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Introduction

In the last few decades the emergence of a new field of research dealing with information
at the quantum level has led to a “second quantum revolution”, that promises new tech-
nologies whose design is based on the principles of quantum mechanics. A relevant exam-
ple is provided by the fascinating project of the quantum computer, originally proposed
by R. Feynman [Fey82] and subsequently formulated by Deutsch [Deu85]. This pro-
posal is based on developing a new theory of computation based on the rules of quantum
mechanics, including peculiar features such as entanglement and superposition, which
can lead to improved performances with respect to a classical approach. Several other
contexts have been identified which can benefit from this quantum approach. These in-
clude quantum cryptography and communication, which deal with developing quantum
strategies for secure sharing of a key between two or more distant parties for crypting
and decrypting a secret meassage. Quantum measurements represent a crucial aspect of
quantum theory since the amount of information which can be extracted from a system
critically depends on the capability of performing efficient measurements. Among the
different fields of quantum information, quantum principles have also found application
in the field of measurement science. In particular, the ability to perform precise mea-
surements of time, length, phase, position using the fewest possible resources represents
one of the most relevant issues of information and communication technologies (ICT).
Quantum mechanics has been identified as a powerful tool to perform measurements with
precision beyond the classical limit established from the noise associated to any physical
probe. Entanglement, which has no classical analogue, has been proposed as one possible
way to overcome the classical limits and to reach the more fundamental Heisenberg limit
[GLM06]. A paradigmatic example is given by the so-called “N00N states”, i.e. max-
imally entangled N-particle states, which in ideal conditions allow the interferometrical
estimation of an unknown phase with a precision scaling as N−1: the Heisenberg limit.

In parallel, the tools developed within quantum information have found application
in the investigation of the foundations of quantum mechanical theory. In this context, an
open question is related with the fundamental mechanisms leading to the transition from
the quantum dynamics of the microscopic world to the classical dynamics of the macro-
scopic world. The observation of quantum properties in systems of growing size has been
the object of a great research effort in the last few years. Among quantum properties,
entanglement has been recognized by Schrödinger [Sch35] as “the characteristic trait of

11



12 INTRODUCTION

quantum mechanics”. Entanglement is given by the presence of correlations between two
physical systems which have no corresponding classical analogue. The main experimen-
tal challenge to overcome in order to observe entanglement in multiparticle systems is
the uncontrolled interaction with the environment, that is, decoherence [Zur03], which
is responsible for the progressive reduction of quantum features and limits the capability
of observing these properties. Indeed, the coupling of a physical system with an exter-
nal environment becomes stronger and stronger as the size of the system increases, thus
leading to a faster decrease in coherence properties of the state. Alongside, in order to ob-
serve quantum features it is necessary to employ quantum measurements with sufficient
resolution to catch the quantumness of the investigated state. Despite the great theoreti-
cal and experimental progress obtained in the last few years, the observation of quantum
properties is still limited to systems of only few particles.

Several experimental platforms have been developed to implement quantum systems
for both fundamental tests and application to quantum information protocols. As relevant
examples, quantum systems have been implemented by adopting as information carriers
photons, cold atoms, trapped ions, or superconducting devices. Each platform presents
its advantages and weak points. Quantum optics has represented a valuable tool for the
practical implementation of quantum information tasks. Indeed, photonic field possess-
ing quantum features can be easily generated, manipulated and detected with the present
technology. For example, in order to generate entangled states, the process of sponta-
neous parametric down-conversion provides an efficient method to generate high purity
entangled photon pairs in several degrees of freedom, including polarization, linear mo-
mentum or angular momentum. Furthermore, the measurement of photonic fields can be
performed efficiently by adopting different techniques. Indeed, single-photons can be ef-
ficiently detected by single-photon counting modules commercially available, while the
phase properties of an optical field can be probed with the homodyne detection technique.
All these properties have led to the implementation of various tests of quantum mechan-
ics, including the violation of Bell’s inequalities, and to the implementation of several
quantum information protocols.

The present thesis is aimed at investigating the possibility of performing both quan-
tum mechanical tests and quantum information protocols with multiphoton states. We
adopt as a platform the quantum states generated by an optical parametric amplification
process. The main idea beyond this approach is given by the capability of the ampli-
fication process to broadcast the features of the input state into a system with a larger
number of photons. This property will be applied to analyze the possibility of observ-
ing quantum effects when the number of particles in the system progressively increases.
We begin by considering a single-photon input into the amplifier, and we show that the
states generated in this configuration present a significant resilience with respect to the
action of detection losses. From a fundamental point of view, the resilience to losses of
such states represents a tool for the investigation of quantum phenomena in a system of
increasing size, thus allowing to explore the transfer of quantum properties from a sin-
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gle particle state to a collective multi-particle one. As a second system, we analyze the
bipartite system which is obtained by amplification of a single-photon belonging to an
entangled pair, thus generating an hybrid microscopic-mesoscopic system. We consider
the possibility of detecting the entanglement in this configuration when the number of
photons in the mesoscopic part progressively increases. This investigation requires a de-
tailed analysis on the various classes of entanglement and nonlocality tests that can be
performed in a joint microscopic-macroscopic bipartite system. After the development
of a first insight on this problem with a discrete variable approach, continuous-variables
collective measurements will be investigated. Specific attention will be devoted to the
entanglement criteria based on the quadrature phase-space operators. The tools devel-
oped with this continuous-variables approach will be applied in a different configuration,
where both the two subsystems are composed by a multiphoton field. This system can be
generated by adopting a parametric amplification process in a noncollinear configuration
in the spontaneous emission regime. We investigate the possibility of observing nonlocal
features in this class of states when both coarse-grained and high efficiency continuous-
variables measurements are adopted. The possible applications in quantum information
tasks of the quantum states generated through the optical parametric amplifier will be then
investigated. Among the various fields, attention will be devoted to quantum metrology
[GLM06] in presence of a lossy apparatus. We show that by performing an amplifica-
tion process we can preserve the information on the optical phase to be measured from
the action of losses, unavoidable in any experimental implementation. More specifically,
this approach relies on amplifying the probe state after the phase information has been
acquired, increasing its robustness with respect to losses.

The organization of the present thesis is reported in Fig. 1, which is mainly composed
by three Parts. In Part I, we introduce the fundamental concepts of quantum information
and quantum optics. In Chap. 1 we review the fundamental concepts of quantum infor-
mation theory. Then, in Chap. 2 we introduce the process of parametric down conversion,
and we discuss the two configurations adopted throughout the present work. Then, in
Chap. 3 we introduce the basic concepts of continuous-variables quantum optics, by dis-
cussing the representation and the measurement of quantum states in the phase-space.

In Part II, we discuss the application of the optical parametric amplifier to perform
fundamental tests of quantum mechanics. More specifically, the capability of the ampli-
fier to produce an output field with increasing number of photons renders this device a
suitable platform to investigate the possibility of observing quantum properties in mul-
tiparticle systems. In Chapter 4 we begin by considering the multiphoton optical field
generated by optical parametric amplification when injected by a single photon. The
resilience to decoherence of such states is investigated by adopting different criteria, re-
lying on both discrete- and continuous-variables. Then, in Chapters 5 and 6 we ana-
lyze the amplification of a photon belonging to an entangled photon pair. We investigate
how the initial entanglement between the two photons before the amplification is broad-
casted by the action of the amplifier, and we analyze the detrimental effect of decoher-
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Figure 1: Scheme of the thesis.

ence. This analysis considers different criteria based on discrete variables. Furthermore,
we develop an hybrid approach relying on discrete-variables and continuous-variables
measurements combined on the same system in order to exploit the advantages of both
techniques. The results obtained for the hybrid approach motivated the analysis on a
different platform, which consists in a parametric down-conversion source working in a
bipartite multiphoton-multiphoton configuration. This is analyzed in Chapter 7, where
the possibility of violating a Bell’s inequality in a macroscopic-macroscopic configura-
tion is considered by exploiting both low resolution and high resolution measurements.
Finally, the analysis of the parametric amplifier within the context of fundamental theory
is concluded in Chapter 8. We report the experimental implementation of a fundamental
process, that is, single-photon addition, which provides a relevant resource for several
continuous-variables quantum information protocols. This experiment, performed at the
Quantum Optics Group of Institut d’Optique in Paris, has been focused on characterizing
the nongaussianity of the photon addition process.

In Part III, we exploit the results obtained in Part II to apply the optical parametric
amplifier to phase estimation tasks. Indeed, the resilience to losses of the multiphoton
states generated by parametric amplification can provide a useful platform for real-world
sensing applications. In Chapter 9 we report the experimental implementation of a phase
estimation protocol performed with single photon probes, which permits to obtain a sig-
nificant enhancement in presence of detection losses. This protocol is generalized in
Chapter 10 for a coherent probe state.
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Chapter 1

Elements of quantum information
theory

The aim of quantum information is to develop suitable strategies to exploit quantum me-
chanics in order to increase the performance of several tasks, such as quantum compu-
tation, communication, cryptography or sensing. In the present chapter we introduce the
basic element of quantum mechanics and quantum information theory. We first discuss the
representation of quantum states in terms of density operators, and we then brielfy review
the general formalism of quantum maps which describes their time evolution. Then, after
introducing the theory of quantum measurements, we discuss the quantum cloning task,
which is permitted by quantum mechanics only in an approximate fashion. Among the
different characteristic features of quantum theories, entanglement and nonlocality rep-
resent one of the most fascinating questions. In this chapter we introduce the concept of
entangled states, and we discuss the Bell’s theorem for a bipartite system. The detection
of entanglement and nonlocality in multiphoton systems will be addressed in Part II by
adopting a specific optical system. Finally, in Part III we discuss a specific application
in quantum parameter estimation, where the aim is to estimate an unknown parameter
by exploiting quantum resources, which allow for increased performances with respect to
classical strategies. The discussed elements represent the building blocks for the analysis
and the application of quantum mechanics in a quantum information context.

1.1 Representation of quantum states

In this section we briefly introduce the density operator formalism, which allows to de-
scribe any quantum mechanical state. According to the postulates of quantum mechanics,
the pure state of a physical system is defined by a vector in the corresponding Hilbert
space H . Such postulate can be generalized in the case of statistical ensembles, where a
general state is represented by an operator ρ̂ in H . The latter corresponds to the incoher-
ent mixture of the state vectors of the ensemble elements.

17
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1.1.1 State vector and the quantum bit
We begin by considering the pure state case. A general pure state |ψ〉 in an d-dimensional
Hilbert space H can be written as:

|ψ〉=
d

∑
n=0

cn|n〉, (1.1)

where {|n〉} is an orthonormal set of state vectors in H , cn are the coefficient defined by
the scalar product cn = 〈n|ψ〉. The normalization condition for the state |ψ〉 is given by:
〈ψ|ψ〉= ∑

d
n=0 |cn|2 = 1.

As a specific example, we consider a 2-dimensional system. A general state in this
Hilbert space is defined as the quantum bit, or qubit, which represents the quantum exten-
sion of the classical bit: a two levels system performing as the building block of commu-
nication and computational protocols. A general pure state of this system reads:

|ψ〉= cos(θ/2)|0〉+ eıφ sin(θ/2)|1〉, (1.2)

where {|0〉, |1〉} is the orthonormal set in the 2-dimensional Hilbert space that defines the
computational basis. The state of a bidimensional system admits a representation in terms
of a spherical surface, called the Bloch sphere [NC00]. The state |ψ〉 can be represented
as a point on the surface of a unitary radius, defined by the polar angle θ and by the
azimuthal angle φ [see Fig. 1.1].

Bloch sphere

Figure 1.1: Qubit representation in the
Bloch sphere. Pure state are identified by
the points in the surface of unitary radius,
while mixed states are identified by the in-
ternal points of the sphere. The polar and
azimuthal angles θ and φ determine the po-
sition in spherical coordinates with respect
to the poles given by the vectors of the com-
putational basis {|0〉, |1〉}.

1.1.2 Mixed states: the density matrix
The pure states formalism does not permit to describe statistical ensemble of quantum
states. Suppose that the system under consideration is prepared in the state |ψi〉 with
probability pi. The general state of the system can be described by adopting the density
operator ρ̂ [Sak03]:

ρ̂ = ∑
i

pi|ψ〉i 〈ψ|i, where ∑
i

pi = 1, (1.3)

which for pure state reduces to ρ̂ = |ψ〉〈ψ|. The density operator is characterized by the
following properties:
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1. ρ̂ is Hermitian, thai is, ρ̂† = ρ̂ .

2. The density operator is normalized: Trρ̂ = 1.

3. For pure states Tr[ρ̂2] = 1 holds, while for mixed state Tr[ρ̂2]< 1.

Average values of an observable Ô on a state ρ̂ can be evaluated as:

〈Ô〉= Tr[ρ̂Ô] (1.4)

In the case of a d = 2 dimensional system, the density operator of a general state reads:

ρ̂ =
1
2
(
1̂+ s · σ̂σσ

)
. (1.5)

In this expression, s = (cosφ sinθ ,sinφ sinθ ,cosθ) is the vector which defines the posi-
tion on the sphere. The vector σ̂σσ has the Pauli operators σ̂i (i = 1, . . . ,3) and the identity
operator 1̂ = σ̂0 (i = 0) as elements. Such operators represent a basis for any density
operator in a d = 2-dimensional Hilbert space. According to this definition, the density
operator ρ̂ can be represented as a point in the Bloch sphere, with radius s, polar angle θ

and azimuthal angle φ [see Fig. 1.1].
The definition of density operator can be directly extended to a multipartite system in

a Hilbert space H = H1⊗ ·· ·⊗Hn, by considering the |ψ〉i states in Eq. (1.3) as the
state vectors in the full Hilbert space H . When measuring a physical observable Ô j for
the subsystem j alone, one can define the reduced density operator describing the state of
subsystem j as:

ρ̂ j = Trk 6= j[ρ̂] (1.6)

that is, by tracing the density operator over all other Hilbert space Hk 6= j.

1.2 Quantum processes and time evolution
In the present section we describe the formalism for the time evolution of a physical
system. For closed systems, the time evolution is described by the Schrödinger equation,
which permits to obtain the state vector of a physical system at time t according to the
action of a unitary operator on the initial state. Such a description in terms of unitary
operators cannot be adopted in the case of an open system, that is, interacting with an
additional system not accessible by the observer. In this case, the time evolution of the
system is described by a completely positive map acting on the density operator.

1.2.1 Unitary evolution of closed systems
The properties of a closed physical system are defined by the quantum mechanical exten-
sion Ĥ of the classical Hamiltonian H . The operator Ĥ acts as the generator of the
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time evolution of such a system according to the Schrödinger equation:

ıh̄
∂ |ψ〉

∂ t
= Ĥ |ψ〉; ∂ ρ̂

∂ t
=− ı

h̄
[Ĥ , ρ̂], (1.7)

where [Ĥ , ρ̂] is the commutator between the two operators. The time evolution at a fixed
time t of a state vector in the initial state |ψ(0)〉 and on a density matrix ρ̂(0) at t = 0 can
be obtained as:

|ψ(t)〉= Û(t)|ψ(0)〉; ρ̂(t) = Û(t)ρ̂(0)Û†(t). (1.8)

The expectation value at time t of a physical observable Ô, can be then evaluated as
the average value over the density matrix ρ̂(t), or equivalently, we can consider that the
time evolution modifies the action of the observable Ô without affecting the state ρ̂(0).
We obtain the two equivalent formulations:

〈Ô〉(t) = Tr[ρ̂(t)Ô] = 〈Ô〉(t) = Tr[ρ̂Ô(t)]. (1.9)

Here, Ô(t) = Û†(t)ÔÛ(t) is the time evolution induced by the Heisenberg equation:

∂ Ô
∂ t

=
ı
h̄
[Ĥ , Ô]. (1.10)

The two representations are called the Schrödinger and the Heisenberg picture respec-
tively.

1.2.2 Nonunitary evolution: quantum maps

Unitary operators with Hamiltonian generators describe the time evolution of closed phys-
ical systems. In general, for any open quantum system it is not possible to describe time
evolution in terms of unitary operators acting on the system. However, such evolution
can be described in terms of quantum maps E , which must obey the following constraints
[NC00]:

(1) Hermiticity - If ρ̂† = ρ̂ , then ρ̂ ′ = E [ρ̂] must satisfy (ρ̂ ′)† = ρ̂ ′.

(2) Trace preserving - If Trρ̂ = 1, then ρ̂ ′ = E [ρ̂] must satisfy Trρ̂ ′ = 1.

(3) Complete positivity - Consider a density matrix acting on a Hilbert space HA. A
map E is completely positive (CP) if for any extension of the Hilbert space HA⊗
HB the map EA ⊗ 1B is positive. Recall that a map is positive if ρ̂ ′ = E [ρ̂] is
nonnegative when ρ̂ is nonnegative.

(4) Linearity - If ρ̂ = λρ̂1 +(1−λ )ρ̂2, then E [ρ̂] = λE [ρ̂1]+ (1−λ )E [ρ̂2].
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It can be demonstrated that [Kra83] for a map E which obeys the constraints (1)− (4), it
is always possible to represent the map in the following form:

E [ρ̂] = ∑
µ

M̂µ ρ̂M̂†
µ , (1.11)

where {M̂µ} is a set of operators satisfying ∑µ M̂†
µM̂µ = 1̂. Note that the number of

operators in the set {M̂µ} in general is not bounded by the dimension of the Hilbert space
HA. Such theorem is known as the Kraus representation theorem [Kra83], and provides a
powerful tool to represent the time evolution of a general open system. The action of the
map E in the Kraus representation can be also expressed in terms of the action of a rank-4
tensor on the density matrix ρ̂ . By choosing an orthonormal basis {|i〉}, the elements of
the density matrix E [ρ̂] can be evaluated as:(

E [ρ̂]
)

l,k = ∑
n,m

E n,m
l,k ρn,m, (1.12)

where ρ̂ = ∑n,m ρn,m|n〉〈m|, and:

E n,m
l,k = ∑

µ

〈l|M̂µ |n〉〈m|M̂†
µ |k〉. (1.13)

1.3 Quantum measurements
Within the theory of quantum mechanics, quantum measurements require a different treat-
ment with respect to the unitary time evolution of states and operators. In this section we
briefly describe the formulation of quantum measurements, and we discuss the general
formalism to investigate the optimal extraction of information from a quantum system.

1.3.1 Measurement theory
In the previous section we analyzed the problem of the time evolution induced by quantum
processes, starting from the unitary evolution of closed quantum systems and moving
forward to a general treatment of quantum maps. In quantum mechanics, the measurement
problem requires a different approach, since it includes the action of the external observer.
To this end, the problem of quantum measurements can be described starting from one of
the postulates of quantum theory.

The action of a measurement apparatus on a quantum state is described by a set of
operators {M̂ξ}, where the index ξ stands for the possible different outcomes of the mea-
surement. The general scheme for the measurement process is reported in Fig. 1.2. When
the measurement described by the set of operators {M̂ξ} is performed, the outcome ξ can
occur with probability:

p(ξ ) = 〈ψ|M̂†
ξ

M̂ξ |ψ〉; p(ξ ) = Tr(M̂†
ξ

M̂ξ ρ̂). (1.14)
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The quantum state of the system after the measurement when the outcome ξ has occurred
is described by the action of the projection operator M̂ξ on the original state (|ψ〉 for pure
state, ρ̂ for mixed states) [NC00]:

|ψξ 〉=
M̂ξ |ψ〉√
〈ψ|M̂†

ξ
M̂ξ |ψ〉

; ρ̂ξ =
M̂ξ ρ̂M̂†

ξ

Tr(M̂†
ξ

M̂ξ ρ̂)
. (1.15)

No restriction has to be imposed on the number of the operators, which can exceed the
dimensionality of the Hilbert space. The only constraint is given by the completeness
relation:

∑
ξ

M̂†
ξ

M̂ξ = 1̂, (1.16)

which can be alternatively expressed as:

∑
ξ

p(ξ ) = ∑
ξ

〈ψ|M̂†
ξ

M̂ξ |ψ〉 = 1. (1.17)

Such completeness relation corresponds to the law of conservation for probabilities.

  

Figure 1.2: General scheme corresponding to a
quantum measurement. The measurement de-
vice is modeled by a set of operators {M̂ξ} sat-
isfying the properties reported in the text. The
outcome ξ is obtained with probability p(ξ ),
while the measured state is transformed to ρ̂ξ

conditioned to the outcome ξ .

1.3.2 Von Neumann projective measurements
A relevant class of quantum measurement is provided by the Von Neumann [vN55] mea-
surement operators, which describe projective measurements. They are represented by an
Hermitian operator M̂ with spectral decomposition:

M̂ = ∑
ξ

ξ P̂ξ . (1.18)

The P̂ξ operators are projection operators, corresponding to the subspace of M̂ defined
by the eigenvalue ξ . Hence, these operators satisfy the identity P̂ξ P̂ζ = δξ ,ζ P̂ξ . The
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Von Neumann projectors {P̂ξ} can be recovered from the general measurement operators
{M̂ξ} by adding the latter constraint. Finally, the expectation value corresponding to the
measurement of M̂ takes the form:

E(M̂) = ∑
ξ

ξ p(ξ ) = 〈ψ|M̂|ψ〉. (1.19)

1.3.3 Positive Operator-Valued Measurements
In some classes of measurements, the system is destroyed by the process itself. In these
cases, it is possible to recover only the statistics of the measurement outcomes and the
process is described by the positive operator-valued measurements (POVM) formalism.
Let us now define the following set of operators:

Êξ = M̂†
ξ

M̂ξ (1.20)

Such operators are defined as the elements of POVM and they represent a complete set
of positive operators satisfying the completeness relation ∑ξ Êξ = 1̂. The probability
corresponding to the outcome ξ can be evaluated as:

p(ξ ) = 〈ψ|Êξ |ψ〉. (1.21)

Furthermore, such set {Êξ} fully characterizes the measurement process. Starting from
the Êξ operators the corresponding measurement operators M̂ξ can be obtained as M̂ξ =√

Êξ [NC00].

1.3.4 The Neumark’s theorem
Here, we briefly discuss the connection between POVMs and Von Neumann projective
measurements. More specifically, any POVM corresponds to a standard projective mea-
surement in an extended Hilbert space.

Let us consider a bipartite system in the Hilbert space H = HA⊗HB. Orthogonal
measurement on the composed Hilbert space are defined by a set of projection operators
satisfying:

∑
ξ

P̂ξ = 1̂AB. (1.22)

Let us consider an initial state of the form:

ρ̂AB = ρ̂A⊗ ρ̂B. (1.23)

The probability of occurrence of outcome ξ can be evaluated according to Eq. (1.14):

p(ξ ) = TrAB[P̂ξ (ρ̂A⊗ ρ̂B)]. (1.24)
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Suppose now, that the observer has access only to subsystem A. Then, the probability of
outcome ξ reads:

p(ξ ) = TrA{TrB[P̂ξ (ρ̂A⊗ ρ̂B)]}= TrA[Êξ ρ̂A]. (1.25)

The elements of the Êξ operators are defined according to:

(Eξ ) ji = ∑
µ,ν

(Pξ ) jν ,iµ(ρB)µν . (1.26)

where the operators are expanded, according to (O)ab = 〈a|Ô|b〉, in terms of the orthonor-
mal bases {|i〉A} and {|µ〉B} for the systems A and B respectively. It can be then demon-
strated that the set of operators {Êξ} satisfies the following properties:

1. Hermiticity: (Eξ )
∗
ji = (Eξ )i j.

2. Positivity: A〈ψ|Êξ |ψ〉A ≥ 0.

3. Completeness: ∑ξ Êξ = 1̂A.

However, no constraints are imposed on the number of operators of the set {Êξ} in terms
of the dimension of the Hilbert space A accessed by the observer. Hence, a projective
measurement on a bipartite Hilbert space is equivalent to a corresponding POVM in one
of the two subsystem. The Neumark’s theorem extends this results by demonstrating that
any set of POVM operators {Êξ} can be realized in terms of projective measurements on
a larger Hilbert space. A detailed discussion on the Neumark’s theorem can be found in
Ref. [Per93].

1.3.5 Fidelity between quantum states
A relevant parameter in measurement theory is the definition of overlap between quantum
states. For pure states {|ψ〉, |χ〉}, the overlap is defined by the scalar product |〈ψ|χ〉|2.
For mixed state, the parameter which quantifies the overlap between two density matrices
ρ̂ and σ̂ is given by the fidelity F , satisying the following properties:

1. F (ρ̂, σ̂) = |〈ψ|χ〉|2 for pure states, with ρ̂ = |ψ〉 〈ψ| and σ̂ = |χ〉 〈χ|.

2. 0≤F (ρ̂, σ̂)≤ 1, where F (ρ̂, σ̂) = 1 iff ρ̂ = σ̂ .

3. Symmetry: F (ρ̂, σ̂) = F (σ̂ , ρ̂).

4. Convexity: if σ̂1, σ̂2 ≥ 0 and p1 + p2 = 1 then the following holds: F (ρ̂, p1σ̂1 +
p2σ̂2)≥ p1F (ρ̂, σ̂1)+ p2F (ρ̂, σ̂2).

5. F (ρ̂, σ̂)≥ Tr(ρ̂σ̂).
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6. Multiplicativity: F (ρ̂1⊗ ρ̂2, σ̂1⊗ σ̂2) =F (ρ̂1, σ̂1)F (ρ̂2, σ̂2) where 1 and 2 label
two different Hilbert spaces.

7. Non-decreasing: F (ρ̂, σ̂) is invariant under unitary operations. Furthermore, for
any measurement process which transforms {ρ̂, σ̂} in {ρ̂ ′, σ̂ ′}, the following in-
equality holds F (ρ̂ ′, σ̂ ′)≥F (ρ̂, σ̂).

The fidelity F between two quantum states satisfying properties 1-7 is given by the
following definition [Joz94]:

F (ρ̂, σ̂) = Tr2
(√

ρ̂
1
2 σ̂ ρ̂

1
2

)
. (1.27)

The previous definition reduces to F (|ψ〉, ρ̂) = 〈ψ|ρ̂|ψ〉 when one of the system is in a
pure state, and to F (|ψ〉, |χ〉) = |〈ψ|χ〉|2 for the case of two pure states.

1.3.6 Distance between quantum states

In this section we review the definition of a metric in the mixed state’s space which is
based on the definition of fidelity of Eq. (1.27). In order to correctly define a true distance,
the following properties have to be fullfilled:

(i) Positivity: d(x,y)≥ 0, ∀(x,y) ∈H .

(ii) Nondegenerate: d(x,y) = 0 iff x = y.

(iii) Symmetry: d(x,y) = d(y,x), ∀(x,y) ∈H .

(iv) Triangular inequalities: d(x,y)≤ d(x,z)+d(z,y), ∀(x,y,z) ∈H .

Starting from these properties, several distances in the space of mixed states can be
identified. The Bures distance is defined as [Bur69, Hub92, Hub93]:

DB(ρ̂, σ̂) =

√
2−2[F (ρ̂, σ̂)]1/2. (1.28)

The distance DB will be exploited in Chapter 4 in the analysis of the resilience to deco-
herence in macroscopic quantum superpositions. This quantity is bounded between 0 and√

2, being DB = 0 when ρ̂ = σ̂ and DB =
√

2 for orthogonal states. Finally, the Bures
distance can be normalized to unity according to the definition:

D(ρ̂, σ̂) =
DB(ρ̂, σ̂)√

2
=

√
1− [F (ρ̂, σ̂)]1/2. (1.29)
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1.3.7 Optimal extraction of information

When dealing with a classical system, the measurement process can be performed as-
suming that the state of the system remains unperturbed. In the quantum case, the mea-
surement process necessarily acts onto the state under analysis. Hence, a trade-off is
established between the amount of information extracted and the amount of disturbance
introduced by the process.

Let us consider a system of N identical d-level systems prepared in an input state
|φ〉 [MP95]. The measurement performed on the system can be modeled by a two-stage
process, as shown in Fig. 1.3. As a first step [Fig. 1.3 (a)], the system in the state

(a) (b)

meter meter

measurement 
device

measurement 
device

Figure 1.3: General measurement scheme for the estimation of an unknown state. (a)
The input state |φ〉 evolves according to the interaction with the measurement device. (b)
The observer reads the output state of the measurement device |ψ i

f 〉MD in order to extract
information on the input state.

|φ〉 interacts with the measurement apparatus, while in a second step [Fig. 1.3 (b)] the
state of the apparatus is read to retrieve the outcome of the measurement. The amount of
information which can be extracted from the unknown state is quantified by the fidelity
between the guessed state and the real state, averaged over all possible input states. The
maximization over all POVMs leads to the optimal state estimation fidelity:

F opt
se (N) =

N +1
N +d

. (1.30)

which represents the maximum amount of information which can be extracted from the
system. The algorithm to determine the optimal POVM which permits to saturate the
bound of Eq. (1.30) has been found in [DBE98] for d = 2, corresponding to a set of
spin-1/2 particles. These results can be extended by considering a subset of all possible
input states. A relevant example is provided by the equatorial qubits, which are defined
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by a single parameter ϕ according to:

|ϕ〉= 1√
2
(|0〉+ eıϕ |1〉) . (1.31)

For this subset the optimal estimation fidelity reads:

F opt
pe (N) =

1
2
+

1
2N+1

N−1

∑
i=0

√(
N
i

) (
N

i+1

)
. (1.32)

We observe that the optimal fidelity for the complete set of spin-1/2 particles is lower
than the fidelity for the subset of equatorial qubits [see Fig.1.4], since in the second case
a partial a-priori knowledge on the input state is available. This knowledge reduces the
number of states accesible to the system thus enhancing the fidelity obtained for a fixed
amount of information gained on the state.

0 5 10 15 20
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0.7

0.8

0.9

1
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F

 

 

universal state estimation
phase!covariant state estimation

Figure 1.4: Comparison between the 1→ N
optimal estimation fidelities for the univer-
sal case F opt

se (N) and the phase-covariant
case F opt

pe (N). Note that the fidelity for
the phase-covariant case is always above
the universal case due to the partial a-priori
knowledge on the input state.

As said, the amount of information extracted from a system is related to the degree of
disturbance introduced by the measurement [Fig. 1.5 (a)]. Let us consider a single copy
d-level system in an input state |ψ〉. We can define a density matrix ρ̂G, corresponding
to the estimated state, and the density matrix ρ̂out at the output port of the measurement
device. The information gain on the state of the system is defined by the fidelity:

G = 〈ψ|ρ̂G|ψ〉. (1.33)

In parallel, the degree of perturbation introduced on the system is quantified by:

F = 〈ψ|ρ̂out |ψ〉. (1.34)

If no operation is performed on the state the input state is left unperturbed, corresponding
to F = 1, while no knowledge is extracted about the system, correspoding to G = 1

d .
On the contrary, an optimal measurement leads to the maximum information gain G =

2
1+d , with the impossibility of performing any additional operation on the output state:
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F = 2
1+d . In Ref. [Ban01] it has been demonstrated that in general the two quantities are

related by the following inequality:√
F − 1

d +1
≤
√

G − 1
d +1

+

√
(d−1)

(
2

d +1
−G

)
. (1.35)

Such bound, experimentally proven in Ref. [SRD+06], imposes a limit on the maximum
amount of information attainable for a given degree of perturbation introduced by the
measurement [Fig. 1.5 (b)].
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Figure 1.5: (a) Conceptual scheme of the measurement process. The output quantum
channel describes the disturbance introduced by the measurement, while the output clas-
sical channel describes the information gain. (b) Plot of the optimal curve expressing the
trade-off between the information gain G and the disturbance F introduced by a quantum
measurement. Shaded area corresponds to the forbidden region according to Eq. (1.35).

1.4 Quantum cloning
In quantum information theory, one of the main difference between classical and quantum
physics concerns the possibility of copying unknown bits or qubits. Classically, it is
always possible to produce an arbitray number of exact copies of an unknown input bit.
On the contrary, in the quantum domain it is not possible to produce two exact copies of
an unknown arbitrary input qubit: the No-Cloning theorem [Ghi81, WZ82, Die82]. Such
a feature is connected to the impossibility of deterministically estimating the quantum
state when only a single copy is available. Indeed, the capability of perfectly copying an
unknown state would imply the possibility of estimating the state with fidelity F → 1,
violating the bound of Eq. (1.30). However, the cloning process can be still performed
introducing some errors in the process, that is, the fidelities between the output copies and
the input state are lower than 1.
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1.4.1 Universal optimal cloning

As said, while the No-Cloning theorem demonstrates the impossibility of obtaining two
identical copies of an unknown arbitrary state, such operation can be still performed by
obtaining two output copies possessing a fidelity F ′ < 1 with respect to the input state.
The process saturating the maximum fidelity when no a-priori knowledge on the state is
available is known as universal optimal cloning machine.

The map describing the universal 1→ 2 cloning machine has been reconstructed in
Refs. [BH96, BVE+98] for spin-1/2 systems. The necessary resources for this process
are the input qubit to be cloned |ψ〉, an empty target qubit |0〉 and an ancillary system A
in the state |X〉. The action of the cloning is described by a unitary evolution of the form:

|ψ〉|0〉|X〉 → |Ψ〉= Û |ψ〉|0〉|X〉. (1.36)

We now perform the following assumptions:

(i) The two output clones are symmetric. This means that the reduced density matrix
for the two clones ρ̂(1,2) = Tr(2,1),A (|Ψ〉 〈Ψ|) must satisfy ρ̂1 = ρ̂2.

(ii)-(a) The cloning device does not change the direction in the Bloch sphere, that is, the
Bloch vector of the clones satisfies s(1,2) = ηsψ .

(ii)-(b) The output fidelity of the clones is independent on the input state, that is, Tr
(
ρ̂ψ ρ̂1

)
=

const.

Under these assumptions, the action of the cloning device reduces to the following map:

ρ̂1,2 = η |ψ〉 〈ψ|+(1−η)
1̂

2
, (1.37)

where η acts as a shrinking factor of the original vector in the Bloch sphere, which evolves
from the input state |ψ〉 〈ψ| = 1

2

(
1̂+ s · σ̂σσ

)
to the output state ρ̂ = 1

2

(
1̂+ηs · σ̂σσ

)
. Note

that such result is imposed by the assumptions (i)-(ii) on the rotational invariance of the
cloning machine.

The unitary operation can be derived from maximizing the cloning fidelity F =
〈ψ|ρ̂1|ψ〉 under the constraints (i)-(ii) for a generic unitary operation. The cloning fi-
delity reads:

F =
1
2
(1+η). (1.38)

The optimal value for this quantity is F = 5
6 , corresponding to η = 2

3 . Such result has
been extended [BEM98] to the case where M copies are obtained by acting on N input
states, leading to:

F opt
univ(N,M) =

NM+N +M
M(N +2)

. (1.39)
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A plot of the 1→M case is reported in Fig. 1.6. Such result has been generalized in Ref.
[Wer98] for d-level systems.

We conclude by observing that the cloning fidelity can be further related to the state
estimation fidelity according to [BEM98, BA06]:

F opt
univ(N,∞) = F opt

se (N). (1.40)

This shows that the cloning fidelity from N copies of a system is equivalent to the state
estimation fidelities of the N copies.

1.4.2 Phase-covariant optimal cloning
We conclude the discussion on the quantum cloning problem by analyzing the case in
which some a-priori knowledge on the input state is present. More specifically, we con-
sider the case in which the input state in the cloning device is restricted to the subset of
equatorial qubits of Eq. (1.31). Such a device, since the properties of the input state are
defined by the phase factor ϕ , is called the phase-covariant optimal cloning machine. We
expect, due to the reduced subset of possible input states, a higher cloning fidelity in this
case with respect to the universal case.

By following an analogous approach to Ref. [BEM98], imposing the isotropy of the
cloning machine, the output state reads [BCDM00]:

ρ̂ = ηxy(N,M)|ϕ〉 〈ϕ|+(1−ηxy(N,M)) ,
1̂

2
(1.41)

where ηxy(N,M) is the phase-covariant shrinking factor. The optimal fidelity for this
cloning device reads [BCDM00]:

F opt
pcc(N,M) =

1
2
+2M−N−1

∑
N−1
l=0

√(
N
l

)(
N

l +1

)

∑
M−1
j=0

√(
M
j

)(
M

j+1

) . (1.42)

In a following step, it was demonstrated [DP01, DM03] that a different map can lead
to a cloning fidelity in the 1→ 3 case greater than the limit imposed by Eq. (1.42). The
optimal fidelity in the 1→M case has been derived, and it reads:

F opt
pcc(1,M) =

1
2

(
1+

M+1
2M

)
, for M odd; (1.43)

F opt
pcc(1,M) =

1
2

(
1+

√
M(M+2)

2M

)
, for M even. (1.44)

In Fig.1.6 we compare the 1→ M fidelities of the universal and phase-covariant cases.
As said, the fidelity F opt

pcc in the phase-covariant case is greater than the fidelity F opt
univ in

universal case.
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1.5 Quantum entanglement and nonlocality

Quantum mechanics presents some peculiar properties which do not have a corresponding
counterpart in classical physics. Among these properties, entanglement was defined by
Schrödinger as “the characteristic trait of quantum mechanics” [Sch35]. This characteris-
tic of quantum mechanics was discovered by Einstein, Podolsky and Rosen in the famous
EPR paper [EPR35], defining the emergence of quantum correlations in some classes of
composite systems as “spooky action at distance”. This property represents both a fun-
damental aspect of quantum mechanics and a valuable tool for the implementation of
quantum-enhanced information protocols. In the last decades, a strong research effort
has been devoted to the generation and the characterization of entangled states with in-
creasing number of photons, as well as its exploitation in different areas such as quantum
computation [VDB+10], communication [UTSM+07] or cryptography [BB84, Eke91].

In the EPR paper, the authors provide an argument to demonstrate the inconsistency
of quantum mechanics under the assumptions of locality and realism. This argument led
to the formulation of the Bell’s theorem [Bel64] in terms of the so-called local hidden
variables. The violation of the Bell’s theorem provides the confutation of all hidden vari-
ables models. Several experimental implementations of nonlocality tests relying on dif-
ferent classes of inequalities have been performed with several platforms, such as photons
[ADR82, AGR82] or atoms [MMM+08]. However, up to now no conclusive experiment
has been reported since all these implementations rely on some supplementary assump-
tions, leading to loopholes.

1.5.1 Quantum entanglement of bipartite systems

A density matrix ρ̂AB of a bipartite Hilbert space H = HA⊗HB is separable if and only
if it can be written in the following form:

ρ̂
sep
AB = ∑

i
pi ρ̂

i
A⊗ ρ̂

i
B, with ∑

i
pi = 1, (1.45)
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otherwise is entangled. For pure states, the separability condition of Eq. (1.45) reduces
to:

|Ψ〉AB = |ψ〉A⊗|χ〉B. (1.46)

This means that a pure state in a bipartite Hilbert space is separable when its wave-
function can be written as the product of two different uncorrelated functions for the
single subspaces.

To better understand the underlying physics, let us consider a simple case of bipartite
entangled state, that is, a singlet state of two spin-1/2 particles:

|ψ−〉= 1√
2
(| ↑〉1| ↓〉2−| ↓〉1| ↑〉2), (1.47)

where {| ↑〉i, | ↓〉i} are the projections along the σ̂z quantization axis, and i= 1,2 labels the
particle. For any choice of the quantization axis for the two particles 1 and 2, such state
cannot be written in the form of two separate contributions for the single particles alone,
thus being an entangled state. From Eq. (1.47) we observe that such state is characterized
by the presence of perfect anti-correlations in the spin degree of freedom. This means that
simultaneous measurement of the projection of the spin along the same quantization axis
for the particles always lead to opposite results. When measuring the spin projection for a
single particle alone, the results of the measurement are described by the reduced density
operator:

ρ̂
−
i = Tr j[|ψ−〉AB〈ψ−|] =

1
2
[| ↑〉i〈↑ |+ | ↓〉i〈↓ |], (1.48)

with i = 1,2 and j 6= i. Such operator describes the state of a completely mixed spin-1/2
particle. As a general statement, this means that for entangled states it is not possible
to describe the state of the joint system in terms of the states of the subsystems, but a
common description in the enlarged Hilbert space is necessary.

In general, it is not straightforward to determine whether a state in entangled or not.
A strong effort has been recently devoted to develop suitable criteria for the detection of
entanglement in bipartite systems. All these criteria can be grouped in two classes. The
first one relies on the complete reconstruction of the density matrix, and by subsequently
identifying the presence of entanglement on the reconstructed state. For example, the
Peres criterion [Per96], which is based on the partial transpose operation and which rep-
resents a necessary condition for separability, can be adopted as one of the possible tests
to be run on the complete density matrix. The second class of criteria is based on a set
of operators called entanglement witnesses [LKCH00]. In this case, one aims to define
a criterion which does not require the complete reconstruction of the state, but that can
be performed by applying a few measurements on the analyzed system. Several criteria
relying on this concept have been defined, allowing to develop different classes of entan-
glement inequalities [DGCZ00, KL05]. With this approach, one defines an entanglement
witness operator Ŵ whose average value is measured on the input state. In order for an
operator to be considered a witness, it must posses the following properties:
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1. For all separable states σ̂ , the average value of the witness operator is nonnegative:
Tr[σ̂Ŵ ]≥ 0.

2. It exists at least one entangled state ρ̂ for which the average value of the witness
operator is negative: Tr[ρ̂Ŵ ]< 0.

Hence, if one measures for a state ρ̂ ′ a negative average Tr[ρ̂ ′Ŵ ] < 0, such state ρ̂ ′ is
entangled. As a direct consequence, a single witness operator Ŵ in general does not
permit to detect all classes of entangled states, but needs to be appropriately defined for
the system under investigation. The main advantage of this approach is that entanglement
of a quantum system can be detected by performing only a few measurements on the state
and without the need of a complete reconstruction of the state.

1.5.2 Bell’s inequalities for bipartite systems: the Bell’s theorem

In the original EPR paper [EPR35], the authors formulated the following three hypotheses
for any reasonable physical theory:

(1) Reality. If without perturbing a system we can predict with certainty the value of
a physical observable, then it exists an element of physical reality associated to the
observable.

(2) Locality. Consider two systems A and B separated by a space-like distance. Any
action on A cannot influence the measurements performed on B, and conversely any
action on B cannot influence the measurements performed on A.

(3) Completeness. Any element of reality is represented in the physical theory.

EPR showed that for certain classes of states, that is, for certain entangled states, these
three assumptions are not consistent. Bell’s theorem [Bel64] is formulated in the attempt
of restoring the completeness of the theory in terms of a mathematical theory aimed at the
description of physical systems according to (1)-(2). Such theory is called local hidden
variable (LHV) theory, since the outcomes of a measurement operator are defined in terms
of a set of variables {λ} which are not accessible by the observer.

Let us now consider the case of two spin-1/2 particles described by a local hidden
variables theory. The measurement of the spin projection A=σσσ ·a along axis a on a single
particle is identified by the function A (a,λ ), where λ is the set of hidden variables for
the system and A (a,λ ) = ±1. This formulation describes a deterministic measurement
process, whose outcome occurs according to the pre-assigned value of λ [assumption (1)].
The average value of 〈A〉 is then described by the following integral:

〈A〉LHV
ψ =

∫
dλ µψ(λ )A (a,λ ), (1.49)
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where µ(λ ) represents the probability distribution for the hidden variable set λ , thus
expressing its inaccessibility to the observer. Correlations between two particles A and B
are expressed in a local hidden variable theory by:

ELHV(a,b) =
∫

dλ µ(λ )A (a,λ )B(b,λ ). (1.50)

Here, the measurement outcome for particle A is independent from the setting b of particle
B, and conversely for the measurement outcome of particle B. This condition expresses
the locality of the measurement process [assumption (2)]. Consider now the measurement
of the following quantity in a system composed by two particles:

S = A ·B+A ·B′+A′ ·B−A′ ·B′, (1.51)

where (A,A′) measure the spin projection of particle A on the direction (a,a′), and analo-
gously (B,B′) measure the spin projection of particle B on the direction (b,b′) [Fig. 1.7].
In LHV theories, we obtain the following bound for |〈S〉LHV|:

|〈S〉LHV| ≤ 2. (1.52)

state source

measurement 
settings

measurement 
settings BA

(a,a') (b,b')

+1

-1

+1

-1

Figure 1.7: Conceptual scheme for a Bell’s inequality test in a CHSH form. The state
source generates a two-particle spin state. Particles A and B are measured by two indipen-
dent measurement apparatuses, with measurement settings (a,a′) and (b,b′) respectively.

Let us now consider the quantum version of the same experiment. The state of the
system is identified by the state |ψ〉, while the average value of the correlations is obtained
by the quantum mechanical average:

EQM(a,b) = 〈ψ|(σ̂σσA ·a)⊗ (σ̂σσB ·b)|ψ〉. (1.53)

If the state |ψ〉 is chosen to be the singlet-state of Eq. (1.47), by appropriately choosing
the measurement settings (a,a′) and (b,b′) we obtain:

〈Ŝ〉= 〈Â⊗ B̂〉+ 〈Â′⊗ B̂〉+ 〈Â⊗ B̂′〉−〈Â′⊗ B̂′〉= 2
√

2. (1.54)

Hence, if the measured value of S is greater than 2, the inequality (1.52) is violated and
hence LHV models are confuted. This means that one of the hypotheses (1) or (2), that
is, realism or locality, has to be abandoned to describe physical systems.

When dealing with the practical realization, some issues may arise when all the hy-
potheses underlying the test are not satisfied. Three main classes of loopholes can be
identified:
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(a) Detection loophole. In presence of a nonunitary detection efficiency η , the de-
tectable correlations are decreased proportionally with η . This effect imposes a
lower bound for the minimum detection efficiency ηth necessary to obtain a gen-
uine violation of a Bell’s inequality. When η < ηth, a violation can be still obtained
by normalizing the correlations to the detected events. This can be performed by
assuming that the fraction of detected events is representative of the whole set of
data, that is, by a fair-sampling assumption. Experiments closing this loophole have
been performed by exploiting atomic qubits [MMM+08], which can be measured
with detection efficiency η ∼ 99%.

(b) Locality loophole. The two observers A and B must not communicate during the
measurement. Hence, the two measurement apparatuses have to be separated by
a spacelike distance. Experiments closing this loophole have been performed by
exploiting photonic qubits propagating up to space-like separation [WJS+98].

(c) Freedom of choice loophole. The measurement settings (a,a′) and (b,b′) must be
chosen independently in order to avoid communication between the observers A and
B. This loophole has been closed by exploiting detection apparatuses with random
choice of the measurement settings [WJS+98].

1.6 Quantum metrology and parameter estimation

In quantum information theory, a relevant task is the measurement of physical quanti-
ties. Quantum mechanics introduces some fundamental limits in the maximum precision
achievable in measuring an unknown parameter. In this context, two quantities can be
introduced to formulate the fundamental bounds: the classical and the quantum Fisher
information. Such bounds can be obtained by considering only classical or quantum re-
sources, showing that the employment of quantum probe states can lead to a significant
increase in the achievable resolution.

1.6.1 The parameter estimation problem

In the parameter estimation problem [Hel76, Par09] (see Fig. 1.8), a crucial requirement
is the development of suitable strategies which permits to obtain an accurate estimate λ

converging to the true value λ of the parameter. To this end a probe system, prepared
in a suitable state ρ̂ interacts with the physical system under scrutiny. The probe state
evolves into ρ̂λ = Ûλ ρ̂Û†

λ
when the interaction is unitary, while in general the process is

described by a completely positive map ρ̂λ =Mλ [ρ̂]. Finally, the probe state is measured
through a detection apparatus described by POVM operators {Π̂x}, being {x} the possible
measurement outcomes [Fig. 1.8]. Such process is repeated M times, thus producing a
vector of outcomes {xk}M

k=1. The value of the parameter is then retrieved by defining an
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estimator function λ̄ = λ̄ (x1,x2, · · · ,xM). The error associated to the estimated value λ̄ of
the true value λ of the parameter is given by the mean square error:

V (λ ) = Eλ [(λ̄ ({xk})−λ )2], (1.55)

where Eλ [·] stands for the expectation value. Unbiased estimators are those where the
estimated value λ̄ converges to the real value λ of the parameter. In this case, the mean
square error is equal to the variance:

Var(λ ) = Eλ [λ̄
2]−Eλ [λ̄ ]

2. (1.56)

The aim of parameter estimation is to determine the ultimate bounds in the measurement
of the unknown parameter λ and the corresponding optimal strategies, which permit to
minimize the error Var(λ ) associated the estimated value.

Probe
state Interaction

Detection
strategy

Data processing,
estimator λ

fixed
optimal estimator

optimal
optimal estimator

fixed
fixed estimator

Figure 1.8: General theoretical framework for the parameter estimation problem. The
input system in the state ρ̂ acquires information on the parameter λ after the interaction (
Ûλ or Mλ [·]), then is measured by a detection apparatus Π̂x, and finally the parameter λ

is retrieved by a specific choice of the estimator λ̄ . The classical Fisher information I(λ )
is obtained by minimizing the variance V (λ ) over all possible choices of the estimator,
while the quantum Fisher information H(λ ) is obtained by minimizing over all possible
measurement apparata.

1.6.2 Classical Fisher information
In classical estimation theory, the Cramer-Rao inequality permits to define the lower
bound for the variance Var(λ ) when fixing the measurement operators {Π̂x}. More specif-
ically, one aims to optimize the choice of the estimator which allows to extract the maxi-
mum amount of information on λ from of measurement outcomes {xk}M

k=1. In this con-
text, one needs to optimize the strategy for extracting the information from p(x|λ ), that is,
the conditional probability distribution of obtaining the outcome x for a given value of the
parameter λ . Such an optimized strategy is called an optimal estimator, and it represents
the best choice of the function λ̄ ({xk}). Optimal estimators are defined as those functions
λ̄ ({xk}) which saturate the Cramer-Rao inequality:

Var(λ )≥ 1
MI(λ )

. (1.57)
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Here M is the number of repeated experiments, and I(λ ) is the Fisher information:

I(λ ) =
∫

dxp(x|λ )
[

∂ ln p(x|λ )
∂λ

]2

=
∫

dx
1

p(x|λ )

[
∂ p(x|λ )

∂λ

]2

. (1.58)

In quantum mechanics, the probability distribution is defined by: p(x|λ ) = Tr[Π̂xρ̂λ ]. The
Fisher information can be expressed in the following form:

I(λ ) =
∫

dx
(Tr[ρ̂λ Π̂xL̂λ ])

2

Tr[ρ̂λ Π̂x]
. (1.59)

Here, L̂λ is the symmetric logarithmic derivative (SLD) such that:

∂ ρ̂λ

∂λ
=

L̂λ ρ̂λ + ρ̂λ L̂λ

2
. (1.60)

A closed form for L̂λ can be obtained by expanding the density matrix ρ̂λ in terms of its
eigenvalues and eigenvectors ρ̂λ = ∑n ρn|ψn〉〈ψn|:

L̂λ = ∑
n

∂λ ρn

ρn
|ψn〉〈ψn|+2 ∑

n6=m

ρn−ρm

ρn +ρm
〈ψm|∂λ ψn〉|ψm〉〈ψn|, (1.61)

where ∑n6=m is extended over ρn + ρm 6= 0. The Fisher information I(λ ) quantifies the
amount of information encoded in the probability distribution p(x|λ ) of the measurement
outcome for the specific choice of probe state ρ̂ and of the measurement operators {Π̂x}.
Recently, it has been shown that maximum likelihood estimators [LBC93, HMOB96]
and Bayesian estimators [PSK+07, PS08] are examples of optimal unbiased estimators,
which permit to correctly estimate the parameter since λ → λ and to saturate asymptoti-
cally the Cramer-Rao inequality. Hence, they permit to efficiently analyze the probability
distribution of the measurement outcomes p(x|λ ).

1.6.3 Quantum Fisher information

In order to evaluate the ultimate precision bound in the estimation of λ for a given probe
state, it is necessary to maximize the Fisher information of Eq. (1.58) over all possible
POVMs {Π̂x}. Such maximization procedure can be performed by the following hierar-
chy of inequalities [Hel76, Par09]:

I(λ )≤
∫

dx

∣∣∣∣∣∣Tr[ρ̂λ Π̂xL̂λ ]√
Tr[ρ̂λ Π̂x]

∣∣∣∣∣∣
2

=
∫

dx

∣∣∣∣∣∣Tr

 √ρ̂λ

√
Π̂x√

Tr[ρ̂λ Π̂x]

√
Π̂xL̂λ

√
ρ̂λ

∣∣∣∣∣∣
2

≤
∫

dxTr[Π̂xL̂λ ρ̂λ L̂λ ] = Tr[L̂λ ρ̂λ L̂λ ].

(1.62)
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The Fisher information is upper bounded by:

I(λ )≤ H(λ ) = Tr[ρ̂λ L̂2
λ
] = Tr[(∂λ ρ̂λ )L̂λ ]. (1.63)

Here H(λ ) is the quantum Fisher information (QFI), which sets the ultimate precision on
the variance Var(λ ) according to the quantum Cramer-Rao inequality:

Var(λ )≥ 1
MH(λ )

. (1.64)

Note that, since the QFI is obtained by maximizing over all possible POVMs, it depends
only on the geometry of the family of states {ρ̂λ}. An explicit form of the optimal esti-
mator can be found in terms of the symmetric logarithmic derivative:

Ôλ = λ 1̂+
L̂λ

H(λ )
. (1.65)

By exploiting Eq. (1.61) the quantum Fisher information can be written in terms of the
eigenvectors and the eigenvalues of ρ̂λ as:

H(λ ) = ∑
n

(∂λ ρn)
2

ρn
+2 ∑

n6=m
εn,m|〈ψm|∂λ ψn〉|2, (1.66)

where:

εn,m =
(ρn−ρm)

2

ρn +ρm
. (1.67)

The expression for the quantum Fisher information can be further simplified when the
time evolution is unitary ρ̂λ = Ûλ ρ̂Û†

λ
, and Ûλ = e−ıĜλ . In this case, the quantum Fisher

information reads:
H(λ ) = 2 ∑

n6=m
εn,mG2

n,m, (1.68)

where:
Gn,m = 〈ψn|Ĝ|ψm〉. (1.69)

Finally, in the case of a pure state ρ̂λ = |ψλ 〉〈ψλ | we obtain the following simplified form
in terms of the fluctuations of the generator Ĝ on the unperturbed state |ψ0〉:

H(λ ) = 4〈ψ0|∆2Ĝ|ψ0〉. (1.70)

The quantum Fisher information is directly connection to the metrics in Hilbert spaces.
Indeed, the capability of estimating an unknown parameter from a family of states {ρ̂λ}
is related to the distinguishability of these states. It can be shown that the quantum Fisher
information is related to the Bures distance (see Sec. 1.3.6) between the states of the fam-
ily. Let us consider an infinitesimal change dλ of the parameter. The distance, and hence
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the distinguishability, between ρ̂λ and ρ̂λ+dλ is related to the quantum Fisher information
H(λ ) according to:

D2
B(ρ̂λ , ρ̂λ+dλ ) =

1
4

H(λ )(dλ )2. (1.71)

In general the optimal measurement strategy, that is, the one saturating the quantum
Cramer-Rao bound, may depend on the value of the parameter λ . When dealing with
the detection of a small variation dλ , the quantum Cramer-Rao bound can be saturated
since one can employ the system in the optimal operating regime, that is, by choosing the
optimal measurement strategy for λ . In the general case, when no a-priori knowledge is
available on λ , it is necessary to exploit an adaptive protocol. In this case, the first subset
of measurement is typically exploited to obtain a rough estimate of λ , and then to apply
the optimal estimation strategy depending on the results of the first step. In general, the
limit imposed by the quantum Cramer-Rao bound may not be achievable, while in some
cases Eq. (1.64) can be saturated asymptotically for large M [Nag88, OP09, GLM11].
Let us consider a specific example. The input probe state is a coherent state, generated by
the application of the displacement operator D̂(α) = exp[α â†−α∗â] on an input vacuum
state |0〉. For a more detailed discussion on the displaced vacuum state we refer to Sec.
3.2.4. The quantum Fisher information associated to the state |α〉 = D̂(α)|0〉 under a
unitary evolution Ûλ = exp[−ı(â†â)λ ] results to be:

Hα(λ ) = 4|α|2 (1.72)

Let us consider the case in which the output state is detected by measuring the X̂θ =
(âe−ıθ + â†eıθ )/21/2 operator, that is, by exploiting a homodyne detection apparatus. In
this case, the classical Fisher information associated to the measurement outcomes read:

Iα(λ ) = 4|α|2 sin2(λ +θ) (1.73)

Hence, the value of θ must be appropriately chosen according to the relation θ +λ = π/2
in order to saturate the quantum Cramer-Rao bound. This can be obtained by employing
a first fraction of the measurements to retrieve a rough estimate λ0 of the parameter λ ,
and by sequently choosing the value of θ according to the condition θ +λ0 = π/2.

1.6.4 Quantum enhancement in parameter estimation
Having discussed the optimal bounds achievable when optimizing the measurement and
the data-processing stages for a fixed probe state, then the last step is to develop the
best strategies in terms of the choice of the probe states. Recently, it has been proposed
[GLM04, GLM06] that the employment of quantum resources can lead to a significant
enhancement in the achievable resolution. Let us consider the configurations described
in Figs. 1.9 (a) and (b). A k-probe state is prepared before the interaction Ûλ . Then, the
state after the interaction is measured with a certain choice of the measurement, including
the possibility of performing an entangled measurement upon the k probes. Finally, the
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Figure 1.9: Resume of the theoretical framework for parameter estimation theory. (a)
Standard quantum limit (δλ )SQL achievable with a separable k-probe input state. (b)
Heisenberg limit (δλ )HL achievable with an entangled k-probe input state.

experiment is repeated M times in order to improve the statistical significance. When
classical resources are adopted at the probe stage [Fig. 1.9 (a)], the achievable resolution
on the parameter λ reads:

(δλ )SQL ≥
1√
kM

. (1.74)

In optical interferometry, that is, the measurement of an optical phase, such bound is
the standard quantum limit (SQL), or shot-noise limit (SNL), which is obtained with M
repeated measurements on a k-photon probe in a classical state. Such a limit is obtained
for example by employing coherent states of the electromagnetic field. An enhancement
in the resolution δλ can be obtained when quantum properties, such as entanglement or
squeezing, are present in the probe state [Fig. 1.9 (b)]. In this case, the resolution δλ is
limited by the following inequality:

(δλ )HL ≥
1

k
√

M
. (1.75)

Such inequality is the Heisenberg limit (HL), which is basically due to the Heisenberg
principle between pairs of conjugated variables, in this case photon number and phase.
Note that the presence of entanglement is a crucial requirement only at the probe stage,
and that in general entangled measurements are not necessary to obtain a quantum en-
hancement in the estimation of the parameter λ [GLM06].

Let us now consider a specific example to illustrate how quantum-enhanced protocols
permit to achieve sub-SQL performances. As a first case, we consider a Mach-Zehnder
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interferometer for the estimation of an optical phase [Fig. 1.10 (a)]. The input probe
state, given by a coherent state |ψin〉= |α〉1|0〉2 containing an average number of photons
〈n〉α = |α|2, is injected in one or both the two ports of the input beamsplitter. Then, a
relative phase shift Ûφ = eı(â†

2â2)φ is introduced between the two paths in the interferome-
ter. Finally, the state is recombined at the second beam-splitter and the difference in the
photon-number I(φ) = 〈(n̂1− n̂2)〉 is recorded. Suppose now we want to measure a small

beam-
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Figure 1.10: (a) Mach-Zehnder interferometer for the estimation of an optical phase with
coherent states. (b) Interferometric scheme for the estimation of an optical phase at the
Heisenberg limit with a N00N state.

phase shift φ around the φ̄ = π/2 point. The resolution on φ is limited by the fluctuations
on the measured signal I(φ) and by the slope of the signal function according to:

δφ =
δ I(φ)

|∂ Iφ

∂φ
|
. (1.76)

The amount of detected signal is given by:

Iα(φ) = |α|2 cosφ . (1.77)

The resolution on φ around the φ̄ = π/2 point results to be:

δφ =
1√
〈n〉

α

, (1.78)

which is the standard quantum limit of Eq. (1.74). The adoption of an entangled probe
state, shown in Fig. 1.10 (b) permits to increase the achievable resolution on φ . Let us
consider the injection of a N-photon input state |ψin〉 = ∑

N
n=0 cn|n〉1|N− n〉2. The cn are

chosen in such a way to obtain the following form for the state propagating inside the
interferometer after the beam-splitter:

|ψN00N〉=
1√
2
(|N〉1|0〉2−|0〉1|N〉2). (1.79)

Such class of states is known as N00N states [BKA+00, Dow08], corresponding to the
presence of N photons distributed coherently either in arm 1 or 2. The action of the phase
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shift in the state results to be:

|ψN00N〉=
1√
2
(|N〉1|0〉2− eıNφ |0〉1|N〉2). (1.80)

Note that the presence of N photons in a collective state is responsible for a eıNφ phase
term, while with classical fields the introduced phase shift term is eıφ . The output field is
then analyzed by measuring the following operator:

Σ̂N = |N〉1〈0|⊗ |0〉2〈N|+ |0〉1〈N|⊗ |N〉2〈0|. (1.81)

The recorded signal is given by the following expression:

IN00N(φ) = 〈ψN00N|Σ̂N |ψN00N〉= cos(Nφ). (1.82)

The resolution achievable on φ is given by:

δφ =
1
N
, (1.83)

thus reaching the Heisenberg limit of Eq. (1.75).



Chapter 2

Elements of quantum and nonlinear
optics

Quantum optics represents a powerful platform for the implementation of quantum in-
formation protocols, due to the availability of sources of high quality entangled states,
adopted as the information carriers. These properties, combined with the realization of
optical detectors able to discriminate single photons, have led to the implementation of
several quantum information protocols such as communication [UTSM+07], cryptogra-
phy [THT+10] and computation [CVD+09, VDB+10]. All these experiments involving
discrete-valued degrees of freedom of the photon are included in the general field of dis-
crete quantum optics. In this Chapter we introduce the basic elements of quantum and
nonlinear optics which will be exploited throughout this thesis. We discuss in details two
different sources of quantum fields based on a nonlinear optical process called parametric
down-conversion. We discuss their application for the generation of entangled states and
squeezed light, and for the process of optimal quantum cloning. Finally, we briefly re-
view the problem of direct detection of quantum fields by discussing the photon-counting
technique and single-photon detection.

2.1 Noncollinear parametric down-conversion
Parametric down-conversion happens in nonlinear crystals having nonvanishing χ(2) co-
efficient. This source, first introduced in Ref. [KMW+95] by Kwiat et al., is based on a
particular geometric configuration which possesses full rotational invariance in the polar-
ization degree of freedom, and is currently one of the most commonly exploited entangled
state source in quantum optics experiments.

2.1.1 The optical configuration
The source under consideration is based on a second order nonlinear process known as
parametric down-conversion, a three-wave interaction mediated by a nonlinear crystal

43
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with nonvanishing second order susceptibility tensor χχχ(2) [Boy07]. A quantum descrip-
tion of the process is given by the annihilation of a photon in the pump beam and the
creation of two photons at frequencies ω1 and ω2 with wave vectors ks and ki [Fig. 2.1
(a)]. The three photons involved in the interaction must obey ωP = ωs+ωi and the phase-
matching condition kP = ks+ki, which represent respectively the conservation of energy
and of the photon momentum in the crystal. Two configurations are possible for the linear
polarization of the three photons. In type-I down-conversion, the two photons on modes
ks and ki present the same polarization, while the photon from the pump presents the
orthogonal polarization. Conversely, in type-II down-conversion the two output photons
present orthogonal polarization.

In order to obtain an entangled state in a type-II system it is necessary to choose a
particular orientation for the crystal optical axis. Generally the down-converted photons
are emitted along two distinct cones. By properly choosing the axis the two cones in-
tersect along two particular directions k1 and k2 [Fig. 2.1 (a)]. Moreover, it is possible
to obtain, along these directions, photons that are frequency degenerate so to make them
indistinguishable both in energy and polarization [Fig. 2.1 (b)]. As a matter of fact, the

kP

k1

o-cone

e-cone

e-pump

nonlinear
crystal

k2

(a) (b)

kP,ωP
k1,ω1

k2,ω2

Figure 2.1: (a) Optical configuration for the noncollinear type-II parametric down-
conversion source. The relative orientation between the optical axis and the kP vector
of the pump beam is set to obtain an intersection between the ordinary and extraordinary
emission cones along two directions k1 and k2. The output photons emitted along these
directions are entangled due to the polarization and frequency indistinguishability of the
spatial modes. (b) Diagrammatic scheme for the transition induced by the presence of the
nonlinear medium.

presence of one photon with ~πo polarization in one of the two modes implies the presence
of one photon with ~πe polarization on the twin mode. At first order, we then expect that
the emitted state is given by the entangled singlet state:

|ψ−〉k1,k2 =
1√
2
(|o〉k1|e〉k2−|e〉k1|o〉k2) . (2.1)

2.1.2 Interaction Hamiltonian and time evolution
The interaction Hamiltonian of a down-conversion source can be evaluated as [Boy07]:

ĤSPDC =
∫

d3rχχχ
(2) · Ê(+)

p (r, t) · Ê(s)
A (r, t) · Ê(+)

B (r, t)+h.c., (2.2)



Noncollinear parametric down-conversion 45

where the integral is restricted to the crystal volume. Here, Ê j(r, t) are the electric field
operators for the three fields involved in the interaction. For an intense pump, the field op-
erator Êp(r, t) can be replaced with the corresponding classical amplitude Ep(r, t). Start-
ing from this expression, the interaction Hamiltonian (2.2) with the k-vector emission
geometry shown in Fig. 2.1 in the limit of a monochromatic pump beam can be written
as:

ĤSPDC = ıh̄χ(â†
1π

â†
2π⊥
− â†

1π⊥
â†

2π
)+h.c., (2.3)

where {π,π⊥} stands for any set of orthogonal polarization modes and χ is the nonlinear
constant that describes the strength of the interaction according to:

χ ∝ χ
(2)
p,s,iEPLzsinc

(
∆kz

Lz

2

)
, (2.4)

where χ
(2)
p,s,i is the element of the susceptibility tensor, EP is the amplitude of the pump

beam, Lz is the crystal length and sinc
(

∆kz
Lz
2

)
is the phase-matching term which takes

into account the phase-matching condition (∆k = kP−k1−k2).
The time evolution equation describing the action of the source in the interaction pic-

ture [Sak03] is obtained by considering the unitary evolution operator:

ÛSPDC = eg(â†
1π

â†
2π⊥
−â†

1π⊥
â†

2π
)−g(â1π â2π⊥−â1π⊥ â2π ), (2.5)

where g = χt is the nonlinear gain of the amplifier. Such operator can be expressed in a
different form by exploiting the operatorial relation [Col88] eg(σ̂++σ̂−)= eΓσ̂+e− lnCσ̂zeΓσ̂− ,
where Γ = tanhg, C = coshg, and [σ̂+, σ̂−] = σ̂z:

ÛSPDC = eΓ(â†
1π

â†
2π⊥
−â†

1π⊥
â†

2π
)e− lnC(2+n̂1π+n̂2π⊥+n̂1π⊥+n̂2π )eΓ(â1π⊥ â2π−â1π â2π⊥), (2.6)

where we have made use of the following relations:

σ̂+ = â†
1π

â†
2π⊥

, σ̂− =−â1π â2π⊥, σ̂z = 1+ n̂1π + n̂2π⊥; (2.7)

σ̂
′
+ =−â†

1π⊥
â†

2π
, σ̂
′
− = â1π⊥ â2π , σ̂

′
z = 1+ n̂1π⊥+ n̂2π . (2.8)

Hence, for any input state |ψin〉, the output state of the source can be evaluated as:
|Ψout〉= ÛSPDC|ψin〉.

