direction of applied

strain is accomplished by a rotation in the pseudospin spgseribed by the unitary matrix

uo) = ((1) eg€> . (6.2)

Similarly, the density operator can be expressed as
p(r) = ¥i(r)w(r), (6.3)
and the current density operator as

Ji(r) = —eUT ()70l (0)v;0:U (6)T(x). (6.4)

First of all, we consider a graphene device where a centiplaftiength D is under uniaxial
strain, whereas the lateral parts are unstrained and tleegemmi-infinite. In this model, we
have a sharp profile of strain. This approximation holds & tiharacteristic length, which
describes the linear size over which the strain profile gaaigpreciably, is much smaller than
both the lengthD and the Fermi wavelengthe (a < D, Ar). Moreover, we will assume that
any characteristic length in this model is much larger thendistance: between two nearest
neighbor carbon atoms. This last condition allows to néglaeg coupling between the valleys
K andK".
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Therefore, we consider a strain-induced one-dimensidaptigke barrier, characterized by
uniaxial strain applied along the directiénwith strain modulug for 0 < = < D, and zero
otherwise. Correspondingly, the Hamiltonian and curremisity vector are given by Eq$.(0)
and 6.4), respectively. In addition, for the sake of generality, way also consider a nonzero
gate potential/, within the barrier (Fig6.1). We remind that a general scalar potential has the

following form

U= /drU(r)p(r), (6.5)

in the case of a sharp barrier we would h&¥e) = —eV,0(z)O(D — z), whereO(t) is the

Heaviside (step) function.

Since we are interested in stationary solutions and théndbarier is uniform along the
y direction, the energyy and the componeri, of the wavevector of an incoming wave are
conserved. Actually, in addition t&' andk,, each stationary electronic mode is also labeled by

the valley indexK or K’. We look therefore for solutions of the stationary Dirac &tipn of

the form
U(z,y) = eV (x) (6.6)
where
U (0)r (), xz <0,
Y(x) = < el Yt (0)ahyy (), 0<x<D, (6.7)
70U (0) (), x> D,
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6. Ballistic transport in strained graphene

and
1 T
1 |se* | . 1 | —rse ™ "
r) = — et 4 e e, 6.8a
¢I( ) \/§ 1 \/5 7"/ ( )
se? —1r'se”
aetd=® be 1z
1 as'e'eld=” 1 —bs'e e
r) = — , + — -, , 6.8b
wH( ) \/5 &/€qum \/§ b/e—zqzm ( )
alsleio/ eiq;z _blsle—ia/e—iqu
t
tse’ | .. .
¢111($) = p €kz . (68C)
t'se'?

In Egs. 6.8), ¢ denotes the angle of incidence with respect to the batties, (| E|/hvr) cos ¢,

ky = (1 B|/hue) sin g, (E — Uy)2 = B22[(1 = Ae)2q2 + (1= \e)2(ky — apy)?), (B = U,)2 =
R202[(1 = Xpe)?q.% + (1= N\ye)2(ky +qpy)?), s = sgn (E), s’ = sgn (E —U,), wWith U, = —eV/,.

In the four-component spinor in E6.8) we take into account contemporarily two stationary
solutions: both modes have enerlyand component, of the wavevector, but the first one
is related to the valley< whereas the second one is related to the valiéy The electronic
modes, which correspond to the vallgy(K"), are propagating wavesdf (¢.) is a real value,

while they are evanescentif (¢..) is purely imaginary.

Given the stationary character of the solution, the coiityrequation implies that/ - J = 0
everywhere. In particulakJ) = (¢|J|¢)) may only depend on, therefore(.J,) is constant.

The latter condition implies, at the barrier boundaries,

Pr(07) = (1= Ae) Y2 (01), (6.9a)
(1—)\m5)_1/2¢11(D_) = Ym(D7). (6.9b)

Enforcing the above conditions in Eg6.8), one eventually finds for the tunneling transmission
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for a generic mode labeled by, k,, K,

C? cos?
T =t = 6.10
g C2 cos? ¢ cos2(q, D) + (1 — s8'S sin )2 sin?(g, D)’ (6.10)

whereq, = ky — aoy, 4 = (1 — A2)|(E — Uy)2/W0d — (1= Mg 2, ¢ = (1 -
Ae&)hvpgy [|E — Uyl, S = (1 — A\je)hvpg, /| E — Uy|.

f=mn/2 =0

Figure 6.2: Dependence on the incidence anglef the tunneling transmissioir, Eq. 6.10. Left
panel refers to strain applied along the zig-zag directibr=(7/2), and (a)e = 0.03, U, = 0 meV,
(b) e = 0.03, U, = —20 meV (the strain-induced deformation of the Dirac cone isleetgd); (c)

e = 0.03, U, = —20 meV. Right panel refers to strain applied along the armatiagction ¢ = 0), and
(@e =0.01, U; = 0 meV; (b)e = 0.01, U, = 0 meV (the strain-induced deformation of the Dirac
cone is neglected); (¢)= 0.01, U, = —20 meV. In any case the electronic modes is labeled withithe
valley.

In order to discuss the dependence of the tunneling trasgmisn the incidence angle

we preliminarly observe that propagation within the bariseallowed whenever
R2oE (1 — N\e)(ky — qpy)? < (B —U,)?, (6.11)

wherek, = (E/hvr) sin . Within such a range, one has moreover total transmis§ioa (1)

whenever
¢ D = nm, (6.12)

n being an integer.
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6. Ballistic transport in strained graphene

0 B -
0 0.5 1

Figure 6.3: Same as Fig6.2, but for £ = 150 meV andD = 100 nm.

Figs.6.2and6.3show our results for the tunneling transmission- 7'(¢), Eq. 6.10, as a
function of the incidence anglg, for £ = 80 meV, D = 100 nm (Fig.6.2 andE = 150 meV,

D = 100 nm (Fig.6.3). In both figures, leftresp.,right) panel refers to uniaxial strain applied
along the zig-zagi = 7 /2; resp.,armchairg = 0) direction.

