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Chapter 1

Introduction

The development of methods suitable to obtain numerical, approximate or exact so-
lutions of non linear differential equations has shown an irregular evolution in the
course of history of sciences. The key achievement, symbolizing the starting point of
modern studies on the subject, can be considered the formulation of the fundamental
theorem of calculus, dating back to the works of Isaac Barrow, Sir Isaac Newton and
Gottfried Wilhelm Leibniz, even though restricted versions of the same theorem can be
traced back to James Gregory and Pierre de Fermat. The power series machinery and
a table of primitives compiled by himself, enabled Newton to solve the first remark-
able integrable system of Classical Mechanics, that is the Kepler two-body problem.
During the eighteenth century there was an enormous amount of mathematical works,
often inspired by physical problems, on the theory of differential equations. We have
to mention Lagrange and Euler, the leading figures in the development of theoretical
mechanics of the time, and Gauss, that expanded the results on perturbations and
small oscillations. In this century emerged a formalization for the theory of solutions,
including methods by infinite series: these results were applied mainly to the theories
of celestial mechanics and of continuous media. The rely on the systematic results
that were found, lead Laplace to believe in a completely deterministic universe. In the
subsequent years the theory was enriched with the existence and uniqueness theorems,
and with the theorem of Liouville on the sufficient condition to integrate a dynamical
system by quadratures. At the same time mathematicians understood the importance
to view some differential equations just as a definition of new functions and their prop-
erties. In this contexts the works of Sophus Lie put the theory of evolution equations
on more solid foundations, introducing the study of groups of diffeomorphisms, the Lie
groups, in the field of differential equations: this made clear that the difficulties arising
in finding the solution of differential equations by quadrature often can be brought
back to a common origin, that is the joint invariance of the equations under the same
infinitesimal transformation. Soon after Lie, Backlund and Bianchi, thanks also to a
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mutual influence one had on the others, established the foundations of the theory of
surface transformations and of first order tangent transformations with their applica-
tion to differential equation: in the next section I will give a short historical overview of
the Backlund transformation theory just starting by the results of Bianchi, Backlund
and Lie.

1.1 An overview of the classical treatment of sur-
face transformations.

There exist several excellent books covering all the material reviewed in this section.
This survey is based mostly on [18],[6],[101],[73],[54] [100].

As often happens in sciences history, researches in a new field can pose new queries but
can also give unexpected answers to, at first sight, unrelated questions. So in the last
19th century, the Backlund transformations were introduced by geometers in the works
on pseudospherical surfaces, that is surfaces of constant negative Gaussian curvature.
This is a brief review of those results.

Consider a parametric representation of a surface S in the three dimensional euclidean
space: the coordinates of a point r on the surface are continuous and one-valued
functions of two parameters, say (u,v), so that

r =r(u,v).

If one considers a line on the surface, defined for example by a relation between u and
v of the type ¢(u,v) = 0, then the infinitesimal arc length on this curve is defined by

ds® = dr - dr.
As a result of the (u,v) parametrization, this arc length can be rewritten also as:
ds* = Edu® + 2Fdudv + Gdv?, (1.1)

where E = % . g—;, F = % . % and G = % . %. Since the curve is arbitrary, ds is
called the linear element of the surface and the quadratic differential form given by
Edu? + 2Fdudv + Gdv? is called the first fundamental form of S. The values of E, I’
and G' completely determine the curvature K of the surface S, explicitly given by the

following formula [18]:
1

- (o (emo 7o) ton(Bo -~ mo - mman) 09

Hou Hov FEH ou

where for simplicity I have posed H = vV EG — F?. In the 19th century a question
arose if it is possible to choose another parametrization of the surface, say in terms of
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(a, ), so that the first fundamental form takes particular structures. More specifically
it can be shown [18] that it is always possible to choose the parameters so that the first
fundamental form is given by the special expression

da® + 2 cos(w)dadf + df? (1.3)

where w(a, 3) is the angle between the parametric lines, i.e. the lines r(ag, 3) and
r(a, By) where ag and 3y are two constant values!!. In terms of the parameters (v, (3),
by (1.2), the curvature K is given by:

1 0w

K= ~ sin(w) dadf’ (1.4)

The pseudospherical surfaces are those of constant negative curvature. Let me take for
simplicity the ray of such pseudospherical surfaces equal to 1, so that K = —1. For
such surfaces it is possible to show that, taking the asymptotic lines as coordinate
lines («, ), the first fundamental form is given by (1.3), so that, taking into account
(1.4)), the correspondent angle w is a solution of the sine Gordon equation:

