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Introduction

In the context of modern science, Quantum Information opens a new chapter, whose ori-
gins can be traced down to a proposal by Richard Feynman in the early eighties of the last
century [Fey82]. According to Feynman a quantum computer, i.e. a device working on the
basis of the algorithms of information theory re-formulated within the Hilbert space sce-
nario, would be a necessary tool to simulate and investigate properly any natural quantum
process. Owing to its insightful predictive character and to its intrinsic multidisciplinary
nature, Quantum Information has attracted scientists from diverse areas of theoretical and
experimental physics, e.g. atomic physics, quantum optics and laser physics, condensed
matter, etc., and from other disciplines such as computer science, mathematical complex-
ity, material sciences and engineering. In the last two decades it has undergone a huge
and rapid growing, both on the theoretical and experimental sides and, in a world moving
fast towards an increasing miniaturization approaching the quantum limits, it is expected
to revolutionize many areas of Science and Technology. Today one of the main goals
of QI is to understand the subtle aspects of quantum mechanics in order to learn how
to formulate, manipulate, process and communicate the information in the most efficient
way using realizable physical systems that operate on quantum principles. This is quite
a hard task which necessarily implies a nearly decoherence-free intersection between the
microscopic world of single quantum particles (photons, atoms etc.) and the macroscopic
preparing or measuring devices that transfer the information to the human world.
QI usually deals with quantum bits, or qubits, i.e. 2-dimensional quantum systems that
generally do not possess the definite values of 0 or 1 of classical bits, but rather are in
a so-called coherent superposition, |ψ⟩ = α|0⟩+β |1⟩ of the two orthogonal basis states
{|0⟩, |1⟩}. Such state reveals unusual properties, especially when dealing with composite
systems. Indeed the most distinctive feature of quantum physics is given by the possibility
of entangling different qubits. First recognized by Erwin Schroedinger as “the character-
istic trait of quantum mechanics”, quantum entanglement represents the key resource for
modern QI processing. It derives from subtle non-local correlations between the parts of
a quantum system and combines three basic structural elements of quantum theory, i.e.
the superposition principle, the quantum non-separability property and the exponential
scaling of the state space with the number of partitions. Quantum entanglement has no
classical analogue. This resource, associated with non-classical correlations among sep-
arated quantum systems, can be used to perform computational and cryptographic tasks
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8 INTRODUCTION

that are impossible with classical systems. An entangled state shared by two or more sep-
arated parties is a valuable resource for fundamental quantum communication protocols,
such as quantum cryptography and quantum teleportation. While quantum communica-
tion tasks can be suitably realized with ”flying” photonic qubits, there are at present a
number of technologies under investigation for their suitability to implement a quantum
computer. No single technology meets currently all of these requirements in a completely
satisfactory way. Indeed, besides photons, qubits can be in principle realized by using
different resources, for instance trapped ions, neutral atoms in interaction with optical
cavities, superconducting circuits, semiconductor quantum dots, impurity in solids and
also by the nuclear magnetic resonance.
Quantum optics represents an excellent experimental test bench for various novel con-
cepts introduced within the framework of QI theory. Indeed, quantum states of photons
can be easily and accurately manipulated using linear and non-linear (NL) optical devices
and can be efficiently measured by efficient single-photon detectors. Pairs of entangled
photonic qubits are usually generated by the spontaneous parametric down conversion
(SPDC) process in a NL crystal where, under suitable conditions a pump photon of fre-
quency ωp is annihilated and two photons of frequencies ω1 and ω2 are created, such that
ω1 +ω2 = ωp.
Nevertheless, as said the main problem of quantum resources resides on the extremely
fragile nature of quantum systems and on the decoherence process that affects the quan-
tum world. A possible approach in order to overcome this limitation is to exploit an
amplification process performed over the photonic qubit establishing a tight connection
between the microscopic and the macroscopic fields. Such an approach is at the heart of
this work, whose starting point is the possibility of generating multiphoton quantum states
through non linear optical methods. The generated fields have been obtained through the
interaction of a non linear crystal with a high power pump beam, by amplification of sin-
gle photon states or by spontaneous emission in a high gain regime. The interest for the
study of multiphoton fields generated by the optical parametric amplifier is double: on
one hand there is the investigation about the nature of quantum mechanics and about the
transition from the microscopic to the macroscopic world, i.e. from the quantum to the
classical world. The study and the realization of the entanglement between macroscopic
quantum fields, generated by high gain spontaneous parametric amplifiers, fits in with this
context. On the other hand there is the practical interest of the quantum information field
for the possibility of generating macro-qubits, resilient to decoherence and to losses, able
to be used in different quantum information and quantum communication protocols.
A further application of these states is related to the possibility of performing measure-
ments able to influence the following overall state system evolution. Concerning this
property, we have developed the idea of exploiting the high resilience to losses of the
macro-qubit states in order to beat the decoherence in quantum metrology applications.
Furthermore, in the quantum metrology context, the employ of this multiphoton states
into interferometric schemes has been studied. More specifically the amplification of
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NOON states has been investigated, theoretically and experimentally, [VSSD09]; these
states enable to increase the optical resolution in interferometric experiments, beating the
Heisenberg limit, and resulting as a resource in the context of quantum lithography.
Finally the interaction between multiphoton fields with atomic systems such as a Bose
Einstein condensate (BEC) [DSVC10], by realizing the merging between different tech-
nologies, could open a new scenario in the context of quantum information. For example
the creation of the light-matter entanglement would represent a long term perspective for
this application. The simultaneous adoption of different methods and concepts, i.e. the
optical phenomena and the BEC, would led to the development of an hybrid technology
for the quantum information. The hybrid system would consist in the use of the two sub-
systems , the optical and the atomic ones, that can be prepared, manipulated and measured
through different and independent experimental technologies.
The present work is divided into four parts: in the first part the necessary elements of
quantum information and quantum optics are presented: in chapter 1 the quantum state
representation and the more important features of quantum states are addressed, while in
chapter 2 the optical implementation of quantum states is investigated. Particular atten-
tion is devoted to the concept of quantum cloning which is at the heart of the realization
of multiphoton states of light. In part two two fundamental schemes for the macro states
generation are then introduced: the quantum injected optical parametric amplifier (chap-
ter 3), and the high gain optical parametric amplifier working in a spontaneous regime
(chapter4). In both cases the quantum properties and the measurement strategy suitable
for the observation of quantum nature are investigated. In this context the problem of find-
ing a measurement able to catch the quantum structure of macro states arises. Hence in
part three, by making use of optical devices such as an experimentally developed ultrafast
optical shutter (chapter 5), we exploit different manipulation strategy in order to obtain
the maximum amount of information about the multiphoton fields (chapter 6). Finally
different applications of macro-states are investigated in part four: the high flux regime
combined with the sub Rayleigh resolution available with an optical parametric amplifier
working in a spontaneous emission regime turns out to be a promising ingredient to per-
form efficient lithography experiments (chapter 7). In the quantum metrology context the
robustness of macro states obtained by the amplification of single qubits has then been ex-
ploited for improving the sensitivity in interferometrical experiments performed in high
losses conditions (chapter 8. The same robustness allows in principle the non resonant
interaction between the multiphoton state and a BEC system, theoretically investigated in
chapter 9.
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Figure 1: Conceptual scheme of the present work: the possibility of generating macro-
scopic states of light is at the basis of the thesis. The multiphoton states can be generated
through different amplification schemes. In both cases the measurement problem is a key
ingredient for the observation of quantum properties. The macro-states can then be stud-
ied as a paradigmatic example for the quantum to classical transition investigation. On
the other hand the interest in investigating macroscopic states of light concerns the imple-
mentation of quantum information protocols related to quantum metrology and light atom
efficient interactions.

The framework of the present thesis is reported in figure 2.8. The starting point of this
research work is the generation of multiphoton quantum states, through different optical
systems based on the laws of quantum mechanics and realized with the tools of non linear
optics.
In this part the preliminary notions about the basic concepts of quantum information and
quantum optics are then given. The problem of representation of quantum states and
their measurement, which is strictly connected with the possibility of observing quantum
phenomena in an increasing size quantum system, is firstly approached. The concept of
quantum cloning and its implementation through the optical parametric amplifier, which is
at the basis of the experiments addressed in the next chapters, is investigated in connection
with the quantum correlation measurements problem.
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Chapter 1

Elements of Quantum Information

Quantum information is a generalization of classical information, a deep difference among
the two is shown by Bell’s work (1964) [Bel64], in which is demonstrated that quantum
reality cannot be reproduced by a local hidden variables model.
Quantum Information is then a non trivial extension of classical information which presents
some limitation due to the laws of quantum mechanics: for instance two non commutative
observables cannot be measured simultaneously, the acquisition of information about the
system perturbs the system itself. This problem is strictly related with another difference
between quantum and classical information: quantum information cannot be cloned (no-
cloning theorem, demonstrated by Wooters and Zurek in 1982 [WZ82]).
The different resources and the “unusual” properties of quantum mechanics, for instance
the concept of entanglement and the parallelism with which different logical functions
can evolve, make quantum computation a precious instrument when the requirement is
to solve complex problems. Complex or not complex in the information language refer
to the time needed to solve a given problem: there is a distinction between algorithms
which can be solved in a polynomial time or in a exponential time. To an algorithm A it
can be associated a complexity function TA(N), where N is the input length calculated in
bits. TA(N) is then the maximum time required to solve the algorithm A. If, for instance,
algorithm A is the factorization algorithm, the required time for a quantum implementa-
tion (Shor algorithm) is polynomial. This problem is instead unsolvable by a classical
implementation, and the problem is said to have a “NP complexity”.
In this chapter the resources of quantum information will be addressed: starting from the
quantum bit to the concept of entanglement, we will address the problem of representa-
tion and measurement of quantum states. Finally the problem of quantum cloning will be
introduced.

1.1 Quantum states and their representation
The Quantum information carrier, the qubit, is defined into a bidimensional Hilbert space
{|0⟩ , |1⟩}, and then, differently respect to the classical bit, which can assume only 0 or 1
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16 Elements of Quantum Information

values, a general quantum state can be defined as:

|ψ⟩= α |0⟩+β |1⟩ (1.1)

with α and β complex numbers, such that |α|2 + |β |2 = 1. Thanks to the superposition
principle, a qubit can then be codified in an infinite number of states, while the classical
bit lives in a bidimensional space.
A projective measurement of the state |ψ⟩ upon the basis {|0⟩ , |1⟩} will give as a re-
sult |0⟩ with probability |α|2 and |1⟩ with probability |β |2. Classically a probabilistic
bit measurement can give 0 or 1 values with a probability p0 and p1 respectively, such
that p0 + p1 = 1. The two measurement processes are not equivalent: the first difference
resides into the perturbative character of a measurement in quantum mechanics, whose
action modifies the state. The second difference is given by the continuous parameters α
and β , which not only define the probability of a given result but define also a vector into
the tridimensional space of spins. We can indeed consider the qubit as a 1

2 spin state, the
parameters α and β determine then the polar and the azimuthal angles θ and ϕ .
The evolution of a quantum state is reversible and is given by the Schrödinger equation:

H|ψ⟩= ih̄
∂ |ψ⟩

∂ t
(1.2)

where |ψ⟩ can be a single qubit or a complex system composed by several interacting
degrees of freedom, and H is the system hamiltonian. At a fixed time t the state vector of
the system can be written as:

|ψ(t)⟩=U |ψ(0)⟩ (1.3)

where U = exp
[
− i

h̄
∫ t

0 dt ′H
]

is an unitary operator.
The qubit evolution can then be found by applying unitary operators to the state vector
|ψ⟩, corresponding to different continuous symmetries acting on the physical system.
For each continuous symmetry R acting on the system there is a corresponding unitary
operator U(R) commuting with the system hamiltonian H. Generally:

U(R) = eiθQ (1.4)

where Q is the symmetry generator.
A particular symmetry class is the one of rotations: given the angular momentum J =

(J1,J2,J3), a rotation around the axis n of an angle θ , is represented by the following
operator [Sak94]:

R(n,θ) = eiθn·J (1.5)

The rotation generator is then the angular momentum operator. The rotations group has
an irreducible bidimensional representation:
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Jk =
1
2

σk (1.6)

where:

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 1
0 −1

)
are the Pauli matrices, which with the unitary matrix form a complete basis for the 2×2
matrices. A generic 2×2 matrix can then be written as:

U(n,θ) = ei θ
2 n·σ = 1cos

θ
2
− in ·σ sin

θ
2

(1.7)

In conclusion the qubit is a 1/2 spin state and a unitary rotation acting upon it is equivalent
to a rotation of the spin itself.
A measurement on the qubit results in an irreversible change of the system’s state and
it will always give a result equal to 0 or 1, corresponding to the projection of the qubit
into the state |0⟩ or |1⟩. It is impossible to know the state of a qubit through a single
measurement, nor if, before the projection, it was in a pure state or in a superposition
of states. It turns out that the infinite amount of information contained into a qubit is
reduced, at the measurement stage, to the one carried by a classical bit.

1.1.1 Density matrix
Let us consider a large number of non interacting quantum states, in which each element
of the ensemble can be described by the state |ψ⟩. The overall ensemble is then described
by the density operator:

ρ = |ψ⟩⟨ψ| (1.8)

which in the notation of states vector (1.1), can be written as:

ρ =

(
α
β

)(
α∗ β ∗ )= ( |α |2 αβ ∗

βα∗ |β |2
)

(1.9)

The density matrix is connected with the information content, and then with the system
entropy S by the relation:

S =−kTr(ρ lnρ) (1.10)

where k is the Boltzmann constant. A pure ensemble, in which each member of the ensem-
ble is in the same state, the entropy is zero, this means that there is no lack of knowledge
about the state of the system.
The density operator evolves with the Schödinger equation according to:
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∂ρ
∂ t

=
−i
h̄
[H,ρ ] (1.11)

from which ρ(t) =Uρ(0)U†. The unitary evolution of the density operator preserves the
system’s entropy ∂ S

∂ t = 0.
The density matrix allows to describe the properties of a complex system, which is not
representable by a single qubit. If we have a two-qubit system, being A and B the two
subsystems; for instance in the state:

|ψ⟩AB = α |0⟩A |0⟩B +β |1⟩A |1⟩B (1.12)

a measurement on the state A corresponds to the application of the operator (MA ⊗1B) to
|ψ⟩AB. The expectation value of such an observable is:

AB ⟨ψ|(MA ⊗1B) |ψ⟩AB = |α |2 A ⟨0|MA |0⟩A + |β |2A ⟨1|MA |1⟩A (1.13)

which can be written as:

⟨MA⟩= tr(ρAMA) (1.14)

where ρA = |α|2 |0⟩A ⟨0|+ |β |2 |1⟩A ⟨1| reduced density matrix of the qubit A.
Since the expectation value of every observable M acting upon the subsystem can be
written as: ⟨M⟩= tr(Mρ) = ∑a pa ⟨ψa|M |ψa⟩, the density operator ρA represents the en-
semble of the all possible quantum states in which the subsystem can be with probability
pa.
Generally for a bipartite system HA⊗HB, if {|i⟩A} is an orthonormal basis for the system
A and {|µ⟩B} is an orthonormal basis for the system B, an arbitrary pure state HA ⊗HB
is written as:

|ψ⟩AB = ∑
i,µ

ai,µ |i⟩A ⊗|µ⟩B (1.15)

where ∑i,µ ai,µ = 1. The reduced density matrix of the system A, is then obtained by
tracing over B the total density matrix AB, and is:

ρA = trB(|ψ⟩AB ⟨ψ |)
= ∑

i, j,µ
ai, ja∗j,µ |i⟩A ⟨ j| (1.16)

which has the following properties:

• ρA is selfadjoint: ρA = ρA†

• ρA is positive: for each |ψ⟩A A ⟨ψ|ρ |ψ⟩ A = ∑µ
∣∣∑i ai,µ A ⟨ψ | i⟩ A

∣∣2 ≥ 0
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• tr(ρA) = 1

Generally the density matrix state can be pure or mixed, in the first case ρA = |ψ⟩A ⟨ψ|
is a projector which acts on the unidimesional space of the vector |ψ⟩A for which holds
ρ2 = ρ; in the second case the density matrix is given by the sum: ρA = ∑a pa |ψ⟩A ⟨ψ|
where 0< pa < 1 and ∑a pa = 1. In the last case ρ is given by the incoherent superposition
of states and the relative phases between the various |ψ⟩A are experimentally inaccessible.

1.1.2 Bloch sphere

Let us consider the case in which the system A is a single qubit, a graphical represen-
tation of the density matrix can then be given by the Bloch sphere. In a 2× 2 Hilbert
space a generic self-adjoint operator has 4 parameters and can be expressed in the basis
{1,σ1,σ2,σ3}. The density matrix ρ can be written as:

ρ(P) =
1
2

(
1+

−→
P ·−→σ

)
(1.17)

where det(ρ) = 1
4(1−

−→
P 2). In order to have det(ρ)≥ 0 it is necessary that

−→
P 2 ≤ 1; there

is then a correspondence 1−1 between all the possible matrices of the single qubit and the
points of the tridimensional space 0≤ |−→P | ≤ 1. This sphere is usually called Bloch sphere.

Figure 1.1: Bloch sphere: there is a 1 − 1
correspondence between the points of the
sphere and the single qubit’s density matrix.
The length of vector P defines the purity of
the state, the states on the surface are pure
while the mixed ones are internal vectors.

The states with |−→P |= 1 on the surface correspond to the states whose density matrix
has determinant equal to zero, and, since tr(ρ) = 1, the density matrix must have eigen-
values 0 and 1. This means that the operators corresponding to the points on the surface
are unidimensional projectors over pure states.
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The state of the single qubit |ψ(θ ,ϕ)⟩ can be seen as a 1
2 spin vector on the direction

identified by the angles −→r and (θ ,ϕ):

|ψ(θ ,ϕ)⟩=
(

e−iϕ/2 cos(θ
2 )

eiϕ/2 sin(θ
2 )

)
(1.18)

the density matix can then be written as:

ρ(r) =
1
2
(1+−→r ·−→σ ) (1.19)

where the length of r determines the purity of the state.
The qubit state can be implemented via a two level system, such as the photon’s polariza-
tion [DS05], the state 1.1 can then be written as:

|ψ⟩= α |H⟩+β |V ⟩ (1.20)

where |H⟩ and |V ⟩ are the horizontal and vertical polarizations and can be represented by

the column vectors
(

1
0

)
e
(

0
1

)
.

In this case the three axis of the Bloch sphere represent the linear polarizations (−→πH ,
−→πV ),

linear at 45◦ degrees 45◦ (−→π+,
−→π−), and circular polarization (−→πR,

−→πL).

1.2 Measurement and evolution of quantum states

Let us imagine, we have with equal probability some 1
2 spin particles in one of the two

non-orthogonal states |ψ1⟩ and |ψ2⟩, such that:

|⟨ψ1|ψ2⟩| ≡ cosα ̸= 0 (1.21)

These non orthogonal states cannot be identified with certainty, by performing a standard
or von Neumann measurement,the best we can do is indeed to project the particle state
in one of the two orthogonal states |ϕ1⟩ or |ϕ2⟩, chosen as near as possible to the original
states (see figure 1.2).

Figure 1.2: The identification of the
two non orthogonal states |ψ1⟩ and |ψ2⟩
through a standard quantum measure-
ment.
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The measurement result will give |ϕ1⟩ or |ϕ2⟩, which will identify |ψ1⟩ or |ψ2⟩ respec-
tively [HMG+96]. This process has an error probability:

q ≡ Prob(err) = |⟨ψ1|ϕ2⟩|2 = |⟨ψ2|ϕ1⟩|2 =
1
2
(1− sinα) (1.22)

In some cases this strategy can be the non optimal one: instead of having a binary answer
|ψ1⟩ or |ψ2⟩ with a given error probability, we can add a third option: the inconclusive
result. After the test the state of the particle will determined as |ψ1⟩ or |ψ2⟩, or unknown
. A way to implement this test is to choose in a casual way, adding an auxiliary system,
to project the particle’s state over the orthogonal space to |ψ1⟩ or to |ψ2⟩. If the state
is projected on the space orthogonal to |ψ1⟩ and the measurement’s result is positive,
we know with certainty that the initial state couldn’t be |ψ1⟩ and it was |ψ2⟩. On the
other hand if we obtain a negative result no deterministic conclusion can be reached: the
particle could be in both the states. In this case the measurement is inconclusive and the
result must be discarded. This kind of test is an example of generalized measurement, or
POVM (Positive-Operator-Valued Measurement).

1.2.1 Orthogonal measurements

Each measurable physical quantity A is represented by an hermitian operator A into the
Hilbert space H , and is known as an observable.
The principal property of an observable is that it has a continuous and complete set of
eigenvalues, furthermore two eigenvectors corresponding to different eigenvalues result
to be orthogonal. In a n-dimensional Hilbert space it is possible to write the completeness
condition as:

n

∑
i=1

Pi = 1 (1.23)

where Pi is the projection operator on the eigenvector |ϕi⟩.
A measurement of the physical quantity A can only give as a result one of the eigenvalues
of A, and the state |ψ⟩ is projected on the corresponding eigenvector. This measurement is
known as a standard or orthogonal measurement. The probability of obtaining the result
i is given by the superposition of the corresponding eigenvector:

p(i) = |⟨ϕi|ψ⟩|2 (1.24)

More in general, if the initial state is described by the density matrix ρ , the probability of
obtaining the result i becomes:

p(i) = Tr(ρPi). (1.25)
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1.2.2 Generalized measurements
A generalized measurement corresponds to couple the system under investigation to an
auxiliary one, the ancilla, and then perform a standard measurement on the overall system.
A generalized measurement can be mathematically described through a set of positive
non-commutative operators Qi, which satisfy the condition:

m

∑
i

Qi = 1 (1.26)

where m can be greater than the Hilbet space dimensionality of the system under exami-
nation. Since the operators Qi are non orthogonal projection operators, this measurement
is known as non-orthogonal measurement. In the case of the discrimination between the
states |ψ1⟩ and |ψ2⟩, even in a bidimensional space, we need a measurement which gives
three results: the |ψ1⟩, the state |ψ2⟩, or the inconclusive one. The probability of obtaining
a result i is :

p(i) = Tr(ρQi). (1.27)

with ρ density matrix of the initial state.

1.2.3 Geometric representation
The bidimensional space identified by the vectors |ψ1⟩ and |ψ2⟩ can placed into a tridi-
mensional space, whose third dimension is given by the state |ϕ0⟩, orthogonal to the initial
states (figure 1.3).

Figure 1.3: Identification of twonon-
orthogonal states |ψ1⟩ and |ψ2⟩ through
a generalized quantum measurement.

We can imagine the unitary evolution U of the system in a three dimensional space as
a three-dimensional rotation around the vector u1 = 1√

2
(|ϕ1⟩− |ϕ2⟩) of an angle θ . The

initial state |ψ1⟩ is then transformed into:
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U |ψ1⟩=
1√
2

(
sin

α
2
+ cos

α
2

cosθ
)
|ϕ1⟩+

1√
2

(
−sin

α
2
+ cos

α
2

cosθ
)
|ϕ2⟩+cos

α
2

sinθ |ϕ0⟩
(1.28)

while the state |ψ2⟩ transforms into:

U |ψ2⟩=
1√
2

(
−sin

α
2
+ cos

α
2

cosθ
)
|ϕ1⟩+

1√
2

(
sin

α
2
+ cos

α
2

cosθ
)
|ϕ2⟩+cos

α
2

sinθ |ϕ0⟩
(1.29)

Defining the roation angle θ such that cosθ = tan α
2 , we obtain:

U |ψ1⟩ =
√

2sin
α
2
|ϕ1⟩+

√
cosα |ϕ0⟩ (1.30)

U |ψ2⟩ =
√

2sin
α
2
|ϕ2⟩+

√
cosα |ϕ0⟩ (1.31)

Since now |ϕ0⟩, |ϕ1⟩ and |ϕ2⟩ are orthogonal, it is possible to separate them with an or-
thogonal measurement. The probability of obtaining an inconclusive result is then:

p(inconclusive result) = cosα . (1.32)

In such a way the state can be identified with certainty at the cost of discard part of the
data corresponding to the inconclusive results.

1.3 Entanglement
Quantum entanglement consists in a strong correlation between subsystems of the same
physical system. It is a quantum non-local connection that characterizes the quantum
mechanical state of a system containing two or more objects: the objects that make up the
system are linked in a way such that one cannot adequately describe the quantum state of
a constituent of the system without full mention of its counterparts, even if the individual
objects are spatially separated. This interconnection leads to non-classical correlations
between observable physical properties of remote systems, often referred to as nonlocal
correlations. This feature cannot be produced by acting locally upon a single subsystem
of the overall system [HKPS99].
Let us consider a bipartite system HA ⊗HB, in which {|iA⟩} and {| j⟩B} are orthonormal
basis for systems A and B respectively; a generic state of HAB can be written as:

|ψ⟩AB = ∑
i, j

ci j |i⟩A | j⟩B (1.33)

where ∑i, j |ci, j|2 = 1. If the state |ψ⟩AB is a product state, it can be written in a convenient
basis as:
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|ψ⟩AB = |ϕ⟩A|ξ ⟩B =

(
∑

i
cA

i |i⟩A

)(
∑

j
cB

j | j⟩B

)
(1.34)

in this case the state is separable. If |ψ⟩AB is not separable, then it is entangled.
An entanglement criterion for pure states is the following. For a bipartite state |ψ⟩AB ∈
HAB the Schmidt decomposition can be defined as:

|ψ⟩AB = ∑
i

√
pi|i⟩A|i

′
⟩B (1.35)

A bipartite state is entangled if the number of terms in the Schmidt decomposition, the
Schmidt number n, is greater than 1, otherwise it is separable.
Given a bipartite mixed state H =HA⊗HB, the density matrix ρ represents a separable
state if it can be written as:

ρ = ∑
i

piρA
i ⊗ρB

i (1.36)

A necessary criterion for the separability is the Peres’ one: if ρ is separable, the partial
transpose must be positive: ρT

A ≥ 0 [Per96]. This criterion becomes also sufficient in a
2⊗2 or 2⊗3 Hilbert space.
A particular example of entangled state is the one given by Werner states, whose density
matrix can be written as:

ρ =
1
2

I+
1
2
|ψ−⟩⟨ψ−| (1.37)

where |ψ−⟩= |1⟩|0⟩−|0⟩|1⟩√
2

. The density matrix and its partial transpose are then:
1−p

4 0 0 0
0 1+p

4 − p
2 0

0 − p
2

1+p
4 0

0 0 0 1−p
4

⇒


1−p

4 0 0 − p
2

0 1+p
4 0 0

0 0 1+p
4 0

− p
2 0 0 1−p

4

 (1.38)

The eigenvalues of the partial transpose are then: λ = {1+p
4 , 1+p

4 , 1+p
4 , 1+3p

4 }, and the
state is separable if p ≤ 1

3 or entangled if p > 1
3 .

Another example of entangled state is the singlet one:

|ψ−⟩AB =
1√
2
(|0⟩A|1⟩B −|1⟩A|0⟩B) (1.39)

the density matrix of the overall system is:

ρAB =


0 0 0 0
0 1

2 −1
2 0

0 −1
2

1
2 0

0 0 0 0

 (1.40)
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where the correlation between A and B is expressed by the out of diagonal terms. If one
looks only at one subsystem, it is found to be in a completely mixed, it turns out that the
reduced density matrices for the subsystems A and B are:

ρA = ρB =
I
2

(1.41)

which represent the complete mixed states of the two subsystems. As said, it is then
impossible to deduce the nature of the overall entangled state by looking at the state of
the single subsystems alone.

1.4 Bell’s inequalities
Bells theorem shows that there are limits which apply to local hidden-variable models of
quantum systems, and quantum mechanics predicts that they will be exceeded by mea-
surements performed on entangled pairs of particles. The predictions of quantum me-
chanics are consistent with the results of experiments, and turns out to be inconsistent
with local hidden variable models of quantum mechanics. This can be shown by taking
into account an entangled pair, as the one in equation (1.39), and tracing back the ar-
guments of Clauser, Horne, Shimony and Holt against the Einstein Podolsky and Rosen
paradox.
The structure of the state (1.39) implies that a measurement on the subsystem A deter-
mines univocally the state of subsystem B, even if they are non-interacting and spatially
separated. Einstein Podolsky e Rosen (EPR) [EPR35] proposed to restore the reality prin-
ciple by assuming the existance of local hidden variables (LHV) able to determine the
result of the measurement before the measurement itself. Precisely, assuming the princi-
ples of di reality( if, without disturbing the system, we can predict with certainty the value
of a given physical quantity, then there is an element of physical reality corresponding to
it), completeness (each element of physical reality must have a counter-party into the
physics theory) and locality (each action upon the system A cannot change the physical
reality of a system B spatially separeted from A), EPR concluded that quantum mechanics
was not complete. In order to confute the EPR argumentation, Bell demonstrated that
an LHV-based theory couldn’t reproduce the locality features of classical mechanics, by
introducing a mathematical inequality satisfied by the correlations of the two subsystems.
The Bell’s inequality has been demonstrated in different schemes. The one proposed by
Clauser, Horne, Shimony and Holt (CHSH) in 1969 is the following [CHSH69]. Let us
consider the singlet state (1.39), and imagine it is composed by two 1

2 spin particles mov-
ing along opposite directions towards different points, A and B respectively, in which a

measurement of the spin along two different direction, −→a ,
−→
a
′

in A, and
−→
b ,
−→
b
′

in B, is per-
formed. The possible results of the measurement in A(−→a ) and B(

−→
b ) can assume values

+1 or −1. The hypothesis of locality implies that the result of the measurement A de-
pends only on −→a and not on

−→
b , conversely for B. Both the measurements, in the LHV



26 Elements of Quantum Information

S

(+1,-1)(+1,-1)

BA

b’ba’a

Figure 1.4: Apparatus for the measurement of Bell’s inequality: S is the singlet state’s
source, the two particles are sent through the different apparata A and B which perform a
dichotomic measurement, along two different directions.

model, depend from an ensemble of hidden variables λ such that
∫

Γ ρ(λ )dλ = 1, with
ρ(λ ) density probability and Γ hidden variable’s space.

Let us introduce the correlation function E(−→a ,
−→
b ) between the observables A(−→a ,λ )

e B(
−→
b ,λ ):

E(−→a ,
−→
b ) =

⟨
A(−→a ,λ )B(

−→
b ,λ )

⟩
=
∫

Γ
A(−→a ,λ )B(

−→
b ,λ )ρ(λ )dλ (1.42)

Poichè |A(−→a ,λ )|= |B(
−→
b ,λ )|= 1 The following inequalities are satisfied:

|E(−→a ,
−→
b )−E(−→a ,

−→
b′ )| ≤

∫
Γ
|B(

−→
b ,λ )−B(

−→
b
′
,λ )|ρ(λ )dλ

|E(
−→
a
′
,
−→
b )+E(

−→
a
′
,
−→
b
′
)| ≤

∫
Γ
|B(

−→
b ,λ )+B(

−→
b
′
,λ )|ρ(λ )dλ (1.43)

by summing the two terms and remembering that the observable B can assume only +1
or −1 values, the following relation is satisfied:

|E(−→a ,
−→
b )−E(−→a ,

−→
b′ )|+ |E(

−→
a
′
,
−→
b )+E(

−→
a
′
,
−→
b
′
)| ≤ 2 (1.44)

This relation provides a different prediction respect to the quantum mechanics’ one: the
singlet state violate the inequality 1.44.
The quantum correlation function is defined as:

E(−→a ,
−→
b ) =

⟨
(σ̂1 ·−→a )⊗ (σ̂2 ·

−→
b )
⟩
|ψ−⟩

(1.45)
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where |ψ−⟩ is the singlet state, σ̂1 = (σ1x,σ1y,σ1z) and σ̂2 = (σ2x,σ2y,σ2z) Pauli opera-
tors. Taking −→a coincident with the ẑ axis and choosing −→x such that

−→
b is into the x̂ẑ plane

and makes an angle θab with the direction of −→a , the correlation function becomes:

E(−→a ,
−→
b ) =

⟨
σ̂1z ⊗ (σ̂2z cosθab + σ̂2x sinθab)

⟩
(1.46)

the calcolus of the correlation function upon the singlet state gives:

E(−→a ,
−→
b ) =−cos(θab) (1.47)

which can be rewritten into the Bell’s inequality expression:

|E(−→a ,
−→
b )−E(−→a ,

−→
b
′
)+E(

−→
a
′
,
−→
b )+E(

−→
a
′
,
−→
b
′
)| ≤ 2 (1.48)

with −→a ,
−→
a
′
,
−→
b ,

−→
b
′

in the same plane −→a ≡ k̂, versor of ẑ,
−→
a
′ ≡ î, versor of x̂,

−→
b ≡

−→
k +

−→
i√

2
,
−→
b
′ ≡

−→
k −−→

i√
2

, we find:

|E(−→a ,
−→
b )−E(−→a ,

−→
b
′
)+E(

−→
a
′
,
−→
b )+E(

−→
a
′
,
−→
b
′
)|= 2

√
2 (1.49)

Figure 1.5: Choice of the directions
along which measure the spin of the sin-
glet state in order to observe a violation
of Bell’s inequality in the CHSH formu-
lation.

In summary Bell’s theorem establishes that no deterministic and local theory can repro-
duce the results of quantum mechanics.

1.5 Quantum Cloning
The impossibility of cloning perfectly every quantum state can be traced back to the work
of Wooters and Zurek in 1982 [WZ82]. An immediate demonstration of the no-cloning
theorem can be obtained in the following way: let us imagine to possess a perfect quantum
cloning machine able to reproduce the two quantum states, encoded in the linear single
photon polarization, |H⟩ and |V ⟩:

|H⟩|C⟩ → |HH⟩|CH⟩, |V ⟩|C⟩ → |VV ⟩|CV ⟩ (1.50)
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|C⟩ and |Ci⟩ (i = H,V ) are the cloning machine’s states before and after cloning process
respectively.The circular polarization states |L⟩= |H⟩−i|V ⟩√

2
and |R⟩= |H⟩+i|V ⟩√

2
will then be

transformed into:

|L⟩|C⟩ → 1√
2
(|HH⟩|CH⟩− i|VV ⟩|CV ⟩) ̸= |LL⟩|CL⟩

|R⟩|C⟩ → 1√
2
(|HH⟩|CH⟩+ i|VV ⟩|CV ⟩) ̸= |RR⟩|CR⟩ (1.51)

The previous relations (1.51) show the impossibility of building an universal quantum
cloning machine, due to the linearity of quantum mechanics. Nevertheless, in order to
reproduce a copy characterized by the maximum overlap with a given quantum state, an
optimal cloning can be performed [BcvH96].

1.5.1 Optimal Universal Cloning

Let us consider the qubit |ψ⟩ = α |0⟩+ β |1⟩, and imagine we are able to operate upon
an auxiliary system (the cloning machine) in order to produce two clones of the same
state with the same fidelity; if this process is independent from the initial state, it is called
universal cloning.
If the cloning machine was initially in the state |C⟩, then:

|0⟩|C⟩ → |Σ0⟩, |1⟩|C⟩ → |Σ1⟩ (1.52)

with |Σ0⟩ and |Σ1⟩ final states of the system, defined in the Hilbert space HA⊗HB⊗HC,
where HA and HB refer to the space of the two clones A and B.

Figure 1.6: Universal cloning
machine: the state |ψ⟩ is re-
produced into the states |A⟩ and
|B⟩, the ancilla is represented
by the cloning machine in the
state |C⟩

Due to linearity:

|ψ⟩|C⟩ → α |Σ0⟩+β |Σ1⟩ ≡ |Σ⟩. (1.53)

The fidelity of clones, which measures the superposition between the input state and the
clone, is given by:

FA(ψ) = ⟨ψ|TrBC(Σ)|ψ⟩, FB(ψ) = ⟨ψ |TrAC(Σ)|ψ⟩ (1.54)
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It can be demonstrated that if FA(ψ) = FB(ψ) are independent of ψ [BcvH96], then
the quantum mechanics allows the existence of a cloning transformation able to obtain a
fidelity equal to:

F univ =
5
6
≃ 0.833 (1.55)

for which the following relations hold:

|0⟩|C⟩ → |Σ0⟩ ≡
√

2
3
|00⟩AB|0⟩C +

√
1
3
|ψ+⟩AB|1⟩C,

|1⟩|C⟩ → |Σ1⟩ ≡
√

2
3
|11⟩AB|1⟩C +

√
1
3
|ψ+⟩AB|0⟩C (1.56)

where |ψ+⟩ = |01⟩+|10⟩√
2

. By tracing out the degrees of freedom of C, we found that the
states A,B remain in the joint state:

ρAB = TrC(Σ) =
2
3
|00⟩⟨00|+ 1

3
|ψ+⟩⟨ψ+| (1.57)

Tracing out one of the two clones state:

ρA = TrBC(Σ) =
2
3
|ψ⟩⟨ψ|+ 1

6
I, ρB = TrAC(Σ) =

2
3
|ψ⟩⟨ψ|+ 1

6
I (1.58)

where I is the identity operator. From the relations (1.58), we note that the two clones
are in the same state , and with probability 2

3 are in the state |ψ⟩, while with probability

Figure 1.7: Cloning transformation reduces the state’s purity: the ray of the Bloch sphere
is reduced by the shrinking factor η .
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1
3 are in a complete mixed state I/2. This transformation can be represented graphically
through the Bloch sphere: the density matrix for a qubit can be written as in equation
(1.19): with |−→r |= 1 for pure states. The depolarizing effect of the cloning process can be
thought as a reduction of vector −→r for a factor η , said shrinking factor, and the density
matrix of the output state reads:

ρ
′
(r) =

1
2
(1+η−→r ·−→σ ) (1.59)

η and the Fidelity of the cloning process are linked by the relation:

F =
1+η

2
. (1.60)

1.5.2 Universal cloning N → M
Gisin and Massar [GM97] in 1997 introduced the concept of N → M cloning machine,
able to transform N identical copy of an arbitrary state |ψ⟩⊗N into M >N identical clones.
This process can be realized with a fidelity equal to:

F univ
N→M =

M(N +1)+N
M(N +2)

=
(N +1)+N/M

N +2
(1.61)

When fixed N the number of clones increases, since the information has to be shared be-
tween a greater number of partners, the Fidelity decreases. In the limit M →∞ the cloning
transformation approaches the fidelity of the perfect measurement over N identical qubits
in the state |ψ⟩⊗N [MP95]:

F univ
N→∞ =

N +1
N +2

(1.62)

Figure 1.8: Universal quantum cloning machine N → M
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1.5.3 Phase-covariant cloning
If we restrict our attention to a particular class of states, for instance the one that lay on
the equatorial plane of the Bloch states:

|ϕ⟩= |0⟩+ eiϕ |1⟩√
2

(1.63)

we obtain a value of the Fidelity greater respect to the universal cloning case.This is
indeed the case of the phase covariant cloning process. The Fidelity results to be inde-
pendent of the phase ϕ of the input qubit, and it has been demonstrated that its optimal
value in the N → M case is [Fen02]:

F pc
N→M =

1
2
+

1
M2N

N−1

∑
j=0

√(
N
j

)(
N

j+1

)√
(N +L− j)(L+ j+1) (1.64)

in the limit 1 → ∞ the cloning precess is equivalent to the state estimation, whose Fidelity
is: F pc

N=1→∞ = F est
N=1 =

3
4 .

Figure 1.9: Trend of Fidelity as a
function of the number M of clones
in the universal and the phase co-
variant schemes.

In figure 1.9 a comparison between the trends of fidelity as a function of the number of
clones, in the phase covariant and universal schemes, is reported. We see that the fi-
delity value in the phase covariant case results to be higher than the universal one for
each number of reproduced clones. This is due to the deeper knowledge about the state
to be cloned, which spans only the equatorial plane of the Block sphere and not the over-
all sphere itself, which characterize the phase covariant cloning process respect to the
complete uncertainty about the state in a universal scheme.
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Chapter 2

Theory of the Optical Parametric
Amplifier

The optical implementation of a qubit exploits the resources of both linear and non-linear
optics. In this chapter we will show that quantum cloning can be implemented by the
optical process of parametric down conversion.
We will address the concept of spontaneous-parametric-down-conversion (SPDC) in the
context of non-linear optics, and the optical parametric amplifier, in both the collinear and
non collinear configuration, will be characterized. The case of single photon amplification
through a phase covariant amplifier will be then investigated in a more detail.

2.1 Elements of non-linear optics
The presence of radiation into an optical system can produce different changes inside the
material, for instance in the index of refraction due to the electro-optic effect, or produce
a variation in the radiation itself, as it happens in the sum and difference-frequency gen-
eration phenomena [Boy]. The interaction between the radiation and the system produce
“non linear” phenomena, since the response of the material depends quadratically on the
electromagnetic field.
In the linear case, the medium polarization P(t) is a function of the applied electric field
E(t):

P(t) = χ(1)E(t) (2.1)

where χ(1) is the linear suscettivity.
In non-linear optics the response of the medium is expressed through a generalization of
equation (2.1):

P(t) = χ(1)E(t)+χ(2)E2(t)+χ(3)E3(t) (2.2)

where χ(2) and χ(3) are the optical suscettivity at the send and third order respectively.
The response of the medium can be considered instantaneous if the medium is not disper-

33
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sive and without losses, in this case the suscettivity is independent of the applied electric
field’s frequency.
Sum and Difference-Frequency Generation (SFG) and (DFG) are examples of non linear
second order processes, which happen in a non-centrosymmetric and non linear material,
when a two-frequency (ω1 and ω2 ) incident field impinges on it:

E(t) = E1 exp(−iω1t)+E2 exp(−iω2t)+ c.c. (2.3)

by considering only the second order term in equation (2.2), we obtain the expression of
the second order polarization:

P(2)(t) = ∑
n

P(ωn)exp(−iωnt) (2.4)

where the sum over n is extended to negative and positive frequencies, and the ampli-
tudes of different frequency components describe different physical phenomena: Sum-
Frequency-Generation(SFG), Difference-Frequency-Generation (DFG), Second-Harmonic-
Generation (SHG) (which is obtained when a radiation with frequency ωi is converted into
the second harmonic frequency 2ωi (with i = 1,2) radiation) , and Optical-Rectification
(OR):

P(2ω1) = χ(2)E2
1(t) (SHG)

P(2ω2) = χ(2)E2
2(t) (SHG)

P(ω1 +ω2) = 2χ(2)E1(t)E2(t) (SFG) (2.5)
P(ω1 −ω2) = 2χ(2)E1(t)E∗

2(t) (DFG)

P(0) = 2χ(2)(E1E∗
1 +E2E∗

2) (OR)

Generally no more than one frequency component is present in the radiation after the
interaction with the material, since each of the process described in equation (2.5) requires
a different phase matching condition.
The difference between the processes of SFG e DFG is highlighted in figure 2.1:
in the SFG process two input photons at frequency ω1 and ω2 are annihilated and a photon
at a greater frequency ω3 is generated.
In DFG case for the energy conservation to generate a photon at frequency ω3, a photon
at greater frequency ω1 must be destroyed and a photon at lower frequency ω2 has to be
created.The DFG process amplifies the input field at the lowest frequency, for this reason
it is also known as parametric amplifier.
According to the energy levels scheme, the DFG process can be described as follows: first
an atom absorbs a photon at frequency ω1 and jumps up to a virtual energy level which
decays emitting two photons; this process is stimulated by the presence of the input field
at frequency ω2. Nevertheless the two-photon emission can happen even in absence of
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Figure 2.1: (a) Geometry of the SFG interaction. (b) Description of energy levels for
SFG. (c) Geometry o9f the DFG interaction. (d) Description of energy levels for DFG.

the ω2 field: in this case we have parametric fluorescence, and the process cannot be ex-
plained classically but through the use of quantum optics.
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2.2 Parametric Fluorescence
The parametric fluorescence phenomenon cannot be explained by classical theory but it
is well described by quantum theory. As said, spontaneous parametric down conversion
(SPDC) or parametric fluorescence is the nonlinear process whereby two photons (called
idler and signal) are created from a parent photon (called the pump photon).
The interaction Hamiltonian between the radiation and the crystal reads:

H =
1
2

∫
V

d3r
−→
P ·−→E =

∫
V

d3r(χ(1)
i j E jEi +χ(2)

i jk E jEkEi) (2.6)

If the pump field is intense, such as the one of the laser, it can be treated classically,
while the field at frequency ω1 and ω2, called signal e idler, are quantized:

Ep = εp

∫
dkp exp(−4log2

[ωp(kp)−Ωp]
2

σ2
p

)exp[kpz−ωp(kp)t] (2.7)

Ê(−)
j = i

∫
dk j

√
h̄ jω j

2ε0n2(k j)V
â†
−→
k j

exp(−i[k jzz+
−→
k j⊥ ·−→r⊥−ω j(k j)t]) (2.8)

where j = s, i, and â†
j is the creation operator on spatial mode k j. The interaction Hamil-

tonian can then be written as:

Ĥ =C
∫

dkp

∫
dks

∫
dki exp

(−4log2 [ωp(kp)−Ωp]2

σ2p
)
expi(ωs+ωi−ωp)

∫ L

0
dz×

×expi[kp−ksz−kiz]z
∫

A
d2r⊥ exp−i[

−→
k⊥i+

−→
k⊥s]·−→r⊥ â†

−→
ks

â†
−→
ki
+h.c. (2.9)

where C is a constant and L is the length of the crystal. The area A of the crossed transverse
section can be considered infinite, since the transverse dimensions of the pump field are
order of magnitude greater than the radiation wavelength. The integral in dr becomes then
a δ (

−→
kp −

−→
ks −

−→
ki ) function, responsible for one of the two phase-matching conditions of

the fluorescence process.
Since the second order interaction are considered to be weak, the exponential operator of
the temporal evolution can be approximated with it’s first order expression:

Û(t) = exp
(
− i

h̄

∫ +∞

−∞
dtĤ(t)

)
≃ I− i

h̄

∫ +∞

−∞
dtĤ(t) (2.10)

The dt integral in equation (2.9) gives then the second energy conservation condition:
δ (ωp −ωi −ωs). The two phase matching conditions express the necessity of conserving
both the energy and the momentum between the three fields:

ωp = ωs +ωi
−→
kp =

−→
ki +

−→
ks
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If ωi = ωs =
1
2ωp we talk about degenerate emission in frequency.

