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Abstract

The management of heterogeneous databases, in integrated or collaborative
contexts, always involves the need for solutions to data programmability issues.
In general, data programmability addresses problems dealing with evolving
scenarios: changes in a database which collaborates in a heterogeneous envi-
ronment often imply a sequence of propagating changes in related databases
at any level, model, schema, and data.

In this scenario there is the need to translate data and their descriptions
from one model (i.e. data model) to another. Even small variations of models
are often enough to create difficulties. For example, while most database sys-
tems are now object-relational, the actual features offered by different systems
rarely coincide, so data migration requires a conversion. Every new database
technology introduces more heterogeneity and thus more need for translations.

According to the model management proposal, these problems can be solved
conveniently applying the ModelGen operator, that can be defined as follows
using our terminology: given two models M1 and M2 and a schema S1 of M1,
ModelGen translates S1 into a schema S2 of M2 that properly represents S1.

In this dissertation we will be presenting our theoretical and practical con-
tribution to the development of an effective implementation of a generic (i.e.
model independent) platform for schema and data translation.

We improve the expressive power of its supermodel, that is the set of models
handled and accuracy and precision of such models representation. We show
how it is possible to automatically reason on models and schemas and how
to find a suitable translation given a source and a target model exploiting a
formal system, proved to be sound and complete. Then we propose an exten-
sion of Datalog based on the use of hierarchies and a sort of polymorphism,
that provides a significant simplification in the definition of translations and
a higher level of reuse in the specification of elementary translations. Finally
we present a new, lightweight, runtime approach to the translation problem,
where translations of data are performed directly on the operational system.
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Chapter 1

Introduction

1.1 Motivations

Informatics is the science of information. In detail, according to the French
Academy, it is the science of rational management of information, also intended
as support to human knowledge and communication. Models are needed in or-
der to manage information, that is to represent a specific domain with the
needed level of abstraction. Hence the management of models and their de-
scriptions by means of metadata is a key point for every information system
and is a fertile research area.

The first use of metadata for data processing was reported in [McG59].
Since then, metadata-related tasks and applications have become truly per-
vasive and metadata management plays a major role in today’s information
systems. In fact, the majority of information system problems involve the de-
sign, integration, and maintenance of complex application artifacts, such as
application programs, databases, web sites, workflow scripts, object diagrams,
and user interfaces. These artifacts are represented by means of formal descrip-
tions, or models, and, consequently, metadata on models. Indeed, to solve these
problems we have to deal with metadata, but it is well known that applications
solving metadata manipulation are complex and hard to build, because of het-
erogeneity and impedance mismatch. Heterogeneity arises because data sources
are independently developed by different people and for different purposes and
subsequently need to be integrated. The data sources may use different data
models, different schemas, and different value encodings. Impedance mismatch
arises because the logical schemas required by applications are different from

1
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2 Chapter 1. Introduction

the physical ones exposed by data sources. The manipulation includes de-
signing mappings (which describe how two models are related to each other)
between the models, generating a model from another model along with a map-
ping between them, modifying a model or mapping, interpreting a mapping,
and generating code from a mapping.

In the past, these difficulties have always been tackled in practical set-
tings by means of ad-hoc solutions, for example by writing a program for
each specific application. This is clearly very expensive, as it is laborious
and hard to maintain. In order to simplify such manipulation, Bernstein et
al. [BHP00, Ber03, Mel04] proposed a model management system. Its goal is
to factor out the similarities of the metadata problems studied in the litera-
ture and develop a set of high-level operators that can be utilized in various
scenarios. Within this system, we can treat models and mappings as abstrac-
tions that can be manipulated by such model-at-a-time and mapping-at-a-time
generic operators; these operators are meant to be generic in the sense that
a single implementation of them is applicable to all of the data models. We
want to remark that in this dissertation we use the terms schema and data
model as common in the database literature, though a recent trend in model
management follows a different terminology (and uses model instead of schema
and metamodel instead of data model).

The proposed model management operators are just five and they are
demonstrated to be useful to solve three well known meta data problems like
schema integration, schema evolution, and round-trip engineering. A descrip-
tion of these operators follows.

Match takes two schemas as input and returns a mapping between them.

Compose takes a mapping between schemas A and B and a mapping between
schemas B and C, and returns a mapping between A and C.

Diff takes a schema A and a mapping between A and some schema B, and
returns the sub-schema of A that does not participate in the mapping.

ModelGen takes a schema A, and returns a new schema B based on A (typ-
ically in a different model than A’s) and a mapping between A and B.

Merge takes two schemas A and B and a mapping between them, and returns
the union C of A and B along with mappings between C and A, and C
and B.



i
i

“main” — 2009/2/24 — 16:31 — page 3 — #17 i
i

i
i

i
i

1.2. Overview 3

In this dissertation we mainly focus on the ModelGen operator. The prob-
lem of translating schemas between data models is acquiring progressive sig-
nificance in heterogeneous environments. Applications are usually designed to
deal with information represented according to a specific data model, while the
evolution of systems (in databases as well as in other technology domains, such
as the Web) led to the adoption of many representation paradigms.