In the case of strain applied along the zig-zag directibn=(7/2, Figs.6.2and6.3, left
panels), curves (b) neglect a strain-induced deformatidineoDirac cone, namely we consider
that the only effect of strain is to shift the Dirac point. Goanison with curves (c), where
such a deformation is fully included, shows that the effée strain-induced anisotropy of the
Fermi velocity is that of shifting the angular location oétmaxima " = 1, Eq. 6.12) of the
tunneling transmission. Such an effect becomes more impowith increasing energy (from
Fig. 6.2to Fig.6.3), while the number of peaks increases, Ej19, and the angular range in
which the propagating regime is allowed widens. The efféet strain-induced deformation of
the Dirac cone is even more dramatic in the absence of a g&tet@d [/, = 0 meV, curve
(a)]. Indeed, in such a case, neglecting the Fermi velocityadropy for strain applied along
the zig-zag direction would yield a uniform tunneling tremssion7 = 1, for all incidence
anglesy, whereas we find that transmission via propagating waveloiwed only for |p| <
arcsin[(1 — \,e) '], with small oscillations beloW’ = 1 within, and evanescent waves beyond

that range. A similar analysis applies to the case of stpaplied along the armchair direction
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(¢ = 0, Figs.6.2and6.3 right panels), which is characterized by an asymmetritsirassion
T = T(p), with pronounced oscillations fagr > 0 close to the propagating edge.

The origin of such an asymmetry of thedependence of the transmission can be traced back
to the particular Dirac cone vertex, whose shift is here &red. Global symmetry would
be restored upon inclusion of the other Dirac cone. In thaecane would obtain the same
picture, but withy — —¢. It should be emphasized that the stationarity conditianp,(&12),
characterizes the occurrence of peaks in the transmiggiphin any case. In addition, for a
potential barrier, in the absence of strain, one also resos@mplete transmissio’(= 1) at
¢ = 0 (Klein tunneling) .

Summarizing, we have obtained that the overall effect ofairsinduced deformation of
the Dirac cones, besides the shift of the Dirac point, is thahifting the transmission peaks,

and of reducing the range imat which transmission takes place.

6.1.1 Ballistic transport of a single strain-barrier

Figure 6.4: Schematic top view of a graphene layer contacted by metadids.

Now we consider a more realistic devicéz. a graphene strip of lengt® and widthV/,
subjected to two heavily doped leads at a distabcg=ig. 6.4) [33, 50, 66, 145. Following
Ref. [145, we assume thdtl’/D > 1, and that the gate potential within the strip is much less
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6. Ballistic transport in strained graphene

than the potential of the leadd/,| < |V,|. Moreover, we assume that the graphene strip is
characterized by uniaxial strain, with modulusnd strain directiord, whereas the leads are

treated as heavily doped unstrained graphene.

We can describe the strained graphene strip as a mesosgsfgmsconnected to two reser-
voirs (the leads). We assume that the reservoirs are sotlaag¢hey can be characterized by
a well-defined temperature and chemical potential. We denghe limit of zero temperature,
whereas the chemical potential of both leads is equaktig,. Then we assume that the voltage
applied between the two leads is infinitesimal. In these itmmd, we can treat the system as

in the stationary regime.

In order to obtain information about ballistic transporbjperties of the system we use the
same procedure followed to obtain the transmission fundticeq. 6.10. Since the leads are
heavily doped we will consider the limj’;| — oo, which is equivalent to impose the limit

v — 0 to the transmission function expressed in Bq1(Q). Thus we have

1
TP P (B k) = 6.13
B ) = o@D ¢ gu(B Ry (@, D)’ 613
for propagating waves in the valley= K, and
. 2
9a(E, ky) = (E—U,) (6.14)

(B —Uy)*— h2U12«“(1 — Ae)2(ky F QDy)y

and the minusrésp.,plus) sign applies to the valley = K (resp.,a = K’). Analogous ex-
pressions hold for the transmissidf" (k,) in the evanescent case, wigh(k,) — —ga(ky),
cos(q, D) — cosh(q, D), andsin(q, D) — sinh(q, D). The transmission for a general (propa-

gating or evanescent) wave therefore reads
To(E, ky) = Olga(E, ky)|TPP(E, ky) + (1 — Olga(E, k)] TS (E, ky). (6.15)

Integrating overk, and summing over both valleys, one obtains the conductacrossathe

barrier, following the Landauer approaf| 81],
2e? < dk,
6B = W3 / SUTBR) (6.16)
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where the factor of 2 takes into account for the spin degewgetiae conductivity

D
= — A7
o= G, (6.17)

and the Fano factodf]

S [ ST B )

oo 2w

Y [ R E k)

oo 21

(6.18)

F(E)=1—

In the zero-temperature limit the thermal noise, or JohAspquist noise, is vanishing. In such
a limit, the fundamental source of noise is due to charge tigation. This kind of noise is
called shot noiself3]. The shot noise is quantified by the dimensionless Fanorfaghich is

defined as the ratio between the noise power spectrum anddrega conductancé4.

1.04 ¢

1.02

0.98 r

0.96 r

E/AE

Figure 6.5: Conductivity across a graphene strip & 100 nm) normalized to asymptotic large-energy
behavior, Eq.§.23, vs. energy scaled to the pseudoperiod, Bg24). Actually shown are four curves,
all collapsing into a single one, corresponding to straipliad along the armchair directiod (= 0),
with e = 0.03, 0.05, 0.10, 0.15.

Before discussing our results, let us observe that the sfauof a strain-induced deforma-

tion of the Dirac cone in the expressions of the conductiéty. 6.17), and of the Fano factor,
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0.35

03t

0.25 r

0.2
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0.1 ¢
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Figure 6.6: Fano factor for ballistic transport across a graphene.s#ilpparameters are as in Fi§.5.
Dashed lines represent the universal low- and large-eresgmptotic valuesF'(0) = % andF, = %
respectively.

