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Introduction

Graphene is an atomically thick single layer of carbon atomsarranged according to a hon-

eycomb lattice. Its quite recent discovery, due to Geim and Novoselov, and the realization of

sufficiently large graphene flakes in the laboratory have stimulated an enormous outburst of both

experimental and theoretical investigation [104, 105] . Indeed in 2010, Geim and Novoselov

were awarded the Nobel Prize in Physicsfor groundbreaking experiments regarding the two-

dimensional material graphene[51, 103].

The electronic band structure of graphene consists of two bands. In pristine graphene, they

touch each other at the Fermi level in a linear, cone-like fashion at the so-called Dirac pointsK

andK ′. The low-energy electronic properties of graphene can be therefore mapped onto those

of relativistic massless particles, thus allowing the observation of several effects predicted by

quantum electrodynamics in a solid state system [28, 34]. This in turn determines most of the

peculiar transport properties of graphene, including a minimal, finite conductivity in the clean

limit at zero temperature [28], and a nearly constant optical conductivity over a large interval of

frequencies [62, 138].

Transport measurements show that graphene has a remarkablyhigh electron mobility at

room temperature. Specifically, the electron mobility for graphene on a silicon dioxide (SiO2)

substrate is∼ 105 cm2 V−1 s−1, whereas for suspended graphene (i.e. without substrate) it is

∼ 106 cm2 V−1 s−1 [16, 17, 135]. These values are comparable with those obtained in more

complex systems, as a modulation-doped field transistor (MODFET) [141]. Besides a high

mobility, graphene presents a relatively high optical transparency, in addition to a remarkable

flexibility, robustness and environmental stability. These properties make graphene an attractive

material for applications also in photonics, optoelectronics and plasmonics [18, 78].
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Graphene is also notable for its remarkable mechanical properties. In particular, recent

ab initio calculations [87] as well as experiments [77] have demonstrated that graphene single

layers can reversibly sustain elastic deformations as large as 20%. In microelectronics, the

effect of strain is often used to modify the electronic and transport properties of materials in

order to improve the performance of the devices [71]. In graphene, the application of strain

(e.g.by stretching [19] or bending [77]) allows to tune its electronic properties [121, 123].

Recently, there has been a great interest towards the study and the realization of graphene-

based electronic devices designed by a suitable tailoring of the electronic structure exploiting

not only electric field effect but also applied strain. Both these techniques allow to tune the

electronic properties of graphene in a reversible and cleanway, i.e. without adding any source

of disorder.

Therefore, an in-depth knowledge of the effects of the strain on graphene could be exploited

to improve graphene-based devices. In this Thesis, we studyin detail the influence that applied

strain can have on several properties such as the optical properties, the plasmonic properties,

and the transport properties. First of all, we focus on the strain-induced modifications of the

optical conductivity. This quantity is observable by meansof transmittance or reflectivity mea-

surements [101], and it allows to recognize the features of the electronic structure which are

tightly related to the lattice symmetry and that can be modified exploiting the strain. Moreover,

we study the changes of the plasmonic spectrum when the system is under strain. Due to its

low dimensionality and the large mean free path, graphene isan interesting material for appli-

cations in plasmonics [78]. Hence, the application of strain for tuning the plasmonicspectrum

could have worthwhile technological implications. Finally, we devote the last part of the Thesis

to the effects that local strain can induce on ballistic transport. Our study is motivated by the

possibility of realizing basic elements for all-graphene electronics, which, by an engineering of

the local strain profile, could be integrated on a single graphene sheet.

The outline of the Thesis is as follows.

In Chapter1, we present an overview of the main properties of graphene. Such a review is

far from being complete, but hopefully it should be sufficient to understand in which context

this work is inserted.
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Introduction

In Chapter2, we introduce the tight binding model, which we have used to describe the

electronic structure of graphene. In addition, we show the Dirac approximation, which we have

exploited to obtain analytical results about the low energyelectronic properties of graphene.

In Chapter3, we study the dependence of the electronic band structure and of the optical

conductivity of a graphene single layer on the modulus and direction of applied uniaxial strain

[110, 113]. In order to study the strain-induced modifications of the electronic structure we use a

tight binding model. Despite its simplicity, it provides a lot of information about the electronic

properties which are tightly related to the lattice symmetry [28]. First of all, using the tight

binding model, we study whether it is possible to open a gap between conduction and valence

bands due to uniaxial strain. The presence of a gap between the two electronic bands would

allow new applications in nanoelectronics. Moreover, already within the tight binding model,

we recover that in the unstrained graphene there is a Van Hovesingularity corresponding to

each electronic band [5, 28, 86]. Hence, we analyze how in graphene under uniaxial strain the

number of Van Hove singularities can increase as a function of strain modulus and direction.

Therefore, we propose that these features may be observed inthe frequency dependence of

the longitudinal optical conductivity in the visible range, as a function of strain modulus and

direction, as well as of field orientation.

In Chapter4, we study the dependence of the plasmonic dispersion relation of graphene

on applied uniaxial strain [111, 114]. An in-depth analysis of the electronic bands allows to

study purely electronic quantities, such as the plasmonic spectrum. In this Chapter, besides the

electron correlation at the random phase approximation level, we also include local field effects

specific for the honeycomb lattice. This improvement allowsto take into account the Umklapp

processes in the electron-electron scatterings, and consequently we can have information about

the plasmonic spectrum for any wavevector and any energy.

In Chapter5, starting from the tight binding model, we focus on the analytical study of

the electronic properties at low energy [115, 119]. In particular, after deriving a general corre-

spondence between linear response correlation functions in graphene with and without applied

uniaxial strain, we study analytically the dependence on the strain modulus and direction of se-

lected electronic properties, such as the plasmonic dispersion relation, the optical conductivity,
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as well as the static magnetic and electric susceptibilities. Specifically, we study how the uni-

axial strain can change the dispersion of the recently predicted transverse collective excitation

which exhibits an anisotropic deviation from the photonic behavior [98], thus facilitating its

experimental detection in strained graphene samples.

In Chapter6, we consider the effects of uniaxial strain on ballistic transport in graphene,

across single and multiple tunneling strain-induced barriers [116, 118]. We therefore study the

angular dependence of the tunneling transmission across a single barrier, as well as on the con-

ductivity and Fano factor across a single barrier and a superstructure of several, periodically

repeated, such sharp barriers [13, 120]. Our model is generalized to the case of nonuniform

barriers, where either the strain or the gate potential profiles may depend continuously on po-

sition. This should afford a more accurate description of realistic ‘origami’ nanodevices based

on graphene [120], where ‘foldings’ are expected to embrace several latticespacings.
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Chapter 1

Graphene: Generalities

Graphene is the name given to a two-dimensional single layerof carbon atoms. It can be

thought of as the building block of several sp2-bonded carbon allotropes, ranging from three-

dimensional graphite, to one-dimensional nanotubes, to zero-dimensional fullerenes [28].

Carbon is the sixth element in the Periodic Table. Thus, two of the six electrons fill the

1s shell. These ones are called core electrons, whereas the other ones are called valence elec-

trons. In graphene, three (2s, 2px, 2py) of the four valence electrons get hybridized into sp2

states. These electrons are extended along the layer, and they lead to a trigonal planar structure

with the formation of aσ-bond between nearest-neighbor carbon atoms which are separated

by 1.42 Å. These bonds are responsible for the robustness of the honeycomb lattice structure.

The remaining two electrons, which occupy thepz states in the free carbon atoms, form the

(bonding)π band, known as valence band, and the (anti-bonding)π∗ band, known as conduc-

tion band. In addition, these electrons are delocalized along the plane and they are responsible

for transport and other long-range electronic properties of graphene. Despite its simplicity, sin-

gle graphene layers have been obtained only recently (Geim and Novoselov, 2004 [104]) and it

exhibits many appealing properties that make it a promisingmaterial for several technological

applications [48].
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1.1 The discovery of a two-dimensional crystal

Theoretically, graphene has been studied for more than sixty years. Specifically, graphene

has been used for describing properties of various carbon-based materials. Already in 1947

Wallace published the first paper on the band structure of graphene [151]. In his work, Wallace

suggested a description of the transport properties of graphite neglecting the out-of-plane de-

gree of freedom. Thus, he used a graphene layer as a simple model to describe the electronic

properties of graphite. Before its discovery in 2004, graphene was regarded as experimentally

unrealizable [104], and it was thought merely as a theoretical object.

Indeed, already in the 30s, Landau and Peierls argued that strictly two-dimensional crys-

tals were thermodynamically unstable and therefore could not exist at any finite temperature.

They stated that a divergent contribution of the thermal fluctuations should lead to such dis-

placements of the atoms that they become comparable to interatomic distances atT 6= 0. In

addition, the existence of a two-dimensional crystal wouldbe in contrast with a general theo-

rem of Statistical Field Theory: the Mermin-Wagner theorem. According to this theorem no

continuous symmetry can be spontaneously broken in dimensionsd < 3 at any finite temper-

ature [55]. In the case of a two-dimensional crystal, its formation would require the breaking

of translational and rotational symmetries. Namely, unlike free space, a crystal is not invariant

with respect to each element of the Euclidean group, which isthe direct product of the continu-

ous rotation group SO(2) and the continuous translational symmetry T2 [144]. For this reason,

for long time atomic monolayers have been known only as an integral part of three-dimensional

structures, usually grown epitaxially either supported bya bulk substrate or embedded in a

three-dimensional crystal [52]. Without a three-dimensional basis, two-dimensional materials

were presumed not to exist, until 2004, when there was the experimental discovery of graphene

[104] and other free-standing two-dimensional atomic crystals(for example, single-layer boron

nitride [105]).

In 2004 Novoselov and Geim obtained, for the first time, single and few layers of graphene

characterized by linear dimensions up to10 µm on top of non-crystalline substrates [104].

Moreover, not long after samples of graphene were obtained as suspended membranes on a

micro-fabricated scaffold in vacuum or air [97]. An important characteristic of these graphene
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1. Graphene: Generalities

samples is their high crystal quality.

At first sight, it may seem as if that there is a violation of Mermin-Wagner theorem. But,

in reality, the existence of graphene is compatible with Mermin-Wagner theorem. Indeed, two-

dimensional crystals become intrinsically stable by gentle crumpling in the third dimension.

Such ripples lead to a gain in elastic energy but suppresses thermal vibrations, which above a

certain temperature can minimize the total free energy [44]. These ripples are observed both

in suspended graphene, by electron diffraction measurements, and in graphene on substrate,

by means of scanning tunneling microscopy (STM) measurements. Electron diffraction studies

of free-standing graphene indicate the presence of an intrinsic rippling, which is characterized

by a height on the order of∼ 1 nm over a lateral scale of10 ÷ 25 nm [97]. A comparable

height variation has also been measured in several studies of graphene supported by insulating

substrates [53, 140]. Hence graphene shows a slight extension in height, and so,since it is not

exactly two-dimensional, and Mermin-Wagner theorem is notviolated.

To obtain the first samples of graphene, Geim and Novoselov used a simple but effective

procedure [105]. The technique used is called micro-mechanical cleavage,but also scotch-tape

method. Let us remind that graphite is a layered material. Itis made by weakly interacting

ordered stacked graphene layers, which is the reason why thescotch-tape method works well.

The top layer of an high quality graphite is removed by a scotch-tape, which is then pressed

against the chosen substrate, thus depositing several flakes attached to it. Among the resulting

flakes, single layers are usually found. A problem of this method is that most of the flakes

are not graphene monolayers but thick graphite flakes (> 10 graphene layers). Therefore one

should scan a huge area, typically∼ 1 cm2, to find a micrometer-sized graphene monolayer. To

use directly atomic force microscopy (AFM) or scanning electron microscopy (SEM) to search

a graphene monolayers is unrealistic [103]. A crucial point is that a graphene monolayer is

visible in an optical microscope if placed on a silicium (Si)wafer with a suitable thickness (300

nm) of silicon dioxide (SiO2). In this way, it is possible to preliminarly identify thin flakes, but

in order to be sure that a selected flake is a graphene layer a further analysis is performed by

AFM or Raman microscopy [45].
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1.2 Main physical properties of graphene

The enormous outburst of both experimental and theoreticalinvestigation of graphene has

been fueled, mainly, by numerous remarkable properties that make graphene an ideal candi-

date for applications in nanotechnologies. In this sectionwe list several properties that make

graphene such an attractive material.

1.2.1 Transport properties

Due to its lattice symmetry, graphene is a zero-gap semiconductor and is characterized by

a low-energy linear dispersion relation [28]. In other words, the low-energy quasi-particles are

massless and are characterized by an energy independent effective velocity1. The dynamics of

the low-energy excitations is described by the Dirac-Weyl equation, which is used for massless

fermions [136].

Intrinsic graphene disposes of no charge carriers. However, using electric doping it is pos-

sible to have either electrons or holes as charge carriers. Exploiting the electric field effect, a

gate electrode can continuously change both the carrier density and type [104].

An attractive feature of graphene is its high carrier mobility at room temperature. Mobility

in graphene on SiO2 is generally of the order of10000÷ 15000 cm2 V−1 s−1 [135]. Moreover,

mobility on SiO2 is almost a constant at low temperature(T ≪ 300 K) and is limited by

disorder. Disorder in exfoliated graphene on SiO2 is mainly due to the charges trapped on

the surface of the substrate or adsorbed on graphene. At hightemperatureT ≈ 300 K, most

properties of graphene are strongly dependent on temperature because of the optical phonons

of the substrate [100].

In the case of suspended graphene, removing the substrate, one gets rid of extrinsic disorder

and so mobility increases of an order of magnitude with respect to graphene on substrate. In

suspended graphene it is possible to measure a mobility as high as250000 cm2 V−1 s−1 at low

temperature and120000 cm2 V−1 s−1 at 240 K [16, 17]. Unlike in graphene on substrate, the

mobility in suspended graphene is strongly temperature dependent also at low temperature [16].

These large values of the mobility mean that in suspended graphene the mean free path is of the

1See§ 2.2for details about the low-energy electronic structure.
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1. Graphene: Generalities

Figure 1.1: Left: Mobility as a function of temperature for graphene on SiO2 at carrier density of1011

cm−2 (blue and red), and suspended graphene at carrier density as2×1011 cm−2 (purple). Adapted from
[48]. Right: Comparison of mobility as a function of temperature for a MODFET and for bulk GaAs
samples at different doping levels. Adapted from [141].

order of1µm, which is comparable to the dimension of a typical device [16, 40].

For comparison, we consider the modulation-doped field effect transistor (MODFET). It

is based on an heterostructure (e.g. AlGaAs and GaAs), where the wide energy gap material

(e.g. AlGaAs) is doped and carriers diffuse to the intrinsic narrow bandgap layer (e.g. GaAs),

at whose interface a two dimensional electron gas (channel)is formed [141]. The physical

distance from channel and dopants allows to obtain an high mobility. This methodology is

called modulation doping and it was invented by Horst Stormer at Bell Labs [38]. The mod-

ulation doping represents the best technique to obtain a very large value of electron mobility

in a bulk system. At cryogenic temperatures it is possible toreach a mobility of the order of

106 cm2 V−1 s−1, but at temperatures aboveT ≈ 80 K the mobility of these systems falls down

to values of the order of104 cm2 V−1 s−1 [141]. Fig. 1.1 compares the mobility as a function

of the temperature for graphene on SiO2, suspended graphene and a MODFET. Here, one can

see that at room temperature the mobility of graphene can be larger than that of a MODFET.

Due to the gapless energy spectrum, low carrier density and atomic thickness, it is possi-

ble to modify the profile of carriers along a graphene layer exploiting the electric field effect.

For example, it is possible to realize ap-n or ap-n-pmulti-polar configuration by electrostatic
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Figure 1.2: (a) Schematicp-n-pconfiguration of a graphene device. (b) Carriers density profile around
the local-gate region fixed at VLG = 4V for various values of the back-gate VBG. Adapted from [102].

gates [157]. Let us see the case of Namet al. [102], who have realized ap-n-p structure.

Fig. 1.2(a) schematically shows thep-n-pconfiguration. One observes that the back-gate (VBG)

is responsible of the electric doping in thep-regions whereas the local-gate (VLG) is responsible

of the electric doping in then-region. From the bottom to the top, the device is made by a

highly doped Si wafer (back-gate), an insulating SiO2 layer where embedded inside there is a

poly-silicon layer (local-gate) which is conductive by implantation of phosphorus ions. Finally,

above the substrate there is a graphene monolayer with metalelectrodes (Ti/Au). Moreover,

Fig. 1.2(b) shows the profile of carriers density at VLG = 4 V for different values of VBG. Where

the density is positive, the region isn-doped, whereas where the density is negative the region is

p-doped. In the case that we are taking into account the local-gate has a width of130 nm, which

is comparable to the mean free path of the sample. Indeed, Namet al. have found ballistic

and phase-coherent carrier transport. Fig.1.3shows the conductivity as a function of the local-

gate VLG at fixed back-gate VBG. One observes an oscillating behavior due to the Fabry-Pérot

interference between the twop-n interfaces. Morever, there is an important interest towards the

theoretical study of the spectra and the electronic transport through differently doped regions,

whose behavior differs from that of conventional two-dimensional electron gases [4, 10]. Re-

cently, Rossiet al. [131] used a microscopic model where the disorder is dominated bycharge

impurities and transport properties are obtained fully quantum mechanically. In particular, they

have studied the effects of disorder on transport throughp-n-p junctions. The crossover from
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1. Graphene: Generalities

Figure 1.3: Conductance as a function of VLG at fixed VBG = −40V. Adapted from [102].

the ballistic transport governed by Klein tunneling, to thedisordered diffusive transport is found

to take place as the mean free path becomes of the order of the distance between the twop-n

interfaces consistent with the experiments. These resultsdemonstrate that the signatures of co-

herent transport are observable for impurity densities as high as1012cm−2, then the quantum

transport properties are sufficiently robust in graphene [34].

1.2.2 Optical properties

In addition to an high charge mobility, graphene is characterized by an excellent optical

transparency. Such properties make graphene an attractivematerial for photonics and opto-

electronic devices such as displays, touch screen, light-emitting diodes (LEDs), and solar cells

[18].

Current transparent conductors are semiconductor-based:doped indium oxide (In2O3), zinc

oxide (ZnO), tin oxide (SnO2), or ternary compounds based on their combinations [18]. The

most widely used material is indium tin oxide (ITO), a dopedn-type semiconductor composed

of ≈ 90% In2O3 and≈ 10% SnO2 [63]. ITO is commercially available with trasmittance
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Figure 1.4: Transmittance for different transparent conductors: graphene, single-walled carbon nan-
otubes (SWNTs), ITO, ZnO/Ag/ZnO and TiO2/Ag/TiO2. Adapted from [18].

T ≈ 80%. Moreover, ITO is brittle for applications involving bending, such as touch screens

and flexible displays. For this reason, there is interest in the research of new transparent con-

ductor materials with improved performance. Metal grids, metallic nanowires or other metal

oxides have been explored as alternatives. Nanotubes and graphene are promising materials. In

particular, by the comparison in Fig.1.4one can see that graphene films have a higher trasmit-

tance over a wider wavelength range than single-walled carbon nanotube (SWNT) films, thin

metallic films, and ITO [18].

Despite its thickness, Nairet al. have observed that graphene absorbs a significant fraction

(πα ≈ 2.3%, whereα is the fine structure constant) of incident light, from the near-infrared to

violet [101]. In Fig. 1.5 (Left) we observe an aperture of the SiO2 substrate that it is only par-

tially covered by suspended graphene, so that the opacitiesof different regions (with or without

graphene) can be compared. Fig.1.5(Right) shows transmittance measurements on monolayer

graphene obtained by standard spectroscopy using a xenon lamp as a light source (blue circles)

and by optical microscopy (red squares). Both experimentaldata sets are in agreement and yield

a constant value for transmittance (≈ 1− πα) in the energy range taken into account [101].
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1. Graphene: Generalities

Figure 1.5: Left: Transmission electron microscopy (TEM) micrograph of a30µm aperture covered by
graphene.Right: Transmittance spectrum of graphene over a range of photon energies from the near-
infrared to violet. The blue open circles show the data obtained using standard spectroscopy. The red
squares are the spectrum measured using an optical microscope. The red line indicates the opacity of
πα. Adapted from [101].

1.2.3 Plasmonic properties

It has been said already that it is possible to modify the typeand density of charge carriers

in graphene using an external voltage. This feature can be effectively exploited in plasmonics.

A doped graphene monolayer can sustain low-energy plasmonswhich are tunable by means

of the electric field effect. In particular, plasmons in doped graphene enable low losses and

significant wave localization of the light in the terahertz (THz) and infrared (IR) domains [72].

These properties make graphene relevant for possible applications in plasmonics.

The recent attraction towards plasmonics is immediately motivated by the constant effort

towards improving the performance of devices. A limitationto an improvement of the speed of

digital circuits is due to electronic interconnections. A possible solution is offered by photonics

by implementing faster communication systems based on optical fibers and photonic circuits

[107]. However, the replacement of electric circuits by photonic ones is hindered by the low

level of integration and miniaturization of the photonic components. The wavelength of light

used in photonic circuits is of the order of1000 nm, hence it is larger than the typical dimensions

of an electronic circuit. Thus, if the dimensions of the optical components should be reduced
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further and become comparable with the wavelength of light,propagation would be obstructed

by optical diffraction. One way to avoid this obstacle is suggested by plasmonics. Surface

plasmons enable to confine light to within very small dimensions, as electromagnetic waves

can be trapped near the surface due to their interaction withthe electron plasma. Hence, the

idea is to use plasmonic guides instead of optical fibers.

To date, the noble metals are the materials mainly investigated for developments in plas-

monics, but they are hardly tunable and have large ohmic losses that limit their applicability. In

graphene both characteristics are improved, and the confinement of plasmons is much stronger

than that of surface plasmons in metals due to the two-dimensional nature of graphene. In par-

ticular, graphene plasmons are confined to volumes≈ 106 times smaller than the diffraction

limit, thus facilitating strong light-matter interactions [78]

In aluminium, which is a relatively absorbing metal, the propagation length is2 mm at a

wavelength of500 nm, whereas in silver, which is a low loss metal, at the same wavelength the

propagation length is20 mm. For slightly longer wavelengths, such as1.55 mm, the propagation

length is around1 mm [8], whereas in graphene, the propagation distance can reach values well

above100 plasmon wavelengths [72, 78].

1.2.4 Mechanical properties

Figure 1.6: Scheme of AFM nanoindentation on suspended graphene monolayer. Adapted from [82].

In addition to its electronic properties, graphene is a remarkable material also for its mechan-

ical properties. Generally, carbon nanostructures characterized by sp2 bonds, such as carbon
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1. Graphene: Generalities

nanotubes, show an exceptional resistance to mechanical stress, notwithstanding low dimen-

sionality [158]. Leeet al. have measured the mechanical properties of graphene using atomic

force microscope (AFM) nanoindention, this technique has been used to study a single layer

suspended over an aperture of a substrate [82]. The experimental apparatus consists of an ar-

ray of circular holes in a substrate, on top of which graphenemonolayers have been deposited.

Once a graphene sample placed over an hole was detected, the mechanical properties of the sus-

pended membrane have been measured by indenting with AFM. Fig. 1.6 schematically shows

the layout of the experiment. The measured breaking strength of graphene is42 N m−1. In order

to compare the mechanical properties of graphene with thoseof other three-dimensional mate-

rials, Leeet al. consider a graphene sheet as a three-dimensional slab having an effective height

equal to the distance between two adjacent graphene planes in graphite (h = 3.35 Å). Thus the

Young modulus of graphene isE = 1.0 TPa and the third-order elastic stiffness isD = −2.0

TPa. These values allow to list graphene among of the strongest materials ever measured [82].

Figure 1.7: Schematic apparatus to induce strain in graphene by means ofa stretchable substrate.
Adapted from [99].

Another methodology to study graphene under strain is to transfer it onto a flexible substrate,

so that one can apply controllable (uniaxial or biaxial) strain to graphene by applying stress on

the supporting substrate (Fig.1.7) [77, 99]. Exploiting this technique, Kimet al. have found
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that graphene can reversibly sustain elastic deformationsas large as20% [77]. Theoretical

results are in agreement with these measurements. Indeed, according toab initio calculations

the graphene lattice is stable with respect to uniaxial deformations up to around20% [87].

Figure 1.8: Left: Scheme of the methodology to induce strain in graphene using a pressure difference
(∆P = Pint − Pext). Right: AFM image of a single layer graphene bubble. The lateral scale is 4µm.
Adapted from [160].

Graphene behaves as an impermeable membrane and can supportpressure differences larger

than 1 atm. Exploiting this property it is possible to deform graphene [24, 160]. Fig. 1.8

(Left) shows a scheme of the experimental setup, where the impermeability of graphene is

used. There is a graphene layer suspended over a well in a SiO2 substrate. The graphene

membrane is clamped to the substrate through the Van der Waals interaction. Inside the well

there is a gas at pressurePint, whereas outside the pressurePext is different so the difference of

pressure(∆P = Pint − Pext) allows to have a controlled deformation of graphene. A similar

methodology to have the desired amount of strain in grapheneis obtained by using a gate in a

configuration like in Fig.1.8. In this case an electric field induces an electron concentration in

graphene and exerts on it a pressure of electrostatic nature[47].