For example, many database systems are nowadays object-relational (OR)
and so it is reasonable to exploit their full potentialities by adopting such
a model while most applications are designed to interact with a relational
database. Also, object-relational extensions are often non-standard, and con-
versions are needed. The explosion of the eXtensible Markup Language (XML),
with all its applications (for example, as a format for information exchange or
as the language for the semantic Web), has increased the heterogeneity of rep-
resentations. In general the presence of several coexisting models introduces
the need for translation techniques and tools.

1.2 Overview

The management of heterogeneous databases, in integrated or collaborative
contexts, always involves the need for solutions to data programmability issues.
In general, data programmability addresses problems dealing with evolving
scenarios: changes in a database which collaborates in a heterogeneous envi-
ronment often imply a sequence of propagating changes in related databases
at any level, model, schema and data [BM07, Haa07, HAB+05]. Heterogeneity
means that on the one hand systems are developed by different people, fostering
different data models and technologies; on the other hand it recalls problems
involving different software components using shared and interoperating data.

In this scenario there is the need to translate data and their descriptions
from one model (i.e. data model) to another. Even small variations of models
are often enough to create difficulties. For example, while most database sys-
tems are now object-relational, the actual features offered by different systems
rarely coincide, so data migration requires a conversion. Every new database
technology introduces more heterogeneity and thus more need for translations.
For example, the growth of XML has led to such issues, including the need
to have object-oriented wrappers for XML data, the translation from nested
XML documents into flat relational databases and vice versa, and the conver-
sion from one company standard to another, such as using attributes for simple
values and sub-elements for nesting versus representing all data in sub-elements.
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4 Chapter 1. Introduction

Other popular models lead to similar issues, such as Web site descriptions, data
warehouses, and forms. In all these settings, there is the need for translations
from one model to another.

According to the model management proposal, these problems can be solved
conveniently applying the ModelGen operator, that can be defined as follows
using our terminology: given two models M1 and M2 and a schema S1 of M1,
ModelGen translates S1 into a schema S2 of M2 that properly represents S1.

As there are many different models, what we need is an approach that is
generic across models and can handle the idiosyncrasies of each model. Ide-
ally, one implementation should work for a wide range of models, rather than
implementing a custom solution for each pair of models.

The first step toward a uniform solution is the adoption of a general model
to properly represent all the considered data models (e.g. entity-relationship,
object-oriented, relational). The proposed general model is based on the idea
of construct: a construct represents a “structural” concept of a data model.
We find out a construct for each “structural” concept of every considered data
model and, hence, a data model is completely represented by the set of its
constructs. Let us consider two popular data models, entity-relationship (ER)
and object-oriented (OO). Indeed, each of them is not “a model”, but “a family
of models”1, as there are many different proposals for each of them: OO with
or without keys, binary and n-ary ER models, OO and ER with or without
inheritance, and so on. “Structural” concepts for these data models are, for
example, entity, attribute of entity, and binary relationship for the ER and
class, field, and reference for the OO.

Then, in order to define a translation, we have to discover correspondences
between constructs of the two models involved in the transformation (i.e. source
and target model). For example, if we have an ER schema and we want to trans-
late it into an OO schema, we essentially map entities to classes and replace
relationships with references. In detail, there is a one-to-one mapping between
entities and classes, while things are more complex for relationships. As usu-
ally relationships are more sophisticated (they can be n-ary, many-to-many, or
have attributes) and the introduction of new classes (besides those correspond-
ing to entities) may be needed. So, if for example we want to translate the
ER schema in Figure 1.1, which involves a many-to-many relationship, then
we have to introduce a new class to properly represent such a relationship in
the OO model (see Figure 1.2).

1The notion of family of models is intuitive here and will be made more precise in
Chapter 3.
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1.2. Overview 5

Figure 1.1: A simple entity-relationship schema.

Figure 1.2: A simple object-oriented version of the schema in Figure 1.1.

In this way, we have uniform representations of models (in terms of con-
structs) and, consequently, of transformations, but these representations are
not general. Indeed, the weakness of this (partial) solution is that we should
define a transformation for each “source-target” pair of models. This is un-
feasible as the number of (variants of) models grows. A dozen of constructs,
each with some variations and many possible combinations, is enough to reach
hundreds or thousands of different models. To overcome this limit, we ex-
ploit an observation of Hull and King [HK87], drawn on later by Atzeni and
Torlone [AT93]: most known models have constructs that can be classified ac-
cording to a rather small set of metaconstructs. Recalling our example, entities
are mapped to classes (and vice versa in the reverse translation) because the
two types of constructs play the same role (or, in other terms, “they have the
same meaning”), then we can define a generic metaconstruct to represent both
these concepts; the same happens for attributes of entities and fields of classes.
Conversely, relationships and references do not have the same meaning and
hence one metaconstruct is not enough to properly represent both concepts.
From this new point of view, based on metaconstructs, in order to perform a
translation, we essentially copy the metaconstructs allowed in the source model
and in the target one and eliminate the metaconstructs not allowed in the target
model, representing them by means of the allowed ones. With reference to the
example, we copy the metaconstructs representing entities and their attributes
(since they are allowed in the target model to represent classes and their fields)
and transform the metaconstruct (not allowed in the target model) represent-
ing relationships, replacing it with the metaconstruct representing references.
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6 Chapter 1. Introduction