Eq. 6.18, amounts to the replacements

D — Dug=£D, (6.19a)
E — FEg=C(CE, (6.19D)

for the strip width and incident energy, respectively, ia torresponding expressions? and

F©) say, without cone deformation, with

1— e
£ = T ac (6.20a)
1
= . 6.20b
¢ = T (6.20b)
In particular, one explicitly finds
o(D;E) = 09 (Deg; Eog). (6.21)

As a consequence, whilang_, 0" (D, E) = 4¢%/rh, a universal constaniftZ], in the pres-
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ence of applied uniaxial strain one finds

) 1 4¢?

Only in the case of hydrostatic strain & —1, A, = A, £ = 1) one recovers the universal
limit, regardless of the strain moduludd. On the other hand, one findisng .o F/(D; E) = %
which is smaller than the valuB = 1 expected for a Poisson process. This value is the same
regardless of applied straiti45. In the limit £ — 0, the ballistic transport is purely due to the
evanescent modes. In particular, we have found that thensise due to the evanescent modes

is insensitive to the presence of uniaxial strain.

In the opposite limit £ — o), the ballistic transport is mainly due to the propagating
modes, whereas the effect due to the evanescent modesigilnleglin the high energy limit,
the conductivity across a single barrier in the absencerafrsts linear in energyy(® =
(e2/h)D|E|/hvr , with damped oscillations characterized by a pseudopetiddsuch that
DAFE /hvr = 7 [66]. In the presence of strain, such results are modified by B0, so that
o0(F) =~ 04 (F) for E — oo, with

4e? D|E|
Ooo(E) = R (6.23)
with damped oscillations characterized by a pseudopenahdy
ggDﬁ = . (6.24)
hUF

In view of the fact that\,| > |)\,|, one may conclude that applied strain induces a slight ahang

in the slope ob vs| E|, while it modifies the pseudoperiod of the oscillations msarestantially.

Fig. 6.5 shows our results for the scaled conductivity in the presesfcuniaxial strain
(e = 0.03 — 0.15) applied along the armchair directioft £ 0). When the conductivity (E)
is normalized with respect to its asymptotic limit, E§.Z3, and plotted against energy
scaled with the strain-dependent pseudopefidd Eq. 6.24), results corresponding to differ-
ent values of the strain modulus collapse into a single guhgplaying damped oscillations, as

prescribed by Eq.8.24). Similarly, Fig.6.6reports our results for the Fano factor as a function
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6. Ballistic transport in strained graphene

of scaled energy. Again, the results for all the strain moldlele consideredt(= 0.03 — 0.15)
collapse into a single, oscillating curve. Note that thevarsal limits F(F = 0) = % and
Fy =limg . F(E) = é are recovered in all cases, regardless of applied straich fasults

do not depend on the directi@mof applied strain.

6.2 Transmission across multiple strain-barriers

Figure 6.7: Schematic plot of the multiple barrier.

Now we consider quasiparticle tunneling acréésdentical barriers, each of widtt) two
nearest neighbor (NN) barriers being separated by thendistasuch thab N/ = D (Fig. 6.7).

We assume a position-dependent strain modulugand gate potential enerdy(x), with

e(x) = e, 2m—10<z<(2m-— 1)L, (6.25a)
= g4, (2m -1 <z <2ml, (6.25b)
and
Ul) = U, 2(m—1){<z<(2m—1)(, (6.26a)
= Uy, (2m—1)l<x<2ml, (6.26b)

with m = 1,... N. We further consider the possibility of contacting the twirema of the
chain of barriers with leads at the potential First of all we consider the leads at zero potential

V;, = 0, that means that the superstructure is contacted withngigtaphene. Eqs6(9) then
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suggest to look for a solution of the Dirac equation in therfor

¢($> eikyy

V(o) = U0

(6.27)

so that¢(z) is a continuous function at the barriers’ edges. The statioDirac equation for
¢(z) can then be cast in the form of an evolution equat&s, [so thaty(z) = T (x, z0)d(x),

where the evolution matri¥ ™) (x, ) in turn obeys the equation

d
—T(N)(x xg) = {ique(x)njt
dx

i E-U(z )
hup 1 — Az 5(x)

FED (b = deon) o | 100, (629)

with T (20, 79) = I, and whereg" is the strain independent prefactor of the shifted Dirac

pointqp = qg))g. The evolution matrix is related to the transfer matrix b¢Z]

M (, 20) = Q7 () T™ (x, 20) Qs (), (6.29)
where
Qs(p) = % (selw _Si_w> (6.30)

includes the incidence angfeof the incoming spinor, Eq6(89, ands = sgn (F). Since there
IS no mixing between the two valleys and K, it is possible the transfer matrix in the block

diagonal form

(6.31)

M(N)(x,xo) 0
M (z, ) = [ " 0 MY (@, z0) |
K\

each block being related to one valley indéx ¢r K').

Similarly to the previous case, since the strain supeckais uniform along the coordinate
orthogonal to the direction of applied strain, saytationary eigenmodes will be characterized
by constant energy, transverse wave vectéy, and valley indexi’ or K'. Replacinggp with
—qp in the matrixM%V)(x, xo), one obtains the matrM%\f) (x, o). Hence, for simplicity here

we consider that the valley index is and we omit to write the chosen index.
For the transfer matrix across the first, say, barrier in Bid, one findsM") (2¢,0) =
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6. Ballistic transport in strained graphene

cina e te ) whereM® is a unimodular matrixdet M) = 1. Specifically, one obtains

MY = A+in, (6.32a)
A= sinh(g_) sinh(g, () (k—ky —u_uy) + cosh(g_0) cosh(g.?), (6.32b)
q- q+
n = z[% sinh(q_/¢) cosh(q,¢) — sinh(q, ¢) cosh(q_¢)|, (6.32c)
+ —

where\ is always real, whereag can be real or purely imaginary, depending/gnand E.

