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Introduction

One of the most surprising discoveries of the modern cosmology is that our Universe
is not only expanding, but that its expansion is accelerating. This is the opposite of
what expected for a universe described by a standard Friedmann cosmology, according
to which the expansion should decelerate because of the attractive gravitational force
exerted by the matter. Indeed the deceleration is easily deduced by solving the Einstein
�eld equations in a metric describing a homogeneous and isotropic space-time, as seems
to be our Universe on large scales, and obtaining the so called Friedmann equations.

The data coming from the analysis of very di�erent cosmological observables such
as the cosmic microwave background, the luminosity curves of supernovae, the galaxy
clusters and many others suggest that the Universe where we live is spatially �at, with
a low matter density and dominated by a kind of energy, labeled �dark�, to underline
both its feature to not absorb or emitting light and its mysterious nature. This energy is
thought to be the responsible of the observed cosmic acceleration. But what is the dark
energy?

Its principal features are those of a perfect �uid, homogeneously distributed and with
a negative pressure. This could sound strange and Einstein himself was sceptical when
he realized that, in order to construct solutions of his �eld equations, able to describe
a steady universe, he needed to take into account the hypothesis of a component with
negative pressure. At that time Einstein indeed believed that the Universe did not have
a dynamic nature but that it was static and, since a �uid with this peculiarity did not
seem to have physical sense, he introduced in its �eld equations a constant term, such
to exerts a force opposed to the expansion. This term was labeled cosmological constant
and indicated with the Greek letter Λ. When Hubble discovered, through the observation
of the recession velocities of distant galaxies, that the universe was actually expanding,
Einstein withdrew the hypothesis of the cosmological constant which did not have any
reason to exist anymore. According to the legend, Einstein de�ned Λ �the biggest blunder�
of his life, but despite his regret many think that he was right even when he thought to
be wrong!

In fact, in the last two decades, the cosmological constant began to gain a growing
interest in particle physics, because it can be interpreted as the vacuum energy. Every
quantum �eld has a zero-point energy contributing to the vacuum energy density, which
acts just as a cosmological constant. This can then �nd an origin in theories of funda-
mental physics and seems therefore the best candidate to the role of dark energy. Shifting
it from the original position in the �eld equations, where was placed by Einstein to act as
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a brake to the expansion, to the opposite member, it acts as a source term, able to drive
an accelerated expansion even in the absence of matter. But here comes the �rst prob-
lem: to agree with the cosmological observations, its value should be small enough to not
perturb the planetary motions, well described by Newtonian gravity. If on the contrary it
originates from vacuum energy, the value we expect (according to qualitative but hardly
avoidable arguments from quantum mechanics) is de�nitely much larger: the di�erence
is more than 120 orders of magnitude! This is only one of the problems associated to
the cosmological constant which led many authors to �nd di�erent explanations to the
dark energy issue. An incomplete list includes Quintessence models, invoking a dynamic
scalar �eld; modi�ed gravity justi�ed by string theory or, more generally, changes in the
action of General Relativity; braneworld universes; �Chaplygin gas� trying to unify dark
matter and dark energy considering a �uid whose equation of state interpolates between
them; a system of topological defects forcing the universe to an accelerated expansion;
void models; phantom �elds....and many others!

In this Thesis we will focus our attention mainly on models of coupled Quintessence
and to a class of modi�ed gravity theories, the so called f(R) models, but we will also
analyse, marginally, other models. One of the main problems with the various di�erent
models of dark energy is that even models with very di�erent physical origins can be
degenerate with respect to the observables related only to the expansion history of the
universe. Fortunately, the homogeneous observables of the universe on large scales are
not the only observable quantities. The growth of primordial perturbations giving rise
to the formation of structures in the universe provides a second, important observable,
which studied together with the expansion evolution can help to remove the degeneracy
and distinguish among the models.

The aim of this Thesis is then to study the growth of cosmological perturbations in
di�erent dark energy scenarios, both trying to �nd di�erences among them and comparing
the results to observational data. One of the problems along this line of research is to
express the relevant theoretical quantities (expansion rate and growth function) in a form
suitable for a direct comparison with real data. A successful parametrization, i.e. a form
that is general enough to describe a large class of models and yet simple enough to be
readily integrated into the data analysis pipelines, is an important step in this direction.
To this end we will propose several �tting formulas able to describe with a good accuracy
the behaviour of the growth rates in di�erent models. These �ts will be also used in the
comparison of the models to the observations. We will use present data, coming from
di�erent distances and several observables, to put constraints on the model parameters
but we will also forecast how next generation data will be able to tighten these constraints,
helping to distinguish among the models.



Chapter 1

Expansion history of the universe

The cornerstone of modern cosmology is known as the Cosmological Principle and it is
an idea which is both powerful and simple. Although the name `principle' sounds grand,
some guiding principles are generally introduced into physics when one has to face with a
dearth of observational or experimental data. Such principles are often based on ideas of
symmetry, which reduce the number of degrees of freedom one has to consider and assist
during the �rst tentative steps towards a theoretical understanding.

The Cosmological Principle is the assertion that, on su�ciently large scales (beyond
those traced by the large-scale structure of the distribution of galaxies), the Universe is
both homogeneous and isotropic. Homogeneity is the property of being identical every-
where in space, while isotropy is the property of looking the same in every direction. The
Universe is clearly not exactly homogeneous, so cosmologists de�ne homogeneity in an
average sense: the Universe is taken to be identical in di�erent places when one aver-
ages over su�ciently large pieces. There is quite good observational evidence that the
Universe does have these properties, although this evidence is not completely watertight.
One piece of evidence is the observed near-isotropy of the cosmic microwave background
radiation. Isotropy, however, does not necessarily imply homogeneity without the addi-
tional assumption that the place which we, as observers, occupy in the Universe is in no
way special1: the so-called Copernican Principle. Observed isotropy, together with the
Copernican Principle, therefore implies the Cosmological Principle.

The strongest force of nature on large scales is gravity, so the most important part of
a physical description of the Universe is a theory of gravity. The best candidate we have
for this is Einstein's General Theory of Relativity. However, Einstein's theory of gravity
was found to be too di�cult to solve for an arbitrary distribution of matter while it is
greatly simpli�ed with the assumption of the Cosmological Principle.

The past cosmic expansion history is then recovered by solving the Einstein equations
in the background of the homogeneous and isotropic universe. In this Chapter we provide
basic tools to understand the expansion history of the universe.

1It is funny, then, that for the most part of the history of civilization it was believed that we occupy
a very special location, usually the centre, in the scheme of things.
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1.1 Friedmann equations

The equations of motion describing the dynamics of our universe can be derived solving
the Einstein �eld equations:

Gµν = Rµν −
1

2
gµνR = 8πGTµν (1.1)

where Gµν is the Einstein tensor, Rµν and R are the Ricci tensor and his contraction (the
scalar curvature) respectively, both related to the space-time curvature and Tµν is the
energy-momentum tensor which describes the content of matter and energy. The equa-
tions (1.1) are in general complicated non linear equations, but can have simple analytical
solutions in presence of generic symmetries. Since our universe appears to be homogeneous
and isotropic on large scales (that means, it follows the �Cosmological Principle�, veri�ed
by observations [1, 2, 3]), it is possible to solve eqs (1.1) in the Friedmann-Lemâ�tre-
Robertson-Walker (FLRW) metric, which describes such a space-time:

ds2 = gµνdx
µdxν = −dt2 + a2(t)dσ2 (1.2)

where gµν is the metric tensor, a(t) is the scale factor, telling us how much the universe
has expanded from the big bang to time the t (we put c = 1, like we will always do in the
text, unless when the discussion needs it) and dσ2 is the time-independent metric of the
3-dimensional space with a constant curvature K :

dσ2 = γijdx
idxj =

dr2

1−Kr2
+ r2(dθ2 + sin2 dφ2) . (1.3)

Here K = −1, 0,+1 corresponds to close, �at and open geometries, respectively. γij
is the 3-dimensional space metric tensor, whose diagonal elements, in polar coordinates
(x1, x2, x3) = (r, θ, φ) are γ11 = (1 − Kr2)−1, γ22 = r2, γ33 = r2 sin2 θ. In eq. (1.2) µ
and ν run on the time (0) and space (1,2,3) coordinates, whereas in eq. (1.3), the Latin
indices i and j run only from 1 to 3. We follow Einstein's convention that the terms with
same upper and lower indices are summed over. In addition to the cosmic time t, we also
introduce the conformal time τ de�ned by

τ ≡
∫

1

a
dt . (1.4)

The metric in the conformal time is then given by

ds2 = a2(τ)[−dτ 2 +
dr2

1−Kr2
+ r2(dθ2 + sin2 dφ2)] . (1.5)

Once the metric is de�ned, we can obtain the Christo�el symbols through:

Γλµν =
1

2
gλη(gµη,ν + gην,µ − gµν,η) , (1.6)

where gαν,λ ≡ ∂gαν/∂x
λ; note that gµν satis�es the relation gµαgαν = δµν where δµν is

Kronecker's delta (δµν = 1 for µ = ν and δµν = 0 for µ 6= ν). For the FLRW metric (1.2)
the non-vanishing components of Christo�el symbols are
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Γ0
ij = a2Hγij , Γµ0ν = Γµν0 = Hδµν , (1.7)

Γ1
11 =

Kr

1−Kr2
, Γ1

22 = −r(1−Kr2) , Γ1
33 = −r(1−Kr2) sin2 θ , (1.8)

Γ2
33 = − sin θ cos θ , Γ2

12 = Γ2
21 = Γ3

13 = Γ3
31 =

1

r
, Γ3

23 = Γ3
32 = cot θ , (1.9)

where

H =
1

a

da

dt
(1.10)

called the Hubble parameter, describes the expansion rate of the universe, whereas we
de�ne the conformal Hubble function as

H =
1

a

da

dτ
= aH(τ) . (1.11)

The Christo�el symbols given in eqs (1.8) and (1.9) correspond to those for the three-
dimensional metric (1.3) with the curvature K.

The Ricci tensor is de�ned by

Rµν = Γσµν,σ − Γσµσ,ν + ΓρσρΓ
σ
µν − ΓρσµΓσρν , (1.12)

while its contraction gives the Ricci scalar (scalar curvature)

R = gµνRµν . (1.13)

The Ricci tensor and the scalar curvature are then

R00 = −3

(
H2 +

dH

dt

)
, R0i = Ri0 = 0 , Rij = a2

(
3H2 +

dH

dt
+

2K

a2
γij

)
, (1.14)

R = 6

(
2H2 +

dH

dt
+
K

a2

)
. (1.15)

Using the relation Gµ
ν = gµαGαν , the Einstein tensor Gµν ≡ Rµν − 1

2
gµνR is

G0
0 = −3

(
H2 +

K

a2

)
, G0

i = Gi
0 = 0 , Gi

j = −
(

3H2 + 2
dH

dt
+
K

a2

)
δij . (1.16)

In the FLRW spacetime the energy-momentum tensor of the background matter is re-
stricted to take the perfect �uid form

T µν = (p+ ρ)uµuν + pδµν , (1.17)

where uµ = (−1, 0, 0, 0) is the four-velocity of the �uid in comoving coordinates, and ρ
and p are functions of t. The (00) and (ij) components of T µν are T 0

0 = −ρ and T ij = pδij.
Then ρ and p have the meaning of an energy density and a pressure, respectively. Since
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we are using the unit c = 1, the density ρ is not particularly distinguished from the energy
density ρc2. From the (00) and (ii) components of the Einstein equations (1.1) we obtain

H2 =
8πG

3
ρ− K

a2
(1.18)

3H2 + 2
dH

dt
= −8πGp− K

a2
. (1.19)

Eliminating the K/a2 term gives

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p) . (1.20)

Eqs (1.18) and (1.20) are called Friedmann equations. Using the conformal time (1.4)
and the conformal hubble function (1.11), they can be written as

H2 =
8πGa2

3
ρ− K

a2
(1.21)

Ḣ = −4πa2

3
(ρ+ 3p) (1.22)

where the dot represents a derivative with respect to the conformal time τ .
Multiplying eq. (1.18) by a2, di�erentiating and using eq. (1.20) we �nd

dρ

dt
+ 3H(ρ+ p) = 0 . (1.23)

The Einstein tensor satis�es the Bianchi identities

Gµ
ν;µ ≡ Gµ

ν,µ + ΓµαµG
α
ν − ΓανµG

µ
α = 0 (1.24)

where the comma � ,� stands for the usual derivative Gµ
ν,µ = ∂Gµ

ν/∂x
µ and the symbol � ;µ�

denotes the covariant derivative. From the Einstein equations (1.1) it follows that

T µν;µ = 0 (1.25)

which gives the same equation as (1.23) in the FLRW background. Hence eq. (1.23) is
called the conservation or continuity equation. From eq. (1.18) we can compute the Gauss
curvature, CG, of the universe:

CG ≡
K

a2
=

(
1

a

da

dt

)2(
ρ

ρcr
− 1

)
, (1.26)

where ρcr, de�ned as

ρcr ≡
3H2

8πG
(1.27)

is called critical density. The universe is closed (CG > 0), �at (CG = 0) or open (CG < 0)
according to the value of the density parameter

Ω(t) ≡ ρ(t)

ρcr(t)
(1.28)
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being greater, equal or less than 1, respectively (actually this is correct in the absence of
a cosmological constant, as we will see). It is possible to de�ne a density parameter for
every component in the universe. For relativistic particles, non relativistic matter, dark
energy and curvature we have, respectively

Ωr =
8πGρr(t)

3H2
, Ωm =

8πGρm(t)

3H2
,ΩDE =

8πGρDE(t)

3H2
,ΩK = − K

(aH)2
. (1.29)

We often refer to present values of the density parameters, where all the time dependent
functions are computed at t = 0. In this case we write

Ωr,0 =
8πGρr,0

3H2
0

, Ωm,0 =
8πGρm,0

3H2
0

,ΩDE,0 =
8πGρDE,0

3H2
0

,ΩK,0 = − K

(a0H0)2
. (1.30)

We will use the subscript γ to identify electromagnetic radiation, rather than all the
relativistic particles, c and b to distinguish between (cold) dark matter and baryons and
Λ for the cosmological constant. Then, we can write eq. (1.18) as

Ωr + Ωm + ΩDE + ΩK = 1 , (1.31)

valid for every t. Observations constrain the present values of the density parameters to
be:

Ωm ' 0.25 ,ΩDE ' 0.75 ,Ωr ' 10−4 ,ΩK ' 0 , (1.32)

like we will better see in the following. In particular, our universe seems to have a �at
geometry, which means ΩK = K = 0.

1.2 Perfect �uid models

In order to understand the dynamics of the background in a speci�c cosmological
model, we need to solve the Friedmann equations, which we rewrite here

H2 =
8πG

3
ρ− K

a2
(1.33)

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p) (1.34)

together with the continuity equation

dρ

dt
+ 3H(ρ+ p) = 0 . (1.35)

The eqs (1.33), (1.34), (1.35) allow one to calculate the time evolution of a(t) as well as
ρ(t) and p(t) if we know the equation of state, i.e. the relation between ρ and p. In many
cases of physical interest, the appropriate equation of state can be cast, either exactly or
approximately, in the form

p = wρc2 (1.36)
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where we restore c for completeness, even if for pratical purposes we will use the relation
p = wρ. For ordinary �uids the parameter w lies in the so-called Zel'dovich interval

0 ≤ w ≤ 1 . (1.37)

The case with w = 0 represents dust (pressureless material). This is also a good approx-
imation to the behaviour of any form of non-relativistic �uid or gas. Of course, a gas of
particles at some temperature T does exert pressure but the typical thermal energy of a
particle (of mass mp) is approximately kBT (kB is the Boltzmann constant), whereas its
rest mass energy is mpc

2, usually very much larger. The relativistic e�ect of pressure is
usually therefore negligible. In more detail, an ideal gas of non- relativistic particles of
mass mp, temperature T , density ρm and adiabatic index γad exerts a pressure

p = nkBT =
kBT

mpc2
ρmc

2 =
kBT

mpc2

ρc2

1 + kBT
(γad−1)mpc2

= w(T )ρc2 (1.38)

where ρc2 is the energy density; a non-relativistic gas has w(T )� 1 (since mpc
2 � kBT )

and, according to Equation (1.38), will therefore be well approximated by a �uid of dust.
At the other extreme, a �uid of non-degenerate, ultrarelativistic particles in thermal
equilibrium has an equation of state of the type

p =
1

3
ρc2 . (1.39)

For instance, this is the case for a gas of photons. A �uid with an equation of state of the
type (1.39) is usually called a radiative �uid, though it may comprise relativistic particles
of any form. It is interesting to note that the parameter w is also related to the adiabatic
sound speed of the �uid

cs =

(
∂p

∂ρ

)1/2

S

(1.40)

where S denotes the entropy. In a dust �uid cs = 0 and a radiative �uid has cs = c/
√

3.
Note that the case w > 1 is impossible, because it would imply that cs > c. If w < 0,
then it is no longer related to the sound speed, which would have to be imaginary. These
two cases form the limits in (1.37). There are, however, physically important situations in
which matter behaves like a �uid with w < 0, as we shall see later. For the moment let's
restrict to the case where w is constant in time. We shall also assume that normal matter,
described by an equation of state of the form (1.38), can be taken to have w(T ) ' 0. From
equations (1.36) with c = 1 and (1.35) we can easily obtain the relation

ρa3(1+w) = const. = ρ0a
3(1+w)
0 (1.41)

In this equation and hereafter we use the su�x `0' to denote a reference time, usually the
present. In particular we have, for a dust universe (w = 0) or a matter universe described
by (1.38),

ρa3 ≡ ρma
3 = ρm,0a

3
0 (1.42)
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(which simply represents the conservation of mass) and for a radiative universe (w = 1/3)

ρa4 ≡ ρra
4 = ρr,0a

3
0 (1.43)

If one replaces the expansion parameter a with the redshift z = a−1 − 1 (which will be
better de�ned in the next section), one �nds, for dust and non-relativistic matter,

ρm = ρm,0(1 + z)3 (1.44)

and, for radiation and relativistic matter,

ρr = ρr,0(1 + z)4 . (1.45)

Then the matter density scales, quite obviously, as the inverse of the volume (ρm ∼ a−3).
On the other hand, for relativistic particles there is an extra factor a due to the fact that
also their wavelength is �stretched� by the expansion of the universe. Since the energy of
the particles is inversely proportional to their wavelength, the total energy must decrease
as the fourth power of the scale factor.

All the �uids whose equation of state parameter satis�es

w ≥ −1

3
(1.46)

give, through eq. (1.20)
1

a

d2a

dt2
≤ 0 , (1.47)

thus a decelerating (or steady in case of equality) universe. Since we observe an accelerated
expansion we need to obtain

1

a

d2a

dt2
> 0 (1.48)

which means we have to take into account a �uid with

w < −1

3
. (1.49)

So, if we assume the density ρ to be positive, we are invoking a �uid with negative pressure.
Let's consider the peculiar case of w = −1; then, from eq. (1.41), we simply have

ρ(z) = ρ0 , (1.50)

a �uid whose density always remains constant: this is the case of the �cosmological con-
stant� which we will better study in Chapter 3.

Up to now we have only considered constant w, but we can also compute the evolution
of a generic dark energy component with w = w(z). In this case we have from eq. 1.35

ρDE(z) = ρDE,0 exp

{∫ z

0

3(1 + wDE(z̄))

1 + z̄
dz̄

}
. (1.51)
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Using the de�nitions given in (1.29) and (1.30), we can also write down the evolutions
of the density parameters:

Ωm(z) =
8πGρm(z)

3H2(z)
=

8πGρm,0(z)

3H2(z)
(1 + z)3 = Ωm,0(1 + z)3H

2
0

H2
(1.52)

and

Ωr(z) = Ωr,0(1 + z)4H
2
0

H2
, (1.53)

ΩDE(z) = ΩDE,0 exp

{∫ z

0

3(1 + wDE(z̄))

1 + z̄
dz̄

}
H2

0

H2
. (1.54)

Now let's consider a universe whose components are all the �uids studied above (mat-
ter, radiation, dark energy) plus a curvature term. The Friedmann equation (1.18) can
then be written as (a = (1 + z)−1)

H2 =
8πG

3
(ρm + ρr + ρDE)−K(1 + z)2 (1.55)

or, using the evolutions of density parameters

H2(z) = H2
0

[
Ωm,0(1 + z)3 + Ωr,0(1 + z)4 + ΩDE,0 exp

{∫ z

0

3(1 + wDE(z̄))

1 + z̄
dz̄

}
+ ΩK,0(1 + z)2

]
(1.56)

or equivalently

H2(a) = H2
0

[
Ωm,0a

−3 + Ωr,0a
−4 + ΩDE,0 exp

{∫ a

a0

−3(1 + wDE(ā))

1 + ā
dā

}
+ ΩK,0a

−2

]
.

(1.57)
Let us remind that since H = a−1da/dt, these equations are di�erential equations whose
solution gives the evolution of the scale factor with time. In the simple cases when one
�uid with constant w and density parameter Ωw dominates over the other components
(which means Ωw ' 1), we have

1

a

da

dt
= H0a

− 3
2

(1+w) , (1.58)

which can be easily integrated to give

a ∼ t
2

3(1+w) → H(a) ∼ a−
3
2

(1+w) . (1.59)

Then, in the cases of matter (w = 0) or radiation (w = 1/3) domination we have respec-
tively

a ∼ t
2
3 → H(a) ∼ a−

3
2 , (1.60)

a ∼ t
1
2 → H(a) ∼ a−2 . (1.61)
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1.3 Hubble's law

In the 1920s Slipher and Hubble discovered that the observed wavelength λ0 of ab-
sorption lines in the spectra of distant galaxies is larger than the wavelength λ in the rest
frame. Hubble argued that this could be due to a very simple reason: the universe was
not steady but it was expanding. In fact, in an expanding Universe the wavelength is
stretched in proportion to the scale factor. In order to quantify this e�ect, we introduce
the redshift

z ≡ λ0

λ
− 1 =

a0

a
− 1 (1.62)

where the present epoch corresponds to z = 0. In the following we take the present scale
factor a0 to be unity unless otherwise stated. As we go back to the past, z gets larger.

Any object in the universe has then a recessional velocity v due to the expansion. As
long as this velocity is much smaller than the speed of light c we have λ0 ' (1+v/c) from
the Doppler e�ect, giving

z ' v

c
. (1.63)

If we denote with x the comoving distance from an observer (at the origin) to an object,
then the physical distance r in an expanding universe is given by r = a(t)x. The comoving
distance is de�ned in a way that it always remains constant for objects moving with the
Hubble �ow. If an object possesses an additional velocity, taking the derivative of the
equation r = a(t)x, with respect to t , we obtain

dr

dt
= Hr + a

dx

dt
. (1.64)

The velocity vH ≡ Hr appears because of the presence of the cosmic expansion while the
velocity vp ≡ adx/dt, called peculiar velocity, describes the movement of an object with
respect to the local Hubble �ow. The speed of the object along the line of sight from the
observer to the object is given by

v ≡
dr
dt
· r
r

= Hr +
vp · r
r

(1.65)

where r = |r|. In most cases the peculiar velocity of galaxies does not exceed 106 m/s.
Under the condition that the term vp ·r/r is negligible relative to the term Hr, we obtain

v ' H0r , (1.66)

which is the well known Hubble's law. Here we have replaced H for the present value
H0, which is justi�ed in small redshift regions (z � 1). In 1929, Hubble reported the law
(1.66) by plotting the recessional velocity v versus the distance r. Even if his data were
scarce and noisy, Hubble concluded correctly that the universe was expanding.

The Hubble constant H0 is usually written as

H0 = 100h km sec−1Mpc−1 (1.67)
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where

1 Mpc = 3.08568× 1019 km = 3.26156× 106 light years (1.68)

and h describes the uncertainty on the value H0. The observations of the Hubble Key
Project [4] constrain this value to be

h = 0.72± 0.08 . (1.69)

Using for the gravitational constant the value G = 6.67×10−8cm3g−1sec−2, together with
eqs (1.67), (1.68) we can compute the present value of the critical density in eq. (1.27)

ρcr,0 ≡
3H2

0

8πG
= 1.88h2 × 10−29g cm−3 . (1.70)

We also de�ne the Hubble time

tH ≡
1

H0

= 9.78× 109 h−1 years , (1.71)

which is a rough measure of the age of the universe. The present Hubble radius is de�ned
by

DH ≡
c

H0

= 2998h−1Mpc (1.72)

which corresponds roughly to the largest scale we can observe now.

1.4 Cosmic distances

In this section we de�ne the most important cosmic distances. They turn out to be
very useful in order to discuss observational constraints on the cosmological models. In
fact, a large part of the evidence for dark energy comes from measurements of cosmological
distances that are directly related to observations in the FLRW spacetime (1.2). Setting
r = sinχ(K = +1), r = χ(K = 0) and r = sinhχ(k = −1) in eq. (1.3), the 3-dimensional
space line-element can be expressed as

dσ2 = dχ2 + (fK(χ))2(dθ2 + sin2 θdφ2) , (1.73)

where

fK(χ) =


sinχ (K = +1)

χ (K = 0)

sinhχ (K = −1) .

(1.74)

1.4.1 Comoving distance

A ray of light travelling along the χ direction satis�es the geodesic equation: ds2 =
−c2dt2 + a2(t)dχ2 = 0, where we have recovered the speed of light c for clarity. Let us
consider the case in which light emitted at time t = t1 with χ = χ1 reaches an observer at
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time t = t0 with χ = 0 (corresponding to z = 0). Integrating the equation dχ = −cdt/a(t),
the comoving distance reads

dc ≡ χ1 =

∫ χ1

0

dχ = −
∫ t1

t0

c

a(t)
dt . (1.75)

From Eq. (1.62) it follows that dt = −dz/[H(z+1)]. Then the comoving distance is given
by

dc =
c

a0H0

∫ z

0

dz̄

E(z̄)
, (1.76)

where

E(z) ≡ H(z)

H0

. (1.77)

The integral in eq. (1.76) can be expanded around z = 0:∫ z

0

dz̄

E(z̄)
= z − 1

2

dE(0)

dz
z2 +

1

6

[
2

(
dE(0)

dz

)2

− d2E(0)

dz2

]
z3 +O(z4) . (1.78)

If the redshift z is much smaller than unity, the comoving distance is approximately given
by

dc '
c

a0H0

z, z � 1 .

On using the relation (1.63), we �nd

v ' (a0H0)dc .

This shows that the recessional velocity v of the object is proportional to dc with the
proportionality constant a0H0. For the physical distance r = a0dc we �nd r ' (c/H0)z '
v/H0, which means that Hubble's law (1.66) is satis�ed. Hubble's law written as in eq.
(1.66) is valid therefore only in the low-redshift region z � 1. For z & 1 the higher-order
terms in eq. (1.78) become important so that Hubble's law is subject to be modi�ed.

1.4.2 Luminosity distance

The luminosity distance dL is used in the observations of the Supernovae Ia, in order
to link the supernova luminosity with the expansion rate of the Universe. It is de�ned by

d2
L ≡

Ls
4πF

. (1.79)

where Ls is the absolute luminosity of a source and F is an observed �ux. Note that
the observed luminosity L0 (detected at χ = 0 and z = 0) is di�erent from the absolute
luminosity Ls of the source (emitted at the comoving distance χ with the redshift z). The
�ux F is de�ned by F = L0/S, where S = 4π(a0fK(χ))2 is the area of a sphere at z = 0.
Then the luminosity distance (1.79) yields

d2
L = (a0fK(χ))2Ls

L0

. (1.80)
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We need now to derive the ratio Ls/L0. If we write the energy of light emitted at the time-
interval ∆t1 to be ∆E1, the absolute luminosity is de�ned by Ls = ∆E1/∆t1. Similarly
the observed luminosity is given by L0 = ∆E0/∆t0, where ∆E0 is the energy of light
detected at the time-interval ∆t0. Since the energy of a photon is inversely proportional
to its wavelength λ we have that ∆E1/∆E0 = λ0/λ1 = 1 + z , where we have used Eq.
(1.62). Moreover, the constancy of c = λ/∆t implies λ1/∆t1 = λ0/∆t0, where λ1 and
λ0 are the wavelength of light at the points of emission and detection respectively. This
leads to the relation ∆t0/∆t1 = λ0/λ1 = 1 + z. Hence we �nd

Ls
L0

=
∆E1

∆E0

∆t0
∆t1

= (1 + z)2 . (1.81)

From Eqs. (1.80) and (1.81) the luminosity distance reduces to

dL = a0fK(χ)(1 + z) . (1.82)

It is clear that the luminosity distance is directly related to the expansion rate of the
universe. In a �at universe (ΩK = 0), with euclidean geometry, the luminosity distance
is given by

dL =
c

H0

(1 + z)

∫ z

0

dz̄

E(z̄)
. (1.83)

We can also explicit the dependence on the cosmological parameters using eq. (1.56)

dL =
c

H0

(1 + z)

∫ z

0

dz̄[
Ωm,0(1 + z̄)3 + Ωr,0(1 + z̄) + ΩDE,0 exp

{∫ z
0

3(1+wDE(z̄))
1+z̄

dz̄
}] . (1.84)

1.4.3 Angular diameter distance

The angular diameter distance dA is de�ned by

dA ≡
∆χ

∆θ
, (1.85)

where ∆θ is the angle that subtends an object of actual size ∆x orthogonal to the line
of sight. This distance is often used for the observations of CMB anisotropies. Since the
source lies on the surface of a sphere with radius χ with the observer at the centre, the
size ∆x at time t1 in the FLRW spacetime (1.2) with (1.73) is given by

∆x = a(t1)fK(χ)∆θ . (1.86)

Hence the diameter distance is

dA = a(t1)fK(χ) =
a0fK(χ)

1 + z
(1.87)

where we have used z = a0/a(t1) − 1. Comparing eq. (1.87) with Eq. (1.80), we notice
the following relation

dA =
dL

(1 + z)2
. (1.88)

In the limit z � 1 all the distances discussed above reduce to the Euclidean distance in
the Minkowski spacetime.
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Chapter 2

What we know from observations

The combined analysis of data coming from di�erent cosmic observables suggests that
the universe where we live is spatially �at, with a low matter density and has an accelerated
expansion. Unless otherwise speci�ed, when we refer to matter we usually mean the sum
of the baryonic matter and the cold dark matter (CDM) component, being the �rst only
a small fraction of the total. In this chapter we take a look to the principal cosmological
observables giving these bits of information about our universe.

2.1 Supernovae

Supernovae (SN) are extremely luminous stellar explosions causing a burst of radiation.
They can be classi�ed according to their absorption spectral lines at the luminosity peak.
The ones lacking of prominent hydrogen lines are known as Type I supernovae, while
those having lines associated to hydrogen and heavier elements in their spectra are Type
II supernovae. The mechanism that creates a Type II supernova is the catastrophic
collapse of the iron core of a massive star, which has completed the nuclear production of
heavier and heavier elements, up to the iron. This collapse generates a shock wave and
the ensuing ejection of the star's envelope. Type I supernovae can be further classi�ed
as Type Ia, if the spectrum contains an absorption line of singly ionized silicon, Type
Ib if it contains a line of helium, whereas Type Ic lacks the lines of both silicon and
helium. It is believed that Type Ib and Ic are created by similar mechanisms to those
of Type II while the explosion of Type Ia occurs when the mass of a white dwarf in a
binary system exceeds the Chandrasekhar limit (∼ 1.4 solar masses) by absorbing gas
from the companion star. The most important feature of SN Ia, which makes them so
important for cosmology, is that their absolute luminosities are almost constant at the
peak of brightness, so the distance to a SN Ia can be determined by measuring its observed
(apparent) luminosity. Thus the SN Ia is a kind of �standard candle� by which luminosity
distance can be measured observationally. In reality things are more complicated than
this simple view. The intrinsic spread in absolute magnitudes is actually too large to
produce stringent cosmological constraints. However, at the end of the 1990s, a high-
quality sample of �local� (i.e. z � 1) supernovae allowed the absolute magnitude to be
correlated with the width of the light curve [5]: brighter supernovae have a broader light
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curve. By measuring at the same time the apparent magnitude and the light curve it is
possible therefore to predict the absolute magnitude. Although in the following we refer
to a universal SN Ia absolute magnitude, we always mean the magnitude corrected for the
light curve width. Then, since the (corrected) peak absolute magnitude M is the same
for any SN Ia under the assumption of standard candles we can determine the luminosity
distance of a supernova by measuring its apparent magnitude, m, and using the relation

m = M + 25 + 5 log10 dL(z) , (2.1)

where the distance is expressed in Megaparsec. The redshift z of the corresponding SN Ia
can be found by measuring the wavelengths of the spectral lines in the supernova light or in
the spectrum of its host galaxy. The observations of many SN Ia provide the dependence of
the luminosity distance dL in terms of z and thus the m− z relation. Comparing observa-
tional data with the theoretical distance (1.84), it is possible to reconstruct the expansion
history of the Universe for the redshift z . O(1) and put constraints on the cosmological
parameters. Qualitatively: from eq. (1.84) we see that if in the universe it is present a
negative pressure component (wDE < 0), dL(z) gets larger. In other words, the e�ect of
a �uid accelerating the expansion rate of the universe should place the SN more distant
than in a non-accelerated universe so they should appear dimmer (i.e. with larger m).
And this is actually what Riess et al. [High-redshift Supernova Search Team (HSST)] [6]
and Perlmutter et al. [Supernova Cosmology Project (SCP)] [7] independently reported
in 1998 through the statistical analysis of nearby and distant SN Ia. Since observational
data are prone to statistical and systematic errors, a few data are not enough to con-
clude that the present Universe is accelerating. Using 42 high-redshift SN Ia at redshifts
between 0.18 and 0.83 together with 18 low-redshift SN Ia data from the Calan/Tololo
Supernova Survey, Perlmutter et al. showed that the cosmological constant is present
with 99% probability (see Fig. 2.1). After 1998 more SN Ia data have been collected by
a number of high-redshift surveys, including SuperNova Legacy Survey (SNLS), Hubble
Space Telescope (HST), and `Equation of State: SupErNovae trace Cosmic Expansion'
(ESSENCE) survey. The data from HST survey have been classi�ed as the `Gold' data
sets. While the SN Ia data alone are not yet su�cient to place tight bounds on wDE,
Fig. 2.2 clearly shows the presence of dark energy responsible for the late-time cosmic
acceleration (wDE < −1/3). Furthermore, combining them with data coming from other
observables such as the CMB or the baryonic acoustic oscillations (BAO) it is possible to
put tighter constraint on wDE (assumed constant) as shown in Fig. 2.3.