Figure 1.3: A simple object-oriented schema.

Figure 1.4: A relational version of the schema in Figure 1.3 with new key
attributes.

Hence, to define a transformation, we still have to discover correspondences
between source and target model, but with reference to the metaconstructs of
the involved models.

An interesting issue is that the actual translation can depend on the details
of the source and target model. For example, if we go from an object-oriented
model to a relational one, then we have to implement different translations
depending on whether the source model requires the specification of identifiers
or not (ignoring the internal OIDs of objects). Let us refer to the schema in
Figure 1.3. If the object-oriented model does not allow (or it allows but does
not require) the specification of identifiers, then, in the translation toward the
relational model, we have to add new key attributes in the tables generated for
each class. If instead identifiers are required (and, in the example, the fields
PCode and CNumber are specified as identifiers of the classes Prof and Course,
respectively), no new attributes are needed. Figures 1.4 and 1.5 show the two
possibilities in the translated schema. In both cases, referential integrity is
needed, in the former case involving the new attributes and in the latter over
the existing identifiers.

The example shows that we need to be able to deal with the specific aspects
of models, and that translations need to take them into account. We have
shown two versions of the object-oriented model, one that has visible keys
(besides the system managed identifiers) and one that does not. The translation
has to be different as well.
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1.2. Overview 7

Figure 1.5: A relational version of the schema in Figure 1.3 without new key
attributes.

Figure 1.6: Models and transformations.

The goal of the research project at “Roma Tre” University we have con-
tributed to is the development of a platform that allows the specification of
the source and target models of interest (including OO, OR, ER, UML, XML
Schema, and so on), with all relevant details, and to generate the translation
of their schemas (and instances of those schemas) from one model to another.
This scenario is sketched in Figure 1.6, where the ovals represent families of
models and each bidirectional arrows represent the set of transformations be-
tween variants of models of the connected families; the oval with the dots inside
represents any other data model that could be represented with the same meta-
model approach by means of constructs.
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8 Chapter 1. Introduction

In particular our contribution, detailed in the next section, affected the
schema-related component of MIDST (Model Independent Data and Schema
Translation), a framework for the development of an effective implementation
of a generic (i.e. model independent) platform for schema and data transla-
tion. With respect to data translation, we adopt an approach that differs from
the proposal sketched in a preliminary report by Atzeni et al. [ACB06]. We
propose a new approach where data translations are performed directly on the
operational system.

1.3 Outline and Contributions

The rest of the thesis is organized as follows. In Chapter 2, we present the
overall approach and the dictionary that handles models and schemas. Then
we illustrate our first contribution: the extension of the supermodel that is now
capable of modeling essential concepts to represent recent complex data models
like the object-relational and the XML Schema (XSD). Example of the newly
introduced concepts are nesting relationships, complex structured elements,
collections, and substructures. The obtained supermodel is actually used in
the MIDST framework. Detailed descriptions of the managed data models are
provided. For each model, we explain how its concepts are represented by
means of metaconstructs and relationships between them; then we illustrate
the complete supermodel, obtained as union of the metaconstructs involved in
the considered data models. The chapter ends with a discussion on criticalities
and problems arising with the enlargement of the supermodel that motivate
and justify the definition of a formal system presented in Chapter 3.

A formal system is conceived to automatically reason on models. Chap-
ter 3 starts with the formalization of such formal system, and then proceeds
with the proofs of its soundness and completeness. We associate a concise de-
scription with each model, by means of propositional formulas, and a signature
with each basic translation. Then, we define the application of a signature to
a model description. We prove that the model we derive by means of the ap-
plication of signatures is exactly the model that allows the set of schemas that
can be obtained by means of the Datalog programs. The chapter ends with the
presentation of the algorithm, based on the formal system, that allows to find
automatically a sequence of translations, out of a library of many basic trans-
lations, to perform the transformation requested by the user. A new module of
the MIDST tool exploits these results. It is capable to extract automatically
descriptions of models (and schemas) and signatures of rules, to apply such
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1.3. Outline and Contributions 9

signatures to model (and schema) descriptions; moreover it implements the
aforementioned algorithm.