More compactly, one also finds

RiK_ —ULU

M) = exp(q.0) { ~ sinh(q_¢) + cosh(q_é)] . (6.33)
q+q-

In Egs. 6.32 and 6.33, we have employed the definitions

1-— )\y&?i (0)
T A€+ (hy = qDygi% (6:342
vy = = (6.34b)

h’UF(l — )\IEiy
gz = /KL —ud. (6.34c)

Making use of the Chebyshev identity for théh power of a unimodular matrixtpg, for the

transfer matrix acrosd’ identical barriers, one find4 1§

~ sinh(Nz) ~ sinh[(N — 1)z
paoy = 2V gy shlV— 2] (6.35)

sinh 2

wherecosh z = \. Finally, the transmission can be related to the transferixas

Tw(E, k) = [P0

(6.36)

We are now in the position to discern whether an electronidene characterized by an
oscillating or evanescent behavior far from the barrieesiagtice. To this aim, we preliminarly
observe that, depending @éhandk,, one has a propagatingép.,evanescent) wave fgt. < 0
(resp.,¢2 > 0), where the subscript refers to the region between two consecutive barriers

[(2m—1)¢ <x <2ml, m=1,...N], and the subscript refers to the region within a barrier
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R2m -1 <z<(2m-—1)¢,m=1,...N](Fig. 6.7).

Ty (Ek,)

hvgk, /B,

Figure 6.8: Single electron transmissidf (F, k), Eq. 6.36) across a single barrietM = 1, ¢ =
25 nm), as a function of scaled transverse wave vektet:, /E; and scaled energif/E, Eq. 6.37),
with £ =~ 40 meV. Here, strain is applied along the armchair directtbs; 0, and we set_ = (.02,
e; = 0, andU. = 0. Cyan dashed lines delimit cones corresponding to the fjoefd) Dirac cones
outside (left cone) and within (right cone) the barrier {o@g 1+11l and Il, respectively, in Figs.7). Solid
lines outside the left Dirac cone correspond to bound modes.

Fig. 6.8shows the single electron transmission( £, k,) across a single barrier, E&.86)
with N = 1, as a function of the transverse wave vediogk,/E; and energyE'/E,, each

scaled by the characteristic energy
Thug

F, =
1 26’}/7

(6.37)

wherey = 1[(1 — A\e4) ™' + (1 — X\,e_)~!]. Here and in the following, strain is applied along
the armchair directiord = 0, and we set_ = 0.02, ¢, = 0, andU. = 0. In Fig. 6.8, cyan
dashed lines delimit the two (deformed) Dirac cones definegtb< 0 (left cone) and;> < 0
(right cone), corresponding to regions I+l and Il in Fi.7), respectively. One finds that
T\(E, k,) is defined within the left cone and is exponentially vanighivithin the intersection
between both cones. This corresponds to having propagatags in all the three regions. In
this case, resonant modeg, propagating modes with unit transmission, are charaeenm/
the condition for stationary waves

g =mm, (6.38)



6. Ballistic transport in strained graphene

Figure 6.9: Single electron transmissidh (£, k), Eq. 6.36) across a superlattice of = 5 identical
barriers (Fig.6.7), as a function of scaled transverse wave veftark,/E, and scaled energy/E;,

Eq. 6.37). All other parameters are as in F&8 Red lines outside the right cone correspond to resonant
modes.

whereq_ = ig_, andm is an integer. We have just seen this condition in the presjawagraph,
cf. Eq. 6.12.

Fig. 6.9 shows the single electron transmissibin(E, k,) across a superlattice composed
of five identical barriers, Eq6(36 with N = 5. Again, nonzero values of the transmission
are to be found within the intersection of the Dirac conesesponding to the region inside a
barrier and between two consecutive barriers. Howevegrénce of the cas® = 1, because
of multiple scatterings, a nonzero transmission is alssiptesbeyond the con¢ < 0. This
corresponds to having evanescent modes within the barBeish a phenomenon is analogous
to what happens to photons propagating across a 1D photorstatwith alternative layers
of a left-handed and a right-handed material (1D metanajdii54. As for resonant modes,
Tn(E, k,) = 1, besides the ones given by E§.38 regardless oiV, additional resonant modes

are given by the condition
A_cos,(”—]), j=1,...N—1, (6.39)

where) is defined by Eq.§.32h, and|)\| < 1. The latter condition implies that these resonant

modes have globally propagating behavior. Comparing Bd@and6.9, one finds that, in the
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domain within both Dirac cones, in addition to the resonaates given by Eq.6.38), in the
caseN > 1 there existV — 1 new resonant modes given by E§.39. It should also be noted
that in the domain within the left cone but outside the sedhedresonant modes, which are

only given by Eq. 6.39, are characterized by quite narrow lines in the transimisglots.

Outside the left Dirac cone, it is still possible to find boustdtes 7, 94, 12(. Within the
transfer matrix method, these are given by the condifidf)], = 0. Forg¢? > 0 one finds
evanescent modes outside the barriers, and thereforesal§or the superlattice structure. In
the caseV = 1, one finds several such confined modes within the second €oe5(8, solid
lines outside the left cone), whereof only one such modeigs\n the region outside both
cones. The latter is the surface mode analyzed in R&f}] In the caseV > 1 (Fig. 6.9, solid
lines outside the right cone), one finds that to each bouncenmothe single barrier case there
correspond exactlyv bound states outside either cones. This is remindful otledands in
solids, where the overlap d¥ periodically arranged atomic orbitals give rise to a banavof

states.