Uniaxial or biaxial strain induces modifications not only inthe phonon spectrum but also

in the electronic spectrum, and can be measured directly using Raman spectroscopy [99, 160].

In graphene, Raman measurements give information not only about phonons but also about the

electronic properties since graphene is a non-polar crystal, and so Raman scattering involves

electronic excitations as intermediate states [9].

Material science teaches that the presence of strain can significantly affect the device perfor-
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1. Graphene: Generalities

mance. Indeed, sometimes strain is intentionally applied to improve mobility, as in the strained

silicon technology, which is used in modern microelectronics [84]. Recently, an appealing

challenge is to exploit the modifications of the electronic structure due to the strain to realize

an all-graphene circuit where all the elements are made of graphene with different amount and

types of strain [120, 160]. Further methodologies to accomplish this challenge and to have a

controlled strain profile in a graphene sample are obtained by means of an appropriate geo-

metrical pattern in a homogeneous substrate, or by means of aheterogeneous substrate so that

each region interacts with graphene in a different way [89, 125, 149]. Among the experimental

methodologies to realize strain superstructures in graphene, one is based on the relatively large

and negative thermal coefficient of graphene (which is around 5 times larger than that of bulk

graphite in the basal plane). Baoet al. [6] have realized experimentally a strain superlattice in

graphene, it is possible to manipulate the orientation and dimensions of ripples exploiting the

boundary conditions and the difference in the thermal expansion coefficients between graphene

and the substrate. The graphene membrane is annealed up to700 K, so any pre-existing ripple

disappears. After this phase, the sample is cooled and the graphene layer exhibits ordered rip-

ples, whose geometry depends on the boundary conditions. Inparticular, the necessary tension

to produce this structure is due to the different sign of the thermal coefficients of graphene and

substrate [6].

Such recent ideas to exploit mechanical modifications to realize an all-graphene device is at-

tractive as strain engineering would allow to tailor electronic properties, in a controlled fashion,

without the introduction of disorder [120].
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Chapter 2

Graphene: Model

Graphene is characterized by an honeycomb lattice. This lattice is not a Bravais lattice and

it can be described as a triangular lattice with a basis of twocarbon atoms per unit cell [5, 132].

Hence, the honeycomb lattice is equivalent to two interpenetrating triangular sublattices (A and

B, say), both sublattices being shifted with respect to each other. The lattice of graphene is

characterized by hexagonal symmetry. The space group of graphene is therefore theD1
6h group

[39]. Moreover, since the space group of graphene is symmorphic, it can be expressed as the

semi-direct product of the discrete translation groupT2 and the point hexagonal symmetry group

D6h.

Fig. 2.1shows a partion of the direct lattice of graphene, where the shaded region is the unit

cell. The basis vectors are defined as:

a1 =
a

2

(

3,
√

3
)

, a2 =
a

2

(

3,−
√

3
)

, (2.1)

wherea ≈ 1.42 Å is the distance between two nearest neighbor carbon atoms.Each carbon

atom has three nearest neighbors, for example a generic carbon atom of theA sublattice is

connected to its nearest neighbors by the vectors:

δ1 =
a

2

(

1,
√

3
)

, (2.2a)

δ2 =
a

2

(

1,−
√

3
)

, (2.2b)

δ3 = a (−1, 0) . (2.2c)
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Figure 2.1: Direct lattice of graphene. The shaded region is the unit cell and it is identified by the basis
vectorsa1 anda2. The blue vectorsδℓ (ℓ = 1, 2, 3) connect a carbon atom with its nearest neighbors.
Adapted from [39].

In the case of graphene, the basis vectors of the reciprocal space are given by

b1 =
2π

3a

(

1,
√

3
)

b2 =
2π

3a

(

1,−
√

3
)

. (2.3)

The space symmetry properties of the direct lattice are present also in reciprocal lattice. Indeed,

in the case of graphene, the reciprocal lattice and the direct lattice are identical up to a rotation

of π/2, how one can see in Fig.2.2.

2.1 Tight binding model

Once defined the graphene lattice, we can study the electronic band structure. In a generic

perfect crystal the Hamiltonian of the system has the following structure:

Htot = Tel + Tnucl + Vel−el + Vnucl−nucl + Vel−nucl + Crel. (2.4)
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2. Graphene: Model

Figure 2.2: First Brillouin zone (1BZ), whereΓ, M , K eK ′ are the high symmetry points,Σ, T eΛ are
points located on high symmetry lines, andu is a generic point inside the1BZ. Adapted from [39].

In order, there are the kinetic energy of the electrons, the kinetic energy of nuclei, the interaction

between the electrons, the interaction between the nuclei,the interaction between electrons and

nuclei, and finally the relativistic correlation terms (e.g.spin-orbit term). In general, the many-

particle Hamiltonian in Eq. (2.4) cannot be solved without a large number of simplifications.

The first approximation is to separate the electrons into twogroups: valence electrons and core

electrons. The core electrons are mostly localized around the nuclei, so they are considered as a

part of the nuclei (globally they are called ion cores). Hence, when considering an electron, we

will be usually referring to the valence electrons. The second approximation is called the Born-

approximation. According to this approximation, the dynamics of the electrons is separated

from the dynamics of the ions. In the equation of motion for the electrons we consider that

ions are frozen in their equilibrium positions. Hence, the Hamiltonian for the electrons can be

written in this form:

Hel = Tel + Vel−el + Vel−ion. (2.5)

To diagonalize the HamiltonianHel is still a prohibitive problem. It is helpful to use a further

drastic approximation known as the mean field approximation. It is assumed that every electron
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‘sees’ the same average potentialUc [159]. Using this approximation the electrons are treated

as non-interacting particles and the single-particle Hamiltonian has the following form in the

coordinate space:

H = −~
2∇2

2m
+ Uc(r), (2.6)

whereUc is called crystalline potential. The HamiltonianH consists of two terms: the first term

is the kinetic term and is invariant under every spatial symmetry operation, the second term is

the crystalline potential and is invariant under each operation of the space group of the crystal.

Hence, globally the HamiltonianH is invariant under each operation of the space group of the

crystal.

In order to describe the electronic band structure we will use the tight binding approxima-

tion. The Hamiltonian obtained following this approach hasthe form expressed in Eq. (2.6).

For everysp2 allotropic form of carbon with long range order (i.e. nanotubes, graphene,

graphite) a calculation of the electronic bands based on thetight binding approximation, despite

its simplicity, provides a lot of information about the electronic properties [132]. We assume

that the crystalline potentials can be written as the sum of identical potentials centered around

each atomic site:

Uc(r) =
∑

α=A,B

∑

j

Uion(r−Rjα), (2.7)

whereRjα identifies sitej of sublatticeα (α = A,B). Using the basis vector defined in

Eq. (2.1), we can write a generic vector of theA sublattice as

RjA = j1a1 + j2a2, (2.8)

wherej = (j1, j2) is an integer pair, whereas we write a generic vector of the sublatticeB as

RjB = j1a1 + j2a2 + δ3, (2.9)

where we have used the shift vectorδ3 defined in Eq. (2.2c). The sublattice variable that can

assume either valueA or B is called pseudospin, by analogy with thez-projection of the spin

1/2 of the electron.
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2. Graphene: Model

We assume to know the eigenfunctionφ(r) of the following atomic Hamiltonian

Hion = −~
2∇2

2m
+ Uion(r), (2.10)

Hionφ(r) = ǫφ(r). (2.11)

Using the wave functionφ(r), we define a set of Bloch wave functions as

ψα(k; r) =
1√
N

∑

j

eik·Rjαφ(r−Rjα) (2.12)

whereα is the pseudospin andN is the number of unit cell in the crystal. We have defined

the Bloch wave function in terms of a linear combination of atomic wave function. The atomic

wave functions are written in Dirac notation as

〈r|jα〉 = φ(r−Rjα), (2.13)

where the genericφ(r−Rjα) is the eigenfunction of the atomic Hamiltonian Eq. (2.10) centered

around the sitej of the sublatticeα. After a manipulation, one can rewrite the wave functions

in Eq. (2.12) as the product of a plane wave function and a periodic function

ψα(k; r) = eik·rUαk(r), (2.14)

and

Uαk(r) =
1√
N

∑

j

e−ik·(r−Rjα)φ(r−Rjα). (2.15)

The wave functions just defined span the subspaceSTB of the Hilbert space where we will

apply the Ritz variational method [96]. Moreover, using this set of basis we neglect anyz-

extension of the electronic wave functions. For each wave-vectork of the1BZ we must find the

extrema of the expectation value of the energy,i.e.

δ
〈λk|H|λk〉
〈λk|λk〉 = 0, (2.16)
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where the trial state has the following form:

|kλ〉 = uA
kλ|kA〉+ uB

kλ|kB〉. (2.17)

In the Hamiltonian that we are taking into account there is nospin dependent term, hence the

z-component of spin is a good quantum number that we can neglect in the calculations.

For each wave-vectork we define the generic element of the transfer integral matrixas

Hαβ(k) = 〈αk|H|βk〉. (2.18)

Similarly, we define the generic element of the overlap integral matrix as:

Sαβ(k) = 〈αk|βk〉, (2.19)

where both theα andβ indices can assume value eitherA orB. Both matrices are Hermitian,

square, and of order2. Since the distinction betweenA andB carbon atoms is only mathemat-

ical, and not physical, one finds the following equalities between diagonal elements

HAA(k) = HBB(k), (2.20a)

SAA(k) = SBB(k). (2.20b)

Hence there are only two independent elements for each matrix.

In this case, the variational problem (2.16) is equivalent to solve the following generalized

eigenvalue problem

H(k)ukλ = EkλS(k)ukλ. (2.21)

The solution of this problem gives eigenstates and eigenenergies for each wave-vectork . The

eigenenergies we obtain have the following form

Eλ (k) =
−ε1 + (−1)λ

√

ε2
1 − 4ε2ε0

2ε2
, (2.22)
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2. Graphene: Model

where

ε0 = H2
AA(k)− |HAB(k)|2,

ε1 = H∗
AB(k)SAB(k) +HAB(k)S∗

AB(k)− 2SAA(k)HAA(k),

ε2 = S2
AA(k)− |SAB(k)|2. (2.23)

In Eq. (2.23) λ = 1 refers to the valence band, andλ = 2 refers to the conduction band.

The elements of both the transfer integral matrix and the overlap integral matrix can be

expanded in the tight binding basis as

Hαβ(k) =
1

N

∑

j,j′

e−ik·(Rjα−Rj′β)〈jα|H|j′β〉, (2.24)

Sαβ(k) =
1

N

∑

j,j′

e−ik·(Rjα−Rj′β)〈jα|j′β〉. (2.25)

Exploiting the discrete translational invariance we can order the terms of the expansions in

Eq. (2.24) and in Eq. (2.25) according to the distance from the origin of the lattice. Wehave

chosen the origin0 = (0, 0) as belonging to sublatticeA. Thus, one finds that the diagonal

elements can be written as

HAA(k) = ǫ+ 〈0A|∆Uc|0A〉+
∑

j 6=0

eik·Rj〈0|H|jA〉, (2.26)

where

〈r|∆Uc|r′〉 = [Uc(r)− Uion(r)] δ(r− r′),

and

SAA(k) = 1 +
∑

j 6=0

eik·Rj〈0A|jA〉. (2.27)

Similarly, we obtain the expansion for the off-diagonal elements

HAB(k) =
∑

j

eik·(Rj+δ3)〈0A|H|jB〉, (2.28)
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SAB(k) =
∑

j

eik·(Rj+δ3)〈0A|jB〉. (2.29)

The2pz electrons form the conduction band(π∗) and the valence band(π). In a hydrogen-

like model the2pz wave-function is real and invariant with respect to the rotation around the

ẑ-axis. Assuming thatφ(r) has these latter properties, we can formally expand the elements of

the transfer integral matrix up to nearest neighbor terms. One finds for the diagonal elements

the following expression

HAA(k) = t(0) +O(t(2)), (2.30)

where

t(0) = 〈0A|H|0A〉 = ǫ+ 〈0A|∆Uc|0A〉, (2.31)

and one finds for the off-diagonal elements the following expression

HAB(k) = t(1)γk +O(t(3)), (2.32)

where

t(1) = 〈0A|H|0B〉, (2.33)

and we have introduced the complex structure function defined as

γk =

3
∑

l=1

eik·δl. (2.34)

Since the energy bands are defined up to a constant, we fix this constant by settingt0 = 0. With

this choice of truncation of the expansion of the transfer integral matrix elements, we have only

one hopping parameter. Thus we redefine the nearest neighborhopping parameter as

t = t(1). (2.35)

Similarly, we can expand the overlap integral matrix elements up to nearest neighbor terms

and thus one finds

SAA(k) = 1 +O(s(2)), (2.36)

SAB(k) = s(1)γk +O(s(3)), (2.37)
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2. Graphene: Model

where

s(1) = 〈0A|0B〉. (2.38)

Also for the overlap integral matrix elements only one parameter remains, thus the nearest

neighbor overlap parameter is redefined as

s = s(1). (2.39)
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Figure 2.3: Left: High symmetry pathΓ-M -K-Γ in the1BZ. Right: Conduction band and valence band
along the high symmetry path. The unit of energy is the absolute value of the hopping parametert, and
the overlap parameter is fixed ats = 0.07.

Following this choice of truncation of the expansions of thematrix of the tight binding

model, we can write explicitly the electronic bands thus obtained as

Eλ(k) =
(−1)λ+1t|γk|

1 + (−1)λ+1s|γk|
, (2.40)

whereE1(k) is the dispersion relation of the valence band, whereasE2(k) is the dispersion

relation of the conduction band.

Conduction and valence bands touch each other at the cornersof the1BZ, i.e. at theK and
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K ′ points,

K =
2π

3
√

3a

(√
3, 1
)

, (2.41a)

K ′ =
2π

3
√

3a

(√
3,−1

)

. (2.41b)

This result does not depend on the particular approximationchosen but is an intrinsic property

of the electronic structure of graphene. The band degeneracy at theK andK ′ points is related

to the hexagonal symmetry of graphene. In terms of group theory, one says that there is an

essential degeneracy.

Another intrinsic property of the electronic structure of graphene is the presence of saddle

points at the midpoints of the sides of the1BZ for both the conduction and the valence band.

The positions of the midpoints of the sides of the1BZ are given by:

M1 =
2π

3a

(

−1

2
,−
√

3

2

)

, (2.42a)

M2 =
2π

3a

(

−1

2
,

√
3

2

)

, (2.42b)

M3 =
2π

3a
(1, 0) . (2.42c)

The zero gradient of both electronic bands at the edge midpointsMℓ is due to the time-reversal

symmetry and the inversion axis symmetry [39]. Moreover, since a honeycomb lattice is sym-

metric with respect to±2π/3 rotations each electronic band assumes the same value at each

edge midpoint. Thus, there is a degeneracy at the edge midpointsMℓ.

At zero temperature (T = 0), since there are two (valence) electrons for each unit cell, the

valence band is completely filled, whereas the conduction band is totally empty. Fig.2.3shows

both the electronic bands evaluated along the high symmetrypath in the1BZ. One recovers the

features that we have just listed, and in addition one sees that conduction and valence band have

no overlap and there is no gap. Hence, one says that graphene is a zero-gap semiconductor.

We do not treat directly the single-particle HamiltonianH. In other words, we do not find

the tight binding parameters by the calculation of any matrix element. We have obtained an

analytic expression for the electronic bands taking into account the symmetry properties of the
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2. Graphene: Model

lattice. With our choice of truncation we have two parameters, whose values have to be fixed.

A suitable solution is to choose these values in agreement with experimental measurements or

with ab initio calculations.

In the case of graphene, the most common practice is to fit the tight binding dispersion

around theK andK ′ points [129]. This approach is excellent to describe the low-energy elec-

tronic excitations. In our case we have chosen the tight binding parameters that better fit toab

initio calculations, hence one finds [129]:

t = −2.8 eV, (2.43a)

s = 0.07. (2.43b)
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Figure 2.4: Left: High symmetry pathΓ-M -K-Γ in the1BZ. Right: The blue line curve is the relative
difference[E′

2(k) − E2(k)]/E2(k) between conduction band neglectings parameterE′
2(k) and taking

into account itE2(k). Similarly, the red line curve is the relative difference[E′
1(k) − E1(k)]/E1(k)

between valence band without and with the overlap parameter. Both curves are evaluated along the high
symmetry path in the1BZ.

The hopping parametert is the energy scale of the model. For example, both the energy

bandwidths and the low-energy Fermi velocity are related tothis parameter. The overlap pa-

rameters is a dimensionless term, a non-zero overlap parameter (s 6= 0) leads to the asymmetry
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between conduction and valence band. This term is negligible at low energies(|E/t| ≪ 1).

Indeed, by comparison between the dispersion relations with and without the overlap parameter

shown in Fig.2.4, one sees thats is negligible close to theK andK ′ points.
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Figure 2.5: Density of states (DOS) as a function of energy (in units of|t|) obtained by the dispersion
relation (2.40).

Fig. 2.5 shows the density of statesρ(E) as a function of the energy. Positive energies

refer to the conduction band whereas negative energies refer to the valence band. Close to the

neutrality point (E = 0), the density of statesρ(E) has a linear behavior. This is due to the

linearity of the electronic bands in proximity of the cornerpointsK andK ′.

In each band there is a separatrix which passes through the saddle pointsMℓ (ℓ = 1, 2, 3). A

separatrix is an isoenergetic line which separates regionswith different topology. A Fermi level

crossing these saddle points would imply the change in the topology of the Fermi surface, which

actually corresponds to a Lifshitz transition of the neck-disruption type. A Lifshitz transition

[86, 106], also known as electronic topological transition (ETT), is a change in the Fermi surface

topology occurring upon a continuous change of some external parameter, such as pressure,

magnetic field or, most naturally, doping. This transition does not involve a symmetry breaking,

as in conventional phase transitions of the Landau type, butstill leads to observable singularities
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2. Graphene: Model

in thermodynamics, electron transport, sound propagation, and the magnetic response of metals

[3, 14]. The hallmark of an ETT is provided, in a two-dimensional system, by a logarithmic

cusp (Van Hove singularity) in the DOS. Indeed, Fig.2.5 shows that the DOS exhibits two

logarithmic divergences which are due to the separatrices present in the electronic bands (one

for each band).

In addition to the knowledge of the dispersion relations of the electronic bands, it is useful

to obtain the eigenstates of the model. The eigenvectors in Eq. (2.21) can be presented as

ukλ =
1√
2

(

(−1)λ

e−iθk

)

, (2.44)

where

eiθk = − γk

|γk|
. (2.45)

The norm of the eigenvector in Eq. (2.44) is given by:

‖ukλ‖ = 〈kλ|kλ〉1/2 = 1 +O(s(2)) λ = 1, 2, (2.46)

and consistently with our choice of truncation these eigenvectors are orthonormal.

Figure 2.6: (a) Top, full lines: ab initio result with a simple basis set (single-ζ) and a radial cutoff
rc = 1.86 Å; dotted lines: nearest-neighbor tight binding band structure Eq. (2.40) with t = −2.8
eV ands = 0.07. Theab initio result shown by the full line coincides, in this energy scale, with the
third-nearest neighbor tight binding model.Bottom, dotted line: difference between theab initio and the
nearest neighbor tight-binding band structure shown in thetop panel. (b)Top, full lines: ab initio result
with a double-ζ plus polarization basis set and a radial cutoffrc = 3.31 Å; dashed lines: third-neighbor
tight-binding band structures.Bottom: difference between the two band structures above. Adaptedfrom
[129].
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In order to study the electronic properties of graphene overthe whole bandwidth we will

use the model just presented,i.e. the nearest-neighbor tight binding model.

In Fig.2.6(a), Reichet al. compare the nearest-neighbor tight binding band structure(dotted

lines) with anab initio band structure (solid lines) and the third-nearest neighbor tight-binding

band structure (which coincides withab initio results) [129]. In particular, for theab initio

band structure in Fig.2.6 (a), Reichet al. used a simple basis set (single-ζ) with a cutoff

radius of1.86 Å. By a comparison between the dispersion relations in Eq. (2.40) andab initio

calculations have obtained that there is a discrepancy always lesser than0.4 eV over the whole

bandwidth for both the conduction bands and the valence bands.

In Fig. 2.6(b), Reichet al. compare the third-nearest neighbor tight-binding band structure

(dashed lines) with a more accurateab initio band structure (solid lines) [129]. In particular,

for the first principles band structure in Fig.2.6 (b), Reichet al. used two independent radial

functions to describe thep orbitals, and included a shell of polarizedd orbitals (double-ζ plus

polarization basis set), and had a radial cutoff of3.31 Å. By a comparison between the disper-

sion relations in Eq. (2.40) andab initio calculations shown in Fig.2.6 (b) the discrepancy is

maximum at the saddle point (M point) and it is around1 eV, at the center of 1BZ (Γ point) the

discrepancy is around0.3 eV, and the agreement is excellent in proximity of the Dirac points.

Although the nearest-neighbor tight binding model is quantitatively reliable to describe the

low energy (|E/t| ≪ 1) properties, this model is qualitatively relevant becauseit contains all

the principal features of the electronic structure of graphene (i.e. Dirac points, saddle points,

finite bandwidths). In particular, our principal results are directly explainable in terms of these

features of the electronic system, which can be traced back to the lattice symmetry.

2.2 Massless Dirac fermions

Intrinsic graphene has a Fermi energy coinciding with the energyE = 0 at theK and

K ′ points. For experimentally realizable dopings, the Fermi energy is much smaller than the

hopping energy|EF/t| ≪ 1. Thus, it is useful to employ an effective model to describe the

low-energy excitations. This model is obtained by the expansion of the complete electronic

HamiltonianH around theK andK ′ points [76].
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2. Graphene: Model

An arbitrary wave functionψ(r, z) involving only low-energy states can be written in terms

of a four component smooth envelope functionΨ(r), or its Fourier transformΨ(p), as [9]

ψ(r, z) =

∫

d2p

(2π)2
ΨAK(p)ei(K+p)·rUAK(r, z) + ΨBK(p)ei(K+p)·rUBK(r, z)+

+ ΨAK′(p)ei(K′+p)·rUAK ′(r, z) + ΨBK ′(p)ei(K′+p)·rUBK ′(r, z).

(2.47)

The low-energy effective electronic Hamiltonian is definedas a matrix of order4 whose

element between any two smooth envelope functions, e.g.Ψ(r) andΨ′(r), coincides with the

matrix element of the complete Hamiltonian, between the corresponding full wave functions

ψ(r, z) andψ′(r, z)

∫

d2rΨ†(r)H(−i∇)Ψ′(r) =

∫

d2rdzψ†(r, z)H(−i∇, r,−i∂z , z)ψ
′(r, z). (2.48)

If one uses as the complete Hamiltonian the one obtained by means of the tight binding

approximation and expands the effective Hamiltonian in powers of the momentum, one obtains

as leading term (pa≪ 1) the following matrix

H(p) = ~vFτ0σ · p, (2.49)

wherevF = 3ta/2~ is the Fermi velocity. Moreover,σ = (σx, σy) is a vector consisting of

two Pauli matrices acting in the two-dimensional pseudospin space (A andB), whereasτ0 is

an identity matrix of order2 which acts in the two-dimensional valley space (K andK ′). The

Hamiltonian, Eq.(2.49), acts on the generic four-component spinor

Ψp = (ΨAK(p),ΨBK(p),ΨBK ′(p),−ΨAK ′(p))⊤ . (2.50)

Using this particular choice of the form of the generic spinor, one has the most symmetric

form for the effective Hamiltonian [9]. Moreover Basko, using symmetry considerations, has

demonstrated that the leading term of the effective Hamiltonian in powers ofp is unique and is

expressed by Eq. (2.49), independently of the microscopic model used.

In ideal graphene the valleysK andK ′ are decoupled. However, the presence of some

inhomogeneity can induce a coupling between the valleys. Inparticular, an inhomogeneity
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which is smooth at the atomic scale leaves the valleys independent. Hence, an atomic-scale

inhomogeneity,e.g.point-defects, can mix the states from different valleys [76, 109].

In each valley (K or K ′) the dynamics of the low energy massless quasiparticles canbe

effectively described by the Dirac-Weyl equation, rather than by the Schrödinger equation. This

is why the points of the1BZ, where conduction and valence bands touch each other, aretermed

Dirac points .

The dispersion relations obtained by the Hamiltonian, Eq. (2.49), are given by

Eλ(p) = (−1)λ
~vFp, (2.51)

whereλ = 1 refers to the valence band, andλ = 2 refers to the conduction band. Hence, both

the conduction band and the valence band consist of two isotropic cones, one centered at theK

point and the other one at theK ′ point. According to the dispersion relations, Eq. (2.51), the

low energy excitations are massless, and characterized by an energy independent Fermi velocity

vF. Hence, each eigenstate of the energy is identified by the momentump, the valley label (K

orK ′), and thez-projection of the real spin. The latter will be omitted.

By analogy with the spin of the electron, the pseudospin operator is defined as

Σ =
1

2
τ0σ. (2.52)

Hence, a relevant quantity which characterizes the eigenstates is their helicity, which is defined

as the projection of the momentum operator along the pseudospin direction

Σ · p
p

Ψλ(p) = (−1)λΨλ(p), λ = 1, 2. (2.53)

One finds that electrons (holes) in graphene have parallel (antiparallel) pseudospin along the

direction of motion [76].