Pw

" 9adp’

sin(w) (1.5)
Conversely, at every solution of the sine Gordon equation, it corresponds a pseudo-
spherical surface implicitly defined by the particular solution itself. In 1879, with
purely geometric arguments, Luigi Bianchi showed [19] that given a pseudospherical
surface and then a solution of sine Gordon equation it is possible to pass to another
pseudospherical surface, that is to another solution of the sine Gordon equation. The
Bianchi transformation linking two solutions of this equation reads:

o (527) 70 (557) 0
% (”,;”) — sin (w/ 5 w) . (1.7)

It is also possible to find the explicit expression of the transformed surface. In fact,
if r and r’ are respectively the position vectors of the pseudospherical surfaces corre-
sponding to w and ', the transformation linking r’ with r is [18]:

r=r+ ! in W @—i—in whw'y or
B sin(w) i 2 da " 2 Sy

IThe positive orientation of a line is given by the increasing direction of the non constant parameter,
the angle is that between 0 and 7 of the positive direction of the parametric lines [18].
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By a direct inspection it is possible to see that the tangent planes at corresponding
points of the two surfaces S and S’ are orthogonal. In fact, if N and N’ are the two
unit vectors normal to S and S’, then parallel to the vectors g—; A g—g and g—‘;’ A %» the
scalar product N - N’ gives zero. In 1883 Béacklund [22] successfully generalized the
Bianchi construction letting the tangent planes of the two surfaces to meet at constant
angle # at corresponding points. This led to a one parameter family of transformations,
the parameter being a = tan(g). Explicitly the Backlund transformations on the two

solutions of the sine Gordon equation read:

0 (W —w Wt w
8_a( 5 )—asm( 5 >, (1.8)

0 ! 1 F—
5(45) - (52).

while the transformations linking the two position vectors are:

¥ =1+ 2a i (L) O (e O (1.10)
B (a? + 1) sin(w) i 2 da 2 B’ '

Soon after this construction Lie observed that the Backlund transformations can
be indeed obtained by a conjugation of a simple Lie group invariance of the sine Gordon
equation with the Bianchi transformation. The sine Gordon equation in fact is invariant
under the scaling (& = aa, 3 = g), so that we can pass from the solution w(«, 3) to
the solution Q(a, ) = w(aa, g) The two solutions Q and €, where Q' is the Lie
transformed of ', are obviously linked by the Backlund transformations if w and '

are related by the Bianchi transformation:
o [ —-Q AV Y
— = asin ,
oo 2 2

9 () 1 (2-Q
3\ 2 ) "\ T2 )

The process to pass from € to Q' with the Backlund transformation B, can be then
decomposed in this way: 1) pass from 2 to w with the inverse of a Lie transformation
LY 2) pass from w to w’ with a Bianchi transformation Bx; 3) pass from o' to &
with a Lie transformation L. Formally:

B, = LBgL‘l.

In 1892 Bianchi derived a non linear superposition principle for the solutions of
the sine Gordon equation, the so called Bianchi permutability theorem. The question
asked by Bianchi is simple: if w, is the solution of the sine Gordon equation obtained
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from w with the Backlund transformation B, with parameter a, and wj is the solution
obtained from w with By, the Backlund transformation with parameter b, under what
circumstances, by acting on w, with B, and on w, with B,, it is possible to have
Wap = Wpe! The answer led to an algebraic expression of {2 = wy, = wy, in terms of w,
w, and wy. Following Bianchi [18], by using (1.8) one has:

0 (wa—w\ . (w,+w 0 (wy—w\ . (wtw
%< 5 )—asm( 5 ) %( 5 )-bsm( 5 >, (1.11)

i Wah — Wy _ bsin Wap + Wq 3 Wha — Wp — asin wba—w . (1.12)
Oa 2 2 da 2 2

By posing wa., = wie = 2 and subtracting the two expressions for g—g in (1.12), one

easily obtains:
Ow,  Owy Q2+ wy (4w,
— —— = 2asin — 2bsin )
Ox Oo 2 2

Introducing the other two expressions (1.11) in this equation one has:

in Wa + W — bsin Wotwl in 24w, — bsin 24w
as 5 S 5 =as 5 S 5 .