2.2 The age of the universe

Another interesting piece of evidence for the existence of a dark energy emerges when
we compare the age of the universe (t0) to the age of the oldest stellar populations (ts).
For consistency we of course require t0 > ts , but it is di�cult to satisfy this condition for
a �at cosmological model with a normal form of matter as we will see below. Remarkably,
the presence of dark energy can solve this age problem.
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First we brie�y mention the ages of the oldest stellar objects that have been constrained
by a number of groups. For example, Jimenez et al. [13] determined the age of Globular
clusters in the Milky Way to be 13.5 ± 2 Gyr by using a distance-independent method
whereas Carretta et al. [14] obtained the value 12.9 ± 2.9 Gyr. Using the white dwarfs
cooling sequence method, Richer et al. [15] and Hansen et al. [16] constrained the age
of the globular cluster M4 to be 12.7 ± 0.7 Gyr. Then the age of the universe needs to
satisfy the lower bound: t0 > 11− 12 Gyr. As we have seen in eq. (1.71), the inverse of
the Hubble constant H0 is a rough measure of the age t0 of the Universe. Here we shall
compute t0 more precisely and compare it with the age of the oldest stars.

Taking into account radiation, non-relativistic matter, and dark energy as components
of the Universe, eq. (1.56) gives the Hubble parameter H(z) normalized by H0

E(z) =
[
Ωm,0(1 + z)3 + Ωr,0(1 + z) + ΩDE,0(1 + z)3(1+wDE) + ΩK,0(1 + z)2

]1/2
(2.2)

where, for simplicity we assumed that the equation of state of dark energy is a constant,
in which case we have ρDE = ρDE(0)(1 + z)3(1+wDE) from eq. (1.51). From the de�nition
of the Hubble function (1.10), the age of the universe can be expressed as

t0 =

∫ t0

0

dt =

∫ a0

0

da

a ·H(a)
= H−1

0

∫ ∞
0

dz

E(z)(1 + z)
, (2.3)

where in the last equality we used a = (1+z)−1. It is a good approximation to neglect the
contribution from radiation when we evaluate the integral in eq. (2.3), since at present
time Ωr,0 ' 10−4−10−5 and the radiation dominated period is much shorter than the total
age of the universe. In other words, the contribution coming from the region z & 1000
hardly a�ects the total integral. In order to simplify the computation, let us consider the
case of the cosmological constant (wDE = −1). Then the age of the Universe is given by

t0 = H−1
0

∫ ∞
1

dx

x[Ωm,0 x3 + ΩDE,0 + ΩK,0 x2]1/2
(2.4)

where x = 1 + z and Ωm,0 + ΩDE,0 + ΩK,0 = 1. For the �at Universe (ΩK,0 = 0), eq. (2.4)
is integrated to give

t0 =
H−1

0

3
√

1− Ωm,0

ln

(
1 +

√
1− Ωm,0

1−
√

1− Ωm,0

)
, (2.5)

where we have used the relation Ωm,0 + ΩDE,0 = 1. In the limit ΩDE,0 → 0 we have

t0 =
2

3
H−1

0 . (2.6)

From eq. (1.71) we have
H−1

0 = 9.78 h−1 Gyr ; (2.7)

on using this value together with h = 0.72±0.08, the age of the Universe in the absence of
the cosmological constant is in the range 8.2 Gyr < t0 < 10.2 Gyr, which does not satisfy
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the stellar age bound t0 > 11 − 12 Gyr. Hence, a �at universe without a cosmological
constant su�ers from a serious age problem.

In an open universe model (Ωm,0 < 1 and ΩK,0 > 0), it is also possible to make the
cosmic age larger than (2/3)H−1

0 even in the absence of dark energy. Setting ΩDE,0 = 0
in eq. (2.4), we have

t0 =
H−1

0

1− Ωm,0

[
1 +

Ωm,0

2
√

1− Ωm,0

ln

(
1−

√
1− Ωm,0

1 +
√

1− Ωm,0

)]
, (2.8)

where Ωm,0 + Ωk,0 = 1. In the limit Ωm,0 → 1 we recover the value (2.6) in the �at
Universe. Meanwhile, in the limit Ωm,0 → 0, we have a larger value: t0 = H−1

0 . However,
the observations of the CMB constrain the curvature to be very close to �at (see next
section), i.e. |ΩK,0| = |Ωm,0 − 1| � 1. Then, since Ωm,0 ∼ 1, it is not possible to satisfy
the condition t0 > 11 Gyr for h = 0.72± 0.08 in the open Universe without dark energy.

The problem can easily be solved in a �at universe with a cosmological constant
(ΩΛ 6= 0), or dark energy with an equation of state wDE close to −1. In this case eq. (2.4)
gives

t0 = H−1
0

∫ ∞
0

dz

(1 + z)
√

Ωm,0(1 + z)3 + ΩΛ,0

=

=
2

3
√

ΩΛ,0

ln

(
1 +

√
ΩΛ,0√

Ωm,0

)
, (2.9)

where Ωm,0 + ΩΛ,0 = 1. Eq. (2.9) shows that t0 gets larger for decreasing Ωm,0. In the
limit Ωm,0 → 0 we have t0 →∞. In order to satisfy the condition t0 > 11 Gyr we require
that 0 < Ωm,0 < 0.55. The WMAP 7-year constraint on the cosmic age (assuming the
ΛCDM model) is given by t0 = 13.75± 0.13 [17].

Thus the presence of dark energy elegantly solves the age-crisis problem.

2.3 Cosmic microwave background

The curvature of the universe (as well as other important cosmological parameters)
can be measured by the cosmological observable at the highest redshift: the Cosmic
Microwave Background Radiation (CMB).

In order to understand its origin let's begin by considering a suitably early time, say
when the Universe was one millionth of its present size. We can consider the primordial
universe as a �uid of photons, electrons and protons in thermal equilibrium. At that time
the temperature would have been about 3,000,000 K. Such a temperature was high enough
that the typical energy of a photon in the thermal distribution was considerably more than
the ionization energy of hydrogen atoms (13.6 eV), so atoms would not have been able to
exist at that epoch; any electron trying to bind to a proton would immediately be blasted
away again by collision with a photon of light. The Universe at that time was therefore
a sea of free nuclei and electrons, and since photons interact strongly with free electrons
(via Thomson scattering), the mean free path of any photon was short.



2.3 Cosmic microwave background 21

As the Universe expanded and cooled, the photons of light lost energy and became less
and less able to ionize any atoms that form. Eventually all the electrons found their way
into the ground state of hydrogen atoms and the photons were no longer able to interact
at all. Over a short interval of time, the Universe suddenly switched from being opaque
to being completely transparent. The photons were then able to travel unimpeded for the
entire remainder of the Universe's evolution. This process is known as decoupling.

At the decoupling time the temperature was about T ' 3000 K. Since the CMB was
originated in an epoch when matter and radiation were almost in equilibrium we expect
it to have a black-body spectrum, which is in fact what has been largely veri�ed by
observations. The distribution of matter at that time is then impressed on the CMB. The
total energy density ρr of radiation at temperature T can then be found by integrating
the energy density over the black-body distribution, obtaining

ρr = σT 4 , (2.10)

where σ is the Stefan�Boltzmann constant. We know from eq. (1.43) that ρr ∼ a−4 then

T ∼ a−1 , (2.11)

which mathematically expresses the fact that the universe cools while expands. Today the
CMB presents a temperature of 2.73 K. Comparing this value to the decoupling temper-
ature and using eq. (2.11) we conclude that decoupling happened when the Universe was
about one-thousandth of its present size, with adec ' 1/1090 assuming we have normalized
a(t0) = 1. The corresponding redshift is z ' 1090.

As a �rst approximation the CMB can be considered homogeneous and isotropic and
we can assume that it comes from a spherical shell around us, called last scattering sur-
face, whose radius is the maximum distance that photons have travelled since when they
decoupled from matter. But, if at z ' 1090 there were primordial perturbations in the
homogeneity of matter density, generated by quantum e�ects during in�ation (as stated
by the theories of structure formation), their e�ect on the microwave background takes the
form of anisotropies in the radiation temperature and polarization. These anisotropies
are divided into two sorts: primary anisotropies, due to the inhomogeneity in matter
density on the last scattering surface (Sachs-Wolfe e�ect, adiabatic e�ects...), and sec-
ondary anisotropies, due to e�ects such as interactions with hot gas or gravitational
potentials, between the last scattering surface and the observer (integrated Sachs-Wolfe
e�ect, Sunyaiev-Zel'dovich e�ect) and are on much smaller physical scales with respect to
the primary anisotropies. Let us consider the origin of the primary anisotropies. In the
primordial universe the e�ect of the competition between gravity and radiation pressure
in the �uid leads to the formation of perturbations in the matter and radiation densities,
in the form of acoustic oscillations on scales smaller than the combined Jeans length of
matter and radiation, otherwise they would collapse into structures (see Chapter 5 for
more details). This length then gives the maximum scale on which these perturbations
can be detected and corresponds to an angular scale of about 1◦ (roughly speaking, a
spatial inhomogeneity in the CMB temperature of wavelength λ appears as an angular
anisotropy of scale θ ≈ λ/dA(z), where dA(z) is the comoving angular diameter distance
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from the observer to redshift z). At the decoupling these oscillations were �frozen� in the
CMB and today are detected as temperature �uctuations.

As the cosmological principle is not exact at all scales, it had long been expected that
anisotropies must exist in the microwave background radiation at some level. In practice,
they proved extremely hard to detect, and it was not until 1992 that they were measured
by the DMR (Di�erential Microwave Radiometer) experiment on the COBE satellite. The
temperature �uctuations turned out to be

∆T

T
∼ 10−5 . (2.12)

Since these anisotropies ∆T (θ, ϕ) are present on a spherical surface, they can be expanded
in a base of spherical armonics

∆T (θ, ϕ) =
∑
`,m

a`mY`m(θ, ϕ) , (2.13)

i.e. in multipoles. A multipole ` corresponds to �uctuations of angular scale approxi-
mately equal to θ = π/`. For instance, ` = 1, the dipole, gives the temperature �uctuation
averaged over hemispheres and ` = 2, the quadrupole term, corresponds to features that
extends over 90◦. The acoustic peak at ∼ 1◦ will then appear at a multipole of ` ∼ 180.
A better estimation of the angular scale of the �rst acoustic peak gives actually ` ∼ 220.

The coe�cients a`m tell us the size of the irregularities on di�erent scales. As with
the galaxy distribution, to compare with theory we are interested only in the statistical
properties of these coe�cients, quanti�ed by the radiation angular power spectrum, now
known universally by the notation C` and de�ned by

C` =
〈
|a`m|2

〉
. (2.14)

If we plot the power spectrum as a function of the multipoles `, then we expect a peak
for ` ∼ 220. This peak corresponds to the acoustic horizon scale, that is the maximum
distance that a wave of pressure can cover from the beginning of the universe to the
decoupling. However, the acoustic horizon is subtended by an angular scale of 1◦ only in
�at universe, while the angle is larger (smaller) in an open (closed) universe. Then the
angular scale of the �rst peak, or equivalently its multipole `, is related to the geometry
of the universe. In a rough estimation we can use the formula

` ≈ 220√
1− Ωk

, (2.15)

frequently used in the literature (but which should be corrected for Λ-dominated uni-
verses [18]). The �rst accurate measurement of the acoustic peak in the C` was that of
BOOMERANG ([19]). Those data so as the following from several experiments (WMAP,
COBE, ...) constrain the geometry to be nearly spatially �at (in fact, from Fig. 2.4, we
see that the �rst peak is around ` = 220).
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2.4 Matter density

The consensus for a low-matter-density universe (Ωm,0 < 1) has been building slowly
in the last two decades. The universe's matter density is currently the best-studied of
the cosmological parameters, and its determination is supported by a number of indepen-
dent measurements. We won't go into details on how the matter density parameter is
determined both because there are a lot of di�erent methods to do that and because the
mathematical tools to understand these methods will be developed in Chapters 5 and 6.
Just to cite a few of them, the value of Ωm,0 can be determined through the study of the
galaxy clusters abundance and its evolution, the mass power spectrum and the baryonic
acoustic oscillations. But the most important thing to say is that although each observa-
tion has its strengths, weaknesses and assumptions, they all indicate that Ωm,0 < 1 and,
in particular it is remarkable that a single value of Ωm,0, Ωm,0 ∼ 0.25 is consistent with so
many, diverse observations. Now let us put together all the pieces of information coming
from the observables we have seen so far. Since the CMB power spectrum is consistent
with a �at universe (Ωtot = 1), the fact that Ωm,0 ∼ 0.25 forces us to assume the existence
of another �uid whose density parameter is ∼ 0.75 and which should then be responsible
for the observed acceleration of the expansion. Furthermore Fig. 2.3 suggests that the
equation of state of such a �uid is w ∼ 1. All these data found agreement in the so called
concordance model, the ΛCDM already mentioned, as one can see in Fig. 2.5.
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Figure 2.1: [8] The relation of observed brightness (in logarithmic units of magnitude) vs.
redshift for Type Ia supernovae observed at low redshift by the Calan-Tololo Supernova Survey
and at high redshift by the Supernova Cosmology Project is presented (with 1σ error bars) and
compared with model expectations. (Brighter is down and dimmer is up.) Several models are
considered: an open model (OCDM), with Ωm,0 = 1/3, ΩΛ,0 = 0, Ωk,0 = 2/3, a standard model
(SCDM), with Ωm,0 = 1, ΩΛ,0 = 0, Ωk,0 = 0 and the ΛCDM model with Ωm,0 = 1/3, ΩΛ,0 = 2/3,
Ωk,0 = 0. The strong gravitational pull exerted by Ωm,0 = 1 models (such as Tcdm or Scdm),
decelerates the expansion rate of the universe and produces an apparent brightening of high
red shift SNIa, whereas the e�ect of a cosmological constant accelerating the expansion rate (as
in ΛCDM) is seen as a relative dimming of the distant SNIa caused by their larger distances.
The lower-right plot shows a close-up view of the expected deviations between the three models
as a function of red shift. The background colour (and shading of the data points) indicates
the region for which the universe's expansion would accelerate (yellow) or decelerate (red) for
Ωm,0 ∼ 0.2. Similar results are found by the HZS team [6], as discussed in the text. The results
provide evidence for an accelerating expansion rate.
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Figure 2.2: [9] Probability regions at at 68.3%, 95.4%, and 99.7% on Ωm,0 and w. The results
from the Union set are shown as �lled contours. The empty contours in the left column represent
the Gold sample (Riess et al. 2004, 2007 [10, 11]), and the middle column the constraints from
Davis et al. 2007 [12]. The right column shows the impact of the SCP Nearby 1999 data.

Figure 2.3: [9] Contours at 68.3%, 95.4%, and 99.7% probability level on w and Ωm,0, for a �at
universe. The plot shows the individual constraints from CMB, BAO, and the Union SN set, as
well as the combined constraints.
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Figure 2.4: The WMAP 7-year temperature power spectrum (Larson et al. 2010 [20]), along
with the temperature power spectra from the ACBAR (Reichardt et al. 2009 [21]) and QUaD
(Brown et al. 2009 [22]) experiments. The solid line shows the best-�tting 6-parameter �at
ΛCDM model to the WMAP data alone.
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Figure 2.5: [9] Contours at 68.3%, 95.4%, and 99.7% probability level on Ωm,0 and ΩΛ,0 obtained
from CMB, BAO, and the Union SN set, as well as their combination (assuming w = −1).
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Chapter 3

The cosmological constant

As we have seen in the previous chapter, the ΛCDM model has been systematically
proved consistent with a large number of observations. The cosmological constant, so
called because its energy density is constant in time and space, therefore appears as the
simplest candidate for dark energy. However, despite its simplicity, a series of theoretical
objections against this interpretation of the acceleration have arisen during the years. In
this chapter we give a brief review on the history of the cosmological constant and the
problems to it associated.

3.1 History of the cosmological constant

Einstein constructed General Relativity in 1915�1916 [23] and then he tried to apply
his theory to the Universe in 1917 [24]. At that time Einstein believed that the Universe
was static but it is obvious from eq. (1.20) that the scale factor a can dynamically change
in time unless one sets H = 0 and a−1d2a/dt2 = 0 in eqs (1.18), (1.20) which gives

ρ = −3p =
3K

8πGa2
. (3.1)

Eq. (3.1) shows that either ρ or p needs to be negative, but since Einstein considered
that the above solution was not physical he introduced the cosmological constant to the
original �eld equations to realize a static Universe. The �eld equations with this new
term read

Rµν −
1

2
gµνR + Λgµν = 8πGTµν (3.2)

and they can be derived from the action

S =
1

16πG

∫
d4x
√
−g(R− 2Λ) + Sm (3.3)

This generalization is made possible because the Einstein tensor Gµ
ν and the energy mo-

mentum tensor T µν satisfy the Bianchi identities Gµ
ν;µ = 0 and the energy conservation

T µν;µ = 0. Since the metric gµν is constant with respect to covariant derivatives (gµν;ν = 0),



30 The cosmological constant

there is a freedom to add a term Λgµν in the Einstein equations. Solving eqs (3.2) in the
FLRW metric (1.2) gives

H2 =
8πG

3
ρ− K

a2
+

Λ

3
(3.4)

1

a

d2a

dt2
= −4πG

3
(ρ+ 3p) +

Λ

3
. (3.5)

This clearly demonstrates that the cosmological constant contributes negatively to the
pressure term and hence works as a repulsive force against gravity at the background
level. In the Universe dominated by a pressureless matter (p = 0), we �nd that the static
Universe (da/dt = d2a/dt2 = 0) corresponds to

ρ =
Λ

4πG
,

K

a2
= Λ .

This equation shows that the density ρ in the Universe is determined by Λ. Since ρ > 0
we require that Λ is positive. In order to understand the energy scale of Λ let us derive
the Poisson equation from eq. (3.2). By taking the trace of eq. (3.2), we �nd that
−R = −4Λ + 8πGT which, inserted again in eq. (3.2) gives

Rµν − Λgµν = 8πG

(
Tµν −

1

2
Tgµν

)
. (3.6)

Let us consider Newtonian gravity with metric gµν = ηµν + hµν , where hµν is the per-
turbation around the Minkowski metric ηµν . If we neglect the time-variation and rota-
tional e�ect of the metric, R00 can be written by a gravitational potential Φ as R00 '
−(1/2)∆h00 = ∆Φ. Note that in a weak gravitational �eld we have g00 = −1 − 2Φ. In
the relativistic limit with |p| � ρ, we have T00 ' −T ' ρ. Then the 00 component of eq.
(3.6) gives

∆Φ = 4πGρ− Λ . (3.7)

In order to reproduce the Poisson equation in Newtonian gravity, we require that Λ = 0
or Λ is su�ciently small relative to the 4πGρ term in eq. (3.7). Since Λ has dimensions of
[Length]−2, the scale corresponding to the cosmological constant needs to be much larger
than the scale of stellar objects on which Newtonian gravity works well. In other words,
the cosmological constant becomes important on very large scales.

The requirement of a cosmological constant to achieve a static universe can be un-
derstood by having a look at the Newton's equation of motion (3.5). Since gravity pulls
particle towards the centre of the matter distribution with density ρ, we need a repul-
sive force to realize a situation in which a is a constant. This corresponds to adding a
cosmological constant term Λ/3 on the right hand side of (3.5).

In 1929 Hubble found the �rst direct quantitative evidence for the expansion of the
Universe by combining his measurements of galaxy distances with Slipher's measurements
of the redshifts associated with the galaxies [25]. In an expanding universe the cosmo-
logical constant did not have any reason to exist anymore. In the book �The Meaning of
Relativity� written by Einstein in 1945 [26], he stated that �if Hubble's expansion had been
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discovered at the time of the creation of the general theory of relativity, the cosmological
member (the cosmological constant) would never have been introduced.� In 1970 Gamov
[27] recalls that �when I was discussing cosmological problems with Einstein, he remarked
that the introduction of the cosmological term was the biggest blunder he ever made in
his life.� Since then, however, Λ has not died but has been the subject of much interest
and serious study on both conceptual and observational grounds. Moreover, in spite of
Einstein's regret, the cosmological constant returned at the end of the century to attract
more and more interest because it can account for the late-time cosmic acceleration.

In order to understand why, let's de�ne the modi�ed energy density and pressure

ρ̃ = ρ+
Λ

8πG
, p̃ = p− Λ

8πG
, (3.8)

which, inserted in eqs (3.4), (3.5) give equations of motion with the same form of eqs
(1.18), (1.20):

H2 =
8πG

3
ρ̃− K

a2
(3.9)

1

a

d2a

dt2
= −4πG

3
(ρ̃+ 3p̃) . (3.10)

In an empty universe (p = ρ = 0), the de�nitions (3.8) can be regarded as the density and
pressure of the cosmological constant that can be then considered as an additional perfect
�uid contributing to the matter energy budget, instead that as a simple geometrical term.
Conceptually this corresponds to shift the term Λgµν from the left to the right-hand side
of eq. (3.2). Then the equation of state of the cosmological constant reads

p̃ = −ρ̃ = − Λ

8πG
(3.11)

and

w =
p̃

ρ̃
= −1 , (3.12)

as we already mentioned. Since eqs (3.11), (3.12) are obtained in the absence of any
�ordinary� �uid, the cosmological constant is often also associated to the vacuum energy
of an empty space. This is an important point on which we will return in the next section.

An empty and �at (K = 0) universe is described by the de Sitter model. Substituting
eq. (3.11) in (3.9) we �nd

H2 =
1

a

da

dt
=

Λ

3

which has a solution of the form

a = A exp

[(
Λ

3

)1/2

t

]
.

Then Λ is able to drive an (exponential) accelerated expansion in an empty universe. This
is true even in the case where matter is present but the energy content of the universe
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is dominated by the cosmological constant. Of course, in this case the rate of expansion
would be smaller than in an empty universe. Since this seems to be the dynamics of our
universe at present time, the ΛCDM model turns out to be one of the best explanation to
the acceleration problem and the cosmological constant seems the best candidate to the
role of dark energy. However, as we will see in the next sections, this explanation su�ers
of both theoretical and philosophical problems.

3.2 Fine-tuning problem

If the cosmological constant originates from a vacuum energy density, then this su�ers
from a severe �ne-tuning problem. In order to realize the cosmic acceleration today, we
require that the cosmological constant is of the order of the square of the present Hubble
parameter H0 (see eq. (3.4))

Λ ≈ H2
0 = (2.13 h× 10−42GeV)2 (3.13)

If we interpret this as an energy density, it is equivalent to

ρΛ ≈
Λm2

pl

8π
≈ 10−47GeV4 ≈ 10−123m4

pl (3.14)

where we have used h = 0.7 and mpl ≈ 1019 GeV is the Planck mass.
Suppose that the energy density (3.14) comes from the vacuum energy 〈ρ〉 of an empty

space. The zero-point energy of some �eld of mass m with momentum k and frequency ω
is given by E = ω/2 =

√
k2 +m2/2 (in the units of ~ = c = 1). Then the vacuum energy

density evaluated by the sum of zero-point energies of such quantum �elds is given by

ρvac =
1

2

∫ ∞
0

d3k

(2π)3

√
k2 +m2 =

1

4π2

∫ ∞
0

dk k2
√
k2 +m2 (3.15)

This exhibits an ultraviolet divergence: ρvac ∝ k4. However we expect that quantum �eld
theory is valid up to some cut-o� scale kmax in which case the integral (3.15) is �nite:

ρvac ≈
k4
max

16π
. (3.16)

For the extreme case of general relativity, we expect it to be valid to just below the Planck
mass scale. Hence if we pick up kmax = mpl we �nd that the vacuum energy density in
this case is estimated as

ρvac ≈ 1074 GeV4 (3.17)

which is about 121 orders of magnitude larger than the observed value given by eq. (3.14).
Even if we take as energy scale that of QCD for kmax, we obtain ρvac ≈ 10−3 GeV4 which
is still much larger than ρΛ. We note that this contribution is related to the ordering
ambiguity of �elds and disappears when normal ordering is adopted. Since this procedure
of throwing away the vacuum energy is ad hoc, one may try to cancel it by introducing
counter terms. However this requires a �ne-tuning to adjust ρΛ to the present energy



3.3 The coincidence problem 33

density of the universe. Whether or not the zero point energy in �eld theory is realistic
is still a debatable question.

Well before the observational discovery of dark energy in 1998 the above problem was
an open issue. At that time most people believed that the cosmological constant was
exactly zero and there had been many attempts to explain why. Since the vanishing of
a constant usually implies the existence of some symmetry, a nice resolution of the zero
point energy is provided by supersymmetry. In supersymmetric theories, in fact, every
bosonic degree of freedom has its Fermi counterpart that contributes to the zero-point
energy with an opposite sign thereby canceling the vacuum energy. Indeed, for a �eld
with spin j > 0, the expression (3.15) for the vacuum energy generalizes to

ρvac =
(−1)2j

4π2
(2j + 1)

∫ ∞
0

dk k2
√
k2 +m2 (3.18)

If supersymmetry is unbroken, there exists an equal number of bosonic and fermionic
degrees of freedom for a given value of the mass m such that the net contribution to the
vacuum energy vanishes. It is in this sense that supersymmetric theories do not admit
a non-zero cosmological constant. However it is known that supersymmetry is broken at
su�cient high energies (and that we do not live in a supersymmetric vacuum state) and the
vacuum energy is generally non-zero in the world of broken supersymmetry. For a viable
supersymmetric scenario, for instance if it is to be relevant to the so called �hierarchy
problem� of gravitational interaction and weak interaction, the supersymmetry breaking
scale should be around MSUSY ∼ 103 GeV. With supersymmetry breaking around 103

GeV, we are still far away from the observed value of Λ by many orders of magnitude. At
present we do not know how the Planck scale or SUSY breaking scales are really related
to the observed vacuum scale.

The above cosmological constant problem has led many authors to try a di�erent
approach to the dark energy issue. Instead of assuming we have a small cosmological
constant, we ignore it, presume it is zero due to some as yet unknown mechanism, and
investigate the possibility that the dark energy is caused by the dynamics of a light scalar
�eld. It does not solve the cosmological constant problem, but it does open up another
avenue of attack as we will see in the following.

3.3 The coincidence problem

Another issue which is usually addressed as a crucial problem of the cosmological
constant as dark energy is that its value is not only very di�erent from all possible fun-
damental energy scales and requires therefore �ne tuning, but also that this particular
value is almost identical to the present matter energy density, for no obvious reason.
The so-called coincidence problem is the following: since matter density scales with the
third power of the inverse scale factor while ρΛ is always constant, an expanding universe
should be �rst dominated by matter and later dominated by the cosmological constant.
The densities of these two �uids should be of the same order of magnitude only in a brief
intermediate phase, but observations indicates that we are precisely in this intermediate
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phase, since they give ΩΛ ≈ 0.75 and Ωm ≈ 0.25. In particular, the redshift at which the
matter density ρm,0(1 + z)3 coincides with the cosmological density ρΛ,0 is given by

zcoinc =

(
ΩΛ,0

1− ΩΛ,0

)1/3

− 1 , (3.19)

which, for ΩΛ,0 = 0.7, amounts to zcoinc ≈ 0.3, a very recent time.
If we plot the ratio Ωm/ΩΛ as a function of the logarithm of the scale factor ln a (top

panel of Fig. 3.1), this appears to be smaller than one order of magnitude only in a brief
and recent epoch. Anyway, as argued in [28], the choice of a time scale to plot these
quantities is not unique and can lead to di�erent interpretations. In fact, if we plot the
above ratio as a function of a (bottom panel of Fig. 3.1), instead that ln a, which turns
out to be more reasonable, we see that 10−1 < Ωm/ΩΛ < 10 for the major part of the
history of the universe so far. However this doesn't really solve the problem which could
be recast in an "initial conditions" issue: since the cosmological constant energy density
and the matter density decrease at di�erent rates as the Universe expands, it appears
that their ratio must be set to a speci�c, in�nitesimal value (10−120, as found in [29]) in
the very early Universe in order for the two densities to nearly coincide today, some 13
billion years later. If in the primordial universe this ratio had been slightly di�erent, this
could have shifted the coincidence epoch to a very much larger or smaller time than the
present one. Were the initial conditions such that now ρΛ/ρm was just 10 or 100 times
smaller we wouldn't have seen any accelerated expansion. Had they been a few orders
of magnitude larger than unity the acceleration would have started far in the past and
probably we wouldn't have called it a coincidence at all.

Nevertheless we could also wonder if similar situations can still be considered compat-
ible with life. In this sense the coincidence problem is not an issue of �ne-tuning of the
density parameters at present or early times, but rather an issue of anthropic nature: why
do we happen to live in an age of the universe which is not many orders of magnitude
smaller or larger than tcoinc = t(zcoinc)? Anthropic arguments can easily criticized because
they are usually invoked as a way out of doing the hard work of understanding the real
reasons behind why we observe the universe the way we do. Furthermore, a sense of
disappointment would inevitably accompany the realization that there were limits to our
ability to unambiguously and directly explain the observed universe from �rst principles.
It is nevertheless possible that some features of our world have at best an anthropic expla-
nation, and the value of the cosmological constant is perhaps the most likely candidate.
We refer to [28, 30, 31] for similar (and even reasonable) explanations.

In fact the coincidence problem is not speci�c to the cosmological constant but to al-
most all acceptable dark energy models. To satisfy the constraints due to the observations
they need to behave similarly to the cosmological constant and then their zcoinc turn out
to be very close to zero. Cosmologists have proposed, with no real success, several ways
out of this problem. If we reject the idea that this coincidence is after all just a coinci-
dence or that all observational evidence in favour of acceleration is systematic wrong the
coincidence problem is far from solved (unless invoking some anthropic cause as already
mentioned).
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Figure 3.1: Evolution of the ratio between the density parameters of matter and cosmo-
logical constant as a function of ln a (upper panel) or of a (lower panel).



36 The cosmological constant



Chapter 4

Scalar �elds and generalizations of

General Relativity

In this Chapter we review a few concepts of classical and quantum �eld theory. In
particular we aim to introduce scalar �elds which are used in many dark energy models
that generalize Einstein's theory of gravitation.

4.1 Introduction to Field theory

In spite of the impressive success of Quantum Mechanics in describing atomic physics,
it was immediately clear after its formulation that its relativistic extension was not free
of di�culties.

The non-relativistic equation for the energy of a free particle is

p2

2m
= E (4.1)

where p, m and E are its momentum, mass and energy respectively. In order to quantize
this equation we make use of the correspondence principle which relates momentum and
energy to the operators ∇, ∂/∂t:

E → i
∂

∂t
(4.2)

p → −i∇ . (4.3)

Then we get the non-relativistic Schrödinger equation for a free particle

− ~2

2m
∇2ψ = i~

∂ψ

∂t
(4.4)

where ψ is the wavefunction associated to the particle. The Schrödinger equation su�ers
from not being relativistically covariant, meaning it does not take into account Einstein's
special relativity. In relativistic mechanics, the energy of a free particle is

E =
√
p2c2 +m2c4 (4.5)
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which, upon using the substitution (4.2), (4.3) becomes

√
−~2c2∇2 +m2c4ψ = i~

∂ψ

∂t
. (4.6)

This, however, is a cumbersome expression to work with because the di�erential operator
cannot be evaluated while under the square root sign. Klein and Gordon instead began
with the square of the eq. (4.5), i.e.

E2 = p2c2 +m2c4 , (4.7)

which, when quantized, gives

(−~2c2∇2 +m2c4)ψ =

(
i~
∂

∂t

)2

ψ (4.8)

or
1

c2

(
∂

∂t

)2

ψ −∇2ψ ≡ �ψ = −m
2c2

~2
ψ (4.9)

where

� =
1

c2

(
∂

∂t

)2

−∇2 = ∂µ∂
µ (4.10)

is the D'Alambertian operator. Eq. (4.9) is known as the Klein-Gordon equation. Plane-
wave solutions are readily found by inspection,

ψ =
1√
V

exp

(
i

~
p · x

)
exp

(
− i

~
Et

)
(4.11)

where E = ±
√
p2c2 +m2c4. Note that there is a negative energy solution as well as a

positive energy solution for each value of p. Nä�vely one could just discard the negative
energy solution, but in order to have a complete basis of solutions, plane waves with both
E > 0 and E < 0 have to be included. And here comes the problem.

Recall the probability density and current in Schrödinger equation. If we multiply
the Schrödinger equation by ψ∗ on the left and multiply the conjugate of the Schrödinger
equation by ψ, and then take the di�erence, we obtain

− ~2

2m
(ψ∗∇2ψ − ψ∇2ψ∗) = i~(ψ∗ψ̇ + ψψ̇∗) (4.12)

which can be written in the form

− ~2

2m
∇(ψ∗∇ψ − ψ∇ψ∗) = i~

∂

∂t
(ψ∗ψ) . (4.13)

Using the de�nitions of the probability density and current, ρs = ψ∗ψ and js = ~
2mi

(ψ∗∇ψ−
ψ∇ψ∗), we then obtain the continuity equation

∂ρs
∂t

+∇ · js = 0 . (4.14)
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Now we can carry out the same procedure for the free-particle Klein-Gordon equation:

ψ∗�ψ = −m
2c2

~
ψ∗ψ (4.15)

ψ�ψ∗ = −m
2c2

~
ψψ∗ . (4.16)

Taking the di�erence we obtain

ψ∗�ψ − ψ�ψ∗ = ∂µ(ψ∗∂µψ − ψ∂µψ∗) = 0 . (4.17)

This suggests that we can de�ne a probability 4-current,

jµ = α(ψ∂µψ∗ − ψ∗∂µψ) (4.18)

(where α is a constant) which is conserved: ∂µj
µ = 0. Its time and space components can

be written as jµ = (j0, j). In order to make j agree with js, α is chosen to be α = − ~
2mi

.
Thus

ρ =
j0

c
=

i~
2mc2

(
ψ∗
∂ψ

∂t
− ψ∂ψ

∗

∂t

)
. (4.19)

ρ does reduce to ρs = ψ∗ψ in the non-relativistic limit. However, ρ is not positive-de�nite
and hence cannot describe a probability density for a single particle. The Klein-Gordon
equation has to be reinterpreted.

First of all let us note that, being this equation relativistic invariant, it will admit as
a solution a scalar function.

In order to correctly interpret the solutions to Klein-Gordon equation, it is useful to
make an analogy with electromagnetism.

In classical mechanics, electromagnetism is studied through the action of the electric
(E) and magnetic (B) �elds generated by charged particles. Such �elds satisfy, in vacuum,
the well known Maxwell equations:

∇ · E = 0 (4.20)

∇ ∧B =
1

c

∂E

∂t
(4.21)

∇ ·B = 0 (4.22)

∇ ∧E = −1

c

∂B

∂t
(4.23)

From the second pair of Maxwell's equation follows the existence of scalar and vector
potentials ϕ(x, t) and A(x, t) de�ned by

B =∇ ∧A , E = −∇ϕ− 1

c

∂A

∂t
. (4.24)

ϕ and A can be thought of as the components of the four potential Aµ = (ϕ,A). Eqs
(4.24) do not determine the potentials uniquely, since for any arbitrary function f(x, t)
the transformation

ϕ→ ϕ′ +
1

c

∂f

∂t
, A→ A′ = A−∇f (4.25)
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leaves the �elds E and B unaltered. The transformation (4.25) is known as a gauge
transformation of the second kind.