The time evolution due to the interaction Hamiltonian ĤSPDC can also be described
in the Heisenberg picture where the annihilation and creation operators evolve as:

ıh̄
dâk,π

dt
=
[
âk,π ,ĤSPDC

]
, (2.9)

and the corresponding Hermitian conjugate equation. This set of differential equations
can be solved analitically, obtaining [Yar89, De 98a, DS05]:

â†
1π
(t) = â†

1π
C+ â2π⊥S; â†

1π⊥
(t) = â†

1π⊥
C− â2πS, (2.10)

â†
2π
(t) = â†

2π
C− â1π⊥S; â†

2π⊥
(t) = â†

2π⊥
C+ â1πS. (2.11)

where C = coshg and S = sinhg.
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2.1.3 Generation of polarization entangled states
Such a source can be adopted to generate entangled states in the polarization degree of
freedom in a spontaneous emission regime. In the low gain regime, the state emitted by
the source is obtained by applying the first order expansion of the time evolution operator
(2.5) to a two mode vacuum state:

ÛSPDC|0π,0π⊥〉1|0π,0π⊥〉2 ∼ [1̂+(â†
1π

â†
2π⊥
− â†

1π⊥
â†

2π
)]|0π,0π⊥〉1|0π,0π⊥〉2 =

= |0π,0π⊥〉1|0π,0π⊥〉2 +g
(
|1π,0π⊥〉1|0π,1π⊥〉2−|0π,1π⊥〉1|1π,0π⊥〉2

)
,

(2.12)
where |nπ,mπ⊥〉i labels a Fock state with n π-polarized photons and m π⊥-polarized
photons on spatial mode ki. Hence, by removing the vacuum contribution the down con-
version analyzed in this source permits to generate a singlet spin-1/2 entangled state
in polarization. This result can be extended by considering the evolution induced by
ÛSPDC, without any approximation, on the vacuum state, leading to an output state |Ψ−〉
[KMW+95]:

|Ψ−〉= 1
C2

∞

∑
n=0

Γ
n√n+1|ψn

−〉, (2.13)

where Γ = tanhg, C = coshg. Here, |ψn
−〉 is the singlet spin-n/2 polarization state, corre-

sponding to the generation of n photon pairs:

|ψn
−〉=

1√
n+1

n

∑
m=0

(−1)m|(n−m)π,mπ⊥〉1|mπ,(n−m)π⊥〉2. (2.14)

Hence, at each order the generated state is entangled between the two spatial modes k1
and k2. Such a property is due to the indistinguishability between the two emission cones
of the source. The present source in the spontaneous regime will be further investigated
in Chap. 7 to perform nonlocality tests in a multiphoton configuration.

2.1.4 Universal optimal cloning machine
The rotational invariance of the entangled source analyzed in this section, described by
the Hamiltonian ĤSPDC of Eq. (2.3), can be applied to the problem of quantum cloning,
analyzed in Sec. 1.4.1, in a stimulated emission regime.

Let us consider the injection on mode k1, of a single photon state in the generic polar-
ization state |π〉1 in the low gain regime. By neglecting the identity contribution 1̂ in the
expansion this state can be written as:

ÛSPDC|1π,0π⊥〉1|0π,0π⊥〉2 ≈
√

2
3
|2π,0π⊥〉1|0π,1π⊥〉2−

√
1
3
|1π,1π⊥〉1|1π,0π⊥〉2.

(2.15)
Here, the Fock state |1π,1π⊥〉1 is the symmetric combination of the two photons in mode
k1, labeled as 1a and 1b:

|1π,1π⊥〉1 =
1√
2
(|π〉1a|π⊥〉1b + |π⊥〉1a|π〉1b) , (2.16)
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where the latter equation is written in the first quantization formalism. The reduced den-
sity operator for any of the two photons 1x on spatial mode k1 reads:

ρ̂1x = Tr1x′,2 (ρ̂12) =
5
6
|π〉1x 〈π|+

1
6
|π⊥〉1x 〈π⊥|, (2.17)

with x = a,b and x′ 6= x. The fidelity between the input state |π〉1 and the reduced output
states ρ̂1x, calculated from the definition (1.27), reads:

F (|π〉1, ρ̂1x) = 1〈π|ρ̂1x|π〉1 =
5
6
. (2.18)

Such result shows that the noncollinear parametric source analyzed in this section per-
forms the 1 → 2 universal optimal quantum cloning. Furthermore, this result can be
generalized by considering an N-photon input state and by analyzing the M-photon con-
tribution of the output state. Indeed, it can be shown that such device performs the optimal
N→M universal quantum cloning operation [PSS+03, DPS04].

2.2 Collinear parametric down-conversion
A type-II crystal, with optical axis oriented so as to make the ordinary and extraordinary
cones tangent, realizes a collinear optical parametric amplifier. This configuration due to
the collinear operation is particularly suitable for the generation of multiphoton fields in
the high gain regime.

2.2.1 The optical configuration
The optical parametric amplifier (OPA) working in a collinear regime is obtained by ex-
ploiting a type-II nonlinear crystal, where the relative orientation between the kP vector
and the crystal optical axis is set so that the two emission cones are made to be tangent
along one direction identified by the wave vector k [Fig. 2.2]. The phase matching condi-
tion is again set to obtain a degenerate operating regime, that is, ωi = ωP/2 where i = o,e.

Such configuration presents the feature of having the pump beam and the generated
field which propagate along the same direction inside the crystal. In this way, the gener-
ated photons act as further seeds for the process, allowing for an effective enhancement
in the nonlinear gain of the amplifier with respect to the noncollinear configuration. Such
feature of the collinear amplifier is suitable for the generation of multiphoton output fields
up to 104−105 particles [DSV08, VST+10a].

2.2.2 Interaction Hamiltonian and time evolution
The interaction Hamiltonian of the amplifier can be evaluated starting from Eq. (2.2) and
by restricting k-vector emission geometry to the configuration shown in Fig. 2.2, leading
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Figure 2.2: (a) Optical configuration for the noncollinear type-II parametric down-
conversion source. The two ordinary and extraordinary emission cones are tangent along
one direction k in this configuration. (b) Diagrammatic scheme for the transition induced
by the presence of the nonlinear medium.

to [GW97]:

ĤOPA = ıh̄χ

∫
dωo

∫
dωe f (ωo,ωe)[â†

o(ωo)â†
e(ωe)]+h.c., (2.19)

where f (ωo,ωe) is a nonsymmetric function that takes into account the spectral correla-
tions between the emitted photons, and is a function of the amplitude of the pump beam
and of the geometry of the source. This expression can be further simplified in the limit
of a monochromatic pump beam, leading to the following interaction Hamiltonian:

ĤOPA = ıh̄χeıλ (â†
H â†

V )+h.c.= ıh̄χeı(λ−ϕ)

(
â†2

ϕ

2
− â†2

ϕ⊥
2

)
+h.c. (2.20)

where λ is the phase of the pump beam. The latter expression is a good approximation
for the interaction Hamiltonian of the source even in the case of a broadband pulsed pump
beam.

In the interaction picture, the time evolution of an input state in the amplifier is de-
scribed by the following unitary operator:

ÛOPA = egeıλ â†
H â†

V−ge−ıλ âH âV = e
geı(λ−ϕ)

(
â†
ϕ 2
2 −

â
ϕ

†2
⊥
2

)
−ge−ı(λ−ϕ)

(
â2
ϕ

2 −
â2
ϕ⊥
2

)
, (2.21)

where {âϕ , âϕ⊥} are the annihilation operators for the equatorial polarization modes ~πϕ =
(~πH +eıϕ~πV )/

√
2 and ~πϕ⊥ = (~πϕ)⊥. In the {~πH ,~πV} polarization basis the time evolution

can be written as:

Û (HV )
OPA = eΓeıλ â†

H â†
V e− lnC(1+n̂H+n̂V )e−Γe−ıλ âH âV , (2.22)

with Γ= tanhg and C = coshg. For any equatorial polarization basis, the unitary evolution
of the amplifier takes the form of two separate single-mode contributions:

Û (ϕ)
OPA = e

g

(
eı(λ−ϕ) â†2

ϕ

2 −e−ı(λ−ϕ) â2
ϕ

2

)
; Û (ϕ⊥)

OPA = e
−g

(
eı(λ−ϕ)

â†2
ϕ⊥
2 −e−ı(λ−ϕ)

â2
ϕ⊥
2

)
. (2.23)
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Hence, the amplifier acts independently on the two orthogonal equatorial polarization
modes. The two operators Û (ϕ)

OPA e Û (ϕ⊥)
OPA can be expressed separately as:

Û (ϕ)
OPA = eΓeı(λ−ϕ) â†2

ϕ

2 e− lnC( 1
2+n̂ϕ)e−Γe−ı(λ−ϕ) â2

ϕ

2 , (2.24)

Û (ϕ⊥)
OPA = e−Γeı(λ−ϕ)

â†2
ϕ⊥
2 e− lnC( 1

2+n̂ϕ⊥)e
Γ

(
e−ıϕ â2

ϕ

2

)
. (2.25)

We can now proceed by solving the Heisenberg equations of the field operators. In the
Heisenberg picture the evolution reads:

ıh̄
dâk,π

dt
=
[
âk,π ,ĤOPA

]
. (2.26)

For the {~πH ,~πV} polarization basis, one has:

â†
H(t) = â†

HC+ e−ıλ âV S; â†
V (t) = â†

VC+ e−ıλ âHS, (2.27)

while for any equatorial polarization basis:

â†
ϕ(t) = â†

ϕC+ e−ı(λ−ϕ)âϕS; â†
ϕ⊥(t) = â†

ϕ⊥C− e−ı(λ−ϕ)âϕ⊥S, (2.28)

where S = sinhg.

2.2.3 Field in the spontaneous emission regime

The field emitted in the spontaneous emission regime can be calculated as |Φ0〉= Û (HV )
OPA |0〉

[see Eq. (2.22)], leading to:

|Φ0〉= 1
C

∞

∑
n=0

(Γeıλ )n|nH,nV 〉. (2.29)

The photon-number distribution on a single polarization mode will then be:

P0(m) =
1

C2 Γ
2m =

〈n̂〉m
(1+ 〈n̂〉)m , (2.30)

where 〈n̂〉 is the average number of photons:

〈0|â†
H(t)âH(t)|0〉 = n = sinh2 g. (2.31)

The photon-number distribution of Eq. (2.30) is a Planckian distribution corresponding
to a thermal state.

The output field in the generic equatorial basis
{
~πϕ ,~πϕ⊥

}
reads:

|Φ0〉= 1
C

∞

∑
j,k=0

[eı(λ−ϕ)] j+k
(

Γ

2

) j(
−Γ

2

)k √(2 j)!
√
(2k)!

j!k!
|(2 j)ϕ,(2k)ϕ⊥〉. (2.32)
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Note that the photons are emitted in pairs along the same polarization mode, leading to an
output photon-number distribution with only terms corresponding to an even number of
photons. In the equatorial polarization bases, the time evolution induced by the collinear
amplifier takes the form of a squeezing operation [WM95] on the single polarization mode
quadrature variables, defined as: X̂ϕ

θ
= (âϕe−ıθ + â†

ϕeıθ )/
√

2. It can be shown that the
variance of the X̂ϕ

θ
operators takes the form [WM95]:

V(Xϕ

θ
) =

1
2
[C2 +S2 +2CScos(λ −ϕ−2θ)]. (2.33)

Hence, for θ+ = (λ −ϕ)/2 and θ− = θ++π/2 one obtains respectively: V (Xϕ

θ+
) = e2g/2

and V (Xϕ

θ−) = e−2g/2. Such property is known as squeezing and corresponds to the pres-
ence of reduced fluctuactions on one quadrature variable Xϕ

θ− , with corresponding magni-
fied fluctuations on the conjugate variable Xϕ

θ+
, still satisfying the minimum uncertainty

relation according to: V (Xϕ

θ+
)V (Xϕ

θ−) = 1/4. The squeezing property will be discussed
later on in Sec. 3.2.4 within the context of continuous variables quantum optics.

2.2.4 Phase-covariant optimal cloning machine

In Sec. 2.1.4 we showed that the noncollinear amplifier can be applied within the context
of quantum cloning. An analogous result holds for the collinear amplifier analyzed in this
section. More specifically, such a device performs the optimal phase-covariant cloning in
the 1→M case due to the symmetry properties of the Hamiltonian (2.20). In the specific
case in which the amplifier is injected by a single photon in the ~πϕ polarization state the
output state reads:

|Φϕ〉= 1
C2

∞

∑
j,k=0

[eı(λ−ϕ)] j+k
(

Γ

2

) j(
−Γ

2

)k √(2 j+1)!
√

2k!
j!k!

|(2 j+1)ϕ,(2k)ϕ⊥〉.

(2.34)
Note that the photons are always emitted in pairs, and the number of photons in the
two orthogonal polarization modes presents different parities. However, the presence
of the injected seed leads to a strong unbalancement in the output photon-number dis-
tribution along the ~πϕ polarization mode due to the stimulated emission process. The
average number of photons generated in the injected ~πϕ polarization mode is found to be
〈Φϕ |n̂ϕ |Φϕ〉= 3n+1, while in the orthogonal polarization mode we obtain 〈Φϕ |n̂ϕ⊥|Φϕ〉=
n due to the spontaneous emission contribution.

In the low gain limit, we can neglect all the contributions with order greater that 2 with
respect to g. The first order term, written in the first quantization formalism by labeling
the 3 photons with x = a,b,c, can be written as:

|Φϕ〉 ≈
√

3
2

eı(λ−ϕ)|ϕ〉a|ϕ〉b|ϕ〉c−
1
2

eı(λ−ϕ)|{ϕ,ϕ⊥,ϕ⊥}〉, (2.35)
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where |{ϕ,ϕ⊥,ϕ⊥}〉 is the symmetric combination:

|{ϕ,ϕ⊥,ϕ⊥}〉=
1√
3
(|ϕ〉a|ϕ⊥〉b|ϕ⊥〉c + |ϕ⊥〉a|ϕ〉b|ϕ⊥〉c + |ϕ⊥〉a|ϕ⊥〉b|ϕ〉c) . (2.36)

The quantum state for any of the three photons present in the output state can be calculated
by evaluating the partial trace on the overall state ρ̂abc, leading to:

ρ̂x = Trx′,x′′ (ρ̂abc) =
5
6
|ϕ〉x 〈ϕ|+

1
6
|ϕ⊥〉x 〈ϕ⊥|, (2.37)

for x = a,b,c and x 6= x′ 6= x′′. The fidelity between any of the output photons and the
input photon |ϕ〉 then reads:

F (ρ̂x) = 〈ϕ|ρ̂x|ϕ〉 =
5
6
. (2.38)

Such value of the fidelity corresponds to the optimal cloning fidelity of Eq. (1.43) for
the phase-covariant cloning machine in the 1→ 3 case. Such result can be generalized to
the 1→M case by analyzing the M-photon contribution of Eq. (2.34), showing that the
cloning operation is optimal in the 1→M case [SD05, NDSD07].

2.3 Detection of photonics fields with discrete variable
techniques

In this section we briefly discuss two methods for the direct detection of photonic fields.
The first case is given by photon-counting apparata, such as photomultipliers and photodi-
odes, which are capable of producing an output photocurrent proportional to the number
of impinging photons. When dealing with single photons, avalanche photodiodes (APD)
are exploited due to their capability of generating a macroscopic current when only a
single photon is absorbed.

2.3.1 Photon-counting

In order to detect light, it is necessary to exploit the interaction between light fields and
matter. Indeed, the absorption of each photon extracts a single electron from a solid
state device, so that all the emitted electrons produce an output current proportional to the
number of incident photons. However, such absorption process is probabilistic and cannot
be performed with unitary efficiency. Hence, each photodetection process is characterized
by a parameter η , that is, the quantum efficiency, which quatifies the fraction of impinging
photons which lead to a photoelectron. Typical examples of devices which permit photon-
counting detection are provided by photomultipliers and photodiodes.
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Let us consider the case of a photodetector with quantum efficiency η , with detection
window of duration T . The probability of obtaining m counts from an input density matrix
ρ̂ of a stationary field of frequency ω reads:

pm(η) =
∞

∑
k=m

ρkk

(
k
m

)
η

m(1−η)k−m. (2.39)

The POVM operators, decribing the occurence of m counts according to standard mea-
surement theory pm(η) = Tr[ρ̂Π̂m(η)], can be written as [FOP05]:

Π̂m(η) = η
m

∞

∑
k=m

(1−η)k−m
(

k
m

)
|k〉〈k|. (2.40)

2.3.2 Single-photon detection
Most of the detectors adopted for this technique (photomultipiers, photodiodes) are not
able to detect the presence of a single-photon, being a single electron too weak to produce
a detectable photocurrent. In order to produce a macroscopic photocurrent when only
single-photons are absorbed an avalanche processes is required. All this means that such
detectors cannot discriminate the number of impinging photons, because they lead to
equal output currents when the number of photons absorbed is different from zero. Single
photon detection can occur only with limited efficiency η . Such an effect can be modeled
by the insertion of a beam-splitter with transmittivity η in the transmission path of the
field before an ideal detector. The POVM operators describing the action of lossy single-
photon detectors can be written as [FOP05]:

Π̂0(η) =
∞

∑
k=0

(1−η)k|k〉〈k|; Π̂1(η) = 1̂− Π̂0(η). (2.41)



Chapter 3

Continuous variables quantum optics

Since the development of the first protocols and optical sources, single photons and few
photon states have represented a valuable tool for the implementation of several quan-
tum information tasks. In parallel, an alternative quantum optical approach based on the
continuous quantum variables has been developed. The two approaches present different
strong and weak points, which can potentially lead to a hybrid platform in order to ex-
ploit the advantages of both approaches. In the present chapter we review the elements
of continuous-variables quantum optics, by discussing the tools adopted for the represen-
tation and the measurement of quantum states. As shown in this Chapter, continuous-
variables are suitable for the description and the measurement of multiphoton fields. For
this reason, these techniques will be applied throughout the thesis to analyze quantum
properties of multiphoton fields generated by the process of optical parametric amplifica-
tion.

3.1 Continuous-variables quantum optics and quantum
information

Discrete-variables quantum optics, which exploits degrees of freedom presenting only
a finite set of possible values, lead to several implementations of quantum information
protocols in the single-photon and few-photon regime. Alongside, an alternative quantum
optical approach, based on continuous-variables (CV), has been developed. In this case,
quantum information is encoded in a pair of conjugated field variables (X ,P), that is, its
quadratures.

The discrete- and continuous-variables approaches present different features in both
the generation and the measurement stages. Optical sources for the generation of dis-
crete variables quantum states rely on conditional configurations, since the vacuum state
has to be ruled out from the output state. This allows to generate quantum states with
high values of purity, at the cost of a nonunitary generation probability. Within the con-
text of continuous variables, two main classes of states can be identified depending on
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whether their representation in the quadrature space (X ,P) presents gaussian distribution
or not. Continuous-variables gaussian states, such as squeezed light, can be generated
with unconditional sources at the cost of introducing a certain amount of noise. However,
different continuous variables quantum information protocols [OKW00, CRM02, OPB03,
RGM+03, CKN+05, CLP07, LRH08] require the presence of nongaussianity. An exam-
ple is provided by quantum error correction [NFC09], which cannot be performed with
only gaussian resources. Nongaussianity has to be achieved with Kerr-type interactions,
or by exploiting heralded schemes which reduce the success rates. Discrete-variables
quantum states are typically measured by exploiting single-photon counting methods,
which provide information on the photon number of the field. With the current tech-
nology, such techniques can be still performed with a limited detection efficiency, thus
reducing the successful events rate. Continuous-variables quantum states are measured
by homodyne detection apparatuses, which permit to obtain information on the phase
properties of the field and can be performed with high efficiency. In summary, discrete-
variables quantum information protocols can be implemented with high purity, but with
a limited events rate. On the other side, gaussian continuous-variable protocols can be
performed in an unconditional fashion but with a limited purity [see Fig. 3.1].

In this section, we highlight the key features of continuous-variables quantum infor-

  

DISCRETE VARIABLES QUANTUM OPTICS CONTINUOUS VARIABLES QUANTUM OPTICS
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Figure 3.1: Schematic comparison between discrete- and continuous- variables quantum
optics and quantum information.
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mation, that is, generation and detection of quantum states. We first describe the gen-
eral formalism for describing quantum states in the (X ,P) space in terms of the quasi-
probability distributions, and we provide some examples of commonly adopted states.
Then, we discuss the homodyne detection technique for the measurement and the recon-
struction of optical states in the (X ,P) space.

3.2 Representation of quantum states in the quantum phase
space

In Chap. 1 we reviewed the representation of quantum states through the density operator
ρ̂ . This representation can be exploited to describe the state of the electromagnetic field in
the photon-number basis, that is, the space spanned by the Fock vectors |n〉 defined by the
presence of n excitations in the optical mode. In this section we describe a complementary
approach to represent a generic state in the quantum analogue of the phase-space. Such a
representation is obtained through the quasi-probability distributions, a mathematical tool
which allows us to calculate the average values of physical observables.

3.2.1 Quadrature operators and the quantum phase-space
We begin by defining the quadrature operators for the quantized electromagnetic field. In a
parametric amplifier, the interaction Hamiltonian for the free field, where the quantization
is performed by assuming the confinement in a cavity of volume V , can be written as the
sum of quantum harmonic oscillators, one for each mode of the field, according to:

ĤR = ∑
k

∑
π

h̄ωk

(
â†

k,π âk,π +
1
2

)
. (3.1)

The quadrature operators for the mode (k,π) are defined as:

X̂k,π =
1√
2
(âk,π + â†

k,π); P̂k,π =
ı√
2
(â†

k,π − âk,π). (3.2)

Such operators obey to the canonical commutation relation, and consequently to the
Heisenberg principle: [

X̂k,π , P̂k,π
]
= ı; ∆

2Xk,π∆
2Pk,π ≥

1
4
. (3.3)

The (X̂k,π , P̂k,π) operators represent an analogue of the position and the momentum op-
erator for a quantum mechanical oscillator. In this formalism, the Hamiltonian can be
written as:

ĤR = ∑
k

∑
π

h̄ωk
2
(
X̂2

k,π + P̂2
k,π
)
. (3.4)
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Furthermore, they are associated to the cosine and sine oscillating term of the electric
field operator. This can be shown by writing the expression of the transverse component
of electric field in terms of the quadrature operators:

ÊT (r, t) = ∑
k

∑
π

ek,π

(
h̄ωk
2ε0V

)1/2{
X̂k,π cos

[
χk(r, t)

]
+ P̂k,π sin

[
χk(r, t)

]}
, (3.5)

where χk(r, t) = ωkt−k · r−π/2 is the phase angle and ek,π is the polarization vector.

3.2.2 Wigner function
In classical optics, the state of a coherent electromagnetic field is perfectly defined by
its classical amplitude |α| and by its optical phase φ , or equivalently by its position X
and momentum P. This means that it is possible to define a classical phase-space (X ,P),
in which any state (coherent or incoherent) is characterized by a probability distribution
P(X ,P), which can be interpreted as the probability of finding a certain pair (X ,P) for
the position and the momentum when a simultaneous measurement of these two quan-
tities is performed. In quantum mechanics, such a definition of probability distribution
P(X ,P) in the space defined by the operators (X̂ , P̂) cannot be provided. More specifi-
cally, a probability distribution in the strict sense cannot be defined since no meaning can
be attributed to the probability of finding a certain value of (X ,P) when a simultaneous
measurement of (X̂ , P̂) is perfomed. The reason for this can be found in the Heisenberg
uncertainty principle, which sets a lower bound for the uncertainty achievable in a simul-
taneous measurement of (X̂ , P̂) according to ∆2X∆2P ≥ 1/4. However, a description of
quantum states in the quantum analogue of the classical phase-space is still possible in
terms of quasi-probability distributions. Such distributions can be interpreted as mathe-
matical tools for describing a general state in the quantum phase-space, allowing us to
calculate average values of operators as classical probability distributions. Furthermore,
to describe a quantum state there is no unique choice for a quasi-probability distribution,
but a whole class of functions. Among the possible choices of the quasi-probability dis-
tributions in the quantum phase-space, the Wigner function [Wig32] represents the most
widely exploited in the field of quantum optics. Other relevant examples are the Q func-
tion and the Glauber-Sudarshan P function [CG69a], being respectively a regular and a
highly singular quasi-probability distribution.

The Wigner function is defined as the Fourier transform of the characteristic function:

W̃ (µ,ν) = Tr
[
ρ̂e−ıµX̂−ıνP̂

]
. (3.6)

The exponential operator can be expressed as e−ıνP̂e−ıµX̂ e−ıµν/2 according to the Baker-
Campbell-Hausdorff formula eÂ+B̂ = eÂeB̂e−[Â,B̂]/2, leading to:

W̃ (µ,ν) = e−ıµν/2Tr
[
ρ̂e−ıνP̂e−ıµX̂

]
. (3.7)
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By expanding the trace in the position operator eigenbasis {|q〉}, by considering that the
action of the e−ıνP̂ on the position eigenstate |q〉 leads to a shift |q〉 → |ξ + ν〉, and by
changing the integration variables in q = ξ −ν/2, we find:

W̃ (µ,ν) =
∫

∞

−∞

dξ e−ıµξ 〈ξ −ν/2|ρ̂|ξ +ν/2〉. (3.8)

Finally, the Wigner function is obtained as the Fourier transform of the characteristic
function, leading to [Leo98]:

W (X ,P) =
1

2π

∫
∞

−∞

dξ eıνP〈X−ν/2|ρ̂|X +ν/2〉. (3.9)

As already discussed, while the Wigner function does not represent a trusted probability
distribution, it can be still exploited to calculate the statistical momenta of the operators
X̂ and P̂. Indeed, the Wigner function is normalized to unity according to:∫

∞

−∞

∫
∞

−∞

dXdPW (X ,P) = 1. (3.10)

Furthermore, the marginal distributions of the X̂ and P̂ operators are well defined and
present all the properties of a trusted probability distribution. The marginals of the two
variables can be evaluated as:

P(X) =
∫

∞

−∞

dPW (X ,P), and:P(P) =
∫

∞

−∞

dX W (X ,P), (3.11)

and the momenta of X and P can be evaluated by standard statistical techniques.
In general, we can define the rotated quadrature set {X̂θ}:

X̂θ =
1√
2
(âe−ıθ + â†eıθ ) = X̂ cosθ + P̂sinθ , (3.12)

and the marginal distributions of the rotated quadratures can be evaluated as:

P(Xθ ,θ) =
∫

∞

−∞

dPθ W (Xθ cosθ −Pθ sinθ ,Xθ sinθ +Pθ cosθ). (3.13)

The overlap between two pure states |ψ1〉 and |ψ2〉 can be calculated as:

|〈ψ1|ψ2〉|2 = 2π

∫
∞

−∞

dXdPWψ1(X ,P)Wψ2(X ,P). (3.14)

In general, it is possible to associate to any operator Ô a corresponding Wigner function
by replacing ρ̂ with Ô in Eq. (3.9). One then obtains the overlap formula:

Tr
[
Ô1Ô2

]
= 2π

∫
∞

−∞

dXdPW1(X ,P)W2(X ,P), (3.15)
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where (Ô1, Ô2) are two arbitrary operators, and (W1,W2) are the corresponding Wigner
functions. The Wigner function can be then exploited to evaluate the average values of
any operator Ô on a density matrix ρ̂ as:

Tr
[
ρ̂Ô
]
= 2π

∫
∞

−∞

dXdPWρ̂(X ,P)WÔ(X ,P). (3.16)

The latter expression includes also the operator |n〉〈m|. This permits us to calculate the
elements of a density matrix ρ̂ in a chosen basis {|n〉} according to:

〈m|ρ̂|n〉= 2π

∫
∞

−∞

dXdPWρ̂(X ,P)Wn,m(X ,P). (3.17)

We conclude this section by observing that the definition of the position operator X̂
and of the momentum operator P̂ is made up to a factor κ:

X̂ =
1√
2κ

(â+ â†); P̂ =
ı√
2κ

(â†− â). (3.18)

This factor κ can take the values {1/2,1,2}, and the Heisenberg uncertainty principle
defining the minimum uncertainty for the set of noncompatible operators {X̂ , P̂} reads:
∆2X∆2P = 1/(4κ2). The definition of the Wigner function has to be modified appropri-
ately in order to ensure the normalization condition of Eq. (3.10). In the case κ = 2, by
defining η = (ν− ıµ)/2 and α = X + ıP the characteristic function χ(η) and the Wigner
function for a state ρ̂ can be evaluated respectively as:

W̃ (η) = Tr
[
ρ̂eη â†−η∗â

]
, (3.19)

W (α) =
1

π2

∫
d2

η W̃ (η)eη∗α−ηα∗. (3.20)

3.2.3 Generalized s-parametrized quasi-probability distributions
We now briefly review the properties of a more general class of quasi-probability distri-
butions, parametrized by a real parameter s and which includes the Wigner function as
a subcase. This class of generalized quasi-probability distribution includes the Glauber-
Sudarshan P−distribution [Sud63, Gla63] and the Husimi Q−distribution [Hus40]. The
choice of the adopted distribution may depend from the specific context, such as for ex-
ample the measurement of cavity fields [RMB+05] or the characterization of the nonclas-
sicality of an optical field [KVBZ11]. It is then necessary to choose appropriately the
measurement apparatus, such as homodyne detection for the W−function [VR89], het-
erodyne detection for the Q−function [YS80], or by opportune nonclassicality filters on
the outcome of homodyne detection for the P−function [KVP+08, KVH+09, KVBZ11].
The class of s-parametrized quasi-probability distributions is defined from its characteris-
tic function:

W̃ (µ,ν ;s) = W̃ (µ,ν)exp
[ s

4
(u2 + v2)

]
, (3.21)
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where W̃ (µ,ν) is the Fourier transform of the Wigner function defined in the previous
section. Finally, the s-parametrized quasi-probability distribution W (X ,P;s) is obtained
as [Leo98]:

W (X ,P;s) =
1

(2π)2

∫
∞

−∞

∫
∞

−∞

dµdν W̃ (µ,ν ;s)eıµX+ıνP. (3.22)

The Wigner function corresponds to the case s = 0.
The s-parametrized quasi-probability distributions are related to the action of a lossy

channel with efficiency η on a generic state ρ̂ . The action of losses can be modeled by
combining the input state ρ̂ with a vacuum state in a beam-splitter with transmittivity η .
It can be shown that in the lossy regime the Wigner function of the output state can be
written as [Leo93, LR09]:

Wη(X ,P) =
1

π(1−η)

∫
∞

−∞

∫
∞

−∞

dX ′dP′W (X ′,P′)e−
(X−√η X ′)2+(P−√η P′)2

1−η . (3.23)

The Wigner function after losses η can be then evaluated as the s-parametrized quasi-
probability distribution for s =−(1−η)/η and can be interpreted as a gaussification, or
smoothing, of the original Wigner function under the action of gaussian noise. Eq. (3.23)
can be generalized to obtain a hierarchy between W (X ,P;s) and W (X ,P;s′) according to
[Leo93]:

W (X ,P;s) =
1

π(s′− s)

∫
∞

−∞

∫
∞

−∞

dX ′dP′W (X ′,P′;s′)e−
(X−X ′)2+(P−P′)2

s′−s , (3.24)

where the integral converges for s < s′.

3.2.4 Gaussian states

Gaussian states provide a relevant class of continuous variables quantum states. Such
class of states can be exploited as a useful resource for teleportation [BK98, FSB+98],
cloning [BCI+01, CRD04, AJL05], or dense coding [Ban99, BK00, LPJ+02]. Further-
more, such states can be described and handled mathematically since they can be eas-
ily described in terms of gaussian functions, possessing by definition a gaussian Wigner
function. By defining the vector of the quadrature variables R = (X ,P)T , the vector of the
quadrature operators R̂ = (X̂ , P̂)T , and the vector of the average values R = (〈X̂〉,〈P̂〉)T ,
we obtain that the Wigner function for a general single-mode gaussian state takes the
form:

Wρ̂(X ,P) =
1

πκDet[V]
exp
{
−1

2
(R−R)T (V)−1(R−R)

}
. (3.25)

Here, V is the covariance matrix, defined as:

Vi j = [V]i j =
1
2
〈{R̂i, R̂ j}〉−〈R̂i〉〈R̂ j〉, (3.26)
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where {Â, B̂}= ÂB̂+ B̂Â. The corresponding characteristic function presents an analogue
gaussian form in terms of the ξξξ = (µ,ν)T vector:

W̃ (µ,ν) = exp
{
−1

2
ξξξ

T
(ΩΩΩVΩΩΩ

T )ξξξ − ı(ΩΩΩR)T
ξξξ

}
, (3.27)

where ω is the symplectic matrix:

ωωω =

(
0 1
−1 0

)
. (3.28)

Such results can be further extended to a general n-modes gaussian state by defining the
vectors Rn =(X1,P1,X2,P2, . . . ,Xn,Pn)

T , Rn =(〈X̂1〉,〈P̂1〉,〈X̂2〉,〈P̂2〉, . . . ,〈X̂n〉,〈P̂n〉)T ,ξξξ n =
(µ1,ν1,µ2,ν2, . . . ,µn,νn)

T , and the corresponding n-modes covariance matrix. We ob-
tain:

Wρ̂(Rn) =
1

(πκ)nDet[Vn]
exp
{
−1

2
(Rn−Rn)

T (Vn)
−1(Rn−Rn)

}
, (3.29)

W̃ (ξξξ n) = exp
{
−1

2
ξξξ

T
n (ΩΩΩnVnΩΩΩ

T
n )ξξξ n− ı(ΩΩΩnRn)

T
ξξξ n

}
, (3.30)

where ΩΩΩn is the n-modes symplectic matrix:

ΩΩΩn =
n⊕

i=1

ωωω i; ωωω i =

(
0 1
−1 0

)
. (3.31)

In the following, we discuss some relevant examples of gaussian states, including coherent
states, squeezed vacuum states, and thermal states.

Coherent states

The Glauber coherent α-states are defined as eigenstates of the annihilation operator â,
and are parametrized by a complex eigenvalue α according to: â|α〉=α|α〉. The coherent
states are obtained by application of the displacement operator D̂(α) to the vacuum state
as:

|α〉= D̂(α)|0〉; with D̂(α) = exp(α â†−α
∗â). (3.32)

By exploiting the Baker-Campbell-Hausdorff formula, we obtain the following expression
for the coherent state in the Fock space:

|α〉= e−|α|
2/2

∞

∑
n=0

αn
√

n!
|n〉. (3.33)

The evaluation of the Wigner function of |α〉 state is:

Wα(X ,P) =
1
π

e−(X−X0)
2−(P−P0)

2
, (3.34)
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corresponding to a gaussian distribution satisfying the minimum uncertainty relation given
by ∆2X∆2P= 1/4, and centered in the phase-space at X0 =

√
2α cosϕ and P0 =

√
2α sinϕ ,

where ϕ is the phase of complex amplitude α = |α|eıϕ [see Fig. 3.2 (c)]. Hence, the ac-
tion of the displacement operator on the vacuum state is to shift the average values of the
quadrature operators without affecting their fluctuations.

Squeezed vacuum states

Here we consider the squeezed vacuum gaussian state, which is defined by the action of
the squeezing operator Ŝ(τ) on the vacuum state:

|τ〉= Ŝ(τ)|0〉; with Ŝ(τ) = exp
{
− τ

2
â†2 +

τ∗

2
â2
}
, (3.35)

where τ is the complex squeezing parameter, with amplitude r = |τ| and phase λ = argτ .
The Wigner function of the state reads:

Wτ(X ,P) =
1
π

e−{X2[cosh(2r)+cosλ sinh(2r)]+P2[cosh(2r)−cosλ sinh(2r)]+2XPsinλ sinh(2r)} =

=
1
π

e−
X2

θ

e−2r−
P2
θ

e2r .

(3.36)
We note that, depending on the value of the squeezing phase λ , the quadrature Xθ with
θ = λ

2 presents a reduced fluctuation ∆2Xθ =(2e−2r)−1, while the corresponding Xθ+π/2 =

Pθ quadrature presents an increased fluctuation ∆2Pθ = (2e2r)−1 [see Fig. 3.2 (b)]. How-
ever, the minimum uncertainty relation is preserved after the squeezing operator according
to ∆2Xθ ∆2Pθ = 1

4 . Hence, the action of the squeezing operator is to stretch the Wigner
function along a certain direction identified by its phase λ .

Thermal states

Thermal states are defined according to:

ρ̂
th(N) =

∞

∑
n=0

Nn

(1+N)1+n |n〉〈n|, (3.37)

where N is the thermal noise parameter. Such class of density matrices describes chaotic
light, and is written in the form of an incoherent mixture of photon-number states with a
Planckian distribution. The Wigner function of the state reads:

W th(X ,P) =
1

π(1+2N)
e−

1
1+2N (X2+P2). (3.38)

Hence, the Wigner function of a thermal state is a gaussian function with center in the
origin of the phase-space, with increased fluctuations on the quadrature variables ∆2X =

∆2P = [2(1+ 2N)]−1 depending on the value of the thermal noise N [see Fig. 3.2 (c)].
Note that this state does not satisfy anymore the minimum uncertainty relation ∆2X∆2P =

1/4.
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Figure 3.2: Bidimensional representation of gaussian states. (a) Action of the displace-
ment operator on the vacuum state. (b) Action of the squeezing operator on the vacuum
state. (c) Thermal states (larger circle) present bigger fluctuations in the (X̂ , P̂) operators
with respect to the vacuum state (smaller circle).

Single-mode gaussian states

It can be shown that [Bv05, FOP05] a general single-mode gaussian state can be obtained
starting from a thermal state, and performing linear and bilinear operations, such as the
displacement and squeezing operations, on it. More specifically, the following form holds:

ρ̂G = D̂(α)Ŝ(τ)ρ̂ th(N)Ŝ†(τ)D̂†(α). (3.39)

This means that a general gaussian state can be obtained by squeezing along a certain
direction θ a thermal state, and by subsequently applying a displacement in the phase-
space. The Wigner function of this gaussian state can be defined from the vector of first
order moments R = (

√
2ℜ(α),

√
2ℑ(α)) and from the variance matrix [Eq. (3.26)]:

V11 =
2N +1

2
[cosh(2r)− cosλ sinh(2r)] , (3.40)

V22 =
2N +1

2
[cosh(2r)+ cosλ sinh(2r)] , (3.41)

V12 =V21 = −2N +1
2

sinλ sinh(2r). (3.42)

3.2.5 Nongaussian and nonclassical states

While gaussian states provide a powerful resource in some quantum information tasks,
other protocols require the employment of nongaussian resources. There is an ongoing
effort to study which protocols are allowed by nongaussian resources. The most no-
table example is certainly their use for an optical quantum computer [RGM+03, LRH08],
where gaussian states does not allow to obtain a significant increase in the computational
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Figure 3.3: Diagram for the relation between nongaussianity and nonclassicality for pure
and mixed states. Note that the implication nongaussian → nonclassical holds only for
pure states.

power. Furthermore, some computational steps such as error correction cannot be per-
formed with gaussian resources only [NFC09], thus rendering nongaussianity a neces-
sary requirement for this task. Other examples of quantum information tasks where the
employment of nongaussian resources can lead to substantial benefits are teleportation
[OKW00, CRM02, OPB03], cloning [CKN+05], and storage [CLP07]. Furthermore,
it has been recently proposed that nongaussianity, either at the generation stage or at
the detection stage, is a crucial requirement for the violation of a Bell’s inequality with
continuous-variables [RMMJ05]. This can be explained by considering that the outcomes
of gaussian measurements on gaussian states can be interpreted in terms of a classical
probability distribution.

The presence of nongaussian features is also related to the emergence of nonclassical
features. In general, the Wigner function of a state is not completely positive over all the
phase space. The emergence of negative values for the Wigner function has been iden-
tified as a peculiar feature of quantum physics, and has been connected to the quantum
superposition properties of the state [Bar44]. Hence, the presence of negative regions
in the Wigner function of a quantum state has been recognized as a sufficient (but not
necessary) condition for its nonclassicality. For pure states, the connection between the
nonpositivity and the nongaussianity of a Wigner function has been extablished by the
Hudson-Piquet theorem [Hud74]. Indeed, for any nongaussian pure state a Wigner func-
tion is necessarily non completely positive, and conversely a non completely positive
Wigner function is necessarily nongaussian. Hence, any pure nongaussian states present
nonglassical features. However, care should be taken when dealing with mixed states.
In this case, the Hudson-Piquet theorem does not hold and no direct connection between
nongaussianity and nonclassicality can be extablished [see Fig. 3.3]. As an example, in
Fig. 3.4 are reported the Wigner function for different states: classical and gaussian state
[the vacuum state (a)], nonclassical and gaussian state [the squeezed vacuum state (b)],
classical and nongaussian state [a mixture of two coherent states (c)], nonclassical and
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(a) CLASSICAL, GAUSSIAN (b) NONCLASSICAL, GAUSSIAN

(c) CLASSICAL, NONGAUSSIAN (d) NONCLASSICAL, NONGAUSSIAN

Figure 3.4: Different examples of continuous-variables states. (a) The vacuum state. (b)
Squeezed vacuum state. (c) Mixture of two coherent states (|α〉〈α|+ |−α〉〈−α|)/2. (d)
Single-photon state.

nongaussian state [a pure single-photon state (d)].
According to the previous considerations, it becomes necessary to define opportune

nongaussianity and nonclassicality measures in order to characterize both properties in
the investigated state. Different measures of nongaussianity [GPB07, GPB08, GP10] and
nonclassicality [DMMW00, DR03, MMS04] have been recently proposed. In Chap. 8
we analyze in more details two specific measures, and we apply them to a relevant condi-
tional process, that is, single-photon addition, suitable for the generation of nongaussian
resources.

3.3 Detection of quantum states in the quantum phase
space: homodyne detection

In this section we describe in details the homodyne detection, an experimental technique
to measure the quadrature operators (X̂ , P̂). Homodyning relies on the interference on a
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symmetric beam-splitter between the optical signal and a classical coherent state. This
technique can be performed with high efficiency, rendering it suitable for the analysis of
multiphoton states.

3.3.1 Theory of the pulsed homodyne detection technique
The optical scheme for a homodyne detection apparatus is shown in Fig. 3.5. The signal
on mode kS is combined in a 50/50 beam-splitter with a coherent state |αL〉 on mode
kL, dubbed as the local oscillator. The beams after the mixing process on modes k1 and
k2 are detected by means of two photodiodes, which give a photocurrent proportional to
the number of impinging photons. Finally, the two output photocurrents are subtracted
electronically to measure the difference in the photon-number n̂−. Thanks to the interfer-
ence the observed mode is naturally selected by the mode of the local oscillator without
requiring additional filtering. This feature, combined with the high quantum efficiency of
the photodiodes, allows to perform this measurement with extremely high efficiency.

BS 
(50/50)

signal

local 
oscillator

photodiodes Figure 3.5: Optical scheme for
homodyne detection. The signal
and the local oscillator are mixed
in a 50/50 beam-splitter, and the
difference in the photon-number
of the two output modes is de-
tected.

Measurement of the rotated quadratures

It is possible to prove that the difference in the photocurrents N̂− is directly related to the
measurement of the quadrature operator X̂θ . The measured photon-number in a detection
time T in a photodiode is obtained as [Lou00]:

N̂ j =
∫ T

0
dtÎ j(t). (3.43)

The photon-flux at the detector’s plane, assumed to be at z = 0, can be evaluated as:

Î j =
∫

Det
d2

ρρρ Φ̂ΦΦ
(−)
j (ρρρ,0, t) · Φ̂ΦΦ(+)

j (ρρρ,0, t). (3.44)

where ρρρ = (x,y) are the transverse coordinates. The spatial integral is performed over the

detector area, and (Φ̂ΦΦ
(+)
j ,Φ̂ΦΦ

(−)
j ) are respectively the positive and negative frequency part
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of the photon-flux operator in the paraxial approximation:

Φ̂ΦΦ
(+)
j (ρρρ,z, t) = ı

√
c∑

k
âkvk(ρρρ,0, t), (3.45)

Φ̂ΦΦ
(−)
j (ρρρ,z, t) = −ı

√
c∑

k
â†

kv∗k(ρρρ,0, t). (3.46)

Here j = S,L labels the signal and the local oscillator modes. When T is large, the
orthogonality relation for the mode functions at the detector plane reads:∫ T

0
dt
∫

Det
d2

ρρρ v∗k(ρρρ,0, t)vm(ρρρ,0, t) = δk,m. (3.47)

The measured photon-number difference N̂− = N̂1 − N̂2 is obtained by evaluating the
difference in the photon-number for the two output modes of the beam-splitter N̂i, where
the beam-splitter transformations for the photon-flux operators read:

Φ̂ΦΦ1 =
1√
2
(Φ̂ΦΦS + Φ̂ΦΦL), Φ̂ΦΦ2 =

1√
2
(Φ̂ΦΦS− Φ̂ΦΦL). (3.48)

By exploiting the latter expressions we obtain:

N̂− =
∫ T

0
dt
∫

Det
d2

ρρρΦ̂ΦΦ
(−)
L (ρρρ,0, t) · Φ̂ΦΦ(+)

S (ρρρ,0, t)+h.c. (3.49)

Now, the local oscillator photon-flux operator, generated in a high photon-number coher-
ent state, can be replaced by its classical counterpart:

ΦΦΦ
(+)
L (ρρρ,0, t) = ı

√
cαLvL(ρρρ,0, t), (3.50)

where αL is the complex coherent amplitude of the local oscillator, and vL(ρρρ,0, t) defines
its optical mode at the detector plane. By replacing Eqs. (3.45-3.46) and (3.50) in Eq.
(3.49), we obtain [Leo98, LR09]:

N̂− = α
∗
L â+αLâ† =

√
2|αL|X̂θ . (3.51)

Here, θ is the local oscillator phase difference with the signal beam, and â is the an-
nihilation operator of the detected mode, which is defined by the local oscillator mode
according to:

â = ∑
k

âkc
∫ T

0
dt
∫

Det
d2

ρρρv∗L(ρρρ,0, t)vS(ρρρ,0, t). (3.52)

This result shows that the output photocurrent of a homodyne apparatus corresponds to
the measurement of X̂θ , where the phase of the observed quadrature is defined by the
local oscillator phase. Furthermore, the mode of the electromagnetic field measured by
the apparatus is selected by the mode of the local oscillator according to Eq. (3.52).
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Mode matching and homodyne detection efficiency

The homodyne apparatus performs the measurement of the X̂θ quadrature operator in the
optical mode defined by local oscillator. Hence, an accurate mode-matching (including
spectral, spatial and temporal profiles) must be performed between the signal and the lo-
cal oscillator, in order to measure the X̂θ quadrature of the desired state. Any mismatch
between the optical modes of the signal and of the local oscillator is responsible for addi-
tional noise in the measurement process, which appears as a reduced value of the overall
detection efficiency.

The role of a mode-mismatch between the signal to be detected and the local oscillator
can be modeled by the action of beam-splitter of transmittivity ηH combining the desired
signal with a vacuum state injected in the other input port. This can be shown by the
following consideration. We can write the photon-flux operator of the signal as:

Φ̂ΦΦS(ρρρ,0, t) = ı
√

c âSvS(ρρρ,0, t)+ Φ̂ΦΦ0(ρρρ,0, t). (3.53)

Here, vS(ρρρ,0, t) defines the profile of the signal mode described by the operator âS, while
Φ̂ΦΦ0(ρρρ,0, t) is the photon-flux operator for all the other optical modes populated by the
vacuum state. By exploiting this definition, the annihilation operator of the measured
mode â can be written as the sum of two terms:

â =
√

ηH âS +
√

1−ηH â0. (3.54)

Here, â0 is the annihilation operator for the effective vacuum-injected mode, while ηH
represents the overlap between the modes of the signal and the local oscillator according
to [Leo98]:

√
ηH = c

∫ T

0
dt
∫

Det
d2

ρρρv∗L(ρρρ,0, t)vS(ρρρ,0, t). (3.55)

Here, ηH takes the role of an effective detection efficiency for the homodyne apparatus.
Typical values of the homodyne efficiency in experimental implementations range from
60−70% in the pulsed regime up to ∼ 90−95% in the continuous-wave regime. Hence,
the measured Wigner function corresponds to the convolution of Eq. (3.23), and the
output probability distribution reads [LR09]:

P(Xθ ,θ) = 〈:
exp
[
−(Xθ/η− X̂θ )

2]/(2σ2)√
2πσ2

:〉. (3.56)

where Xθ is the realization of the variable and X̂θ is the quadrature operator.

3.3.2 Reconstruction of a quantum state through homodyne tomog-
raphy

Within the context of quantum optics and quantum information, a crucial requirement for
the characterization of any platform is the capability to completely reconstruct the density
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matrix of the generated states. Homodyne detection represents a relevant technique to
characterize the Wigner function of a physical state. The main idea at the basis of this
method is embodied in the Radon transform of Eq. (3.13). Such mathematical expression
relates the Wigner function of a state ρ̂ , which includes all the relevant information on its
properties, with the probability distributions of the quadrature operator X̂θ . The latter can
be measured with a homodyne apparatus, as shown in the previous section.

A typical homodyne apparatus for the tomographics reconstruction of a single-mode
state is shown in Fig. 3.6. The input state is analyzed by a conventional balanced ho-
modyne detection apparatus. By scanning over different values θm of the local oscilla-
tor phase, for instance through a piezoelectric translational stage, several distributions
of {P(Xθm,θm)} are recorded. Finally, the output data are processed through a suitable
algorithm to reconstruct the Wigner function of the state.

phase scanning (θ)

local oscillator

signal

data processing

Figure 3.6: Optical scheme for homodyne tomography. The quadrature distribution for
X̂θ is measured for different values of θ by scanning over the local oscillator phase. The
Wigner function is then reconstructed by processing the data through a suitable algorithm
as described in the text.

Maximum likelihood estimation

In order to reconstruct the Wigner function of the measured state starting from the prob-
ability distributions P(Xθ ,θ) obtained through homodyne detection, a maximum like-
lihood approach can be exploited. This approach reduces some artifacts that may arise
in some reconstructed states by adopting the inverse Radon transform method [VR89],
which is based on performing the direct inversion of Eq. (3.13).

As for all measurement apparatuses, a POVM set of operators Π̂ j can be associated
to the homodyne detection system. The j-th outcome for the measurement occurs with
probability P( j):

Pρ̂( j) = Tr[Π̂ jρ̂]. (3.57)
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The tomographic problem is then shifted to an inversion problem for the latter relation.
We can introduce a nonnegative operator R̂, defined as:

R̂[ρ̂] =
1
N ∑

j

f j

Pρ̂( j)
Π̂ j, (3.58)

where f j is the frequency of the j-th outcome of the measurement. For homodyne detec-
tion, the operator R̂ is given by

R̂[ρ̂] = ∑
j

f j

prρ̂(X j,θ j)
Π̂(X j,θ j), (3.59)

where the measurement operator Π̂(X j,θ j) is the projector over the eigenstate |X j,θ j〉
of the quadrature X̂θ j . The principle of maximum likelihood algorithms is based on the
definition of a likelihood function, which finds the physical state which maximizes the
probability of obtaining the measured data set.

The likelihood function for this problem is defined as:

L (ρ̂) = ∏
j
[Pρ̂( j)] f j . (3.60)

The state ρ̂0 that maximizes the function L must satisfy the following conditions:

R̂[ρ̂0]ρ̂0 = ρ̂0, ρ̂0R̂[ρ̂0] = ρ̂0, R̂[ρ̂0]ρ̂0R̂[ρ̂0] = ρ̂0. (3.61)

The next step is then to apply an iterative algorithm to determine the matrix ρ̂0 which max-
imizes L . As a starting point, a common approach is to initialize at step 0 the density
matrix to ρ̂(0) = N [1̂] , dove 1̂ is the identity operator and N [·] imposes the normaliza-
tion to a unitary trace. The iteration of the algorithm from step k to step k+ 1 is chosen
as:

ρ̂
(k+1) = N

[
R̂[ρ̂(k)]ρ̂(k)R̂[ρ̂(k)]

]
. (3.62)

In some cases, such algorithm does not lead to a monotonical increase of L for each step
of the protocol. In this cases, a different iteration rule is exploited:

ρ̂
(k+1) = N

[
1̂+ εR̂
1+ ε

ρ̂
(k) 1̂+ εR̂

1+ ε

]
. (3.63)

The precision of this reconstruction algorithm can be increased by increasing the number
of sampled quadrature phases θm.
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Part II

Fundamental tests of Quantum
Mechanics with multiphoton states
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Chapter 4

Resilience to decoherence and
nonclassicality of the multiphoton
quantum superpositions generated by
amplification of single-photon states

The observation of quantum properties in systems of growing size is limited by the un-
controlled interaction with the environment of any physical system, which hence cannot
be completely described by a unitary evolution. For this reason, the production and de-
tection of quantum states possessing a large number of particles is still an open chal-
lenge. In this Chapter we analyze in details the properties of the optical parametric
amplifier when such a system is exploited to broadcast the properties of a single parti-
cle into a multiphoton state. Such transfer of the properties from a microscopic system
to a multiphoton one is due to the cloning features of the amplifier, which produce out-
put photons as similar as possible to the input one. Here we show that the produced
states present a significant resilience to losses, and that the nonclassicality of the state is
preserved until half of the particle are lost. The obtained results can be found in Refs.
[DSS09b, DSS09a, SVD+09, DSSV10, SVSD10], and open the way to the application of
the multiphoton states generated by parametric amplification to both fundamental test of
quantum mechanics and application to quantum information protocols. This will be the
subject of the rest of this thesis.

4.1 Observation of quantum properties in multiphoton
systems

In the last decades the physical implementation of multiphoton quantum superpositions
involving a large number of particles has attracted a great deal of attention. Indeed it
was generally understood that the experimental realization of a multiphoton quantum

73
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superposition is very difficult and, in several instances, practically impossible owing to
the extremely short persistence of quantum coherence, that is, of the extremely rapid
decoherence due to the entanglement established between the macroscopic system and
the environment [NC00, Zur91, Zur03, Zur07]. Formally, the irreversible decay towards
a probabilistic classical mixture is implied theoretically by the tracing operation of the
overall state over the environmental variables [DSC02, DB04]. In the framework of
quantum information different schemes based on optical systems have been undertaken
to generate and to detect multiphoton quantum superposition states involving an increas-
ing number of particles. A Cavity QED scheme based on the interaction between Ry-
dberg atoms and a high-Q cavity has lead to the indirect observation of quantum su-
perposition of coherent states and of their temporal evolutions [BHR+92, RBH01]. A
different approach able to generate freely propagating beams adopts photon-subtracted
squeezed states; experimental implementations of quantum states with an average num-
ber of photons of around four have been reported both in the pulsed and in the continu-
ous wave regimes [NNNH+06, OTBL+06, OJTBG07, OFTBG09]. These states exhibit
nongaussian characteristics and open new perspectives for quantum computing based on
continuous-variable systems, entanglement distillation protocols [ESP02, DLH+08] and
loophole-free tests of Bell’s inequality.

Recently, a different class of multiphoton states based on the process of optical para-
metric amplification has been realized in order to establish the entanglement between a
single photon and a multiphoton state given by an average of many thousands of photons.
More specifically, such class of field is generated through a high-gain cloning machine
seeded by a single-photon belonging to an entangled pair [De 98a, De 98b, DS05, DSS05,
SD05]. A first theoretical insight on the dynamical features of this amplification-based
multiphoton states and a thorough experimental characterization of the quantum corre-
lations were recently reported [NDSD07, DSV08]. In the present chapter we perform a
thorough theoretical analysis of the class of states based on parametric amplification of
single-photons. First, we analyze the evolution of the density matrix after the action of
a lossy channel, applying two criteria to assess the quantum superposition properties of
these states in the Fock space. Then, we perform a complete quantum phase-space anal-
ysis able to recognize the persistence of nonclassical properties after the action of losses
[Sch01, Wig32]. Among the different representation of quantum states in the continuous-
variables space [CG69a], the Wigner quasi-probability representation has been widely
exploited as an evidence of non-classical properties, such as squeezing [WM95] and EPR
non-locality [BW98]. In particular, as shown in Chap. 3 the presence of negative quasi-
probability regions has been considered as a consequence of the quantum superposition of
distinct physical states [Bar44]. By exploiting the properties of this distribution, we focus
our interest on the effects of decoherence on the multiphoton states and on the emergence
of the classical regime. For both analysis, the results are compared with the paradigmatic
example of the superposition of coherent states, |α〉± |−α〉.

The present chapter is organized as follows. First, in Sec. 4.2 we introduce and
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analyze the class of states under investigation. More specifically, we consider two dif-
ferent configurations for the optical parametric amplification process of single photons;
a collinear and a noncollinear one. We calculate both the density matrix and the Wigner
function of these states after the action of a lossy channel. Then, in Sec. 4.3 we investi-
gate the resilience to losses of these superposition states by adopting two different criteria.
Finally, in Sec. 4.4 we analyze the persistance of nonclassical properties in the Wigner
function associated to the parametrically amplified single-photon states, when these states
undergo a lossy process.

  

(a)

(b)
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Collinear 
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Figure 4.1: (a) Scheme for
the phase-covariant cloning of a
single-photon state with a collinear
optical parametric amplifier. The
beam-splitter [BS(T )] is inserted
to simulate the propagation over
lossy channels of the output field.
(b) Scheme for the universal
cloning of a single-photon state
with a non-collinear optical para-
metric amplifier (beam-splitters on
spatial modes k1 [BS(T1)] and k2
[BS(T2)]).

4.2 Optical parametric amplification of a single-photon
state

As a first step we consider the generation of a multiphoton quantum field, obtained by
parametric amplification. Let us briefly describe the conceptual scheme. An entangled
pair of two photons in the singlet state |ψ−〉A,B=2−

1
2 (|H〉A |V 〉B−|V 〉A |H〉B) is produced

through a spontaneous parametric down-conversion (SPDC) by crystal 1 pumped by a
pulsed ultraviolet (UV) pump beam: Fig. 4.1 (a-b). There |H〉 and |V 〉 stands, respec-
tively, for a single photon with horizontal and vertical polarization (~π) while the labels
A,B refer to particles associated respectively with the spatial modes kAand kB. The photon
belonging to kB, together with a strong UV pump beam, is fed into an optical parametric
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amplifier consisting of a second non-linear crystal pumped by the beam k′P. We consider
two different configurations for the amplifier. The first one is the collinear configuration
[Fig. 4.1 (a)], already described in Sec. 2.2. In this case, the pairs of amplified photons are
emitted over the same spatial mode in two orthogonal ~π modes, respectively horizontal
and vertical. The second configuration is the non-collinear one [Fig. 4.1 (b)], that is, the
configuration adopted for the generation of entangled single-photon pairs. In this case,
the pairs of amplified photons are emitted over two different spatial modes.

The main idea beyond this approach is that the action of the process of optical para-
metric amplification is to broadcast the properties of the input state into a state with a
larger number of particles. Indeed, by increasing the gain of the amplifier it is possible
to modulate the number of generated photons. This property of the optical parametric
amplification process provides a natural approach to progressively increase the number of
photons in the state, thus allowing to investigate how the decoherence rate is modified by
the presence of a larger number of particles.

4.2.1 Phase-covariant amplifier
Let us now consider the collinear optical configuration leading to the phase-covariant
optimal quantum cloning machine: Fig. 4.1 (a) [DSV08].

Figure 4.2: Equivalent model for
the collinear phase-covariant opti-
cal parametric amplifier. The two
polarization modes ~πφ and ~πφ⊥
undergo a separate single mode
amplification process Û (φ)

OPA and

Û (φ⊥)
OPA .

By exploiting the results of previous Section and of Sec. 2.2.2, the amplified state for
an injected equatorial qubit with ~πφ polarization reads:

|Φφ

OPA〉=
∞

∑
i, j=0

γi j|(2i+1)φ ,(2 j)φ⊥〉, (4.1)

where γi j =
1

C2

(
e−ıφ Γ

2

)i (−e−ıφ Γ

2

) j
√

(2i+1)!
√

(2 j)!
i! j! , C = coshg, Γ = tanhg. Hereafter, the

state |pψ,qψ⊥〉i stands for a Fock state with p photons polarized ~πψ and q photons polar-
ized ~πψ⊥ on spatial mode ki. The average number of generated photons with polarization
~πφ is given by 〈n̂φ 〉 = 3n+ 1, corresponding to a stimulated emission process. where
n = sinh2 g. Furthermore, we observe that the generated field presents a well defined par-
ity, corresponding to an odd number of photons in the injected polarization and to an even
number of photons in the orthogonal polarization.
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Photon-number distribution

Before the lossy process, the density matrix of the state ρ̂
φ

OPA = |Φφ

OPA〉〈Φ
φ

OPA| is:

ρ̂
φ

OPA =
∞

∑
i, j,k,q=0

γi jγ
∗
kq|(2i+1)φ ,(2 j)φ⊥〉〈(2k+1)φ ,(2q)φ⊥|. (4.2)

We note from this expression that only elements with an odd number of photons in the
~πφ and an even number in the ~πφ⊥ polarization are present. Furthermore, in Fig. 4.3
(a) we note that the photon number distribution presents a strong unbalancement due to
the quantum injection of the ~πϕ single photon. Indeed, the amplifier seeded by a photon
with equatorial polarization acts as a phase-covariant optimal cloning machine, and is
stimulated to generate an output field containing more photons in the polarization of the
injected seed.

Let us now analyze the effects of the transmission in a lossy channel for the equatorial
amplified qubits by plotting the photon number distributions. The output density matrix
after the transmission over the lossy channel is the sum of four terms with different parities
[DSS09b]:

ρ̂
φ

η =
∞

∑
i, j,k,q=0

{(
ρ̂

φ

η

)
i jkq
|(2i+1)φ ,(2 j)φ⊥〉〈(2k+1)φ ,(2q)φ⊥|+

+
(

ρ̂
φ

η

)
i jkq
|(2i)φ ,(2 j)φ⊥〉〈(2k)φ ,(2q)φ⊥|+

+
(

ρ̂
φ

η

)
i jkq
|(2i+1)φ ,(2 j+1)φ⊥〉〈(2k+1)φ ,(2q+1)φ⊥|+

+
(

ρ̂
φ

η

)
i jkq
|(2i)φ ,(2 j+1)φ⊥〉〈(2k)φ ,(2q+1)φ⊥|

}
.

(4.3)

The details on the calculation and on the expressions of the coefficients are reported in
App. A.1.2. When the original state propagates through a lossy channel, the first ef-
fect at low values of R is the cancellation of the peculiar comb structure [Fig. 4.3 (a)]
given by the presence in the density matrix (4.2) only of terms with a specific parity
|(2i+1)φ ,(2 j)φ⊥〉〈(2k+1)φ ,(2q)φ⊥|. However, at progressively higher values of R, the
distributions in the Fock space remain unbalanced in the polarization of the injected pho-
ton [Fig. 4.3 (a)]. The resilience of this unbalancement allows to distinguish the orthogo-
nal macro-qubits

{
|Φφ

OPA〉, |Φ
φ⊥
OPA〉

}
even after the propagation over the lossy channel, by

exploiting this property with a suitable detection scheme, such as the orthogonality filter
(OF) device reported in [DSV08]. All these considerations will be discussed and quanti-
fied later in Sec. 4.3.3 by analyzing the distinguishability of such states as a function of
the lossy channel efficiency η .

For the sake of completeness, we analyze the evolution of |ΦH
OPA〉 and |ΦV

OPA〉 am-
plified states. As a first remark, we note that the collinear optical parametric amplifier
is not an optimal cloner for states with ~πH and ~πV polarization, and the output states do
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Figure 4.3: (a) Probability distribution in the Fock space (nφ ,nφ⊥) for the amplified |Φφ 〉
state of a generic equatorial qubit for different values of the transmittivity. (b) Probability
distribution in the Fock space (nH ,nV ) for the amplified |ΦH〉 state for different values of
the transmittivity. All distributions refer to a gain value of g = 1.5, corresponding to an
average number of photons 〈n〉 ≈ 19.

not possess the same peculiar properties obtained with an equatorial injected qubit. The
density matrix of the |ΦH〉 amplified state is:

ρ̂
H
OPA = |ΦH

OPA〉〈ΦH
OPA|=

1
C4

∞

∑
n,m=0

Γ
n+m√n+1

√
m+1|(n+1)H,nV 〉〈(m+1)H,mV |.

(4.4)
In Fig. 4.3 (b) we plotted the photon number distribution of this state (R=0). We note
that the ~πH amplified state does not possess the same unbalancement of the equatorial
macro-qubits |Φϕ〉 analyzed in the previous section. After the propagation over the lossy
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channel, the density matrix reads:

ρ̂
H
η =

∞

∑
i=1

i−1

∑
j=0

∞

∑
k=0

(
ρ̂

H
η

)
i jk |iH, jV 〉〈kH,(k+ j− i)V |+

+
∞

∑
i=0

∞

∑
j=i

∞

∑
k=0

(
ρ̂

H
η

)
i jk |iH, jV 〉〈kH,(k+ j− i)V |,

(4.5)

where details on the calculation and on the coefficients are reported in App. A.1.3. The
effect of the propagation over the lossy channel is shown in Fig. 4.3 (b). The original
distribution for R = 0 is pseudo-diagonal, corresponding to the presence only of terms
|(n+1)H,nV 〉. Here the difference of one photon between the two polarization is due to
the injection of the seed. For values of R different from 0, the distribution is no longer
pseudo-diagonal and this characteristic becomes progressively smoothed. Furthermore,
the absence of the unbalancement in the photon-number distribution typical of the equa-
torial macro-qubits does not allow to exploit this feature to discriminate among the or-
thogonal states

{
|ΦH

OPA〉, |ΦV
OPA〉

}
. We then expect that this couple of states possess a

lower resilience to losses than the equatorial |Φφ

OPA〉 macro-states.