In Chapter 4, we illustrate the refactoring undergone by our supermodel.
The goal of such refactoring is the definition of a more compact and cohesive
supermodel. In the last part of the chapter, we show how the formal system
of Chapter 3 has to be modified in order to work properly with the new su-
permodel. Such refactoring leads us to solve the problem of a combinatorial
explosion of the number of Datalog rules needed.

In Chapter 5, we propose an extension of Datalog. This extension is aimed
at introducing some kind of inheritance and polymorphism in Datalog in order
to exploit the new features of the refactored supermodel. The idea is to consider
every variant of a construct (identified by certain references) like a child of a
generalization rooted in a “generic” construct that has only mandatory fields
(i.e. without references). Then, extending ad-hoc Datalog, we can define a
polymorphic rule for a root construct that can be automatically “instantiated”,
obtaining specific rules for each variant of that construct. The rule engine of
the MIDST tool has been updated to properly “compile” polymorphic rules.
In the last part of the chapter we present our experimental results.

In Chapter 6, we present our ongoing project: a new, lightweight, runtime
approach to the translation problem, where data is not moved from the oper-
ational system and translations are performed directly on it. The new version
of the MIDST tool needs only to know the model and the schema of the source
database and generates views on the operational system that transform the
underlying data (stored in the source schema) according to the corresponding
schema in the target model. Views are generated in an almost automatic way,
on the basis of the Datalog rules for schema translation.
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Chapter 2

A Metamodel Approach

2.1 Overview

Constructs and Models

As we saw in the previous chapter, we adopt a uniform representation for data
models. Our approach is based on the idea of a metamodel, defined as a set
of constructs that can be used to define models, which are instances of the
metamodel. This is based on Hull and King’s observation [HK87] that the con-
structs used in most known models can be expressed by a limited set of generic
(i.e. model-independent) metaconstructs: lexical, abstract, aggregation, gen-
eralization, and function. In fact, we define a metamodel by means of a set
of generic metaconstructs. Each model is defined by its constructs and the
metaconstructs they refer to. Simple versions of the models in the examples in
Chapter 1 could be defined as follows:

• an entity-relationship model involves abstracts (the entities), aggrega-
tions of abstracts (relationships) and lexicals (attributes of entities and,
in most versions of the model, of relationships);

• an object-oriented model involves abstracts (classes), reference attributes
for abstracts, which are essentially functions from abstracts to abstracts,
and lexicals (fields or properties of classes);

• a relational model involves aggregations of lexicals (tables), components
of aggregations (columns), which can participate in keys and foreign keys
defined over aggregations and lexicals.

11
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12 Chapter 2. A Metamodel Approach

The various constructs are related to one another by means of references
(for example, each attribute of an abstract has a reference to the abstract it
belongs to) and have properties that specify details of interest (for example,
for each attribute we specify whether it is part of the identifier and for each
aggregation of abstracts we specify its cardinalities). We will see these aspects
in detail in the following sections.

All the information about models and schemas is maintained in a dictionary.
We will discuss the dictionary in some detail later in the dissertation; here we
just mention that it has a relational implementation, which is exploited by the
specification of translations, written in Datalog.

The Supermodel and the Translations

A major concept in our approach is that of supermodel, a model that has
constructs corresponding to all the metaconstructs known to the system. Thus,
each model is a specialization of the supermodel and a schema in any model
is also a schema in the supermodel, apart from the specific names used for
constructs.

It is worth mentioning that while we say that we follow a “metamodel”
approach, what we actually implement in our dictionary is the supermodel, as
we will see in Section 2.3.

The supermodel gives us two interesting benefits. First, it acts as a “pivot”
model, so that it is sufficient to have translations from each model to and from
the supermodel, rather than translations for every pair of models. Thus, a lin-
ear and not a quadratic number of translations is needed. Indeed, since every
schema in any model is also a schema of the supermodel (modulo construct
renaming), the only needed translations are those within the supermodel with
the target model in mind. A translation is composed of: (a) a “copy” (with
construct renaming) from the source model into the supermodel; (b) an actual
transformation within the supermodel, whose output includes only constructs
allowed in the target model; (c) another copy (again with renaming) into the
target model, as depicted in Figure 2.1. The second advantage is related to the
fact that the supermodel emphasizes the common features of models. So, if two
source models share a construct, then their translations toward similar target
models could share a portion of the translation as well. In our approach, we
follow this observation by defining elementary (or basic) translations that refer
to single constructs (or even specific variants thereof). Then, actual transla-
tions are specified as compositions of basic ones, with significant reuse of them.
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2.1. Overview 13

Figure 2.1: The translation process.