6.2.1 Ballistic transport of multiple strain-barriers

Similarly to the case of a single strain barrier, we consi®w a strain graphene super-
structure, Fig6.7, in contact with two metallic leads. These are describedMayttighly doped
semi-infinite graphene samples. In the leads we assume téhpetential V.| — oo. The
presence of the leads has no effect on the evolution matrat, we have just obtained for
the superstructure, but it induces a modification of thesfienmatrix. Indeed, in the limit
|VL| — oo the transfer matrix is related to the evolution matrix foy @nergyFE and transverse
wavevectork, by

MY (2, 20) = Q7 (0) TN (2, 20) Q. (0), (6.40)

With Q. (0) = (0. + 0.), Q7(0) = Q1(0), Q(0) = Q. (0), Q7'(0) = 0,Q4(0), and

s = sgn (V). Following the transfer matrix method that we have just usethave

(Ml)n = A+, (6.41)
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6. Ballistic transport in strained graphene

where

inh(q_/) sinh
N q(q 0) sin q(%g) (K_ky — u_uy) + cosh(q_t) cosh(q,.0), (6.42a)
- +

N = —=sinh(g_€)cosh(g,€) + =t sinh(q, ) cosh(q_£), (6.42b)
q- g+

where we have used the definitions in E¢&368). We are taking into account the case labeled
with K valley, but in order to obtain the case labeled withone needs to replaeg, with —qp.
Moreover, exploiting the Chebyshev identi®.85 and Eq. 6.36 one finds the transmission

function explicitly

To(E. k) = TEP(E, k,)

2 -1

= {0052(Ny) + )\277_ ] sin2(Ny)} , (6.43a)
with y = arccos A, if [A| <1,

=T."(E, ky)

2 —1

= {coshQ(Nx) + )\277_ . sinhQ(Nx)} : (6.43Db)
with = log |A + VA% — 1], if |A] > 1,

= [1+9°N4 7 (6.43c)

if |]\] = 1. We remind that bothA andn are dependent on the energy the component, of

the wavevector and the valley indékor K.

Making use of Egs.§.43 for the transmissio, (£, k,) in Landauer’'s formula for the
conductivity, Eq. 6.16), and in the definition for the Fano factor, E§.18), one again finds that
the conductivity in strained graphene, and strained gnag@ménere the strain-induced velocity

anisotropy has been neglected, are related by means of@&g8, (6.21), but now withD =
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2N/, and

£ = e +e), (6.442)
¢ = SGT0), (6.44b)
1—)\y€:|:
g:t - m, (6440)
1
(+ = m (6.44d)

Eq. 6.22 in the limit £ — 0 then follows straightforwardly, witl§ given now by Eq. §.449.

Moreover, the conductivity at large energies is charaoterby an overall linear behavior, in-
terrupted by dips with decreasing depth, which result frbwn ¢oherent superposition of the
damped oscillations produced by scattering off the edgekeokingle barriers. The energies

E,, at which such dips occur are asymptotically given by

E, D1

o 3 2 (646 +EC) =, (6.45)

with n an integer.

Fig. 6.10shows our numerical results for the conductivity in strdigeaphene, with strain
applied nonuniformly along the armchair direction, acrassuperlattice ofV = 10 barriers.
At variance with Fig.6.5 we have not scaled with its asymptotic behavior at large ener-
gies, Eq. 6.23. As expected, the overall linear behaviordf) is interrupted by dips, whose
approximate energy location is given by E§.45. While such dips get damped as energy
increases, they are nonetheless enhanced with respe@ tagk in which the strain-induced
deformation of the Dirac cones is neglect&@][ especially those corresponding to even integer
values ofn in Eg. (6.45. Correspondingly, the Fano factor (F&11) is characterized by essen-
tially analogous features, with bumps occurring at apprately £,,, Eq. 6.45. In particular,
the universal limit at low energy;'(0) = % is recovered as in the single-barrier case, regardless
of applied strain.

Fig. 6.12 shows our numerical results for the conductivity in strdimgaphene, but now
for nonuniform strain applied along the zig-zag directid.variance with the armchair case

(Fig. 6.10), for strain applied along the zig-zag direction the coriity seems not to be char-
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olog

E/E,

Figure 6.10: Conductivity o(E) in units of oy = 4e?/h, vs. energy E, scaled with respect to the
approximate location of the first difd;, as given by Eq.6.45. Subsequent dips then occur close to
integer values of the rati&@/E;. Uniaxial strain is applied along the armchair directién= 0) in the
case of a multibarrier superlattice, with = 10 barriers,/ = 25 nm (D = 500 nm). Different curves
refer to nonuniform strain moduli within and outside NN hers (cf. Fig.6.7), with (&) e = 0.004,

e =0;(b)eyr =0.003, e = 0; (c) ex = 0.002, e = —0.001; (d) ex = 0.002, e = 0.001; (e)

g4 = 0.0005, e_ = 0. In all cases, we séf = 0, for the sake of simplicity.

E/E,

Figure 6.11: Fano factorF' vs. scaled energyr/E;, for transport across a multibarrier superlattice,
with nonuniform uniaxial strain applied along the armcldirection ¢ = 0). All parameters are as in
Fig. 6.10 Inset shows the universal low-energy asymptotic behawidine various cases. In the limit
E — 0, the universal asymptotic valug(0) = g, is recovered.
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Figure 6.12: Conductivity o(E) in units of oy = 4e%/h, vs. energyE, scaled with respect t&, as
given by Eq. 6.45. Uniaxial strain is applied along the zig-zag directieh=¢ 7/2) in the case of a
multibarrier superlattice, witlv. = 10 barriers,/ = 25 nm (D = 500 nm). Different curves refer to
nonuniform strain moduli within and outside NN barriers. (Eig. 6.7), with (a)e,. = 0,e_ = 0; (b)
er =0.03,e_ =0;(c)er =0.05,e_ =0;(d)ex =0.07,e_ =0; (e)er = 0.10,e_ = 0. Inall
cases, we séfL = 0, for the sake of simplicity. Inset shows the conductivitgled with respect to its
large-energy asymptotic limit; /o, as a function of scaled energy,/ E;.
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Figure 6.13: Fano factorF' vs. scaled energy/E;, for transport across a multibarrier superlattice,
with nonuniform uniaxial strain applied along the zig-zagedtion ¢ = = /2). All parameters are as in
Fig. 6.12 Note the deviations from the large-energy asymptotictliiori the unstrained casé,,, = %
(dashed line). The low-energy universal limit(0) = % (inset, dashed line), is recovered, regardless of