This in turns implies:

s (20 ) g (40 L)

By using the addition and subtraction formulae for the sin function, we obtain the
relation known as the permutability theorem:

Q - - Wa
tan( 4w):Zi—Ztan<wb4w>. (1.13)
Note that one reaches the same result by starting from the expression of the Back-
lund transformation containing the ( derivative (1.9). At this point it is possible to
construct, only with algebraic procedures, new pseudospherical surface from a given
one. It is logic to suppose that the simplest of solutions of the sine Gordon equation
has to correspond to the simplest of pseudospherical surfaces. A very simple family of

pseudospherical surfaces are those of revolution. If the z axis is the axis of rotation,
the surface is fixed by the following parametrization [18]:

r = (rcos(v), rsin(v), ¢(r)) (1.14)
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The parallels and meridians on the surface correspond respectively to the circles r =
const; and the curves 1 = consty. The first fundamental form (1.1) corresponding to
this surface is:

ds? = (1+ ¢/(r)?) dr® + r2dy? = dr® + 12 (r)d?

having introduced the parameter 7 given by dr = /(1 + ¢/(r)?)dr?. Tt is easy now to
calculate the curvature of the surface with the formula (1.4). The result is:

1 d%r
K=———. 1.15
rdr? (1.15)
The constraint K = —1 will give the surfaces of revolution with constant negative

curvature determining the dependence of 7 on 7 and then fixing ¢(r) thanks to the
relation dr = /(1 + ¢/(r)?)dr?. The simplest solution of (1.15) is r = ™. This gives
for ¢(r):

2
- (Z—T) dT:/\/l—GQTdT
-

With the substitution ¢” = sin(n), one has ¢(n) = [ Csoli(:g) dn, so that z = ¢(n) =

cos(n) + In ‘tan a ‘ The surface, in terms of the parameters n and 1 is so given by:

r= (sin(n) cos(1)), sin(n) sin(¢)), cos(n) + In ‘tan g’) (1.16)
and the corresponding first fundamental form is:

cos(n)?

ds® =
° sin(n)?

—"dn? + sin(n)*dy? (1.17)

How detect what is the solution of the sine Gordon equation corresponding to this
surface? Recall that the sine Gordon equation is written in the coordinates determined
by asymptotic lines, so that one can try to write (1.16) in these coordinates. However
it is simpler to parametrize both the sine Gordon equation and the surface (1.16) in
terms of the “curvature coordinates”, simply given by:

r=a+ [, y=a—/[.
In this frame the sine Gordon equation (1.5) becomes:
Waz — Wyy = sin(w) (1.18)

and the first fundamental form corresponding to is:

cos® (g) dz? + sin” (%) dy? (1.19)
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Figure 1.1: A Beltrami pseudosphere

Comparing this form with (1.17), one sees that, identifying ¢) = y and dln). — dx, they

sin(n) —
coincide if n = w/2. But, integrating Sﬁf@) = dx, gives n = 2arctan(e”¢) where c is
the constant of integration, and then:
w = 4darctan(e*°). (1.20)

By a direct verification one sees that this is indeed a solution of (1.18). In the curvature
coordinates the pseudospherical surface (1.16) reads:

r(z,y) = (c(;zz(?x))’ c::}f?x)) , & — tanh x) : (1.21)

This surface is known as the Beltrami pseudosphere [18], [100]. A plot is given in fig.
(I.1). Now it is possible to obtain a ladder of pseudospherical surfaces and correspond-
ing solutions of sine Gordon equation through the Backlund transformations. It is
simpler to work in curvature coordinates; the Backlund transformations now read:

5% (w’Q—w> B Sm1(9) (sin (%) cos (%) — cos(8) cos (%) sin (g)) (1.22)
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3 (55) gl (= (3) ) -omom (o)) 0

where I recall that 0 is the angle at which the tangent planes of the two surface at
corresponding points meet. Note that, if one starts with the solution w = 0, then by a
simple integration it is readily obtained

z—1y cos(6)
W' (z,y) = 4arctan (e ) ) : (1.24)

that corresponds to for = 7 (that is in the case of Bianchi transformations).
To this solution one can verify that it corresponds a little modification of the Beltrami
pseudosphere, that is the surface:

r(z,y) = (sin(&)%%,sin@)%,sin(@) (X —tanh X) + ycos(@)) ,  (1.25)

where X = %&;@. In terms of the variables (X, y) it appears very similar to the
surface of revolution (1.21). Indeed it is obtained by a rotation of the same curve
that gives (1.21) plus a translation parallel to the same axis (the z-axis) in such a way
that the ratio of the velocity of translation to that of rotation is a constant (given by
cos(f)). The surfaces obtained with this type of roto-translations are called helicoids
[18]. Now it is possible to compose two solutions and then use the Backlund
transformations in the form (1.10) to obtain the corresponding pseudospherical surface.
Let me use the parameters 6; and 6,

x—ycos(fq)

wy = 4 arctan (e sin(0) ) = 4 arctan (eXl) ,

(1.26)

x—y cos(fa)

wy = 4 arctan (e sin(62) ) = 4 arctan (eX"’) )