For example, assume we have a source ER model with binary relationships
(with attributes) and no generalizations and simple OO model as target. To
perform the task, we would first translate the source schema by renaming con-
structs according to their corresponding homologous elements (i.e. abstracts,
lexicals, and binary aggregations of abstracts) in the supermodel and then ap-
ply the following steps (sketched in Figure 2.2, where the dashed boxes highlight
the portion of schema affected by the next transformation):

P1 eliminate attributes of aggregations, by introducing new lexicals or new
abstracts and one-to-many aggregations;

P2 eliminate many-to-many aggregations, by introducing new abstracts and
one-to-many aggregations;

P3 replace one-to-many aggregations with references between abstracts.

Finally, we would translate the output schema by renaming constructs ac-
cording to the target model nomenclature (i.e. objects, fields, and references).

Besides reuse of basic translations, the major advantage of the specification
of translations as composition of basic ones is the possibility to add or remove
steps on the basis of the source and target models. Let us consider two simple
examples, just variants of the previous one. If we have a source ER model with
no attributes on relationships (still binary), then we can apply steps P2 and
P3 above only. If instead we have a source ER model with generalizations, the
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14 Chapter 2. A Metamodel Approach

Figure 2.2: A translation composed of three steps.
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2.1. Overview 15

three steps above are not enough; they have to be followed by another step
that takes care of generalizations:

P4 eliminate generalizations (replacing them with references).

It is important to note that the basic steps are highly reusable. Let us
comment on this issue with the help of Figure 2.3 (where we can recognize the
three source models of the previous examples, marked with er2, er5, and er3,
respectively, and the target model marked with oo2).

The figure shows several models, that can be obtained by combining the
constructs seen in this chapter, and some translations between them. Indeed,
this is just a subset of the considered models, but it is sufficient to make the
point. In the figure, we have also omitted various translations, including the
identity one, which would be useful to go from a model to a more complex
version of it, for example from er2 or er3 to er1.

Reuse arises in various ways. First, entire translations can be used in various
contexts: the translation composed of steps P1, P2, and P3, which we have
mentioned for the translation from er2 to oo2, can be used also to go from
the most complex ER model in the picture (the top one, indicated with er1)
to the OO model with generalizations (oo1) in the picture. Second, individual
steps can be composed in different ways: for example, if we want to go from
er1 to the relational model (in the bottom left corner), then we could use basic
translation P5 to eliminate generalizations, then P1 and P2 to reach a simple
ER model (er7), and finally P6 to get to the relational one.

Specification of Basic Translations

Translations are implemented as programs1 in a Datalog variant with OID-
invention (with ideas from ILOG [HY90]), where the latter feature is obtained
by means of the use of Skolem functors. Each translation is usually concerned
with a very specific task, such as eliminating a certain variant of a construct
(possibly introducing another construct), with most of the constructs left un-
changed. Therefore, in our programs only a few of their rules concern real
translations, whereas most of them just copy constructs from the source schema
to the target one. For example, the translation that performs step P2 in Fig-
ures 2.2 and 2.3 (in an ER model, the elimination of many-to-many aggrega-
tions of abstracts, by introducing new abstracts and one-to-many aggregations)
would involve the rules for the following tasks:

1This justifies the symbol P used to denote basic translations
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Figure 2.3: Some models and translations between them.
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2.1. Overview 17

R2,1 copy abstracts;

R2,2 copy lexical attributes of abstracts;

R2,3 copy one-to-one and one-to-many aggregations;

R2,4 copy attributes of one-to-one and one-to-many aggregations;

R2,5 generate an entity for each many-to-many aggregation;

R2,6 generate, for each abstract generated by R2,5, an aggregation between
such abstract and the copy of the first abstract involved in the original
many-to-many aggregation;

R2,7 generate, for each abstract generated by R2,5, an aggregation between
such abstract and the copy of the second abstract involved in the original
many-to-many aggregation;

R2,8 generate, for each attribute of each many-to-many aggregation, an at-
tribute for the abstract generated by R2,5.

We will discuss rules in detail in Section 2.5. Here we just make some high-
level comments. Rules refer directly to our dictionary, and this is facilitated
by the relational implementation: the predicates in the rule correspond to
the tables in the dictionary. The body of each rule includes conditions for
its applicability. Rule R2,1 has no condition, and so it copies all abstracts.
Instead, Rule R2,5 is applied only to many-to-many binary aggregations of
abstracts (denoted by suitable boolean values for its properties). Rule R2,6

is more complex because it involves more constructs but again it is applied
only to many-to-many binary aggregations of abstracts together with one of
the two entities linked by each of these aggregations. Each rule “generates”
a new construct instance in the dictionary with a new identifier generated by
a Skolem functor2; rule R2,1 generates a new abstract for each abstract in
the source schema (and it is a copy, except for the internal identifier) whereas
rule R2,5 and R2,6 generate a new abstract and a new binary aggregation,
respectively, for each binary aggregation, with suitable features.

It is worth noting that the specification of rules in Datalog allows for an-
other kind of reuse. In fact, a basic translation is a program made of several
Datalog rules, and it is often the case that a rule is used in various programs.