If the beams involved in the interaction are collinear, the condition of momentum conser-
vation can be written as:

npωp

c
=

nsωs

c
+

niωi

c
(2.11)

this condition cannot be realized in linear crystals due to the normal dispersion phe-
nomenon, for which the index of refraction increases monotonically with the radiation
frequency. The use of anomalous dispersion regions makes the phase matching condition
difficult to realize, due to the extreme variability of the index of refraction.
A better solution consists in using birefringent crystals, in which the index of refraction
depends on the polarization of the impinging beam: an incident beam which makes an
angle θ with the optical axis of the crystal experiences an index of refraction equal to:

1
ne(θ)2 =

sin2 θ
n2

o
+

cos2 θ
n2

e

where ne and no are the index of refraction extraordinary and ordinary seen by the radia-
tion propagating towards the directions of the two optical axes.
For uniaxial crystals ne < no, it’s then more convenient to choose a pump beam at greater
frequency with extraordinary polarization, in this case signal and idler can have both the
same polarization o (type I phase matching) or orthogonal polarizations (type II phase
matching). In the first case the fluorescence is emitted over an ensemble of concentric cir-
cumferences, each of which is given by photons with the same wavelength, the correlated
photons (signal and idler) are in the diametrically opposite directions and on different cir-
cumferences if λi ̸= λs.
In type II phase matching case the photons are emitted over two non-coaxial cones, whose
vertex is in the generation point of the parametric fluorescence inside the crystal and the
aperture depends on the frequency (as shown in figure 2.2). One of the two cones contains
photons with extraordinary polarization, the other the ones with ordinary polarization. If
the emission is degenerate the two cones have the same aperture. The intersection be-
tween them depends on the inclination of the pump beam respect to the optical axis of the
crystal, and is responsible for the generation of entangled photons.
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Figure 2.2: (a) Intersection between the ordinary and extraordinary cones. (b) Orthogonal
polarizations of the generated beams. (c) Energy levels scheme in the degenerate fluo-
rescence case, (d) Collinear case: entangled photons are generated over the same spatial
mode.

2.3 The Optical Parametric Amplifier
The interaction between a radiation field at frequency ωp and a crystal with second or-
der non-linear suscettivity in order to generate field at frequencies ω1 and ω2 such that
ω1 +ω2 = ωp can be exploited by the optical parametric amplifier (OPA).
If the radiation fields have the same frequencies 2ω = ωp and are generated over the same
spatial mode the optical parametric amplifier is degenerate, if on the contrary the gener-
ated fields are different in frequency or in spatial mode, the amplifier is non degenerate
[WM94].

2.3.1 Degenerate amplifier
In a degenerate parametric amplifier the signal at frequency ω is amplified through the
excitation of a crystal characterized by χ(2) ̸= 0 with a beam at frequency 2ω . We consider
the intense beam at frequency 2ω classically, while the one at frequency ω within the
quantum theory, through the creation and destruction operator â† and â.
The interaction Hamiltonian reads:

Ĥ = h̄ω â†â− ih̄
χ
2
(â2e2iωt − â† 2e−2iωt) (2.12)

where χ is proportional to the non linear suscettivity and to the pump beam’s amplitude.
In the interaction picture we can write:

ĤI =−ih̄
χ
2
(â2 − â† 2) (2.13)
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and the Heisenberg motion equations are:

dâ
dt

=
1
ih̄

[
â, ĤI

]
= χ â†

dâ†

dt
=

1
ih̄

[
â†, ĤI

]
= χ â (2.14)

These equations have the following solution:

â(t) = â(0)cosh(χt)+ â†(0)sinh(χt) (2.15)

The expression of the destruction operator’s solution reminds to the one of squeezing
generator, the light produced by the parametric amplifier will then be squeezed. This can
be verified by introducing the quadratures operator, and looking at their time evolution:

X̂1 = â+ â†

X̂2 =
â− â†

i
(2.16)

The equation which describe the quadratures’ motion are:

dX̂1

dt
= χX̂1

dX̂2

dt
= −χX̂2 (2.17)

These equations demonstrate that the parametric amplifier is phase sensitive, since a
quadrature is amplified while the other is attenuated:

X̂1(t) = eχt X̂1(0)
X̂2(t) = e−χt X̂2(0) (2.18)

the temporal evolution operator Û = e−iĤIt/h̄ coincides with the squeezing operator, fur-
thermore the mean number of generated photons, obtained with the injection of vacuum
state is:

⟨n̂⟩= ⟨â†(t)â(t)⟩= sinh(g)2 (2.19)

with g = χt gain of the amplifier. The expression (2.19) correspond to the mean number
of photons in the squeezed vacuum.
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2.3.2 Non degenerate amplifier
In the non degenerate amplifier case, the classical field at frequency 2ω interacts with a
non linear medium and generates two fields at frequency ω1 and ω2, such that ω1 +ω2 =

2ω over two spatial modes
−→
k1 and

−→
k2 called signal and idler.

The Hamiltonian of the system reads:

Ĥ = h̄ω1â†
1â1 + h̄ω2â†

2â2 + iχ h̄(â†
1â†

2e−2iωt − â1â2e2iωt) (2.20)

where â1 and â2 are the annihilation operator for signal and idler. The motion equations
in the interacting picture are:

dâ1

dt
= χ â†

2

dâ†
2

dt
= χ â1 (2.21)

and the solutions are:

â1(t) = â1 cosh(χt)+ â†
2 sinh(χt)

â2(t) = â2 cosh(χt)+ â†
1 sinh(χt) (2.22)

the number of generated photons is given by: ⟨n̂1⟩= ⟨n̂2⟩= sinh(g)2.

2.4 Correlation functions
The classical optics interferometric experiments correspond to a measurement of the first
order correlation function of the radiation field [Lou00]. Given two fields temporally sep-
arated for a time interval τ , a first order correlation function g(1)(τ) can be defined as:

g(1)(τ) =
⟨E∗(t)E(t + τ)⟩
⟨E∗(t)E(t)⟩

(2.23)

this coherence value gives an extimation of the fringe pattern visibility V :

V = |g(1)(τ)| 0 ≤ |g1(τ)| ≤ 1 (2.24)

then completely coherent light, such as the laser one, has g(1)(τ) = 1, while for chaotic
light g(1)(τ)→ 0 as τ increases.
In terms of quantized fields g(1) refers to the estimation of the average number of photons
contained in the radiation:

g(1)(τ) ⇔ < n̂ >=< â†â > (2.25)
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a first order coherence measurement of the radiation field coincides then with the extima-
tion of the mean number of photons.
The study of second order correlation functions allows to distinguish between quantum
and classical fields, which cannot be discriminated between a measurement of first order
correlation one.
The second order correlation function is defined as:

g(2)(τ) =
⟨E∗(t)E∗(t + τ)E(t + τ)E(t)⟩
⟨E∗(t)E(t)⟩⟨E∗(t + τ)E(t + τ)⟩

(2.26)

in terms of quantized fields it reads:

g(2)(τ) =
⟨â†â†ââ⟩
⟨â†â⟩2 =

⟨n̂(n̂−1)⟩
⟨n̂⟩2 (2.27)

for number state:

g(2)(τ) =
{

(n−1)/n se n ≥ 2
0 se n = 0 (2.28)

it is worth noting that, while for classical light 1 ≤ g(2)(τ) ≤ ∞, for quantum light 0 ≤
g(2)(τ)≤ ∞.

Another interesting physical quantity is the two modes correlation function, which
can be addressed by analyzing the two different modes 1 and 2 at the exit of the amplifier:

g(2)12 (τ) =
⟨â†

1â†
2â2â1⟩

⟨â†
1â1⟩⟨â†

2â2⟩
(2.29)

generally the mixed correlation function follows the Cauchy-Schwartz inequality:[
g(2)12 (0)

]
≤ g(2)1 (0)g(2)2 (0) (2.30)

in the quantum case a more strict inequality holds [WM94], which implies a greater cor-
relation between the two spatial modes:

g(2)12 (0)≤ g(2)1 +
1

⟨â†
1â1⟩

(2.31)
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Figure 2.3: Second order correlation function for different light types: for number states
0 ≤ g(2) ≤ 1, which is a range forbidden to classical light, for increasing n number states
behavior approaches to the coherent light one.

2.5 Phase Covariant parametric amplifier
Let us consider the experimental implementation of the collinear optical parametric am-
plifier, in which the output fields are on the same spatial mode

−→
k [De 98b].

The interaction Hamiltonian reads:

Hcoll = ih̄χ(â†
H â†

V )+h.c (2.32)

where â†
i , is the creation operator on mode

−→
k with polarization i, being i = H,V . The

collinear Hamiltonian (2.32) has the property of invariance respect to U(1) group, this

allows to write it as a function of an equatorial polarization basis {−→π ,
−→
π⊥}:

â†
π =

âH + eiϕ âV√
2

â†
π⊥ =

âH − e−iϕ âV√
2

(2.33)

as:
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Figure 2.4: Degenerate optical parametric amplifier in collinear configuration: the pump
beam on mode k at frequency 2ω interacts with a non linear crystal, cut for type II phase
matching, and generates two fields at frequency ω , both on the same spatial mode k.

Hcoll =
iχ h̄
2

e−iϕ ((â†
π)

2 − e2iϕ (â†
π⊥)

2)+h.c. (2.34)

this Hamiltonian can then be written as a sum of two independent amplifiers:

Hcoll = Hπ +Hπ⊥ (2.35)

belonging to different polarization modes. This property is verified by each state belong-
ing to the equatorial polarization plane of the Bolch sphere.
The operators evolution follows the Heisenberg relation:

ih̄
dâπ
dt

= [âπ ,HI] (2.36)

the particular case in which the polarization basis is the 45◦ linear one, spanned by vectors
−→π + and −→π − we have:

â+(t) = â+(0)cosh χt +−→a †
+(0)sinh χt

â−(t) = â−(0)cosh χt + â†
−(0)sinh χt (2.37)

The temporal evolution operator can be written as:

Û = Û+Û−, con Û± = exp

g

( â†
±√
2

)2

−
(

â±√
2

)2
 (2.38)

and by using the disentangling theorem we can write:
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Û± = exp

±Γ

(
â†
±√
2

)2
exp

[
− ln(cosh(g))

(
â†
±â±+1/2

)]
exp

[
±Γ
(

â±√
2

)2
]
(2.39)

with Γ = tanhg.

2.5.1 Single-photon amplification
When a quantum state is injected into the amplifier, we deal with quantum injected optical
parametric amplifier (QIOPA).
In this work we are interested into the phase covariant cloning case, in which the injected
state is an equatorial qubit:

|ϕ⟩in =
1√
2

(
|H⟩+ eiϕ |V ⟩

)
= eiϕ/2

(
cos(

ϕ
2
)|1+,0−⟩+ isin(

ϕ
2
)|0+,1−⟩

)
(2.40)

the state will evolve according to equation (2.38) as:

|Φ⟩out = cos(
ϕ
2
)|Φ+⟩out + isin(

ϕ
2
)|Φ−⟩out (2.41)

where:

|Φ+⟩out = Û+Û−|1+,0−⟩= 1
cosh2 g ∑

i j

(
−Γ
2

) j(Γ
2

)i √(2 j)!
j!

√
(2i+1)!

i!
|(2i+1)+,(2 j)−⟩

(2.42)

|Φ−⟩out = Û+Û−|0+,1−⟩= 1
cosh2 g ∑

i j

(
−Γ
2

) j(Γ
2

)i √(2i)!
i!

√
(2 j+1)!

j!
|(2i)+,(2 j+1)−⟩

(2.43)
If the single photon belongs to an entangled coupled:

|ψ−⟩1,2 =
1√
2
(|+⟩1|−⟩2 −|−⟩1|+⟩2) (2.44)

where 1 and 2 refer to two different spatial modes, the overall state evolution is:

|Σ⟩1,2 = (U1 ⊗ I2)|ψ−⟩1,2 =
1√
2
(|Φ+⟩1|−⟩2 −|Φ−⟩1|+⟩2) (2.45)

the overall state preserve the singlet form, by keeping the correlation between spatial
modes 1 (single photon state) and 2 (multi-photon state). The two mesoscopic states |Φ+⟩
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Figure 2.5: Probability distributions of the multi-photon states |Φ+⟩ and |Φ−⟩ show a
macroscopically different trend as a function of photons polarized π+ and π−.

and |Φ−⟩ are macroscopically different, due to the different shapes of their probability
distributions as a function of the photons polarized −→π+, and −→π−: n+ and n− respectively.
A discrimination between the two states could be achieved by counting the orthogonally
polarized photons contained into each state. Experimental limitations don’t allow this
measurement procedure, but in the following chapter we will see how a probabilistic
identification can be achieved by analyzing the macro-states probability distributions.

Analyzing figure 2.5, we observe that the probability distributions have long tails as a
function of photons polarized as the injected qubit and a planckian distribution as a func-
tion of photons orthogonally polarized. This effect is due to the stimulated emission pro-
cess and this feature holds for any equatorial polarization basis, where the cloning process
is optimal. This unbalancement in the number of photons will be exploited in order to dis-
criminate between orthogonal macrostates. The number of photons in a given polarization
can indeed be estimated by measuring the intensity signal in a fixed polarization, the com-
parison between orthogonally polarized signals above a certain given threshold is able to
identify the macro-state: namely if the number of photons N+ exceed the number of pho-
tons N− over a certain threshold k the state produced by the amplifier is with an higher
probability Φ+, otherwise Φ−; when the two signals are not unbalanced nothing can be
said about the nature of the output state.
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2.5.2 Correlation functions
The study of macro-states generated by the optical parametric amplifier can be performed
by the correlation functions of the output fields. In the equatorial qubit injection case
|ϕ⟩(2.40), the mean number of generated photons with polarization −→π + and −→π −, propor-
tional to the first order correlation function, are:

G(1)
± (spin1/2) = ⟨N±⟩= ⟨ϕ |â†

±(t)â±|ϕ⟩= sinh2 g+
1
2
(2sinh2 g+1)(1± cos(ϕ)) (2.46)

Since the mean number of generated photons is n = sinh2 g, we can write:

G(1)
± = n+

1
2
(2n+1)(1± cos(ϕ)) (2.47)

The visibility of the interference fringe pattern is defined by:

V th =
N+(0)−N−(0)
N+(0)+N−(0)

(2.48)

which gives:

V th =
2n+1
4n+1

(2.49)

for increasing g, g → ∞, the visibility tends to the asymptotic value:

V th
spin1/2 →

1
2

(2.50)

In the high gain regime, we obtain that the visibility of the macro state correlation function
is reduced to from 1 (single photon case) to 1/2. The related fidelity F = V+1/2

2 is indeed
F = 3/4 and coincides with the optimal phase covariant cloning faced in section 1.5.3.

2.6 Universal Cloning amplifier
The other class of macrostates that will be investigated in the next chapter is not obtained
through an amplification process but is generated through the process of SPDC in a high
gain regime. The annihilation of a pump photon produces a couple of photons on different
spatial modes and with orthogonal polarizations. The interaction Hamiltonian reads:

Hint = ıh̄χ
(

â1
†
π â2

†
π⊥ − â1

†
π⊥ â2

†
π

)
+H.c. (2.51)

where â1
†
π and â2

†
π are the creation operators corresponding to the generation of a π-

polarized photon on spatial modes k1 and k2, as sketched in figure 2.6 and χ is the con-
stant describing the strength of the interaction.
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Figure 2.6: Optical parametric amplifier in a non-collinear configuration: the pump beam
on mode k at frequency 2ω interacts with a non linear crystal, cut for type II phase match-
ing, and generates two fields at frequency ω , on the same spatial modes k1 and k2.

The output state reads [EKD+04]:

|Ψ−⟩= 1
C2

∞

∑
n=0

Γn√n+1||ψ−
n ⟩ (2.52)

|ψ−
n ⟩= 1√

n+1

n

∑
m=0

(−1)m|(n−m)π,mπ⊥⟩1|mπ,(n−m)π⊥⟩2 (2.53)

where Γ= tanhg and C = coshg; g= χt is the non-linear gain (NL) of the process. Hence,
the output state can be written as the weighted coherent superposition of singlet spin-n

2
states |ψ−

n ⟩. In this case both the state on mode k1 and the one on mode k2 contain an
high number of photons, depending on the non linear gain of the amplifier. The correla-
tion between the two macro-states could be exploited by measuring the exact number of
photons on the orthogonal polarization components. As shown in figure 2.7 are reported

Figure 2.7: Probability distributions of the orthogonal multiphoton states on mode k1 and
k2.
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the two probability distributions as a function of orthogonally polarized photons num-
bers. Due to the correlations between the two spatial modes, an intensity measurement
of the orthogonally polarized signals would find the two components unbalanced over a
certain threshold as shown if figure 2.7: if on mode k1 (left) a projective measurement
finds the state into the green circle on the Fock space, the state on mode k2 is with higher
probability on the yellow region of the Fock space. This property can be used in order to
discriminate between orthogonal macro states, but, as we will show in chapter 4, such a
comparison measurement is not suitable in order to perform a non-locality test or to infer
the entanglement of the macro-macroscopic state.
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Generation of multiphoton quantum
states
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Figure 2.8: Conceptual scheme of the present work: in this part the colored boxes will be
addressed. Two different schemes for the generation of multiphoton states are presented,
one based on the optimal phase covariant cloning of an injected qubit and the other based
on the spontaneous emission of an optimal parametric amplifier working in high gain
regime.

In this part two different sources for the generation of multiphoton states are presented.
In chapter 3 a micro-macroscopic system obtained by the phase covariant amplification of
an entangled photon pair is studied. The quantum features of the overall state are inves-
tigated by performing a probabilistic measurement over the multiphoton state. A separa-
bility criterion is then violated requiring an auxiliary assumption. A different scheme for
the generation of multiphoton quantum state is studied in chapter 4: there an optical para-
metric amplifier working in a non collinear geometry and in a high gain regime generates
a macro-macroscopic entangled state, the possibility of observing the quantum features
of such a quantum system of increasing size is studied. Different measurement strategies
are investigated and the problem of decoherence is addressed.
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Chapter 3

Experimental entanglement in a
Micro-Macroscopic photon system

In this chapter a macro-state consisting of N ≈ 3.5× 104 photons in a quantum super-
position and entangled with a far apart single-photon state (Micro-state) is generated.
Precisely, an entangled photon pair is created by a nonlinear optical process, then one
photon of the pair is injected into an optical parametric amplifier (OPA) operating for
any input polarization state, i.e. into a phase-covariant cloning machine. Such transfor-
mation establishes a connection between the single photon and the multi particle fields.
We demonstrate the non-separability of the bipartite system by adopting a local filtering
technique within a positive operator valued measurement. We then discuss the auxiliary
assumptions, related to the performed measurement, necessary to assess such a statement.
At the end of the chapter a broader vision over the possible measurements on the micro-
macro system are given and their reliability is discussed [DSV08].

3.1 From micro to macro
In recent years quantum entanglement has been demonstrated within a two photon system
[KMW+95], within a single photon and atomic ensemble [MCB+05, dLC+06] and within
atomic ensembles [JKP01, MMO+07, CdRF+05]. The innovative character of the present
work is enlightened by the diagrams reported in Figure 3.1. While, according to the 1935
proposal the nonlocal correlations were conceived to connect the dynamics of two “micro-
scopic” objects, i.e. two spins within the well known EPR-Bohm scheme here represented
by diagram (a)[KMW+95], in the present work the entanglement is established between a
“Microscopic” and a “Macroscopic”, i.e. multi-particle quantum object, via cloning am-
plification: diagram (b). The amplification is achieved by adopting a high-gain nonlinear
(NL) parametric amplifier acting on a single-photon input carrier of quantum information,
i.e., a qubit state: |ϕ⟩. This process, referred to as “quantum injected optical parametric
amplification” (QI-OPA) [De 98a] turned out to be particularly fruitful in the recent past
to gain insight into several little explored albeit fundamental, modern aspects of quan-

53
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tum information, as quantum cloning machines [PSS+03, DS05], quantum U-NOT gate
[DBSS02], quantum no-signaling [DNSD07]. Here, by exploiting the amplification pro-
cess, we convert a single photon qubit into a Macro-qubit involving a large number of
photons. The entanglement between the microscopic qubit and the macroscopic one ob-
tained by the amplification process is achieved, under specific assumptions, performing a
local dichotomic measurement on the multiphoton field.

BOB

ALICE
EPR

source

BOB

kA

kB
QIOPA

ALICE

EPR

source

kA

kB

(a)

(b)

Figure 3.1: (a) Generation of an
entangled photon pair by Sponta-
neous Parametric Down Conversion
(SPDC) in a nonlinear (NL) crys-
tal; (b) Schematic diagram show-
ing the single photon Quantum-
Injected Optical Parametric Ampli-
fication (QI-OPA).

3.2 Generation of the micro-macro state

An entangled pair of two photons in the singlet state∣∣Ψ−⟩
A,B = 2−

1
2 (|H⟩A |V ⟩B −|V ⟩A |H⟩B) (3.1)

was produced through a Spontaneous Parametric Down-Conversion (SPDC) by the NL
crystal 1 (C1) pumped by a pulsed UV pump beam: Figure 7.13. There |H⟩ and |V ⟩
stands, respectively, for a single photon with horizontal and vertical polarization while
the labels A,B refer to particles associated respectively with the spatial modes kA and
kB. Precisely, A,B represent the two space-like separated Hilbert spaces coupled by the
entanglement. The photon belonging to kB, together with a strong ultra-violet (UV) pump
laser beam, was fed into an optical parametric amplifier consisting of a NL crystal 2 (C2)
pumped by the beam k′

P. A the exit of the amplifier a macro-qubit state is obtained from
the single photon input qubit.

3.2.1 Generation of the single photon entangled state

The interaction hamiltonian of the first non linear crystal C1:
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Ĥ = iχ h̄(â†
AH â†

BV − â†
AV â†

BH)+h.c. (3.2)

where â†
i, j con i = A,B e j = H,V , are the creation operators on spatial mode i and po-

larization j. The treatment of the OPA in the non-degenerate regime, faced in paragraph
2.3.2, has then to be extended to the case in which the the Fock state at the exit of the
amplifier is described by a tensorial product of four factors, relative to the four degrees of
freedom of the generated photons. In this four dimensional space we can recognize two
independent amplifiers acting on modes (AH,BV ) and on modes (AV,BH), respectively.
The evolution of the creation operators is then described by:(

âAH(t)
â†

BV (t)

)
=

(
C S
S C

)(
âAH(0)
â†

BV (0)

)
(3.3)

(
âAV (t)
â†

BH(t)

)
=

(
C S
S C

)(
âAV (0)
â†

BH(0)

)
(3.4)

where C = coshg1 e S = sinhg1, and g1 = χ1t is the NL gain of the first non linear crystal.
The generated state in the spontaneous emission regime is represented by the wavefunc-
tion:

|ψ⟩= 1
cosh2(g1)

∞

∑
n=0

√
n+1tanh2(g1)|ψ−

n ⟩ (3.5)

where:

|ψ−
n ⟩= 1√

n+1

n

∑
m=0

(−1)m|(n−m)H,mV ⟩A|mH,(n−m)V ⟩B (3.6)

The first order term of the wavefunction (3.5) is indeed the singlet state:

|ψ−⟩A,B =
1√
2
(|H⟩A|V ⟩B −|V ⟩A|H⟩B) (3.7)

As said, the single photon on mode kB was injected into the second crystal C2 in figure
7.13 and amplified, while the single photon on mode kA was analyzed in polarization
through a Babinet-Soleil phase-shifter (PS), i.e. a variable birefringent optical retarder,
two waveplates

{
λ
4 ,

λ
2

}
and polarizing beam splitter (PBS). It was finally detected by two

single-photon detectors DA and D∗
A (ALICE box), realizing the trigger for the performed

experiment.

3.2.2 Amplification of the entangled state

The crystal 2, cut for collinear operation, emitted over the two modes of linear polariza-
tion, respectively horizontal and vertical associated with kB. The interaction Hamiltonian
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of the parametric amplification is:

Ĥ = iχ h̄â†
H â†

V +h.c. (3.8)

and acts on the single spatial mode kB where â†
π is the one photon creation operator as-

sociated with the polarization −→π . The main feature of this Hamiltonian is its property of
“phase-covariance” for “equatorial” qubits |ϕ⟩, i.e. representing equatorial states of po-
larization, −→π ϕ = 2−1/2 (−→π H + eiϕ−→π V

)
,−→π ϕ⊥ =−→π ⊥

ϕ , in a Poincaré sphere representation
having −→π H and −→π V as the opposite ”poles” [NDSD07]. The equatorial qubits are ex-
pressed in terms of a single phase ϕ ∈ (0,2π) in the basis {|H⟩ , |V ⟩}. The overall output
state amplified by the OPA apparatus is expressed, in any polarization equatorial basis{−→π ϕ ,

−→π ϕ⊥
}

, by the Micro-Macro entangled state:

|Σ⟩A,B = 2−1/2
(∣∣∣Φϕ

⟩
B

∣∣∣1ϕ⊥
⟩

A
−
∣∣∣Φϕ⊥

⟩
B
|1ϕ⟩A

)
(3.9)

where the mutually orthogonal multi-particle “Macro-states” are:∣∣Φϕ⟩
B =

∞

∑
i, j=0

γi j

√
(1+2i)!(2 j)!

i! j!

∣∣∣(2i+1)ϕ ;(2 j)ϕ⊥
⟩

B∣∣∣Φϕ⊥
⟩

B
=

∞

∑
i, j=0

γi j

√
(1+2i)!(2 j)!

i! j!

∣∣∣(2 j)ϕ ;(2i+1)ϕ⊥
⟩

B
(3.10)

with γi j ≡ C−2(−Γ
2 )

i Γ
2

j
, C ≡ coshg, Γ ≡ tanhg, being g the NL gain[DBSS02]. There∣∣pϕ ;qϕ⊥⟩

B stands for a Fock state with p photons with polarization −→π ϕ and q pho-
tons with −→π ϕ⊥ over the mode kB. Most important, any injected single-particle qubit
(α |ϕ⟩B +β

∣∣ϕ⊥⟩
B) is transformed by the information preserving QI-OPA operation into

a corresponding Macro-qubit (α
∣∣Φϕ⟩

B + β
∣∣Φϕ⊥⟩

B). The quantum states of Eq.(2-3)
deserve some comments. The multi-particle states

∣∣Φϕ⟩
B,
∣∣Φϕ⊥⟩

B are orthonormal and
exhibit observables bearing macroscopically distinct average values. Precisely, for the
polarization mode −→π ϕ the average number of photons is m = sinh2 g for

∣∣Φϕ⊥⟩
B, and

(3m+ 1) for
∣∣Φϕ⟩

B. For the π−mode −→π ϕ⊥ these values are interchanged among the
two Macro-states. On the other hand, as shown by [De 98a], by changing the representa-
tion basis from

{−→π ϕ ,
−→π ϕ⊥

}
to
{−→π H ,

−→π V
}

, the same Macro-states,
∣∣Φϕ⟩

B or
∣∣Φϕ⊥⟩

B are
found to be quantum superpositions of two orthogonal states

∣∣ΦH⟩
B,
∣∣ΦV⟩

B which differ
by a single quantum. This unexpected and quite peculiar combination, i.e. a large dif-
ference of a measured observable when the states are expressed in one basis and a small
Hilbert-Schmidt distance of the same states when expressed in another basis turned out
to be a useful property since it rendered the coherence patterns of our system very robust
toward coupling with environment, e.g. losses. This was verified experimentally. The
decoherence the system was investigated theoretically in [DSS09a].

The multiphoton QI-OPA amplified field associated with the mode kB was sent, through
a single-mode optical fiber (SM), to a measurement apparatus consisting of a set of wave-
plates

{
λ
4 ,

λ
2

}
, a (PBS) and two photomultipliers (PM) PB and P∗

B (BOB box). The output
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Figure 3.2: Optical configuration of the QI-OPA apparatus. The excitation source was a
Ti:Sa Coherent MIRA mode-locked laser amplified by a Ti:Sa regenerative REGA device
operating with repetition rate 250kHz. The output beam, frequency-doubled by second-
harmonic generation, provided the OPA excitation field beam at the UV wavelength (wl)
λP = 397.5nm with power: 750÷800mW . A type II BBO crystal (crystal 1: C1) generates
pair of photons with wavelength λ = 2λp = 795nm. C1 generates an average photon
number per mode equal to about 0.35, while the overall detection efficiency of the trigger
mode was estimated to be ≃ 10%. The NL BBO crystal 2: C2, realizing the optical
parametric amplification (OPA), is cut for collinear type II phase matching. Both crystals
C1 and C2 are 1.5 mm thick. The fields are coupled to single mode (SM) fibers.

signals of the PM’s were analyzed by an “orthogonality filter” (OF) that will be described
in the following sections.

3.3 Demonstration of entanglement
We now investigate the bipartite entanglement between the modes kA and kB. We define
the 1

2−spin Pauli operators for a single photon polarization state {σ̂i} where the label i
= (1,2,3) refer to the polarization bases: i = 1 ⇐⇒

{−→π H ,
−→π V
}

, i = 2 ⇐⇒
{−→π R,

−→π L
}

,
i = 3 ⇐⇒

{−→π +,
−→π −

}
. Here −→π R = 2−1/2(−→π H − i−→π V ),

−→π L =−→π ⊥
R are the right and left

handed circular polarizations and −→π ± = 2−1/2(−→π H ±−→π V ). It is found:

σ̂i = |ψi⟩⟨ψi|−
∣∣∣ψ⊥

i

⟩⟨
ψ⊥

i

∣∣∣ (3.11)
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where
{
|ψi⟩ ,

∣∣ψ⊥
i
⟩}

are the two orthogonal qubits corresponding to the −→π i basis, e.g.,{
|ψ1⟩ ,

∣∣ψ⊥
1
⟩}

= {|H⟩ , |V ⟩}, etc. By the QI-OPA unitary process the single-photon σ̂i
operators evolve into the “Macro-spin” operators:

Σ̂i = Û σ̂iÛ† =
∣∣Φψ i⟩⟨Φψ i∣∣− ∣∣∣Φψ i⊥

⟩⟨
Φψ i⊥

∣∣∣ (3.12)

Since the operators
{

Σ̂i
}

are built from the unitary evolution of eigenstates of σ̂i , they sat-
isfy the same commutation rules of the single particle 1

2−spin:
[
Σ̂i, Σ̂ j

]
= εi jk2iΣ̂k where

εi jk is the Levi-Civita tensor density. The generic state (α
∣∣ΦH⟩

B +β
∣∣ΦV⟩

B) is a Macro-
qubit in the Hilbert space B spanned by

{∣∣ΦH⟩
B ,
∣∣ΦV⟩

B

}
, as said. To test whether the

overall output state is entangled, one should measure the correlation between the single
photon spin operator σ̂A

i on the mode kA and the Macro-spin operator Σ̂B
i on the mode kB.

We then adopt the criteria for two qubit bipartite systems based on the spin-correlation.
We define the “visibility” Vi =

∣∣∣⟨Σ̂B
i ⊗ σ̂A

i

⟩∣∣∣ a parameter which quantifies the correlation

between the systems A and B. Precisely Vi =
∣∣P(ψi,Φψ i)+P(ψ⊥

i ,Φψi⊥)−P(ψi,Φψ i⊥)−P(ψ⊥
i ,Φψi)

∣∣
where P(ψi,Φψ i) is the probability to detect the systems A and B in the states |ψi⟩A and∣∣Φψi⟩

B, respectively. The value Vi = 1 corresponds to perfect anti-correlation, while
Vi = 0 expresses the absence of any correlation. The following upper bound criterion
for a separable state holds [EKD+04]:

S = (V1 +V2 +V3)≤ 1 (3.13)

In order to measure the expectation value of Σ̂B
i a discrimination among the pair of states{∣∣Φψi⟩

B ,
∣∣Φψ i⊥⟩

B

}
for the three different polarization bases 1,2,3 is required. Consider

the Macro-states |Φ+⟩B, |Φ−⟩B expressed by Equations 3.10, for ϕ = 0 and ϕ = π . In
principle, a perfect discrimination can be achieved by identifying whether the number of
photons over the kB mode with polarization −→π + is even or odd, i.e. by measuring an
appropriate “parity operator”. This requires the detection of the macroscopic field by a
perfect photon-number resolving detectors operating with an overall quantum efficiency
η ≈ 1, a device out of reach of the present technology.

It is nevertheless possible to exploit, by a somewhat sophisticated electronic device
dubbed “Orthogonality Filter” (OF), the macroscopic difference existing between the
functional characteristics of the probability distributions of the photon numbers associ-
ated with the quantum states {|Φ±⟩B}.

3.3.1 Orthogonality filter and probabilistic measurement
The measurement scheme works as follows: Figures 3.2 and 3.3. The multiphoton field is
detected by two PM’s (PB,P∗

B) which provide the electronic signals (I+, I−) correspond-
ing to the field intensity on the mode kB associated with the π−components (−→π +,

−→π −),
respectively. By (OF) the difference signals ±(I+− I−) are compared with a threshold
ξ k > 0 . When the condition (I+− I−)> ξ k is satisfied, the detection of the state |Φ+⟩B
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Figure 3.3: Theoretical probability
distributions P±(m,n) of the num-
ber of photons associated with the
Macro-states |Φ±⟩ (g = 1.6). Prob-
abilistic identification of the wave-
functions |Φ±⟩ by OF-filtering the
P±(m,n) distributions over the pho-
ton number two-dimensional space
{m,n}. The white section in the
cartesian plane (m,n) corresponds
to the “inconclusive events” of our
POVM OF-filtering technique.

is inferred and a standard transistor-transistor-logic (TTL) electronic square-pulse LB is
realized at one of the two output ports of (OF). This corresponds to the measurement of
the eigenvalue +1 of the operator Σ̂B

3 . Likewise, when the condition (I−− I+) > ξ k is
satisfied, the detection of the state |Φ−⟩B is inferred, a TTL pulse is realized at other out-
put port of (OF) and the eigenvalue of Σ̂B

3 is −1. The PM output signals are discarded for
−ξ k < (I+− I−) < ξ k, i.e. in condition of low state discrimination. By increasing the
value of the threshold k an increasingly better discrimination is obtained together with a
decrease of detection efficiency. This “local distillation” procedure is conceptually justi-
fied by the following theorem: since entanglement cannot be created or enhanced by any
“local” manipulation of the quantum state, the non-separability condition demonstrated
for a “distilled” quantum system, e.g., after application of the OF-filtering procedure, fully
applies to the same system in absence of distillation [EKD+04]. This statement can be ap-
plied to the measurement of Iϕ and Iϕ⊥ for any pair of quantum states

{∣∣Φϕ⟩
B ,
∣∣Φϕ⊥⟩

B

}
.

This method is but an application of a Positive Operator Value Measurement procedure
(POVM) [Per95] by which a large discrimination between the two states {|Φ±⟩B} is at-
tained at the cost of a reduced probability of a successful detection.

The measurement scheme just described has been physically implemented by the OF
shown in Figure 3.4, an electronic device by which the pulse heights of the couple of
input signals (I+, I−) provided by two PM’s (PB,P∗

B) are summed with opposite signs by a
balanced linear amplifier (LA) with ”gain” G (chip National LM733). Each of the two sig-
nals ±[G(I+− I−)]≡±[Gξ (m−n)] realized at the two symmetric outputs of (LA) feeds
an independent electronic discriminator (AD9696) set at a common threshold level Gξ k
. Owing to previous considerations the two discriminators never fire simultaneously and
each of them provides, when activated, a standard transistor-transistor-logic (TTL) square
signal at its output port. As said, when the condition (I+− I−) > ξ k , i.e. (m− n) > k
is satisfied, a TTL signal LB is generated and then the realization of the state |Φ+⟩B is
inferred. Likewise, when (I−− I+)> ξ k a TTL signal L∗

B is generated and the realization
of the state |Φ−⟩B is inferred. The events that are discarded for: −ξ k < (I+− I−) < ξ k
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Figure 3.4: Electronic Orthogonality filter OF. The electronic signals (I+, I−) emitted
simultaneously by two photomultipliers PB and P∗

B feed a linear difference amplifier (Na-
tional LM733). Each of the two output ports of the amplifier is con- nected to an elec-
tronic discriminator set at a threshold level ξ k > 0 equal for the two discriminators. Each
discriminator emits a TTL electronic square signal if the threshold is overcome by the
difference signals. Precisely, a TTL signal is realized at the port LB when: (I+− I−)> ξ k
or at the port L∗

B when (I−− I+) > ξ k. The two discriminators never fire si- multane-
ously. The rejected events, for −ξ k < (I+− I−) < ξ k, correspond to the “inconclusive
outcomes” of our generalized POVM measurement technique.

correspond to the ”inconclusive” outcomes of any POVM [Per95].
The OF device has been tested and characterized in condition of spontaneous emission,
i.e., in absence of any quantum injection into C2. In this condition the output TTL sig-
nals LB(L∗

B) were measured by sending only the signal I+(I−) as input and by varying
the threshold k. In this regime the number of photons generated per mode should ex-
hibit a thermal probability distribution: P(n) = ⟨n⟩n

(1+⟨n⟩)n+1 with ⟨n⟩ average photon num-
ber per mode. Hence the probability to detect a signal above the threshold k is: Π(k) =

∑∞
n=k P(n) =

(
⟨n⟩

(1+⟨n⟩)

)k
. We have experimentally checked the dependence on the thresh-

old k of the number of counts, which is expressed by R×Π(k), being R the repetition rate
of the source. The experimental data shown by Figure 3.5 represent a fair support of the
expected exponential behavior.

3.3.2 Experimental results
The present experiment was carried out with a gain value g = 4.4 leading to a number
of output photons N ≈ 3× 104, after OF filtering. In this case the probability of pho-
ton transmission through the OF filter was: p ≈ 10−4. In order to verify the correlations
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existing between the single photon generated by the NL crystal 1 and the corresponding
amplified Macro-state, we have recorded the coincidences between the single photon de-
tector signal DA (or D∗

A) and the TTL signal LB (or L∗
B) both detected in the same π−basis{−→π +,

−→π −
}

: Figure 3.2. This measurement has been repeated by adopting the common
basis

{−→π R,
−→πL
}

. Since the filtering technique can hardly be applied to the
{−→π H ,

−→π V
}

ba-
sis, because of the lack of a broader SU(2) covariance of the amplifier, the small quantity
V1 > 0 could not be precisely measured. The phase ϕ between the π−components −→π H
and −→π V on mode kA was determined by the Babinet-Soleil variable phase shifter (PS).
Figure 3.3.2 shows the fringe patterns obtained by recording the rate of coincidences of
the signals detected by the Alice’s and Bob’s measurement apparata, for different values
of ϕ . These patterns were obtained by adopting the common analysis basis

{−→π R,
−→π L
}

with a filtering probability ≃ 10−4, corresponding to a threshold ξ k about 8 times higher
than the average photomultiplier signals I. In this case the average visibility has been
found V2 = (54.0± 0.7)%. A similar oscillation pattern has been obtained in the basis{−→π +,

−→π −
}

leading to: V3 = (55±1)%. Since always is V1 > 0, our experimental result
S = V2 +V3 = (109.0±1.2)% implies the violation of the separability criteria of Equation
(3.13) and then demonstrates the non-separability of our Micro-Macro system belonging
to the space-like separated Hilbert spaces A and B.
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Figure 3.6: Coincidence counts versus the phase ϕ of the injected qubit for a common
basis {π⃗+, π⃗−}: square data [LB,DA], circle data [L∗

B,DA]. The visibility of the fringe
pattern is: V ≃ 55%. Triangle data: noise due to accidental coincidences.

3.4 Entanglement tests

As said, the exploited entanglement criterion is an extension of the spin-based single-
particle criterion of Ref.[EKD+04]. Due to the presence of losses, such an extension
requires a supplementary assumption which will be clarified in the remaining part of this
chapter. We now focus on the conditions that are necessary in order to justify the exploited
entanglement criterion. And finally, we perform a theoretical analysis of the micro-macro
system based on the parametric amplification of an entangled pair. Several approaches
for the verification of the entanglement property of the system will be addressed, showing
that a substantial fraction ε of the original entanglement survives even in high losses
condition.