Wigner function

In this section we calculate the Wigner function associated with the output state of the
collinear optical parametric amplifier in absence and in presence of a certain amount of
losses R = 1−η [SVD+09]. Here, η is the channel efficiency, with η = 1 corresponding
to no losses in the state. For the sake of simplicity, let us first consider the Hamiltonian of
a degenerate amplifier acting on a single k−mode with polarization ~π+:

Ĥs.m. = ih̄
χ

2

(
â†2
+ − â2

+

)
. (4.6)

The corresponding time evolution operator is:

Û+(g) = exp[
g
2
(â†

+)
2− (â+)2]. (4.7)

When no seed is injected, the amplifier operates in the regime of spontaneous emission
and the characteristic function evaluated from Eq. (3.19) reads:

χ0(ξ ,g) = 〈0+|exp[ξ â†
+(g)−ξ

∗â+(g)] |0+〉= 〈0+|exp[ξ (g)â†
+−ξ

∗(g)â+] |0+〉 ,
(4.8)

with:
â+(g) = â+ coshg+ â†

+ sinhg, ξ (g) = ξ coshg−ξ
∗ sinhg, (4.9)

and g = χt. Hereafter, we explicitly report the dependence of the Wigner function from
the interaction time t. We obtain the following expression by using the operatorial relation
exp(Â+ B̂) = exp Âexp B̂exp(−1/2[Â, B̂]):

χ0(ξ ,g) = exp
(
−1

2
|ξ (g)|2

)
. (4.10)
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The calculation then proceeds as follows. Starting from the definition of the Wigner
function (3.19-3.20), we perform the two subsequent transformations of the integration
variables d2ξ → d2ξ (g)→ xdxdϕ , where ξ → ξ (g) has been defined in Eq. (4.9) and
can be expressed as ξ (g) = xeıϕ . The Wigner function is then calculated as:

W|0+〉(α,g) =
1

π2

∫
ex[(ᾱ−ᾱ∗)cosϕ+i(−ᾱ−ᾱ∗)sinϕ]− 1

2 x2
xdxdϕ

=
2
π

∫
∞

0
J0 (−2 |ᾱ|x)exp

(
−1

2
x2
)

xdx =
2
π

exp
[
−2 |ᾱ|2

]
,

(4.11)

where ᾱ = α cosh(g)−α∗ sinh(g), and J0(x) is the Bessel function of order 0. We can
now write ᾱ = Re(α)eg + ıI m(α)e−g as a function of the X , P quadrature operators,
defined by the expression α = X + ıP. By substituting such variables Eq. (4.11) becomes

W|0+〉(X ,P,g) =
2
π

exp
[
−2
(
X2e−2g +P2e2g)] . (4.12)

that corresponds to the Wigner function of a squeezed vacuum state.
When we consider the case in which a single photon with polarization ~π+ is injected:

|ψin〉= |1+〉, analogous calculations leads to the characteristic function:

χ1(ξ ,g) = 〈1+|exp[ξ (t)â†
+−ξ

∗(t)â+] |1+〉=
(

1−|ξ (t)|2
)

exp
(
−1

2
|ξ (t)|2

)
. (4.13)

The Wigner function reads:

W|1+〉(X ,P,g) =− 2
π

[
1−4

(
X2e−2g +P2e2g)]exp

[
−2(X2e−2g +P2e2g)

]
. (4.14)

Note that the Wigner function when a single photon is injected presents a negative value
in the origin W|1+〉(0,0,g) =−2/π .

Let us now consider the action of a certain amount of losses R on the calculated Wigner
functions. The effect of such process can be evaluated by considering that the action of
a lossy channel in the phase-space on a generic Wigner function W (X ,P) can be written
in the form of a gaussian convolution of Eq. (3.23) [Leo93]. As a first case, we analyze
the evolution of the Wigner function of the squeezed vacuum state. Analogously to the
unperturbed case, the quadrature variables for the single-mode OPA are defined by α =
X + ıP. The Wigner function for the squeezed vacuum after losses then reads:

W|0+〉(X ,P,R,g) =
2
π

1√
1+4(1−R)RS2

×

× exp

[
−2

(
X2e−2g +P2e2g)+2RS

(
X2e−g−P2eg)

1+4(1−R)RS2

]
,

(4.15)
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with S = sinhg. The same calculation can be performed on the Wigner function for the
single-photon amplified state, which reads:

W|1+〉(X ,P,R,g) =
2
π

1√
1+4(1−R)RS2

P|1+〉(X ,P,R,g)×

× exp

[
−2

(
X2e−2g +P2e2g)+2RS

(
X2e−g−P2eg)

1+4(1−R)RS2

]
,

(4.16)

where the polynomial P|1+〉(X ,P,R,g) has the form:

P|1+〉(X ,P,R,g) = 1− 4(1−R)
1+4(1−R)RS2

[
1
2
(
1+2RS2)+ (X2e−2g +P2e2g)+

−2
(
1+2RS2) (X2e−2g +P2e2g)+2RS

(
X2e−g−P2eg)

1+4(1−R)RS2

]
.

(4.17)

The plots of the Wigner function will be reported in Sec. 4.4.2, when the amount of
negativity is studied as a function of the losses parameter R.

We can now proceed to evalute the two-mode Wigner function corresponding to the
Hamiltonian ĤOPA for the collinear amplifier. Indeed, the unitary evolution of the Hamil-
tonian expressed in the {~π+,~π−} basis can be written in the separable form ĤOPA =
Û+(g)⊗ Û−(−g) [Fig. 4.2]. Hence, for a separable single-photon input state in the ~π+

polarization state |1+,0−〉, the Wigner function can be recovered from the single-mode
terms (4.15-4.17) as:

W|1+,0−〉(X+,P+,X−,P−,R,g) =W|1+〉(X+,P+,R,g)×W|0−〉(X−,P−,R,−g). (4.18)

Here, {X+,P+} and {X−,P−} are the quadrature variables for the two polarization modes,
and the term for the ~π− polarization is evaluated for a gain (−g) due to the opposite
sign in the Hamiltonian ĤOPA. In Sec. 4.4.2 we analyze in details the properties of
the W|1+,0−〉(X+,P+,X−,P−,R,g) function by considering the amount of negativity as a
function of the gain g and of the losses parameter R.

Finally, we conclude by considering that the Wigner function for a generic polarization
basis {~πψ ,~πψ⊥} can be recovered from Eq. (4.18) by changing the quadrature variables
with the appropriate unitary matrix R+,−

ψ,ψ⊥ describing the corresponding rotation in the
Bloch sphere.

4.2.2 Universal amplifier

When the amplifier is exploited in a noncollinear configuration [Fig. 4.1 (b)], it acts as
an universal N → M quantum cloning machine [De 98a, PSS+03, DPS04] as well as a
Universal - Not (U-Not) quantum machine [DBSS02]. The interaction Hamiltonian for
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the amplifier is given by Eq. (2.3). The output state of the amplifier after injection of a
single photon reads:

|Φ1ψ

SPDC〉= ÛSPDC|1ψ〉1 =
1

C3

∞

∑
n,m=0

Γ
n+m(−1)m√n+1

|(n+1)ψ,mψ⊥〉1⊗|mψ,nψ⊥〉2.
(4.19)

where~πψ = cos(θ/2)~πH +eıφ sin(θ/2)~πV is a generic polarization state and~πψ⊥ =(~πψ)
⊥.

We note that the multiphoton quantum superposition state |Φ1ψ

SPDC〉= cos(θ/2)|Φ1H
SPDC〉+

eıφ sin(θ/2)|Φ1V
SPDC〉 and |Φ1ψ⊥

SPDC〉 lives in the joint system composed by the k1 and k2 spa-
tial modes. More specifically, the photons generated on mode k1, to which we refer as
the cloning mode, present the property to be as close as possible, according to the laws
of quantum mechanics, to the injected single-photon state. On the contrary, the photons
generated on mode k2, to which we refer as the anti-cloning mode, present a polariza-
tion state as close as possible to |ψ⊥〉 [DBSS02]. Hence, both spatial modes carry out
information on the single-photon injected in the amplifier.

Photon-number distribution

We begin the analysis of the universal amplifier by considering the photon number distri-
bution of the amplified single-photon states |Φ1ψ

SPDC〉. In order to investigate the features
of the state of Eq. (4.19), Fig. 4.4 reports the photon-number distribution for the reduced
states ρ̂

1ψ(1ψ⊥)
ki

= Trki

[
|Φ1ψ(1ψ⊥)

SPDC 〉〈Φ1ψ(1ψ⊥)
SPDC |

]
associated to the output spatial modes k1

and k2. The photon-number distributions in the k1 spatial mode [Figs. 4.4 (a) and (c)],
i.e. the cloning mode, show a strong unbalancement along the direction of the injected
polarization state. The anticloning k2 mode [Figs. 4.4 (b) and (d)] presents the opposite
unbalancement along the direction of the orthogonal polarization, since on that spatial
mode the amplifier works as a U-Not machine [DBSS02]. This feature is also enlightened
by the contour plots of Figs.4.4 (e-h), where the white regions represent the Fock-space
zones where the photon-number distributions are more densely populated. Furthermore,
we note that at variance with the phase-covariant amplifier [DSS09b, DSS09a], the output
states do not exhibit any comb structure in their photon number distributions.

We can now investigate the action of detection losses. Due to the properties of
ĤSPDC, the time evolution operator in the interaction picture ÛSPDC = exp(−ıĤSPDCt/h̄)
can be decomposed as the product of two independent operators ÛSPDC = ÛA ⊗ ÛA ′ ,
acting on two different Hilbert spaces corresponding to the two sets of modes A ≡
{(k1,~πψ),(k2,~πψ⊥)} and A ′ ≡ {(k1,~πψ⊥),(k2,~πψ)} (Fig. 4.5) [PSS+03, DPS04]:

ÛA = exp
[
χt(â†

1ψ
â†

2ψ⊥
− â1ψ â2ψ⊥)

]
; ÛA ′ = exp

[
−χt(â†

1ψ⊥
â†

2ψ
− â1ψ⊥ â2ψ)

]
.

(4.20)
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Figure 4.4: Probability distribution (a-d) and contour plots (e-h) of the reduced density
matrices ρ̂

1ψ

k1
(a)-(e), ρ̂

1ψ

k2
(b)-(f), ρ̂

1ψ⊥
k1

(c)-(g) and ρ̂
1ψ⊥
k2

(d)-(h). All plots correspond to
the gain value g = 1.5.

In the case of a separable input state in the amplifier ρ̂ = ρ̂A ⊗ ρ̂A ′ , the amplified states
can be written in a separable form:

ρ̂(t) = Û ρ̂Û† =
(

ÛA ρ̂A Û†
A

)
⊗
(

ÛA ′ ρ̂A ′Û
†
A ′

)
. (4.21)

Since the single-photon input |1ψ〉1 is a separable state, the two amplifiers A and A ′ can
be analyzed separately.

  

Figure 4.5: Equivalent model de-
scribing the separability property
for the noncollinear universal op-
tical parametric amplifier. The
amplifiers acts as two indepen-
dent two-modes amplifiers A and
A ′ for the set of modes A =
{(k1,~πψ),(k2,~πψ⊥)} and A ′ =
{(k1,~πψ⊥),(k2,~πψ)}. A separa-
ble input states produces at the
output a separable state between
A and A ′.

The quantum state for the subsystem A in the spontaneous emission regime is given
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by:

ÛA |0〉=
1
C

∞

∑
n=0

Γ
n|nψ〉1⊗|mψ⊥〉2. (4.22)

The output state after the transmission over the lossy channel is obtained by applying the
lossy channel map (A.1) to the density matrix of the state ρ̂0

A = ÛA |0〉〈0|Û†
A . After direct

application of the lossy channel map on the density matrix, the following expression is
obtained [SSD10]:

ρ̂
0
A (η1,η2) =

∞

∑
i=0

i

∑
j=0

∞

∑
k=i− j

[
ρ̂

0
A (η1,η2)

](i≥ j)
i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|+

+
∞

∑
i=0

∞

∑
j=i+1

∞

∑
k=0

[
ρ̂

0
A (η1,η2)

](i< j)
i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|,

(4.23)
where the expressions for the coefficients are reported in App. A.2.

The same procedure has been applied to the stimulated case, where the seed of the
amplifier A is the single-photon state |1ψ〉1. In this case, the input state in the lossy
channel has the following expression:

ÛA |1ψ〉1 =
1

C2

∞

∑
n=0

Γ
n√n+1|(n+1)ψ〉1⊗|mψ⊥〉2. (4.24)

By applying the lossy channel map over the density matrix ρ̂
1ψ

A of the state, we find:

ρ̂
1ψ

A (η1,η2) =
∞

∑
i=0

i−1

∑
j=0

∞

∑
k=i− j

[
ρ̂

1ψ

A (η1,η2)
](i≥ j+1)

i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|+

+
∞

∑
i=0

∞

∑
j=i

∞

∑
k=0

[
ρ̂

1ψ

A (η1,η2)
](i≥ j)

i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|.

(4.25)
According to previous considerations and to the form of the interaction Hamiltonian,
the density matrices of the states ρ̂0

A ′(η1,η2) and ρ̂
1ψ⊥
A ′ (η1,η2) for amplifier A ′ can be

directly derived from Eqs. (4.23) and (4.25) by substituting (Γ) with (−Γ) and by re-
labelling the indexes describing the spatial and polarization modes. Finally, the complete
output state can be reconstructed as:

ρ̂
1ψ

SPDC(η1,η2) = ρ̂
1ψ

A (η1,η2)⊗ ρ̂
0
A ′(η1,η2). (4.26)

Wigner function

In order to evaluate the Wigner function for the optical parametric amplifier in a non-
collinear configuration when injected by a single-photon state [SVD+09], we exploit the
separability property of Eq. (4.20) of the Hamiltonian of the amplifier. We then perform
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the calculation for the amplifier A , while the corresponding term for the amplifier A ′

can be recovered by changing g→ −g and by re-labeling the optical modes. Further-
more, we fix the polarization basis in {~π+,~π−}. The expression of the Wigner function in
the rotated quadratures in a different polarization basis can be recovered by applying the
appropriate rotation matrix R+,−

ψ,ψ⊥ .
We begin with the spontaneous emission term, corresponding to the injection of the

vacuum state |ψ0〉 = |0+〉1|0−〉2. The characteristic function is then evaluated starting
from the definition:

χ
A
0,0(ξ1+,ξ2−,g) = 〈ψ0|exp[ξ1+â†

1+(g)−ξ
∗
1+â1+(g)+ξ2−â†

2−(g)−ξ
∗
2−â2−(g)]|ψ0〉=

= exp
[
− 1

2
(|ξ1+(g)|2 + |ξ2−(g)|2)

]
,

(4.27)
where ξ1+(g) = ξ1+ coshg−ξ ∗2− sinhg and ξ2−(g) = ξ2− coshg−ξ ∗1+ sinhg.

The Wigner function of the amplified field can be then expressed as the 4-dimensional
Fourier transform of the characteristic function:

WA
|0+〉1|0−〉2(α1+,α2−,g) =

1
π4

∫
d2

ξ1+

∫
d2

ξ2−χ
A
0,0(ξ1+,ξ2−,g)×

× eξ ∗1+α1+−ξ1+α∗1+eξ ∗2−α2−−ξ2−α∗2−.

(4.28)

By following the same procedure of the collinear amplifier we find:

WA
|0+〉1|0−〉2(X1+,P1+,X2−,P2−,g) =

(
2
π

)2

exp [−8CS (P1+P2−−X1+X2−)]×

× exp
[
−2(1+2S2)

(
X2

1++X2
2−+P2

1++P2
2−
)]
.

(4.29)
We now consider the injection of a single photon with polarization state |ψ1+〉 =

|1+〉1|0−〉2. The characteristic function with this input state reads:

χ
A
1,0(ξ1+,ξ2−,g) = (1−|ξ1+(g)|2)exp

[
− 1

2
(|ξ1+(g)|2 + |ξ2−(g)|2)

]
. (4.30)

The corresponding Wigner function evaluated according to the definition reads:

WA
|1+〉1|0−〉2(X1+,P1+,X2−,P2−,g) =

(
2
π

)2

exp [−8CS (P1+P2−−X1+X2−)]×

× exp
[
−2(1+2S2)

(
X2

1++X2
2−+P2

1++P2
2−
)]

PA
|1+〉1|0−〉2(X1+,P1+,X2−,P2−,g),

(4.31)
where:

PA
|1+〉1|0−〉2(X1+,P1+,X2−,P2−,g) = 1−

[
C2(X2

1++P2
1+)+S2(X2

2−+P2
2−)
]
+

+2CS(P1+P2−−X1+X2−)
]
.

(4.32)

As for the collinear case, we observe that the Wigner function is negative in the origin of
the space WA

|1+〉1|0−〉2(0,0,0,0,g) =−(2/π)2.
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We can now proceed to insert the action of a lossy channel on both spatial modes with
transmittivity η , which we assume to be equal for both channels. As in Sec. 4.2.1, this
process in the phase-space can be treated as the convolution of the Wigner function with a
gaussian kernel [see Eq. (3.23)]. The Wigner function for the amplifier when the vacuum
state is injected then reads:

WA
|0+〉1|0−〉2(X1+,P1+,X2−,P2−,R,g) =

(
2

πσ(R,g)

)2

×

× exp
[
− 8CS(1−R)

σ2(R,g)
(P1+P2−−X1+X2−) −

2h(R,g)
σ2(R,g)

(
X2

1++X2
2−+P2

1++P2
2−
)]

,

(4.33)
where:

σ(R,g) = 1+4R(1−R)S2, h(R,g) = R+(1−R)S2. (4.34)

By following an analogous procedure we obtain the following expression for the Wigner
function associated to the amplification of a single-photon state after losses R:

WA
|1+〉1|0−〉2(X1+,P1+,X2−,P2−,R,g) =

(
2

πσ(R,g)

)2

PA
|1+〉1|0−〉2(X1+,P1+,X2−,P2−,R,g)

× exp
[
− 8CS(1−R)

σ2(R,g)
(P1+P2−−X1+X2−) −

2h(R,g)
σ2(R,g)

(
X2

1++X2
2−+P2

1++P2
2−
)]

,

(4.35)
where the polynomial PA

|1+〉1|0−〉2 reads:

PA
|1+〉1|0−〉2(X1+,P1+,X2−,P2−,R,g) =

1
σ2(R,g)

{
2R−1+

4(1−R)
σ2(R,g)

[
C2(X2

1++P2
1+)+

+S2(2R−1)2(X2
2−+P2

2−)+2CS(2R−1)(P1+P2−−X1+X2−)
]}

.

(4.36)
Finally, the complete 4-modes Wigner function can be calculated as:

W |1+,0−〉1|0+,0−〉2(X1+,P1+,X1−,P1−,X2+,P2+,X2−,P2−,R,g) =

=WA
|1+〉1|0−〉2(X1+,P1+,X2−,P2−,R,g)WA ′

|0+〉1|0−〉2(X1−,P1−,X2+,P2+,R,−g).
(4.37)

In Sec. 4.4.3 we report and analyze the plots corresponding to the negativity of the Wigner
function in the origin of the phase-space.

4.3 Resilience to decoherence after the action of a lossy
channel

In this section we discuss the resilience to decoherence of the multiphoton quantum su-
perpositions generated by amplification of single-photon states. More specifically, this
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analysis is based on a Fock space analysis of the density matrices of this class of states
after the action of a lossy channel. The adopted criteria are based on the concept of distin-
guishability between two orthogonal quantum states and the related degree of coherence
of a quantum superposition involving the same states. The adopted merit figure is the
Bures distance, already introduced in Sec. 1.3.6. When exploited in this context, this
quantity expresses the persistance of quantum effects when a decoherence process pro-
gressively randomizes the relative phase between the two components of the superposition
state.

4.3.1 Criteria for multiphoton quantum superpositions

In order to distinguish between two different quantum states, we exploit the definition of
the normalized Bures distance: D(ρ̂, σ̂) =

√
1− [F (ρ̂, σ̂)]1/2 [Bur69, Hub92], where

F is the fidelity between the two states [Joz94]. This quantity can be calculated for
two generic multiphoton states |φ1〉 and |φ2〉 and the corresponding quantum superposi-
tions: |φ±〉= N±√

2
(|φ1〉± |φ2〉). More specifically, we can define the two following criteria

[DSS09b, DSS09a]:

(I) The distinguishability between the two component states |φ1〉 and |φ2〉 is expressed
by: D (|φ1〉, |φ2〉). This parameter quantifies the capability of an observer to dis-
criminate among the two states by exploiting the appropriate measurement.

(II) The visibility, that is, the degree of orthogonality, of the two superpositions |φ±〉
is expressed by D (|φ+〉, |φ−〉). Indeed, the value of the visibility depends on the
relative phase between the component states: |φ1〉 and |φ2〉. The parameter D then
expresses the ability of an observer to discriminate between two initially orthogonal
states, D (|φ+〉, |φ−〉) = 1, after propagation in a lossy channel where the relative
phase of |φ1〉 and |φ2〉 progressively randomizes leading to a fully mixed state:
D (|φ+〉, |φ−〉)→ 0.

The physical interpretation of D (|φ+〉, |φ−〉) as the visibility of a superposition |φ±〉
is legitimate insofar as the component states of the corresponding superposition, |φ1〉 and
|φ2〉 may be defined, at least approximately, as pointer states [Zur03]. The latter are
defined as the set of eigenstates of a quantum system least affected by the external noise
and that are highly resilient to decoherence. In other words, the pointer states are quasi
classical states which realize the minimum flow of information from (or to) the system to
(or from) the environment.

In the following sections, we apply these criteria on the class of multiphoton states
generated by parametric amplification of single photons, and we compare the obtained re-
sults with a reference class of states represented by the quantum superposition of coherent
states.
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4.3.2 Quantum superposition of coherent states as a reference

The quantum superpositions of coherent states is defined as [SPL91]:

|Ψ±ϕ 〉= N ±
ϕ

1√
2

(
|αeıϕ〉± |αe−ıϕ〉

)
, (4.38)

with α real and N ±
ϕ =

(
1± e−2|α|2 sin2

ϕ cos
[
|α|2 sin2ϕ

])− 1
2 is an appropriate normal-

ization factor. The two states with opposite relative phases |Ψ+
ϕ 〉 and |Ψ−ϕ 〉 are orthogonal

when |α|2 sin2
ϕ > 1. In such case the two components |αeıϕ〉 and |αe−ıϕ〉 are distin-

guishable. This class of quantum superposition states presents several peculiar proper-
ties, such as squeezing and sub-poissonian statistics. Such properties are due to the su-
perposition form of the |Ψ±ϕ 〉 states, and cannot be explained by the characteristics of the
component coherent |α〉 states.

We can now proceed to apply the two criteria (I) and (II) to this class of states.
We begin by analyzing the distinguishability between the states |αe±ıϕ〉. In this case,
the application of the loss model to the output coherent state density matrix leads to:
ρ̂√ηαe±ıϕ = |√ηαe±ıϕ〉〈√ηαe±ıϕ |, thus not changing the structure of the state. The
distance between the two states with opposite phase is easily found [Lou00] :

D
(
|√ηαeıϕ〉, |√ηαe−ıϕ〉

)
=

√
1− e−2η |α|2 sin2

ϕ , (4.39)

a value almost close to 1 for η |α|2 sin2
ϕ > 1 [Fig. 4.6 (a)]. In this regime the coherent

states |αe±ıϕ〉 keep their mutual distinguishability through the lossy channel and comply
with the definition of pointer states.
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Figure 4.6: (a) Bures distance D(x) between the component coherent states |αeıϕ〉 and
|αe−ıϕ〉 as a function of the losses parameter R for different values of 〈n〉= |α|2. (b) Bures
distance D(x) between the superpositions ρ̂

η

Ψ
+
ϕ

and ρ̂
η

Ψ
−
ϕ

as a function of the number of

lost photons x = R〈n〉.
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We now proceed with the analysis of the density matrix after the propagation over the
lossy channel. In the following we assume |α|2 sin2

ϕ > 1, hence N ±
ϕ ∼ 1. The density

matrix of the quantum state after the lossy channel reads:

ρ̂
η

Ψ
±
ϕ

=
1
2
[
|βeıϕ〉 〈βeıϕ |+ |βe−ıϕ〉 〈βe−ıϕ |±

±e−2R|α|2 sin2
ϕ

(
eıR|α|2 sin2ϕ |βeıϕ〉 〈βe−ıϕ |+ e−ıR|α|2 sin2ϕ |βe−ıϕ〉 〈βeıϕ |

)]
,

(4.40)

with β =
√

1−R α . Let us analyze the case ϕ = π

2 . The ortoghonality between |Ψ+〉
and |Ψ−〉 quickly decrease as soon as R differs from 0, since the phase relation between
the components |α〉 and |−α〉 becomes undefined. The visibility of these superposition
states defined by the criterion (II) gives:

D(ρ̂η

Ψ
+
ϕ

, ρ̂η

Ψ
−
ϕ

) =

√
1−
√

1− e−4R|α|2 sin2
ϕ . (4.41)

Hence D(x)' e−2x is exponentially decaying with x ∝ R|α|2, that is, the average number
of lost photons [Fig. 4.6 (b)]. Note that the decay in the function D(x) does not depend
singularly from the number of photons nor from the channel efficiency, but is a function
only of the amount of lost photons inpendently from the size of the system. The loss of
1 photon, on the average, leads to a visibility value: D ∼ 0.096, and then to the prac-
tical loss of any detectable interference effects in the superpositions ρ̂

η

Ψ
±
ϕ

. This is fully

consistent with the experimental observations [BHR+92, RBH01]. Note that the function
D(x) approaches its minimum value with zero slope: Sl = limR→1 |dD(x)/dx|= 0. These
results are confirmed by the analysis of the photon-number distribution. The distribution
in the Fock space exhibits only elements with an even number of photons for |Ψ+〉 or an
odd number of photons for |Ψ−〉. This peculiar comb structure is very fragile under the
effect of losses, as shown in Fig. 4.7. We observe that for a loss parameter R correspond-
ing to about ∼ 1.5 photon lost in average, the distribution resembles closely the Poisson
distribution associated to the coherent states.

4.3.3 Resilience to decoherence of the phase-covariant amplified single-
photon states

As a following step, we have applied the criteria (I)-(II) to the quantum states generated
by collinear parametric amplification of single photons [DSS09b, DSS09a]. As a first
consideration, we observe that in virtue of the phase-covariance of the process, the dis-
tinguishability of

{
|Φ+,−

OPA〉
}

through the distance D(|Φ+
OPA〉, |Φ−OPA〉) coincides with the

visibility of their equatorial quantum superpositions of the form:

|Ψ+
OPA〉 = e−ıφ/2[cos(φ/2)|Φ+

OPA〉+ ısin(φ/2)|Φ−OPA〉
]
, (4.42)

|Ψ−OPA〉 =
(
|Ψ+

OPA〉
)
⊥. (4.43)
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Figure 4.7: (a)-(d): Plot of the distribution of the number of photons in the |Ψ
π

2
+〉 state for

α = 4, corresponding to an average number of photons 〈n〉 = 16, for reflectivities R = 0
(a), R = 0.1 (b), R = 0.5 (c) and R = 0.8 (d).

The following property then holds:

D(|Ψ+
OPA〉, |Ψ−OPA〉) = D(|ΦR

OPA〉, |ΦL
OPA〉) = D(|Φ+

OPA〉, |Φ−OPA〉). (4.44)

We then evaluated numerically the distinguishability of {|Φ+,−
OPA〉}, and the correspond-

ing visibility of {|Ψ+,−
OPA〉}, through the distance D(|Φ+

OPA〉, |Φ−OPA〉) as a function of the
average lost photons: x≡ R〈n〉. This calculation have been performed by taking the com-
plete expression of the density matrix, reported in Sec. 4.2.1 and App. A.1.2, and by
performing an approximate calculation of the fidelity through numerical algebraic matrix
routines. This algorithm has been tested by evaluating numerically the Bures distance
between the quantum superposition of coherent states |α〉± |−α〉. The comparison with
the analytical result of Eq. (4.41) gave a high confidence level for the approximate results.
The results for different values of the gain for equatorial macroqubits are reported in Fig.
4.8 (a).

Note that for small values of x the decay of D(x) is far slower than for the coherent
state case. Furthermore, after a common inflection point at D ∼ 0.6 the slope of the set
of functions D(x) for R→ 1 increases with the value of 〈n〉. The latter property can be
shown with a perturbative approach on the density matrix. We find that, in the low η and

high gain limit where D(x)∼ 0, the slope ∂D(ρ̂
φ

η ,ρ̂
φ⊥
η )

∂η
tends to:

lim
g→∞

lim
η→0

∂D(ρ̂
φ

η , ρ̂
φ⊥
η )

∂η
= lim

g→∞
(1+4C2 +2C2

Γ

√
1+2Γ2) = ∞. (4.45)
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Figure 4.8: (a) Numerical evaluation of the distance D(x) between two orthogonal equa-
torial macro-qubits |Φφ ,φ⊥〉 as function of the average lost particle x = R〈n〉. Black line
corresponds to the distance D(x) for the reference quantum superposition of coherent
states. (b) Numerical evaluation of the distance D(x) between two orthogonal linear
macro-qubits |ΦH,V 〉 as function of the average lost particle x = R〈n〉.

This means that the visibility can be significant even if the average number x of lost
particles is close to the initial total number 〈n〉. This behavior is opposite to the case
of the quantum superposition of coherent states where the function D(x) approaches the
zero value with an exponential decay: Figs. 4.6 and 4.8. This analysis performed on
the amplified multiphoton states shows that the amplification process provides a tool to
obtain multiphoton states robust under the action of a lossy channel. This makes these
states suitable for the investigation of quantum effects in multiphoton systems, as shown
later in Chap. 5. Furthermore, they can find application in different quantum information
context such as quantum sensing, as shown later in Chaps. 9-10.

For sake of completeness, we then performed the same calculation for the multiphoton
states corresponding to the injection of a photon with horizontal (vertical) polarization
|ΦH,V

OPA〉. The results are reported in Fig. 4.8 (b). For this injected qubit, not lying in the
equatorial plane of the Bloch sphere, the amplification process does not correspond to an
optimal cloning machine. For this reason the output states possess a faster decoherence
rate. Indeed, the output distributions, as shown in Fig. 4.3 (b), do not possess the strong
unbalancement in polarization of the equatorial states |Φφ

OPA〉 that is responsible of their
resilience structure.

4.3.4 Resilience to decoherence of the universally amplified single-
photon states

Finally, we apply the criteria (I)-(II) to the class of states generated by noncollinear am-
plification of single photons [SSD10]. In agreement with the universality property of the
source, we expect that the Bures distance between the superposition states |Φ1ψ

SPDC〉 =
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cos(θ/2)|Φ1H
SPDC〉+ eıφ sin(θ/2)|Φ1V

SPDC〉 and |Φ1ψ⊥
SPDC〉 is independent on the choice of

(θ ,φ):

D(ρ̂
1ψ

SPDC, ρ̂
1ψ⊥
SPDC) = D(ρ̂

1ψ ′
SPDC, ρ̂

1ψ ′⊥
SPDC), (4.46)

for any basis
{
~πψ ,~πψ ′

}
. This feature is the extension of the phase-covariance property of

Figure 4.9: Bures distance between the superposition states |Φ1ψ〉 and |Φ1ψ⊥〉 after losses.
(a) 3-dimensional surface D(R1,R2) as a function of the two spatial mode parameters
R1 = 1− T1 and R2 = 1− T2. (b) D(R1,R2) with R2 fixed, as a function of R1. (c)
D(R1,R2) with R1 fixed, as a function of R2. (b)-(c) Straight curves correspond to R2(1) =
0.9, the dashed curves to R2(1) = 0.75, dotted one to R2(1) = 0.5, the dash-dotted curves
to R2(1) = 0.2 and dash-dot-dotted curves to R2(1) = 0.05.

the collinear quantum cloning machine [DSS09a] to the full set of polarization states on
the output Bloch sphere.

The Bures distance D(ρ̂
1ψ

SPDC, ρ̂
1ψ⊥
SPDC) has been evaluated by considering the joint

cloning-anticloning multiphoton state, that is, by considering the full two-mode density
matrix. In analogy with the previous case, we evaluated by standard algebraic numer-
ical routines the distance between the orthogonal macrostates |Φ1ψ

SPDC〉 and |Φ1ψ⊥
SPDC〉 as

a function of the corresponding transmission parameters: η1 and η2. In Fig. 4.4 (a)
we report the 3-dimensional plot of the function D(R1,R2) = D(ρ̂

1ψ

SPDC, ρ̂
1ψ⊥
SPDC) for a

gain value of g = 1.2, corresponding to an overall average number of photons 〈n̂〉 =
∑

2
i=1
[
〈n̂iψ〉+ 〈n̂iψ⊥〉

]
≈ 15. The figure shows that the visibility possesses a resilient struc-

ture in presence of losses, since the Bures distance does not decrease exponentially with
the lossy parameters {R1,R2}. In Figs. 4.9 (b-c) we then report several sections of the 3-
dimensional surface of Fig. 4.9 (a) by fixing either R1 or R2. We note that the |Φ1ψ

SPDC〉 and
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|Φ1ψ⊥
SPDC〉 states are more sensitive to losses in the cloning mode k1 than in the anticloning

one k2. This can be explained by considering that the distance between these orthogonal
multiphoton states depends on the unbalancement in the corresponding photon-number
distributions. Since this feature is pronounced in the spatial cloning mode k1, losses act-
ing on this mode cancel more rapidly the orthogonality between |Φ1ψ

SPDC〉 and |Φ1ψ⊥
SPDC〉.

As the number of photons present in the state is increased, the visibility keeps large up to
a value V ≈ 0.5 in a larger range of the number of reflected photons. All this shows that,
in analogy with the phase-covariant case, the superposition states generated by quantum
cloning become more resilient to losses since the capability to discriminate orthogonal
superpositions can survive the loss of a larger number of photons. Furthermore, in this
case the amplifier permits to broadcast the properties of an input state in a state with a
larger number of particle for the complete set of polarization state.

4.4 Wigner function theory and nonclassicality after the
action of a lossy channel

The nonclassicality of this class of states can be evaluated starting from the properties
of the relative Wigner function, more specifically, to the presence of negative regions.
Indeed, as already discussed in Sec. 3.2.5, the negativity of the Wigner function represents
a signature of nonclassical properties in the state. For this reason, while we shall adopt the
negativity of the Wigner function as a sufficient condition for the nonclassicality of the
investigated state, we stress that the absence of a negative region in the Wigner function
does not directly imply its classicality, and hence more investigations are required in this
regime.

4.4.1 Wigner function for the quantum superposition of coherent states

For the sake of clarity, we briefly review previous results on the Wigner functions as-
sociated to coherent superposition states after the propagation over a lossy channel. At
variance with the rest of the chapter, in this section the quadrature variables X and P are
defined with fluctuations ∆2X = 1/2 on the vacuum state. By applying this definition to
the density matrix of the superposition of coherent states after losses (4.40) we obtain:

W
ρ̂

η

Ψ
±
ϕ

(X ,P,R) =
(N ±

ϕ )2

2

(
W|βeıϕ 〉(X ,P,R)+W|βe−ıϕ 〉(X ,P,R)±W int

ρ̂
η

Ψ
±
ϕ

(X ,P,R)

)
.

(4.47)
In the last expression, the first two components can be written as :

W|βe±ıϕ 〉(X ,P,R) =
1
π

e−(X−√ηXϕ)
2

e−(P∓√ηPϕ)
2

, (4.48)
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where X2
ϕ = 2|α|2 cos2 ϕ and P2

ϕ = 2|α|2 sin2
ϕ . Hence losses reduce the average value

of the quadratures X̂ and P̂.
The interference contribution reads:

W int
ρ̂

η

Ψ
±
ϕ

(X ,P,R)=
2
π

e−P2
e−(X−√ηXϕ)

2

e−RP2
ϕ cos

[
2
√

2α
√

η sinϕ

(
X− α(2η−1)√

2η
cosϕ

)]
,

(4.49)
which is strongly reduced in amplitude by a factor proportional to e−RP2

ϕ .
In Fig. 4.10 are plotted the Wigner functions and the corresponding projections on the

P = 0 axis for the ρ̂
η

Ψ
±
ϕ

associated to different values of R, for the same initial conditions

ϕ = π

2 and α = 6. As expected, by increasing the degree of losses the central peak is
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Figure 4.10: Wigner functions (a-c) and P = 0 section (d-f) of the quantum superposi-
tion of coherent state for |α| = 36 and φ = π/2. (a-d) (R=0) Unperturbed case. (b-e)
(R=0.005) For small reflectivity, the Wigner function remains negative in the central re-
gion. (c-f) (R=0.5) The Wigner function progressively evolves into a positive function in
all the phase-space. Note that the interference term in the P = 0 section for R = 0.5 is
almost negligible (∼ 10−16).

progressively attenuated up to a complete deletion of the quantum features associated to
the negativity of the Wigner functions. We observe that the damping factor e−2R|α|2 sin2

ϕ

of the coherence terms derives from the exponential decrease of the non-diagonal terms
of the density matrix (4.40). However, when R approaches the 0.5 value, the interfer-
ence pattern is progressively shifted towards positive values in all the X-axis range, and
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at R = 0.5 it ceases to be non-positive, in agreement with the experimental implementa-
tion [RBH01]. This quantity has been evaluated by calculating the value of the Wigner
function in the first minimum of the cosine term, corresponding to:

W
ρ̂

η

Ψ
±
ϕ

(X0,0,R) =
N

π

2
+

π
e−2(1−R)|α|2

(
e−2|α|2(1−R)− e−2|α|2R

)
=

{
< 0 if R < 1

2 ;
> 0 if R > 1

2 ,
(4.50)

where X0 = π/[2
√

2
√

1−Rα]. This result implies that when half of the particles are lost
in the state, the nonclassicality of the system cannot be infered anymore by the presence
of negative regions in the Wigner function.

4.4.2 Wigner function for the phase-covariant amplified single-photon
state

The negativity of the Wigner function adopted as a sufficient criterion for nonclassicality
permits to discuss the quantum properties of single-photon states after phase-covariant
collinear amplification [SVD+09]. In Fig. 4.11 we report the plots of W|1+〉(X ,P,R,g) for
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Figure 4.11: Wigner functions (a-c) and P = 0 section (d-f) of a single-photon amplified
state in a single-mode degenerate OPA for g = 3. (a-d) (R=0) Unperturbed case. (b-
e) (R=0.005) For small reflectivity, the Wigner function remains negative in the central
region. (c-f) (R=0.5) The Wigner function progressively evolves into a positive function
in all the phase-space.

the single-mode case, evaluated in Sec. 4.2.1 in Eqs. (4.15-4.18), for different values of
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the reflectivity R. As a first effect, the negative region is deleted for a reflectivity R = 1/2:
Fig. 4.11 (c). Then, the form of the distribution remains unchanged until the reflectivity
becomes close to 1 and all the photons present in the states are lost: R〈n〉 ' 〈n〉.

We then consider the value of the Wigner function at the origin X+ = X− = 0 and
P+ = P− = 0 of the phase-space:

W|1+,0−〉({0},R,g) =
4

π2
2R−1

[1+4R(1−R)S2]
2 =

{
< 0 if R < 1

2 ;
> 0 if R > 1

2 .
(4.51)

W|1+,0−〉({0},R,g) < 0 for R ≤ 1/2, showing that the negativity is maintained in that
range of the lossy channel efficiency, as for the quantum superposition of coherent states.
Hence, the multiphoton quantum superpositions generated by phase-covariant cloning of
a single-photon with equatorial polarization surely presents nonclassical features up to a
value of the losses parameter R < 0.5, that is, when half of the particles are lost. Note
that, since the negativity of the Wigner function does not represent a necessary criterion
of nonclassicality, this result does not directly imply that the analyzed multiphoton states
are classical for R≥ 0.5. More investigation based on different nonclassicality measures
are necessary in this losses regime.

4.4.3 Wigner function for the universally amplified single-photon state
As for the collinear case, the Wigner function for the amplified single-photon states in a
non collinear configuration [SVD+09] has a minimum in the origin of the phase-space:

W|1+,0−〉1|0+,0−〉2({0},R,g) =
16
π4

2R−1

[1+4R(1−R)S2]
3 =

{
< 0 if R < 1

2 ;
> 0 if R > 1

2 .
(4.52)

We note that the negativity of the Wigner function is maintained for R > 1/2, consistently
with the other classes of states analyzed in this chapter. Analogously with the phase co-
variant case, the multiphoton quantum superpositions generated by universal cloning of
a single photon with equatorial polarization surely presents nonclassical features up to a
value of the losses parameter R < 0.5. More investigation based on different nonclassi-
cality measures are still necessary in the R≥ 0.5 losses regime.

To conclude this analysis in Fig. 4.12 we compare the negativity of the Wigner func-
tion for the different classes of states analyzed in this chapter. We note that the trends
for the collinear and noncollinear amplifier are analogous, and that all the analyzed states
present negative region in the same losses range up to R = 0.5. Moreover, the absolute
value of the negativity is smaller in the noncollinear case due to the higher number of vac-
uum injected optical modes. This behaviour can be related to the smaller cloning fidelity
in the universal case. Finally, we observe that the decrease in the negativity is faster in the
quantum superposition of coherent states with respect to single-photon amplified states.
This means that the multiphoton system generated by quantum cloning of a microscopic
state present more robust nonclassical features in presence of optical losses.
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Figure 4.12: Trend of the minimum of the Wigner functions as a function of the losses
parameter R for the different classes of multiphoton states. Green lines: superposition of
coherent states. Red lines: collinear amplification of single photons. Blue lines: non-
collinear amplification of single photons. (a) 〈n〉= 4. (b) 〈n〉= 8. (c) 〈n〉= 12.

4.5 Conclusions and perspectives
In this chapter we investigated the quantum properties of a class of multiphoton states
generated by parametric amplification of single photons. Such analysis has been per-
formed both in the Fock space and in the phase-space, focusing on the resilience of non-
classical properties in presence of a decohering-lossy system-environment interaction.
The obtained results have been compared with the quantum superpositions of coherent
states, chosen as a reference. The amplified single-photon states in a lossy configuration
were investigated, allowing to observe the persistence of the non-positivity of the Wigner
function in a certain range of the losses interaction parameter R. The same behaviour
was found for the superposition of coherent |α〉 states, which possesses a non-positive
W-representation in the same interval of the interaction parameter R. This analysis, com-
bined with the slower decreasing rate of the Bures distance between orthogonal states,
shows that the amplified single-photon states present more robust nonclassical features in
the same losses range up to R = 0.5.

As a further perspectives, we note that the negativity of the W-representation is a
sufficient but not a necessary condition for the nonclassicality of any physical system.
Hence, future investigations could be aimed to the analysis of the decoherence regime
in which the Wigner function is completely positive, analyzing the presence of quantum
properties from a different point of view. Furthermore, the nonclassical features of the
Wigner distribution suggest as a possible direction the development, and subsequently the
application, of entanglement and nonlocality tests based on phase-space measurements to
such class of multiphoton states.
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Chapter 5

Entanglement detection and
manipulation in a bipartite
microscopic-macroscopic system

The observation of entangled states in systems with a large number of particles is still
an open challenge. Moreover, the complexity of the entanglement criteria increases with
the size of the system, thus rendering the development of suitable experimentally feasi-
ble criteria an essential task. In the previous chapter we discussed the properties of the
multiphoton states generated by parametric amplification of single photons. We showed
that such process leads to the generation of an output multiphoton field which can be effi-
ciently discriminated in presence of losses, and which presents nonclassical features even
for significant losses. These properties, combined with the possibility of progressively
increasing the number of generated photons by tuning the nonlinear gain, suggests the
possibility of adopting this device to investigate entanglement in a multiphoton system.

In this chapter, we investigate the possibility of observing the entanglement in realistic
conditions in a bipartite system obtained by amplification of a photon belonging to an
entangled pair. We discuss several dichotomic detection techniques, some of them relying
on supplementary assumptions on the optical source. Then, we consider several schemes
to manipulate the generated multiphoton field in order to increase the distinguishability of
such states, for applications in entanglement and nonlocality tests, as well as in quantum
information protocols. The obtained results are reported in Refs. [SVSD10, VSSD10].
The analysis of this system motivated further investigation in the field of detection and
manipulation of multiphoton entangled states [SSB+11, RSS11, STS+11]. Furthermore,
the results reported in this chapter suggest that in order to observe the entanglement in
this multiphoton system a high efficiency measurement is required, since it is necessary to
detect most of the involved particles.

99
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5.1 Entanglement and manipulation of multiphoton sys-
tems

The observation of quantum phenomena, such as quantum entanglement [HHHH09], has
been mainly limited to systems of only few particles. In order to observe the presence
of entanglement in large systems, a large effort has been devoted in the last few years
to construct suitable criteria for the assertion of entanglement in multiphoton systems
[JPR09, Wod00, GKLC01, SJR07, LJJ09, LJJ10]. For bipartite systems of a large num-
ber of particles, this approach has been further investigated considering the possibility to
exploit collective measurements on the multiparticle state. Within this context, Duan et al.
proposed a general criterion [DGCZ00] based on continuous-variables observables, fur-
ther extended later on to different classes of operators [KLL+02, SBT+03, KL05, SB03,
CPHZ02]. An experimental application of this criteria based on collective spin mea-
surements has been performed in a bipartite system of two atomic gas samples [JKP01].
However, an experimental realization of most of these criteria in the quantum optical do-
main requires photon-number resolving detectors with nearly unitary efficiency, which is
beyond the current technology. A feasible approach for the analysis of multiphoton fields
has been developed in the last few years, and is based on the deliberate attenuation of the
analyzed system up to the single-photon level. In this way, standard single-photon tech-
niques and criteria can be used to investigate the properties of the field. The verification
of the entanglement in the high losses regime is an evidence of the presence of entangle-
ment before the attenuation, since no entanglement can be generated by local operations.
Such approach has been exploited in [EKD+04, CDP+06] to demonstrate the presence
of entanglement in a high gain spontaneous parametric down-conversion source up to 12
photons. Analogous conclusion has been theoretically obtained in Ref. [DSEB04] on
the same system by exploiting symmetry considerations of the source. The attenuation
method has been also applied to a different system, allowing to obtain an experimental
proof of the presence of entanglement between a single-photon state and a multiphoton
state generated through the process of optical parametric amplification in an universal
cloning configuration with up to 12 cloned photons [DSS05].

The present chapter is organized as follows. In Sec. 5.2 we investigate a specific opti-
cal micro-macro system, that is, the quantum state generated by parametric amplification
of a single photon belonging to an entangled pair. We consider different approaches to
detect the presence of entanglement in lossy conditions. First, we consider the applica-
tion of the method based on the deliberate attenuation of the multiphoton field up to the
single-photon level. Then, we discuss the test performed in Ref. [DSV08], by focusing
on the assumptions necessary for the validity of the test. We then consider a modified
version of this entanglement inequality which can be adopted with any dichotomic mea-
surement operator and does not require any supplementary assumption. Finally, in Sec.
5.3 we consider the possibility of manipulating the multiphoton states in order to increase
the distinguishability of the detected states, in the perspective of a possible application in
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entanglement and nonlocality tests.

5.2 Benchmark state: amplification of an entangled pho-
ton pair

In this section we describe a benchmark state for the analysis of entanglement between
a single photon and a multiphoton system. The chosen system is obtained by optical
parametric amplification of a single photon belonging to a polarization entangled photon
pair.

5.2.1 The optical configuration

An entangled pair of two photons in the singlet state |ψ−〉A,B=2−
1
2 (|H〉A |V 〉B−|V 〉A |H〉B)

is produced through spontaneous parametric down-conversion by crystal 1 (C1) pumped
by a pulsed UV pump beam: Fig.5.1. There |H〉 and |V 〉 stands, respectively, for a sin-
gle photon with horizontal and vertical polarization (~πH,V ) while the labels A,B refer to
particles associated respectively with the spatial modes kAand kB. The photon belong-
ing to kB, together with a strong UV pump beam, is injected into an optical parametric
amplifier consisting of a non-linear crystal 2 (C2) pumped by the beam k′P. The crys-
tal 2 is oriented for collinear operation, i.e., emitting pairs of amplified photons over the
same spatial mode which supports two orthogonal ~π modes, respectively horizontal and
vertical. The overall state after the amplification process reads:

|Ψ−〉AB =
1√
2
(|φ〉A|Φφ⊥〉B−|φ⊥〉A|Φφ 〉B). (5.1)

From now on, such state will be dubbed as micro-macro. The output multiphoton states
are defined as |Φφ 〉= ÛOPA|φ〉, where |φ〉 labels the injection of single-photon state with
equatorial polarization. For a detailed discussion on the properties of such states we refer
to Secs. 4.2.1, 4.3.3 and 4.4.2, and to Refs. [DSV08, DSS09b].

5.2.2 Entanglement witness in a highly attenuated scenario
As a first step, we consider a discrete-variables approach that can be used to demonstrate
the presence of entanglement in the optical bipartite microscopic-macroscopic system de-
scribed in the previous section. This approach is based on the introduction of a deliberate
attenuation up to the single-photon regime in the multiphoton subsystem. Standard cri-
teria for microscopic bipartite systems can be then applied in this condition, such as the
Peres-Horodecki criterion [Per96] or the calcution of the concurrence [Woo98]. Since the
action of losses is a local operation, no entanglement can be generated by introducting any
amount of controlled attenuation. Hence, if the state is entangled after the lossy process, it
must have been entangled before losses. Such method has been exploited to demonstrate
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Figure 5.1: Scheme of the optical setup. The main UV laser beam provides the OPA
excitation field beam at λP = 397.5 nm. A type II BBO (Beta Barium Borate) crystal
(crystal 1: C1) generates pair of photons with λ = 795 nm. In virtue of the non-local
correlations established between the modes kA and kB, the preparation of a single-photon
on mode kB with polarization state ~πϕ is conditionally determined by detecting a single-
photon after proper polarization analysis on the mode kA [polarizing beamsplitter (PBS),
λ/2 and λ/4 waveplates, Soleil-Babinet compensator, interferential filter (IF), avalanche
photodiodes (DA,D∗A)]. The photon belonging to kB, together with the pump laser beam
k′p, is fed into an high gain optical parametric amplifier consisting of a NL crystal 2 (C2),
cut for collinear type-II phase matching. Finally, the output field on the multiphoton mode
kB is sent to the detection stage.

the entanglement up to 12 photons in a spontaneous parametric down-conversion source
[EKD+04], or in a micro-macro configuration [DSS05]. The average number of photons
impinging onto the detector in this regime is η〈n〉 ≤ 1, where η is the overall quantum
efficiency of the channel. In this condition, the probability of detecting more than one
photon becomes negligible.

Let us now focus on the optical system described in the previous section. The density
matrix of the macroscopic state can be reduced to a 1-photon subspace, and the joint
micro-macro system is defined in a 2×2 polarization Hilbert space spanned by the basis
vectors {|H〉A|H〉B, |H〉A|V 〉B, |V 〉A, |H〉B, |V 〉A|V 〉B}. The complete state ρ̂AB

η can be then
evaluated by applying the map describing a lossy channel [DSEB04] to the micro-macro
amplified state:

ρ̂
AB
η = (ÎA⊗L B

η )
[
(ÎA⊗ÛB

OPA)|ψ−〉AB〈ψ−|(ÎA⊗ÛB
OPA)

]
. (5.2)



Benchmark state: amplification of an entangled photon pair 103

We obtain the following expression:

ρ̂
AB
η =

1
1+3t2


t2 0 0 0
0 1

2

(
1+ t2) −1

2

(
1+ t2) 0

0 −1
2

(
1+ t2) 1

2

(
1+ t2) 0

0 0 0 t2

 , (5.3)

where:
t = (1−η)Γ. (5.4)

In Fig. 5.2 (a) we show the density matrix of the joint micro-macro system for a value
of g = 3 and η = 10−4, showing the presence of the off-diagonal terms even in the high
losses regime. This system is entangled for any value of the nonlinear gain g. This
property can be tested by application of the Peres criterion or by direct calculation of the
concurrence, which reads:

C[ρ̂AB
η ] =

(
1− t2

1+3t2

)
> 0. (5.5)

This quantity is always positive, as plotted in Fig. 5.2 (b), showing the presence of entan-
glement for any value of the gain.

Figure 5.2: (a) Density matrix of joint micro-macro system in the high losses regime,
for a gain value of g = 3 and a value of the losses parameter η = 10−4. (b) Plot of the
concurrence C[ρ̂AB

η ] as a function of the parameter t = Γ(1−η). We note the persistance
of the off-diagonal terms and entanglement for all values of g and η .

This criterion allows us to discuss an important feature of the micro-macro system
based on optical parametric amplification. The entanglement of this system is generated in
the micro-micro source, where the singlet polarization state |ψ−〉 is produced. The action
of the amplifier is to broadcast the properties of the injected seed to the multiparticle state.
In particular, the entanglement present in the original photon pair after the amplification
process is transfered and shared among the generated particles (see Fig. 5.3). If a certain
amount of losses is introduced in the macro-state and ε is the percentage of photons that
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Figure 5.3: Diagramatic scheme of the entanglement broadcasting from the single photon
pair to the multiparticle state. In presence of losses, the entanglement is reduced of a
factor ε .

survive such decoherence process, the amount of entanglement detected after losses is
reduced of a factor ε but drops to 0 only if all particles are lost. Analytically, this feature
is obtained by analyzing the expression (5.5) for C[ρ̂AB

η ]. In the high gain limit (Γ ∼ 1),
the concurrence of our system in the highly attenuated regime becomes:

C[ρ̂AB
η ]∼ 1−Γ2

1+3Γ2 +η
8Γ2

(1+3Γ2)2
Γ→1→ η

2
∝ η , (5.6)

being directly proportional to η , that is, the fraction of detected photons.

To conclude these considerations, we extend the analysis of the micro-macro amplified
system in this highly attenuated scenario to the case where the injection of the single
photon in the optical parametric amplifier occur with a non unitary efficiency p < 1. Such
parameter represents the amount of matching (spectral, spatial, and temporal) between the
optical mode of the amplifier and the optical mode of the injected single-photon. To model
this source of experimental imperfection, the joint state between the two modes kA and kB

before amplification is described by ρ̂−p = p|ψ−〉AB〈ψ−|+(1− p) ÎA
2 ⊗|0〉B〈0|, where ÎA =

|H〉A〈H|+ |V 〉A〈V | stands for a completely mixed polarization state and |0〉B〈0| represents
the vacuum input state. By following the same procedure described for the p = 1 case,
the density matrix of the joint micro-macro system after amplification and losses in the



Benchmark state: amplification of an entangled photon pair 105

highly attenuated regime reads:

ρ̂
AB
η ,p =N −1

η ,p


2p
C2

1
1− t2


t2 0 0 0
0 1

2

(
1+ t2) −1

2

(
1+ t2) 0

0 −1
2

(
1+ t2) 1

2

(
1+ t2) 0

0 0 0 t2

+(1− p)Γ


t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t


 ,

(5.7)
where Nη ,p is the normalization constant. In Figs. 5.4 (a) and (b) we show the density

Figure 5.4: (a)-(b) Density matrix of the micro-macro system in the high losses regime,
for a gain value of g = 3 and a value of the losses parameter η = 10−4. (a) Injection
probability p = 0.5 and (b) injection probability of p = 0.15. (c) Concurrence C[ρ̂AB

η ,p] as a
function of the gain g for η = 10−4. Red solid line corresponds to an injection probability
p = 1, green long dashed line to p = 0.5, blue short dashed line to p = 0.25 and black
dotted line to p = 0.05. (d) 3-dimensional plot for the critical injection probability pcrit as
a function of the gain g and the transmission coefficient η .

matrix for a gain value g = 3, for η = 10−4 and injection probabilities of p = 0.5 and
p = 0.15. The effect of a decreasing injection probability p is the reduction of the off-
diagonal terms and hence of the coherence terms. The application of the Peres criterion
on this density matrix gives a critical value of the injection probability pcrit =

S2(1−η)
1+S2(1−η)

.
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For p > pcrit, the micro-macro system in this highly attenuated regime is entangled, while
for p ≤ pcrit the system is separable. The same result is confirmed by the calculation of
the concurrence, which reads:

C[ρ̂AB
η ,p] =

{
p(1−t2)−(1−p)tS2(1−t2)

p(1+3t2)+2(1−p)tS2(1−t2)
for p > pcrit,

0 for p≤ pcrit.
(5.8)

In Fig. 5.4 (c) we report the plot of the concurrence as a function of the gain g for several
values of the injection probability p and η = 10−4. For decreasing p, the concurrence
drops to 0 for a lower value of the gain. Furthermore, in Fig. 5.4 (d) we report the plot of
the critical injection probability pcrit as a function of the gain g and the transmission effi-
ciency η . As the gain g is increased, the value of the critical injection probability increases
up to a value close to 1. This means that, for high values of the gain, an high injection
efficiency is requested to detect the entanglement with such measurement strategy.

5.2.3 Dichotomic measurements: Orthogonality filter and threshold
detector

The first dichotomic measurement technique we analyze in this section is based on the O-
Filter (OF) device introduced in [NDSD07, DSV08]. In this scheme the incident radiation
is analyzed in polarization by a couple of photon-number resolving detectors on each
spatial mode {k1,k2}. In the ideal case, this measurement corresponds to the projection of
the impinging field onto the Von Neumann operators: Π̂n,m = |nπ,mπ⊥〉〈nπ,mπ⊥|, where
|nπ,mπ⊥〉 represents a quantum state with n photons with polarization π and m photons
with polarization π⊥. Subsequently, the dichotomization of the measurement corresponds
to assign the value (+1) if nπ −mπ⊥ > k, (-1) if mπ⊥−nπ > k, and (0) otherwise [Fig. 5.5
(a)]. This choice of the detection scheme corresponds to the POVM operators:

F̂(+1)
π,π⊥ (k) =

∞

∑
n=k

n−k

∑
m=0

Π̂n,m, (5.9)

F̂(−1)
π,π⊥ (k) =

∞

∑
m=k

m−k

∑
n=0

Π̂n,m, (5.10)

F̂(0)
π,π⊥(k) = Î− F̂(+1)

π,π⊥ − F̂(−1)
π,π⊥ . (5.11)

The discarded outcome turns out to be state dependent. This property renders this kind of
dichotomic measurement unfeasible for applications in Bell’s inequalities test.

An analogue measurement scheme, based on N-fold coincidences, is shown in Fig.
5.5 (b). The field is analyzed in polarization, and each branch is equally divided among
a set of single-photon detectors (APD). Coincidences between the output TTL signals are
recorded for each analyzed polarization, and the (+1) or the (-1) outcomes are assigned
depending on which of the two analyzed sets of APDs record the N-fold coincidence.
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If no N-fold coincidences are recorded, the (0) inconclusive outcome is assigned to the
event. This scheme performs the measurement of the N-th order correlation function of
the field, where N is the number of detectors. We note that the O-Filter based and the
multi-detector based schemes select analogous regions of the Fock space.
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Figure 5.5: (a) O-Filter based detection apparatus. The field is analyzed in polariza-
tion [λ/4 and λ/2 wave-plates, polarizing beam-splitter] and the intensities are measured
by two photomultipliers (PM). Right figure: diagram of the two-mode Fock space’s re-
gion selected by the O-Filter measurement scheme. Green region (+1) corresponds to
the condition nπ −mπ⊥ > k, red region (-1) corresponds to the condition mπ⊥ − nπ > k,
grey region (0) corresponds to the condition |nπ −mπ⊥|< k. (b) Multi-detector measure-
ment strategies. The field should be analyzed in polarization [λ/4 and λ/2 wave-plates,
polarizing beam-splitter]. Each polarization state should be divided in equal parts by a
sequence of 50/50 beam-splitters (BS) and then detected by a set of APD’s (Avalanche
photo-diodes): the coincidences between all the detectors trigger the successful events.
Right figure: diagram of the two-mode Fock space’s region selected by the multi-detector
measurement scheme. Green region (+1) corresponds to the presence of a coincidence
only between all π polarization detectors, red region (-1) corresponds to presence of a
coincidence only between all π⊥ polarization detectors, grey region (0) corresponds to
the inconclusive outcome. In this case, k is the number of detectors.

Let us now introduce a different dichotomic measurement method which is based
on a threshold detection (TD) scheme. Let us consider the following apparatus. As
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in the OF case, the incident field is analyzed in polarization on each spatial mode by
photon-counting detectors, and the Von Neumann operators that describe this intensity
measurement are again the Π̂n,m projectors. The dichotomization of the measurement
then proceeds as follows. The (+1) outcome is assigned when the threshold condition
nπ +mπ⊥ > h is satisfied and when nπ > mπ⊥ . Analogously, the (-1) outcome is assigned
in the opposite case nπ < mπ⊥ conditionally to the satisfaction of the threshold condition
nπ +mπ⊥ > h. If nπ = mπ⊥ , one of the two outputs (±1) is assigned with equal probability
p = 1/2. The POVM operators that describe the measurement can then be written in the
form:

T̂ (+1)
π,π⊥ (h) =

∞

∑
n=h

∑
m< n

2

Π̂n−m,m, (5.12)

T̂ (−1)
π,π⊥ (h) =

∞

∑
n=h

∑
m> n

2

Π̂n−m,m, (5.13)

T̂ (0)
π,π⊥(h) = Î− T̂ (+1)

π,π⊥ − T̂ (−1)
π,π⊥ . (5.14)

We note that the choice of the threshold h is made independently from the input state,
and it is an intrinsic property of the detection apparatus. Furthermore, this scheme has
the peculiar property of selecting an invariant region of the Fock space with respect to
rotations of the polarization basis. More specifically, let us consider the case in which
the measurement is performed choosing a polarization basis π,π⊥. With that choice,
all the pulses for which nπ + mπ⊥ ≤ h are not detected. Rotating the basis to π

′
,π
′
⊥,

the undetected part of the wave function still corresponds to the application of the same
threshold condition in the new basis n

π
′ +m

π
′
⊥
> h. Hence, the filtered Fock-space region

is independent on the choice of the polarization basis but is a function only of the threshold
h, which is an intrinsic property of the detection apparatus. This feature is the main
difference with the OF device discussed in previous section, and renders the TD-based
detection strategy feasible for its implementation in Bell’s inequalities tests.

5.2.4 Dichotomic variables entanglement test with supplementary as-
sumptions

In this section we analyze the hypothesis underlying a recent entanglement test performed
in Ref. [DSV08]. The system under investigation is the micro-macro source discussed
in the previous section. We focus our analysis on the exploited entanglement criterion,
obtained as the extension of a spin-based criterion for a bipartite microscopic-microscopic
system [EKD+04].
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Micro-micro entanglement witness

For a two-photon separable state |ψ〉, defined on two different modes a and b the follow-
ing inequality holds [Dur04, EKD+04]:

ψ〈σ̂ (a)
1 ⊗ σ̂

(b)
1 〉ψ +ψ 〈σ̂ (a)

2 ⊗ σ̂
(b)
2 〉ψ +ψ 〈σ̂ (a)

3 ⊗ σ̂
(b)
3 〉ψ ≤ 1, (5.15)

where σ̂1,2,3 are the Pauli operators and ψ〈·〉ψ stands for the average on the state |ψ〉. A
violation of this bound for an input state |ψ〉 witnesses the entanglement properties of the
measured state.

Micro-macro entanglement witness in the ideal case

The same criterion can be extended to a micro-macro scenario, by measuring the pseudo
spin operators Σ̂i on the macro state, obtained through an unitary transformation upon
the micro-micro state. Here, the Σ̂i operators are the time evolution of the Pauli operators
according to Σ̂i = ÛOPAσ̂iÛ

†
OPA, where ÛOPA is the time evolution operator of the amplifier

and i = 1,2,3 refer to the polarization basis 1→{H,V}, 2→{R,L}, 3→{+,−}. Since
the operators Σ̂i are built from the unitary evolution of eigenstates of σ̂i, they satisfy the
same commutation rules of the single-particle 1/2-spin:

[
Σ̂i, Σ̂ j

]
= 2ıεi jkΣ̂k, where εi jk is

the Levi-Civita tensor. The measurement of these operators require parity detection on
the output field, and their complete expressions can be found in Ref. [DSV08].

Let us now consider the state |Ψ〉 obtained by the amplification of the state |ψ〉 over
the single spatial mode kB. Such state can be identified as a two-qubit state of a micro
and a macro system. In the ideal case, the following map holds:

|±〉 → |Φ±〉= ÛOPA|±〉,
|R/L〉 → |ΦR,L〉= ÛOPA|R/L〉. (5.16)

According to the properties of pseudo-Pauli operators {Σ̂i} the following inequality holds
for any separable state |Ψ〉 built through the process of parametric amplification of the
micro-micro state |ψ〉:

Ψ〈Σ̂〉Ψ = Ψ〈σ̂ (a)
1 ⊗ Σ̂

(b)
1 〉Ψ +Ψ 〈σ̂ (a)

2 ⊗ Σ̂
(b)
2 〉Ψ +Ψ 〈σ̂ (a)

3 ⊗ Σ̂
(b)
3 〉Ψ ≤ 1. (5.17)

A violation of this bound witnesses the presence of entanglement in the microscopic-
macroscopic two-qubit state |Ψ〉. A direct calculation of this inequality on the two-qubit
micro-macro state |Ψ−〉 of Eq. (5.1) in absence of losses gives Ψ−〈Σ̂〉Ψ− = 3, witnessing
the entanglement of the state in ideal conditions.

Micro-macro entanglement in the lossy case

The micro-macro entanglement test of Eq. (5.17) has been applied to the optical source
descibed in Sec. 5.2.1 by adopting the OF device described above. This approach has
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been adopted since the measurement of the pseudo-Pauli operators, requiring the perfect
discrimination of the number of photons present in the detected state, is out of reach by
current technology.

The entanglement test performed on the investigated system in Ref. [DSV08] is
given by Eq. (5.17). In that test, the {Σ̂i} operators of the original inequality for two-
dimensional micro-macro systems are replaced with the {F̂(±1)

π,π⊥ } operators of the O-Filter:

Ψ〈σ̂ (a)
1 ⊗ Π̂

(b)
1 〉Ψ +Ψ 〈σ̂ (a)

2 ⊗ Π̂
(b)
2 〉Ψ +Ψ 〈σ̂ (a)

3 ⊗ Π̂
(b)
3 〉Ψ ≤ 1. (5.18)

where i = 1,2,3 corresponds to three different polarization bases and:

Π̂
(b)
i = F̂(+1)

πi,π
⊥
i
− F̂(−1)

πi,π
⊥
i

(5.19)

It is worth noting that, in general, the resulting Eq.(5.18) is no longer an entanglement
witness. Without any assumption on the investigated system the inequality (5.18), that is,
the original pseudo-Pauli criterion (5.17) where the {Σ̂i} operators have been replaced by
the {F̂(±1)

π,π⊥ } ones, does not represent anymore a bound for entangled states. It is satisfied
by separable states of the form [SBB+09]:

ρ̂sep =
1

2π

∫ 2π

0
dφÛ(φ)|1πi,0π

⊥
i 〉a|0πi,Nπ

⊥
i 〉b a〈1πi,0π

⊥
i |b〈0πi,Nπ

⊥
i |Û(φ)†, (5.20)

where Û(φ) is a rotation of the whole system polarization around the z axis by an angle
φ .