Finally, using the conical relation dispersions, Eq. (2.51), one can find the analytical expres-

sion of the DOS at low energies

ρ(E) =
3
√

3

π

a2

~2v2
F

|E|. (2.54)
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2. Graphene: Model

Hence, for energies near the neutrality point (E = 0), the DOS behaves as a linear function of

the energy, and the slope is inversely proportional to the square of the Fermi velocity.
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Chapter 3

Strain effect on the electronic bands

Graphene is an atomically thick membrane but, notwithstanding its low dimensionality, it

is notable for its remarkable mechanical properties [77, 87]. These properties suggested that

applied strain can induce substantial modifications of the band structure of graphene, such as

the opening of a gap at the Fermi level, thereby triggering a quantum phase transition from a

semimetal to a semiconductor. While earlierab initio calculations were suggestive of a gap

opening for arbitrary strain modulus and direction [60], both tight-binding models [121] as well

as more accurateab initiocalculations [130] point towards the conclusion that the strain-induced

opening of a band gap in fact depends critically on the direction of strain.

In this Chapter, we will be concerned on the effects induced by applied strain on the elec-

tronic bands. Although uniaxial strain will be included in astandard, non-interacting model

Hamiltonian at the tight-binding level,i.e. through the introduction of strain-dependent hopping

parameters [121], this will nonetheless capture the essential consequences of applied strain on

the band structure of graphene.

Moreover, we will study the modifications of the optical conductivity due to the strain. This

quantity is related to measurable quantities, such as the optical transmittance or the optical

absorption. In the case of unstrained graphene, the opticalconductivity has been derived within

the Dirac-cone approximation [62], and within a more accurate tight binding approximation

also for frequencies in the visible range [138]. The effect of disorder has been considered by

Pereset al. [124], and that of finite temperature by Falkovsky and Varlamov [42]. These studies

are consistent with the experimental observation of a nearly constant conductivity ofπe2/2h
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over a relatively broad frequency range [93, 101]. Such a result demonstrates that impurities

and phonon effects can be neglected in the visible range of frequencies [93]. Hence, using the

tight binding model, we will analyze how the modifications ofthe electronic bands due to the

applied strain induce a direct effect on the optical responses of graphene [111].

3.1 Tight binding model for strained graphene

In this paragraph we deal with the strain effects on the tightbinding model, which we have

derived in detail in§ 2.1.

Figure 3.1: Lattice coordinate system. The abscissa coincides with thearmchair direction and the
ordinate coincides with the zig-zag direction . The uniaxial strain is identified by a vector, whose modulus
is the longitudinal deformationε and its directionθ is that of the applied tension.

In particular, we are interested in uniformly strained graphene. The generalized Hooke’s

law, which relates the stress tensorτij and strain tensorεij, has the general form

εij =
∑

hk

Sijhkτhk, (3.1)

whereSijhk is the generic component of the compliance tensor [5]. In the case of a bidimen-

sional system with hexagonal symmetry, such as graphene, theSijhk tensor has only two inde-

pendent components, as in an elastic continuum sheet [80, 121]. Hence, if we take into account
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3. Strain effect on the electronic bands

to apply a uniform tensionT along a generic direction we have only a longitudinal deformation

equal toSxxxxT , and a transversal deformation equal toSxxyyT . The strain tensor in the lattice

coordinate system, in Fig.3.1, is written as

ε = ε

(

cos2 θ − ν sin2 θ (1 + ν) cos θ sin θ

(1 + ν) cos θ sin θ sin2 θ − ν cos2 θ

)

, (3.2)

whereε is the longitudinal deformation,ν is the Poisson’s ratio (ν = −Sxxyy/Sxxxx), and

θ denotes the direction along which the tension is applied, with respect to thêx axis in the

lattice coordinate system. In particular, for the Poisson’s ratio we use the valueν = 0.14, as

determined fromab initio calculations for graphene [43]. Such value is comparable with the

known experimental valueν = 0.165 for graphite [12]. We will focus on the uniaxial strain,

and in this case the tunable parameters are the strain modulusε and the direction of the tension

θ. According to Fig.3.1, the special valuesθ = mπ/3 andθ = π/6 + nπ/3, wherem andn

are any two integers, refer respectively to the armchair andthe zig-zag directions.

Moreover, the form of the strain tensor in Eq. (3.2) is suitable also for biaxial deformation,

but in this case the parameterν is different from Poisson’s ratio and becomes a tunable param-

eter. In particular, if one fixesν = −1, we can treat the case of homogeneous deformation,

which, at variance with the other cases, preserves hexagonal lattice symmetry.

In terms of the strain tensor, the deformed lattice distances are related to the relaxed (un-

strained) ones by:

R = (I + ε) ·R(0), (3.3)

whereR(0) is a generic vector in the relaxed graphene lattice. Hence, the three vectorsδ(0)
ℓ

which connect any carbon atom to its nearest neighbors, defined in Eqs. (2.2), are modified by

the previous linear transformation as

δℓ = (I + ε) · δ(0)
ℓ . (3.4)

The deformation of the direct lattice according to the Eq. (3.3) leads to a modification of the

reciprocal lattice vectors

G = (I + ε)−1 ·G(0). (3.5)
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A modification of the lattice, and in particular the change inbond lengths (3.4), leads to

different hopping parameters and overlap parameters between nearest neighbors. In the previous

Chapter, we have shown that, within the tight binding approximation, the energy dispersion

relationsEkλ can be obtained as the solutions of the generalized eigenvalue problem

Hkukλ = EkλSkukλ,

where

Hk =

(

0 fk

f ∗
k 0

)

, (3.6a)

Sk =

(

1 gk

g∗k 1

)

. (3.6b)

The off-diagonal elements of the two matrices are related tothe following complex functions

fk =

3
∑

ℓ=1

tℓe
ik·δℓ , (3.7a)

gk =

3
∑

ℓ=1

sℓe
ik·δℓ , (3.7b)

where tℓ = t(δℓ) and sℓ = s(δℓ) are respectively the hopping parameters and the overlap

parameters between two nearest neighbors connected by one of the three vectorsδℓ (ℓ = 1, 2, 3).

The complex functions in Eqs. (3.7) can be expressed in terms of the wavevectors of unstrained

graphene. Exploiting Eqs. (3.4) and (3.5) one can write

fk =
3
∑

ℓ=1

tℓe
ik(0)·δ(0)

ℓ , (3.8a)

gk =
3
∑

ℓ=1

sℓe
ik(0)·δ(0)

ℓ , (3.8b)

where tℓ = t(δℓ) and sℓ = s(δℓ) are respectively the hopping parameters and the overlap

parameters used in Eqs. (3.7).

So far, we have not chosen the analytical form of the atomic wave functionφ(r), but we
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3. Strain effect on the electronic bands

have only assumed that it has some general properties. Due tothe two-dimensionality of the

graphene sheet, we can safely neglect that extension along the axis orthogonal to the graphene,

z say [109]. One possible choice of the atomic wave function is such that its square modulus is

a normalized gaussian function

φ(r) = (1/
√
πσg) exp(−r2/2σ2

g), (3.9)

where1/σg = Zg/2
√

3a, and the valueZg = 11.2 is fixed by the condition that the relaxed

overlap parameter bes = 0.07 [109, 129]. Thus, the strain-dependent overlap parameterssℓ are

defined as

sℓ =

∫

drφ(r)φ(r + δℓ) = exp

(

− δ2
ℓ

4σ2
g

)

. (3.10)

Correspondingly, the hopping parameterstℓ are defined as the transition amplitudes of the

single-particle Hamiltonian,H1 = −(~2/2m)∇2 − Ze2/r, between two lattice sites beingδℓ

apart from each other. Here,Z is chosen so thatt = −2.8 eV in the unstrained limit. One finds

tℓ =

[

~
2

2mσ2
g

(

1 +
δ2
ℓ

4σ2
g

)

− Ze2
√
π

σg
I0

(

δ2
ℓ

8σ2
g

)]

sℓ, (3.11)

whereI0(x) is a modified Bessel function of the first kind [58]. One findsdtℓ/dδℓ = 7.6 eV/Å

for ε = 0, which is comparable with the value6.4 eV/Å obtained in Ref. [121] within Harrison’s

approach [67]. In the unstrained limit (ε = 0), Eqs. (3.7) reduce tofk → tγk andgk → sγk,

respectively. The solution of the generalized eigenvalue problem gives the dispersion relations

Ekλ =
−Fk + (−1)λ

√

F 2
k + 4Gk|fk|2

2Gk

, (3.12)

whereλ = 1 refers to the valence band, andλ = 2 refers to the conduction band, and

Fk = gkf
∗
k + g∗kfk, (3.13a)

Gk = 1− |gk|2. (3.13b)
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The associated eigenvectorsukλ can be presented as

ukλ =

(

cos φkλ

e−iθk sinφkλ

)

, (3.14)

where

eiθk = fk/|fk|, (3.15)

and

cosφkλ = − Ekλ̄

√
Gk

√

|fk|2 +GkE
2
kλ̄

, (3.16a)

sin φkλ = − |fk|
√

|fk|2 +GkE2
kλ̄

, (3.16b)

with cos(φk,1 − φk,2) = 0. In the limit of no strain, one findsφk,1 → 3π/4 andφk,2 → π/4.

Here and below,̄λ = 2 whenλ = 1, and vice versa. In the unstrained limit (ε = 0), one recovers

the band dispersion in Eq. (2.40).

The band dispersion relationsEkλ, Eq. (3.12), are characterized by Dirac points,i.e. points

in k-space around which the dispersion is linear, whenfk = 0. As a function of strain, such a

condition is satisfied by two inequivalent points±kD only when the ‘triangular inequalities’

|tℓ1 − tℓ2 | ≤ |tℓ3 | ≤ |tℓ1 + tℓ2| (3.17)

are fulfilled [68], with (ℓ1, ℓ2, ℓ3) a permutation of(1, 2, 3). Around such points, the dispersion

relationsEkλ can be approximated by cones, whose constant energy sections are ellipses.

The location of±kD in the reciprocal lattice satisfies

cos (kD · (δℓ1 − δℓ2)) =
t2ℓ3 − t2ℓ1 − t2ℓ2

2tℓ1tℓ2
, (3.18)

with (ℓ1, ℓ2, ℓ3) a permutation of(1, 2, 3). While in the unstrained limit the Dirac points are

located at the vertices of the1BZ, i.e. kD → K = and−kD → K ′ ≡ −K, when either of the

limiting conditions in Eqs. (3.17) is fulfilled as a function of strain, say whentℓ3 = tℓ1 + tℓ2 , the

would-be Dirac points coincide with the middle points of thesides of the1BZ, saykD →Mℓ3 .
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3. Strain effect on the electronic bands
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Figure 3.2: Critical value of the longitudinal deformationε∗ as a function of the direction of the applied
tensionθ. In this plot, a limited interval of values of the directionθ are taken into account because any
other value can be obtained exploiting the lattice symmetryproperties.

In this limit, the dispersion relations cease to be linear ina specific direction, and the cone

approximation fails. For each directionθ there is a critical value of the longitudinal deformation

ε∗ at which the Dirac points coincide with the middle points of the sides of the1BZ, and thus

for larger deformations (ε > ε∗) there is a gap opening. Fig.3.2 shows the critical valueε∗ as

a function of the direction of the applied tension. One finds that the zig-zag direction gives the

minimum value of the critical deformationε∗ = 22.8%, whereas for the armchair directionε∗

diverges, this implying that in this case it is impossible tohave a gap opening. These results are

in excellent agreement withab initio calculations [32].

In order to make a comparison between the electronic bands with or withour strain it is

useful to express thek-dependences in terms of the unstrained reciprocal lattice, exploiting re-

lations in Eqs. (3.4) and (3.5). Under the conditions given by Eqs. (3.17), the band dispersions,

Eqs. (3.12), can be expanded asEqλ ≡ Ekλ around either Dirac point, withk = kD + q, as:

Eqλ =
−q · d + (−1)λ

√

(q · d)2 + 4GkD
|q · ∇fkD

|2
2GkD

, (3.19)
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where

d = gkD
∇f ∗

kD
+ g∗kD

∇fkD
. (3.20)

Eq. (3.19) defines a cone, whose sectionEqλ = E at a constant energy levelE is an ellipse. Its

equation can be cast in canonical form as

(qx − qx0)
2

A2
+

(qy − qy0)
2

B2
= E2. (3.21)

The center(qx0, qy0) with respect tokD of the ellipse evolves linearly with energyE according

to

qx0 =
1

2
A2(dx cos η − dy sin η)E (3.22a)

qy0 =
1

2
B2(dx sin η + dy cos η)E. (3.22b)

The ellipse semiaxesA, B are given by

1

A2
=

1

2
(γ −

√

α2 + β2) (3.23a)

1

B2
=

1

2
(γ +

√

α2 + β2). (3.23b)

In the above equations, we have made use of the following definitions:

cos η =
1√
2

(

1 +
α

√

α2 + β2

)1/2

(3.24a)

sin η =
β

2 cos η
√

α2 + β2
(3.24b)

α = −3a2

2
(t21 + t22 − 2t23) (3.24c)

β = −3
√

3a2

2
(t21 − t22) (3.24d)

γ =
3a2

2
(t21 + t22 + t23). (3.24e)

One findsα, β → 0, while γ → 9t2a2/2, in the limit of no strain,ε → 0. Further in-

sight into the anisotropic character of the low-energy conedispersion relations around the

Dirac points, Eq. (3.19) can be obtained by recasting them in polar coordinates(q, φ), where
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3. Strain effect on the electronic bands
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Figure 3.3: Polar plot ofvλ(φ) (with λ = 2, i.e. for the conduction band) aroundkD, vλ(φ), normalized

with respect to its value in the absence of strain,v
(0)
F . Strain is here applied at a generic fixed angle

θ = π/4. The anisotropy of the Fermi velocity increases with increasing strain, until the shape ofvλ(φ)
breaks atε = 0.28. This corresponds to the existence of a direction (dashed blue line), Eq. (3.25), along
which the dispersion relationEqλ displays a nonlinear character.

q = (q cosφ, q sinφ). One finds thereforeEqλ = vλ(φ)q, the anisotropic prefactorvλ(φ) de-

pending on the Dirac point around which one is actually performing the expansion. Fig.3.3

showsvλ(φ) for the conduction band (λ = 2) centered aroundkD. One notices that applied

strain increases the anisotropy of theφ dependence, until a critical value is reached, at which

the cone approximation breaks down. This corresponds to a nonlinear behavior ofEqλ along a

specific directionφ0, characterized by the vanishing ofvλ(φ) and given explicitly by

cotgφ0 = −
√

3

3

t1 ∓ t2
t1 ± t2

, (3.25)

when|t3| = |t1∓ t2| in Eqs. (3.17), and to the opening of a finite gap around zero energy in the

DOS. In that case, the Fermi velocity vanishes along a direction φ′
0 given by

cotgφ′
0 =

(1 + εxx)cotgφ0 − εxy

(1 + εyy)− εyxcotgφ0
. (3.26)

Fig. 3.4 compares the tight binding model electronic band structureof strained graphene

(red continuous lines), with strain modulus ofε = 0.18 along the generic directionθ = π/4,
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Figure 3.4: Left: High symmetry pathΓ-M -K-Γ in the1BZ. Right: Conduction band and valence band
along the high symmetry path in graphene with a strain modulus ofε = 0.18 applied alongθ = π/4 (red
continuous lines), and without strain applied (blue dottedlines). The unit of energy is the absolute value
of the hopping parametert = −2.8 eV.

and that of unstrained graphene (blue dotted lines). In Fig.3.4we evaluate the electronic bands

along the high symmetry pathΓ-M-K-Γ in the 1BZ, one can see that uniaxial strain causes

a shrinking of the electronic bands. Actually, this modification of the electronic bands appear

for any directionθ. Indeed, in Fig.3.4 the Dirac point disappears. Both Dirac points are still

well-defined, but they are not placed in special symmetry points.

Fig. 3.5shows contour plots ofEkλ, Eq. (3.12), at constant energy levels, with strain mod-

ulus ofε = 0.18 along the generic directionθ = π/4. One can see that the Dirac points±kD

are shifted from the corners of the1BZ, and they do not appear in Fig.3.4because they are not

placed along the high symmetry pathΓ-M-K-Γ. Moreover, for fixed strain, each of these lines

can be interpreted as the Fermi line corresponding to a givenchemical potential. One may ob-

serve that the various possible Fermi lines can be grouped into four families, according to their

topology. In particular, from Fig.3.5one may distinguish among (i) closed Fermi lines around

either Dirac point±kD (and equivalent points in the1BZ), (ii) closed Fermi lines around both

Dirac points, (iii) open Fermi lines, (iv) closed Fermi lines aroundΓ = (0, 0). The transition

between two different topologies takes place when the Fermiline touches the midpoints of the
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Figure 3.5: Contour plots of the dispersion relations within the 1BZ forthe valence band,Ek1 (left
panel), and conduction band,Ek2 (right panel). Here, we are depicting the situation corresponding to
a strain modulus ofε = 0.18 along the generic directionθ = π/4. Solid blue lines are separatrix
lines and occur at an electronic topological transition, dividing groups of contours belonging to different
topologies. Either line passes through one of the critical pointsMℓ (ℓ = 1, 2, 3), defined as the middle
points of the 1BZ edge (solid black hexagon).

boundary of the1BZ (solid black hexagon in Fig.3.5), and is marked by a separatrix line. Each

separatrix line corresponds to an electronic topological transition (ETT) [86], i.e. a transition

between two different topologies of the Fermi line. Here, inthe case of strained graphene,

we surmise the existence of at most three, possibly degenerate, ETTs, whose effect on observ-

able quantities may be evidenced by the application of sufficiently intense strain along specific

directions.

3.2 Density of states of strained graphene

Making use of Eq. (3.21), one can derive the low-energy expansion of the density of states

(DOS), which turns out to be linear in energy,

ρ(E) = ρ1|E|, (3.27)

with

ρ1 =
4

π
[(t21 + t22 + t23)

2 − 2(t41 + t42 + t43)]
−1/2, (3.28)

where the factor of four takes into account for the spin and valley degeneracies.
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Figure 3.6: Showing the DOS prefactorρ1, Eq. (3.28), normalized with respect to its valueρ(0)
1 in the

absence of strain, as a function of the strain modulusε, for various strain angles. The strain direction
θ increases fromθ = 0 (armchair direction, corresponding to the lowest curve) toθ = π/6 (topmost
curve). All other cases can be reduced to one of these exploiting the symmetry properties of the lattice.

Fig. 3.6shows the prefactorρ1, Eq. (3.28), as a function of the strain modulusε, for various

strain anglesθ. One finds in general thatρ1 increases monotonically with increasing strain.

Such a behavior suggests that applied strain may be used to amplify the DOS close to the

Fermi level. When the equality sign in Eqs. (3.17) is reached, the prefactorρ1 in Eq. (3.28)

diverges, meaning that the cone approximation breaks down.In this case, the band dispersions

still vanish, but now quadratically along a specific direction through the would-be Dirac point,

and a nonzero gap in the DOS opens aroundE = 0.

This behavior is confirmed by the energy dependence of the DOSover the whole bandwidth,

as numerically evaluated from the detailed band dispersions, Eq. (3.12). In particular, Fig.3.7

showsρ(E) for increasing strain, at fixed strain angleθ = 0 (armchair) andθ = π/6 (zig-zag).

In both cases, for sufficiently low values of the strain modulus, the DOS depends linearly on

E, according to Eq. (3.27), and the DOS slope increases with increasing strain, in agreement

with Eq. (3.28) and Fig.3.6. However, while the spectrum remains gapless at all strainsin

the armchair case, a nonzero gap is formed at a critical strain in the zig-zag caseθ = π/6,

corresponding to the breaking of the cone approximation at low energy. Such a behavior is

confirmed by Fig.3.8, showing the dependence of the DOS over the whole bandwidth,now at
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Figure 3.7: Energy dependence of the DOS over the whole bandwidth, for increasing strain modulus
ε = 0− 0.25 and fixed strain armchair direction (left panel) and zig-zagdirection (right panel). In each
case, the DOS slope close to the Fermi energy increases as a function of strain. However, while the DOS
remains gapless for armchair case, a nonzero gap opens around E = 0 at a critical strain for any other
case.

fixed strain modulus and varying strain angle.
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Figure 3.8: Energy dependence of the DOS over the full bandwidth, for fixed strain modulusε = 0.25
and varying strain direction.

At sufficiently high energies, beyond the linear regime, theDOS exhibits Van Hove singu-

larities both in the valence and in the conduction bands. As anticipated, these correspond to the

occurrence of an ETT in the constant energy contours of either band dispersion relationEkλ,
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Eq. (3.12). As shown by Fig.3.7, the DOS is characterized by a single logarithmic cusp in

each band in the unstrained limit (ε = 0), that is readily resolved into two logarithmic spikes,

both in theθ = 0 (armchair) and in theθ = π/6 (zig-zag) cases, as soon as the strain modulus

becomes nonzero (ε > 0). The low-energy spike disappears as soon as a gap is formed,corre-

sponding to the breaking of the cone behavior around the Dirac point. Fig.3.8 shows that the

situation is indeed richer, in that the application of sufficiently intense strain along generic (i.e.

non symmetry-privileged) directions allows the development of three logarithmic singularities

in the DOS for each band, corresponding to the three inequivalent ETTs described in§ 3.1.

Again, the lowest energy Van Hove singularity disappears into the gap edge when the energy

spectrum ceases to be linear around the Dirac points.

3.3 Optical conductivity of strained graphene

In order to obtain the optical conductivity in strained graphene we will use the linear re-

sponse theory [23, 46, 54]. First of all, we choose a particular gauge such that the scalar poten-

tial is fixed

ϕ = 0, (3.29)

and thus the electric field can be written only in terms of the vector potential as

E = −∂A
∂t

. (3.30)

Thus, one takes into account the presence of a generic electromagnetic field adding a new term

in the Hamiltonian

HA = −
∫

drJ(r, t) ·A(r, t), (3.31)

where the vector potential is coupled with the current density vector. One can split the current

density vector in two terms, the paramagnetic and the diamagnetic term:

J = J∇ + JA, (3.32)
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3. Strain effect on the electronic bands

which can be written respectively in terms of the field operators as

J∇(r) =
ie~

2m

[

Ψ†(r)∇Ψ(r)−
(

∇Ψ†(r)
)

Ψ(r)
]

, (3.33)

JA(r) = −e
2

m
A(r)Ψ†(r)Ψ(r), (3.34)

wherem is the bare electron mass and,−e is the electron charge.

We assume to have an electric field sufficiently weak such thatone can treat it as a weak

perturbation. This hypothesis allows us to use the linear response theory, and thus the response

of the system to an external perturbation is linear in the same perturbation. The current density

vector induced by the perturbation can written as

〈J(r, t)〉ext = 〈J(r, t)〉0 −
i

~

∫ t

−∞
dt′〈
[

J(r, t′), HA(t′)
]

−〉0, (3.35)

where〈. . .〉0 is an equilibrium average with respect to the unperturbed Hamiltonian, and the

symbol [. . . , . . .]− is a commutator. Taking into account only the linear terms inthe vector

potential, one finds

〈Jh(r, t)〉ext = − 1

4π

∑

k

∫

dr′
∫ +∞

−∞
dt′Nhk(r, r

′, t− t′)Ak(r
′, t′), (3.36)

where the kernel of the integral equation is invariant with respect to any time translation be-

cause the unperturbed Hamiltonian has no explicit time dependence. Exploiting a well-known

theorem on the Fourier transform of a convolution, one can rewrite the previous expression in

monochromatic components as

〈J̃h(q
′, ω)〉ext = − 1

4πiω

∑

k

∑

G

δq′,q+GÑhk(q + G,−q, ω)Ẽk(q, ω), (3.37)

where the Fourier transform of the external vector potential is written in terms of the Fourier

transform of the external electric field. Since we are takinginto account a crystal, the momen-

tum of the responseq′ is equal to the momentum of the perturbationq, or at mostq′ can differ

from q by a vector of the reciprocal lattice. We are interested in anexternal homogeneous

electric field, which means we take into account only theq = 0 component. In addition, we
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neglect in the response the components characterized by a wavelength of the order of the lattice

distance, meaning that we take into account the response including only theq′ = 0 component.

Thus one can rewrite the previous expression as

〈J̃h(0, ω)〉ext =
ie2ñ(0)

mω
Eh(0, ω) +

∑

k

i

~ω
Π̃R

hk(0, 0, ω)Ek(0, ω), (3.38)

where in the right-hand side there appears the Fourier transform of the electron density,̃n, and

the Fourier transform of the retarded current-current correlation function, which is defined as

ΠR
hk(r, r

′, t) = −iθ(t)〈
[

J∇
h (r, t), J∇

k (r′, 0)
]

−〉0. (3.39)

Taking a space average of the current density

J(ω) =
1

NAcell

∫

dr〈J(r, ω)〉ext, (3.40)

one cancels out the atomic scale fluctuations [92]. Hence, the current density response is related

to a homogeneous external electric field by means of the conductivity tensor

Jh(ω) =
∑

k

←→σ hk(ω)Ek(ω), (3.41)

which is explicitly written by means of the Kubo’s formula as

←→σ hk(ω) =
ie2n

mω
δhk +

i

~ωNAcell
Π̃R

hk(0, 0, ω), (3.42)

wheren is the electron density,N is the number of the unit cells in the graphene sample under

consideration, andAcell is the area of the unit cell. Uniaxial strain changes the areaof the unit

cell as

Acell = (1 + ε)(1− νε)3
√

3

2
a2, (3.43)

wherea = 1.42 Å. In addition, we are mainly interested in the dissipative part of the optical

conductivity [54], i.e. its real part

σhk(ω) = − 1

~ωNAcell
Im Π̃R

hk(0, 0, ω). (3.44)
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3. Strain effect on the electronic bands

According to the linear response theory, the optical conductivity is an equilibrium quantity, and

it is dependent on the Fermi levelµ, the temperatureT , and frequencyω of the perturbation

(i.e. the electric field). Since we consider a finite temperature, we use the Matsubara formalism

[23].