strain.
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acterized by prominent dips as a function of energy. This tm@yexplained by a reduced
coherent superposition of the effects due to each singl&ebaHowever, if the trailing linear
dependence on energy is divided out (FBdL2 inset), one may again recognize ‘oscillations’,
with extrema approximatively occurring &t,, as given by Eq.G.45. At variance with the
armchair case, the Fano factor exhibits a strain-deperasggmptotic limit, for large energies
(Fig. 6.13, with increasing deviations from the unstrained behavigQr = % with increasing
strain modulus (at least within the strain range that has been numeriaallgstigated). On the
other hand, both the oscillations as a function of scaledggn&/ E; and the low-energy limit

F(0) = % (Fig. 6.13 inset) are recovered.

6.3 Trasmission across a smooth barrier: effect of continu-
ous strain

Although considerable insight is afforded by analyticdlions to the problem of tunneling
across single or multipleharpbarriers, there is sufficient evidence, both experime8@jland
theoretical 9], that barrier edge effects are also important to deterithad¢ransport properties
across corrugated graphene. Here, we therefore consigl@ate in which uniaxial strain is
applied in a nonuniform but continuous fashion to a graprsreet, which can be modeled
by a single barrier wittsmoothstrain and gate potential profiles,= ¢(x) andU = U(x),
respectively.

On quite general grounds, one may expect that a smooth paterdfile (whether induced
by strain or by gating) introduces a new length scalsay [as in Eq. §.49 below]. At the
beginning of this Chapter we have studied the electronmstrassion through a sharp strain
barrier, and we remind that this approximation holds whenew« \r. On the other hand, the
detailed structure of the barrier needs to be considerechwhe Ar. Similarly to the sharp
barrier case, we are interested to the more general andtreakses where < a, where one
may neglect the occurrence &f—K’ coupling. Indeed, truly sharp electrostatic barriers on
the order of the electron wavelength are quite difficult taré&lized, as i®.g. demonstrated

by the occurrence of Fabry-Pérot oscillations of the catalce in graphene heterostructures
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Figure 6.14: Schematic single tunneling barrier, with smooth strainfilgoEq. 6.49. Dashed line
depicts a sharp barrier, corresponding to the limit 0.

as narrow as- 20 nm, where a resonant cavity is formed between two electioally cre-
ated bipolar junctionslb7. Such oscillations are more accurately described whesiti@oth
structure of these potential barriers is taken into accounéreas intervalley scattering can be
safely neglected (see Supplementary Information in Réf7)). Another instance of nonuni-
form barrier, where smoothing effects are important, isstiain-induced ripples superlattice
experimentally realized in Ref6], which smoothing is essential on a length scale-afo0 nm,

whereas intervalley processes are negligible.

In order to generalize the Hamiltonian for graphene subpbtd uniform strain Eq.6.1) to
the case of a nonuniform, but continuous strain prefite =(z), one may be tempted to perform
the replacements, — v;(r) = vp[l — \ie(x)] andqp — gp(r), with ¢ = ¢(x). However, the
resulting Hamiltonian must be symmetrized, in order to @res hermiticity, thus leading to the

model Hamiltonian for a nonuniform strain profile:
1 1
H= /dr\IfT(r)é {hvj(r) [TQUT(Q)UJ';VJJ/{(Q) — TZL{T(Q)aquj(r)L{(Q)] +
- {rouf(e)o—j%vjuw) — rzuf(e)aquj(r)u(e)} fwj(r)} U(r) (6.46)

EqQ. 6.46) includes the effect of nonuniform, continuous strain bexdla shift in the position of
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6. Ballistic transport in strained graphene

the Dirac points, and as a deformation of the Dirac conesunidorm and anisotropic Fermi
velocity), at variancee.g. with Ref. [128, where a nonuniform velocity is considered, but an
isotropic profile is assumed. As in the case of a single, sbarper, continuity of the current
density, Egs. §.9), suggests to seek for a solution of the stationary Diraaggu in a form
analogous to Eq6(27), viz.

U(z,y) = UT(Q)M&’%. (6.47)

vz (x

~—

One explicitly finds [cf. EQ.§.28)]

E—U(x)
(1 — Npe(x)) hog

Oy + iqgge(x)n} o(x).

(6.48)

do(x) {1 — M\e(z)

dr |1— \e(a) <ky B que(x)u) o:+1

We have solved Eq6(48 numerically, for the nonuniform, smooth strain profile

e(x) 0 < L ! ) , (6.49)

B tanh(D/4a) \1+ e /2 1+ ¢ (@Dl

as shown in Fig6.14 Such a strain profile is essentially flat for — D/2| < a, where
e(x) = &g, and for|z — D/2| > a, wheree(z) ~ 0. In the limita/D — 0, Eq. 6.49 tends
to the sharp barrier. Therefore, asymptotically ffor — oo, the solutions of Eq.6.48 must
merge into Eqs.G.8), in regions | and Ill. We have therefore taken an initialneap(x = z,) in
the form of Eq. 6.80, for xo = 5D, and integrated Eq6(48 backwards for: < 0. Comparing
the numerical solution with Eq6(89, one may extract the reflection coefficientrelative to
an incident wave with unit amplitude incoming framm> 0, as the Fourier weight with respect
to its negative frequency component, whence the transoni§gip) follows straightforwardly.
As a cross-check of our procedure, we have also verified leatdntinuity equation, Eq6(9),

holds true, within the numerical error.