3.4.1 Auxiliary assumptions

For a two-photon state |ψ⟩, defined on two different modes a and b, the entanglement
is demonstrated by applying the criterion in equation (3.18). More specifically, for any
separable state, the following inequality holds [Dur04, EKD+04]:

ψ⟨σ̂ (a)
1 ⊗ σ̂ (b)

1 ⟩ψ +ψ ⟨σ̂ (a)
2 ⊗ σ̂ (b)

2 ⟩ψ +ψ ⟨σ̂ (a)
3 ⊗ σ̂ (b)

3 ⟩ψ ≤ 1 (3.14)
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where σ̂1,2,3 are the Pauli operators and ψ⟨·⟩ψ stands for the average on the state |ψ⟩.
The same criterion can be extended to a micro-macro scenario by measuring the pseudo
spin operators Σ̂i on the macro state, obtained through an unitary transformation upon the
micro-micro state. Here, the Σ̂i operators are the time evolution of the Pauli operators
according to Σ̂i = Û σ̂iÛ†, where Û is the time evolution operator of the amplifier. The
following inequality holds:

Ψ⟨σ̂
(a)
1 ⊗ Σ̂(b)

1 ⟩Ψ +Ψ ⟨σ̂ (a)
2 ⊗ Σ̂(b)

2 ⟩Ψ +Ψ ⟨σ̂ (a)
3 ⊗ Σ̂(b)

3 ⟩Ψ ≤ 1 (3.15)

In the non ideal case the multiphoton state obtained after the amplification undergoes
a decoherence process due to losses. In this case the macro-qubit |Φϕ ⟩ transforms into
a density matrix ρ̂ϕ

η that does not live anymore in a bidimensional Hilbert space and
the macro-qubit formalism does not hold anymore. The measurement of the pseudo-
Pauli operators requires the perfect discrimination of the number of photons present in
the detected state. In order to implement such measurement, which is out of reach for the
current technology, we have adopted the OF based strategy. The action of the O-Filter
is described by the following measurement observables, applied on the multiphoton state
after losses:

Π̂i(k) =
∞

∑
n=k

n−k

∑
m=0

|nπ⃗i,mπ⃗⊥
i ⟩⟨nπ⃗i,mπ⃗⊥

i |− (3.16)

∞

∑
m=k

m−k

∑
n=0

|nπ⃗i,mπ⃗⊥
i ⟩⟨nπ⃗i,mπ⃗⊥

i | (3.17)

This probabilistic detection method allows us to infer the generation before losses of a
|Φϕ ⟩ or a |Φϕ⊥⟩ state by exploiting the information encoded in the unbalancement of the
number of photons present in the state.

An analogous measurement scheme is shown in Fig.3.7-(b). The field is analyzed in
polarization, and each branch is equally divided among a set of single-photon detectors
(APD). Coincidences between the output TTL signals are recorded for each analyzed
polarization, and the (+1) or the (-1) outcomes are assigned depending on which of the
two analyzed sets of APDs record the N-fold coincidence. If no N-fold coincidences are
recorded, the (0) inconclusive outcome is assigned to the event. This scheme performs the
measurement of the N-th order correlation function of the field, where N is the number
of detectors. We note that the O-Filter based and the multi-detector based schemes select
analogous regions of the Fock space.

On one side, we note that the measurement of the correlations for the entanglement
test of Eq.(3.15), where the

{
Σ̂
}

operators must be replaced with the
{

Π̂
}

operators of
the O-Filter, are performed in the same basis for Alice and Bob’s sites. However, care
should be taken when a filtering of the detected state is performed. As shown in Fig.3.7-
(a), the O-filter detection scheme corresponds to a Fock space filtering of the output state.
The measurements performed on different polarization basis select different regions of
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Figure 3.7: (a) O-Filter based detection apparatus. Right figure: selected Fock space
region with the O-Filter measurement scheme. (b) Multi-detector measurement strategies.
The field is detected by four APD: the coincidences between all four detectors trigger
the successful events. Right figure: selected Fock space region with the multi-detector
measurement scheme.

the Fock space, corresponding to different portions of the density matrix. This is shown
in Fig.3.8, where the photon number distribution of a |n+,0−⟩ Fock state with n = 10
in the {+,−} and {R,L} polarization bases is reported. When measured with the O-
Filter device, such state generates a conclusive (+1) outcome in the {+,−} basis, since
a strong unbalancement is present between the two polarizations. On the contrary, in
the {R,L} basis with high probability the state generates an inconclusive outcome (0)
and is filtered out. This feature has no counterpart in the micro-qubit formalism: indeed
the Hilbert space of the original photon is only two-dimensional, so there is no risk of
different subspaces being detected for different choices of measurement basis.

Without any specific assumption on the investigated system the inequality (3.15), in
which the {Σ̂i} operators must be replaced by the {Π̂i} ones, does not represent anymore
a bound for entangled states. It is satisfied by separable states of the form [SBB+09]:

ρ̂sep =
1

2π

∫ 2π

0
dϕÛ(ϕ)|1πi,0π⊥

i ⟩a|0πi,Nπ⊥
i ⟩b ×

a⟨1πi,0π⊥
i |b⟨0πi,Nπ⊥

i |Û(ϕ)† (3.18)

where Û(ϕ) is a rotation of the whole system polarization around the z axis by an angle
ϕ .
Despite the previous considerations, the OF based strategy allows us to discriminate be-
tween different macro states in a probabilistic way. When k → ∞ the mean value of the{

Π̂i
}

operators, calculated over the real state Tr(ρ̂ϕ
η Π̂i), tends to the mean value of the
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Figure 3.8: (a) Photon number distribution for a Fock state |n+,0−⟩ with n = 10 in the
{+,−} polarization basis. (b) Photon number distribution for a Fock state |n+,0−⟩ with
n = 10 in the {R,L} polarization basis.

Figure 3.9: (a) Micro-macro system
source in a black box configura-
tion: no assumption is made about
the source. (b) Micro-macro ampli-
fied system: the macroscopic state
is generated by a coherent amplifi-
cation process of a single photon,
belonging to an EPR pair.

Pauli pseudo-spin operators, calculated over the ideal macro-qubit one ⟨Φϕ |Σ̂i|Φϕ ⟩. In-
deed, for asymptotically high values of the threshold k →∞, the measurement of the

{
Π̂i
}

operators on the ρ̂ϕ
η allows perfect, although probabilistic in the POVM spirit, discrimi-

nation of orthogonal states, as the pseudo-spin operator does for the macro-qubits |Φϕ ⟩.
In other words, if the |Φ+⟩ state is generated, the measurement with the

{
Σ̂i
}

operator
in the {+,−} basis never leads to the (-1) outcome. At the same time, the measurement
of the ρ̂+

η state after losses with the
{

Π̂i
}

operator in the {+,−} basis does not generate
the (-1) outcome if k is large enough. According to these considerations, we can infer
the presence of the macro-qubit before losses and after the amplifier and then apply the
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original micro-macro inequality of Eq.(3.15). This inference implies an assumption on
the micro-macro system: the macro state has to be generated by an amplification process
upon a micro-micro entangled pair. Therefore the entanglement test performed by the
OF scheme allows us to infer the presence of entanglement at least before losses, and
to demonstrate the capability of amplifying an entangled pair in a coherent way. Indeed
the class of separable state in Eq.(3.18) cannot be generated by a coherent amplification
process.

3.4.2 Different micro-macro entanglement tests
For a set {Π̂i} of dichotomic operators, without making any supplementary assumptions,
the bound to be violated in order to demonstrate the entanglement of the overall micro-
macro system must be modified with respect to Eq.(2), and a necessary condition for
separable states is given by the following inequality:

S = ⟨σ̂ (a)
1 ⊗ Π̂(b)

1 ⟩Ψ + ⟨σ̂ (a)
2 ⊗ Π̂(b)

2 ⟩Ψ + ⟨σ̂ (a)
3 ⊗ Π̂(b)

3 ⟩Ψ ≤
√

3 (3.19)

Such criterion presents the interesting feature of not requiring any knowledge of the
Hilbert space where the analyzed states live. Indeed, in the derivation of the bound (3.19)
the only necessary assumption concerns the measurement operators, which can have only
two possible outcomes (±1) . We then applied the obtained criterion to evaluate the quan-
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Figure 3.10: Numerical evaluation of the witness S for the specific choice of the Pauli
pseudo-spin operators {Σ̂i} as measurement operators {Π̂i} as a function of the detection
losses η , calculated for several values of the gain of the amplifier. The upper horizontal
solid line corresponds to the bound for separables states of the general criterion (3.19),
while the lower solid line corresponds to the bound for separable states (3.15) where a
standard assumption on the Hilbert space is necessary.

tity S for the micro-macro state generated through the process of optical parametric am-
plification, for the specific choice of the Pauli pseudo-spin operators as the measurement



Entanglement tests 67

operators. More specifically, we evaluated the value of S as a function of the transmission
efficiency η of the multiphoton mode kB for several values of the gain g [Fig.3.10]. The
value of S is then compared to the bound for separable states Ssep

gen =
√

3. We observe
that this entanglement measure is fragile under losses, since the value of S falls below
the bound for separable states when the number of lost photons is R⟨n⟩ ∼ 1. Such result
is expected since the Pauli operators allows to distinguish the |Φϕ ⟩ states exploiting the
well-defined parity in the number of photon generated by the amplifier depending on the
polarization of the input states. In presence of losses, such well-defined parity is quickly
cancelled, thus not allowing to discriminate among the macro-states with this kind of
measurement. This feature of the macro-states generated through the process of optical
parametric amplification is reported and discussed in Refs.[DSS09b, SVD+09].

Entanglement detection in a highly attenuated scenario

An alternative approach can be used to demonstrate the presence of entanglement in our
micro-macro configuration. The macroscopic field is deliberately attenuated up to the
single-photon regime and detected through an APD. Such method has been exploited
to demonstrate the entanglement up to 12 photons in a spontaneous parametric down
conversion source [EKD+04], or in a micro-macro configuration [DS05]. The average
number of photons impinging onto the detector in this regime is then η⟨n⟩ ≤ 1, where η
is the overall quantum efficiency of the channel. The density matrix of the macroscopic
state can be reduced to a 1-photon subspace, and the joint micro-macro system is defined
in a 2×2 Hilbert space. The complete state ρ̂AB

η reads:

ρ̂AB
η =

1
1+3t2


t2 0 0 0
0 1

2

(
1+ t2) −1

2

(
1+ t2) 0

0 −1
2

(
1+ t2) 1

2

(
1+ t2) 0

0 0 0 t2

 (3.20)

where:
t = (1−η)Γ (3.21)

In Fig.3.11-(a) we show the density matrix of the joint micro-macro system for a value
of g = 3 and η = 10−4, showing the presence of the off-diagonal terms even in the high
losses regime. This system is entangled for any value of the nonlinear gain g. This
property can be tested by application of the Peres criterion or by direct calculation of the
concurrence, which reads:

C(ρ̂AB
η ) =

(
1− t2

1+3t2

)
> 0 (3.22)

This quantity is always positive, as plotted in Fig.3.11-(b), showing the presence of en-
tanglement for any value of the gain. Since no entanglement can be generated with lo-
cal operations (such as a lossy process) [EKD+04], the presence of entanglement in the
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Figure 3.11: (a) Density matrix of joint micro-macro system in the high losses regime,
for a gain value of g = 3 and a value of the losses parameter η = 10−4. (b) Plot of the
concurrence C(ρ̂AB

η ) as a function of the parameter t = Γ(1−η). We note the persistence
of the off-diagonal terms and entanglement for all values of g and η .

highly attenuated regime is due to the presence of entanglement in the micro-macro sys-
tem before losses.
This criterion allows us to discuss an important feature of the micro-macro system based
on optical parametric amplification. The entanglement of this system is generated in the
micro-micro source, where the singlet polarization state |ψ−⟩ is produced. The action of
the amplifier is to broadcast the properties of the injected seed to the multiparticle state.
In particular, the entanglement present in the original photon pair after the amplification
process is transferred and shared among the generated particles (see Fig.3.12). If a certain
amount of losses is introduced in the macro-state and ε is the percentage of photons that
survive such decoherence process, the amount of entanglement detected after losses is
reduced of a factor ε but drops to 0 only if all particles are lost.

To conclude these considerations, we extend the analysis of the micro-macro amplified
system in this highly attenuated scenario to the case where the injection of the single-
photon in the optical parametric amplifier occurs with a non unitary efficiency p < 1. In
this case, the density matrix of the joint micro-macro system reads:

ρ̂AB
η ,p =N −1

η ,p


2p
C2

1
1− t2


t2 0 0 0
0 1

2

(
1+ t2) −1

2

(
1+ t2) 0

0 −1
2

(
1+ t2) 1

2

(
1+ t2) 0

0 0 0 t2

+(1− p)Γ


t 0 0 0
0 t 0 0
0 0 t 0
0 0 0 t




(3.23)
where Nη ,p is the opportune normalization constant. In Fig.3.13 (a)-(b) we show the
density matrix for a gain value g = 3, for η = 10−4 and injection probabilities of p = 0.5
and p = 0.25. The effect of a decreasing injection probability p is the reduction of the off-
diagonal terms and hence of the coherence terms. The application of the Peres criterion
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Figure 3.12: Diagramatic scheme
of the entanglement broadcasting
from the single photon pair to the
multiparticle state. In presence of
losses, the entanglement is reduced
of a factor ε .

on this density matrix gives a critical value of the injection probability pcrit =
S2(1−η)

1+S2(1−η)
.

For p > pcrit , the micro-macro system in this highly attenuated regime is entangled, while
for p ≤ pcrit the system is separable. The same result is confirmed by the calculation of
the concurrence, which reads:

C(ρ̂AB
η ,p) =

{
p(1−t2)−(1−p)tS2(1−t2)

p(1+3t2)+2(1−p)tS2(1−t2)
for p > pcrit

0 for p ≤ pcrit
(3.24)

In Fig.3.13 (c) we report the plot of the concurrence as a function of the gain g for several
values of the injection probability p and η = 10−4. For decreasing p, the concurrence
drops to 0 for a lower value of the gain. Furthermore, in Fig.3.13 (d) we report the plot of
the critical injection probability pcrit as a function of the gain g and the transmission effi-
ciency η . As the gain g is increased, the value of the critical injection probability increases
up to a value close to 1. This means that, for high values of the gain, an high injection
efficiency is requested to detect the entanglement with such measurement strategy.

Spin-based entanglement criterion

Another approach for a micro-macro entanglement test is based on the detection of the
quantum Stokes operators, defined as: ĴB

π⃗i
= b̂†

π⃗i
b̂π⃗i

− b̂†
π⃗⊥

i
b̂π⃗⊥

i
. For a micro-macro system,

the following inequality, found by Simon et al. in Ref.[SB03], holds for any separable
state:

|⟨⃗̂σA · ⃗̂JB⟩|−⟨N̂B⟩ ≤ 0 (3.25)

where N̂B is the photon number operator. Both ⃗̂σA and ⃗̂JB are vectors of the Pauli and
Stokes operators respectively. For the micro-macro configuration under investigation,
based on the amplification of a single-photon state, the following result [SBB+09] holds:

|⟨⃗̂σA · ⃗̂JB⟩|−⟨N̂B⟩= 2η ≥ 0 (3.26)
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thus violating the bound for separable states. A more detailed discussion of this Stokes-
based approach on the investigated micro-macro source is reported in Ref.[SSP+10].
Again, some entanglement survives for any value of the gain and of the losses param-
eter η . However such criterion is not feasible from an experimental point of view since
the measurement of the Stokes operators requires perfect discrimination in the photon-
number, as in the pseudo-Spin operator case.

Figure 3.13: (a)-(b) Density matrix of the micro-macro system in the high losses regime,
for a gain value of g = 3 and a value of the losses parameter η = 10−4. (a) Injection
probability p= 0.5 and (b) injection probability of p= 0.15. (c) Concurrence C(ρ̂AB

η ,p) as a
function of the gain g for η = 10−4. Red solid line corresponds to an injection probability
p = 1, green long dashed line to p = 0.5, blue short dashed line to p = 0.25 and black
dotted line to p = 0.05. (d) 3-dimensional plot for the critical injection probability pcrit
as a function of the gain g and the transmission coefficient η .
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3.5 Observations and conclusions
In this chapter we have shown how to realize a multiphoton state consisting in thousands
of photons through an amplification process performed over a single photon state belong-
ing to an entangled pair. The micro-macro state so realized still shows quantum features,
and it is found to be non-separable under specific assumptions. The adopted entanglement
criterion in our experiment allowed indeed to infer the presence of entanglement after the
amplification process but before losses in the detection apparatus. An a priori knowledge
of the source is necessary in order to exclude a class of separable states that can reproduce
the obtained experimental results. One of the reason for the necessity of this assumption
is given by the exploited detection strategy, which presents the feature of a POVM with
an in- conclusive outcome which depends on the measurement basis.

A more general analysis about the possibility of observing entanglement, even in pres-
ence of losses, in a micro-macroscopic state has been addressed at the end of the chapter:
the spin formalism as well as the Stokes parameters one requires perfect discrimination
in the photon-number, which is not a feasible requirement from an experimental point
of view. A possible perspective for such an investigation field could then involve the
analysis of the micro-macro system through the continuous variables formalism and the
reconstruction of Wigner function for the overall state. An appropriate entanglement cri-
terion in that case has then to be found.
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Chapter 4

Macro-Macroscopic quantum systems
based on high gain spontaneous
parametric down-conversion

In this chapter we consider the high gain spontaneous parametric down-conversion in a
non collinear geometry as a paradigmatic scenario to investigate the quantum-to-classical
transition by increasing the pump power, that is, the average number of generated pho-
tons. The possibility of observing quantum correlations in such macroscopic quantum
system through dichotomic measurement will be analyzed by addressing two different
measurement schemes, based on different dichotomization processes. More specifically,
we will investigate the persistence of non-locality in an increasing size n

2 -spin singlet state
by studying the change in the correlations form as n increases, both in the ideal case and
in presence of losses. We observe a fast decrease in the amount of Bell’s inequality viola-
tion for increasing system size. This theoretical analysis is supported by the experimental
observation of macro-macro correlations with an average number of photons of about
103. Our results enlighten the practical extreme difficulty of observing non-locality by
performing such a dichotomic fuzzy measurement.

4.1 Quantum to classical transition
For long time the investigation about entanglement and non-locality has been limited to
quantum systems of small size [Bel64]. Theoretical and experimental works on Bell’s
inequalities have been devoted to the study of single particle states, in which dichotomic
measurements have been performed [CHSH69]. Non-locality tests have been achieved
with single photon states, produced by parametric down conversion, by detecting po-
larization correlations [AS98, OM88, KSSA98]. More recently the violation of Bell’s
inequality has been performed with a larger number of photons: on GHZ [CYZ+06] and
cluster states [WARZ05] up to 4 photons.
On the other hand, the possibility of observing quantum phenomena at a macroscopic

73
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level seems to be in conflict with the classical description of our everyday world knowl-
edge. The main problem for such observation arises from the experimental difficulty of
sufficiently isolating a quantum system from its environment, i.e., from the decoherence
process [Zur03]. An alterative approach to explain the quantum-to-classical transition,
conceptually different from the decoherence program, has been given, very recently, by
Kofler and Brukner, along the idea earlier discussed by Bell, Peres [Per95] and others.
They have given a description of the emergence of macroscopic realism and classical
physics in systems of increasing size within quantum theory [KB07]. They focused on
the limits of the quantum effects observability in macroscopic objects, showing that, for
large systems, macrorealism arises under coarse-grained measurements. More specif-
ically they demonstrated that, while the evolution of a large spin cannot be described
classically when sharp measurement are performed, a fuzzy measurement on a large spin
system would induce the emergence of the Newtonian time evolution from a full quan-
tum description of the spin state. However, some counterexamples to such modeliza-
tion have been found later by the same authors: some non classical Hamiltonians violate
macrorealism despite coarse-grained measurements [KB08]. One example is given by
the time-dependent Schrödinger catlike superposition, which can violate macrorealism
by adopting a suitable “which hemisphere” measurement. Therefore the measurement
problem seems to be a key ingredient in the attempt of understanding the limits of the
quantum behavior of physical systems and the quantum-to-classical transition question.
As a further step, they also demonstrated [KBB09] that macrorealism does not imply a
continuous spatiotemporal evolution. Indeed, they showed that the same Schrödinger cat-
like non-classical Hamiltonian, in contact with a dephasing environment does not violate
any longer a Leggett-Garg inequality, while it still presents a non-classical time evolution.
In a recent paper Jeong et al. [JPR09] contribute to the investigation about the possibility
of observing the quantum features of a system when fuzzy measurement are performed
on it, finding that extremely-coarse-grained measurements can still be useful to reveal the
quantum world where local realism fails.

In this context, the possibility of obtaining macroscopic quantum systems in labora-
tory has raised the problem of investigating entanglement and non locality in systems in
which single particles cannot be addressed singularly. As shown in Ref. [CPHZ02], the
demonstration of non-locality in a multiphoton state produced by a non-degenerate opti-
cal parametric amplifier would require the experimental application of parity operators.
On the other hand, the estimation of a coarse grained quantity, through collective mea-
surements as the ones proposed in Ref. [PDS+06], would miss the underlying quantum
structure of the generated state, introducing elements of local realism even in presence
of strong entanglement and in absence of decoherence. The theoretical investigation on a
multiphoton system, obtained via parametric down conversion, has been also carried out
by Reid et al. [RMD02]. They analyzed the possibility of obtaining the violation of Bell’s
inequality by performing dichotomic measurement on the multiparticle quantum state.
More specifically, in analogy with the spin formalism, they proposed to compare the num-
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ber of photons polarized “up” with the number of photons polarized “down” at the exit of
the amplifier. The result of this comparison could be either (+1) or (-1) hence the mea-
surement on the multiphoton state turned out to be dichotomic. In such a way Reid et al.
revealed a small violation of the multiparticle Bell’s inequality even in presence of losses
and quantum inefficiency of detectors. It’s worth nothing that this violation presents a
fast decreasing behavior as a function of the generated photons number. In a recent paper,
Bancal et al. [BBB+08] have discussed different techniques for testing Bell’s inequalities
in multipair scenarios, in which either at Alice’s and Bob’s site a global measurement is
performed. They distinguished between two cases: distinguishable, i.e. independent, and
indistinguishable, i.e. belonging to the same spatial and temporal mode, photon pairs.
They found that while the state of indistinguishable pairs results more entangled, the state
of independent pairs appears to be more nonlocal.

In this chapter, we investigate the macroscopic-macroscopic state generated by high
gain spontaneous parametric down-conversion. The possibility of observing quantum cor-
relations in macroscopic quantum systems through dichotomic measurement will be ana-
lyzed, by addressing two different measurement schemes, based on different dichotomiza-
tion processes. More specifically, we will investigate the persistence of non-locality in an
increasing size n

2-spin singlet state by studying the change in the correlations form as
n increases, both in the ideal case and in presence of losses. At last, experimental ob-
servation of macro-macro correlations will be reported. The results obtained enlighten
that dichotomic fuzzy measurements lack of the necessary resolution to characterize such
states and show the extreme difficulty to observe quantum non-locality in this experimen-
tal configuration.

4.2 Macroscopic quantum state based on high gain spon-
taneous parametric down-conversion

The investigation on the micro-macro transition will be performed on a paradigmatic
physical system: the optical parametric amplifier working in a high gain regime. The
quantum state produced in a low gain regime has been experimentally realized and deeply
studied in the past few years [EKD+04, CDP+06]. We are now interested in analyzing
the behavior of such quantum system when the number of photons is increased and it
undergoes a fuzzy measurement, in which the generated particles cannot be addressed
singularly, but a dichotomic measurement is performed on the overall state. More specifi-
cally, the radiation field under investigation is the quantum state obtained by spontaneous
parametric down-conversion (SPDC) with an EPR type-II source [KMW+95, EKD+04],
whose interaction Hamiltonian is: Hint = ıh̄χ

(
â†

π b̂†
π⊥ − â†

π⊥ b̂†
π

)
+H.c. where â†

π and b̂†
π

are the creation operators corresponding to the generation of a π-polarized photon on spa-
tial modes kA and kB, as sketched in Fig.4.1, and χ is the constant describing the strength
of the interaction.
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Figure 4.1: Conceptual scheme of the macroscopic-macroscopic source and of the de-
tection apparatus. The multiphoton fields on the two spatial modes of an EPR source
are analyzed in polarization with dichotomic measurements, where the +1 value is as-
signed if nπ > nπ⊥ , and −1 otherwise. Finally, coincidences between the two apparata are
considered.

The output state reads [EKD+04]:

|Ψ−⟩= 1
C2

∞

∑
n=0

Γn√n+1||ψ−
n ⟩ (4.1)

|ψ−
n ⟩= 1√

n+1

n

∑
m=0

(−1)m|(n−m)π,mπ⊥⟩A|mπ,(n−m)π⊥⟩B (4.2)

where Γ= tanhg and C = coshg; g= χt is the non-linear gain (NL) of the process. Hence,
the output state can be written as the weighted coherent superposition of singlet spin-n

2
states |ψ−

n ⟩.
As said, this EPR source has been already studied in different gain regimes. First,

Kwiat et al. [KMW+95] exploited the polarization singlet-state emitted in the single-
pair regime to obtain the violation of Bell’s inequalities. Subsequent works studied the
multi-photon states generated in a high gain SPDC source. Eibl. et al. [EGB+03] exper-
imentally demonstrated four-photon entanglement in the second-order emission state of
the SPDC source, by taking the four-fold coincidences after the two output modes of the
source were splitted by 50-50 beam-splitters. A generalized non-locality test [WZ01] was
also successfully performed in this configuration. A similar scheme was subsequently
exploited by Wieczorek et al. [WSK+08] to experimentally generate an entire family of
four-photon entangled states. The presence of polarization-entanglement in the multi-
photon states up to 12 photons has been proved by studying the high losses regime where
at most one photon per branch was detected [EKD+04]. The density matrix of this two-
photons state was analytically derived and experimentally investigated in a more recent
work [CDP+06], where it has been demonstrated that it coincides with the one of a Werner
state (WS), i.e., a weighted superposition of a maximally entangled singlet state with a
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fully mixed state. However, no experimental demonstration of entanglement and non-
locality has been given in the multi-photon regime where the generated state does not
undergo to a controlled lossy detection scheme.

4.3 Dichotomic measurements on macroscopic states
In the context of the investigation on entanglement and non-locality between macroscopic
systems, Bell’s inequalities have been generalized to many particle regimes. Among var-
ious strategies, several possible extensions of dichotomic measurements in the macro-
scopic regime have been presented [RMD02, BBB+08]. By these methods, CHSH-type
inequalities can be exploited in order to perform non-locality tests also in many-particle
collective states.

In this section we analyze two possible kind of dichotomic measurements on macro-
scopic states, based on photon counting and signal processing techniques. The first tech-
nique is based on the Orthogonality-Filter (O-Filter) device [NDSD07, DSV08], which
has already been introduced in the previous chapter to test experimentally the entangle-
ment between a microscopic and a macroscopic field. This method has several analogies
with the detection strategy presented in Ref. [SBB+09] and attributed to a biological
”human eye” detector. The second technique is a threshold dichotomic detection scheme,
whose action is independent on the input state and hence can be exploited for a Bell’s
inequalities test.

4.3.1 Orthogonality Filtering
The first dichotomic measurement technique we analyze in this section is based on the
O-Filter (OF) device introduced in the previous chapter. We utilize now this technique in
a different experimental framework. Let us now give a formal description of this mea-
surement technique in the POVM framework. First, the incident radiation is analyzed
in polarization by a couple of photon-number resolving detectors on each spatial mode
{kA,kB}. In the ideal case, this measurement corresponds to the projection of the imping-
ing field onto the Von Neumann operators: Π̂n,m = |nπ,mπ⊥⟩⟨nπ,mπ⊥|, where |nπ,mπ⊥⟩
represents a quantum state with n photons with polarization π and m photons with polar-
ization π⊥. Subsequently, the dichotomization of the measurement corresponds to assign
the value (+1) if nπ −mπ⊥ > k, (-1) if mπ⊥ −nπ > k, and (0) otherwise (Fig.4.2-(a)). This
choice of the detection scheme corresponds to the POVM operators:

F̂(+1)
π,π⊥ (k) =

∞

∑
n=k

n−k

∑
m=0

Π̂n,m (4.3)

F̂(−1)
π,π⊥ (k) =

∞

∑
m=k

m−k

∑
n=0

Π̂n,m (4.4)

F̂(0)
π,π⊥(k) = Î − F̂(+1)

π,π⊥ − F̂(−1)
π,π⊥ (4.5)
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Figure 4.2: Selected regions of the Fock
space for the two presented measurement
schemes. Each diagram in this figure is
referred to a single spatial mode. (a)
O-Filtering technique representation in the
bidimensional Fock-Space {nπ ,mπ⊥}. The
(+1) and (-1) regions correspond to a differ-
ence in the detected photon numbers |nπ −
mπ⊥| > k. The (0) region corresponds to an
inconclusive measurement. (b) Dichotomic
threshold measurement representation in the
bidimensional Fock-Space {nπ ,mπ⊥}. Only
those pulses containing a sufficiently high
photon number can be detected due to the
threshold response of the apparatus. Then,
a dichotomic assignment is performed on
the measurement outcomes. (c) Response of
“biological” detectors, which are sensible to
the impinging field only if the photon num-
ber exceeds an intrinsic threshold k.

The discarded outcome (white region in Fig.4.2-(a)) turns out to be state dependent. This
property, as we shall see later, renders this kind of dichotomic measurement unfeasible
for applications in Bell’s inequalities test.

4.3.2 Threshold detection

We now introduce a different dichotomic measurement method which is based on a thresh-
old detection scheme. Let us consider the following apparatus. As in the OF case, the
incident field is analyzed in polarization on each spatial mode by photon-counting detec-
tors, and the Von Neumann operators that describe this intensity measurement are again
the Π̂n,m projectors. The dichotomization of the measurement then proceeds as follows
(Fig. 4.2-(b)). The (+1) outcome is assigned when the threshold condition nπ +mπ⊥ > h
is satisfied and when nπ > mπ⊥ . Analogously, the (-1) outcome is assigned in the opposite
case nπ < mπ⊥ conditionally to the satisfaction of the threshold condition nπ +mπ⊥ > h.
If nπ = mπ⊥ , one of the two outputs (±1) is assigned with equal probability p = 1/2. The
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POVM operators that describe the measurement can then be written in the form:

T̂ (+1)
π,π⊥ (h) =

∞

∑
n=h

∑
m< n

2

Π̂n−m,m (4.6)

T̂ (−1)
π,π⊥ (h) =

∞

∑
n=h

∑
m> n

2

Π̂n−m,m (4.7)

T̂ (0)
π,π⊥(h) = Î − T̂ (+1)

π,π⊥ − T̂ (−1)
π,π⊥ (4.8)

We note that the choice of the threshold h is made independently on the input state, and it
is an intrinsic property of the detection apparatus. Furthermore, this scheme has the pe-
culiar property of selecting an invariant region of the Fock space with respect to rotations
of the polarization basis. More specifically, let us consider the case in which the measure-
ment is performed choosing a polarization basis π,π⊥. With that choice, all the pulses
for which nπ +mπ⊥ ≤ h are not detected. Rotating the basis to π ′

,π ′
⊥, the undetected part

of the wave function still corresponds to the application of the same threshold condition
in the new basis nπ ′ +m

′
π⊥ > h. Hence, the filtered Fock-space region is independent on

the choice of the polarization basis but is a function only of the threshold h, which is
an intrinsic property of the detection apparatus. This feature is the main difference with
the OF device discussed in previous section, and renders the TD based detection strategy
feasible for its implementation in Bell’s inequalities tests.

4.4 Bell’s inequalities between macroscopic photonic states
In this section we perform a theoretical investigation on non-locality in a specific macro-
scopic quantum system analyzed with the threshold detection apparatus previously intro-
duced. Specifically, we investigate the quantum correlations between the fields associated
to modes kA and kB of the state of Eq.(4.1) by using the dichotomic measurements de-
scribed in the previous section. More specifically, we derive the interference fringe pattern
obtained by varying the polarization analysis basis on mode kB. As a first step, we con-
sider individually the singlet spin-n

2 states (4.2), and we subsequently extend the results
to the SPDC output superposition state of Eq. (4.1). To generalize the results to a realistic
detection and transmission apparatus, we numerically simulate the effect of losses and
non-unitary detection efficiency in the interference fringe pattern. Finally, we address the
problem of non-locality by investigating a CHSH inequality for this detection apparatus,
studying how the amount of violation is modified by the increase in the photon’s number
n.

4.4.1 Interference fringe pattern on singlet spin-n
2 states

We begin our analysis on the macroscopic-macroscopic state by evaluating the correla-
tions existing between the two spatial modes of the spin-n

2 singlet states (Eq.(4.2)). We



80Macro-Macroscopic quantum systems based on high gain spontaneous parametric down-conversion

use a pure dichotomic measurement scheme, where the (+1) and (-1) outcomes are as-
signed whether the difference in the number of photons with two orthogonal polarization
is positive or negative. Finally, if the detected difference in the number of photons is
0, one of the (±1) outcomes is randomly assigned to the event with equal probability
p = 1/2. We note that this choice is a subcase of the threshold detection and O-filtering
methods introduced in the previous Section, corresponding to the values h = 0 and k = 0.
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Figure 4.3: Theoretical interference fringe-patterns for singlet spin-n
2 states. The polar-

ization basis on mode kA is kept fixed while on mode kB the basis is varied to obtain the
fringe pattern. Figures correspond to values of (a) n = 1, (b) n = 7, (c) n = 25 and (d)
n = 51. The sinusoidal pattern of the spin-1

2 progressively transforms into a linear pattern.
In all figures, black continuous line corresponds to the coincidences of both the (+1,+1)
and (-1,-1) outcome configurations, while red dashed line corresponds to the (+1,-1) and
(-1,+1) outcomes on the two spatial mode. Note that the maximum for each fringe is
0.5, which is the probability to obtain one of the two possible anti-correlated outcomes
(∓1,±1).

The scheme for evaluating the correlations is sketched in Fig. 4.1. The two spatial
modes of the |ψ−

n ⟩ are analyzed with the dichotomic measurement apparatus here de-
scribed. The polarization’s basis on mode kA is fixed on {π⃗+, π⃗−}, while on mode kB the
analysis basis is varied over the Bloch sphere. In particular, due to the SU(2) symmetry of
the emitted states, it is sufficient to consider only the linear polarizations case, defined by
the rotation: π⃗θ = cosθ π⃗++sinθ π⃗−. The fringe patterns are then obtained by evaluating
the coincidences between the outcomes of the two detection apparatus on modes kA and
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kB. More specifically, this measurement corresponds to the evaluation of the averages:

D(±1,±1)
|ψ−

n ⟩ (θ) = ⟨ψ−
n |
(

T̂ (±1)
+,− (0)

)
A
⊗
(

T̂ (±1)
θ ,θ⊥ (0)

)
B
|ψ−

n ⟩

= ⟨ψ−
n |
(

F̂(±1)
+,− (0)

)
A
⊗
(

F̂(±1)
θ ,θ⊥ (0)

)
B
|ψ−

n ⟩
(4.9)

The calculation of this measurement has been analytically performed by expressing the
singlet spin-n

2 states of eq.(4.2) in the analyzed polarization basis:

|ψ−
n ⟩=

n

∑
m=0

n

∑
p=0

εn
m,p(θ) |(n−m)+,m−⟩A |pθ ,(n− p)θ⊥⟩B (4.10)

where:
εn

m,p(θ) = ∑
q(m,p)

(−1)qαm+p−2q
θ β n−m−p+2q

θ[
Cn−m

p−q Cn−p
m−qCm

q Cp
q

] 1
2

(4.11)

with αθ = cosθ , βθ = sinθ and Ci
j =

i!
j!(i− j)! is the binomial coefficient. The limits of

the sum over q have an explicit dependence on the values of p and m and are not reported
here. Finally, by direct application of the measurement operator, the interference fringe
patterns are evaluated as:

D(±1,±1)
|ψ−

n ⟩ (θ) = ∑
{m,p}

|εn
m,p(θ)|2 (4.12)

The extension of the sums over m and p depends on the choice of the outcome on each
spatial mode according to the definitions of Eqs.(4.3-4.5) and (4.6-4.8).

In Fig.4.3 we report the results obtained for different values of the number of photons
n. The simplest case, corresponding to a spin-1

2 state, presents the well-known sinusoidal
pattern, as shown in Fig. 4.3-(a). The sinusoidal pattern is responsible for the violation of
Bell’s inequalities as no classical system can present this dependence from the phase θ .
For progressively higher values of n, as shown in Fig. 4.3-(b-d), the fringe pattern changes
its dependence from the phase from a sinusoidal to a linear form. The latter represents the
typical response of a pair of classically anti-correlated spin-J systems, analyzed through a
dichotomic “which hemisphere” measurement [Red], i.e. the measurement of the angular
momentum sign.

Such detection scheme is completely analogous to the dichotomic strategy analyzed
in this section.

The transition with increasing n towards a classical response for the singlet spin-n
2 can

be explained observing that the chosen dichotomic detection scheme is no more sufficient
to fully characterize the singlet spin states of increasing size n > 1. This measurement
lacks of the necessary resolution [CHRB] to observe the peculiar quantum properties of
these states. In other words, this measurement scheme is not sufficient to fully extract the



82Macro-Macroscopic quantum systems based on high gain spontaneous parametric down-conversion

information encoded in the polarization anti-correlation of the singlet spin states. Their
characterization would require a more sophisticated detection apparatus able to discrimi-
nate the value m of the spin projection, i.e. in our case the difference in the orthogonally
polarized photon number, and not only its sign. An example of such measurement [Per95]
is given by the parity operator P̂π,π⊥ = ∑n

m=0(−1)m|(n−m)π,mπ⊥⟩⟨(n−m)π,mπ⊥|.
The correlation between the two spatial modes of the singlet spin-n

2 states evaluated
with this measurement operator leads to the following expression:

P|ψ−
n ⟩(θ) = ⟨ψ−

n |
(
P̂+,−

)
A ⊗
(
P̂θ ,θ⊥

)
B |ψ

−
n ⟩

= (−1)n sin [(n+1)θ ]
(n+1)sinθ

(4.13)

This correlation function violates a CHSH inequality of an amount SCHSH = 2.481 > 2
[Per95] even in the asymptotic limit of large number of particle (n → ∞). However, such
scheme based on the parity operator requires a sharp photon number measurement in order
to discriminate with unitary efficiency among contiguous values of the spin projection.

Figure 4.4: Plot of the interference fringe pattern D(±1,±1)
|ψ−

n ⟩ (θ) for singlet spin- n
2 states

divided by a linear function L(θ) corresponding to the behavior of two distinct classical
macroscopic objects.

As a further analysis, let us plot (Fig.4.4) the function D(±1,±1)
|ψn

−⟩
(θ)/L(θ), which cor-

responds to the ratio between the interference fringe pattern of the macro-macro configu-
ration and a linear function of θ . The choice of the curve L(θ) as a reference is motivated
by the following consideration. The evaluation of the CHSH parameter in a system char-
acterized by the linear response leads to the maximum value in a classical framework
SCHSH = 2. Hence, this function L(θ) can be considered as the boundary between the
“classical” and the “quantum” regions, since it represents the response of two classical
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anti-correlated systems to this test. In Fig.4.4, we note that the ratio D(±1,±1)
|ψn

−⟩
(θ)/L(θ)

presents a number of intersections with the axis y = 1 (unitary ratio) proportional to the
value of n. This depends on the explicit functional form of the interference fringe pat-
tern of Eq.(4.12). Indeed, analyzing the explicit expression (Eq.(4.11)) of the coefficients
εn

m,p(θ), we find a sum of terms (cosθ)m+p−2q (sinθ)n−m−p+2q, where the sum of the

exponents is equal to the number of photons n. Hence, the fringe pattern D(±1,±1)
|ψn

−⟩
(θ)

(Eq.(4.12)) can be re-organized in a Fourier series expansion containing all the Harmon-
ics up to k = 2n. With increasing n, the difference between D(±1,±1)

|ψn
−⟩

(θ) and the linear
function L(θ) is progressively reduced, since more harmonics are present in the Fourier
expansion which asymptotically reaches the expansion of L(θ).

In conclusion, the increase in the number of photons renders the dichotomic measure-
ment inefficient for the complete characterization of the state, and the decreased correla-
tions become more similar to classical ones.

4.4.2 Propagation over a lossy channel
Decoherence in macroscopic systems represents the main cause for the impossibility of
observing quantum phenomena in every-day life and for the realization of quantum ex-
perimental schemes. In the previous section we described a correlation experiment based
on dichotomic detection in an ideal setup, where both the transmission channel and the
detection apparatus possess unitary quantum efficiency. However, in real setups loss in
both stages must be considered. Hence, the investigation on the effects of decoherence
allows to understand both the transition from the quantum to the classical world and the
feasibility of the schemes here presented in order to violate the Bell’s inequalities.

To this end, we introduce a beam-splitter model [Lou00, Leo93] to simulate losses
phenomena on the macroscopic field here analyzed. In particular, the analysis has been
performed for any singlet spin-n

2 state which, in the decoherence-free case, exhibits the
transition from a sinusoidal interference pattern (n = 1) to an asymptotic linear inter-
ference fringe pattern (n ≫ 1). Again, the detection scheme used is a pure dichotomic
measurement apparatus (corresponding to the threshold detector and a O-Filter with h =

k = 0). As the measurement operators of Eqs. (4.3-4.8) are linear combination of Fock-
state projectors, the lossy channel can be simulated numerically. More specifically, our
calculation is divided in the following steps. First, for a set of angles θ of the analy-
sis basis on spatial mode kB, we calculated the coefficients of the state εn

m,p(θ) defined
in Eq.(4.11). As the measurement operators are diagonal in the Fock basis, the results
of the measurement depend only on the diagonal part of the density matrix after losses.
Furthermore, the map that describes the lossy process, i.e. L [ρ̂ ] = ∑k γkâkρ̂ â†kγ†

k where
γk =

1√
k!
(1−η)k/2η(â†â)/2, maps diagonal elements in diagonal elements of the density

matrix. All these considerations allow us to focus our numerical analysis on the diag-
onal part of the density matrix. The numerical simulation proceeds as follows. Let us
for example focus our attention on the (+1,+1) joint outcome. The coefficients of the
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distribution |εn
m,p(θ)|2 are arranged in a matrix form, labeled by the row and column in-

dexes (m, p). For each value of m and p, 4 binomial random number generators with
average values respectively {(n−m)η ,mη , pη ,(n− p)η} simulate a single shot passage
of the |(n−m)+,m−⟩A ⊗ |pθ ,(n− p)θ⊥⟩B element through the lossy channel of effi-
ciency η . Then, the output number of photons transmitted by the channel on each spatial
mode are dichotomically compared, assigning 1 to the event if it belongs to the (+1,+1)
joint outcome configuration and 0 otherwise. We then repeat this procedure N times,
averaging the results of the simulation for each value m and p, thus generating a matrix
M(+1,+1)

m,p containing both the transmission and the measurement processes. Finally, the
point D(+1,+1)

ρ̂−
n,η

(θ) is reconstructed combining the matrix M(+1,+1)
m,p that describes the dy-

namical process and the original photon number distribution of the state in the chosen
basis, according to:

D(+1,+1)
ρ̂−

n,η
(θ) =

n

∑
m,p=0

M(+1,+1)
m,p |εn

m,p(θ)|2 (4.14)

The same procedure is applied for the other three outcomes of the joint dichotomic mea-
surements. The results of the simulation for different values of the channel transmittivity
η are reported for a fixed value of n = 51 in Fig.4.5. As the efficiencies of the channel
and the detection scheme decrease, the linear fringe patterns progressively evolve into
sinusoidal ones, at the cost of a smaller value of the visibility.
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Figure 4.5: Interference fringe pattern in presence of losses for the singlet spin-n
2 state for

n = 51. The effect of the lossy channel is the progressive lowering of the visibility, while
the dependence on the phase changes from a linear to a sinusoidal pattern.
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4.4.3 O-Filtering and Threshold detection in a lossy regime

The analysis performed on the correlations present in the singlet spin-n
2 states has been

focused on the detection by a pure dichotomic scheme. We are now interested in observ-
ing the effects of more sophisticated POVM measurements, as the threshold detection or
the O-filtering methods introduced in Section 4.3. In particular, we analyze how both the
visibility and the form of the fringe pattern are modified exploiting this different measure-
ment schemes. The main idea beyond this approach concerns the possibility of beating
the losses effects on the macro-macro correlations, by using a more sophisticated mea-
surement than a pure dichotomic one.