The bound of Eq. (5.18) can be recovered as an entanglement witness by making a
supplementary assumpion on the micro-macro source: the macro state has to be generated
by an amplification process upon a micro-micro entangled pair (Fig. 5.6). In this case, one
is entitled to rule out separable states of the form (5.20) since they cannot be generated
by amplification of a micro-micro-state, thus recovering the validity of Eq. (5.18) as an
entanglement witness. Furthermore, a careful analysis of the OF properties show that, for
asymptotically high threshold, the mean values of the {Σ̂i} tend to the mean values of the
corresponding F̂(±1)

π,π⊥ (k) OF operators [SVD+09].

5.2.5 Dichotomic variables entanglement test in absence of supple-
mentary assumptions

The so far presented test is based on the inequality (5.17) for the pseudo-Pauli spin op-
erators. That inequality is written for the case of a micro-macro state obtained via am-
plification process. When the {Σ̂i} operators are replaced by a set {D̂i} of more general
dichotomic operators, the bound to be violated in order to demonstrate the entanglement
of the overall micro-macro system without making any supplementary assumption must
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(a) (b)

micro

macro
macro

micro

Figure 5.6: (a) Micro-macro system source in a black box configuration: no assumption is
made about the source. (b) Micro-macro amplified system: the macroscopic state is gen-
erated by a coherent amplification process of a single photon, belonging to an entangled
pair in the singlet polarization state |ψ−〉.

be modified with respect to Eq. (5.17). It can be shown that a necessary condition for
separable states is given by the following inequality:

S = 〈σ̂ (a)
1 ⊗ D̂(b)

1 〉Ψ + 〈σ̂ (a)
2 ⊗ D̂(b)

2 〉Ψ + 〈σ̂ (a)
3 ⊗ D̂(b)

3 〉Ψ ≤
√

3. (5.21)

Details over the derivation of this criterion are reported in App. B. Such criterion presents
the feature of not requiring any knowledge of the Hilbert space where the analyzed states
live. Indeed, in the derivation of the bound (5.21) the only necessary assumption concerns
the measurement operators, which can have only two possible outcomes (±1). We then
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Figure 5.7: Numerical evaluation of
the witness S for the specific choice
of the Pauli pseudo-spin operators
{Σ̂i} adopted as measurement opera-
tors {D̂i}. The witness S is plotted as a
function of the detection losses η , cal-
culated for several values of the gain
of the amplifier. The upper horizontal
solid line corresponds to the bound for
separables states of the general crite-
rion (5.21), while the lower solid line
corresponds to the bound for separa-
ble states (5.17) where the commuta-
tion properties of the operators have
been exploited and a standard assump-
tion on the Hilbert space is necessary.

applied the obtained criterion to evaluate the quantity S for the micro-macro state gener-
ated through the process of optical parametric amplification, for the specific choice of the
Pauli pseudo-spin operators {Σ̂i} as the measurement operators. More specifically, we
evaluated the value of S as a function of the transmission efficiency η of the multiphoton
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mode kB for several values of the gain g [Fig. 5.7]. The value of S is then compared to the
bound for separable states Ssep

gen =
√

3. We observe that this entanglement measurement is
fragile under losses, since the value of S falls below the bound for separable states when
the number of lost photons is R〈n〉 ∼ 1. Such result is expected since the Pauli opera-
tors allows to distinguish the |Φφ 〉 states exploiting the well-defined parity in the number
of photon generated by the amplifier depending on the polarization of the input states.
In presence of losses, such well-defined parity is quickly cancelled, thus not allowing to
discriminate among the macro-states with this kind of measurement.

5.3 Manipulation of the multiphoton states by measure-
ment induced quantum operations

In this section we consider several strategies for the realization of measurement-induced
quantum operations on the multiphoton states generated thought the process of optical
parametric amplification. We investigate theoretically how the measurement strategies,
applied on a part of the multiphoton state before the final identification measurement,
affect the distinguishability of orthogonal multiphoton states. Starting from the original

UBS

Shutter

Detection

k
B

Figure 5.8: (a) Scheme of the
measurement-induced quantum opera-
tion process. The field is split by an
unbalanced beam-splitter, and the reflected
portion is measured to conditionally active
the optical shutter placed in the path of the
transmitted portion of the field.

proposal of a preselection apparatus in a different configuration of Ref. [De 11], we con-
sider the particular case in which a macro-state generated by the QIOPA is split by an
unbalanced beam-splitter and manipulated by measuring the state on the reflected mode.
The conceptual scheme underlying the present investigation is shown in Fig. 5.3: a part
of the wave-function is measured and the results of the measurement are exploited to con-
ditionally activate an optical shutter placed in the transmitted part. Such shutter, whose
realization has been recently reported in Ref. [SVG+08], is used to allow the transmission
of the optical beam only in presence of a trigger event, i.e. in this case the results of the
measurement performed in the reflected part of the state. The interest in improving the
capability of identifying the state generated by the quantum injected optical parametric
amplifier system mainly relies in two motivations: the first one concerns the development
of a discrimination method able to increase the transmission fidelity of the state after
the propagation over a lossy channel, and hence to overcome the imperfections related
to the practical implementation. Such increased discrimination capability in lossy con-
ditions could find applications within the quantum communication context. The second
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reason concerns the scenario in which an appropriate pre-selection of the multiphoton
states could be adopted to demonstrate the nonlocality of the system, free from the auxil-
iary assumptions requested if the filtering procedure was applied at the final measurement
stage.

5.3.1 Filtering of the macro-qubit

In this section we discuss a first pre-selection scheme, sketched in Fig. 5.9 (a). A similar
scheme has been proposed in Ref. [SHB+09] and adopted to investigate the possibility
of observing nonlocality in a different scenario. As previously discussed, one of the main
experimental challenge for the realization of the bipartite single-photon and multiphoton
system of Fig. 5.3 is the achievement of spectral, spatial and temporal matching between
the optical mode of the injected single photon state and the optical mode of the amplifier.
This results to be a source of additional noise in the amplified state. The filtering method
here presented is adopted to reduce the noise introduced by the spontaneous emission of
the amplifier.

Let us now discuss the propagation of the multiphoton field produced by the ampli-
fier and the pre-selection procedure obtained through an intensity threshold detector and
the shutter device. As shown in Fig. 5.9 (a), the amplified state is split by an unbal-
anced beam splitter (UBS) 0.90− 0.10 in two parts: the smaller portion on mode kD is
analyzed by the TD, and the larger one on mode kC is conditionally pushed through a
polarization preserving shutter [SVG+08], and measured in polarization by a dichotomic
measurement. The TD based filtering strategy allows then to obtain a better discrimina-

(a) BS(.9/.1)

PBS

PBS
PM1

PM2

PM4

PM3

TD OF, TD

shutter

(b)

Figure 5.9: (a) Filtering of the macro-qubit: the shutter activation is conditioned to an
intensity measurement on the reflected portion of the macro state. (b) Trend of the injec-
tion probability as a function of the TD threshold, for different initial values of p. The
nonlinear gain of the amplifier is set at g = 1.5.

tion between the orthogonal macro states, by minimizing the noise related to the vacuum
injection into the amplifier. This is performed by increasing the threshold h of activation
of the TD device, which activates the shutter on the transmitted UBS mode, ensuring the
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presence of the higher, i.e. correctly injected, pulses. It is worth nothing that, at variance
with the techniques which will be introduced in the following sections, the TD action is
invariant for rotation on the Fock space since it selects the same region of the multiphoton
state either in the {~π+,~π−} basis either in the {~πR,~πL} one. These considerations can be
quantified introducing the injection probability pcond conditioned to the activation of the
shutter given by the threshold condition of the TD. We then evaluated numerically this
quantity for several values of the un-conditioned injection probability p. It turns out that
the value of pcond is increased as shown in Fig. 5.9 (b), in which we report the trend of
the conditional injection probability pcond as a function of the TD threshold h.

5.3.2 Deterministic transmitted state identification
Here we investigate a pre-selection strategy based on a comparison between orthogonally
polarized signals. This configuration is illustrated in Fig. 5.10 (a) and is based on a

(a) BS(.9/.1)

PBS

PBS
PM1

PM2

PM4

PM3

OF  TD

shutter (b) (c)

Figure 5.10: (a) Preselection strategy: the small reflected part of the macro state is ana-
lyzed in polarization and detected through an OF based measurement strategy. (b) Mea-
surement scheme adopted for the conditional activation of the shutter: if the OF, on the
reflected mode, measures the state on the green regions, the shutter, on the transmitted
mode, is conditionally activated. The green regions correspond to the state for which the
signals belonging to orthogonal polarizations are unbalanced over a certain threshold k,
i.e. |p− q| ≥ k. (c) Scheme for the final detection of the output state: Conditioned on
a measurement result in the ON region on the reflected mode, the transmitted mode is
identified by a dichotomic measurement in the {π,π⊥} basis. The diagonal contribution
to the quantum state is assigned randomly to the state |Φπ〉 or |Φπ⊥〉.

peculiar feature of the equatorial macro states. Indeed, any multiphoton states belonging
to the injection of an equatorial qubit, can be discriminated efficiently through the OF
measurement. Indeed, if analyzed in the same polarization basis of the injected qubit,
the two signals will be unbalanced with an high probability. This can be explained by
analyzing the probability distribution of the amplified states, reported in Fig. 5.11: (a) in
the mutually unbiased equatorial polarization basis with respect to the injected state and
(b) in the same basis as the injected qubit one.

We will address two cases in which the state generated by the amplifier is either |Φ+〉
or |ΦR〉, obtained by the amplification of a single photon polarized ~π+ = ~πH+~πV√

2
and ~πR =



Manipulation of the multiphoton states by measurement induced quantum operations115

Figure 5.11: (a) Probability distribution of the state |ΦR〉 as a function of the number
of photons {~π+,~π−} . (b) Probability distribution of the state |ΦR〉 as a function of the
number of photons {~πR,~πL}. In both distributions g = 1.5.

~πH+ı~πV√
2

, respectively. In both cases the analysis basis corresponding to the UBS reflected
mode is fixed to {~π+,~π−}, while the transmitted mode is analyzed in the same basis in
which the injected qubit has been encoded. Let us discuss the experimental setup shown
in Fig. 5.10 (a). The multiphoton state |Φ+〉 (or |ΦR〉) generated by the QIOPA impinges
on the UBS. A small portion of the field is reflected on mode kd and measured on the
{~π+,~π−} basis. The two signals belonging to orthogonal polarizations are then compared
by an orthogonality filter. When the two signals are unbalanced, i.e. |p− q| > k, being
p,q the number of photons ~π+,~π− polarized and k an appropriate threshold, the shutter
on mode kc is activated and the field on that mode is conditionally transmitted [see Figs.
5.10 (b) and (c)]. The multiphoton state |Φ+〉 (|ΦR〉) is then analyzed in the {~π+,~π−} (or
{~πR,~πL} ) basis. In the following sections we will address the problem of discriminating
the final multiphoton state, given the acquired information on the small portion of the
reflected field.

Probability of shutter activation

Let us first evaluate the probability P of activating the shutter when the impinging state
is detected on the {~π+,~π−} basis, depending on the value of k, with an OF technique.
As shown in Fig. 5.12, the probability of activating the shutter is the same for the two
output fields |Φ+〉 and |ΦR〉. This result can be explained by considering the probability
distributions of the state |ΦR〉 in the two mutually unbiased equatorial bases shown in
Fig. 5.11. Due to the linearity of the quantum mechanics, the state |ΦR〉 can be written
as |ΦR〉= 1√

2
(|Φ+〉+ ı|Φ−〉). Hence, due to the peculiar features of the two multiphoton

states |Φ±〉, that have non-zero contributions for terms with different parity, the probabil-
ity distribution of the macro-state |ΦR〉 in the {~π+,~π−} basis is given as the sum of the
two probability distributions of the states |Φ+〉 and |Φ−〉 in the same basis. Since shot
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Figure 5.12: (a) Probability of activating the shutter when the state |ΦR〉 is analyzed in the
{~π+,~π−} basis versus the threshold k of the OF. (b) Probability of activating the shutter
when the state |Φ+〉 is analyzed on the {~π+,~π−} basis. The nonlinear gain of the amplifier
is set at g = 1.5.

by shot the OF identifies the state |Φ+〉 or |Φ−〉 with the same probability, the activation
of the shutter has the same probability of occurrence for any linear combination of |Φ−〉
and |Φ+〉 impinging on the UBS. Note that the shutter activation probability increases in
steps since the amplifier emits photons in pairs.

Analysis of the |Φ+〉 state

Let us analyze the evolution of the state |Φ+〉 passing through the pre-selection apparatus.
We are interested in investigating the distinguishability between orthogonal macro-states
by varying the pre-selection performed over the multiphoton state itself. This can be
quantified by the visibility of the transmitted mode as a function of the unbalancement
between~π+ and~π− photons, detected on the reflected mode. Such quantity is evaluated as
the normalized difference between the probabilities of correct and incorrect identification
of the input state after the filtering process as:

V (k) =
∑m,n ∑p,q

(
Pp,q +

m,n (k)−Pp,q−
m,n (k)

)
∑m,n ∑p,q

(
Pp,q +

m,n (k)+Pp,q−
m,n (k)

) , (5.22)

Here, Pp,q +
m,n is the probability that, if the state |p+,q−〉d is detected on spatial mode

kd, m > n is obtained on spatial mode kc, and hence the macro-state |Φ+〉 is identified.
Conversely, Pp,q−

m,n is the probability that, given the detection of the state |p+,q−〉d on
spatial mode kd, n > m is obtained on spatial mode kc, and hence the macro-state |Φ−〉
is identified, even if the initial state impinging on the UBS was |Φ+〉. Here, m,n is the
number of photons ~π+ and ~π− polarized, and |p+,q−〉d is the state vector corresponding
to p photons with ~π+ polarization and q photons with ~π− polarization.

The trend of visibility as a function of k is reported on Fig. 5.13-(a). We observe that,
as expected, we obtain higher visibilites by increasing the value of k.
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Figure 5.13: (a)-(b) Trend of the visibility of the state |Φ+〉 measured in the basis
{~π+,~π−} and {~πR,~πL} respectively as a function of the threshold k. (c)-(d) Trend of
the visibility of the state |ΦR〉 measured in the basis {~π+,~π−} and {~πR,~πL} respectively
as a function of the threshold k. The numerical results have been obtained for the value
of the gain parameter g = 1.1.

Analysis of the Macro-state |ΦR〉
In analogy with the previous case, the visibility of the macro-state |ΦR〉 after the pre-
selection stage reads:

V (k) =
∑m,n ∑p,q

(
Pp,q R

m,n (k)−Pp,q L
m,n (k)

)
∑m,n ∑p,q

(
Pp,q R

m,n (k)+Pp,q L
m,n (k)

) , (5.23)

where Pp,q R,L
m,n (k) are the probabilities defined in full analogy with the previous case. The

behaviour of the visibility (5.23) is reported in Fig. 5.13 (d).
It is interesting to analyze the case of the visibility for |ΦR〉 choosing {~π+,~π−} as

the measurement basis, or, analogously, the case of |Φ+〉 with {~πR,~πL}. In these cases
the visibilities become decreasing functions of the threshold [see Fig. 5.13 (b) and (c)].
The decreasing trend can be explained by considering that the measurements in the two
polarization basis correspond to two non-commuting operators acting on the same initial
state. Indeed, for asymptotically high values of the threshold k→ ∞, the measurement
of the F̂(±1)

π,π⊥ operators that describe the OF tends to the measurement of the pseudo-spin
operators Σ̂i: that is, Σ̂1 = |Φ+〉〈Φ+|− |Φ−〉〈Φ−| or Σ̂2 = |ΦR〉〈ΦR|− |ΦL〉〈ΦL|. Hence,
the measurement on the kC mode corresponds to the measurement of the Σ̂i operators. The
information gained on this mode about one of the two pseudo-spin operator acting on the
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macro qubit does not allow to gain information about orthogonal pseudo-spin operator.
As a further remark, let us stress that this feature of the OF measurement is related to
the filtering of different regions of the Fock space depending on the analyzed basis. The
portion of the state that survives the action of the OF is indeed different if measured on
the {~π+,~π−} basis or in the {~πR,~πL} one and is shown in Fig. 5.14.

Figure 5.14: Selected region for the |Φ+〉 state after the measurement with an OF in the
{~π+,~π−} basis. (a) Photon number distribution in the {~π+,~π−} basis. (b) Photon number
distribution in the {~πR,~πL} basis. In both cases k = 10 and g = 1.2.

5.3.3 Probabilistic transmitted state identification
We now consider the case of the field split in two equal parts by a 0.5/0.5 beam-splitter
and both the reflected and the transmitted states detected through the OF device. In such
a way, the measurement apparatus is tailored to extract information on the state in two
different polarization bases. This analysis permits to discuss the possibility of adopting
the multiphoton states here analyzed for quantum cryptography protocols. The measure-
ment schemes are shown in Fig. 5.15: the OF technique is applied in order to extract the
maximum information available from the two states.

We consider the case in which the portion on the reflected mode is analyzed in the
polarization basis orthogonal to the codification one. In Fig. 5.16 (a) is reported the
trend of visibility as a function of the thresholds h on the transmitted mode and k on the
reflected one. The two polarization analysis basis are chosen to be mutually unbiased. It
can be seen that for equal values of the two thresholds h = k the visibility reaches a value
around 0.64, the same obtained through a pure dichotomic measurement, without any
pre-selection procedure on the multiphoton state. In Fig. 5.16 (b) is reported the trend of
the visibility as a function of the threshold on the reflected mode, keeping fixed the value
of the threshold on the transmitted one. We can see that the visibility of the transmitted
state decreases when the threshold on the reflected mode increases. If the threshold on the
transmitted mode is greater than the one on the reflected mode, the visibility results to be
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Figure 5.15: (a) Probabilistic transmitted state identification: the macro state is split in two
equal parts, and both the reflected and the transmitted components are detected through an
OF device. (b) Conditional activation of the shutter: if the OF acting on the reflected mode
measures the state on the green regions, the shutter, on the transmitted mode, is condition-
ally activated. The green regions correspond to the state for which the signals belonging
to orthogonal polarizations are unbalanced over a certain threshold k, i.e. |p−q| ≥ k. (c)
Corresponding to the ON region on the reflected mode, the transmitted mode is identi-
fied by a probabilistic measurement in the {π,π⊥} basis. The identification condition is
|m−n| ≥ h.

higher than 0.64, as expected by the action of the OF, which allows a better discrimination
of the multiphoton state, measured in the codification polarization basis. Otherwise it can
be seen how, decreasing the threshold h below the threshold k, the visibility decreases
below the “no filtering value”.

(a) (b)

Figure 5.16: (a) Trend of the visibility of the state |ΦR〉 for different values of the threshold
h on the transmitted mode and of the threshold k on the reflected one. The numerical
result has been obtained for a value of the parameter g = 1.2. (b) Trend of the macro-state
visibility as a function of the threshold k on the reflected mode, fixed the threshold h on
the transmitted one.
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From this analysis we can conclude that the macro states are not suitable for quantum
cryptography. The action on a portion of the state can indeed be seen as an eavesdropping
attack. If the state is measured in the codification basis, the visibility of the final state
results to increase as shown in Figs. 5.13 (a)-(d). This means that the conclusive results
for the eavesdropper would coincide with the conclusive results for the receiver, and the
eavesdropper can gain information on the macrostates without introducing noise. Other-
wise if the state is measured by the eavesdropper in the wrong basis, the visibility at the
receiver is not affected if the state is measured above a certain filtering threshold. Ac-
cording to these considerations, an eavesdropper could then develop a strategy in which
he measures its part of the transmitted state in two bases. With this approach he could
gain information on the transmitted signal by considering only the measurement outcome
in the right basis, and only a small amount of noise is introduced by keeping the filtering
thresholds above a certain value. Related to the security of the multiphoton states is the
possibility of performing a nonlocality tests upon them. As a final remark for this section,
we remind that the adoption of the OF device at the measurement stage is not suitable for
a nonlocality test, since the filtered portion of the state is dependent on the measurement
basis [VST+10b]. We will then address the nonlocality task in the following section.

5.3.4 Pre-selection for entanglement and non-locality tests
Here we investigate a pre-selection scheme based on a conditional operation driven by
the measurement of a portion of the multiphoton state in two different polarization bases
[see Fig. 5.17]. A small portion of the generated multiphoton state is reflected by an un-
balanced beam-splitter of transmittivity T = 0.9 and subsequently split by a 50/50 beam-
splitter in two equal parts. One of the two parts is measured in an equatorial {~πβ ,~πβ⊥}
basis by two photomultipliers, and the photocurrents {Iβ , Iβ⊥} are analyzed by an OF de-
vice [Fig. 5.10]. The other part undergoes the same measurement process in a different
equatorial basis {~πβ ′,~πβ ′⊥

}.

BS(.9/.1)

PBS
PBS

PM1

PM2PM5

PM3
OF

TD

shutter

OF

PBS

PM6

PM4

BS(.5/.5)

Figure 5.17: Pre-selection for entanglement and non-locality tests: a double basis mea-
surement is performed on the small reflected portion of the macro qubit.

When the threshold condition |Iπ − Iπ⊥| > k [Fig. 5.10] is realized in both branches,
measured respectively in the polarization basis {~πβ ,~πβ⊥} and {~πβ ′,~πβ ′⊥

}, a TTL elec-
tronic signal is sent to conditionally activate the optical shutter placed in the optical path
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of the remaining part of the multiphoton state. Then, the field is analyzed at the mea-
surement stage with the dichotomic strategy discussed in the previous paragraphs. For
this pre-selection method, the relevant parameter is the angle φ between the two bases
{~πβ ,~πβ⊥} and {~πβ ′,~πβ ′⊥

} in which the small portion of the beam is analyzed. The angle
φ is defined according to the relations between the two polarization bases:

~πβ ′ = eı φ

2

[
cos
(

φ

2

)
~πβ − ısin

(
φ

2

)
~πβ⊥

]
, (5.24)

~πβ ′⊥
= eı φ

2

[
−ısin

(
φ

2

)
~πβ + cos

(
φ

2

)
~πβ⊥

]
. (5.25)

We analyze how the visibility changes as a function of the angle φ between the two
bases of the pre-selection branch once the equatorial polarization of the injected state
~πα is optimized (see below). In Fig. 5.18 we show the numerical results obtained by
calculating the visibility according to the standard definition:

V (k) =
Imax− Imin

Imax + Imin
, (5.26)

where:

Imax = ∑
m>n

Pα

[
m,n

∣∣(|Iβ − Iβ⊥|> k)∩ (|Iβ ′− Iβ ′⊥
|> k)

]
, (5.27)

Imin = ∑
m<n

Pα

[
m,n

∣∣(|Iβ − Iβ⊥|> k)∩ (|Iβ ′− Iβ ′⊥
|> k)

]
. (5.28)

Here Pα

[
m,n

∣∣(|Iβ − Iβ⊥|> k)∩ (|Iβ ′− Iβ ′⊥
|> k)

]
is the photon-number distribution of the

state |Φα〉 after the pre-selection stage. The value of α is chosen in order to maximize
the contribution of the ∑m>n term and minimize the contribution of the ∑m<n term. Eq.
(5.26) then coincides with the usual definition of visibility. We note that the visibility is
higher for smaller angles φ , since in that case a strong projection of the state is performed
in two close bases. This condition is equivalent to the scheme of Fig. 5.10, where the
OF measurement performed in one basis allows to obtain a better discrimination of the
detected state only in the polarization basis of the pre-selection measurement [Fig. 5.13
(a)-(b)]. When φ is high, a lower visibility can be achieved since the projection of the
macrostate occurs in two distant bases. In this case, the increasing effect of the pre-
selection in one basis on the visibility is in contrast with the decreasing effect of the
pre-selection in the other basis.

We conclude this section by discussing the feasibility of a nonlocality test by ex-
ploiting the proposed pre-selection method. We consider the case of a CHSH inequality
[CHSH69] [see Sec. 1.5.2]. As said, the output field is measured by a pure dichotomic
detection apparatus, possessing only two measurement outcomes (±1). All local hidden
variable models must satisfy the following inequality:

SCHSH = Eρ(a,b)+Eρ(a,b
′
)+Eρ(a

′
,b)−Eρ(a

′
,b
′
)≤ 2, (5.29)
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Figure 5.18: (a) Trend of the visibility for the double-filtering technique as a function
of the angle φ between the two polarization bases {~πβ ,~πβ⊥} and {~πβ ′ ,~πβ ′⊥

} of the pre-
selection measurement. Square black points correspond to k = 3, circular red points to
k = 5 and triangular green points to k = 7. (b) Filtering probability of the scheme as a
function of the threshold k at the pre-selection measurement stage. All graphs correspond
to g = 1.2.

where Eρ(x,y) = p++(x,y)+ p−−(x,y)− p+−(x,y)− p−+(x,y) are the correlations be-
tween the different outcomes measured in the x and y polarization respectively for systems
A and B. Hence, in order to violate the CHSH inequality correlations must be present in
different polarization bases. We consider the case in which the angle φ between the two
bases {~πβ ,~πβ⊥} and {~πβ ′,~πβ ′⊥

} is set at φ = π/4. This choice is motivated by the fol-
lowing considerations. On one side, low values of φ would lead to a micro-macro state
possessing strong correlations only in one polarization basis, thus not allowing to vio-
late a Bell’s inequality. On the other side, high values of φ does not allow to obtain the
necessary enhancement in the correlations of the micro-macro system to violate a Bell’s
inequality. The obtained fringe patterns for the chosen case are reported in Fig. 5.19 and
corresponds to the following conditions. The (+1) outcome of the dichotomic measure-
ment is recorded as a function of the polarization ~πα of the injected single photon state.
We then analyzed three different choices for the threshold k at the pre-selection stage.
When the threshold k is set to 0, the fringe pattern corresponding to the two basis β = 0
and β = π

4 are mutually shifted of an angle π

4 , since no filtering and no pre-selection is
performed on the state. When the threshold k is increased, the mutual shift between the
fringe pattern is progressively reduced and cancelled, since a strong filtering of the state is
performed. In particular, the maximum of both the fringe pattern in the β = 0 and β = π

4
bases is obtained for the |Φα〉 state with α = π

8 . This means that this pre-selection strat-
egy for sufficiently high value of k enhances the correlations in the micro-macro system
in a specific polarization basis and suppresses the correlations in the other bases. For this
reason, the proposed strategy does not allow to observe the violation of a Bell’s inequal-
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Figure 5.19: Fringe pattern as a function of the angle α of the polarization basis at the
single-photon site. The angle φ between the two bases of the pre-selection stage is set
at φ = π/4, while g = 1.2. (a) Threshold k = 0. (b) Threshold k = 3. (c) Threshold
k = 5. Square black points: fringe patterns obtained by recording the (+1) outcome at
the measurement stage, where the measurement basis {~πβ ,~πβ⊥} is set at β = 0. Circle
red points: fringe patterns obtained by recording the (+1) outcome at the measurement
stage, where the measurement basis {~πβ ,~πβ⊥} is set at β = π

4 .

ity in the micro-macro system here analyzed. The enhanced value of the visibility could
nevertheless be employed in quantum lithography and quantum metrology schemes, in
which high visibility correlations pattern and high photon number regimes are required.
Recently it has indeed been shown how the amplification process of a single photon probe
can beat the detrimental effect of losses which happen in the transmission and detection
stages (see Ref. [VSSD10] and Chaps. 9). Such a scheme for non invasive quantum
metrology could benefits from the presented filtering procedures in order to improve the
visibility value of the interference fringe pattern.

5.4 Conclusion and perspectives
In this chapter we analyzed several classes of entanglement criteria for bipartite systems
of a large number of particles. As experimental benchmark, we considered the bipartite
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state obtained by amplification of a single photon belonging to an entangled singlet state.
We discussed different entanglement criteria which do not require any supplementary as-
sumption on the source, and applied these approaches to the micro-macro system based
on optical parametric amplification. We first considered an approach based on deliberate
attenuation of the multiphoton field to the single-photon regime, already introduced in
Ref. [EKD+04], and we applied this approach to the investigated system. This analysis
allowed us to show that a fraction ε of the original entanglement of the entangled pho-
ton pair exists even in presence of losses, where ε is proportional to the amount of lost
particles. Then, we analyzed in details the conclusions that can be drawn on a recent
experimental entanglement test performed on this system and reported in Ref. [DSV08].
The adopted entanglement criterion allowed to infer the presence of entanglement after
the amplification process before losses in the detection apparatus. The validity of the test
however requires a specific assumption on the system that generates the micro-macro pair.
An a-priori knowledge of the source is necessary in order to exclude a class of separable
states that can reproduce the obtained experimental results. One of the reasons for the
necessity of this assumption is given by the exploited detection strategy, which presents
the feature of a POVM with an inconclusive outcome which depends on the measurement
basis. We then considered a generalization of the test performed in Ref. [DSV08], by
proposing an entanglement inequality which can be adopted with any dichotomic mea-
surement operators without supplementary assumptions on the optical source.

As a second step, we analyzed theoretically in details several schemes for the realiza-
tion of conditioned measurement-induced operations. All these strategies are aimed at the
manipulation and distillation of the macro-states for their applications in different con-
texts, such as the realization of entanglement and nonlocality tests or quantum sensing.
We identified different strategies able to minimize the effects of the noise due to the vac-
uum injection into the amplifier, and to increase the distinguishability among the detected
multiphoton states.

Several open points remain to be investigated. The entanglement tests discussed in this
chapter relies on dichotomic measurements. Such measurements present a low resolution,
and hence an open question still remains whether detection methods with higher resolu-
tion should be adopted in this context. Indeed, high resolution measurements have to be
employed in order to detect all the particles present in the multiphoton state. This will be
addressed in the next chapter by considering an hybrid detection method involving both
discrete and continuous variables measurements. At the same time, the measurement-
induced operations analyzed in this paper are all based on dichotomic detection schemes.
Other approaches, such as the ones based on continuous variables measurements or on
the processes of coherent photon-addition and photon-subtraction, can lead to a different
manipulation of the QIOPA multiphoton states. Systems with different properties from
the one analyzed in this paper could be obtained with these methods.



Chapter 6

Hybrid entanglement criteria in
bipartite microscopic-macroscopic
systems with discrete- and continuous-
variables methods

The expertimental observation of entanglement between a microscopic and a mesoscopic
system is still an open challenge. The main challenges rely on the difficulty of isolating
any physical system from the environment, and on the absence of suitable criteria for
this hybrid scenario. In the previous chapter we analyzed an optical source of a bipar-
tite state composed by a single photon on one mode and a multimode field on the other
mode. We analyzed in which regime of the systems’ parameters entanglement could be
detected by exploiting dichotomic measurements, showing the necessity of performing a
high resolution measurement. In this chapter we propose to exploit a hybrid detection
system as a possibile approach. Such approach is based on a hybrid measurement ap-
paratus, employing discrete-variables on the microscopic part and continuous-variables
on the macroscopic part. In this way, the advantages of both techniques is combined on
the same platform. The obtained results, reported in Ref. [SVP+11], can open the way to
further investigation in the field of micro-macro entanglement.

6.1 Entanglemement in hybrid microscopic-macroscopic
systems

An open challenge for fundamental quantum physics is to affirm the quantum nature of
a system that puts together a microscopic part and a mesoscopic one. This hybrid sce-
nario can emerge in completely different experimental platforms ranging from individual
spin systems interacting with multi-mode cavity fields (such as transmon qubits in copla-
nar transmission-line resonators) [WSB+04, ADW+06], to ionic impurities embedded in

125
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ultra-cold atomic samples, such as the systems considered in some recent experiments re-
ported in [ZPSK10, SHD10]. Another possible physical approach exploits a massive tiny
mirror optomechanically interacting with a single photon within a Michelson interferom-
eter [GBP+06, ACB+06, KB06, DMSVC10, MSPB03]. This endeavour could contribute
to challenge the observability of quantum features at the macroscopic level which is one
of the most fascinating open problems in quantum physics. The difficulties inherent in
such a quest are manifold, and are related on one hand to the unavoidable interaction of
the system with the surrounding environment [Zur03, KBLSG01, PGU+03, PAB+04].
On the other hand, one faces the debated problem of achieving a measurement-precision
sufficient to observe quantum effects at such macro-scales [KB08, JPR09]. In this context,
it has been experimentally proven that a dichotomic measurement performed upon a mul-
tiphoton entangled state is not sufficient to catch quantumness [VST+10b]: the accuracy
of the measurement is crucial for the observation of quantum features.

Alongside with the problem of achieving the sufficient measurement resolution, one
of the main open challenge for an experimental test in systems of large size is the con-
struction of suitable criteria for the detection of entanglement in bipartite macroscopic
systems [JPR09, Wod00, GKLC01, SJR07, LJJ09, LJJ10]. In Sec. 6.2 we introduce a
hybrid method to experimentally demonstrate the truly quantum mechanical features of
a general micro-macro system beyond any assumption on its state and without the ne-
cessity of any a priori state-knowledge [SVP+11]. We infer the entanglement properties
by means of an hybrid approach that combines dichotomic measurements on a bidimen-
sional system and phase-space inferences through the Wigner distribution associated with
the macroscopic component of the state [Wod00]. At variance with previous proposals
[BW99, Wod00], the approach presented in this chapter is tailored to fully exploit the
polarization-spin degree of freedom on both the microscopic and the macroscopic sub-
systems. We analyze the effects of losses on a CHSH-like inequality test [CHSH69] and
show that maximum violation is achieved when losses are absent, regardless of the size of
the macroscopic part of the state. This is not the case under non-ideal conditions. How-
ever, we show how losses can be efficiently taken into account so as to infer entanglement
of our multiphoton state. As a paradigmatic microscopic-macroscopic system, we inves-
tigate in Sec. 6.3 the state obtained from a fully microscopic entangled system through an
amplification process [DSV08, SVSD10] discussed in the previous chapter.

6.2 Hybrid entanglement test for microscopic-macroscopic
systems

In the proposed hybrid method, the microscopic part of the state is measured using spin-
1/2 projection operators. On the other side, the macroscopic counterpart undergoes
phase-space measurements based on the properties of its Wigner function [Wod00].
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Figure 6.1: Hybrid entanglement test on an optical microscopic-macroscopic state gen-
erated by a “black-box”. The single-photon mode kA is measured by a polarization de-
tection apparatus, while the multiphoton mode kB undergoes polarization projection and
the measurement of the displaced parity operators. (a) Direct measurement of the Π̂(α)
displaced parity operators. (b) Indirect measurement of the average value 〈Π̂(α)〉 of the
displaced parity operators by exploiting a homodyne detection apparatus.

6.2.1 Hybrid entanglement test based on a CHSH Bell’s inequality

Let us consider a general micro-macro state with its microscopic part embodied by a
single-photon polarization state (a qubit). We take the macroscopic part, on the other
hand, as encoded in the multiphoton state of a continuous-variable system. The two sub-
systems are supposed to be entangled by a mechanism whose details are inessential for
our tasks. Polarization measurements performed over state of the single-photon mode kA
are described by the Pauli spin operator:

σ̂
A(φ) = |φ〉A〈φ |− |φ⊥〉A〈φ⊥|, (6.1)

where φ is the direction identifying the polarization state in the Poincaré sphere and φ⊥
is its orthogonal direction. The CV measurements, on the other hand, are given by the
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following measurement operators:

Π̂
B
χ,χ⊥(αχ ,χ)=Π̂

B
χ(αχ)⊗1̂B

χ⊥, (6.2)

where Π̂B
i (αi)=D̂B

i (αi)(−1)n̂B
i D̂B†

i (αi) is the displaced parity operator built from the dis-
placement D̂B

i (αi) (αi∈C) and the number operator n̂B
i (i={χ,χ⊥} stands for the polar-

ization state). We define the qubit-CV correlator as:

C (αχ ,χ;φ)=〈σ̂A(φ)⊗Π̂
B
χ,χ⊥(αχ ,χ)〉, (6.3)

which is evaluated on a general micro-macro state ρ̂AB. Starting from this correlator, we
can define the following parameter B by adopting the CHSH approach:

B=C (α ′χ ,χ
′;φ
′)+C (α ′χ ,χ

′;φ)+C (αχ ,χ;φ
′)−C (αχ ,χ;φ). (6.4)

This parameter can be exploited to derive an inequality which can take the role of a nonlo-
cality or an entanglement witness depending on the detection apparatus chosen to measure
the Π̂B

χ,χ⊥(αχ ,χ) operators.
The displaced parity operators Π̂B

χ,χ⊥(αχ ,χ) adopted on the multiphoton field for the
present hybrid approach can be directly measured [DDS+08, LCGS10] by combining
the input field with a coherent state in a low reflectivity beam-splitter, and by measuring
the parity of the output field: Fig. 6.1 (a). However, such technique requires photon-
counting detectors with very high efficiency, a condition extremely difficult to achieve
with the present technology. When the Π̂B

χ,χ⊥(αχ ,χ) operators are directly measured,
no assumptions are necessary on the detection apparatus. In this case, the outcome of
the σ̂A(φ) and Π̂B

χ,χ⊥(αχ ,χ) measurements can only be ±1, and the use of a local hidden
variable model imposes the bound |BLHV|≤2 [CHSH69] on the B parameter. A violation
of this bound on the measured state ρ̂AB confutes all LHV theories.

A different strategy can be adopted to measure the displaced parity operators. This
strategy is based on an indirect measurement of the average value of the displaced parity
operators, which can be performed by exploiting the connection between 〈Π̂(α)〉 and the
Wigner function of the state: Fig. 6.1 (b). Indeed, the average value of the measurement
operator on state ρ̂B

i of the multiphoton mode is related to the value of its Wigner func-
tion at αi: W B

Φ
(αi)=(2/π)Tr[Π̂B

i (αi)ρ
B
i ]. The latter can be easily reconstructed using a

homodyne tomographic apparatus. This indirect approach requires some assumptions on
the detection apparatus, that is, an a-priori characterization of the measurement appara-
tus. Hence, this strategy to measure the average value of the displaced parity operators
is not suitable for a genuine nonlocality test, but can be still adopted to develop an en-
tanglement inequality. In this case, the average values of the outcomes of the σ̂A(φ) and
Π̂B

χ,χ⊥(αχ ,χ) measurements is limited by 〈σ̂A(φ)〉 ≤ 1 and 〈Π̂B
χ,χ⊥(αχ ,χ)〉 ≤ 1. Hence,

by using a standard CHSH argument it can be shown that for all separable states the bound
|Bsep|≤2 holds. A violation of this bound witnesses an entangled state. The measurement
settings for the single-photon mode kA [multiphoton mode kB] are given by the measured
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polarizations (φ , φ ′) [measured polarizations (χ , χ ′) and the chosen phase-space points
(αχ , α ′χ )]. This requires a standard polarization detection system for the microscopic
mode and a homodyne detection system for the multiphoton one, as shown in Fig. 6.1
(b).

6.2.2 Hybrid entanglement witness in presence of detection losses
Losses are modeled by inserting a beam-splitter of transmittivity η∈[0,1] in the path of
the modes at hand, “tapping” the corresponding signal [JPR09]. The choice η=1 (η=0)
corresponds to a lossless (fully-lossy) process. To this end, the measurement performed
on the ~πχ polarization of the multiphoton part is replaced by the operator [LJJ10]:

ÔB
χ(αχ ;η)=

{
1
η

Π̂B
χ(αχ)+

(
1− 1

η

)
1̂

B
χ if η∈(0.5,1],

2Π̂B
χ(αχ)−1̂B

χ if η∈(0,0.5].
(6.5)

where η is the detection efficiency of the apparatus. Such definition of the measurement
operator is performed in order to correct the detrimental effect of losses on the properties
of the detected state. Let us consider a general state |Φ〉Bχ on spatial mode kB and polariza-
tion ~πχ (although we illustrate our argument using pure states of mode B, our arguments
apply equally to mixed states). After losses occur, the state evolves into a density matrix
ρ̂

η B
Φ χ

. The average value of ÔB
χ(αχ ;η) on such density matrix gives [LJJ10]:

〈ÔB
χ(αχ ;η)〉η =

{
π

2η
W η B

Φ
(αχ)+

(
1− 1

η

)
if 1

2 < η ≤ 1,

2W η B
Φ

(αχ)−1 if 0≤ η ≤ 1
2 .

(6.6)

Here, W η B
Φ

(αχ) is the Wigner function of the detected state, which is related to the Wigner
function of the initial state before losses |Φ〉Bχ by the gaussian convolution:

W η B
Φ

(Xχ ,Pχ) =
2

π(1−η)

∫
∞

−∞

∫
∞

−∞

dX ′χdP′χW B
Φ(X ′χ ,P

′
χ)e
−2
[
(Xχ−

√
ηX ′χ )2

1−η
+

(Pχ−
√

ηP′χ )2

1−η

]
. (6.7)

The measured Wigner function given in Eq. (6.7) corresponds to the s-parametrized quasi-
probability distribution W B

Φ
,(αχ ,s), of |Φ〉Bχ with s = − (1−η)

η
[CG69b, CG69a]. Ex-

ploiting the properties of such distributions, it is straightforward to prove that [LHL+09,
LJJ10]:

|〈ÔB
χ(αχ ;η)〉η | ≤ 1, (6.8)

for all values of η . We can then define the overall measurement performed on the multi-
photon state as:

ÔB
χ,χ⊥(αχ ,χ;η) = ÔB

χ(αχ ;η)⊗ 1̂B
χ⊥. (6.9)

with average values bounded by |〈ÔB
χ,χ⊥(αχ ,χ;η)〉η | ≤ 1. Hence, by introducing the

micro-macro correlator:

C̃η(αχ ,χ,φ)=〈σ̂A(φ)⊗ÔB
χ,χ⊥(αχ ,χ;η)〉η , (6.10)
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we define the following witness parameter:

Wη=C̃η(α
′
χ ,χ

′,φ ′)+C̃η(α
′
χ ,χ

′,φ)+C̃η(αχ ,χ,φ
′)−C̃η(αχ ,χ,φ). (6.11)

In order to define the bounds on Wη satisfied by separable states, we consider a generic
micro-macro separable state described by the density matrix ρ̂sep = ∑i piρ̂

A
i ⊗ ρ̂B

i . After
detection losses on the multiphoton mode kB, such state evolves into ρ̂sep = ∑i piρ̂

A
i ⊗

Lη [ρ̂
B
i ], which gives:

|W sep
η |=

∣∣∣∑
i

pi
(
〈Â′〉i〈B̂′〉iη + 〈Â′〉i〈B̂〉iη + 〈Â〉i〈B̂′〉iη −〈Â〉i〈B̂〉iη

)∣∣∣ (6.12)

where:
〈Â〉i=Tr

[
σ̂

A(φ)ρ̂A
i

]
,

〈Â′〉i=Tr
[
σ̂

A(φ ′)ρ̂A
i

]
,

〈B̂〉iη=Tr
[
ÔB

χ,χ⊥(αχ ,χ;η)Lη [ρ̂
B
i ]
]
,

〈B̂′〉iη=Tr
[
ÔB

χ ′,χ ′⊥
(α ′χ ,χ

′;η)Lη [ρ̂
B
i ]
]
.

(6.13)

As all these terms satisfy |〈X̂〉i| ≤ 1 with X̂ = {Â, Â′, B̂, B̂′}, we get:

|W sep
η | ≤ 2. (6.14)

This shows that for any separable state undergoing a lossy process on mode kB the wit-
ness parameter Wη is bound to satisfy Eq. (6.14). Violation of this inequality witnesses
entanglement in the system. Such bound can be explained by considering that separable
states do not violate CHSH inequalities, and local processes such as losses cannot in-
crease their nonlocal character. It is important to notice that, in virtue of the assumption
that the macrostate of mode kB undergoes losses η before (rather than at) detection, this
entanglement witness reveals the presence of entanglement without any assumption on the
micro-macro source [see Fig. 6.1]. On the other hand, the lossy mechanism can be shifted
to occur just before measurement, thus modeling the effects of a non-ideal detector. For
η=1, Wη coincides with the CHSH-based parameter B in Eq. (6.4).

6.3 Hybrid entanglement tests in a microscopic-macroscopic
system based on parametric amplification

The system under consideration is the optical source analyzed in the previous chapter in
Sec. 5.2.1 and based on the process of optical parametric amplification of a single photon
belonging to an entangled photon pair.

At variance with the previous chapter, the output state is then measured by means
of a polarization analysis apparatus and by a homodyne detection acting on the the ~πχ

polarization mode [see Fig. 6.1]. This apparatus implements the indirect measurement of
the displaced parity operators, as discussed in Sec. 6.2.
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6.3.1 Application of the hybrid CHSH-based entanglement inequal-
ity

We begin analyzing the CHSH-based inequality (6.4) in the lossless case (η=1). The
correlation operator evaluated on |Ψ−〉AB takes the form (see App. C.1):

C (Xχ ,Pχ ,χ;φ)=(1−Z )cos[2(χ−φ)]e−Z , (6.15)

where Z =2(e−2gX2
χ+e2gP2

χ) is a function of the rotated variables set:

X χ = Xχ cos(χ/2)−Pχ sin(χ/2), (6.16)
Pχ = Xχ sin(χ/2)+Pχ cos(χ/2). (6.17)

Here, (Xχ ,Pχ) are the field quadratures and αχ=Xχ+ıPχ . The correlator in Eq. (6.15) is
maximized at the origin of the phase space, where C (0,0,χ;φ)=cos[2(χ − φ)], which
is independent of the gain of the amplifier g and the number of generated photons n =
sinh2 g. It has the same form as for a Bell-CHSH test performed on a polarization photon-
pair where spin-1/2 operators are measured. The CHSH-based parameter B is then max-
imized by choosing the measurement settings for (φ ,φ ,χ,χ ′) corresponding to such case,
which ensures the maximum degree of violation of the inequality B=2
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Figure 6.2: CHSH-based parame-
ter Bη as a function of the num-
ber of lost photons (1−η)〈n〉 for
different values of the gain g. We
show the local realistic boundary
Bsep=2.

We are now in a position to address the possibility to observe micro-macro entangle-
ment under realistic experimental conditions. We thus analyze the effects of detection
efficiency of the homodyne apparatus, used for the measurement of the generalized parity
operator on the multiphoton mode kB, and its effect onto the qubit-CV correlator (see App.
C.2 for a discussion on the other sources of experimental imperfections). By restricting
our attention to the origin of the phase space, where maximum non-classical effects are
achieved, we get Cη(0,0,χ;φ)=cos[2(χ−φ)]L (g,η), where:

L (g,η)=
η [1+2n(1−η)]

(1+4η(1−η)n)3/2 (6.18)

is a loss-function for the test. Hence, the maximum amount of violation is directly deter-
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mined by the loss-function as Bη=BL (g,η). In Fig. 6.2 we show the value of Bη as a
function of the average number of lost photons (1−η)〈n〉, where 〈n〉= 3n+1 is the mean
number of the generated photons after the amplification process. The CHSH-based in-
equality of Eq. (6.4) is satisfied when only a moderate number of photons is lost. A lower
bound ηlim=1/

√
2 for the detection efficiency can be found below which a violation is

not observed anymore. On the other hand, at set values of η there is a minimum gain
glim(η) above which the presented test cannot detect micro-macro entangled correlations.
Such threshold value decreases with the reduction of the efficiency η . The behavior of
Bη in the (η ,g)-plane is shown by the contour plot in Fig. 6.3 (a). In order to relate the
violation of the CHSH-based inequality to intrinsically non-classical features enforced at
the level of the macro-part of the state, Fig. 6.3 (b) reports the negativity of the Wigner
function of an amplified single-photon state versus η and g [SVD+09]. We observe that
the transition of Bη to the region below the classical limit is directly linked to the de-
crease in the negativity of the Wigner function itself. Indeed the value of the micro-macro
correlator Cη is determined by the excursion of the Wigner function in Xχ=Pχ=0, as a
function of the polarization of the injected photon.

6.3.2 Application of the hybrid entanglement witness in presence of
detection losses

We complement the analysis of the investigated micro-macro system by discussing the
use of the entanglement witness described in Sec. 6.2.2. The evaluation of the correlation

Figure 6.3: (a) Contour plot of the shifted loss function L (g,η)−2−1/2 as a function of
the gain g and the detection efficiency η . (b) Contour plot of the negativity of the Wigner
function of an amplified single-photon state [SVD+09] against g and η , evaluated in the
origin of the phase space. In both panels the solid line divides the region of entanglement
(|Bη |>2, above the line) from the one in which entanglement cannot be inferred (|Bη | ≤
2, below the line).
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Figure 6.4: (a) Wη against the detection efficiency η and the nonlinear gain g. (b) Contour
plot of the effective loss function h(η)L (η ,g). Entanglement can be revealed in the
region above the black line. (c) Summary of the results obtained from our tests. We
identify three regions in the (η ,g) space, depending on whether entanglement can be
demonstrated with our techniques.

operator over state |Ψ−〉AB after losses leads to:

C̃η(αχ ,χ,φ)=h(η)Cη(αχ ,χ;φ), (6.19)

where h(η)=1/η (h(η)=2) for 1/2<η≤1 (0≤η≤1/2). More details can be found in
App. C.3. Therefore, the entanglement witness can be directly obtained from the CHSH-
based parameter as Wη=h(η)Bη . In Fig. 6.4 (a) we report the dependence of Wη as a
function of η and g: for single-photon states (i.e. at g = 0), the correction of losses intro-
duced by the factor h(η) allows one to observe micro-micro entanglement up to η∼0.35.
As the number of photons in the macro-state increases, the damping in the negativity of
the Wigner function induced by losses scales more rapidly than η and the h(η)-correcting
term becomes less effective. Fig. 6.4 (b) shows the behavior of the effective overall loss-
function h(η)L (η ,g), highlighting the thresholds in g and η above which entanglement
is observed. We note that the non-monotonic behaviour obtained for the inefficiency pa-
rameter at η = 0.5 is a property of the witness itself. However, being Eq. (6.5) a witness
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for entanglement, no special meaning can be attached to the lack of violation of the sepa-
rability condition |W sep

η | ≤ 2.

6.4 Conclusion and perspectives
In this chapter we have proposed an experimentally oriented approach to detect entan-
glement in a micro-macro entangled state involving a single-photon and a multiphoton
bipartite system. We have used a hybrid CHSH-based inequality and an entanglement
witness whose use against such a class of states is effective. Furthermore, the CHSH-
based inequality can be adopted as a genuine nonlocality test when a direct measurement
of the displaced parity operators is performed on the multiphoton field.

As experimental benchmark, we considered the bipartite state obtained by amplifica-
tion of a single photon belonging to an entangled singlet state. The approach adopted in
this chapter does not require any supplementary assumption on the source. We showed
that with this approach, the entanglement in absence of detection losses is present in any
photon-number regime. In presence of losses, the entanglement can be efficiently demon-
strated in the few photon-number regime by adopting an hybrid entanglement witness
which includes an appropriate correction for detection losses

While our study spurs further interest in the identification of suitable tests in the
high-loss and large-photon-number region, it paves the way to an experimentally fea-
sible demonstration of entanglement properties in an interesting class of states lying at
the very border between quantum and classical domains. As a further perspective, the
system based on parametric amplification can lead to the investigation of entanglement
in a bipartite multiphoton-multiphoton system [De 11, SHB+09]. This scenario will be
discussed in the next chapter.



Chapter 7

Detection of nonlocality in
multiphoton-multiphoton systems and
the role of measurement resolution

Since the initial paper by Einstein, Podolsky and Rosen [EPR35] and the formulation of
the Bell’s theorem [Bel64], the violation of local realistic theories by quantum mechanics
has been analyzed both theoretically and experimentally. The experimental violation of
a Bell’s inequality when the size of the system progressively becomes larger is still an
open challenge. This is due to the necessity of increasing the measurement resolution
when the size of the system increases, and to the detrimental effect of decoherence. In
the previous chapters we showed that the process of parametric amplification provides a
platform to investigate the presence of quantum properties in a micro-macro system which
can be tuned to produce states with larger number of particles. Here we discuss an opti-
cal source to generate a bipartite system of two multiphoton fields. This source is based
on the process of parametric down-conversion in the spontaneous emission regime. We
investigate the possibility of observing nonlocality with dichotomic measurements, show-
ing both theoretically and experimentally that such detection strategy does not possess
the necessary resolution to witness quantum properties. Then, we consider the adoption
of a high resolution continuous-variables detection scheme, and we show that detection
losses become more detrimental as the number of photon is increased. The obtained re-
sults, reported in Refs. [VST+10b, VTCS+11], highlight the need of performing a high
efficiency and high resolution measurement to observe the violation of a Bell’s inequality
in multiphoton systems.

7.1 Quantum nonlocality in multiphoton systems
Since the discussion about nonlocality started by Einstein, Podolsky and Rosen (EPR) in
1935 [EPR35], the possibility of observing quantum phenomena at a macroscopic level
seems to be in conflict with the classical description of our everyday world. The main

135



136 Nonlocality in multiphoton-multiphoton systems

problem for such observation arises from the difficulty of sufficiently isolating a quantum
system from the environment [Zur03]. Starting from an earlier idea discussed by Peres
[Per93] and others in Ref. [KB07] it has been discussed that the emergence of macro-
scopic realism and classical physics in systems of increasing size arises due to the lack of
measurement resolution. They focused on the limits of the quantum effects observabil-
ity in macroscopic objects, showing that, for large systems, macrorealism arises under
coarse-grained measurements. Therefore the measurement problem seems to be a key
ingredient in the attempt of understanding the limits of the quantum behavior of physical
systems and the quantum-to-classical transition question.

In this context, the possibility of obtaining macroscopic quantum systems in labora-
tory has raised the problem of investigating entanglement and nonlocality in systems in
which single particles cannot be addressed singularly. As shown in Ref. [CPHZ02], the
demonstration of nonlocality in a multiphoton state produced by a nondegenerate opti-
cal parametric amplifier would require the experimental application of parity operators.
On the other hand, the estimation of a coarse grained quantity, through collective mea-
surements as the ones proposed in Ref. [PDS+06], would miss the underlying quantum
structure of the generated state, introducing elements of local realism even in presence
of strong entanglement and in absence of decoherence. In Ref. [RMD02] Reid et al.
analyzed the possibility of obtaining the violation of Bell’s inequality by performing di-
chotomic measurements on multiparticle quantum states. More specifically, in analogy
with the spin formalism, they proposed to compare the number of photons polarized “up”
with the number of photons polarized “down” at the exit of the amplifier. The result of
this comparison could be either (+1) or (-1). In such a way Reid et al. revealed a small
violation of the multiparticle Bell’s inequality even in presence of losses and quantum
inefficiency of detectors. It is worth nothing that this violation presents a fast decreasing
behavior as a function of the generated photons number.

As a possible approach to overcome such limitation continuous-variables measure-
ments, exploiting homodyne detection, have been proposed. However, the generalization
of Bell’s inequalities to quantum systems with continuous-variables has represented for
long time a challenging issue. According to Bell, the positivity of the Wigner function
would have allowed to construct a local hidden-variable model simulating correlations
for any observable defined as functions of phase-space points [Bel87]. However Ba-
naszek and Wodkiewicz showed that, in spite of the positivity of the Wigner function,
the EPR state exhibits a high degree of nonlocality [BW98]. This study has later been
extended by Chen et al. [CPHZ02], who showed that a maximal violation of Bell’s in-
equality can be obtained by measuring pseudo-spin operators over the state produced by
the non-degenerate optical parametric amplifier (NOPA), when the nonlinear gain of the
amplifier grows and the NOPA state tends to the original EPR one. The relation be-
tween the positivity of the Wigner function and the possibility of observing a violation of
Bell’s inequality has then been clarified by Rezven et al. [RMMJ05]. They showed that
only “nondispersive” dinamical variables, i.e. measurements whose Wigner representa-
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tion takes as possible values only the eigenvalues of the corresponding operator, can be
considered good candidates for a local hidden-variables theory. The violation of a Bell’s
inequality is then not only dependent on the system’s Wigner function but also on the
nature of the dynamical variables measured upon it. Moreover, there is another motiva-
tion to perform continuous-variables measurement, since the high detection efficiency of
homodyne detection could lead to closing the detection loophole [GPFcvC+04]. Within
this context, hybrid measurements involving both discrete- and continuous- variables ob-
servables in order to demonstrate Bell’s test violations have been recently addressed in
Refs. [CBS+10, SVP+11].

In the present chapter, we investigate the multiphoton-multiphoton states generated by
high gain spontaneous parametric down-conversion (Sec. 7.2). In Sec. 7.3 the possibility
of observing quantum correlations in such a multiphoton systems through dichotomic
measurement will be analyzed, by addressing two different schemes [VST+10b]. More
specifically, we will investigate the persistence of nonlocality in an increasing size n/2-
spin singlet state by studying the change in the correlations as n increases, both in the
ideal case and in presence of losses. At last, experimental observation of multiphoton
correlations will be reported in Sec. 7.4. The results obtained enlighten that dichotomic
fuzzy measurements lack of the necessary resolution to characterize such states and show
the extreme difficulty to observe quantum nonlocality in this experimental configuration.
We then propose in Sec. 7.5 a further step towards the understanding of the nonlocality
problem in continuous-variables systems, by addressing the possibility of performing high
efficiency homodyne measurements in order to perform a Bell’s test [VTCS+11]. The
exploited multiphoton state source can be considered a paradigmatic system, since it can
be related to the continuous-variables EPR state with an additional degree of freedom: the
polarization. We study the violation of the Bell’s test in the form proposed by Banaszek
and Wodkiewicz [BW98] based on the measurement of the Wigner function at specific
points of the phase space. By correlating the value of the Wigner function at different
points of the phase space, we study the possibility of violating the Bell’s inequality either
in absence or in presence of losses, and we relate the results with the value of the nonlinear
gain of the amplifier, that is, the size of the measured state.

7.2 Multiphoton quantum states generated by high-gain
spontaneous parametric down-conversion

The paradigmatic system over which we perform our analysis is the one obtained by
SPDC in a type-II OPA [KMW+95, EKD+04] discussed in Sec. 2.1. The low gain regime
of such a system has been experimentally realized and deeply studied in the past few
years, leading to the violation of Bell’s inequalities [KMW+95] and to the observation of
polarization-entanglement up to 12 photons per branch [EKD+04, CDP+06]. However,
no theoretical and experimental demonstration of entanglement and nonlocality has been



138 Nonlocality in multiphoton-multiphoton systems

given in the multiphoton regime.
The interaction Hamiltonian of the multiphoton system pf Eq. (2.3) presents full

rotational invariance, and can be exploited to generate multiphoton states of the form
(see Sec. 2.1.3):

|Ψ−〉= 1
C2

∞

∑
n=0

Γ
n√n+1||ψ−n 〉, (7.1)

with:

|ψ−n 〉=
n

∑
m=0

(−1)m
√

n+1
|(n−m)π ,mπ⊥〉1|mπ ,(n−m)π⊥〉2, (7.2)

where Γ = tanhg and C = coshg; g = χt is the nonlinear gain (NL) of the process. Hence,
the output state can be written as the weighted coherent superposition of singlet spin-n

2
states |ψ−n 〉. The mean number of generated photons per polarization per mode is related
to the nonlinear gain g by the exponential relation n = sinh2 g, the overall number of pho-
tons per pulse is then given by 〈n〉 = 4n; a maximum value of gexp = 3.5, corresponding
to 〈n〉= 1080 per pulse, has been achieved [VST+10b].

7.2.1 Wigner function of the generated multiphoton states

The Wigner function of the multiphoton state can be obtained following the method de-
scribed in Chap. 4 (see also [SVD+09]). We consider the presence of a lossy channel with
transmittivity η , simulated by the presence of a beam splitter. We assume that the channel
efficiency η is equal for all modes. The Wigner function of the state ρ̂−n =Lη [|ψ−n 〉〈ψ−n |],
where Lη is the map describing the channel, can then be written as:

W (αH ,αV ,βH ,βV ,g,η) = N exp

{
−ε ∑

π=H,V

[
|απ |2 + |βπ |2

]}
×

× exp
{
−µ

[
2Re(αV βH)−2Re(αHβV )

]}
.

(7.3)

Such expression can be recovered from the results of Sec. 4.2.2 replacing the real quadra-
ture variables {Xki,π ,Pki,π}, where ki = {k1,k2}, and π = {~πH ,~πV}, with the correspond-
ing complex variables απ = Xk1,π + ıPk1,π and βπ = Xk2,π + ıPk2,π . Here, the {απ}π=H,V
quadratures correspond to the spatial mode k1, the {βπ}π=H,V quadratures correspond to
the spatial mode k2, and:

ε =
ε(1+2S2)−µ2CS

ε2−µ2 , (7.4)

µ =
ε2CS−µ(1+2S2)

ε2−µ2 , (7.5)

N =
1

π4

(
1

ε2−µ2

)2

, (7.6)
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where:

ε =
1
2
[
1+2(1−η)S2] , (7.7)

µ = (1−η)CS. (7.8)

The lossless case can then be recovered by setting η = 1. We observe that the four-
modes Wigner function of the multiphoton state produced by the OPA is positive as the
one produced by the NOPA discussed in [BW98]. We will show that, in spite of such a
positivity, it is possible to demonstrate the violation of a Bell’s inequality by performing
continuous-variables measurement upon the state.

7.3 Dichotomic measurements on multiphoton states
Several possible extensions of dichotomic measurements in the macroscopic regime have
been discussed [RMD02, BBB+08], showing that CHSH-type inequalities can be ex-
ploited in order to perform nonlocality tests also in many-particle collective states. Here
we analyze the possibility of applying the OF and the TD method, introduced in Sec.
5.2.3, to the detection of quantum correlations in singlet spin-n/2 states.
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Figure 7.1: (a) Dichotomic detection apparatus for the multiphoton state under in-
vestigation. (b) O-Filtering technique representation in the bidimensional Fock-Space
{nπ ,mπ⊥}. The (+1) and (-1) regions correspond to a difference in the detected photon
numbers |nπ −mπ⊥| > k. The (0) region corresponds to an inconclusive measurement.
(c) Dichotomic threshold measurement representation in the bidimensional Fock-Space
{nπ ,mπ⊥}. Only those pulses containing a sufficiently high photon number can be de-
tected due to the threshold response of the apparatus. Then, a dichotomic assignment is
performed on the measurement outcomes.



140 Nonlocality in multiphoton-multiphoton systems

7.3.1 Bell’s test based on dichotomic measurements with inconclu-
sive outcomes

Let us begin by briefly summarizing the content of Bell inequalities for a set of dichotomic
observables, by generalizing further the results already obtained by Reid et al. [RMD02].
Consider a quantum state ρ̂ defined in the Hilbert space H1⊗H2. Define Ôi

a the posi-
tive operator acting on subspace H1, and the probability of finding the value i after the
measurement a given by Tr

[
ρ̂(Ôi

a⊗ Î)
]
. The same relation holds for the positive operator

Ô j
b acting on subspace H2. The existence of a LHV model would imply that the expec-

tation values of the observables a and b are predetermined by the value of the parameter
λ : {Da(λ ),Da′(λ ),Db(λ ),Db′(λ )}, hence the product a ·b is equal to Da(λ )Db(λ ). For
a fixed value of λ the variables Dn with n = {a,b,a′,b′} take the values −1,1 and satisfy
the CHSH inequality:

Da(λ )Db(λ )+Da(λ )Db′(λ )+Da′(λ )Db(λ )−Da′(λ )Db′(λ )≤ 2. (7.9)

The same inequality holds by integrating this equation on the space of the hidden variable
(λ ): ∫

Ω

dP(λ )Da(λ )Db(λ )+
∫

Ω

dP(λ )Da(λ )Db′(λ )+∫
Ω

dP(λ )Da′(λ )Db(λ )−
∫

Ω

dP(λ )Da′(λ )Db′(λ )≤ 2, (7.10)

where P(λ ) is the measure of the λ probability space. If there is a local hidden variables
model for quantum measurement taking values [−1,+1], then the following inequality
must be satisfied:

SCHSH = Eρ(a,b)+Eρ(a,b
′
)+Eρ(a

′
,b)−Eρ(a

′
,b
′
)≤ 2, (7.11)

where Eρ(a,b) =
∫

Ω
Da(λ )Db(λ )dP(λ ). The violation of (7.11) proves that a LHV vari-

ables model for the considered experiment is impossible.
We now discuss the feasibility of a Bell’s inequality test when the OF and the TD

detection methods are adopted. This analysis is motivated by the increase in the visibility
obtained with this measurement operators with respect to the pure dichotomic case. Both
strategies present the feature of having three possible outcomes {−1,1,0}, at variance
with a genuine dichotomic measurement. In order to clarify the validity of a Bell test
in presence of such kind of POVM’s, let us consider the case in which at the A site a
standard dichotomic measurement is performed, while at the B site a POVM measurement
is carried out.

Consider the outcomes for which the Bob’s results are different from 0. In this case
the expectation value of the product of a and b is conditioned by the event: “outcome b
different from zero”. In a LHV model these conditional expectations are represented by:

Eρ(a ·b) =
∫

Ω
′ Da(λ )Db(λ )dP′(λ ), (7.12)
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where Ω
′

is the hidden variable probability sub-space for which, for any Db′(λ ), is
Db(λ ) 6= 0 and dP′ = dP/

∫
Ω
′dP. Similarly:

Eρ(a ·b′) =
∫

Ω
′′ Da(λ )Db(λ )dP′′(λ ), (7.13)

where Ω
′′

is the hidden variable probability sub-space for which, for any Db(λ ), is Db′(λ ) 6=
0 and dP′′ = dP/

∫
Ω
′′dP. Since for different random variables Db and Db′ these condi-

tional expectation values can in principle refer to different subensembles Ω′ and Ω” of
the original ensemble Ω, in general the equation (7.10) does not hold any more and the
measured quantity, based on the detection of conditional values, is:∫

Ω′
dP′(λ )Da(λ )Db(λ )+

∫
Ω′

dP′(λ )Da′(λ )Db(λ )+∫
Ω′′

dP′′(λ )Da(λ )Db′(λ )−
∫

Ω′′
dP′′(λ )Da′(λ )Db′(λ ). (7.14)

Let us consider the class of LHV models such that, for a fixed value of λ , simultaneously
is: Db(λ ) 6= 0,Db′(λ ) 6= 0. In this case the inequality (7.10) still holds since it becomes:∫

Ω∗
dP∗(λ )Da(λ )Db(λ )+

∫
Ω∗

dP∗(λ )Da(λ )Db′(λ )+∫
Ω∗

dP∗(λ )Da′(λ )Db(λ )−
∫

Ω∗
dP∗(λ )Da′(λ )Db′(λ )≤ 2, (7.15)

where Ω∗ is the hidden variable probability common subspace for which Db(λ ) 6= 0 and
Db′(λ ) 6= 0. Let us now make a fair sampling assumption: (a) the probability of rejecting
a measurement does not depend on the hidden parameter λ and on the measurement
settings, i.e. Ω′ = Ω′′ = Ω∗ [AK03]. In this case the experimentally observed quantity
(7.14) will follow the LHV inequality (7.15), and its violation implies the non-locality of
the considered system. Finally, this LHV model can be directly generalized to the case in
which both A and B sites perform a POVM measurement by including also at Alice stage
an inconclusive outcome (0) and conditioning the expectation value of the product of a
and b to the additional event: “outcome a different from 0”.