The paramagnetic component of the current density vector inmomentum space reads [23]

J̃∇(p′) = − e

2m

∫

dp

(2π)2
(2p + p′)c†pcp+p′ , (3.45)

wherecp (c†p) are destruction (creation) operators in the plane wave representation. In the

homogeneous limit (zero transferred momentum,p′ = 0), one has [108]

J̃∇(0) =
e

i~
[H, r] = −eṙ, (3.46)

whereH is the system’s Hamiltonian. Eq. (3.46) allows to project the operator̃J∇(0) onto the

tight binding subspace, which is spanned by the basis definedin Eq. (2.12). Thus, similarly to

what has been done with the Hamiltonian in Eq. (3.6), one obtains the operatorr in the tight

binding subspace. The generic matrix element ofr reads

〈kα|r|k′β〉 = δkk′rαβ(k), (3.47)

whereα, β are pseudospin indices, and it is diagonal in thek variable. The operatorr is explic-

itly written, in the tight binding subspace, as1

r(k) =

(

i∇k
i
2
(∇kgk) + gki∇k

i
2
(∇kg

∗
k) + g∗ki∇k i∇k

)

. (3.48)

Writing explicitly Eq. (3.44), one finds

σhl(ω) = Re
2i

Acell~ω

1

N

∑

kλ

[

(

J̃∇
h (k)

)

λλ̄

(

J̃∇
l (k)

)

λ̄λ

nF (ξkλ̄)− nF (ξkλ)

~ω + ξkλ − ξkλ̄ + i0+

]

, (3.49)

whereξkλ = Ekλ − µ andnF (ξ) denotes the Fermi function at temperatureT . In the direction

1The form of the matrix in Eq. (3.48) is independent of the particular choice of the atomic functionφ(r), indeed
we have used only the equivalence

∫

drφ(r)rφ(r − δ) = 1

2
δ
∫

drφ(r)φ(r − δ), which is valid for any rotational
invariant two dimensional wave function.
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Figure 3.9: Polar plots of the longitudinal optical conductivityσll/σ0, Eq. (5.25), as a function of
frequencyω > 0 (polar axis) and electric field orientationφ (azymuthal direction). Here, we setµ = 0
andkBT = 0.025 eV. Strain is applied along theθ = 0 (armchair) direction, and the strain modulus
increases from left to right, and from top to bottom (ε = 0, 0.075, 0.175, 0.275).

of the external field,i.e. for h = l, one finds2

σll(ω)

σ0
=

π

τ 2
0

sinh(1
2
β~ω)

~ω

1

N

∑

kλ

∣

∣j̃∇l (k)
∣

∣

2

λλ̄

cosh
(

1
2
βξkλ

)

cosh
(

1
2
βξkλ̄

)δ (~ω − (Ekλ − Ekλ̄)) , (3.50)

whereβ = (kBT )−1 is the inverse temperature,̃J∇
l (k) = e ta

~
j̃∇l (k), σ0 = πe2/(2h) is propor-

tional to the quantum of conductivity,τ−2
0 = (1 + ε)(1− νε)16t2/(3

√
3π~

2).

We have numerically evaluated the longitudinal optical conductivity σll(ω), Eq. (5.25) as a

function of frequencyω > 0 at fixed temperaturekBT = 0.025 eV, for several strain moduli

ε and directionsθ, as well as field orientations, here parametrized by the angle φ between the

applied electric field and the latticex direction.

Figs.3.9 and3.10show our results in the case of strain applied in the armchairdirection

2In this Chapter, we neglect the contribution of the Drude peak.
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3. Strain effect on the electronic bands
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Figure 3.10: Longitudinal optical conductivityσll/σ0, Eq. (5.25), as a function of frequencyω > 0,
for fixed strain modulusε = 0.1 and strain directionθ = 0 (armchair). Different lines refer to various
orientations of the electric field (φ = 0, π/4, π/2).

(θ = 0). Fig. 3.9 shows a contour plot of the longitudinal optical conductivity σll/σ0 as a

function of frequencyω (radial coordinate) and applied field angle (polar angle). In the relaxed

limit (ε = 0), σll/σ0 is isotropic with respect to the applied field angle, and exhibits a maximum

at a frequency that can be related to the single Van Hove singularity in the DOS (cf. Fig.3.7).

Such a maximum is immediately split into distinct maxima, ingeneral, as soon as the strain

modulusε becomes nonzero. This can be interpreted in terms of appliedstrain partly removing

the degeneracy among the inequivalent underlying ETTs. Such an effect is however dependent

on the field directionφ, as is shown already by the anisotropic pattern developed byσll/σ0 in

Fig. 3.9, for ε 6= 0. Indeed, Fig.3.10shows plots ofσll/σ0 as a function of frequency for fixed

strain modulusε = 0.1 and varying field orientationφ = 0 − π/2. The relative weight of

the two maxima depends on the relative orientation between strain and applied field. Here and

below, we consider the caseµ = 0. A nonzero value of the chemical potential would result in a

vanishing conductivity below a cutoff atω ≈ |µ|, smeared by finite temperature effects [138].

An analogous behavior is recovered when strain is applied along the zig-zag directionθ =

π/6, as shown in Figs.3.11and3.12. Again, applied strain breaks down the original isotropy

of the optical conductivity with respect to the field orientation in the relaxed case, with two
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Figure 3.11: Same as Fig.3.9, but for strain applied theθ = π/6 direction. In the last panel, the strain
modulus is equal toε = 0.275, which is larger than critical valueε∗ ≈ 0.228, thus at low-energies there
is a dark spot, because the optical conductivity is vanishing due to the presence of gap.

maxima appearing as a function of frequency (Fig.3.11). The optical weight of the different

maxima depend in general, again, on the relative orientation between strain and applied field.

While the presence of the two peaks can be traced back to the existence of inequivalent ETTs,

whose degeneracy is here removed by applied strain, the lastpanel in Fig.3.11shows that at a

sufficiently large strain modulus (here,ε = 0.275), a gap opens in the low-energy sector of the

spectrum, which is signalled here by a vanishing optical conductivity (dark spot at the origin in

last panel of Fig.3.11).

Finally, Figs.3.13and3.14show the longitudinal optical conductivity in the case of increas-

ing strain applied along a generic direction,viz. θ = π/4. Like in the previous cases, applied

strain removes the isotropy ofσll/σ0 with respect to the field orientationφ. However, the degen-

eracy among the three inequivalent ETTs is here lifted completely, and three peaks in general

appear in the longitudinal optical conductivity as a function of frequency, as shown also by
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3. Strain effect on the electronic bands

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10  12  14  16  18

σ l
l(ω

)/
σ 0

ω [eV]

ε=0.1,φ=0
ε=0.1,φ=π/4
ε=0.1,φ=π/2

Figure 3.12: Same as Fig.3.10, but for strain applied theθ = π/6 direction.

Fig. 3.14. The redistribution of optical weight among the three peaksis now more complicated,

as it in general depends on both the strain directionθ and the field orientationφ.

Pereiraet al. have obtained the electronic bands and the optical conductivity of uniaxially

strained graphene from first principles (DFT calculations within LDA approximation) [122,

130]. They have considered strain applied up toε = 0.1, they have found that the spectrum

remains gapless for all strain configurations studied, and their results are well comparable with

those obtained using the tight binding model.

Using group theory, it is possible to obtain the analytical form of the optical conductivity for

both relaxed and strained graphene [39]. In a two dimensional lattice with hexagonal symmetry

such as relaxed graphene, there is only one independent parameter for a symmetric second rank

tensor such as the optical conductivity tensor

σhk(ω) = σ(ω)δhk, (3.51)

thus, one recovers that the longitudinal optical response of relaxed grapheneσ(ω) is indepen-

dent of the polarization of electric field. In a two dimensional lattice with rhombic symmetry

there are two independent parameters for a symmetric secondrank tensor. This is the case of

graphene with strain applied along one of the two special directions (armchair or zig-zag). In
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Figure 3.13: Same as Fig.3.9, but for strain applied theθ = π/4 direction.

these special cases the longitudinal optical conductivitycan be written as

σll(ω) = σθθ(ω) cos(φ− θ)2 + σθ̄θ̄(ω) sin(φ− θ)2, (3.52)

whereφ is the direction of the electric field,θ is the stress direction, and̄θ is the complementary

angle ofθ (i.e. θ̄ = θ+π/2). Graphene strained along a generic (not special) direction has only

inversion spatial symmetry and consequently its optical conductivity tensor has three indepen-

dent components. Therefore, the longitudinal optical conductivity along the electric field has a

more complicated form

σll(ω) = σθθ(ω) cos(φ− θ)2 + σθ̄θ̄(ω) sin(φ− θ)2 +
(

σθθ̄(ω) + σ∗
θθ̄(ω)

)

sin(φ− θ) cos(φ− θ).
(3.53)

The, optical conductivity is related to measurable quantities, such as the transmittance or the

reflectance [113]. For instance, we consider light scattering across two media, with refraction
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3. Strain effect on the electronic bands
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Figure 3.14: Same as Fig.3.10, but for strain applied theθ = π/4 direction.

indexni =
√
ǫi (i = 1, 2), separated by a graphene monolayer. In the case of normal incidence,

the incident component of the electric fieldEi is related to the reflected componentEr = rEi,

and to the transmitted componentEt = tEi, by the following boundary condition obtained by

use of the Maxwell’s equations

Ei = Er + Et. (3.54)

Moreover, in this system energy conservation reads

c

n1
ǫ1ǫ0E2

i =
c

n1
ǫ1ǫ0E2

r +
c

n2
ǫ2ǫ0E2

t + E · J, (3.55)

wherec is the speed of light,ǫ0 is the vacuum permittivity, andJ is the induced current density

vector in graphene. The component of the current density vector Jφ parallel to the electric

field is related to the same electric field by the relationJφ = σφφ(ω)E . Using Eqs. (3.54) and

(3.55), one obtains the transmittance and reflectance of such a system, which can be written

respectively as

T (ω) =
n2

n1
t2 =

4n1n2

[n1 + πασφφ(ω)/σ0 + n2]2
, (3.56)

R(ω) = r2 =

(

n1 + πασφφ(ω)/σ0 − n2

n1 + πασφφ(ω)/σ0 + n2

)2

. (3.57)

whereα = e2/(4πǫ0c~) is the fine structure constant. In the case of suspended graphene,
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substitutingn1 = n2 = 1 one finds

T (ω) ≈ 1− πασφφ(ω)/σ0, (3.58)

R(ω) ≈ (πα)2

4
(σφφ(ω)/σ0)

2 . (3.59)

Hence, we have seen how uniaxial strain can deeply modify theoptical response of graphene.

The asymmetry induced by uniaxial strain in the optical conductivity causes an observable de-

gree of dichroism. Indeed, the optical response of uniaxially strained graphene to a linearly

polarized light depends on the direction of the polarization [122]. Moreover, the optical re-

sponse of graphene can give a measure of the magnitude and of the direction of strain in a

graphene sample.
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Chapter 4

Strain effect on the plasmonic spectrum

Most of the electronic properties of graphene are encoded inthe electron polarization, which

has been studied within the Dirac cone approximation at zero[57] and finite temperature [147]

for pristine graphene, as well as for doped graphene [70, 155]. These results have been recently

extended beyond the Dirac cone approximation [139].

In this Chapter, we are concerned with the dynamical polarization of graphene within the

full first Brillouin zone of the honeycomb lattice. While electron correlations are treated at the

level of the random phase approximation (RPA), we explicitly include local field effects (LFE)

[2], which are characteristic of the lattice structure of graphene. The importance of LFE have

been shown to be more important in graphene than in bulk semiconductors, in connection with

the static dielectric properties of graphene [143, 148]. By discussing the singularities of the

polarization, we can identify the longitudinal collectivemodes of the correlated electron liquid.

We are mainly interested in the plasmon modes, which dominate the long wavelength charge

density fluctuations. The role of electron-plasmon interaction in renormalizing the (especially

low-energy) quasiparticle dispersion relation has been emphasized [20, 22], and plasmons in

graphene are potentially interesting for applications in nanophotonics [72].

Specifically, we are interested in the dependence of the plasmon modes on applied uniaxial

strain. To this aim we use the tight binding model modified under strain, that we have presented

in the previous Chapters. Despite its simplicity, the tightbinding model is successful because

it is tightly related to the symmetry properties of graphene. In particular, the tight-binding

approximation allows to include important features of the electronic band dispersion, such as a
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finite bandwidth and the occurrence of Van Hove singularities. These features play an essential

role in deriving some of the characteristics of the plasmon dispersion.

4.1 Local field effects on the electron polarization

Within linear response theory, plasmon modes can be described as poles of the density-

density correlation function ,i.e. the polarization. The random phase approximation (RPA) is

then the simplest, infinite order, diagrammatic procedure to include electron correlations in the

dielectric screening giving rise to the polarization [54]. Besides electron-electron correlations,

another source ofk-space dependence of the dielectric function is provided bylocal field effects

(LFE) [134]. This is due to the generally atomic consistence of matter and, in the case of solids,

to the periodicity of the crystalline lattice. An account ofthe LFE on the dielectric function of

crystalline solids dates back at least to the original paperof Adler [2, 64, 65], and is generalized

below to the case of graphene, including both valence and conduction bands.

We start by considering the polarization, which for a noninteracting system at finite temper-

atureT reads

Π0
ρρ(x,x

′, iωm) =
1

~2β

∑

iωn

∑

kλk′λ′

ψ∗
kλ(x

′)G0
λ(k, iωn)ψkλ(x)ψ∗

k′λ′(x)G0
λ′(k′, iωn+iωm)ψk′λ′(x′),

(4.1)

whereψkλ(x) is the two-dimensional eigenfunction,G0
λ(k, iωn) = (iωn − ξkλ/~)−1 is the

Green’s function for the noninteracting system, and~ωn = (2n + 1)πkBT [~ωm = 2mπkBT ]

denote the fermionic [bosonic] Matsubara frequencies at temperatureT , with ~ Planck’s con-

stant andkB Boltzmann’s constant. In treating systems at finite temperatures, it is convenient to

use the grand canonical ensemble [46]. Hence we use as a natural variable the single-particle

energyξkλ, which is defined asξkλ = Ekλ − µ, whereµ is the chemical potential, andEkλ is

the electronic dispersion relation whereλ = 1 refers to the valence band andλ = 2 refers to

the conduction band. Fourier transforming into momentum space Eq. (4.1), and performing the
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4. Strain effect on the plasmonic spectrum

summation over the Matsubara frequencies, one finds

Π0
ρρ(q + G,−q′ −G′,iωm) = (2π)2A−1

cellδ(q− q′)

× 1

N

∑

kλλ′

Tkλ,k−qλ′(iωm)〈k− qλ′|e−i(q+G)·r̂|kλ〉〈kλ|ei(q+G′)·r̂|k− qλ′〉,

(4.2)

where

Tkλ,k−qλ′(iωm) =
nF(ξk−qλ′)− nF(ξkλ)

i~ωm + ξk−qλ′ − ξkλ
. (4.3)

Here,nF(ω) is the Fermi function,Acell = 3
√

3a2/2 is the area of the unit cell,q, q′ belong to

the first Brillouin zone (1BZ),G, G′ are vectors of the reciprocal lattice, and LFE are embedded

in the Adler’s weights [2]

〈k− qλ′|e−i(q+G)·r̂|kλ〉 =

∫

d2xe−i(q+G)·xψkλ(x)ψ∗
k−qλ′(x)

≃ 1

2

[

(−1)λ−λ′

+ ei(θk−q−θk)−iG·δ3

]

e−σ2
g |q+G|2/4,

(4.4)

where in the last line only the onsite overlap between pairs of atomic orbitals (3.9), centered on

either sublattices, has been retained, on account of their localized character, we have retained

only the lowest (zeroth) order contributions in the overlapfunction gk, andeiθk = −fk/|fk|.
Using a more compact notation, one may also write

Π0
ρρ(q + G,−q′ −G′, iωm) = (2π)2A−1

cellδ(q− q′)
∑

αβ

ρqα(G)Q0
αβ(q, iωm)ρ∗qβ(G′), (4.5)

where

Q0
αβ(q, iωm) =

1

N

∑

kλλ′

uα
kλu

β∗
kλu

α∗
k−qλ′u

β
k−qλ′Tkλ,k−qλ′(iωm), (4.6)

with uα
kλ the components ofukλ, which are solutions of the generalized eigenvalue problem

(2.21), and

ρqα(G) = exp(−iG · δα − σ2
g |q + G|2/4) (4.7)

are the LFE weights. The indicesα andβ refer to the pseudo-spin space(α, β = A,B), whereas

the indicesλ andλ′ refer to the conduction and valence bands(λ, λ′ = 1, 2). Moreover, we also

setδA = 0 andδB = δ3. The continuum limit is recovered whenG = G′ = 0.
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Figure 4.1: Diagrammatic representation of the random phase approximation (RPA), including local
field effects (LFE), for the electron polarization. The exchange momentum in the interaction terms can
be outside the first Brillouin zone (1BZ). Indeed,q belongs to the 1BZ, whereasG, G′ are vectors of
the reciprocal lattice.

Many-body correlations are then included within RPA, yielding a renormalized polarization

Πρρ(q + G,−q′ −G′, iωm) = (2π)2A−1
cellδ(q− q′)

∑

αβ

ρqα(G)Qαβ(q, iωm)ρ∗qβ(G′), (4.8)

where now

Q(q, iωm) = gsQ
0(q, iωm)

[

1l− gsA
−1
cellV (q)Q0(q, iωm)

]−1
, (4.9)

where matrix products are being understood,gs = 2 is a factor for spin degeneracy, and

Vαβ(q) =
∑

G′′

ρ∗qα(G′′)V0(q + G′′)ρqβ(G′′) (4.10)

is the renormalized Coulomb potential,V0(q) = e2/(2ε0ǫrq), now a matrix over band indices.

Here, ǫr = (ǫr1 + ǫr2)/2 denotes the average relative dielectric constants of the two media

surrounding the graphene layer,viz. air for suspended graphene (ǫr1 = ǫr2 = ǫr = 1). In the

case of a stronger dielectric substrate, we expect therefore a softening of the correlation effects

on the plasmon frequency. It is relevant to note that the renormalized potential already includes

LFE. Finally, the approximation used to obtain the electronpolarization in Eq. (4.8) is shown

diagrammatically in Fig.4.1.
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4. Strain effect on the plasmonic spectrum

4.1.1 Plasmons

Plasmons are defined as collective excitations of the electron liquid corresponding to poles

of the retarded polarization,

Πρρ(q, ω) ≡ Πρρ(q,−q, iωm → ω + i0+), (4.11)

whereq ∈ 1BZ. Here and in what follows we shall restrict to the caseG = G′ = 0. Indeed, it

is apparent from the definition ofΠρρ(q, ω) that its poles can only arise from the vanishing of

det[1l−V (q)Q0(q, ω)] in Eq. (4.9), which already contains LFE via the renormalized Coulomb

potential, Eq. (4.10). We therefore define the dispersion relationωℓ(q) of the ℓ-th plasmon

branch as

Π−1
ρρ (q, ωℓ(q)) = 0. (4.12)

This clearly involves vanishing of both real and imaginary parts of the inverse polarization. It

will be useful to define the dispersion relationω̃ℓ(q) of damped plasmons through

Re
[

Π−1
ρρ (q, ω̃ℓ(q))

]

= 0. (4.13)

Correspondingly, the inverse lifetimeτ−1(q, ω) of such damped plasmons is proportional to

−Im Πρρ(q, ω), for ω = ω̃ℓ(q).

Fig. 4.2shows our numerical results for the plasmon dispersion relation in doped suspended

graphene (µ = 1 eV, ǫr1 = ǫr2 = 1, µ = 1 eV) at finite temperature (T = 3 K) along a

symmetry contour in the 1BZ, without LFE [G′′ = 0 in Eq. (4.10), left panel] and including

LFE (right panel). At small wavevectors and low frequencies, one recognizes a square-root

plasmon modeω1(q) ∼ √q, typical of a 2D system [54]. This is in agreement with earlier

studies of the dynamical screening effects in graphene at RPA level, employing an approximate

conic dispersion relation for electrons around the Dirac points [70, 155]. Such a result has been

confirmed also for a tight-binding band [69, 139], and is here generalized with the inclusion of

LFE.

The high energy (5− 20 eV) pseudo-plasmon mode, extending throughout the whole 1BZ,

is rather associated with a logarithmic singularity of the bare polarizationQ0(q, ω) in Eq. (4.9),
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Figure 4.2: Plasmon dispersion relation for suspended doped graphene (µ = 1 eV, ǫr1 = ǫr2 = 1) at fi-
nite temperature (T = 3 K), not including (left panel) and including (right panel) LFE. Results are shown
along a symmetry contour in the 1BZ, withΓ = (0, 0), M = (2π/3a, 0), andK = (2π/3a, 2π/3

√
3a).

Energies~ω are in eV. The shaded background is a contour plot of−Im Πρρ(q, ω) (arbitrary scale),
while continuous lines are the dispersion relation of damped plasmons,̃ωℓ(q), Eq. (4.13), is shown as a
dotted line.

and therefore does not correspond to a true pole of the polarization. This collective mode can

be related to an interband transition between the Van Hove singularities in the valence and

conduction bands of graphene, and has been identified with aπ → π∗ transition [49, 139].

At large wavevectors, specifically along the zone boundary between theM and theK

(Dirac) points, full inclusion of LFE determines the appearance of a second, high-frequency

(20− 25 eV), optical-like plasmon modeω2(q), weakly dispersing asq → 0.

Multiple plasmon modes are a generic consequence of the possibility of interband transi-

tions, whenever several such bands are available. This ise.g. the case of quasi-2D quantum

wells (2DQW), whose energy spectrum is characterized by quantized levels in the direction

perpendicular to the plane of the well, while electrons can roam freely within the plane [54]. In

this case, collective modes arise as zeroes of the determinant of the dielectric function. At low

temperatures, at most the two lowest subbands need to be considered. One usually obtains an

‘acoustic’ mode associated to intrasubband coupling, and a‘optical’ mode associated to inter-

subband coupling [146]. Such a situation is here paralleled by the case of graphene, the role of

the two subbands of 2DQW being here played by the valence and conduction bands, touching

at the Dirac points in the neutral material. It should be noticed that the plasmon mode due to

interband coupling is suppressed when LFE are neglected. In2DQW, the discrete nature of the
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4. Strain effect on the plasmonic spectrum

electronic subbands is due to the real-space confinement of the electron liquid in the direction

perpendicular to the plane,i.e. to thequasi-2D character of the quantum well. In graphene, the

origin of the two bands ultimately lies in the specific lattice structure of this material. Therefore,

the high-energy, ‘optical’ plasmon mode disappears in the absence of LFE (Fig.4.2, top panel),

as expected whenever the lattice structure of graphene is neglected. In other words, while in the

absence of LFE only scattering processes with momenta within the 1BZ are considered, LFE

allow to include all scattering processes with arbitrarilylow wavelengths, thereby taking into

account the discrete nature of the crystalline lattice. Such a structure needs not be considered in

the case of a 2DQW. Our finding of a high-energy ‘optical’ plasmon branch, as a generic conse-

quence of the two-band electronic structure of graphene, should stimulate further investigation

of the electronic collective modes in graphene [41, 69], in view of the role of electron-electron

correlations in interpreting the results of electron spectroscopy for interband transitions [126].

Beyond two dimensionality

Usually the electronic system in graphene is considered as atwo-dimensional electron gas.

In this paragraph, we take into account a full three dimensional representation for the wave

functions of the single particles. The generic electron wave function, corresponding to aλ

band, is written as

Ψkλ(r) = ψkλ(x)Φkλ(z), (4.14)

whereψkλ(x) is the two-dimensional eigenfunction, which has been previously defined, and

Φkλ(z) describes thez-dependence of the electron wave function.

Neglecting thez-dimension is equivalent to approximate theΦkλ(z) so that its square mod-

ulus is a Dirac delta function

|Φkλ(z)|2 ≈ δ(z). (4.15)

A simple approximation to describe the finite extension of the electron wave function along the

z-direction is an exponential function

Φkλ(z) = sgn (z)

√

κz

2
e−

κz
2
|z|, (4.16)
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where we considerκz as a constant. In particular we setκz = 3 Å−1, which is in good agreement

with ab initio calculations [153]. In limit κz →∞, the square modulus ofΦkλ(z) becomes the

Dirac delta function. In addition, one can see that the electron wave functions are odd under

reflection symmetry with respect to the basal plane, like thepz wave functions.