Figs.6.15and6.16 show our numerical results for the tunneling transmisgion) across
the smooth strain barrier, E¢6.49, with D = 100 nm and different values of the smoothing
parametera/D. Fig. 6.15refers to an incidence enerdy = 80 meV, corresponding to an

incident wavelength\r = hvr/(27E) ~ 1.3 nm. One finds that transmission of propagating
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Figure 6.15: Tunneling transmissionsincidence angle across a smooth strain barrier, E6.49, with

D = 100 nm, and incidence energy = 80 meV (\p = hvp/(27E) ~ 1.3 nm). Left panel refers to
strain applied along the zig-zag directigh=€ 7/2), with ¢g = 0.1. Right panel refers to strain applied
along the armchair directiord (= 0), with g = 0.01. In both cases, the different lines correspond to
different values of the smoothing parametgz, (a)a = 0 (sharp barrier); (b} = 102D = 1 nm; (c)
a=10"'D =10 nm. In all casesl/(x) = 0, for the sake of simplicity.

f=mn/2 =0
1 T 1 . T
N l"'"' H ‘ N
05 /.~ 105 L NN
(a) <
0 £ -(b) O
L“‘('C‘) R ;
05 - - 05 :
_1 L _1 L
0 0.5 1 0 0.5 1

Figure 6.16: Same as Fig6.15 but with £ = 150 meV (\r ~ 0.7 nm).
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waves is allowed for incidence anglesuch thatp.,_ < ¢ < ¢, With

1
Per+ = Tarcsin | ——— |, (6.50)
1— )\y€0

in the zig-zag case&(= 7 /2), andy > ¢, with

. 1 hwv
arcsin (—1 o + a|l§| gor(l — I/)) : (6.51)

in the armchair case/ (= 0), independent of the smoothing parametéb. Outside that win-
dow, transmission takes place via evanescent waves ordy]'an) ~ 0. For strain applied
along the zig-zag directiord (= 7 /2, Fig. 6.15 left panel), Eq. §.50 predicts the existence
of critical angledy..+| < 7/2. This is a direct consequence of the strain-induced defiioma
of the Dirac cones), # 0 in Eq. 6.50]. Both in case of strain applied along the zig-zag
and armchair directions, increasing the smoothness péeame> away from the limit of a
sharp barrier{/D = 0) suppresses the oscillationsli{,) within the propagating window,
until a > Ag, in which case transmission is almost undisturbed by thegmee of the barrier.
These results are confirmed by F&16 where we consider quasiparticles with larger incident
energyll = 150 meV, corresponding to a smaller Fermi wavelength~ 0.7 nm. While the
transmission window widens and the number of oscillatimesgases, smoothening the strain
profile immediately washes out the deviations of the tumggtiansmission from unity. In end-
ing this paragraph, we note that the procedure applied ta&xtg the tunneling transmission
from the numerical solution of Eq6(48 can be generalized, in principle, to the case of an
arbitrary nonuniform strain potential, such as a supéckatif several smooth barriers, such as
Eq. 6.49.
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Conclusions

The present Thesis reports a theoretical study of the sftédctrain on the electronic prop-

erties of graphene.

First of all, we have discussed the strain dependence ofl¢iotr@nic band structure, and
derived the strain and electric field dependence of the alptienductivity of graphene un-
der uniaxial strain. Within a tight-binding model, inclagji strain-dependent nearest neighbour
hoppings and orbital overlaps, we have interpreted theutiool of the band dispersion relations
with strain modulus and direction in terms of the proximityseveral electronic topological
transitions (ETT). These correspond to the change of tggadbthe Fermi line as a function of
strain. In the case of graphene, one may distinguish amaag thstinct ETTs. We also recover
the evolution of the location of the Dirac points, which maweay from the two inequivalent
symmetric pointgs’ and K’ as a function of strain. For sufficiently small strain modylaow-
ever, one may still linearly expand the band dispersiortiogla around the new Dirac points,
thereby recovering a cone approximation, but now with Btlad sections at constant energy, as
a result of the strain-induced deformation. For increasingin, two inequivalent Dirac points
may merge into one, which usually occurs at either midpdipi(¢ = 1, 2, 3) of the first Bril-
louin zone boundary, depending on the strain directions Thiresponds to the breaking down
of linearity of the band dispersions along a given directitmough the Dirac points, the emer-
gence of low-energy quasiparticles with an anisotropicsivadow-energy spectrum, and the
opening of a gap in the energy spectrum. Besides, we confaibstich an event depends not
only on the strain modulus, but characteristically alsofmngtrain direction. In particular, no
gap opens when strain is applied along the armchair directde derived the energy depen-

dence of the density of states (DOS), and recovered a lireggerdlence at low energy within
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the cone approximation, albeit modified by a renormalizedstdependent slope. In particular,
such a slope has been shown to increase with increasing stoalulus, regardless of the strain
direction, thus suggesting that applied strain may obtateeper DOS in the linear regime. We
have also calculated the DOS beyond the Dirac cone apprtigimalhe proximity to ETTs
gives rise to (possibly degenerate) Van Hove singularitiethe density of states, appearing
as logarithmic peaks in the DOS. Finally, we generalizedpavious results for the optical
conductivity to the case of strained graphene. We studiedrdguency dependence of the lon-
gitudinal optical conductivity as a function of strain mdaiand direction, as well as of field
orientation. Our main results are that (a) logarithmic eajpear in the optical conductivity
at sufficiently high frequency, and can be related to the Ef e electronic spectrum under
strain, and depending on the strain direction; (b) the ikedateight of the peaks in general de-
pends on the strain direction and field orientation, andrdautes to the generally anisotropic
pattern of the optical conductivity as a function of fieldesriation; (c) the opening of a band
gap, where allowed, is signalled by a vanishing optical catigity. The optical conductivity
is directly related to measurable quantities, such as #msimnittance and reflectance. Thus, an
experimental study of the optical conductivity in the visibange of frequencies as a function
of strain modulus and direction, as well as of field oriemtatshould enable one to identify the
occurrence of the three distinct ETTs predicted for graphém addition, according to our re-
sults, the asymmetry induced by uniaxial strain in the @bttonductivity causes an observable
degree of dichroism. Indeed, the optical response of ualispstrained graphene to linearly
polarized light depends on the direction of the polarizatidoreover, the optical response of
graphene can give information about the magnitude and tleettin of strain in a graphene
sample. Finally, these results about the effect of uniastiain on the electronic structure and

optical conductivity are in agreement with recabtinitio calculations 122 13Q.