The composition of these two solutions, using the permutability theorem (1.13), gives:

i
wio = 4 arctan <

sin (@) cosh (XI;X2)> ‘

Corresponding to w; and wy one has the two surfaces:

r; = | sin cos(y) sin(y) sin — tan cosS
' < <(91)(:osh(X1)’ co§h(X1)’ (B1) (X~ tanh X0) 4y <91)> (1.27)
ry = <sm(92) OC:}?((?()Q, cosslﬁgé) ,sin(6y) (X3 — tanh X5) + ycos(92)>
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Figure 1.2: The two-soliton pseudospherical surface with 6, = 7 and 6, = 3

In curvature coordinates the transformations (1.10) between r’ and r is given by [18]:

r' =1+ sin(6) cos () Or _ sin () or

cos (£) 0r  sin (%) dy (1.28)

At this point there are all the elements to write down the explicit family of surfaces
corresponding to the two-soliton solution wys; by (1.28) it follows that:

rio =rp + Sin(92)
(1.29)

=r9 + sin(&l)

A plot of a particular example of such surfaces is given in figure (1.2). The implication
of the permutability theorem are noteworthy also by the point of view of dynamical
systems. By its iteration it is in fact possible to construct N-soliton solutions (a non
linear superposition of N single soliton solutions) of the sine Gordon equation with a
purely algebraic procedure. The procedure can be represented in a diagram known as
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Figure 1.3: A Bianchi lattice

the Bianchi lattice (see figure (1.3)). As we will mention later, just a rediscovery of the
permutability theorem in some physical applications allowed to rescue the subject of
Backlund transformations in the second part of the twentieth century after the neglect
in which it fell after the World War 1. By the my point of view, the very deep coupling
between algebraic and analytic results on solutions of non linear evolution equations
on one hand and the geometry of surfaces on the other has been underestimated until
today; yet the usefulness, that I hope will emerge also from this work, of the Backlund
transformations in the theory of dynamical systems, but also as a tool for solving, nu-
merically or analytically, systems of evolution equations, legitimates a broader interest
in the geometrical aspects of such transformations.

1.2 The Clairin method

In 1903 Jean Clairin gave important contributions [29] to the subject of Bécklund
transformations. His results were broadly used in the 1970s. He had in mind to extend
analytically the results of Bianchi to the case of a generic partial differential equation
of second order. Although the Clairin approach is analytic and direct, often it requires
tedious calculations. For completeness I will illustrate the method first with a simple
generic situation and then getting again the Béacklund transformations for the sine
Gordon equation with an application of the method.
Suppose to have a generic partial differential equation of second order in two indepen-
dent variables:

Ow Ow w 0w Pw
' B0 88 Ba?’ ad3’ O

F(o, ) =0. (1.30)
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Following Clairin [29], for simplicity of notation I pose:
Ow Ow 0w 0w 0w

r=—-—

"2 T3 "Toar °Toa0p T o5

p

The notations for the transformed variables are the same, so p = ‘g—i and so on. Clairin

assumed that the first derivatives of w are connected by the following system:

fw,@,p,9),
g(w, )-

k=1
=Y

p
q

?

(1.31)

&
S
X

The compatibility of this system requires

dp  0Oq

o8 da’
If this integrability condition is identically satisfied by equation (1.30) for the variable
@, then the equations (1.31) are the Bécklund transformations for (1.30). In fact, if
one has a solution of (1.30), then the system (1.31]) provides a new solution of the same
equation by solving the resulting first order differential equations. At this point it is

important to stress that, as noted by Forsyth [39] (see also [69]), when f and g in (1.31)
are independent of @, then the compatibility equation, in some particular cases, can be

seen as a Lie contact transformation. More specifically, when w is absent, g—g — g—g =0
can be rewritten as:
af dg af 0dg\ . Of. 0g.
—g— = - - = —t— —1r=0. 1.32
90! o +(8ﬁ 2q)° " oq" " ap (1.32)

In order to satisfy this integrability condition, one can distinguish between two possi-
bilities: or it is satisfied identically, so that the coefficient of s, 7 and t are zero and
(1.32) can be transformed in a contact transformation [39]:

do — pda — qdf = p(dw — pda — qd3),

or the integrability condition can be satisfied because w is a solution of the partial

differential equation (1.32): in this case one has a Backlund transformation. In order

to clarify how practically works the method, consider again the sine Gordon equation:
0%

oaf
For the sake of simplicity let me take equations (1.31) of the form:

= sin(w).