Taking into account the finite extension of the electron wavefunction along thez-direction,

the renormalized polarization maintains the expression inEq. (4.8), but the two dimensional

Coulomb potentialV0(q) = e2/[ε0(ǫr1 + ǫr2)q] is replaced by a more complex formula

V0(q) =
e2

ε0(ǫr1 + ǫr2)q

[

κz(2κz + q)

2(κz + q)2
+

(ǫr1 − ǫr2)2

8ǫr1ǫr2

κzq

(κz + q)2

]

, (4.17)

whereǫr1 and ǫr2 denote the relative dielectric constants of the two media surrounding the

graphene layer. The correction to the Coulomb potential in Eq. (4.17) is negligible at small

momenta,q ≪ κz, whereas its contribution is sizable for large momenta,q ≫ κz. Hence, the

scattering processes with large exchange momentum are particularly interested by the correction

in Eq. (4.17).

Figure 4.3: Plasmon dispersion relation for suspended doped graphene (µ = 1 eV, ǫr1 = ǫr2 = 1) at
finite temperature (T = 3 K), not including (left panel) and including (right panel) the z-extension of
the electron wave functions, considering the LFE. Results are shown along a symmetry contour in the
1BZ, with Γ = (0, 0), M = (2π/3a, 0), andK = (2π/3a, 2π/3

√
3a). Energies~ω are in eV. The

shaded background is a contour plot of−ImΠρρ(q, ω) (arbitrary scale), while continuous lines are the
dispersion relation of damped plasmons,ω̃ℓ(q), Eq. (4.13), is shown as a dotted line.

Fig.4.3shows our numerical results for the plasmon dispersion relation in suspended doped

graphene (µ = 1 eV, ǫr1 = ǫr2 = 1) at finite temperature (T = 3 K) along a symmetry

contour in the 1BZ, without (left panel) and with (right panel) the z-extension of the electron
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4. Strain effect on the plasmonic spectrum

wave functions, and both including the LFE. By a comparison of both panels in Fig.4.3, at low

energies and small wavevectors the contribution due to thez-extension of the electron wave

functions has no appreciable effect. On the other hand, at high energies there is a quantitative,

but not qualitative, modification of the plasmon dispersionrelation due to thez-extension of

the electron wave functions. In particular, there is an energy lowering of the ‘optical’ plasmon

branch because of the correction on the Coulomb potential inEq. (4.17). Moreover, one may

observe that the high energy plasmon branch maintains the same form, since the features of this

collective excitation are related to the LFE, more generally to the lattice symmetry.

Moreover, a quantitative improvement for the description of the high energy collective exci-

tations could be obtained adding in the tight binding model the next neighbors terms, or further

terms. However, these terms would make the model more complicated without adding new

features of theπ electronic structure. Indeed, our tight binding model contains all principal

properties of theπ electronic structure,i.e. the Dirac cones and the saddle points.

Finally, a qualitative improvement for the description of the high energy plasmon branch

could be obtained taking into account theσ electrons beyond theπ electrons. In particular,

these further electronic bands could heavily change the structure of the high energy plasmon

dispersion relation, and they could induce a finite lifetimeto these collective excitations because

of the further promotion of electrons from the valence band into the higher (σ∗) energy band.

4.1.2 Asymptotic behaviors

In certain limiting regimes, one may derive the asymptotic behavior of the polarization in

close form. At low energies (~ω . |t|) and small wavevectors (q → 0, i.e. qa ≪ 1), LFE

andz-extension can be neglected. The matrix product entering the definition of the polarization

through Eq. (4.9) then reduces to

gsA
−1
cellV (q)Q0(q, ω) = gsA

−1
cellV0(q)

∑

αβ

Q0
αβ(q, ω)

=
Ṽ0

qa

1

N

∑

kλ

δT (ξkλ)

(

q · ∇kEkλ

~ω

)2

, (4.18)
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whereṼ0 = gs(8π/3
√

3)(a0/a) Ry, a0 being Bohr’s radius, andδT (ǫ) ≡ −∂nF(ǫ)/∂ǫ → δ(ǫ),

asT → 0. In the latter limit, theδ-function effectively restricts the integration over wavevectors

along the Fermi line. Whenever the cone approximation holds(i.e.,for sufficiently low chemical

potential and strain; see Chapter3), this can be taken as the constant-energy ellipse in Eq. (3.21).

Thek-integration in Eq. (4.18) can then be performed analytically, and the retarded polarization,

Eq. (4.11), then reads

Πρρ(q, ω) ≈ gsA
−1
cellṼ

−1
0 ω̃2

1q
2a2

~2ω+2 − ~2ω2
1(q)

, (4.19)

whereω+ ≡ ω + i0+, and

~ω̃1 =
(

Ṽ0ρ(µ)
)1/2

|∇qEq2/a|, (4.20)

with ρ(µ) the density of states (DOS) at the Fermi level. To leading order inqa, from Eq. (4.19)

one thus obtains

ω1(q) ≈ ω̃1
√
qa (4.21)

for the acoustic-like plasmon dispersion relation. One thus recovers the square-root behavior

of the plasmon dispersion relation, as is typical in 2D electron systems [54]. Moreover, one

recovers the dependence of the coefficientω̃1 ∼ n1/4 on the carrier densityn, rather than∼ n1/2,

as is the case for a parabolic dispersion relation of the quasiparticles [35, 70]. The acoustic-like

plasmon mode may be related to the Drude weight [1], thus enabling the observation of strain

effects from optical measurements [114]. In the case of graphene on a dielectric substrate

(ǫr > 1), one has a reduction of̃ω1, thus a softening of the plasmon mode. From Eq. (4.19) one

may also read off the imaginary part of the retarded polarization, which close to the ‘acoustic’

plasmon mode [ω ∼ ω1(q)] reads

Im Πρρ(q, ω
+) ≈ −π

2
gsA

−1
cellṼ

−1/2
0 ω̃1(qa)

3/2δ (ω − ω1(q)) . (4.22)

We now turn to the asymptotic behavior of the second branch ofthe plasmonic spectrum,

ω2(q). We have already established that it displays an optical-like character, withω2(q) →
ω2(0), asq → 0. Here,ω2(0) is greater than the distance between the top of the conduction

band and the bottom of the valence band. At small wavevectors, it is useful to consider the
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4. Strain effect on the plasmonic spectrum

expansions of the relevant terms in Eq. (4.9), which to leading order inqi (i = x, y) read

Q0
AA(q, ω) ≈ QAA(0, ω) +

∑

ij

qiyij(ω)qj, (4.23a)

Q0
AB(q, ω) ≈ −QAA(0, ω) +

∑

ij

qizij(ω)qj, (4.23b)

whereyij(ω), zij(ω) are real valued functions of the frequencyω, and

Q0
AA (0, ω2(0)) =

1

4N

∑

kλ

nF(ξkλ̄)− nF(ξkλ)

ω2(0) + ξkλ̄ − ξkλ

. (4.24)

The asymptotically constant value of the optical-like plasmon frequency is then implicitly given

by

1− 4Q0
AA (0, ω2(0)) gsA

−1
cell

∑

G

V0(G) sin2

(

1

2
G · δ3

)

= 0, (4.25)

whereas the imaginary part of the retarded polarization, close to the second plasmon branch

[ω ∼ ω2(0)], to leading order inq, reads

Im Πρρ(q, ω
+) ≈ −πgsA

−1
cell

∣

∣

∣

∣

∣

1

4N

∑

kλ

nF(ξkλ̄)− nF(ξkλ)

(ω2(0) + ξkλ̄ − ξkλ)2

∣

∣

∣

∣

∣

−1

×
∑

ijhk

qiqh(zij − yij)(zhk + yhk)qjqkδ (ω − ω2(0)) . (4.26)

In particular, it follows that the spectral weight ofIm Πρρ close toω2(0) decreases as∼ q4, as

q → 0, rather than as∼ q3/2, as is the case for the acoustic-like plasmon mode, Eq. (4.22).

This justifies the reduced spectral weight associated with the second plasmon branch at small

wavevector in Fig.4.3.

In the case of graphene on a dielectric substrate (ǫr > 1), inspection of Eqs. (4.24) and

(4.25) yields a reduction ofω2(0).

Usually, experimental methodologies to detect plasmon dispersion relation, such as electron

energy loss spectroscopy (EELS), measure the collective excitation at small wavevector limit

(q → 0) [41]. In graphene, to date there are measurements about the low energy plasmon [30,

59] and the pseudo-plasmon excitation [41], whereas there is no clear experimental evidence

about the high energy plasmon. The detection of the high energy branch at small wavevector
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could be difficult not only because of the reduced spectral weight associated with the high

energy branch, but also because these plasmons could be damped by the further promotions

of electrons from the valence band into the higher (σ∗) energy band. In this Thesis we have

not considered the electronic bands due to theσ electrons, and this possible correction will be

subject of future work.

4.2 Effect of strain on the plasmon dispersion relation

We now turn to consider the effect of strain on the plasmon dispersion relation. As in

Refs. [110, 121], applied uniaxial strain can be modeled by explicitly considering the depen-

dence on the strain tensorε of the tight-binding parameterstℓ = t(δℓ) through the vectorsδℓ

connecting two NN sites (ℓ = 1, 2, 3). A linear dependence ofδℓ onε is justified in the elastic

limit. Such an assumption is however quite robust, due to theextreme rigidity of graphene [19],

and is supported byab initio calculations [27, 75].

Below, the strain tensorε will be parametrized by a strain modulusε, and by the angleθ be-

tween the direction of applied strain and thex axis in the lattice coordinate system. Specifically,

one hasθ = 0 [resp.,θ = π/6] for strain applied along the armchair [resp.,zig-zag] direction.

Fig. 4.4shows the dispersion relation of the plasmon branches studied in§ 4.1.1, including

LFE andz-extension, along a symmetry contour of the 1BZ, for strain applied along the arm-

chair direction (θ = 0), with increasing strain modulus (ε = 0 − 0.275). The low-frequency,

‘acoustic’ plasmon modeω1(q) is not qualitatively affected by the applied strain. In particular,

the dominant square-root behavior is independent with respect to the opening of a gap. On the

other hand, one observes an increase of spectral weight associated with the high-frequency, ‘op-

tical’ plasmon modeω2(q) at small wavevectors. The overall flattening of the second plasmon

branch over the symmetry contour under consideration can betraced back to the strain-induced

shrinking of both valence and conduction bands.

A qualitatively similar analysis applies to the case of strain applied along the zig-zag direc-

tion (θ = π/6, Fig. 4.5), and for strain applied along a generic direction (θ = π/4, Fig. 4.6),

with ω2(q) dispersing more weakly as the strain increases.

Finally, we turn to study theq-dependence of the low-frequency, ‘acoustic’ modeω1(q) ≡
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4. Strain effect on the plasmonic spectrum

Figure 4.4: Plasmon dispersion relation for suspended doped graphene (µ = 1 eV, ǫr1 = ǫr2 = 1),
including LFE andz-extension, with strain applied along theθ = 0 (armchair) direction. Strain increases
(from left to right, from top to bottom) asε = 0, 0.075, 0.175, 0.275.

ω1(q, ϕq) under applied strain, whereq = |q| andϕq denotes the angle betweenq and thêx axis.

Fig. 4.7 shows then the dispersion relation of the lower plasmon branch as a function ofq for

several values ofϕq, for increasing strain applied along the armchair direction (θ = 0). While

the overall square-root shapeω1 ≈ ω̃1
√
qa, Eq. (4.21), is maintained in all cases, one observes

a stiffening of such plasmonic mode with increasing strain and a maximum of the coefficient

ω̃1, Eq. (4.20), whenϕq− θ ≈ π/2. The same description qualitatively applies also to the cases

of strain applied along the armchair (θ = π/6), and along a generic (θ = π/4) direction. Such a

behavior can be justified analytically in the limit of no LFE (cf. Sec.4.1.2), and corresponds to

the strain dependence obtained for the optical conductivity [110]. Indeed, from Eq. (4.20), one

may notice that all the strain dependence is contained in themodulus square of the quasiparticle

dispersion relation of the conduction band at the Fermi level, |∇qEk2/a|. One finds

ω̃1 ∝ |∇qEq2| =
(

cos2(ϕq − η)
A2

+
sin2(ϕq − η)

B2

)1/2

, (4.27)
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Figure 4.5: Plasmon dispersion relation for suspended doped graphene (µ = 1 eV, ǫr1 = ǫr2 = 1), in-
cluding LFE andz-extension, with strain applied along theθ = π/6 (zig-zag) direction. Strain increases
(from left to right, from top to bottom) asε = 0, 0.075, 0.175, 0.275.

whereA andB denote the semiaxes of the constant energy ellipse, which have been defined in

Eqs. (3.23), whereas the angleη is a function of the hopping parameters which has been defined

in Eqs. (3.24). It follows thatω̃1 attains its maximum values wheneverϕq − η = π/2 (modulo

π), and its minimum values wheneverϕq − η = 0 (moduloπ). It turns out thatη = θ in the

zig-zag and armchair cases (cf. Fig.4.7), whereasη ≃ θ in the generic case.

In the previous Chapter, we have not considered the Drude peak in the optical conductivity.

The Drude peak appears in the optical conductivity forω → 0 in doped graphene as

σ(ω → 0) = Dδ(ω), (4.28)

whereD is called Drude weight. The Drude weight can be connected by means of an effective

f -sum rule to the dispersion relation of plasmons [1], which has been studied also under applied

strain [114].
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4. Strain effect on the plasmonic spectrum

Figure 4.6: Plasmon dispersion relation for suspended doped graphene (µ = 1 eV, ǫr1 = ǫr2 = 1), in-
cluding LFE andz-extension, with strain applied along theθ = π/4 (generic) direction. Strain increases
(from left to right, from top to bottom) asε = 0, 0.075, 0.175, 0.275.

Through the continuity equation, one obtains

σφφ(ω) =
ie2

ω
lim
q→0

ω2

q2
Πρρ(q,−q, ω). (4.29)

Lettingω → ω + i0+, and extracting the real part, one recognizes the Drude weight as

Dφ = πe2 lim
ω→0

lim
q→0

ω2

q2
Re Πρρ(q,−q, ω). (4.30)

Using the asymptotic limit of the polarization (4.19), one finds

Dφ = 4µσ0

[

πA−1
cellρ1

(

cos2(φ− η)
A2

+
sin2(φ− η)

B2

)]

, (4.31)

whereσ0 = πe2/2h is the so-called universal interband electrical conductivity of neutral

graphene [101], Acell = (1 + ε)(1 − νε)3
√

3a2/2 is the area of the unit cell,ρ1 is the strain-

dependent prefactor in the linear dependence of the DOS on the chemical potential at low en-
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Figure 4.7: Plasmon dispersion relation for suspended doped graphene (µ = 1 eV, ǫr1 = ǫr2 = 1),
with strain applied along theθ = 0 (armchair) direction. Strain increases (from left to right, from top to
bottom) asε = 0, 0.075, 0.175, 0.275. In each graph, different panels refer toω1(q) = ω1(q, ϕq), with
ϕq = 0◦, 20◦, 40◦, . . . 160◦.

ergy,ρ(µ) = ρ1|µ| [110], andφ is the direction of the normally incident monochromatic electric

field.

In Eq. (4.31), the quantity between square brackets goes to unity in the limit ε → 0, where

in particularρ1 = 4/(π
√

3t2). From Eq. (4.31), it follows thatDφ attains its maximum values

wheneverφ − η = π/2 (moduloπ), and its minimum values wheneverφ − η = 0 (modulo

π). The ellipse semiaxesA andB depend on strain, whose role is that of increasing the ellipse

anisotropy according to Eqs. (3.23). In the unstrained limit,ε = 0, one hasA = B, hence one

recovers that the Drude weight is independent of polarization of incident electromagnetic field.

Such a dependence of the Drude weight on applied uniaxial strain is amenable to experimental

verification. Finally, the prefactor̃ω1 in the long-wavelength dispersion relation of low-energy

plasmons in graphene [114], ωq = ω̃1
√
qa, is related to the Drude weight through [1]

Dφ

(~ω̃1)2a
=

2πǫ0ǫr
~

. (4.32)
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Chapter 5

Electronic linear response functions in

strained graphene within the Dirac model

In graphene, the low-energy quasiparticles can be described as massless Dirac fermions,

with a cone dispersion relation in reciprocal space around the Dirac points. Such a linear spec-

trum and reduced dimensionality yield remarkable behaviors already in the non-interacting limit

of several electronic properties of graphene. These include, inter alia, the reflectivity, the opti-

cal conductivity, the plasmon dispersion relation, as wellas a newly predicted transverse elec-

tromagnetic mode [98]. These properties can be extracted from the study of the appropriate

correlation functions within linear response theory [127, 155]. This description, which is called

Dirac approximation, allows an analytical study of severalelectronic properties at low energies

and small momenta. At these limits, the corrections due to thez-extension of the electron wave

functions are negligible. Hence the electronic system is treated as a two dimensional electron

gas.

In this Chapter, we consider the effect of strain on the various electronic properties that

may be described by linear response correlation functions within the Dirac model. Usually,

the main effect on the low energy electronic properties of the uniaxial strain which has been

considered is a strain-induced shift of the position of the Dirac points in reciprocal space [61,

88]. In other terms, the main effect of strain can be described associating an effective gauge field

vector potentialA to each Dirac point. These effective vector potentials haveopposite signs for

graphene’s two valleysK andK ′, which means that elastic deformations, unlike magnetic field,
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do not violate the time-reversal symmetry of a crystal as a whole [61].

This description of the interplay of structural and electronic properties has been confirmed

experimentaly. Indeed, recent experiments demonstrated the possibility to have Landau levels

associated to strain in graphene [61]. Moreover, there are several ideas to exploit strain as a

fictitious gauge field. For example, de Juanet al. [36] have proposed a device to measure

microstresses in graphene based on a scanning-tunneling-microscopy setup, which is able to

measure Aharonov-Bohm interferences at the nanometer scale. The interferences to be observed

in the local density of states are created by the fictitious magnetic field associated to elastic

deformations of the sample.

Here, we explicitly consider not only the strain-induced displacement of the Dirac points in

reciprocal space, but also a strain-induced deformation ofthe Dirac cones, resulting in a strain-

dependent anisotropic Fermi velocity. We also show that both effects are of the same order on

the applied strain intensityε.

In this Chapter, we take into account the case of homogeneousstrain. In this case, the

modifications of the electronic linear response correlation function at low energies are related

to the strain-induced deformation of the Dirac cones. On theother hand, the Dirac cone shifts do

not induce any change of the linear response correlation functions in homogeneously strained

graphene. Hence, here, we deal with an analytical study of the modifications of several low-

energy electronic properties of graphene under strain.

5.1 Massless Dirac fermions in strained graphene

In momentum space, the effect of uniaxial strain on the Hamiltonian is likewise accounted

for by the strain tensor, Eq. (3.2). The strain tensor can be written in a more compact form as

ε =
1

2
ε[(1− ν)I + (1 + ν)A(θ)], (5.1)

where

A(θ) = cos(2θ)σz + sin(2θ)σx. (5.2)
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In Eq. (5.1), θ denotes the angle along which the strain is applied, with respect to thex̂ axis

in the lattice coordinate system, in accordance with Fig.3.1, ε is the strain modulus, andν is

Poisson’s ratio.

The effect of uniaxial strain in graphene is usually described as a shift in momentum space

of the location of the Dirac points. However, starting from the more general, tight-binding

Hamiltonian, expanding to first order in the strain modulus,and to second order in the impulses,

one may show that applied strain also induces a deformation of the Dirac cones, at the same

(first) order inε. Explicitly, one finds

H = ~vFσx

[(

1 +
1− 2κ0

2
ε(1− ν) +

1− κ0

2
ε(1 + ν) cos(2θ)

)

px +
1− κ0

2
ε(1 + ν) sin(2θ)py

]

+ ~vFσy

[(

1 +
1− 2κ0

2
ε(1− ν)− 1− κ0

2
ε(1 + ν) cos(2θ)

)

py +
1− κ0

2
ε(1 + ν) sin(2θ)px

]

− ~vFτzσx(κ0/a)ε(1 + ν) sin(2θ)− ~vFτzσy(κ0/a)ε(1 + ν) cos(2θ)

− 1

4
~vFτz

[

σy(p
2
x − p2

y) + 2σxpxpy

]

,

(5.3)

wherevF is the Fermi velocity in the unstrained graphene,σi (i = x, y, z) are the Pauli matrices

which act on the pseudospin space (A andB), whereasτi (i = x, y, z) are the Pauli matrices

which are associated with the two-dimensional valley space(K andK ′). Moreover,κ0 =

(a/2t)|∂t/∂a| ≈ 1.6 is related to the logarithmic derivative of the nearest-neighbor hoppingt at

ε = 0. Eq. (5.3) acts on the four-component spinors which we have just shownin the Eq. (2.50).

Our model is based on the tight-binding approximation for the band structure, including

only nearest-neighbor hopping. We have studied in detail the tight-binding approximation for

graphene under uniaxial strain in the Chapter3. To this level of approximation, one does not

observe any strain-induced modification of the work function, Φ. This effect is equivalent to a

rigid vertical shift of the electronic bands. In order to include also such effects, one also needs

to consider next-nearest neighbor hopping [28]. Making use of the expression for the hopping

function between two neighboring carbonp-orbitals involved in aπ bond, as a function of the
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bond lengthℓ, Vppπ(ℓ) = t0e
−3.37(ℓ/a−1), with t0 = −2.7 eV [121], one finds

Φ =
3

2
(1− ν)

√
3a

dVppπ(ℓ)

dℓ

∣

∣

∣

∣

ℓ=
√

3a

ε ≈ 1.7 eV × ε, (5.4)

viz. a scalar term, going linear with the strain modulusε, whose order of magnitude agrees with

theab initio results of Ref. [32]. At any rate, the work function, Eq. (5.4), can be absorbed in

an effective scalar potentialU , which is diagonal both in the valley space and in the pseudospin

space.

The spectrum of the strained Hamiltonian, Eq. (5.3), is still linear, but now around the shifted

Dirac points

qDa = ±(κ0ε(1 + ν) sin(2θ), κ0ε(1 + ν) cos(2θ))⊤. (5.5)

In particular, settingq = p ∓ qD, with q measuring now the vector displacement from the

shifted Dirac point, the Fermi velocity, defined as the slopeof the Dirac cone in the direction of

q, will now have anisotropic componentsc‖vF, c⊥vF along the direction of applied strain and

the direction orthogonal to it, respectively, with

c‖ = 1− 2κε, (5.6a)

c⊥ = 1 + 2κνε, (5.6b)

whereκ = κ0 − 1
2
.

Thus, the low-energy Hamiltonian maintains a linear form even in the presence of strain,

and can still be written as

H = ~vFτ0σ · q′, (5.7)

where

q′ = R(θ)S(ε)R(−θ)q, (5.8)

withR(θ) the rotation matrix in the direction of applied strain, andS(ε) = diag (c‖, c⊥) the ma-

trix describing the deformation of the Dirac cone. Explicitly, for the compound transformation

matrixR(θ)S(ε)R(−θ) mappingq ontoq′ one finds

R(θ)S(ε)R(−θ) = I− 2κε. (5.9)
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5. Electronic linear response functions in strained graphene within the Dirac model

As is emphasized at length, the effect of applied strain on graphene is two-fold. Within the

Dirac approximation, applied strain amounts to adding a term

−~vFτzσ · qD

to the Hamiltonian. We remind that the shifted Dirac pointqD is proportional to the deforma-

tion. Hence, such a term is analogous to a coupling term with agauge fieldA, say

−~vFτ0σ ·A,

a part from the fact thatτz is replaced by the identityτ0 (i.e. there is no time-reversal breaking).

Moreover, the second effect of the applied strain induces a variation of the Fermi velocity. In

particular, uniaxial strain implies a Fermi velocity anisotropy.

While the first effect,i.e. Dirac points shift, dominates at low energies, and is therefore

the focus of most previous investigations in this area, the second effect,i.e. Fermi velocity

anisotropy, is usually neglected. If one takes into accountonly the first term, it can be adsorbed

in a unitary gauge transformation, and should not produce observable effects, unless the vector

qD is non-irrotational,i.e. ∇ × qD 6= 0, as is the case considered by Guinea, Katsnelson and

Geim [61]. In the case of homogeneous strain, we are in the rotationalcase∇×qD = 0, where

no effect should be observableper se, it is a strain-induced modification of the velocity, which

is the only source of the effects on the linear response correlation functions.

A central result of this Chapter is that a correspondence holds between a generic linear

response functionχ(q, ω) under applied strain, with respect to its unstrained limit,χ(0)(q, ω)

[115]. This follows from the fact that any linear response functionχ(q, ω) of a noninteracting

electron system can be expressed as an integral over the firstBrillouin zone (1BZ) of a suitable

matrix operator over pseudospins, which is itself a function of q. Such an operator then admits

a unique expression in terms of the Pauli matricesσx, σy, σz, and the identity matrixσ0. The

simplest cases are then given by the density operator and thecurrent density operator, which,
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for the unstrained case, in reciprocal space read

ρ(0)(q) =
∑

k

Ψ†
k−qσ0Ψk, (5.10a)

J
(0)
i (q) = −evF

∑

k

Ψ†
k−qσiΨk, i = x, y, (5.10b)

respectively, whereΨ†
q = (ψqA, ψqB), andψqα destroys a quasiparticle with momentumq and

pseudospinα = A,B, and summations run over the 1BZ. While the density operatordoes not

change under applied strain, for the generic component of the current density operator one has

Ji = [I− 2κε]ijJ
(0)
j . (5.11)

Here and below a summation will be understood over repeated indices (j = x, y). Both opera-

tors are diagonal in valley space, hence here we can neglect this quantity because its only effect

is a degeneracy analogously to the spin.