We first analyze the correlations obtained by the O-Filtering detection scheme, intro-
duced in Section 4.3.1. The fringe pattern can be calculated by evaluating the average:

F(±1,±1)
|ψ−

n ⟩ (θ ,h) =
⟨(

F̂(±1)
+,− (h)

)
A
⊗
(

F̂(±1)
θ ,θ⊥ (h)

)
B

⟩
(4.15)

We performed a numerical simulation, in order to consider also the transmission over
a lossy channel, with a procedure analogous to the one described in the previous section.
We report in Fig.4.6 the fringe pattern obtained for the n = 51 singlet states for two values
of the channel efficiency. We note that, as the OF threshold k is increased, the tails of
the fringe pattern are damped, while the form of the fringe around the peaks remains
unchanged. Furthermore, both the minimum and the maximum of the fringes are lowered
by this filtering procedure. To understand the advantage of this measurement scheme with
respect to the pure dichotomic case, we analyze in Fig.4.8 the trend of visibility of the
fringe pattern as a function of the threshold. We note that, for increasing k, the visibility
is increased by the filtering process. This advantage obtained by exploiting the O-filtering
measurement can be explained by the following considerations. In absence of losses, the
visibility of the fringe pattern is always unitary, as the analyzed state presents perfect
polarization anti-correlations. After the transmission over a lossy channel, the binomial
statistics added to the photon number distribution is responsible for the partial cancelation
of this property. More precisely, if the difference between nπ and mπ⊥ on any of the
two spatial mode is little, losses may invert the outcome of a dichotomic measurement,
i.e. for example the (+1) outcome may be converted to the (-1) outcome if unbalanced
losses occur in that specific event. Such a process can generate the occurrence in the
joint measurement of a result with positive correlations, i.e. (+1,+1) or (-1,-1), where in
the decoherence-free case only anti-correlations are present. Thus, the visibility of the
fringe pattern can be reduced by the presence of losses. However, to invert the outcome
of matrix elements with nπ −mπ⊥ = q ≫ 0, a strongly unbalanced losses in a single shot
for the two polarization modes must occur. This event has a decreasing probability as the
difference q becomes larger. Since the O-filter device selects these zones of the Fock space
which present such unbalancement, the outcome inversion becomes practically negligible
and the visibility of the fringe pattern progressively returns unitary as the threshold k is
increased.
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Figure 4.6: Effect of the O-Filtering detection technique on the fringe pattern of a n = 51
singlet state. (a) Transmittivity η = 1 and (b) transmittivity η = 0.3. As the threshold k
is increased, the tails of the fringe pattern are rounded.

Let us now consider the second POVM dichotomic measurement under investigation,
the threshold detection TD. The interference fringe pattern with this measurement scheme
can be calculated as:

T (±1,±1)
|ψ−

n ⟩ (θ ,k) =
⟨(

T̂ (±1)
+,− (k)

)
A
⊗
(

T̂ (±1)
θ ,θ⊥ (k)

)
B

⟩
(4.16)

In this expression, as before, the average is evaluated over the density matrix of the state
after the numerical simulation of the lossy channel. In Fig.4.7 we report the form of the
fringe pattern for n = 51 and two different values of the transmittivity of the channel. As
the threshold h is increased, we note that the TD device is responsible for the progressive
return of the fringe patterns to their original form in absence of losses, i.e. for high values
of n an approximately linear form. This behaviour can be explained as follows. While
the original singlet-state has a well definite number of photons, the lossy channel reduces
the number of photons to an average of η⟨n⟩, with Poissonian fluctuations. At the mea-
surement stage the threshold h in the TD device neglects (Fig.4.2-(b)) the sectors of the
Fock-space corresponding to a low number of photons. As h approaches the value h = n,
only the events in which the original singlet state travels undisturbed in the channel (with
probability η2n) are selected, thus restoring the original correlation. We then analyze the
effects of this measurement scheme in the visibility of the fringe pattern in Fig.4.8. We
note that this quantity increases with a slower rate with respect to the OF apparatus. Dif-
ferently from the O-filtering case, on each spatial mode the zones of the Fock space in
which nπ −mπ⊥ is small are not filtered out, and the increase in the visibility is then much
slower with the threshold h. However, also with the TD apparatus the visibility reaches
asymptotically the unitary value, since as said for a threshold h = n only the original
singlet state, having unitary visibility, is detected.

The analysis carried in this section then shows that both the OF and the TD detec-
tion strategies can be used to enhance the fringe pattern visibility in lossy conditions for
the singlet spin-n

2 states. A comparison between the two schemes shows the better en-
hancement achievable with the OF device. In Sec.4.4.4, we shall discuss in details the
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feasibility of a CHSH test with such measurements.

Figure 4.7: Effect of the Threshold detection technique on the fringe pattern for a n = 51
singlet state. (a) Transmittivity η = 0.3 and (b) transmittivity η = 0.5. As the threshold
h on the total photon-number is increased, the fringe patterns progressively return to have
approximately a linear dependence from the phase θ , as for the original n = 51 singlet
state. The values of the thresholds are indicated in the figure.

4.4.4 Investigation of non-locality with a CHSH-type inequality

In the previous paragraphs of this Section we reported the interference fringe pattern
obtained evaluating the correlations between singlet spin-n

2 states both in absence and
in presence of experimental imperfections. The scheme here presented can be exploited
to perform a CHSH test [CHSH69] to investigate non-local effects in these multiparticle
states.

Let us briefly summarize in the light of a local hidden variable (LHV) theory the
content of Bell inequalities for a set of dichotomic observables, by generalizing further the
results already obtained by Reid et al. [RMD02]. Consider a quantum state described by
the density matrix ρ̂ defined in the Hilbert space H1⊗H2. Define Ôi

a the positive operator
acting on subspace H1, and the probability of finding the value i after the measurement
a as given by Tr

[
ρ̂(Ôi

a ⊗ Î)
]
. The same relation holds for the positive operator Ô j

b acting
on subspace H2.

The existence of a LHV model implies that the expectation values of the a and b are
predetermined by the value of the parameter λ : {Xa,Xa′ ,Xb,Xb′}, hence the product a ·b
is equal to Xa(λ )Xn(λ ). For a fixed value of λ the variables Xn with n = {a,b,a′,b′} take
the values −1,1 and satisfy the CHSH inequality:

Xa(λ )Xb(λ )+Xa(λ )Xb′(λ )+Xa′(λ )Xb(λ )−Xa′(λ )Xb′(λ )≤ 2 (4.17)

The same inequality holds by integrating this equation on the space of the hidden variable
(λ ):



88Macro-Macroscopic quantum systems based on high gain spontaneous parametric down-conversion

10-3 10-2 10-1

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

 

 

Vi
si
bi
lit
y

Success Probability

 n=80, =0.05, TD
 n=80, =0.05, OF

Figure 4.8: Trend of the visibility for the singlet spin states for n = 80 and η = 0.05. The
black straight curve corresponds to the TD detection scheme, while the red dashed line to
the OF apparatus. In both cases, the success probability is calculated as the sum of the
rate for the two conclusive outcomes (+1) and (-1).

∫
Ω

dP(λ )Xa(λ )Xb(λ )+
∫

Ω
dP(λ )Xa(λ )Xb′(λ )+∫

Ω
dP(λ )Xa′(λ )Xb(λ )−

∫
Ω

dP(λ )Xa′(λ )Xb′(λ )≤ 2

(4.18)

where P(λ ) is the measure of the λ probability space. If there is a local hidden variables
model for quantum measurement taking values [−1,+1], then the following inequality
must be satisfied by the measured mean values:

SCHSH = Eρ(a,b)+Eρ(a,b
′
)+Eρ(a

′
,b)−Eρ(a

′
,b

′
)≤ 2 (4.19)

where Eρ(a,b) can be expressed as a function of the LHV as Eρ(a,b)=
∫

Ω Xa(λ )Xb(λ )dP(λ ).
The violation of (6.23) proves that a LHV variables model for the considered experiment
is impossible.

In our case, the positive operators Ôi
a(b) are given by the dichotomic measurement

operators
{

T̂ (±1)
π,π⊥ (0), F̂

(±1)
π,π⊥ (0)

}
. In order to theoretically investigate the feasibility of

a CHSH test on the spin-n
2 states, we evaluated the SCHSH parameter in such system.

The value of the SCHSH has been numerically maximized over the measurement angles
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{θ ,θ ′,φ,φ ′} of Alice’s [a(θ) or a′(θ ′
)] and Bob’s [b(φ) or b′(φ ′

)] the polarization basis.
In Fig.4.9 we report the results obtained for different values of the number of photons,
and hence the spin, of the analyzed state. We observe the decrease in the absolute value
of S|ψ

−
n ⟩

CHSH analogously to what reported in [RMD02, BBB+08] for an equivalent Bell’s
inequalities test. However, the asymptotic behavior for high n shows that the parameter
SCHSH never falls below the classical limit, but the amount of violation progressively
becomes smaller and any decoherence process may forbid its experimental observation.
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Figure 4.9: Value of the CHSH parameter S|ψ
−
n ⟩

CHSH for singlet spin-n
2 states for an optimal

choice of the angle settings and the dichotomic “majority-voting” measurement. We ob-
serve the progressive decrease in the amount of violation for an increasing value of the
number of photons present in the state.

We now discuss the feasibility of a Bell’s inequality test when the OF and the TD
detection methods are adopted in the context of Local Hidden Variables (LHV) models.
This analysis is motivated by the increase in the visibility obtained with this measurement
operators with respect to the pure dichotomic case. Both strategies present the POVM fea-
ture of having three possible outcomes {−1,1,0}, at variance with a genuine dichotomic
measurement. In order to clarify the validity of a Bell test in presence of such kind of
POVM’s, let us consider the case in which at the A site a standard dichotomic measure-
ment is performed, while at the B site a POVM measurement is carried out.

Consider the outcomes for which the Bob’s results are different from 0. In this case
the expectation value of the product of a and b is conditioned by the event: “outcome b
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different from zero”. In a LHV model these conditional expectations are represented by:

Eρ(a ·b) =
∫

Ω′
Xa(λ )Xb(λ )dP′(λ ) (4.20)

where Ω′
is the hidden variable probability sub-space for which, for any Xb′(λ ), is

Xb(λ ) ̸= 0 and dP′ = dP/
∫

Ω′dP. Similarly:

Eρ(a ·b′) =
∫

Ω′′
Xa(λ )Xb(λ )dP′′(λ ) (4.21)

where Ω′′
is the hidden variable probability sub-space for which, for any Xb(λ ), is Xb′(λ ) ̸=

0 and dP′′ = dP/
∫

Ω′′dP. Since for different random variables Xb and Xb′ these condi-
tional expectations values can in principle refer to different subensembles Ω′ and Ω” of
the original ensemble Ω, in general the equation (6.22) doesn’t hold any more and the
measured quantity, based on the detection of conditional values, is:

∫
Ω′

dP′(λ )Xa(λ )Xb(λ )+
∫

Ω′
dP′(λ )Xa′(λ )Xb(λ )+∫

Ω′′
dP′′(λ )Xa(λ )Xb′(λ )−

∫
Ω′′

dP′′(λ )Xa′(λ )Xb′(λ )

(4.22)

Let us consider the class of LHV models such that, for a fixed value of λ , simulta-
neously is: Xb(λ ) ̸= 0,Xb′(λ ) ̸= 0. In this case the inequality (6.21) still holds since it
becomes: ∫

Ω∗
dP∗(λ )Xa(λ )Xb(λ )+

∫
Ω∗

dP∗(λ )Xa(λ )Xb′(λ )+∫
Ω∗

dP∗(λ )Xa′(λ )Xb(λ )−
∫

Ω∗
dP∗(λ )Xa′(λ )Xb′(λ )≤ 2

(4.23)

where Ω∗ is the hidden variable probability common subspace for which Xb(λ ) ̸= 0 and
Xb′(λ ) ̸= 0.
With reference to our experimental situation, let us now make an auxiliary assumption
implying that the probability of rejecting a measurement does not depend on the hidden
parameter λ and on the measurement settings, i.e. Ω′ = Ω′′ = Ω∗ [AK03]. In this case
the experimentally observed quantity (4.22) will follow the LHV inequality (4.23), and
its violation implies the non-locality of the considered system. While for what concerns
the OF based strategy this assumption on the LHV is a strong one, in the TD case it is
legitimated by the fact that the Hilbert subspace leading to a conclusive outcome is invari-
ant under any rotation of the polarization basis since data are excluded depending only on
the overall number of photons. In other words, when an event leads to a (±1) outcome
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for a specific choice of the measurement basis, it would correspond to a conclusive out-
come if measured in another basis. This scenario is exactly the same encountered in any
two-photon Bell inequality test and hence requires a fair sampling assumption.

To conclude the discussion, we briefly analyze the advantages of the two POVM
schemes presented here in terms of the achievable violation of the CHSH inequality
SCHSH − 2. In the OF case, we expect that the fast increase in the visibility may lead to
an increase in the amount of violation with respect to the pure dichotomic measurement.
In the TD case, as already discussed in the previous section, the effect of the threshold
h is the restoration of the original correlations present in the |ψ−

n ⟩ state before the lossy
channel. This means that the value of the SCHSH parameter reaches for h = n the maxi-
mum value S|ψ

−
n ⟩

CHSH , reported in Fig.4.9, and the amount of achievable violation becomes
practically negligible for large n.

4.4.5 Spontaneous Parametric Down Conversion: interference fringe
pattern

The following step of our theoretical analysis is the investigation on the interference fringe
pattern obtained by the process of spontaneous parametric down conversion exploiting the
dichotomic measurement schemes presented in Sec.4.3. As already stressed in Eqs.(4.1-
4.2), this optical source generates a quantum superposition of the singlet spin-n

2 states.
We performed the same calculation of Sec.4.4.3 in order to analyze both the form of
the interference fringe pattern and the trend of the visibility when the two dichotomic
measurements (OF and TD) were exploited at the detection stage.

We then report in Fig.4.10 the form of the fringe pattern for the SPDC output state in
presence of losses, with g = 2.5 and η = 0.5. Analogously to what observed for singlet
spin states, the effect of the two measurement devices is different. On one side, the O-
filtering technique is responsible for a smoothing of the fringe pattern tails, while on the
other side, the Threshold Detector leaves the form of the fringe pattern unaltered.

To conclude the analysis of this section, we report in Fig.4.11 the trend of the visibility
of the fringe pattern as a function of the success probability of the two dichotomic mea-
surement devices. A comparison between the technique shows the faster increase of the
visibility in the OF case (Fig.4.11-(a)) with respect to the TD one (Fig.4.11-(b)) The cost
of this faster increase in the visibility is a loss in the universality of the device, since the
Threshold Detector selects a regions of the Fock space which is invariant under rotations
of the polarization basis, at variance with the O-filter.
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Figure 4.10: Fringe pattern in presence of losses for the SPDC output state with the two
different analyzed dichotomic measurements. In all curves, g = 2.5 and η = 0.5. (a)
Normalized fringe pattern with the O-filter device for different values of the threshold
k. The three curves correspond to a filtering signal of P(k = 12) = 0.116 (black straight
curve), P(k = 24) = 0.014 (red dashed curve) and P(k = 36) = 2.07× 10−4 (green dot-
ted curve). We note the increase in the smoothing of the minimum of the fringes. (b)
Normalized fringe pattern with the TD device for different values of the threshold h. The
three curves correspond to a filtered signal of P(h = 12) = 0.328 (black straight curve),
P(h = 24) = 0.068 (red dashed curve) and P(h = 36) = 1.07×10−3 (green dotted curve).
We note that the form of the normalized fringes is left unchanged by the TD device.

Figure 4.11: (a) Visibility of the fringe pattern as a function of the success probability
⟨F̂(+1)

π,π⊥ (k)⟩+ ⟨F̂(−1)
π,π⊥ (k)⟩ for the SPDC states analyzed with the OF device. (b) Visibility

of the fringe pattern as a function of the success probability ⟨T̂ (+1)
π,π⊥ (h)⟩+ ⟨T̂ (−1)

π,π⊥ (h)⟩ for
the SPDC states analyzed with the TD device. For both curves, g = 2.5 and η = 0.05.
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4.5 Experimental observation of correlations in high gain
SPDC

In order to complete our analysis on the correlations connecting a macro-macro state ob-
tained via high gain optical parametric amplification, we have experimentally investigated
the conceptual scheme presented in the previous sections. We have generated a multipho-
ton state through an EPR source and we have performed dichotomic measurement via
O-Filter (OF) and Threshold Detector (TD) upon it. In this section we report the exper-
imental interference fringe patterns observed for the spontaneous field generated by the
high gain OPA working in a non collinear configuration. As a first step we shall character-
ize the OPA in a high gain regime, by evaluating the non linear gain of the amplifier and
by reporting the generated field fringe pattern visibility as a function of the gain. Then,
we shall investigate the features of the multiphoton field through the two measurement
strategies studied in Sec. 4.3.

Let us now describe the experimental setup shown in Fig.4.12. The excitation source
was a Ti:Sapphire Coherent Mira mode-locked laser amplified by a Ti:Sapphire regener-
ative RegA device operating with repetition rate 250 kHz. The output beam, frequency-
doubled by second-harmonic generation, provided the OPA excitation field beam at the
UV wave-length (wl) λ = 397.5 nm with power 600 mW on mode kP.The SPDC source
was a BBO crystal cut for type-II phase-matching, working in a non-collinear configura-
tion [KMW+95], in a high gain regime. The evaluated non linear gain is g = 3.49±0.05
corresponding to the generation of an average number of photons per mode of n ≈ 270
per pulse, corresponding to an overall average value of ⟨n⟩ ≈ 540 on each spatial mode.

The multiphoton fields on modes kA and kB were filtered by 1.5 nm interferential
filters (IF) and coupled by single mode fibers. The signals were then attenuated, analyzed
in polarization and detected by single photon SPCM detectors (not shown in Fig.4.12).

In order to characterize the source, we performed a set of preliminary measurements
exploiting a SPCM detector on both spatial modes, deliberately attenuating the gener-
ated in order to have only few photons incident on the detector. First, we measured the
non-linear gain of the amplifier studying how the detected signal is increased by varying
the power of the incident pump beam on the crystal. In Fig.4.13 we report the counts
registered on mode kA by a SPCM detector as a function of the normalized UV power
signal. The evaluation of the NL-gain has been performed as shown in Ref.[EKD+04],
and, as said, we found g = 3.49± 0.05. As a further investigation on the multiphoton
field features, we registered the coincidences between the signals on mode kA and kB, as
a function of the phase φ , that represents the variation of the polarization analysis basis
on Bob site, i.e. π⃗φ = π⃗H + eiφ π⃗V . Both fields are detected by two SPCM at Alice’s and
Bob’s sites. Again, the signals were attenuated in order to have few photons incident on
the detectors, in order to work in a linear response regime for the SPCM. The visibility of
the obtained fringe patterns as a function the NL-gain is shown in Fig. 7.7. As stressed
in [EKD+04], the trend of visibility decreases as the gain increases, this is due to losses
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Figure 4.12: Experimental setup for the generation and detection of a bipartite macro-
scopic field. The high laser pulse on mode kP excites a type-II EPR source in the high
gain regime, i.e. g = 3.5. The two spatial mode kA and kB are spectrally and spatially
selected by interference filters (IF) and single mode fibers. After fiber compensation
C, the two modes are analyzed in polarization and detected by four photomultipliers
(PA+,PA−,PB+,PB−). The signals are then analyzed electronically to perform either the
threshold dichotomic detection described in the paper or the Orthogonality filtering detec-
tion technique. Finally, the coincidences between the measurement outcomes are recorded
to obtain the desired interference fringe patterns.

and to limited detectors photon number resolution. The decrease of visibility below the
theoretical asymptotic value of 33% is due to the multimodal operation of the amplifier,
although, differently from what is reported in [EKD+04], we observe a value of visibility
that remains above 15% as far as the NL-gain reaches the value of 3.5, while in [EKD+04]
the visibility seems to fall below 15% for gain values higher than 2.

4.5.1 Non-collinear SPDC analyzed with the Orthogonality Filter

In this Section we report the observation of the fringe patterns obtained by the O-Filtering
measurement strategy illustrated in Sec.4.3-A.
The multiphoton fields at Alice’s and Bob’s site are analyzed in polarization and detected
by two photomultipliers (PMs), (PA+,PA−) and (PB+,PB−) respectively. This devices pro-
duce on each pulse a macroscopic output electronic current, whose amplitude is linearly
proportional to the number of incident photons.

Let us fix the polarization analysis basis at Bob’s site: the PMs provide the electronic
signals (IB

+, I
B
−) corresponding to the field intensity on the mode kB associated with the

π−components (−→π +,
−→π −), respectively. By the OF, shot by shot the difference signals

±(IB
+− IB

−) are compared with a threshold ξ k > 0, where ξ is a constant describing the
response of the photomultipliers. When the condition (IB

+− IB
−)> ξ k is satisfied, a stan-

dard transistor-transistor-logic (TTL) electronic square-pulse LB is realized at one of the
two output ports of OF. Likewise, when the condition (IB

−− IB
+) > ξ k is satisfied, a L∗

B
TTL pulse is realized at other output port of OF. The PM output signals are discarded for
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Figure 4.13: Experimental evaluation of the amplifier NL-gain: we report the counts of
an SPCM detector on mode kA versus the normalized UV power, defined as Iin/Imax. The
red curve reproduces the best fit of the experimental data, the expected trend function is
reported in [EKD+04].

−ξ k < (IB
+− IB

−) < ξ k, i.e. in condition of low state discrimination. By increasing the
value of the threshold k an increasingly better discrimination is obtained together with a
decrease of the rate of successful detection. The same measurement strategy is adopted at
Alice’s site, where the output TTL signals (LA,L∗

A) are generated. The fringe patterns are
obtained by the following procedure: the analysis basis at Alice’s site is kept fixed while
the basis at Bob’s site is varied through an adjustable phase delay given by a Babinet-
Soleil compensator. Finally the coincidences between the TTL signals at Alice’s and
Bob’s site are taken into account, namely (LA,LB),(LA,L∗

B),(L
∗
A,LB),(L∗

A,L
∗
B). We report

in figure 4.15 the corresponding fringe patterns obtained in the {π+,π−} basis, analogous
results are observed in the {πR,πL} and {πH ,πV} basis, due to the irrotational invariance
of the generated multiphoton state. The threshold k was set so that the percentage of data
taken into account was 2×10−3 of the overall sample.

For sake of completeness we report the trend of visibility as a function of the OF
counts in Fig.4.16. We observe an increase of visibility as the counts detected decrease.
The highest visibility obtained is not enough to violate the CHSH inequality, due to the
inefficiency of a dichotomic measurement performed on a multiphoton quantum state and
to experimental imperfections. However, in accordance with theoretical predictions, we
observe that the OF technique allows to minimize losses effects.
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Figure 4.14: Experimental trend of the visibility as a function of the NL-gain.

4.5.2 Non-collinear SPDC analyzed with threshold detection
A further investigation on the macro-macro correlation has been carried out by perform-
ing another dichotomic measurement on the amplified states on modes kA and kB. The
signals detected by the photomultipliers (PA+,PA−) and (PB+,PB−) enter into two thresh-
old detectors (TD), that performs the shot by shot measurement illustrated in Sec.4.3-B.
Each TD works as follows: the PMs electronic signals (IB

+, I
B
−) ((IA

+, I
A
−)) corresponding

to the field intensity on the mode kB (kA), associated with the π−components (−→π +,
−→π −)

respectively, enter into the TD. By it the sum signals ±(IB
++ IB

−) (±(IA
++ IA

−)) are com-
pared with a threshold ξ h > 0 . When the condition (IB

+ + IB
−) > ξ h and IB

+ − IB
− > 0

((IA
++ IA

−)> ξ h and IA
+− IA

− > 0) is satisfied, a standard transistor-transistor-logic (TTL)
electronic square-pulse JB (JA) is realized at one of the two output ports of TD. On the
other hand when the condition (IB

+ + IB
−) > ξ h and IB

− − IB
+ > 0 ((IA

+ + IA
−) > ξ h and

IA
− − IA

+ > 0) is satisfied, a standard transistor-transistor-logic (TTL) electronic square-
pulse J∗B (J∗A) is realized at the other output ports of TD. Finally the coincidences between
signals (JA,JB),(JA,J∗B),(J

∗
A,JB),(J∗A,J

∗
B) are registered by a coincidences box. The ob-

tained fringe patterns corresponding to a detection probability equal to P = 1.6× 10−3

are shown in Fig.4.17. Finally, a study on the obtained visibility as a function of the frac-
tion of considered data has been carried out. We report in Fig.4.18 the trend of visibility
versus TDs counts.
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Figure 4.15: Fringe patterns obtained by filtering on the difference of the signals. The
main visibility is 0.67± 0.02. Coincidences have been normalized to the product of the
signals detected on each of the analyzed outcomes of the OF.
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Figure 4.16: Trend of visibility versus OF counts. The theoretical predictions (continu-
ous red line) has been renormalized (dotted green line) respect to the maximum reached
visibility value.
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Figure 4.17: Fringe patterns obtained by filtering on the sum of the signals. The main
visibility is 0.49±0.02.
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Figure 4.18: Visibility versus threshold detector counts.The theoretical predictions (con-
tinuous red line) has been renormalized (dotted green line) respect to the maximum
reached visibility value.
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4.6 Observations and conclusions
In this chapter we have reported a deep analysis on the possibility of observing quantum
correlation on a multiphoton quantum system by performing probabilistic dichotomic
measurements. We have addressed a specific class of multiphoton states: the ones ob-
tained by the high gain optical parametric amplifier working in a non-collinear configu-
ration. To this end we have introduced two kind of dichotomization processes, based on
the O-Filtering procedure discussed in the previous chapter and on a threshold detection
scheme. It has been demonstrated that these two detection schemes reduce to a simple di-
chotomic measurement when their characteristic thresholds are set to 0. We have shown
that such dichotomic measurement when performed on n

2 -spin states with increasing n,
asymptotically allows in the ideal case the violation of CHSH Bell’s inequality even for
large n. The shape of correlation functions has been investigated, and we have shown
that the sinusoidal correlation pattern, typical of an 1

2 -spin state, tends asymptotically to
a triangular form, proper to classical correlations. When losses and decoherence are in-
troduced the visibility of the correlation pattern is lowered and its shape turns out to be
sinusoidal. In presence of losses, the violation of CHSH Bell’s inequality is not allowed
by a dichotomic measurement and more complicated detection schemes are required. We
then discussed in terms of LHV models the feasibility of a CHSH test with the two prob-
abilistic measurements presented in this chapter.

Finally, we have shown experimentally that the measurement performed by the prob-
abilistic dichotomic schemes, the O-Filter and the Threshold Detector, allow to obtain
higher visibility of correlation functions, not enough to violate CHSH Bell’s inequality,
but effective to reduce losses and decoherence effects. An open question concerns the
existence of entanglement criteria able to demonstrate the presence of entanglement in a
”macro-macro” scenario, and the possibility of adopting the measurement devices intro-
duced in this paper within such context.
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Part III

Manipulation of multiphoton quantum
states

101
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Figure 4.19: Conceptual scheme of the present work: in this part the colored boxes will
be addressed. The problem of quantum-to-classical transition will be exploited in strict
relation with the possible manipulation of multiphoton quantum states. This can be per-
formed by an ultrafast optical shutter experimentally realized and tested on multiphoton
coherent states.

In this part the quantum-to-classical investigation problem already mentioned in the
second part will be addressed from a different point of view: from chapter 4 it turns out
that the main problem of studying quantum properties of multiphoton state resides into
the measurement process. In chapter 6 a possible manipulation of multiphoton states
in order to extract the maximum available information about them will be investigated.
The shown manipulation protocols make use of an ultrafast optical shutter experimentally
realized and tested on multiphoton coherent states which will be addressed in chapter 5.
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Chapter 5

Polarization preserving ultra fast
optical shutter

In this chapter we present the realization of an ultra fast shutter for optical fields, which
allows to preserve a generic polarization state, based on a self-stabilized interferometer.
It exhibits high (or low) transmittivity when turned on (or inactive), while the fidelity of
the polarization state is high. The shutter is realized through two beam displacing prisms
and a longitudinal Pockels cell. This can represent a useful tool for controlling light-atom
interfaces in quantum information processing, and can be used for the manipulation of
the multiphoton states realized by optical parametric amplification processes, introduced
in part II.

5.1 Optical shutters
In quantum information framework, the ability to perform fast-switching of an optical
field can have different, useful applications. On one hand, preparation of multi-photon
entangled states, as the ones addressed in the previous chapters, by optimized measure-
ments and feed-forward operations can lead to innovative QIP protocols. On the other one,
the coupling of mesoscopic field and Bose-Einstein condensate has been recently investi-
gated [DSVC10], and, as we will see in the following part, requires the implementation of
optical shutters able to switch in a very fast time,while preserving the quantum state and
exhibiting a high extinction value. Since the content of information is usually encoded
in the polarization degree of freedom of the field, the switching device should be able to
preserve any polarization state of the incoming radiation. Hence a shutter device based on
a fast-pockels cell, as the one developed by Ref.[GSLD02, PWT+07, VPMM08], com-
bined with a polarizing beamsplitter would destroy the carried information.
An alternative solution based on an acousto-optic modulator requires a longer activation
time and leads to an intensity of the diffracted beam between 0% and 60%, while the zero
order contribution is always higher than 15%. In this chapter we present the realization
of an ultra-fast shutter for optical field, which preserves a generic polarization state and
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exhibits a high transmittivity. The shutter, based on a self-stabilized interferometer, is
realized through two beam displacing prisms and a longitudinal Pockels cell (PC). This
can represent a useful tool for controlling light-atom interfaces in quantum information
processing, and to manipulate the multiphoton quantum states introduced in the first part
of this thesis, as we will explain in the following chapter.

CELL OFF

V V

H H

a

c

Pockels
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prism

CELL ON

H

HV

V
b
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Figure 5.1: Experimental scheme of the shutter: (1) when the shutter is off the two beams
separated by the two calcites are stopped by the pin-hole (modes a and c). (2) On the
contrary when the shutter is on the two beams are recombined on the second calcite and
the resulting beam (mode b) passes through the pin-hole.

5.2 Shutter working principles
Let us sketch the working details. Calcite beam displacing prism is used to separate an
input beam into two orthogonally polarized output beams. Before passing through a sec-
ond calcite prism these are manipulated in a PC with optical axis oriented at 45◦(Fig.
5.1). When the PC is off (Fig. 5.1-(1)) it leaves the polarization state unperturbed and the
beams are further separated in the second calcite . In this situation the shutter is off, and
the output beams on modes a and c are stopped by a pin-hole. On the other hand, when the
cell is on, the PC driving voltage is set to induce a λ/2 phase shift between the ordinary
and extraordinary components and it can be activated in a short time (t < 10ns) by an ex-
ternal TTL signal. In this way the transformation −→πH ⇔−→πV is implemented. Then the two
orthogonally beams are recombined spatially and temporally in the second calcite, Fig.
5.1-(2). In this situation the output field emerges on mode b. At the end of the stage a λ/2
waveplate at 45◦ flips the polarization of the output beam to restore its initial state. It’s
worth noting that the temporal overlap between the two beams is automatically ensured
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by the symmetry of the device: the −→πH polarization component of the input beam goes
through the first calcite on a straight path whereas the −→πV component’s path is deviated.
At the exit of the first calcite the two orthogonal polarization components are separated
by a distance d = 4mm, the PC exchanges them and in the second calcite they are recom-
bined by virtue of the fact that they have experienced the same overall path deviation.
The present device can be adopted with ultra short pulses ( 200 f s). We note that this sys-
tem is also stable in phase. Indeed the two orthogonally polarized beams are subjected
to the same phase fluctuations since they propagate along parallel optical paths and share
the same optical mounts. The phase difference between the two beams can be finally
controlled by tilting the second calcite [OPW+03].

Let us now analyze the action of the shutter on an input quantum state |φ⟩ with generic
polarization −→π φ = α−→π H +β−→π V , where (α,β ) are complex numbers satisfying |α |2 +
|β |2 = 1 and π⃗H and π⃗V stand for horizontal and vertical polarization, respectively. The
evolution of |φ⟩ is investigated by looking to the Heisenberg dynamic of the creation
operator associated to the spatial mode c with polarization −→π φ : ĉ†

φ = α ĉ†
H +β ĉ†

V . After
the first calcite the operator becomes (eiχ1α ĉ†

H +eiχ2β b̂†
V ), where χ1 and χ2 are the phase-

shifts induced on the two orthogonal polarizations due to their different optical paths.
When the Pockels cell is switched, the operator evolves into : (eiχ1α ĉ†

V + eiχ2β b̂†
H), and

the output state results after the recombination in the second calcite: eiχ(α b̂†
V + β b̂†

H),
where χ = χ1+χ2. Finally, after the λ

2−waveplate, we obtain the same polarization state
as the input one α b̂†

H +β b̂†
V . On the contrary, if the cell is off, the total operator becomes

(ei2χ1α ĉ†
H + ei2χ2β â†

V ), and, in this case, the initial polarization state is lost. We note
that this scheme can be adopted in all the visible range by changing the PC voltage and
by exploiting the spectral operating range (from 350nm to 2.3µm) of the optical grade
calcite of the displacers.

The adopted electro optic cell, Lasermetrics Series 1042, was composed by the series
of two longitudinal PC of same length 35mm, powered by a high voltage of 3200V to
produce a λ/2 shift on the incident polarization and driven by the circuit reported in
Fig.5.2. The problem of realizing a fast electronic circuit transforming a TTL signal into
a calibrated fast pulse in the kV range was solved by a solid state switch HTS 50-08-UF,
characterized by a very low jitter and a lifetime typical of semiconductor devices. The
switch is triggered by a positive going pulse of 2 to 10 volts amplitude and generates the
signal shown in Fig.5.3. The pulse remains constant for a time window of almost 10ns
and decays exponentially within 500ns.

The time duration of the driver pulse has been chosen to satisfy two criteria: (a) re-
duced low-frequency components and (b) suitable activation time window. (a) The KD*P
crystal suffers the piezoelectric effect: when excited by a long high voltage pulse an
effective coupling is introduced between the corresponding low frequency spectral com-
ponents and the acoustic phononic modes of the crystal. The corresponding strain causes
a mechanical damped oscillation of the crystal for a time duration longer than the ultra
fast activation time of the shutter. This effect due to the polarizability of the Pockels cell
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Figure 5.2: Electronic driver of the
Pockels cell. When the signal of the
trigger is on the PC is activated.

is harmonically modulated. Hence, the shutter is periodically reactivated and several sub-
sequent pulses are partially transmitted. In order to eliminate this effect an ultra-short
activation pulse is required [BB06]. (b) The electronic jitter of the driver circuit, almost
1−2ns, gives a lower limit to the time activation window.
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5.3 Experimental Characterization
We describe now the experimental characterization of the shutter device. We used a pulsed
laser source centered at 800nm with a repetition rate of 250kHz and a bandwidth of
1.5nm, selected before the shutter by two interferential filters . A λ/2 waveplate (WP)
and a polarizing beam splitter (PBS) allowed to vary the polarization of the input beam
on the first calcite (fig. 5.4). A second λ

2 -WP and a PBS realized the polarization analysis
of the output beam, which was detected by a photodiode (PD).

Cell OFF

Cell ON

Pockels cell
WP

WP

PBS

PBS

Calcite 1 Calcite 2

SHUTTER

PD

WP

Figure 5.4: Experimental setup. A PBS and a λ/2 waveplate allow to vary the polarization
of the input beam. A second PBS and λ/2 waveplate analyze the polarization state of the
output beam b. The signal is detected by a photodiode (PD).

The PC was activated via the circuit above described (fig. 5.2). For different values of
the frequency of the TTL trigger signal, we measured the fidelity FON of the polarization
state when the PC was on, the transmittivity TON and the transmittivity TOFF when the
shutter was on and off respectively:

FON =
ION
i

ION
i + ION

i⊥
(5.1)

TON =
ION
i + ION

i⊥

IIN
(5.2)

TOFF =
IOFF
i + IOFF

i⊥

IIN
(5.3)

where ION
i (IOFF

i ) stands for the measured intensity on spatial mode b with polariza-
tion state πi equal to the input one when the PC is (is not) activated. ION

i⊥ (IOFF
i⊥ ) stands for

the measured intensity of the analyzed polarization state −→π ⊥
i perpendicular to the input

one −→π i. IIN stands for the incident intensity on the shutter. For a trigger signal frequency
equal to 1kHz we found the following results:
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Polarization FON (±0.001) TON (±0.001) TOFF (±0.001)
−→π+ 0.956 0.991 0.0025
−→π− 0.956 0.991 0.0025
−→πH 0.998 0.991 0.0050
−→πV 0.998 0.991 0.0020
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Figure 5.5: Transmittivity for an input state with polarization {π+,π−} and {πH ,πV}
measured with a frequency of the trigger equal to 1 kHz.

The transmittivity obtained with the shutter off gives an estimation of the extinction
power of the shutter. The mean transmittivity in this case was TOFF = 0.003. In order
to verify the absence of the piezoelectric ringing effect we report in Fig.5.5 the transmit-
tivity of the shutter as a function of time. After few µs the transmitted signal is reduced
by a factor of 100, leading to the transmission of one pulse once activated and the ex-
tinction of the subsequent pulses. When the shutter was on we obtained a mean fidelity
FON = 0.998 for −→πH and −→πV polarizations, and FON = 0.956 for −→π+ and −→π− polarizations.

We observe at last that the increase of the repetition rate causes an increase of trans-
mittivity TOFF and a decrease of fidelity FON (fig.5.6). Indeed for high repetition rate
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Figure 5.6: Fidelity of the polarization state in the {π+,π−} and the {πH ,πV} basis versus
the frequency of the trigger signal.

values, the time interval between two following trigger signals is shorter than the PC re-
covery time. By varying the frequency of the trigger signal, we have at last studied the
fidelity in the two polarization basis: {−→πH ,

−→πV} and {−→π+,
−→π−}. We report the experimental

results in fig. 5.6. The fidelity values for the states (−→π +,
−→π −) are lower due to the in-

terferometric feature of the device, however an average fidelity value as high as 97% has
been observed with the present scheme.

5.4 Observation and conclusions
In conclusion, we reported the experimental realization and characterization of a ultra
fast shutter for optical field, based on a self-stabilized interferometer, which preserves a
generic polarization state with high fidelity and exhibits a high contrast operation. This
device can have direct applications in the context of measurement induced quantum oper-
ations.
In next chapter its action will be exploited for the theoretical analysis of conditional mea-
surements performed on multiphoton states. In that context the shutter activation will be
driven by a measurement performed over a small portion of the overall macro state.
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Chapter 6

Measurement induced quantum
operations on multiphoton states

In this chapter we investigate how multiphoton quantum states obtained through optical
parametric amplification can be manipulated by performing a measurement on a small
portion of the output light field. We study in details how the macro-qubit features are
modified by varying the amount of extracted information and the strategy adopted at the
final measurement stage. At last the obtained results are employed to investigate the
possibility of performing a micro-macro non-locality test free from auxiliary assumptions.

6.1 Measurements induced protocols with multiphoton
states

The possibility of performing quantum operations in order to tailor quantum states of
light on demand has been widely investigated in the last few years. Several fields of re-
search have been found to benefit from the capability of generating fields possessing the
desired quantum properties. Non-classical states of light, such as sub-Poissonian light
[Fiu01], squeezed light [HMD+06, GAF+06] or the quantum superposition of coher-
ent states [OJTBG07a, OFTBG09], have been generated in a conditional fashion. In
this context, continuous variables (CV) quantum information represents one of the most
promising fields where conditional and measurement-induced non-Gaussian operations
can find application. To this end, quantum interactions can be induced by exploiting lin-
ear optics, detection processes and ancillary states [FMA05]. For example, the process
of coherent photon-subtraction has been exploited to increase the entanglement present in
Gaussian states [KTSC06, OJTBG07b] and to engineer quantum operations in traveling
light beams [Fiu09]. Finally, very recently conditional operations lead to the realiza-
tion of different schemes for the implementation of the probabilistic noiseless amplifier
[FBB+10, XRL+10, ZFB10], which can find interesting application within the context of
quantum phase estimation [UMW+10].

113
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Strictly related to the problem of engineering quantum states of light for applica-
tions to Quantum Information, there is the one of beating the decoherence due to losses
which affect quantum resources interacting with an external environment. In the last
few years a large investigation effort has been devoted to the decoherence process and
the robustness of increasing size quantum fields, realized by non linear optical methods
[DS05, NDSD07, DSV08, DSS09a]. Recently quantum phenomena generated in the mi-
croscopic world and then transferred to the macroscopic one via parametric amplification
have been experimentally investigated. In Ref.[DSV08] it has been reported the realiza-
tion of a resilient to decoherence multiphoton quantum superposition (MQS) [DSS09b]
involving a large number of photons and obtained by parametric amplification of a single
photon belonging to a microscopic entangled pair: |ψ−⟩ = 1√

2
(|H⟩A|V ⟩B −|V ⟩A|H⟩B),

where A,B refer to spatial modes kA,kB and the kets refer to single photon polarization
states π⃗ (π =H,V ). This process has been realized through a non linear crystal pumped by
a UV high power beam acting as a parametric amplifier on the single entangled injected
photon, i.e. the qubit |ϕ⟩B on spatial mode kB. In virtue of the unitarity of the optical
parametric amplifier (OPA), the generated state was found to keep the same superposition
character and the interfering properties of the injected qubit [De 98a, DS05, NDSD07]
and, by exploiting the amplification process, the single photon qubit has been converted
into a macro-qubit involving a large number of photons.

In this chapter we consider several strategies for the realization of measurement-
induced quantum operations on these multiphoton states, generated thought the process
of optical parametric amplification. We investigate theoretically how the measurement
strategies, applied on a part of the multiphoton state before the final identification mea-
surement, affect the distinguishability of orthogonal macro-qubits. Such measurements
based on the discrimination of multiphoton probability distributions combine features of
both continuous and discrete variables techniques. The interest in improving the capabil-
ity of identifying the state generated by the quantum injected optical parametric amplifier
(QIOPA) system mainly relies in two motivations: the first one concerns the development
of a discrimination method able to increase the transmission fidelity of the state after the
propagation over a lossy channel, and hence to overcome the imperfections related to the
practical implementation. Such increased discrimination capability in lossy conditions
could find applications within the quantum communication context. The second reason
concerns the scenario in which an appropriate pre-selection of the macro-qubits could
be adopted to demonstrate the micro-macro non-locality, free from the auxiliary assump-
tions requested if the filtering procedure was applied at the final measurement stage. In
chapter 3 a probabilistic discrimination method, the orthogonality-filter (OF), has been
introduced and it has been successfully applied [NDSD07, DSV08] to an entanglement
test in a microscopic-macroscopic bipartite system. The application of the OF strategy,
acting at the measurement stage, is indeed not suitable for the demonstration of loophole-
free micro-macro non-locality because of the presence of inconclusive results [VST+10a].
These correspond to the selection of different sub-ensembles of data, depending on the
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choice of the measurement basis. As shown by Popescu in [Pop95], the pre-selection of
data before the final measurement could encompass this problem.