Let us now conclude by discussing how these considerations apply to the OF and the
TD detection methods. In both cases, the conditions {Db(λ ) 6= 0} and {Db′(λ ) 6= 0} cor-
respond to the event that the photons survive the action of the measurement device tuned
along the directions b or b′, respectively. In the O-Filter case, the previous assumption
(a) is motivated by the experimentally tested state-independency of the probability of a
conclusive outcome. More precisely, (i) the POVM operation is independent of the input
state; (ii) the POVM probability Pconc is independent on the selected measurement basis.
Then, on these premises any sampling or filtering made on the particles by our system
can be defined a fair sampling operation. In the TD case, the previous assumption is fur-
ther legitimated by a third condition: (iii) the Hilbert subspace leading to a conclusive
outcome is invariant under any rotation of the polarization basis. In other words, when an



142 Nonlocality in multiphoton-multiphoton systems

event leads to a (±1) outcome for a specific choice of the measurement basis, it would
correspond to a conclusive outcome if measured in another basis.

These considerations permits to observe that, for the TD device the fair sampling
condition can be assumed, while care should be taken when this condition is assumed
for the OF device. Finally, the measurement improvement attained via the OF and the TD
devices by the implementation of the POVM strategy is realized at the cost of a decrease of
the total quantum efficiency ηtot and then of a corresponding enhancement of the detection
loophole.

7.3.2 Theoretical results of the Bell’s test in absence of losses

We begin our analysis on the macroscopic-macroscopic state by evaluating in this sec-
tion the correlations existing between the two spatial modes of the spin-n

2 singlet states
[Eq.(7.2)]. We use a pure dichotomic measurement scheme, where the (+1) and (-1) out-
comes are assigned whether the difference in the number of photons with two orthogonal
polarization is positive or negative. Finally, if the detected difference in the number of
photons is 0, one of the (±1) outcomes is randomly assigned to the event with equal
probability p = 1/2. We note that this choice is a subcase of the threshold detection and
O-filtering methods introduced in the previous sections, corresponding to the values h = 0
and k = 0.

The scheme for evaluating the correlations is sketched in Fig. 7.1. The two spatial
modes of the |ψ−n 〉 are analyzed with the dichotomic measurement apparatus here de-
scribed. The polarization basis on mode k1 is fixed on {~π+,~π−}, while on mode k2 the
analysis basis is varied over the Bloch sphere. In particular, due to the SU(2) symmetry of
the emitted states, it is sufficient to consider only the linear polarizations case, defined by
the rotation: ~πθ = cosθ ~π++sinθ ~π−. The fringe patterns are then obtained by evaluating
the coincidences between the outcomes of the two detection apparatus on modes k1 and
k2. More specifically, this measurement corresponds to the evaluation of the averages:

D(±1,±1)
|ψ−n 〉 (θ) = 〈ψ−n |

(
T̂ (±1)
+,− (0)

)
A
⊗
(

T̂ (±1)
θ ,θ⊥

(0)
)

B
|ψ−n 〉=

= 〈ψ−n |
(

F̂(±1)
+,− (0)

)
A
⊗
(

F̂(±1)
θ ,θ⊥

(0)
)

B
|ψ−n 〉,

(7.16)

where the singlet spin-n
2 states of Eq. (7.2) in the analyzed polarization basis reads:

|ψ−n 〉=
n

∑
m=0

n

∑
p=0

ε
n
m,p(θ) |(n−m)+,m−〉A |pθ ,(n− p)θ⊥〉B , (7.17)

where:

ε
n
m,p(θ) = ∑

q(m,p)
(−1)q

α
m+p−2q
θ

β
n−m−p+2q
θ

[(
n−m
p−q

)(
n− p
m−q

)(
m
q

)(
p
q

)] 1
2

, (7.18)
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with αθ = cosθ , βθ = sinθ . The limits of the sum over q have an explicit dependence
on the values of p and m and are not reported here. Finally, by direct application of the
measurement operator, the interference fringe patterns are evaluated as:

D(±1,±1)
|ψ−n 〉 (θ) = ∑

{m,p}
|εn

m,p(θ)|2. (7.19)

The extension of the sums over m and p depends on the choice of the outcome on each
spatial mode according to the definitions of Eqs. (5.9-5.11) and (5.12-5.14).

In Fig. 7.2 we report the results obtained for different values of the number of pho-
tons n. The simplest case [see Fig. 7.2 (a)], corresponding to a spin-1

2 state, presents the
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Figure 7.2: Theoretical interference fringe-patterns for singlet spin-n
2 states. The polar-

ization basis on mode k1 is kept fixed while on mode k2 the basis is varied to obtain the
fringe pattern. Figures correspond to values of (a) n = 1, (b) n = 7, (c) n = 25 and (d)
n = 51. The sinusoidal pattern of the spin-1

2 progressively transforms into a linear pattern.
In all figures, blue solid lines correspond to the coincidences of both the (+1,+1) and (-1,-
1) outcome configurations, while red dashed lines correspond to the (+1,-1) and (-1,+1)
outcomes on the two spatial mode. Note that the maximum for each fringe is 0.5, which
is the probability to obtain one of the two possible anti-correlated outcomes (∓1,±1).
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well-known sinusoidal pattern. The sinusoidal pattern is responsible for the violation of
Bell’s inequalities as no classical system can present this dependence on the phase θ . For
progressively higher values of n, as shown in Fig. 7.2 (b-d), the fringe pattern changes its
dependence from the phase from a sinusoidal to a linear form. The latter represents the
typical response of a pair of classicaly anti-correlated spin-J systems, analyzed through
a dichotomic “which emisphere” measurement [Red89], i.e. the measurement of the an-
gular momentum sign. Such detection scheme is completely analogous to the dichotomic
strategy analyzed in this section.

The transition with increasing n towards a classical response for the singlet spin-n
2 can

be explained observing that this measurement lacks of the necessary resolution [CHRB09]
to observe the peculiar quantum properties of these states. Their characterization would
require a more sophisticated detection apparatus able to discriminate the value m of the
spin projection, i.e. in our case the difference in the orthogonally polarized photon num-
ber, and not only its sign. An example of such measurement [Per93] is given by the parity
operator P̂π,π⊥ = ∑

n
m=0(−1)m|(n−m)π,mπ⊥〉〈(n−m)π,mπ⊥|. The correlation between

the two spatial modes of the singlet spin-n
2 states evaluated with this measurement opera-

tor leads to the following expression:

P|ψ−n 〉(θ) = 〈ψ
−
n |
(
P̂+,−

)
A⊗
(
P̂θ ,θ⊥

)
B |ψ

−
n 〉= (−1)n sin [(n+1)θ ]

(n+1)sinθ
. (7.20)

This correlation function violates a CHSH inequality of an amount SCHSH = 2.481 > 2
[Per93] even in the asymptotic limit of large number of particle (n→ ∞). However, such
scheme based on the parity operator requires a sharp photon-number measurement in or-
der to discriminate with unitary efficiency among contiguous values of the spin projection.

As a further analysis, let us plot (Fig. 7.3) the function D(±1,±1)
|ψn
−〉 (θ)/L(θ), which

corresponds to the ratio between the interference fringe pattern of the macro-macro con-
figuration and a linear function of θ . The choice of the curve L(θ) as a reference is moti-
vated by the following consideration. The evaluation of the CHSH parameter in a system
characterized by the linear response leads to the maximum value in a classical framework
SCHSH = 2. Hence, this function L(θ) can be considered as the boundary between the
“classical” and the “quantum” regions, since it represents the response of two classical
anti-correlated systems to this test. In Fig. 7.3, we note that the ratio D(±1,±1)

|ψn
−〉 (θ)/L(θ)

presents a number of intersections with the axis y = 1 (unitary ratio) proportional to the
value of n. This depends on the explicit functional form of the interference fringe pattern
of Eq. (7.19). Indeed, analyzing the explicit expression [Eq. (7.18)] of the coefficients
εn

m,p(θ), we find a sum of terms (cosθ)m+p−2q (sinθ)n−m−p+2q, where the sum of the ex-

ponents is equal to the number of photons n. Hence, the fringe pattern D(±1,±1)
|ψn
−〉 (θ) [Eq.

(7.19)] can be re-organized in a Fourier series expansion containing all the harmonics up
to k = 2n. With increasing n, the difference between D(±1,±1)

|ψn
−〉 (θ) and the linear function

L(θ) is progressively reduced, since more harmonics are present in the Fourier expansion
which asymptotically reaches the expansion of L(θ).
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Figure 7.3: Plot of the interference fringe pattern D(±1,±1)
|ψ−n 〉 (θ) for singlet spin- n

2 states
divided by a linear function L(θ) corresponding to the behaviour of two distinct classical
macroscopic objects.

We are now in the position to address the possibility of violating a Bell’s inequal-
ity with such a dichotomic measurement apparatus. In our case, the positive operators
Ôi

a(b) are given by the dichotomic measurement operators
{

T̂ (±1)
π,π⊥ (0), F̂

(±1)
π,π⊥ (0)

}
set at

zero threshold h = 0 and k = 0. In order to theoretically investigate the feasibility of
a CHSH test on the spin-n

2 states, we evaluated the SCHSH parameter in such system.
The value of the SCHSH has been numerically maximized over the measurement angles
{θ ,θ ′,ϕ,ϕ ′} of Alice’s [a(θ) or a′(θ ′)] and Bob’s [b(ϕ) or b′(ϕ ′)] polarization bases.
In Fig. 7.4 we report the results obtained for different values of the number of photons,
and hence the spin, of the analyzed state. We observe the decrease in the absolute value
of S|ψ

−
n 〉

CHSH analogously to what reported in [RMD02, BBB+08] for an equivalent Bell’s
inequalities test. However, the asymptotic behavior for high n shows that the parame-
ter SCHSH never falls below the classical limit, but the amount of violation progressively
becomes smaller and any decoherence process may forbid its experimental observation.

In conclusion, the increase in the number of photons renders the dichotomic mea-
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Figure 7.4: Value of the CHSH parameter
S|ψ

−
n 〉

CHSH for singlet spin-n
2 states for an opti-

mal choice of the angle settings and the di-
chotomic “majority-voting” measurement.
We observe the progressive decrease in the
amount of violation for an increasing value
of the number of photons present in the
state.

surement inefficient for the complete characterization of the state, and the decreased cor-
relations approaches asymptotically classical ones. Furthermore, any small amount of
decoherence practically cancels the possibility to observe nonlocal features in the n/2
singlet state.

7.3.3 Effect of losses
To conclude this theoretical analysis we consider the possibility to exploit different di-
chotomic measurement schemes to observe quantum correlations in the spin-n/2 single
states |ψ−n 〉. More specifically, we consider the threshold detection or the O-filtering
methods introduced in Sec. 5.2.3. In particular, we analyze how both the visibility and
the form of the fringe pattern are modified exploiting this different measurement schemes.
The main idea beyond this approach concerns the possibility of beating the losses effects
on the macro-macro correlations, by using a more sophisticated measurement than a pure
dichotomic one. The effect of losses has been evaluated by numerically calculating the
action of the map that describes the lossy process, that is, L [ρ̂] = ∑k γkâkρ̂ â†kγ

†
k where

γk =
1√
k!
(1−η)k/2η(â†â)/2, on the distribution of the singlet spin-n/2 states.

We first analyze the correlations obtained by the OF detection scheme, introduced in
Sec. 5.2.3. The fringe pattern can be calculated by evaluating the average:

F(±1,±1)
|ψ−n 〉 (θ ,h) =

〈(
F̂(±1)
+,− (h)

)
A
⊗
(

F̂(±1)
θ ,θ⊥

(h)
)

B

〉
. (7.21)

We performed a numerical simulation, in order to consider also the transmission over a
lossy channel, with an analogous procedure to the one described in the previuos section.
We report in Fig. 7.5 the fringe pattern obtained for the n = 51 singlet states for the
lossless case and a channel efficiency η = 0.3. We note that, as the OF threshold k is
increased, the tails of the fringe pattern are damped, while the form of the fringe around
the peaks remains unchanged. Furthermore, both the minimum and the maximum of the
fringes are lowered by this filtering procedure. To understand the advantage of this mea-
surement scheme with respect to the pure dichotomic case, we analyze in Fig. 7.7 (a) the
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trend of visibility of the fringe pattern as a function of the threshold. We note that, for
increasing k, the visibility is increased by the filtering process. This advantage obtained
by exploiting the OF measurement can be explained by the following considerations. In
absence of losses, the visibility of the fringe pattern is always unitary, as the analyzed
state presents perfect polarization anti-correlations. After the transmission over a lossy
channel, the binomial statistics added to the photon number distribution is responsible
for the partial cancellation of this property. More precisely, if the difference between nπ

and mπ⊥ on any of the two spatial mode is little, losses may invert the outcome of a di-
chotomic measurement, i.e. for example the (+1) outcome may be converted to the (-1)
outcome if unbalanced losses occur in that specific event. Such a process can generate the
occurrence in the joint measurement of a result with positive correlations, i.e. (+1,+1) or
(-1,-1), where in the decoherence-free case only anti-correlations are present. Thus, the
visibility of the fringe pattern can be reduced by the presence of losses. However, to invert
the outcome of matrix elements with nπ−mπ⊥ = q� 0, a strongly unbalanced losses in a
single shot for the two polarization modes must occur. This event has a decreasing prob-
ability as q becomes larger, and the visibility of the fringe pattern progressively returns
unitary as the threshold k is increased.
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Figure 7.5: Effect of the O-Filtering detection technique on the fringe pattern of a n = 51
singlet state. (a) Transmittivity η = 1 (no losses) and (b) transmittivity η = 0.3. As the
threshold k is increased, the tails of the fringe pattern are rounded.

Let us now consider the second POVM dichotomic measurement under investigation,
the threshold detection TD. The interference fringe pattern with this measurement scheme
can be calculated as:

T (±1,±1)
|ψ−n 〉 (θ ,k) =

〈(
T̂ (±1)
+,− (k)

)
A
⊗
(

T̂ (±1)
θ ,θ⊥

(k)
)

B

〉
. (7.22)

In this expression, as before, the average is evaluated over the density matrix of the state
after the numerical simulation of the lossy channel. In Fig. 7.6 we report the form of
the fringe pattern for n = 51 in the lossless case [Fig. 7.6 (a)] and for η = 0.3. In the
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lossless case, the threshold detector is ineffective for h < n due to the fixed number of
photons in the state. In the lossy case, as the threshold h is increased we note that the
TD device is responsible for the progressive return of the fringe patterns to their original
form in absence of losses, i.e. for high values of n an approximately linear form. This
behaviour can be explained as follows. While the original singlet-state has a well definite
number of photons, the lossy channel reduces the number of photons to an average of
η〈n〉, with Poissonian fluctuations. At the measurement stage the threshold h in the TD
device neglects [Fig. 7.1 (c)] the sectors of the Fock-space corresponding to a low number
of photons. As h approaches the value h = n, only the events in which the original singlet
state travels undisturbed in the channel (with probability η2n) are selected, thus restoring
the original correlation. We then analyze the effects of this measurement scheme in the
visibility of the fringe pattern in Fig. 7.7. We note that this quantity increases with a
slower rate with respect to the OF apparatus. Differently from the O-filtering case, on
each spatial mode the zones of the Fock space in which nπ −mπ⊥ is small are not filtered
out, and the increase in the visibility is then much slower with the threshold h. However,
also with the TD apparatus the visibility reaches asymptotically the unitary value, since
as said for a threshold h = n only the original singlet state, having unitary visibility, is
detected.
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Figure 7.6: Effect of the threshold detection technique on the fringe pattern for a n = 51
singlet state. (a) Transmittivity η = 1 (no losses) and (b) transmittivity η = 0.3. As
the threshold h on the total photon-number is increased, the fringe patterns progressively
return to have approximately a linear dependence from the phase θ , as for the original
n = 51 singlet state. The values of the thresholds are indicated in the figure.

The analysis carried in this section shows that both the OF and the TD detection strate-
gies can be used to enhance the fringe pattern visibility in lossy conditions for the singlet
spin-n

2 states. A comparison between the two schemes shows a greater enhancement for
the OF device. To conclude the discussion, we briefly analyze the advantages of the two
POVM schemes presented here in terms of the achievable violation of the CHSH inequal-
ity |SCHSH | ≤ 2. In the OF case, we expect that the fast increase in the visibility may
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lead to an increase in the amount of violation with respect to the pure dichotomic mea-
surement. However, as already discussed, care should be taken in the application of the
OF system in a Bell’s inequality due to the basis dependent filtering of the detected state
performed by this measurement device. In the TD case the effect of the threshold h is the
restoration of the original correlations present in the |ψ−n 〉 state before the lossy channel.
This means that the value of the SCHSH parameter reaches for h = n the maximum value
S|ψ

−
n 〉

CHSH , reported in Fig. 7.4, and the amount of achievable violation becomes practically
negligible for large n.

Figure 7.7: Trend of the visibility for the
singlet spin states for n = 80 and η = 0.05.
The black straight curve corresponds to the
TD detection scheme, while the red dashed
line to the OF apparatus. In both cases, the
success probability is calculated as the sum
of the rate for the two conclusive outcomes
(+1) and (-1).

7.4 Experimental high visibility correlations in high-gain
spontaneous parametric down-conversion

We have generated a multiphoton state through an EPR source and we have performed
dichotomic measurement via OF and TD upon it. Let us now describe the experimen-
tal setup shown in Fig. 7.8. The excitation source was a Ti:Sapphire Coherent Mira
mode-locked laser amplified by a Ti:Sapphire regenerative RegA device operating with
repetition rate 250 kHz. The output beam, frequency-doubled by second-harmonic gen-
eration, provided the OPA excitation field beam at the UV wave-length (wl) λ = 397.5
nm with power 600 mW on mode kP. The SPDC source was a BBO crystal cut for type-
II phase-matching, working in a non-collinear configuration [KMW+95], in a high gain
regime. The evaluated non linear gain is g = 3.49± 0.05 corresponding to the genera-
tion of an average number of photons per mode of n ≈ 270 per pulse, corresponding to
an overall average value of 〈n〉 ≈ 540 on each spatial mode. The multiphoton fields on
modes k1 and k2 were filtered by 1.5 nm interferential filters, coupled by single mode
fibers and then sent to the detection stage.

In order to characterize the source, we performed a set of preliminary measurements
exploiting a SPCM detector on both spatial modes, deliberately attenuating the generated
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Figure 7.8: Experimental setup for the generation and detection of a bipartite macroscopic
field. The high laser pulse on mode kP excites a type-II EPR source in the high gain
regime, i.e. g = 3.5. The two spatial mode k1 and k2 are spectrally and spatially selected
by interference filters and single mode fibers. After fiber compensation C, the two modes
are analyzed in polarization and detected by four photomultipliers (PM1,PM∗1 ,PM2,PM∗2 ).
The signals are then analyzed electronically to perform either the threshold dichotomic
detection described in the paper or the Orthogonality filtering detection technique. Finally,
the coincidences between the measurement outcomes are recorded to obtain the desired
interference fringe patterns.

field in order to have only few photons incident on the detector. First, we measured the
nonlinear gain of the amplifier studying how the detected signal increases by varying the
power of the incident pump beam on the crystal. In Fig. 7.9 we report the counts registered

Figure 7.9: (a) Experimental evaluation
of the amplifier NL-gain: we report the
counts of an SPCM detector on mode
k1 versus the normalized UV power, de-
fined as Iin/Imax. The red curve repro-
duces the best fit of the experimental data,
the expected trend function is reported in
[EKD+04].

on mode k1 by a SPCM detector as a function of the normalized UV power signal. As
a further investigation on the multiphoton field features, we registered the coincidences
between the signals on mode k1 and k2, as a function of the phase ϕ , that represents the
variation of the polarization analysis basis on Bob site, i.e. ~πϕ = ~πH + eıϕ~πV . Both fields
are detected by two SPCM at Alice’s and Bob’s sites. Again, the signals were attenuated
in order to have few photons incident on the detectors, in order to work in a linear response
regime for the SPCM. As stressed in [EKD+04], the trend of visibility decreases as the
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gain increases, this is due to losses and to limited detectors photon-number resolution.
The decrease of visibility below the theoretical asymptotic value of 33% is due to the
multimodal operation of the amplifier. However, differently from what is reported in
[EKD+04], we observe a value of visibility that remains above 15% as far as the NL-gain
reaches the value of 3.5, while in [EKD+04] the visibility seems to fall below 15% for
gain values higher than 2.

7.4.1 Non-collinear SPDC analyzed with the orthogonality filter
The multiphoton fields at Alice’s and Bob’s site are analyzed in polarization and detected
by two photomultipliers (PMs), labeles as (PM1,PM∗1) and (PM2,PM∗2) respectively. This
devices produce on each pulse a macroscopic output electronic current, whose amplitude
is linearly proportional to the number of incident photons.
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Figure 7.10: (a) Fringe patterns obtained by filtering on the difference of the signals.
The main visibility is 0.67±0.02. Coincidences have been normalized to the product of
the signals detected on each of the analyzed outcomes of the OF. (b) Trend of visibility
versus OF counts. Black points: experimental data. Red solid line: theoretical model for
the experimental results. Green solid line: theoretical model rescaled to take into account
the multimode operation of the amplifier.

Let us fix the polarization analysis basis at Bob’s site: the PMs provide the electronic
signals (I2

+, I
2
−) corresponding to the field intensity on the mode k2 associated with the

π−components {~π+,~π−}, respectively. By the OF, shot by shot the difference signals
±(I2

+− I2
−) are compared with a threshold ξ k > 0, where ξ is a constant describing the

response of the photomultipliers. When the condition (I2
+− I2

−) > ξ k is satisfied, a TTL
pulse L2 is realized at one of the two output ports of OF. Likewise, when the condition
(I2
−− I2

+)> ξ k is satisfied, a L∗2 TTL pulse is realized at other output port of OF. The PM
output signals are discarded for −ξ k < (I2

+− I2
−)< ξ k. The same measurement strategy

is adopted at Alice’s site, where the output TTL signals (L1,L∗1) are generated. The fringe
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patterns are obtained by the following procedure: the analysis basis at Alice’s site is kept
fixed while the basis at Bob’s site is varied through an adjustable phase delay given by a
Babinet-Soleil compensator. Finally the coincidences between the TTL signals at Alice’s
and Bob’s site are taken into account, namely (L1,L1),(L1,L∗1),(L

∗
1,L2),(L∗1,L

∗
2). We

report in Fig. 7.10 (a) the corresponding fringe patterns obtained in the {~π+,~π−} basis,
analogous results are observed in the {~πR,~πL} and {~πH ,~πV} basis, due to the irrotational
invariance of the generated multiphoton state. The threshold k in this case was set so that
the measured count rate was ∼ 500 Hz.

For sake of completeness we report the trend of visibility as a function of the OF
counts in Fig. 7.10 (b). We observe an increase of visibility as the counts detected de-
crease. The highest visibility obtained is not enough to violate the CHSH inequality, due
to the inefficiency of a dichotomic measurement performed on a multiphoton quantum
state. However, in accordance with theoretical predictions, we observe that the OF tech-
nique allows to minimize losses effects.

7.4.2 Non-collinear SPDC analyzed with threshold detection
A further investigation on the macro-macro correlation has been carried out by performing
another dichotomic measurement on the amplified states on modes k1 and k2. The signals
detected by the photomultipliers (PM1,PM∗1) and (PM2,PM∗2) enter into two threshold
detectors, that perform the shot by shot measurement illustrated in Sec. 7.3 (b). Each TD
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Figure 7.11: (a) Fringe patterns obtained by filtering on the sum of the signals through
the threshold detection system. The main visibility is 0.49± 0.02. (b) Visibility versus
threshold detector counts. Black points: experimental data. Red solid line: theoretical
model for the experimental results. Green solid line: theoretical model rescaled to take
into account the multimode operation of the amplifier.

works as follows: the PMs electronic signals (I2
+, I

2
−) [(I

1
+, I

1
−)] corresponding to the field

intensity on the mode k2 (k1), associated with the π−components {~π+,~π−} respectively,
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enter into the TD. The sum signals±(I2
++ I2

−) [±(I1
++ I1

−)] are compared with a threshold
ξ h > 0 . When the conditions (I2

+ + I2
−) > ξ h and I2

+− I2
− > 0 [(I1

+ + I1
−) > ξ h and

(I1
+− I1

−)> 0] are satisfied, a TTL pulse J2 (J1) is realized at one of the two output ports of
TD. On the other hand when the conditions (I2

++ I2
−)> ξ h and I2

−− I2
+ > 0 [(I1

++ I1
−)>

ξ h and (I1
−− I1

+) > 0] are satisfied, a TTL pulse J∗2 (J∗1 ) is realized at the other output
port of TD. Finally the coincidences between signals (J1,J2),(J1,J∗2),(J

∗
1 ,J2),(J∗1 ,J

∗
2) are

registered. The obtained fringe patterns corresponding to a count rate of C ∼ 400 Hz are
shown in Fig. 7.11 (a). Finally, a study on the obtained visibility as a function of the
fraction of considered data has been carried out. We report in Fig. 7.11 (b) the trend of
visibility versus TD counts.

7.5 Continuous-variables Bell’s inequality
Starting from the results of previous section with dichotomic operators, we now address
the problem of analyzing the investigated multiphoton state through an efficient measure-
ment method in order to observe the violation of a Bell’s inequality. We study the viola-
tion of the Bell’s test in the form proposed by Banaszek and Wodkiewicz in Ref. [BW98]
based on the measurement of the Wigner function at specific points of the phase space.
By correlating the value of the Wigner function at different points of the phase-space, we
study the possibility of violating the Bell’s inequality either in absence or in presence of
losses, and we relate the results with the value of the nonlinear gain of the amplifier, i.e.
the size of the measured state.

7.5.1 Definition of the Bell’s inequality for a CV measurement
Such inequality is based on the CHSH test proposed by Banaszek and Wodkiewicz in
Ref. [BW98]. In that paper, they apply their test on the output state generated by a two-
modes nondegenerate optical parametric amplifier. Their nonlocality proof starts from the
definition of the displaced parity operators:

Π̂(α;β ) = D̂1(α)(−1)n̂1D̂†
1(α)⊗ D̂2(β )(−1)n̂2D̂†

2(β ), (7.23)

where D̂1(α) and D̂2(β ) are displacement operators for the two spatial modes k1 and
k2, respectively. Such operators have been already exploited in Chap. 5 in the context
of hybrid entanglement tests on microscopic-macroscopic systems. They can be directly
measured by combining the input field with a coherent state in a low reflectivity beam-
splitter, and by measuring the parity of the resulting field [Fig. 6.1 (a)]. Since a parity
operator measurement gives a ±1 result, it fits perfectly on CHSH inequality [CHSH69]
and can be used to show nonlocality of the NOPA wave function. Using displacements in
the phase-space, the correlation between the two parties can be written as:

E(a;b) = Π(α;β ). (7.24)
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where Π(α;β ) = 〈Π̂(α;β )〉 is the expectation value of the displaced parity operator. The
nonlocality parameter can then be written as:

B = Π(0;0)+Π(
√

I ;0)+Π(0;−
√

I )−Π(
√

I ,−
√

I ), (7.25)

with I positive. For local theories the inequality −2 ≤B ≤ 2 holds. In Ref. [BW98]
it is shown that this inequality is violated by the NOPA state, even for large values of the
squeezing parameter when the output state resemble closely the original EPR state.

As already discussed by Banaszek and Wodkiewicz in Ref. [BW98] and in the previ-
ous chapter, the average value of the displaced parity operators is related to the Wigner
function of the state according to:

W (α;β ) =
4

π2 Π(α;β ). (7.26)

While the average value of Π̂(α;β ) can be extrapolated indirectly from the Wigner func-
tion of the state through homodyne measurements [Fig. 6.1 (b)], in order to perform a
nonlocality test the direct measurement scheme has be adopted.
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Figure 7.12: Conceptual scheme of the multiphoton source and of the detection apparatus
for the measurement of the continuous-variables Bell’s inequality. The generated state is
measured in polarization and then detected by four apparata suitable for the measurement
of the displaced parity operators.

In this section we generalize the inequality of Eq. (7.25) to the more general four-
modes multiphoton state produced by a type-II OPA, in which the correlations are present
in two degrees of freedom, that is, the spatial and the polarization one. We then need
to generalize Eq. (7.25) to the four dimensional case in which the Wigner function is
expressed as a function of the complex variables α = (αH ,αV ) and β = (βH ,βV ), the
subscript H,V standing for the horizontal and vertical polarizations, respectively. The
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B parameter can then be rewritten as a function of the average value of the four-modes
displaced parity operators Π(αH ,αV ;βH ,βV ). Hence, the violation results to be function
of the nonlinear gain of the amplifier and of the displacement of the state in the eight-
dimensional phase space. The Bell’s inequality then reads:

B = Π(α̃H , α̃V ; β̃H , β̃V )+Π(α̃H , α̃V ; β̃
′
H , β̃

′
V )+Π(α̃ ′H , α̃

′
V ; β̃H , β̃V )−Π(α̃ ′H , α̃

′
V ; β̃

′
H , β̃

′
V ),

(7.27)
where {α̃H , α̃V}, {α̃ ′H , α̃ ′V}, {β̃H , β̃V} and {β̃ ′H , β̃ ′V} are the measurement setting for the
displacements in the phase-space. The detection apparatus necessary for this test requires
standard polarization analysis on each spatial mode, followed by four apparatuses for the
measurement of the displaced parity operators [Fig. 7.12].

7.5.2 Violation of the inequality in absence of losses
We first analyze the perfect case in which the multiphoton state is not affected by deco-
herence nor losses. In this case the Wigner function in Eq. (7.3) reads:

W0(αH ,αV ,βH ,βV ,g) =
(

2
π

)4

exp

{
−2(1+2S2) ∑

π=H,V

[
|απ |2 + |βπ |2

]}
×

× exp
{
−2CS

[
2Re(αV βH)−2Re(αHβV )

]}
.

(7.28)

The displaced parity can be written as:

Π0(αH ,αV ,βH ,βV ,g) =
(

π

2

)4
W0(αH ,αV ,βH ,βV ,g). (7.29)

Now the Bell parameter can be written as a function of eight phase-space variables and
the nonlinear gain:

B0(z1,z2,z3,z4,z5,z6,z7,z8,g) = Π0(z1,z2,z3,z4,g)+Π0(z1,z2,z7,z8,g)

+Π0(z5,z6,z3,z4,g)−Π0(z5,z6,z7,z8,g),
(7.30)

where zi, with i = 1, . . . ,8, represents the displacements in the phase-space for the fixed
{πH ,πV} polarization basis, being z1,z2 and z5,z6 the displacement relative to the k1
mode, while z3,z4 and z7,z8 relative to k2 spatial mode. By fixing the value of the nonlin-
ear gain g, we have then maximized the value of B, for different values of g. We found
numerically that for g = 2 the maximum violation is obtained for real displacements
given by: z1 = −0.0241,z2 = −0.0066,z3 = −0.0066,z4 = 0.0241,z5 = 0.0725,z6 =
0.0198,z7 = 0.0198,z8 =−0.0725 and corresponds to a violation equal to:

Bmax
0 ' 2.32. (7.31)

In Fig. 7.13 is reported the trend of the Bell’s inequality violation as a function of
the nonlinear gain. We observe that for low values of g we have small violation, since
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gaussian states with no squeezing cannot violate this inequality. For g ≥ 1 the amount
of violation progressively saturates and reaches its maximum value equal to Bmax

0 in Eq.
(7.31). We note that the points in which we can observe the maximal violation of the
inequality depend on the nonlinear gain of the amplifier since it changes the squeezing of
the generated state. Increasing the value of g we obtain displacement amplitudes closer
to zero, a requirement which represents an experimental challenge.

7.5.3 Resilience of the violation in presence of losses
Let us consider now the case in which the state undergoes a decoherence process, simu-
lated by the presence of beam-splitter of transmittivity η (Fig. 7.12). The losses contri-
bution is taken into account by the parameter R = 1−η , and the Wigner function in the
lossy case is given by Eq. (7.3). The displaced parity on the phase-space is given by:

Π(αH ,αV ,βH ,βV ,g,η) =
(

π

2

)4
W0(αH ,αV ,βH ,βV ,g,η), (7.32)

and the violation turns out to be dependent on the losses parameter. Similarly to the
perfect case we define a Bell parameter given by:

B(z1,z2,z3,z4,z5,z6,z7,z8,g,η) = Π(z1,z2,z3,z4,g,η)+Π(z1,z2,z7,z8,g,η)+

+Π(z5,z6,z3,z4,g,η)−Π(z5,z6,z7,z8,g,η),
(7.33)

and we maximize it with respect to zi for fixed values of g and η . In Fig. 7.14 (a) we
report the trend of violation as a function of η , for different values of the nonlinear gain.
We observe that the amount of violation decreases rapidly as a function of η , and the
maximum value of η = η∗ for which we cannot observe a violation strongly depends on
g. Fig. 7.14 (b) reports the trend of η∗ such that B(z1,z2,z3,z4,z5,z6,z7,z8,g,η∗) = 2 as
a function of g; we observe that the value of η∗ increases with increasing the size of the
system, and for high value of g it becomes practically impossible to observe a violation
even in the presence of a small amount of losses. We stress that while the increasing of
nonlinear gain g produces a larger squeezing of the multiphoton state, the presence of
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Figure 7.14: (a) Trend of violation of Bell’s test as a function of the transmittivity η for
different values of the nonlinear gain g. Red dashed curve: g = 0.01. Green solid curve:
g = 0.5. Blue dotted curve: g = 1. Black dash-dotted curve: g = 1.5. Cyan dash-dot-
dotted curve: g = 2. (b) Limiting value of η = η∗ for which B = 2 as a function of
nonlinear gain g. The white region identifies the range of parameters where nonlocality
can be detected.

losses is responsible for the broadening of the Wigner function [DSTC10]. This interplay
between the two effects determines the points in which we can see the maximal violation
of the Bell’s inequality.

7.6 Conclusions and perspectives
In this chapter we have reported a thorough analysis on the possibility of observing quan-
tum correlation on a multiphoton quantum system by performing probabilistic dichotomic
measurements and continuous-variables measurements. We have addressed a specific
class of multiphoton states: the ones obtained by the high-gain optical parametric ampli-
fier working in a noncollinear configuration.

In order to violate a Bell’s inequality with dichotomic measurements, we have in-
troduced two dichotomization processes, based on the O-Filtering procedure and on a
threshold detection scheme similar to the naked eye discussed in Sec. 5.2.3. It has been
demonstrated that these two detection schemes reduce to a simple dichotomic measure-
ment when their characteristic thresholds are set to 0. We have discussed in terms of LHV
models the feasibility of a CHSH test with the two probabilistic measurements presented
in this chapter. We have shown that such dichotomic measurements when performed on
n/2-spin states with increasing n, asymptotically permits in the ideal case to violate a
CHSH Bell’s inequality even for large n. The shape of correlation functions has been
investigated, and we have shown that the sinusoidal correlation pattern, typical of an
1/2-spin state, tends asymptotically to a triangular form, proper to classical correlations.
When losses and decoherence are introduced the visibility of the correlation pattern is
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lowered and its shape turns out to be sinusoidal. In presence of losses, the violation of
CHSH Bell’s inequality is not allowed by a dichotomic measurement and more compli-
cated detection schemes are required. Finally, we have shown experimentally that the
measurement performed by the probabilistic dichotomic schemes, the orthogonality-filter
and the threshold detector, allow to obtain higher visibility of correlation functions, not
enough to violate CHSH Bell’s inequality, but effective to reduce losses and decoherence
effects.

We have then theoretically addressed the problem of observing nonlocality by per-
forming continuous-variables measurements upon the investigated system. We have gen-
eralized the Bell’s test proposed by Ref. [BW98] for a NOPA state for an enlarged
four-mode multiphoton state. We have then applied the nonlocality test by addressing
both the lossless and the lossy case. In the lossless case, a maximum violation equal
to Bmax = 2.32 can be reached for increasing size of the investigated system, while in
presence of losses the amount of violation fastly decreases by increasing the nonlinear
gain or the parameter of losses. This renders extremely difficult to observe experimen-
tally the quantum features for a increasing size system, even if an efficient measurement
is performed upon it.

In conclusion the obtained results could allow to reach a deeper understanding about
the problem of observability of nonlocality by adopting continous-variables measurement
over increasing size quantum states.



Chapter 8

Characterization of the single-photon
addition process: nongaussianity,
nonclassicality and process tomography

In continuous-variables quantum information nongaussianity is a relevant resource, which
permits to perform several tasks forbidden when only gaussian resources are employed,
such as error correction or entanglement distillation. Within this context, it is then nec-
essary to identify and characterize suitable protocols for the generation of nongassian
states. The process of parametric down-conversion combined with conditional detection
can be adopted for this purpose to implement a relevant nongaussian process, that is,
single-photon addition [ZVB04a]. In this chapter we characterize the amount of non-
gaussianity induced by this process on a set of input coherent states. We analyze in de-
tails how the experimental imperfections affect the nongaussianity of the output states.
The results of this analysis are reported in Ref. [BSG+10]. Finally, by reconstructing
the tensor of the process we explicitly address the role of experimental imperfections in a
state-independent form.

8.1 Generation and characterization of continuous vari-
ables nongaussian resources: state of the art

Within the framework of quantum information with continuous-variables [Bv05], non-
classical states of the radiation field represent a resource and much attention has been
devoted to their generation schemes, which usually involve nonlinear interactions in opti-
cally active media. In order to implement the necessary nonlinearities, the reduction pos-
tulate provides an alternative mechanism to achieve effective nonlinear dynamics. More
specifically, when a measurement is performed on a portion of a composite entangled
system, the other component is conditionally reduced according to the outcome of the
measurement. The resulting dynamics may be highly nonlinear, and may produce quan-
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tum states that cannot be generated by currently achievable nonlinear processes. Condi-
tional measurements have been exploited to engineer nonclassical states and, in particular,
have been recently employed to obtain nongaussian states. The latter become a relevant
resource in different quantum information tasks, such as quantum computer [RGM+03,
LRH08], improving teleportation [OKW00, CRM02, OPB03], cloning [CKN+05], and
quantum information storage [CLP07]. Several realisations of nongaussian states have
been reported so far, in particular from squeezed light [LHA+01, WTBG04, ZVB04a,
ZVB04b, OTBL+06, OTBG06, NNNH+06, ODTBG07, Kim08, OFTBG09], close-to-
threshold parametric oscillators [DCL+05, DdLP+10], in optical cavities [DDS+08], and
in superconducting circuits [HWA+08]. Nongaussian operations are also interesting for
tasks as entanglement distillation [OJTBG07, TNNT+10], and noiseless amplification
[FBB+10, FBB+11, XRL+10] which also are obtained in a conditional fashion, accept-
ing only those events heralded by a measurement result.

However, care should be taken indentifying the nongaussianity with a nonclassical
property. In principle, nongaussianity does not direclty imply the nonclassical character
of a state and, in turn, classical nongaussian state may be prepared, e.g. by phase-diffusion
of coherent states or photon-subtraction on thermal states [AAB+10]. On the other hand,
in the applications mentioned above it is the presence of both nongaussianity and non-
classicality which allows for enhancement of performances. Therefore, de-gaussification
protocols of interest for quantum information are those providing nongaussianity in con-
junction with nonclassicality.

Recently, several techniques have been developed in order to fully characterize the
evolution of the components of a physical process. State tomography [Leo98, JWKM01],
process tomography [OPG+04, LKK+08], and detector tomography [LFCR+08] have
been developed as a mathematical tool to reconstruct from the experimental data an un-
known physical state, its evolution, or its measurement stage respectively. All of these
must obey some constraints; for instance, a map acting on density matrices space corre-
sponding to a physical process is normally completely positive. This amounts to say that it
must send physical states into physical states regardless of observing the system by itself
or as a part of a larger ensemble to which it is de-coupled [Kra83]. These maps usually
preserve the norm of the state, but there exist notable exceptions: non-trace preserving
operations arise whenever a measurement on the system is involved. The experimen-
tal investigation, as well as the mathematical framework, is relatively at an early stage.
Indeed, quantum process tomography of non trace-preserving maps has been presently
implemented only in a reduced two-qubit Hilbert space [KSW+05, BSS+10]. In particu-
lar, for the case of continuous-variable processes, as a further issue it is not clear whether
the experimental imperfections would actually prevent the linearity of the process.

In this chapter we characterize a relevant process exploited as a protocol to gener-
ate nonclassical, nongaussian states, that is, single-photon addition [ZVB04a, BSG+10].
This is done by first describing the process in Sec. 8.2, then by providing a theoretical
model in Sec. 8.3 to describe the experimental implementation, which is reported in Sec.
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8.4. We quantify experimentally in Sec. 8.5 the amount of nongaussianity obtained by
adding a photon to a coherent state [ZVB04a, ZPB07, PZKB07, ZPK+09]. Differently
from previous investigations [SRW05, ZPB07, KVP+08, KVH+09, SVD+09], we can
explicitly address the two aspects of nongaussianity and nonclassicality at once. Then,
we derive the conditions under which such process can be described by a linear mapping.
Under these conditions, we reconstruct in Sec. 8.6 the tensor of the process by exploiting
some a-priori knowledge. This will constitute a stimulus to more investigations in the
area and to develop more sophisticated analytic tools.

8.2 The single-photon addition process
The process under investigation is described mathematically by the action of the creation
operator â† on an input state ρ̂ . However, the map acting on the input state â†ρ̂ â cannot
be written in the Kraus representation and is not completely positive. Furthermore, for
certain input states the trace of the output state is increased by the action of the â† opera-
tor: Tr[â†ρ̂ â]> 1. Since Tr[â†ρ̂ â] is the probability that the process occurs, the condition
Tr[â†ρ̂ â] > 1 corresponds to an unphysical situation. Hence, no direct deterministic im-
plementation of the process can be performed. However, the photon addition process can
be implemented in an approximate and heralded fashion [ZVB04a].

LO i-

OPA

state analysis

D
0

F

kA

kB

Figure 8.1: Conceptual scheme of the implementation of the single-photon addition pro-
cess. The input coherent state is injected into an optical parametric amplifier, and the
detection of a single-photon in the idler mode heralds a successful run of the process.
Finally, the output field is measured with an homodyne detection apparatus.

A conceptual scheme of the implementation of the photon addition process is shown
in Fig. 8.1: an input coherent beam |α〉 is injected on mode kA in an optical parametric
amplifier working in a noncollinear, type-I configuration. In this device, a three-wave
nonlinear interaction occurs between the pump beam, the signal beam on mode kA and
a third mode on mode kB. In the strong pump limit, the action of the amplifier can be
expressed as the application of the squeezing operator:

Û r
AB=exp

{
r(â†

Aâ†
B− âAâB)

}
, (8.1)
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to the input state |α〉A|0〉B. Here, r is the squeezing parameter, which depends on the
pump intensity and the crystal non-linear coefficients. Here, âA and âB are the field op-
erators associated to the spatial modes kA and kB. Despite the strong pump, the OPA
typically works in the weak gain regime, so that Û r

AB can be expanded in series up to the
first order:

Û r
AB'1̂AB + r(â†

Aâ†
B)− r(âAâB). (8.2)

According to the scheme of Fig. 8.1 an APD is inserted on mode kB. Since the mode
kB was originally in the vacuum state, the only term which can give a contribution in Û r

AB
is the second one. Therefore, the detection of a single photon on mode kB heralds the
addition of a single photon to the coherent state, transforming it in the ideal case into:

1√
1+ |α|2

â†
A|α〉A, (8.3)

8.3 Experimental implementation: the model
The theoretical model adopted (see Refs. [OTBL+06, ODTBG07, OJTBG07]) provides
an accurate description of the experimental results, and it will be exploited to characterize
the nongaussianity and the nonclassicality of the output states, as well as to perform the
reconstruction of the quantum map of the process.

(i) (ii) (iii) (iv) (v)
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Figure 8.2: Modelization of the photon addition process’ implementation. (i) Two mode
squeezing on spatial modes kA and kB. (ii) Parasitic squeezing models the mode mismatch
between the pump and the input field. (iii) Partial trace on vacuum injected spatial modes
kC and kD. (iv) Detection of the single photon which heralds the photon addition process.
(v) Partial trace on the single photon mode kB.

A block diagram of the model resembling the experimental apparatus is shown in Fig.
8.2. The input state ρ̂A⊗|0〉B〈0| of the process is injected on mode kA in an OPA. The
action of the OPA is described by the two-mode unitary squeezing operator of Eq. (8.1).
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In the OPA there might occur a certain modal mismatch between the pump and the input:
this results in a parasitic amplification that introduces excess noise on the two output
modes. The process is modeled as a set of two nondegenerate OPAs, one per each mode
kA and kB, driven at a weaker strength γr. The parasitic amplification process couples the
two modes kA and kB with two other modes kC and kD, initially in the vacuum state. The
complete description of the amplification process takes the form:

ρ̂ABCD = Û γr
ACÛ γr

BDÛ r
AB
(
ρ̂A⊗|0〉B〈0|⊗ |0〉C〈0|⊗ |0〉D〈0|

)
(Û r

AB)
†(Û γr

BD)
†(Û γr

AC)
†. (8.4)

The detection of the idler beam is performed by an APD on mode kB, that cannot
resolve photon number. In the limit of small detection efficiency, we can approximate the
detection process as the application of the âB annihilation operator on the mode kB. This
low efficiency approximation is valid in the case of the present experimental implemen-
tation, where the overall detection efficiency is less than µ . 10%, due to spatial filtering
(. 75%), spectral filtering (. 30%), and limited efficiency of the avalanche photodiode
(∼ 55%). Accurate spatial and spectral filtering is performed so that the mode detected by
the APD is matched with the input mode detected with the balanced homodyne apparatus.
This mode matching is performed with a nonunitary efficiency ξ , leading to a correction
of the output state of the form:

ξ ρ̂A,X+(1−ξ )ρ̂A,x. (8.5)

Here, ρ̂A,X = TrB[âBTrCD[ρ̂ABCD]â
†
B] is the output state on the signal mode kA conditioned

to a successful trigger count belonging to the correct mode, and ρ̂A,x =TrBCD[ρ̂ABCD] is the
output state heralded by a faulty trigger event. Note that the partial trace on the additional
modes kC and kD is performed since they are not observed in the experiment.

As a last source of experimental imperfection, we need to include also the homodyne
efficiency η . This can be modeled by inserting a beam-splitter of transmittivity η , attenu-
ating and mixing the output field with a vacuum state, before an ideal homodyne detection
apparatus. Such element has not been included in the overall scheme of Fig. 8.2 since
the homodyne apparatus belongs to the detection stage of the output states and not to the
process itself.

8.3.1 Wigner function of the output field

The Wigner function associated to the state above described reads [Fer11]:

WA [|α〉〈α|](X ,P) =
1

πσ2

(
1−δα −ζα +δα

(x−
√

2κα)2 + p2

σ2

)
e−

(x−
√

2√geff α)2

σ2 − p2

σ2 ,

(8.6)
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where:

δα =
δ

1+ h(g−1)
hg−1 α2

, (8.7)

ζα =
δασ2α2

2geff
, (8.8)

κ =
2η−1
2
√

geff
, (8.9)

geff = ηgh, (8.10)

and:

g = cosh2 r, (8.11)
h = cosh2(γr), (8.12)

δ =
2ξ ηh2g(g−1)

σ2(hg−1)
, (8.13)

σ = 2η(hg−1)+1. (8.14)

8.4 Experimental implementation: results

The complete setup of the experimental apparatus is shown in Fig. 8.3. The output of a
mode-locked Ti:Sapphire laser, operating at λ = 850 nm and generating a pulse train with
duration 230 fs and repetition rate 800 kHz, is split in three parts. The first one attenuated
through a set of neutral density filters acts as the input coherent state of the experiment,
with |α| varying in the range [0,1.5]. The second part acts as the local oscillator (LO) of
the homodyne measurement apparatus. Finally, the third part doubled in frequency is the
pump beam of the OPA at λp = 425 nm. The pump and the coherent seed are temporally
superimposed through an adjustable delay line and injected into the optical parametric
amplifier, implemented by a 100 µm thick slab of potassium niobate. The output field of
the vacuum injected mode kB is coupled into a single mode fiber, spectrally filtered by a
diffraction grating followed by a slit, and detected by a single-photon APD. The results of
the single-photon measurements on this mode kB heralds the reconstruction of the output
on mode kA by homodyne quantum tomography. In order to obtain an accurate 50 : 50
splitting at the homodyne beam-splitter, polarization matching is optimized by a sequence
of polarizing beam-splitters and a half waveplate.

The output states are reconstructed by a maximum likelihood algorithm [Lvo04] inter-
polating 800,000 data points arranged into 12 histograms each corresponding to a phase
bin. In Fig. 8.4 (a) we report the fidelities between the reconstructed density matrices and
the expected states calculated from the theoretical model. The used model parameters [see
Eqs. (8.7-8.14)] are r = 0.105, γ = 0.425, ξ = 0.96 and η = 0.71. As it will detailed later
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Figure 8.3: Layout of the experimental apparatus. An OPA is injected with a coherent
state of variable amplitude |α| in the range [0,1.5]. Such OPA is driven in frequency-
degenerate and non-collinear regime, so to generate an idler at the same wavelength λ =
2λp as the coherent seed; this is then spatially filtered with a single-mode fiber, spectrally
filtered by a diffraction grating and a slit. Finally, the idler is detected by an APD. The
observation of the output conditioned by an APD count results in single-photon addition.
The quantum state of the output is reconstructed by homodyne detection. Mode-matching
with the local oscillator exploits polarization: the signal and the LO are first matched on
a polarizing beam splitter, and then combined using a half-wave plate and a second PBS
so to realize an accurate 50:50 intensity splitting.

on, these values have been obtained by fitting the curves of the nongaussianity obtained
from the experimental data. The corresponding average fidelity is F = 0.989±0.006.

In Fig. 8.4 (b) we report the reconstructed Wigner functions obtained for three differ-
ent values of |α|. They are in good agreement with the expected ones reported in Fig. 8.4
(c).

8.5 Nongaussianity of the single-photon addition process
Here we address in details the nongaussianity of the output state generated by the process
of single-photon addition. Furthermore, we complement this analysis by investigating
if the nongaussianity generated through this process is accompanied by the presence of
nonclassical properties. This has been performed by defining a witness of nonclassicality
to be evaluated alongside the nongaussianity.

This section is organized as follows. In Sec. 8.5.1 we describe the adopted criteria for
the nongaussianity and the nonclassicality respectively. Then, in Sec. 8.5.2 we perform
a thorough analysis of the process by evaluating numerically these quantities exploiting
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the theoretical model developed in Sec. 8.3. Finally, in Sec. 8.5.3 we calculate the non-
gaussianity and the nonclassicality of the process from the experimentally reconstructed
output states of the photon addition process. This analysis demonstrates the presence
of nongaussian features in the output states, alongside with a corresponding degree of
nonclassicality.

8.5.1 Nongaussianity and Nonclassicality measures
The nongaussianity measure we adopted is δ [ρ̂] proposed in Refs. [GPB08, GP10], and it
is defined as the quantum relative entropy between the nongaussian state ρ̂ and a reference
gaussian one τ̂ having the same covariance matrix of ρ̂ . Given this choice of the reference
gaussian state, we have that Tr[ρ̂ log τ̂] = Tr[τ̂ log τ̂], as log τ̂ is a polynomial of order at
most two in the canonical variables [GPB08, HSH99]. We thus find

δ [ρ̂] = S (ρ̂‖τ̂) = Tr[ρ̂(log ρ̂− log τ̂)]

= S (τ̂)−S (ρ̂),

that is, δ [ρ̂] is simply equal to the difference between the von Neumann entropy of τ̂ and
the von Neumann entropy of ρ̂ . In Ref. [GPB08] it has been shown that this measure is
non zero only for nongaussian states. It is also additive under tensor product, invariant
under unitary gaussian operations, and in general it does not increase under generic com-
pletely positive gaussian channels. This measure is somehow preferable to that based on
the Hilbert-Schmidt distance [GPB07] in a quantum information context, since it is based
on an information-related quantity.

As already discussed in Sec. 3.2.5, nongaussianity is a property which does not di-
rectly imply the presence of nonclassical features. Indeed, a mixture of classical states,
such as a mixture of coherent states |α〉〈α|+ |−α〉〈−α|, can also be strongly nongaus-
sian. In order to distinguish whether the nongaussianity generated by the photon-addition
process is nonclassical, and hence useful for the application in quantum information pro-
tocols, we consider as a nonclassicality witness a quantity ν [ρ̂] related to the negativity of
the Wigner function. This is normalized to a reference, which we choose to be a single-
photon state W1(x, p). This reference has been chosen since it has the lowest value within
the class of states we consider. Furthermore, this choice is dictated by the need of a
measure which does not depend on the convention for the quadratures, and which sets to
unity the highest value of ν [ρ̂] attainable in the class of states under investigation. The
nonclassicality is then defined as

ν [ρ̂] =
min{x,p} [W (x, p)]
min{x,p} [W1(x, p)]

. (8.15)

While this does not constitute a measure, it acts as a witness for nonclassical states
whenever ν [ρ̂]> 0 and it quantifies the amount of negativity of the state in the range
0 < ν [ρ̂]< 1.
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Figure 8.4: (a) Experimental results for the fidelities between the measured density matri-
ces and the expected state, evaluated through the theoretical model of the experiment. (b)
Experimental Wigner functions for increasing values of |α|. (c) Corresponding expected
Wigner functions.

8.5.2 Numerical analysis of the model
The theoretical model developed in Sec. 8.3 allows us to investigate the role played in
the nongaussianity and in the nonclassicality of the process by the different parameters
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involved in the experimental implementation.
As a first step, we must take into account the finite value of the squeezing parameter

r of the OPA. Indeed, as the squeezing is increased, the expansion of the operator of Eq.
(8.1) cannot be limited to first order. In Fig. 8.5 we plot δ [ρ̂] and ν [ρ̂] as a function of
the coherent amplitude α , for different values of r. We observe that the two trends are
very similar, suggesting that the nongaussianity induced by photon-addition is essentially
a nonclassical signature and thus useful for quantum information processing. It can be
also observed how both nongaussianity and nonclassicality decrease by increasing the
squeezing parameter. This can be explained by observing that, as shown in Eq. (8.2),
for low values of r, the squeezing operator adds only one photon on each arm, while by
increasing r we have to consider also the possible addition of many photons. Since the
emission of more than one photon cannot be discriminated from the single-photon term
due to the lack of photon number resolution of the detectors, the signal will result to be
in a mixture of several terms, thus decreasing the nongaussianity and nonclassicality of
the output state. In the ideal limit of r → 0 the nongaussianity of the state is exactly
equal to the one of the ideal photon added coherent state in Eq. (8.3). However, since
the squeezing parameter is reduced, the probability of detecting one photon on mode kB
drops to zero. Hence, a compromise between the nongaussianity of the output states and
the count rate of the successful events has to be chosen.
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Figure 8.5: (a) Nongaussianity δ [ρ̂] and (b) nonclassicality ν [ρ̂] as a function of the
amplitude |α| of the input coherent state for different values of the squeezing parameter r
(dashed lines); from top to bottom r = {0.15,0.30,0.45}. The black solid line corresponds
to the nongaussianity of the ideal photon added coherent state, that is to the limit r→ 0.

We can now address the role played by the other experimental imperfections. Since in
the OPA a certain modal mismatch between the optical modes of the pump beam and of
the input coherent state may occur, we need to consider the effect of this additional noise
source modeled by the parasitic gain γr, where in our case γ ∼ 0.425. Accurate spatial
and spectral filtering is performed so that the mode detected by the APD is matched with
the mode detected by the homodyne. However, this task can be accomplished only with



Nongaussianity of the single-photon addition process 169

a nonunitary efficiency ξ ∼ 0.96. Furthermore, we need to consider the effect of the lim-
ited efficiency η of the homodyne detection. The sources of this nonunitary efficiency
are manifold, such as optical loss, nonunitary detector quantum efficiency, and nonuni-
tary mode-matching between the local oscillator and the analyzed signal. The overall
efficiency results to be of η ∼ 0.71. In Fig. 8.6 we plot the value of the nongaussianity
δ [ρ̂] [Fig. 8.6 (a)] and of the nonclassicality ν [ρ̂] [Fig. 8.6 (b)] at fixed values of the
coherent state amplitude α = 0.5 and of the squeezing parameter r = 0.15 as a function
of the noise parameters γ , ξ and η . We observe as expected that δ [ρ̂] and ν [ρ̂] decrease
monotonically with γ , while they increase monotonically with ξ and η . For the values
that characterize the present experimental implementation, the homodyne efficiency η is
the source of imperfection that affects in the most detrimental way the nongaussianity and
the nonclassicality of our states.
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Figure 8.6: (a) Nongaussianity δ [ρ̂] and (b) nonclassicality ν [ρ̂] as a function of the
noise parameters of the experimental setup for fixed amplitude |α| = 0.5 and squeezing
parameter r = 0.15. Blue dot-dashed line: δ [ρ̂] and ν [ρ̂] as a function of γ . Green dotted
line: δ [ρ̂] and ν [ρ̂] as a function of ξ . Red dashed line: δ [ρ̂] and ν [ρ̂] as a function
of η . Lower grey solid line: δ [ρ̂] and ν [ρ̂] for squeezing parameter r = 0.15 and no
imperfections. Upper black solid line: δ [ρ̂] of the ideal photon-added coherent state.

8.5.3 Experimental data

Finally, in this section we describe the values of δ [ρ̂] and of ν [ρ̂] obtained by the exper-
imental data. The results are shown Fig. 8.7. In Fig. 8.7 (a) we report the trend of the
nongaussianity of the output states for different values of the coherent state amplitude |α|.
The values of parameters used for the curve, corresponding to the expected trend from the
theoretical model, are obtained from a fit of the experimental data: r = 0.105, γ = 0.425,
ξ = 0.96 and η = 0.71. The APD dark count rates can be neglected being ∼ 10 counts/s
over an overall rate∼ 1−4 ·103 counts/s thanks to a gated detection, triggered by the laser
cavity dumping electronics. The agreement between the experimental data and the model
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Figure 8.7: (a) Nongaussianity δ [ρ̂] as a function of the amplitude |α| of the input coher-
ent state. (b) Nonclassicality ν [ρ̂] – related to the minimum value of the Wigner function
of ρ̂ – as a function of |α|. The red points are the experimental values from the recon-
structed matrices. The black dashed lines are obtained fitting the experimental data with
the model including the main experimental imperfections. The parameters are: r = 0.105,
γ = 0.425, ξ = 0.96 and η = 0.71.

is satisfactory, and we can observe, as expected, a decrease in the nongaussianity as the
input intensity |α| increases. The effect of the single-photon addition is more relevant
for quantum states with a small average number of photons, and becomes only a small
perturbation for higher numbers.

In Fig. 8.7 (b) we report the trend of ν [ρ̂] recovered from the experimental data as
a function of the amplitude |α|. The experimental results confirm that the two quanti-
ties, nongaussianity and nonclassicality, show a similar trend. Hence, the nongaussianity
induced by this photon-addition operation is essentially of a nonclassical origin.

8.6 Quantum process tomography of the single-photon
addition process

In this section we conclude the analysis of the single-photon addition process by consid-
ering the reconstruction of the relative quantum map. Since its dynamics is induced by a
conditional evolution, the resulting map in general may not preserve the trace of the input
state.

8.6.1 Quantum maps
In Sec. 1.2 we described the general formalism underlying the time evolution of a quan-
tum system, which lead to the Kraus representation of Eqs. (1.11) and (1.12). However,
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some exceptions arise when considering a conditional evolution. In this type of processes,
the system evolves through a probabilistic device and a successful run is heralded by the
detection of a certain trigger event on an ancillary mode [Fig. 8.8 (b)]. On one side,
the overall process including both successes and failures needs to be physical. However,
the conditional process may not preserve the trace of the output states since it involves a
reduction of the wave-function due to the measurement process, leading to a non trace-
preserving process. These processes are often used in order to approximate a non-unitary

Figure 8.8: (a) Trace-preserving quantum operation. The input state ρ̂ is transformed by
the quantum channel E in the output state E [ρ̂]. The trace of the input state is preserved
by the channel: Tr

{
E [ρ̂]

}
= 1. (b) Heralded quantum operation. The input state ρ̂ is

transformed by the quantum channel F in the output state F [ρ̂] upon realization of a
conditional event. The trace of the input state is in general not preserved by the channel:
Tr
{
F [ρ̂]

}
6= 1.

linear operator Ĉ. For instance, this is the case for the photon addition process under anal-
ysis in this chapter (Ĉ=â†). Its action on a pure state |α〉 gives an output

√
N (α)Ĉ|α〉,

where N (α) is an additional normalization factor, which might present a complex depen-
dence on the state. Therefore, even if the operator Ĉ is linear, the linearity of the process
is canceled when the normalization factor is included. Let us consider the action of the
process Ĉ on a linear superposition of two states |α〉 and |β 〉. In general, the linearity
condition for the normalized output states does not hold, as√

N (α)Ĉ|α〉+
√

N (β )Ĉ|β 〉 6=
√

N (α +β )Ĉ(|α〉+ |β 〉). (8.16)

However, if we ignore the normalization, we can follow the same treatment as for ordinary
maps. We can then introduce a definition for the tensor {F n,m

l,k } similar to that of Eq.
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(1.12):
F n,m

l,k = 〈l|Ĉ|n〉〈m|Ĉ†|k〉, (8.17)

which allows us to predict the evolution of the state as(
F [ρ̂]

)
l,k = ∑

n,m
F n,m

l,k ρn,m. (8.18)

Finally, in order to obtain a physical output state, the density operator F [ρ̂] has to be
normalized at the end of the calculation to obtain:(

F̄ [ρ̂]
)

l,k = N (F , ρ̂)
(
F [ρ̂]

)
l,k, (8.19)

where in general the normalization N (F , ρ̂) factor depends on both the process F and
the input state ρ̂ .

Such definition can then be extended to more general processes, with an important
remark. Consider a heralded process F0 when conditioning can be faulty in a fraction
1− ξ of the events. We can call F1 the correct process, and F2 the failure. The output
state of the whole process will be a convex combination of ρ̂1 and ρ̂2, being ρ̂1,2 the
output states of the correct and of the faulty processes. For this class of transformations,
the output state cannot be written as the convex combination:

F0[ρ̂] 6= ξF1[ρ̂]+ (1−ξ )F2[ρ̂], (8.20)

as it would for trace-preserving maps. Indeed, the normalization must be applied at each
step of the process. The correct form of the normalized output state of the process then
takes the form:(

F̄0[ρ̂]
)

l,k = ξN (F1, ρ̂)
(
F1[ρ̂]

)
l,k +(1−ξ )N (F2, ρ̂)

(
F2[ρ̂]

)
l,k. (8.21)

8.6.2 Reconstruction of the single-photon addition process

In this section we apply the above considerations to reconstruct the map tensor F n,m
l,k of

the single-photon addition process (Ĉ=â†) considered throughout this chapter. As for the
previous sections, the complete characterization of this process is performed by exploiting
the theoretical model of Sec. 8.3. In App. D we show that the model for the amplification
process is described by a linear map thus allowing the use of such formalism. The param-
eters obtained by fitting the nongaussianity of the experimental data, as described in Sec.
8.5.3: {r = 0.105,γ = 0.425,ξ = 0.96,η = 0.71} are used to simulate the action of the
process on the Fock basis vectors |i〉〈 j|. In this case, the density matrix of the input state
has elements ρn,m = δi,nδ j,m, and the output state reads:(

E [|i〉〈 j|]
)

l,k = ∑
n,m

E n,m
l,k δi,nδ j,m = E i, j

l,k . (8.22)
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Figure 8.9: (a) Diagonal elements F m,m
k,k of the ideal photon addition process. (b) Diag-

onal elements F m,m
k,k for the case of a conditioned OPA driven at r=0.105. (c) Diagonal

elements F m,m
k,k with a parasitic gain γ=0.425 and very low gain (d) Diagonal elements

F m,m
k,k including both experimental imperfections. The tensor has been normalized to the

larger element.

Finally, the elements E i, j
l,k can be directly recovered from the elements

(
E [|i〉〈 j|]

)
l,k of the

output states.

For the purpose of the reconstruction of the process’ tensor F n,m
l,k , we need to consider

the different sources of noise. Since we are interested in the characterization of the pro-
cess itself, we can ignore the action of the noise introduced by the homodyne detection
apparatus. Indeed, the latter can be considered as a part of the characterization stage. The
two main sources of noise can be identified in the finite amount of squeezing r in the
OPA, and in the imperfect matching between the pump and the signal mode γ . The val-
ues of these parameters in our experimental implementation were r=0.105, and γ=0.425
[BSG+10]. The third source of imperfection, that is, spurious events at the trigger stage
D0 due either to dark counts or clicks originating from non-matching modes [Figs. 8.1-
8.2], can be neglected. This is due to the efficient spatial and temporal filtering on the
trigger arms, leading to an high triggering efficiency in our implementation (ξ>0.95). In
case this source of noise could not be neglected, it is necessary to apply the considerations
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on the non-convexity of the previous section.
The results of the reconstruction are reported in Fig. 8.9. First, in Fig. 8.9 (a) we

report the diagonal elements of the ideal process, obtained for r → 0 and γ = 0. For
higher values of the squeezing parameter [r = 0.105, Fig. 8.9 (b)], the gain is chosen to
be sufficiently low so that two-pair events are not significant. On the other hand, the effect
of the parasite gain presents the same relevance: in this case, the action of the parasitic
noise consists in the presence of uncorrelated clicks at D0 that leave the state unchanged.
This corresponds to the diagonal terms in Fig. 8.9 (c), considered in the limit of extremely
low gain r→ 0. The overall process is modeled in the presence of these two imperfections
[Fig. 8.9 (d)].