2We will comment on Skolem functors, which may appear in both heads and bodies of
rules, in Section 2.5.
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18 Chapter 2. A Metamodel Approach

This happens for all “copy” rules, such as R2,1, and for many other rules; for
example, the two programs that implement steps P6 and P7 in Figure 2.3
(which translate into the relational model from a simple ER and a simple OO,
respectively) would share a rule that transforms abstracts into aggregations of
lexicals (entities or classes into tables) and a rule that transforms attributes of
abstracts into components of aggregations (attributes or fields into columns).

2.2 Related Work

Various proposals exist that consider schema and data translation. However,
most of them only consider specific data models. We comment here on related
pieces of work that address the problem of model-independent translations.

The term ModelGen was coined by Bernstein in [Ber03] where he argues
(as in [BHP00]) for the development of model management systems, consisting
of generic operators for solving problems involving metadata and schemas, and
provides an example of using ModelGen to solve a schema evolution problem.

An early approach to ModelGen (even before the term was coined) was
MDM, proposed by Atzeni and Torlone [AT96]. The basic idea behind MDM
and the similar approaches (Claypool and Rundensteiner et al. [CR03, CRZ+01]
Song et al. [SZK04], and Bézivin et al. [BBDV03]) is useful but offers only a
partial solution to our problem. Their representation of models and transfor-
mations is hidden within the tool’s imperative source code, not exposed as
more declarative, user-comprehensible rules. This leads to several difficulties.
First, only the designers of the tool can extend the models and define the trans-
formations. Thus, instance level transformations would have to be recoded in
a similar way. Moreover, correctness of the rules has to be accepted by users
as a dogma, since their only expression is in complex imperative code. Also,
any customization would require changes in the tool’s source code. All of these
problems are overcome by our approach.

There are two concurrent projects on ModelGen. The approach of Papotti
and Torlone [PT05] is not rule-based. Rather, their transformations are im-
perative programs, with the weaknesses described above. Their translation is
done by translating the source data into XML, performing an XML-to-XML
translation expressed in XQuery to reshape it to be compatible with the target
schema, and then translating the XML into the target model. This is simi-
lar to our use of a relational database (i.e. the relational implementation of
the supermodel) as the “pivot” between the source and target databases. The
approach of Bernstein, Melnik, and Mork [BMM05, MBM07] is rule-based,
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like ours. However, unlike ours, it is not driven by a relational dictionary of
schemas, models and translation rules. Instead, they focus on flexible map-
ping of inheritance hierarchies and the incremental regeneration of mappings
after the source schema is modified. They also propose view generation and so
instance translation.

Bowers and Delcambre [BD03] present Uni-Level Description (UDL) as a
metamodel in which models and translations can be described and managed,
with a uniform treatment of models, schemas, and instances. They use it to
express specific model-to-model translations of both schemas and instances.
Like our approach, their rules are expressed in Datalog. Unlike ours, they are
expressed for particular pairs of models.

Other approaches to schema translation based on some form of metamodel,
thus sharing features with ours, were proposed by Hainaut [Hai96, Hai06] and
Boyd, Poulovassilis and McBrien [BM05, MP99, PM98].

Data exchange is a different but related problem, the development of user-
defined custom translations from a given source schema to a given target one.
It is an old database problem, going back at least to the 1970’s [SHT+77],
that received constant attention during the last decade (Cluet et al. [CDSS98],
Milo and Zohar [MZ98], Popa et al. [PVM+02], and Fagin et al. [FKP05,
FKMP03]) and is still relevant (Gottlob and Nash [GN08] and Libkin and
Sirangelo [LS08]).

2.3 Models, Schemas, and the Dictionary

Description of Models

As we observed in the previous section, the starting point of our approach is
the idea that a metamodel is a set of constructs (called metaconstructs) that
can be used to define models, which are instances of the metamodel. Therefore,
we actually define a model as a set of constructs, each of which corresponds
to a metaconstruct. An even more important notion, also mentioned in the
previous section, is that of supermodel : it is a model that has a construct for
each metaconstruct, in the most general version. Therefore, each model can be
seen as a specialization of the supermodel, except for renaming of constructs.

A conceptual view of the essentials of this idea is shown in Figure 2.4: the
supermodel portion is predefined, but can be extended (and we will present our
recent extension later in this chapter), whereas models are defined by specifying
their respective constructs, each of which refers to a construct of the supermodel
(SM-Construct) and so to a metaconstruct. It is important to observe that our



i
i

“main” — 2009/2/24 — 16:31 — page 20 — #34 i
i

i
i

i
i

20 Chapter 2. A Metamodel Approach

Figure 2.4: A simplified conceptual view of models and constructs.

approach is independent of the specific supermodel that is adopted, as new
metaconstructs and so SM-Constructs can be added. This allows us to show
simplified examples for the set of constructs, without losing the generality of
the approach.