Both the tasks determined above could exploit the capability to obtain at the output of the
parametric amplifier a quantum state of large size, since this scheme allows to act on a
small portion of the field in order to modify the features of the remaining part by a suit-
able selection. We consider the particular case in which a macro-state generated by the
QIOPA is split by an unbalanced beam splitter (UBS) and manipulated by measuring the
state on the reflected mode. The conceptual scheme underlying the present investigation
is shown in figure 6.1-(b): a part of the wave-function is measured and the results of the
measurement are exploited to conditionally activate an optical shutter placed in the trans-
mitted part. Such shutter, whose realization has been recently reported in Ref.[SVG+08],
is used to allow the transmission of the optical beam only in presence of a trigger event,
i.e. in this case the results of the measurement performed in the reflected part of the state.
Several detection schemes will be investigated in this chapter. In fig.6.2-I is reported the
distillation method based on the intensity pre-selection. As analyzed in more details in
section 6.2, the signal of the reflected part of the macro state is analyzed by a threshold
detector. If the measured intensity value is above a certain threshold, the shutter on the
transmitted mode is activated. This strategy allows to overcome the experimental im-
perfection related to the vacuum injection into the amplifier, and hence to distillate the
macro state from the noise belonging to the crystal spontaneous emission. In fig6.2-II is
reported the strategy illustrated in section 6.3, based on a probabilistic discrimination of
the reflected macro-qubit part performed by the OF device. By changing the polarization
analysis basis on the reflected mode, we have investigated how the macro-state visibility
obtained by a dichotomic measurement of the transmitted state is affected. In fig.6.2-III is
illustrated the measurement procedure described in section 6.4, in which both the reflected
and the transmitted mode are analyzed by a probabilistic OF-based measurement. At last,
section 6.5 addresses the case in which the reflected macro qubit part is measured in two
different polarization basis, as shown in figure 6.2-IV, and the final measurement is purely
dichotomic. This measurement strategy is aimed at the realization of a non-locality test on
the micro-macro photon state, without any auxiliary assumption. However, we show that
such scheme does not allow to obtain a violation of a Bell’s inequality since the analyzed
strategy has the effect of increasing the correlations present in the micro-macro system
only in a specific polarization basis while suppressing the correlations in the other basis.
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Figure 6.1: (a) Quantum injected optical parametric amplifier (QIOPA) scheme: an entan-
gled photon pair is generated through spontaneous parametric down conversion (SPDC).
One of the two photon is amplified by a non linear crystal, realizing the optimal phase
covariant cloning of the injected qubit. (b) Scheme of the measurement-induced quan-
tum operation process. The field is split by an unbalanced beam splitter (UBS), and
reflected portion is measured to conditionally active the optical shutter placed in the path
of the transmitted portion of the field. (c) Schematic view of the single photon Bloch
sphere. The QIOPA device performs the optimal phase covariant process, hence amplify-
ing equally all photons belonging to the equator of the sphere (red line), with polarization
π⃗ϕ = 2−1/2(⃗πH + eıϕ π⃗V ).
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Figure 6.2: Measurement strategies devoted to the distillation of the macro-qubit state: (I)
the shutter activation is conditioned to an intensity measurement on the reflected portion
of the macro state; (II) the small reflected part of the macro state is analyzed in polar-
ization and detected through an OF based measurement strategy; (III) the macro state is
split in two equal parts, and both the reflected and the transmitted components are de-
tected through an OF device; (IV) a double basis measurement is performed on the small
reflected portion of the macro qubit.



118 Measurement induced quantum operations on multiphoton states

6.2 Distillation of the macro-qubit
In this section we discuss the distillation method sketched in Fig. 6.2-(I). One of the
main experimental challenge for the realization of the micro-macro system of Fig.6.1 is
the achievement of spectral, spatial and temporal matching between the optical mode
of the injected single photon state and the optical mode of the amplifier. In realis-
tic conditions, the injected micro-macro system is given by: ρ̂ψ− = p|ψ−⟩AB⟨ψ−|+
(1− p)/2ÎA ⊗|0⟩B⟨0|, where |ψ−⟩AB = 1√

2
(|H⟩A|V ⟩B −|V ⟩A|H⟩B) is the entangled sin-

glet state connecting the spatial modes A and B, generated by the EPR source in fig-
ure 6.1, and the parameter p expresses the amount of mode-matching between the seed
and the amplifier. Then in the expression of the number of photons Nπ±(φ) gener-
ated by the amplifier when a single photon with equatorial [Fig.6.1-(c)] polarization
state |ϕ⟩ is injected, the spontaneous emission has to be taken into account: Nπ±(φ) =
p[m̄+ 1

2(2m̄+1)(1±cos(φ))]+(1− p)m̄. When the single photon is injected correctly in
the OPA, a pulse with a higher photon number is generated since stimulated emission pro-
cesses occur in the amplifier. The distillation method here presented exploits this feature
to reduce the noise introduced by the spontaneous emission of the amplifier.

Let us now discuss the propagation of the multiphoton field produced by the amplifier
and the distillation procedure obtained through an intensity threshold detector (ID) and the
shutter device. As shown in fig.6.2-I, the amplified state is split by an unbalanced beam
splitter (UBS) 0.90− 0.10 in two parts: the smaller portion on mode kD is analyzed by
the ID, and the larger one on mode kC is conditionally pushed through a polarization pre-
serving shutter [SVG+08], and measured in polarization by a dichotomic measurement.
The ID based distillation strategy allows then to obtain a better discrimination between
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the orthogonal macro states, by minimizing the noise related to the vacuum injection into
the amplifier. It’s worth nothing that, at variance with the techniques which will be intro-
duced in the following sections, the ID action is invariant for rotation on the Fock space. It
indeed selects the same region of the macro-qubit either in the {π⃗+, π⃗−} basis either in the
{π⃗R, π⃗L} one. The action of the ID on mode kD and of the shutter on mode kC allows to
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distill the macro-qubit from the noise generated by the amplifier and related to the spon-
taneous emission of the crystal. In the ideal case, this measurement corresponds to the
projection of the impinging field onto the subspace: Π̂k = ∑m+n>h |nπ,mπ⊥⟩⟨nπ,mπ⊥|,
where |nπ,mπ⊥⟩ represents a quantum state with n photons with polarization π and m
photons with polarization π⊥. The measurement method is hence based on a threshold
detection scheme, in which the ID clicks only if nπ +mπ⊥ > h, where h is a threshold con-
veniently selected. This click activates the shutter on the transmitted UBS mode, ensuring
the presence of the higher, i.e. correctly injected, pulses. This scheme has the peculiar
property of selecting an invariant region of the Fock space with respect to rotations of
the polarization basis. As said, the action of the ID device allows to decrease the noise
due to the vacuum injection into the amplifier since it preserves only the higher pulses,
and hence the ones that, with an higher probability, belong to the amplification process.
These considerations can be quantified in the following way. The parameter of interest
is the conditional injection probability, i.e. the injection probability conditioned to the
activation of the shutter given by the threshold condition of the ID. We then evaluated
numerically this quantity for several values of the un-conditioned injection probability p.
It turns out that the value of pcond is increased as shown in Fig.6.3, in which we report the
trend of the conditional injection probability pcond as a function of the ID threshold h.

6.3 Deterministic transmitted state identification

In this section we are interested in exploiting the action of a different pre-selection strat-
egy, no more based on the intensity filtering but on a comparison between orthogonally
polarized signals. This configuration is illustrated in fig.6.2-II and is based on a peculiar
feature of the equatorial macro states. Indeed, any macro-qubit belonging to the injection
of an equatorial qubit, due to the phase covariance of the amplifier, can be discriminated
through a measurement based on a comparison. Precisely, we can measure the intensity
signals belonging to orthogonal polarization components of the same macro-state and sub-
sequently compare them above a certain threshold k. If analyzed in the same polarization
basis of the injected qubit, the two signals will be unbalanced with an high probability.
This can be explained by analyzing the probability distribution of the amplified states, re-
ported in figure 6.5: (b) in the same basis as the injected qubit one and (a) in the mutually
unbiased equatorial polarization basis.

We will address two cases in which the state generated by the amplifier is either |Φ+⟩
or |ΦR⟩, obtained by the amplification of a single photon polarized π⃗+ = π⃗H+π⃗V√

2
and π⃗R =

π⃗H+i⃗πV√
2

, respectively. In both cases the analysis basis corresponding to the UBS reflected
mode is fixed to {π⃗+, π⃗−}, while the transmitted mode is analyzed in the same basis in
which the injected qubit has been encoded. Let us discuss the experimental setup shown
in Figure 6.2-II. The macro-state |Φ+⟩ (or |ΦR⟩) generated by the QIOPA impinges on the
UBS. A small portion of the field is reflected on mode kD and measured on the {π⃗+, π⃗−}
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Figure 6.4: (a) Measurement scheme adopted for the conditional activation of the shutter:
if the OF, on the reflected mode, measures the state on the green regions, the shutter,
on the transmitted mode, is conditionally activated. The green regions correspond to the
state for which the signals belonging to orthogonal polarizations are unbalanced over a
certain threshold k, i.e. |p− q| ≥ k. (b) Scheme for the final detection of the output
state: Conditioned on a measurement result in the ON region on the reflected mode,
the transmitted mode is identified by a dichotomic measurement in the {π,π⊥} basis.
The diagonal contribution to the quantum state is assigned randomly to the state |Φπ⟩ or
|Φπ⊥⟩.

Figure 6.5: (a) Probability distribution of the state |ΦR⟩ as a function of the number of
photons {π⃗+, π⃗−} . (b) Probability distribution of the state |ΦR⟩ as a function of the
number of photons {π⃗R, π⃗L}.

basis. The two signals belonging to orthogonal polarizations are then compared by an
orthogonality filter (OF). When the two signals are unbalanced, i.e. |p−q|> k, being p,q
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the number of photons π⃗+, π⃗− polarized and k an appropriate threshold, the shutter on
mode kC is activated and the field on that mode is conditionally transmitted (see Fig.6.4).
The macro-state |Φ+⟩ (|ΦR⟩) is then analyzed in the {π⃗+, π⃗−} (or {π⃗R, π⃗L} ) basis. In the
following sections we will address the problem of discriminating the final macro-state,
given the acquired information on the small portion of the reflected field.

Figure 6.6: (a) Probability of activating the shutter when the state |ΦR⟩ is analyzed in the
{π⃗+, π⃗−} basis versus the threshold k of the OF. (b) Probability of activating the shutter
when the state |Φ+⟩ is analyzed on the {π⃗+, π⃗−} basis.

6.3.1 Probability of shutter activation

Let us first evaluate the probability P of activating the shutter when the impinging state
is detected on the {π⃗+, π⃗−} basis, depending on the value of k, with an OF technique.
As shown in figure 6.6, the probability of activating the shutter is the same for the two
output fields |Φ+⟩ and |ΦR⟩. This result can be explained by considering the probability
distributions of the state |ΦR⟩ in the two mutually unbiased equatorial bases shown in
figure 6.5. Due to the linearity of the quantum mechanics, the state |ΦR⟩ can be written
as |ΦR⟩= 1√

2
(|Φ+⟩+ i|Φ−⟩). Hence, due to the peculiar features of the two macro-states

|Φ±⟩, that have non-zero contributions for terms with different parity, the probability
distribution of the macro-state |ΦR⟩ in the {π⃗+, π⃗−} basis is given as the sum of the two
probability distributions of the states |Φ+⟩ and |Φ−⟩ in the same basis. Since shot by
shot the OF identifies the state |Φ+⟩ or |Φ−⟩ with the same probability, the activation of
the shutter has the same probability of occurrence for any linear combination of |ΦR⟩ and
|Φ+⟩ impinging on the BS.
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6.3.2 Analysis of the Macro-state |Φ+⟩

Let us analyze the evolution of the state |Φ+⟩ passing through an unbalanced beam-splitter
(UBS). We start with the expression of the macro-qubit:

|Φ+⟩= 1
C2
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i j
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The UBS transformation equations for the creation operators on spatial mode b read:

b± =
√

τc±+ i
√

1− τ d± (6.2)

where the subscript ± refers to the polarization modes π⃗± = π⃗H±π⃗V
2 , and c† and d† refer to

the creation operators on the spatial modes transmitted and reflected by the UBS. Hence
after the UBS the output state becomes:
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By applying the creation operators to the vacuum state the output state reads:

|Φ+⟩out =
1
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(6.4)

Let us now consider the case in which the reflected mode by the UBS is measured on
the {π⃗+, π⃗−} basis. The state |p+,q−⟩d is detected on the reflected mode, the transmitted
state then reads:
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|Φ+⟩meas =
1
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Our scope is to investigate the visibility of the transmitted mode as a function of the
unbalancement between π⃗+ and π⃗− photons, detected on the reflected mode. Namely, if
|p−q|> k on mode kD, what is the visibility of the state |Φ+⟩meas on mode kC?
This quantity can be quantified in the following way. Due to the peculiar shape of the
photon number probability distribution (figure 6.5-(b)), the identification of the state |Φ+⟩
can be performed by discriminating between the number of photons π⃗+ and π⃗− polarized.
Let us define the following quantities: P+(m,n|p,q) is the probability that, if the state
|p+,q−⟩d is detected on spatial mode kD, m > n is obtained on spatial mode kC, and
hence the macro-state |Φ+⟩ is identified (m,n being the number of photons π⃗+ and π⃗−
polarized). On the contrary P−(m,n|p,q) is the probability that, given the detection of the
state |p+,q−⟩d on spatial mode kD, n > m is obtained on spatial mode kC, and hence the
macro-state |Φ−⟩ is identified, even if the initial state impinging on the UBS was |Φ+⟩.
We can then derive the visibility as a function of the threshold k such that |p−q|> k:

V (k) =
∑m,n ∑p,q

(
Pp,q +

m,n (k)−Pp,q +
m,n (k)

)
∑m,n ∑p,q

(
Pp,q +

m,n (k)+Pp,q −
m,n (k)

) (6.6)

where Pp,q ±
m,n (k) = P±(m,n||p − q| > k). The trend of visibility as a function of k is

reported on Figure 6.7-(a). We observe that, increasing the value of k, hence detecting
a higher unbalancement between π⃗+ and π⃗− photons on mode kD, we obtain an higher
visibility of the state on mode kC.

6.3.3 Analysis of the Macro-state |ΦR⟩
Let us consider the case in which the state |ΦR⟩ impinges on the UBS:

|ΦR⟩= 1
C2

∞

∑
i j

(
iΓ
2

) j( iΓ
2

)i √(2 j)!
j!

√
(2i+1)!

i!

×|(2i+1)R,(2 j)L⟩b =

=
1

C2

∞

∑
i j

(
iΓ
2

) j( iΓ
2

)i (b†
R)

2i+1

j!
(b†

L)
2j

i!
|0⟩

(6.7)

After the UBS the state can be written as:
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|ΦR⟩out =
1

C2

∞

∑
i j

2i+1

∑
k

2 j

∑
l

(
iΓ
2

) j( iΓ
2

)i 1
j!

1
i!

√
τk+l

√
k!

(2i+1)!(2 j)!√
(2i+1− k)!(2 j− l)!

(i
√

1− τ)2i+1+2 j−k−l
√

l!
|kR, lL⟩c|(2i+1− k)R,(2 j− l)L⟩d

(6.8)

The state on mode kD is then measured in the {π⃗+, π⃗−} basis. The state |(2i+ 1−
k)R,(2 j− l)L⟩d can then be rewritten as:

|(2i+1− k)R,(2 j− l)L⟩=
2i+1−k

∑
r

2 j−l

∑
s

1
√

2
2i+1+2 j−k−l

1√
(2i+1− k)!

1√
(2 j− l)

(
2i+1− k

s

)(
2 j− l

s

)
×√

(s+ r)!(2i+1+2 j− k− l − s− r)!i2i+1−k−ri2 j−l−s

|(r+ s)+,(2i+1+2 j− k− l − r− s)−⟩d

(6.9)

and the overall state reads:

|ΦR⟩out =
1

C2

∞
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i j

2i+1

∑
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2 j

∑
l

2i+1−k

∑
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2 j−l
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) j( iΓ
2
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√
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√
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|(r+ s)+,(2i+1+2 j− k− l − r− s)−⟩d |kR, lL⟩c (6.10)

If the state on mode kD is detected : |(r+s)+,(2i+1+2 j−k− l−r−s)−⟩d = |p+,q−⟩d ,
the state on mode kC is:

|ΦR⟩meas =
1

C2

∞

∑
i j

2 j

∑
l

2 j−l

∑
s
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iΓ
2

) j( iΓ
2
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√
p!q!

√
2

p+q
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(6.11)
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where the following conditions have to be satisfied:

p > s

2i+1+2 j > l + p+q (6.12)
2 j < l + p+q

If the state (6.11) is measured in the polarization basis {π⃗R, π⃗L} obtaining a state |mR,nL⟩c,
the corresponding probability amplitude is:

1
C2

∞

∑
j

2 j−n

∑
s
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2

) j( iΓ
2
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√
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1
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2
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√
p!q!
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√
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(i
√

1− τ)p+q 1
√

2
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(6.13)

and the probability of measuring the state |mR,nL⟩c is given by:

P(m,n|p,q) = 1
C4

∞
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∑
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∞
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∑
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Γ
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(p+q+m+n−2 j)!(2 j)!
(n+q+ s−2 j)!s!(2 j−n− s)!(p− s)!
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(p+q+m+n−2i)!(2i)!
(q+n+ r−2i)!r!(2i−n− r)!(p− r)!

(6.14)

The visibility of the macro-state reads:

V (k) =
∑m,n ∑p,q

(
Pp,q +

m,n (k)−Pp,q +
m,n (k)

)
∑m,n ∑p,q

(
Pp,q +

m,n (k)+Pp,q −
m,n (k)

) (6.15)

where Pp,q ±
m,n (k) = P±(m,n||p−q|> k). Here, PR(m,n||p−q|> k) is the probability that,

given the detection of the state |p+,q−⟩d on mode kC, n > m is obtained on mode kD
(m(n), number of photons polarized π⃗+(⃗π−)). In this case the state |ΦR⟩ is identified;
conversely the state |ΦL⟩ is detected even if the the state |ΦR⟩ impinged on the UBS.

We observe that the visibility of the state |ΦR⟩ in the case in which a small portion of
the overall state is measured on the {π⃗+, π⃗−} polarization basis, is a decreasing function
of the threshold k (|p− q| > k). This trend is shown in figure 6.7-(c). The decreasing
trend of visibility can be explained by considering that the measurements in the two po-
larization basis correspond to two non-commuting operators acting on the same initial
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state. Indeed, for asymptotically high values of the threshold k → ∞, the measurement
of the Π̂i operators that describe the OF tends to the measurement of the pseudo-spin
operators Σ̂i: i.e Σ̂1 = |Φ+⟩⟨Φ+|− |Φ−⟩⟨Φ−| or Σ̂2 = |ΦR⟩⟨ΦR|− |ΦL⟩⟨ΦL|. In view of
this consideration, the measurement on the kC mode corresponds to the measurement of
the Σ̂i operators. The information gained on this mode about one of the two pseudo-spin
operator acting on the macro qubit does not allow to gain information about orthogonal
pseudo-spin operator. As a further remark, let us stress that this feature of the OF mea-
surement is related to the filtering of different regions of the Fock space depending on
the analyzed basis. The portion of the state that survives the action of the OF is indeed
different if measured on the {π⃗+, π⃗−} basis or in the {π⃗R, π⃗L} one and is shown in figure
6.8.

6.4 Probabilistic transmitted state identification

In the previous sections we have shown how the visibility of the macro qubit obtained by a
pure dichotomic measurement can be modified if a small portion of the beam is identified
by a probabilistic measurement strategy.

Figure 6.7: (a)-(b)Trend of the visibility of the state |Φ+⟩ measured in the basis {π⃗+, π⃗−}
as a function of the threshold k. (c)-(d) Trend of the visibility of the state |ΦR⟩ measured
in the basis {π⃗+, π⃗−} as a function of the threshold k. The numerical results have been
obtained for the value of the gain parameter g = 1.1.
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Figure 6.8: Selected region for the |Φ+⟩ state after the measurement with an OF in the
{π⃗+, π⃗−} basis. (a) Photon number distribution in the {π⃗+, π⃗−} basis. (b) Photon number
distribution in the {π⃗R, π⃗L} basis.

This section addresses the trend of the macro-states visibility when the field is split in
two equal parts by a 0.5/0.5 beam-splitter and both the reflected and the transmitted states
are detected through the OF device. In this case the measurement schemes are shown in
figures 6.2-(III) and 6.9: the OF technique is applied in order to extract the maximum
information available from the two measured states.

We consider the case in which the portion on the reflected mode is analyzed in the
polarization basis orthogonal to the codification one. In figure 6.10 is reported the trend of
visibility as a function of the threshold k on the transmitted mode, and h on the reflected
one. The two polarization analysis basis are chosen to be mutually unbiased. It can
be seen that for equal values of the two thresholds h = k the visibility reaches a value
around 0.64, the same obtained through a pure dichotomic measurement, without any
pre-selection procedure on the macro-state. In figure 6.11 is reported the trend of the
visibility as a function of the threshold on the reflected mode, keeping fixed the value
of the threshold on the transmitted one. We can see that the visibility of the transmitted
state decreases when the threshold on the reflected mode increases. If the threshold on the
transmitted mode is greater than the one on the reflected mode, the visibility results to be
higher than 0.64, as expected by the action of the OF, which allows a better discrimination
of the macro-state, measured in the codification polarization basis. Otherwise it can be
seen how, increasing the threshold k above the threshold h, the visibility decreases below
the “no filtering value”.

From the analysis performed in this chapter we can conclude that the macro states are
not suitable for secure communication. The action on a portion of the state can indeed
be seen as an eavesdropping attack. If the state is measured in the codification basis,
the visibility of the final state results to increase as shown in figure 6.7-(a)-(d). This
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Figure 6.9: (a) Conditional activation of the shutter: if the OF acting on the reflected mode
measures the state on the green regions, the shutter, on the transmitted mode, is condition-
ally activated. The green regions correspond to the state for which the signals belonging
to orthogonal polarizations are unbalanced over a certain threshold k, i.e. |p−q| ≥ k. (b)
Corresponding to the ON region on the reflected mode, the transmitted mode is identi-
fied by a probabilistic measurement in the {π,π⊥} basis. The identification condition is
|m−n| ≥ h.
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Figure 6.10: Trend of the visibility
of the state |ΦR⟩ for different values
of the threshold k on the transmitted
mode and of the threshold h on the
reflected one. The numerical result
has been obtained for a value of the
parameter g = 1.2.

means that the conclusive results for the eavesdropper would coincide with the conclusive
results for the receiver, and the eavesdropper can gain information on the macrostates
without introducing noise. Otherwise if the state is measured by the eavesdropper in the
wrong basis, the visibility at the receiver is not affected if the state is measured above a
certain filtering threshold. According to these considerations, an eavesdropper could then
develop a strategy in which he measures its part of the transmitted state in two bases. With
this approach he could gain information on the transmitted signal by considering only the
measurement outcome in the right basis, and only a small amount of noise is introduced
by keeping the filtering thresholds above a certain value. Related to the security of the
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macro-states is the possibility of performing a non-locality tests upon them. We will
address this problem in the following section.
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Figure 6.11: Trend of the macro-
state visibility as a function of the
threshold k on the reflected mode,
fixed the threshold k on the trans-
mitted one.

6.5 Pre-selection for entanglement and non-locality tests

In this section we shall investigate a pre-selection scheme based on a conditional operation
driven by the measurement of a portion of the multiphoton state in two different polar-
ization basis. The setup of this pre-selection scheme is reported in fig.6.2-IV. A small
portion of the generated multiphoton state is reflected by an unbalanced beam-splitter of
transmittivity T = 0.9 and subsequently split by a 50/50 beam-splitter in two equal parts.
One of the two parts is measured in an equatorial {π⃗β , π⃗β⊥} basis by two photomultipliers,
and the photocurrents {Iβ , Iβ⊥} are analyzed by an O-Filter device [Fig.6.4]. The other
part undergoes the same measurement process in a different equatorial basis {π⃗β ′, π⃗β ′

⊥
}.

When the threshold condition |Iπ − Iπ⊥| > k [Fig.6.4] is realized in both branches,
measured respectively in the polarization basis {π⃗β , π⃗β⊥} and {π⃗β ′, π⃗β ′

⊥
}, a TTL elec-

tronic signal is sent to conditionally activate the optical shutter placed in the optical path
of the remaining part of the multiphoton state. Then, the field is analyzed at the mea-
surement stage with the dichotomic strategy discussed in the previous paragraphs. For
this pre-selection method, the relevant parameter is the angle ϕ between the two bases
{π⃗β , π⃗β⊥} and {π⃗β ′, π⃗β ′

⊥
} in which the small portion of the beam is analyzed. The angle

ϕ is defined according to the relations between the two polarization bases:

π⃗β ′ = eı ϕ
2

[
cos
(

ϕ
2

)
π⃗β − ısin

(
ϕ
2

)
π⃗β⊥

]
(6.16)

π⃗β ′
⊥

= eı ϕ
2

[
−ısin

(
ϕ
2

)
π⃗β + cos

(
ϕ
2

)
π⃗β⊥

]
(6.17)
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Let us begin by analyzing the trend of the visibility of the fringe pattern obtained by
varying the equatorial polarization π⃗α of the injected single-photon state in the amplifier.
More specifically, we analyze how the visibility changes as a function of the angle ϕ be-
tween the two bases of the pre-selection branch. In Fig.6.12 we show the numerical results
obtained by calculating the visibility according to the standard definition V = Imax−Imin

Imax+Imin
. In

this case, the visibility is evaluated according to the following expression:

V (k)=
∑m>n Pα

[
m,n

∣∣(|Iβ − Iβ⊥ |> k)∩ (|Iβ ′ − Iβ ′
⊥
|> k)

]
−∑m<n Pα

[
m,n

∣∣(|Iβ − Iβ⊥ |> k)∩ (|Iβ ′ − Iβ ′
⊥
|> k)

]
∑m>n Pα

[
m,n

∣∣(|Iβ − Iβ⊥ |> k)∩ (|Iβ ′ − Iβ ′
⊥
|> k)

]
−∑m<n Pα

[
m,n

∣∣(|Iβ − Iβ⊥ |> k)∩ (|Iβ ′ − Iβ ′
⊥
|> k)

]
(6.18)

Here Pα

[
m,n

∣∣(|Iβ − Iβ⊥|> k)∩ (|Iβ ′ − Iβ ′
⊥
|> k)

]
is the photon-number distribution of the

state |Φα⟩ after the pre-selection stage. More specifically, the value of α is chosen in order
to maximize the contribution of the ∑m>n term and minimize the contribution of the ∑m<n
term:

Imax = ∑
m>n

Pα

[
m,n

∣∣(|Iβ − Iβ⊥|> k)∩ (|Iβ ′ − Iβ ′
⊥
|> k)

]
(6.19)

Imin = ∑
m<n

Pα

[
m,n

∣∣(|Iβ − Iβ⊥|> k)∩ (|Iβ ′ − Iβ ′
⊥
|> k)

]
(6.20)

Eq.(6.18) then coincides with the usual definition of visibility. We note that the visi-
bility is higher for smaller angles ϕ , since in that case a strong projection of the state is
performed in two close bases. This condition is equivalent to the scheme of Fig.6.2-(II),
where the O-Filter measurement performed in one basis allows to obtain a better discrimi-
nation of the detected state only in the polarization basis of the pre-selection measurement
[Fig.6.7 (a)-(b)]. When ϕ is high, a lower visibility can be achieved since the projection
of the macrostate occurs in two distant bases. In this case, the increasing effect of the
pre-selection in one basis on the visibility is in contrast with the decreasing effect of the
pre-selection in the other basis, as shown in Sec.III.

We conclude this section by discussing the feasibility of a non-locality test by ex-
ploiting the proposed pre-selection method. We consider the case of a CHSH inequality
[CHSH69]. Let us briefly summarize in the light of a local hidden variable (LHV) theory
the content of Bell’s inequalities for a set of dichotomic observables. Consider a quantum
state described by the density matrix ρ̂ defined in the Hilbert space H1 ⊗H2. Define
Ôi

a the positive operator acting on subspace H1, and the probability of finding the value
i after the measurement a as given by Tr

[
ρ̂(Ôi

a ⊗ Î)
]
. The same relation holds for the

positive operator Ô j
b acting on subspace H2.

The existence of a LHV model implies that the expectation values of the a and b ob-
servables are predetermined by the value of the parameter λ : {Xa)(λ ),Xa′(λ ),Xb(λ ),Xb′(λ )},
hence the product a · b is equal to Xa(λ )Xn(λ ). For a fixed value of λ the variables Xn
with n = {a,b,a′,b′} take the values −1,1 and satisfy the CHSH inequality:
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Figure 6.12: (a) Trend of the visi-
bility for the double-filtering tech-
nique as a function of the angle ϕ
between the two polarization bases
{π⃗β , π⃗β⊥} and {π⃗β ′, π⃗β ′

⊥
} of the

pre-selection measurement. Square
black points correspond to k = 3,
circular red points to k = 5 and tri-
angular green points to k = 7. (b)
Filtering probability of the scheme
as a function of the threshold k
at the pre-selection measurement
stage. All graphs correspond to g =
1.2.

Xa(λ )Xb(λ )+Xa(λ )Xb′(λ )+Xa′(λ )Xb(λ )−Xa′(λ )Xb′(λ )≤ 2 (6.21)

The same inequality holds by integrating this equation on the space of the hidden variable
(λ ):

∫
Ω

dP(λ )Xa(λ )Xb(λ )+
∫

Ω
dP(λ )Xa(λ )Xb′(λ )+∫

Ω
dP(λ )Xa′(λ )Xb(λ )−

∫
Ω

dP(λ )Xa′(λ )Xb′(λ )≤ 2

(6.22)

where P(λ ) is the measure of the λ probability space. If there is a local hidden variables
model for quantum measurement taking values [−1,+1], then the following inequality
must be satisfied:

SCHSH = Eρ(a,b)+Eρ(a,b
′
)+Eρ(a

′
,b)−Eρ(a

′
,b

′
)≤ 2 (6.23)

where Eρ(a,b) =
∫

Ω Xa(λ )Xb(λ )dP(λ ). The violation of (6.23) proves that a LHV vari-
ables model for the considered experiment is impossible.
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We consider the case in which the angle ϕ between the two bases {π⃗β , π⃗β⊥} and
{π⃗β ′, π⃗β ′

⊥
} is set at ϕ = π/4. This choice is motivated by the following considerations. On

one side, low values of ϕ would lead to a micro-macro state possessing strong correlations
only in one polarization basis, thus not allowing to violate a Bell’s inequality. On the
other side, high values of ϕ does not allow to obtain the necessary enhancement in the
correlations of the micro-macro system to violate a Bell’s inequality. The obtained fringe
patterns for the chosen case are reported in Fig.6.13 and corresponds to the following
conditions. The (+1) outcome of the dichotomic measurement is recorded as a function
of the polarization π⃗α of the injected single photon state. In particular, the two chosen
equatorial polarization bases {π⃗β , π⃗β⊥} and {π⃗β ′, π⃗β ′

⊥
} corresponds to β = 0 and β ′ = π

4 .
We then analyzed three different choices for the threshold k at the pre-selection stage.
When the threshold k is set to 0, the fringe pattern corresponding to the two basis β = 0
and β = π

4 are mutually shifted of an angle π
4 , since no filtering and no pre-selection is

performed on the state. When the threshold k is increased, the mutual shift between the
fringe pattern is progressively reduced and canceled, since a strong filtering of the state is
performed. In particular, the maximum of both the fringe pattern in the β = 0 and β = π

4
bases is obtained for the |Φα⟩ state with α = π

8 . This means that this pre-selection strategy
for sufficiently high value of k enhances the correlations in the micro-macro system in a
specific polarization basis and suppresses the correlations in the other bases. For this
reason, the proposed strategy does not allow to observe the violation of a Bell’s inequality
in the micro-macro system here analyzed. The enhanced value of the visibility could
nevertheless be employed in quantum lithography and quantum metrology schemes, in
which high visibility correlations pattern and high photon number regimes are required.
Recently it has indeed been shown how the amplification process of a single photon probe
can beat the detrimental effect of losses which happen in the transmission and detection
stages [VST+10b]. Such a scheme for non invasive quantum metrology could benefits
from the presented filtering procedures in order to improve the visibility value of the
interference fringe pattern.
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Figure 6.13: Fringe pattern as a function of the angle α of the polarization basis at the
single-photon site. The angle ϕ between the two bases of the pre-selection stage is set
at ϕ = π/4. (a) Threshold k = 0. (b) Threshold k = 3. (c) Threshold k = 5. Square
black points: fringe patterns obtained by recording the (+1) outcome at the measurement
stage, where the measurement basis {π⃗β , π⃗β⊥} is set at β = 0. Circle red points: fringe
patterns obtained by recording the (+1) outcome at the measurement stage, where the
measurement basis {π⃗β , π⃗β⊥} is set at β = π

4 .

6.6 Observations and Conclusions
In this chapter we have analyzed the properties of the macro states obtained by a quantum
injected amplification process, by addressing the behavior of the indistinguishability be-
tween orthogonal macro-states when a filtering process is applied over a portion of them.
More specifically, we analyzed theoretically in details several schemes for the realization
of conditional measurement-induced operations. All these strategies are aimed at the ma-
nipulation and distillation of the macro-states for their applications in different contexts,
such as the realization of a non-locality test or quantum communication.

We have identified a strategy, based on the ID device, able to minimize the effects of
the noise due to the vacuum injection into the amplifier. The ID based filtering procedure
is independent on the analysis basis and selects the same portion of the state when the
measurement is performed in any equatorial polarization basis.

A different filtering procedure, based on the OF device, has been deeply studied: it
turned out that when a small portion of the state is analyzed through the OF, the visibility
of the overall state, relative to a dichotomic measurement, is affected in a different way
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depending on the polarization basis in which the small portion has been measured. If the
polarization basis is the same of the macro qubit codification, the final visibility increases
with the increase of the filtering threshold, otherwise it decreases. This behavior is related
with the impossibility of measuring non commuting operators on the same quantum state,
as explained in Section III.

We have further addressed in Sec.IV the trend of the macro state visibility when an OF
discrimination system is used even at the transmitted state detection stage. In this case,
the two OF apparatus in both transmitted and reflected branches play an opposing role
in increasing or decreasing the visibility of the fringe-pattern obtained in a micro-macro
configuration. Such analysis shows that the macro-states generated by optical parametric
amplification of a single-photon state are not suitable for quantum cryptography, since
they are not robust under an eavesdropping attack.

Finally, in Sec.V we addressed a pre-selection scheme for the realization of a Bell’s
inequality test which do not suffer the same detection loopholes of the one based on post-
selection strategies [VST+10a]. The proposed method, based on the measurement of the
reflected part of the wave-function in two different bases, does not allow to violate a Bell’s
inequality, since it induces the collapse of the correlations present in the macro-states in
only a single polarization basis.

Several open points remain to be investigated. The measurement-induced operations
analyzed in this chapter are all based on dichotomic detection schemes. Other approaches,
such as the ones based on continuous variables measurements or on the processes of
coherent photon-addition and photon-subtraction, can lead to a different manipulation of
the QIOPA multiphoton states. Systems with different properties from the one analyzed
in this chapter could be obtained with these methods.
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Figure 6.14: Conceptual scheme of the present work: in this part the colored boxes will
be addressed. Different application to quantum information protocols are addressed.

In this part different applications of multiphoton states to quantum information prob-
lems are investigated. A first application is related with quantum metrology: the use of
multiphoton quantum states can indeed be exploited in order to obtain a greater sensitiv-
ity for the estimation of a physical parameter of interest such as, in our case, a phase. In
chapter 7 it is shown that a scaling factor in the available sensitivity in an interferometrical
experiment can be observed when instead of a coherent state a multiphoton state, gener-
ated by a collinear source, is used. The analysis is then enlarged to the case in which a
2-photon NOON state is injected into the amplifier. In that case the scaling factor in the
sensitivity goes with an increase in the detected signal respect to the spontaneous emis-
sion case. In chapter 8 the minimally invasive metrology scenario is addressed. In that
case the amplification of a single photon probe, used to estimate a phase, results into an
enhancement in the sensitivity, which is no more related with a scaling factor, but turns
out to be a constant factor depending on the non linear gain of the amplifier and on the
losses regime. This protocols works well in the high losses regime, in which dominant
losses happen after the amplification, at the detection stage. The high resilience to losses
of multiphoton states, obtained by an amplification process of single photon states, is then
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addressed in chapter 9, where the non resonant interaction between the QIOPA field and
a BEC system is investigated.



Chapter 7

Optical Parametric Amplifier and
NOON states

NOON states are path entangled states which can be exploited to enhance phase resolution
in interferometric measurements. In this chapter we will show that the output of a high-
gain optical parametric amplifier can be intense yet exhibits quantum features, namely,
sub- Rayleigh fringes, such as the ones shown by the few photons NOON states. We
will investigate multiphoton states generated by a high-gain optical parametric amplifier
operating with a quantum vacuum input for a gain values up to 2.5 [SVD+08]. And
then we will analyze the quantum states obtained by optical parametric amplification of
polarization NOON states [GCD+08, VSSD09]. Finally, we will compare the stimulated
emission regime with the spontaneous one, finding comparable visibilities between the
two cases but an enhancement of the signal in the stimulated case.

As a final step, we will show that the collinear amplifier cannot be successfully used
for amplifying N-photon states with N>2 due to the intrinsic λ

4 oscillation pattern of the
crystal. To overcome this limitation, we propose to adopt a scheme for the amplification
of a generic state based on a non-collinear QIOPA and we show that the state obtained by
the amplification process preserves the λ

N feature and exhibits a high resilience to losses.
Furthermore, an asymptotic unitary visibility can be obtained when correlation functions
with sufficiently high order M are analyzed.

7.1 NOON states features
NOON states are path entangled states of the form:

|ψ⟩= 1√
2
(|N⟩k1|0⟩k2 + |0⟩k1|N⟩k2) (7.1)

where k1 and k2 stand for the spatial modes. A phase shift ϕ introduced onto the single
photon path, induces a shift between the two components equal to Nϕ , this allows to ob-
serve a sub Rayleigh resolution in interferometric measurements which scales as λ

2N , λ
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being the wavelength of the field [DCS01]. NOON states are then quite useful in quantum
lithography applications, in which a resolution greater than the one imposed by Rayleigh
λ
2 is required [BKA+00].
In the context of classical interferometry the intensity generated by the interference of
two field impinging on a screen is proportional to ∆(x) = 1+ cos(kx) = 1+ cos(φ), with
k = 2π

λ and φ = kx representing the phase difference associated with the path difference
x. The Rayleigh criterion imposes that the minimal spatial resolution that can be achieved
corresponds to the minimum distance between a maximum and a minimum of the result-
ing fringe pattern: φmin = π , from which xmin = λ

2 . This limit can be overcome by using
NOON states in a quantum lithography experiment. Let us analyze a simple interferomet-
ric setup, shown in figure 7.1:

Figure 7.1: Interferometric scheme used
in quantum lithography experiment.

A symmetric BS is placed on the two beams path, which enter by the input ports A
and B. The output fields are reflected by two mirrors and represent the path C and D of
the interferometer. The phase shift associated with the path difference between the two
arms is simulated by dephasing medium which induces a a difference φ on the upper arm
of the interferometer. The two input ports A and B can be identified by the creation op-
erators â and b̂ which satisfy the usual commutation relations:

[
â, â†] = [b̂, b̂†

]
= 1 and[

â, b̂
]
= 0. We can then consider the impinging field on plane S proportional to the sum

of the operators ĉ and d̂ associated with the arms C and D of the interferometer. The fields

ĉ and d̂ are connected with the fields â and b̂ from the relation: T̂
[

â
b̂

]
=

[
ĉ
d̂

]
, the ma-

trix T̂ is the transfer matrix, which in our case is given by the product between matrices:

B̂ = 1√
2

(
−1 i
i −1

)
, R̂ =

(
−1 0
0 −1

)
, and P̂ =

(
eiφ 0
0 1

)
, which represent the ac-

tion of the BS, mirror and dephasing medium, respectively. It turns out that: T̂ = P̂R̂B̂.
The output fields, expressed as a function of the input fields are: ĉ = (â− ib̂)eiφ/

√
2

and d̂ = (−iâ+ b̂)/
√

2 . The total electric field, impinging on the screen S is then: ê =

ĉ+ d̂ = 1√
2

[
(eiφ + i)â+(1− ieiφ)b̂

]
. The absorption rate of the N photons onto the screen

S is then proportional to the operator δ̂N ≡ (ê†)N(ê)N/N!, and it can take different form
depending on the input state into the interferometer. If we consider as input in the inter-
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ferometer the single photon state |ψI⟩= |1⟩A|0⟩B, we obtain:

∆1(φ) = ⟨ψI|δ̂1|ψI⟩= 1− sinφ (7.2)

if at the input there is a classical state, it turns out that:

∆c
2(φ) = ⟨ψc

II|δ̂2|ψc
II⟩=

3
2
−2sin(φ)− 1

2
cos(2φ) (7.3)

in which the term cos(2φ), which presents a sub-Rayleigh resolution, appears. If the input
state is given by a quantum state such as |ψq

2 ⟩ = |1⟩A|1⟩B the two photon absorption rate
takes the form:

∆q
2(φ) = ⟨ψq

II|δ̂2|ψq
II⟩= 1+ cos(2φ) (7.4)

this interference pattern allows to obtain a resolution equal to xmin
2 = λ/4.

The state |ψq
II⟩ = |1⟩A|1⟩B in input into the BS, becomes at the exit an entangled state:

|ψE⟩=
(
|0⟩A′ |2⟩B′ + |2⟩A′ |0⟩B′

)
/
√

2. After the phase φ the state reads:
|ψE(φ)⟩=

(
|0⟩C|2⟩D + e2iφ |2⟩C|0⟩D

)
/
√

2.
This result can be extended to the N-photons NOON case as follows: for an impinging
state equal to: |ψE⟩ =

(
|0⟩A′ |N⟩B′ + |N⟩A′ |0⟩B′

)
/
√

2 at the exit of the BS, we would
obtain: |ψE(φ)⟩=

(
|0⟩C|N⟩D + eNiφ |N⟩C|0⟩D

)
/
√

2, and the resulting interference pattern
would be: ∆q

N(φ) = ⟨ψq
N |δ̂2|ψq

N⟩= 1+cos(Nφ) which allows to obtain a resolution equal
to λ/2N. The generation of NOON state with increasing N can in principle be obtained by
using materials with non-linear suscettivity χ(N) [PST98], in which the interaction of the
field with the crystal produces N photons by spontaneous parametric down conversion.
Another approach exploits the adoption of (N − 1) crystals with non-linear suscettivity
χ(2) [PST98]. These proposals are nevertheless difficult to realize experimentally, and up
to now, quantum lithography experiments have involved up to four-photons NOON states
[MLS04, NDSD07].

7.1.1 Interferometrical pattern and decoherence
In this section we recall the interferometrical pattern of the NOON state looking at how
the state features are affected by losses.
We begin with the polarization entangled NOON state |ψN⟩1 =

1√
2
(|N+⟩− |N−⟩)1. In

this case the N-photon state is entangled in the polarization degree of freedom and be-
longs to the spatial mode k1. Introducing a phase shift φ between the two orthogo-
nal polarizations, the state reads |ψN

φ ⟩1 =
1√
2

(
|N+⟩− eıNφ |N−⟩

)
1, where |pξ ⟩ refers to

the quantum state with p photons polarized −→π ξ . The M-th order correlation function

G
(M)
seed = ⟨ψN

φ |â
†M
H âM

H |ψN
φ ⟩ reads, for M=N:

G
(N)
seed =

N!
2N

[
1+(−1)N+1 cos(Nφ)

]
(7.5)
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while for M < N all the functions do not exhibit any oscillation behaviour and have the
expression:

G
(M)
seed =

N!
2M(N −M)!

(7.6)

In order to simulate losses in the transmission path and non unitary detection effi-
ciency, we now introduce a Beam Splitter (BS) of transmittivity η , as shown in Fig.7.2.

Figure 7.2: Decoherence model of the interferometric process. The phase shift in the
NOON state |ψN⟩ is inserted by a Babinet compensator, while the BS with efficiency η
models the decoherence process. The signal is then analyzed in polarization by the PBS
and the N photons absorbing device R(N).