De�ning the antisymmetric �eld tensor

F µν =


0 Ex Ey Ez
−Ex 0 Bz −By

−Ey −Bz 0 Bx

−Ez By −Bx 0

 (4.26)

it can be easily seen that Maxwell's equations are equivalent to

∂νF
µν = 0 , (4.27)

∂αFµν + ∂µFνα + ∂νFαµ = 0 . (4.28)

Moreover, replacing the �elds with their expression in terms of the potential, the
electromagnetic �eld tensor de�ned in eq. (4.26) can be cast in the form

F µν = ∂νAµ − ∂µAν . (4.29)

Combining eqs (4.27) and (4.29) leads to

∂νF
µν = ∂ν∂

νAµ − ∂ν∂µAν = 0 (4.30)

i.e. to the equation
�Aµ − ∂µ(∂νA

ν) = 0 (4.31)

which is of course also equivalent to Maxwell's non homogeneous equations (4.20), (4.21).
We have already noted that the choice of the four potential is not unique. In fact,

like eqs (4.24), eq. (4.31) has the important property of being invariant under the gauge
transformations (4.25) which can also be written in the form

Aµ(x)→ A′µ(x) = Aµ(x) + ∂µf(x) . (4.32)

Then we have the freedom to choose a particular gauge. For instance, the function f can
be chosen such that the potentials ϕ′ and A′ satisfy the condition

∇ ·A′ + 1

c

∂ϕ′

∂t
= 0 → ∂νA

ν = 0 (4.33)

known as the Lorenz gauge1 (or condition).
With this condition eq. (4.31) becomes then

�Aµ(x) = 0 . (4.34)

We remark that this is a relativistic covariant equation, whose solution is a vector �eld,
Aµ. The Klein-Gordon eq. (4.9) is instead the relativistic scalar invariant, equivalent to

1It is not a typo! The condition (4.33) is not due to same physicist author of the Lorentz transforma-
tions (the Dutch Hendrik A. Lorentz) but to the Danish Ludvig V. Lorenz.
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eq. (4.31) with m 6= 0, and then we can think to its solution in terms of a scalar �eld,
which we label φ. In order to obtain the eq. (4.9), the �eld has to be described by a
lagrangian in the form

L =

∫
L(φ(x, t), ∂µφ(x, t))d3x =

∫ [
1

2
∂µφ∂

µφ− 1

2
m2φ

]
d3x (4.35)

which corresponds to the action

S =

∫
Ldt =

∫ [
1

2
∂µφ∂

µφ− 1

2
m2φ

]
d4x (4.36)

Eq. (4.9) is obtained through minimum action principle

0 = δS =

∫ [
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
d4x (4.37)

where the derivatives are performed with respect to the generalized coordinates given (in
this case of a system with in�nite degrees of freedom) by the �eld and its derivatives
(while for a discrete system we can use for instance positions qi and velocities q̇i of the
particles or, in the case of general relativity, the components of the metric tensor).

The substitutions (4.2), (4.3) are often referred to as �rst quantization. In the second
quantization the �elds themselves become operators whose e�ect is to create and annihilate
particles. For instance, the �eld Aµ can be split into positive and energy negative parts

Aµ(x) = Aµ+(x) + Aµ−(x) (4.38)

and expanded in Fourier series

Aµ+(x) =
∑
rk

(
1

2V ωk

)1/2

εµr (k)ar(k)e−ikx (4.39)

Aµ−(x) =
∑
rk

(
1

2V ωk

)1/2

εµr (k)a†r(k)eikx (4.40)

where εµr (k) is the polarization vector and ar(k) , a†r(k) are the usual annihilation and
creation operators. Thus Aµ+(x) and Aµ−(x) can be seen as annihilation and creation
operators of photons, the mediator particles of the electromagnetic �eld.

In the same way we can quantize the Klein-Gordon scalar �eld φ, which will be asso-
ciated to a scalar (i.e. with spin 0) particle.

We can wonder if scalar �elds really exist. Even if elementary scalar particles have
yet to be found, it is supposed that they do exist. For example the Standard Model
of particles hypothesizes the existence of a scalar particle, the well known Higgs boson,
associated to the Higgs scalar �eld. Moreover, the description through scalar �elds is
very useful in many physical situations. For instance, the spinless pion (which is however
a composite and not a fundamental particle) is correctly described by the Klein-Gordon
equation through a �pseudoscalar� �eld, which means it is not invariant under parity
transformations which invert the spatial directions, distinguishing it from a true scalar,
which is parity-invariant.
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4.2 Scalar �elds in cosmology

Starting from the Hilbert-Einstein action

S =
1

16πG

∫
d4x
√
−gR + Sm (4.41)

giving rise to the Einstein �eld equations, it is possible to consider some generalizations to
this standard form of Einstein's theory. The simplest of them is the cosmological constant,
studied in Chapter 3.

Another class of models generalizing General Relativity is given by scalar-�eld theories
of gravitation. The name comes from the fact that, beside the metric tensor and the Ricci
scalar, in this theories it is also present a fundamental scalar �eld φ. The action takes the
form

SG =

∫
d4x
√
−g[f1(φ)R + f2(φ)(∂µφ)(∂µφ) + f3(φ)] (4.42)

where the functions fi(φ) (i = 1, 2, 3) de�ne the particular theory of the class. The best
known is the Brans-Dicke theory (1961).

Let us note that a scalar �eld, instead of a vectorial one, is naturally chosen in order
to preserve the isotropy of the universe and then the cosmological principle.

The motivation to scalar-tensor theories lies in the hypothesis, formulated by Dirac in
1937, that the gravitational constant G is just a spatial constant but could vary with time.
Dirac had realized that there exist some strange numerical �coincidences�, i.e. relations
connecting cosmological constants to fundamental quantities of the particle theory. For
instance we have (

~2H0

Gc

)1/3

≈ mπ (4.43)

where mπ is the pion mass. Similar relations suggest the existence of a deep though
unexplainable link between microphysics and cosmology (if they are not purely accidental).
Moreover, since in the most of cosmological models the Hubble constant varies with time,
whereas all the other quantities of the microscopic world are absolute constants, Dirac
proposed that also G has to vary with time (or alternatively one can consider a variation
of the electron charge, coming from similar relations, but we will not deal with this case).
Scalar-tensor theories are build up exactly to get a varying G. In fact, in standard General
Relativity, the coe�cient of R in the action is proportional to the inverse of the Newton
constant. In scalar-tensor theories this coe�cient is replaced by the function f1(φ), where
φ is a scalar �eld varying with respect to time and space.

Apart from its purpose to make the Newton constant variable, which is the physical
meaning of φ? It is linked to the so-called Mach's principle. The Austrian philosopher
(the �rst to bring into question Newton absolute space-time) argued that the inertia of a
body is determined by its acceleration with respect to the mass distribution of the entire
universe. Therefore, the particle masses are not fundamental constants but represent the
interaction between the particles themselves and some cosmic �eld. But, since the scale
of particle masses can be measured only through the gravitational acceleration Gm/r2, G
has to be connected in some way to the average value of the cosmic �eld, coupled to the
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mass density of the universe. The scalar �eld φ in the scalar-tensor theories then takes
the role of the cosmic �eld that satis�es Mach's principle and it turns out to be naturally
associated to G.

In Brans-Dicke theories we have

f1(φ) = φ f2(φ) = −ω
φ

f3(φ) = 0 (4.44)

where ω is called Dicke coupling constant. The �eld φ is determined by the energy-
momentum tensor of matter (comprising every �uid but not gravitation and φ) through

�φ =
8π

3 + 2ω
T (4.45)

The Einstein �eld equations take the form

Gµν = Rµν −
1

2
gµνR =

8π

φ

[
Tµν + T (φ)

µν

]
(4.46)

where T
(φ)
µν is the �eld energy-momentum tensor. At this point one can make the as-

sumption that the Einstein equivalence principle (based on the equality of inertial mass
and gravitational mass) is still valid. This implies that only gµν determines the motion
of massive particles and photons, i.e. φ is not directly coupled to matter. It only has an
indirect e�ect expressed through the contribution of T

(φ)
µν to the �eld equations (and then

to the determination of the space-time structure).
As a consequence, the only exchange of energy between matter and gravitation is made

through the usual covariant conservation of Tµν

T νν;µ = 0 . (4.47)

The �eld energy-momentum tensor is then determined by the covariant conservation
of Gµν

Gµ
νφ;µ = 8πT µ (φ)

ν;µ . (4.48)

The above equation allows to determine T
(φ)
µν . We get

T (φ)
µν =

1

8π

[
ω

φ

(
φ;µφ;ν −

1

2
gµνφ;ρφ

;ρ

)
+ φ;µ;ν − gµν�2φ

]
. (4.49)

The present experimental tests of General Relativity show that the possible variation of
G with time and space has to be very small and not enough to balance the variation of
H, as supposed by Dirac.

However, the interest in scalar-tensor theories is also due to the possible evidence of a
time variation of the �ne structure constant α (coming from observations of the absorption
from the interstellar gas of the radiation emitted by quasar). In fact, the relation (4.43)
can be written in the form

~2α2H0

Gc
= m 2

emp . (4.50)

The possible variation of α with time would then be interpreted as a variation of the speed
of light c and this e�ect could sum up to the one of G in a way to balance the variation
of H, in agreement with Dirac's hypothesis.
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Chapter 5

Linear perturbation theory

Dark energy is de�ned as a �uid distributed almost homogeneously and capable of
driving accelerated expansion. As such, it can be observed mainly through large scale
e�ects such as those relating to the cosmic expansion history. Indeed, the most solid
evidence in favour of dark energy comes from the acceleration of the universe as seen
in the Hubble diagram of the SN Ia and on the angular size of the acoustic horizon on
the CMB, as we saw in Chapter 2. However, all these observables depend ultimately on
dark energy only through functions relating to the expansion history, such as H(z), the
Hubble function. For instance, the luminosity distance in �at space is de�ned through
eq. (1.84), with wDE(z) being the equation of state of dark energy. It is clear that at any
given redshift there will be di�erent wDE(z)'s that give indistinguishable dL(z)'s and that
the degree of degeneration increases with redshift (see [32] for a detailed discussion on
the observability of wDE(z) at high z). Similar integrals enter the de�nitions of angular
diameter distance and age and will therefore be subject to the same ambiguity.

Fortunately, the homogeneous observables of the universe on large scales are not the
only observable quantities. The content of matter and energy has in fact evolved from
a hot, dense and homogeneous state of the primordial universe to a relative cold, di�use
one which, in the case of matter, is clustered in structures. As shown by the anisotropies
of the CMB, small �uctuations of the metric have grown up to form �small scale� objects
such as stars and galaxies. The fact that these �uctuations are small in amplitude allow
us to solve the non linear di�erential equations, governing the space-time and its matter
content, using a �rst order expansion: that is, as a �rst approximation we can consider
only the linear part of the perturbations.

While the cooling and the global decreasing of matter density are purely due to the
expansion of the background (the zero-th order term in the series expansion), the forma-
tion of structures is due to the perturbed part (the �rst order term). Then the growth
of perturbations provides a second observable, which studied together with the expansion
evolution can help to remove the degeneracy and distinguish among the models. That is
the reason why in this chapter we review the basics of cosmological perturbation theory.
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5.1 Cosmological horizons

The particle horizon LH(t) is de�ned as the physical distance that a ray of light can
travel between the times t = 0 and t. Imposing ds = 0 in a �at FLRW metric

ds2 = dt2 − a2[dr − r2(dθ2 + sin2 θdφ2)] (5.1)

and considering a ray of light that moves along a radial direction (dΩ2 = 0, being Ω the
solid angle) we have

LH = a(t)

∫ t

0

dt′

a(t′)
= a(t)

∫ a

0

da′

Ha′2 .
(5.2)

If t equals the present time, t = t0, then LH gives the dimension of the observable uni-
verse. The observed universe is instead the distance to the last scattering surface, when
the radiation decoupled from matter and the universe became transparent to radiation.
Therefore it is the largest distance that a photon reaching us can have travelled. Hence,
although a luminous signal can cover a distance LH , the scale of the kinematic processes
we are interested in, is given by DH = H−1. This distance marks the e�ective horizon or
Hubble radius; its present value is given by eq. (1.72). We will say that a perturbation of
comoving scale λ is inside the horizon (sub-horizon) at the time t if a(t)λ < H−1(t) and
outside the horizon if a(t)λ > H−1(t); where a(t)λ = H−1(t) the perturbation is said to
be in horizon-crossing. On using the wavenumber k = 2π/λ we have the equivalent def-
initions k > aH (sub-horizon), k < aH (super-horizon) and k = aH (horizon-crossing),
where we neglected terms of the order of unity.

5.2 Perturbing General Relativity

In order to perturb the equations of General Relativity one must �rst of all perturb
the metric, writing at �rst order

gµν = g(0)
µν + ∆gµν (5.3)

where the perturbation ∆gµν have to be small with respect to the 0-th order metric tensor.
We consider cosmological perturbations about the �at FLRW metric given by

ds2 = g(0)
µν dx

µdxν = a2(−dτ 2 + δijdx
idxj) . (5.4)

We will also use the conformal Hubble function

H ≡ 1

a

da

dτ
=
ȧ

a
, (5.5)

where the dot represents the derivative with respect to the conformal time. As known,
in General Relativity the �eld equations are invariant under a general coordinate change.
This means that the di�erence between a background metric and a perturbed one is not
unique: since the interval ds = gµνdx

µdxν needs to be invariant, changing the coordinates
dxµ leads to changes in the metric tensor as well. In order to �x the unperturbed (or
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background) metric we select a class of in�nitesimal transformations that leaves g
(0)
µν as

it is, while the perturbed metric ∆gµν is subject to change. In other words we are con-
sidering gauge transformations. In the unperturbed Universe, the comoving coordinates
are de�ned in such a way that the �uid elements expanding with the Universe remain at
�xed (comoving) coordinates. When perturbations are added, we can either use the same
coordinates, or build up a new set of coordinates that free-fall with the �uid elements in
the perturbed gravitational �eld. That is, in practice, we can choose to place the observers
on the points in the unperturbed frame or to the perturbed particles. In the former case,
called the Newtonian or longitudinal gauge, the observers will detect a velocity �eld of
particles falling into the clumps of matter and will measure a gravitational potential, in
the Newtonian limit. This choice is in fact the most intuitive one and reduces easily to
the Newtonian case. However, when the wavelengths of perturbations are larger than the
horizon, to place the observers on an invisible background doesn't look as a logic choice.
In the second case, called the comoving proper-time gauge (or sinchronous gauge), the
observers are placed instead on the free-falling particles, so they do not see any velocity
�eld (unless there are other non-gravitational forces, like pressure gradients) and, being
always free falling, do not measure a gravitational potential. This gauge, therefore, does
not have a proper Newtonian limit but it it useful for perturbation larger than the hori-
zon mainly because all the observers measure the same time (in every sinchronous gauge
g00 = 1, then it is possible to synchronize clocks all over the space-time). Since we are
mainly interested in the sub-horizon perturbations we choose to write the equation in the
Newtonian gauge.

5.3 The Newtonian gauge

The most general perturbed metric can be written schematically as in eq. (5.3) where

∆gµν = a2

(
−2Ψ wi
wi 2Φδij + hij

)
(5.6)

where Ψ and Φ are spatial scalars, wi is a 3-vector, and hij is a traceless 3-tensor. All
the perturbation quantities (Ψ,Φ, wi, etc) depend on space and time. In order that the
condition gαγg

γβ = δβα be still valid (neglecting second order term in the perturbation)
the controvariant expression of the metric tensor is given by

gµν = gµν(0) −∆gµν , (5.7)

where
∆gµν = −∆gαβg

αµ
(0)g

βν
(0) . (5.8)

A decomposition analogous to gµν can be done for any rank-two tensor as e.g., the energy-
momentum tensor. Now, in order to simplify the perturbed metric we make the following
steps. Using Helmholtz's theorem we decompose the vector wi into a longitudinal and a
transverse component

wi = w⊥i + w
‖
i , (5.9)
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where by construction
∇ · w⊥i = ∇× w‖i = 0 . (5.10)

The longitudinal component, w
‖
i , being curl-free, can then be written as the gradient of

a scalar quantity ws: w
‖
i = ∇ws. A similar argument holds for the traceless spatial part

hij. Its longitudinal component can be written as

h
‖
ij =

(
∂i∂j −

1

3
δij∇2

)
B ≡ DijB , (5.11)

where the traceless operator Dij is de�ned implicitly and B is a scalar function. When we
derive the Einstein equations for the (0i) components, we will have therefore longitudinal
and transverse terms, both in G0i and in T0i. Taking the curl of the equations, we are
left with only the transverse equations. On the other hand, taking the divergence, we
are left with the longitudinal ones. Therefore, the two components completely decouple
from each other and evolve independently, and therefore can be treated separately. The
density perturbation δ is a scalar quantity; since the longitudinal terms can be derived
from a scalar quantity, they only couple to the density perturbations. Therefore, we need
to take into account only the part of wi and hij derived from scalars. This can be done
by introducing two new scalar functions, E and B, that produce the vector E,i and the
tensor DijB. Then the perturbed metric is given by

∆gµν = a2

(
−2Ψ E,i
E,i 2Φδij +DijB

)
. (5.12)

Now we can impose to the metric up to four conditions corresponding to the choice of the
gauge. We choose them to be wi = 0 (from which E = 0) and B = 0. This �nally leaves
the perturbed metric in the Newtonian gauge:1

ds2 = a2(τ)
[
−(1 + 2Ψ)dτ 2 + (1 + 2Φ)δijdx

idxj
]
. (5.13)

The Einstein tensor Gµ
ν and the energy-momentum tensor T µν can be split into background

and perturbed parts: Gµ
ν = G

µ(0)
ν + ∆Gµ

ν and T µν = T
µ(0)
ν + ∆T µν . The background

cosmological evolution is obtained by solving the zero-th order Einstein equations, G
µ(0)
ν =

8πGT
µ(0)
ν whereas the �rst-order Einstein equations are given by

∆Gµ
ν = 8πG∆T µν , (5.14)

where

∆Gµ
ν = ∆Rµ

ν −
1

2
∆(gµνR) = ∆Rµ

ν −
1

2
(∆gµνR + gµ(0)

ν ∆R) . (5.15)

The expression of the perturbed Ricci tensor and scalar curvature are obtained from
eqs. (1.12) and (1.13) and read

∆Rµν = ∆Γαµν,α −∆Γαµα,ν + ∆ΓαµνΓ
β
αβ + Γαµν∆Γβαβ −∆ΓαµβΓβαν − Γαµβ∆Γβαν , (5.16)

∆R = ∆gµαRαµ + gµα∆Rαµ . (5.17)

1For the signs of the potentials we follow the choice of [33] and [34].
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The only non vanishing unperturbed Christo�el symbols in the metric (5.4) are

Γλ0ν = Hδλν , Γ0
µν = Hδµν . (5.18)

while we can compute the perturbed Christo�el symbols by perturbing eq. (1.6):

∆Γλµν =
1

2
∆gλη(gµη,ν + gην,µ − gµν,η) +

1

2
gλη(∆gµη,ν + ∆gην,µ −∆gµν,η) . (5.19)

The non-vanishing components of perturbed Christo�el symbols are then

∆Γ0
ij = δij

[
2H(Φ−Ψ) + Φ̇

]
, (5.20)

∆Γ0
00 = Ψ̇ , (5.21)

∆Γ0
0i = ∆Γi00 = Ψ,i , (5.22)

∆Γij0 = δijΦ̇ . (5.23)

Thus, from eq. (5.15) we obtain

∆G0
0 =

2

a2

[
3H(HΨ− Φ̇) +∇2Φ

]
(5.24)

∆G0
i =

2

a2
(Φ̇−HΨ);i (5.25)

∆Gi
j =

2

a2

[
(H2 + 2Ḣ)Ψ +HΨ̇− Φ̈− 2HΦ̇

]
δij +

+
1

a2

[
∇2(Ψ + Φ)δij −∇i∇j(Ψ + Φ)

]
. (5.26)

The last information we need in order to solve the linear perturbation equations of eq.
(5.14) is the form of the perturbed energy-momentum tensor δT µν . This is determined
once the matter source is speci�ed: we will do it in the next sections for several cases.
For the moment we just recall that the energy-momentum tensor satis�es the continuity
equation T µν;µ = 0. The �rst-order part of this equation,

∆T µν;µ = 0 , (5.27)

also gives a number of useful equations, as we will see later. In order to evaluate the
perturbed energy-momentum tensor, we also need to perturb the four-velocity uµ ≡ dxµ

ds
.

Neglecting the perturbations higher than the �rst order, we obtain

uµ =

[
1

a
(1−Ψ),

vi

a

]
, (5.28)

uµ = gµνu
ν = [−a(1 + Ψ), avi] , (5.29)

uµu
µ = −1 , (5.30)

where vi = dxi

dτ
= adx

i

dt
is the matter peculiar velocity with respect to the general expansion.
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5.4 Single �uid model

In order to compute the �rst order perturbations in the energy-momentum tensor we
need to specify which are the components of the universe in the model we are interested
to. Let us �rst consider a single-�uid model with an energy-momentum tensor Tµν . The
most general energy momentum tensor for a �uid can be written as

Tµν = (ρ+ p)uµuν + pgµν + [qµuν + qνuµ + πµν ] (5.31)

where ρ, p, uµ stand for the usual energy density, pressure and four-velocity vector, while
we also introduce the heat �ux vector qµ and the viscous shear tensor πµν . The terms
inside square brackets in eq. (5.31) are important only for �uids whose internal energy is a
sizable fraction of the total energy density. We have qµ = 0 and πµν = 0 for perfect �uids.
In the following we limit ourselves to perfect �uids. We also assume that the perturbed
�uid remains a perfect �uid. This implies that Σi

j ≡ δT ij = 0 (i 6= j), a condition that
will be used below.

The notation for the perturbed quantities is

δ ≡ ∆ρ

ρ
, θ ≡ ∇iv

i (5.32)

where
∆ρ

ρ
≡ ρ(x)− ρ̄

ρ̄
(5.33)

is the density contrast (ρ(x) is the density �eld at a point x and ρ̄ is the spatial average)
and θ is the velocity divergence. In general there are several pairs δi, θi, one for each
perfect �uid composing the Universe. All of the perturbed quantities are functions of
space x and time t. δ(x) is in reality a random �eld which by de�nition has a zero mean
value 〈δ〉 = 0. When we say that δ grows or decays we mean that in the linear regime
the value of δ(x) at any point x can be written as δ(x, t) = D(t)δ(x, 0), where D(t) is the
growth (or decay) function. In the linear regime the spatial part is always factored out and
its properties are assigned by initial conditions. We will always assume Gaussian initial
conditions as predicted in standard in�ationary models. From eq. (5.31) the perturbed
energy-momentum tensor for a perfect �uid with the equation of state w = p/ρ can be
written as

∆T µν = ρ
[
δ(1 + c2

s)uνu
µ + (1 + w)(δuνu

µ + uνδu
µ + c2

sδδ
µ
ν )
]

(5.34)

where δµν is the usual Kronecker's delta (and not the density contrast δ!) and we have
introduced the sound velocity, c2

s ≡ ∆p/∆ρ. If p, even when perturbed, depends on ρ
alone (which is the case called barotropic �uid) then

c2
s ≡

∆p

∆ρ
=
dp

dρ
=
ṗ

ρ̇
. (5.35)

The last passage is valid only in the FLRW metric where at background level everything
depends on time alone (cs is calculated at zero-th order since it will always appear as
a factor of �rst-order variables). Since cs, just as w, depends at �rst-order only on
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background quantities, in this case the perturbation equations do not introduce any new
free function. In general, however, the pressure p can depend on internal degrees of
freedom of the �uid, say, entropy s. Then one has

c2
s =

δp(ρ, s)

δρ
=
∂p

∂ρ
+
∂p

∂s

∂s

∂ρ
= c2

s(a) + c2
s(na) (5.36)

where c2
s(a) ≡

√
ṗ/ρ̇ is called the adiabatic sound speed and c2

s(na) is the non-adiabatic
sound speed. The non-adiabatic sound speed in general will depend on microphysical
properties of the �uid and appears as a new free function only at the level of perturbations.
The gravitational equations at �rst-order are then completely speci�ed only if we give for
each �uid the equation of state w(a) and the total sound speed cs(a) or, equivalently, if
we assign to the �uid a function p(ρ, s) which determines both. The components of the
energy-momentum tensor are

∆T 0
0 = −∆ρ (5.37)

∆T 0
i = −∆T i0 = (1 + w)ρvi (5.38)

∆T 1
1 = ∆T 2

2 = ∆T 3
3 = c2

s∆ρ . (5.39)

Then the perturbed Einstein equations (5.14) lead to

3H(HΨ− Φ̇) +∇2Φ = −4πGa2ρδ (5.40)

∇2(Φ̇−HΨ) = 4πGa2(1 + w)ρθ (5.41)

Ψ = −Φ (5.42)

Φ̈ + 2HΦ̇−HΨ̇− (H2 + 2Ḣ)Ψ = −4πGa2c2
sρδ (5.43)

Note that eqs. (5.40)�(5.43) come from the (00), (0i), (ij), and (ii) components. Equation
(5.42) follows from the property ∆T ij = 0. One can also derive some useful equations by
using the continuity equation (5.27). Recalling that the operation of covariant divergence
of a tensor is

T µν;µ = T µν,µ − ΓανβT
β
α + ΓαβαT

β
ν (5.44)

the ν = 0 component of eq. (5.27), i.e. ∆T µ0;µ = 0, reads

∆T µ0,µ −∆Γα0βT
β
α − Γα0β∆T βα + ∆ΓαβαT

β
0 + Γαβα∆T β0 = 0 (5.45)

which reduces to

∆̇ρ+ 3H(∆ρ+ ∆p) = −(ρ+ p)(θ + 3Φ̇) (5.46)

where we have employed eqs. (5.20)�(5.23). Using the unperturbed conservation equation
ρ̇+ 3H(ρ+ p) = 0 together with the relations w = p/ρ and c2

s = ∆p/∆ρ, we �nd that eq.
(5.46) can be expressed as

δ̇ + 3H(c2
s − w)δ = −(1 + w)(θ + 3Φ̇) , (5.47)
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which is called the (perturbed) continuity equation. For non-relativistic matter with w = 0
and c2

s = 0, this equation reduces to

δ̇ = −θ − 3Φ̇ (for non relativistic matter). (5.48)

According to this equation, the density at position x increases if there is a velocity diver-
gence in the same place, that is, if there is more matter coming in than going out. The
term Φ̇, absent in Newtonian dynamics, is negligible at small scales and, of course, for
a slowly varying gravitational potential. The equation ∆T µi;µ = 0 leads to (writing it in
terms of vi and taking the divergence ∇i)

θ̇ +

[
H(1− 3w) +

ẇ

1 + w

]
θ = −∇2

(
c2
s

1 + w
δ + Ψ

)
. (5.49)

For non-relativistic matter, this reduces to

θ̇ +Hθ = −∇2Ψ−∇2(c2
sδ) (for non relativistic matter) (5.50)

where now we have included the ∇2(c2
sδ) term. This is called the Euler equation in the

Newtonian context. It says that the (peculiar) acceleration depends on the sum of the
potential and pressure gradients.

In order to describe the distribution of matter in the Universe at a given time and its
subsequent evolution one might try to divide it into volumes which initially evolve inde-
pendently of each other. Fairly soon, however, this independence would no longer hold as
the gravitational forces between one cell and its neighbours become strong. It is therefore
not a good idea to think of a generic perturbation as a sum of spatial components. It is
a much better idea to think of the perturbation as a superposition of plane waves which
have the advantage that they evolve independently while the �uctuations are still linear.
This e�ectively means that one represents the distribution as independent components
not in real space, but in Fourier transform space, or reciprocal space, in terms of the
wavevectors of each component k.

That is the reason why we go now to the Fourier space. This means that all pertur-
bation quantities will be Fourier expanded:

Φ =

∫
eik·rΦkd

3k , Ψ =

∫
eik·rΨkd

3k (5.51)

δ =

∫
eik·rδkd

3k , θ =

∫
eik·rθkd

3k . (5.52)

The subscript k represents a Fourier mode for each wavenumber k and is a comoving
quantity that remains �xed. In the following we drop the subscript k as long as no
confusion arises by doing so. Then in Fourier space we assume that the perturbation
variables (δ, θ, Φ, Ψ, etc.) are the sum of plane waves eik·rδk. Since the equations are
linear, each plane wave obeys the same equations with a di�erent comoving wavenumber
k. Throughout the linear evolution, the physical scale λp of the perturbation expands
with the cosmic expansion as λ = (2πa)/k. Of course, if the perturbation enters a non-
linear regime, then this treatment breaks down and the perturbation decouples from the
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Hubble expansion and starts collapsing. When we calculate the perturbation equations
it is usually very convenient to introduce from the beginning all perturbation variables
as Fourier modes, e.g., δ(x, y, z, t) = δk(t)e

ik·r. Since we are always interested in the
direction-averaged equations (i.e. the equations that depend only on the modulus k), we
could simply put k · r = k(x+ y + z)/

√
3. In practice, each perturbation quantity φ and

its derivatives can be substituted as follows

φ(x, τ) → eik·rφ(τ) (5.53)

∇φ(x, τ) → ieik·rkφ(τ) (5.54)

∇2φ(x, τ) ≡ ∇i∇iφ(x, τ) → −eik·rk2φ(τ) (5.55)

When there are two repeated spatial indices we sum over them without the help of the
metric coe�cients gij (more exactly, we use the induced 3-dimensional spatial metric which
for spatially �at spaces is just the Euclidean metric). Furthermore, the Fourier modes
eik·r can be simply dropped out, since the equations are linear and therefore decoupled
between di�erent modes.

From eqs. (5.40)�(5.43), (5.47), and (5.49) we obtain the following equations for each
Fourier mode:

k2Φ + 3H(Φ̇−HΨ) = 4πGa2ρδ (5.56)

k2(Φ̇−HΨ) = −4πGa2(1 + w)ρθ (5.57)

Ψ = −Φ (5.58)

Φ̈ + 2HΦ̇−HΨ̇− (H2 + 2Ḣ)Ψ = −4πGa2c2
sρδ (5.59)

δ̇ + 3H(c2
s − w)δ = −(1 + w)(θ + 3Φ̇) (5.60)

θ̇ +

[
H(1− 3w) +

ẇ

1 + w

]
θ = k2

(
c2
s

1 + w
δ + Ψ

)
, (5.61)

where now
θ = ik · v (5.62)

The six equations above are not independent but they are all useful. For instance, we can
combine eqs. (5.56) and (5.57) to get the relativistic Poisson equation

k2Φ = 4πGa2ρ
[
δ + 3H(w + 1)θ/k2

]
= 4πGa2ρδ∗ , (5.63)

where δ∗ is the total matter variable:

δ∗ ≡ δ + 3H(w + 1)θ/k2 (5.64)

while combining eqs. (5.56), (5.58), and (5.59), we can get an equation for Φ alone:

Φ̈ + 3H(1 + c2
s)Φ̇ + (c2

sk
2 + 3H2c2

s +H2 + 2Ḣ)Φ = 0 . (5.65)

We also give the useful relation

Ḣ = −1

2
(1 + 3w)H2 . (5.66)
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5.5 Scales larger than the horizon

Now that we have derived the perturbation equations, we can begin wondering how
to solve them. As a �rst example we work out the simplest case, the large-scale limit
k � H = aH. This corresponds to the scale on which the physical wavelength λp =
(2πa)/k of perturbations is much larger than the Hubble radius H−1, i.e. super-horizon
scales (although notice that the horizon corresponds approximately to 1/H only for some
particular case). If the pressure depends only on the energy density and the equation of
state w is a constant then we have c2

s = w, which is valid both for matter and radiation.
In this case eq. (5.65), using eq. (5.57), reduces to

Φ̈ + 3H(1 + c2
s)Φ̇ = 0 (5.67)

Then Φ̇= 0 is a solution. Equation (5.56) becomes

3H2Φ = 4πGa2ρδ , (5.68)

where we have neglected the term k2Φ. Using the Friedmann equation, 3H2 = 8πGρa2 it
follows that

δ = 2Φ (5.69)

Hence Φ = constant at large scales implies that δ = constant. One easily �nds that the
result (5.69) is consistent with the other Einstein equations. Equation (5.67) is second-
order, so we must have two solutions. It appears immediately that Φ = constant is a
growing mode or a dominating solution (at least for c2

s > −1). Thus we have shown
that the gravitational potential remains constant for scales outside the Hubble radius
whenever c2

s = w for the total �uid. During the transition from radiation to matter eras
this condition is violated and the gravitational potential changes.

5.6 Scales smaller than the Hubble radius

Now we work out the opposite case, k � H, i.e. scales deep inside the Hubble radius
(sub-horizon scales). In a general �uid, its pressure opposes gravity acting against the
growth of the �uctuations and stopping the collapse. On the contrary, in a pressureless
�uid the �uctuations can grow inde�nitely because there is no counteracting force. We
then begin to derive the equations for a �uid which is pressureless (w = 0) in the absence
of perturbations, but has a small sound speed:

c2
s =

δp

δρ
� 1 (5.70)

In the limit k � H eq. (5.57) tells us that Φ̇ −HΨ ' 0, so that eq. (5.56) corresponds
to the Fourier transformed Poisson equation

k2Φ = 4πGa2ρδ =
3

2
H2δ (5.71)
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Taking the derivative of eq. (5.71) and substituting it into eq. (5.60), we obtain

δ̇ = −θ − 9

2

H2

k2
δ

(
2
Ḣ
H

+
δ̇

δ

)
' −θ . (5.72)

Hence this equation reduces to the energy conservation equation in the Newtonian limit.
Then the perturbation equations in the sub-horizon limit become

δ̇ = −θ (5.73)

θ̇ = −Hθ + c2
sk

2δ − k2Φ (5.74)

plus eq. (5.71). Di�erentiating eq. (5.72) with respect to τ and using eq. (5.74), it follows
that

δ̈ +Hδ̇ +

(
c2
sk

2 − 3

2
H2

)
δ = 0 . (5.75)

In the Minkowski limit, H → 0, this equation reduces to the classical �uid wave equation
δ̈ + c2

sk
2δ = 0, where cs is indeed the sound velocity. Equation (5.75) shows at once that

the perturbation does not grow if

c2
sk

2 − 3

2
H2 > 0 , (5.76)

i.e. if the physical wavelength λp = (2πa)/k is smaller than the Jeans length,

λJ = cs

√
π

Gρ
. (5.77)

For scales smaller than λJ the perturbations undergo damped oscillations. For the CDM
particles the velocity dispersion is always negligible, at least in the regime of validity of
our linear treatment. For the photons we have cs = c/

√
3, so that

λJ ≈ H−1 . (5.78)

Hence the growth of perturbations is prevented on all scales smaller than the Hubble
radius. For the baryons, the sound velocity is comparable to the photon velocity before
the decoupling epoch, so that baryon perturbations are damped out (more precisely they
drop rapidly to a comoving scale of less than 1 Mpc just after decoupling). Then the
baryons are free to fall inside the dark matter potential wells, and their perturbation
spectrum catches the dark matter one (like we will see in the next section).