After an in-depth study of the changes of electronic stngctiwe to uniaxial strain, we dealt
with the strain-induced modifications of the plasmons. Byging the electronic polarization,
we have derived the dispersion relation of the plasmon modgsaphene. Besides including
electron-electron correlation at the random phase apmaton (RPA) level, we have consid-

ered local field effects (LFE), that are specific to the pecuéttice structure under study, and
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we have also taken into account thextension of the electron wave functions. Both terms are
sizable in electron-electron scattering processes witjelaxchange momentum ¢ 7 /a). As

a consequence of the two-band character of the electronit $taucture of graphene, we have
found in general two plasmonic branches: (1) a low-energpdin, with a square-root behavior
at small wavevectors, and (2) a high-energy branch, weakpedsing at small wavevectors. In
particular, we have found that the high-energy plasmon ndessgppears neglecting LFE. While
in the absence of LFE only scattering processes with monveithién the 1BZ are considered,
LFE allow to include all scattering processes with arbilydow wavelengths, thereby taking
into account the discrete nature of the crystalline lattidence, the Umklapp electron-electron
scattering processes have fundamental role in order tbasytstem sustains the high-energy
plasmon mode. Moreover, we have found an intermediate gpseudo-plasmon mode, asso-
ciated with a logarithmic divergence of the polarizatiomieh can be related to an interband
transition between the Van Hove singularities in the vadegied conduction bands of graphene,
and it can be identified witha — #* transition. In graphene, to date there are measurements
about the low energy plasmo8(, 59] and the pseudo-plasmon excitati@i], whereas there is
no clear experimental evidence about the high energy plashisually, experimental method-
ologies to detect plasmon dispersion relation, such atreteenergy loss spectroscopy (EELS),
measure the collective excitation at small wavevectortl{ji— 0) [41]. The detection of the
high energy branch at small wavevector could be difficulst faf all, because of the reduced
spectral weight associated with the high energy branchalsotbecause these plasmons could
be damped by the promotions of electrons from the valencd bda the higher £*) energy
band. In this Thesis we have not considered the electromidsdue to the electrons, and this

possible correction will be the subject of future investiigia.

Due to the robustness of the Dirac cones with respect to ghiecapion of uniaxial strain, for
sufficiently small strain modulus, it is possible to use thaseless Dirac approximation in order
to describe the low energy electronic properties. In paldic exploiting the massless Dirac
approximation, we have studied the dependence on appliegiahstrain of density-density
and current-current linear-response electronic coragldtinctions of graphene. Starting from

these linear correlation functions, it is possible to abtamalytical results about several mea-
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surable quantities of strained graphene, such as the plasmispersion relation, the optical
conductivity, as well as the static magnetic and electrsceptibilities. After deriving a general
correspondence between strained and unstrained caorefatictions, we derived the strain de-
pendence of the low-energy plasmon dispersion relatioroétite optical conductivity. Specif-
ically, we found that the prefactor in thgg-dependence of the plasmon frequency develops an
anisotropic character, with maximum (minimum) occurrinigen the wavevector is orthogonal
(longitudinal) to the direction of applied strain. We hauganed that uniaxial strain induces
an anisotropy on both the plasmonic dispersion relationthactlectronic dispersion relation.
Hence, we presume that the application of uniaxial straigraphene could induce a modifi-
cation of the plasmaronic resonance. We remind that plasmaran excitation which arises
from the coupling of charge carriers and plasmons. Indegandans of a heuristic argument
we found that uniaxial strain applied on graphene shouldéeda shifting and broadening of
the plasmaron resonance energy, proportionally to thenstnadulus. Therefore, by suitably
applying uniaxial strain, one gains further control on thergy of the plasmaronic excitation,
besides the possibility of tuning the relative dielectonstant,.. In addition, we have derived
a strain-induced anisotropic enhancement of the devisfi@mm the photonic behavior of the
theoretically predicted transverse collective excitatiwhich should facilitate its experimental

detection in suitably strained graphene samples.

Finally, we have studied the effect of a strain-induced dimeensional profile on several
ballistic transport properties of graphene. This study rhayuseful for the realization of a
new class of ballistic devices designed by suitable taipof the electronic structure exploit-
ing not only the electric field effect but also applied straim particular, we have studied the
cases of a single strain-induced sharp barrier, and of arsiupeture of several, periodically
repeated, such sharp barriers. In both cases, we have déathesanalysis of the angular de-
pendence of the tunneling transmission, the conductiarty, the Fano factor. In particular, we
have found that a strain-induced superlattice in graphaneaccommodate additional resonant
quasiparticle states, besides the ones usually foundsaarsiagle barrier. We thus surmise that
a strain-induced superlattice in graphene could be usedfiierafor well-defined electronic

resonant modes. After considering the cases of a singlg@ $haneling barrier, and of a su-
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perstructure of several, periodically repeated, suchpsbarriers, we have specifically studied
the more realistic case in which both the modulus of applieidal strain, and possibly an

applied gate potential, depend continuously on position.
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