In order to make things concrete and to comment on some details, we
show in Figures 2.5 and 2.6 the relational implementation of a portion of the
dictionary, as we defined it in our tool. The actual implementation has more
tables and more columns for each of them. We concentrate on the principles
and omit marginal details.

The SM-Construct table shows (a subset of) the generic constructs of
the supermodel (which correspond to the metaconstructs) we have: Abstract,
AttributeOfAbstract, BinaryAggregationOfAbstracts, and so on;
these are the categories according to which the constructs of interest can be
classified. Each construct in the Construct table refers to an SM-Construct
(by means of the SM-Construct column) and to a model (by means of the Model
column). For example, the first row in Construct has value “mc1 ” for the
SM-Construct column in order to specify that “Entity” is a construct (of the
“ER” model, as indicated by value “m1 ” in the Model column) that refers
to the “Abstract” SM-Construct. It is worth noting (fourth row of the same
table) that “Class” is a construct belonging to another model (“OODB”) but
referring to the same SM-Construct.

Tables SM-Property and SM-Reference describe, at the supermodel
level, the main features of constructs, properties and relationships among them.
We discuss each of them in turn. Each SM-Construct has some associated
properties, described by SM-Property, which will then require values for
each instance of each construct corresponding to it. For example, the first
row of SM-Property tells us that each “Abstract” (construct “mc1 ”) has an
“Abstract-Name”, whereas the third says that for each “AttributeOfAbstract”
(“mc2 ”) we can specify whether it is part of the identifier of the “Abstract”
or not (property “IsIdentifier”). Correspondingly, at the model level, we have
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2.3. Models, Schemas, and the Dictionary 21

Figure 2.5: The relational implementation of a portion of the supermodel part
of the dictionary.

that each “Entity” has a name (first row in table Property) and that for
each “AttributeOfEntity” we can tell whether it is part of the key (third row
in Property). In the latter case the property has a different name (“IsKey”
rather than “IsIdentifier”). It is worth observing that “Class” and “Field”
have the same features as “Entity” and “AttributeOfEntity”, respectively, be-
cause they correspond to the same pair of SM-Constructs, namely “Abstract”
and “AttributeOfAbstract”. Other interesting properties are specified in the
fourth and fifth rows of SM-Property. They allow for the specification of
cardinalities of binary aggregations by saying whether the participation of an
abstract is “functional” or not: a many-to-many relationship will have two false
values, a one-to-one two true ones, and a one-to-many one true and one false.
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Figure 2.6: The relational implementation of a portion of the models part of
the dictionary.
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Table SM-Reference describes how SM-Constructs are related to one an-
other by specifying the references between them. For example, the first row
of SM-Reference says that each “AttributeOfAbstract” (construct “mc2 ”)
refers to an “Abstract” (“mc1 ”); this reference is named “Abstract” because
its value for each attribute will be the identifier of the abstract it belongs
to. Again, we have the information repeated at the model level as well: the
first row in table Reference specifies that “AttributeOfEntity” (construct
“co2 ”, corresponding to the “AttributeOfAbstract” SM-Construct) has a ref-
erence to “Entity” (“co1 ”). The same holds for “Class” and “Field”, again,
as they have the same respective SM-Constructs. The second and third rows
of SM-Reference describe the fact that each binary aggregation of abstracts
involves two abstracts and the homologous happens for binary relationships in
the second and third rows of Reference.

The close correspondence between the two parts of our dictionary is a con-
sequence of the way it is managed. The supermodel part (Figure 2.5) is its
core; it is predefined (but can be extended) and it is used as the basis for the
definition of specific models. Essentially, the dictionary is initialized with the
available SM-Constructs, together with their properties and references. Ini-
tially, the model-specific part of the dictionary is empty and then individual
models can be defined by specifying the constructs they include by referring
to the SM-Constructs. In this way, the model part (Figure 2.6) is populated
with rows that correspond to those in the supermodel part, except for the spe-
cific names, such as “Entity” or “AttributeOfEntity”, which are model specific
names for the SM-Constructs “Abstract” and “AttributeOfAbstract”, respec-
tively. This structure causes some redundancy between the two portions of
the dictionary, but this is not a great problem, as the model part is generated
automatically: the definition of a model can be seen as a list of supermodel
constructs, each with a specific name.

An additional feature we have is the possibility of specifying conditions on
the properties for a construct, in order to put restrictions on a model. For
example, to define an object-oriented model that does not allow the specifica-
tion of identifying fields, we could add a condition that says that the property
“IsId” associated with “Field” is identically “false”. These restrictions can be
expressed as propositional formulas over the properties of constructs. We will
make this observation more precise in Chapter 3.
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Description of Schemas

The model portion of our dictionary is a metadictionary in the sense that it
can be the basis for the description of model-specific dictionaries, with one
table for each construct, with their respective properties and references. For
example, the schema of a dictionary for the binary ER model mentioned above
includes tables Entity, AttributeOfEntity, and BinaryRelationship,
as shown in Figure 2.7. The content of the dictionary describes two schemas,
shown in Figure 2.8. The dictionary for a model has a structure that can be
automatically generated once the model is defined. At the initialization of the
tool, this portion of the dictionary is empty, and suitable tables are created
whenever a model is defined.