When csk � H, the perturbations grow freely because gravity overcomes the pressure:
this is the very important regime of gravitational instability. The subhorizon equation for
a single pressureless �uid becomes

δ̈ +Hδ̇ − 3

2
H2δ = 0 (5.79)

or, using the time t,

d2δ

dt2
+ 2H

dδ

dt
− 3

2
H2δ =

d2δ

dt2
+ 2H

dδ

dt
− 4πGρmδ = 0 , (5.80)
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where we also used the Friedmann eq. (1.19) (with K = 0). The interpretation of this
equation is quite simple: perturbations grow according to a source term representing the
amount of matter able to cluster (ρm) but their growth is opposed by a friction term due
to the expansion of the universe.

It is often useful to employ the number of e-foldings α = ln a in the place of the
conformal time. Then eq. (5.79) can be written as

δ′′ +

(
H′

H
+ 1

)
δ′ − 3

2
δ = 0 , (5.81)

where we have used a prime for the derivatives with respect to α. We can rewrite eq.
(5.66) as

H′

H
= −1

2
− 3

2
w . (5.82)

For a pressureless �uid (w = 0), eq. (5.81) then reduces to

δ′′ +
1

2
δ′ − 3

2
δ = 0 , (5.83)

which is a simple constant coe�cients di�erential equation, whose solutions are linear
combinations of

δ = Aemα = Aam . (5.84)

The direct substitution of (5.84) in eq. (5.83) gives the solutions m± = 1,−3/2. Then
the evolutions of modes during the matter era is given by

δ+ = Aa, δ− = Aa−3/2 (5.85)

labeled growing and decaying modes respectively. In terms of the cosmic time t, the
growing solution evolves as δ+ ∝ t2/3. The pre-factor is of course �xed by the initial
conditions, ultimately established during in�ation. The decaying solutions (or in general
the slower one) become soon negligible with respect to the growing ones and we will
systematically neglect them in the following. Inserting δ+ into the Poisson equation
(5.71), we see that Φ ∝ a2H2δ+ ∝ a2a−3a1 ∝ constant (recalling that H ∼ a−3/2 in the
matter dominated era). Hence the gravitational potential remains constant during the
pure matter-dominated epoch.

5.7 Two-�uid solutions

Now we generalize the single-�uid case to the more realistic case in which both matter
(wm = c2

s = 0) and radiation (wr = c2
s = 1/3) are present. We introduce the mat-

ter perturbation variables δm, θm and the radiation perturbation variables δr, θr (here
radiation means all the components which are massless or relativistic). Since we are con-
sidering dark matter as a dominant matter component, there is no explicit interaction
term between matter and radiation. The baryonic fraction is also e�ectively decoupled
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after z ≈ 1000, while before this epoch it can be considered as a part of a relativistic pho-
ton�baryon plasma. In Fourier space we then have a system of gravitationally coupled
equations for the perturbations on sub-horizon scales:

δ̇m = −(θm + 3Φ̇) , (5.86)

θ̇m = −Hθm − k2Φ , (5.87)

δ̇r = −4

3
(θr + 3Φ̇) , (5.88)

θ̇r = k2

(
3

4
c2
sδr − Φ

)
, (5.89)

k2(Φ̇ +HΦ) = −4πGa2(1 + we�)ρtθt , (5.90)

k2Φ + 3H(Φ̇ +HΦ) = 4πGa2ρtδt . (5.91)

The subscript t represents the total perturbation variables, i.e.

ρt = ρm + ρr , (5.92)

we� = Ωrwr + Ωmwm =
ρr/3

ρm + ρr
, (5.93)

θt =
(1 + wm)Ωmθm + (1 + wr)ΩrΘr

1 + we�

, (5.94)

δt = Ωmδm + Ωrδr , (5.95)

Here the total e�ective equation of state we� = pt/ρt is given by

we� = −1− 2

3

Ḣ

H2
, (5.96)

which follows from eqs. (1.18), (1.19) and K = 0. We remind that Ωm and Ωr are
functions of time and must be distinguished from their present values Ωm,0 and Ωr,0. In
the sub-horizon limit, eq. (5.91) gives

k2Φ ' 4πGa2(ρmδm + ρrδr) =
3

2
H2(Ωmδm + Ωrδr) . (5.97)

Following the derivation similar to eq. (5.75), we obtain the following equations for sub-
horizon perturbations

δ̈m +Hδ̇m −
3

2
H2(Ωmδm + Ωrδr) = 0 , (5.98)

δ̈r +
k2

3
δr = 0 . (5.99)

During the radiation-dominated epoch we have Ωm ' 0 and Ωr ' 1. Moreover the
second equation shows that the radiation density contrast oscillates rapidly around zero
(since we are considering sub-horizon modes, k � H). The same is true for the coupled
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baryon�photon plasma. Therefore, we can average over the radiation oscillations and put
〈δr〉 ' 0 in the �rst equation. It then follows that Ωmδm + Ωrδr ' 0 and

δ̈m +Hδ̇m =' 0 . (5.100)

The solution of this equation is given by δm = C1 + C2

∫
a−1dτ . During the radiation

era the integral
∫
a−1dτ gives only a logarithmic correction, so the matter perturbations

evolve only mildly. During the matter era we have |Ωmδm| � |Ωrδr| in eq. (5.98), so that
the evolution of matter perturbations is described by δm ∝ a as we have explained in the
previous section. If we consider cold dark matter (perturbation δc) and baryonic matter
(perturbation δb) instead of matter and radiation, eq. (5.98) can be generalized as

δ̈c +Hδ̇c −
3

2
H2(Ωcδc + Ωbδb) = 0 , (5.101)

δ̈b +Hδ̇b −
3

2
H2(Ωcδc + Ωbδb) = 0 , (5.102)

Since baryons correspond to a small fraction of the total matter �uid, we can assume
|Ωcδc| � |Ωbδb|. This shows that eq. (5.101) decouples from δb and reduces to the standard
equation for matter perturbations. At the same time the baryon equation is �forced� by
the term Ωcδc. For such coupled di�erential equations the asymptotic solution of δb will
approach the forcing term δc. In other words, the perturbations in baryons will catch
up with those in dark matter. This expresses mathematically (in the linear regime) the
common expression according to which the baryons fall into the dark matter potential
wells.

Analogously, if we consider the sum of pressureless matter and the cosmological con-
stant Λ instead of matter and radiation, we get the term ΩΛδΛ in addition to Ωmδm.
However ρλ is constant by de�nition and then δΛ = 0, so that we have a slight modi�ca-
tion of eq. (5.79):

δ̈m +Hδ̇m −
3

2
H2Ωmδm = 0 . (5.103)

This equation can be rewritten in terms of the derivative with respect to α:

δ′′m +

(
H′

H
+ 1

)
δ′m −

3

2
Ωmδm = 0 . (5.104)

If we assume that Ωm= constant, then the solution is given by δm ∼ am± with

m± =
1

4

(
−1±

√
1 + 24Ωm

)
. (5.105)

This case occurs when the fraction 1 − Ωm is into some form of energy density which
has w ≈ 0 but contrary to ordinary CDM it does not cluster on sub-horizon scales. The
major example of this is massive neutrinos after they become non-relativistic. Supposing
for a moment we could apply it also for CDM, this would show that the cosmological
constant slows down the perturbation growth. In the limit Ωm → 0 we have m→ 0 from
eq. (5.105), which is qualitatively correct. However, the density parameter

Ωm =
ρm

ρm + ρΛ

=
ρm,0a

−3

ρm,0a−3 + ρΛ

=
Ωm,0a

−3

Ωm,0a−3 + ΩΛ

(5.106)
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is obviously not a constant. A much better approximation, obtained by an empirical �t,
is given by de�ning the growth rate s of matter perturbations [35]:

s ≡ d ln δm
d ln a

= Ωγ
m , (5.107)

that is

δm(a) = δm(ai) exp

(∫ a

ai

Ωm(ā)γ
dā

ā

)
, (5.108)

where the growth index γ is ≈ 0.55 for the ΛCDM model. With this behaviour we realize
that the term H2δm in the Poisson equation is no longer constant and therefore the
gravitational potential on sub-horizon scales is not constant. For the ΛCDM model the
gravitational potential is almost constant during the matter era, but it begins to decrease
after the universe enters the dark-energy-dominated epoch.
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Chapter 6

Correlation function and power

spectrum

In the previous chapter we have studied the linear evolution of a perturbation de-
scribed as a plane wave with corresponding wave vector k. This representation is useful
because a generic perturbation can be represented as a superposition of such plane waves
(by the Fourier representation theorem) which, while they are evolving linearly, evolve
independently of each other. In general we expect �uctuations to exist on a variety of
mass or length scales and the �nal structure forming will depend on the growth of per-
turbations on di�erent scales relative to each other. In this chapter we shall therefore
look at perturbations in terms of their spectral composition and explain how the various
spectral properties might arise.

6.1 The Correlation function

Let us set up some useful tools to describe a random distribution of particles, to be
identi�ed with astrophysical sources (galaxies, quasars, etc.). If there are N points in a
volume V , the easiest descriptor is the average numerical density ρ0 = N/V , the �rst
order moment of the distribution. But clearly this is insu�cient to discriminate among
say N points clustered near the same spot and N points evenly distributed across the
volume, so we need to �nd more useful descriptors. Let us focus then on some small
volume dV chosen randomly inside the volume V . Then ρ0dV is the average number of
particles in the in�nitesimal volume. If dNab = 〈nanb〉 is the average number of pairs in
the volumes dVa and dVb (i.e. the product of the number of particles in one volume times
the number in another volume), separated by rab, then we can de�ne another important
descriptor, the 2-point correlation function ξ(rab), as

dNab = 〈nanb〉 = ρ2
0dVadVb[1 + ξ(rab)] (6.1)

We have implicitly assumed that rab > 0 i.e. the two volumes do not coincide. The
word �average� can usually mean both an ensemble average and a sample average. The
former is obtained by taking many realizations of the distribution, all of them produced
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in the same way (e.g., by an N-body computer code or by throwing particles at random),
selecting in each realization the volumes dVa, dVb at the same locations and then averaging
the pair number nanb. For the latter one can take the pairs at di�erent spots within the
same realization, separated by the same rab. If the spots are so distant that they are
uncorrelated, then we can consider them as coming from di�erent realizations and the
two averaging methods coincide. The problem with the second approach is that we do
not know a priori whether the spots really are uncorrelated until we can compare them
with an ensemble of realizations. This issue is particularly acute in astrophysics since
we are given a single Universe (and then a single realization). The sample correlation
function does not in general coincide with the one we would obtain from an ensemble.
This problem is of course more important for distributions that are inhomogeneous at
very large scales. The estimation of the correlation function on scales smaller than the
scale of (approximate) homogeneity will not coincide with the ensemble value. Even in
those cases, however, the correlation function is a useful descriptor (although a survey-
dependent one) and it makes sense to use it. However here we will always assume that
the properties of the sample distribution are a good approximation of the ensemble ones.

If the distribution has been obtained by throwing the N particles at random (i.e.
without any preference with respect to the place), or in other words, if their distribution
is Poissonian, then there is no reason for dNab to depend on the location. Therefore the
average number of pairs is exactly equal to the product of the average number of particles
in the two volumes, 〈na〉 〈nb〉 = ρ2

0dVadVb, and the correlation ξ vanishes. Conversely, if ξ
is non-zero, we say that the particles are correlated. Then the correlation function can also
be written as a spatial average of the product of the density contrast δ(ra) = na/(ρ0dVa)−1
at two di�erent points:

ξ(rab) =
dNab

ρ2
0dVadVb

− 1 = 〈δ(ra)δ(rb)〉 , (6.2)

where we have used 〈δ(ra)〉 = 〈δ(rb)〉 = 0. If this average is taken to be the sample
average, then it means we have to average over all possible positions:

ξ(r) =
1

V

∫
δ(y)δ(y + r)dVy . (6.3)

When ξ(r) depends only on the separation r and not on ra and rb individually, the
system is said to be statistically homogeneous (i.e. it possesses the same statistical prop-
erties everywhere). If moreover the ensemble average coincides with the sample average,
then the system is said to be ergodic. However the latter term refers historically to time
processes, not to spatial ones. The term most often used in astrophysics is that the system
is a fair sample of the Universe.

In practice it is easier to derive the correlation function as the average density of
particles at a distance r from another particle. This is a conditional density, that is the
density of particles at a distance r given that there is a particle at r = 0. Then the number
of pairs is given by the number of particles in both volumes divided by the number of
particles dNa = ρ0dVa in the volume dVa at r = 0:

dNb =
dNab

dNa

=
ρ2

0dVadVb[1 + ξ(rab)]

dNa

= ρ0dVb[1 + ξ(rab)] . (6.4)
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Operationally therefore one evaluates the correlation function as follows:

ξ(r) =
dN(r)

ρ0dV
− 1 =

〈ρc〉
ρ0

− 1 , (6.5)

i.e. as the average number of particles at distance r from any given particle (or number
of neighbours), divided by the expected number of particles at the same distance in
a uniform distribution, minus 1 (sometimes this is called conditional density contrast).
This de�nition better clari�es the role of the correlation function as a measure of the
excess probability, compared with that expected for a random distribution, of �nding a pair
of particles at a separation r.

In a �nite volume, when the average density is estimated from the sample itself, i.e.
ρ0 = N/V it is clear that the integral of dNc(r) must converge to the number of particles
in the sample: ∫

dN(r) =

∫
ρ(r)dV = N , (6.6)

which gives an integral constraint on ξ(r)∫
ξ(r)dV =

1

ρ0

∫
dN

dV
dV − V =

N

ρ0

− V = 0 . (6.7)

If the correlation ξ(r) is positive, there are more particles within a distance r than
in a uniform distribution. In this case the distribution is said to be positively clustered.
Quite often one is interested only in the dependence on the modulus r, so the volume at
distance r is chosen as a shell around each particle. One could generalize this de�nition
by introducing the anisotropic correlation function as the number of pairs in volumes
separated by the vector r. This is useful whenever there is some reason to suspect that
the distribution is indeed anisotropic, as when there is a signi�cant distortion along the
line of sight due to the galaxy peculiar velocity.

6.2 Measuring the correlation function in real catalogs

The estimator (6.7) requires the knowledge of the number density ρc inside a shell of
thickness dr at distance r from every particle. In other words, it requires the estimation
of the density in every shell. In practice, a direct estimation of the shell density is di�cult
because of the complicated boundary and selection procedure that a real survey often
has. The simplest way to measure ξ is to compare the real catalog to an arti�cial random
catalog with exactly the same boundaries and the same selection function (obtained for
instance through a Monte Carlo simulation). The choice of the estimator is not unique.
For instance we can use the Davis-Peebles estimator [36]

ξ =
DD

DR
− 1 (6.8)

or that by Landy & Szalay [37]

ξ =
DD − 2DR +RR

RR
(6.9)
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which turns out to be more robust. Other choices have obviously been proposed. In the
above equations DD means the number of galaxies at distance r counted by an observer
centered on a real galaxy; DR are the number of pairs at distance r where one member
(D) is a real galaxy and the other one (R) is a �ctitious object taken from a catalog of
objects uniformly distributed in a volume and with selection function identical to those
of the real catalog. In other words, instead of calculating the volume of the shell (which
is a di�cult task in realistic cases), we estimate ξ by counting the galaxies in the Monte
Carlo realization. In this way all possible boundaries and selection function can be easily
mimicked in the random catalog, which will a�ect DD and DR in the same way.

6.3 The power spectrum

As we have seen in the previous sections, in order to describe the distribution of matter
in the Universe it is useful to think of the perturbations as superpositions of plane waves
in the Fourier space. One of the most employed statistical estimator for density �elds in
Fourier space is the power spectrum; it is by far the most common descriptor of clustering
in the linear and mildly non-linear regime and plays a central role in cosmology.

In order to avoid confusion let us specify the convention we adopt for the 3-dimensional
Fourier transformation

f(x) =
V

(2π)3

∫
fke

ik·xd3k , (6.10)

fk =
1

V

∫
f(x)e−ik·xd3x . (6.11)

With these conventions, f(x) and fk have the same dimensions. The Dirac's delta function
δD(x) is de�ned as

δD(x) =
1

(2π)3

∫
eik·xd3k . (6.12)

Analogous de�nition holds for Dirac's function in Fourier space (which is not the Fourier
transform of δD(x))

δD(k) =
1

(2π)3

∫
eik·xd3x , (6.13)

and their normalization is such that∫
δD(k)d3k =

∫
δD(x)d3x = 1 (6.14)

In order to understand the meaning of the power spectrum and its relation with the
correlation function in real space, let us consider a volume V , for example a cube of side
L� ls, where ls is the maximum scale at which there is a signi�cant structure due to the
perturbations; V can be thought of as a `fair sample' of the Universe if this is the case.
It is possible therefore to construct, formally, a `realization' of the Universe by dividing
it into cells of volume V with periodic boundary conditions at the faces of each cube.
This device will be convenient for many applications but should not be taken too literally.
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Indeed, one can take the limit V →∞ in most cases, as we shall see later. Let us denote
by ρ the mean density in a volume V and ρ(x) to be the density at a point speci�ed
by the position vector x with respect to some arbitrary origin. As usual we de�ne the
�uctuation δ(x) = [ρ(x) − ρ]/ρ. As we did in the previous chapter we take this to be
expressible as a Fourier series:

δ(x) =
∑

k

δke
ik·x =

∑
k

δ∗ke
−ik·x , (6.15)

where the assumption of periodic boundary conditions δ(L, y, z) = δ(0, y, z), etc., requires
that the wavevector k has components

kx = nx
2π

L
, ky = ny

2π

L
, kz = nz

2π

L
, (6.16)

with nx, ny, and nz integers. The Fourier coe�cients δk are complex quantities given, as
it is straightforward to see, by

δk =
1

V

∫
V

δ(x)e−ik·xdx ; (6.17)

because of conservation of mass in V we have δk=0 = 0; because of the reality of δ(x) we
have δ∗k = δ−k.

If, instead of the volume V , we had chosen a di�erent volume V ′, the perturbation
within the new volume would again be represented by a series of the form (6.15), but with
di�erent coe�cients δk. If one imagines a large number N of such volumes, i.e. a large
number of `realizations' of the Universe, one will �nd that δk varies from one to the other
in both amplitude and phase. If the phases are random, not only across the ensemble of
realizations, but also from node to node within each realization, then the density �eld has
Gaussian statistics.

Since the mean value of a perturbation variable, such as δ(x) ≡ δ, across the statistical
ensemble is identically zero by de�nition, the simplest non-trivial statistics corresponds
to a quadratic function of the variables, i.e. its variance σ2. In Fourier space, any real
quadratic function of a perturbation variable is called a power spectrum. It is straight-
forward to show that

σ2 ≡
〈
δ2
〉

=
∑

k

〈
|δk|2

〉
=

1

V

∑
k

δ2
k , (6.18)

where the average is taken over an ensemble of realizations. The quantity δk is de�ned
by the relation (6.18) and one can see from eq. (6.18) that 〈|δk|2〉 is the contribution to
the variance due to waves of wavenumber k.

The power spectrum is then de�ned as

P (k) = V |δk|2 = V δkδ
∗
k . (6.19)

Notice that the power spectrum has the dimension of a volume. It follows that

P (k) =
1

V

∫
δ(x)δ(y)e−ik·(x−y)dVxdVy . (6.20)
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Setting r = x− y, the spectrum (6.20) reduces to

P (k) =

∫
ξ(r)e−ik·rdV , (6.21)

where ξ(r) is de�ned in eq. (6.3). Therefore, the power spectrum is the Fourier transform
of the correlation function (Wiener�Khinchin theorem). The converse property is

ξ(r) =
1

(2π)3

∫
P (k)eik·rd3k . (6.22)

Notice that here and in the following the Fourier volume factor is not included, as in most
literature.

If we now assume that the density �eld is statistically homogeneous and isotropic, i.e.
that the correlation function depends only on the modulus r = |r|, the spectrum has no
dependence on the direction of k but only on k = |k|:

P (k) =

∫
ξ(r)r2dr

∫ π

0

e−ikr cos θ sin θdθ

∫ 2π

0

dφ = 4π

∫
ξ(r)

sin(kr)

kr
r2dr . (6.23)

The above de�nitions of the power spectrum refer to in�nite samples and to a con-
tinuous �eld. In reality, we always have a �nite sample and a discrete realization of the
�eld, i.e. a �nite number of particles. Therefore we have to take into account the e�ects
of both �niteness and discreteness.

To investigate the discreteness, we assume as �eld a collection of N particles of dimen-
sionless unitary masses at positions xi, in a volume V . In the following we will make use
of the window functionW (x), a function that expresses the way in which the particles are
selected. A typical selection procedure is to take all particles within a given region, and
no particles elsewhere. In this case, the function will be a constant inside the survey, and
zero outside (top-hat window function). We will always consider such a kind of window
function in the following, and normalize it such that∫

W (x)dV = 1 . (6.24)

With this normalization, W (x) = 1/V inside the survey. The density contrast �eld
we have in a speci�c sample is therefore the �eld times the window function (times the
sample volume V because of the way we have normalized W ):

δs = δ(x)VW (x) . (6.25)

Let us now express the �eld as a sum of Dirac functions ρ(x) =
∑

i δD(x− xi) so that

δs(x) =

(
ρ(x)

ρ0

− 1

)
VW (x) =

V

N

∑
i

wiδD(x− xi)− VW (x) , (6.26)

where wi = VW (xi) and as usual ρ0 = N/V . The Fourier transform is

δk =
1

V

∫ (
V

N

∑
i

wiδD(x− xi)− VW (x)

)
e−ik·xdV =

1

N

∑
i

wie
−ik·xi −Wk , (6.27)
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where we have introduced the k-space window function

Wk =

∫
W (x)e−ik·xdV (6.28)

normalized such that W0 = 1. The spherical top-hat function corresponds to

W (x) =

{
1/V inside a spherical volume V of radius R

0 outside.

We then have

Wk =
1

V

∫
V

e−ik·xdV =
3

R3

∫ R

0

r sin(kr)

k
dr =

3[sin(kR)− kR cos(kR)]

(kR)3
, (6.29)

where in the second equality we have integrated out the angular part as we did to derive
eq. (6.23). Notice that the function declines rapidly as k → π/R. Now squaring and
averaging δk in eq. (6.27) by separating the i = j terms from the others, we have〈

∆2(k)
〉
≡ V 〈δkδ∗k〉 = P (k) + Pn , (6.30)

where the �true� spectrum P (k) and the pure noise spectrum Pn are given, respectively,
by

P (k) =
V

N2

∑
i 6=j

〈wiwj〉 e−ik·(xi−xj) − VW 2
k (6.31)

Pn =
V

N2

∑
i

w2
i =

V

N
, (6.32)

where the last equality holds if wi equals 0 or 1. In order to derive eq. (6.31) we have
used the relation

Wk =

〈
1

N

∑
i

wie
−ik·xi

〉
(6.33)

obtained averaging eq. (6.27) and remembering that 〈δk〉 = 0.
The noise spectrum, negligible only for large densities, ρ0 = N/V →∞, is the power

spectrum of a distribution with no intrinsic correlation, i.e. obtained by throwing the
particles at random (the positions xi and xj are uncorrelated). More exactly, it is the
power spectrum of a Poissonian distribution. Since the galaxy distributions are often
sparse, the noise is not always negligible and has to be subtracted from the estimate if we
want to detect the underlying correlation. Therefore the estimator of the �true� power
spectrum P (k) can be taken as

P̂ (k) = ∆2(k)− Pn . (6.34)

As for the correlation function, the power spectrum does not characterize a distribution
completely, unless we know the distribution has some speci�c property, e.g., Gaussian, or
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Poisson, etc. In particular, if we assume the �uctuations to be Gaussian, we can derive
the variance of the power spectrum, de�ned as

σ2
P (k) ≡

〈
[P̂ (k)− P (k)]2

〉
, (6.35)

where P (k) =
〈
P̂ (k)

〉
= 〈∆2(k)〉−Pn. With some manipulations (see [38] for a complete

derivation), eq. (6.35) can be written as

σ2
P (k) = V 2 〈δkδ∗k〉

2 = (P (k) + Pn)2 , (6.36)

from which we obtain the fractional variance of the power spectrum with top-hat �ltering
to be

σ2
P (k)

P 2(k)
=

(
1 +

1

nP (k)

)2

, (6.37)

where n = N/V is the number density. This tells us that, if the �uctuations are Gaussian,
the error of the root mean square (rms) on the power spectrum is of the order of the power
spectrum itself (including the shot noise).

In general we consider the shell-averaged spectrum, i.e. the spectrum for all modes
whose wavenumber modulus k lies within the shell ∆k of volume Vk:

P (k) =
1

Vk

∫
∆k

P (k̄)d3k̄ . (6.38)

If the survey has a volume Vs = L3, the lowest wavenumber we can safely construct is
kmin = 2π/L. Then the number of independent k-modes in a volume Vk is

Nk =
Vk
k3
min

=
VkVs
(2π)3

. (6.39)

Therefore the error on the shell-averaged spectrum P (k) is reduced by the factor 1/Nk

and we obtain
σ2
P (k)

P 2(k)
' (2π)3

VkVs

(
1 +

1

nP (k)

)2

Another way of looking at this equation is to say that the e�ective k-volume resolution
k3
min degrades due to the shot noise to k

3
min(1 + 1/(nP ))2, so that there are e�ectively less

independent k-volumes to average over.

6.4 Normalization of the power spectrum

Let us de�ne the following integral (by de�nition
∫
WidV = 1 for any window function)

σ2 =

∫
W1W2ξ12dV1dV2 . (6.40)

Since ξ12 = (2π)−3
∫
P (k)e−ik·(r1−r2)d3k from eq. (6.22) we have

σ2 = (2π)−3

∫
P (k)e−ik·(r1−r2)W1W2d

3k d3r1d
3r2 . (6.41)
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For spherical cells of radius R, integrating over the angles, this reduces to

σ2
R =

1

2π2

∫
P (k)W 2

R(k) , (6.42)

where we have used W 2
R(k) =

∫
eik·r1W1d

3r1

∫
e−ik·r2W2d

3r2. If the cells have a radius of
8h−1 Mpc, it turns out that σR is close to unity. Conventionally the normalization of the
power spectrum is given by quoting σ8 which turns out to be the "linearity scale". This
allows to normalize the linear power spectrum, easier to model than the non-linear one.

6.5 Velocity �eld

Another way to measure the mass power spectrum (and constrain Ωm,0 and γ) is
obtained by analyzing the peculiar motion of the galaxies in clusters. In fact, it is easily
arguable that strong peculiar velocities are induced by large �uctuations in the mass
density �eld. One of the important features of this approach is that the velocity �eld
depends on the total mass distribution, not only on that of the luminous matter. In order
to better understand the relation between the velocity �eld and the matter distribution
let us write eq. (5.73), with θ = ∇iv

i, in Fourier space:

δ̇k = −ikivi , (6.43)

where

δ̇k =
dδk
dτ

=
dδk
d ln a

d ln a

dτ
= δk

d ln δk
d ln a

H . (6.44)

As we have seen in the previous chapter, this equation applies separately to each pres-
sureless component, such as baryons and CDM. However, the baryons will be driven by
the dominating density contrast of the CDM, due to gravitational coupling. The common
gravitational �eld strictly implies that the acceleration, not the velocity, is the same for
both species. However, if we also assume smilar initial conditions, universality of the
gravitational interaction and identical equation of state and sound speed, we can assume
that the galaxy velocities are not biased with respect to the dark matter velocity �eld.
Therefore the velocity �eld v can be represented by the galaxy velocity �eld vg: observing
the peculiar velocity �eld vg of galaxies gives information on the total density contrast.
Then we take v to refer to the velocity �eld of galaxies and δk to refer to the total mass.

Let us rewrite eq. (5.50), which comes from the continuity equation, for cs = 0:

v̇i = −Hvi + ikiΦk . (6.45)

Since we are dealing only with scalar perturbations, the velocity can be written as the
gradient of a velocity potential v, i.e. vi = ∇iv → ikiv. Then it is clear that vi is parallel
to ki and we can look for solutions of eq. (6.45) in the form vi = F (k, a)ki. This gives from
eqs (6.43) and (6.44) the relation between the peculiar velocity �eld vi and the density
�uctuation δk in linear perturbation theory (in the Newtonian regime):

vi = iHsδk
ki

k2
, (6.46)
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where s is the growth rate de�ned in eq. (5.107). Substituting eq. (6.46) into eq. (6.43),
one can easily con�rm that the relation s = δ̇k/(Hδk) = d ln δk/d ln a follows. During the
standard matter-dominated era we have already seen that δk ∝ a and hence s = 1 while
more in general s = Ωm(a)γ.

If we consider the present epoch a = a0 = 1, which yields H = H0, we have

v = iH0sδk
k

k2
. (6.47)

The peculiar velocity v(r), at position r in real-space, is obtained by Fourier anti-
trasformation of eq. (6.47):

v(r) = iH0s
V

(2π)3

∫
δk
k

k2
eik·rd3k , (6.48)

where we have assumed s to be k-independent. This is true in ΛCDM, but not in every
model: for instance, in Chapter 9 we will study a class of modi�ed gravity models of dark
energy, the so-called f(R) models, whose growth rate s does depend on the scale k.

6.6 Redshift distortion

The typical way to measure the cosmological distance of a galaxy consists in measuring
its redshift and then convert it into a distance in real space, assuming a cosmological
model. However, in addition to the recession velocity due to the expansion of the universe,
the redshift of an object includes also its peculiar velocity, so that there is an error in
the distances we assign to galaxies, that alters the 1:1 correspondence between redshift
and distance. The net e�ect is that the apparent distribution of galaxies in redshift space
is di�erent form the real one. The distortions can be roughly divided into two classes,
depending on the nature of the dominant peculiar motion. The �rst one of these is the
�Fingers-of-God� e�ect i.e. the fact that virialized structures are not spherical in redshift
space, but appear elongated along the line of sight, thus pointing to the observer. Since
we are not privileged observers, this e�ect must be unphysical, a sort of optical illusion.
In fact, they are caused by the random non-linear motions of the objects within these
structures. They can be modeled by assuming that the motions are completely random
and that their distribution function resembles a Gaussian or an exponential. We will come
back to this point later.

The other important redshift distortion is the Kaiser E�ect [39] which quanti�es the ef-
fect of coherent, large scale motions associated to the linear growth of density �uctuations.
Since these peculiar velocities are due to infall motions toward large cosmic structures,
the net e�ect is to enhance the density contrast of these structures along the line of sight.
On large scales, where the growth of �uctuations is described by linear theory, the Kaiser
e�ect can be quanti�ed analytically. Let us call vp the peculiar velocity of a source at
position r and de�ne the line-of-sight component

u(r) ≡ vp ·
r

r
, (6.49)
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where r = |r|. Putting togheter equations (1.63) and (1.65) and considering that also the
observer can have a non zero component on the line-of-sight of its peculiar velocity, u(0),
we can write the coordinate transformation from real space (r) to redshift space (s) as

s = r

[
1 +

u(r)− u(0)

r

]
, (6.50)

where we chose units such that H = 1 and assumed c = 1. In other words, we express
velocities in Megaparsec.

If dVs and dVr are the volume elements in redshift and real space respectively, with
number densities n(s) and n(r) we have, to conserve the number of galaxies

n(r)dVr = n(s)dVs . (6.51)

The volume element dVs = d3s can be written in terms of the r coordinate as

dVs =

(
1 +

∆u(r)

r

)2

|J |(r2 sin θ)dr dθdφ =

(
1 +

∆u(r)

r

)2

|J |dVr , (6.52)

where ∆u(r) = u(r)− u(0). The jacobian |J | is given by the derivatives of s with respect
to r

|J | =
∣∣∣∣∂s∂r
∣∣∣∣ = 1 +

du

dr
. (6.53)

If the average density is n0, the density contrast in s-space can be written as

δs =
n(s)dVs
n0dVs

− 1 =
n(r)dVr
n0dVs

− 1 =
n(r)

n0(1 + ∆u(r)/r)2|J |
− 1 , (6.54)

where we have used eqs (6.51) and (6.52).
To �rst order, this gives

δs '
n(r)

n0

[
1− 2

∆u(r)

r
− du

dr

]
− 1 =

= δr − 2
∆u(r)

r
− du

dr
, (6.55)

where in the last equality we have used the fact that to �rst order we can approximate
n(r) to be n0. Then, one can see that the density contrast di�ers in the two spaces. This
di�erence will be re�ected in the di�erent correlation properties of the two density �elds
and will have to be accounted for in order to recover the true quantities from the observed
one. For example, one will have to correct the observed power spectrum to recover the
true one. In order to do this correction, we can use the velocity �eld computed through
linear perturbation theory in the previous section, eq. (6.47). But, as we said, in that case
we assumed δ to refer to the total mass density contrast, δm. What we observe is instead
the galaxy density contrast δg, which is di�erent from δm. Were gravity the only driving
force, then the mass and galaxy density contrasts would coincide. However, whenever
non-gravitational processes, typically associated to galaxy formation and evolution, are



72 Correlation function and power spectrum

important, the 1:1 correlation between the two �elds is likely to be break up and galaxies
cannot be used as signposts of the dark matter distribution. In the cosmological jargon,
galaxies are biased tracers of the underlying density �eld. If the biasing is local, then it
can be conveniently quanti�ed as

b ≡ δg
δm

, (6.56)

a quantity that depends on both position and time. Thus, for example, eq. (6.47) should
be written as

v = iH0βδk
k

k2
. (6.57)

which implies that we should substitute s with β ≡ s/b. If we deal with �ltered density
�elds, which is often the case, then if the �ltering scale is signi�cantly larger that the
typical scales a�ected by galaxy formation processes, then one can assume that the biasing
is constant, i.e. that b is a simple parameter, the bias parameter, that does not depend
on the position. In this case eq. (6.48) can be written as

v = iH0β

∫
(δg)ke

ik·r k

k2
d3k∗ , (6.58)

where the di�erential d3k∗ includes the Fourier factor V/(2π)3. The assumption of b being
independent on space implies that the relation in eq. (6.56) holds both in real and Fourier
space. In particular, for the power spectra we have

Pg(k) = b2Pm(k) . (6.59)

Making use of eq. (6.58), the line-of-sight component (6.49) can be written as

u(r) = iβ

∫
(δg)ke

ik·rk · r
k2r

d3k∗ , (6.60)

while its derivative is
du

dr
= −β

∫
(δg)ke

ik·r
(
k · r
kr

)2

d3k∗ , (6.61)

where we have used the relation

d

dr
eik·r = i

k · r
r

eik·r . (6.62)

From eq. (6.55), we have �nally

δs = δr −
du

dr
= δr + β

∫
δrke

ik·r
(
k · r
kr

)2

d3k∗ , (6.63)

where the second term in eq. (6.55) has been neglected because it is small for large r and
the subscript g in δ has been substituted with r to indicate that this quantity is in real
space.
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Multiplying eq. (6.63) on both sides by V −1eik
′·r and integrating, we can obtain its

Fourier transform by use of eq. (6.11)(5.11):

δsk = δrk + β

∫
δrk′I(k, k′)d3k′ , (6.64)

where

I(k, k′) =
1

(2π)3

∫
ei(k

′−k)·r
(
k′ · r
k′r

)2

d3r (6.65)

and we switched k, k′.
One can then see that the e�ect of the redshift distortion is to introduce a coupling

between di�erent modes. However this coupling can be broken if we consider surveys of
very small angular scale. In fact, if the survey spans a small solid angle, it is possible to
assume that the cosine

µ =
k · r
kr

(6.66)

is almost constant. Then we have I(k, k′) = µ2δD(k′ − k) and from eq. (6.64):

δsk = δrk(1 + βµ2) . (6.67)

Thus, the power spectrum de�ned in eq. (6.19)(5.19) reads

Ps(k) = V δ2
rk(1 + βµ2)2 = Pr(k)(1 + βµ2)2 . (6.68)

If we average it over angles, we obtain [39]

Ps(k) = Pr(k)(1 + 2β
〈
µ2
〉

+ β2
〈
µ4
〉
) , (6.69)

where the average 〈f(µ)〉 = (4π)−1
∫ π

0
f(µ) sin θdθ

∫ 2π

0
dφ = (1/2)

∫ 1

−1
f(µ)dµ gives

〈
µ2
〉

=
1

2

∫ 1

−1

µ2dµ =
1

3
,
〈
µ4
〉

=
1

2

∫ 1

−1

µ4dµ =
1

5
. (6.70)

Eq. (6.69) becomes

Ps(k) = Pr(k)

(
1 +

2β

3
+
β2

5

)
. (6.71)

The power spectrum is then boosted in redshift space, because velocities are highly co-
herent and their vectors typically point toward mass concentrations. As a consequence,
galaxy concentrations associated to large, non-virialized structures appear to be enhanced
in redshift space.