q = c(@)] + plw, @),

p=h(@)p+mw,o). (133)
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If the general form (1.31) for p and ¢ is retained, one needs of a huger analysis but
reaches the result given by . For more details see [6]. The compatibility condition
1.32) now reads:

de dh\ .. . 0 -
(E — $> qp + (c — h) sm(w) + —wp—i- =D —w(] - _wq = U (1-34)

Using (1.33), this relation becomes:

de dh\ _. o ol ou\ . [Om omY\ . Ou om
(@‘%ﬁ““ﬂmw“@ﬁ+$ﬁ”Gﬂ %)“?Wﬁﬂ—
(1.35)
Differentiating with respect to p and ¢ one sees that:
d
—(c—d)=0.
AR

Let me pose ¢ = —1 and h = 1. Differentiating (1.35) with respect to p with these
constraints one obtains:

o O B -
%‘F%—O = p=pw — o),

while, differentiating with respect to ¢
m=m(w+ o).
Inserting this forms in (1.35), one is left with the functional differential equation:

Op(w — w)
Oow

om(w + )

—2sin(w) + iR

m(w+ @) — p(w—w) =0.

In order to solve this equation, let me differentiate with respect to w, getting:

O p(w—a) ?m(w+d)
Ow? _ Ow?

o —0)  mw+o)

The r.h.s. of this equation is a function of w + @ while the L.h.s. a function of w — @, so
both sides must be equal to the same constant. Because in the functional differential
equation a trigonometric function appears, this constant can be assumed real and
negative, say —K?2. So:

= Acos(K(w—w))+ Bsin (K(w —)),
m = Ccos (K(w+ @)) + Dsin (K(w +)).
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Substituting this forms in the functional differential equation and evaluating all at
w = 0, one finds the constraints 2K = 1, AD = BC, AC + BD = 4. The Backlund
transformations for the sine Gordon equation are attained by posing A = C = 0,
L = 2 — q. In this case the transformations (1.33) read:

qg+q 1 . [w—w
—— = —sin ,
2 a 2

pP—Dp . [(wHw
—— =asin ,
2 2

that are exactly the relations (1.8) and (1.9). After the revival of the subject of
Backlund transformations in the last half of the twentieth century, the construction of
such transformations for a number of equations of physical interest (for example KdV,
mKdV, NLS, Ernst equation) was obtained just using the Clairin method [6], [69], [66].
A last observation on the terminology usually found in the literature: commonly the
transformation that links solutions of the same differential equation is called an auto-
Backlund transformation, in opposition to the case of transformation linking solutions
of two different differential equations: generally speaking this last one is the Backlund
transformation. Since in this work I will deal only with auto-Backlund transformations,
I will speak simply of Backlund transformations and no confusion can arise.

1.3 The Renaissance of Backlund transformations

After a nearly silent period in the scientific community on the subject, in 1953 the
Backlund transformations and soliton theory took a new run to establish themselves
in physics. About fifteen years before, Frenkel and Kontorova, in order to explain the
mechanism of plastic deformations in the crystal lattice of the metals, introduced a
lattice dynamic model describing how many atoms can form long dislocation line. If ¢,
is the distance of the n-th atom from its equilibrium position, a is the lattice constant
and A and B two constants, then the equations of motion for the ¢,’s are:

d*qy
m
dt2

= —27wAsin (271'@) + B (Gn+1 — 200 + @n—1)
a

This is clearly the spatial discrete version of the sine Gordon equation: in fact in the
continuous limit, with a suitable change of the variables, the equation can be put in the
form ¢y — ¢upr + sin(¢p) = 0 and in turn this equation, with the changes 2o = x4 ¢ and
20 = x—t takes the usual form ¢, = sin(¢). More than ten years after the publication
of Frenkel and Kontorova results, Alfred Seeger, while working on his Phd thesis,
became aware by chance of the works of Bianchi on sine Gordon equation. So a number
of well known solitonic features, such as the preservation of shape and velocity after
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collisions, were obtained [104] by means of the permutability theorem. In 1967 Lamb
derived the sine Gordon equation as a model for optical pulse propagation in a two
energy level medium having relaxation times which are long compared to pulse length
(ultrashort optical pulses). Lamb was aware of the Seeger works, so in 1971 [68] he used
the permutabilty theorem to analyse the decomposition, experimentally observed, of
“2N7” pulses into N stable “27” pulses. The situation became even more interesting
after the work of Wahlquist and Estabrook on Backlund transformations for the
KdV equation of the 1973. In fact not only they found the transformations and the
associated permutability theorem for the KdV equation, but moreover they stressed
how an iteration of this theorem can analytically describe the behavior of the soliton
solutions numerically observed by Zabusky and Kruskal in 1965 [131]. Furthermore a
connection with the incoming Inverse Spectral Transform theory was established. Let
me summarize their findings.