The density matrix after the decoherence process, obtained by the insertion of the I/O
BS relations and by tracing on the unrevealed reflected mode, becomes:

ρ̂loss = ηN ρ̂NOON +
N−1

∑
i=0

(
N
i

)
η i (1−η)N−i ρ̂i (7.7)

where ρ̂NOON = |ψN
φ ⟩⟨ψN

φ | is the density matrix of a pure NOON state, and
ρ̂i =

1
2 [|i+,0−⟩⟨i+,0−|+ |0+, i−⟩⟨0+, i−|] is the density matrix of a mixed i photons

state. Only the first part of this quantum state contributes to the N-th order correlation
function, and the successful events rate is reduced by a factor ηN . We finally obtain that
the correlation function after losses reads:

G
(N)
loss = ηNG

(N)
seed (7.8)

We propose in the following sections to exploit an amplification process in order to
improve the robustness to losses of these states without losing their λ

N sub-Rayleigh fea-
ture.
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Figure 7.3: (a) Experimental scheme
for quantum lithography based on spon-
taneous parametric down-conversion.
The 2-photon absorption is simulated
through a 2-photon coincidence detec-
tion. (b) Configuration based on polar-
ization entangled beams.

7.2 Sub-Rayleigh resolution by an unseeded high-gain op-
tical parametric amplifier

In the section we experimentally investigate the properties of the optical parametric am-
plifier (OPA) operating in the high gain regime. Instead of dealing with path entangled
states, we consider the generation of entangled states over the same mode but with or-
thogonal polarizations, respectively, horizontal (−→π H) and vertical (−→π V ). The scheme
is shown in Fig.7.3. The non-linear crystal (BBO) is pumped by a high-power laser.
The first order contribution to the output field is the twin photons state over the same
mode: 2−1/2 (|2⟩+ |0⟩−+ |0⟩+ |2⟩−

)
= |1⟩H |1⟩V , with −→π ± = 2−1/2(−→π H ±−→π V ). Such

polarization-entangled photons can be easily converted to path entangled via an addi-
tional polarizing BS. The PBS of Fig.7.3-(b) mixes the two polarization components −→π +

and −→π − as the second BS of Fig.7.3-(a) mixes the two different path modes, similar ar-
rangements of polarization NOON were adopted in Ref.[MLS04, WPA+04].

Let us introduce the generic quantum states generated by the OPA acting on the vac-
uum fields |0⟩H |0⟩V . The interaction Hamiltonian of the optical parametric amplification
Ĥcoll = iχ h̄â†

H â†
V +h.c. acts on the single spatial mode k1. A fundamental physical prop-

erty of Ĥcoll consists of its expression for any polarization basis belonging to the equatorial
basis. Indeed Ĥcoll can be written as 1

2 iχ h̄
(

â†2
+ + â†2

−

)
+ h.c. where â†

± are the creation

operators for the −→π ± polarization modes, respectively. The output state over the mode k1
of the unseeded optical parametric amplifier is found to be:

|Φ⟩= 1
C

+∞

∑
n=0

Γn |n⟩H |n⟩V =
1
C

+∞

∑
i, j=0

Γi+ j |2i⟩+ |2 j⟩− (7.9)

with C ≡ coshg, Γ ≡ tanhg, being g the non linear (NL) gain [DS05]. This state is
usually called a two-mode squeezed state. The average photon number created per po-
larization mode is equal to n = sinh2 g. In the interferometric setup the output state
is shifted by a phase φ in the basis {−→π +,

−→π −}. Hence the output state is detected
in the basis {−→π H ,

−→π V}; adopting a polarizing beam splitter (PBS). For different val-
ues of the phase φ , the quantum state |Φ⟩ is analyzed through two different second-
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Figure 7.4: Experimental layout. The radiation generated in the NL crystal is spectrally
filtered by an interferential filter (IF) with bandwidth equal to 3nm and spatially selected
adopting a single mode (SM) fiber.
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Figure 7.5: Coherent state as input field. (a) G(1)
1 : Count rates DA

1 versus the phase φ . (b)
G(2)

11 : Coincidence counts [DA
1 ,D

B
1 ] versus the phase φ.

order correlation functions G(2)
12 = ⟨Φ|c†

1c†
2c2c1 |Φ⟩ and G(2)

11 = ⟨Φ|c†
1c†

1c1c1 |Φ⟩ where

{c†
1 =

(
cos φ

2 â†
H − isin φ

2 â†
V

)
ei φ

2 ,c†
2 =

(
−isin φ

2 â†
H + cos φ

2 â†
V

)
ei φ

2 } are the output modes

of the PBS. By tuning φ it is found G(2)
12 (φ) = n2 + 1

2(n
2 +n)(1+ cos2φ) and G(2)

11 (φ) =
2n2 + 1

2(n
2 + n)(1− cos2φ) [NBBA01]. The corresponding visibilities of the obtained
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fringe patterns read V (2)
1 = n+1

5n+1 and V (2)
12 = n+1

3n+1 . We observe that a non-vanishing visi-

bility is found for any value of g : V (2)
1 (g → ∞) = 1

5 and V (2)
12 (g → ∞) = 1

3 . The two fringe
patterns exhibit a dependence on 2φ and hence a period equal to λ

2 . This feature can be
exploited to carry out interferometry with sub-Rayleigh resolution, i.e., with fringe period
lower than λ , in a higher flux regime compared to the two photon configurations.

7.2.1 Experimental setup and results
We now briefly describe the experimental configuration: Fig.7.4. The excitation source
was a Ti:Sa Coherent MIRA mode-locked laser further amplified by a Ti:Sa regenerative
REGA device operating with pulse duration 180fs at a repetition rate of 250kHz. The
output beam, frequency-doubled by second harmonic generation, provided the excitation
beam of UV wavelength λP = 397.5nm and power 300mW. The horizontally polarized
UV beam was then adopted to pump a non-linear BBO crystal, which generated pairs of
photons with polarization π⃗H and π⃗V over the modes k1 with same wavelength λ = 2λP.
This source allows us to obtain a high value of the gain g, which depends on the pumping
power: g ∝

√
PUV . Compared to conventional pulsed sources used to pump SPDC pro-

cess, which achieve g ≃ 0.1, the energy per pulse is enhanced by a factor ≃ 400, leading
to an increase of the gain value in the range of 20− 40 depending on the focal length of
the UV beam. The pumping power could be tuned adopting a half-wave plate and a po-
larizing beam splitter (PBSUV ). The output state of BBO crystal with wavelength λ was
spatially separated by the fundamental UV beam through a dichroic mirror (DM), then

(a) (b)
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Figure 7.6: (a) G(2)
12 : two-photon coincidence counts [DA

1 ,D2] versus the phase φ in-
troduced by the Soleil-Babinet compensator (g = 1.4). Circle data: expected acciden-
tal (without correlations) coincidence rates. (b) G(2)

11 : two-photon coincidence counts
[DA

1 ,D
B
1 ] versus the phase φ (g = 1.4). Variations of the detectors signal (∼ 10%) due to

different couplings of polarizations π⃗H and π⃗V with fiber have been corrected by normal-
izing coincidence counts with signal rates.
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spectrally filtered adopting an interferential filter (IF) with bandwidth equal to 3nm and
then coupled to a single mode fiber in order to select spatially a single mode of emission.
A λ/2 waveplate and a BBO with thickness of 0.75mm provided the compensation of
walk-off effects. At the output of the fiber, after compensation (C) of the polarization
rotation induced by the fiber, a phase shifting φ was introduced adopting a Soleil-Babinet
compensator (B). The output radiation was then analyzed through a polarizing beam split-
ter (PBS) and detected adopting single photon detectors SPCM-AQR14 (DA

1 ,D
B
1 ,D

C
1 ,D2).

To characterize the detection apparatus, a coherent state with wavelength λ and polariza-
tion π⃗H was fed into the mode k1. The count rates DA

1 and the coincidence rates [DA
1 ,D

B
1 ]

were measured versus the phase φ: Fig.7.5. High visibility patterns have been observed
with a period equal to λ .
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Figure 7.7: (a) Visibility versus non-linear gain. The continuous line corresponds to the
function Vmax ×V (2)

1 (g). (b) Excitation rate versus non-linear gain. The continuous line

corresponds to the function R(2)
(αg) where the parameter α has been optimized by fitting

the data and reads 0.85.

As a first experimental step we have characterized the two-photon state generated
by SPDC in the low gain regime. The visibilities have been found V (2)

12 = (85± 2)%
and V (2)

1 = (80± 1)%. The discrepancy with the expected values V = 1 is attributed
to double-pair emission and to experimental imperfections. The same measurement has
been carried out increasing the UV pump beam in order to measure the fringe patterns
for different gain values. The gain has been estimated with the method introduced in
Ref. [EKD+04, CDP+06]. Fig.7.6 refers to the configuration g = 1.4. The visibilities
have been found to be V (2)

12 = (16.8± 0.6)% and V (2)
1 = (15± 1)%. The sub Rayleigh

resolution is clearly shown by the experimental data of Fig.7.6. For the sake of complete-
ness the value of V (2)

1 has been measured for different gains: Fig.7.7-(a). The continuous
line shows the expected theoretical function V (2)

1 (g) multiplied by the extrapolated visi-
bilities for g → 0 : Vmax = 0.85. We attribute the discrepancy between experimental and
theoretical visibilities to partial multimode operation of the optical parametric amplifier
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[TR04].
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Figure 7.8: (a) Circle data: G(2)
1 (two-

photon coincidences [DA
1 ,D

B
1 ]) versus

the phase φ ; Square data: G(3)
1 (three-

photon coincidences [DA
1 ,D

B
1 ,D

C
1 ]) ver-

sus the phase φ (g = 2.4) (b) Excita-
tion rate versus non-linear gain. The
continuous line corresponds to the func-
tion R(3)

(g). Inset: visibility V (3)
1 versus

non-linear gain.

To estimate the dependence of the excitation rate from the NL gain g, the maxima and
the minima of the fringes have been measured versus the pumping power. The average
data are reported in Fig.7.7-(b). Our experiment validates the result found by Agarwal et
al. [ACB+07] showing an exponential dependence on the parameter g. The expected two-
photon excitation rate reads R(2)

= 2σ (2)(n+5n2) where σ (2) is a generalized two-photon
excitation cross section [ACB+07]. Fig.7.7-(b) shows how the excitation efficiency scales
quadratically with the light intensity, in contrast with the two-photon SPDC regime; which
leads to a linear dependence [JG90, PST98].

As further demonstration of the potentialities of the present approach, the simultane-
ous detection of three photons over the same mode has been investigated. The average
three photon excitation rate reads R(3)

= 12σ (3)(7n3 + 3n2) where σ (3) is a generalized
three-photon excitation cross section and the visibility of the fringes is theoretically found
as V (3)

1 = 3n+3
7n+3 [ACB+07]. Again a non-vanishing value of V (3)

1 is found for any value of

g : V (3)
1 (g → ∞) = 3

7 and the patterns exhibit a period equal to λ
2 . Furthermore an increase

of visibility is expected V (3)
1 > V (2)

1 . To demonstrate such a feature the three-photon co-
incidence rate G(3)

1 has been measured versus the phase φ: Fig.7.8-(a). An increase of
the visibility has been found V (3)

1 = (21.6±0.6)%, the experimental dependencies of the
three photon absorption rates and visibilities are shown in Fig.7.8-(b).
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In order to investigate the connection between the quantum feature of the state and the
visibility of the fringe pattern, we have introduced a decoherence between the two polar-
ization components {π⃗H , π⃗V} or {π⃗+, π⃗−} with a quartz crystal (Q) with a length equal
to 20mm. This device introduces a temporal delay higher than the coherence time of the
multiphoton fields. The G(2)

1 has been first measured without the quartz: Fig.7.9. When
the decoherence affects the {π⃗H , π⃗V} components, we observe a reduction of visibility
down to (4.8± 0.6)%; on the other hand when the decoherence involves the {π⃗+, π⃗−}
we observe the disappearance of the fringe patterns. The inversion of the maxima and
minima of the square data compared to the circle data, a phenomenon not expected in the
single-pair regime, is due to the reduction of the bunching effect among photons detected
on the same polarization mode when decoherence is introduced.
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Figure 7.9: Effects of coherence on fringe visibility. Square data: 2-photon coincidences
counts versus the phase φ without introducing decoherence. Circle data: decoherence
introduced between the polarization components{π⃗H , π⃗V}. Triangle data: decoherence
introduced between {π⃗+, π⃗−}.

7.3 Amplification of NOON states
We have seen that the weak value of the generated number of photons in a NOON state
strongly limits the potential applications to quantum lithography and quantum metrology.
Furthermore a NOON state, as any superposition of macroscopic states, is “supersensi-
tive” to losses. Hence for a N-photon state a fractional loss 1

N would destroy the quantum
effect responsible for the phase resolution improvement.
A natural approach to increase the number of photons and to minimize the effect of losses
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Figure 7.10: (a)Unseeded optical para-
metric amplifier . (b) Amplification of a
polarization entangled NOON state.

is to exploit the process of stimulated emission.
In the previous sections we have seen how the output radiation of an unseeded optical
parametric amplifier (OPA) can be exploited to show the typical λ/4 feature [DSV08]
Fig.7.10-(a). In the present section we investigate the task of the amplification of pho-
tonic NOON states by two different devices, both based on a quantum injected optical
parametric amplifier (QIOPA). In Sec.7.4 we study both theoretically and experimentally
the amplification of a 2 photon state by a collinear QIOPA, as shown schematically in
Fig.7.10-(b), investigating how the features of the state are modified when the entangle-
ment is broadcasted via amplification over a large number of particles. An experimental
comparison with the spontaneous field Fig.7.10-(a) of the collinear OPA, that intrinsically
has a λ

4 feature [DSV08], shows that the visibilities in the two regimes are comparable,
while the injected case manifests an increase of the signal due to the stimulated emission
process. We then show that this device cannot be successfully used to amplify a generic
N-photon state since the typical λ

2N feature of the seed is lost. Finally, in Sec.7.5, we
propose to exploit a non-collinear QIOPA in order to amplify a generic state maintain-
ing the interference pattern of the seed, showing that significant value of the visibilities
can be achieved by investigating high-order correlation functions. Finally, the effects of
losses are investigated, demonstrating that the amplified field exhibits a higher resilience
to losses with respect to a pure NOON state.

7.4 Collinear amplification of a 2 photon NOON state

In this section we study, both theoretically and experimentally, the amplification of a two-
photons polarization-entangled NOON state exploiting an optical parametric amplifier
working in a collinear configuration. It will be shown that this device cannot be used to
amplify a generic N-photons state as its λ

2N oscillation pattern is masked by the intrinsic
oscillation of the amplification crystal.
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7.4.1 Theoretical approach
As a first step we consider the generation of a two photon NOON state by spontaneous
parametric down conversion in a first crystal over the two polarization mode −→π + and
−→π −, on the same spatial mode k1. The state generated is |ψ2⟩1 = 1√

2
(|2+⟩− |2−⟩)1 =

|1H;1V ⟩1, where |p+;q−⟩ stands for the quantum state of p photons polarized −→π + and
q photons polarized −→π −.

The amplification of the state |ψ2⟩1 is realized by injecting the quantum state into a
QIOPA acting on the input field k1. The interaction Hamiltonian of the optical parametric
amplification Ĥcoll = iχ h̄â†

1H â†
1V +h.c. acts on the spatial mode k1. The output state over

the mode k1 is:

|Φ2⟩1 =
1
C

∞

∑
n=0

Γn−1
( n

C2 −Γ2
)
|nH;nV ⟩1 (7.10)

with C = coshg, Γ = tanhg, being g the non-linear gain of the amplification process
[DS05].
The peculiar λ/4 interference path feature of a two photon NOON state, can be investi-
gated by performing an interferometric measurement on the amplified field. To this end
a phase shift θ is introduced, after the amplification stage, in the {−→π +,

−→π −} basis, cor-
responding to a rotation of an angle θ/2 in the basis {−→π H ,

−→π V}. The state is then ana-
lyzed in polarization and detected adopting single photon detectors. The amplified signal
can be evaluated by the first order correlation function G

(1)
N=2 = 1⟨Φ2|ĉ†

1ĉ1|Φ2⟩1, where

ĉ†
1 =

(
cosθ/2â†

1H − sinθ/2â†
1V

)
is the transmitted mode of a polarizing beam splitter

(PBS). We find that G
(1)
N=2 = 3n+1, independently of the phase value θ , with n = sinh2 g.

The state generated by the amplifier is then investigated through the second order corre-
lation function G

(2)
N=2 = 1⟨Φ2|ĉ†

1ĉ†
1ĉ1ĉ1|Φ2⟩1. By tuning the phase shift θ , we find that the

expression of the second order correlation function is:

G
(2)
N=2 = 2n(4+7n)+

1
2
(7n2 +7n+1)(1− cos(2θ)) (7.11)

The corresponding visibility of the obtained fringe pattern is calculated accordingly
to the general definition:

V
(M)

N =
G

(M)
N (max)−G

(M)
N (min)

G
(M)
N (max)+G

(M)
N (min)

(7.12)

where M is the order of the correlation and N is the number of photon of the injected seed.
In the case of eq.(7.11) the visibility reads:

V
(2)

N=2 =
7n2 +7n+1

35n2 +23n+1
(7.13)

We observe that a non-vanishing visibility is found for any value of g : V
(2)

N=2(g →
∞) = 1

5 . The fringe pattern exhibits a dependence on 2θ and hence a period equal to
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Figure 7.11: Theoretical trend of the
visibility in function of the number of
photons generated by the amplification
in the two cases: spontaneous and stim-
ulated.

λ
2 . This feature can be exploited to carry out interferometry with sub-Rayleigh resolu-
tion, i.e., with fringe period lower than λ , in a higher flux regime compared to the two
photon configurations. The interest in amplifying a NOON state belongs to the trend of
visibility as a function of the number of generated photons. Recently, as said, it has been
demonstrated [DSV08] that the output field of a collinear parametric amplifier working in
spontaneous emission regime shows a λ/4 feature. There an unseeded optical parametric
amplifier working in collinear regime was pumped by an UV beam. The output radiation,
after a phase shifter, was analyzed in polarization. The fringe pattern visibility in that
case was V

(2)
N=0 =

n+1
5n+1 . The asymptotical values of visibilities in the two regimes, sponta-

neous and stimulated, are equal; on the contrary for an intermediate number of generated
photons the visibility in the amplified regime is higher than that in the spontaneous one
as shown in Fig. 7.11-(a). Hence, the injection of a seed with theoretical visibility equal
to 1 leads to an advantage in the visibility for the amplified field with respect to the case
of spontaneous emission. We note that the same average number of photons in the two
regimes is achieved for different values of the gain. In the spontaneous regime the average
photons number generated by the amplifier is ⟨n̂⟩sp = 2sinh2 g, on the contrary, for the
same gain value, in the stimulated regime we have: ⟨n̂⟩stim = 2+ 6sinh2 g. For a value
of the gain g = 0 the number of photons in the stimulated case is ⟨n̂⟩stim = 2, unlike the
spontaneous case in which ⟨n̂⟩sp = 0. In both cases the value of visibility tends to 1 for
g → 0. By analyzing the trends of visibilities in Fig.7.11-(b) we see that the advantage
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of amplifying a NOON state holds until ⟨n̂⟩ ≃ 30.
An enhancement of the fringe pattern can be obtained by evaluating the M-th or-

der visibility V
(M)

N=2, with M > 2, corresponding to the M-th order correlation function at

time t: G
(M)
N=2 = 1⟨ψ2|[ĉ†

1(t)]
M[ĉ1(t)]M|ψ2⟩1. This calculation have been performed in the

Heisenberg picture, where the field operator ĉ†
1(t) is the time evolution of the analyzed

field ĉ†
1 solving the Heisenberg equations for the collinear OPA. We calculated the first 6

orders correlation functions, obtaining the following visibilities:

V
(2)

N=2 =
1+7n+7n2

1+25n+35n2 (7.14)

V
(3)

N=2 =
12+48n+39n2

12+84n+91n2 (7.15)

V
(4)

N=2 =
12+291n+822n2 +567n3

12+291n+1078n2 +903n3 (7.16)

V
(5)

N=2 =
135+1315n+2845n2 +1705n3

135+1315n+3245n2 +2201n3 (7.17)

V
(6)

N=2 =
45+1745n+10080n2 +17507n3 +9245n4

45+1745n+10080n2 +18657n3 +10621n4 (7.18)

The theoretical plots of the visibilities are reported in Fig.7.12. We observe that an in-
creasing trend is obtained by exploiting correlation functions with higher order M. This
means that analyzing a higher order absorption process the contrast of the fringe pat-
tern is enhanced. This feature was also predicted in the spontaneous emission regime in
[ACB+07], and experimentally observed in [DSV08].

7.4.2 Experimental verification

The previous theoretical results have been experimentally verified adopting an injected
high-gain optical parametric amplifier. The experimental setup is sketched in Fig 7.13.

The excitation source was a Ti:Sa Coherent MIRA mode-locked laser amplified by
a Ti:Sa regenerative REGA device operating with pulse duration 180fs at a repetition
rate of 250kHz. The output beam, frequency-doubled by second harmonic generation,
provided the excitation beam of UV wavelength (wl) λP = 397.5nm and power 750mW.
The UV beam was split in two beams through a λ/2 waveplate and a polarizing beam
splitter (PBS) and excited two BBO (β -barium borate) NL crystals cut for type II phase-
matching. The pump power of beam kP was set in order to have a negligible proba-
bility to generate three couples of photons (< 10%). Let us describe how the 2-photon
state |ψ2⟩1 = 2−1/2 (|2+⟩− |2−⟩)1 = |1H;1V ⟩1 was conditionally generated on mode
k1. We adopted the scheme demonstrated by Eisenberg et al [EKD+04]: Crystal 1, ex-
cited by the beam kP, is the spontaneous parametric down-conversion (SPDC) source
of entangled photons of wavelength λ = 2λP, emitted over the two output modes ki
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Figure 7.12: Plot of the visibilities V
(M)

N=2 with 2 ≤ M ≤ 6 for the collinear QIOPA in
stimulated emission with the injection of a 2-photon NOON state as a function of the
nonlinear gain g. Straight line corresponds to V

(2)
N=2, dashed line to V
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N=2, dotted line to

V
(4)

N=2, dash-dotted line do V
(5)
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N=2.

(i = 1,T ), where T stands for the trigger mode, in the state |Ψ−
2 ⟩1T = 1√

3
(|2H⟩1|2V ⟩T −

|1H;1V ⟩1|1H;1V ⟩T + |2V ⟩1|2H⟩T ). The two photons associated to mode kT were cou-
pled into a single mode fiber and excited two single photon counting module (SPCM)
{DT ,D∗

T}. The state |1H;1V ⟩T was detected on mode kT by measuring the coincidences
between detectors {DT ,D∗

T} in the {−→π H ,
−→π V} polarization basis on mode kT leading to

the conditional preparation of the state |1H;1V ⟩1 on mode k1.

The amplification of the injected 2-photon state was achieved by superimposing the
pump beam on mode k′

p and the field on mode k1 on crystal II exploiting a dichroic mir-
ror (DM) with high reflectivity at λ and high transmittivity at λp. The output radiation
was then analyzed through a polarizing beam splitter (PBS) and detected adopting single
photon detectors SPCM-AQR14 (DA

1 ,D
B
1 ,D1).

In order to characterize the state produced by the first crystal, a measurement of the
second order correlation function of the injected field, without the contribution of the
UV pump beam on crystal 2, was carried out. The typical λ/4 fringe pattern was mea-
sured by the fourfold coincidences between detectors {D1,DB

1 ,DT ,D∗
T}, through evalu-

ation of the second order correlation function G(2)
seed = 1⟨ψ2|ĉ†

1ĉ†
2ĉ2ĉ1|ψ2⟩1, where ĉ†

2 =(
sinθ/2â†

1H + cosθ/2â†
1V

)
= ĉ†

1⊥ . The obtained visibility V
(2)

seed = (63± 4)% is lower
than the expected one, due to the experimental imperfections and to the emission of higher
number of photons by the first crystal. In Fig.7.14 we report the oscillation of the injected
field with (Fig.7.14-(b)) and without (Fig.7.14-(a)) the conditional generation of the two



154 Optical Parametric Amplifier and NOON states

Figure 7.13: Experimental scheme adopted to amplify a 2-photon state.By measuring
coincidences between detector {DT ,D∗

T} on spatial mode kT, the state on spatial mode
k1 is prepared in the two-photon NOON state |ψ2⟩1.The rate of the trigger signal was
around 10.000Hz and the rate of coincidences between (DT ,D∗

T ) was around 400Hz.

Figure 7.14: (a)Fringe pattern of the
two-fold-coincidences between detec-
tors {DB

1 ,DT} (b) Fringe pattern of the
four-fold-coincidences between detec-
tors {D1,DB

1 ,DT ,D∗
T}.

photon NOON state by the first crystal. As shown, the two-fold coincidences present a λ
period and the λ/4 feature is displayed only by the fourfold coincidences Fig.7.14-(b).

We characterized then the state generated by the second crystal by evaluating the
correlation function G (2) in the spontaneous, by detecting coincidences between detec-
tors {DA

1 ,D
B
1 ,DT}, and stimulated regime, by detecting coincidences between detectors

{DA
1 ,D

B
1 ,DT ,D∗

T} , for a value of the NL gain g = 2 [EKD+04, CDP+06]. We observed
that the λ/2 period has been preserved by the amplification process Fig.7.15-(a). The
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Figure 7.15: (a) Oscillation fringe pat-
terns in the stimulated and spontaneous
regimes. The unbalanced minima are
due to a different coupling of the π⃗H
and π⃗V polarized signals with the sin-
gle mode fiber. (b) Visibility value
V

(2)
N=2 as a function of NL gain g in the

spontaneous (triangular dots) and stimu-
lated case (circular dots). Experimental
(points) and theoretical trend of visibil-
ity in the stimulated regime (curve) are
shown. The theoretical curve used are:
Vsp = 0.85V

(2)
N=0 and Vstim = 0.85V

(2)
N=2.

The factor 0.85 has been inserted to con-
sider experimental imperfections. The
curves are parametric plotted as a func-
tion of the respective number of gener-
ated photons, which are ⟨n̂⟩sp = 2sinh2 g
and ⟨n̂⟩stim = 2 + 6sinh2 g. Data in
the spontaneous regime refer to work
[DSV08].

minima, at 105◦ and 150◦, correspond to polarizations π⃗H and π⃗V . The unbalancing
between the two values of the absorption rate is due to a different coupling of the two
orthogonal linear polarizations with the single mode fiber. This effect is related with the
distinguishability, i.e spectral difference, between the ordinary and extraordinary wave
vectors cones generated by the second crystal during the amplification process. The vis-

ibility has been evaluated through the definition V =
C(4)

max−C(4)
min

C(4)
max+C(4)

min

, where C(4) is the value

of the fourfold coincidences. In particular, only a portion of the global fringe pattern
of Fig.7.15 has been used to calculate the visibility. Only the maximum and the adja-
cent minimum which exhibit the higher contrast were considered, as a π

N interval of the
fringe pattern, showing a λ

2N resolution, is necessary for quantum lithographic applica-
tions. By the same measurement we observe the fringe patterns for different gain values
by increasing the UV pump beam. We report in Fig. 7.15-(b) the trend of visibility as a
function of the number of photons generated: the spontaneous visibilities have been taken
from [DSV08]. The experimental data are compared with theoretical predictions in both
regimes: spontaneous and stimulated. The theoretical trends have been scaled by a factor
0.85, that was the asymptotical visibility obtained in the spontaneous case in [DSV08],
due to experimental imperfections. In the amplified case the experimental asymptotical
visibility is affected both by experimental imperfections and by the emission of higher
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number of photons by the first crystal. We observe that both the data points for increasing
gain values move away from the theoretical trends. This can be due to a partial multimode
operation of the parametric amplifier [TR04]. We conclude that the value of visibility in
the two regime is almost the same, but an enhancement of the signal in the stimulated
case has been observed. Indeed the probability of observing a sub-Rayleigh phenomenon
is proportional to the second order correlation function G (2) in both regimes. By the

theory, the stimulated signal is seven time higher than the spontaneous one: G
(2)
N=2

G
(2)
N=0

= 7.

Experimentally we can evaluate this ratio by the following method: the probability of
detecting coincidences in the spontaneous case is Psp =

C(2)

R , where C(2) are coincidences
between detectors {DA

1 ,D
B
1} and R is the repetition rate. In the stimulated case it reads :

Pstim = C(4)

Ξ , where C(4) are coincidences between detectors {DT ,D∗
T ,D

A
1 ,D

B
1}, and Ξ are

coincidences between detectors {DT ,D∗
T} on trigger mode, that is the rate of injection of

the two photon NOON state in the QIOPA per second. Hence the ratio between the two
probabilities is : Pstim

Psp
= (6.21±0.8).

7.4.3 Amplification of N > 2 states
As last step, we investigate the amplification of N-photon NOON states with N>2 with
the same device. The injection of a 3-photon state |ψ3⟩1 = 2−1/2 (|3+⟩− |3−⟩)1 leads to
an amplified wave function of the form:

|Φ3⟩= 1√
12C4

∞

∑
i, j=0

(Γ
2

)i (−Γ
2

) j

i! j!

{√
(2i+3)!2 j!|(2i+3)+,(2 j)−⟩−

√
2i!(2 j+3)!|(2i)+,(2 j+3)−⟩

}
+

− Γ
√

3
2C2

∞

∑
i, j=0

(Γ
2

)i (−Γ
2

) j

i! j!

{√
(2i+1)!2 j!|(2i+1)+,(2 j)−⟩+

√
2i!(2 j+1)!|(2i)+,(2 j+1)−⟩

}
(7.19)

Let us analyze the expression of the quantum state in equation (7.19). We expect the
third order correlation function to have oscillation in all the three harmonics θ , 2θ and
3θ . In fact, the first part of the wave function contains the sum of quantum states of the
form |2i+ 3,2 j⟩− |2i,2 j + 3⟩. These are analogous to 3 photons NOON states with a
common background 2i,2 j generated by the crystal, thus leading to a λ

3 period. The same
argument holds for the second part of eq.(7.19), as the unbalancement of only 1 photon
determines a λ period. We finally expect the presence of a λ

2 period due to the couple
emission of photons by the crystal.
Explicit calculation of the third order correlation function gives the result:

G
(3)
N=3 = a(n)+b(n)cos(θ)+ c(n)cos(2θ)+d(n)cos(3θ) (7.20)

where a(n) = 6+342n+1782n2 +1824n3 and c(n) = 1
2

[
81n+369n2 +288n3] are third

degree polynomial in n, while b(n) = 3
2

[
3n2 +3n+1

]
and d(n) = −27

2

[
n+n2] are sec-

ond degree polynomial in n. We find, as said, the presence of oscillating terms at the three
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fundamental harmonics in θ , 2θ and 3θ . The term in 2θ is dominant for high gain values,
and the intrinsic oscillation of the crystal with period λ

2 suppresses the amplitude of the
oscillations with λ

3 period. Hence this apparatus based on the collinear QIOPA device
cannot be used for the amplification of a generic state, as the interference pattern of the
seed is masked during the amplification process.
Hence in order to preserve the λ

2N phase oscillation after the amplification process, a dif-
ferent amplifier device, not containing an intrinsic phase oscillation, has to be employed.

7.5 Non collinear amplifier

In this section we study the amplification of NOON states exploiting an Optical Paramet-
ric Amplifier working in a non-collinear configuration. The interaction Hamiltonian of
this device is [DS05]:

Ĥint = ıh̄χ
(

â†
1π â†

2π⊥
− â†

1π⊥
â†

2π

)
+h.c. (7.21)

where π,π⊥ stand for any two orthogonal polarizations, as this configuration is invariant
under SU(2) rotations.
The proposed scheme is shown in Fig.7.16.

After the preparation of the seed, the state is injected on mode k1 in the amplifier
together with the pump beam kp to obtain the amplification process. A phase shift θ
is then introduced between the two polarization π⃗+, π⃗− and the M-th order absorption
process is performed in R(M). An unbalanced BS with transmittivity η will be subse-
quently introduced in Sec.7.5.4 to simulate losses and non unitary efficiency of detection.
This scheme corresponds to evaluating the M-th order correlation defined by the operator
Ĝ(M) = [ĉ†

1(t)]
M[ĉ1(t)]M, where ĉ†

1 is the creation operator associated to the revealed mode
correspondind to the Heisenberg evolution of the field operator â1H :

Figure 7.16: Experimental setup for the amplification of a NOON state by a non-collinear
amplifier, implemented by a type-II cut BBO crystal in non collinear configuration. The
state |ψN⟩1 is injected into the input mode k1. The BS is inserted in order to simulate
losses.
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ĉ†
1(t) =

1√
2

[
â†

1+(t)− eıθ â†
1−(t)

]
(7.22)

The time evolution of the field operators in the crystal is derived from the interaction
Hamiltonian of the non-collinear OPA (7.21). The Heisenberg equations gives:

â†
1+(t) = â†

1+ cosh(g)+ â2− sinh(g) (7.23)

â†
1−(t) = â†

1− cosh(g)+ â2+ sinh(g) (7.24)

where g = χtint is the non-linear gain of the process.

7.5.1 Spontaneous emission
Let us study the interferometrical feature of this device in the spontaneous emission case.
It will be shown that the spontaneous emitted field does not show any oscillation patterns
for any orders of correlation.
The unitary time evolution operator in the interaction picture for the non-collinear OPA
can be written in the form [DS05]:

Û = eΓ(â†
1+â†

2−−â†
1−â†

2+)e− lnC(1+n̂1++n̂1−+n̂2++n̂2−)

eΓ(â1−â2+−â1+â2−)
(7.25)

where C = cosh(g) and Γ = tanh(g). Applying this operator to the input vacuum state we
obtain:

|Φ⟩= 1
C

∞

∑
n=0

Γn
n

∑
m=0

|(n−m)+,m−⟩1|m+,(n−m)−⟩2 (7.26)

The M-th order correlation function, calculated in the Heisenberg picture shows that
there is no oscillation pattern in the spontaneous radiation. Let us ignore for now the
effects of losses, and evaluate G

(M)
0 = ⟨0|Ĝ(M)|0⟩. The M-th order correlation operator

reads:

Ĝ(M) =
1

2M

[
â†

1+C+ â2−S− eıθ â†
1−C− eıθ â2+S

]M
×

×
[
â1+C+ â†

2−S− e−ıθ â1−C− e−ıθ â†
2+S
]M (7.27)

where S = sinh(g). This operator can be written, using the multinomial expansion, as:

Ĝ(M) =
1

2M

(
∑
i, j,k

gi jk(â
†
1+)

M−i− j−k(â2−)
i(â†

1−)
j(â2+)

k

)

×

(
∑

l,m,n
g∗lmn(â

†
1+)

M−i− j−k(â2−)
i(â†

1−)
j(â2+)

k

) (7.28)
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where:

gi jk =

(
1√
2

)M( M
i, j,k

)
(−1) j+k

(
eıθ
) j+k

CM−i−kSi+k (7.29)

and the sums are extended as ∑M
i=0 ∑M−i

j=0 ∑M−i− j
k=0 .

The average of Ĝ(M) on the vacuum input state gives:

G
(M)
0 = M!S2M (7.30)

This expression is independent on the phase for any order of the correlation. Thus, no
intrinsic phase oscillation pattern is present in the radiation emitted in the spontaneous
regime by the non collinear OPA, as expected from the form of the interaction Hamilto-
nian of eq.(7.21).

7.5.2 Amplified NOON quantum state
First we calculate the quantum state in the interaction picture. The amplified field is
obtained, with a procedure completely analogous to the spontaneous emission case calcu-
lated in Sec.7.5.1, by applying the operator (7.25) to the injected state: |ΦN⟩ = Û |ψN⟩1.
The output state reads:

|ΦN⟩= 1√
2
√

N!CN+1

∞

∑
n=0

Γn
n

∑
m=0

(−1)m×

×

[√
(n−m+N)!
(n−m)!

|(n−m+N)+,m−⟩1 −
√

(m+N)!
m!

|(n−m)+,(m+N)−⟩1

]
|m+,(n−m)−⟩2

(7.31)

Let us analyze the expression (7.31): the N-photons in excess on the two polarization
modes with respect to the spontaneous emission case of eq.(7.26) are responsible for
the λ

2N fringe pattern. Hence the original N photons in the injected state are added to a
background field emitted by the crystal.

7.5.3 M-th order correlation function
We now calculate the generic M-th order correlation function with the injection of a
NOON state defined by the average G

(M)
N =1 ⟨ψN |Ĝ(M)|ψN⟩1. It will be shown that the

original features of the injected seed will be maintained. It will be explicitly demonstrated
that the correlation functions of order M < N do not have any oscillation patterns, while
the ones with M ≥ N exhibit sub-Rayleigh λ

2N feature.
The value of the correlation functions can be calculated in the Heisenberg picture anal-
ogously to the spontaneous case of Sec.7.5.1. We obtain the following expression for
G

(M)
N :
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G
(M)
N =

M!
2M

{
M−N

∑
i=0

N

∑
j=0

C2 jS2(M− j)
(

N
j

)(
M
i, j

)
+

+
M

∑
i=M−N+1

M−i

∑
j=0

C2 jS2(M− j)
(

N
j

)(
M
i, j

)
+

−(−1)M C2NS2(M−N)

[
M−N

∑
i=0

(
M

i,N

)]
cos(Nθ)

} (7.32)

for M ≥ N, while for M < N we obtain:

G
(M)
N =

M!
2M

M

∑
i=0

M−i

∑
j=0

C2 jS2(M− j)
(

M
i, j

)(
N
j

)
(7.33)

The form of eq.(7.32) explicitly shows the λ
N period of the emitted radiation, as only

constant or oscillating terms in Nθ are present.

7.5.4 Losses and decoherence effects
We are now interested in studying the effects of losses and of non unitary efficiency of
detection on the amplified field. We introduce an unbalanced BS of transmittivity η in
spatial mode k1 (Fig. 7.16). The two BS input modes are labelled by b̂†

1(t) and ĉ†
1(t),

where the second one is the OPA output mode and the first one is the vacuum input lossy
channel. The revealed output mode corresponds to the field operator:

d̂†
1(t) =

√
η ĉ†

1(t)+ ı
√

1−η b̂†
1(t) (7.34)

where the BS I/O relations have been used. The M-th order correlation function G̃
(M)
N =

b1⟨0|c1⟨ψN |
{
[d̂†

1(t)]
M[d̂1(t)]M

}
|ψN⟩c1|0⟩b1 reads:

G̃
(M)
N =

M

∑
i, j=0

(
√

η)i+ j
(

ı
√

1−η
)2M−i− j

(−1)M− j ×

b1⟨0|c1⟨ψ
N |
{
[ĉ†

1(t)]
i[b̂†

1]
M−i[ĉ1(t)] j[b̂1]

M− j
}
|ψN⟩c1|0⟩b1

(7.35)

The input vacuum field on mode b̂1 imposes the constraints i = M and j = M when
we evaluate the average. The correlation function G̃

(M)
N then reads:

G̃
(M)
N = ηM

c1⟨ψ
N |[ĉ†

1(t)]
M[ĉ1(t)]M|ψN⟩c1 = ηMG

(M)
N (7.36)

Hence, the presence of losses and of the non unitary efficiency of detection do not
change the oscillation pattern of the amplified field, but only reduce the efficiency of the
process by a factor ηN . The main difference between the pure NOON state and the am-
plified field is in their resilience to losses. For the injected state, as explained in Sec.7.1.1,
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the loss of just a single photon cancels the λ
N behaviour of the field and only a fraction

ηN contributes to the successful events rate. On the contrary, for the amplified field the
non-linear gain of the process can be chosen so that ηMn ≫ 1. In this condition, the large
majority of the pulses give contribution to the M-th order correlation and the successful
events rate is substantially not reduced.

7.5.5 Asymptotical visibilities
Knowing the correlation function, we can calculate the visibilities associated to this M-
photon absorption processes. We can see by the form of eq.(7.36) that the visibility asso-
ciated to the M-th order correlation function is not affected by losses and by non unitary
detection efficiency. Restricting our attentions to the asymptotical visibilities, correspond-
ing to g → ∞ and hence to an ideal infinite number of photons in the emitted field, we
obtain for a NOON state with N=2,3,4 the following expressions:

Ṽ
(M)

N=2(n → ∞) =
M2 −M

M2 +7M+8
(7.37)

Ṽ
(M)

N=3(n → ∞) =
M3 −3M2 +2M

M3 +15M2 +56M+48
(7.38)

Ṽ
(M)

N=4(n → ∞) =
M4 −6M3 +11M2 −6M

M4 +26M3 +203M2 +538M+384
(7.39)

The plot of these three functions are reported in Fig.7.17. We observe that the values
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Figure 7.17: Plot of the asymptotic (g → ∞ and n → ∞) M-th order correlation function
as a function of the order M in three cases. The square data corresponds to the injection
of a 2-photons state, the circular data to a 3-photons state and the triangular data to a
4-photons state.

of the visibilities grow with the order of correlation M and decrease as the number of
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photons of the injected states increases. This is due to the characteristic of the N-photon
NOON seed, which implies an increase of both the minimum and the maximum of the
fringe pattern proportional to the number of photons N.

7.6 Observations and Conclusions
In this chapter we investigated the features of the field produced by an optical parametric
amplifier working both in a spontaneous and in a stimulated regime. We have shown that
in both cases the oscillation patterns of the generated field presents a sub Rayleigh feature,
typical of two photons NOON states. The amplification of a two photons NOON state
using two different scheme both based on the process of optical parametric amplification
has then be addressed. We proposed to use a collinear optical parametric parametric
amplifier to amplify a 2-photon entangled state, maintaining in the output field the λ

4
pattern of the injected seed. We analyzed the problem theoretically and experimentally
, comparing the amplified with the spontaneous emission regime analyzed in [DSV08].
We found experimentally that the two regimes have comparable visibilities, while the
advantage of the stimulated case is a significant increase of the number of photons in the
emitted radiation. We then showed that this device, due to the intrinsic λ

4 oscillation of
the radiation emitted by the crystal, cannot be used to amplify a generic N photon states.
We then proposed to use a non-collinear optical parametric amplifier to amplify a generic
NOON state. We showed that the oscillation period of the seed is maintained during the
amplification process and the visibility reaches an asymptotical unitary value when the M-
th order correlation function with sufficiently high value of M is analyzed. Furthermore,
we showed that the amplified field exhibits a high resilience to losses with respect to the
extreme sensitivity of the NOON states.



Chapter 8

Enhanced resolution of lossy
interferometry by coherent
amplification of single photons

In the quantum sensing context most of the efforts to design novel quantum techniques
of sensing has been constrained to idealized, noise-free scenarios, in which effects of
environmental disturbances could be neglected. In the present work, we propose to ex-
ploit optical parametric amplification to boost interferometry sensitivity in the presence
of losses in a minimally invasive scenario. By performing the amplification process on
the microscopic probe after the interaction with the sample, we can beat the losses detri-
mental effect on the phase measurement which affects the single photon state after its
interaction with the sample, and thus improve the achievable sensitivity [VST+10b].