As already mentioned at the beginning of this section, peculiar motions on small scales
also contribute to the redhsift distortion. These motions, which are highly incoherent,
cause large virialized structure to appear radially elongated: the so called Fingers-of-God
e�ect. This particular distortion removes power from small scales and induces anisotropies
in the galaxy clustering and a�ect both the power spectrum and the correlation function
of the galaxies. This e�ect can be corrected with a statistical approach that is best
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understood in con�guration (real) space. The two point correlation function is estimated
by pair counting. Fingers of God displace close pairs along the line of sight according to
the relative velocity of the object. A statistical correction for this e�ect can be obtained
by convolving the observed correlation function with the pairwise velocity distribution
function, f(σ12). In Fourier space, the convolution corresponds to multiply the power
spectrum by a factor which is substantially the Fourier transformation of f(σ12):

P (k, µ, nl) = F (k, µ2)P (k, µ, lin), (6.72)

where �nl� and �lin� stand for non-linear and linear respectively. In order to match be-
havior on large scale, it is required that limk→0 F (k, µ2) = 1. In general, �ngers-of-God
are di�cult to model well, and their amplitude is strongly dependent on the mean halo
mass and satellite fraction of the population under consideration ([40][41]). Unfortunately,
there is no precise theoretical prediction for the pairwise velocity distribution function.
So far, most works have assumed either a Gaussian or an exponential model (e.g. [42][43])
for the pairwise velocity dispersion in real space. For an exponential model for the pair-
wise velocity dispersion in real space, we expect a Lorentz damping factor for the power
spectrum, while the Gaussian dispersion translates to a Gaussian damping of the power
spectrum:

Fexponential (k, µ2) = [1 + (kσµ)2]−1 (6.73)

Fgaussian (k, µ2) = exp[−(kσµ)2] (6.74)

where σ is the rms velocity dispersion. It is worth pointing out that random errors in the
measured redshift also produce some smearing on small scales that can also be modeled
with a Gaussian distribution. Then, in order to consider the strumental error on the
redshift measurements (and hence on the distance) we can rescale the power spectrum,
multiplying it by a factor

e−(kµσz)2

where σz = δz/H(z) is the absolute error in distance and δz the absolute error in red-
shift. Assuming then a gaussian distribution for the pairwise velocity distribution we can
consider their e�ect included in the redshift error factor.



Chapter 7

Statistical methods in cosmology

In the previous chapter we have de�ned important statistical tools such as the cor-
relation function and the power spectrum, able to characterize in a statistical way the
distribution of matter in the Universe. Here we review some statistical methods largely
employed in cosmology to extract information from the data and which will be used in
the following chapters. They are based on Bayesian statistics, which we brie�y introduce.

7.1 Introduction to Bayesian statistics

Usually, in experimental physics, so as in science in general, the values of quantities
of physical interest are �hidden� in what we actually observe, i.e. the experimental data.
For example, the measure of luminosity distances of SN Ia is needed in order to estimate
the values of the cosmological parameters such as Ωm,0, w, γ and so on.

The Bayesian statistics provides a coherent frame that allows us to �extract� what we
really want to know from the observations. In the following, we will give a very brief
description of the theory underlying the Bayesian statistic and its fundamental tool, the
Bayes' theorem.

We start by considering two events A and B, being them dependent on each other
or not. We can wonder how the happening of one of them in�uences the realization of
the other one. According to the theory of conditional probability, this is expressed by the
formula

P (A|B)P0(B) = P (B|A)P0(A) (7.1)

where with P (A|B) (P (B|A) ) we indicate the probability of having A (B) once B (A)
has happened while P0(B) (P0(A)) is the a priori probability of having B (A). This is
the fundamental theorem of probability, called Bayes' theorem.

If we now think to experimental data we actually observe as the �e�ects� (D) and
to the �true� values of the cosmological parameters of a theory as the �causes� (T ), the
Bayes' theorem tells us how much is changed our belief of a theory, once we have observed
a given e�ect.
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This is mathematically expressed by rearranging eq. (7.1) which gives

P (T |D) =
P (D|T )P0(T )

P0(D)
, (7.2)

where P0(T ) is often called the prior probability, i.e. the likelihood of the theory before
having observed the data, and P (T |D) is consequently called the posterior probability,
evaluated in the light of the new data.

Two things has to be strongly stressed.
The �rst one is that altough the Bayes' theorem is always valid, its application, in

most cases, is allowed only within the context of the Bayesian interpretation of probability
[44]. In fact, according to frequentism, which de�nes the probability as the frequency
of occurrence of an event, one is allowed to talk of probability only in the presence of
repeatable events. To draw an example, from a frequentist standpoint, while it does
make sense to evaluate the probability of observing a certain number of events of a given
reaction (the �e�ect�) at the LHC, once the Higgs boson mass is known to be equal to
a certain value (the �cause�), it does not make sense at all to evaluate the probability of
having the Higgs boson mass in a given interval, once we have observed a certain number
of events. This because the value of the Higgs boson mass, although unknown, is not the
result of a try of a repeatable event. On the other hand, the bayesian interpretation, and
of course the common sense, de�ne the probability for what it really is, i.e. a measure
of our belief about the happening of an event. This is why in the following we will stick
with the Bayesian interpretation.

The second one is that any probability is always supposed to be conditional on a
certain state of information. This amounts to say that the uncertainty we have about any
event depends on what we already know or what we do not know about the event itself.
Any probability should indeed be expressed as P (X|I), indicating that the evaluation of
the probability of the event X depends on the present state of information I. This will
be omitted in the following.

In eqs (7.1-7.2) we have dealt with �nite probabilities. The Bayes' theorem can be
extended also when we have to deal with continue distribution. In this case, the prob-
abilities appearing in the equations have to be replaced by their respective probability
distribution function (PDF).

We can now see how the Bayes' theorem can be used in practice. Let us suppose we
know that a random variable x has a probability distribution function (PDF) f(x; θ) that
depends on an unknown parameter θ. Such a probability is the conditional probability
of having the data x, given the theoretical parameter θ. If we repeat the measure and
we obtain x1, x2, x3..., then the law of joint probability tells us that the probability of
obtaining x1 in the interval dx1 around x1, x2 in the interval dx2 around x2 and so forth
is

f(xi; θ)d
nxi = Πifi(xi; θ)dxi = f1(x1; θ)f2(x2; θ)f3(x3; θ)...dx1dx2dx3..., (7.3)

if the measures are independent on each other. Clearly, for every θ this multivariate PDF
will assume a di�erent value. If we now look again at the Bayes' theorem, we see that
the posterior probability is essentially just the data likelihood, eq. (7.3) times the prior
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probability, since the denominator of eq. (7.2) acts just as a normalization factor. It is
now time to plug our previous knowledge about the parameter in the evaluation of the
prior PDF p0(θ) . There is no a �standard� recipe to do this; instead, one has to use all the
information he can get (for example results of previous experiments, physical constraints
on the values of the parameters, and so on). So we obtain:

L(θ;xi) ∝ f(xi; θ)p0(θ) , (7.4)

where we have indicate the posterior PDF with L(θ;xi).
Let us now assume that we do not have any previous-to-the-experiment knowledge

about θ, and we have not reason to think, in principle, that any value of the parameter is
more likely than another. In this case, p0(θ) can be expressed by a constant and merged
into the normalization constant. So, the posterior PDF basically coincides with the data
likelihood f(xi; θ). The frequentist well-known �maximum likelihood principle�, amounts
to state that the �best�(?) estimation of a parameter is the value θ̂ which maximizes the
data likelihood:

∂f(xi; θ)

∂θ

∣∣∣∣
θ=θ̂

= 0 . (7.5)

As we can see from the above equation, θ̂ is the most likely single value of the parameter if
we assume a uniform prior. In many problems, this is not the case, since a certain level of
information is often available and ignore it can lead to absurd conclusions. Furthermore,
even the maximum may not be very representative of the entire PDF, so calling it the
�best� estimation is at least questionable. Once we have carried out the posterior L(θ;xi),
drawing the region in which the true value of the parameter is found with a chosen level
of probability is pretty straightforward. First of all, we have to correctly normalize the
posterior:

L(θ;xi) =
f(xi; θ)p0(θ)∫ +∞

−∞ f(xi; θ′)p0(θ′)dθ′
. (7.6)

Numerically, the limits of integration in the denominator can be replaced by the region in
which the prior PDF is signi�cantly di�erent from zero. We now evaluate the maximum
of the posterior distribution θ̂ as we did for the data likelihood, eq. (7.5) and calculate
Lmax = L(θ̂;xi)

1. Then we draw a number α < Lmax and �nd the two values of the
parameter θmin(α) and θmax(α) solutions of the equation:

L(θ;xi) = α , (7.7)

and de�ne the function P (α) as:

P (α) =

∫ θmax(α)

θmin(α)

L(θ;xi)dθ , (7.8)

1It has to be stressed that, in general, the posterior PDF could not have just one maximum, but may
exhibit more complicated features. In most cases, however, it will show one maximum; the procedure
described in the text refers to this kind of posteriors.
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varying α. Imposing, for example, P (α) = 68%(95%), we found that the interval θmin(α) <
θ < θmax(α) has the 68% (95%) of probability to contain the �true� value of the parame-
ter, given the data we have observed and what we knew about the parameter before the
experiment.

This procedure can be readily generalized when we have posteriors L(θ1, θ2, θ3....;xi)
depending on more than one parameter. If we are interested only in a subset of the
parameters, let us say {θ1, θ2}, we can marginalize the posterior integrating over the
remaining parameters

L12(θ1, θ2;xi) =

∫
dθ3dθ4...L(θ1, θ2, θ3....;xi) . (7.9)

So solving the equation

L12(θ1, θ2;xi) = α , (7.10)

will de�ne the contour of the region of integration for P (α).
Lastly, we have to mention that, even if the method of �ndind the most likely single

value for a parameter is correctly carried out by maximizing the posterior PDF, it is usual
to refer to this method as the �maximum likelihood method� even if, as explained above,
the likelihood alone (i.e. without a prior) does not contain all the information we already
have about a theory. Only for sake of comparison to other works, we will also employ this
terminology which however we do not recommend.

7.2 Fisher matrix method

Even though it is a very powerful tool, the maximum likelihood method can require
very long computational time when we are dealing with a large number of parameters.

The Fisher matrix method is a way to solve this problem. The idea is to approximate
the full likelihood with a multivariate Gaussian distribution

L ≈ N exp

[
−1

2
(θi − θ̂i)Fij(θj − θ̂j)

]
(7.11)

where θ̂i are the maximum likelihood estimators and are functions of the data. Fij, the
Fisher (or information) matrix, is the inverse of the correlation matrix.

This is a crucial point that deserves attention. In many physical situations it is
assumed that the data follow a Gaussian distribution, but rarely this is true also for
the parameters. Here we are assuming that the likelihood is a Gaussian function of the
parameters, not (or not only) of the data. It can be considered a crude approximation.
However it is justi�ed by the fact that every smooth function (in this case lnL) can be
approximated as a quadratic function around a local minimum. So we can hope that our
approximation is valid at least near the peak of the distribution and we expect it to work
better for θi close to their estimators θ̂i.

Then let us expand the exponent of a generic likelihood near its peak (i.e. near the
maximum likelihood (ML) value θ̂i of the parameters) as
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lnL(θi) ≈ lnL(θ̂i) +
1

2

∂2 lnL(θi)

∂θi∂θj

∣∣∣∣
ML

(θi − θ̂i)(θj − θ̂j) (7.12)

(where the �rst derivatives obviously vanish at the peak). By comparison with eq. (7.11),
we �nd that the normalization N = L(θ̂i) depends only on the data and that the Fisher
matrix (FM) is de�ned as

Fij ≡ −
∂2 lnL(θi)

∂θi∂θj

∣∣∣∣
ML

. (7.13)

Actually the FM is de�ned as the expected value of the matrix −∂2 lnL/∂θi∂θj, obtained
by averaging the matrix over the data distribution:

Fij = −
〈
∂2 lnL(θ)

∂θi∂θj

〉
= −

∫
∂2 lnL(θ)

∂θi∂θj
L(x;θ)dx . (7.14)

However, within the approximation (7.12), the two de�nitions coincide.
Now we may wonder how to �nd the ML estimator without computing the likelihood,

which is exactly what we are trying to avoid! There are some ways to do that, but the
most useful application of the Fisher formalism is to the cases in which we do not need to
search for the likelihood peak because we already know from the start the ML estimator:
when we are simulating an experiment.

In this case we are not dealing with real data but only with predictions of the data
errors that future experiments can achieve. So we can arbitrarily assume some (�ducial)
values for the parameters, i.e. for the ML estimator, and compute how the errors on data
will turn into errors on the parameters. Let us see it in details.

Let us suppose that we have collected a number m of data which can be related to
some cosmological parameters pj, for instance the luminosity distances of m SN Ia, dL,n ≡
dL(zn) (see eq. (1.84)) at di�erent redshifts zn, where the parameters pj could be Ωm,0, ΩΛ,
etc... These data are random variables following a probability distribution function (PDF)
which we assume to know. For example we can assume they are distributed according
to a Gaussian with mean dL(zn) and with known variance σn. Then we can immediately
form the likelihood (neglecting the normalization constant)

Ld ≈ exp

[
−1

2

∑
n

(dn − dL(zn))2

σ2
n

]
= exp

(
−1

2
µiC

−1
ij µj

)
., (7.15)

where dn ≡ dth(zn) are the values for the luminosity distances predicted by some theory.
As explained in the previous section, this likelihood can be thought (assuming a uniform
prior) as the PDF of the theory itself, i.e. of the parameters dn that we want to infer from
the data and that take the role of variables.

In eq. (7.15) we have expressed the argument of the exponential in a slightly more
general way introducing the vector µi ≡ di − dL(zi) and the correlation matrix Cij, that
in this particular case is rather trivial

C = diag(σ2
1, σ

2
2, σ

2
3, ...) . (7.16)
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Now, instead of inferring the probability on the theoretical luminosity distances dn we are
interested to the theoretical parameters pj on which they depend: dn = d(zn; Ωm,0,ΩΛ).
In fact, every couple of values (Ωm,0, ΩΛ) will give a di�erent prediction on the theoretical
value of dn. So we wish to produce a likelihood function of Ωm,0, ΩΛ, something in the
form of eq. (7.11):

L(Ωm,0,ΩΛ) = exp

[
−1

2
(Ωi − Ω̂i)Fij(Ωj − Ω̂j)

]
(7.17)

where Fij is the Fisher matrix and the subscripts i, j run over the subscripts m, Λ (from
now on we drop the subscript 0). Since real data (dL(zn)) are not present yet, we cannot
compute the ML estimators Ω̂i. However, we are simulating the future experiment, so
we may take for estimators the values dFn = dF (zn; ΩF

m,Ω
F
Λ) obtained using some �ducial

cosmology ΩF
m, ΩF

Λ , for instance ΩF
m = 0.25, ΩF

Λ = 0.75. This means that we will �nd
the con�dence regions only around this particular parameter set. If we decide to change
�ducial values, we have to redo our calculations and all our results will change in some
way.

The Fisher matrix of the likelihood (7.15) is then

Fij = − ∂ lnLm
∂Ωi∂Ωj

∣∣∣∣
F

=
∑
n

1

σ2
n

∂2d(zn; Ωm,ΩΛ)

∂Ωi∂Ωj

∣∣∣∣
F

. (7.18)

Notice that Fij is not diagonal even if the original correlation matrix Cij was. Since the
same Ωm, ΩΛ appear in all d(zn; Ωm,ΩΛ), we vary the likelihood of obtaining all dn by
varying Ωm, ΩΛ. We can now use eq. (7.17) to derive the errors for Ωm, ΩΛ. In practice, we
have developed a formalism to propagate the observational errors σn to the cosmological
parameters. The errors σn, in turn, must be based on the expected performance of the
experiment and often their derivation is the most complicated step, involving many �ne
details of the observations.

Once we �x the ML estimators to the chosen �ducial values, the elements of the Fisher
matrix are easily obtained by calculating numerically the second-order partial derivatives
and so the computational time is reduced.

Let us now suppose that we decide to switch from a set of parameters xi to another
one yj(xi), for instance from Ωm, ΩΛ to the spatial curvature Ωk = 1−Ωm−ΩΛ and their
ratio RmΛ = Ωm/ΩΛ. If we know the Fisher matrix for xi, the approximate likelihood is

L = exp

(
−1

2
x̃iF

(x)
ij x̃j

)
, (7.19)

where x̃i = xi − xML
i . Approximating yj near x

ML
i as

yj ≈ yML
j +

∂yj
∂xi

∣∣∣∣
ML

(xi − xML
i ) , (7.20)

where yML
j ≡ yj(x

ML
j ), we can write

ỹj ≡ yj − yML
j = J−1

ji x̃i . (7.21)
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With Jji ≡ (∂xj/∂yi)ML we have indicated the transformation Jacobian evaluated on the
ML estimators. Then we have

x̃i = Jilỹl (7.22)

and we can �nd the new Fisher matrix simply by substituting eq. (7.22) into eq. (7.19)

F
(y)
lm = JilF

(x)
ij Jjm , (7.23)

which is summed over indices. We can say that the Fisher matrix transforms as a tensor.
The Jacobian matrix is not required to be a square matrix. In fact the old parameters xj
can be projected into a smaller number of new parameters yi.

We could wonder why the Jacobian does not enter also in the transformation from
the volume element dx1dx2... to the new element dy1dy2..., so that L(yj) = |J |L[xi(yj)].
This would imply an additional logarithmic term ln |J | in the transformed probability
function, not allowing to go on using the Gaussian approximation. However near the ML
values we can approximate |J | with |JML| and include this constant factor in the overall
normalization.

Now let us see what to do if we want to maximize the likelihood with respect to
some parameter, which means to �x one of the parameters to its maximum likelihood
estimator. With the Fisher matrix this is really trivial, since �xing a parameter to its
maximum likelihood estimator means putting the di�erence θi − θ̂i = 0 and therefore to
discard all entries in the Fisher matrix related to the i-th parameter. In practice, this
corresponds to remove from the Fisher matrix the rows and columns of the maximized
parameters.

And if we want to marginalize over some parameters? Let us consider a general
Gaussian PDF with only two parameters x1 and x2:

G(x1, x2) = N exp

[
− 1

2(1− ρ2)

(
x2

1

σ2
1

+
x2

2

σ2
2

− 2
ρx1x2

σ1σ2

)]
, (7.24)

where ρ the correlation factor. This PDF can be written as

G(Xi) = N exp

[
−1

2
(XiC

−1
ij Xj)

]
, (7.25)

where Xi ≡ xi − µi and

C =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
, (7.26)

is the correlation matrix. Let us now marginalize over the parameter x2, which corresponds
to evaluate the integral

∫
G(x1, x2)dx2 over the whole real domain. The result is given by

G(x1) = Ñ exp

[
− x2

1

2σ2
1

]
, (7.27)

where Ñ is a new normalization constant. The new correlation matrix is now only one
dimensional, simply C11 = σ2

1.
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In terms of the Fisher matrix F = C−1 we see that the result of the marginalization
corresponds to the removal from F−1 = C of the rows and columns related to the second
parameter. This trick remains true for any number of dimensions: to marginalize over the
j-th parameter, one simply needs to remove from the inverse of the Fisher matrix F−1

the j-th row and column; to marginalize at once over several parameters, one removes
all the rows and columns related to those parameters. As a consequence, the diagonal of
the inverse Fisher matrix contains the fully marginalized 1σ errors of the corresponding
parameters (i.e. the errors one gets on the i-th parameter after marginalizing over all the
others)

σ2
i = (F−1)ii . (7.28)

This latter property is probably the most useful and time-saving feature of the whole
Fisher method. Be warned however that the procedure of inverting and striking out rows
and columns is in general numerically unstable if the matrix contains small eigenvalues.
There are more stable algorithms that perform this operation [45].

Often we want to reduce the Fisher matrix to a 2× 2 matrix F 2 for two parameters,
say θ1, θ2, because then it is easy to plot the resulting two-dimensional con�dence regions,
de�ned as the regions of constant likelihood that contain a predetermined fraction of the
total likelihood volume. Since the problem has been reduced from the start to Gaussianity,
we will necessarily have ellipsoidal con�dence regions on the plane θ1, θ2. Looking at the
form of the two-dimensional Gaussian PDF (7.24), you will realize that the semiaxes of
the ellipses are oriented along the eigenvectors of F−1

2 , that is, they form an angle

tan 2α =
2ρσ1σ2

σ2
1 − σ2

2

, (7.29)

with the coordinate axes. Moreover, the semiaxes ratio is equal to the square root of the
eigenvalues ratio. The length of the semiaxes depends clearly on the level of con�dence.
If we take the semiaxes length along the i-th eigenvector equal to

√
λi , where λi is the

i-th eigenvalue, we are �nding the 1σ region, but because we are in two dimensions,
this level does not contain 68.3% of the probability but rather less than 40%. Instead,
we �nd by integrating a two-dimensional Gaussian that the onedimensional �1σ� region
corresponding to 68.3% of probability content is found for semiaxes which are roughly
1.51 times the eigenvalues. Regions at 95.4% and 99.7% correspond to semiaxes 2.49 and
3.44 times the eigenvalues, respectively. The area of the 68.3% ellipses is πab, if a and b
are the semiaxes length, that is 1.51 times the eigenvalues. The area is therefore equal
to (1.51)2π(detF 2)−1/2. Since an experiment is more constraining when the con�dence
region is smaller, one can de�ne a simple but useful �gure of merit (FOM) as [45]

FOM =
1√

detF 2

. (7.30)

Notice however that the FOM is often de�ned to be the area at 95%, or some other
similar but not equivalent choice. The FOM is particularly relevant to dark energy pa-
rameters such as w0, w1. The FOM naturally depends on how many parameters have
been marginalized. Every parameter marginalization increases (or more exactly, does not
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reduce) the amount of uncertainty with respect to a maximized likelihood and therefore
decreases the available information and the FOM of the �nal set of parameters.

With all these simple rules the Fisher matrix turns out to be a very simple method.
Unfortunately, this is not free of problems. The major problem, in practice, is when the
Fisher matrix itself is singular. Being its determinant null, we cannot in fact invert it and
then marginalizing it. This obviously happens only when rows or columns are not linearly
independent: if L(θ1, θ2) depends on the two parameters through a constant combination,
e.g., aθ1 + bθ2, then the Fisher matrix will be singular.

Even in this case, not all is wasted and we can still learn something. In fact, if the
Fisher matrix is singular, then it means that there is a linear combination of two or
more parameters hidden somewhere in the likelihood. Therefore, we can substitute a new
parameter θ̂ in place of that combination, e.g. θ̂ = aθ1 + bθ2 and remove the singularity
by restricting ourselves to θ̂ instead of the original pair. Actually we should have done
this from the start, since if the physics depends only on the combination aθ1 + bθ2 there
is no way we can distinguish between θ1, θ2. It is only this combination that matters and
we should replace it by θ̂. We say in this case that there is a degeneracy between θ1 and
θ2. Sometimes, however, it is not obvious at all that this was the case and the singularity
of the Fisher matrix is a warning for us to look harder.

The only real problem is when there is almost a singularity. If the combination is given
by aθ1 + bθ2 + cf(z)θ2

1, then there should be no singularity because of the non-constant
term (we are thinking here of observations at several z's). However, if a, b are of the
order of unity while c = 10−10, then there is a high degree of degeneracy, even if not a
total one. In this case the Fisher matrix may behave in a dangerous way, with extremely
small eigenvalues and unstable inversions. So we have to pay attention, try to understand
the physical cause of this quasi-degeneracy and rede�ne the parameters, perhaps giving
up the possibility of discriminating between θ1, θ2 and focusing on the combined term
θ̂ = aθ1 +bθ2 +cf(z)θ2

1. Otherwise, we may �nd additional priors (e.g., other experiments)
that give separate information on one of the quasi-degenerate parameters and break the
degeneracy.

This introduces another advantage of the Fisher matrix approach: the possibility to
add priors in a very simple way. If the prior is the outcome of another experiment and we
have the Fisher matrix F

(p)
ij of that experiment, then the problem reduces to multiplying a

Gaussian likelihood by another Gaussian likelihood, obtaining a new Gaussian likelihood.
If the experiments have the same ML estimators or the same �ducial model, as in the
case in which we simulate them, the new Fisher matrix is given by

F
(tot)
ij = Fij + F

(p)
ij . (7.31)

Combining the information from two forecasts (with the same �ducial model) means then
summing their Fisher matrices. In so doing one has to ensure that the parameters and
their order are exactly the same for both matrices: trivial, but a most likely source of
practical confusion. If one of the experiments constrains only a subset of the total param-
eters (for instance, supernovae experiments do not constrain the primordial perturbation
slope ns), it means that it contains no information on that subset, and therefore the
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corresponding rows and columns are to be put to zero. This means that the two Fisher
matrices are rendered of the same rank by �lling the one with less parameters with zeros
in the correct position. For instance if we only want to add the information that the single
m-th parameter comes with an error σm then we add the Fisher matrix (no sum on m)

F
(p)
ij =

δmi δ
m
j

σ2
m

(7.32)

So you see that in this case F (p) would be utterly singular but the total F (tot) is not
(unless of course we are so unlucky that F was singular as well for the same parameter).

Let us mention the �nal point about the Fisher matrix. A statistical theorem known as
Cramer�Rao inequality states that the minimal variance of an unbiased estimator cannot
be less than (F−1)ii. In this sense the Fisher matrix gives the minimal error one can hope
to achieve.

7.3 The Fisher matrix for the power spectrum

Now we have all the tools to derive a very useful result, the Fisher matrix for an
experiment that measures the galaxy power spectrum.

Suppose a future experiment will provide us with the Fourier coe�cients δk of a galaxy
distribution and their power spectrum calculated for a set of m wavenumbers ki in some
redshift bin z,z + ∆z. Our theory predicts the spectrum P (k, z; pi) as a function of, say,
pi ≡ Ωm,0, Ωb,0, , h, ns etc. In any real survey with a galaxy density n(z), however, the
power spectrum will include the Poisson noise part that we estimated in eq. (6.30):

∆2
k ≡ 〈δkδ∗k〉 = 〈δkδ−k〉 = P (k, z) +

1

n
, (7.33)

Since the average galaxy density is estimated from the survey itself we have by construc-
tion 〈δ(x)〉 = 0 and therefore 〈δki〉 = 0 for any ki. The coe�cients δki are complex
variables in which the real and imaginary parts obey the same Gaussian statistics. So
now we calculate the Fisher matrix for only, say, the real parts of δki and the Fisher
matrix for the whole δki is simply the sum of two identical Fisher matrices, i.e. twice the
result for the real parts. However when we count the total number of independent modes
we have to remember that only half of them are statistically independent since δ∗k = δ−k

so in fact we should �nally divide by two the �nal result. That is, we can forget both
factors. If we assume the galaxy distribution to be well approximated by a Gaussian we
can write the likelihood:

L =
1

(2π)m/2Πi∆i

exp

[
−1

2

m∑
i

δ2
i

∆2
i

]
, (7.34)

(where to simplify notation we write ∆i = ∆ki , δi = Reδki) assuming that the measures
at every ki are statistically independent. When we simulate a future experiment, P (k, z)
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is taken to be the theoretical spectrum of our �ducial model described by the parameters
pFj . Then we have

L = lnL =
m

2
ln(2π) +

∑
i

ln ∆i +
∑
i

δ2
i

2∆2
i

. (7.35)

We further simplify the notation by suppressing the index i running over the k bins from
∆i, δi and denote the di�erentiation with respect to the j-th parameter as ∆,j. Now from
eq. (7.13) the Fisher matrix for a particular z bin is

Flm =

〈
∂2L

∂pl∂pm

〉
=
∑[

∆,lm

∆
− ∆,l∆,m

∆2
−
〈
δ2
〉(∆,lm

∆
− 3

∆,l∆,m

∆4

)]
=

=
1

2

∑
i

∂ lnPi
∂pl

∂ lnPi
∂pm

(
nPi

1 + nPi

)2

, (7.36)

(where we used 〈δ2〉 = ∆2 from eq. (7.33)) calculated on the �ducial model. For a more
compact expression we can now approximate the sum with an integral over k. To do
this we need to count how many modes lie in the bin de�ned by the modulus interval k,
k+dk and cosine interval dµ, i.e. in the Fourier volume 2πk2dkdµ. The number of modes
we can really use is limited by two factors: the size of the volume and the shot noise.
Modes larger than the survey volume cannot be measured. Short modes sampled by only
a few galaxies cannot be reliably measured either. To take into account these limitations
we discretize the Fourier space into cells of volume Vcell = (2π)3/Vsurvey, so that we have
2πk2dkdµ/Vcell = (2π)−2Vsurveyk

2dkdµ modes in the survey volume. The integral form of
the Fisher matrix is therefore given by [46, 47]

Flm =
1

8π2

∫ +1

−1

dµ

∫ kmax

kmin

k2dk
∂ lnP (k, µ)

∂pl

∂ lnP (k, µ)

∂pm

[
nP (k, µ)

1 + nP (k, µ)

]2

Vsurvey . (7.37)

The factor

Ve� =

[
nP (k, µ)

1 + nP (k, µ)

]2

Vsurvey (7.38)

can be seen as an e�ective survey volume. When nP � 1 the sampling is good enough to
derive all the cosmological information that can be extracted from the survey and there
is no need of more sources. For nP � 1 the e�ective volume is severely reduced. If we
subdivide the data into several z independent bins, we can simply sum the Fisher matrices
for every bin.
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Chapter 8

Dark energy as a modi�ed form of

matter

We have learnt in the previous chapters that although the cosmological constant seems
to be the best candidate for the role of dark energy, it su�ers serious theoretical problems.
That's the reason which led many authors to �nd alternative explanations for the cosmic
acceleration.

An alternative approach can be to assume that the underlying Λ problem is solved in
a way that its value completely vanishes and then trying to �nd another mechanism to
explain the cosmic acceleration. There are basically two ways to do that which consist in
modifying either the r.h.s or the l.h.s. of the Einstein equations. The �rst corresponds
then to modify the matter content of the universe, assuming that the energy-momentum
tensor Tµν on the r.h.s. of the Einstein equations contains an exotic matter source with
a negative pressure. On the other side, the second approach correponds to modify the
gravity, which means to change the Einstein tensor.

However, it is important to underline that this distinction is not very sharp and that
there is no way, within General Relativity, i.e. by using only gravitational interactions,
to distinguish modi�ed matter from modi�ed gravity. This division has then the only
practical purpose of classifying the di�erent dark energy models.

However, regardless their belonging to the �rst or the second class, one of the con-
straints that every dark energy model needs to satisfy is the one on the present value
of the equation of state of the dark energy, w. The observations constrain the present
value of w to be very close to that of a cosmological constant, w = −1, but they say
relatively little about its time evolution allowing us to broaden our horizons and consider
dark energy as a �uid whose equation of state changes with time. The key idea of many
�modi�ed matter� models is to consider, rather than an e�ective cosmological constant,
a �uid with the same Λ behaviour at present, but whose density (and then its w) is
free to vary slowly with time in order to be small during the radiation/matter eras and
dominating at present. This is usually done by assuming that such a �uid behaves like
a dynamical scalar �eld. This approach is justi�ed by several reasons: �rst of all, scalar
�elds are natural ingredients in particle physics and their existence is hypothesized by
many fundamental theories (string theory, Brans-Dicke theory, etc...), so that it is natu-
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ral to look at their cosmological consequences. Furthemore, a scalar �eld which slow rolls
on a potential can mimic the behavior of a cosmological constant at present and, unlike Λ,
it can satisfy tighter constraints thanks to its dynamic nature. Moreover, the additional
source of �uctuations, produced by the scalar �eld can give new observable e�ects on the
CMB and on the growth of structure, so it could be possible to distinguish it from the
standard ΛCDM model.

For all these reasons, so far a large number of scalar-�eld dark energy models have
been proposed, including phantoms, K-essence, tachyon, ghost condensates and dilatonic
dark energy amongst many.

In this chapter we focus our attention on those models of �modi�ed matter�, where the
role of dark energy is played by a scalar �eld minimally coupled to gravity, a �eld which
was named Quintessence [48].

8.1 Quintessence model

Quintessence is described by an ordinary scalar �eld φ minimally coupled to gravity,
but with particular potentials that lead to late time in�ation. The action for Quintessence
is given by

Sφ =

∫
d4x
√
−g
[
−1

2
(∇φ)2 − V (φ)

]
, (8.1)

where (∇φ)2 = gµν∂µφ∂νφ and V (φ) is the potential of the �eld. Varying the action with
respect to φ gives the Klein-Gordon equation

�φ+ V,φ = 0 , (8.2)

where V,φ ≡ dV/dφ and the symbol � stands for the D'Alambertian which is given by

�φ ≡ φ;
; = (−g)−1/2∂µ(−g)1/2gµν∂νφ . (8.3)

In the �at FRLW metric (1.2) we then have

d2φ

dt2
+ 3H

dφ

dt
+ V,φ = 0 , (8.4)

while in the conformal time metric (1.5)

φ̈+ 2Hφ̇+ a2V,φ = 0 . (8.5)

Both equations (8.4) and (8.5) represent the Klein-Gordon equation for the �eld φ in the
expanding universe.