These results show that the reconstruction of the process’ tensor allows to obtain rel-
evant information on the dynamics of the physical system, that may not be evident by
analyzing a specific choice of the input state. In this example, the adoption of the quan-
tum map formalism reveals to be particularly clear and useful since it allows us to discuss
the behaviour of parasite processes, but also gives us a way of quantifying their effect in
a way that does not depend on the particular input state.

8.7 Conclusions and perspectives
Heralded processes represent a relevant class of quantum evolution. Indeed, nonlinear
dynamics can be obtained by exploiting the conditional evolution obtained by a measure-
ment performed on a portion of the system. Such class of processes can be exploited to
produce nongaussian states, which represent a useful resource for many quantum infor-
mation tasks such as computation, teleportation, or cloning. In this chapter we character-
ized a relevant conditional process, that is, single-photon addition on coherent states, by
explicitly addressing the generated nongaussianity and nonclassicality by means of two
suitable criteria. With this analysis, we recognized that the nongaussianity induced by
such process is nonclassical, thus being useful as a resource for several quantum informa-
tion tasks.

Furthermore, to deepen our analysis of the photon-addition process, we reconstructed
the tensor of the process by exploiting the experimental data and some a-priori knowl-
edge. This reconstruction permits to address individually the effect of each experimental
imperfection and to predict the action of the process on a general input state. Such results
can represent a starting point for future investigations aimed at obtaining a general math-
ematical framework [LKK+08] for the description and the reconstruction of conditional
processes, without the need of any a-priori knowledge.
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Chapter 9

Enhancing resolution of single-photon
phase estimation in lossy conditions by
parametric amplification

Quantum sensing represents one of the possible fields where quantum mechanics permits
to obtain increased performances with respect to classical strategies. In this scenario,
the typical strategy to measure an optical phase consists in sending an optical probe on
the system and in measuring the probe state after the interaction. The aim of these pro-
tocols is to obtain the maximum resolution with minimal disturbance upon the system to
be measured. However, while quantum strategies turn out to be useful in increasing the
achievable performances, quantum benefits are typically extremely fragile under the ac-
tion of losses. In this chapter we propose and realize experimentally a strategy, based
on the process of parametric amplification, to increase the resolution of phase estima-
tion protocols performed with single photons. This strategy is motivated by the results
reported in Chap. 4, where we showed that the multiphoton states generated by para-
metric amplification of single photons are robust with respect to losses. By amplifying
the single-photon probe state after the interaction with the sample, we can preserve the
information encoded on the phase from the action of detection losses. The results of this
theoretical and experimental study are reported in Ref. [VST+10a], and will be extended
in the next chapter for a coherent probe state.

9.1 Minimally invasing quantum sensing in a lossy sce-
nario

The aim of quantum sensing is to develop methods to extract the maximum amount of
information from a system with minimal disturbance upon it. In the case of optical inter-
ferometry, the parameter to be estimated is an optical phase shift introduced by a sample.
Within this context, it has been shown that the possibility of exploting quantum resources
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can increase the achievable precision going beyond the semiclassical regime of opera-
tion [GLM04, GLM06, Hel76]. For example, in phase estimation protocols this can be
achieved by the use of the so-called N00N states. These are maximally entangled states
which are quantum mechanical superpositions of just two terms, corresponding to all
the available photons N placed either in the signal arm or in the reference arm. The
use of N00N states can enhance the precision in phase estimation to 1/N, thus improv-
ing the scaling with the number of resources N with respect to the classical strategies
[BKA+00, Dow08]. This approach can have wide applications for minimally invasive
sensing methods. Imaging of biological samples and of an ancient artifact are examples of
situations where it is clearly beneficial to use weak light probes in order to avoid damaging
of the sample. In the quantum domain there is an even stronger motivation to employ min-
imally invasive measurements, since the back action of the measurement actually changes
the state of the quantum system under investigation. When dealing with the practical im-
plementation of quantum-enhanced phase estimation protocols, these approaches present
some limitations. On one side, the experimental realization of protocols involving N00N
states is still limited in the few photon regime [DCS01, WPA+04, MLS04, EHKB05,
NOO+07, OH10, AAS10]. Nevertheless, these quantum states are extremely fragile un-
der losses and decoherence. Furthermore, the sample whose phase shift is to be measured
may at the same time introduce high attenuation. Since quantum-enhanced protocols for
phase estimation exploit fragile quantum mechanical features, the impact of environmen-
tal effects can be much more deleterious than in semiclassical schemes, up to destroying
completely quantum benefits [RK07, SC07]. Very recently, theoretical and experimen-
tal investigations of quantum states of light in this context has lead to the best possible
precision in two-mode interferometry, even in presence of experimental imperfections
[HWD08, DDDS+09b, MC09, DDDS+09a, KDDW+10, LHL+09]. However, the used
quantum states present a complex quantum mechanical superposition form so that their
implementation is still limited to the few photon regime and relies on schemes involving
post-selection at the detection stage. Furthermore, they require an a priori knowledge of
the amount of losses introduced by the sample, unavailable in most of the cases.

In the present chapter, starting from a review of single-photon phase estimation re-
ported in Sec. 9.2 we propose in Sec. 9.3 a strategy to improve the performances in
present of losses.This approach is based on the phase-covariant optical parametric ampli-
fier described in Sec. 4.2.1 [DSV08, DSS09b, DSS09a]. As shown in Chaps. 5 and 6
the state outing the amplifier can be manipulated by exploiting a detection scheme which
combines features of discrete- and continuous- variables. By performing the amplifica-
tion process of the microscopic probe after the interaction with the sample we can preserve
the probe single-photon state from the losses detrimental effect thus enhancing the perfor-
mance of the phase measurement. The achievable improvement results to be proportional
to the number of generated photons and depends on the optical amplifier gain, and is
shown experimentally in Sec. 9.4. Furthermore, since this protocol involves weak single
photons as probe states and the amplification process acts after the probe-sample interac-
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tion, this approach can be adopted in a minimally invasive scenario, such as biological or
artifact systems.

9.2 Quantum metrology with single-photon states
Let us consider a single-photon, path-encoded interferometric setup, whose conceptual
scheme is shown in Fig. 9.1 (a). The phase shift φ is probed by sending into the interfer-
ometer M qubits, each one in the state 2−1/2(|1〉k1 + |1〉k2) generated after the transmis-
sion of a single photon through a 50/50 beam-splitter. After the propagation, the medium
introduces on the probe beam a phase φ , and each photon is found in the state:

|φ〉= 1√
2

(
|1〉k1

+ eıφ |1〉k2

)
. (9.1)

The output state is recombined into a 50/50 beam-splitter and detected through single-
photon detectors placed at the output modes of the interferometer. The detection of one
photon over the N experiments with quantum efficiency ηtot leads to a detected difference
signal I = I(D′1)− I(D′2) with corresponding fluctuations δ I equals to:

I = ηtotM cosφ ; δ I = (ηtotM)1/2 . (9.2)

According to phase estimation theory, the uncertainty on the phase φ can be evaluated as:

δφ =
δ I∣∣∣ ∂ I
∂φ

∣∣∣ . (9.3)

The sensitivity of the measurement around φ = π/2, defined as S = δφ−1, can hence be
estimated as:

S1phot =
√

ηtotM. (9.4)

This precision on the estimation of the phase φ presents a classical scaling with the num-
ber of trials as

√
M. Furthermore the quantum efficiency is responsible for a decrease

of
√

ηtot in the sensitivity of the interferometer. This scheme is analogous to the case,
analyzed hereafter and sketched in Fig. 9.1 (b), in which the two spatial modes k1 and k2
are replaced by the polarization modes ~πH and ~πV .
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Figure 9.1: (a) Interferometric scheme for single-photon phase estimation in the spatial
degree of freedom. (b) Equivalent scheme in the polarization degree of freedom, where
the sample introduces a relative phase shift between the ~πH and the ~πV polarizations.

9.3 Increased resilience to losses through optical para-
metric amplification

The conceptual scheme herein proposed is sketched in Fig. 9.2, where the two different
encoding of the phase shift φ in the spatial degree of freedom [Fig. 9.2 (a)] and in the
polarization degree of freedom [Fig. 9.2 (b)] are shown. In order to preserve the infor-
mation on the phase encoded in the probe photon after the interaction with the system,
we inject the |φ〉 qubit into an optical parametric amplifier. In this scheme, the amount of
losses can be divided in two contributions, corresponding respectively to the losses 1− p
induced by the interaction with the sample, which occur before the amplification process,
and the losses 1−η at the transmission and detection stage. The action of the optimal
phase-covariant quantum cloning, is to broadcast the phase information into a large num-
ber of particle before the main losses 1−η occur. By this strategy, the detrimental effect
of detection and transmission losses 1−η can be efficiently reduced, while our approach
cannot compensate for losses 1− p that occur before the amplification stage. Indeed,
the effect of losses in the macroscopic field is no more the complete cancelation of the
phase information, but only the reduction of the detected signal. The latter consideration
represents the key of the increased resilience to losses of this scheme.

Let us now describe the theory of the amplifier-based protocol. From hereafter, we
consider the polarization-encoded scheme of Fig. 9.2 (b). The input probe state is a
single photon in the ~π+ = 2−1/2 (~πH +~πV ) polarization state:

|+〉= 1√
2
(|H〉+ |V 〉) . (9.5)

This state can be prepared conditionally by means of an entangled state source through
the process of spontaneous parametric down-conversion, as described in Sec. 2.1.3. The
probe state |+〉 is then sent into the sample, which, we assume, introduces a birefringent
phase shift φ between the~πH and the~πV polarization components. The information on the
phase φ is then encoded in the polarization state ~πφ = 2−1/2 (~πH + eıφ~πV

)
of the single

photon:

|φ〉= 1√
2

(
|H〉+ eıφ |V 〉

)
. (9.6)
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Figure 9.2: (a) Single-photon phase estimation with the insertion of an optical parametric
amplifier after the interaction with the sample. (b) Equivalent scheme in the polarization
degree of freedom, where the sample introduces a relative phase shift between the ~πH and
the ~πV polarizations. Here, losses are divided in two contributions: 1− p are the losses
before the amplifier, 1−η are the transmission and detection losses.

Before the propagation over the transmission channel and the detection stage, the probe
state |φ〉 is injected in the OPA for the amplification process. Consider the loss before the
amplifier by a parameter 1− p. The injected mixed state takes the form:

ρ̂
p
φ
= p|φ〉〈φ |+(1− p)|0〉〈0|. (9.7)

The obtained macrostate after the OPA ρ̂
p,g
φ

= ÛOPAρ̂
p
φ

Û†
OPA is described by the density

matrix:
ρ̂

p,g
φ

= p|Φφ 〉〈Φφ |+(1− p)|Φ0〉〈Φ0|. (9.8)

where |Φφ 〉 is the wave function of the amplified single photon |φ〉 state, and |Φ0〉 is the
wave function of the spontaneous emission field, as described in Secs. 2.2.3 and 4.2.1.
After the action of detection and transmission losses 1−η , the density matrix of the state
can then be written as:

ρ̂
p,g,η
φ

= pρ̂
g,η
φ

+(1− p)ρ̂g,η
0 , (9.9)

where ρ̂
g,η
φ

= L
[
|Φφ 〉〈Φφ |

]
and ρ̂

g,η
0 = L

[
|Φ0〉〈Φ0|

]
. Details over the calculation and

expressions of the coefficients of ρ̂
g,η
φ

and ρ̂
g,η
0 are reported in App. A.1.2.

9.3.1 Quantum Fisher Information for single photon amplified states
at high losses

The quantum Fisher information associated to the probe states ρ̂
p,g,η
φ

after the amplifi-
cation process and the losses 1−η in the high losses regime, where at most one single
photon is detected η〈n̂±〉 � 1, can be evaluated by keeping only the vacuum and single
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photon contributions in the expressions (A.4-A.7) and (A.10-A.13) for the coefficients of
the probe state. Then, the density matrix ρ̂

p,g,η
φ

reduces to:

ρ̂
p,g,η
φ

= (N p,g,η)−1
{[

p(1−η)

C2
1

1−Γ2(1−η)2 +(1− p)
]
|0〉〈0|+

+
η

1−Γ2(1−η)2

[
p

C2
1+2Γ2(1−η)2

1−Γ2(1−η)2 +(1− p)(1−η)Γ2
]
|φ〉〈φ |+

+
η

1−Γ2(1−η)2

[
p

C2
(1−η)2Γ2

1−Γ2(1−η)2 +(1− p)(1−η)Γ2
]
|φ⊥〉〈φ⊥|

}
,

(9.10)

where N p,g,η is the opportune normalization constant in order to ensure the normaliza-
tion condition Tr[ρ̂ p,g,η

φ
] = 1. The density matrix using x = Γ(1−η) reads:

ρ̂
p,g,η
φ

=
1

N p,g,η


p(1−η)

C2
1

1−x2 +(1− p) 0 0

0 η

1−x2

[
p

C2
1+2x2

1−x2 + 1−p
1−η

x2
]

0

0 0 η

1−x2

[
p

C2
x2

1−x2 +
1−p
1−η

x2
]
 .

(9.11)

In Fig. 9.3 we report the plots of the matrix representation for both single photon and
amplified states after the transmission over the lossy channel in the high losses regime.
The advantage of the amplified scheme is the persistence, after losses, of a non-negligible
|φ〉〈φ | element in the relevant density matrix [Fig. 9.3 (b)]. Such term corresponds to the
effective detection of a photon and the acquisition of information over φ . Furthermore, in
the amplified case, we can observe the appearance of a |φ⊥〉〈φ⊥| contribution, which is
due to the quantum cloning process performed by the amplifier.

Starting from the definition, the quantum Fisher Information relative to the density
matrix ρ̂

p,g,η
φ

can be evaluated as Eq. (1.66) [Par09]. In our case, the calculation are
simplified since the density matrix ρ̂

p,g,η
φ

[Eq. (9.11)] is already in diagonal form. By
direct application of the method we obtain:

∂φ ρ̂
p,g,η
φ

=
ı(ρ2−ρ3)

2
[
|φ〉〈φ⊥|+ |φ⊥〉〈φ |

]
, (9.12)

where ρ2 and ρ3 are the eigenvalues corresponding to the eigenvectors |φ〉 and |φ⊥〉 re-
spectively. The evaluation of the Fisher Information according to Eq. (1.66) leads to
H p,g,η

φ
= (ρ2−ρ3)

2

ρ2+ρ3
. Substituting the expression of the eigenvalues we find:

H p,g,η
φ

=

p2

C4 η

[
1+x2

1−x2

]2{ p
C2 (1+3x2)+ 1−p

1−η
(1− x2)2x2

}−1{
p

C2
1

1−x2

[
1+η

4x2

1−x2

]
+(1− p)

[
1+ η

1−η

2x2

1−x2

]} . (9.13)

In absence of the amplification stage, the quantum Fisher information reduces to:

H p,g=0,η
φ

= pη , (9.14)
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which corresponds to the quantum Fisher information of a single photon after the action
of an overall quantum efficiency ηtot = pη . In absence of losses before the amplification

Figure 9.3: Evolution of the density matrix of the probe for single photon and single
photon amplified states in high lossy conditions: η = 10−5. (a) Density matrix of a single
photon state after losses. (b) Density matrix of the amplified single photon state ρ̂

p,g,η
φ

for
p = 1 and g = 5.2, corresponding to 〈n̂φ 〉 ≈ 24600 and to an average number of detected
photons η〈n̂φ 〉 ≈ 0.25.

stage, we obtain:

H p=1,g,η
φ

=
η

1+η
4x2

1−x2

[
1+

4x2

(1− x2)(1+3x2)

]
. (9.15)

Since this expression of the quantum Fisher information is valid in the limit η〈n̂±〉 � 1,
we can further simplify the expression by expanding Eq. (9.13) in power series of η and
by keeping only the first order term in η . In this regime and for a high gain g such that
n = sinh2 g� 1, the Fisher information reduces to the following expression:

H p,g,η
φ

= η p
2n

1+ p−1
p=1→ ηn. (9.16)
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9.3.2 Quantum metrology with intensity measurements
Let us now consider a specific choice of the detection apparatus and the data processing
strategy for exploiting the amplified state. The output field is analyzed by measuring the
value of the difference in the number of photons present in the two orthogonal polariza-
tions ~π+ and ~π−, corresponding to the operator D̂ = n̂+− n̂−. Finally, the value of the
phase φ is recoverd from the recorded signal 〈D̂〉.

We can now proceed with the evaluation of the sensitivity Sp,g,η
φ

achievable with
the amplifier-based protocol and the chosen detection strategy. This can be done in the
Heisenberg picture, exploiting the input-output relations for the joint amplifier-lossy chan-
nel system. The time evolution maps the field operators â†

± into ĉ†
±:

ĉ†
± =
√

η

(
â†
±C± â±S

)
+ ı
√

1−η b̂†
±, (9.17)

where b̂†
± are the field operators of the vacuum modeling the action of the lossy chan-

nel. In order to perform the calculation over the complete density matrix, we need to
analyze the injected and the spontaneous emission components of ρ̂

p,g,η
φ

separately. For
the ρ̂

g,η
φ

state (i.e. the injected component), the average number of photons in ~π+ and ~π−
polarizations are:

〈n̂+〉ρ̂g,η
φ

= η

[
n̄+(2n̄+1)cos2

(
φ

2

)]
; 〈n̂−〉ρ̂g,η

φ

= η

[
n̄+(2n̄+1)sin2

(
φ

2

)]
.

(9.18)
where n = sinh2 g. For the vacuum injected component ρ̂

g,η
0 we have:

〈n̂+〉ρ̂g,η
0

= 〈n̂−〉ρ̂g,η
0

= η n̄. (9.19)

The average value of D̂ calculated over ρ̂
p,g,η
φ

[Eq. (9.9)] gives, by exploiting the results
of Eqs. (9.18-9.19): 〈

D̂
〉
= pη (2n̄+1)cosφ . (9.20)

According to phase estimation theory, the uncertainty δφ obtained by recording the signal

I(φ) can be calculated as: δφ = δ I
∣∣∣ ∂ I

∂φ

∣∣∣−1
. The fluctuations on 〈D̂〉 are obtained by

starting from the definition σ2 = 〈D̂2〉 − 〈D̂〉2, where 〈D̂2〉 = 〈n̂2
+〉+ 〈n̂2

−〉 − 2〈n̂+n̂−〉,
thus giving:

σ
2 = p

[
η

2 (12n̄2 +8n̄
)
+η (4n̄+1)− pη

2 (2n̄+1)2 cos2
φ

]
+

+(1− p)
[
η

2 (4n̄2 +2n̄
)
+η2n̄

]
.

(9.21)

Finally to evaluate the sensitivity on the phase φ , it is necessary to calculate the derivative
of 〈D̂〉 with respect to φ , which reads:

∂
〈
D̂
〉

∂φ
=−pη(2n+1)sinφ . (9.22)
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Accordingly [see Eq.(9.3)] for the uncertainty over the phase φ , the sensitivity of this
measurement scheme reads:

Sp,g,η
φ

= pη (2n̄+1) |sinφ |
{

p
[
η

2 (12n̄2 +8n̄
)
+η (4n̄+1)− pη

2 (2n̄+1)2 cos2(φ)
]
+

+(1− p)
[
η

2 (4n̄2 +2n̄
)
+η2n̄

]} 1
2
.

(9.23)
The maximum of the sensitivity is reached in the inflection point of 〈D̂〉, corresponding
to φ = π/2, leading to:

Sampl = Sp,g,η
φ=π/2 =

p(2n̄+1)

{[p(8n̄2 +6n̄)+4n̄2 +2n̄]+η−1 [p(2n̄+1)+2n̄]}
1
2
. (9.24)

The ideal case with no losses before amplification (p = 1) gives the maximum achievable
sensitivity:

Sp=1
ampl =

η(2n+1)[
η(12n2 +8n)+4n+1

]1/2 . (9.25)

Since the maximum of the sensitivity is obtained for φ = π/2, when the phase shift is
unknown an adaptive protocol is obtained to maximize the performances of the scheme.
In App. E.3 we show that it is sufficient to use a simple two-stage strategy in which
we first find a rough estimate of the phase φest employing conventional phase estimation
methods, and then we use it to tune the zero-reference so that our scheme operates at
its optimal working point detailed above. We also show that the resources employed in
the first stage of this adaptive strategy are asymptotically negligible with respect to the
resources employed in the second high-resolution stage. We will thus neglect the first
stage in the following analysis.

The advantage of the amplification strategy can be evaluated by comparing this sen-
sitivity with the one achievable without amplification. The latter corresponds to the case
of single-photon phase estimation, analyzed in Sec. 9.2, with an overall transmission and
detection efficiency ηtot = η p:

S1phot =
√

η p. (9.26)

We introduce the enhancement E as the merit figure for this analysis:

E =

(
Sampl

S1phot

)2

. (9.27)

E represents the reduction factor in the number of photons that would be sent onto the
sample in order to obtain the same information on the phase φ , by exploiting the am-
plification strategy with respect to the single-photon probe scheme. In other words, this
quantity represents the number of supplementary trials N = E necessary for the single-
photon scheme to equal the sensitivity of the amplified one.
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High losses regime

The high losses regime corresponds to the condition where, for the single-photon phase
estimation protocol, most of the photons are not detected. In Fig. 9.4 we report the
enhancement E as a function of the nonlinear gain g and of the efficiency η for a value
of p = 0.5. We observe that a substantial enhancement of ∼ 100 can be achieved with an
efficiency η ∼ 10−3, showing the potential of our approach.

Figure 9.4: Enhancement of the amplified
strategy as a function of the nonlinear gain
g and of the efficiency η , analyzed in the
high losses regime. The value of losses be-
tween the phase shifter and the amplifier is
set as p = 0.5.

To further characterize the high losses regime, we investigate the limit where η〈n±〉�
1, i.e. where at most only one photon is transmitted by the channel. In absence of losses
before the amplification stage, the sensitivity reduces to:

Sp=1
ampl→

√
ηn, (9.28)

and the enhancement becomes:
E p=1→ n. (9.29)

When losses 1− p between the sample and the amplifier are introduced, the sensitivity
reduces to:

Sampl→
√

η p

√
2n+1

1+ p−1 , (9.30)

and the enhancement to:

E =

(
Sampl

S1phot

)2

=
2n

1+ p−1 . (9.31)

We note that in this limit the enhancement does not depend any more on the efficiency of
the detection stage but only on the gain g and from the losses 1− p.

The squared sensitivity of this scheme, calculated in Eq. (9.24), reduces for η〈n±〉 �
1 to S2 = 1

(δφ)2 → H p,g,η
φ

(i.e. it equals the quantum Fisher information). This means
that, in the condition where at most a single photon is detected, the proposed measure-
ment strategy is optimal. Measuring 〈D̂〉 allows us to extract the maximum amount of
information achievable with the probe states ρ̂

p,g,η
φ

.
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High gain limit

We conclude our analysis by investigating the high gain limit, where the number of pho-
tons generated by the amplifier satisfies the condition 〈n̂〉� 1. For large values of the gain
g the enhancement saturates to the value: Elim = p

η(2p+1) . The trend of Elim as a function
of the efficiencies η and p is reported in the contour plot of Fig. 9.5-(a). According to this
result, we can then identify a critical value of p above which the enhancement is greater
than 1: pcrit =

η

1−2η
. As shown in Fig. 9.5-(b), the region where E > 1 corresponds to

the condition where losses 1−η at the detection and trasmission stage are greater than
losses 1− p before the amplifier. This analysis demonstrates that the amplifier can effi-
ciently compensate for the loss of information that occurs after the OPA, while it cannot
recover the amount of information lost before the amplification stage. In conclusion, the
amplifier based strategy can lead to an effective enhancement when η < p

2p+1 , while for
high transmission and detection efficiency η ≥ 0.33 no enhancement can be achieved by
exploiting our amplification strategy.
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Figure 9.5: (a) Contour plot of the enhancement E in the high gain limit as a function of
the losses parameters 1− p and 1−η reported in a logarithmic scale. (b) Trend of the
critical value pcrit of losses before the amplification for which E > 1 as a function of the
detection efficiency.

9.3.3 Phase estimation through an orthogonality filter

In this section we investigate an alternative measurement strategy apt to obtain an en-
hancement in the resilience to losses of the interferometric estimation of an unknown
phase. The presented method is based on a dichotomic threshold detection performed via
the orthogonality filter device discussed in Sec. 5.2.3. This operation permits to increase
the visibility of the amplified signal at the cost of a lower detection rate.

Due to the properties of the multiphoton states, the use of an OF would allow to extract
information on the state from the shape of the photon-number distributions. The action
of the O-Filter on any input density matrix can be described by the measurement operator
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F̂(±1)
π,π⊥ reported in Sec. 5.2.3. The interference fringe pattern can then be evaluated as:

I(±1)
OF (φ ,k) =

〈
F̂(±1)
~π+,~π−

(k)
〉

ρ̂
p,g,η
φ

= Tr
[
ρ̂

p,g,η
φ

F̂(±1)
~π+,~π−

(k)
]
. (9.32)

Since the fringe pattern in presence of losses presents a cosinusoidal form with non-
unitary visibility, we can write:

I(+1)
OF (φ ,k) = [Imax(k)− Imin(k)]cos2

(
φ

2

)
+ Imin(k), (9.33)

I(−1)
OF (ϕ,k) = [Imax(k)− Imin(k)]sin2

(
φ

2

)
+ Imin(k). (9.34)

The maximum Imax and the minimum Imin of the fringes can be evaluated as:

Imax(k) =
〈

F̂(+1)
~π+,~π−

(k)
〉

ρ̂
p,g,η
+

, Imin(k) =
〈

F̂(−1)
~π+,~π−

(k)
〉

ρ̂
p,g,η
+

. (9.35)

where ρ̂
p,g,η
+ corresponds to φ = 0. In a phase estimation experiment, the value of an

unknown phase shift φ is retrieved by measuring the signals I(±1)(φ ,k) for a chosen value
of k, with sets the amount of filtering performed on the output state. Hence, the value of
φ is obtained by applying an appropriate data processing on the experimental data, such
as a Bayesian or a maximum-likelihood estimator [Hel76]. The visibility V (k) and the
average signal Rmean(k) of the fringe pattern are then defined by:

V (k) =
Imax(k)− Imin(k)
Imax(k)+ Imin(k)

; Rmean(k) =
Imax(k)+ Imin(k)

2
. (9.36)

We report the trends of the visibilities [Fig. 9.6 (a)] and of the average signal [Fig. 9.6
(b)], for η = 10−3 and different values of the non linear gain of the amplifier. We note that
a visibility almost close to 1 can be obtained with a sufficient filtering threshold. As the
gain is increased, the number of transmitted photons η〈n̂±〉 becomes sufficient to detect
all the N repeated trials. The action of the amplifier is then to compensate the effect of
losses η by generating an high average number of photons. In the high lossy regime, at
variance with the single-photon case, all pulses can be exploited to extract information
about the phase φ . The action of the OF is then to select those events which can be
discriminated with higher fidelity, leading to an increase in the visibility value. The latter
operation is achieved at the cost of discarding a part of the data. This can be seen as an
effective quantum efficiency of the scheme η = Rmean(k).

The sensitivity achievable with the OF-based strategy [see Eq. (9.3)] for the (+1)
output signal of the OF reads:

S(+1)
OF (k) =

1

δφ
(+1)
OF (k)

=
|sinφ (Imax(k)− Imin(k))|[

(Imax(k)− Imin(k))cos2 φ

2 + Imin(k)
]1/2 . (9.37)
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Figure 9.6: (a) Plot of the visibility as a function of the threshold k for fixed η = 10−3

and different values of the gain. (b) Plot of the average detected signal, i.e. the filtering
probability, as a function of the threshold k of the OF for η = 10−3 and different values
of the gain. The curves correspond to: g = 5 (black solid line), g = 4.5 (red dash-dotted
line), g = 4 (blue dotted line), g = 3.5 (green dashed line).

The maximum of this quantity is obtained for φ = π

2 . An analogous result holds for the
(−1) output signal of the OF. In conclusion, the sensitivity of the OF-based strategy in
φ = π

2 can be put in the form:

SOF(k) =
1

δφOF(k)
=V (k)

√
Rmean(k). (9.38)

The average over M repeated experiments gives an improvement of
√

M: SM
OF(k) =

SOF(k)
√

M. This expression shows that SOF does not depend on the efficiency η , but
only on the average filtered signal Rmean. The enhancement E [see Eq. (9.27)] in this case
is:

E(k) =
(

SOF(k)
S1phot(k)

)2

=V (k)2 Rmean(k)
η

. (9.39)

E is reported in Fig. 9.7 as a function of the threshold k of the O-Filter for an efficiency
η = 10−3. We note that a significant enhancement up to a value of∼ 200 can be achieved
with the OF-based strategy. Indeed, the advantage of the QIOPA strategy is more evi-
dent in the high lossy regime. For low values of η , in the single-photon regime most of
the pulses are not detected, thus degrading the quality of the estimation process. In the
amplified case, the multiphoton field can survive the action of losses thus leading to a
significant increase in the detected signal. Note that, since the maximum enhancement is
achieved for φ = π/2, in order to measure an unknown phase-shift an adaptive protocol
is necessary [Nag88].
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Figure 9.7: Trend of the enhancement E as
a function of the threshold k for a detection
efficiency η = 10−3 for different values of
the gain: g = 5 (black solid line), g = 4.5
(red dash-dotted line), g = 4 (blue dotted
line), g = 3.5 (green dashed line).

9.4 Experimental implementation of the protocol
The above discussed protocol have been implemented in the high losses regime. As
shown, in such highly detrimental condition, the amplifier-based strategy can lead to a
significant enhancement in the performances of the phase estimation.

9.4.1 Experimental apparatus

The complete scheme is reported in Fig. 9.8. The laser system consists in a Ti:Sa mod-
elocked MIRA900, pumped by a Verdi V5 Nd:Yag solid state laser. The output beam
from the MIRA900 is injected into the Ti:Sa REGA9000 amplifier, pumped by a Verdi
V18. The complete laser system allows to obtain a 1.5 W output beam at wavelength
λ = 795 nm, that, after a second harmonic generation process, generates the pump beam
at λp = 397.5 nm of power P = 750 mW. The pump beam is split between modes kp and
k′p and sent to two nonlinear crystals C1 and C2. C1 acts as an entangled photon source
(see Sec. 2.1.3). This source allows to conditionally prepare upon detection on mode kT
a single photon state: |+〉 = 1√

2
(|H〉+ |V 〉) on mode k1. This photon is then sent as a

probe into the sample, which in our case consisted of a Babinet-Soleil compensator [B(φ )]
which introduces a tunable birefringent phase shift between the ~πH and the ~πV polariza-
tion components. The information on the phase shift φ is then encoded in the polarization
state ~πφ = 2−1/2 (~πH + eıφ~πV

)
of the single photon: |φ〉= 1√

2

(
|H〉+ eıφ |V 〉

)
. The probe

state after the interaction is then superimposed spatially and temporally with the pump
on mode k′p into the second crystal C2, working as an optical parametric amplifier in
a collinear regime. Spatial and temporal matching between the two fields are obtained
through an adjustable delay line (Z) and a dichroic mirror. The number of photons gen-
erated in the amplification process, as said, depends exponentially on the nonlinear gain
of the amplifier g. The maximum value of g experimentally used is gmax = 4.5. Finally,
after the amplification process the amplified field is filtered in frequency, coupled into a
single mode fiber and sent to the detection stage where the information on the phase φ is
retrieved.
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Figure 9.8: Experimental setup of the QIOPA based interferometric scheme. The pump
beam is split between modes kp and k′p. In the first BBO crystal (C1), the single photon
probe in the |+〉 state on mode k1 is prepared upon detection on mode kT with a single-
photon SPCM-AQR14 detector (DT ). Then, the phase φ is introduced through a Babinet-
Soleil compensator [B(φ)] and the probe state |φ〉 after the interaction is then injected
in the QI-OPA and superimposed with the pump beam on mode k′p. (a) Measurement
scheme based on detection of the average of the photon number difference D̂ = n̂+− n̂−.
(b) O-Filter based detection scheme.

9.4.2 Photon counting measurements

The phase φ , in the photon counting approach, is retrieved by measuring the photon num-
ber difference operator 〈D̂〉(φ) [see Eq. (9.20)]. More specifically, after the amplification
process the output field is filtered in frequency and coupled into a single-mode fiber. At
the output of the fiber, after polarization compensation the field is attenuated up to the
single-photon level, analyzed in polarization and detected by two single photon counting
modules SPCM-AQR14, D1 and D∗1 in Fig. 9.8 (a). The resulting signals, triggered by
the click of detector DT (D∗T ) on mode kT , are hence subtracted and the difference in the
number of photons D̂ is recorded as a function of the phase φ , varied by the Babinet-Soleil
compensator B(φ) on the probe path. The fringe patterns, vs φ , recorted at the detector D1
(D∗1) are reported in Fig. 9.9 for the single-photon probe [Fig. 9.9 (a)] and the amplified
state [Fig. 9.9 (b)]. In the first case the obtained visibility is V1phot = 0.45, whose value
differs from the expected unitary one since, in the employed high pump power regime, the
first nonlinear crystal has a non-negligible probability to generate more than a single pho-
ton pair per pulse. This seed visibility value and the multimode operation of the OPA are
also responsible for a reduction of the amplified state visibility up to Vampl(gmax) = 0.08,
and has been taken into account for analyzing the experimental results. The reduced vis-
ibility value in the amplified case is balanced by the increase of the detected signal with
respect to the single photon one. The trend of the enhancement as a function of the nonlin-
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Figure 9.9: Experimental fringe pattern for the single photon probe (a) and for the ampli-
fied beam (b).
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Figure 9.10: Experimental results of the
enhancement E versus the non-linear gain.
Continuous line: theoretical prediction for
the expected enhancement with η = 3×
10−4, p = 0.15

ear gain of the amplifier is reported in Fig. 9.10 compared with the theoretical prediction
for η = 3× 10−4 and p = 0.15, leading to an experimental enhancement up to a factor
∼ 200.

9.4.3 Orthogonality-filter measurement
The OF based strategy has been experimentally implemented by adopting at the detection
stage two photomultipliers, PM1 and PM∗1 , as shown in Fig. 9.8 (b). The two intensity
signals, proportional to the number of photons with two orthogonal polarization states,
are compared shot-by-shot by an electronic discriminator that gives two TTL signals,
which are taken into account in coincidence with the simultaneous click of the detector
on trigger mode (DT or D∗T ). By increasing the discrimination threshold of the OF we
can achieve an higher visibility of the amplified field with respect to the one obtained
through the SPCM based strategy. In Fig. 9.11 is reported the fringe pattern obtained
with a fraction of detected signal equal to Rmean(k)∼ 3.6×10−4, with resulting visibility
V ∼ 0.53. By comparing the fringe pattern in Fig. 9.11 with the one in Fig. 9.9 (b),
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we observe that the amplified field visibility is increased by a factor ∼ 7. The trend of
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for a fraction of detected signal equal to
Rmean(k) ∼ 3.6× 10−4, the obtained visi-
bility is V ∼ 0.53. The solid lines corre-
spond to a sinusoidal fit of the experimen-
tal data.

visibility as a function of the percentage of detected pulses is reported in Fig. 9.12 (a),
compared with the theoretical prediction for a value of losses p = 0.14 and detection
efficiency η = 0.005. The effect of the orthogonality filter is an increase in the fringe
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Figure 9.12: (a) Experimental trend of visibility as a function of the percentage of filtered
signal. (b) Experimental results of the enhancement E versus the signal rate. (a-b) The
continuous lines report the theoretical prediction for p = 0.14, η = 0.005.

pattern visibility when the filtering threshold becomes tighter. The value of the achieved
detection efficiency is related with the amount of losses introduced by spectral filtering,
spatial filtering, transmission losses in the optical fiber and detection efficiency of the
photomultiplier. In Fig. 9.12 (b) we report the experimental enhancement E as a function
of the signal rate Rmean. We observe that an enhancement up to a value ∼ 16 can be
achieved with the OF-based strategy in this losses regime.
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9.5 Conclusions and perspectives
In the optical sensing context, the adoption of quantum resources can lead to a signifi-
cant enhancement in estimating an unkwnown parameter, as for instance an optical phase.
Hence, the ability to generate suitable quantum light probes and quantum detection strate-
gies is a crucial prerequisite for the operation of any quantum sensor. However, the adop-
tion of quantum resources renders such protocols extremely sensitive to losses, unavoid-
able in any experimental implementation, and in general to noise processes. Recently,
much attention has been devoted to investigate which are the best possible strategies in a
noisy environment. The optimal probes maximizing the sensitivity and the performance
of the sensors can be theoretically determined, but the resulting quantum states are often
very complicated, difficult to generate, extremely sensitive to losses and noise, and they
require schemes involving some post-selection at the measurement stage.

In this chapter, we described the experimental implementation of a simple conceptual
strategy, which involves single photons as probe states and that can be engineered with the
existing quantum-optics technology. Such strategy is based on the adoption of an optical
parametric amplifier placed after the probe-sample interaction and before the main losses
occur. Our results show that a large sensitivity improvement can be achieved even if
after the interaction of the probe with the sample the signal is affected by high losses.
The enhancement is proportional to the number of photons generated by the amplification
process, and it can be tuned by increasing the nonlinear gain of the amplifier without
changing the number of photons which effectively impinge onto the sample. For this
reason, the present strategy can be adopted when the sample to be measured results to be
extremely fragile with respect to the intensity of the impinging signal. The adoption of
the amplifier-based strategy allowed us to achieve an experimental enhancement up to a
value ∼ 200 in the high losses regime.

As a further perspective, this strategy can be adopted with different classes of probe
states, such as for example coherent states. In the following chapter we describe a thor-
ough theoretical analysis and the experimental implementation of the amplifier-based
phase estimation protocol when coherent states of the electromagnetic field are adopted
as the probe states.



Chapter 10

Achieving the quantum Cramer-Rao
bound in coherent states phase
estimation with noisy detectors by
parametric amplification

In the previous chapter we proposed and realized experimentally a simple strategy based
on the process of parametric amplification to increase the resolution of a single-photon
phase estimation protocol in presence of detection losses. Here we extend the strategy
analyzed in Chap. 9 by considering a coherent probe state. We show theoretically that the
amplification-based strategy can achieve the Cramer-Rao bound of the lossless coherent
probe state, thus efficiently protecting the information encoded on the phase. Finally,
we perform the experimental implementation of the protocol in the high losses regime
without needing any post-selection of the data, showing the advantage of the amplifier-
based strategy in this detrimental condition. The results are reported in Ref. [SVL+11],
and can lead to the application of the optical parametric amplifier to obtain quantum
enhanced protocols in a lossy scenario.

10.1 Interferometry with noisy detection apparatuses
The proposed scheme employs a simple, conventional interferometric phase sensing stage
that uses coherent-state probes [SVP+11]. These are amplified with an optical parametric
amplifier after the interaction with the sample, but before the lossy detectors. No post-
selection is employed to filter [GLM11, RPP+07] the output signal. The OPA transfers
the properties of the injected state into a field with a larger number of particles, robust
under losses and decoherence [SVD+09].

The present chapter is organized as follows. In Sec. 10.2 we derive the fundamen-
tal bounds of phase estimation protocols involving coherent probe states. Then, in Sec.
10.3 we describe and analyze theoretically the proposed scheme based on the process of

195
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optical parametric amplification. Finally, we consider a specific protocol based on the
measurement of the photon-number difference, and we show that in a wide parameter
range the proposed strategy permits to achieve asymptotically the quantum Cramer-Rao
of the probe state with unitary detection efficiency. In Sec. 10.4 we present the experi-
mental implementation of the amplifier-based coherent states protocol in the high losses
regime.

10.2 Phase estimation with coherent states

The general scheme is shown in Fig.10.1, where a specific choice of the measurement
apparatus has been performed. The input state is a coherent state with ~π+ polarization:
|Ψα〉= |α〉+⊗|0〉−. The phase shift φ to be measured is introduced between the ~πH and
~πV , transforming the probe state into: |Ψα

φ
〉= |αe−ıφ/2 cos(φ/2)〉+⊗|ıαe−ıφ/2 sin(φ/2)〉−.

In all implementations, a certain amount of losses 1− ξ is present in the interferometric
stage. This effect can be included in the analysis by inserting a damping factor

√
ξ in the

coherent state amplitude of the output state. Finally the output state of the interferometer
reads:

|Ψα,ξ
φ
〉= |α

√
ξ e−ıφ/2 cos(φ/2)〉+⊗|ıα

√
ξ e−ıφ/2 sin(φ/2)〉−. (10.1)

Interferometer Lossy detection Data processing

Figure 10.1: Scheme of a phase estimation apparatus exploiting an input coherent probe
states.

10.2.1 Quantum Cramer-Rao bound with coherent states

The calculation of the quantum Fisher information HSQL(α,ξ ) can be performed by writ-
ing the probe state |Ψ̃α,ξ

φ
〉 at the sample output in the {~πH ,~πV} polarization basis, which

reads:

|Ψ̃α,ξ
φ
〉= e−ın̂V φ |α

√
ξ√

2
〉H⊗|

α
√

ξ√
2
〉V . (10.2)
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where n̂V = â†
V âV is the phase-shift generator for the ~πV polarization mode. HSQL can be

evaluated as the variance of the phase-shift generator n̂V on the state |Ψ̃α,ξ
φ
〉 according to:

HSQL(α,ξ ) = 4〈Ψ̃α,ξ
φ
|δ 2n̂V |Ψ̃α,ξ

φ
〉. (10.3)

By explicitly performing the calculation we find:

HSQL = 2|α|2ξ . (10.4)

Such quantity represents the standard quantum limit, that is, the ultimate precision achiev-
able by optimizing over all possible measurements and data processing strategies ex-
pressed by the quantum Cramer-Rao bound:

δ
2
φSQL ≥

1
MHSQL

. (10.5)

where M is the number of repeated experiments.
In the presence of detection losses, the quantum Fisher information can be evaluated

with the same procedure and it reads:

Hη

SQL = 2|α|2ξ η . (10.6)

10.2.2 Classical Fisher information with photon-counting measure-
ments

The classical Fisher information for coherent states phase estimation and photon-counting
measurements is calculated in the following way. We use the formulation for the probe
state before the detection apparatus given in Eq. (10.1). The measurement operators
describing photon-counting detection are the projectors over the Fock states:

Π̂n(+),n(−) = Π̂
(+)

n(+)⊗ Π̂
(−)
n(−)

, (10.7)

where Π̂
(l)
n(l)

= |n(l)〉l l〈n(l)|, with l = +,− labeling the optical mode. The probability
distribution of the measurement outcomes can be evaluated as:

p(n(+),n(−)|φ) = 〈Ψα,ξ
φ
|Π̂n(+),n(−)|Ψ

α,ξ
φ
〉. (10.8)

Since the probe state and the measurement operator are separable with respect to the
two optical modes, the probability distribution of the measurement outcomes factorizes
according to:

p(n(+),n(−)|φ) = ∏
l=+,−

p(n(l)|φ), (10.9)

where:
p(n(l)|φ) = l〈βl|Π̂(l)

n(l)
|βl〉l. (10.10)
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The two distributions p(n(l)|φ) can be evaluated separately, leading to:

p(n(+)|φ) = e−|α|
2ξ cos2(φ/2) (|α|2ξ cos2(φ/2))n

n!
, (10.11)

p(n(−)|φ) = e−|α|
2ξ sin2(φ/2) (|α|2ξ sin2(φ/2))n

n!
, (10.12)

and the two mode distribution reads:

p(n(+),n(−)|φ) = e−|α|
2ξ (|α|2ξ )n+m

n!m!
[cos2(φ/2)]n[sin2(φ/2)]m. (10.13)

The classical Fisher information Icoh can be evaluated from its definition:

Icoh =
∞

∑
n,m=0

[∂φ p(n(1),n(2)|φ)]2
p(n(1),n(2)|φ) . (10.14)

By explicitly evaluating the derivative and by replacing the obtained expressions in the
definition (10.14) of the classical Fisher information we obtain:

Icoh = |α|2ξ . (10.15)

We note that, by exploiting photon-counting measurements the quantum Fisher informa-
tion cannot be saturated due to a constant factor 2. In presence of the detection losses
η , the amplitude of the coherent state is rescaled by a factor

√
η and the classical Fisher

information reads:
Iη

coh = |α|2ξ η . (10.16)

10.3 Phase estimation with noisy detectors by parametric
amplification

In order to protect the probe state from the action of detection losses 1−η that occur at
the measurement stage, the amplifier-based strategy proceeds as follows. Before the am-
plification, a relative phase-shift of π/2 is inserted between the + and the − polarization
components by means of a λ/4 birefringent waveplate with optical axis oriented at 45◦,
leading to:

|e−ıφ/2
β cos(φ/2)〉+|− e−ıφ/2

β sin(φ/2)〉−. (10.17)

The resulting state is then injected in the optical parametric amplifier:

ĤOPA = ıh̄χ

(
â†

H â†
V

)
+h.c.= ıh̄χ

(
â† 2
+ − â† 2

−
)
/2+h.c., (10.18)

where â± = (âH ± âV )/
√

2, and χ is the parameter that quantifies the strength of the
interaction. It corresponds to a unitary operation:

ÛOPA = exp[τ(â† 2
+ − â† 2

− )/2+h.c.], (10.19)
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Interferometer Lossy detectionNoise pre-compensation Data processing

Figure 10.2: Scheme of the amplifier based protocol. The two red lines represent the
polarization modes ~π+ and ~π−; Ûφ introduces the relative phase φ on the state; Lξ and

Lη are the loss transformations for the sample (which transforms the probe state to |Ψβ

φ
〉)

and detector loss respectively; the blue box is a λ/4 plate and the orange box represents
the optical parametric amplifier; the black and the gray boxes represent the detection and
data-processing. The quantum Fisher information Hampl is achievable optimizing over the
detection and the data-processing; the Fisher information Iampl is achievable optimizing
over the data-processing; the sensitivity S is what is achieved for a given detection and
data-processing.

where τ = geıλ = χt is the amplifier gain (t being the interaction time). From Eq.
(10.19), it is clear that the NOPA (a two-mode squeezer) is equivalent to two single-mode
squeezers acting independently on the modes + and − with opposite phases, namely
ÛOPA = Ŝ+(−τ)⊗ Ŝ−(τ), where Ŝl(τ)≡ exp[−τ â† 2

l /2+H.c.], with l =+,−.

After the amplification, the state has evolved to |Ψβ ,g
φ
〉 = ÛOPA|Ψβ

φ
〉. The latter is

detected by lossy detectors, parametrized by a quantum efficiency η . These are equivalent
to perfect detectors preceded by a loss map Lη . The action of this map on the state |Ψβ ,g

φ
〉

produces the mixed state:

ρ̂
β ,g,η
φ

≡Lη [|Ψβ ,g
φ
〉〈Ψβ ,g

φ
|]. (10.20)

The output state is then detected to extract the available information on the phase φ by
measuring the photon-number difference in the two orthogonal ~π± polarization compo-
nents.

10.3.1 Quantum Fisher information of the protocol

The explicit form of the density matrix of the probe state is:

ρ̂
β ,g,η
φ

= Lη

{
Ŝ+(τ+)Ŝ−(τ−)Lξ

[
D̂+(α+)D̂−(α−)|0〉〈0|

D̂†
+(α+)D̂

†
−(α−)

]
Ŝ†
+(τ+)Ŝ

†
−(τ−)

}
,

(10.21)
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where D̂(α) are the displacement operators. As shown in App. E.1, by exploiting some
operatorial relations involving gaussian states the matrix ρ̂

β ,g,η
φ

can be expressed as:

ρ̂
β ,g,η
φ

= D̂+(γ̃+)D̂−(γ̃−)Ŝ+(τeff
+ )Ŝ−(τeff

− )
[
ρ̂

th
+ (Neff)⊗

ρ̂
th
− (Neff)

]
Ŝ†
+(τ

eff
+ )Ŝ†

−(τ
eff
− )D̂†

+(γ̃+)D̂
†
−(γ̃−).

(10.22)

Here, ρ̂ th
l are single-mode thermal states, while the expressions for the state parameters

γ̃l , Neff
l and τeff

l can be found in App. E.1. The density matrix can be then separated in the

two-single mode contributions ρ̂
β ,g,η
φ

= ρ̂
(+)
φ
⊗ ρ̂

(−)
φ

, where:

ρ̂
(l)
φ

= D̂l(γ̃l)Ŝl(τ
eff
l )ρ̂ th

l (Neff
l )Ŝ†

l (τ
eff
l )D̂†

l (γ̃l), (10.23)

with l =+,−. The quantum Fisher information can be evaluated starting from its defini-
tion of Eq. (1.66):

H(α,ξ ,{gl},{λl},η) =
∞

∑
p,q=0

(∂φ ρp,q)
2

ρp,q
+2

∞

∑
i, j,m,n=0

εi, j,m,n|〈Ψi, j|∂φ Ψm,n〉|2, (10.24)

where gl are the squeezing modulus for the two squeezers l =+,−, λl are the squeezing
phases, and:

εi, j,m,n =
(ρi, j−ρm,n)

2

ρi, j +ρm,n
. (10.25)

Here ρp,q and |Ψi, j〉 are respectively the eigenvalues and the eigenvectors of ρ̂
β ,g,η
φ

. These

quantities can be obtained from the corresponding terms in the single mode ρ̂
(l)
φ

matrices,
leading to:

ρm,n = ρ
(+)
m ρ

(−)
n , (10.26)

|Ψm,n〉 = |ψ(+)
m 〉+⊗|ψ(−)

n 〉−, (10.27)

ρ
(l)
n =

(Neff
l )n

(1+Neff
l )n+1

, (10.28)

|ψ(l)
n 〉l = D̂l(γ̃l)Ŝl(τ

eff
l )|n〉l. (10.29)

Finally, we obtain the following expression for H:

H(|α|,θ ,φ ,ξ ,g,λ ,η) =
2|α|2ξ η√

1+4η(1−η)sinh2 g
×

×
{

cosh[2(g−geff)]− cos(λ +2φ −2θ)sinh[2(g−geff)]
}
.

(10.30)

All the details on the calculation are reported in App. E.2. The expression for H is maxi-
mized for cos(λ +2φ−2θ) =−1. Here, λ and θ are respectively the optical phase of the
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pump beam and of the coherent state. Eq. (10.30) means that the quantum Fisher infor-
mation presents a φ dependence, and for each value of φ the maximum is achieved when
the other parameters λ and θ are set according to φ + λ/2− θ = π/2. The maximum
value of the quantum Fisher information reads:

Hampl(|α|,ξ ,g,η) = 2|α|2ξ η
e2(g−geff)√

1+4η(1−η)sinh2 g
. (10.31)

Because of the dependence of H on φ , to achieve the maximum sensitivity Hampl an
adaptive strategy [Nag88] is necessary.

10.3.2 Classical Fisher information with photon-counting measure-
ments

In this section we report the calculation leading to the classical Fisher information for the
amplifier-based protocol, when the ρ̂

β ,g,η
φ

is analyzed by means of photon-counting mea-
surements. This quantity represents, according to the Cramer-Rao bound, the maximum
precision achievable with the chosen probe state and detection apparatus, maximized over
all possible data processing. For the amplifier-based protocol, the probability distribution
p(n(+),m(−)|φ) and the corresponding classical Fisher information from Eq. (10.14) can
be separated in two independent single-mode contributions:

Iφ = ∑
l=+,−

I(l)
φ
, (10.32)

where:

I(l)
φ

=
∞

∑
n=0

[∂φ p(n(l)|φ)]2
p(n(l)|φ) . (10.33)

The starting point is the expression of Eq. (10.23) for the single-mode density matrix
ρ̂
(l)
φ

. From this expression, the photon-number probability distribution of ρ̂
(l)
φ

can be
evaluted according to the procedure reported in App. E.4. The expression for p(n(l)|φ) =
Tr[ρ̂(l)

φ
Π̂n(l)] takes the form:

p(n(l)|φ) = 2(−1)n

1+2Neff
l

e−2(C̃xl+C̃pl )
n

∑
k=0

k

∑
j=0

2k

k!

(
n
k

)(
k
j

)
×U [− j,1/2,−2Ãxl(B̃xl)

2]U [−k+ j,1/2,−2Ãpl(B̃pl)
2]

(Ãxl)
j+1/2(Ãpl)

k− j+1/2 .

(10.34)

Here, U(a,b,z) are confluent hypergeometric functions, while the expressions for the
coefficients (Ãxl , B̃xl ,C̃xl) and (Ãpl , B̃pl ,C̃pl) can be found in the App. E.4 in Eqs. (E.78-
E.79). Finally, the classical Fisher information can be evaluated by calculating the deriva-
tive of the photon-number distribution according to the definition of Eqs. (10.32-10.33).
The complete expression for the numerical evaluation of Iφ can be found in App. E.4.
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10.3.3 Sensitivity with photon-number difference
Let us now fix the detection strategy apparatus, that is, the measurement of the photon-
number difference D̂. In order to calculate the sensitivity S associated to this scheme, it
is convenient to work in the Heisenberg picture. To this end, we need to consider the
time evolution of the field operators due to the OPA and of the loss map Lη . The latter
is modeled by a beam-splitter of transmittivity η . By combining the resulting equations
for the time evolution of the amplifier and of the beam-splitter we obtain the following
expressions for the field operators at the detection stage:

ĉ†
+ =

√
η

(
â†
+C+ e−ıλ â+S

)
− ı
√

1−η b̂†
+, (10.35)

ĉ†
− =

√
η

(
â†
−C− e−ıλ â−S

)
− ı
√

1−η b̂†
−. (10.36)

where b̂+ and b̂− are the annihilation operators for the second input port of the beam-
splitter, C = coshg and S = sinhg. The chosen strategy is to measure the output photon-
number difference D̂ = ĉ†

+ĉ+− ĉ†
−ĉ− and to extrapolate the value of φ from it. By ex-

ploiting the expressions (10.35-10.36), the average of D̂ on the state ρ̂
β ,g,η
φ

is:

〈D̂〉= η |α|2ξ
[

cosφ(1+2n)+ cos(φ +λ −2θ)2
√

n(1+n)
]
. (10.37)

where n = sinh2 g. To evaluate the resolution δφ on the estimated phase according to
standard estimation theory, we need to calculate σ2(〈D̂〉) = 〈D̂2〉− 〈D̂〉2. By evaluating
the average values 〈(ĉ†

+ĉ+)2〉 and 〈(ĉ†
−ĉ−)2〉, we obtain:

σ
2(〈D̂〉) = η

[
a(n,η)+ cosφ cos(φ +λ −2θ)b(n,η)], (10.38)

where:

a(n,η) = 2n(1+η +2ηn)+ |α|2ξ
[
1+2n+ηn(6+8n)

]
, (10.39)

b(n,η) = 2
√

n(1+n)|α|2ξ (1+η +4ηn). (10.40)

We note that both the signal and the fluctuations depend on the difference between the
phase θ of the coherent beam and the phase λ of the pump beam of the OPA. Finally,
the resolution of this detection strategy can be evaluated according to standard estimation
theory as:

δφ =

√
σ2(〈D̂〉)∣∣∣∂ 〈D〉

∂φ

∣∣∣ =

√
a(n,η)+ cosφ cos(φ +λ −2θ)b(n,η)

|α|2√ηξ
∣∣cosφ(1+2n)+ cos(φ +λ −2θ)2

√
n(1+n)

∣∣ . (10.41)

The sensitivity is defined as Sampl = δφ−1. Its optimal operating point is achieved for
λ −2θ = 0 and for a value of the actual phase of φ = π/2, corresponding to the steepest
point of the signal 〈D̂〉. The sensitivity of the scheme in this point is then:

Smax =
|α|2ξ

√
η(1+2n+2

√
n(1+n))

a1/2(n,η)
. (10.42)
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The fact that the sensitivity Sampl depends on the parameter φ we want to estimate implies
that the maximum sensitivity Smax can be achieved only by employing an adaptive strat-
egy, where some initial measurements are performed to get an estimate of φ so that the
apparatus can be employed in its optimal working point around φ = π/2.
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Figure 10.3: (a) Theoretical framework for phase estimation protocols. (b) Plot of the
ratio between the sensitivity square (Smax)

2 and the quantum Fisher information HSQL
connected to the standard quantum limit (SQL) as a function of the nonlinear gain g of
the amplifier and of the detection efficiency η , with |β |2 = 20. Our scheme achieves the
SQL for a wide range of parameters. (c) Plot of the ratio between the quantum Fisher
information Hampl from our scheme and HSQL as a function of the nonlinear gain g of the
amplifier and of the detection efficiency η , with |β |2 = 20. (d) Comparison between the
classical Fisher information Iampl (points) and the sensitivity (Smax)

2 (lines) for |β |2 = 9.
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10.3.4 Achieving the lossless quantum Cramer-Rao bound

Let us now discuss the theoretical results obtained in the previous sections for the am-
plifier based protocol. To gauge the efficiency of our method we start by noting that for
n̄� (2η)−1 and |α| � 1/(

√
2ξ ) the sensitivity (10.42) gives Smax '

√
2|β |, so that in

this regime the QCR bound δ 2φ ≥ 1/(M2|β |2) of the state |Ψβ

φ
〉 (before the amplifica-

tion and the detector loss) can be attained. The quantum Fisher information, through the
QCR bound, measures the best precision achievable when optimizing over the possible
detection and data processing strategies. To show that our choice to measure the photon-
number difference D̂ can be optimal, note that for n� (8η)−1 and |β |2� 1/2 the ratio
S2/Hampl → 1, see Fig. 10.3 (b)-(c). In other words, increasing the amplifier gain, the
effects of the detector loss can be asymptotically removed [DDS10]. In addition, our data
processing can be optimal for even a wider range of parameters. In fact, the sensitiv-
ity S closely tracks the classical Fisher information Iampl also for small values of n, see
Fig. 10.3 (d). The quantity Iampl represents the maximum amount of information that can
be extracted from the probe state using our choice of measurement, optimizing over all
possible data-processing.

(a)

ξ
η

ϕ

(b)

(c)

Figure 10.4: (a) Conventional (unamplified) coherent-state interferometry with sample
and detection loss 1−ξ and 1−η respectively: it can achieve the SQL bound connected
to the quantum Fisher information (QFI) Hη

SQL. (b-c) Comparison between our scheme
and the conventional scheme of Fig. 10.4 (a): logarithmic plots of the ratio (Sampl)

2/HSQL
as a function of η and g for |β |2 = 20 (b), and as a function of |β | for g = 3.4 (c).

Consider now, as in standard interferometry, the case with no amplification, where a
coherent state is subject to both the sample and detector loss [Fig. 10.4 (a)]. Our method
always outperforms it; this can be seen in Figs. 10.4 (b) and (c) where the enhancement E
is plotted for different values of the gain and the detection efficiency. Recently, the optimal
strategy in the presence of loss was derived [DDDS+09b, KDDW+10]. It employs the
state that maximizes the quantum Fisher information in lossy conditions. Of course, while
this strategy cannot be beaten if one could access the optimal measurement that attains
the QCR bound, both this measurement and the creation of these states without using
post-selection are beyond the reach of practical implementations, especially for states
with large average photon-numbers. In contrast, our amplifier-based protocol uses readily
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available input states and detection strategies, and can be implemented with the current
technology.

10.4 Experimental implementation of the amplifier-based
protocol in the high losses regime

The optical setup is reported in Fig. 9.10. To acquire the phase shift to be measured,
the probe coherent state is prepared by attenuating, filtering in frequency and preparing
in the ~π+ polarization state a part of the laser beam. Then, the probe state is injected
into the sample, simulated by a Babinet-Soleil compensator, and spatially and temporally
matched to the pump it is injected into the OPA. In this experimental realization the phases
of the pump and of the coherent state are not stabilized: this will reduce the achievable
enhancement by a fixed numerical factor of 4. In contrast to previous realizations of para-
metric amplification of coherent states [ZVB04a, ZVB05, BSG+10] which focused on the
single-photon excitation regime, we could achieve a large value for the nonlinear gain, up
to g = 3.3, corresponding to a number of generated photons per mode n∼ 180 in sponta-
neous emission. In addition, our scheme is also able to exploit the polarization degree of
freedom. As usual, the two output orthogonal polarizations are filtered in frequency and
coupled into a single-mode fiber. Finally, they are detected by two avalanche photodiodes
SPCM-AQR14 (D1, D∗1). Their count rates are then subtracted to obtain the value of 〈D̂〉,
and recorded as a function of the phase φ , introduced by the Babinet.

10.4.1 Theoretical model for the experiment in the high losses regime
In the described implementation, no phase stabilization is performed on the optical path
of the pump beam, hence the phase varies randomly at each experimental run. To model
such effect, an average on the phase λ with a uniform distribution P(λ ) = 1

2π
must be

performed on both the signal and the fluctuations. In this case, the average signals in the
two polarizations ~π+ and ~π− are given by:

〈n̂+〉 = η
[
n+ |α|2ξ (1+2n)cos2(φ/2)

]
, (10.43)

〈n̂−〉 = η
[
n+ |α|2ξ (1+2n)sin2(φ/2)

]
. (10.44)

Then the average on 〈D〉 given by Eq. (10.37) trasforms into:

〈D̂〉= |α|2ηξ cosφ(1+2n). (10.45)

In the high losses regime investigated throughout the paper, the number of the photons
effectively impinging on the detector is smaller than one, since η〈n±〉< 1. In this regime,
the single-photon counting process is described by a Poissonian statistics. Hence, the
fluctuation on the difference signal can be evaluated as:

σ
2(〈D̂〉) = σ

2(〈n̂+〉)+σ
2(〈n̂−〉) = 〈n̂+〉+ 〈n̂−〉. (10.46)
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Figure 10.5: Experimental setup for the practical implementation of the protocol. The
output of the excitation source is doubled in frequency through a second harmonic gen-
eration process to generate the experiment pump beam on mode kp. The remainder of
the 795 nm beam is then separated from the pump beam through a dichroic mirror, and
is prepared in the coherent state |α〉+ on mode k1 by controlled attenuation, spectral fil-
tering and polarizing optics. The coherent state probe then acquires the phase shift by
interacting with the sample (in our case, a Babinet-Soleil compensator). Then, the co-
herent state probe is superimposed spatially and temporally with the pump beam through
an adjustable delay line (Z) and is then injected into the OPA after the acquisition of the
phase. Finally, the output field is filtered in frequency and coupled into a single-mode
fiber. Then, the field is attenuated to simulate the action of losses and detected by two
single-photon detectors (D1, D∗1).

By explicitly substituting the expressions for 〈n̂+〉 and 〈n̂−〉 we obtain the following ex-
pression for the sensitivity:

Sφ
exp =

|α|2ξ
√

η(1+2n)|sinφ |√
2n+ |α|2ξ (1+2n)

. (10.47)

The optimal point is achieved for φ = π/2, where the sensitivity is:

Sexp =
|α|2ξ

√
η(1+2n)√

2n+ |α|2ξ (1+2n)
. (10.48)

10.4.2 Enhancement in the high losses regime
The results of the experiment are reported in Fig. 10.6. Since the sample losses 1−ξ act
as a scaling factor on the coherent state amplitude as α → β = α

√
ξ , we evaluated |α|

by estimating the average number of photons |β |2 after the interaction with the sample.
In Figs. 10.6 (a) and (b) we report the fringe patterns obtained by measuring the single
counts at the single photon detectors for the amplified case and the coherent state case,
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Figure 10.6: Experimental results. (a) Fringe patterns for the amplified coherent state
(g = 3.3) and (b) for the unamplified coherent state strategy for |β |2 ∼ 22.8.

respectively. An enhancement of ∼ 200 in the counts rate for the former case is observed
without significantly affecting the visibility of the fringe pattern [Fig. 10.7 (a)], leading
to an increased phase resolution. We measured the enhancement Eexp achievable with
our protocol with respect to the conventional unamplified interferometry, defined as the
squared ratio between the measured sensitivities with and without the amplifier, see Fig.
10.7 (b). Our measurement shows a good agreement with the theoretical predictions.
A significant enhancement up to a value of Eexp = 186.3±9.3 has been achieved. In the
operating regime of our experimental implementation the sensitivity of Sexp scales as η1/2

[see Fig. 10.7 (a), inset], as for a coherent state only. Hence, the observed enhancement
is mainly due to the strong increase in the counts rate due to the amplification process.
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Figure 10.7: Experimental results. (a) Fringe pattern visibility and (b) experimental en-
hancement Eexp as a function of the nonlinear gain g for |β |2 ∼ 5.8, η ∼ 1.46× 10−4

(experiment: black diamond points; theory: black solid line) and |β |2 ∼ 22.8, η ∼
3.48× 10−5 (experiment: green star points; theory: green dashed line). Inset: experi-
mental plot of the sensitivity as a function of the efficiency ratio η/η0, where η0 is a
reference efficiency.
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10.5 Conclusion and perspectives
In this chapter we presented a strategy to perform phase estimation protocols in the pres-
ence of noisy detectors. This approach involves coherent states as input signals, and phase
sensitive amplification after the interaction with the sample and before detection losses.
The accuracy of the protocol can reach the performances of a lossless probe state even in
presence of imperfect detectors.

We then presented the experimental implementation of this protocol in highly lossy
scenario, showing the advantage of this technique even in a highly detrimental regime.
We obtained an experimental enhancement up to a value Eexp ∼ 200 with respect to the
standard quantum limit in presence of the same amount of detection losses. Furthermore,
at variance with many implementations involving the generation of quantum probe states
[GLM11, RPP+07], the present implementation does not require any post-selection of the
experimental data.

As a further perspective, the present strategy could be exploited in phase estimation
protocols with noisy detectors involving different classes of probe states, including quan-
tum resources such as squeezed light. This approach could lead to the possibility of
achieving sub-shot noise performances in phase estimation protocols with noisy detec-
tors.



Conclusions

The possibility of observing quantum properties, such as entanglement, in systems in-
volving a large number of particles is still an open challenge. The main experimental
difficulties to be addressed are the uncontrolled interaction with the environment, that is,
decoherence, and the necessity of performing quantum measurements with the required
resolution. When the size of the system progressively increases, the requirements in terms
of isolation from the environment and of measurement resolution becomes progressively
more demanding, thus rendering very difficult, if not impossible, to observe quantum
properties in macroscopic systems. For these reasons, it becomes crucial to identify suit-
able platforms for the investigation of quantum features in multiparticle systems.

In parallel, decoherence represents one of the main challenges to be overcome when
dealing with the application of quantum mechanical theory to quantum information pro-
cessing. In all implementations, the action of decoherence is responsible for the loss of the
benefits achievable with quantum mechanical resources. A relevant example is provided
by quantum sensing, which aims to perform precision measurements of a physical param-
eter, such as an optical phase beyond any classical limit. In this context, the adoption of
multiphoton, maximally entangled states can allow to reach the Heisenberg limit. How-
ever, this approach is extremely sensitive to the detrimental effect of losses, which rapidly
deletes any quantum benefit. Hence, it becomes relevant to develop suitable strategies to
perform phase estimation protocols even in lossy conditions.