8.1 Quantum sensing
The aim of quantum sensing is to develop quantum methods to extract the maximum
amount of information from a system with minimal disturbance upon it. Indeed, the
possibility of performing precision measurements by adopting quantum resources can
increase the achievable precision going beyond the semiclassical regime of operation
[GLM04, GLM06]. The employ of a quantum probe and entangled measurement schemes
in order to estimate a classical parameter can beat the standard quantum limit imposed
on the accuracy of the measurement [Hel76]. In the case of interferometry, this can be
achieved by the use of the so-called N00N states, which are quantum mechanical su-
perpositions of just two terms, corresponding to all the available photons N placed in
either the signal arm or the reference arm. The use of N00N states can enhance the
precision in phase estimation to 1/N, thus improving the scaling of the achievable pre-
cision with respect to the employed resources [BKA+00, Dow08]. This approach can
have wide applications for minimally invasive sensing methods in order to extract the
maximum amount of information from a system with minimal disturbance. Imaging of

163



164Enhanced resolution of lossy interferometry by coherent amplification of single photons

Figure 8.1: Scheme for the phase measurement. (a) Interferometric scheme adopted to
estimate the phase (ϕ ) introduced in the mode k2. (b) Interferometric scheme adopting a
single photon and the optical parametric amplifier: the amplification of the single photon
state is performed before dominant losses.

biological samples and of an ancient artifact are examples of situations where it is clearly
beneficial to use as weak light as necessary to achieve a desired level of measurement
precision. In the quantum domain there is an even stronger motivation for minimally
invasive measurements since the back action of the measurement actually changes the
state of the quantum system under investigation. The experimental realization of proto-
cols involving N00N states containing up to 4 photons have been realized in the last few
years [DCS01, WPA+04, MLS04, EHKB05, NOO+07]. However these quantum states,
suitable for quantum metrology protocols, result extremely fragile under losses and de-
coherence, unavoidable in experimental implementations. A sample, whose phase shift
is to be measured, may at the same time introduce high attenuation. Because quantum-
enhanced modes of operations exploit fragile quantum mechanical features, such as en-
tanglement, the impact of these environmental effects can be much more deleterious than
in semiclassical schemes, destroying completely quantum benefits [RK07, SC07]. This
scenario puts the beating of realistic, noisy environments as the main challenge in devel-
oping quantum sensing. Very recently, the theoretical and experimental investigations of
quantum states of light has attracted much attention, leading to the best possible preci-
sion in optical two-mode interferometry, even in presence of experimental imperfections
[HWD08, DDDS+09b, MD09, DDDS+09a, KDDW+09, LHL+09].

In this chapter, we adopt an hybrid approach based on a high gain optical parametric
amplifier operating for any polarization state in order to transfer quantum properties of
different microscopic quantum states in the macroscopic regime [De 98a, De 98b]. By
performing the amplification process of the microscopic probe after the interaction with
the sample we can beat the losses detrimental effect on the phase measurement which
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affects the single photon state after the sample. The effect of losses on the macroscopic
field consists in the reduction of the detected signal and not in the complete cancellation
of the phase information as would happen in the single photon probe case, thus improving
the achievable sensitivity.

8.1.1 Evaluation of a phase φ with single photons

Let us review the adoption of single photons in order to evaluate the unknown phase φ ,
Fig.1-(a). The phase φ introduced in the path k2 is probed by sending to the sample
N input photons, each one in the state 2−1/2 (|1⟩k1 + |1⟩k2). After the propagation, the
sample introduces a phase φ on the probe beam and each photon is found in the state:

1√
2

(
|1⟩k1 + eiφ |1⟩k2

)
. The two modes k1 and k2 are then combined on a beamsplitter (BS)

and detected by (D′
1,D

′
2) with an overall detection efficiency equal to t. N performed

experiments leads to an output signal equal to I = I(D′
1)− I(D′

2) = tN cosφ , whose fluc-
tuations are given by σ = (tN)1/2. The uncertainty on the phase measurement around the

value π
2 can hence be estimated as ∆φ =

(
∂ I
∂φ

)−1
△I = 1√

tN
, the semi-classical shot noise

limit, and the sensitivity of the interferometer can be evaluated as S1phot. =
1

∆φ =
√

tN.

8.2 Sensitivity improvement by single photons probe am-
plification

In order to avoid the detrimental effect of a low value of t, our strategy involves the
amplification of the single photon probe, Fig.1-(b). In the theory and experiment here
described, the two modes k1 and k2 correspond to two orthogonal polarizations modes:
horizontal (H) and vertical (V ) associated to the same longitudinal spatial mode k. The
input single-photon is prepared in the polarization state: |+⟩ = 1√

2
(|H⟩+ |V ⟩). Af-

ter the propagation over the interferometer, the photon acquires the unknown phase φ:
|φ⟩ = 1√

2
(|H⟩+ eıφ |V ⟩). The amplification performed by the optical parametric device

generates the output state |Φφ⟩= ÛOPA|φ⟩= cos φ
2 |Φ

+⟩+ ısin φ
2 |Φ

−⟩, where |Φ+,−⟩ are
the wavefunctions described in Ref. [DSV08]. Precisely, the state |Φ+⟩ (|Φ−⟩) presents a
Planckian probability distribution as a function of photons polarized π⃗− (⃗π+) and a long
tail distribution as a function of photons polarized π⃗+ (⃗π−). The two distributions belong-
ing to the state |Φ+⟩ and |Φ−⟩ partially overlap, but become distinct on the border of the
Fock states plane [NDSD07]. For the state |Φφ⟩, the average number of photons emit-
ted over the polarization mode π⃗+ is equal to ⟨n+⟩ = n+ sin2 φ

2 (3n+ 1) with n =sinh2g
and g the gain of the amplifier, while the average number of photons emitted over the
polarization mode π⃗− is equal to ⟨n−⟩ = n+ cos2 φ

2 (3n+ 1). The previous expressions
lead to a phase-dependent intensity with a visibility V = ⟨n+⟩−⟨n−⟩

⟨n+⟩+⟨n−⟩ → 0.50 for g → ∞.
The resilience to losses of such multiphoton fields [DSS09a] renders them suitable for the
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implementation of quantum information applications in which noisy channels and low de-
tection efficiency are involved. We consider the case in which the losses are unavoidable
during the detection process, and happen after the single photon amplification (Fig.8.1).
After the propagation over a lossy channel, the state evolves from |Φφ⟩⟨Φφ | into a mixed
state ρ̂φ

η . For details on the explicit expressions of the coefficients of the density matrix
ρ̂φ

η refer to [DSS09a].

8.2.1 SPCM measurement strategy
After the amplification stage and the transmission losses, the received field is analyzed
through single photon detectors (D′

1,D
′
2) in the {π⃗+, π⃗−} polarization basis. Our aim is to

compare the achievable sensitivity with and without the optical amplifier (g = 0). To take
into account experimental imperfections, we divide the losses t in two contributions: the
first one includes all the losses between the sample and the optical amplifier (p), while
the second parameter takes into account all the inefficiencies up to the detection stage
(η): t = p×η . Our strategy cannot compensate for losses that occur before the amplifier
(p), but can compensate for large (even very large, if the gain is high enough) losses after
the amplification (η). A first insight on this property of the optical parametric amplifier
has been given in Ref.[LBL+] by analyzing the signal-to-noise of the amplification of a
coherent state signal in lossy conditions. The sensitivity Sampl., obtained by measuring
the difference ⟨D⟩ = ⟨n+⟩− ⟨n−⟩ intensity signals provided by the detectors around the
phase value φ = π

2 , is found to be:

Sampl. =

√
N pηc

{η2 [pn(4c+2)+2nc]+η [pc+2n]}1/2 (8.1)

with c = 2n+1.
Let us first consider the case p = 1: figure 2-(a) reports the logarithm of the enhancement

of the squared sensitivity E =
(

Sampl.
S1phot.

)2
versus g and η . E represents the reduction factor

in the number of photons sent onto the sample in order to obtain the same information
on the phase φ , by exploiting the amplification strategy with respect to the single-photon
probe scheme. As it can be observed in figure 2-(a), a large improvement can be obtained
in the regime of high losses and large gain of the amplifier. The motivation of such be-
haviour is the following: the present approach allows to increase the number of detected
photons by a factor 4n with respect to the single photon case keeping a visibility of the
fringe patterns reduced only to 50% (for g → ∞). In figure 2-(b) we report the trend of the
enhancement as a function of the non linear gain g, for different values of the detection
efficiency η = 0.05 (green continuous line) and η = 0.1 (black dashed line). We observe
that, even for high value of η , an enhancement greater that 1 can be obtained.

Consider now the case p ̸= 1. For large values of the gain g the enhancement saturates
to the value: Elim = p

η(2p+1) (contour plot in figure 2-(c)), we can then identify a critical
value of p above which the enhancement is greater than 1 : pcrit =

η
1−2η . For η ≥ 0.33 no
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enhancement can be achieved by exploiting the amplification strategy (see figure 2-(d)).

Experimental implementation

The previous theoretical predictions have been experimentally tested by adopting a high
gain optical parametric amplifier with a maximum gain g = 4.5, see figure 8.3. The single
photon probe is generated by a BBO non linear crystal (C1) on spatial mode k1 together
with an entangled photon on spatial mode kT . The overall singlet state produced by C1
is obtained through the spontaneous parametric amplification process, consisting in the
annihilation of a pump photon at wavelength (wl) λp = 397.5nm followed by the creation
of twin photons, orthogonally polarized, at wl λ = 795nm. The overall pump beam is

Figure 8.2: (a) Logarithm of the enhancement versus the non-linear gain g and the trans-
mittivity of the lossy channel η in the perfect case, in which the losses between the phase-
shifter and the amplifier are neglected (p = 1). (b) Trend of E as a function of the non lin-
ear gain for different values of the efficiency η = 0.1 (green continous line) and η = 0.05
(black dashed line), in both cases p = 1. (c) Contour plot of the enhancement as a fuction
of the logarithm of p and η . The lighter region corresponds to E > 1, the darker one to
E < 1. (d) Non ideal case p ̸= 1 : trend of the injection probability critical value for which
E > 1 as a function of the detection efficiency.
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Figure 8.3: Experimental setup of the QI-OPA based interferometric scheme. An intense
pulsed pump beam of P = 750mW and λ = 397.5nm is generated by a Ti:Sa laser sys-
tem. The pump beam is split between modes kp and k′

p. In the first BBO crystal (C1),
a single photon state in the |+⟩1 is prepared upon detection on mode kT with a single-
photon SPCM-AQR14 detector (DT ). Then, the phase φ is introduced through a Babinet-
Soleil compensator (B) and the probe state |φ⟩ after the interaction is then injected in
the QI-OPA and superimposed with the pump beam on mode k′

p. Spatial and tempo-
ral matching are obtained through an adjustable delay line (Z). (a) Measurement scheme
based on detection of the average of the photon number difference D̂ = n̂+− n̂−. After
fiber polarization compensation (C), the output field undergoes controlled losses through-
out a tunable attenuator (L). Then, the field is analyzed in polarization and detected with
two SPCM-AQR14 detectors (D1,D∗

1) (b) O-Filter based detection scheme. After fiber
polarization compensation (C), the output field undergoes controlled losses throughout a
tunable attenuator (L). Then, the field is analyzed in polarization and detected with two
photomultipiers (PM1,PM∗

1). The photocurrents are shot-by-shot processed by an elec-
tronic device (O-Filter), whose action is described in the text and in Ref.[DSV08].

generated by a Ti:Sa laser system, consisting in a Ti:Sa modelocked MIRA900, pumped
by a Verdi V5 Nd:Yag solid state laser. The output beam from the MIRA900 is injected
into the Ti:Sa REGA900 amplifier, pumped by a Verdi V18. The overall laser system
allows to obtain a 1.5W output beam at wavelength λ = 795nm, that, after a a double
harmonic generation process, generates the experiment pump beam at wl λp = 397.5nm
of power P = 750W . This beam is split into two parts, a smaller one impinges into C1
and the higher one is directed towards the amplifier crystal C2 superimposed spatially and
temporally with the single photon probe after the interaction with the sample (simulated
by the babinet B(φ) in figure 8.3). The number of photons generated in the amplification
process, as said, depends exponentially on the non linear of the amplifier g. The maximum
value of g experimentally found is gmax = 4.5.

The output radiation was then coupled with a single mode fiber and detected with
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Figure 8.4: Trend of counts detected by D1,D∗
1 as a function of the normalized intensity

signal impinging o the amplifier, working in a spontaneous (not-injected) configuration.

single photon detectors. Additional controlled losses were introduced by adopting neutral
optical filters. The amplified state is then analyzed in polarization and detected by two
single photon counting modules SPCM, D1 and D∗

1 in figure 8.3-(a). The resulting signals,
triggered by the click of detectors DT ,D∗

T on mode kT , are hence subtracted and the
difference in the number of photons D̂ is recorded as a function of the phase φ , varied by
the Soleil-Babinet compensator B(φ) on the probe path.

0 2 4 6 8 10
0

20

40

60

80

100

120

140

160

180

200

220

 

 

C
ou

nt
s 

in
 1

20
 s

ec

babinet position
0 2 4 6 8 10

24000

26000

28000

30000
 

 

C
ou

nt
s 

in
 1

20
 s

ec

babinet position

Figure 8.5: Experimental fringe pattern for the single photon probe (left) and for the
amplified beam (right).

For the sake of simplicity we consider to work in the single photon counting regime;
in order to describe the detection apparatus in a linear regime, the following condition
for the average number of detected photons must be satisfied η⟨n±⟩ << 1 . We found
experimentally a value of p equal to 0.15 due to spatial and spectral mismatch between
the injected single photon and the ultraviolet pump beam (k′p). The output fringe patterns
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have been recorded for different values of the gain g and hence of the generated number
of photon in the amplifier. In the extreme condition with η = 3 ∗ 10−4 and g = 4.5 we
observed an enhancement of a factor ∼ 210, as shown in figure 8.6, in which is reported
the trend of E as a function of the amplifier gain, compared with the theoretical prediction.
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Figure 8.6: Experimental results of the enhancement E versus the non-linear gain. Contin-
uous line: theoretical prediction for the expected enhancement with η = 3∗10−4, p= 0.15

Fisher Information and optimality of the performed measurement

We now discuss the optimality of the measurements performed on the multiphoton state,
in order to extract the maximum information about the phase φ codified in the optical
field. This quantity is expressed by the quantum Fisher Information [Hel76, Par09], de-
fined as H(φ) = Tr[ρ̂φ L̂φ ], where L̂φ is the symmetric logarithmic derivative ∂φ ρ̂φ =
L̂φ ρ̂φ+ρ̂φ L̂φ

2 and ρ̂φ is the density matrix of the state in which the phase is codified. The
quantum Cramer-Rao bound [Hel76] quantifies the maximum precision achievable on the
estimation of the phase φ optimized over all possible measurements as: ∆2φ ≥ 1/H(φ).
In the high lossy regime η⟨n±⟩ ≪ 1, the single photon amplified states lead to a quantum
Fisher Information equal to Hampl(φ)≈ 2nη p(1+ p−1)−1, to be compared with the single
photon case, which gives H1phot(φ) = η p. This result allows to investigate the optimality
of the counting measurement strategy. The sensitivity achieved with this scheme, given by
Eq.(8.1), can be written in the high lossy regime as S2

ampl = (∆2φ)−1 ≈ 2nη p(1+ p−1)−1,
thus saturating the Cramer-Rao bound and ensuring the optimality of this scheme in the
high lossy regime.
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8.2.2 OF measurement strategy

As more sophisticated strategy, it is possible to elaborate an approach which leads to
higher visibility of the detected fringe patterns at the cost of a reduced detection rate
of the signal: the output radiation is measured in polarization with two linear detectors,
for instance photomultipliers. The intensity signals generated by the detectors propor-
tional to the orthogonally polarized number of photons, are compared shot-by-shot by
the orthogonality-filter (OF) electronic device introduced in Ref. [DSV08]. When the
number of photons mφ , detected in the π⃗φ polarization, exceeds nφ⊥ , detected in the π⃗φ⊥
polarization, over a certain adjustable threshold k, i.e. mφ −nφ⊥ > k, the (+1) outcome is
assigned to the event and the state |Φφ⟩ is detected. On the contrary, when the condition
nφ⊥−mφ > k is satisfied, the (-1) outcome is assigned and the state |Φφ⊥⟩ is detected. Fi-
nally, an inconclusive result (0) is obtained when the unbalance between detected pulses
does not exceed the threshold k. As the gain is increased, the number of transmitted
photons η⟨n⟩ becomes sufficient to detect all the N repeated trials. In the high losses
regime, at variance with the single-photon case, all pulses can be exploited to extract in-
formation about the phase φ . The action of the OF is then to select those events which
can be discriminated with higher fidelity, leading to an increase in the visibility, at the
cost of discarding part of the data. According to these considerations, the “detection”
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Figure 8.7: Experimental results of the enhancement E versus the signal rate, the contin-
uous line reports the theoretical prediction for p = 0.14, η = 0.005.

efficiency of the scheme, i.e. the percentage of detected events, is given by the average
signal η = Rmean(k) filtered by the OF device. This parameter η corresponds to the over-
all efficiency of the amplification-OF-based detection scheme. We calculated the phase

measurement uncertainty through the standard definition ∆φOF = ∆ROF(φ)
∣∣∣∂ROF (φ)

∂φ

∣∣∣−1
.

The minimum uncertainty is achieved for φ = π
2 . The resulting sensitivity averaged over

N trials is thus SOF = V
√

Rmean
√

N. This expression shows that the phase fluctuations
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no more depend on the efficiency η of the channel, but only on the average percentage of
detected pulses Rmean.

We have experimentally tested the enhancement obtained by the OF strategy. We re-
port in Fig. 8.7 the experimental trend of the enhancement as a function of the signal
rate compared with the expected theoretical trend (p = 0.14,η = 0.005). In the adopted
apparatus the single photon fringe pattern shows a visibility ∼ 50% due to the generation
of more than a single photon pair by the first non linear crystal adopted as the heralded
single photon source. This seed visibility value is also responsible for a reduction of the
amplified state visibility and has been taken into account in the comparison between the
two strategies. By comparing the enhancement obtained through the counting and the OF
based detection methods we can conclude that the first one allows to achieve an higher
enhancement.



Chapter 9

Interaction between the QIOPA field
and a Bragg BEC Mirror

In this chapter we address the adoption of the multiphoton states produced by the opti-
cal parametric amplifier for the implementation of a light-atom interaction protocol. It
exploits the process of nonresonant scattering by a properly shaped Bose–Einstein con-
densate (BEC)[IWS99] of an externally generated multi-particle quantum photon state, a
”macro-state” |Φ⟩, in order to create a joint atom-photon macro-state entangled by mo-
mentum conservation.
Light scattering from BEC structures has been used so far to enhance their non–linear
macroscopic properties in super–radiance experiments [ICSK+99], to show the possibil-
ity of matter wave amplification [MKTS+99] and non-linear wave mixing [DHW+99].
In the present chapter we intend to discuss the linear coherent scattering, i.e. the re-
flection by a multilayered BEC of a large assembly of nearly monochromatic photons
generated by a high-gain ”quantum-injected” Optical Parametric Amplifier (QI-OPA) in
a Einstein-Podolsky-Rosen (EPR) configuration [De 98a, DS05]. In chapter 3 it has been
demonstrated experimentally that the optical macrostate |Φ⟩ generated by the QI-OPA
can be entangled with, i.e. non-separable from, a far apart single photon state belonging
to the injected EPR pair [DSV08], thus resulting highly resilient to the decoherence due
to losses [DSS09a]. In this chapter we address the possibility of extending this condition
to the mechanical motion of an atomic assembly by making the photonic macrostate |Φ⟩
to exchange linear momentum with a high reflectivity BEC optical mirror, here referred
to as a ”Mirror-BEC” (M-BEC).

9.1 Bose Einstein Condensate (BEC)
Bose Einstein Condensate (BEC), whose concept can be dated back to the works of Bose
and Einstein in 1924 [Bos24, Ein24], has been first observed in laboratory by Anderson
et al. [AEM+95] and Davis et al. [DMA+95] in 1995. In both cases the systems un-
der investigation were vapors of alkalis atoms, rubidium and sodium respectively, whose
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characteristic features made them suitable for optical laser-based manipulation methods.
Indeed laser cooling and trapping techniques had been developed during the 1980s and
became the key point for the preparation of BEC systems. By combining laser and evap-
orative cooling for alkalis atoms the required density and temperature for observing the
BEC transition can be reached. In these condition the BEC system is in a metastable
state, whose lifetime is sufficiently long because the three-body collisions can be consid-
ered negligible in dilute and cold gases.
The trapped Bose gases are inhomogeneous and finite size systems, whose number of
atoms ranges between few thousands and several millions. In most cases the confining
traps are well approximated by harmonic potentials, whose trapping frequency ωho gives
the characteristic length for the system aho = (h̄/(mωho))

2. An important property of
these systems is the big variation that occurs on this scale and that renders them highly
inhomogeneous. The inhomogeneity of BEC systems is responsible for different conse-
quences. Firstly the BEC shows up not only in momentum space but also in coordinate
space. Another consequence is the role played by two-body interactions: despite the di-
lute nature of the condensate, the atom-atom interactions are enhanced on the measurable
quantity, such as the condensate density, by the combination of the BEC and the harmonic
trapping potential.
The behavior of BEC systems can be described by the Gross-Pitaevskii theory, which is
a mean-field approach for the order parameter associated with the condensate that repro-
duces the typical properties exhibited by the superfluid systems (propagation of collective
excitations, interference effects originated by the phase of the order parameter).

9.1.1 The ideal gas of non-interacting bosons
The magnetic traps for alkalis atoms act as confining potentials which can be safely ap-
proximated with quadratic form:

Vext(r) =
m
2
(
ω2

x x2 +ω2
y y2 +ω2

z z2) (9.1)

If we neglect the atom atom interactions, the many-body Hamiltonian is the sum of single
particles harmonic oscillator Hamiltonians, whore eigenvalues have the following form:

εnxnynz =

(
nx +

1
2

)
h̄ωx +

(
ny +

1
2

)
h̄ωy +

(
nz +

1
2

)
h̄ωz (9.2)

where {nx,ny,nz} are non-negative integers. The ground state of such a system correspond
to the product of the N single particle states in the lowest accessible energy level (nx =

ny = nz = 0): ϕ(r1,r2...rN) = ∏i φ0(ri) where

φ0(r) =
(mωho

π h̄

)3/4
exp
[
− m

2h̄
(ωxx2 +ωyy2 +ωzz2)

]
(9.3)

being ωho = (ωxωyωz)
1/3. The density of the condensate can then be written as n(r) =

N|φ0(r)|2, and its value grows with N, while the the condensate dimension is independent
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of N and is fixed by the harmonic oscillator length aho =
(

h̄
mωho

)
. The typical experimen-

tal value of aho is about 1µm, resulting in a typical size of the trapped condensate smaller
than the thermal atoms one. At finite temperature part of the atoms will also be thermally
distributed in the excited states at higher energy, as said the radius of the thermal cloud
is larger than aho. It can be estimated by assuming kBT ≫ h̄ωho and approximating the
density of the thermal cloud with the Boltzmann distribution nth ∝ exp [−Vext(r)/kBT ],

where Vext = 1/2mω2
hor2; the width of the gaussian is then RT = aho

(
kBT
h̄ωho

)1/2
and hence

larger than aho. The above discussion shows that the Bose Einstein Condensation shows
up with the appearance of a sharp peak in the central region of the density distribution.
It’s worth noting that the Fourier transform of the ground state wavefunction is still a
gaussian centered at zero momentum and whose width is proportional to a−1

ho . Analo-
gously the thermal distribution in the momentum space results broader and its width is
proportional to (kBT )1/2. The appearance of a narrow peak both in the coordinate and
in the momentum space is a peculiar feature of a trapped Bose gas, in contrast with what
happens in the uniform gas case, in which the condensate cannot be revealed in coordinate
space since the condensed and non condensed particles fill the same volume. In order to
observe the condensate experimentally both the spatial and the velocity distribution can
be determined by dispersive imaging [AMv+96] and absorption methods [AEM+95] re-
spectively.
The symmetry of the condensate is fixed by the shape of the confining field. In the
case of an axially symmetric trap, one can define an axial coordinate z and a radial one
r⊥ = (x2 + y2)1/2, with the relative frequencies: ωz and ω⊥ = ωx = ωy. The asymmetry
of the trap is fixed by the ratio λ = ωz

ω⊥
, for λ < 1 the shape of the trap is a cigar, otherwise

it is a disk. In this case the ground state of the noninteracting bosons can be written as:

φ0(r) =
λ 1/4

π3/4a3/2
⊥

exp
{
− 1

2a2
⊥
(r2

⊥+λ z2)

}
(9.4)

where a⊥=
(

h̄
mω⊥

)1/2
is the harmonic oscillator length in the xy plane and ω⊥= λ−1/3ωho.

The use of an axially symmetric trap allows to observe an important signature of BEC sys-
tems. Indeed in this case the aspect ratio is:√⟨

p2
z
⟩⟨

p⊥z
⟩ =√

λ (9.5)

resulting fixed by the asymmetry parameter of the trap. This means that during the ex-
pansion the condensate cloud becomes an ellipse, while if the atoms were in a thermal
state the shape of the cloud would be isotropic in momentum space. The occurrence of
an isotropy in the the condensate peak has then been interpreted as a signature of BEC
[AEM+95, DMA+95].
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9.1.2 Trapped bosons at finite temperature
At finite temperature the total number of particles and the total energy of the bosons
system are given by:

N = ∑
nx,ny,nz

{
exp(β (εnxnynz −µ))−1

}−1 (9.6)

E = ∑
nx,ny,nz

εnxnynz

{
exp(β (εnxnynz −µ))−1

}−1 (9.7)

where µ is the chemical potential and β = 1
kBT . The number of condensed particles N0

becomes macroscopic, i.e. of the order of the total number of particles N when the chem-
ical potential becomes equal to the energy of the lowest state: µ → µc =

3
2 h̄ω , being

ω = (ωx +ωy +ωz)/3. In this case the number of atoms in the excited states can be
written as:

N −N0 = ∑
nx,ny,nz

1
exp(β h̄(ωxnx +ωyny +ωznz))−1

(9.8)

Assuming that the level spacing becomes smaller and smaller when N → ∞, the sum can
be replaced by the integral:

N −N0 =
∫ ∞

0

dnxdnydnz

exp(β h̄(ωxnx +ωyny +ωznz))−1
(9.9)

this approximation is supposed to be good when the number of trapped atoms is large and
kBT >> h̄ωho. In this way it is found:

N −N0 = ζ (3)
(

kBT
h̄ωho

)3

(9.10)

where ζ (n) is the Riemann function. By imposing N0 → 0 at the transition, it can be
found the expression for the critical temperature T 0

c :

kBT 0
c = h̄ωho

(
N

ζ (3)

)1/3

= 0.94h̄ωhoN1/3 (9.11)

The T dependance of the condensate fraction for T < T 0
c is then:

N0

N
= 1−

(
T
T 0

c

)3

(9.12)

From the previous analysis it turns out the existence of two relevant scales of energy for
the ideal gas: the transition temperature kBT 0

c and the average level spacing h̄ωho. The
former can be greater than the second, from 20 and 200 times larger depending on the
number of total atoms. The frequency of the trapping potential ωho/2π is fixed by the
trapping potential and ranges typically from tens to hundreds of Hertz. This gives h̄ωho
of the order of few nK.
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9.1.3 Effects of interaction: the Gross-Pitaevskii equation
The many body hamiltonian describing N interacting bosons reads:

Ĥ =
∫

drΨ̂†(r)
[
− h̄2

2m
∇2 +Vext(r)

]
Ψ̂(r)+

1
2

∫
drdr

′
Ψ̂†(r)Ψ̂†(r

′
)V (r− r

′
)Ψ̂(r

′
)Ψ̂(r)

(9.13)
where Vext is is the confining potential, V (r− r′

) is the two-body interatomic potential,
and Ψ̂(r),Ψ̂†(r) are the annihilation and creation bosons field operators. This hamiltonian
can be treated in the mean field approach, under the approximation of dilute gas. The key
point consists in separating out the condensate contribution to the bosonic field operator:
Ψ̂(r) = ∑α Ψα(r)aα , whereΨα(r) is the single-particle wavefunctions and aα are the
corresponding annihilation operators, defined in the Fock space as:

a†
α |n0,n1, ...nα , ...⟩ =

√
nα +1|n0,n1, ...,nα +1, ...⟩ (9.14)

aα |n0,n1, ...nα , ...⟩ =
√

nα |n0,n1, ...,nα −1, ...⟩ (9.15)
(9.16)

and for which the usual commutation rules hold:

[aα ,a
†
β ] = δα ,β , [aα ,aβ ] = 0, [a†

α ,a
†
β ] = 0 (9.17)

Bose Einstein condensation occurs when the number of particles in a particular single-
particle state becomes macroscopic n0 ≡ N0 >> 1, and the ration N0/N remains finite
when N → ∞. In this limit the states that differ for one particle become indistinguishable
and correspond to the same physical configuration, the operators a0 and a†

0 can then be
treated as numbers a0 = a†

0 =
√

N0. For a uniform gas in a volume V, BEC occurs in the
single particle state Ψ0 = 1/

√
V having zero momentum, and the field operator can be

decomposed: Ψ̂†(r) =
√

N0/V + Ψ̂′
(r). By treating Ψ̂′ as a small perturbation, Bogoli-

ubov developed the first order theory for the excitations of interacting Bose gases.
The generalization for the non-uniform and time dependent configuration is given by:

Ψ̂(r, t) = Φ(r, t)+ Ψ̂′
(r, t) (9.18)

where Φ(r, t) is a complex function defined as the expectation value of the field operator:
Φ(r, t)≡

⟨
Ψ̂(r, t)

⟩
. The condensate density is given by n0(r, t) = |Φ(r, t)|2. The function

Φ(r, t) has the meaning of an “order parameter” and is called “wave function of the con-
densate”.
In order to derive the equation for the condensate wave function, one has to write the time
evolution of the field operator Ψ̂(r, t):

ih̄
∂
t

Ψ̂(r, t)≡ [Ψ̂, Ĥ] =

[
− h̄2∇2

2m
+Vext(r)+

∫
dr

′
Ψ̂†(r

′
, t)×V (r

′
− r)Ψ̂(r

′
, t)
]

Ψ̂(r, t)

(9.19)
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By substituting the operator Ψ̂ by the classical field Φ and by observing that in dilute
cold gases only binary collision at low energy are relevant and are characterized by a
single parameter (the s-wave scattering length a) V (r′−r) = gδ (r′−r), one can write the
Gross-Pitaevskii (GP) equation:

ih̄
∂
∂ t

Φ(r, t) =
(
− h̄2∇2

2m
+Vext(r)+g |Φ(r, t)|2

)
Φ(r, t) (9.20)

where g is related to a through:

g =
4π h̄2a

2m
(9.21)

The validity of the GP-equation is based on the condition that the s-wave scattering length
is much smaller than the average distance between atoms and that the number of atoms
in the condensate is much larger than 1. These conditions can be parameterized by the
relation n|a|3 << 1, where n is the average density of the gas. In this case the system is
said dilute or weakly interacting. It’s worth noting that the weakness of the interaction is
not directly connected with the one of the effects. Indeed the effects have to be compared
with the kinetic energy of the atoms in the trap. The interaction energy on the ground
state of the harmonic oscillator is given by Eint = gNn ∝ N2 |a|

aho
, on the other hand the

kinetic energy is of the order of Nh̄ωho, then the parameter expressing the ratio between
the atom-atom interaction respect to the kinetic energy is:

Eint

Ekin
∝

N|a|
aho

(9.22)

This expression can be larger than 1 even if n|a|3 << 1, so that also very dilute gases can
exhibit a non-ideal behavior.

9.2 BEC in an optical lattice

In order to trap a condensate in a periodic rather than a harmonic potential, the interference
pattern created by two overlapping beams can be exploited [MO06].
Optical lattices as optical traps are based on the Stark shift effect: when an atom is placed
in a light field, the oscillating electric field of the latter induces an electric dipole moment
on the atom, whose interaction with the field itself leads to an energy shift of the atomic
level ∆E =−1

2α(ω)
⟨
E2(t)

⟩
, where α(ω) with ω =ωres+∆ is the dynamic polarizability

of the atomic level, exhibiting a resonance at ωres. ∆ is the detuning of the light field from
the resonance and if ∆ < 0 (red detuning) the induced dipole D = α(ω)E will be in phase
with the electric field. This means that the resulting potential energy will be such that
its gradient points in the direction of increasing field. A stable optical trap can then be
obtained by simply focusing a laser beam to a waist of size w. If the cross section of
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the beam is gaussian, the resulting position dependent Stark shift and the corresponding
atom’s potential will be:

∆E(r,z,) = V (r,z) =V0 exp
(
− 2r2

w[z]2

)
(9.23)

w[z] = w0

√
1+
(

z
zR

)2

(9.24)

where V0 ∝ Ip/∆ is the trap depth, with Ip the peak intensity of the beam, and w0 and
zR = w2

0π/λL are the spot size and Rayleigh length of the Gaussian beam.
If we take two identical laser beams of peak intensity Ip counter-propagating with parallel
polarizations, they will create an interference pattern with a distance λL/2 between the
two maxima or minima of the resulting light intensity. The potential seen by the atoms is
then:

V (x) =V0cos2(πx/d) (9.25)

where the lattice spacing is d = λL/2 and V0 is the lattice depth, which is often measured
in units of the recoil energy ER = h̄2π2

2md2 by using the dimensionless parameter s =V0/ER.

9.3 Interaction between the QIOPA e the BEC-Mirror

Let us address now the experiment proposal for a light-atom interaction protocol, involv-
ing the QIOPA field and a BEC shaped as a Bragg mirror. The multiphoton nature and
the high resilience to losses of the states introduced in chapter 3 can indeed be exploited
for an efficient coupling with the atomic system.

The layout of the proposed experiment is then reported in Figure 9.1, and shows the
QIOPA setup interacting with the mirror BEC. Let us recall briefly the features of the
QIOPA setup: an EPR optical parametric amplifier, provided by Crystal 1, of a polariza-
tion entangled (π−entangled) pair of photons launched towards two distant measurement
stations, here referred to as Alice (A) and Bob (B) [DSV08, NDSD07]. One of the EPR
photons emitted towards the Bob’s site is injected into the QIOPA which generates a cor-
responding macrostate |Φ⟩. The device operates in the collinear regime and amplifies with
a large ”gain” any injected single photon in a quantum superposition, i.e. a qubit |φ⟩k1
into a large number of photons, N ≈ 105, associated with a corresponding macro-qubit
|Φφ⟩k1 emitted over the same injection mode k1. These macrostates are then selected
by a polarizing beam splitter (PBS) and drive the mechanical motion of the Mirror-BEC.
Since these states are found to be entangled with the far part single-photon emitted over
the mode k2 and detected by Alice, the same entanglement property is then transferred to
the position-macrostate of the optically-driven Mirror-BEC (TR inset).
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Figure 9.1: Layout of the QI-OPA + Mirror BEC experimental apparatus. The upper left
(UL) Inset shows the interference patterns detected at the output of the PBS shown in the
UR-Inset for two different measurement basis {+,−} and {L,R}. Alternating slabs of
condensate and vacuum are shown in the lower left (LL) Inset. A more detailed account
of the Inset UR is given in Fig.3.

9.3.1 BEC mirror via Bragg reflection

Let us now describe the structure of the M-BEC and its interaction with light. The dy-
namics of a BEC loaded in a trap formed by a cylindrically symmetric harmonic potential
(either an optical trap or a magnetic trap) with an optical standing - wave (SW) aligned
along the symmetry axis, may be described by the Gross-Pitaevskii equation [Dal99]. If
the trap is very elongated the ground state consists of an array of disks spaced by half the
wavelength λ with a longitudinal size Rl ∝ λ/s−1/4 with s being an adimensional parame-
ter describing the height of the optical lattice in terms of the recoil energy ER = h2/2mλ 2.
The transverse size R⊥ is dictated by the strength of the magnetic trap and by the number
of atoms in the condensate Nat [PPS+01]. The number ND of the disks is also fixed by the
strength of the magnetic trap in the longitudinal direction and by Nat . Typical numbers
are ND ∼ 200, Nat ∼ 106 with R⊥ ∼ 10µm [MO06]. By choosing s it is then possible to
prepare an array of disks with a longitudinal size of Rl =

λ
4 spaced by λ

2 : Figure 9.1 (Inset
LL).

Releasing the condensate from the combined trap, the spatial periodic structure is ini-
tially preserved as long as the spreading disks do not start to overlap and interfere, and
eventually leads for longer expansion times to a structure that reflects the momentum dis-
tribution of the condensate. Both regimes are fundamental to our proposal. If we expose
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Figure 9.2: (a)Normalized amplitude of the beam reflected by the Mirror BEC in the
proposed experimental conditions. In the inset it is shown the normalized amplitude in
the first 10 µs. b)Reflectivity of a patterned BEC as a function of wavelength. In the inset
is shown the reflectivity around resonance

the expanding condensate aligned along the symmetry axis of the harmonic trap to an op-
tical beam with frequency ω− ω0 = ∆ largely detuned from the atomic resonance ω0, the
dominant scattering mechanism is Rayleigh scattering [ICSK+99]. The dynamic evolu-
tion of the system in this regime is described by the 1-D CARL-BEC i.e. Gross-Pitaevskii,
model generalized to include the self-consistent evolution of the scattered radiation am-
plitude [BCC+04, DSB+06, MZM99]:

i
∂Ψ
∂ t

= − h̄2

2m
∂ 2Ψ
∂x2 + ig

{
a∗ei(2kx−δ t)− c.c.

}
Ψ (9.26)

da
dt

= gN
∫

dx|Ψ|2ei(2kx−δ t)−κa. (9.27)

with a = (ε0V/2h̄ωs)
1/2Es the dimensionless electric field amplitude of the reflected

beam with frequency ωs, g = (Ω/2∆)(ωd2/2h̄ε0V )1/2 the coupling constant, and Ω the
Rabi frequency modulation of the optical beam, d = ε̂ · d⃗ is the electric dipole moment of
the atom along the polarization direction ε⃗ of the laser, V is the volume of the condensate,
N is the total number of atoms in the condensate and δ = ω −ωs. The last term in right-
hand side of Eq.(9.26) represents the self-consistent optical wave grating while the first
term in the right-hand side of Eq.(9.27) represents the self-consistent matter-wave grating.
Eq.(9.27) has been written in the “mean-field” limit, which models the propagation effects
by a damping term where κ ≈ c/2L and L is the length of the condensate. Let us focus
on the amplitude of the reflected beam. We have integrated numerically the Equations
(9.26,9.27) with the experimental parameters (given above) of a typical condensate and
with the optical parameters for the output of the QI-OPA. As shown by Figure 2, the
amplitude of the reflected optical beam drops as the matter wave grating is deteriorated
by the interaction with the light beam. However, during the time duration of a QI-OPA
pulse (typically 1 ps) no significant reduction is observed (inset of fig.9.2-(a)).
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The above result leading to the dependence on ω of the M-BEC reflectivity has
been found consistent with a less sophisticated model of the process based on a classi-
cal model for a Bragg mirror. The reflectivity of this one composed by 2ND alternating

layers with refraction index nB ∼ (1+ ε) is: R =

(
n2ND

B −1

n2ND
B +1

)2

∼ N2
Dε2.For a 2–level atom

ε = 3π
2 M 4Γ

∆
1

1+(2 ∆
Γ)

2 being M =
(

λ
2π

)3
N
V is the rescaled density, Γ the atomic linewidth

and ∆ the detuning from resonance. In a rubidium BEC: Γ ≃ 6 MHz and typical densities
are N

V = 1014cm−3. Combining all the previous equations and assumptions we obtain the
graph Fig:2-(b). The inset of this Figure shows that around the atomic resonance with a
bandwidth ∆νa ≃ 8GHz the reflectivity of the patterned BEC is essentially unity, a more
careful model should take into account a quasi sinusoidal modulation of the refractive
index due to the atomic density distribution in the Thomas–Fermi approximation. This
bandwidth, three orders of magnitude larger than in other proposals [AL06] is instrumen-
tal to the proposed experiment sketched in the right inset of Fig.1. A first estimate of
the experimental parameters of the QIOPA system results in a NL gain g = 6− 7 corre-
sponding to a number of generated photons ∼ 105 −106. Since the spectral width of the
QI-OPA generated beams is ∆λ ∼ 0.75nm, corresponding to a linewidth ∆ν ∼ 350GHz,
about the 3% of the incoming photon beams will be totally reflected by M-BEC. This
will corresponds to a number of active photons N′

±(φ) = (∆νa/∆ν)×N±(φ) in the range
(103 − 104). The ratio between the linewidths relative to the absorption (few MHz) and
to the reflection process is ≃ 0.1% hence the mean number of absorbed photons is about
one per pulse, it follows that the excitation of atoms can be considered negligible during
the interaction process. At last, in the future we plan to use a different laser source with
a longer pulse duration followed by a periodically-poled crystal amplifier. In such a way,
it would be possible to obtain a high NL gain value and radiation fields with a bandwidth
of ∼ 10GHz.

9.3.2 Measurement of nonlocal correlations.

In order to observe the recoil effects of the M-BEC, the condensate has to be released
from the optical lattice that shapes it. This can easily be done by shutting off the lasers
light that provides the SW. Typical expansion velocities for a BEC are of the order of
1 nm/µs which leaves at least 50 µs before the pattern gets significantly spoiled. Let’s
investigate the different evolution of the BEC motions relative to the impinging field.
Consider the case in which the multiphoton field is prepared in the state |Φ+⟩ (or, alter-
natively: |Φ−⟩) on the spatial mode k1. The state can be written as: |Φ+⟩1 = |ϕ+⟩1|ξ−⟩1
(|Φ−⟩1 = |ϕ−⟩1|ξ+⟩1), where |ϕ+⟩ (|ϕ−⟩) is the wavefunction contribution with polariza-
tion π⃗+(⃗π−) and |ξ ⟩−(|ξ ⟩+) is the contribution with polarization π⃗−(⃗π+) . The number
of photons associated to |ϕ⟩ is dominant over the one associated to |ξ ⟩, as said,. The
multiphoton state |Φ+⟩1 (|Φ−⟩1) is sent, through a single mode fiber, toward the BEC
condensate. There, a λ/2 waveplate and a polarizing beam splitter direct the two polar-
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Figure 9.3: Left:Interaction between the amplified field and the Bragg Mirror BEC. The
Faraday Rotators (FR) allows the recombination the reflected field on mode kout . Indeed
the field with polarization πH transmitted by the PBS on mode kU , passing through the
first FR at 22.5◦, becomes π+ polarized. After the reflection by the Bragg Mirror its
polarization is again rotated and becomes πV : the field exits on mode kout . A similar
argumentation holds for the field polarized πV . Right:comparison between the expected
populations of the first order momentum peak (around 1% of total atoms) and the minus
one momentum state after the interaction. The dotted (triangles) line represents the profile
of the +2h̄k momentum state before interaction with the QIOPA pulse, continuous line
and dotted (circles) line the +2h̄k and −2h̄k momentum state profiles after interaction,
respectively. Both heating and collisional effects have been neglected (see text).

ization components π⃗+ and π⃗− over the two spatial modes kU and kD: the macrostate
|Φ+⟩1 (|Φ−⟩1) evolves into |ϕ+⟩U |ξ−⟩D (|ξ+⟩U |ϕ−⟩D): Figure 3. Then, the two counter-
propagating fields are focused on the opposed sides of the cigar-shaped M-BEC. Thanks
to the large reflectivity of the Bragg structure, an efficient coupling is achieved between
the multiphoton fields and the atomic cloud. While the back-scattered light pulse changes
direction of propagation (U ⇒ D,D ⇒ U), the M-BEC acquires a momentum kick in
the opposite direction to the major photons contribution |ϕ+⟩D (|ϕ−⟩D). Hence, after
the interaction the overall light-matter state can be written as: |ϕ+⟩D|ξ−⟩U |ΨU⟩BEC (
|ξ+⟩D|ϕ−⟩U |ΨD⟩BEC) where |ΨU⟩BEC (|ΨD⟩BEC) stands for the BEC that recoils in the
direction kU (kD). Two Faraday rotators inserted into the Sagnac-like interferometer al-
low the recombination of both the reflected fields {|ϕ+⟩D, |ξ−⟩U} ({|ξ+⟩D, |ϕ−⟩U}) on
the mode kOUT leading to the output state |Φ+⟩OUT |ΨU⟩BEC (|Φ−⟩OUT |ΨD⟩BEC).