The energy-momentum tensor of the �eld is derived by varying the action (8.1) with
respect to the generalized coordinates, which are given in this case by the components of
the metric tensor gµνand its derivatives:

T (φ)
µν = − 1√

−g
δSφ
δgµν

. (8.6)
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Taking note that δ
√
−g = −(1/2)

√
−ggµνδgµν , we �nd

T (φ)
µν = ∂µφ ∂νφ− gµν

[
1

2
gαβ∂αφ ∂βφ+ V (φ)

]
. (8.7)

In the FRLW metric, from the components (0, 0) and (i, i) of eq. (8.7) we obtain the
energy density and pressure of the scalar �eld

ρ(t) = −T 0 (φ)
0 =

1

2

(
dφ

dt

)2

+ V (φ) (8.8)

p(t) = T
i (φ)
i =

1

2

(
dφ

dt

)2

− V (φ) . (8.9)

The equation of state of the �eld is then

wφ(t) =
pφ
ρφ

=
1
2

(
dφ
dt

)2 − V (φ)

1
2

(
dφ
dt

)2
+ V (φ)

6= constant (8.10)

and changes with time.
Inserting eqs (8.8) and (8.9) in eqs (1.18) and (1.20) and considering a matter compo-

nent besides the scalar �eld, we obtain new Friedmann equations

H2 =
8πG

3

[
1

2

(
dφ

dt

)2

+ V (φ) + ρm

]
, (8.11)

1

a

d2a

dt2
= −8πG

3

[(
dφ

dt

)2

+ ρm + pm

]
. (8.12)

The continuity equation for φ

dρφ
dt

+ 3H(ρφ + pφ) = 0 (8.13)

can be derived derived by combining these Friedmann quations. In order to realize the
late-time cosmic acceleration, we require the condition wφ < −1/3 which translates into
the condition (dφ/dt)2 < V (φ): the kinetic energy of the �eld must be smaller than its
potential energy. Hence the scalar potential needs to be shallow enough for the �eld to
evolve slowly along the potential, a situation similar to that of in�ationary cosmology. In
the context of in�ation the slow-roll parameters

εs ≡
m2

pl

16π

(
V,φ
V

)2

, ηs ≡
m2

pl

8π

V,φφ
V

(8.14)

are often used to check the existence of an in�ationary solution for the model (8.1) [49].
In�ation occurs if the slow-roll conditions εs � 1 and |ηs| � 1 are satis�ed. In the context
of dark energy these conditions are not completely reliable since there exists dark matter
as well as dark energy. However they still provide a good way to check the existence of a
solution with an accelerated expansion.

We note that the equation of state for the �eld φ ranges in the region −1 ≤ wφ ≤ 1.
The slow-roll limit gives the condition (dφ/dt)2 � V (φ) which corresponds to wφ ' −1:
the �eld then mimics the e�ect of a cosmological constant.
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8.2 Coupled Quintessence

As we have already mentioned, the energy density of the dark energy and that of matter
have the same order of magnitude in the present Universe. This suggests that there may
be some relation between them, that is they could be �coupled� by some interaction.

We will consider here the particular case of a coupling between a quintessence �eld φ
and dark matter with an interaction of the form Cρmφ̇.

An interesting aspect of such a coupled dark energy scenario is that the system can
approach scaling solutions with an associated accelerated expansion. With a suitable
choice of the coupling and of the potential of the �eld is in fact possible to build models
where both the densities of the dark components scale in the same way, from a certain time
on. Henceforth, their proportion will be frozen for ever. These models can therefore solve
the coincidence problem in an elegant way, rendering the present condition an attractor
solution. Unfortunately they usually introduce several other problems, as for instance the
lack of a matter dominated era, necessary to explain the formation of cosmic structures.
At the moment there is not yet a viable model of dark energy solving the coincidence
problem.

However several di�erent ways to realize this coupling between dark energy and dark
matter have been explored so far.

A scalar �eld is expected to couple explicitly (beyond the gravitational coupling) to
ordinary matter, with a strength comparable to gravity, as shown by Carroll [50], unless
some special symmetry prevents or suppresses the coupling. Such a strong coupling would
render the scalar �eld interaction as strong as gravity, and would therefore have been
already detected. However, a residual coupling still below detection cannot be excluded;
moreover, if the coupling to baryons is di�erent from the coupling to dark matter, as
proposed by Damour et al. [51], then even a strong coupling is indeed possible. Exactly
the same arguments hold if one supposes the quintessence �eld to be coupled to gravity,
rather than to matter, as investigated by Uzan [52], Chiba [53], Chen and Kamionkowsky
[54] and Perrotta et al. [55]. Indeed, the two models, although physically di�erent, are
related mathematically by a conformal transformation as we will see in the following.

In minimal coupling theories the Lagrangian is the sum of the Einstein-Hilbert gravity
Lagrangian and of the scalar �eld sector. The non-minimal coupling (NMC) adds a new
term which, in its simplest form, may be written as

f(φ)R . (8.15)

Then, let us consider the Lagrangian of a NMC scalar �eld plus a perfect �uid matter
component

Ltot = L(φ,R) + 2κ2Lφ + 2κ2Lm , (8.16)

L(φ,R) = −f(φ)R , (8.17)

Lφ =
1

2
φ,µφ

,µ − V (φ) . (8.18)

where κ2 = 8πG. Applying the minimun action principle, we obtain the new Einstein
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equations

Gµν =
1

L,R

[
1

2
gµν(L− L,RR)− gµν�L,R + (L,R);µν + κ2T (φ)

µν + κ2T (m)
µν

]
, (8.19)

where L,R ≡ dL/dR and the energy momentum tensors T
(φ)
µν and T

(m)
µν are given in eqs

(8.7) and (1.17) respectively. It can be shown that under the conformal transformation

g̃µν = e2ωgµν (8.20)

with

2ω = log f (8.21)

the equations in the rescaled metric (sometimes called Einstein frame, while the old metric
is the Jordan frame) can be reduced to the canonical form of eqs (1.1)

G̃µν = κ2
[
T̃ (φ)
µν + T̃ (m)

µν

]
, (8.22)

where G̃µν , T̃
(φ)
µν and T̃

(m)
µν are the rede�nition of the Einstein tensor and of the energy

momentum tensors in the new metric

T̃ (m)
µν ≡ e−2ωT (m)

µν . (8.23)

The parameter ω can be written in terms of a coupling constant therefore, after performing
the conformal rescaling of the metric, the NMC system is written as a scalar �eld in pure
General Relativity and an extra coupling to the ordinary matter.

8.3 Background evolution in a coupled Quintessence

model

Let us consider a general system with a scalar �eld, matter (CDM plus baryons)
and radiation. General covariance requires the conservation of the sum of their energy
momentum tensors, so that it is possible to consider a coupling such that, for instance,

T µν;µ(c) = −Cc(φ)T(c)φ;µ (8.24)

T µν;µ(b) = −Cb(φ)T(b)φ;µ (8.25)

T µν;µ(φ) = [Cb(φ)T(b) + Cc(φ)T(c)]φ;µ (8.26)

T µν;µ(γ) = 0 . (8.27)

Here radiation remains uncoupled because it is conformally invariant. Such a model
can arise introducing in the Lagrangian a �eld with a gravity-coupling term of the form
f(φ)R = 1

2
ξφ2R. It can be shown that, in the limit of a small positive coupling, one

obtains C = κ
√
ξ. In particular we are considering a species-dependent scalar coupling.

In a �at conformal FLRW metric these equations become
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φ̈+ 2Hφ̇+ a2V,φ = κa2(βcρc + βbρb) ,

ρ̇c + 3Hρc = −κβcρcφ̇ ,
ρ̇b + 3Hρb = −κβbρbφ̇ ,
ρ̇γ + 4Hργ = 0 ,

3H2 = κ2a2(ρb + ρc + ρφ + ργ), (8.28)

where βc = Cc/κ, βb = Cb/κ (note that we use a coupling β which is
√

2/3 the β used in
ref. [56]). The matter conservation equation can be integrated to give

ρc,b = ρ(0)c,ba
−3 exp

{
−
∫
βc,b(φ)dφ

}
. (8.29)

This shows one of the basic properties of dark energy interactions: although pressure-
less, matter density does not scale with the inverse of volume. In other words, matter
appears to be nonconserved to observers unaware of dark energy. The potential V (φ) can
be written in all generality as

V (φ) = Ae−κµf(φ)φ , (8.30)

where µ is a dimensionless constant. The exponential case studied in [57] and [56] corre-
sponds therefore to f = 1, a constant potential to µ = 0 and the power law V (φ) ∼ φ−n

to f(φ) = n log φ/(κµφ). We also give some useful de�nitions:

dV

dφ
= −κµf1V (8.31)

f1 =
df

dφ
φ+ f . (8.32)

The system (8.28), is best studied in the variables [56, 58]

x = κ
φ′√

6
, y =

κ

H

√
V

3
, v =

κ

H

√
ρb
3
, z =

κ

H

√
ργ
3
, (8.33)

where the prime stands for a derivative with respect to α = ln a. Then we obtain

x′ =

(
z′

z
− 1

)
x−

√
2

3
µf1y

2 +

√
2

3
βc(1− x2 − y2 − v2 − z2) +

√
2

3
βbv

2 ,

y′ =

√
2

3
µf1xy + y

(
2 +

z′

z

)
,

z′ = −z
2

(1− 3x2 + 3y2 − z2) ,

v′ = −v
2

(3

√
2

3
βbx− 3x2 + 3y2 − z2) ,

H ′

H
= −1

2
(3 + 3x2 − 3y2 + z2) . (8.34)
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We notice that x2, y2, z2 and v2 give the fraction of total energy density carried by the
�eld kinetic energy, the �eld potential energy, the baryons and the radiation, respectively:

Ωφ = x2 + y2 , (8.35)

Ωγ = z2 , (8.36)

Ωb = v2 . (8.37)

Clearly, the dark matter energy density fraction is the complement to unity of x2 + y2 +
v2 + z2:

Ωc = 1− x2 − y2 − v2 − z2 (8.38)

In terms of the new variables we can also write an expression for the parameter of the
equation of state of the scalar �eld:

wφ =
x2 − y2

x2 + y2
, (8.39)

while the equation of state of the total cosmic �uid is given by

ptot = weffρtot , (8.40)

where
weff = x2 − y2 − z2/3 = Ωγ(wγ − 1) + Ωφ(wφ − 1) (8.41)

and wγ = 1/3 is the equation of state for the radiation.
To close the system (8.34) one also needs the relation f1(y,H) which depends on the

form of the potential. If we assume a power law potential and give arbitrary values to
the coupling constants β, we can solve the system obtaining the behaviours of the density
parameters, plotted in Fig. 8.1.

The baryonic and the radiation components are subdominant at present so we will
neglect them. In particular, in order to simplify the analysis and to satisfy local gravity
constraints we put from now on βb = 0 and βc = β = const. Since βb = 0 implies that the
standard matter is conserved (while the dark matter is not), the theoretical predictions of
this model can be directly compared with observations. Quantities calculated in di�erent
frames should instead be converted back before comparison.

As it has been shown in refs. [56], for β <
√

3/2 the standard matter era that precedes
the �nal acceleration is replaced in this coupled model by an epoch in which the energy
density fractions Ωm = Ωc + Ωb,Ωφ of matter and �eld are constant and equal to

Ωφ =
2

3
β2 , (8.42)

and Ωm = 1 − Ωφ. During this epoch one has φ′ = 2β (the prime stands for d/d log a)

and the scale factor grows as a ∼ t
2

3(1+we) with we = 2β2/3 (these values are approximated
since are obtained neglecting both baryons and radiation). This new matter era has been
denoted as φMDE. This occurs when the potential is negligible with respect to the �eld
kinetic energy. Since the potential is dominating the �nal accelerated epoch, it is clear
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Figure 8.1: Behaviour of the density parameters Ωc (green, longdashed line), Ωφ (red, solid
line), Ωb (blue, dotted line) and Ωγ (cyan, dot-dashed line) as a function of ln a for a power law
potential V (φ) = φ−1 and βb = βc = 0.5. Notice that for the coupled quintessence models there
is the transient regime φMDE in which both the matter and the scalar �eld energy density are
nonvanishing. Baryons and radiation are subdominant at the present epoch.

that the φMDE generically will take place before acceleration and, of course, after the
radiation era. This in fact is what has been observed in several numerical and analytical
investigations, for instance in the case of exponentials and inverse power-law potentials
V (φ) = Aφ−n [59]. As we will see, this stage is responsible for most of the di�erences
with respect to ordinary quintessence, especially for what concerns the growth of cosmic
structures.

8.4 Linear perturbations in coupled Quintessence mod-

els

We now show that during φMDE the growth of �uctuations is faster than in a standard
matter era. In ref. [60] it has been shown that the perturbation equation in the sub-horizon
regime is

δ′′c +

(
1 +
H′

H
− βcφ′

)
δ′c −

3

2
(γccδcΩc + γbcδbΩb) = 0 , (8.43)

where again the prime stands for derivation with respect to α ≡ log a and where γij =
1 + 2βiβj and H is the conformal Hubble function H ≡ aH. This equation is to be
compared to eq. (5.101) derived in Section 5.7. Now we assume the baryon component to
be negligible, then the �uctuation equation can be solved analytically during the φMDE:

δ ∼ a1+2β2

, (8.44)

from which it appears that the growth rate, de�ned in eq. (5.107), is s = 1 + 2β2 > 0.
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Let us brie�y digress to evaluate the perturbation growth in the Jordan frame, where
we assume an universal coupling, β = βc = βb, and where the total matter is conserved.
In this case, the φMDE corresponds to the standard solution of the Brans-Dicke original
theory (which is derived in absence of a potential)

aJ ∼ t
2+2ω
4+3ω , (8.45)

upon the substitution

β2 =
1

2(3 + 2ω)
, (8.46)

where ω is the Brans-Dicke coupling parameter. Therefore, the φMDE is quite a generic
feature of scalar-tensor models and it also shows up in some f(R) models [61], that we
will study in Chapter 9. The growth rate in Jordan frame is

δJ ∼ a
2+ω
1+ω ∼ a

1+2β2

1−2β2 , (8.47)

which again gives a rate larger than unity. When the φMDE ends and acceleration takes
over, the rate s declines steadily to zero as in standard cases. Therefore, as anticipated, s
goes from a value larger than unity to a value smaller than unity both in the interacting
model and in the Jordan frame of scalar-tensor theories.

In the rest of the chapter, we focus on the interacting model de�ned by eq. (8.28).

8.5 A generalized �t for the growth rate

We now proceed to �nd a convenient �t to the full evolution of δ(a) for the coupled
models introduced in the previous section. In the standard scenario δ obeys the equation

δ′′(α) + (1 +
H′

H
)δ′(α)− 3

2
Ωmδ(α) = 0, (8.48)

where
H′

H
= −1

2
(1 + 3wφ(α)Ωφ(α)) = −1

2
(1 +

Ω′m
Ωm

) (8.49)

The solution can then be approximated as

δ(α) = e
R α
0 dα′Ωm(α′)γ . (8.50)

In our interacting model, eq. (8.48) becomes

δ′′ +

(
1 +
H′

H
− βφ′

)
δ′ − 3

2
Ωm(1 + 2β2)δ = 0 , (8.51)

so the solution will depend parametrically on the value of the coupling costant β. By
solving this di�erential equation numerically for di�erent values of β we �nd as expected
that the growth rate s = δ′/δ is larger than unity in the past: the standard parametrization
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(8.50) is therefore unable to describe a similar behaviour. To solve this problem, one
simple possibility would be to generalize (8.50) as

δ(α) = e
R α
0 dα′Ωm(α)γ(1+cβ2) , (8.52)

with c a parameter to be determined by a least square �t. The choice of a β2 behavior is
suggested by the fact that the φMDE depends only on β2. This parametrization introduces
a single new parameter, η = cβ2, in addition to those already in use to describe the growth
factor., i.e. Ωm(0), γ and w (of course w itself could also be described by more parameters).
This new parameter appears well justi�ed: for instance, if future data will show that η
is signi�cantly di�erent from zero then the standard growth of perturbations would be
ruled out. However, this new �t is not very practical because it contains the function
Ωm(α) that should be obtained by numerically integrating the background equations and
therefore depends on the �eld potential. To overcome this di�culty, we propose to use
instead the standard expression for Ωm :

Ω(s)
m (a) =

Ωm,0

Ωm,0 + (1− Ωm,0)a−3ŵ
, (8.53)

where ŵ(a) = (log a)−1
∫ a
a0
w(a′)da′/a′ and the subscript 0 denotes the present time. Note

that the present values of Ω
(s)
m and Ωm coincide. For the coupled dark energy model we are

considering here, we approximate w(z) ≈ wφ(z = 0); although one could easily expand
w(z) to higher orders, our approximation is su�cient to show that our generalized �t
works well. Therefore we de�ne the rate

sfit = Ω(s)
m (α)γ(1 + cβ2) (8.54)

where c will be determined below by �tting to numerical results. In this way, the growth
rate can be parametrized by Ωm,0, γ, and the combination η ≡ cβ2, plus the parameters
that enter w(z). With the new parameterization, even in the limit Ωm → 1, one has s 6= 1.
In the next section we show that this generalized �t is indeed a good approximation. Since
we know that during the φMDE (i.e. at high z, for which Ω

(s)
m ≈ 1) one has s = 1 + 2β2

we can anticipate that the result will be close to c ≈ 2.
Concluding this section we note that eq. (8.54) should be seen for what it is, i.e. a

phenomenological �t. The relation of Ωm,0, w(z), γ and η to the underlying theory will
of course depend on the theory itself. For instance, the identi�cation of Ωm,0 with the
presently clustered mass in galaxies and clusters of galaxies is actually a model-dependent
assumption; if gravity is not standard this assumption is likely to be incorrect. The value
of Ωm(a) we adopt in our �t (8.54) must be inferred from observations of the background
(as e.g. supernovae Ia) performed with a standard Hubble function H(z). That is, we
assume here that the Friedmann equation (which accounts only for the background data)
can be written as the sum of two components, one that dilutes as Ωm,0a

−3 and the other as
(1−Ωm,0)a−3(1+ŵ); if the gravitational equations are not standard, one has to de�ne Ωm(a)
such that the above parametrization is still valid. The advantage of using (8.53-8.54) is
that both background and linear growth are �tted by the same expression for w(a); that
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is, once one adopts a prescription for w(a) one can �t all the data by simply adding the
two parameters γ and η (plus possibly further parameters to account for the anisotropic
stress, see eg. [62]). In this way we will be able to use in Sect. 8.7 the constraints from
supernovae Ia directly on Ωm,0, w. Of course, in principle one could proceed in di�erent
ways: for instance, one could parametrize Ωm(a) so that values larger than unity in the
past were allowed so as to force s > 1. Trivially, in fact, our parametrization above could
be written equivalently de�ning a new density Ω̂m ≡ Ω

(s)
m (1 + η)1/γ; however, this density

parameter would not be the same quantity that appears in the Friedmann equation.

8.6 Comparing the �t to the numerical results.

We solved numerically the background equations of the system (8.28) neglecting the
fraction of baryons and radiation and choosing an exponential form for the potential,
V (φ) = A exp(µφ). The constant A is determined by the present time condition on Ωm,0.
Then we solved numerically the perturbation equation (8.51), thus obtaining a solution
(that we denote δexact) which depends on the value of the coupling constant β. For β
ranging between 0 and 0.5 and µ within 0.1 and 1 (both varied in steps of 0.1), we found
that the values of the parameters γ, c appearing in (8.54), which give the least square �t
to δexact are γ = 0.56 and c = 2.1. Our best �t is therefore

δfit(α, β) ≡ e
R α
0 dα′Ω

(s)
m (α)0.56(1+2.1β2) , (8.55)

where we remark again that we use the standard expression for Ωm(a).
This new function is indeed a good approximation to the exact solution δexact as one

can see in Fig. 8.2 where the curves of the growth factor g ≡ δ/a for two di�erent β and
the corresponding gfit are plotted. In Fig. 8.3 we present the level of accuracy of the
�tting formula. We �nd �ts to better than ≈1% for di�erent values of β. Moreover, we
�nd that the best �t values of the parameters do not depend on the actual value of the
present matter density Ωm,0. We experimented also with an inverse power-law potential
and found that also in this case eq. (8.55) is a good �t (see curve for β = 0.1 in Fig. 8.2).
Without the η-correction the relative error (δfit − δexact)/δexact becomes larger than 15%
already for β = 0.2.

8.7 Comparing the �t to the observations

In the previous section we have seen that the expression

Ω(s)
m (α)γ(1 + η) , (8.56)

where Ω
(s)
m (α) is given by eq. (8.53) gives a good �t to the evolution of δ′/δ during both

the decelerated and accelerated regimes for coupled dark energy models if γ ≈ 0.56 and
η = 2.1β2. Here we take some preliminary steps towards comparing the �t (8.56) to the
observations. An indication for a positive η could signal an attractive force additional to
standard gravity as in a scalar-tensor model; on the other hand one can speculate that a
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Figure 8.2: We compare the functions gfit ≡ δfit/a (red solid curves), given by the �tting
formula (8.52) with the best �t (parameters γ=0.56, c = 2.1) for two di�erent values of β, to the
exact solutions gexact ≡ δexact/a (black dashed curves) of the di�erential equation (8.48) for the
growth rate. The curve for β = 0 also gives the standard best �t (i.e. for c = 0). All curves are
normalized at unity at z = 20 and refer to an exponential potential with µ = 1.

negative η could be related to a di�erent physics, for instance a slowed growth induced
by a hot matter component.

We consider the following data: a) Lyman-α power spectra at an average redshift
z = 2.125, z = 2.72 [63], z = 3 [64]; b) the normalization σ8 inferred from Lyman-α at z
ranging between 2 and 3.8 [65]; c) galaxy power spectra at low z from SDSS [66] and 2dF
[1]. From the three Lyman-α and the SDSS spectra we estimate the ratios

r(ki; z1, z2) =
P (ki, z1)

P (ki, z2)
, (8.57)

for the values of ki for which there are tabulated value of the spectra (or for interpolated
values and errors when the tabulated wavenumbers di�er). For the σ8 data we estimate
the ratios between successive values of z,

r(z1, z2) =
σ2

8(z1)

σ2
8(z2)

. (8.58)

Note that ref. [65] reports the values of σ8 extrapolated at the present epoch using the
growth δ of a ΛCDM model with Ωm,0 = 0.27, ΩΛ,0 = 0.73 (σ8(z) = σ8(0) · δ(z)). So we
use that same model to extrapolate them back to the observation redshifts. Then we see
that r(z1, z2) = δ2(z1)/δ2(z2)

For the Lyman spectrum at z = 3 and for 2dF (z = 0.15), the authors of [64, 1] give
directly their estimation of the growth rate, sobs =0.49±0.10 for 2dF and sobs =1.46±0.29
for the Lyman-α data. Then we compare the observations to our �t by using the likelihood
function

L = N exp
∑
i

(
−(robsi − r

theory
i )2

2σ2
i

)
exp

∑
j

(
−

(sobsj − s
theory
j )2

2σ2
j

)
, (8.59)
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Figure 8.3: Level of accuracy of the best �t to the exact solution for the growth rate. For β
ranging between 0 and 0.3 the �ts are better than 0.6%. Without the correction the relative
errors would be larger than 15% already for β = 0.2.

where the errors σi are obtained from the quoted errors on P (k) and σ8 by standard error
propagation.

As we will see the data available at the present are not su�cient to set stringent limits
to the growth function. Moreover, there are several sources of possible systematic e�ects
that we cannot account for. For instance, the matter spectra derived from Lyman-α
clouds are obtained through calibration (i.e. bias correction) with N -body simulations;
these simulations have been generated only for a limited set of cosmological models and
the results might depend on the assumptions (see e.g. [67]). It is di�cult to quantify
the impact of this limitation upon our results; the fact that we consider ratios of spectra
from similar sources (eg Lyman-α clouds) might however alleviate the problem since one
can expect that the calibration errors are only weakly dependent on redshift. For this
reason we consider separately the ratios of the high-z Lyman-α spectra to the low−z
SDSS galaxy spectra; our �nal results do not take these into account.

The current observational situation is summarized in Fig. (8.4) (and the associated
Table 8.1), in which we plot the data we used in this work with 1σ errors, along with the
ΛCDM growth rate and with our best �t (see below). This �gure gives a clear idea of the
potential for improvement in the observational estimation of the growth rate.

We assume that the function s depends on four parameters, (Ωm,0, w0, γ, η). We assume
also a �at prior Ωm,0 ∈ (0.05, 0.4) and w0 ∈ (−1,−0.6) which generously accounts for the
supernovae constraints (neglecting the phantom region). Our main result is contained
in Fig. (8.6), which displays the likelihood contour plots at 68%, 95% and 99.7% of
probability in the plane (γ, η), marginalizing over Ωm,0, w0. Remarkably, the best �t values
practically coincide with the ΛCDM prediction, (η, γ) = (0, 0.6). However the likelihood
extends considerably on both negative and positive η and even negative values of γ are
not excluded beyond 99.7% probability. In Figs. (8.7-8.8) we plot the marginalized 1D
likelihoods for γ and η. The results are tabulated in Table 8.2. The best �t values and
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z s

ref. [63]
2.125-2.72 0.74±0.24

ref. [65]
2.2 - 3 0.99±1.16
2.4 - 3.2 1.13±1.07
2.6 - 3.4 1.66±1.35
2.8 - 3.6 1.43±1.34
3 - 3.8 1.30±1.50

ref. [64]
3 1.46±0.29

ref. [1]
0.15 0.49±0.10

Table 8.1: Summary of observational data. We report in the z and s columns either the
corresponding ranges or the central value and 1σ errors. For the σ8 data or ref. [65] we chose to
report the errorboxes on s obtained using the ratios at the given redshifts.

68% 95% 99.7%

η 0.00+0.28
−0.18

+0.58
−0.38

+1.1
−0.58

γ 0.60+0.41
−0.30

+0.97
−0.49

+1.6
−0.74

γstandard 0.60+0.34
−0.26

+0.77
−0.40

+1.4
−0.50

Table 8.2: Best �t and errors (marginalized over all other parameters).

1σ errors are

γ = 0.60+0.41
−0.30 , η = 0.00+0.28

−0.18 . (8.60)

As we anticipated, the current data impose only very weak constraints on γ, η . For
completeness, we also quote in Table 8.2 the best �t and errors on γstandard, i.e. assuming
a standard model in which η = 0. Even in this case the likelihood distribution for
γ remains very broad, although now negative values are rejected at more than 99.7%
probability. Including the ratio of Lyman-α to SDSS power spectra has a minor e�ect on
γ and moves the best �t of η to −0.2.

Assuming η < 0.58 with 95% probability we can derive an upper limit to the coupling
β introduced in Sect. 2,

β < 0.52 (8.61)

(with 95% probability). This limit is very weak when compared to the CMB limits [59]
but it is nevertheless interesting since it is independent and derived uniquely from the
growth rate at small redshifts.
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Figure 8.4: Summary of experimental data for the growth rate s, as detailed in Table I. The big
coloured errorboxes represent the ratios σ(z1)/σ(z2) for various z intervals given in ref. [65] (three
additional very large errorboxes have been excluded from the plot but not from the analysis);
the smaller black box represents the average spectral ratio for the Lyman-α data of ref. [63]. The
two points with errorbars are from ref. [1] and ref. [64]. The black solid line is the ΛCDM model,
the red dotted curve is the coupled dark energy model with Ω = 0.2 and β = 0.4 (i.e. η = 0.34)
and the dashed blue curve is the overall best �t (Ωm,0, w0, γ, η) = (0.05,−0.6, 0.4, 0.45).

8.8 Comments

The search for useful parametrizations of the dark dynamics is important since as it has
been shown several times every parametrization introduces some arbitrariness in the way
data are analysed [68]. In particular, with the advent of models of dark energy based on
modi�cation of Einstein's gravity, we have become aware of many possible trends, both at
the background and at the perturbation level, that are not easily accounted for with earlier
parametrizations. With this work we introduced a generalized form of parametrization
of the growth rate that allows for a rate s 6= 1, i.e. faster or slower than the standard
matter-dominated growth. We showed that this parametrization is suitable to model the
�uctuation growth in coupled dark energy models and in scalar-tensor models.

We have analysed the current data in search of observational constraints on γ, η.
Considering data from Lyman-α and galaxy power spectra at various redshifts we have
obtained (rather weak) constraints on both parameters. The best �t turns out to be very
close to the ΛCDM predictions. Many future experiments based on weak lensing or baryon
oscillations will be able to estimate the growth rate and other �uctuation parameters with
much higher precision, as we will show in the next chapter. We expect therefore that the
constraints derived in this work will soon be superseded by much more precise ones and
that new estimates of the growth factor will help clarify the nature of dark energy.
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Figure 8.5: Tridimensional likelihood function marginalized on Ωm,0 and w0 . The peak
corresponds to (γ, η)=(0.6,0).

Figure 8.6: Contour plot of the likelihood marginalized over Ωm,0 and w0. The contours,
from inside to outside, are at the 68% (red zone), 95%, 99.7% of probability. The dot
marks the peak (γ, η) = (0.6, 0).
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Figure 8.7: Marginalized likelihood for γ (solid line) and for γstandard , i.e. �xing η = 0 (dashed
line). The three horizontal lines intersect the curve marking the intervals at 68, 95, 99.7% of
probability, from top to bottom.

Figure 8.8: Marginalized likelihood for η. The three horizontal lines intersect the curve marking
the intervals at 68, 95, 99.7% of probability, from top to bottom.
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Chapter 9

Modi�ed gravity theories: f (R) models

In this chapter we will study the cosmological perturbations in a class of modi�ed
gravity theories, the so called f(R).

As seen in sec. 4.2, scalar-tensor models represent one of the simplest classes of mod-
i�cation of gravity and as such are among the most studied models of dark energy since
they provide a benchmark against which to compare standard gravity. A sub-class of
scalar-tensor models takes the form of f(R) models, where the gravitational equations
are derived by varying a Lagrangian written as a general function of Ricci's scalar (here
we focus our analysis on the metric formalism). These simple models capture a wide range
of interesting phenomena that are absent in Einstein's gravity: the equations are fourth
order and new cosmological solutions can be found, including accelerated expansion, phan-
tom behaviors etc. It is then interesting to study also their predictions on the growth
of cosmological perturbations. Several papers tried to extend the γ-parametrization to
dark energy models with non-Einsteinian gravity but this has been successfully done only
either in a limited range of redshifts or scales and/or by pre-selecting a limited number
of models.

The aim of this chapter is to extend the γ-parametrization to a large class of f(R)
models, paying particular attention to �nding a parametrization which is based, at least
partially, on analytical expectations and which is as general as possible. For f(R) models
it turns out that the growth rate s, contrary to ΛCDM and other standard dark energy
models, is scale-dependent. We propose a form of s that �ts a considerable range in
redshift, in scales and that applies to many models. Moreover, our parametrization does
not encounter the aforementioned di�culty of the standard γ-parametrization for s to
cross unity. This is crucial as f(R) models, which are a particular case of scalar-tensor
gravity, indeed have s > 1 at intermediate redshifts.

9.1 The Growth Rate in f (R)

The f(R) modi�ed gravity models are described by the following action in the Jordan
Frame

S =

∫
d4x
√
−g
[

1

2κ2
f(R) + Lrad + Lm

]
, (9.1)
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where κ2 = 8πG while G is a bare gravitational constant (i.e. the standard Newtonian
constant of �not modi�ed� General Relativity), f(R) is some arbitrary function of the
Ricci scalar R, and Lm and Lrad are the Lagrangian densities of dust-like matter and
radiation respectively.

Here we concentrate on spatially �at Friedman-Robertson-Walker (FRW) universes
with a time-dependent scale factor a(t) and a metric

ds2 = −dt2 + a2(t) dx2 . (9.2)

The Einstein equations in this metric can be written as (hereafter a dot stands for a
derivative with respect to t)

3FH2 = κ2 (ρm + ρrad) + (FR− f)/2− 3HḞ , (9.3)

−2FḢ = κ2 [ρm + (4/3)ρrad] + F̈ −HḞ . (9.4)

where F (R) ≡ df/dR, where the subscripts m and rad stand for matter and radiation,
respectively and the Ricci scalar R is expressed by the Hubble parameter H as

R = 6(2H2 + Ḣ) . (9.5)

Following [69] we introduce the dimensionless variables:

x1 ≡ −
Ḟ

HF
, x2 ≡ −

f

6FH2
,

x3 ≡
R

6H2
, x4 ≡

κ2ρrad

3FH2
,

(9.6)

together with the following quantities

Ωm ≡
κ2ρm
3FH2

= 1− x1 − x2 − x3 − x4 ,

ΩDE ≡ x1 + x2 + x3 ,

Ωrad ≡ x4 .

(9.7)

We will always ensure F0 = 1 so that the present value Ωm,0 coincides with the standard
de�nition. It is straightforward to derive the following di�erential equations [69]:

x′1 = −1− x3 − 3x2 + x2
1 − x1x3 + x4 , (9.8)

x′2 =
x1x3

m
− x2(2x3 − 4− x1) , (9.9)

x′3 = −x1x3

m
− 2x3(x3 − 2) , (9.10)

x′4 = −2x3x4 + x1x4 , (9.11)

where the prime denotes di�erentiation with respect to α = ln a and

m ≡ d lnF

d lnR
=

Rf,RR
f,R

, (9.12)

r ≡ − d ln f

d lnR
= −Rf,R

f
=

x3

x2

. (9.13)
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From Eq. (9.13) one can express R as a function of x3/x2. Since m is a function of R,
it follows that m is a function of r, i.e. m = m(r). The ΛCDM model, f(R) = R − 2Λ,
corresponds to m = 0. Hence the quantity m characterizes the deviation from the ΛCDM
model. The e�ective equation of state of the system is

weff = −1

3
(2x3 − 1) , (9.14)

The dark energy equation of state, w ≡ pDE/ρDE, is directly related to the one used in
the standard analysis of SN Ia observations and it is given by

w = −2BḢ + 3BH2 + κ2ρr/3

3BH2 − κ2(ρm + ρr)
' weff

1− FΩm

, (9.15)

where B is some constant and the last approximate equality in is valid in the regime
where the radiation energy density ρr is negligible relative to the matter density.