Defining now eigenvalues and eigenvectors in pseudospin space of the Hamiltonian with and

without applied strain, Eqs. (2.49) and (5.7), asH(0)|q′, λ〉(0) = E
(0)
λq′ |q′, λ〉(0) andH|q, λ〉 =

Eλq|q, λ〉, respectively, withλ a band index, it follows that bothEλq and|q, λ〉 under applied

strain are mapped ontoE(0)
λq′ and |q′, λ〉(0), respectively, whereq′ is given in terms ofq by

Eq. (5.8). Performing such a linear change of variables in the integral defining the correlation

function of interest, in the cases of the density-density and current-current correlation function,

it follows therefore that

Πρρ(q, ω) = [detS(ε)]−1 Π(0)
ρρ (q′, ω), (5.12a)

Πij(q, ω) = [detS(ε)]−1 [I− 2κε]ihΠ
(0)
hk (q′, ω)[I− 2κε]kj, (5.12b)

wheredetS(ε) = (1 − 2κε)(1 + 2κνε). From Eq. (5.12a), in the case of the density-density

correlation function, it follows in particular that the effect of applied strain is that of trans-

forming the momentum variableq into an ‘effective’ oneq′, plus the introduction of an overall

scale factor[detS(ε)]−1, which is isotropic with respect with the strain direction.Such a scale

factor is directly related to the slope of the electronic density of states at the Fermi level. As
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5. Electronic linear response functions in strained graphene within the Dirac model

is well known, this goes linearly with the chemical potential µ, and it has been shown that its

steepness increases with increasing strain, for moderately low strain modulus [110]. In the case

of the current-current correlation function, such an overall effect is then superimposed to an

anisotropic deformation, depending on the angle of appliedstrain,θ, as shown by Eq. (5.12b).

Linearizing Eq. (5.12) with respect toε, one finds

Πρρ(q, ω) = [1 + 2κ(1− ν)ε] Π(0)
ρρ (q, ω)− 2κ

∂Π
(0)
ρρ (q, ω)

∂qh
εhkqk, (5.13a)

Πij(q, ω) = [1 + 2κ(1− ν)ε] Π(0)
ij (q, ω)−2κ

∂Π
(0)
ij (q, ω)

∂qh
εhkqk−2κ{ε,Π(0)(q, ω)}ij, (5.13b)

where the curly brackets in the last term denote a matrix anticommutator.

5.1.1 Density-density correlation function

We now specifically turn to consider the density-density correlation function within linear

response theory,i.e. the electron polarizationΠρρ(q, ω). Plasmon modes are then recovered as

poles of the polarization, and the effect of strain on their dispersion relation has been studied in

Chapter4.

In given limits, the asymptotic form of the noninteracting polarization in the absence of

strain, sayΠ(0)
ρρ (q, ω) is known explicitly. For instance, in the long wavelength limit (~vFq/µ→

0), one finds [155]

Π(0)
ρρ (q → 0, ω) =

gsgvq
2

8π~ω

[

2µ

~ω
+

1

2
log

∣

∣

∣

∣

2µ− ~ω

2µ+ ~ω

∣

∣

∣

∣

− iπ
2
Θ(~ω − 2µ)

]

, (5.14)

wheregs = gv = 2 take into account for spin and valley degeneracies, respectively. In other

words,Π(0)
ρρ (q → 0, ω) = Z(ω)q2, at a givenω, with the complex factorZ(ω) implicitly defined

by Eq. (5.14).
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Longitudinal collective excitation and plasmarons

In the case of applied strain, but still in the noninteracting limit, this is then readily modified

through the linearized Eq. (5.13), yielding

Πρρ(q → 0, ω) = [1− 2κ(1 + ν)ε cos(2θ − 2φ)]Z(ω)q2, (5.15)

whereq ≡ q(cosφ, sinφ). Within the random phase approximation (RPA), the interacting

polarization reads̄Πρρ(q, ω) = Πρρ(q, ω)/(1 − V (q)Πρρ(q, ω)), whereV (q) = e2/(2ǫrǫ0q)

is the (bare) Coulombic electron-electron interaction, and ǫr is the dielectric constant of the

medium. Here, we use the two dimensional Coulombic potential because in the limit~vFq/µ≪
1 we can neglect thez-extension of the electron wave functions, sinceq/κz ≪ 1. Moreover,

we remind thatκz is reciprocal to the decay length alongz-direction, which has been defined in

Eq. (4.16). Solving for the plasmon dispersion relation,Re Π̄−1
ρρ (q, ω) = 0, at low energies one

finds

~ωpl =

√

e2

2πǫ
µ [1− κ(1 + ν)ε cos(2θ − 2φ)]

√
q

≡ ~ω̃1(φ)
√
qa. (5.16)

One thus finds that the prefactorω̃1(φ) in the
√
q-dependence is maximum [resp., minimum] for

φ−θ = π/2 [φ−θ = 0], i.e. wavevector orthogonal [parallel] to the direction of applied strain.

Correspondingly, one also finds for the imaginary part of theretarded polarizability along the

low-energy plasmon branch

Im Π̄ρρ(q, ω + i0+) = −1

2

√

2πǫ

e2
µ [1− κ(1 + ν)ε cos(2θ − 2φ)] (qa)3/2δ(~ω − ~ωpl(q)).

(5.17)

Therefore, one recovers a dependence of the plasmon spectral weight on the angle of applied

strain, similar to that shown bỹω1(φ) in Eq. (5.16). These results are in agreement with the

analogous analysis shown in Chapter4. Moreover, one can note that the angleη, defined in

Eq.(3.24), which characterizes the anisotropy of low energy plasmon, coincides with the stress

directionθ at first order inε and at zeroth order in energy.
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5. Electronic linear response functions in strained graphene within the Dirac model

The composite elementary excitations arising from the coupling of charge carriers and

plasmons, the so-called plasmarons, have been considered in a general context earlier on by

Lundqvist [90, 91]. Recently, plasmarons have been experimentally observedin graphene by

means of angular resolved photoemission spectroscopy (ARPES) [21], and their dispersion re-

lation described theoretically within theG0W -RPA approximation [126].

In n doped graphene, a plasmaron mode with momentumk results from the relatively

strong coupling of a quasihole with momentumk + q, and a plasmon with momentum−q,

the quasihole-plasmon coupling being stronger when the twoexcitations have the same group

velocity [126]. At k = 0, the plasmaron relative momentum modulus turns out to be

q =
e2

8πǫ

µ

(~vF)2
, (5.18)

whereµ is the chemical potential. Therefore, the plasmaron binding energy with respect to the

Fermi energy can be estimated, in first approximation, as thesum of the energies of the bare

quasihole and plasmon, both having momentum modulusq, viz.

EP = −µ− α c

vF

µ

2ǫr
, (5.19)

whereα is the fine structure constant. In the realistic case of graphene on a SiO2 substrate,

Eq. (5.19) yieldsEP ≃ −1.25µ. A more accurate estimate, including the contribution of the

quasihole-plasmon interaction at theG0W -RPA level [126], yields EP ≃ −1.3µ, in better

agreement with the experimental results [21]. In this Chapter we have seen that the uniaxial

strain on the graphene sheet induces a modification of the electronic bands and of the plasmonic

spectrum. Therefore, it can be expected that strain also affects the energy dispersion of the

plasmaronic modes.

In particular, the quasiparticle dispersion relation, to linear order inε, reads

ǫq = ±~vFq[(1− κ(1− ν)ε)− κ(1 + ν)ε cos(2θ + 2φ)], (5.20)

where the+ (−) sign refers to the conduction (valence) band, and where theplasmon dispersion

relation under strain is expressed by Eq. (5.16). Deriving the corresponding group velocities
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from the above Eqs. (5.20) and (5.16), Eqs. (5.18) and (5.19) for the plasmaron momentum and

energy, respectively, get modified into

q = [1 + 2κ(1− ν)ε] e
2

8πǫ

µ

(~vF)2
, (5.21a)

EP (φ) = −µ− α c

vF

µ

2ǫr
[1 + κ(1− ν)ε− κ(1 + ν)ε cos(2θ − 2φ)], (5.21b)

to linear order in the strain modulusε. Eq. (5.21b) shows that, in the presence of applied

uniaxial strain, the plasmaronic energy atk = 0 acquires an explicit dependence on the angle

φ of the quasihole momentumq. This is due to the anisotropy of both the electronic and the

plasmon spectrum. Correspondingly, the plasmaron energy is characterized by a central value

Ec
P = −µ− α c

vF

µ

2ǫr
[1 + κ(1− ν)ε], (5.22)

and a strain-induced energy width

∆EP = α
c

vF

µ

ǫr
κ(1 + ν)ε. (5.23)

Considering again the realistic case of graphene on a SiO2 substrate, one can estimate the central

plasmaron energy in the unstrained case asEc
P (ε = 0) = −1.25µ = −125 meV, for µ =

100 meV, with zero energy width. Correspondingly, in the case ofan applied strainε = 10 %,

one finds a central plasmaron energy ofEc
P (ε = 10 %) = −127.4 meV, with an energy width

∆EP (ε = 10 %) = 6.27 meV. Hence, the effect of applied uniaxial strain on graphene is

therefore that of shifting and broadening the plasmaron energy, proportionally to the strain

modulus [119]. Therefore, by suitably applying uniaxial strain, one gains further control on

the energy of the plasmaronic excitation, besides the possibility of tuning the relative dielectric

constantǫr [152].
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5. Electronic linear response functions in strained graphene within the Dirac model

Optical conductivity and the transverse collective excitation

Another quantity of interest which is related to the density-density correlation function is

the optical conductivity, which can be obtained as

σφφ(ω) =
ie2

ω
lim
q→0

ω2

q2
Πρρ(q, ω). (5.24)

Making use of Eqs. (5.13) and (5.14) one therefore finds the optical conductivity in the presence

of applied strain as

σφφ(ω) = σ0 [1− 2κ(1 + ν)ε cos(2θ − 2φ)]

(

Θ(~ω − 2µ) + i
4

π

µ

~ω
+
i

π
log

∣

∣

∣

∣

2µ− ~ω

2µ+ ~ω

∣

∣

∣

∣

)

,

(5.25)

whereσ0 = πe2/2h is proportional to the quantum of conductivity. In the hydrostatic limit,

ν = −1, σφφ does not depend on strain, as may be expected, as the unstrained relation does

not contain the Fermi velocity. The expression of optical conductivity in Eq. (5.25) has the

form typical for a rhombic two dimensional lattice, which isexpressed in Eq. (3.52). If the

stress is applied along one special direction (armchair or zig zag) the lattice becomes rhombic,

hence the optical conductivity has the angular dependence expressed in Eq. (5.25) also at high

energies (|E/t| & 1, wheret is the characteristic energy,i.e. the hopping parameter). On

the other hand, if the stress is applied along a generic direction, the angular dependence of

the optical conductivity in Eq. (5.25) is valid only at low energies. Indeed, in general the

angular dependence of the optical conductivity is more complicated, and its form is expressed

in Eq. (3.53).

The above expression for the conductivity, Eq. (5.25), can be exploited to study the strain

dependence of the transverse electromagnetic mode, that has been recently predicted theoreti-

cally in graphene [98], and in a graphene bilayer [73] . In a 2D electron gas, the spectrum of

self-consistent electromagnetic modes obeys the equations

1 + i
σ

2ǫ0ω
ζ(q, ω) = 0, (5.26a)

1− i σ
2ǫ0

ω

ζ(q, ω)c2
= 0, (5.26b)
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for the longitudinal and transverse collective excitations, respectively, whereζ2(q, ω) = q2 −
(ω/c)2, wherec is the velocity of light in vacuum. In Eqs. (5.26) we take into account the case

of suspended graphene, hence the dielectric constant is unitary (ǫr = 1). Also here, we do not

consider any correction due toz-extension of the electron wave functions sinceζ/κz ≪ 1.

While conventional 2D electron systems cannot sustain a transverse electromagnetic mode,

it has been predicted [98] that graphene can develop a transverse collective mode, asa con-

sequence of a negative imaginary part in the interband contribution to its optical conductivity,

Eq. (5.25). Its logarithmic divergence as~ω/µ → 2 is in turn related to the discontinuous

behavior of the interband absorption of radiation at frequencies~ω > 2µ. Such a feature is a

generic consequence of causality, and is related through a Kramers-Krönig transformation to

the step-like behaviour of the real part of the optical conductivity. This is in turn due to the

existence of a Fermi surface, which is however expected to besmeared at finite temperature,

thus implying the reduction of the logarithmic singularityinto a pronounced (but finite) peak.

Observing Eqs. (5.26) one can state that both collective excitations are not damped only if

the real part of the optical conductivity is zero. In order tofulfill this condition, the graphene

sample must be doped. Hence the energy range, where both collective excitations are not

damped, is[0; 2µ[. Moreover, from Eqs. (5.26), one can observe that the solution for the

longitudinal collective excitation (plasmon) is possibleonly if the imaginary part of the optical

conductivity is positive, whereas the solution for the transverse collective excitation is possible

only if the imaginary part of the optical conductivity is negative. Hence, these two kinds of col-

lective excitations can exist in two different energy ranges. In other words, at a certain energy a

doped graphene sample cannot sustain at the same time both collective excitations.

Making use of Eq. (5.25) in Eq. (5.26a), one consistently recovers Eq. (5.16) for the low

energy plasmons. On the other hand, substituting Eq. (5.25) in Eq. (5.26b), one obtains the

strain-dependence of the dispersion relation of the transverse electromagnetic mode implicitly

as
~c

αµ
ζ(q, ω) = (1− 2κ(1 + ν)ε cos(2θ − 2φ))

[

~ω

2µ
log

∣

∣

∣

∣

2µ+ ~ω

2µ− ~ω

∣

∣

∣

∣

− 2

]

, (5.27)

whereα = e2/(4πǫ0~c) is the fine structure constant.

Because of the small factorα in the left-hand side of Eq. (5.27), the dispersion relation

90



5. Electronic linear response functions in strained graphene within the Dirac model

-1.4

-1.2

-1

-0.8

-0.6

-0.4

-0.2

 0

 1.65  1.7  1.75  1.8  1.85  1.9  1.95  2  2.05

10
3  − h 

( 
ω

 -
 c

 q
 )

 / 
µ

−h c q / µ

Figure 5.1: Showing deviations from linearity of the frequency of the transverse plasmon, Eq. (5.27), as
a function ofq modulus, for strain modulusε = 0.1, and strain direction ranging fromφ − θ = 0 (top)
to φ− θ = π/2 (bottom).

of such a transverse mode is close to the linear dispersion relation of the electromagnetic ra-

diation itself,ω − cq . 0. However, one may expect that applied strain enhances deviations

from linearity (i.e., from the photon’s dispersion relation), as a consequence ofa strain-induced

modification of the band dispersion. Fig.5.1shows indeed deviations from linearity,ω − cq of

the transverse collective excitation, forq in the allowed range, for strain modulusε = 0.1, and

strain direction0 ≤ φ−θ ≤ π/2. One finds indeed that, in the case of applied strain, deviations

of the transverse mode dispersion relation from that of the photon become significant over a

sufficiently wide window in~cq/µ . 2, especially whenφ− θ = π/2.

Therefore, applied strain should help the experimental detection of this elusive collective

mode. Indeed, the fact that the transverse mode dispersion relation is close to the corresponding

light dispersion implies that such a transverse collectiveexcitation would have a marked pho-

tonic character, and a small linewidth would therefore hinder its observation [74]. On the other

hand, at finite temperature, the real part of the optical conductivity is nonzero also for~ω . 2µ,

so that the transverse mode does acquire a finite, albeit small, linewidth [98]. In particular, this

applies to energies such that0 < 2µ − ~ω < kBT . This is exactly where the transverse mode

dispersion relation deviates most from its photonic counterpart, the deviation being enhanced,

and shifted away from the limiting case~ω = 2µ, in the case of applied strain, forq perpendic-
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ular to the strain direction. Finally, one therefore expects wavevectors of the order of~cq . 2µ,

or equivalentlyq/kF . 2vF/c≪ 1, so that it is justified to employ Eq. (5.27) [98, 155].

5.1.2 Current-current correlation functions

In the case of an applied vector field (e.g.,an electric fieldEi), one may in general decompose

the linear response function in a longitudinal and a transverse component as

χij(q, ω) =
qiqj
q2

χ‖(q, ω) +

(

δij −
qiqj
q2

)

χ⊥(q, ω), (5.28)

whereq = |q|, for a homogeneous system [54]. In particular, in the case of the current-current

correlation function, the latter being proportional to thepseudospin-pseudospin counterpart,

this can be further simplified as

Π
(0)
ij (q, ω) = Π

(0)
+ (q, ω)δij + Π

(0)
− (q, ω)Aij(φ), (5.29)

where

Π
(0)
± (q, ω) =

1

2
[Π

(0)
‖ (q, ω)± Π

(0)
⊥ (q, ω)]. (5.30)

Making use of Eq. (5.13b), one finds

Πij(q, ω) = Π
(0)
ij (q, ω)− 2εκ(1 + ν)

[

Π
(0)
− (q, ω) cos(2θ − 2φ)δij+

+ Π
(0)
+ (q, ω)Aij(θ) + Π

(0)
− (q, ω)Aij(φ+ π/4) sin(2θ − 2φ)

]

+

−κ[(1− ν) + (1 + ν) cos(2θ − 2φ)]ε

[

q
∂Π

(0)
+ (q, ω)

∂q
δij + q

∂Π
(0)
− (q, ω)

∂q
Aij(φ)

]

.

(5.31)

In the static limit (ω = 0), Eq. (5.31) can be further simplified, by considering the analytic result

of Ref. [127], with Π
(0)
‖ (q, 0) = 0, and

Π
(0)
⊥ (q, 0) =

gsgve
2vF

16~q
Θ (1− x)

{

1− 2

π

[

arcsin(x)− x
√

1− x2
]

}

, (5.32)

wherex = 2µ/~vFq. In particular, one recovers a vanishing response,Πqq(q, 0) = 0, with
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5. Electronic linear response functions in strained graphene within the Dirac model

Πqq denoting the current-current correlation function for both vector potential and response

field aligned withq, whenq is aligned with the applied field also in the presence of strain,

as expected in the static limit. Indeed, the staticω → 0 longitudinal response describes the

response of the system to a static longitudinal vector potential, which can always be removed

via a gauge transformation. Therefore, such a contributionto the linear response must be zero.

5.2 Electric and magnetic susceptibilities

The results obtained in the previous paragraph allow to derive several measurable quantities.

In particular, in this paragraph we consider the magnetic and electric susceptibilities.

First of all, we study the response of strained graphene to a static and homogeneous mag-

netic field, which is normal to the graphene plane. A magneticfield applied in the direction

perpendicular to the graphene plane can be described asBext(q) = Bext(q)ẑ = iq×A, where

A = i(qy,−qx)Bext/q
2, in reciprocal space. The linear response to such a magneticfield is then

given by a currentJi, which in turn produces a magnetization termδB ≡ χmBext.

In the case of a static, uniform magnetic field, oriented in the direction orthogonal to the

graphene sheet, one is interested in the magnetic susceptibility defined as

χM = lim
q→0

∫

dφ

2π
χm(q, 0). (5.33)

Making use of Eq. (5.32), one obtains

χM = lim
q→0

(

−µ0

q2

)[

1− κ(1− ν)εq ∂
∂q

]

Π⊥(0)(q, 0). (5.34)

In the strained case, this reads

χM = −µ0[1− 2κ(1− ν)ε]gsgve
2v2

F

6π
δ(µ). (5.35)

One therefore obtains a qualitatively similar result to thecase of undeformed graphene, treated

within the Dirac approximation and neglecting the electron-electron interaction [95, 127]. On

the other hand, applied strain causes a reduction of the magnetic response, Eq. (5.34). Although

Eq. (5.35) would imply no response to a static, uniform magnetic field away from half-filling,
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one expects that finite-temperature effects would broaden theδ-function, already in the nonin-

teracting limit. A qualitatively similar smearing of the peak in the dependence on the chemical

potential may also be induced by disorder [79]. Still at zero temperature and in the noninter-

acting limit, one recovers a nonzero magnetic response alsoaway from half-filling, when the

honeycomb lattice structure is considered [56]. The effect of the interactions has been consid-

ered in Ref. [127], where it is shown that an interacting 2D Dirac electron liquid develops a

magnetic response also at finite doping.

An analogous procedure may be followed to derive the electric susceptibilityχe, entering

the relationshipδE = χeEext between the electric polarization and an external electricfield,

which is oriented along the graphene plane. One is then interested in the static (ω = 0) limit of

the density-density polarization. In the presence of applied strain, at arbitrary chemical potential

µ, using Eq. (5.13), one explicitly finds

Πρρ(q, ω = 0) = [1 + 2κ(1− ν)ε]
[

− gsgvµ

2π~2v2
F

+
gsgvq

8π~vF

G+
< (x) Θ(1− x)

]

−κ[(1− ν) + (1 + ν) cos(2θ − 2φ)]ε
gsgvq

8π~vF
G−

< (x) Θ(1− x),

(5.36)

wherex = 2µ/~vFq and [137, 155]

G±
<(x) = ±x

√
1− x2 − arccosx, |x| < 1. (5.37)

In particular, at zero doping (µ = 0,G±
<(0) = −π/2), one finds in general that

χe(q, 0) = V (q)Πρρ(q, 0). (5.38)

It should be emphasized that, while Eq. (5.38) describes the response of the system to a static

electric field lying in the same graphene layer. More explicitly, in the undoped case, Eq. (5.38)

reads

χe = lim
q→0

χe(q, 0) = − gsgve
2

32ǫ0ǫr~vF

× [1 + κ(1− ν)ε− κ(1 + ν)ε cos(2θ − 2φ)] , (5.39)
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5. Electronic linear response functions in strained graphene within the Dirac model

whereφ is the direction of the electric field on the graphene plane, thus showing that uniaxial

strain introduces a modulation in the angle of applied strain. Observing Eq. (5.39), one can state

that uniaxial strain reduces the susceptibility along the stress direction, whereas it enhances the

susceptibility along the direction orthogonal to the stress direction.

Using Eq. (5.39) and considering the case of doped graphene, one obtains that the electric

susceptibility in the long wavelength limit (q < 2kF) assumes the typical form for a two-

dimensional electron gas

χe(q, 0) = − q

qTF
, (5.40)

whereqTF is the Thomas-Fermi wavevector [70]. In particular, in the case of a strained graphene

monolayer, the Thomas-Fermi wavevector takes the following form

qTF =
e2

πǫ

µ

(~vF)2
[1 + 2κ(1− ν)ε]. (5.41)

Hence one can observe that is possible to tune the Thomas-Fermi wavevector, and consequently

the screening properties, not only by doping, but also by applied strain.
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Chapter 6

Ballistic transport in strained graphene

Both the low dimensionality and the high mobility make graphene an attractive material

for electronic applications. It is possible to measure impressive values of the mobility both

in suspended graphene [16, 17] and in graphene devices on suitable substrates, such as on

single crystal hexagonal boron nitride (h-BN) [37]. Moreover, low dimensionality allows to

realize a source-graphene-drain configuration where the electronic mean free path is longer

than the distance between the source and drain, so that it presents ballistic properties [34].

Exploiting the electric field effect, using nano-gate geometries, it is possible to subject the

system to potentials varying on a short length scale [25]. Using these techniques, recently it has

been possible to experimentally study transport throughp-n junctions andp-n-p junctions in

graphene [102, 150, 157]. In these devices, resistance measurements show distinctoscillations,

arising from the Fabry-Pérot interference between the twop-n interfaces. These effects can be

explained in terms of ballistic transport.

In the previous Chapters we have seen how strain can modify the electronic properties of

graphene. Moreover, recent interest is directed towards the study and realization of graphene-

based electronic devices designed by a suitable tailoring of the electronic structure exploiting

not only the electric field effect but also applied strain. Both these techniques would give liberty

to modify the transport properties of graphene without adding any source of disorder. Hence,

by exploiting strain engineering, as well as the electric field effect, it is possible to realize a new

class of ballistic devices [120, 123]. Indeed, a considerable amount of work has been devoted

to the study of the transport properties in graphene across strain-induced single and multiple
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barriers [29, 50, 116, 118].

In this Chapter, we will study the effect of a strain-inducedmodulation profile on several

transport properties of graphene, such as the angular dependence of the tunneling transmission,

the conductivity, and the Fano factor [13]. After considering the cases of a single sharp tunnel-

ing barrier, and of a superstructure of several, periodically repeated, such sharp barriers, we will

specifically study the case in which both the modulus of applied uniaxial strain, and possibly

an applied gate potential, depend continuously on position. Moreover, we will generalize our

analysis to embrace the case of a genericnonuniformstrain, and possibly a scalar potential,

profile.

6.1 Transmission across a single strain-barrier

x

k q k

I II III

0 D

ε , θ , Vg

Figure 6.1: One-dimensional single tunneling barrier along thex direction. Region II (0 ≤ x ≤ D) is
characterized by applied strainε along theθ direction, as well as by a gate voltageVg.