They rewrote the KdV equation:

U + (6u2 + Ugy)e =0

by introducing the potential function defined by v = —w,. This potential function
satisfies the equation:
wy = 6W2 — Wags,

Given a solution u of the KdV and then the associated potential w, another solution
u, with potential w; can be found by the following Backlund transformations:

(w1 +w), = (w1 —w)® — X\

(wr + w) = 4 (s + 0 — u(wr — w)? — () — w) (1.36)

where \; is an arbitrary parameter. The permutability theorem allowed them to find
a relation between the elements of a soliton ladder. In particular by considering sub-
sequent transformations induced by (1.36) with different parameters, for example the
transformation from u to u; with A; and then from u; to uyo with parameter Ay, they
expressed the nth step of the ladder by the recursion relation:

)\n - )\n—l

Wy = Wyp_o + (1.37)
W(n—1) — Wp-1

where the subscript n denotes the set of n parameters {A,...A\,} and n’ the set
{1, Anm1, Angr ) (with wy = w). So for n = 3 one has:

2 2
Wyog = W + —————,
W13 — W12

that can be obviously expressed in terms of only single soliton solutions by an iteration
of the formula (1.37) in the case n = 2. Note that the first of the equations (1.36) has
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the form of a Riccati equation: in fact, by posing v = w; — w, one has:
Uy + 2u = 0% — )\
The linearization of this equation by the substitution v = —% gives:

Yo + (2u - )‘)1/} =0,

that is the Schrodinger equation: this result gave the connection between the Back-
lund transformation of the KdV and the outstanding observation by Gardner, Green,
Kruskal and Miura [42] that the solutions of the KdV equation itself are related with the
potential of the Schrodinger equation. In 1974, one years after the work of Wahlquist
and Estabrook, Lamb [69], by applying the Clairin method, found the Bécklund trans-
formations for the NLS equation. Again a permutability theorem was obtained (al-
though, in the words of Lamb “the result appears to be too complex to be useful for
computational purposes”) and a connection with the linear equations for the inverse
problem associated with the NLS equation was established. From now on a lot of
results on Backlund transformations for many classes of integrable partial differential
equations were obtained; for a review see [101]. At this point it was clear that there are
some characteristic properties common to all integrable equations: they possess a Lax
representation, which we will analyze later, are solvable by inverse scattering transform
and possess Backlund transformations. Nevertheless, as noted first by Wojciechowski
in 1982 [126], although many finite dimensional systems also admit Lax representa-
tion and are completely integrable, the analogue of Bécklund transformations for these
systems was not known. So in his aforementioned work he provided the Backlund
transformations for the classical Calogero-Moser system. There he clearly noticed how
the Backlund transformations for finite dimensional system can be seen as canonical
transformations preserving the algebraic form of the Hamiltonian. Really this is not
an accident as it will be clarified in 1.5

1.4 Backlund transformations and the Lax formal-
iIsm

The Renaissance of Backlund transformations matches with the golden age of the
integrability theory and of the associated inverse spectral methods. As it is well known,
in the later sixties fundamental developments were obtained in the theory of nonlinear
differential equations. On the one hand in [42] were derived explicit solutions of the
KdV equation and was described the interaction of an arbitrary number of solitons,
on the other hand Peter Lax in [71] introduced an operatorial compatibility condition
that subsequently allowed to extend the method adopted in [42] to solve a number of
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nonlinear evolution equations with ubiquitous physical applications. Let me summarize
the mean features of the Lax method in order to well understand the connections with
the Backlund transformations theory. The prototypical example of Lax pair is the one
that generates the KdV equation. One introduces two linear problems associated to
two operators L and M as follows:

Lo = \o, L= 0%+ u(x,t), (1.38a)

¢ =Mb, M =~ —3uy — 6ud, — 40,s,. (1.38b)

Here X is the spectral parameter and v is an arbitrary constant. The function ¢, that
according to (1.38a) can be reads as a wave function for the Schrodinger equation with
potential u(x,t), depends on x, t and A. The compatibility equations for the wave
function ¢ lead to the Lax equation:

Li+ LM — ML =L, + [L,M] =0 (1.39)

and this in turns is equivalent to the KdV equation. The core of the inverse spectral
method, the spectral analysis, is derived from the study of equation (1.38a). The
physical interpretation of the method is well described by Fokas; by using his words
38]:“Let KdV describe the propagation of a water wave and suppose that this wave
1s frozen at a giwen instant of time. By bombarding this water wave with quantum
particles, one can reconstruct its shape from knowledge of how these particle scatter.
In other words, the scattering data provide an alternative description of the wave at a
fized time”. Once the scattering data have been found, it is possible to compute their
time dependence thanks to (1.38b), and so insert the time dependence in the solution
of the KdV. More precisely, given u(z,0), the spectrum of the Schrédinger equation
(1.38a) is given by a finite number of discrete eigenvalues, say A = {2}, for A > 0
and a continuum set, A = —k? for A\ < 0. The asymptotics of the corresponding
eigenvectors (at t = 0) can be written as follows:

“+oo
A > 0; r — —00 On(x,0,Kp) ~ c,(0)e™™*  with @2 (2,0, Ky )dr = 1;

A<0; z——00  ¢x,0,k)~T(k,0)e *
r — +00 (2,0, k) ~ e ™ + R(k,t)e™
where T'(k,t) and R(k,t) are the transmission and reflection function for the wave
function ¢. The time evolution of these functions and of ¢, (t) can be found by equation

(L38D); the result is ¢, (1) = ¢, (0)e*, T(k,#) = T(k,0) and R(k,1) = R(k,0)c"".
At this point the scattering data are completely described by the set:

S(At) = (Kn,cn(t), R(k, 1)) .
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The link between the corresponding solution of the KdV and this data set is given by
a linear integral equation; indeed if one defines the function F(z,t) by:

N

1 [~ -
F(x,t) = Z c2(t)e ™t + o / R(k,t)e™*dk,
n=1 e

then it solves the Gel'fand-Levitan-Marchenko equation:
Klo,.0)+ Flat.0)+ [ Koo t)P(s+y.0ds =0
and the function u(x,t) is reconstructed by:

0
u(x,t) =2—K(z,x,1).
(2,1) = 2 K (2, 2,1)
Now the connection with Béacklund transformations. Suppose to have two different
solutions, u and w, to the KdV equation. Correspondingly to these solutions there
must exist two different spectral problems, the first given by the equations and

(1.38b), and the other by:
Lo=X\p, L=20%+u(z,t), (1.40a)

by =Mop, M=~ — 30, — 60dy — 40yss. (1.40b)

Suppose also that u and u are linked by a Bécklund transformation. The relation
between the two solutions defined by this transformation reflects into a relation between
the wave functions of the two spectral problems. This means that it has to exist an
operator D, that we will call the dressing operator or dressing matriz and that depends
on u, u and A\, such that

¢ = Dé. (1.41)

Inserting this equation in (1.40a) and taking into account (1.38a), one obtains the
equation for the Backlund transformations in the Lax formalism:

LD = DL (1.42)

As we will see, this boxed equation will be of fundamental importance for the core of
this work. Obviously, given a dressing operator D fulfilling (1.42), one has to ensure
also that (1.40b)) is fulfilled. For differential equations possessing a Lax representation,
the problem of finding Backlund transformations reduces to the problem of finding the
corresponding dressing operator.
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1.5 Backlund transformations and integrable dis-
cretizations

1.5.1 Integrable discretizations

Cellular automata, neural networks and self-organizing phenomena are only few of the
key notions appearing in the modern developments of discrete dynamics. One of the
main practical interest in integrable discretizations of nonlinear evolution equations
arises from the needs of computational physics. The problem is to construct a discrete
analogue of the continuum model preserving its mean features. In statistical mechanics,
for obvious reasons, it is of fundamental importance that the long-term dynamics of the
continuous model can be related to the corresponding dynamics of the discrete system.
An encyclopedic work on the Hamiltonian approach to integrable discretization is that
of Suris [115]. As a matter of fact the problem of integrable discretizations is not to
solve the discrete dynamics, but rather to find what is the most appropriate discrete
counterpart of a continuous system. Since in this work we will deal only with integrable
system, for the sake of completeness I will first recall the Liouville-Arnold theorem on
complete integrable systems and then I will specify, following Suris, what is meant by
“appropriate” discretization.

Theorem 1 Suppose to have an autonomous Hamiltonian system (with Hamiltonian
H) with n degree of freedom (the dimension of phase space is then 2n) and with n
independent first integrals in involution, that is n functions I, k = 1...n, such that
the gradients VI, are n independent vectors for every point of the phase space and the
Poisson bracket {Iy, I,,} vanishes for every k,m = 1...n. Consider the level set

M, ={z R : I, =ap,k=1...n},
where a € R™. Then:

o M, is a smooth manifold invariant under the phase flow associated with I, ... I,;

o [f M, is compact and connected it is diffeomorphic to an n-dimensional torus,
that is the set T™ of n angular coordinates:

T" ={¢1, .. ¢n};

o The flow with respect to H determines a quasi-periodic motion on M,:

= Wi, wi = wi(l;);

dt
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o The equations of motion with respect the Hamiltonian H can be integrated by
quadratures.