We will make use of the relation

H′

H
= 1 +

H ′

H
= −1

2
− 3

2
weff . (9.16)

The perturbation equations can be written in the comoving gauge (where the velocity
perturbation of non-relativistic matter vanishes) as

δ̈m +

(
2H +

Ḟ

2F

)
δ̇m −

ρm
2F

δm

=
1

2F

[(
−6H2 +

k2

a2

)
δF + 3H ˙δF + 3 ¨δF

]
, (9.17)

¨δF + 3H ˙δF +

(
k2

a2
+

f,R
3f,RR

− R

3

)
δF

=
1

3
ρmδm + Ḟ δ̇m , (9.18)

where k is the comoving wavenumber. Note that these equations can in turn be written
using the variables xi of (9.6) and primes instead of dots, both of which are convenient
for numerical integration. Neglecting the contribution of radiation, one has:

δ′′m +

(
x3 −

1

2
x1

)
δ′m −

3

2
(1− x1 − x2 − x3)δm

=
1

2

[{
k2

x2
5

− 6 + 3x2
1 − 3x′1 − 3x1(x3 − 1)

}
δF̃

+ 3(−2x1 + x3 − 1)δF̃ ′ + 3δF̃ ′′
]
, (9.19)

δF̃ ′′ + (1− 2x1 + x3)δF̃ ′

+

[
k2

x2
5

− 2x3 +
2x3

m
− x1(x3 + 1)− x′1 + x2

1

]
δF̃

= (1− x1 − x2 − x3)δm − x1δ
′
m , (9.20)
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where δF̃ ≡ δF/F , and the new variable x5 ≡ aH satis�es

x′5 = (x3 − 1)x5 . (9.21)

The above equations (9.17) and (9.18) can be much simpli�ed considering only cosmo-
logically viable f(R) models. In fact, in these cases the variation of F is small (|F ′| � F )
so that the terms including Ḟ can be neglected. If we also neglect the oscillating mode of
δF relative to the mode induced by matter perturbations δm, it follows that for sub-Hubble
scales (k � H) the matter �uctuation equation becomes

δ′′m +

(
1 +
H′

H

)
δ′m −

3

2
ΩmδmQ(k, a) = 0 , (9.22)

where

Q = 1 +
1

3

k2/M2

a2 + k2/M2

= 1 +
1

3

m

λ2[1− 3w(1− Ωm)] +m
,

(9.23)

where in turn we de�ned the e�ective mass M ≡
√
R/3m of the scalar degree-of-freedom

and in the last step also λ ≡ aH/k, the scale length in units of the Hubble radius. The
last expression is a particular case of the scalar-tensor expression

Q = 1 +
2β2k2/M2

a2 + k2/M2
, (9.24)

where β is the scalar-tensor coupling and M2 ≡ F−1d2V/dφ2. Although we discuss the
sub-Hubble form (9.22) now, the numerical solutions are always obtained integrating the
full set. Notice that Q→ 1 for large scales,

k � kmin ≡ a(R/m)1/2 , (9.25)

and that Q → 4/3 for k � kmin (small scales). In order to derive (9.23) we have also
used the condition

M2 � R ∼ H2 (9.26)

which is satis�ed for viable f(R) models in the past cosmic expansion history of the
universe.

9.2 A Parametrization of the Growth Rate in f (R)

We try now to �nd an approximation for

s ≡ δ′

δ
, (9.27)

which obeys the equation

3wΩm(1− Ωm)
ds

dΩm

+

[
1

2
− 3

2
w(1− FΩm)

]
s+ s2 − 3

2
ΩmQ = 0 . (9.28)
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Since F (z) ≈ 1 in the redshift range of interest we can approximate Ω̃m ≡ FΩm with Ωm

(we veri�ed that this doesn't a�ect our results). One possible parametrization one could
think of is a straightforward generalization of the γ-parametrization given by:

s ≡ Q (Ωm)γ . (9.29)

This would raise the upper bound on s to 4/3, which encompasses the usual s > 1
behavior of some f(R) models [70]. If Ωm ≈ 1 and γ is slowly varying we can write
ds/dΩm = (Ωm)γ−1γQ, expand and obtain (linearized around Ωm = 1)

γ =
3(1− w)

(1 + 4Q− 6w)
− 2(1− 2Q)

(1− Ωm)(1 + 4Q− 6w)
(9.30)

(notice that γ = 6/11 for ΛCDM).
The above proposed parametrization however has the disadvantage of not being a

solution to (9.28) for Ωm = 1, around which we expand our approximation. To account
for this we propose instead the parametrization given by:

s ≡ 1

4

(
−1 +

√
1 + 24Q

)
(Ωm)γ . (9.31)

Substituting the above on (9.28) linearized around Ωm = 1, one gets

γ =
12Q+ 3w

(
1−
√

1 + 24Q
)

24Q+
(
1−
√

1 + 24Q
)

(1 + 6w)
, (9.32)

which does not depend on Ωm itself. The above can be written in a simpler form by
de�ning

Q̃ ≡ 1

4

(
−1 +

√
1 + 24Q

)
. (9.33)

Note that from the de�nition above Q = 1 → Q̃ = 1 and that Q = 4/3 → Q̃ ' 1.19.
One then has

Fit 1: s(k, z) = Q̃ (Ωm)γ , (9.34)

γ =
1 + 2Q̃− 3w

1 + 4Q̃− 6w
, (9.35)

which we shall dub Fit 1. It is clear that such a parametrization should not be relied upon
whenever w is close to 5/6. This indeed happens in most viable models for z & 3, since
around this redshift there is a generic phantom crossing [71] which makes w diverge and
then become positive as z increases. Nevertheless this in practice is not a big issue as the
vast majority of currently planned future data will come from the region z . 2. In any
case, we �nd numerically that in all models here considered the above parametrization is
actually valid even for higher z. The de�nition (9.32) also ensures that γ is numerically
close to the ΛCDM value of 6/11 = 0.545: for −3 < w < 0 one has 0.52 < γ < 0.6 for
any value of Q. In fact, since the value of Q (and also that of Q̃) is always close to 1
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(remember 1 < Q < 4/3), one can also expand this parametrization around Q̃ = 1. Doing
so, one gets

γ ' 17− 2Q̃+ 3w(−11 + 6w)

(5− 6w)2
. (9.36)

In (9.32) we expanded (9.28) to �rst order in Ωm. If one includes also second order
corrections on Ωm, then the fractional di�erence |∆s/s| (between �rst and second order
expansions) for −3 < w < 0 is smaller than 4% for Ωm = 0.25 and smaller than 1% for
Ωm > 0.5. Therefore if one is only interested in an accuracy of a few percent on s, a �rst
order expansion should be enough.

In the following we compare this �t with the results of the numerical integration.
However we also introduce another �t, similar to Fit 1, designed to improve upon Fit 1
both in terms of accuracy and in terms of simplicity. Fit 1 infact requires the integration
of the background equations in order to obtain the functionsm(z),Ωm(z), w(z) that enters
Q(k, z). This of course is impractical if one wishes to cover many f(R) models, for instance
when looking for forecasts of future experiments. Moreover, since the condition that γ
is approximately constant is actually not well ful�lled, as we will see, we introduce an
additional parameter, A, that will serve the purpose of improving the accuracy.

Our Fit 2 is then de�ned as

Fit 2: s(k, z) ≡ δ′

δ
= Q̃A (Ωm)γ , (9.37)

E(z)2 ≡ H2/H2
0 = [Ωm,0(1 + z)3

+ (1− Ωm,0)(1 + z)3(1+w0))] , (9.38)

Ωm(z) = Ωm,0(1 + z)3/E(z)2 . (9.39)

and we assume a constant equation of state w(z) = w0, being w0 the present value. This,
indeed, happens to be a rather good approximation for small redshifts. Fit 2 depends
entirely on presently observed quantities, w0,Ωm,0 and on the universal (i.e., independent
of f(R)) parameters A, γ, that we are going to �x in the following. Notice that the function
m(z) itself is analytically �xed by assigning w0,Ωm,0: m(R) is infact an analytical function
of R, and R is an analytical function of E(z). In this way, once the f(R) is given, one can
easily compute all the relevant quantities (m,R...) without integrating the background.

Of course, one can also rephrase our parametrization in terms of a scale and time
dependent γ̂ function de�ned implicitely as s = Ωγ̂

m by writing

γ̂(k, z) = γ + A
log Q̃

log Ωm

(9.40)

The growth function s is already constrained by large-scale structure and redshift
distortion experiments and is a primary target for future large scale surveys that aim at
measuring it to within a few percent and down to z ≈ 2.
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9.3 Results

Our goal is �nding a simple parametrization for all cosmologically viable f(R) theories
in the range

(0.005 ≤ k ≤ 0.5)h/Mpc , z < 3 . (9.41)

Our �t is good also for larger values of k, however in this region the linear approximation
breaks down. On the other hand, for smaller k it is the sub-Hubble approximation that
breaks down.

In order to test our �ts, we have studied a number of f(R) models whosem(r)'s satisfy
basic cosmological requirements and local gravity constraints, as it has been shown in [69].
All these models can be written in the form

f(R) = R− λRcf1(x) x ≡ R/Rc (9.42)

where Rc(> 0) de�nes a characteristic value of the Ricci scalar R and λ is some positive
free parameter.

The ΛCDM, for which f(R) = R− 2Λ is recovered putting

• (A) f1(x) = 2Λx
λR

.

In particular we tested the following classes of models

• (B) f1(x) = x2n/(x2n+1) (n > 0) ,

• (C) f1(x) = 1− (1 + x2)−n (n > 0) ,

• (D) f1(x) = 1− e−x ,

• (E) f1(x) = tanh(x) .

For every class, we studied di�erent models obtained varying the values of the param-
eters λ, n,Ωm,0 and computing Rc using the approximate relation

Rc ≈ 6H2
0 (1− Ωm,0)/λ . (9.43)

Once these parameters are speci�ed, we can solve the background equations, �nding
by trial and errors the initial conditions such to reproduce the speci�ed value for Ωm,0, and
then the perturbation equations. Then we compute the accuracy of our �ts in reproducing
the exact solution. Results are shown in Fig. 9.2, Fig. 9.3, Fig. 9.4, Fig. 9.5, for four
di�erent models, each for every class. Theirm(r) trajectories are plotted in �gure Fig. 9.1.
We have found that Fit 1 is accurate to more than 14% in the range (9.41). In order to
use a universal value for the parameter A in Fit 2, we compute its best �t value through
a minimum least square �t over the range (9.41) and over all the studied models, �nding
the value A = 0.7. Fixing the parameter A this way, we have computed its accuracy in
reproducing the exact solution, which we found to be at worst 6%, a big improvement
over Fit 1. Fit 2 has the advantage to be much easier to evaluate since it requires only the
knowledge of Ωm0, w0. Furthermore, the use of a constant w(z) = w(0) ≡ w0, lacking of
any singularity, allows us to extend this �t up to higher redshifts. See for instance Fig 9.6
where the �t is extrapolated to very high z.
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9.3.1 Improving the �t for small k

If we don't use the sub-Hubble approximation (k2/a2 � H2) to derive eq.(9.23), or in
another words we don't neglect the term −6H2δF/2F in eq. (9.17), we can rewrite Q as

Q = 1 +
1

3

k2/M2 − 6H2a2/M2

a2 + k2/M2
(9.44)

Since, for scales k < 0.005 we have k2/M2 ∼ H2/M2 around z = 0, taking into account
this term improves the �t for small k at low redshift (see Fig. 9.7 for a comparison, where
for Fit new we mean Fit 1 with Q given by eq. (9.44)).

9.4 Future developments

We have seen how our parametrization Fit 2 can reproduce the growth rate for a
large class of f(R) models with an accuracy being at worse 6%. We think it is already
a good result, however, our task is to improve the �t, reducing the accuracy even more.
In order to do that, we studied the dependence of the parameter A on the scale k, �tting
the growth rates keeping k �xed. The plot in Fig. 9.8 suggests that we could use a k-
dependent parameter instead of a constant one. The behavior of A with respect to k is
well �tted by the functional form

A(k) = 1− b · k−1/c , (9.45)

thus we changed our Fit 2 to the form

Fit 3 : s = Q̃A(k)Ωm , (9.46)

where A(k) is given by eq. (9.45) while b and c are two parameters to be �xed through
a least square �t to exact solution for the growth rate. For the model (B) with λ =
1, 55;n = 1; Ωm,0 = 0, 24 we obtain

b = 0.057 , c = 2.78 . (9.47)

Using the above values we plot the exact solution for the growth rate and its behavior
reproduced by Fit 3 for several scales. In Fig. 9.9 one can see how the use of the function
A(k), which takes into account the dependence on the scale k, can help reducing the
accuracy making this �t a very good tool in order to reproduce the growth rate and to
compare it to observational data. Therefore, the future developments of this work are
testing this �t for the other f(R) models, trying eventually to �nd universal values for
the parameters b, c, as we did for the parameter A in Fit 2.
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Figure 9.1: (r,m) plane for four di�erent models. Upper left panel: model (B) with λ = 1.55, n =
1,Ωm,0 = 0.24; upper right panel: model (C) with λ = 1.55, n = 1,Ωm,0 = 0.28; lower left panel:
model (D) with λ = 3,Ωm,0 = 0.20; lower right panel: model (D) with λ = 1,Ωm,0 = 0.24. The
red solid curve is the trajectory e�ectively covered by the background integration, while the red
dashed curve is its analytic extension. The shaded triangle represents the allowed region for the
m(r) trajectory to connect the matter point, situated at (r,m) = (−1, 0), to the De Sitter point,
situated along the segment 0 < m ≤ 0 at r = −2 (see [69] for further details).
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Figure 9.2: In these �gures are shown the results relative to the model (B) with λ = 1.55, n =
1,Ωm,0 = 0.24 and w0 = −0.92. In the left panels is shown the accuracy of the Fit 1 in
reproducing the exact growth rate as a function of z (top) and as a function of both z and k
(bottom), while the right panels are the accuracy for Fit 2 with A = 0.7.

Figure 9.3: Same as Fig. 9.2, for the model (C) with λ = 1.55, n = 1,Ωm,0 = 0.28 and
w0 = −0.92.
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Figure 9.4: Same as Fig. 9.2, for the model (D) with λ = 3,Ωm,0 = 0.20 and w0 = −0.99.

Figure 9.5: Same as Fig. 9.2, for the model (E) with λ = 1,Ωm,0 = 0.24 and w0 = −0.95.
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Figure 9.6: Accuracy of Fit 2 up to z > 10 for model (B).

Figure 9.7: Comparison beteween the accuracy of Fit 1 (left panel) and that of Fit new for
0.001 ≤ k ≤ 1. The latter cen better reproduce the growth for small k.
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Figure 9.8: Dots represent the values assumed by the parameter A in Fit 2 when the �t to the
exact solution is made keeping k �xed, for model (B) with λ = 1.55, n = 1,Ωm,0 = 0.24 and
w0 = −0.92. The red curve is a �t to the behavior of A with respect to k.

Figure 9.9: Fit 3 for model (B) with λ = 1.55, n = 1,Ωm,0 = 0.24 and w0 = −0.92. Left panel:
black curves are the exact solution for the growth rates, while red curves are their behaviors
reproduced by Fit 3; right panel: accuracy of Fit 3.
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Chapter 10

Forecasting constraints from future

data

Many experiments in the near future will test dark energy through its e�ects on the
linear growth of matter perturbations. In this chapter we discuss the constraints that
future large-scale redshift surveys can put on three di�erent parametrizations of the linear
growth factor and how these constraints will help ruling out di�erent classes of dark energy
and modi�ed gravity models. We will also show that a scale-independent bias can be
estimated to a few percent per redshift slice by combining redshift distortions with power
spectrum amplitude, without the need of an external estimation.

10.1 Introduction

The linear growth rate of matter perturbations is one of the most interesting observable
quantities since it allows to explore the dynamical features related to the build-up of
cosmic structures beyond the background expansion. For example it can be used to
discriminate between cosmological models based on Einstein's gravity and alternative
models like f(R) modi�cations of gravity (see e.g. [72]) or multi-dimensional scenarios
like in the Dvali-Gabadaze-Porrati (DGP) [73] theory (e.g. [74] and references therein).
In addition, the growth rate is sensitive to dark energy clustering or to dark energy-dark
matter interaction. For instance, as we have seen in Chapter 9, in models with scalar-
tensor couplings or in f(R) theories the growth rate at early epochs can be larger than in
ΛCDM models and can acquire a scale dependence [75, 76, 70] (see for instance [34] for a
review on dark energy).

Simultaneous information on geometry and growth rate can be obtained by measuring
the galaxy power spectrum or the 2-point correlation function and their anisotropies
observed in redshift space. As explained in Sec. 6.6, these redshift distortions arise from
peculiar velocities that contribute, togheter with the recession velocities, to the observed
redshift. The net e�ect is to induce a radial anisotropy in galaxy clustering that can be
measured from standard two-point statistics like the power spectrum or the correlation
function [77]. The amplitude of the anisotropy is determined by the typical amplitude of
peculiar velocities which, in linear theory, is set by the growth rate of perturbations (see
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eqs (6.47), (6.48)):

s ≡ d logG

d log a
, (10.1)

where G(z) ≡ δ(z)/δ(0) is the growth function, δ(z) the matter density contrast and
the scale factor a is related to the redshift z through a = (1 + z)−1. Since however we
only observe the clustering of galaxies and not that of the matter, the quantity that is
accessible to observations is actually

β ≡ s

b
, (10.2)

where the bias b is de�ned in eq. (6.56) as the ratio of density �uctuations in galaxies and
matter. The bias is in general a function of scale and redshift, but in the following we
will consider it as a simple scale-independent function.

Once the power spectrum is computed in k-space, the analysis proposed in [47] can
be exploited to constrain not only geometry but also the growth rate (as pointed out
in [78]; see also [79, 74]), provided that the power spectrum is not marginalized over its
amplitude. In con�guration space, the �rst analysis of the two-point correlation function
explicitly aimed at discriminating models of modi�ed gravity from the standard ΛCDM
scenario has been performed by [80]. There are several experimental estimates of the
growth factor currently available that derive either from the analysis of the redshift space
distortions [81, 82, 83, 84, 80, 85, 86, 87] or have been derived indirectly from the rms mass
�uctuation σ8 inferred from Lyα absorbers at di�erent redshifts [64]. Although these data
have been already compared to model predictions (e.g. [88, 89]), current uncertainties are
too large to discriminate among alterantive cosmological scenarios.

On-going redshift surveys like VIPERS [90] or BOSS [91] will certainly provide more
stringent constraint and will be able to test those models that deviate most from the
standard cosmological model. However, only next generation large-scale redshift surveys
at z ≈ 1 and beyond like EUCLID [92] or BigBOSS [93] will provide an e�cient way to
discriminate competing dark energy models.

The growth rate s clearly depends on the cosmological model. As already mentioned, it
has been found in several works [94, 95, 96, 97, 98] that a simple yet e�ective parametriza-
tion of s captures the behavior of a large class of models. Putting

s = Ωγ
m , (10.3)

where Ωm(z) is the matter density in units of the critical density as a function of redshift,
a value γ ≈ 0.545 reproduces well the ΛCDM behavior while departures from this value
characterize di�erent models. For instance the DGP is well approximated by γ ≈ 0.68 [99,
100] while viable models of f(R) are approximated by γ ≈ 0.4 for small scales and small
redshifts [76, 70]. However, as seen in Chapter 8, this simple parametrization is not
�exible enough to accomodate all cases. A constant γ cannot for instance reproduce a
growth rate larger than s = 1 in the past (as we have in f(R) and scalar-tensor models)
allowing at the same time s < 1 at the present epoch if Ωm ≤ 1. Even in standard cases,
a better approximation requires a slowly-varying, but not strictly constant, γ.
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In addition, the measures of the growth factor obtained from redshift distortions re-
quire an estimate of the galaxy bias, which can be obtained either independently, using
higher order statistics (e.g. [82, 101]) or inversion techniques [102], or self consistently, by
assuming some reasonable form for the bias function a priori (for instance, that the bias
is independent of scale, as we will assume here).

The goal of this paper is to forecast the constraints that future observations can put on
the growth rate. In particular we use representative assumptions for the parameters of the
EUCLID survey to provide a baseline for future experiments and we focus on the following
issues. i) We assess how well one can constrain the bias function from the analysis of the
power spectrum itself and evaluate the impact that treating bias as a free parameter has
on the estimates of the growth factor. We compare the results with those obtained in the
more common hypothesis of �xing the bias factor (and its error) to some independently
determined value. ii) We estimate how errors depend on the parametrization of the growth
factor and on the number and type of degrees of freedom in the analysis. iii) We explicitly
explore the case of coupling between dark energy and dark matter and assess the ability
of measuring the coupling constant.

We do this in the context of the Fisher Matrix analysis, explained in Chapter 7. This
is a common approach that has been adopted in several recent works, some of which
exploring the case of a EUCLID-like survey as we do. In this work we do not try to
optimize the parameter of the EUCLID survey in order to improve the constraints on the
relevant parameters, as in [103]. Instead, we adopt a representative sets of parameters
that describe the survey and derive the expected errors on the interesting quantities. In
addition, unlike [104] and [105], we do not explicitly aim to study the correlation between
the parameters that describe the geometry of the system and the growth parameters,
although in our approach we also take into account the degeneracy between geometry and
growth. Although, as we mentioned, in general s might depend on scale, we limit this
work to an exploration of time-dependent functions only.

10.2 Models

The main scope of this work is to quantify the ability of future redshift surveys to
constrain the growth rate of density �uctuations. In particular we want to quantify how
this ability depends on the parametrization assumed for s and for the equation of state
of the dark energy w and on the biasing parameter. For this reason we explore di�erent
scenarios detailed below.

10.2.1 Equation of state

• w-parametrization. In order to represent the evolution of the equation of state
parameter w, we use the popular CPL parametrization [106, 107]

w(z) = w0 + w1
z

1 + z
. (10.4)
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As a special case we will also consider the case of a constant w (i.e. we do not take
into account the presence of w1).

10.2.2 Growth Rate

As anticipated, in this work we assume that the growth rate, s, is a function of time
but not of scale. Here we explore three di�erent parametrizations of s:

• s-parametrization. This is in fact a non-parametric model in which the growth rate
itself is modeled as a step-wise function s(z) = si, speci�ed in di�erent redshift bins.
The errors are derived on si in each i-th redshift bin of the survey.

• γ-parametrization. As a second parametrization we assume

s ≡ Ωm(z)γ(z) . (10.5)

where the γ(z) function is parametrized as

γ(z) = γ0 + γ1
z

1 + z
. (10.6)

As shown by [108, 109], this parametrization is more accurate than that of eq. (10.3)
for both ΛCDM and DGP models. Furthermore, this parametrization is especially
e�ective to distinguish between a wCDM model (i.e. a dark energy model with
a constant equation of state) that has a negative γ1 (−0.020 . γ1 . −0.016, for
0.20 ≤ Ωm,0 ≤ 0.35) and a DGP model that instead, has a positive γ1 (0.035 < γ1 <
0.042). In addition, as seen in Chapter 9, modi�ed gravity models show a strongly
evolving γ(z) [70, 110, 109], in contrast with conventional Dark Energy models. As
a special case we also consider γ = constant (only when w also is assumed constant),
to compare our results with those of previous works.

• η-parametrization. To explore models in which perturbations grow faster than in the
ΛCDM case, like in the case of a coupling between dark energy and dark matter [75],
we assume the parameterization given by eq. 8.54 in which γ is constant and the
growth rate varies as

s ≡ Ωm(z)γ(1 + η) , (10.7)

where η quanti�es the strength of the coupling. The example of the coupled
quintessence model worked out in Chapter 8 illustrates this point. We remind
that in this model, the numerical solution for the growth rate can be �tted by the
formula (10.7), with η = cβ2

c , where βc is the dark energy-dark matter coupling
constant and best �t values γ = 0.56 and c = 2.1. In this simple case, observational
constraints over η can be readily transformed into constraints over βc.
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10.2.3 Galaxy Biasing

In the analysis of the redshift distortions, s(z) is degenerate with the bias function
b(z). In absence of a well-established theory of galaxy formation and evolution, most
analyses assume some arbitrary functional form for b(z). However, biasing need to be
neither deterministic nor linear. Stochasticity in galaxy biasing is supposed to have little
impact on two-point statistics, at least on scales signi�cantly larger than those involved
with galaxy evolution processes [111]. On the other hand, deviations from linearity (which
imply scale dependency) might not be negligible. Current observational constraints based
on self consistent biasing estimators [82, 102] show that nonlinear e�ects are of the order
of a few to ∼ 10 %, depending on the scale and the galaxy type [101, 112]. To account
for current uncertainties in both modeling and measuring galaxy bias we consider the
following choices for the functional form of b:

• Redshift dependent bias. We assume b(z) =
√

1 + z (already used in [113]) since this
function provides a good �t to Hα line galaxies with luminosity LHα = 1042 erg−1

s−1 cm−2 modeled by [114] using the semi-analytic GALFORM models of [115].
We consider Hα line objects since they will likely constitute the bulk of galaxies
in the next generation slitless spectroscopic surveys like EUCLID. The luminosity
corresponds to the limiting �ux at z = 1.5.

• Constant bias. For the sake of comparison, we will also consider the case of con-
stant b = 1 corresponding to the rather unphysical case of a redshift-indepedent
population of unbiased mass tracers.

10.2.4 Reference Cosmological Models

As it will be better explained in the next section, to perform the Fisher Matrix analysis
we need to adopt a �ducial cosmological model. We choose the one reccomended by the
Dark Energy Task Force (DETF) [45]. In this �pseudo� ΛCDM model the growth rate
values are obtained from eq. (10.3) with γ = 0.545 and Ωm(z) is given by the standard
evolution

Ωm(z) = Ωm,0(1 + z)3 H2
0

H(z)2
, (10.8)

where

H(z)2 = H2
0

[
Ωm,0(1 + z)3 + Ωk(1 + z)2 + (1− Ωm,0 − Ωk)e

3
R
(1+w0+w1

z
1+z )

dz
1+z

]
. (10.9)

Then Ωm(z) is completely speci�ed by setting Ωm,0 = 0.25, Ωk = 0, w0 = −0.95, w1 = 0.
We wish to stress that regardless the parametrization adopted, our �ducial cosmology is
always chosen as the DETF one. In particular we choose as �ducial values γ1 = 0 and
η = 0, when employed.

One of the goals of this work is to assess whether the analysis of the power spectrum
in redshift-space can distinguish the �ducial model from alternative cosmologies, charac-
terized by their own set of parameters (apart from Ωm,0 which is set equal to 0.25 for all
of them). The alternative models that we consider in this work are:
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• DGP model. We consider the �at space case studied in [116]. When we adopt this
model then we set γ0 = 0.663, γ1 = 0.041 [109] or γ = 0.68 [99] and w = −0.8 when
γ and w are assumed constant.

• f(R) model. Here we consider the one proposed in [117] (and already studied in
Chapter 9), depending on two parameters, n and λ, which we �x to n = 2 and λ = 3.
In this case we assume γ0 = 0.43, γ1 = −0.2, values that apply quite generally in
the limit of small scales (provided they are still linear, see [70]) or γ = 0.4 and
w = −0.99.

• coupled dark energy (CDE) model. This is the coupled model proposed by [56,
57]. In this case we assume γ0 = 0.56, η = 0.056 (this value comes from putting
βc = 0.16 as coupling, which is of the order of the maximal value allowed by CMB
constraints) [59]. As already explained, this model cannot be reproduced by a
constant γ.

10.3 Fisher Matrix Analysis

In order to constrain the parameters, we use the Fisher matrix method [118] (see [119]
for a review) explained in Chapter 7, that we apply to the power spectrum analysis in
redshift space following [47]. For this purpose we need an analytic model of the power
spectrum in redshift space as a function of the parameters that we wish to constrain. The
analytic model is obtained in three steps. (i ) First of all we compute with CMBFAST [120]
the linear power spectrum of the matter in real space at z = 0, P0r(k), choosing a reference
cosmology where the parameters to be given as input (i.e. Ωm,0h

2, Ωb,0h
2, h, ns also

employed in the Fisher matrix analysis, plus the other standard parameters needed by
the CMBFAST code) are set to the values given in the III column of Tab. 10.1 while for
the normalization of the spectrum we use σ8 = 0.8.

(ii )Now we need to estimate the observed power spectrum at redshift z in any other
cosmology. In fact the cosmological model in�uences the spectrum in many ways. It
changes the shape of the spectrum at z = 0 and its amplitude at any z through the growth
factor. It also a�ects the separation between galaxies and therefore the wavenumbers k
in the spectrum. Finally, it also changes the volume in which the spectrum is calculated.
Thus, among many others, the features of the power spectrum that depend on cosmology
are the position of the overall peak (or turnaround), the overall amplitude and the slope.
Then we need to understand how to recover the power spectrum for any cosmology,
starting from the computed P0r(k), making the dependence on cosmology as explicit as
possible.

First of all: two di�erent cosmological models will measure di�erent distances. Never-
theless these two measures can be linked one to the other. In fact, suppose we observe a
particular feature extending over an angle θ, which subtends a transverse comoving scale
λ1 at z. The angular diameter distance is then d1(z) = λ1/[(1 + z)θ] where the subscript
1 refers to a given cosmology, i.e. some values of cosmological parameters (Ωm,0,ΩΛ, etc)
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and we made use of eqs (1.86), (1.87) with ∆x ≡ λ1 and a(t1) = a(t0) = 1. In a di�er-
ent cosmology (for which we use the subscript 2), the angular diameter distance will be
d2(z) = λ2/[(1 + z)θ]. Then we see that the scale has to change in order to keep the same
subtending angle at the same redshift. Therefore the ratio d/λ for each given angle is a
constant. The same is true in Fourier space, for the combination k⊥d where k⊥ ∝ λ−1 is
the transverse wavenumber corresponding to that transverse scale. Thus, given a reference
cosmology r, the transverse wavenumber for any other cosmology is given by

k⊥ = kr⊥
dr
d
. (10.10)

Now let us see what happens to the comoving scale extending along the line of sight
between two redshifts, z1 and z2. This scale is approximately given by (see eq. (1.76))
λ = dz/H(z) where dz = z2− z1. This time we need dz and therefore the product λH(z)
to remain constant when changing cosmology. It follows that for radial modes we have

k‖ = kr‖
H

Hr

. (10.11)

Since any wave vector k can be decomposed into its parallel k‖ and perpendicular k⊥
components, the above relations apply to any perturbation mode. In this way it is made
explicit its dependence on the reference cosmology kr and on the cosmological parameters
inside d and H. It is then possible to know how the wavenumber changes with cosmology.
For instance, if in the reference cosmology the power spectrum is isotropic, it will become
anisotropic for any other cosmology since k‖ and k⊥ change di�erently: this e�ect is
known as Alcock-Paczynski e�ect [121]. However we are measuring more than just the
anisotropy: all the scale-dependent information contained in the power spectrum will be
automatically employed to constrain cosmology.

The relations between the wavenumber modulus k and the direction cosine µ = k · r/k
(where r is the unit vector parallel to the line of sight) in the reference cosmology and in
the generic cosmology can be derived from eqs (10.10), (10.11) and read

k =
(
k2
‖ + k2

⊥
)1/2

= Rkr , (10.12)

µ =
k‖(

k2
‖ + k2

⊥

)1/2
=
Hµr
HrR

, (10.13)

where

R =

√
H2d2µ2

r −H2
r d

2
r(µ

2
r − 1)

Hrd
.

We know from its de�nition (6.19) that the power spectrum is proportional to the
volume V in which the perturbations are measured, so it is necessary to evaluate also how
V depends on cosmology. If the spectrum is measured in a shell of thickness dr, in a solid
angle θ2rad2, the volume is given by

V = θ2r2dr = d2(z)
dr(z)

dz
dz =

d2

H
dz , (10.14)
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where dr/dz = 1/H(z) and d = r(z)θ. It follows that the combination V H/d2 has to
remain constant and then

V = Vr
Hrd

2

Hd2
r

. (10.15)

A reference cosmology is needed in order to convert angles and redshifts into distances or
wave vectors and obtain a power spectrum from real data. Through the above relations
we can now relate the reference power spectrum to a general one for any given cosmology.
The power spectrum P (k) = V δ2

k for the true cosmology can in fact be converted into
the one for the reference cosmology by multiplying the former by Vr/V and by converting
k, µ into kr, µr.

Therefore we have at any redshift [122]

Pr(kr, z) =
H(z)d2

r(z)

Hr(z)d2(z)
P (Rkr, z) . (10.16)

We computed our initial spectrum at z = 0, but in order to evolve it through redshift it
must be multiplied by the growth factor squared: P (k, z) = G(z)2P (k, 0). Furthermore,
this spectrum represents the amount of the total matter, while the data refer only to
the observed galaxy power spectrum (unless we are using data such as those coming
from weak lensing observations), to which the former can be related by multiplying it by
the bias factor b2(k, z). Finally we must connect the observations in redshift space to the
theoretical predictions which are performed in real space. As seen in sec. 6.6, this requires
a factor (1 + βµ2)2 [39], where β is the redshift distortion parameter. Putting everything
together we �nally obtain

Pobs(z; kr, µr) = P0r(k)
d2
r(z)H(z)

d2(z)Hr(z)
G2(z)b2(z)(1 + βµ2)2 + Ps(z) . (10.17)

We also added the term Ps(z), a scale-independent o�set due to a possible incomplete
removal of shot-noise (see eq. (6.34)).

As shown in [78, 79] and recently in [103], the inclusion of growth rate information re-
duces substantially the errors on the parameters, improving the �gure of merits. (iii ) As a
third and �nal step we account for nonlinear e�ects. On scales larger than (∼ 100h−1Mpc)
where we focus our analysis, nonlinear e�ects can be represented as a displacement �eld
in Lagrangian space modeled by an elliptical Gaussian function. Therefore, following
[123, 124], to model nolinear e�ect we multiply P0r(k) by the factor

exp

{
−k2

[
(1− µ2)Σ 2

⊥
2

+
µ2Σ 2

‖

2

]}
, (10.18)

where Σ⊥ and Σ‖ represent the displacement across and along the line of sight, respec-
tively. They are related to the growth factorG and to the growth rate s through Σ⊥ = Σ0G

and Σ‖ = Σ0G(1 + s). The value of Σ0 is proportional to σ8. For our reference cosmology
where σ8 = 0.8 [17], we have Σ0 = 11h−1Mpc.

The observed power spectrum in a given redshift bin depends therefore on a number
of parameters, denoted collectively as pi, such as the Hubble constant at present h, the
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reduced matter and baryon fractions at present, Ωm,0h
2 and Ωb,0h

2, the curvature density
parameter Ωk, the spectral tilt ns plus the parameters that enter in the parametrizations
described in the previous section: w0, w1 (or simply w); γ0, γ1 (or γ) and γ, η. They are
listed in Tab. 10.1 and are referred to as �Cosmological parameters�. These parameters
will be left free to vary while we always �x σ8=0.8 since the overall amplitude is degenerate
with growth and bias. The other free parameters depend on the redshift. They are listed
in the lower part of Tab. 10.1 and include the expansion history H(z), the growth factor
G(z), the angular diameter distance d(z), the shot noise Ps(z), the growth rate s(z), the
redshift distortion parameter β(z) and the galaxy bias b(z).

Given the model power spectrum we calculate, numerically or analytically, the deriva-
tives

(
∂ lnPobs
∂pi

)
ref

, (10.19)

evaluated at the parameter values of the reference (or ��ducial�) model and we obtain for
the i-th redshift bin all the elements of the Fisher matrix through [46]

Fij =
1

8π2

∫ +1

−1

dµ

∫ kmax

kmin

dk k2

(
∂ lnPobs
∂pi

∂ lnPobs
∂pj

)
ref

Ve�(k, µ) exp[−k2Σ 2
⊥−k2µ2(Σ 2

‖−Σ 2
⊥)] ,

(10.20)
where

Ve�(k, µ) =

[
nP (k, µ)

nP (k, µ) + 1

]2

Vsurvey , (10.21)

is the e�ective volume of the survey sampled at the scale k along the direction µ. Vsurvey
and n represent the volume of the survey and the mean number density of galaxies in
each redshift bin.