In the whole Chapter we will deal with a one-dimensional uniaxial strain profile, hence we

fix the directionθ, along which the tension is applied, with respect to thex̂ axis in the lattice

coordinate system in Fig.3.1, whereas the longitudinal deformationε is generally a function of

the position. Hence, it will be convenient to work in the reference frame with the neŵx axis

along the direction of applied strain.

In order to describe the electronic properties of graphene under local strain it is useful to

remind that the kinetic part of the Hamiltonian for graphenesubjected to uniform strain, which
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6. Ballistic transport in strained graphene

is characterized byε andθ, has the following form

H =

∫

drΨ†(r)~vj

[

τ0U †(θ)σj
1

i
∇jU(θ)− τzU †(θ)σjqDjU(θ)

]

Ψ(r), (6.1)

whereΨ(r) = (ΨAK(r),ΨBK(r),ΨBK ′(r),−ΨAK′(r))⊤ is a four-component spinor,vj =

vF(1 − λjε), vF is the Fermi velocity in unstrained graphene,λx = 2κ, λy = −2κν, σi

(i = x, y, z) are the Pauli matrices which act on the pseudospin space (A andB), τi (i = x, y, z)

are the Pauli matrices which act on the valley space (K andK ′), τ0 is an identity matrix of order

2 which acts in the two-dimensional valley space,qD is the shifted Dirac point with respect to

theK point, defined in Eq. (5.5), and the summation over the repeated indexj = x, y is under-

stood. The choice of the suitable reference frame with thex̂ axis along the direction of applied

strain is accomplished by a rotation in the pseudospin space, described by the unitary matrix

U(θ) =

(

1 0

0 e−iθ

)

. (6.2)

Similarly, the density operator can be expressed as

ρ(r) = Ψ†(r)Ψ(r), (6.3)

and the current density operator as

Ji(r) = −eΨ†(r)τ0U †(θ)viσiU(θ)Ψ(r). (6.4)

.

First of all, we consider a graphene device where a central strip of lengthD is under uniaxial

strain, whereas the lateral parts are unstrained and they are semi-infinite. In this model, we

have a sharp profile of strain. This approximation holds if the characteristic lengtha, which

describes the linear size over which the strain profile varies appreciably, is much smaller than

both the lengthD and the Fermi wavelengthλF (a ≪ D, λF). Moreover, we will assume that

any characteristic length in this model is much larger than the distancea between two nearest

neighbor carbon atoms. This last condition allows to neglect any coupling between the valleys

K andK ′.
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Therefore, we consider a strain-induced one-dimensional step-like barrier, characterized by

uniaxial strain applied along the directionθ, with strain modulusε for 0 ≤ x ≤ D, and zero

otherwise. Correspondingly, the Hamiltonian and current density vector are given by Eqs. (6.1)

and (6.4), respectively. In addition, for the sake of generality, wemay also consider a nonzero

gate potentialVg within the barrier (Fig.6.1). We remind that a general scalar potential has the

following form

U =

∫

drU(r)ρ(r), (6.5)

in the case of a sharp barrier we would haveU(r) = −eVgΘ(x)Θ(D − x), whereΘ(t) is the

Heaviside (step) function.

Since we are interested in stationary solutions and the strain-barrier is uniform along the

y direction, the energyE and the componentky of the wavevector of an incoming wave are

conserved. Actually, in addition toE andky, each stationary electronic mode is also labeled by

the valley indexK or K ′. We look therefore for solutions of the stationary Dirac equation of

the form

Ψ(x, y) = eikyyψ(x) (6.6)

where

ψ(x) =











τ0U †(θ)ψI(x), x < 0,

eiτzqDxxU †(θ)ψII(x), 0 ≤ x ≤ D,

τ0U †(θ)ψIII(x), x > D,

(6.7)
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6. Ballistic transport in strained graphene

and

ψI(x) =
1√
2













1

seiϕ

1

seiϕ













eikxx +
1√
2













r

−rse−iϕ

r′

−r′se−iϕ













e−ikxx, (6.8a)

ψII(x) =
1√
2













aeiqxx

as′eiαeiqxx

a′eiq′xx

a′s′eiα′

eiq′xx













+
1√
2













be−iqxx

−bs′e−iαe−iqxx

b′e−iq′xx

−b′s′e−iα′

e−iq′xx













, (6.8b)

ψIII(x) =













t

tseiϕ

t′

t′seiϕ













eikxx. (6.8c)

In Eqs. (6.8), ϕ denotes the angle of incidence with respect to the barrier,kx = (|E|/~vF) cosϕ,

ky = (|E|/~vF) sinϕ, (E −Ug)
2 = ~

2v2
F[(1− λxε)

2q2
x + (1− λyε)

2(ky − qDy)
2], (E −Ug)

2 =

~
2v2

F[(1−λxε)
2q′x

2 +(1−λyε)
2(ky + qDy)

2], s = sgn (E), s′ = sgn (E−Ug), withUg = −eVg.

In the four-component spinor in Eq. (6.8) we take into account contemporarily two stationary

solutions: both modes have energyE and componentky of the wavevector, but the first one

is related to the valleyK whereas the second one is related to the valleyK ′. The electronic

modes, which correspond to the valleyK (K ′), are propagating waves ifqx (q′x) is a real value,

while they are evanescent ifqx (q′x) is purely imaginary.

Given the stationary character of the solution, the continuity equation implies that∇·J = 0

everywhere. In particular,〈J〉 ≡ 〈ψ|J|ψ〉 may only depend onx, therefore〈Jx〉 is constant.

The latter condition implies, at the barrier boundaries,

ψI(0
−) = (1− λxε)

−1/2ψII(0
+), (6.9a)

(1− λxε)
−1/2ψII(D

−) = ψIII(D
+). (6.9b)

Enforcing the above conditions in Eqs. (6.8), one eventually finds for the tunneling transmission
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for a generic mode labeled byE, ky, K,

T = |t|2 =
C2 cos2 ϕ

C2 cos2 ϕ cos2(qxD) + (1− ss′S sinϕ)2 sin2(qxD)
, (6.10)

whereqy = ky − qDy, qx = (1 − λxε)
−1|(E − Ug)

2/~2v2
F − (1 − λyε)

2q2
y|1/2, C = (1 −

λxε)~vFqx/|E − Ug|, S = (1− λyε)~vFqy/|E − Ug|.

Figure 6.2: Dependence on the incidence angleϕ of the tunneling transmissionT , Eq. (6.10). Left
panel refers to strain applied along the zig-zag direction (θ = π/2), and (a)ε = 0.03, Ug = 0 meV;
(b) ε = 0.03, Ug = −20 meV (the strain-induced deformation of the Dirac cone is neglected); (c)
ε = 0.03, Ug = −20 meV. Right panel refers to strain applied along the armchairdirection (θ = 0), and
(a) ε = 0.01, Ug = 0 meV; (b) ε = 0.01, Ug = 0 meV (the strain-induced deformation of the Dirac
cone is neglected); (c)ε = 0.01, Ug = −20 meV. In any case the electronic modes is labeled with theK
valley.

In order to discuss the dependence of the tunneling transmission on the incidence angleϕ,

we preliminarly observe that propagation within the barrier is allowed whenever

~
2v2

F(1− λyε)
2(ky − qDy)

2 ≤ (E − Ug)
2, (6.11)

whereky = (E/~vF) sinϕ. Within such a range, one has moreover total transmission (T = 1)

whenever

qxD = nπ, (6.12)

n being an integer.
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6. Ballistic transport in strained graphene

Figure 6.3: Same as Fig.6.2, but forE = 150 meV andD = 100 nm.

Figs.6.2and6.3show our results for the tunneling transmissionT = T (ϕ), Eq. (6.10), as a

function of the incidence angleϕ, for E = 80 meV,D = 100 nm (Fig.6.2) andE = 150 meV,

D = 100 nm (Fig.6.3). In both figures, left (resp.,right) panel refers to uniaxial strain applied

along the zig-zag (θ = π/2; resp.,armchair,θ = 0) direction.

In the case of strain applied along the zig-zag direction (θ = π/2, Figs.6.2 and6.3, left

panels), curves (b) neglect a strain-induced deformation of the Dirac cone, namely we consider

that the only effect of strain is to shift the Dirac point. Comparison with curves (c), where

such a deformation is fully included, shows that the effect of a strain-induced anisotropy of the

Fermi velocity is that of shifting the angular location of the maxima (T = 1, Eq. (6.12)) of the

tunneling transmission. Such an effect becomes more important with increasing energy (from

Fig. 6.2 to Fig.6.3), while the number of peaks increases, Eq. (6.12), and the angular range in

which the propagating regime is allowed widens. The effect of a strain-induced deformation of

the Dirac cone is even more dramatic in the absence of a gate potential [Ug = 0 meV, curve

(a)]. Indeed, in such a case, neglecting the Fermi velocity anisotropy for strain applied along

the zig-zag direction would yield a uniform tunneling transmissionT = 1, for all incidence

anglesϕ, whereas we find that transmission via propagating waves is allowed only for |ϕ| ≤
arcsin[(1− λyε)

−1], with small oscillations belowT = 1 within, and evanescent waves beyond

that range. A similar analysis applies to the case of strain applied along the armchair direction
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(θ = 0, Figs.6.2and6.3, right panels), which is characterized by an asymmetric transmission

T = T (ϕ), with pronounced oscillations forϕ > 0 close to the propagating edge.

The origin of such an asymmetry of theϕ-dependence of the transmission can be traced back

to the particular Dirac cone vertex, whose shift is here considered. Global symmetry would

be restored upon inclusion of the other Dirac cone. In that case, one would obtain the same

picture, but withϕ 7→ −ϕ. It should be emphasized that the stationarity condition, Eq. (6.12),

characterizes the occurrence of peaks in the transmissionT (ϕ) in any case. In addition, for a

potential barrier, in the absence of strain, one also recovers complete transmission (T = 1) at

ϕ = 0 (Klein tunneling) .

Summarizing, we have obtained that the overall effect of a strain-induced deformation of

the Dirac cones, besides the shift of the Dirac point, is thatof shifting the transmission peaks,

and of reducing the range inϕ at which transmission takes place.

6.1.1 Ballistic transport of a single strain-barrier

Figure 6.4: Schematic top view of a graphene layer contacted by metallicleads.

Now we consider a more realistic device,viz. a graphene strip of lengthD and widthW ,

subjected to two heavily doped leads at a distanceD (Fig. 6.4) [33, 50, 66, 145]. Following

Ref. [145], we assume thatW/D ≫ 1, and that the gate potential within the strip is much less
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6. Ballistic transport in strained graphene

than the potential of the leads,|Vg| ≪ |VL|. Moreover, we assume that the graphene strip is

characterized by uniaxial strain, with modulusε and strain directionθ, whereas the leads are

treated as heavily doped unstrained graphene.

We can describe the strained graphene strip as a mesoscopic system connected to two reser-

voirs (the leads). We assume that the reservoirs are so largethat they can be characterized by

a well-defined temperature and chemical potential. We consider the limit of zero temperature,

whereas the chemical potential of both leads is equal to−eVL. Then we assume that the voltage

applied between the two leads is infinitesimal. In these conditions, we can treat the system as

in the stationary regime.

In order to obtain information about ballistic transport properties of the system we use the

same procedure followed to obtain the transmission function in Eq. (6.10). Since the leads are

heavily doped we will consider the limit|VL| → ∞, which is equivalent to impose the limit

ϕ→ 0 to the transmission function expressed in Eq. (6.10). Thus we have

T prop
α (E, ky) =

1

cos2(qxD) + gα(E, ky) sin2(qxD)
, (6.13)

for propagating waves in the valleyα = K, and

gα(E, ky) =
(E − Ug)

2

(E − Ug)2 − ~2v2
F(1− λyε)2(ky ∓ qDy)2

, (6.14)

and the minus (resp.,plus) sign applies to the valleyα = K (resp.,α = K ′). Analogous ex-

pressions hold for the transmissionT evan
α (ky) in the evanescent case, withgα(ky) 7→ −gα(ky),

cos(qxD) 7→ cosh(qxD), andsin(qxD) 7→ sinh(qxD). The transmission for a general (propa-

gating or evanescent) wave therefore reads

Tα(E, ky) = Θ[gα(E, ky)]T
prop
α (E, ky) + (1−Θ[gα(E, ky)])T

evan
α (E, ky). (6.15)

Integrating overky and summing over both valleys, one obtains the conductance across the

barrier, following the Landauer approach [26, 81],

G(E) =
2e2

h
W
∑

α

∫ ∞

−∞

dky

2π
Tα(E, ky), (6.16)
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where the factor of 2 takes into account for the spin degeneracy, the conductivity

σ =
D

W
G, (6.17)

and the Fano factor [13]

F (E) = 1−
∑

α

∫∞
−∞

dky

2π
T 2

α(E, ky)
∑

α

∫∞
−∞

dky

2π
Tα(E, ky)

. (6.18)

In the zero-temperature limit the thermal noise, or Johnson-Nyquist noise, is vanishing. In such

a limit, the fundamental source of noise is due to charge quantization. This kind of noise is

called shot noise [13]. The shot noise is quantified by the dimensionless Fano factor, which is

defined as the ratio between the noise power spectrum and the average conductance [34].

 0.96
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σ 
/ σ

∞
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Figure 6.5: Conductivity across a graphene strip (D = 100 nm) normalized to asymptotic large-energy
behavior, Eq. (6.23), vs. energy scaled to the pseudoperiod, Eq. (6.24). Actually shown are four curves,
all collapsing into a single one, corresponding to strain applied along the armchair direction (θ = 0),
with ε = 0.03, 0.05, 0.10, 0.15.

Before discussing our results, let us observe that the inclusion of a strain-induced deforma-

tion of the Dirac cone in the expressions of the conductivity, Eq. (6.17), and of the Fano factor,
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Figure 6.6: Fano factor for ballistic transport across a graphene strip. All parameters are as in Fig.6.5.
Dashed lines represent the universal low- and large-energyasymptotic values,F (0) = 1

3 andF∞ = 1
8 ,

respectively.

Eq. (6.18), amounts to the replacements

D 7→ Deff ≡ ξD, (6.19a)

E 7→ Eeff ≡ ζE, (6.19b)

for the strip width and incident energy, respectively, in the corresponding expressions,σ(0) and

F (0), say, without cone deformation, with

ξ =
1− λyε

1− λxε
, (6.20a)

ζ =
1

1− λyε
. (6.20b)

In particular, one explicitly finds

σ(D;E) = ξ−1σ(0)(Deff ;Eeff). (6.21)

As a consequence, whilelimE→0 σ
(0)(D,E) = 4e2/πh, a universal constant [142], in the pres-
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ence of applied uniaxial strain one finds

lim
E→0

σ(D;E) =
1

ξ

4e2

πh
. (6.22)

Only in the case of hydrostatic strain (ν = −1, λx = λy, ξ = 1) one recovers the universal

limit, regardless of the strain modulus [33]. On the other hand, one findslimE→0 F (D;E) = 1
3
,

which is smaller than the valueF = 1 expected for a Poisson process. This value is the same

regardless of applied strain [145]. In the limitE → 0, the ballistic transport is purely due to the

evanescent modes. In particular, we have found that the shotnoise due to the evanescent modes

is insensitive to the presence of uniaxial strain.

In the opposite limit (E → ∞), the ballistic transport is mainly due to the propagating

modes, whereas the effect due to the evanescent modes is negligible. In the high energy limit,

the conductivity across a single barrier in the absence of strain is linear in energy,σ(0) ≈
(e2/h)D|E|/~vF , with damped oscillations characterized by a pseudoperiod∆E such that

D∆E/~vF = π [66]. In the presence of strain, such results are modified by Eqs.(6.20), so that

σ(E) ≈ σ∞(E) for E →∞, with

σ∞(E) =
4e2

h

D|E|
4

ζ, (6.23)

with damped oscillations characterized by a pseudoperiod given by

ξζD
∆E

~vF

= π. (6.24)

In view of the fact that|λx| > |λy|, one may conclude that applied strain induces a slight change

in the slope ofσ vs|E|, while it modifies the pseudoperiod of the oscillations moresubstantially.

Fig. 6.5 shows our results for the scaled conductivity in the presence of uniaxial strain

(ε = 0.03 − 0.15) applied along the armchair direction (θ = 0). When the conductivityσ(E)

is normalized with respect to its asymptotic limit, Eq. (6.23), and plotted against energyE

scaled with the strain-dependent pseudoperiod∆E, Eq. (6.24), results corresponding to differ-

ent values of the strain modulus collapse into a single curve, displaying damped oscillations, as

prescribed by Eq. (6.24). Similarly, Fig.6.6reports our results for the Fano factor as a function
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6. Ballistic transport in strained graphene

of scaled energy. Again, the results for all the strain moduli here considered (ε = 0.03− 0.15)

collapse into a single, oscillating curve. Note that the universal limitsF (E = 0) = 1
3

and

F∞ ≡ limE→∞ F (E) = 1
8

are recovered in all cases, regardless of applied strain. Such results

do not depend on the directionθ of applied strain.

6.2 Transmission across multiple strain-barriers

l ll D

I II III

ε
U

ε
U

−
−

+
+

Figure 6.7: Schematic plot of the multiple barrier.

Now we consider quasiparticle tunneling acrossN identical barriers, each of widthℓ, two

nearest neighbor (NN) barriers being separated by the distanceℓ, such that2Nℓ = D (Fig. 6.7).

We assume a position-dependent strain modulusε(x) and gate potential energyU(x), with

ε(x) = ε−, 2(m− 1)ℓ ≤ x ≤ (2m− 1)ℓ, (6.25a)

= ε+, (2m− 1)ℓ ≤ x ≤ 2mℓ, (6.25b)

and

U(x) = U−, 2(m− 1)ℓ ≤ x ≤ (2m− 1)ℓ, (6.26a)

= U+, (2m− 1)ℓ ≤ x ≤ 2mℓ, (6.26b)

with m = 1, . . . N . We further consider the possibility of contacting the two extrema of the

chain of barriers with leads at the potentialVL. First of all we consider the leads at zero potential

VL = 0, that means that the superstructure is contacted with pristine graphene. Eqs. (6.9) then
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suggest to look for a solution of the Dirac equation in the form

ψ(x, y) = U †(θ)
φ(x)

√

1− λxε(x)
eikyy (6.27)

so thatφ(x) is a continuous function at the barriers’ edges. The stationary Dirac equation for

φ(x) can then be cast in the form of an evolution equation [66], so thatφ(x) = T
(N)(x, x0)φ(x0),

where the evolution matrixT(N)(x, x0) in turn obeys the equation

d

dx
T

(N)(x, x0) =

[

iq
(0)
Dxε(x)τz +

i

~vF

E − U(x)

1− λxε(x)
σx

+
1− λyε(x)

1− λxε(x)

(

ky − q(0)
Dyε(x)τz

)

σz

]

T
(N)(x, x0), (6.28)

with T
(N)(x0, x0) = I4, and whereq(0)

D is the strain independent prefactor of the shifted Dirac

pointqD = q
(0)
D ε. The evolution matrix is related to the transfer matrix by [142]

M
(N)(x, x0) = Q−1

s (ϕ)T(N)(x, x0)Qs(ϕ), (6.29)

where

Qs(ϕ) =
1√
2

(

1 1

seiϕ −se−iϕ

)

(6.30)

includes the incidence angleϕ of the incoming spinor, Eq. (6.8a), ands = sgn (E). Since there

is no mixing between the two valleysK andK ′, it is possible the transfer matrix in the block

diagonal form

M
(N)(x, x0) =

[

M
(N)
K (x, x0) 0

0 M
(N)
K ′ (x, x0)

]

, (6.31)

each block being related to one valley index (K orK ′).

Similarly to the previous case, since the strain superlattice is uniform along the coordinate

orthogonal to the direction of applied strain, sayy, stationary eigenmodes will be characterized

by constant energyE, transverse wave vectorky and valley indexK orK ′. ReplacingqD with

−qD in the matrixM
(N)
K (x, x0), one obtains the matrixM(N)

K ′ (x, x0). Hence, for simplicity here

we consider that the valley index isK and we omit to write the chosen index.

For the transfer matrix across the first, say, barrier in Fig.6.7, one findsM
(1)(2ℓ, 0) =
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6. Ballistic transport in strained graphene

eiq
(0)
Dx

(ε++ε−)ℓ
M̃

(1), whereM̃
(1) is a unimodular matrix,det M̃

(1) = 1. Specifically, one obtains

M̃
(1)
11 = λ+ iη, (6.32a)

λ =
sinh(q−ℓ)

q−

sinh(q+ℓ)

q+
(κ−κ+ − u−u+) + cosh(q−ℓ) cosh(q+ℓ), (6.32b)

η = i
[u+u− − κ+κ−

q+q−
sinh(q−ℓ) cosh(q+ℓ)− sinh(q+ℓ) cosh(q−ℓ)

]

, (6.32c)

whereλ is always real, whereasη can be real or purely imaginary, depending onky andE.

More compactly, one also finds

M̃
(1)
11 = exp(q+ℓ)

[

κ+κ− − u+u−
q+q−

sinh(q−ℓ) + cosh(q−ℓ)

]

. (6.33)

In Eqs. (6.32) and (6.33), we have employed the definitions

κ± =
1− λyε±
1− λxε±

(ky − q(0)
Dyε±), (6.34a)

u± =
E − U±

~vF(1− λxε±)
, (6.34b)

q± =
√

κ2
± − u2

±. (6.34c)

Making use of the Chebyshev identity for theN th power of a unimodular matrix [156], for the

transfer matrix acrossN identical barriers, one finds [116]

[M̃(1)]N11 =
sinh(Nz)

sinh z
M̃

(1)
11 −

sinh[(N − 1)z]

sinh z
, (6.35)

wherecosh z = λ. Finally, the transmission can be related to the transfer matrix as

TN(E, ky) =
∣

∣

∣
[M̃(1)]N11

∣

∣

∣

−2

. (6.36)

We are now in the position to discern whether an electronic mode is characterized by an

oscillating or evanescent behavior far from the barrier superlattice. To this aim, we preliminarly

observe that, depending onE andky, one has a propagating (resp.,evanescent) wave forq2
± < 0

(resp.,q2
± > 0), where the subscript+ refers to the region between two consecutive barriers

[(2m− 1)ℓ ≤ x ≤ 2mℓ,m = 1, . . .N ], and the subscript− refers to the region within a barrier
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[2(m− 1)ℓ ≤ x ≤ (2m− 1)ℓ,m = 1, . . . N ] (Fig. 6.7).

Figure 6.8: Single electron transmissionT1(E, ky), Eq. (6.36) across a single barrier (N = 1, ℓ =
25 nm), as a function of scaled transverse wave vector~vFky/E1 and scaled energyE/E1, Eq. (6.37),
with E1 ≈ 40 meV. Here, strain is applied along the armchair direction,θ = 0, and we setε− = 0.02,
ε+ = 0, andU± = 0. Cyan dashed lines delimit cones corresponding to the (deformed) Dirac cones
outside (left cone) and within (right cone) the barrier (regions I+III and II, respectively, in Fig.6.7). Solid
lines outside the left Dirac cone correspond to bound modes.

Fig. 6.8shows the single electron transmissionTN(E, ky) across a single barrier, Eq. (6.36)

with N = 1, as a function of the transverse wave vector~vFky/E1 and energyE/E1, each

scaled by the characteristic energy

E1 =
π~vF

2ℓγ
, (6.37)

whereγ = 1
2
[(1− λxε+)−1 + (1− λxε−)−1]. Here and in the following, strain is applied along

the armchair direction,θ = 0, and we setε− = 0.02, ε+ = 0, andU± = 0. In Fig. 6.8, cyan

dashed lines delimit the two (deformed) Dirac cones defined by q2
+ < 0 (left cone) andq2

− < 0

(right cone), corresponding to regions I+III and II in Fig.6.7), respectively. One finds that

T1(E, ky) is defined within the left cone and is exponentially vanishing within the intersection

between both cones. This corresponds to having propagatingmodes in all the three regions. In

this case, resonant modes,i.e. propagating modes with unit transmission, are characterized by

the condition for stationary waves

q̃−ℓ = mπ, (6.38)
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6. Ballistic transport in strained graphene

Figure 6.9: Single electron transmissionT5(E, ky), Eq. (6.36) across a superlattice ofN = 5 identical
barriers (Fig.6.7), as a function of scaled transverse wave vector~vFky/E1 and scaled energyE/E1,
Eq. (6.37). All other parameters are as in Fig.6.8. Red lines outside the right cone correspond to resonant
modes.

whereq− = iq̃−, andm is an integer. We have just seen this condition in the previous paragraph,

cf. Eq. (6.12).