In the present thesis, we analyzed the quantum states generated by the process of op-
tical parametric amplification to perform fundamental tests of quantum mechanics and
quantum sensing. In Chap. 4 we showed that the process of parametric amplification per-
mits to broadcast the properties of a microscopic single-photon seed into an output state
with a large number of photons. Then, we analyzed the effect of the action of a lossy chan-
nel in the output multiphoton states. By adopting different criteria based on both discrete-
and continuous-variables, we showed that the multiphoton states produced by parametric
amplification present a significant resilience to losses, and that nonclassical properties can
be observed in a large losses regime [DSS09b, DSS09a, SVD+09, DSSV10, SSD10].

Motivated by these results, in Chap. 5 we analyzed the possibility of applying the
optical parametric amplifier in order to amplify a single-photon belonging to an entan-
gled pair. In such a way, the initial entanglement between the two particles is broadcasted
into a multiphoton state. We then investigated the possibility of detecting the entangle-
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ment in realistic experimental conditions, that is, in presence of losses, by exploiting di-
chotomic measurements [SVSD10]. The entanglement in this case can be demonstrated
by making a supplementary assumption on the optical source. Then, we considered the
possibility of manipulating the amplified multiphoton states in order to increase the dis-
tinguishability of the output multiphoton states [VSSD10]. The practical impossibility
of observing genuine entanglement in this microscopic-macroscopic configuration with
dichotomic measurements suggests that high resolution measurements are necessary for
this task. Hence, we considered in Chap. 6 the possibility of exploiting homodyne de-
tection on the multiphoton part of the state [SVP+11]. We showed that genuine micro-
macro entanglement can be detected. These results on the investigated source of micro-
macro entanglement suggested several further studies on how to detect entanglement for
multiphoton states [SHB+09, SSB+11, STS+11, RSS11]. More specifically, entangle-
ment in the micro-macro system may be more difficult to be detected than in a genuine
macroscopic-macroscopic source. Further investigations are necessary in this direction.
The same approach, involving low and high resolution measurements, has been applied to
a high gain spontaneous parametric down-conversion source, generating a bipartite sys-
tem of two multiphoton states [VST+10b, VTCS+11]. We addressed the violation of a
Bell’s inequality in this macroscopic-macroscopic system. By exploiting low resolution
dichotomic measurements, the violation of the Bell’s inequality results to be practically
impossible due to the coarse-grained nature of the detection apparatus. By exploiting ho-
modyne detection, Bell’s inequality can be violated. In all the above cases the required
detection efficiency increases with the size of the system. In conclusion in order to ob-
serve quantum properties in multiphoton systems it is necessary to detect almost all the
involved particles.

The process of parametric amplification can be applied in a different context to gener-
ate nonclassical and nongaussian continuous-variables states. In Chap. 8 we reported the
experimental characterization of the single-photon addition process on coherent states. By
explicitly addressing the nongaussianity and nonclassicality of the output states [BSG+10],
and by reconstructing the map associated to the process, at variance with previous realiza-
tions [ZVB04a] we obtained a full insight on the properties of the system. Such process
can find application in several continuous-variables quantum information process, as well
as in the context of measurement-induced quantum operations.

The significant resilience to losses of the multiphoton states generated by optical
parametric amplification can find application in several quantum information protocols.
Among them, we consider the adoption of this device to perform phase estimation in lossy
conditions. As a first step, we considered a minimally invasive scenario, when the phase
estimation is performed by single-photon probes. By amplifying the probe state after the
interaction with the sample, we can protect the information on the phase from the action of
losses without altering the number of photon which effectively impinge onto the sample.
This is demonstrated both theoretically and experimentally in Chap. 9, where we report of
an experimental enhancement up to a factor 200 [VST+10a]. Finally, the same approach
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has been exploited with coherent state probes in Chap. 10. We explicitly addressed the
optimality of the protocol, showing that the performances of the input coherent states can
be retrieved by exploiting noisy measurements and the amplification strategy. Indeed,
the quantum Fisher information of the amplified field in presence of noisy detectors can
reach the quantum Cramer-Rao bound associated to the input coherent state analyzed with
ideal detectors. The protocol has been implemented in the high losses regime, showing
that a significant enhancement can be obtained also in this extremely detrimental regime
[SVL+11].

Figure 10.8: Transition from the quantum dynamics of microscopic systems to the classi-
cal dynamics of macroscopic systems [Zur91].

In conclusion, in this thesis we analyzed several applications of a class of multipho-
ton states generated by optical parametric amplification. From the fundamental side, we
considered different optical configurations in order to detect entanglement in a hybrid
microscopic-macroscopic scenario and to detect nonlocality in a multiphoton-multiphoton
system. The obtained results suggests that to reveal quantum properties in this system it
is necessary to exploit high resolution measurements, since the detection of all the in-
volved particles seems to be a crucial requirement. Further studies are necessary in order
to identify suitable strategies that can be adopted to witness quantum features in systems
of growing size. A starting point is provided by the continuous-variables approach, which
can lead to the development of more sophisticated entanglement tests. In the quantum
sensing context, we showed that the process of parametric amplification can find applica-
tion in order to perform phase estimation experiments in noisy conditions. The obtained
results can lead to protocols robust with respect to losses. As a future perspective, the
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application of the amplifier-based strategy to quantum probe state, such as squeezed light,
can lead to the possibility of obtaining sub-shot-noise scaling in presence of lossy detec-
tors.



Appendix A

Density matrix for the amplified
single-photon states in presence of losses

In this appendix we report the derivation and the expressions of the density matrix of the
amplified single photon states after the propagation over a lossy channel. The action of
losses on a single mode state, identified by the wave vector ki and the polarization state
~πi, is defined by the following superoperator [DSEB04]:

Lki,~π [σ̂ ] =
∞

∑
p=0

(1−ηi)
p/2

η
(â†

ki,~πi
âki,~πi

)/2

i

âp
ki,~πi√

p!
σ̂

â† p
ki,~πi√

p!
η
(â†

ki,~πi
âki,~πi

)/2

i (1−ηi)
p/2. (A.1)

As a further assumption, we consider the losses to be independent from the polarization
state ~πi.

In the following sections we calculate the density matrix coefficients for the two differ-
ent amplifiers, that is, corresponding to the collinear and the noncollinear configurations
when injected by a single photon state.

A.1 Density matrix of the phase-covariant amplified states
after the propagation over a lossy channel

In this section we report the derivation of the density matrix coefficients for the collinear
optical parametric amplifier. More specifically, in Sec. A.1.1 we focus our analysis on
the field emitted in the spontaneous emission regime. Then, in Sec. A.1.2 we consider
the field emitted by amplification of a single-photon with equatorial polarization. For
this class of input state, the present amplifier acts as an optimal phase-covariant cloning
machine. Finally, for sake of completeness we consider in Sec. A.1.3 the field emitted by
amplification of a single-photon with linear {~πH ,~πV} polarization.
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A.1.1 Density matrix for the spontaneous emission field
We begin by considering the spontaneous emission state ρ̂0

η . The starting point is the
expression for the unperturbed state |Φ0

OPA〉:

|Φ0
OPA〉=

1
C

∞

∑
i, j=0

(
e−ıφ Γ

2

)i(
−e−ıφ Γ

2

) j √(2i)!
√

(2 j)!
i! j!

|(2i)φ ,(2 j)φ⊥〉, (A.2)

where C = coshg e Γ = tanhg, with g gain of the amplifier, with the state written in the
polarization basis

{
~πφ ,~πφ⊥

}
. The density matrix after the action of the lossy channel ρ̂0

η

is obtained by applying the map of Eq. (A.1) to the two-mode density matrix of the state
ρ̂0

OPA = |Φ0
OPA〉〈Φ0

OPA| according to: ρ̂0
η = (Lφ ⊗Lφ⊥)[ρ̂

0
OPA]. The output density matrix

is the sum of four terms with different parities:

ρ̂
0
η =

∞

∑
i, j,k,q=0

{(
ρ̂

0
η

)
i jkq |(2i+1)φ ,(2 j)φ⊥〉〈(2k+1)φ ,(2q)φ⊥|+

+
(
ρ̂

0
η

)
i jkq |(2i)φ ,(2 j)φ⊥〉〈(2k)φ ,(2q)φ⊥|+

+
(
ρ̂

0
η

)
i jkq |(2i+1)φ ,(2 j+1)φ⊥〉〈(2k+1)φ ,(2q+1)φ⊥|+

+
(
ρ̂

0
η

)
i jkq |(2i)φ ,(2 j+1)φ⊥〉〈(2k)φ ,(2q+1)φ⊥|

}
.

(A.3)

The density matrix coefficients exhibit an explicit dependence on the parity and their
expression is reported hereafter. For i, j,k,q even we obtain:
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For i,k odd and j,q even, we obtain:
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For i,k even and j,q odd, we obtain:
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Finally, for i, j,k,q odd we obtain:
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In these expressions, R = 1−η is the losses parameter, and 2F1 (α,β ;γ;z) are hypergeo-
metric functions [Sla66].

A.1.2 Density matrix for the amplified single-photon with equatorial
polarization

Here we report the coefficients for the density matrix of the amplified single-photon states,
when a single photon with equatorial polarization~πφ is injected in the state |1φ ,0φ⊥〉. The
starting point is the expression of the unperturbed state |Φφ

OPA〉:
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where C = coshg e Γ = tanhg, with g gain of the amplifier, with the state written in
the polarization basis

{
~πφ ,~πφ⊥

}
. We now apply the lossy channel map of Eq. (A.1)

to the two-mode density matrix of the state ρ̂
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We now report the expressions of the parity-dependent density matrix coefficients. For
i, j,k,q even we obtain:(
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For i,k even and j,q odd, we obtain:(
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Finally, for i, j,k,q odd we obtain:(

ρ̂
φ

η

)
i, j,k,q

=
1

C4

(
Γ

2
e−ıφ

) i+k
2 −1(

−Γ

2
e−ıφ

) j+q
2 −1

RΓ
2 (
√

η)i+ j+k+q
√

i! j!k!q!
i−1

2 ! j−1
2 ! k−1

2 !q−1
2 ![

1
1−R2Γ2

]2+ i+ j+k+q
2

2F1

(
−1+ i

2
,−1+ k

2
;
1
2

;R2
Γ

2
)

2F1

(
1− j

2
,
1−q

2
;
3
2

;R2
Γ

2
)
.

(A.13)
Again, in these expressions, R = 1−η is the losses parameter, and 2F1 (α,β ;γ;z) are
hypergeometric functions [Sla66].

A.1.3 Density matrix for the amplified single-photon with ~πH ,~πV po-
larization

The procedure for the evaluation of the density matrix of the state after losses is the
same applied in the previous sections. Let us analyze the |ΦH

OPA〉 state, the same results
apply for the |ΦV

OPA〉 state by relabelling the optical modes. The density matrix after the
amplification process reads:

ρ̂
H
OPA = |ΦH

OPA〉〈ΦH
OPA|=

1
C4

∞

∑
n,m=0

Γ
n+m√n+1

√
m+1|(n+1)H,nV 〉〈(m+1)H,mV |.

(A.14)
After the application of the lossy channel map: ρ̂H

η =
(
LH ⊗LV

)
[ρ̂H

OPA], we finally
obtain:

ρ̂
H
η =

∞

∑
i=1

i−1

∑
j=0

∞

∑
k=0

(
∞

∑
p=0

γ i jk;p

)
|iH, jV 〉〈kH,(k+ j− i)V |+

+
∞

∑
i=0

∞

∑
j=i

∞

∑
k=0

(
∞

∑
p= j+1−i

γ i jk;p

)
|iH, jV 〉〈kH,(k+ j− i)V |,

(A.15)
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where the coefficients γ i jk;p are:

γ i jk;p =
Γ2p+i+k−2

C4

√
p+ i

√
p+ k η

k+ jR2p+i−1− j

[(
p+ i

i

)(
p+ i−1

j

)(
p+ k

k

)(
p+ k−1
k+ j−1

)] 1
2

.

(A.16)

A.2 Density matrix of the universal amplified states after
the propagation over a lossy channel

In this section we report the detailed calculation of the coefficient of the density matrix
for the |Φ1ψ〉 states in presence of losses. We focus our attention on the |1ψ〉1 case only,
since the calculation for the complementary state |1ψ⊥〉1 is similar.

First we investigate the features of the interaction Hamiltonian. Due to the properties
of ĤSPDC, the time evolution operator in the interaction picture Û = exp(−ıĤSPDCt/h̄)
can be decomposed as the product of two independent operators Û = ÛA ⊗ÛA ′ , acting
on two different Hilbert spaces corresponding to the two sets of modes [PSS+03, DPS04]:

A ≡ {(k1,~πψ),(k2,~πψ⊥)}; A ′ ≡ {(k1,~πψ⊥),(k2,~πψ)}. (A.17)

The operators Û = ÛA ⊗ÛA ′ take the form:

ÛA = exp
[
χt(â†

1ψ
â†

2ψ⊥
− â1ψ â2ψ⊥)

]
, (A.18)

ÛA ′ = exp
[
−χt(â†

1ψ⊥
â†

2ψ
− â1ψ⊥ â2ψ)

]
. (A.19)

In the case of a separable input state in the OPA ρ̂ = ρ̂A ⊗ ρ̂A ′ , the amplified states can
be written in a separable form:

ρ̂(t) = Û ρ̂Û† =
(

ÛA ρ̂A Û†
A

)
⊗
(

ÛA ′ ρ̂A ′Û
†
A ′

)
. (A.20)

This separability property will be exploited in the remaining part of the paper both for the
calculation of the density matrix after losses and for the evaluation of the Bures distance.

A.2.1 Density matrix coefficients for the amplified states

In this section we derive the density matrix coefficients for the amplified states |Φ1ψ(1ψ⊥)
SPDC 〉

after the transmission over a lossy channel. We focus our attention on the |1ψ〉1 case only,
since the calculation for the complementary state |1ψ⊥〉1 is similar. Due to the property
of the universal amplifier analyzed previously, we analyze separately the two subspaces
A and A ′ [Eq.(A.20)]. Since the time evolution operators ÛA and ÛA ′ are equivalent
apart from a global phase factor (−1), the quantum states for the amplifier A ′ can be
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directly derived from the expressions obtained for amplifier A . Only two relevant cases
are considered: the vacuum injected state ÛA |0〉 (spontaneous emission) and the single-
photon injected ÛA |1ψ〉1 state. This analysis can be performed separately for the two
amplifiers since the separability feature also holds after the amplified state propagates over
a lossy channel in both k1 and k2 spatial modes. This is a consequence of the properties
of the lossy channel map, which being a “local” transformation, acts independently on
each mode. The output state after losses reads:

L [ρ̂(t)] = LA

[
ÛA ρ̂A Û†

A

]
⊗LA ′

[
ÛA ′ ρ̂A ′Û

†
A ′

]
. (A.21)

Here LA = Lk1,~πψ
⊗Lk2,~πψ⊥

, LA ′ = Lk1,~πψ⊥
⊗Lk2,~πψ

are the maps induced by losses
for the two subspaces, where the single mode map (ki,~π) is given by Eq.(A.1) Again,
the transmission efficiency of the channels ηi are assumed to be polarization independent.
We then label η1 and η2 the two efficiencies for the two spatial modes.

We begin with the analysis of the spontaneous emission regime. The calculation pro-
ceeds as follows. Starting from the quantum state for the subsystem A ÛA |0〉, the output
state after the transmission over the lossy channel is obtained by applying the lossy chan-
nel map (A.1) to the density matrix of the state ρ̂0

A . The same procedure applies for the
single photon amplified states, where the seed of the amplifier A is the single photon
state |1ψ〉. In this case, the input state in the lossy channel is ÛA . By applying the lossy
channel map over the density matrix ρ̂

1ψ

A of the state, we find the desired output states.
Details on the calculation and the complete expressions of the coefficients for the density
matrices ρ̂

1ψ

A (η1,η2) and ρ̂0
A (η1,η2) are reported below.

Let us emphasize that, due to analogy of the Hamiltonian of the two amplifier A and
A ′, the density matrices of the states ρ̂0

A ′(η1,η2) and ρ̂
1ψ⊥
A ′ (η1,η2) for amplifier A ′ can

be directly derived from Eqs.(A.24-A.26) and (A.29-A.31) by substituting (Γ) with (−Γ)
and by re-labelling the indexes describing the spatial and polarization modes.

We begin with the analysis of the spontaneous emission regime. The quantum state
for the subsystem A is given by:

ÛA |0〉=
1
C

∞

∑
n=0

Γ
n|nψ〉1⊗|mψ⊥〉2. (A.22)

The output state after the transmission over the lossy channel is obtained by applying the
lossy channel map (A.1) to the density matrix of the state ρ̂0

A :

ρ̂
0
A (η1,η2) =

(
Lk1,~πψ

⊗Lk2,~πψ⊥

)[
ρ̂

0
A

]
. (A.23)

After direct application of the lossy channel map on the density matrix, the following
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expression is obtained:

ρ̂
0
A (η1,η2) =

∞

∑
i=0

i

∑
j=0

∞

∑
k=i− j

[
ρ̂

0
A (η1,η2)

](i≥ j)
i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|+

+
∞

∑
i=0

∞

∑
j=i+1

∞

∑
k=0

[
ρ̂

0
A (η1,η2)

](i< j)
i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|,

(A.24)
where the coefficients for i≥ j and i < j are given by:[

ρ̂
0
A (η1,η2)

](i≥ j)
i jk =

1
C2 Γ

i+k η
(i+k)/2
1 η

(2 j+k−i)/2
2 Ri− j

2

√
i!k!

(i− j)!
√

j!( j+ k− i)!
(A.25)

× 2F1
(
1+ i,1+ k, i+ i− j;Γ

2R1R2
)
,[

ρ̂
0
A (η1,η2)

](i< j)
i jk =

1
C2 Γ

i+k η
(i+k)/2
1 η

(2 j+k−i)/2
2 R j−i

1

√
j!( j+ k− i)!

( j− i)!
√

i!k!
(A.26)

× 2F1
(
1+ j,1+ j+ k− i,1+ j− i;Γ

2R1R2
)
,

where 2F1(a,b,c;z) is the hypergeometric function defined in Ref. [Sla66]. The same
procedure has been applied to the stimulated case, where the seed of the amplifier A is
the single photon state |1ψ〉. In this case, the input state in the lossy channel has the
following expression:

ÛA |1ψ〉1 =
1

C2

∞

∑
n=0

Γ
n√n+1|(n+1)ψ〉1⊗|mψ⊥〉2. (A.27)

By applying the lossy channel map over the density matrix ρ̂
1ψ

A of the state, we find:

ρ̂
1ψ

A (η1,η2) =
(
Lk1,~πψ

⊗Lk2,~πψ⊥

)[
ρ̂

1ψ

A

]
. (A.28)

The application of the map leads to the following expression for the density matrix:

ρ̂
1ψ

A (η1,η2) =
∞

∑
i=0

i−1

∑
j=0

∞

∑
k=i− j

[
ρ̂

1ψ

A (η1,η2)
](i≥ j+1)

i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|+

+
∞

∑
i=0

∞

∑
j=i

∞

∑
k=0

[
ρ̂

1ψ

A (η1,η2)
](i≥ j)

i jk |iψ〉1〈kψ|⊗ | jψ⊥〉2〈( j+ k− i)ψ⊥|,

(A.29)
where the coefficients for i≥ j+1 and i≤ j are given by:[
ρ̂

1ψ

A (η1,η2)
](i≥ j)

i jk =
1

C4 Γ
i+k−2 η

(i+k)/2
1 η

(2 j+k−i)/2
2 Ri− j−1

2

√
i!k!

(i− j−1)!
√

j!( j+ k− i)!
(A.30)

× 2F1
(
1+ i,1+ k, i− j;Γ

2R1R2
)
,[

ρ̂
1ψ

A (T1,T2)
](i< j)

i jk =
1

C2 Γ
i+k T (i+k)/2

1 T (2 j+k−i)/2
2 R j−i+1

1

√
j!( j+ k− i)!

( j− i+1)!
√

i!k!
(A.31)

× ( j+1)( j+ k− i+1)2F1
(
2+ j,2+ j+ k− i,2+ j− i;Γ

2R1R2
)
.
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According to previous considerations, the density matrices of the states ρ̂0
A ′(η1,η2) and

ρ̂
1ψ⊥
A ′ (η1,η2) for amplifier A ′ can be directly derived from Eqs.(A.24-A.26) and (A.29-

A.31) by substituting (Γ) with (−Γ) and by re-labelling the indexes describing the spatial
and polarization modes. Finally, the complete output state can be reconstructed as:

ρ̂
1ψ(η1,η2) = ρ̂

1ψ

A (η1,η2)⊗ ρ̂
0
A ′(η1,η2). (A.32)

A.2.2 Density matrix coefficients on the reduced k1 spatial mode for
the amplified states

In this section we report the expression of the coefficients for the reduced density ma-
trix on spatial mode k1 of the |Φ1ψ

SPDC〉 after the propagation over a lossy channel. Such
result has been exploited in the calculation of the Bures distance, where the action of
the O-Filter device has been analyzed. The starting point of the calculation is the ex-
pression (A.1) of the |Φ1ψ

SPDC〉. After the partial trace on mode k2, the density matrix

ρ̂
1ψ

k1
= Trk2

[
|Φ1ψ

SPDC〉〈Φ
1ψ

SPDC|
]

reads:

ρ̂
1ψ

k1
=

∞

∑
n=0

∞

∑
m=0

Γ2n+2m

C6 (n+1)|(n+1)ψ〉1〈(n+1)ψ|⊗ |mψ⊥〉1〈mψ⊥|. (A.33)

Finally, the application of the lossy channel map leads to the following density matrix:

ρ̂
1ψ

k1
(η) =

∞

∑
i=0

∞

∑
j=0

[
ρ

1ψ

k1
(η)
]

i j
|iψ〉1〈iψ|⊗ | jψ⊥〉1〈 jψ⊥|, (A.34)

where the coefficients are given by:[
ρ

1ψ

k1

]
i j
=

Γ2i+2 j−2

C6 η
i+ j (i+Γ

2R
)(

1−Γ
2R
)−3−i− j

. (A.35)



Appendix B

Generalized micro-macro entanglement
criterion for dichotomic operators

In this appendix we demonstrate the inequality of Eq.(5.21), which gives a generalized
bound for an entanglement test in a micro-macro bipartite system and dichotomic mea-
surements.

B.1 General treatment of dichotomic measurements
The density matrix of a separable state, composed by two subsystems A and B, can be
written as:

ρ̂ = ∑
i

pi

(
ρ̂

A
i ⊗ ρ̂

B
i

)
. (B.1)

We restrict our attention to the set of dichotomic measurements, i.e. (±1) valued upon
each subsystem ÔA and ÔB respectively. The average value of a generic measurement
operator Ô j = Ô j

A⊗ Ô j
B is given by V j = Tr

(
ρ̂Ô j), where the superscript j refers to a

specific choice of the operator Ô j. The average value of the i− th component of the
decomposition of the density matrix reads:

vi j = Tr
[(

ρ̂
A
i ⊗ ρ̂

B
i

)
Ô j
]
= TrA

(
ρ̂

A
i Ô j

A

)
TrB

(
ρ̂

B
i Ô j

B

)
= vi j

A · v
i j
B . (B.2)

The average value V j can then be reexpressed as:

V j = Tr

(
∑

i
pi

(
ρ̂

A
i ⊗ ρ̂

B
i

)
Ô j

)
= ∑

i
pi vi j. (B.3)

The following inequality holds:

∣∣V j∣∣= ∣∣∣∣∣∑i
pi vi j

∣∣∣∣∣≤∑
i

pi
∣∣vi j∣∣ , (B.4)
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since pi ≥ 0. The sum of the average value over three different operators Ô j, where
{ j = 1, . . . ,3}, is given by the following expression:

3

∑
j=1

∣∣V j∣∣≤∑
i

pi

(∣∣vi1∣∣+ ∣∣vi2∣∣+ ∣∣vi3∣∣)≤∑
i

pi

(∣∣vi1
A
∣∣+ ∣∣vi2

A
∣∣+ ∣∣vi3

A
∣∣) (B.5)

where, since −1≤ vi j
B ≤+1, the following inequality has been exploited:∣∣vi j∣∣= ∣∣∣vi j

A · v
i j
B

∣∣∣≤ ∣∣∣vi j
A

∣∣∣ . (B.6)

The latter can be always decomposed as: ρ̂A
i = ∑n qi

n|ψn〉A A〈ψn|, where the set
{

qi
n
}

of probabilities satisfied the normalization condition ∑n qn = 1. We can then derive the
following inequality:

3

∑
j=1

∣∣∣vi j
A

∣∣∣= 3

∑
j=1

∣∣∣∣Tr
(

∑
n

qi
n|ψn〉A A〈ψn|Ô j

A

)∣∣∣∣≤ 3

∑
j=1

∑
n

qi
n

∣∣∣Tr
(
|ψn〉A A〈ψn|Ô j

A

)∣∣∣ . (B.7)

Substituting this result in Eq.(B.5), we obtain:
3

∑
j=1

∣∣V j∣∣≤ 3

∑
j=1

∑
i

pi ∑
n

qi
n

∣∣∣A〈ψn|Ô j
A|ψn〉A

∣∣∣≤∑
i

pi ∑
n

qi
n max
|ψn〉

(
3

∑
j=1

∣∣∣A〈ψn|Ô j
A|ψn〉A

∣∣∣) .

(B.8)
The insertion of the normalization condition for the coefficients {pi} and

{
qi

n
}

completes
the proof. For all bipartite separable states, a dichotomic measurement on both sides obey
the following inequality:

3

∑
j=1

∣∣V j∣∣≤max
|ψ〉

3

∑
j=1

∣∣∣A〈ψ|Ô j
A|ψ〉A

∣∣∣ , (B.9)

where the maximization is performed over all possible states of system A.

B.2 Specific Micro-Macro case
We now specialize the result of previous section in the microscopic-macroscopic states,
that is, when system A is a single spin-1/2 particle. Let us make a specific choice for the

measurement operators
{

Ô j
A

}3

j=1
. For a single spin-1/2 particle, we choose the Pauli op-

erators
{

σ̂
j

A

}3

j=1
. Hereafter, we remove the subscript A in all the equations for simplicity

of notation. The entanglement criterium (B.9) for this choice of the system and operators
then reads:

3

∑
j=1

∣∣V j∣∣≤max
|ψ〉

3

∑
j=1

∣∣〈ψ|σ̂ j|ψ〉
∣∣≤√3. (B.10)

where the latter has been maximized over all possible choice of single particel states
|ψ〉= α|+〉+β |−〉.



Appendix C

Evaluation of the correlators for the
hybrid CHSH-based inequality and
entanglement witness for the amplified
entangled pair

In this appendix we report the full calculation for the correlators (6.15,6.18,6.19) of the
hybrid entanglement tests performed in Chap. 5.

C.1 Correlator for the CHSH-based test in ideal condi-
tions

In this section we report the full calculation of the correlator C (Xχ ,Pχ ,χ;φ) reported in
the main letter. We begin with the two-mode correlation Q̂, defined as:

Q̂(αχ ,αχ⊥,χ;φ) = σ̂
A(φ)⊗

(
Π̂

B
χ(αχ)⊗ Π̂

B
χ⊥(αχ⊥)

)
. (C.1)

This operator corresponds to the measurement of the generalized parity operator on both
polarization modes {~πχ ,~πχ⊥} of the macro-part of our state. The average Q(αχ ,αχ⊥,χ;φ)=

AB〈Ψ−|Q̂|Ψ−〉AB is related to the correlator of the CHSH-based inequality by:

C (αχ ,χ;φ) =
2
π

∫
d2

αχ⊥Q(αχ ,αχ⊥,χ;φ). (C.2)

This expression holds by considering the closure relation 2
π

∫
d2αχ⊥Π̂χ⊥(αχ⊥) ≡ 1χ⊥ ,

which in turns comes from the normalization of the Wigner function.
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C.1.1 Two-mode correlator
We now calculate the two-mode correlator Q(αχ ,αχ⊥,χ;φ). Let us recall the expression
of the micro-macro state under investigation:

|Ψ−〉AB =
1√
2
(|φ〉A|Φφ

⊥〉B−|φ⊥〉A|Φφ 〉B), (C.3)

where the state has been expressed in a generic equatorial polarization basis {~πφ ,~πφ⊥}.
The value of Q(αχ ,αχ⊥,χ;φ) is obtained by exploiting the relation between the two-
mode Π̂B

χ(αχ)⊗ Π̂B
χ⊥(αχ⊥) operator and the two-mode Wigner function B〈Φ|Π̂B

χ(αχ)⊗
Π̂B

χ⊥(αχ⊥)|Φ〉B=π2

4 WΦ(αχ ,αχ⊥). We get:

Q(αχ ,αχ⊥,χ;φ) =
π2

8

[
W B

φ⊥(αχ ,αχ⊥)−W B
φ (αχ ,αχ⊥)

]
. (C.4)

Here, W B
φ⊥ and W B

φ
stand for the two-mode Wigner functions of an amplified |φ⊥〉 and |φ〉

single-photon states respectively, evaluated at the rotated phase-space variables {αχ ,αχ⊥}.
The correlator QAB(αχ ,αχ⊥,χ;φ) is then derived starting from the expression of the
Wigner functions [SVD+09] [ S = sinhg and C = coshg]:

W B
φ⊥(αχ ,αχ⊥) =

4
π2

{
4
[
|αφ⊥|2(1+2S2)+2CS Re(α2

φ⊥eıφ )
]
−1
}
×

× e−2
[
(|αφ⊥ |

2+|αφ |2)(1+2S2)+2CSRe(α2
φ⊥eıφ−α2

φ
eıφ )

]
,

W B
φ (αχ ,αχ⊥) =

4
π2

{
4
[
|αφ |2(1+2S2)+2CS Re(α2

φ eıφ )
]
−1
}
×

× e−2
[
(|αφ⊥ |

2+|αφ |2)(1+2S2)+2CSRe(α2
φ⊥eıφ−α2

φ
eıφ )

]
,

(C.5)

by rotating the polarization of the phase-space variables {αφ ,αφ⊥} as:

αφ = eı(χ−φ)/2[αχ cos(χ−φ)− ıαχ⊥ sin(χ−φ)],

αφ⊥ = eı(χ−φ)/2[αχ⊥ cos(χ−φ)− ıαχ sin(χ−φ)].
(C.6)

Finally, we replace the complex phase-space variables with the real quadrature variables
(Xχ ,Pχ ,Xχ⊥,Pχ⊥) and finally obtain the full expression for Q(Xχ ,Pχ ,Xχ⊥,Pχ⊥,χ;φ). How-
ever, this is too lengthy and rather uninformative and will not be reported here.

C.1.2 Single-mode correlator
We now calculate the single mode correlator C (Xχ ,Pχ ,χ;φ). This choice of the mea-
surement operator allows to capture the nonlocal features of the micro-macro state gen-
erated by amplification of an entangled photon pair. To evaluate this quantity we exploit
Eq. (C.2):

C (Xχ ,Pχ ,χ;φ)=
2
π

∫ ∫
dΩQ(Xχ ,Pχ ,Xχ⊥,Pχ⊥,χ;φ), (C.7)
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where the integral in d2αχ⊥ has been replaced by the integral in the quadrature variables
dΩ=dXχ⊥dPχ⊥ . After straightforward algebra, we obtain the following expression for the
correlator:

C (Xχ ,Pχ ,χ;φ) = cos[2(χ−φ)]e−2(e−2gX2
χ+e2gP2

χ )
[
1−2(e−2gX2

χ + e2gP2
χ)
]
, (C.8)

where {X χ ,Pχ} define a set of rotated variables X χ = Xχ cos(χ/2)−Pχ sin(χ/2), Pχ =
Xχ sin(χ/2)+Pχ cos(χ/2). The maximum of such correlation operator is obtained at the
origin of the phase-space and reads C (0,0,χ;φ) = cos[2(χ−φ)].

C.2 Correlator for the CHSH-based test under detection
losses and nonunitary injection efficiency

Here we report in details the calculation of the correlator Cp,η , when detection losses
and a nonunitary injection efficiency are taken into account. These two effects represent
the two main issues for an experimental observation of entanglement in a micro-macro
system.

The model for the effect of losses at the detection stage is performed by inserting a
beam-splitter of transmittivity η along the transmission path of the field on mode kB. The
other port of this beam-splitter is injected with a vacuum state, thus introducing vacuum-
noise fluctuations in the system. Here we demonstrate that the correlator Cη in presence
of detection losses η can be evaluated as the convolution of the lossless correlator C with
a Gaussian function of the form:

Cη(Xχ ,Pχ ,χ;φ) =
2

π(1−η)

∫ ∫
dX ′χdP′χ C(X ′χ ,P

′
χ ,χ;φ)e

−2
[
(Xχ−

√
ηX ′χ )2

1−η
+

(Pχ−
√

ηP′χ )2

1−η

]
.

(C.9)
We begin by writing the density matrix ρ̂Ψ−

η of the micro-macro state after losses occur at
the detection stage:

ρ̂
Ψ−
η =

1
2

{
|φ〉A〈φ |⊗L

[
|Φφ⊥〉B〈Φφ⊥|

]
|φ⊥〉A〈φ⊥|⊗L

[
|Φφ 〉B〈Φφ |

]
−|φ〉A〈φ⊥|⊗L

[
|Φφ⊥〉B〈Φφ |

]
−|φ⊥〉A〈φ |⊗L

[
|Φφ 〉B〈Φφ⊥|

]}
,

(C.10)

where L [·] is the map that describes the action of detection losses. The evaluation of the
correlation operator Q on this density matrix leads to:

Qη(αχ ,αχ⊥,χ;φ)=
π2

8
[
W B

η ,φ⊥(αχ ,αχ⊥)−W B
η ,φ (αχ ,αχ⊥)

]
, (C.11)

where W B
η ,φ and W B

η ,φ⊥ are the Wigner functions of the macrostates |Φφ 〉 and |Φφ⊥〉 after
losses. The action of detection losses in the phase-space can be written in the form of a
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Gaussian convolution [Leo93]:

Wη(X ,P) =
∫ ∫

dX ′dP′W (X ,P)Kη(X ,P,X ′,P′), (C.12)

where Kη(X ,P,X ′,P′)= 2
π(1−η) exp{−2[ (X−

√
ηX ′)2

1−η
+

(P−√ηP′)2

1−η
]}. The correlator Cη is

obtained from Qη as:

Cη(Xχ ,Pχ ,χ;φ) =
2
π

∫ ∫
dΩQη(Xχ ,Pχ ,Xχ⊥,Pχ⊥,χ;φ). (C.13)

By writing explicitly the Wigner function after losses as a Gaussian convolution we obtain

Cη(Xχ ,Pχ ,χ;φ) =
2
π

∫ ∫
dXχ⊥dPχ⊥I (X ′χ ,P

′
χ), (C.14)

where:
I (X ′χ ,P

′
χ) =

∫ ∫
dX ′χ⊥dP′χ⊥Q(X ′χ ,P

′
χ ,X

′
χ⊥,P

′
χ⊥,χ;φ)

×
∫ ∫

dXχ⊥dPχ⊥Kη(Xχ⊥,Pχ⊥,X
′
χ⊥,P

′
χ⊥).

(C.15)

By changing the integration variables as Xχ⊥→ X̃χ⊥ =
Xχ⊥−

√
ηX ′χ⊥√

1−η
, Pχ⊥→ P̃χ⊥ =

Pχ⊥−
√

ηP′χ⊥√
1−η

we have the explicit function:

I (X ′χ ,P
′
χ) =

2|J|
π(1−η)

∫ ∫
dX̃χ⊥dP̃χ⊥e−2(X̃2

χ⊥+P̃2
χ⊥)

×
∫ ∫

dX ′χ⊥dP′χ⊥Q(X ′χ ,P
′
χ ,X

′
χ⊥,P

′
χ⊥,χ;φ),

(C.16)

where |J| = 1−η . Eq. (C.9) is found by integrating over dX̃χ⊥dP̃χ⊥ , using Eq. (C.2) to
have I (X ′χ ,P

′
χ) = C (X ′χ ,P

′
χ ,χ;φ) and replacing this in Eq. (C.14).

We now proceed with the explicit calculation of Eq. (C.9). As a first step, we rotate
the quadratures (Xχ ,Pχ) and the integration variables (X ′χ ,P

′
χ) as:

X χ=Xχ cos(χ/2)−Pχ sin(χ/2),

Pχ=Xχ sin(χ/2)+Pχ cos(χ/2),
(C.17)

with X = (X ,X ′) and P = (P,P′) and the convention that only primed (unprimed) vari-
ables are involved in the equations above. The correlator Cη can be then expressed as a
function of the rotated variables. After replacing the expression of Kη in the correlator
Cη , it is matter of some straightforward (although tedious) algebra to find that:

Cη(X χ ,Pχ ,χ;φ) =
cos[2(χ−φ)]e

−2
[

X2
χ

M +
P2

χ

N

]
√

1+4η(1−η)n
×

×
{

1− (1−η)(1+2ηn)
1+4η(1−η)n

−2η

[
e2gX2

χ

M 2 +
e−2gP2

χ

N 2

]}
,

(C.18)
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with M = ηe2g +(1−η) and N = ηe−2g +(1−η). This expression is maximized at
the origin of the phase space, reading:

Cη(X χ ,Pχ ,χ;φ) = cos[2(χ−φ)]L (η ,g), (C.19)

where the loss function L (η ,g) has the form:

L (η ,g) =
η +2η(1−η)n

(1+4η(1−η)n)3/2 . (C.20)

In typical experimental conditions, the injection of the single photon of the entangled
pair |ψ−〉AB into the optical parametric amplifier, occurs with an efficiency p < 1 because
of the imperfect matching between the optical modes of the amplifier and the single-
photon one. Such a non-ideality can be modeled by allowing for a probability p of correct
single-photon injection and a complementary probability (1− p) that just vacuum state is
injected in the amplifier and no correlations between the two output modes are set. This
modifies the density matrix of the output modes as:

ρ̂
ψ−
p = p|ψ−〉AB〈ψ−|+(1− p)

1̂A

2
⊗|0〉B〈0|, (C.21)

where 1̂A = |H〉A〈H|+ |V 〉A〈V | is a completely mixed single-photon polarization state,
and |0〉B〈0| is the vacuum state. The bipartite state after the amplification process then
reads:

ρ̂
Ψ−
p = p|Ψ−〉AB〈Ψ−|+(1− p)

1̂A

2
⊗
(

ÛOPA|0〉B〈0|Û†
OPA

)
. (C.22)

We can now proceed with the calculation of Ĉ (αχ ,χ;φ) as:

C (αχ ,χ;φ) = p AB〈Ψ−|σ̂A(φ)⊗ Π̂
B(αχ ,χ)|Ψ−〉AB

+(1−p)Tr
[
1̂A

2
⊗
(

ÛOPA|0〉B〈0|Û†
OPA

)
σ̂

A(φ)⊗Π̂
B(αχ ,χ)

]
.

(C.23)

As the second term factorizes (due to the lack of quantum correlations) and Tr
[
1̂A
2 σ̂A(φ)

]
=

0, such contribution is null. Therefore, under non-ideal injection efficiency, the correlator
is related to the ideal one according to Cp(Xχ ,Pχ ,χ;φ) = p C (Xχ ,Pχ ,χ;φ). This result
can be extended to the case of nonunitary detection efficiency, leading to:

Cη ,p(Xχ ,Pχ ,χ;φ) = p Cη(Xχ ,Pχ ,χ;φ). (C.24)

C.3 Correlator for the entanglement witness after detec-
tion losses and nonunitary injection efficiency

Here we sketch the steps needed for the calculation of the correlator C̃p,η entering the
entanglement test based on the witness operator of Eq. (6.11) under losses and non-ideal
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photon injection. By using arguments similar to those put forward in the previous sec-
tions, we have:

C̃η(αχ ,χ;φ) =
1
2

{
Tr
[
L
[
|Φφ⊥〉B〈Φφ⊥|

]
ÔB

χ,χ⊥(αχ ,χ;η)
]

− Tr
[
L
[
|Φφ 〉B〈Φφ |

]
ÔB

χ,χ⊥(αχ ,χ;η)
]}

,
(C.25)

where L [·] is the map describing the lossy process. We focus on the case η ≥ 1
2 . By

exploiting results that have been previously obtained here, we have:

C̃η(αχ ,χ;φ)=
π

4η

∫
d2

αχ⊥

(
W η

φ⊥
(αχ ,αχ⊥)−W η

φ
(αχ ,αχ⊥)

)
. (C.26)

We now exploit the chain of relations:

π

4

∫
d2

αχ⊥

(
W η

φ⊥
(αχ ,αχ⊥)−W η

φ
(αχ ,αχ⊥)

)
=

=
2
π

∫
d2

αχ⊥
π2

8

(
W η

φ⊥
(αχ ,αχ⊥)−W η

φ
(αχ ,αχ⊥)

)
=

=
2
π

∫
d2

αχ⊥Qη(αχ ,αχ⊥,χ;φ) = Cη(αχ ,χ;φ),

(C.27)

so as to get C̃η(αχ ,χ;φ ;η) = 1
η
C AB

η (αχ ,χ;φ). With an analogous procedure, we obtain:

C̃η(αχ ,χ;φ ;η) =

{
1
η

Cη(αχ ,χ;φ) if 1
2 < η ≤ 1,

2 Cη(αχ ,χ;φ) if η ≤ 1
2 .

(C.28)

We can further generalize this result so as to take into account the effect of a nonunitary
injection efficiency and finally get C̃η ,p(αχ ,χ;φ ;η) = p C̃η(αχ ,χ;φ ;η).



Appendix D

Linearity of the map describing the
photon-addition process’
implementation

In this section we demonstrate that the process of photon addition is described by a linear
map, that is, possessing the following property:

A
[
∑
n,m

ρnm|n〉〈m|
]
= ∑

n,m
ρnmA

[
|n〉〈m|

]
. (D.1)

To proceed with the proof, we now write a formal expression for the map that describes
the process shown in Fig.8.2. By applying the sequence of operation (i)-(v) that represent
the optical implementation of the photon-addition process, we obtain the following map:

A [ρ̂A] = TrB

[
(1̂A⊗ âB)TrCD

[
(Û γr

AC⊗Û γr
BD)
[
(Û r

AB⊗ 1̂C⊗ 1̂D)
(

ρ̂A⊗|0〉B〈0|⊗

⊗|0〉C〈0|⊗ |0〉D〈0|
)
(Û r †

AB⊗ 1̂C⊗ 1̂D)
]
(Û γr †

AC ⊗Û γr †
BD )

]
(1̂A⊗ â†

B)
]
.

(D.2)

We now proceed with the proof of the linearity of the process A . Replacing the input
density matrix ρ̂A = ∑n,m ρnm|n〉A〈m| we obtain:

A [ρ̂A] = A
[
∑
n,m

ρnm|n〉A〈m|
]
= TrB

[
(1̂A⊗ âB)TrCD

[
(Û γr

AC⊗Û γr
BD)[

(Û r
AB⊗ 1̂C⊗ 1̂D)

(
∑
n,m

ρnm|n〉A〈m|⊗ |0〉B〈0|⊗ |0〉C〈0|⊗ |0〉D〈0|
)

(Û r †
AB⊗ 1̂C⊗ 1̂D)

]
(Û γr †

AC ⊗Û γr †
BD )

]
(1̂A⊗ â†

B)
]
.

(D.3)

By exploiting the linearity of the unitary squeezing process Û r
AB⊗ 1̂C⊗ 1̂D:

A [ρ̂A] = TrB

[
(1̂A⊗ âB)TrCD

[
(Û γr

AC⊗Û γr
BD)
[
∑
n,m

ρnm(Û r
AB⊗ 1̂C⊗ 1̂D)

(
|n〉A〈m|⊗ |0〉B〈0|⊗

⊗|0〉C〈0|⊗ |0〉D〈0|
)
(Û r †

AB⊗ 1̂C⊗ 1̂D)
]
(Û γr †

AC ⊗Û γr †
BD )(1̂A⊗ â†

B)
]
.

(D.4)
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By exploiting the linearity of the unitary parasitic squeezing processes Û γr
AC⊗Û γr

BD:

A [ρ̂A] = TrB

[
(1̂A⊗ âB)TrCD

[
∑
n,m

ρnm(Û
γr
AC⊗Û γr

BD)(Û
r
AB⊗ 1̂C⊗ 1̂D)

(
|n〉A〈m|⊗

⊗|0〉B〈0|⊗⊗|0〉C〈0|⊗ |0〉D〈0|
)
(Û r †

AB⊗ 1̂C⊗ 1̂D)(Û
γr †
AC ⊗Û γr †

BD )
]
(1̂A⊗ â†

B)
]
.

(D.5)
By exploiting the linearity of the partial trace operation TrCD:

A [ρ̂A] = TrB

[
(1̂A⊗ âB)

[
∑
n,m

ρnmTrCD

[
(Û γr

AC⊗Û γr
BD)(Û

r
AB⊗ 1̂C⊗ 1̂D)

(
|n〉A〈m|⊗

⊗|0〉B〈0|⊗ |0〉C〈0|⊗ |0〉D〈0|
)
(Û r †

AB⊗ 1̂C⊗ 1̂D)(Û
γr †
AC ⊗Û γr †

BD )
]]
(1̂A⊗ â†

B)
]
.

(D.6)
By exploiting the linearity of the operation 1̂A⊗ âB, which is written in the form of a
Kraus operator:

A [ρ̂A] = TrB

[
∑
n,m

ρnm(1̂A⊗ âB)TrCD

[
(Û γr

AC⊗Û γr
BD)(Û

r
AB⊗ 1̂C⊗ 1̂D)

(
|n〉A〈m|⊗

⊗|0〉B〈0|⊗ |0〉C〈0|⊗ |0〉D〈0|
)
(Û r †

AB⊗ 1̂C⊗ 1̂D)(Û
γr †
AC ⊗Û γr †

BD )
]
(1̂A⊗ â†

B)
]
.

(D.7)
Finally by exploing the linearity of the partial trace operation TrB:

A [ρ̂A] = ∑
n,m

ρnmTrB

[
(1̂A⊗ âB)TrCD

[
(Û γr

AC⊗Û γr
BD)(Û

r
AB⊗ 1̂C⊗ 1̂D)

(
|n〉A〈m|⊗

⊗|0〉B〈0|⊗ |0〉C〈0|⊗ |0〉D〈0|
)
(Û r †

AB⊗ 1̂C⊗ 1̂D)(Û
γr †
AC ⊗Û γr †

BD )
]
(1̂A⊗ â†

B)
]
=

= ∑
n,m

ρnmA
[
|n〉A〈m|

]
,

(D.8)
which concludes the proof:

A [ρ̂A] = A
[
∑
n,m

ρnm|n〉A〈m|
]
= ∑

n,m
ρnmA

[
|n〉A〈m|

]
. (D.9)

Such result allows to express the action of the photon addition process in the form:(
A [ρ̂A]

)
lk
=A 〈l|A [ρ̂A]|k〉A = ∑

n,m
ρnm A〈l|A

[
|n〉A〈m|

]
|k〉A = ∑

n,m
ρnmA nm

lk . (D.10)



Appendix E

Quantum and Classical Fisher
information for the amplifier-based
phase estimation protocol with coherent
states

In this appendix we elaborate on the material presented in Chaps. 9 and 10, giving more
details on the derivation of the formulas presented there.

E.1 State evolution
In this section we calculate the explicit form of the output state ρ̂

β ,g,η
φ

of our scheme,
by exploiting some operatorial relations for Gaussian states. This will be useful to eval-
uate the quantum and classical Fisher informations in the following sections. The state
impinging at the measurement stage after detection losses can be written in the form:

ρ̂
β ,g,η
φ

= Lη

{
Ŝ+(τ+)Ŝ−(τ−)Lξ

[
D̂+(α+)D̂−(α−)|0〉〈0|

D̂†
+(α+)D̂

†
−(α−)

]
Ŝ†
+(τ+)Ŝ

†
−(τ−)

}
,

(E.1)

where D̂l(αl) = exp(αl â
†
l −α∗l âl) is the displacement operator such that D̂(α)|0〉= |α〉.

The action of the lossy channel ξ and of the displacement operators can be interchanged
as:

Lξ

[
D̂+(α+)D̂−(α−)|0〉〈0|D̂†

+(α+)D̂
†
−(α−)

]
= D̂+(β+)D̂−(β−)|0〉〈0|D̂†

+(β+)D̂
†
−(β−),

(E.2)
where βl =

√
ξ αl . The output state then reads:

ρ̂
β ,g,η
φ

= Lη

{
Ŝ+(τ+)Ŝ−(τ−)D̂+(β+)D̂−(β−)|0〉〈0|D̂†

+(β+)D̂
†
−(β−)Ŝ

†
+(τ+)Ŝ

†
−(τ−)

}
.

(E.3)
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The action of the squeezing operators and of the displacement operators can be now in-
verted according to:

D̂(α)Ŝ(τ) = Ŝ(τ)D̂(α̃+), (E.4)
Ŝ(τ)D̂(α) = D̂(α̃−)Ŝ(τ), (E.5)

where α̃± ≡ α coshg±α∗eıλ sinhg. Using Eqs.(E.4-E.5) we can write:

Ŝl(τl)D̂l(βl)|0〉= D̂l(γl)Ŝl(τl)|0〉, (E.6)

with γl ≡ βl coshτl−β ∗l eıλl sinhτl . The output state can be then written as:

ρ̂
β ,g,η
φ

= Lη

{
D̂+(γ+)D̂−(γ−)Ŝ+(τ+)Ŝ−(τ−)|0〉〈0|Ŝ†

+(τ+)Ŝ
†
−(τ−)D̂

†
+(γ+)D̂

†
−(γ−)

}
.

(E.7)
By interchanging the action of the loss Lη and of the displacement operators D̂l(γl), we
obtain:

ρ̂
β ,g,η
φ

= D̂+(γ̃+)D̂−(γ̃−)Lη

{
Ŝ+(τ+)Ŝ−(τ−)|0〉〈0|Ŝ†

+(τ+)Ŝ
†
−(τ−)

}
D̂†
+(γ̃+)D̂

†
−(γ̃−),

(E.8)
where γ̃l =

√
ηγl . Finally, we exploit the following identity involving the action of Lη

on squeezed vacuum states [ACMTB09]:

Lη

[
Ŝ(τ)|0〉〈0|Ŝ†(τ)

]
= Ŝ†(τeff)ρ̂ th(Neff)Ŝ(τeff), (E.9)

where ρ̂ th is a thermal state. The effective modulus of the squeezing parameter τeff and
the effective thermal noise Neff take the form:

τ
eff =

1
4

log(
P
M
), Neff =

−1+
√

PM
2

, (E.10)

where:
P = ηe2g +1−η , M = ηe−2g +1−η . (E.11)

We can express the output state after detection losses in the Gaussian form

ρ̂
β ,g,η
φ

= D̂+(γ̃+)D̂−(γ̃−)Ŝ+(τeff
+ )Ŝ−(τeff

− )
[
ρ̂

th
+ (Neff)⊗

ρ̂
th
− (Neff)

]
Ŝ†
+(τ

eff
+ )Ŝ†

−(τ
eff
− )D̂†

+(γ̃+)D̂
†
−(γ̃−).

(E.12)

E.1.1 Eigenvalues and Eigenvectors

From Eq. (E.12) one can calculate the spectrum of eigenvalues and eigenvectors of ρ̂
β ,g,η
φ

.
As a first step, we observe that the density matrix of the state takes the form of a separable
state ρ̂

(+)
φ
⊗ ρ̂

(−)
φ

, where:

ρ̂
(l)
φ

= D̂l(γ̃l)Ŝl(τ
eff
l )ρ̂ th

l (Neff
l )Ŝ†

l (τ
eff
l )D̂†

l (γ̃l), (E.13)
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with l = +,−. Since the state for the two modes has the same Gaussian form, the joint
spectrum can be obtained by analyzing directly the ρ̂

(l)
φ

single-mode state. By expanding
the density matrix in the Fock basis we obtain:

ρ̂
(l)
φ

=
∞

∑
n=0

(Neff
l )n

(1+Neff
l )n+1

D̂l(γ̃l)Ŝl(τ
eff
l )|n〉l〈n|Ŝ†

l (τ
eff
l )D̂†

l (γ̃l). (E.14)

The eigenvalues and the eigenvectors of the state ρ̂
(l)
φ

= ∑n ρ
(l)
n |ψ(l)

n 〉l〈ψ(l)
n | are then re-

spectively:

ρ
(l)
n =

(Neff
l )n

(1+Neff
l )n+1

, (E.15)

|ψ(l)
n 〉l = D̂l(γ̃l)Ŝl(τ

eff
l )|n〉l. (E.16)

Finally, the eigenvalues and the eigenvectors of the joint two-modes density matrix can
be written as:

ρ̂
β ,g,η
φ

=
∞

∑
m,n=0

ρm,n|Ψm,n〉HV 〈Ψm,n|, (E.17)

ρm,n = ρ
(H)
m ρ

(V )
n , (E.18)

|Ψm,n〉HV = |ψ(H)
m 〉H⊗|ψ(V )

n 〉V . (E.19)

E.2 Quantum Fisher Information
In this section we describe the calculation of the quantum Fisher information (QFI) of the
output state ρ̂

β ,g,η
φ

of our scheme.
The QFI for a generic mixed state σ̂ = ∑m σm|ζm〉〈ζm| can be evaluated as [Par09]:

Hφ = ∑
p

(∂φ σp)
2

σp
+2 ∑

n,m
εn,m|〈ζm|∂φ ζn〉|2. (E.20)

Here σm and |ζm〉 are respectively the eigenvalues and the eigenvectors of the density
matrix, and εn,m = (σn−σm)

2/(σn +σm). In the case of the output density matrix ρ̂
β ,g,η
φ

of the amplifier-based protocol the eigenvalues and the eigenvectors are parametrized by
the indices (n,m), and the QFI is:

H(α,ξ ,{gl},{λl},η) =
∞

∑
p,q=0

(∂φ ρp,q)
2

ρp,q
++2

∞

∑
i, j,m,n=0

εi, j,m,n|〈Ψi, j|∂φ Ψm,n〉|2, (E.21)

where:

εi, j,m,n =
(ρi, j−ρm,n)

2

ρi, j +ρm,n
. (E.22)
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We observe that, for the density matrix ρ̂
β ,g,η
φ

, the eigenvalues ρm,n (E.17) are independent
on the phase φ , and hence the first term in Eq.(E.21) vanishes. In order to calculate the
second term, it is necessary to evaluate the following quantity: |〈Ψi, j|∂φ Ψm,n〉|2. Such
term can be written as:

〈Ψi, j|∂φ Ψm,n〉= 〈Ψi, j|∂φ

(
|ψ(1)

m 〉1⊗|ψ(2)
n 〉2

)
=

= 〈Ψi, j|
(
|∂φ ψ

(1)
m 〉1⊗|ψ(2)

n 〉2 + |ψ(1)
m 〉1⊗|∂φ ψ

(2)
n 〉2

)
=

= 1〈ψ(1)
i |∂φ ψ

(1)
m 〉1δ j,n +δi,m 2〈∂φ ψ

(2)
i |ψ

(2)
m 〉2.

(E.23)

Since the eigenvectors for the two-modes present an analogous form, it is necessary to
evaluate only the term l〈ψ(l)

i |∂φ ψ
(l)
m 〉l . Let us focus on the |∂φ ψ

(l)
m 〉l state vector. Since

the dependence on φ of the state is included only in the displacement operator D̂l(γ̃l), we
can write:

|∂φ ψ
(l)
m 〉l =

[
∂φ D̂l(γ̃l)

]
Ŝl(τ

eff
l )|m〉l. (E.24)

The latter can be evaluated by differentiating the displacement operator written in normally-
ordered form:

∂φ

[
D̂l(γ̃l)

]
= ∂φ

[
e−

1
2 |γ̃l |2eγ̃la

†
l e−γ̃∗l al

]
. (E.25)

By differentiating the three exponential with respect to φ , and by exploiting the following
commutation relation: [

âl,eγ̃l â
†
l
]
= γ̃leγ̃l â

†
l , (E.26)

the derivative of D̂l(γ̃l) reads:

∂φ

[
D̂l(γ̃l)

]
=
[
C(l)

α,ξ ,gl ,λl ,η ,φ
+ F̂(l)

α,ξ ,gl ,λl ,η ,φ
(âl, â

†
l )
]
D̂l(γ̃l). (E.27)

The scalar C(l)
α,ξ ,gl ,λl ,η ,φ

and the operator F̂(l)
α,ξ ,gl ,λl ,η ,φ

(âl, â
†
l ) are respectively:

C(l)
α,ξ ,gl ,λl ,η ,φ

=
1
2
[
γ̃l(∂φ γ̃

∗
l )− (∂φ γ̃l)γ̃

∗
l
]
, (E.28)

F̂(l)
α,ξ ,gl ,λl ,η ,φ

(âl, â
†
l ) = (∂φ γ̃l)â

†
l − (∂φ γ̃

∗
l )âl. (E.29)

By replacing the latter expressions in Eq.(E.24), the scalar product l〈ψ(l)
i |∂φ ψ

(l)
m 〉l can be

evaluated as:

l〈ψ(l)
i |∂φ ψ

(l)
m 〉l = l〈i|Ŝ†

l (τ
eff
l )D̂†

l (γ̃l)
[
C(l)

α,ξ ,gl ,λl ,η ,φ
+F̂(l)

α,ξ ,gl ,λl ,η ,φ
(âl, â

†
l )
]
D̂l(γ̃l)Ŝl(τ

eff
l )|m〉l.
(E.30)

Such average value can be evaluated by exploiting the operatorial identities:

Ŝ†(τ)âŜ(τ) = âcoshg− â†eıλ sinhg, (E.31)
Ŝ†(τ)â†Ŝ(τ) = â† coshg− âe−ıλ sinhg, (E.32)

D̂†(α)âD̂(α) = â+α, (E.33)
D̂†(α)â†D̂(α) = â† +α

∗. (E.34)
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We obtain:

l〈ψ(l)
i |∂φ ψ

(l)
m 〉l = δi,mA(l)

α,ξ ,gl ,λl ,η ,φ
−δi,m−1

√
mB(l)∗

α,ξ ,gl ,λl ,η ,φ
+δi,m+1

√
m+1B(l)

α,ξ ,gl ,λl ,η ,φ
,

(E.35)
where the A(l)

α,ξ ,gl ,λl ,η ,φ
and B(l)

α,ξ ,gl ,λl ,η ,φ
quantities are defined as:

A(l)
α,ξ ,gl ,λl ,η ,φ

=
1
2
[
(∂φ γ̃l)γ̃

∗
l − γ̃l(∂φ γ̃

∗
l )
]
, (E.36)

B(l)
α,ξ ,gl ,λl ,η ,φ

= coshgeff
l (∂φ γ̃l)− eıλl sinhgeff

l (∂φ γ̃
∗
l ). (E.37)

Note that the εi, j,m,n coefficients present the following symmetries:

εm,n,m,n = 0, εi, j,m,n = εm, j,i,n, εi, j,m,n = εi,n,m, j. (E.38)

By inserting Eqs. (E.23)-(E.35) in Eq.(E.21) and by exploiting the symmetries of the
εi, j,m,n coefficients we obtain:

H(α,ξ ,{gl},{λl},η) = 4
∞

∑
m,n=0

[
|B(1)

α,ξ ,gl ,λl ,η
|2(m+1)

× εm+1,n,m,n + |B(2)
α,ξ ,gl ,λl ,η

|2(n+1)εm,n,m,n+1
]
.

(E.39)

The QFI Hampl(α,θ ,φ ,ξ ,g,λ ,η) of the scheme is obtained by replacing g+ → −g
and g− →−g. This choice of the parameters is equivalent to the case described in the
main paper (with g+→−g, g−→ g and the additional π/2 phase shift in the probe state)
leading to the same expression for the QFI. We finally obtain:

H(α,θ ,φ ,ξ ,g,λ ,η) =
2|α|2ξ η√

1+4η(1−η)sinh2 g
×

{
cosh[2(g−geff)]− cos(λ +2φ −2θ)sinh[2(g−geff)]

}
.

(E.40)

The optimal condition corresponds to the case cos(λ +2φ −2θ) =−1, where the QFI is:

Hampl(|α|,ξ ,g,η) = 2|α|2ξ η
e2(g−geff)√

1+4η(1−η)sinh2 g
. (E.41)

Again, the dependence of the QFI H of (E.40) on the parameter φ to be estimated implies
that to achieve its maximum Hampl, an adaptive strategy (see Sec. E.3) is necessary.

E.3 Adaptive protocol
In this section we detail a simple two-stage adaptive scheme, where first a rough estimate
of the parameter φ is found, and then this estimate is employed in a second high-resolution
stage of the protocol.
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Let φ be the parameter we want to estimate (the phase) and assume that it is encoded
in two different families of states, i.e. the family {ρ̂φ}φ and the family {σ̂φ}φ . For
example, the first family can be identified with the states of the system at the output of the
interferometer when no amplification is used. The second family instead is identified as
the the state at the output of the interferometer when the amplifier is active and where we
have set the phase reference in such a way that the apparatus gives optimal performances
for φ = 0. In what follows we will consider a two stage estimation strategy in which i)
first we perform M1 measurements on the state ρ̂φ of the first family to get a preliminary
estimation of φ , and then ii) we perform M2 measurement on the state σ̂φ of the second
family to improve our estimation (of course in the second stage we are facilitated by the
fact that we have already acquired some info on φ ).

Let then ~x = (x1,x2, · · ·) the data extracted from the first set of measurement and
φ
(M1)
ext (~x) the estimation function we use to get the preliminary estimation of φ . Using the

quantum Cramer-Rao (QCR) bound we have:

δ
2
φ1 = ∑

~x
P1(~x)[φ −φ

(M1)
ext (~x)]2 > 1

M1H1(φ)
, (E.42)

where P1(~x) are the probability of getting the outcomes ~x when measuring ρ̂
⊗M1
φ

and
H1(φ) is the quantum Fisher info associated with the family {ρ̂φ}φ . For the sake of

simplicity we assume that x(M1)
ext (~x) is unbiased, i.e.:

∑
~x

P1(~x)
[
φ −φ

(M1)
ext (~x)

]
= 0 , (E.43)

(generalization to the general case are possible).
In the second stage of the estimation we use the family {σ̂φ}φ where we modify

the way the phase is mapped by rescaling it by φ
(M1)
ext (~x). This is possible for instance

by changing the initial phase reference which effectively shifts the unknown phase φ to
χ = φ −φ

(M1)
ext (~x): this is the new parameter we wish to recover. In the second stage, we

perform measurements on σ̂
⊗M2
χ obtaining the data~y = (y1,y2, · · ·). We determine χ via

the estimator χ
(M2)
est (~y) which again we assume to be unbiased, i.e.:

∑
~y

P2(~y)
[
χ−χ

(M2)
ext (~y)

]
= 0 , (E.44)

(here P2(~y) is the probability of getting the outcomes ~y when measuring σ̂
⊗M2
χ ). The

whole process can be described hence by introducing a joint estimator function:

φ̃
(M1,M2)
est (~x,~y) = φ

(M1)
ext (~x)+χ

(M2)
est (~y) . (E.45)

characterized by a probability distribution P1(~x)P2(~y) and which (by construction) is un-
biased, i.e.:

∑
~x,~y

P1(~x)P2(~y) φ̃
(M1,M2)
est (~x,~y) = φ . (E.46)
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Let us now compute the variance of the error associated with such estimator. Formally
this is given by:

δ
2
φ̃ = ∑

~x,~y
P1(~x)P2(~y) [φ − φ̃

(M1,M2)
ext (~x,~y)]2 = ∑

~x
P1(~x)

[
∑
~y

P2(~y) [φ − φ̃
(M1,M2)
ext (~x,~y)]2

]

= ∑
~x

P1(~x)

[
∑
~y

P2(~y) [φ −φ
(M1)
ext (~x)−χ

(M2)
est (~y)]2

]

= ∑
~x

P1(~x)

[
∑
~y

P2(~y) [χ−χ
(M2)
est (~y)]2

]

> ∑
~x

P1(~x)
1

M2H2(χ)
= ∑

~x
P1(~x)

1

M2H2(φ −φ
(M1)
ext (~x))

,

where we used the QCR bound on the estimation of χ and where H2(χ) is the quantum
Fisher info of the state σ̂(χ). The above expression can now approximated by using the
fact that for sufficiently large M1, φ

(M1)
ext (~x) ' φ , i.e. χ ' 0. This allows us to expand

H2(χ) around χ = 0, i.e.:

H2(φ −φ
(M1)
ext (~x))' H2(0)+(φ −φ

(M1)
ext (~x)) H ′2(0)+(φ −φ

(M1)
ext (~x))2 H ′′2 (0)/2 , (E.47)

which yields:

δ
2
φ̃ ' 1

M2
∑
~x

P1(~x) 1/
[
H2(0)+(φ −φ

(M1)
ext (~x)) H ′2(0)+(φ −φ

(M1)
ext (~x))2 H ′′2 (0)/2

]
' 1

M2H2(0)
∑
~x

P1(~x)
[
1− (φ −φ

(M1)
ext (~x))

H ′2(0)
H2(0)

− (φ −φ
(M1)
ext (~x))2 H ′′2 (0)

2H2(0)

+ (φ −φ
(M1)
ext (~x))2

[
H ′2(0)
H2(0)

]2 ]
=

1
M2H2(0)

[
1−δ

2
φ1

( H ′′2 (0)
2H2(0)

−
[

H ′2(0)
H2(0)

]2)]
,(E.48)

where we used Eq. (E.43) and the definition of δ 2φ1. Suppose now that H2(χ) achieves
its maximum for χ = 0 (this is what happens thanks to our new choice of reference). This
implies that H ′2(0) = 0 and H ′′2 (0)6 0. Therefore we get:

δ
2
φ̃ > 1

M2H2(0)

[
1+δ

2
φ1
|H ′′2 (0)|
2H2(0)

]
> 1

M2H2(0)

[
1+

|H ′′2 (0)|
2M1H1(φ)H2(0)

]
, (E.49)

where in the last inequality we used the QCR bound (E.42). Defining M = M1 +M2 the
total number of measurements, we can write:

δ
2
φ̃ > 1

(1− p)MH2(0)

[
1+

|H ′′2 (0)|
2pMH1(φ)H2(0)

]
, (E.50)



238 Theory of the amplifier-based coherent state phase estimation protocol

with p = M1/M begin the fraction of measurement we employ in the first step of the
protocol. This equation provides the corrections to the accuracy we get when we adopt
the adaptive strategy.