As a �ducial model we assume a �pseudo� ΛCDM with w0 = −0.95; the di�erences
with the standard w0 = −1.0 ΛCDM model are rather small. For example, in the case
of the γ-parametrization, our �ducial model has γ0 = 0.545, γ1 = 0 whereas the standard
ΛCDM model has γ0 = 0.556, γ1 − 0.018 [109]. To summarize, our �ducial model is
the same model recommended by the Dark Energy Task Force [45], i.e.: ΩF

m,0 = 0.25,
ΩF
b,0 = 0.0445, ΩF

k = 0, hF = 0.7, nFs = 1, wF0 = −0.95, wF1 = 0, γF = 0.545, P F
s = 0. In

addition, we assume that γF1 = 0, ηF = 0. The �ducial values for the redshift dependent
parameters are computed in every bin through the standard Friedmann-Robertson-Walker
relations
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HF (z)

100hF
=
[
ΩF
m,0(1 + z)3 + (1− ΩF

m,0)(1 + z)3(1+wF0 )
]1/2

, (10.22)

dF (z) = (1 + z)−1

∫ z

0

dz′

HF (z′)
, (10.23)

sF (z) = ΩF
m(z)γF , (10.24)

GF (z) = exp

{∫ z

0

sF (z)
dz

1 + z

}
, (10.25)

βF (z) =
ΩF
m(z)γ

F

bF (z)
, (10.26)

bF (z) = 1 or bF (z) =
√

1 + z , (10.27)

P F
s (z) = 0 , (10.28)

where we changed the subscript ref with the superscript F referring to the �ducial model.
Now our analysis splits into two methods, according to the choice of z-dependent param-
eters in which we explicit the power spectrum:

• Internal bias method.

We assume some �ducial form for b(z) (z-dependent or constant) and express the
growth function G(z) and the redshift distortion parameter β(z) in terms of the
growth rate s (see eqs. (10.29), (10.2)). When we compute the derivatives of the
spectrum (eq. (10.19)), b(z) and s(z) are considered as independent parameters in
each redshift bin. In this way we can compute the errors on b (and s) self consistently
by marginalizing over all other parameters.

• External bias method.

In this case we also assume the same forms for b(z) as in the Internal bias case but
we do not explicit G(z) and β(z) in terms of s. The independent parameters are now
the product G(z) · b(z) (if we considered them separately, the Fisher matrix would
result singular) and β(z). In this case we compute the errors over β(z) marginalizing
over all other parameters. Since we also marginalize over (G ∗ b)2, in this case we
cannot estimate the error over b from the Fisher matrix. Thus, in order to obtain
the error over s (related to β through s = β · b) with standard error propagation, we
need to assume an �external� error for b(z). We allow the relative error ∆b/b to be
either 1% or 10%, two values that bracket the ranges of expected errors contributed
by model uncertainties and deviations from linear biasing.

10.4 Modeling the Redshift Survey

The main goals of next generation redshift surveys will be to constrain the Dark
Energy parameters and to explore models alternative to standard Einstein Gravity. For
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Cosmological parameters in Pobs(z; k, µ) Fiducial values
Reduced total matter density Ωm,0h

2 0.25 · (0.7)2

Reduced baryon density Ωb,0h
2 0.0445 · (0.7)2

Curvature density Ωk 0
Hubble constant at present h 0.7
Primordial �uctuation slope ns 1
Constant growth index γ 0.545
γ-parametrization parameters γ0, γ1 0.545, 0
η-parametrization parameters γ, η 0.545, 0

Redshift dependent parameters
Hubble parameter logH eq. (10.22)
Angular diameter distance logD eq. (10.23)
Growth rate log s eq. (10.24)
Growth factor logG eq. (10.25)
Redshift distortion parameter log β eq. (10.26)
Shot noise Ps 0
Bias log b 1,

√
1 + z

Table 10.1: Parameters.

these purposes they will need to consider very large volumes that encompass z ∼ 1, i.e.
the epoch at which dark energy started dominating the energy budget, spanning a range
of epochs large enough to provide a su�cient leverage to discriminate among competing
models at di�erent redshifts. The additional requirement is to observe some homogeneous
class of objects that are common enough to allow a dense sampling of the underlying mass
density �eld.

As anticipated in the introduction, in this paper we consider the spectroscopic survey
proposed by the EUCLID collaboration as a reference case [92]. We stress that our aim
is not to focus on this particular redshift survey and assess how the constraints on the
relevant parameters depends on the survey characteristics in order to optimize future
observational strategies. On the contrary, under the hypothesis that next-generation
space-based all-sky redshift surveys will be similar to the EUCLID spectroscopic survey,
we consider the latter as a reference case and estimate how the expected errors on the
bias, growth rate, coupling constant and other relevant quantities will change when one
consider slightly di�erent observational setups. For this purpose we take advantage of the
huge e�ort made by the EUCLID team to simulate the characteristic of the target objects
and compute the expected selection function and detection e�ciency of the survey and
adopt the same survey parameters presented in [125].

Here we consider a survey covering a large fraction of the extragalactic sky (|b| ≥ 20◦),
corresponding to ∼ 20000 deg2 capable to measure a large number of galaxy redshifts out
to z ∼ 2. A promising observational strategy is to target Hα emitters at near-infrared
wavelengths (which implies z > 0.5) since they guarantee both relatively dense sampling
(the space density of this population is expected to increase out to z ∼ 2) and an e�cient
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method to measure the redshift of the object. The limiting �ux of the survey should
be the tradeo� between the requirement of minimizing the shot noise, the contamination
by other lines (chie�y among them the [OII] line), and that of maximizing the so-called
e�ciency ε, i.e. the fraction of successfully measured redshifts. To minimize shot noise
one should obviously strive for a low �ux. Indeed, the authors in [125] found that a
limiting �ux fHα ≥ 1× 10−16 erg cm−2s−1 would be able to balance shot noise and cosmic
variance out to z = 1.5. However, simulated observations of mock Hα galaxy spectra have
shown that ε ranges between 30 % and 60% (depending on the redshift) for a limiting �ux
fHα ≥ 3 × 10−16 erg cm−2s−1 [92]. Moreover, contamination from [OII] line drops from
12% to 1% when the limiting �ux increases from 1 × 10−16 to 5 × 10−16 [125]. Taking
all this into account we adopt a conservative choice and consider three di�erent surveys
characterized by a limiting �ux of 3, 4 and 5× 10−16 ergm−2s−1.

The number density of Hα galaxies at a given redshift, n(z), can be obtained by
integrating the Hα luminosity function above the minimum luminosity set by the limiting
�ux LHα,min. = 4πDL(z)2fHα where DL(z) is the luminosity distance. We consider the
model for Hα luminosity function obtained using the latest empirical data [125]. To obtain
the e�ective number density one has to account for the success rate in measuring galaxy
redshifts from Hα lines. The e�ective number density is then obtained by multiplying n(z)
by the already mentioned e�ciency, ε. In the range of redshifts and �uxes considered in
this work the value of ε varies in the interval [30%, 50%] (see Fig. A.1.4 of [92]).

In an attempt to bracket current uncertainties in modeling galaxy surveys, we consider
the following choices for the survey parameters:

• Reference case (ref.). Limiting �ux: fHα ≥ 4× 10−16 erg cm−2s−1, which gives the
galaxy number densities listed in Col. 2 of Tab. 10.2. The e�ciency is set to ε = 0.5.

• Optimistic case (opt.). Limiting �ux: fHα ≥ 3× 10−16 erg cm−2s−1, which gives the
galaxy number densities listed in Col. 1 of Tab. 10.2. The e�ciency is set to ε = 0.5.

• Pessimistic case (pess.). Limiting �ux: fHα ≥ 5 × 10−16 erg cm−2s−1, which gives
the galaxy number densities listed in Col. 3 of Tab. 10.2. The e�ciency is set to
ε = 0.3.

The total number of observed galaxies ranges from 3 · 107 (pess.) to 9 · 107 (opt.). For all
cases we assume that the relative error on the measured redshift is σz = 0.001, indepen-
dent of the limiting �ux of the survey. So-called �catastrophic� reshift errors may occur in
slitless spectroscopy due to the wrong identi�cation of emission lines or to the association
of a true line to a wrong object with overlapping spectrum. The fraction of catastrophic
errors estimated through simulated observations of mock catalogs (10-15 %) can be signif-
icantly reduced when one compare the spectroscopic redshift to the photometric one [92].
For this reason we ignore the impact of catastrophic errors in our analysis.
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z n1(z)×10−3 n2(z)×10−3 n3(z)×10−3

0.5-0.7 4.69 3.56 2.8
0.7-0.9 3.33 2.42 1.84
0.9-1.1 2.57 1.81 1.33
1.1-1.3 2.1 1.44 1.03
1.3-1.5 1.52 0.99 0.68
1.5-1.7 0.92 0.55 0.35
1.7-1.9 0.54 0.29 0.17
1.9-2.1 0.31 0.15 0.08

Table 10.2: Expected galaxy number densities in units of (h/Mpc)3 for EUCLID survey.

10.5 Results

In this section we present the main result of the Fisher matrix analysis that we split
into sections to stress the di�erent emphasis given in the two approaches. We note that
in all tables below we always quote errors at 68% probability level and draw in the plots
the probability regions at 68% and/or 95% (denoted for shortness as 1 and 2σ values).
Moreover, in all �gures, all the parameters that are not shown have been marginalized
over or �xed to a �ducial value when so indicated.

10.5.1 s-parametrization

This analysis has two main goals: �guring out our ability to estimate the biasing
parameter and that of estimating the growth rate with no assumptions on its redshift
dependence. The parameters that enter in the Fisher matrix analysis are 45: 5 parameters
that describe the background cosmology (Ωm,0h

2,Ωb,0h
2, h, n, Ωk) and 8 z-dependent

parameters speci�ed in 8 redshift bins evenly spaced in the range z = [0.5, 2.1]. They are
Ps(z), D(z), H(z), s(z), b(z) in the internal bias case, while we have β(z) and G(z) · b(z)
in the place of s(z) and b(z) when we use the external bias method.

The subsequent analysis depends on the bias method adopted.

• In case of the internal biasmethod, the �ducial growth function G(z) in the (i+1)-th
redshift bin is evaluated from a step-wise, constant growth rate s(z) as

G(z) = exp

{∫ z

0

s(z)
dz

1 + z

}
=
∏
i

(
1 + zi

1 + zi−1

)si ( 1 + z

1 + zi

)si+1

. (10.29)

To obtain the errors on si and bi we compute the elements of the Fisher matrix
and marginalize over all other parameters. In this case one is able to obtain, self-
consistently, the error on the bias and on the growth factor at di�erent redshifts, as
detailed in Tab. 10.3 and Tab. 10.4 respectively.

Tab. 10.3 illustrates one important result: through the analysis of the redshift-space
galaxy power spectrum in a next-generation EUCLID-like survey, it will be possible
to measure galaxy biasing in ∆z = 0.2 redshift bins with less than 3.5% error,
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provided that the bias function is independent on scale. Moreover, the precision
in measuring the bias has a little dependence on the b(z) form. This fact can be
appreciated in Fig. 10.1 in which we show the expected relative error as a function
of redshift for both b(z) functions and for the survey Pessimistic case. Errors are
very similar but in the outermost redshift shells. We show the Pessimistic case since
with a more favorable survey con�guration, like the Reference case, the errors would
be almost identical. Indeed, as we have veri�ed, errors on all parameters of interest
computed in this Section are quite insensitive to the form of b(z). The largest
discrepancy between the b(z) = 1 and b(z) =

√
1 + z cases is ∼ 3% and refers to

the expected errors on the growth rate at z = 2 in the Pessimistic case. Di�erences
are typically much smaller for all other parameters or, for s(z) at lower redshifts or
with a more favorable survey setup. For all these reasons in the following we only
refer to the b(z) =

√
1 + z case.

In Fig. 10.2 we show the errors on the growth rate s as a function of redshift,
overplotted to our �ducial ΛCDM (green solid curve). The three sets of errorbars
are plotted in correspondence of the 8 redshift bins and refer (from left to right) to
the Optimistic, Reference and Pessimistic cases, respectively. The other curves show
the expected growth rate in three alternative cosmological models: �at DGP (red
dashed curve), f(R) (blue dotted curve) and CDE (purple, dot-dashed curve). This
plot clearly illustrates the ability of next generation surveys to distinguish between
alternative models, even in the less favorable choice of survey parameters.

• In case of the external bias method we marginalize over the overall amplitude (G×
b)2. Since, in this case, we cannot �nd errors self-consistently, we assume that bias
has been determined a priori with errors per redshift bin of 1% and 10%, two values
that should bracket the expected range of uncertainties. We note that the external
bias method can be considered more conservative, especially in the case of large
errors although we see no obvious reason why it should be preferred to the internal
bias method that seems to provide similar results. Indeed, the errors on s relative
to the 1% bias error listed in Table 10.5 are quite similar to those of the internal
bias case. As obvious, errors on s increase signi�cantly when the bias is known with
10% accuracy rather than 1%. However, even in this case, one keeps the ability of
distinguishing between most of the competing cosmological models at 1σ level, as
shown in Fig. 10.3.

The main results of this section can be summarized as follows.

1. The ability of measuring the biasing function is not too sensitive to the characteristic
of the survey (b(z) can be constrained to within 1.5% in the Optimistic scenario and
up to 3.5% in the Pessimistic one) provided that the bias function is independent
on scale. Moreover, the precision in measuring the bias has a very little dependence
on the b(z) form.

2. The growth rate s can be estimated to within 1-3% in each bin for the Reference
case survey with no need of estimating the bias function b(z) from some dedicated,
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Figure 10.1: Relative errors over the bias parameter as a function of redshift, computed through
the Fisher matrix analysis with the �internal bias� method for the Pessimistic case. The blue
solid line refers to the �ducial bias b = 1, while the purple dashed line refers to b =

√
1 + z. The

precision in measuring the bias has a little dependence on the b(z) form: errors are very similar
(the discrepancy is less than 1%) but in the outermost redshift shells (where however is less than
3%).

independent analysis using higher order statistics [82] or full-PDF analysis [102].

3. If the the bias were measured to within 1% in each slice, then the error over s would
be very similar (just 1-2% larger) to that obtained by the internal estimate of b(z).

4. The estimated errors on s depends little on the �ducial model of b(z).

b(z) = 1 (internal) b(z) =
√

1 + z (internal)
σb z σb

ref. opt. pess. ref. opt. pess.
0.014 0.012 0.017 0.6 0.012 0.011 0.015
0.014 0.012 0.017 0.8 0.012 0.011 0.016
0.013 0.012 0.017 1.0 0.012 0.011 0.015
0.012 0.011 0.016 1.2 0.011 0.010 0.014
0.012 0.011 0.015 1.4 0.011 0.010 0.013
0.012 0.010 0.025 1.6 0.010 0.010 0.013
0.012 0.010 0.019 1.8 0.010 0.010 0.014
0.016 0.011 0.033 2.0 0.011 0.010 0.017

Table 10.3: 1σ marginalized errors for the bias in each redshift bin obtained with the �internal
bias� method.
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b(z) = 1 (internal) b(z) =
√

1 + z (internal)
σs z sF σs

ref. opt. pess. ref. opt. pess.
0.011 0.010 0.013 0.6 0.73 0.010 0.010 0.012
0.011 0.010 0.015 0.8 0.78 0.011 0.010 0.013
0.013 0.011 0.016 1.0 0.83 0.012 0.010 0.015
0.013 0.012 0.018 1.2 0.86 0.013 0.011 0.017
0.014 0.012 0.019 1.4 0.89 0.014 0.012 0.019
0.016 0.013 0.023 1.6 0.91 0.016 0.013 0.022
0.019 0.015 0.032 1.8 0.92 0.018 0.015 0.028
0.027 0.018 0.057 2.0 0.93 0.024 0.017 0.044

Table 10.4: 1σ marginalized errors for the growth rates in each redshift bin (Fig. 10.2) obtained
with the �internal bias� method.

b(z) = 1 (external) b(z) =
√

1 + z (external)

∆b/b = 1% ∆b/b = 10% z ∆b/b = 1% ∆b/b = 10%
σs σs σs σs

ref. opt. pess. ref. opt. pess. ref. opt. pess. ref. opt. pess.
0.014 0.013 0.015 0.074 0.074 0.074 0.6 0.015 0.014 0.016 0.074 0.074 0.074
0.012 0.012 0.014 0.079 0.079 0.079 0.8 0.013 0.013 0.015 0.079 0.079 0.079
0.012 0.011 0.014 0.083 0.083 0.083 1.0 0.013 0.012 0.014 0.083 0.083 0.083
0.012 0.012 0.015 0.086 0.086 0.087 1.2 0.013 0.012 0.015 0.086 0.087 0.087
0.014 0.012 0.018 0.089 0.089 0.089 1.4 0.014 0.013 0.027 0.089 0.089 0.089
0.017 0.014 0.025 0.092 0.091 0.094 1.6 0.016 0.014 0.022 0.092 0.091 0.093
0.023 0.017 0.042 0.095 0.093 0.101 1.8 0.019 0.016 0.031 0.094 0.093 0.097
0.036 0.023 0.082 0.099 0.096 0.124 2.0 0.027 0.019 0.052 0.097 0.095 0.107

Table 10.5: 1σ marginalized errors for the growth rates in each redshift bin (Fig. 10.3) obtained
with the �external bias� method.
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10.5.2 Other parametrizations.

In this section we assess the ability of estimating s(z) when it is expressed in one of
the parametrized forms described in Section 10.2.2. More speci�cally, we focus on the
ability of determining γ0 and γ1, in the context of the γ-parametrization and γ, η in
the η-patemetrization. In both cases the Fisher matrix elements have been estimated by
expressing the growth factor as

G(z) = δ0 exp

[
(1 + η)

∫ z

0

Ωm(z′)γ(z) dz′

1 + z′

]
, (10.30)

where for the γ-parametrization we �x η = 0. In this section we adopt the internal bias
approach and assume that b(z) =

√
1 + z since, as we have checked, in the case of b(z) = 1

one obtains very similar results.

• γ-parametrization. We start by considering the case of constant γ and w in which
we set γF = 0.545 and wF = −0.95. As we will discuss in the next Section, this
simple case will allow us to cross-check our results with those in the literature. In
Fig. 10.4 we show the marginalized probability regions, at 1 and 2σ levels, for γ and
w. The regions with di�erent shades of green illustrates the Reference case for the
survey whereas the blue long-dashed and the black shorth-dashed ellipses refer to
the Optimistic and Pessimistic cases, respectively. Errors on γ and w are listed in
Tab. 10.6 together with the corresponding �gures of merit [FOM] de�ned to be the
squared inverse of the Fisher matrix determinant (see eq. 7.30) and therefore equal
to the inverse of the product of the errors in the pivot point, see [45]. Contours
are centered on the �ducial model. The blue triangle and the blue square represent
the �at DGP and the f(R) models' predictions. It is clear that, in the case of
constant γ and w, the measurement of the growth rate in a EUCLID-like survey
will allow us to discriminate among these models. These results have been obtained
by �xing the curvature to its �ducial value Ωk = 0. If instead, we consider it as a
free parameter and marginalize over, the errors on γ and w increase signi�cantly, as
shown in Table 10.7, and yet the precision is high enough to distinguish the di�erent
models. For completeness, we also computed the fully marginalized errors over the
other Cosmological parameters for the reference survey, given in Tab. 10.8.

As a second step we considered the case in which γ and w evolve with redshift
according to eqs. (10.6) and (10.4) and then we marginalize over the parameters γ1,
w1 and Ωk. The marginalized probability contours are shown in Fig. 10.5 in which we
have shown the three survey setups in three di�erent panels to avoid overcrowding.
Dashed contours refer to the z-dependent parametrizations while red, continuous
contours refer to the case of constant γ and w obtained after marginalizing over Ωk.
Allowing for time dependency expand the con�dence ellipses since the Fisher matrix
analysis now accounts for the additional uncertainties in the extra-parameters γ1 and
w1; marginalized error values are in columns σγmarg,1 , σwmarg,1 of Tab. 10.9. We note,
however, that errors are still small enough to distinguish the �ducial model from
the f(R) and DGP scenarios.
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case σγ σw FOM

b =
√

1 + z ref. 0.02 0.02 2115
opt. 0.019 0.019 2806

Ωk �xed pess. 0.03 0.03 1296

Table 10.6: Numerical values for 1σ constraints on parameters in Fig. 10.4 and �gures of merit.
Here we have �xed Ωk to its �ducial value.

We have also projected the marginalized ellipses for the parameters γ0 and γ1 and
calculated their marginalized errors and �gures of merit, which are reported in
Tab. 10.10. The corresponding uncertainties contours are shown in Fig. 10.7. Once
again we overplot the expected values in the f(R) and DGP scenarios to stress
the fact that one is expected to be able to distinguish among competing models,
irrespective on the survey's precise characteristics.

As a further test we have estimated how the errors on γ0 depend on the number
of parameters explicitly involved in the Fisher matrix analysis. Fig. 10.8 show the
expected 1σ errors on γ (Y axis) as a function of the number of parameters that are
�xed when computing the element of the Fisher matrix (the di�erent combinations
of the parameters are shown on the top of the histogram elements). We see that
error estimates can decrease up to ∼ 50 % when parameters are �xed to some
�ducial, or independently determined, value.

• η-parametrization.

We have repeated the same analysis as for the γ-parametrization, i.e. we have
modeled the growth factor according to eq. (10.7) and the dark energy equation
of state as in eq. (10.4) and marginalized over all parameters, including Ωk. The
marginalized errors are shown in columns σγmarg,2 , σwmarg,2 of Tab. 10.9 and the
signi�cance contours are shown in the three panels of Fig. 10.6 which is analogous
to Fig. 10.5. The ellipses are now larger than in the case of the γ-parametrization
and show that DGP and f(R) models could be rejected at > 1σ level only if the
redshift survey parameter will be more favorable than in the Pessimistic case.

Marginalizing over all other parameters we can compute the uncertainties in the γ
and η parameters, as listed in Tab. 10.11. The relative con�dence ellipses are shown
in the left panel of Fig. 10.9. This plot shows that next generation EUCLID-like
surveys will be able to distinguish the reference model with no coupling (central,
red dot) to the CDE model proposed by [59] (white square) only at the 1-1.5 σ level.

Finally, in order to explore the dependence on the number of parameters and to
compare our results to previous works, we also draw the con�dence ellipses for w0, w1

with three di�erent methods: a) �xing γ0, γ1 to their �ducial values and marginalizing
over all the other parameters; b) marginalizing over all parameters plus γ0, γ1 but �xing
Ωk; c) marginalizing over all parameters but w0, w1. As one can see in Fig. 10.10 and
Tab. 10.12 this progressive increase in the number of marginalized parameters re�ects in
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bias case σγ σw FOM

ref. 0.03 0.04 1179
b =
√

1 + z opt. 0.03 0.03 1568
pess. 0.04 0.05 706

Table 10.7: Numerical values for 1σ constraints on parameters γ and w (no parametrization),
relative to the red ellipses in Figs 10.5, 10.6 and �gures of merit. Here we have marginalized over
Ωk.

case σh σΩmh2 σΩbh2 σΩk σns
b =
√

1 + z ref. 0.024 0.008 0.002 0.01 0.02

Table 10.8: Numerical values for marginalized 1σ constraints on Cosmological parameters using
constant γ and w.

bias case σγmarg,1 σwmarg,1 FOM σγmarg,2 σwmarg,2 FOM

ref. 0.08 0.11 241.1 0.09 0.11 104.1
b =
√

1 + z opt. 0.07 0.09 323.5 0.07 0.09 138.2
pess. 0.11 0.14 142.5 0.11 0.15 61.6

Table 10.9: 1σ marginalized errors for parameters γ and w expressed through γ and η
parametrizations. Columns γ0,marg1, w0,marg1 refer to marginalization over γ1, w1 (Fig. 10.5)
while columns γ0,marg2, w0,marg2 refer to marginalization over η, w1 (Fig. 10.6).

bias case σγ0 σγ1 FOM

ref. 0.08 0.17 178.4
b =
√

1 + z opt. 0.07 0.15 227.5
pess. 0.11 0.22 112.4

Table 10.10: Numerical values for 1σ constraints on parameters in Fig. 10.7 and �gures of merit.

bias case σγ ση FOM

ref. 0.08 0.04 464.1
b =
√

1 + z opt. 0.07 0.03 608.2
pess. 0.11 0.05 280.3

Table 10.11: Numerical values for 1σ constraints on parameters in Fig. 10.9 and �gures of merit.
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σw0 σw1 FOM

γ0, γ1 �xed 0.04 0.24 166

Ωk �xed and marginalization over γ0, γ1 0.12 0.36 97.3

marginalization over all other parameters 0.12 0.43 41.3

Table 10.12: 1 σ marginalized errors for the parameters w0 and w1, obtained with three di�erent
methods (reference case, see Fig. 10.10 ).

a widening of the ellipses with a consequent decrease in the �gures of merit. These results
are in agreement with those of other authors (e.g. [103]).

The results obtained this Section can be summarized as follows.

1. If both γ and w are assumed to be constant and �xing Ωk = 0 then, a redshift
survey described by our Reference case will be able to constrain these parameters
to within 4% and 2%, respectively.

2. Marginalizing over Ωk degrades these constraints to 5.5% and 4% respectively.

3. If w and γ are considered redshift-dependent and parametrized according to eqs (10.6)
and (10.4) then the errors on γ0 and w0 obtained after marginalizing over γ1 and w1

increase by a factor ∼ 4, 5, i.e. we expect to measure γ0 and w0 with a precision of
13-15% and 11-14% respectively, where the interval re�ects the uncertainties in the
characteristic of the survey. With this precision we will be able to distinguish the
�ducial model from the DGP and f(R) scenarios with more than 2σ signi�cance.

4. The ability to discriminate these models with a signi�cance above 2σ is con�rmed
by the con�dence contours drawn in the γ0-γ1 plane, obtained after marginalizing
over all other parameters.

5. If we allow for a coupling between dark matter and dark energy, and we marginalize
over η rather than over γ1, then the errors on γ0 and w0 are almost identical to those
obtained in the case of the γ-parametrization. However, our ability in separating
the �ducial model from the CDE model is signi�cantly hampered: the con�dence
contours plotted in the γ-η plane show that discrimination can only be performed
wit 1-1.5σ signi�cance.

10.6 Conclusions

In this chapter we addressed the problem of determining the growth rate of den-
sity �uctuations from the estimate of the galaxy power spectrum at di�erent epochs in
future redshift survey. As a reference case we have considered the proposed EUCLID
spectroscopic survey modeled according to the latest, publicly available survey character-
istics [92, 125]. In this work we focused on a few issues that we regard as very relevant
and that were not treated in previous, analogous Fisher Matrix analysis mainly aimed at
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optimizing the survey setup and the observational strategy. These issues are: i) the ability
in measuring self-consistently galaxy bias with no external information and the impact of
treating the bias as an extra-free parameter on the error budget; ii) the impact of choosing
a particular parametrization in determining the growth rate and in distinguishing dark
energy models with very di�erent physical origins. In particular we focus on the ΛCDM,
f(R) and the DGP, models that are still degenerate with respect to present growth rate
data; iii) the estimate of how errors on the growth rate depend on the degrees of freedom
in the Fisher matrix analysis; iv) the ability of estimating a possible coupling between
dark matter and dark energy.

The main results of the analysis were already listed in the previous Section, here we
recall the most relevant ones.

1. With the �internal bias� method we were able to estimate bias with 1% accuracy
in a self consistent way using only galaxy positions in redshift-space. The precision
in measuring the bias has a very little dependence on the functional form assumed
for b(z). Measuring b with 1% accuracy will be a remarkable result also from an
astrophysical point of view, since it will provide a strong, indirect constraint on the
models of galaxy evolution.

2. We have demonstrated that measuring the amplitude and the slope of the power
spectrum in di�erent z-bin allows to constrain the growth rate with good accuracy,
with no need to assume an external error for b(z). In particular, we found that s
can be constrained at 1σ to within 3% in each of the 8 redshift bin from z = 0.5 to
2.1. This result is robust to the choice of the biasing function b(z) and to the choice
of the biasing treatment (�external� vs �internal� methods). The accuracy in the
measured s will be good enough to discriminate among the most popular competing
models of dark energy and modi�ed gravity.

3. Taking into account the possibility of a coupling between dark matter and dark en-
ergy has the e�ect of loosening the constraints on the relevant parameters, decreasing
the statistical signi�cance in distinguishing models (from & 2σ to . 1.5σ). How-
ever, this is a remarkable achievement if compared to current constraints, as it can
be seen in Fig. 10.9, where we compare the constraints expected by next generation
data to the present ones. Moreover, the reference survey will be able to constrain
the parameter η to within 0.04. Reminding that we can write η = 2.1β2

c [75], this
means that the coupling parameter βc between dark energy and dark matter can be
constrained to within 0.14, solely employing the growth rate information. This is
comparable to existing constraints from the CMB but is complementary since obvi-
ously it is obtained at much smaller redshifts. A variable coupling could therefore
be detected by comparing the redshift survey results with the CMB ones.

It is worth pointing out that, whenever we have performed statistical tests similar
to those already discussed by other authors in the context of a EUCLID-like survey, we
did �nd consistent results. Examples of this are the values of FOM and errors for w0,
w1, similar to those in [103] and the errors on constant γ [92]. However, let us notice
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that all these values strictly depend on the parametrizations adopted and on the numbers
of parameters �xed or marginalized over. In particular, we also found that all these
constraints can be improved if one uses additional information from e.g. CMB and other
observations. We produced a �rst step in this direction in Fig. (10.8), which shows how
the errors on a constant γ decrease when more and more parameters are �xed by external
priors.
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Figure 10.2: Expected constraints on the growth rates in each redshift bin (using the �internal
bias� method). The upper panel refers to b = 1, while the lower panel to b =

√
1 + z. For each

z the central error bars refer to the Reference case while those referring to the Optimistic and
Pessimistic case have been shifted by -0.015 and +0.015 respectively. The growth rates for four
di�erent models are also plotted: ΛCDM (green solid curve), �at DGP (red dashed curve), f(R)
model (blue dotted curve) and a model with coupling between dark energy and dark matter
(purple, dot-dashed curve). In this case, where the errors for the bias are obtained directly from
the Fisher matrix, it will be possible to distinguish these models with next generation data.
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Figure 10.3: Expected constraints on the growth rates in each redshift bin (using the �external
bias� method), assuming for the bias a relative error of 1% (upper panel) and 10% (lower panel).
For each z the central error bars refer to the Reference case while those referring to the Optimistic

and Pessimistic case have been shifted by -0.015 and +0.015 respectively. The growth rates for
four di�erent models are also plotted: ΛCDM (green solid curve), �at DGP (red dashed curve),
f(R) model (blue dotted curve) and a model with coupling between dark energy and dark matter
(purple, dot-dashed curve). Even in the case of large errors (10%) for the bias it will be possible
to distinguish among three of these models with next generation data.
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Figure 10.4: γ-parametrization. 1 and 2σ marginalized probability regions for constant γ and
w: the green (shaded) regions are relative to the Reference case, the blue long-dashed ellipses
to the Optimistic case, while the black shorth-dashed ellipses are the probability regions for the
Pessimistic case. The red dot marks the �ducial model; two alternative models are also indicated
for comparison.

Figure 10.5: γ-parametrization. 1 and 2σ marginalized probability regions obtained assuming
constant γ and w (red solid curves) or assuming the parametrizations (10.6) and (10.4) and
marginalizing over γ1 and w1 (black dashed curves); marginalized error values are in columns
σγmarg,1 , σwmarg,1 of Tab. 10.9. Yellow dots represent the �ducial model, the triangles a f(R)
model and the squares mark the �at DGP.
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Figure 10.6: η-parametrization. 1 and 2σ marginalized probability regions obtained assuming
constant γ and w (red solid curves) or assuming the parametrizations (10.7) and (10.4) and
marginalizing over η and w1 (black dashed curves); marginalized error values are in columns
σγmarg,2 , σwmarg,2 of Tab. 10.10. Yellow dots represent the �ducial model, the triangles stand for
a f(R) model and the squares mark the �at DGP.

Figure 10.7: γ-parametrization. 1 and 2σ marginalized probability regions for the parameters
γ0 and γ1, relative to the Reference case (shaded yellow regions), to the Optimistic case (green
long-dashed ellipses), and to the Pessimistic case (black dotted ellipses). Red dots represent the
�ducial model, blue squares mark the DGP while triangles stand for the f(R) model. Then, in
the case of γ-parametrization, one could distinguish these three models (at 95% probability).
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Figure 10.8: The bars represent the errors on the growth index γ0 obtained using the γ-
parametrization and �xing an increasing number of cosmological parameters as indicated over
each bar and marginalizing over the others. The progressive increase in the number of �xed
parameters re�ects in a decrease of the error.

Figure 10.9: η-parametrization. Left panel: 1 and 2σ marginalized probability regions for
the parameters γ and η in eq. (10.7) relative to the reference case (shaded blue regions), to
the optimistic case (yellow long-dashed ellipses) and to the pessimistic case (black short-dashed
ellipses). The red dot marks the �ducial model while the square represents the coupling model.
Right panel: present constraints on γ and η computed through a full likelihood method (here
the red dot marks the likelihood peak) [75]; long-dashed contours are obtained assuming a prior
for Ωm,0.



146 Forecasting constraints from future data

Figure 10.10: Errors on the equation of state. 1 and 2σ marginalized probability regions for
the parameters w0 and w1, relative to the reference case and constant bias b = 1. The blue
dashed ellipses are obtained �xing γ0, γ1 to their �ducial values and marginalizing over all the
other parameters; for the red shaded ellipses instead, we also marginalize over γ0, γ1 but we �x
Ωk = 0. Finally, the black dotted ellipses are obtained marginalizing over all parameters but
w0 and w1. The progressive increase in the number of parameters re�ects in a widening of the
ellipses with a consequent decrease in the �gures of merit (see Tab. 10.12).



Conclusions and future developments

In this Thesis we have studied cosmological models which take into account the exis-
tence of dark energy, considered the responsible of the accelerated expansion rate of the
Universe. In particular we studied both models of modi�ed matter, such as Quintessence,
and modi�ed gravity such as f(R) theories. The main results of this Thesis can be
summarized as follows:

• We explored the di�erences arising between the predictions of coupled Quintessence
models on the linear �uctuation growth with respect to standard cases with no
coupling, �nding that the fomer give a �uctuation growth rate faster than standard.
In order to reproduce this behavior we built up new generalized �ts, able to describe
the evolution of the growth factor also in models of coupled quintessence. For
a comparison between the model and the observations, we carried out the �rst
preliminary analysis which makes use of data coming from di�erent cosmological
observables and redshifts.

• We also built up new generalized �ts, able to describe with a good accuracy the
evolution of the growth factor in di�erent classes of f(R) models, which can be
faster than standard and also acquire a scale-dependence.

• Through the Fisher matrix method we estimated the constraints that future exper-
iments will put on the growth factor, for di�erent dark energy models and we found
out that it will be possible to discriminate those models.

Future developments along this line of research are �rst of all testing our parametriza-
tion for a large class of f(R) models, and consequently use it as a tool to compare those
models to data (present and future) in order to constrain the functional form of the f(R)
itself.
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