Fig. 6.9 shows the single electron transmissionTN (E, ky) across a superlattice composed

of five identical barriers, Eq. (6.36) with N = 5. Again, nonzero values of the transmission

are to be found within the intersection of the Dirac cones corresponding to the region inside a

barrier and between two consecutive barriers. However, at variance of the caseN = 1, because

of multiple scatterings, a nonzero transmission is also possible beyond the coneq2
− < 0. This

corresponds to having evanescent modes within the barriers. Such a phenomenon is analogous

to what happens to photons propagating across a 1D photonic crystal with alternative layers

of a left-handed and a right-handed material (1D metamaterial) [154]. As for resonant modes,

TN(E, ky) = 1, besides the ones given by Eq. (6.38) regardless ofN , additional resonant modes

are given by the condition

λ = cos

(

πj

N

)

, j = 1, . . . N − 1, (6.39)

whereλ is defined by Eq. (6.32b), and|λ| < 1. The latter condition implies that these resonant

modes have globally propagating behavior. Comparing Figs.6.8and6.9, one finds that, in the
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domain within both Dirac cones, in addition to the resonant modes given by Eq. (6.38), in the

caseN > 1 there existN − 1 new resonant modes given by Eq. (6.39). It should also be noted

that in the domain within the left cone but outside the secondthe resonant modes, which are

only given by Eq. (6.39), are characterized by quite narrow lines in the transmission plots.

Outside the left Dirac cone, it is still possible to find boundstates [7, 94, 120]. Within the

transfer matrix method, these are given by the condition[M̃(1)]N11 = 0. For q2
+ > 0 one finds

evanescent modes outside the barriers, and therefore also far from the superlattice structure. In

the caseN = 1, one finds several such confined modes within the second cone (Fig. 6.8, solid

lines outside the left cone), whereof only one such mode survives in the region outside both

cones. The latter is the surface mode analyzed in Ref. [120]. In the caseN > 1 (Fig. 6.9, solid

lines outside the right cone), one finds that to each bound mode in the single barrier case there

correspond exactlyN bound states outside either cones. This is remindful of electron bands in

solids, where the overlap ofN periodically arranged atomic orbitals give rise to a band ofN

states.

6.2.1 Ballistic transport of multiple strain-barriers

Similarly to the case of a single strain barrier, we considernow a strain graphene super-

structure, Fig.6.7, in contact with two metallic leads. These are described by two highly doped

semi-infinite graphene samples. In the leads we assume to have a potential|VL| → ∞. The

presence of the leads has no effect on the evolution matrix, that we have just obtained for

the superstructure, but it induces a modification of the transfer matrix. Indeed, in the limit

|VL| → ∞ the transfer matrix is related to the evolution matrix for any energyE and transverse

wavevectorky by

M
(N)(x, x0) = Q−1

s (0)T(N)(x, x0)Qs(0), (6.40)

with Q+(0) = 1√
2
(σz + σx), Q

−1
+ (0) = Q+(0), Q−(0) = Q+(0)σx, Q−1

− (0) = σxQ+(0), and

s = sgn (VL). Following the transfer matrix method that we have just used, we have

(

M̃1

)

11
= λ+ iη, (6.41)
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6. Ballistic transport in strained graphene

where

λ =
sinh(q−ℓ)

q−

sinh(q+ℓ)

q+
(κ−κ+ − u−u+) + cosh(q−ℓ) cosh(q+ℓ), (6.42a)

η =
u−
q−

sinh(q−ℓ) cosh(q+ℓ) +
u+

q+
sinh(q+ℓ) cosh(q−ℓ), (6.42b)

where we have used the definitions in Eqs. (6.34). We are taking into account the case labeled

withK valley, but in order to obtain the case labeled withK ′ one needs to replaceqD with−qD.

Moreover, exploiting the Chebyshev identity (6.35) and Eq. (6.36) one finds the transmission

function explicitly

Tα(E, ky) ≡ T prop
α (E, ky)

=

[

cos2(Ny) +
η2

λ2 − 1
sin2(Ny)

]−1

, (6.43a)

with y = arccosλ, if |λ| < 1,

≡ T evan
α (E, ky)

=

[

cosh2(Nx) +
η2

λ2 − 1
sinh2(Nx)

]−1

, (6.43b)

with x = log |λ+
√
λ2 − 1|, if |λ| > 1,

= [1 + η2N2]−1, (6.43c)

if |λ| = 1. We remind that bothλ andη are dependent on the energyE, the componentky of

the wavevector and the valley indexK orK ′.

Making use of Eqs. (6.43) for the transmissionTα(E, ky) in Landauer’s formula for the

conductivity, Eq. (6.16), and in the definition for the Fano factor, Eq. (6.18), one again finds that

the conductivity in strained graphene, and strained graphene where the strain-induced velocity

anisotropy has been neglected, are related by means of Eqs. (6.20), (6.21), but now withD =
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2Nℓ, and

ξ =
1

2
(ξ+ + ξ−), (6.44a)

ζ =
1

2
(ζ+ + ζ−), (6.44b)

ξ± =
1− λyε±
1− λxε±

, (6.44c)

ζ± =
1

1− λyε±
. (6.44d)

Eq. (6.22) in the limitE → 0 then follows straightforwardly, withξ given now by Eq. (6.44a).

Moreover, the conductivity at large energies is characterized by an overall linear behavior, in-

terrupted by dips with decreasing depth, which result from the coherent superposition of the

damped oscillations produced by scattering off the edges ofthe single barriers. The energies

En at which such dips occur are asymptotically given by

En

~vF

D

N

1

2
(ξ+ζ+ + ξ−ζ−) = nπ, (6.45)

with n an integer.

Fig. 6.10shows our numerical results for the conductivity in strained graphene, with strain

applied nonuniformly along the armchair direction, acrossa superlattice ofN = 10 barriers.

At variance with Fig.6.5, we have not scaledσ with its asymptotic behavior at large ener-

gies, Eq. (6.23). As expected, the overall linear behavior ofσ(E) is interrupted by dips, whose

approximate energy location is given by Eq. (6.45). While such dips get damped as energy

increases, they are nonetheless enhanced with respect to the case in which the strain-induced

deformation of the Dirac cones is neglected [50], especially those corresponding to even integer

values ofn in Eq. (6.45). Correspondingly, the Fano factor (Fig.6.11) is characterized by essen-

tially analogous features, with bumps occurring at approximatelyEn, Eq. (6.45). In particular,

the universal limit at low energy,F (0) = 1
3
, is recovered as in the single-barrier case, regardless

of applied strain.

Fig. 6.12 shows our numerical results for the conductivity in strained graphene, but now

for nonuniform strain applied along the zig-zag direction.At variance with the armchair case

(Fig. 6.10), for strain applied along the zig-zag direction the conductivity seems not to be char-
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Figure 6.10: Conductivity σ(E) in units of σ0 = 4e2/h, vs. energyE, scaled with respect to the
approximate location of the first dip,E1, as given by Eq. (6.45). Subsequent dips then occur close to
integer values of the ratioE/E1. Uniaxial strain is applied along the armchair direction (θ = 0) in the
case of a multibarrier superlattice, withN = 10 barriers,ℓ = 25 nm (D = 500 nm). Different curves
refer to nonuniform strain moduli within and outside NN barriers (cf. Fig.6.7), with (a) ε+ = 0.004,
ε− = 0; (b) ε+ = 0.003, ε− = 0; (c) ε+ = 0.002, ε− = −0.001; (d) ε+ = 0.002, ε− = 0.001; (e)
ε+ = 0.0005, ε− = 0. In all cases, we setU± = 0, for the sake of simplicity.
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Figure 6.11: Fano factorF vs. scaled energyE/E1, for transport across a multibarrier superlattice,
with nonuniform uniaxial strain applied along the armchairdirection (θ = 0). All parameters are as in
Fig. 6.10. Inset shows the universal low-energy asymptotic behaviorin the various cases. In the limit
E → 0, the universal asymptotic value,F (0) = 1

3 , is recovered.
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Figure 6.12: Conductivityσ(E) in units of σ0 = 4e2/h, vs. energyE, scaled with respect toE1, as
given by Eq. (6.45). Uniaxial strain is applied along the zig-zag direction (θ = π/2) in the case of a
multibarrier superlattice, withN = 10 barriers,ℓ = 25 nm (D = 500 nm). Different curves refer to
nonuniform strain moduli within and outside NN barriers (cf. Fig. 6.7), with (a) ε+ = 0, ε− = 0; (b)
ε+ = 0.03, ε− = 0; (c) ε+ = 0.05, ε− = 0; (d) ε+ = 0.07, ε− = 0; (e) ε+ = 0.10, ε− = 0. In all
cases, we setU± = 0, for the sake of simplicity. Inset shows the conductivity scaled with respect to its
large-energy asymptotic limit,σ/σ∞, as a function of scaled energy,E/E1.
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Figure 6.13: Fano factorF vs. scaled energyE/E1, for transport across a multibarrier superlattice,
with nonuniform uniaxial strain applied along the zig-zag direction (θ = π/2). All parameters are as in
Fig. 6.12. Note the deviations from the large-energy asymptotic limit for the unstrained case,F∞ = 1

8
(dashed line). The low-energy universal limit,F (0) = 1

3 (inset, dashed line), is recovered, regardless of
strain.
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6. Ballistic transport in strained graphene

acterized by prominent dips as a function of energy. This maybe explained by a reduced

coherent superposition of the effects due to each single barrier. However, if the trailing linear

dependence on energy is divided out (Fig.6.12, inset), one may again recognize ‘oscillations’,

with extrema approximatively occurring atEn, as given by Eq. (6.45). At variance with the

armchair case, the Fano factor exhibits a strain-dependentasymptotic limit, for large energies

(Fig. 6.13), with increasing deviations from the unstrained behaviorF∞ = 1
8
, with increasing

strain modulusε (at least within the strain range that has been numerically investigated). On the

other hand, both the oscillations as a function of scaled energyE/E1 and the low-energy limit

F (0) = 1
3

(Fig. 6.13, inset) are recovered.

6.3 Trasmission across a smooth barrier: effect of continu-

ous strain

Although considerable insight is afforded by analytical solutions to the problem of tunneling

across single or multiplesharpbarriers, there is sufficient evidence, both experimental [83] and

theoretical [29], that barrier edge effects are also important to determinethe transport properties

across corrugated graphene. Here, we therefore consider the case in which uniaxial strain is

applied in a nonuniform but continuous fashion to a graphenesheet, which can be modeled

by a single barrier withsmoothstrain and gate potential profiles,ε = ε(x) andU = U(x),

respectively.

On quite general grounds, one may expect that a smooth potential profile (whether induced

by strain or by gating) introduces a new length scale,a say [as in Eq. (6.49) below]. At the

beginning of this Chapter we have studied the electronic transmission through a sharp strain

barrier, and we remind that this approximation holds whenevera≪ λF. On the other hand, the

detailed structure of the barrier needs to be considered when a ∼ λF. Similarly to the sharp

barrier case, we are interested to the more general and realistic cases wherea ≪ a, where one

may neglect the occurrence ofK–K ′ coupling. Indeed, truly sharp electrostatic barriers on

the order of the electron wavelength are quite difficult to berealized, as ise.g. demonstrated

by the occurrence of Fabry-Pérot oscillations of the conductance in graphene heterostructures
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0 D

2 a

Figure 6.14: Schematic single tunneling barrier, with smooth strain profile, Eq. (6.49). Dashed line
depicts a sharp barrier, corresponding to the limita→ 0.

as narrow as∼ 20 nm, where a resonant cavity is formed between two electrostatically cre-

ated bipolar junctions [157]. Such oscillations are more accurately described when thesmooth

structure of these potential barriers is taken into account, whereas intervalley scattering can be

safely neglected (see Supplementary Information in Ref. [157]). Another instance of nonuni-

form barrier, where smoothing effects are important, is thestrain-induced ripples superlattice

experimentally realized in Ref. [6], which smoothing is essential on a length scale of∼ 100 nm,

whereas intervalley processes are negligible.

In order to generalize the Hamiltonian for graphene subjected to uniform strain Eq. (6.1) to

the case of a nonuniform, but continuous strain profileε = ε(x), one may be tempted to perform

the replacementsvi 7→ vi(r) ≡ vF[1 − λiε(x)] andqD 7→ qD(r), with ε = ε(x). However, the

resulting Hamiltonian must be symmetrized, in order to preserve hermiticity, thus leading to the

model Hamiltonian for a nonuniform strain profile:

H =

∫

drΨ†(r)
1

2

{

~vj(r)

[

τ0U †(θ)σj
1

i
∇jU(θ)− τzU †(θ)σjqDj(r)U(θ)

]

+

+

[

τ0U †(θ)σj
1

i
∇jU(θ)− τzU †(θ)σjqDj(r)U(θ)

]

~vj(r)

}

Ψ(r) (6.46)

Eq. (6.46) includes the effect of nonuniform, continuous strain bothas a shift in the position of
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6. Ballistic transport in strained graphene

the Dirac points, and as a deformation of the Dirac cones (nonuniform and anisotropic Fermi

velocity), at variancee.g. with Ref. [128], where a nonuniform velocity is considered, but an

isotropic profile is assumed. As in the case of a single, sharpbarrier, continuity of the current

density, Eqs. (6.9), suggests to seek for a solution of the stationary Dirac equation in a form

analogous to Eq. (6.27), viz.

ψ(x, y) = U †(θ)
φ(x)
√

vx(x)
eikyy. (6.47)

One explicitly finds [cf. Eq. (6.28)]

dφ(x)

dx
=

[

1− λyε(x)

1− λxε(x)

(

ky − q(0)
Dyε(x)τz

)

σz + i
E − U(x)

(1− λxε(x)) ~vF
σx + iq

(0)
Dxε(x)τz

]

φ(x).

(6.48)

We have solved Eq. (6.48) numerically, for the nonuniform, smooth strain profile

ε(x) =
ε0

tanh(D/4a)

(

1

1 + e−x/a

− 1

1 + e−(x−D)/a

)

, (6.49)

as shown in Fig.6.14. Such a strain profile is essentially flat for|x − D/2| ≪ a, where

ε(x) ≈ ε0, and for|x − D/2| ≫ a, whereε(x) ≈ 0. In the limit a/D → 0, Eq. (6.49) tends

to the sharp barrier. Therefore, asymptotically for|x| → ∞, the solutions of Eq. (6.48) must

merge into Eqs. (6.8), in regions I and III. We have therefore taken an initial valueφ(x = x0) in

the form of Eq. (6.8c), for x0 = 5D, and integrated Eq. (6.48) backwards forx≪ 0. Comparing

the numerical solution with Eq. (6.8a), one may extract the reflection coefficientr, relative to

an incident wave with unit amplitude incoming fromx > 0, as the Fourier weight with respect

to its negative frequency component, whence the transmissionT (ϕ) follows straightforwardly.

As a cross-check of our procedure, we have also verified that the continuity equation, Eq. (6.9),

holds true, within the numerical error.

Figs.6.15and6.16show our numerical results for the tunneling transmissionT (ϕ) across

the smooth strain barrier, Eq. (6.49), with D = 100 nm and different values of the smoothing

parameter,a/D. Fig. 6.15 refers to an incidence energyE = 80 meV, corresponding to an

incident wavelengthλF = ~vF/(2πE) ≈ 1.3 nm. One finds that transmission of propagating
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Figure 6.15: Tunneling transmissionvsincidence angleϕ across a smooth strain barrier, Eq. (6.49), with
D = 100 nm, and incidence energyE = 80 meV (λF = ~vF/(2πE) ≈ 1.3 nm). Left panel refers to
strain applied along the zig-zag direction (θ = π/2), with ε0 = 0.1. Right panel refers to strain applied
along the armchair direction (θ = 0), with ε0 = 0.01. In both cases, the different lines correspond to
different values of the smoothing parameter,viz. (a) a = 0 (sharp barrier); (b)a = 10−2D = 1 nm; (c)
a = 10−1D = 10 nm. In all cases,U(x) = 0, for the sake of simplicity.

Figure 6.16: Same as Fig.6.15, but withE = 150 meV (λF ≈ 0.7 nm).
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waves is allowed for incidence anglesϕ such thatϕcr− ≤ ϕ ≤ ϕcr+, with

ϕcr± = ± arcsin

(

1

1− λyε0

)

, (6.50)

in the zig-zag case (θ = π/2), andϕ > ϕcr, with

arcsin

(

− 1

1− λyε0

+
~vF

a|E|ε0κ(1− ν)
)

, (6.51)

in the armchair case (θ = 0), independent of the smoothing parametera/D. Outside that win-

dow, transmission takes place via evanescent waves only, and T (ϕ) ≈ 0. For strain applied

along the zig-zag direction (θ = π/2, Fig. 6.15, left panel), Eq. (6.50) predicts the existence

of critical angles|ϕcr±| < π/2. This is a direct consequence of the strain-induced deformation

of the Dirac cones [λy 6= 0 in Eq. (6.50)]. Both in case of strain applied along the zig-zag

and armchair directions, increasing the smoothness parameter a/D away from the limit of a

sharp barrier (a/D = 0) suppresses the oscillations inT (ϕ) within the propagating window,

until a > λF, in which case transmission is almost undisturbed by the presence of the barrier.

These results are confirmed by Fig.6.16, where we consider quasiparticles with larger incident

energyE = 150 meV, corresponding to a smaller Fermi wavelengthλF ≈ 0.7 nm. While the

transmission window widens and the number of oscillations increases, smoothening the strain

profile immediately washes out the deviations of the tunneling transmission from unity. In end-

ing this paragraph, we note that the procedure applied to extracting the tunneling transmission

from the numerical solution of Eq. (6.48) can be generalized, in principle, to the case of an

arbitrary nonuniform strain potential, such as a superlattice of several smooth barriers, such as

Eq. (6.49).
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Conclusions

The present Thesis reports a theoretical study of the effects of strain on the electronic prop-

erties of graphene.

First of all, we have discussed the strain dependence of the electronic band structure, and

derived the strain and electric field dependence of the optical conductivity of graphene un-

der uniaxial strain. Within a tight-binding model, including strain-dependent nearest neighbour

hoppings and orbital overlaps, we have interpreted the evolution of the band dispersion relations

with strain modulus and direction in terms of the proximity to several electronic topological

transitions (ETT). These correspond to the change of topology of the Fermi line as a function of

strain. In the case of graphene, one may distinguish among three distinct ETTs. We also recover

the evolution of the location of the Dirac points, which moveaway from the two inequivalent

symmetric pointsK andK ′ as a function of strain. For sufficiently small strain modulus, how-

ever, one may still linearly expand the band dispersion relations around the new Dirac points,

thereby recovering a cone approximation, but now with elliptical sections at constant energy, as

a result of the strain-induced deformation. For increasingstrain, two inequivalent Dirac points

may merge into one, which usually occurs at either midpointMℓ (ℓ = 1, 2, 3) of the first Bril-

louin zone boundary, depending on the strain direction. This corresponds to the breaking down

of linearity of the band dispersions along a given directionthrough the Dirac points, the emer-

gence of low-energy quasiparticles with an anisotropic massive low-energy spectrum, and the

opening of a gap in the energy spectrum. Besides, we confirm that such an event depends not

only on the strain modulus, but characteristically also on the strain direction. In particular, no

gap opens when strain is applied along the armchair direction. We derived the energy depen-

dence of the density of states (DOS), and recovered a linear dependence at low energy within
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the cone approximation, albeit modified by a renormalized strain-dependent slope. In particular,

such a slope has been shown to increase with increasing strain modulus, regardless of the strain

direction, thus suggesting that applied strain may obtain asteeper DOS in the linear regime. We

have also calculated the DOS beyond the Dirac cone approximation. The proximity to ETTs

gives rise to (possibly degenerate) Van Hove singularitiesin the density of states, appearing

as logarithmic peaks in the DOS. Finally, we generalized ourprevious results for the optical

conductivity to the case of strained graphene. We studied the frequency dependence of the lon-

gitudinal optical conductivity as a function of strain modulus and direction, as well as of field

orientation. Our main results are that (a) logarithmic peaks appear in the optical conductivity

at sufficiently high frequency, and can be related to the ETTsin the electronic spectrum under

strain, and depending on the strain direction; (b) the relative weight of the peaks in general de-

pends on the strain direction and field orientation, and contributes to the generally anisotropic

pattern of the optical conductivity as a function of field orientation; (c) the opening of a band

gap, where allowed, is signalled by a vanishing optical conductivity. The optical conductivity

is directly related to measurable quantities, such as the transmittance and reflectance. Thus, an

experimental study of the optical conductivity in the visible range of frequencies as a function

of strain modulus and direction, as well as of field orientation, should enable one to identify the

occurrence of the three distinct ETTs predicted for graphene. In addition, according to our re-

sults, the asymmetry induced by uniaxial strain in the optical conductivity causes an observable

degree of dichroism. Indeed, the optical response of uniaxially strained graphene to linearly

polarized light depends on the direction of the polarization. Moreover, the optical response of

graphene can give information about the magnitude and the direction of strain in a graphene

sample. Finally, these results about the effect of uniaxialstrain on the electronic structure and

optical conductivity are in agreement with recentab initio calculations [122, 130].

After an in-depth study of the changes of electronic structure due to uniaxial strain, we dealt

with the strain-induced modifications of the plasmons. By studying the electronic polarization,

we have derived the dispersion relation of the plasmon modesin graphene. Besides including

electron-electron correlation at the random phase approximation (RPA) level, we have consid-

ered local field effects (LFE), that are specific to the peculiar lattice structure under study, and

126



Conclusions

we have also taken into account thez-extension of the electron wave functions. Both terms are

sizable in electron-electron scattering processes with large exchange momentum (q ∼ π/a). As

a consequence of the two-band character of the electronic band structure of graphene, we have

found in general two plasmonic branches: (1) a low-energy branch, with a square-root behavior

at small wavevectors, and (2) a high-energy branch, weakly dispersing at small wavevectors. In

particular, we have found that the high-energy plasmon modedisappears neglecting LFE. While

in the absence of LFE only scattering processes with momentawithin the 1BZ are considered,

LFE allow to include all scattering processes with arbitrarily low wavelengths, thereby taking

into account the discrete nature of the crystalline lattice. Hence, the Umklapp electron-electron

scattering processes have fundamental role in order that the system sustains the high-energy

plasmon mode. Moreover, we have found an intermediate energy pseudo-plasmon mode, asso-

ciated with a logarithmic divergence of the polarization, which can be related to an interband

transition between the Van Hove singularities in the valence and conduction bands of graphene,

and it can be identified with aπ → π∗ transition. In graphene, to date there are measurements

about the low energy plasmon [30, 59] and the pseudo-plasmon excitation [41], whereas there is

no clear experimental evidence about the high energy plasmon. Usually, experimental method-

ologies to detect plasmon dispersion relation, such as electron energy loss spectroscopy (EELS),

measure the collective excitation at small wavevector limit (q → 0) [41]. The detection of the

high energy branch at small wavevector could be difficult, first of all, because of the reduced

spectral weight associated with the high energy branch, butalso because these plasmons could

be damped by the promotions of electrons from the valence band into the higher (σ∗) energy

band. In this Thesis we have not considered the electronic bands due to theσ electrons, and this

possible correction will be the subject of future investigation.

Due to the robustness of the Dirac cones with respect to the application of uniaxial strain, for

sufficiently small strain modulus, it is possible to use the massless Dirac approximation in order

to describe the low energy electronic properties. In particular, exploiting the massless Dirac

approximation, we have studied the dependence on applied uniaxial strain of density-density

and current-current linear-response electronic correlation functions of graphene. Starting from

these linear correlation functions, it is possible to obtain analytical results about several mea-
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surable quantities of strained graphene, such as the plasmonic dispersion relation, the optical

conductivity, as well as the static magnetic and electric susceptibilities. After deriving a general

correspondence between strained and unstrained correlation functions, we derived the strain de-

pendence of the low-energy plasmon dispersion relation andof the optical conductivity. Specif-

ically, we found that the prefactor in the
√
q-dependence of the plasmon frequency develops an

anisotropic character, with maximum (minimum) occurring when the wavevector is orthogonal

(longitudinal) to the direction of applied strain. We have obtained that uniaxial strain induces

an anisotropy on both the plasmonic dispersion relation andthe electronic dispersion relation.

Hence, we presume that the application of uniaxial strain ongraphene could induce a modifi-

cation of the plasmaronic resonance. We remind that plasmaron is an excitation which arises

from the coupling of charge carriers and plasmons. Indeed, by means of a heuristic argument

we found that uniaxial strain applied on graphene should induce a shifting and broadening of

the plasmaron resonance energy, proportionally to the strain modulus. Therefore, by suitably

applying uniaxial strain, one gains further control on the energy of the plasmaronic excitation,

besides the possibility of tuning the relative dielectric constantǫr. In addition, we have derived

a strain-induced anisotropic enhancement of the deviations from the photonic behavior of the

theoretically predicted transverse collective excitation, which should facilitate its experimental

detection in suitably strained graphene samples.

Finally, we have studied the effect of a strain-induced one-dimensional profile on several

ballistic transport properties of graphene. This study maybe useful for the realization of a

new class of ballistic devices designed by suitable tailoring of the electronic structure exploit-

ing not only the electric field effect but also applied strain. In particular, we have studied the

cases of a single strain-induced sharp barrier, and of a superstructure of several, periodically

repeated, such sharp barriers. In both cases, we have dealt with the analysis of the angular de-

pendence of the tunneling transmission, the conductivity,and the Fano factor. In particular, we

have found that a strain-induced superlattice in graphene can accommodate additional resonant

quasiparticle states, besides the ones usually found across a single barrier. We thus surmise that

a strain-induced superlattice in graphene could be used as afilter for well-defined electronic

resonant modes. After considering the cases of a single sharp tunneling barrier, and of a su-
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perstructure of several, periodically repeated, such sharp barriers, we have specifically studied

the more realistic case in which both the modulus of applied uniaxial strain, and possibly an

applied gate potential, depend continuously on position.
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