For the detailed proof of these statements the reader can see for example [§].

Now, having in mind the precise formulation of Suris [115], we can state the problem of
integrable discretization as in the following. Suppose to have an autonomous complete
integrable system, governed by an Hamiltonian H, and denote simply by x the dynamic
variables of this system. Let [;(z) be the integrals in involution. The equations of
motion will be given by:

&= {H,z} = f(a). (1.43)

The “appropriate” discrete counterpart of this system will be a family of maps:
T =P(x,p)
depending smoothly on a parameter 4 and such that:
e In the limit g — 0 the map approximate the flow (1.43):

D, 1) =z + pf(x) + O,

e The map is Poisson with respect to the bracket {-,-} or some its deformation
{3t =1{31+0Ww).

e The map is integrable and the integrals approximate those of the continuous
system: [ (x,pn) = Ix(z) + O(p).

Note that it is not requested the explicitness of the map, nor the conservation of the
orbits.

If the more restrictive conditions {-,-}, = {-, -} and I(x, u) = I;(x) are fulfilled, than
[ will talk about ezact-time discretization: as will be showed in the chapter (4), at least
in some special cases of such discretization for the Kirchhoff top, and as a conjecture
for the exact time discretization of the Kirchhoff top as a whole, it will be possible to
preserve also the physical orbits of the system.

A number of methods have been proposed in the course of time to establish a modus
operandi in discretizing continuous flows. A complete list can be found in [115] (see
also [116]); some of these approaches are:

e The Ablowitz-Ladik approach [1], [2]: if an integrable system can be written as
the compatibility condition for two associated linear problem, then the corre-
sponding discrete system can be found by discretizing, in some way, one or both
of them. “In some way” indeed means that this can be done in various ways;
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Faddeev and Takhtajan try to get some fixed rule by focusing on Hamilto-
nian properties of the model considered: a common feature for models in 1 4 1
dimensions is to retain the r-matrix and substitute the linear Poisson bracket
with the quadratic one (see appendix Bl for a discussion on linear and quadratic
r-matrix structures).

e The Hirota method: it is based on the bilinear approach introduced by Hirota
[51] and widely used to obtain soliton solutions of non linear evolution equations.
It seems to have some connections with a method proposed by Kahan but that
has remained largely ignored [87]. As noted in [115], the mechanism behind the
method is yet to be fully understood.

e The Moser and Veselov approach [78], [129], [127]: it is based on discrete la-
grangian equations obtained by means of variational principles. It is also known
as the factorization method and is indeed based on some observations of Symes
[119] on the connection of Toda flow with the @ R-algorithm, an important tool
in the numerical analysis for the diagonalization of matrices. Moser and Veselov
works gave rise to a widespread and renewed interest in the theory of integrable
maps within the mathematical physics community.

e Geometric method [118], [23], [26]: as we have seen in the first part of this work,
there is a deep connection between geometry of surfaces and integrable differential
equations. It is natural then to check what is obtained by discretizing the notions
and methods of smooth surface theory. In my opinion this could be one of the
more fruitful direction of the future research.

e The Backlund transformations method: the approach that represents the ob-
ject of the thesis and that will be extensively explained in the next paragraph.
In my perspective this is the most satisfactory and efficient method to obtain
discrete version of integrable non linear evolution equations that admit a Lax
representation; the deep connection with the geometry of surfaces should not be
underestimated as a source of new discoveries and new queries.

1.5.2 The approach a la Backlund

Quite remarkably, Backlund transformations provide a powerful tool in the discretiza-
tion of integrable differential equations. The idea behind this technique is very simple:
suppose that a differential equation possesses an associated Lax structure and a Back-
lund transformation. By viewing the new solution as the old one but computed at
the next time-step, then the Backlund transformation becomes a differential-difference
(or only difference) equation. The same argument can be repeated also at the level of
the Lax matrices, so that one is often able to obtain also the Lax pair for the discrete
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system, showing in this way its integrability. To the best of my knowledge, one of
the first clear evidences of the capability of this point of view was given by Levi and
Benguria in [72], where these lines of reasoning were used to show that the following
differential difference approximation of the KdV equation:

(w(n+1,t) + w(n,t), + [w(n+1,t) —w(n,t)] |h+ % (w(n+1,t) —w(n,t))

is indeed integrable. However, in my opinion, in the course of all the eighties the full
potential of the Backlund transformations was not well understood. As yet mentioned
in(1.3, in 1982 Wojciechowski [126] sought to find the analogues of the Bécklund trans-
formations for finite dimensional systems. As a matter of fact he f