In the analysis above, |Ψ⟩BEC represents the state of the interacting portion rather than
of the overall BEC system. Indeed the interaction with the QI-OPA pulse does not shift
the BEC as a whole but only the atoms which get the momentum kick by the imping-
ing photons. This mechanism of momentum transfer between light and atoms has been
experimentally investigated in different works [CLM+05, ARC+06]. For a generic in-
put photon macro-state |Φφ⟩, the resulting momentum exchange due to any elementary
interaction will cause the spatial ”displacement” of the M-BEC depending on the phase
φ encoded in the far apart Alice’s qubit, Since the spatial displacement of the M-BEC
after the interaction with the QI-OPA pulse is too small to be directly detected, a stan-
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dard ”expansion imaging” technique will be adopted [IWS99]. The velocity acquired by
the M-BEC is N′

Nat
vr, where vr is the condensate recoil velocity of rubidium (in this case

around 5 mm/s). This is visible during expansion where, due to the quantized nature of
the momentum transfer, it appears as a transfer of atoms from the lower momentum state
to a higher momentum state. Precisely, the normal momentum distribution of the M-BEC
is made of sharp peaks centered around zero. Because of the photon-atom collisions a
large number of atoms, for a total N′

±(φ), will be transferred from the generic momen-
tum state n2h/λ to the successive state (n± 1)2h/λ . The momentum state distribution
then becomes asymmetric as reported in Fig. 3-(Right). There we show the result of a
numerical simulation of the population transfer from the zero momentum to the fist or-
der momentum state, and we compare the population distributions after the interaction
relative to the −2h̄k and +h̄k momentum states. A preliminary experimental test on a
sample M-BEC with a classical light beam indeed showed a marked shift of the atomic
momentum distribution due to light collision and a reflectivity in the range 0.5− 0.9 .
As a further improvement to this scenario, in the experiment only the largest, most effi-
cient optical pulses could be singled out by a ultra-fast electro-optical switch placed at the
output of the QI-OPA [SVG+08].

9.4 Observations and Conclusions
In conclusion, the entanglement structure of |Σ⟩k1,k2 will imply the coherent displacement
of the M-BEC system, depending on the phase φ of the single photon-measured by the
far apart Alice’s apparatus. The correlation measurements could be carried out by de-
tecting the reflected light in different polarization basis and by observing the momentum
distribution of the atomic cloud. In addition, the reflection process effect could be re-
peated several times by one or several external mirrors reflecting back the optical beams
to the M-BEC after the first interaction, leading an optical cavity structure, e.g. a Fabry-
Perot interferometer, by which the BEC displacing effect could be enhanced by a ”quality
factor” Q >> 1. Note also that the reflected photons, trapped in any M-BEC cavity or
interferometer structure, will be themselves entangled with the atomic condensate.
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In the context of QI the observation of quantum phenomena, such as quantum entangle-
ment, has been mainly limited to systems of only few particles. One of the main open
challenge for an experimental test in systems of large size is the construction of suitable
criteria for the detection of entanglement in bipartite macroscopic systems. The possibil-
ity of observing quantum phenomena at a macroscopic level seems to be in conflict with
the classical description of our everyday world knowledge. The main problem for such
observation arises from the experimental difficulty of sufficiently isolating a quantum sys-
tem from its environment, i.e., from the decoherence process.
The possibility of generating multiphoton states of light resilient to losses with the meth-
ods of quantum optics is then at the basis of this thesis. The multiphoton states can be
generated through two different amplification schemes. In both cases the measurement
problem is a key ingredient for the observation of quantum properties. The macro-states
can then be studied as a paradigmatic example for the quantum to classical transition in-
vestigation. On the other hand the interest in investigating macroscopic states of light con-
cerns the implementation of quantum information protocols related to quantum metrology
and light atom efficient interactions.
The research work carried out within this thesis has then been focused onto the study
of multiphoton states of light, obtained by non linear optics tools. We have investigated
the quantum features of states produced by an amplification process and by a sponta-
neous emission of an optical parametric amplifier. In both cases the quantum features of
increasing size quantum systems have been addressed. We have demonstrated the sur-
vival of entanglement after the amplification performed over an entangled pair by making
auxiliary assumptions respect to the exploited entanglement criterion [DSV08]. Due to
the probabilistic nature of the performed measurement, based on a local filtering of the
macroscopic state, the microscopic-macroscopic entanglement has indeed been demon-
strated by generalizing an entanglement criterion previously formulated for single-photon
qubits [EKD+04] with an auxiliary assumption about the presence of the amplifier acting
upon the single photon state belonging to an EPR couple. We then discussed different
entanglement criteria which do not require any supplementary assumption on the source,
and applied these approaches to the micro-macro system based on optical parametric am-
plification. It turns out that these methods require an high detection efficiency in order to
identify the macro-states and this requirement is not available with the present technology.
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A second type of macro states, generated by a non-collinear optical parametric amplifier,
working in a spontaneous emission regime, has been then investigated [VSSD09] . In this
case a fuzzy measurement based on two different dichotomization procedures has been
performed over the macro states. We observed that the amount of entanglement detected
by this type of measurement decreases with the increase of the system’s size. Our results
enlighten the practical extreme difficulty of observing non-locality by performing such a
dichotomic fuzzy measurement.
The problem of measurement on the multiphoton states has then been investigated in
relation with the possibility of engineering the state of the system: the behavior of the
indistinguishability between orthogonal macro-states when a filtering process is applied
over a portion of them has been exploited. More specifically, we analyzed theoretically
in details several schemes for the realization of conditional measurement-induced opera-
tions. We have identified a strategy, based on the ID device, able to minimize the effects
of the noise due to the vacuum injection into the amplifier. A different filtering proce-
dure, based on the OF device, has been deeply studied: it turned out that when a small
portion of the state is analyzed through the OF, the visibility of the overall state, relative
to a dichotomic measurement, is affected in a different way depending on the polarization
basis in which the small portion has been measured. This tecnique is then not suitable
to obtain an higher fidelity in the macro-states discrimination. Finally, we addressed a
pre-selection scheme for the realization of a Bell’s inequality test which do not suffer the
same detection loopholes of the one based on post-selection strategies [VST+10a]. The
proposed method, based on the measurement of the reflected part of the wave-function
in two different bases, does not allow to violate a Bell’s inequality, since it induces the
collapse of the correlations present in the macro-states in only a single polarization basis.
These manipulation protocols exploited the use of a polarization preserving ultrafast op-
tical shutter experimentally realized in our laboratories [SVG+08].
Finally we have studied the application of multiphoton states to different quantum in-
formation protocols. We have demonstrated that the output field of an high gain optical
parametric amplifier working in a collinear regime shows the sub-Rayleigh oscillation
feature typical of a two-photon NOON states. The obtained fringe patterns suffer from a
lower visibility respect to a pure NOON state, but the generated field results to be intense
and the high flux regime can be adopted to perform high efficiency quantum lithography
protocols [SVD+08]. The analysis about the sub-Rayleigh behavior of multiphoton states
has then be generalized by addressing the case of amplification of two-photon NOON
states, obtaining an enhancement of the signal respect to the spontaneous emission case.
Finally we showed theoretically that the collinear amplifier cannot be successfully used
for amplifying N-photon states with N>2 due to the intrinsic λ

4 oscillation pattern of the
crystal. To overcome this limitation, we propose to adopt a scheme for the amplification
of a generic state based on a non-collinear QIOPA and we show that the state obtained by
the amplification process preserves the λ

N feature and exhibits a high resilience to losses
[GCD+08, VSSD09]. The resilience to losses of macro states has then be exploited in



CONCLUSIONS 187

order to obtain an enhancement in a minimally invasive metrology scenario [VST+10b].
By performing the amplification process on the microscopic probe after the interaction
with the sample, we have beaten the losses detrimental effect on the phase measurement
which affects the single photon state after its interaction with the sample, and thus we
have improved the achievable sensitivity in interferometrical experiments. In this case
the enhancement in the sensitivity is not a scaling factor, as for the case of NOON-like
oscillation pattern of the optical parametric amplifier, but consists in a constant factor
which depends on the gain of the amplifier and on the losses condition in the investigated
system.
At last the resilience to decoherence of the quantum state obtained by the amplification of
an entangled couple is exploited to study the non-resonant interaction between the mul-
tiphoton state and a BEC shaped as a Bragg mirror. We have theorethically found that
the entangled nature of the microscopic-macroscopic QIOPA system would imply the co-
herent displacement of the M-BEC system, depending on the polarization state of the
injected single photon qubit. This system would represent a further example of macro-
scopic quantum state, fitting in the analysis of the transition from quantum to classical
world performed in the present reasearch work [DSVC10].
In conclusion the multiphoton states of light, experimentally generated in our laborato-
ries, have been considered as a paradigmatic example for the investigation of the quantum
to classical transition, i.e. from the microscopic to the macroscopic world. Their genera-
tion and manipulation has been investigated in relation with the possibility of measuring
the quantum properties in icreasing size quantum systems. The main obstacle in such an
experimental demonstration turns out to be the inefficiency of performed measurement,
which in presence of losses are unavoidable.At last the resilience to decoherence and to
losses of multiphoton states has been exploited in different quantum information proto-
cols: from quantum metrology to light atoms interface experiments.
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Abbreviations

BEC Bose Einstein Condensate
BBO Beta-Barium-Bhorate Crystal
BS Beam Splitter
DFG Difference Frequancy generation
HWP Half waveplate
ID Intensity detection
M-BEC Mirror BEC
NL Non linear
NOON states of the form: 1√

2
(|N⟩|0⟩+ |0⟩|N⟩)

OF Orthogonality Filter
OPA Optical Parametric Amplifier
PBS Polarizing Beam Splitter
POVM Positive-Operator-Valued Measure
QI Quantum Information
QIOPA Quantum Injected Optical Parametric Amplifier
QO Quantum Optics
QWP Quarter waveplate
SFG Sum Frequency generation
SHG Second Harmonic generation
SPDC Spontaneus Parametric Down Conversion
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[SVD+09] Nicolò Spagnolo, Chiara Vitelli, Tiziano De Angelis, Fabio Sciarrino, and
Francesco De Martini. Wigner-function theory and decoherence of the
quantum-injected optical parametric amplifier. Phys. Rev. A, 80:032318,
2009.
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Quantum lithography proposes to adopt entangled quantum states in order to increase resolution in interfer-
ometry. In the present paper we experimentally demonstrate that the output of a high-gain optical parametric
amplifier can be intense yet exhibits quantum features, namely, sub-Rayleigh fringes, as proposed by �Agarwal
et al., Phys. Rev. Lett. 86, 1389 �2001��. We investigate multiphoton states generated by a high-gain optical
parametric amplifier operating with a quantum vacuum input for gain values up to 2.5. The visibility has then
been increased by means of three-photon absorption. The present paper opens interesting perspectives for the
implementation of such an advanced interferometrical setup.

DOI: 10.1103/PhysRevA.77.012324 PACS number�s�: 03.67.Hk, 42.65.Lm

I. INTRODUCTION

Since the early days of quantum electronics, nonlinear
optics has played a basic role both for its relevance as a
fundamental chapter of modern science and for its techno-
logical applications �1�. Nonlinear parametric processes, due
to the peculiar correlation properties of the generated pho-
tons, have been adopted to investigate the quantum proper-
ties of electromagnetic fields. In the last few years it has been
proposed to exploit entangled quantum states in order to in-
crease the resolution in quantum interferometry, specifically,
for quantum lithography �2� and to achieve Heisenberg lim-
ited resolution �3�. In such framework, particular attention
has been devoted to the generation of NOON states, path-
entangled states of the form 1

�2
��N�k1�0�k2+ �0�k1�N�k2�, of fun-

damental relevance since a single-photon phase shift � in-
duces a relative shift between the two components equal to
N�. This feature can be exploited to enhance phase reso-
lution in interferometric measurements, leading to a sub-
Rayleigh resolution scaling as �

�2N� ; � being the wavelength
of the field �4�. The generation of photonic NOON states has
been the subject of intense theoretical research �5�, but up to
now the actual experimental implementation has been lim-
ited to a posteriori generation of two-, three-, and four-
photons states �6–8� and to the conditional generation of a
NOON state with N=2 �9�. The weak value of the generated
number of photons strongly limits the potential applications
to quantum lithography and quantum metrology. As an alter-
native approach to emulate the quantum resolution, it has
been proposed to adopt classical, coherent light �10�, effec-
tively exploiting the nonlinearity of the absorbing material.
The experimental results have been recently reported:
Yablonovitch et al. proposed to use an interference technique
with multiple-frequency beams achieving an experimental
visibility of 3% �11� while Boyd et al. achieved a twofold
enhancement of the resolution over the standard Rayleigh
limit adopting a UV lithographic material excited by multi-
photon absorption �12�.

Recently it has been proposed to exploit a high-gain op-
tical parametric amplifier acting on the vacuum field to gen-

erate fields with a high number of photons still exhibiting
sub-Rayleigh periods: Fig. 1�a� �13�. The quantum lithogra-
phy architecture involves the generation of correlated beams
over the modes k1 and k2, the mixing over a beam splitter
�BS�, the phase shifting of one mode and then the recombi-
nation of the two modes over a second BS. Finally the output
state is detected via a two-photon absorption over the outgo-
ing modes. In the typical low-gain regime the quantum state
2−1/2��2�k1�0�k2− �0�k1�2�k2� is generated by spontaneous para-
metric down conversion �SPDC� and a Hong-Ou-Mandel in-
terferometer adopting a post-selection technique �6�. In Refs.
�13–15� it has recently been theoretically shown that, for any
gain of the parametric amplifier, the two-photon excitation
rate presents a fringe pattern of the form 1+cos 2� which
never falls below a visibility of 20%. Such an approach
could lead to high resolution with a high number of photons
overcoming the difficulty connected with the adoption of the
NOON state with a low number of photons. At variance with
the scheme based on classical radiation, the one here exploits
quantum features of the OPA field.
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FIG. 1. �Color online� �a� Experimental scheme for quantum
lithography based on spontaneous parametric down conversion. The
two-photon absorption is simulated through a two-photon coinci-
dence detection. �b� Configuration based on polarization entangled
beams.
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A macrostate consisting of N � 3:5� 104 photons in a quantum superposition and entangled with a far
apart single-photon state (microstate) is generated. Precisely, an entangled photon pair is created by a
nonlinear optical process; then one photon of the pair is injected into an optical parametric amplifier
operating for any input polarization state, i.e., into a phase-covariant cloning machine. Such trans-
formation establishes a connection between the single photon and the multiparticle fields. We then
demonstrate the nonseparability of the bipartite system by adopting a local filtering technique within a
positive operator valued measurement.

DOI: 10.1103/PhysRevLett.100.253601 PACS numbers: 42.50.Xa, 03.65.Ta, 03.67.Bg, 42.65.Lm

In recent years two fundamental aspects of quantum
mechanics have attracted a great deal of interest: namely,
the investigation of the irreducible nonlocal properties of
nature implied by quantum entanglement and the physical
realization of the ‘‘Schrödinger cat’’ [1,2]. The last con-
cept, by applying the nonlocality property to a combination
of a microscopic and macroscopic systems, enlightens the
concept of the quantum state, the dynamics of large sys-
tems and ventures into a most intriguing philosophical
problem, i.e., the emergence of quantum mechanics in
real life. In recent years quantum entanglement has been
demonstrated within a two photon system [3], within a
single photon and atomic ensemble [4,5] and within atomic
ensembles [6–8]. While, according to the 1935 proposal,
the nonlocal correlations were conceived to connect the
dynamics of two ‘‘microscopic’’ objects, i.e., two spins
within the well-known EPR-Bohm scheme [3], in the
present work the entanglement is established between a
microscopic and a ‘‘macroscopic’’, i.e., multiparticle quan-
tum object, via cloning amplification: Fig. 1. The amplifi-
cation is achieved by adopting a high-gain nonlinear (NL)
parametric amplifier acting on a single-photon input carrier
of quantum information, i.e., a qubit state: j�i. This pro-
cess, referred to as ‘‘quantum-injected optical parametric
amplification’’ (QI-OPA) [9,10] turned out to be particu-
larly fruitful in the recent past to gain insight into several
little explored albeit fundamental, modern aspects of quan-
tum information, as optimal quantum cloning machines
[9,11,12], optimal quantum U-NOT gate [13], quantum
no-signaling [14]. Here, by exploiting the amplification
process, we convert by a unitary transformation a single-
photon qubit into a single macroqubit involving a large
number of photons, typically 5� 104. At variance with the
previous works [14,15], here we demonstrate for the first
time the entanglement between the microscopic qubit and
the macroscopic one obtained by the amplification process.
This result is achieved performing a local dichotomic

measurement on the multiphoton field. Let us venture in
a more detailed account of our endeavor.

An entangled pair of photons in the singlet state
j��iA;B � 2��1=2��jHiAjViB � jViAjHiB� was produced
through a spontaneous parametric down-conversion
(SPDC) by the NL crystal 1 (C1) pumped by a pulsed
UV pump beam: Fig. 2. There jHi and jVi stands, respec-
tively, for a single photon with horizontal and vertical
polarization while the labels A, B refer to particles asso-
ciated, respectively, with the spatial modes kA and kB.
Precisely, A, B represent the two spacelike separated
Hilbert spaces coupled by the entanglement. The photon
belonging to kB, together with a strong ultraviolet (UV)
pump laser beam, was fed into an optical parametric am-
plifier consisting of a NL crystal 2 (C2) pumped by the
beam k0P. The crystal 2, cut for collinear operation, emitted
over the two modes of linear polarization, respectively,
horizontal and vertical associated with kB. The interaction
Hamiltonian of the parametric amplification Ĥ �
i�@âyHâ

y
V � H:c: acts on the single spatial mode kB where

ây� is the one photon creation operator associated with the
polarization ~�. The main feature of this Hamiltonian is its
property of ‘‘phase-covariance’’ for ‘‘equatorial’’ qubits
j�i, i.e., representing equatorial states of polarization, ~� �
2�1=2� ~�H � e

i� ~�V�, ~��? � ~�?� , in a Poincaré sphere
representation having ~�H and ~�V as the opposite ‘‘poles’’
[15]. The equatorial qubits are expressed in terms of a

EPR
source

QIOPA

ALICE

BOB

kA

kB

FIG. 1 (color online). Schematic diagram showing the single-
photon quantum-injected optical parametric amplification.
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Abstract: We present the realization of a ultra fast shutter for optical
fields, which allows to preserve a generic polarization state, based on
a self-stabilized interferometer. It exhibits high (or low) transmittivity
when turned on (or inactive), while the fidelity of the polarization state is
high. The shutter is realized through two beam displacing prisms and a
longitudinal Pockels cell. This can represent a useful toolfor controlling
light-atom interfaces in quantum information processing.
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The study of optical parametric amplifiers �OPAs� has been successful in describing and creating nonclas-
sical light for use in fields such as quantum metrology and quantum lithography �Agarwal et al., J. Opt. Soc.
Am. B 24, 2 �2007��. In this paper we present the theory of an OPA scheme utilizing an entangled state input.
The scheme involves two identical OPAs seeded with the maximally path-entangled �N00N� state ��2,0�
+ �0,2�� /�2. The stimulated amplification results in output state probability amplitudes that have a dependence
on the number of photons in each mode, which differs greatly from two-mode squeezed vacuum. A large
family of entangled output states are found. Specific output states allow for the heralded creation of N=4 N00N
states, which may be used for quantum lithography, to write sub-Rayleigh fringe patterns, and for quantum
interferometry, to achieve Heisenberg-limited phase measurement sensitivity.
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I. INTRODUCTION

Nonclassical states of light have been studied in depth
both experimentally and theoretically since the emergence of
quantum electronics. Squeezed light, in particular, has been
applied to a variety of systems, including interferometry and
lithography which show improvement beyond limitations
imposed by classical optics �1–4�. One such device that cre-
ates a type of squeezed light is an optical parametric ampli-
fier �OPA�. OPAs are typically noncentrosymmetric crystals
that exhibit a nonzero ��2� optical nonlinearity �5�. Pump,
signal, and idler modes propagate through the crystal, and
photons from the pump beam are down converted into lower
energy photons in the signal and idler modes. Previous work
focused on the case that the signal and idler modes couple to
the vacuum at the input. This produces the two-mode
squeezed vacuum state, which exhibits highly nonclassical
behavior �2,3,6�. In the present paper we analyze a scheme in
which two identical OPAs are seeded by entangled photon
pairs. The scheme produces a heralded source for a large
family of entangled states, of interest for applications in
quantum metrology and imaging. These states are generated
by conditioning the output on photodetection on two of the
four total output modes.

A particularly useful heralded state that our scheme gen-
erates is the so-called “N00N” state with N=4. A N00N state
is a maximally path entangled state such that, in a Fock-state
basis, �N00N���N�A�0�B+eiN��0�A�N�B, where � is the relative
phase difference between the two spatial modes A and B �4�.
These states allow for superresolution by producing litho-
graphic features with a minimum size of � / �2N�, when inci-
dent on an N-photon absorbing substrate, thus allowing an

N-fold enhancement over standard lithographic methods
�1,4,7�. N00N states have also been shown to exhibit super-
sensitivity in interferometric applications, thus reaching the
Heisenberg limit of ��=1 /N �1,8–10�. Classically, in an in-
terferometer using coherent light, precision in phase-
uncertainty measurement is limited by the shot-noise limit of
��=1 /�n̄, where n̄ is the average photon number. Experi-
mentally, up to N=4 N00N states have been reported and
shown to exhibit both supersensitivity and superresolution
�11,12�. However, implementing N00N-state generators that
produce states of photon number greater than two, which
simultaneously achieve high fidelities and high flux, is very
challenging experimentally. Recently two of us proposed a
scheme that scales well with N and works for an input of any
superposition of �N ,N� photons coupled with feedforward
�13�. Our scheme, presented here, produces heralded N=4
N00N states with relatively high probability, and is experi-
mentally accessible.

In Sec. II we will review the process of optical parametric
amplification and squeezing. In Sec. III we describe the
entanglement-seeded, dual, optical parametric amplification
scheme. Finally, in Sec. IV we analyze the properties of the
output state, including probabilities and applications.

II. OPTICAL PARAMETRIC AMPLIFICATION

To obtain the input state for our scheme, some squeezing
formalism will be reviewed. We will work in the Heisenberg
picture and use a Fock �number� -state basis throughout the
paper. Modes are represented with capital letters, such as
mode A, mode B, and so on. The creation and annihilation

operators for the respective modes are â†, â, b̂†, and b̂. The
mode labels are dropped from the kets, but proceed in alpha-
betical order such that �N�A�M�B��N ,M�.

The unitary operator describing the action of an OPA is
the two-mode squeezing operator �14�,
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We analyze the quantum states obtained by optical parametric amplification of polarization NOON states.
First we study, theoretically and experimentally, the amplification of a two-photon state by a collinear quan-
tum injected optical parametric amplifier (QIOPA). We compare the stimulated emission regime with the spon-
taneous one, studied by Sciarrino et al. [Phys. Rev. A 77, 012324 (2008)]. As a second step, we show that the
collinear amplifier cannot be successfully used for amplifying N-photon states with N�2, and we propose to
adopt a different scheme, based on a noncollinear QIOPA. We show that the state obtained by the latter am-
plification process preserves the � /N feature and exhibits a high resilience to losses. Furthermore, measure-
ment of part of the output state can be adopted to increase the pattern visibility. © 2009 Optical Society of
America

OCIS codes: 270.4180, 190.4410, 120.3940.

1. INTRODUCTION
In the past few years it has been proposed to exploit quan-
tum effects to provide resolution enhancement in imaging
procedures. Among the numerous problems that are cur-
rently studied under the general name of “quantum im-
aging,” investigations concerning the quantum limits of
optical resolution have a special importance, as they may
lead to new concepts in microscopy and optical data stor-
age. Such so-called superresolution techniques, studied
for a long time at the classical level with a view to beating
the Rayleigh limit of resolution, were recently revisited at
the quantum level [1,2]. It was shown that it is possible to
improve the performance of superresolution techniques
by use of nonclassical light [3,4]. This approach, named
“quantum lithography,” may lead in the future to innova-
tive microscopy techniques, to recording image features
that are much smaller than the wavelength of the light,
or to improving optical storage capacity beyond the wave-
length limit. In such a framework, path entangled NOON
states ��N�AB= �1/�2���N�A�0�B+ �0�A�N�B� have been
adopted to increase the resolution in quantum interfer-
ometry. Indeed, in such states a single-mode phase shift �
induces a relative shift between the two components
equal to N� [5]. This feature leads to sub-Rayleigh reso-
lution scaling as � /2N, where � is the wavelength of the
field [6] [Fig. 1(a)]. Analogously, multiphoton polarization
entangled states can be exploited to carry out quantum li-
thography by adopting the scheme reported in Fig. 1(b),
which converts polarization-entanglement into path-
entanglement. The theoretical and experimental study of
photonic NOON states [7–9] has led to the experimental
generation of two-, three-, and four-photon states by post-
selection [10–13] and to the conditional generation of a
state with N=2 [14]. Very recently schemes for the gen-
eration of path entangled NOON states with high value of

fidelity and arbitrary N have been proposed [8,15,16].
However, until now, the low number of photons generated
has strongly limited the potential applications to quan-
tum lithography and quantum metrology. Moreover a
NOON state, like any superposition of macroscopic states,
is supersensitive to losses: for a N-photon state a frac-
tional loss 1/N would destroy the quantum effect respon-
sible for the phase resolution improvement [17].

A natural approach to increase the number of photons
and to minimize the effect of losses is to exploit a high op-
tical parametric process. Recently the output radiation of
an unseeded optical parametric amplifier (OPA) was ex-
ploited to demonstrate the typical � /4 feature with a
large number of photons [18] [Fig. 2(a)]. Even if the
achieved visibility is equal to 20%, this value is sufficient
for applications in lithography and imaging [16]. In such
a framework it has been proposed to exploit stimulated
parametric processes to improve the visibility and obtain
higher signal values [19]. This process, also known as
quantum injected optical parametric amplification, has
found some important applications in the context of quan-
tum information [20,21]. Let us stress that high reso-
lution and intense light fields can also be obtained in a
classical framework [22,23]. In that case the improved
resolution relies on the nonlinear response of the record-
ing medium rather than on the quantum features of the
adopted light field.

In the present paper we investigate the task of the am-
plification of photonic NOON states by two different de-
vices, both based on a quantum injected optical paramet-
ric amplifier (QIOPA). First, in Section 2, we review how a
sub-Rayleigh � /2N resolution can be obtained by an in-
terferometric device acting on a NOON state. Then, in
Section 3 we study both theoretically and experimentally
the amplification of a two-photon state by a collinear
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Recent experimental results demonstrated the generation of a macroscopic quantum superposition �MQS�,
involving a number of photons in excess of 5�104, which showed a high resilience to losses. In order to
perform a complete analysis on the effects of decoherence on these multiphoton fields, obtained through the
quantum injected optical parametric amplifier, we investigate theoretically the evolution of the Wigner func-
tions associated to these states in lossy conditions. Recognizing the presence of negative regions in the W
representation as an evidence of nonclassicality, we focus our analysis on this feature. A close comparison with
the MQS based on coherent ��� states allows us to identify differences and analogies.
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I. INTRODUCTION

In the last decades the physical implementation of macro-
scopic quantum superpositions �MQSs� involving a large
number of particles has attracted a great deal of attention.
Indeed it was generally understood that the experimental re-
alization of a MQS is very difficult and in several instances
practically impossible owing to the extremely short persis-
tence of quantum coherence, i.e., of the extremely rapid de-
coherence due to the entanglement established between the
macroscopic system and the environment �1–4�. Formally,
the irreversible decay toward a probabilistic classical mixture
is implied theoretically by the tracing operation of the overall
MQS state over the environmental variables �5,6�. In the
framework of quantum information different schemes based
on optical systems have been undertaken to generate and to
detect the MQS condition. A cavity-QED scheme based on
the interaction between Rydberg atoms and a high-Q cavity
has lead to the indirect observation of macroscopic quantum
superposition �Schrödinger cat� states and of their temporal
evolutions. In this case the microwave MQS field stored in
the cavity can be addressed indirectly by injecting in the
cavity, in a controlled way, resonant or nonresonant atoms as
ad hoc “measurement mouses” �7,8�. A different approach
able to generate freely propagating beams adopts photon-
subtracted squeezed states; experimental implementations of
quantum states with an average number of photons of around
four have been reported both in the pulsed and continuous
wave regimes �9–12�. These states exhibit non-Gaussian
characteristics and open new perspectives for quantum com-
puting based on continuous-variable systems, entanglement
distillation protocols �13,14�, and loophole free tests of
Bell’s inequality.

In the last few years a novel “quantum injected” optical
parametric amplification �QI-OPA� process has been realized
in order to establish the entanglement between a single-
photon and a multiphoton state given by an average of
many thousands of photons, a Schrödinger cat involving
a “macroscopic field.” Precisely, in a high-gain QI-OPA
“phase-covariant” cloning machine the multiphoton fields
were generated by an optical amplifier system bearing a high

nonlinear �NL� gain g and seeded by a single photon be-
longing to an Einstein-Podolski-Rosen �EPR� entangled pair
�15–19�.

While a first theoretical insight on the dynamical features
of the QI-OPA macrostates and a thorough experimental
characterization of the quantum correlations were recently
reported �20,21�, a complete quantum phase-space analysis
able to recognize the persistence of the QI-OPA properties in
a decohering environment is still lacking �22,23�. Among the
different representations of quantum states in the continuous-
variable space �24�, the Wigner quasiprobability representa-
tion has been widely exploited as an evidence of nonclassical
properties, such as squeezing �25� and EPR nonlocality �26�.
In particular, the presence of negative quasiprobability re-
gions has been considered as a consequence of the quantum
superposition of distinct physical states �27�.

In the present paper we investigate the Wigner functions
associated to multiphoton states generated by optical para-
metric amplification of microscopic single-photon states. We
focus our interest on the effects of decoherence on the mac-
rostates and on the emergence of the “classical” regime in
the amplification of initially pure quantum states. The
Wigner functions of these QI-OPA generated states in pres-
ence of losses are analyzed in comparison with the paradig-
matic example of the superposition of coherent, Glauber’s
states, ���.

The paper is structured as follows. In Sec. II, we intro-
duce the conceptual scheme and describe the evolution of the
system both in the Heisenberg and Schrödinger pictures.
Section III is devoted to the calculation of the Wigner func-
tion of the QI-OPA amplified field. We first consider a single-
mode amplifier, which is analogous to the case of photon-
subtracted squeezed vacuum. Then we derive a compact
expression of the Wigner function in the case of a two-mode
amplifier in the “collinear” case, i.e., for common k vectors
of the amplified output fields. In Sec. IV, we introduce, for
the collinear case, a decoherence model apt to simulate the
decohering losses affecting the evolution of the macrostate
density matrix. This evolution is then compared to the case
of the coherent ��� MQS. Section V is devoted to a brief
review of the features of coherent state superpositions
�CSSs�. Hence in Sec. VI we derive an explicit analytic ex-
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We present the proposition of an experiment in which the multiphoton quantum superposition

consisting of N � 105 particles generated by a quantum-injected optical parametric amplifier, seeded

by a single-photon belonging to an Einstein-Podolsky-Rosen entangled pair, is made to interact with a

mirror-Bose-Einstein condensate (BEC) shaped as a Bragg interference structure. The overall process will

realize a macroscopic quantum superposition involving a microscopic single-photon state of polarization

entangled with the coherent macroscopic transfer of momentum to the BEC structure, acting in spacelike

separated distant places.

DOI: 10.1103/PhysRevLett.104.050403 PACS numbers: 03.65.Ud, 03.67.�a, 03.75.Gg

In recent years, a great deal of interest has been focused
on the ambitious problem of creating a macroscopic quan-
tum superposition (MQS) of a massive object by an en-
tangled optomechanical interaction of a tiny mirror with a
single photon within a Michelson interferometer [1–5],
then realizing a well-known 1935 argument by Erwin
Schrödinger [6]. The present work is aimed at a similar
scope but is not concerned with interferometers nor with
solid mirrors. It rather exploits the process of nonresonant
scattering by a properly shaped Bose-Einstein condensate
(BEC) [7] of an externally generated multiparticle quan-
tum photon state, a ‘‘macrostate’’ j�i, in order to create a
joint atom-photon macrostate entangled by momentum
conservation. Light scattering from BEC structures has
been used so far to enhance their nonlinear macroscopic
properties in superradiance experiments [8] to show the
possibility of matter-wave amplification [9] and nonlinear
wave mixing [10]. In the present work, we intend to discuss
the linear coherent scattering, i.e., the reflection by a
multilayered BEC of a large assembly of nearly monochro-
matic photons generated by a high-gain ‘‘quantum-
injected’’ optical parametric amplifier (QI-OPA) in a
Einstein-Podolsky-Rosen (EPR) configuration [11,12].
Very recently, it was demonstrated experimentally that
the optical macrostate j�i generated by the QI-OPA can
indeed be entangled with, i.e., nonseparable from, a far
apart single-photon state belonging to the injected EPR
pair [13], thus resulting highly resilient to the decoherence
due to losses [14]. By the present work, this condition will
be extended to the mechanical motion of an atomic assem-
bly by making the photonic macrostate j�i to exchange
linear momentum with a high reflectivity BEC optical
mirror, here referred to as a ‘‘mirror BEC’’ (mBEC).
This can be a novel and viable alternative to the realization
of an entangled MQS of a massive object.

The layout of the experiment, Fig. 1, shows an EPR
optical parametric amplifier, provided by Crystal 1, of a
polarization entangled (�-entangled) pair of photons

launched towards two distant measurement stations, here
referred to as Alice (A) and Bob (B) [13,15]. One of the
EPR photons emitted towards the Bob’s site is injected into
the QI-OPA which generates a corresponding macrostate
j�i. The device operates in the collinear regime and am-
plifies with a large ‘‘gain’’ any injected single photon in a
quantum superposition, i.e., a qubit j’ik1, into a large num-
ber of photons,N � 105, associated with a corresponding
macroqubit j�’ik1. These macrostates then drive the me-
chanical motion of the mBEC. Since these states are found
to be entangled with the far apart single-photon emitted
over the mode k2 and detected by Alice, the same entan-
glement property is then transferred to the position macro-
state of the optically driven mBEC [Fig. 1(b)]. The optical
part of the apparatus is the working QI-OPA device re-
cently reported by [13,15] to which the reader is referred.
Micro-macro entangled light.—As shown in Fig. 1, the

main uv beam is split in two beams and excites two non-
linear (NL) crystals cut for type II phase-matching.
Crystal 1 is the spontaneous parametric down-conversion
source of entangled photon couples of wavelength (wl)
�0 ¼ 2�0

P, emitted over the modes ki (i ¼ 10, 2) in the

entangled singlet state j��ik10;k2 ¼ 2�1=2ðjHik10 jVik2 �
jVik10 jHik2Þ, where HðVÞ labels the single-photon state
horizontally (vertically) polarized. The photon associated
with the mode k2 (the trigger mode) is coupled to a single
mode (SM) fiber and filtered by a set of �-analyzing
optical devices, namely, a Babinet compensator (B), a
�0=2þ �0=4 wave plate set, a polarizing beam splitter
(PBS), and an interference filter (IF) with a transmission
linewidth ��0. At last, the trigger photon excites, at the
Alice’s site, the single-photon detector DA

2 delivering the
trigger signal adopted to establish the overall quantum
correlations. By a dichroic mirror (DM), the single photon
created over the mode k0

1 is made to merge into the mode
k1 together with the uv beam associated with mode k0

P and
then injected into the NL Crystal 2 where it stimulates the
emission of many photon pairs over the two polarization
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We consider the high-gain spontaneous parametric down-conversion in a noncollinear geometry as a
paradigmatic scenario to investigate the quantum-to-classical transition by increasing the pump power, that
is, the average number of generated photons. The possibility of observing quantum correlations in such a
macroscopic quantum system through dichotomic measurement will be analyzed by addressing two different
measurement schemes, based on different dichotomization processes. More specifically, we will investigate the
persistence of nonlocality in an increasing size n

2 -spin singlet state by studying the change in the correlations
form as n increases, both in the ideal case and in presence of losses. We observe a fast decrease in the amount of
Bell’s inequality violation for increasing system size. This theoretical analysis is supported by the experimental
observation of macro-macro correlations with an average number of photons of about 103. Our results shed light
on the practical extreme difficulty of observing nonlocality by performing such a dichotomic fuzzy measurement.
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I. INTRODUCTION

For a long time the investigation of entanglement and
nonlocality has been limited to quantum systems of small size
[1]. Theoretical and experimental works on Bell’s inequalities
have been devoted to the study of single-particle states, in
which dichotomic measurements have been performed [2].
Nonlocality tests have been achieved with single-photon
states, produced by parametric down conversion, by detecting
polarization correlations [3–5]. More recently, the violation
of Bell’s inequality has been shown with a larger number
of photons: on Greenberger-Horne-Zeilinger (GHZ) [6] and
cluster states [7] up to four photons.

On the other hand, the possibility of observing quantum
phenomena at a macroscopic level seems to be in conflict
with the classical description of our everyday world
knowledge. The main problem for such observation arises
from the experimental difficulty of sufficiently isolating a
quantum system from its environment, that is, from the
decoherence process [8]. An alterative approach to explain the
quantum-to-classical transition, conceptually different from
the decoherence program, has been given, very recently, by
Kofler and Brukner, along the idea earlier discussed by Bell,
Peres [9], and others. These authors have given a description
of the emergence of macroscopic realism and classical physics
in systems of increasing size within quantum theory [10]. They
focused on the limits of the quantum effects observability
in macroscopic objects, showing that, for large systems,
macrorealism arises under coarse-grained measurements.
More specifically, they demonstrated that, while the evolution
of a large spin cannot be described classically when sharp
measurements are performed, a fuzzy measurement on
a large-spin system would induce the emergence of the
Newtonian time evolution from a full quantum description
of the spin state. However, some counterexamples to such
a modelization have been found later by the same authors:
some nonclassical Hamiltonians violate macrorealism despite

coarse-grained measurements [11]. One example is given
by the time-dependent Schrödinger catlike superposition,
which can violate macrorealism by adopting a suitable
“which emisphere” measurement. Therefore the measurement
problem seems to be a key ingredient in the attempt to
understand the limits of the quantum behavior of physical
systems and the quantum-to-classical transition question. As a
further step, Kofler, Buric, and Brukner also demonstrated [12]
that macrorealism does not imply a continuous spatiotemporal
evolution. Indeed, they showed that the same Schrödinger
catlike nonclassical Hamiltonian, in contact with a dephasing
environment, no longer violates a Leggett-Garg inequality,
while it still presents a nonclassical time evolution. In a recent
paper Jeong et al. [13] contributed to the investigation about
the possibility of observing the quantum features of a system
when fuzzy measurement are performed on it, finding that
extremely coarse-grained measurements can still be useful to
reveal the quantum world where local realism fails.

In this context, the possibility of obtaining macroscopic
quantum systems in the laboratory has raised the problem of in-
vestigating entanglement and nonlocality in systems in which
single particles cannot be addressed singularly. As shown in
Ref. [14], the demonstration of nonlocality in a multiphoton
state produced by a nondegenerate optical parametric amplifier
would require the experimental application of parity operators.
On the other hand, the estimation of a coarse-grained quantity,
through collective measurements as the ones proposed in
Ref. [15], would miss the underlying quantum structure of
the generated state, introducing elements of local realism even
in the presence of strong entanglement and in the absence of
decoherence. The theoretical investigation on a multiphoton
system, obtained via parametric down-conversion, has been
also carried out by Reid et al. [16]. They analyzed the
possibility of obtaining the violation of Bell’s inequality
by performing dichotomic measurement on the multiparticle
quantum state. More specifically, in analogy with the spin
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In the quantum sensing context most of the efforts to design novel quantum techniques of sensing have

been constrained to idealized, noise-free scenarios, in which effects of environmental disturbances could

be neglected. In this work, we propose to exploit optical parametric amplification to boost interferometry

sensitivity in the presence of losses in a minimally invasive scenario. By performing the amplification

process on the microscopic probe after the interaction with the sample, we can beat the losses’ detrimental

effect on the phase measurement which affects the single-photon state after its interaction with the sample,

and thus improve the achievable sensitivity.

DOI: 10.1103/PhysRevLett.105.113602 PACS numbers: 42.50.Ex, 42.50.Dv, 42.50.St

The aim of quantum sensing is to develop methods to
extract the maximum amount of information from a system
with a minimal disturbance on it. Indeed, the possibility of
performing precision measurements by adopting quantum
resources can increase the achievable precision going be-
yond the semiclassical regime of operation [1–3]. In the
case of interferometry, this can be achieved by the use
of the so-called N00N states, which are quantum mechani-
cal superpositions of just two terms, corresponding to
all the available photons N placed in either the signal
arm or the reference arm. The use of N00N states can
enhance the precision in phase estimation to 1=N, thus
improving the scaling of the achievable precision with
respect to the employed resources [4,5]. This approach
can have wide applications for minimally invasive sensing
methods in order to extract the maximum amount of infor-
mation from a system with minimal disturbance. The
experimental realization of protocols involving N00N
states containing up to 4 photons have been realized in
the past few years [6–10]. Other approaches [11,12] have
focused on exploiting coherent and squeezed light to gen-
erated fields which approximate the features of N00N
states. Nevertheless, these quantum states turn out to be
extremely fragile under losses and decoherence [13], un-
avoidable in experimental implementations. A sample,
whose phase shift is to be measured, may at the same
time introduce high attenuation. Since quantum-enhanced
modes of operations exploit fragile quantum mechanical
features, the impact of environmental effects can be much
more deleterious than in semiclassical schemes, destroying
completely quantum benefits [14,15]. This scenario puts
the beating of realistic, noisy environments as the main
challenge in developing quantum sensing. Very recently,
the theoretical and experimental investigations of quantum
states of light resilient to losses have attracted much atten-
tion, leading to the best possible precision in optical

two-mode interferometry, even in the presence of experi-
mental imperfections [16–21].
In this work, we adopt a hybrid approach based on a high

gain optical parametric amplifier operating for any polar-
ization state in order to transfer quantum properties of
different microscopic quantum states in the macroscopic
regime [22,23]. By performing the amplification process of
the microscopic probe after the interaction with the sam-
ple, we can beat the losses’ detrimental effect on the phase
measurement which affects the single-photon state after
the sample. Our approach may be adopted in a minimally
invasive scenario where a fragile sample, such as biological
or artifacts systems, requires as few photons as possible
impinging on it in order to prevent damages. The action of
the amplifier, i.e., the process of optimal phase covariant
quantum cloning, is to broadcast the phase information
codified in a single photon into a large number of particles.
Such multiphoton states have been shown to exhibit a high
resilience to losses [24–26] and can be manipulated by
exploiting a detection scheme which combines features of
discrete and continuous variables. The effect of losses on
the macroscopic field consists in the reduction of the
detected signal and not in the complete cancellation of
the phase information as would happen in the single-
photon probe case, thus improving the achievable sensitiv-
ity. This improvement does not consist in a scaling factor
but turns out to be a constant factor in the sensitivity
depending on the optical amplifier gain. Hence, the sensi-

tivity still scales as
ffiffiffiffi

N
p

, where N is the number of photons
impinging on the sample, but the effect of the amplification
process is to reduce the detrimental effect of losses by a
factor proportional to the number of generated photons.
Let us review the adoption of single photons in

order to evaluate the unknown phase ’, Fig. 1(a). The
phase ’ introduced in the path k2 is probed by sending to
the sample N input photons, each one in the state
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