Observation I: It is worth comparing the above bound with the accuracy one could
get if instead of performing the preliminary step one could have used all M copies to
perform only the estimation on the states σ̂φ . In this case the resulting accuracy would be
1/(MH2(φ)). Do we gain something by going true the adaptive result? A positive answer
would require:

1
(1− p)MH2(0)

[
1+

|H ′′2 (0)|
2pMH1(φ)H2(0)

]
6 1

MH2(φ)
, (E.51)

which can be cast as:

p+A
p(1− p)

6 B , (E.52)

with B = H2(0)/H2(φ) and A =
|H ′′2 (0)|

2MH1(φ)H2(0)
. Since by assumption B > 1 and A > 0, one

can easily verify that there are value of p which allows one to obtain Eq. (E.51) if B is
sufficiently large.

Observation II: For fixed M we can optimize the right-hand-side of Eq. (E.50) with
respect to p. This yields:

popt =
√

A2 +A−A , (E.53)

(notice that this is and increasing function of A which is always positive and smaller than
1/2 – the latter being the asymptotic value reached for A >> 1). Consequently we can
write:

δ
2
φ̃ > 1

(1− p)MH2(0)

[
1+

|H ′′2 (0)|
2pMH1(φ)H2(0)

]
=

1
(1− p)MH2(0)

[
1+

A
p

]
> 1

MH2(0)

√
A2 +A

(
√

A2 +A−A)(1+A−
√

A2 +A)
.

Now, for M� 1 we have that A→ 0. Therefore we can write:

δ
2
φ̃ > 1

MH2(0)
[1+2

√
A] =

1
MH2(0)

[
1+

√
2|H ′′2 (0)|

MH1(φ)H2(0)

]
. (E.54)

This implies that the resources M1 employed in the first stage of the protocol can be
neglected, and the precision asymptotically approaches the QCR of the second stage: the
term with the square root in (E.54) is asymptotically negligible.
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E.4 Classical Fisher information for the photon-counting
measurement

In this section we describe the calculation for the classical Fisher information associated
with our scheme when photon-counting measurements are performed. The output state of
the protocol is described by the density matrix ρ̂

β ,g,η
φ

, while the measurement operators
that describe photon-counting detectors are the projectors over Fock states:

Π̂n(+),n(−) = Π̂
(+)

n(+)⊗ Π̂
(−)
n(−)

, (E.55)

where Π
(l)
n(l)

= |n(l)〉l l〈n(l)|, with l = +,− labeling the optical mode. The probability
distribution of the measurement outcomes can be evaluated as:

p(n(+),n(−)|φ) = Tr[ρ̂β ,g,η
φ

Π̂n(+),n(−)]. (E.56)

The classical Fisher information associated to the probability distributions of the mea-
surement outcomes is given by the following expression [Par09]:

Iφ =
∞

∑
n,m=0

[∂φ p(n(+),n(−)|φ)]2
p(n(+),n(−)|φ) . (E.57)

For the amplifier-based protocol, the probability distribution p(n(+),n(−)|φ) can be sepa-
rated in two independent single-mode contributions as:

p(n(+),n(−)|φ) = ∏
l=+,−

p(n(l)|φ). (E.58)

Here, ρ̂(l) are the single-mode density matrices for modes l =+,− and:

p(n(l)|φ) = Tr[ρ(l)
Π

(l)
n(l)

]. (E.59)

In this case, the classical Fisher information can be separated in two single-mode contri-
butions:

Iφ = ∑
l=+,−

I(l)
φ
, (E.60)

where:

I(l)
φ

=
∞

∑
n=0

[∂φ p(n(l)|φ)]2
p(n(l)|φ) . (E.61)

E.4.1 Photon-number distribution of the amplified coherent states
We begin by calculating the photon-number distribution of the amplified coherent states.
The density matrix of the output state before the measurement stage is given by:

ρ̂
β ,g,η
φ

= D̂+(γ̃+)D̂−(γ̃−)Ŝ+(τeff
+ )Ŝ−(τeff

− )
[
ρ̂

th
+ (Neff)⊗

ρ̂
th
− (Neff)

]
Ŝ†
+(τ

eff
+ )Ŝ†

−(τ
eff
− )D̂†

+(γ̃+)D̂
†
−(γ̃−).

(E.62)
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To evaluate the photon-number distribution, we exploit the following identity between the
elements of the density matrix expressed in the Fock basis ρ̂ = ∑

∞
n,m=0 ρn,m|n〉〈m| and the

Wigner function of a general single-mode state ρ̂:

ρn,m = π

∫
∞

−∞

∫
∞

−∞

dxd pWρ̂(x, p)Wn,m(x, p), (E.63)

where Wn,m(x, p) is the Wigner function associated to the operator |n〉〈m|. Here, the
(x, p) operators are defined according to ∆2x∆2 p ≥ 1/16. The corresponding photon-
number distribution can be recovered from the diagonal elements ρn,n, by exploiting the
expression of the Wigner function of a Fock state:

Wn,n(x, p) =
2
π
(−1)nLn[4(x2 + p2)]e−2(x2+p2). (E.64)

Since the density matrix of the state ρ̂
β ,g,η
φ

= ρ̂
(+)
φ
⊗ ρ̂

(−)
φ

is separable between the two

modes, we can evaluate the distributions for the two components ρ̂
(l)
φ

separately. The first
step is the evaluation of the Wigner function for the single-mode density matrix:

ρ̂
(l)
φ

= D̂l(γ̃l)Ŝl(τ
eff
l )ρ̂ th

l (Neff
l )Ŝ†

l (τ
eff
l )D̂†

l (γ̃l). (E.65)

The Wigner function for this state takes the form of a Gaussian distribution of the form:

W
ρ̂
(l)
φ

(xl, pl) =
2
π

1
1+2Neff

l
e
− 2

1+2Neff
l

[2(xl−x0
l )(pl−p0

l )σ
xp
l ]

e
− 2

1+2Neff
l

[(xl−x0
l )

2σ xx
l +(pl−p0

l )
2σ

pp
l ]

,

(E.66)
where the first order and the second order moments are, respectively:

x0
l = Re[γ̃l], p0

l = Im[γ̃l], (E.67)

and:

σ
xx
l = cosh(2geff

l )+ cosλl sinh(2geff
l ), (E.68)

σ
pp
l = cosh(2geff

l )− cosλl sinh(2geff
l ), (E.69)

σ
xp
l = sinλl sinh(2geff

l ). (E.70)

Here, geff
l and λl are respectively the absolute values and the phase of the squeezing

parameters τeff
l . We can now proceed with the calculation of the single-mode photon-

number distribution p(n(l)|φ), which can be evaluated from the integral:

p(n(l)|φ) = π

∫
∞

−∞

∫
∞

−∞

dxld plW
ρ̂
(l)
φ

(xl, pl)Wn,m(xl, pl). (E.71)

We first begin by performing the following rotation on the quadrature variables (xl, pl)→
(x′l, p′l) of the W

ρ̂
(l)
φ

(x, p) function:

x′l = xl cosψl + pl sinψl, p′l =−xl sinψl + pl cosψl; (E.72)
x′ 0l = x′ 0l cosψl + p′ 0l sinψl, p′ 0l =−x′ 0l sinψl + p′ 0l cosψl, (E.73)
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where ψl = λl/2. The Wigner function in this rotated quadrature set is:

W
ρ̂
(l)
φ

(x′l, p′l) =
2
π

1
1+2Neff

l
e
− 2

1+2Neff
l

[(x′l−x′0l )2e2geff
l ]

e
− 2

1+2Neff
l

[(p′l−p′0l )2e−2geff
l ]
. (E.74)

The same rotation is performed on the Wn,n(xl, pl), which presents radial symmetry and
hence its form is not affected by the rotation according to:

Wn,n(x′l, p′l) =
2
π
(−1)nLn{4[(x′l)2 +(p′l)

2]}e−2[(x′l)
2+(p′l)

2]. (E.75)

We can then proceed with the evaluation of the integral (E.71). By performing the basis
rotation (xl, pl)→ (x′l, p′l) in the integration variable we obtain:

p(n(l)|φ) = π

∫
∞

−∞

∫
∞

−∞

dx′ld p′lWρ̂
(l)
φ

(x′l, p′l)Wn,m(x′l, p′l). (E.76)

By expanding the Laguerre polynomials of the Wn,n(x′l, p′l) function we obtain:

p(n(l)|φ) = 4(−1)n

π(1+2Neff
l )

n

∑
k=0

n!
k!(n− k)!

k

∑
j=0

(−4)k

k!

(
k
j

)

×
∫

∞

−∞

∫
∞

−∞

dx′ld p′l(x
′
l)

j(p′l)
k− je−2[(x′l)

2+(p′l)
2]e
− 2

1+2Neff
l

[(x′l−x′0l )2e2geff
l +(p′l−p′0l )2e−2geff

l ]
.

(E.77)
The integrals in dx′l and d p′l can be evaluated separately. We now define the following
auxiliary functions:

Ãxl = 1+
e−2geff

l

1+2Neff
l

, B̃xl =
x′0l e−2geff

l

1+2Neff
l + e−2geff

l
, C̃xl =

(x′0l )2e−2geff
l

1+2Neff
l + e−2geff

l
;(E.78)

Ãpl = 1+
e2geff

l

1+2Neff
l

, B̃pl =
x′0l e2geff

l

1+2Neff
l + e2geff

l
, C̃pl =

(x′0l )2e2geff
l

1+2Neff
l + e2geff

l
.(E.79)

where the B̃ and the C̃ terms depend on the phase φ . Finally, by exploiting the defini-
tion of the confluent hypergeometric functions U(a,b;z), the single-mode photon number
distribution can be written as:

p(n(l)|φ) = 2(−1)n

1+2Neff
l

e−2(C̃xl+C̃pl )
n

∑
k=0

k

∑
j=0

2k

k!

(
n
k

)(
k
j

)
×U [− j,1/2,−2Ãxl(B̃xl)

2]U [−k+ j,1/2,−2Ãpl(B̃pl)
2]

(Ãxl)
j+1/2(Ãpl)

k− j+1/2 .

(E.80)
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E.4.2 Derivative of the photon-number distribution and classical Fisher
information

In order to evaluate the classical Fisher information according to Eqs.(E.60-E.61), we now
need to evaluate the derivative of the photon-number distribution p(n(l)|φ). The latter can
be written in the following form:

p(n(l)|φ)=
n

∑
k=0

k

∑
j=0

ωn,k je
−2(C̃xl+C̃pl )

U [− j,1/2,−2Ãxl(B̃xl)
2]U [−k+ j,1/2,−2Ãpl(B̃pl)

2]

(Ãxl)
j+1/2(Ãpl)

k− j+1/2 .

(E.81)
Here, ωn,k j includes all the coefficients independent from the phase φ . The derivative of
the photon-number distribution p(n(l)|φ) can then be written as the sum of three terms:

∂φ p(n(l)|φ) =
3

∑
i=1

Dpi(n(l)|φ). (E.82)

The term Dp1(n(l)|φ) presents the derivative of the exponential e−2(C̃xl+C̃pl ), leading to:

Dp1(n(l)|φ) = (−2)∂φ (C̃xl +C̃pl)p(n(l)|φ). (E.83)

The terms Dp2(n(l)|φ) and Dp3(n(l)|φ) exploit the following relation involving the deriva-
tives of the confluent hypergeometric functions:

∂φU [a,b, f (φ)] =−aU [a+1,b+1, f (φ)]∂φ f (φ). (E.84)

The remaining two terms can the be written as:

Dp2(n(l)|φ) =
2(−1)n

1+2Neff
l

e−2(C̃xH+C̃pH )
n

∑
k=0

k

∑
j=0

(
n
k

)
2k

k!

(
k
j

)
×U [1− j,3/2,−2Ãxl(B̃xl)

2]U [−k+ j,1/2,−2Ãpl(B̃pl)
2]

(Ãxl)
j+1/2(Ãpl)

k− j+1/2 j(−4)Ãxl B̃xl(∂φ B̃xl),

(E.85)
and:

Dp3(n(l)|φ) =
2(−1)n

1+2Neff
l

e−2(C̃xH+C̃pH )
n

∑
k=0

k

∑
j=0

(
n
k

)
2k

k!

(
k
j

)
×U [− j,1/2,−2Ãxl(B̃xl)

2]U [1− k+ j,3/2,−2Ãpl(B̃pl)
2]

(Ãxl)
j+1/2(Ãpl)

k− j+1/2 (k− j)(−4)Ãpl B̃pl(∂φ B̃pl).

(E.86)
Finally, the classical Fisher information can be evaluated according to:

Iφ = ∑
l=+,−

I(l)
φ
. (E.87)

where:

I(l)
φ

=
∞

∑
n=0

(∑3
i=1 Dpi(n(l)|φ))2

p(n(l)|φ) . (E.88)
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Abstract: We present the realization of a ultra fast shutter for optical
fields, which allows to preserve a generic polarization state, based on
a self-stabilized interferometer. It exhibits high (or low) transmittivity
when turned on (or inactive), while the fidelity of the polarization state is
high. The shutter is realized through two beam displacing prisms and a
longitudinal Pockels cell. This can represent a useful toolfor controlling
light-atom interfaces in quantum information processing.
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We analyze the quantum states obtained by optical parametric amplification of polarization NOON states.
First we study, theoretically and experimentally, the amplification of a two-photon state by a collinear quan-
tum injected optical parametric amplifier (QIOPA). We compare the stimulated emission regime with the spon-
taneous one, studied by Sciarrino et al. [Phys. Rev. A 77, 012324 (2008)]. As a second step, we show that the
collinear amplifier cannot be successfully used for amplifying N-photon states with N�2, and we propose to
adopt a different scheme, based on a noncollinear QIOPA. We show that the state obtained by the latter am-
plification process preserves the � /N feature and exhibits a high resilience to losses. Furthermore, measure-
ment of part of the output state can be adopted to increase the pattern visibility. © 2009 Optical Society of
America
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1. INTRODUCTION
In the past few years it has been proposed to exploit quan-
tum effects to provide resolution enhancement in imaging
procedures. Among the numerous problems that are cur-
rently studied under the general name of “quantum im-
aging,” investigations concerning the quantum limits of
optical resolution have a special importance, as they may
lead to new concepts in microscopy and optical data stor-
age. Such so-called superresolution techniques, studied
for a long time at the classical level with a view to beating
the Rayleigh limit of resolution, were recently revisited at
the quantum level [1,2]. It was shown that it is possible to
improve the performance of superresolution techniques
by use of nonclassical light [3,4]. This approach, named
“quantum lithography,” may lead in the future to innova-
tive microscopy techniques, to recording image features
that are much smaller than the wavelength of the light,
or to improving optical storage capacity beyond the wave-
length limit. In such a framework, path entangled NOON
states ��N�AB= �1/�2���N�A�0�B+ �0�A�N�B� have been
adopted to increase the resolution in quantum interfer-
ometry. Indeed, in such states a single-mode phase shift �
induces a relative shift between the two components
equal to N� [5]. This feature leads to sub-Rayleigh reso-
lution scaling as � /2N, where � is the wavelength of the
field [6] [Fig. 1(a)]. Analogously, multiphoton polarization
entangled states can be exploited to carry out quantum li-
thography by adopting the scheme reported in Fig. 1(b),
which converts polarization-entanglement into path-
entanglement. The theoretical and experimental study of
photonic NOON states [7–9] has led to the experimental
generation of two-, three-, and four-photon states by post-
selection [10–13] and to the conditional generation of a
state with N=2 [14]. Very recently schemes for the gen-
eration of path entangled NOON states with high value of

fidelity and arbitrary N have been proposed [8,15,16].
However, until now, the low number of photons generated
has strongly limited the potential applications to quan-
tum lithography and quantum metrology. Moreover a
NOON state, like any superposition of macroscopic states,
is supersensitive to losses: for a N-photon state a frac-
tional loss 1/N would destroy the quantum effect respon-
sible for the phase resolution improvement [17].

A natural approach to increase the number of photons
and to minimize the effect of losses is to exploit a high op-
tical parametric process. Recently the output radiation of
an unseeded optical parametric amplifier (OPA) was ex-
ploited to demonstrate the typical � /4 feature with a
large number of photons [18] [Fig. 2(a)]. Even if the
achieved visibility is equal to 20%, this value is sufficient
for applications in lithography and imaging [16]. In such
a framework it has been proposed to exploit stimulated
parametric processes to improve the visibility and obtain
higher signal values [19]. This process, also known as
quantum injected optical parametric amplification, has
found some important applications in the context of quan-
tum information [20,21]. Let us stress that high reso-
lution and intense light fields can also be obtained in a
classical framework [22,23]. In that case the improved
resolution relies on the nonlinear response of the record-
ing medium rather than on the quantum features of the
adopted light field.

In the present paper we investigate the task of the am-
plification of photonic NOON states by two different de-
vices, both based on a quantum injected optical paramet-
ric amplifier (QIOPA). First, in Section 2, we review how a
sub-Rayleigh � /2N resolution can be obtained by an in-
terferometric device acting on a NOON state. Then, in
Section 3 we study both theoretically and experimentally
the amplification of a two-photon state by a collinear
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The high resilience to decoherence shown by a recently discovered macroscopic quantum superposition
�MQS� generated by a quantum-injected optical parametric amplifier and involving a number of photons in
excess of 5�104 motivates the present theoretical and numerical investigation. The results are analyzed in
comparison with the properties of the MQS based on ��� and N-photon maximally entangled states �NOON�,
in the perspective of the comprehensive theory of the subject by Zurek. In that perspective the concepts of
“pointer state” and “environment-induced superselection” are applied to the new scheme.
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I. INTRODUCTION

The short handwritten note by Einstein on the back of a
greetings card sent to Born on the first of January 1954 may
be taken as the conceptual framework of the present work:
“If �1 and �2 are two solutions of the same Schrödinger
equation, �=�1+�2 is another solution of the same equation
equally able to represent a possible situation. If however we
are dealing with a ‘macrosystem’ and �1 and �2 are ‘narrow’
with respect to the macrocoordinates in the vast majority of
cases � cannot be ‘narrow’. Narrowness respect to the mac-
rocoordinates �i.e., macro-localization� is a property not only
independent of the principles of quantum mechanics but also
incompatible with them” �1�.

As we can see since the early decades of quantum me-
chanics the counterintuitive properties associated with the
superposition state of macroscopic objects and the problem
concerning the “classicality” of quantum macrostates were
the object of an intense debate epitomized in 1935 by the
celebrated “Schrödinger’s cat paradox” �2,3�. In particular,
the actual feasibility of such quantum object has always been
tied to the alleged infinitely short persistence of its quantum
coherence, i.e., of its overwhelmingly rapid “decoherence.”
In modern times the latter property, establishing a rapid
merging of the quantum rules of microscopic systems into
classical dynamics, has been interpreted as a consequence of
the entanglement between the macroscopic quantum system
with the environment �4,5�. By tracing over the environmen-
tal variables in the final calculations, generally the pure
quantum state decays irreversibly toward a probabilistic clas-
sical mixture �6�. Recently, the general interest in decoher-
ence has been renewed in the framework of quantum infor-
mation theory where it plays a fundamental detrimental role
since it conflicts with the experimental realization of the
quantum computer or of any quantum device bearing any
relevant complexity �7�. In this respect a large experimental
effort has been devoted recently to the implementation of
macroscopic �i.e., many-particle� quantum superposition
states �MQSs�, adopting photons, atoms, and electrons in su-
perconducting devices. Particular attention has been devoted
to the realization of the MQS involving “coherent states” of

light, which exhibits interesting and elegant Wigner function
representations �8�. The most notable results of this experi-
mental effort have been reached with atoms interacting with
microwave fields trapped inside a cavity �9,10� or for freely
propagating fields �11�. However, in spite of the long-lasting
efforts spent in these endeavors, in these realizations the
MQS has always proved to be so fragile that even the loss of
a single particle was found to be able to spoil any possibility
of a direct observation of its quantum properties. Precisely
on the basis of these negative results in many scientific com-
munities �and also within some influential editorial teams�
grew the opinion that Schrödinger’s cat is indeed an ill-
defined and then avoidable concept since it fundamentally
lacks any directly observable property �6�.

In spite of these conclusions, very recently a new kind
of MQS involving a number of particles N in excess of
5�104 has been realized, allowing the direct observation of
entanglement between a microscopic and a macroscopic pho-
tonic state and showing a very high resilience to decoherence
by coupling with environment �12�. Precisely, the MQS was
generated by a quantum-injected optical parametric amplifier
�QI-OPA� seeded by a single photon belonging to an
Einstein-Podolsky-Rosen �EPR� entangled pair. We empha-
size here that the reported QI-OPA can be considered for the
present purpose as a paradigmatic system consisting of the
simplest realizable “optimal phase-covariant quantum-
cloning machine” �13,14�. Indeed, precisely the process of
“quantum cloning” was there responsible for the transfer of
the entanglement and the superposition properties of a pure
single-particle qubit into a multiparticle MQS. In other
words, the QI-OPA encoded “optimally” into a macrostate
the information associated with the input microstate, a seed
qubit �15–19�. By this device, which includes an orthogonal-
ity filter �O filter �OF�� for enhanced state discrimination, the
microstate-macrostate nonseparability was successfully
tested and the micro-macro violation of the Bell’s inequali-
ties for spin-1 excitations was attained �12,20�. In view of
this peculiar, striking behavior, we felt that a careful analysis
of the decoherence of this novel MQS device was necessary.
The present approach to decoherence will be cast within the
useful framework developed in the past by Zurek �21�. Ac-
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1Dipartimento di Fisica dell’Universitá ’’La Sapienza’’
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We show that all macroscopic quantum superpositions (MQS) based on phase-covariant quantum

cloning are characterized by an anomalous high resilence to the decoherence processes. The analysis

supports the results of recent MQS experiments and leads to conceive a useful conjecture regarding the

realization of complex decoherence-free structures for quantum information, such as the quantum

computer.
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Since the early decades of the last century the counter-
intuitive properties associated with the superposition state
of macroscopic objects and the problem concerning the
‘‘classicality’’ of macroscopic states were the object of an
intense debate epitomized in 1935 by the celebrated
Schrödinger’s paradox [1,2]. However, the actual feasibil-
ity of any macroscopic quantum superposition (MQS)
adopting photons, atoms, and electrons in SQUIDS [3–6]
was always found to be challenged by the very short
persistence of its quantum coherence, i.e., by its over-
whelmingly fast ‘‘decoherence.’’ The latter property was
interpreted as a consequence of the entanglement between
the macroscopic system with the environment [7–9].
Recently, decoherence has received renewed attention in
the framework of quantum information where it plays a
detrimental role since it conflicts with the realization of
any device bearing any relevant complexity, e.g., a quan-
tum computer [10]. In particular, effort was aimed at the
implementation of MQS involving coherent states of light,
which exhibit elegant Wigner function representations
[11]. Nevertheless, in all previous realizations the MQS
was found so fragile that even the loss of a single particle
spoiled any direct observation of its quantum properties.

The present work considers in general a novel type of
MQS, one that is based on the amplification, i.e., or ‘‘quan-
tum cloning’’, of a ‘‘microscopic’’ quantum state, e.g., a

single-particle qubit: j�i ¼ 2�ð1=2Þðj�1i þ ei’j�2iÞ.
Formally, the amplification is provided by a unitary clon-

ing transformation Û, i.e., a quantum map which, applied
to the microscopic state leads to the MQS macroscopic

state: j��i ¼ Ûj�i. In general, the amplification can be
provided by a laser amplifier or by any quantum-injected
nonlinear (NL) optical parametric amplification (OPA)
process directly seeded by j�i. The atom laser is also a
candidate for this process, and then, within the exciting
matter-wave context our model can open far reaching fields
of novel scientific and technological endeavour. It can be

shown that Û can be ‘‘information preserving’’, albeit

slightly noisy, and able to transfer in the macroscopic
domain the quantum superposition character of the
single-particle qubit [12–14]. Furthermore, unlike most

of the other MQS schemes, Û, being a fixed intrinsic
dynamical property of the amplifier is not affected in
principle by events of scattering of particles out of the
system, i.e., by loss, a process which is generally the

dominant source of decoherence. For the same reasons Û
is largely insensitive to temperature effects. Let us inves-
tigate this interesting process by the quantum-injected
OPA, often referred to as QI-OPA. By this device, indeed
a high-gain phase �-covariant cloning machine seeded by
an entangled EPR photon pair, a macroscopic state con-
sisting of a large number of photons N � 105 was gen-
erated [14–18]. A sketchy draft of the apparatus is shown in
the left part of Fig. 1. A polarization ( ~�) entangled couple
of single photons (A, B) is parametrically generated by a
standard Einstein-Podolsky-Rosen-Bohm (EPR) configu-
ration in a NL crystal of BBO (beta-barium-borate) cut for
type II phase matching and excited by a low intensity
ultraviolet (UV) laser beam [12]. One of the photons, say
A with state j�?iA, measured by a detector (Det), provides
the trigger signal for the overall experiment. The photon B
with state j�iB nonlocally correlated to A, is injected, via a
dichroic mirror (DM) in another BBO NL-crystal excited

FIG. 1 (color online). Amplified states of the collinear optical
parametric amplifier injected by a single-photon qubit generated
in a type-II EPR source. Beam-splitter (BS) loss model for the
amplified macroscopic states generated by the collinear QI-OPA.
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Recent experimental results demonstrated the generation of a macroscopic quantum superposition �MQS�,
involving a number of photons in excess of 5�104, which showed a high resilience to losses. In order to
perform a complete analysis on the effects of decoherence on these multiphoton fields, obtained through the
quantum injected optical parametric amplifier, we investigate theoretically the evolution of the Wigner func-
tions associated to these states in lossy conditions. Recognizing the presence of negative regions in the W
representation as an evidence of nonclassicality, we focus our analysis on this feature. A close comparison with
the MQS based on coherent ��� states allows us to identify differences and analogies.
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I. INTRODUCTION

In the last decades the physical implementation of macro-
scopic quantum superpositions �MQSs� involving a large
number of particles has attracted a great deal of attention.
Indeed it was generally understood that the experimental re-
alization of a MQS is very difficult and in several instances
practically impossible owing to the extremely short persis-
tence of quantum coherence, i.e., of the extremely rapid de-
coherence due to the entanglement established between the
macroscopic system and the environment �1–4�. Formally,
the irreversible decay toward a probabilistic classical mixture
is implied theoretically by the tracing operation of the overall
MQS state over the environmental variables �5,6�. In the
framework of quantum information different schemes based
on optical systems have been undertaken to generate and to
detect the MQS condition. A cavity-QED scheme based on
the interaction between Rydberg atoms and a high-Q cavity
has lead to the indirect observation of macroscopic quantum
superposition �Schrödinger cat� states and of their temporal
evolutions. In this case the microwave MQS field stored in
the cavity can be addressed indirectly by injecting in the
cavity, in a controlled way, resonant or nonresonant atoms as
ad hoc “measurement mouses” �7,8�. A different approach
able to generate freely propagating beams adopts photon-
subtracted squeezed states; experimental implementations of
quantum states with an average number of photons of around
four have been reported both in the pulsed and continuous
wave regimes �9–12�. These states exhibit non-Gaussian
characteristics and open new perspectives for quantum com-
puting based on continuous-variable systems, entanglement
distillation protocols �13,14�, and loophole free tests of
Bell’s inequality.

In the last few years a novel “quantum injected” optical
parametric amplification �QI-OPA� process has been realized
in order to establish the entanglement between a single-
photon and a multiphoton state given by an average of
many thousands of photons, a Schrödinger cat involving
a “macroscopic field.” Precisely, in a high-gain QI-OPA
“phase-covariant” cloning machine the multiphoton fields
were generated by an optical amplifier system bearing a high

nonlinear �NL� gain g and seeded by a single photon be-
longing to an Einstein-Podolski-Rosen �EPR� entangled pair
�15–19�.

While a first theoretical insight on the dynamical features
of the QI-OPA macrostates and a thorough experimental
characterization of the quantum correlations were recently
reported �20,21�, a complete quantum phase-space analysis
able to recognize the persistence of the QI-OPA properties in
a decohering environment is still lacking �22,23�. Among the
different representations of quantum states in the continuous-
variable space �24�, the Wigner quasiprobability representa-
tion has been widely exploited as an evidence of nonclassical
properties, such as squeezing �25� and EPR nonlocality �26�.
In particular, the presence of negative quasiprobability re-
gions has been considered as a consequence of the quantum
superposition of distinct physical states �27�.

In the present paper we investigate the Wigner functions
associated to multiphoton states generated by optical para-
metric amplification of microscopic single-photon states. We
focus our interest on the effects of decoherence on the mac-
rostates and on the emergence of the “classical” regime in
the amplification of initially pure quantum states. The
Wigner functions of these QI-OPA generated states in pres-
ence of losses are analyzed in comparison with the paradig-
matic example of the superposition of coherent, Glauber’s
states, ���.

The paper is structured as follows. In Sec. II, we intro-
duce the conceptual scheme and describe the evolution of the
system both in the Heisenberg and Schrödinger pictures.
Section III is devoted to the calculation of the Wigner func-
tion of the QI-OPA amplified field. We first consider a single-
mode amplifier, which is analogous to the case of photon-
subtracted squeezed vacuum. Then we derive a compact
expression of the Wigner function in the case of a two-mode
amplifier in the “collinear” case, i.e., for common k vectors
of the amplified output fields. In Sec. IV, we introduce, for
the collinear case, a decoherence model apt to simulate the
decohering losses affecting the evolution of the macrostate
density matrix. This evolution is then compared to the case
of the coherent ��� MQS. Section V is devoted to a brief
review of the features of coherent state superpositions
�CSSs�. Hence in Sec. VI we derive an explicit analytic ex-
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We consider the high-gain spontaneous parametric down-conversion in a noncollinear geometry as a
paradigmatic scenario to investigate the quantum-to-classical transition by increasing the pump power, that
is, the average number of generated photons. The possibility of observing quantum correlations in such a
macroscopic quantum system through dichotomic measurement will be analyzed by addressing two different
measurement schemes, based on different dichotomization processes. More specifically, we will investigate the
persistence of nonlocality in an increasing size n

2 -spin singlet state by studying the change in the correlations
form as n increases, both in the ideal case and in presence of losses. We observe a fast decrease in the amount of
Bell’s inequality violation for increasing system size. This theoretical analysis is supported by the experimental
observation of macro-macro correlations with an average number of photons of about 103. Our results shed light
on the practical extreme difficulty of observing nonlocality by performing such a dichotomic fuzzy measurement.
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I. INTRODUCTION

For a long time the investigation of entanglement and
nonlocality has been limited to quantum systems of small size
[1]. Theoretical and experimental works on Bell’s inequalities
have been devoted to the study of single-particle states, in
which dichotomic measurements have been performed [2].
Nonlocality tests have been achieved with single-photon
states, produced by parametric down conversion, by detecting
polarization correlations [3–5]. More recently, the violation
of Bell’s inequality has been shown with a larger number
of photons: on Greenberger-Horne-Zeilinger (GHZ) [6] and
cluster states [7] up to four photons.

On the other hand, the possibility of observing quantum
phenomena at a macroscopic level seems to be in conflict
with the classical description of our everyday world
knowledge. The main problem for such observation arises
from the experimental difficulty of sufficiently isolating a
quantum system from its environment, that is, from the
decoherence process [8]. An alterative approach to explain the
quantum-to-classical transition, conceptually different from
the decoherence program, has been given, very recently, by
Kofler and Brukner, along the idea earlier discussed by Bell,
Peres [9], and others. These authors have given a description
of the emergence of macroscopic realism and classical physics
in systems of increasing size within quantum theory [10]. They
focused on the limits of the quantum effects observability
in macroscopic objects, showing that, for large systems,
macrorealism arises under coarse-grained measurements.
More specifically, they demonstrated that, while the evolution
of a large spin cannot be described classically when sharp
measurements are performed, a fuzzy measurement on
a large-spin system would induce the emergence of the
Newtonian time evolution from a full quantum description
of the spin state. However, some counterexamples to such
a modelization have been found later by the same authors:
some nonclassical Hamiltonians violate macrorealism despite

coarse-grained measurements [11]. One example is given
by the time-dependent Schrödinger catlike superposition,
which can violate macrorealism by adopting a suitable
“which emisphere” measurement. Therefore the measurement
problem seems to be a key ingredient in the attempt to
understand the limits of the quantum behavior of physical
systems and the quantum-to-classical transition question. As a
further step, Kofler, Buric, and Brukner also demonstrated [12]
that macrorealism does not imply a continuous spatiotemporal
evolution. Indeed, they showed that the same Schrödinger
catlike nonclassical Hamiltonian, in contact with a dephasing
environment, no longer violates a Leggett-Garg inequality,
while it still presents a nonclassical time evolution. In a recent
paper Jeong et al. [13] contributed to the investigation about
the possibility of observing the quantum features of a system
when fuzzy measurement are performed on it, finding that
extremely coarse-grained measurements can still be useful to
reveal the quantum world where local realism fails.

In this context, the possibility of obtaining macroscopic
quantum systems in the laboratory has raised the problem of in-
vestigating entanglement and nonlocality in systems in which
single particles cannot be addressed singularly. As shown in
Ref. [14], the demonstration of nonlocality in a multiphoton
state produced by a nondegenerate optical parametric amplifier
would require the experimental application of parity operators.
On the other hand, the estimation of a coarse-grained quantity,
through collective measurements as the ones proposed in
Ref. [15], would miss the underlying quantum structure of
the generated state, introducing elements of local realism even
in the presence of strong entanglement and in the absence of
decoherence. The theoretical investigation on a multiphoton
system, obtained via parametric down-conversion, has been
also carried out by Reid et al. [16]. They analyzed the
possibility of obtaining the violation of Bell’s inequality
by performing dichotomic measurement on the multiparticle
quantum state. More specifically, in analogy with the spin
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Abstract In this paper we analyze the resilience to decoherence of the Macro-
scopic Quantum Superpositions (MQS) generated by optimal phase-covariant quan-
tum cloning according to two coherence criteria, both based on the concept of Bures
distance in Hilbert spaces. We show that all MQS generated by this system are char-
acterized by a high resilience to decoherence processes. This analysis is supported by
the results of recent MQS experiments of N = 3.5 × 104 particles.

Keywords Macroscopic quantum superposition · Decoherence · Phase-covariant
cloning

1 Introduction

The short handwritten note by Einstein on the back of a greetings card sent to Max
Born on the first of January 1954 may be taken as the conceptual framework of the
present work: “if ϕ1 and ϕ2 are two solutions of the same Schrödinger equation,
ϕ = ϕ1 + ϕ2 is another solution of the same equation equally able to represent a
possible situation. If however we are dealing with a “macrosystem” and ϕ1 and ϕ2
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In the quantum sensing context most of the efforts to design novel quantum techniques of sensing have

been constrained to idealized, noise-free scenarios, in which effects of environmental disturbances could

be neglected. In this work, we propose to exploit optical parametric amplification to boost interferometry

sensitivity in the presence of losses in a minimally invasive scenario. By performing the amplification

process on the microscopic probe after the interaction with the sample, we can beat the losses’ detrimental

effect on the phase measurement which affects the single-photon state after its interaction with the sample,

and thus improve the achievable sensitivity.

DOI: 10.1103/PhysRevLett.105.113602 PACS numbers: 42.50.Ex, 42.50.Dv, 42.50.St

The aim of quantum sensing is to develop methods to
extract the maximum amount of information from a system
with a minimal disturbance on it. Indeed, the possibility of
performing precision measurements by adopting quantum
resources can increase the achievable precision going be-
yond the semiclassical regime of operation [1–3]. In the
case of interferometry, this can be achieved by the use
of the so-called N00N states, which are quantum mechani-
cal superpositions of just two terms, corresponding to
all the available photons N placed in either the signal
arm or the reference arm. The use of N00N states can
enhance the precision in phase estimation to 1=N, thus
improving the scaling of the achievable precision with
respect to the employed resources [4,5]. This approach
can have wide applications for minimally invasive sensing
methods in order to extract the maximum amount of infor-
mation from a system with minimal disturbance. The
experimental realization of protocols involving N00N
states containing up to 4 photons have been realized in
the past few years [6–10]. Other approaches [11,12] have
focused on exploiting coherent and squeezed light to gen-
erated fields which approximate the features of N00N
states. Nevertheless, these quantum states turn out to be
extremely fragile under losses and decoherence [13], un-
avoidable in experimental implementations. A sample,
whose phase shift is to be measured, may at the same
time introduce high attenuation. Since quantum-enhanced
modes of operations exploit fragile quantum mechanical
features, the impact of environmental effects can be much
more deleterious than in semiclassical schemes, destroying
completely quantum benefits [14,15]. This scenario puts
the beating of realistic, noisy environments as the main
challenge in developing quantum sensing. Very recently,
the theoretical and experimental investigations of quantum
states of light resilient to losses have attracted much atten-
tion, leading to the best possible precision in optical

two-mode interferometry, even in the presence of experi-
mental imperfections [16–21].
In this work, we adopt a hybrid approach based on a high

gain optical parametric amplifier operating for any polar-
ization state in order to transfer quantum properties of
different microscopic quantum states in the macroscopic
regime [22,23]. By performing the amplification process of
the microscopic probe after the interaction with the sam-
ple, we can beat the losses’ detrimental effect on the phase
measurement which affects the single-photon state after
the sample. Our approach may be adopted in a minimally
invasive scenario where a fragile sample, such as biological
or artifacts systems, requires as few photons as possible
impinging on it in order to prevent damages. The action of
the amplifier, i.e., the process of optimal phase covariant
quantum cloning, is to broadcast the phase information
codified in a single photon into a large number of particles.
Such multiphoton states have been shown to exhibit a high
resilience to losses [24–26] and can be manipulated by
exploiting a detection scheme which combines features of
discrete and continuous variables. The effect of losses on
the macroscopic field consists in the reduction of the
detected signal and not in the complete cancellation of
the phase information as would happen in the single-
photon probe case, thus improving the achievable sensitiv-
ity. This improvement does not consist in a scaling factor
but turns out to be a constant factor in the sensitivity
depending on the optical amplifier gain. Hence, the sensi-

tivity still scales as
ffiffiffiffi

N
p

, where N is the number of photons
impinging on the sample, but the effect of the amplification
process is to reduce the detrimental effect of losses by a
factor proportional to the number of generated photons.
Let us review the adoption of single photons in

order to evaluate the unknown phase ’, Fig. 1(a). The
phase ’ introduced in the path k2 is probed by sending to
the sample N input photons, each one in the state
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We show that the quantum states generated by universal optimal quantum cloning of a single photon represent
a universal set of quantum superpositions resilient to decoherence. We adopt the Bures distance as a tool to
investigate the persistence of quantum coherence of these quantum states. According to this analysis, the process
of universal cloning realizes a class of quantum superpositions that exhibits a covariance property in lossy
configuration over the complete set of polarization states in the Bloch sphere.
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I. INTRODUCTION

The observation of quantum properties in “macroscopic”
systems has been at the focus of a long-lasting endavor
to investigate the transition from the world of microscopic
single-particle systems to the macroscopic “classical” domain.
Uncontrolled interaction with the environment [1], that is,
decoherence, is responsible for the progressive cancellation of
the quantum properties and largely limits their experimental
observation. To overcome this problem, several classes of
quantum states possessing peculiar features, such as entan-
glement or negative Wigner distributions, have been investi-
gated. Among them, the quantum superposition of “coherent”
Glauber α states [2] and the Greenberger-Horne-Zeilinger
(GHZ) states [3] have been found to be extremely fragile under
decoherence, since the loss of only one particle is responsible
for the cancellation of the quantum coherence present in the
system.

About 10 years ago it was proposed to exploit the
process of quantum cloning to generate a different class of
multiphoton states (Fig. 1) [4,5]. This method recently led
to the successful experimental realization of the macroscopic
quantum superposition (MQS) of a large number of particles,
N ≈ 5 × 104 [6,7]. The entanglement test reported in Ref. [7]
for the collinear amplification regime was recently discussed
by Sekatski et al. [8] Later, a recent paper [9] reported
a detailed theoretical analysis of the adopted entanglement
criteria and showed that a substantial degree of entanglement
was indeed present in the micro-macro system dealt with in [7].

The persistence of quantum coherence in MQS states
realized by phase-covariant cloning, that is, limited to a
one-dimensional subspace of the entire Bloch sphere of the
macroqubit, was analyzed on the basis of two criteria based on
the definition of “distance” in the Hilbert space [10,11]. It was
found that this limited physical system shows a high resilience
to decoherence at variance with coherent |α〉 state MQS. The
feature of phase-covariance symmetry mostly consists of the
relative simplicity of the required “collinear” structure and
of the high efficiency of quantum-injected optical parametric

*francesco.demartini@uniroma1.it

amplification (QI-OPA). This one amplifies equally well the
single-photon polarization states |φ〉 belonging to the equato-
rial plane of the Bloch sphere of the injected microqubit [5,6].

Given this circumstance, the question arose whether there
exists a physical system that exhibits the property of resilience
to decoherence in a larger Hilbert space or, better, in the
full space available to the generated macrostate. The present
paper addresses this question. The “universal quantum cloning
machine” realized in its “optimal” MQS mode nondegenerate
configuration possesses the required property: resilience to
decoherence is realized in the full Hilbert space spanned by
the output macrostate [4,12–14].

In this paper, we report a theoretical analysis of the
resilience to decoherence of quantum states generated by
universal quantum cloning of a single-photon qubit. The basic
tools of this investigation are provided by the two coherence
criteria defined in Refs. [10] and [11]. There, the Bures distance
[15–17]

D (ρ̂,σ̂ ) =
√

1 −
√

F(ρ̂,σ̂ ), (1)

where F is a quantum “fidelity,” has been adopted as a measure
to quantify (I) the “distinguishability” between two quantum
states {|φ1〉,|φ2〉} and (II) the degree of coherence, that is,
the MQS visibility, of their quantum superpositions |φ±〉 =
2−1/2(|φ1〉 ± |φ2〉). These criteria were chosen according to
the following considerations. (I) The distinguishability, that
is, the degree of orthogonality, represents the maximum
discrimination power among two quantum states available
within a measurement. (II) The related visibility between
the superposition |φ+〉 and the superposition |φ−〉 depends
exclusively on the relative phase of the component states |φ1〉
and |φ2〉. Consider two orthogonal superpositions |φ±〉:
D(|φ+〉,|φ−〉) = 1. In the presence of decoherence the relative
phase between |φ1〉 and |φ2〉 progressively randomizes and
the superpositions |φ+〉 and |φ−〉 approach an identical fully
mixed state leading to D(|φ+〉,|φ−〉) = 0. The physical inter-
pretation of D(|φ+〉,|φ−〉) as the visibility of a superposition
|φ±〉 is legitimate insofar as the component states of the
corresponding superpositions, |φ1〉 and |φ2〉 may be defined,
at least approximately, as pointer states or einselected states
[1]. Within the set of eigenstates characterizing any quantum
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We discuss the conclusions that can be drawn on a recent experimental micro-macro entanglement test
[De Martini, Sciarrino, and Vitelli, Phys. Rev. Lett. 100, 253601 (2008)]. The system under investigation is
generated through optical parametric amplification of one photon belonging to an entangled pair. The adopted
entanglement criterion makes it possible to infer the presence of entanglement before losses that occur on the
macrostate under a specific assumption. In particular, an a priori knowledge of the system that generates
the micro-macro pair is necessary to exclude a class of separable states that can reproduce the obtained
experimental results. Finally, we discuss the feasibility of a micro-macro “genuine” entanglement test on the
analyzed system by considering different strategies, which show that in principle a fraction ε, proportional
to the number of photons that survive the lossy process, of the original entanglement persists in any loss
regime.
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I. INTRODUCTION

The observation of quantum phenomena, such as quantum
entanglement [1], has been mainly limited to systems of
only few particles. One of the main open challenges for an
experimental test in systems of large size is the construction
of suitable criteria for the detection of entanglement in
bipartite macroscopic systems. Much effort has been devoted
in the past few years in this direction. Some of them,
such as the partial-transpose criterion developed by Peres
in Ref. [2], require the tomographic reconstruction of the
density matrix, which for a system of a large number of
particles becomes highly demanding from an experimental
point of view. In order to avoid the necessity of the complete
reconstruction of the state, a class of tests where only few
local measurements are performed has been introduced under
the name of “entanglement witness” [3]. For bipartite systems
of a large number of particles, this approach has been further
investigated considering the possibility of exploiting collective
measurements on the multiparticle state. Within this context,
Duan et al. proposed a general criterion in Ref. [4] based on
continuous variable [5] observables. This general criterion was
subsequently applied to the quantum extension of the Stokes
parameters [6,7] to obtain an entanglement bound for such
kinds of variables [8]. Other approaches have been developed
based on spin variables [9] or pseudo-Pauli operators [10]. An
experimental application of this criteria based on collective
spin measurements has been performed in a bipartite system
of two gas samples [11]. However, an experimental realization
of most of these criteria in the quantum optical domain requires
photon-number-resolving detectors with unitary efficiency,
which is beyond the current technology. A feasible approach
for the analysis of multiphoton fields has been developed in

*fabio.sciarrino@uniroma1.it; http://quantumoptics.phys.uniroma1.
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the past few years and is based on the deliberate attenuation of
the analyzed system up to the single-photon level. In this way,
standard single-photon techniques and criteria can be used to
investigate the properties of the field. The verification of the en-
tanglement in the high-loss regime is evidence of the presence
of entanglement before the attenuation, since no entanglement
can be generated by local operations. Such an approach has
been exploited in [12,13] to demonstrate the presence of
entanglement in a high-gain spontaneous parametric down-
conversion (SPDC) source of up to 12 photons. An analogous
conclusion has been theoretically obtained in Ref. [14] on the
same system by exploiting symmetry considerations of the
source. The attenuation method has been also applied to a
different system, making it possible to obtain an experimental
proof of the presence of entanglement between a single-photon
state and a multiphoton state generated through the process
of optical parametric amplification in a universal cloning
configuration of up to 12 photons [15].

In this article we discuss recent experimental results of
a micro-macro entanglement test [16], where the system
under investigation is realized through the process of optical
parametric amplification [17,18] of an entangled photon pair.
The exploited entanglement criterion is an extension of the
spin-based single-particle criterion of Ref. [12]. Such an
extension requires a supplementary assumption which will
be clarified in the remaining part of this article. In Sec. II
we briefly review the properties of the micro-macro system
realized in Ref. [16]. Then in Sec. III we discuss in details
the performed entanglement test. In particular, we focus
on the conditions adopted in order to justify the exploited
entanglement criterion. Finally, in Sec. IV we perform a
theoretical analysis of the micro-macro system based on
the parametric amplification of an entangled pair. Several
approaches for the verification of the entanglement property of
the system will be addressed, showing that a substantial frac-
tion ε of the original entanglement survives even in high-loss
condition.
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We investigate how multiphoton quantum states obtained through optical parametric amplification can be
manipulated by performing a measurement on a small portion of the output light field. We study in detail how the
macroqubit features are modified by varying the amount of extracted information and the strategy adopted at the
final measurement stage. At last the obtained results are employed to investigate the possibility of performing a
microscopic-macroscopic nonlocality test free from auxiliary assumptions.
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I. INTRODUCTION

The possibility of performing quantum operations in order
to tailor quantum states of light on demand has been widely
investigated in the last few years. Several fields of research
have been found to benefit from the capability of generating
fields possessing the desired quantum properties. Nonclassical
states of light, such as sub-Poissonian light [1], squeezed
light [2,3], or the quantum superposition of coherent states
[4,5], have been generated in a conditional fashion. In
this context, continuous-variable (CV) quantum information
represents one of the most promising fields where conditional
and measurement-induced non-Gaussian operations can find
application. To this end, quantum interactions can be induced
by exploiting linear optics, detection processes, and ancillary
states [6]. For example, the process of coherent photon
subtraction has been exploited to increase the entanglement
present in Gaussian states [7,8] and to engineer quantum
operations in traveling light beams [9]. Finally, very recently,
conditional operations lead to the realization of different
schemes for the implementation of the probabilistic noiseless
amplifier [10–12], which can find interesting applications
within the context of quantum phase estimation [13].

Strictly related to the engineering of quantum states of light
for applications to quantum information, there is the problem
of beating the decoherence due to losses which affect quantum
resources interacting with an external environment. In the
last few years a large investigation effort has been devoted to
the decoherence process and the robustness of increasing size
quantum fields, realized by nonlinear optical methods [14–17].
Recently, quantum phenomena generated in the microscopic
world and then transferred to the macroscopic one via para-
metric amplification have been experimentally investigated.
In Ref. [16] it has been reported the realization of a resilient to
decoherence multiphoton quantum superposition (MQS) [18]
involving a large number of photons and obtained by paramet-
ric amplification of a single photon belonging to a microscopic
entangled pair: |ψ−〉 = 1√

2
(|H 〉A|V 〉B − |V 〉A|H 〉B), where

A,B refer to spatial modes kA,kB and the kets refer to
single-photon polarization states �π (π = H,V ). This process
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has been realized through a nonlinear crystal pumped by
an ultraviolet (UV) high power beam acting as a parametric
amplifier on the single entangled injected photon (i.e., the qubit
|φ〉B on spatial mode kB). In virtue of the unitarity of the optical
parametric amplifier (OPA), the generated state was found
to keep the same superposition character and the interfering
properties of the injected qubit [14,15,19] and, by exploiting
the amplification process, the single-photon qubit has been
converted into a macroqubit involving a large number of
photons.

In this paper we consider several strategies for the re-
alization of measurement-induced quantum operations on
these multiphoton states, generated through the process of
optical parametric amplification. We investigate theoretically
how the measurement strategies, applied on a part of the
multiphoton state before the final identification measurement,
affect the distinguishability of orthogonal macroqubits. Such
measurements based on the discrimination of multiphoton
probability distributions combine features of both continuous
and discrete variables techniques. The interest in improving
the capability of identifying the state generated by the
quantum injected optical parametric amplifier (QIOPA) system
mainly relies on two motivations: the first one concerns the
development of a discrimination method able to increase the
transmission fidelity of the state after the propagation over a
lossy channel, and hence to overcome the imperfections related
to the practical implementation. Such increased discrimination
capability in lossy conditions could find applications within
the quantum communication context. The second reason
concerns the scenario in which an appropriate preselection
of the macroqubits could be adopted to demonstrate the
microscopic-macroscopic nonlocality, free from the auxiliary
assumptions requested if the filtering procedure was applied
at the final measurement stage.

In previous papers [15,16] a probabilistic discrimination
method, the orthogonality filter (OF), was introduced and
successfully applied to an entanglement test in a microscopic-
macroscopic bipartite system. The application of the OF strat-
egy, acting at the measurement stage, is indeed not suitable for
the demonstration of loophole-free microscopic-macroscopic
nonlocality because of the presence of inconclusive results
[20]. These correspond to the selection of different subensem-
bles of data, depending on the choice of the measurement
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Non-Gaussian states and processes are useful resources in quantum information with continuous variables.
An experimentally accessible criterion has been proposed to measure the degree of non-Gaussianity of quantum
states based on the conditional entropy of the state with a Gaussian reference. Here we adopt such a criterion
to characterize an important class of nonclassical states: single-photon-added coherent states. Our studies
demonstrate the reliability and sensitivity of this measure and use it to quantify how detrimental is the role
of experimental imperfections in our implementation.
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I. INTRODUCTION AND DEFINITIONS

Quantum information offers a different viewpoint on
fundamental aspects of quantum mechanics: it aims to assess
and exploit the quantum properties of a physical system as a
resource for a different, and hopefully more efficient, treatment
of information. Indeed, within the framework of quantum
information with continuous variables [1], nonclassical states
of the radiation field represent a resource, and much attention
has been devoted to their generation schemes, which usually
involve nonlinear interaction in optically active media.

On the other hand, the reduction postulate provides an
alternative mechanism to achieve effective nonlinear dyna-
mics; if a measurement is performed on a portion of a
composite entangled system, the other component is condi-
tionally reduced according to the outcome of the measurement.
The resulting dynamics may be highly nonlinear, and may
produce quantum states that cannot be generated by currently
achievable nonlinear processes. Conditional measurements
have been exploited to engineer nonclassical states and,
in particular, have been recently employed to obtain non-
Gaussian states.

While Gaussian states, defined as states with a Gaussian
Wigner function, are known to provide useful resources for
tasks such as teleportation [2,3], cloning [4–6], or dense
coding [7–9], there is an ongoing effort to study which
protocols are allowed by non-Gaussian resources. The most
notable example is certainly their use for an optical quantum
computer [10,11], alongside their employment for improving
teleportation [12–14], cloning [15], and storage [16]. Several
implementations of non-Gaussian states have been reported
so far, in particular from squeezed light [17–25], close-to-
threshold parametric oscillators [26,27] in optical cavities [28],
and in superconducting circuits [29]. Non-Gaussian operations
are also interesting for tasks such as entanglement distillation
[30,31] and noiseless amplification [32,33], which are also
obtained in a conditional fashion, accepting only those events
heralded by a measurement result.

In principle, non-Gaussianity is not directly related to
the nonclassical character of a quantum state and, in turn,
a classical non-Gaussian state may be prepared (e.g., by
phase-diffusion of coherent states or photon subtraction on

thermal states [34]). On the other hand, in the applications
mentioned above it is the presence of both non-Gaussianity
and nonclassicality which allows for enhancement of perfor-
mances. Therefore, de-Gaussification protocols of interest for
quantum information are those providing non-Gaussianity in
conjunction with nonclassicality.

In this work we address the conditional dynamics induced
by the so-called photon addition as a protocol to generate
nonclassical non-Gaussian states. We quantify experimentally
the amount of non-Gaussianity obtained by adding a photon
to a coherent state [19,35–37]. Differently from previous
investigations [35,38–41], we can explicitly address the two
aspects of non-Gaussianity and nonclassicality at once. For the
former, we adopt the non-Gaussianity measure δ[�] proposed
in [42,43], which is defined as the quantum relative entropy
between the quantum state � itself and a reference Gaussian
state τ having the same covariance matrix as �. Given this
choice of reference Gaussian state, we have Tr[� ln τ ] =
Tr[τ ln τ ], as ln τ is a polynomial of order at most two in
the canonical variables [42,44]. We thus find

δ[�] = S(�‖τ ) = Tr [�(ln � − ln τ )]

= S(τ ) − S(�); (1)

that is, δ[�] is simply equal to the difference between the von
Neumann entropy of τ and the von Neumann entropy of �. In
Ref. [42] it has been shown that this measure is nonzero only
for non-Gaussian states. It is also additive under tensor product,
invariant under unitary Gaussian operations, and in general it
does not increase under generic completely positive Gaussian
channels. This measure is somehow preferable to that based
on the Hilbert-Schmidt distance [45] in a quantum information
context, since it is based on an information-related quantity. We
note, however, that a mixture (e.g., doubly peaked) of classical
states can also be strongly non-Gaussian. We therefore adopt
an additional “nonclassicality” criterion.

Several measures of nonclassicality have been proposed in
literature [46–49]; for our purposes we consider as a witness a
quantity ν[�] related to the negativity of the Wigner function.
This is normalized to a reference, which we choose to be
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Recently, the presence of noise has been found to play a key role in assisting the transport of energy and
information in complex quantum networks and even in biomolecular systems. Here we propose an experimentally
realizable optical network scheme for the demonstration of the basic mechanisms underlying noise-assisted
transport. The proposed system consists of a network of coupled quantum-optical cavities, injected with a single
photon, whose transmission efficiency can be measured. Introducing dephasing in the photon path, this system
exhibits a characteristic enhancement of the transport efficiency that can be observed with presently available
technology.
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I. INTRODUCTION

The presence of noise in quantum transmission networks is
generally considered to be deleterious for the efficient transfer
of energy or classical or quantum information encoded in
quantum states. Quantum networks, used for the transmission,
are unavoidably interacting with an external noisy environ-
ment, and this interaction significantly affects the quantum
coherence of the system evolution. It is indeed commonly
accepted that the presence of decoherence [1] is responsible for
the undesired and uncontrolled transfer of information from the
system to the environment, which in turn reduces the coherence
in quantum systems. However, recently noise has been found
to play a positive role in creating quantum coherence and
entanglement [2,3]. Motivated by fascinating experiments
showing the presence of quantum beating in photosynthetic
systems [4–6], subsequent theoretical work pointed to the idea
that the remarkable efficiency of the excitation energy transfer
in light-harvesting complexes during photosynthesis benefits
from the presence of environmental noise [7,8]. Indeed, the
intricate interplay between dephasing and quantum coherence
as well as the entanglement behavior during the noise-assisted
transport dynamics have been elucidated in more detail in
Refs. [9–12]. Perhaps even more surprisingly, the dephasing
was recently found to assist the transfer of classical and
quantum information in communication complex quantum
networks [13].

Recently, quantum optical systems have been exploited as
a promising platform to simulate quantum processes [14–16].
For example, several implementations of systems simulating
quantum random walks have been reported with linear optical
resonators [17,18], linear optical elements [19,20], fiber
networks [21], and optical waveguides [22–25]. Motivated
by these results, here we propose a quantum optical scheme
to investigate the noise-assisted excitation transfer process
through a set of coupled optical cavities. We discuss a four-site
optical network and derive the set of relevant parameters that
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rule the time evolution of the system. A detailed numerical
simulation of this dynamics, when one cavity is injected with
a single photon, is performed employing realistic experimental
parameters, showing that the presence of a suitable dephasing
process in each site of the network allows for a characteristic
increase of the excitation transfer efficiency. Furthermore, we
consider aspects such as phase stabilization of the cavities
and the implementation of dephasing, which are necessary to
observe a clear enhancement of the photon transfer rate from
one cavity to an external detector, mimicking the so-called
reaction center of the light-harvesting complexes. Finally,
we investigate how entanglement degrades during the time
evolution of the optical network.

The paper is organized as follows: In Sec. II we define
the model that describes the dynamics of the four-site optical
network analyzed in this paper, including the master equation
for the two relevant noise processes. Then in Sec. III we
perform a detailed derivation of a realistic set of parameters
for the system. In Sec. IV we report the results of a numerical
simulation of the dynamics of the network. Finally, the
conclusions and final remarks are presented in Sec. V.

II. MODEL OF THE NETWORK

In this section we describe in detail the model underlying
the dynamics of the proposed network of optical cavities. A
schematic view of this system in relation to the light-harvesting
complexes is shown in Fig. 1. Starting from the Hamiltonian
describing noninteracting cavities, one has

Ĥcav =
∑

i

h̄ωâ
†
i âi , (1)

where âi and â
†
i are the usual bosonic field operators, which

annihilate and create a photon in cavity i, and ω is the
resonance frequency, which we assume for simplicity to be
equal for all cavities. The transfer of photons between the
optical cavities is described by the following Hamiltonian
term:

Ĥint =
∑
(i,j )

h̄gij (â†
i âj + âi â

†
j ), (2)
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We propose a hybrid approach to the experimental assessment of the genuine quantum features of a general
system consisting of microscopic and macroscopic parts. We infer entanglement by combining dichotomic
measurements on a bidimensional system and phase-space inference through the Wigner distribution associated
with the macroscopic component of the state. As a benchmark, we investigate the feasibility of our proposal in
a bipartite-entangled state composed of a single-photon and a multiphoton field. Our analysis shows that, under
ideal conditions, maximal violation of a Clauser-Horne-Shimony-Holt-based inequality is achievable regardless
of the number of photons in the macroscopic part of the state. The difficulty in observing entanglement when
losses and detection inefficiency are included can be overcome by using a hybrid entanglement witness that
allows efficient correction for losses in the few-photon regime.
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I. INTRODUCTION

An open challenge for fundamental quantum physics is
to affirm the quantum nature of a system that puts together
a microscopic part and a mesoscopic one. This hybrid
scenario can emerge in completely different experimental
platforms ranging from individual spin systems interacting
with multimode cavity fields, such as transmon qubits in
coplanar transmission-line resonators [1,2], to ionic impurities
embedded in ultracold atomic samples, such as the systems
considered in some recent experiments reported in [3,4].
Another possible physical approach exploits a massive tiny
mirror interacting optomechanically with a single photon
within a Michelson interferometer [5–9]. This endeavor could
contribute to challenge the observability of quantum features
at the macroscopic level, which is one of the most fascinating
open problems in quantum physics. The difficulties inherent
in such a quest are manifold, and they are related on the
one hand to the unavoidable interaction of the system with
the surrounding environment [10–13]. On the other hand, one
faces the debated problem of achieving a measurement preci-
sion sufficient to observe quantum effects at such macroscales
[14,15]. In this context, it has been proven experimentally that
a dichotomic measurement performed upon a multiphoton-
entangled state is not sufficient to catch quantumness [16]. The
accuracy of the measurement is crucial for the observation of
quantum features and should be put on the same footing as
the use of proper entanglement and nonlocality criteria for
macroscopic quantum systems [15,17–21].

To successfully tackle the manipulation and characteriza-
tion of hybrid systems the following question is still open:
How can we ascertain the nonclassical nature of a multipartite
state that, per se, does not meet the criteria for quantumness
that have been designed for system components of equal
dimensionality? Our work provides a quantitative answer to
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this broad question. We introduce an investigative platform
that can be built up without the necessity for information on
the state itself, and this supports the general validity and broad
applicability of our results.

We introduce a hybrid method to demonstrate experimen-
tally the truly quantum mechanical features of a general
microscopic-macroscopic system beyond any assumption on
its state and without the necessity of any a priori state
knowledge. We infer the entanglement properties by means
of a hybrid approach that combines dichotomic measurements
on a bidimensional system and phase-space inferences through
the Wigner distribution associated with the macroscopic
component of the state. Here, through the use of a hybrid
entanglement test, we identify a valuable tool for our goals.
While the microscopic part of the state is measured using
spin-1/2 projection operators, the macroscopic counterpart
undergoes phase-space measurements based on the properties
of its Wigner function [17]. At variance with previous propos-
als [17,22], the approach presented in this paper is tailored to
fully exploit the polarization-spin degree of freedom on both
the microscopic and the macroscopic subsystems. We analyze
the effects of losses on a Clauser-Horne-Shimony-Holt-like
(CHSH-like) inequality test [23] and show that maximum
violation is achieved when losses are absent, regardless of
the size of the macroscopic part of the state. This is not the
case under nonideal conditions. However, we show how losses
can be efficiently taken into account to infer entanglement of
our multiphoton state.

As a paradigmatic microscopic-macroscopic system
(MMS), we investigate the state obtained from a fully
microscopic-entangled system through an amplification pro-
cess [24,25]. Such a system has been further considered
recently as a benchmark to perform nonlocality tests with
human-eye threshold detectors [26] or as a platform for
absolute radiometry [27]. At variance with respect to Refs. [24]
and [25], our approach does not require any assumption on the
system under investigation and hence represents a genuine
entanglement test.
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We propose to exploit a continuous-variable measurement, based on displacing the input field at different
points of the phase space, over a multiphoton state produced by a high-gain optical parametric amplifier. We
show that by correlating the different values of the displaced parity operators obtained from the two separated
parties, it is possible to violate a Bell’s inequality and thus demonstrate the nonlocality of the overall state. The
robustness of the results against two independent sources of error, loss and dephasing, is also discussed.
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I. INTRODUCTION

The discussion of nonlocality started by Einstein, Podolsky,
and Rosen (EPR) in 1935 [1] has yielded a definition of
entanglement as the most characteristic feature of quantum me-
chanics given by Erwin Schrödinger [2] up to the formulation
of the Bell’s inequality in order to test the nonlocal character
of quantum states [3]. Following Bohm’s scheme [4], the EPR
correlations have been analyzed by addressing singlet pairs of
two-level systems but not the two-particle continuous wave
function introduced by EPR in their argument about the com-
pleteness of quantum mechanics. Theoretical and experimental
studies of quantum nonlocality and entanglement have then
been carried out on discrete systems [5–8], and the generaliza-
tion of Bell’s inequalities to quantum systems with continuous
variables has represented a challenging issue for a long time.

Initially, it was believed that the possibility of observing
the violation of Bell’s inequality by addressing position
and momentum over the EPR state was prevented by the
non-negativity of its Wigner function. Indeed, according to
Bell, the positivity of the Wigner function would have allowed
the construction of a local-hidden-variable model simulating
correlations for any observable defined as a function of
phase-space points [9]. However, Banaszek and Wodkiewicz
showed that in spite of the positivity of the Wigner function,
the EPR state exhibits a high degree of nonlocality [10]. This
study was later extended by Chen et al. [11], who showed that
a maximal violation of Bell’s inequality can be obtained by
measuring pseudospin operators over the state produced by
a nondegenerate optical parametric amplifier (NOPA) when
the nonlinear gain of the amplifier grows and the NOPA
state tends to the original EPR one. The relation between
the positivity of the Wigner function and the possibility
of observing a violation of Bell’s inequality has then been
clarified by Rezven et al. [12]; they focused their attention
on the explicit assumptions that are made in a Bell’s test and
that involve the nature of the dynamical variables measured
in order to violate a Bell’s inequality. Reference [12] shows
that only “nondispersive” dynamical variables, i.e., variables
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whose representatives as functions of hidden variables take as
possible values the eigenvalues an such that |an| � 1, can be
considered good candidates for a local-hidden-variable theory.
The violation of a Bell’s inequality is then not only dependent
on the system’s Wigner function but also on the nature of the
measured dynamical variables.

From an experimental point of view, the demonstration
of Bell’s inequality involving the measurement of discrete
degrees of freedom requires the introduction of either the
locality or the detection loophole [13]. The adoption of atomic
systems allows one to close the detection loophole but not the
locality one [14], and conversely, light can be sent at large
distances but the inefficiency of detectors and the presence of
losses along the communication channel prevent the possibility
of closing the detection loophole. A path toward a Bell’s test
on bipartite multiphoton systems could involve the adoption of
homodyne measurements, which can be performed with very
high detection efficiency [15]. Recently, hybrid measurements
involving both discrete and continuous-variable observables in
order to demonstrate Bell’s test violations have been addressed
in Refs. [16] and [17]. The discussion of nonlocality in
continuous-variable systems is then still an open problem
in which the adoption of feasible measurements in reliable
systems turns out to be the key requirement.

We propose a further step toward the understanding of
the nonlocality problem in continuous-variable systems by
addressing the possibility of performing continuous-variable
measurements for a multiphoton system in order to observe
a Bell’s test violation. The exploited multiphoton-state source
can be considered a paradigmatic system since it is based on
an optical parametric amplifier, similar to the one analyzed
by Banaszek and Wodkiewicz in Ref. [10] [in which the
multiphoton state generated by a nondegenerate optical para-
metric amplifier was placed in relation with the continuous-
variable EPR state], but with an additional degree of freedom:
polarization. Recently, the quantum correlations present in
the multiphoton state obtained by the high-gain, spontaneous
parametric down-conversion process that cannot be read by a
fuzzy measurement performed on it have been analyzed [18].
Even if in principle the nonlocal nature of the state could be
observed for any value of the nonlinear gain of the amplifier,
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