Figure 2.9 shows a similar dictionary, for an object-oriented data model,
with very simple constructs, namely class, field (as discussed above), and ref-
erence field. The content of the dictionary describes a schema, shown in Fig-
ure 2.10.

In the same way as the supermodel gives a unified view of all the constructs
of interest, it is useful to have an integrated view of the schemas in the various
models, describing them in terms of their SM-Constructs rather than constructs
as we have done so far. As we anticipated in Section 2.1, this gives great benefits
to the translation process, allowing an uniform definition of transformations.
The supermodel portion of our dictionary has tables whose names are those
of the SM-Constructs and whose columns correspond to their properties and
references. We show an excerpt of the dictionary in Figure 2.11.

Its content is obtained by putting together the information contained in
the model-specific dictionaries. For example, Figure 2.11 shows the portion
of the supermodel that suffices for the descriptions of schemas of ER and OO
models shown in Figures 2.7 and 2.9. In particular, the table Abstract is the
union (modulo suitable renaming) of tables Entity and Class in Figures 2.7
and 2.9, respectively3. Similarly, AttributeOfAbstract is the union of
tables AttributeOfEntity and Field.

We summarize our approach to the description of schemas and models by
means of Figure 2.12. We have a dictionary composed of four parts, with two
coordinates: schemas (lower portion) vs. models (upper portion) and model-
specific (left portion) vs. supermodel (right portion).

3In the figures, for the sake of understandability, we have used, for each construct and
schema, the same identifier in the supermodel dictionary and in the model specific one. So,
for example “s1” is used both for a schema in the ER model and for the corresponding one
in the supermodel.
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Figure 2.7: The dictionary for a simple entity-relationship model.

Generality of the Approach

The above discussion suggests that it is indeed possible to describe many models
and variations thereof by means of just a few more constructs. In fact our
first contribution is represented by an extension of the previous supermodel,
that is now capable of modeling essential concepts to represent recent complex
data models like the object-relational and the XSD. Examples of the newly
introduced concepts are nesting relationships, complex structured elements,
collections, and substructures.

In the current version of our supermodel we have nine main constructs,
the four shown in Figure 2.11 (with AttributeOfAbstract replaced by the
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Figure 2.8: The entity-relationship schemas described in Figure 2.7.

Figure 2.9: The dictionary for a simple object-oriented model.
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Figure 2.10: The object-oriented schema described in Figure 2.9.

more general Lexical, used for all value-based simple constructs) plus addi-
tional ones for representing n-ary aggregations of abstracts, generalizations, ag-
gregations of lexicals, foreign keys, and structured (and possibly nested and/or
multivalued) attributes. We said “main” constructs, since we have several spec-
ifications for them, each one with a particular set of attributes and references.
For example, we have many “specific” value-based simple constructs (e.g. one
referring to abstract, one to aggregation, and one to binary aggregation of ab-
stracts), but here, in order to present the idea without details, we can represent
them by means of a single more general construct (e.g. Lexical). We devote
the next section to a complete discussion about the supermodel and the spe-
cific data models. The relational implementation has a few additional tables,
as some constructs require two tables, because of normalization. For example,
n-ary aggregations require two tables, one for the aggregations and one for the
components of each of them.

We summarize constructs and (families of) models in Figure 2.13, where we
show a matrix, whose rows correspond to the constructs and columns to the
families we have experimented with. In the cells, we use the specific construct
name for the family (for example, Abstract is called Entity in the ER model).
The various models within a family differ from one another (i) on the basis of
the presence or absence of specific constructs and (ii) on the basis of details of
(constraints on) them. To give an example for (i) let us recall that versions of
the ER model could have generalizations, or not, and the OR model could have
structured columns or just simple ones. For (ii) we can just mention again the
various restrictions on relationships in the binary ER model (general vs. one-
to-many), which can be specified by means of constraints on the properties. It
is also worth mentioning that a given construct can be used in different ways
(again, on the basis of conditions on the properties) in different families: for
example, a structured attribute could be multivalued, or not, on the basis of
the value of a property isSet.
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Figure 2.11: A model-generic dictionary, based on the supermodel.
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Figure 2.12: The four parts of the dictionary.

An interesting issue to consider here is “How universal is this approach?” or,
in other words, “How can we guarantee that we can deal with every possible
model?”. A major point is that the metamodel is extensible, which is both
a weakness and a strength. It is a weakness because it confirms that it is
impossible to say you have a complete metamodel. However, it is a strength
because it allows the addition of features when needed. This applies both
to the details of the models of interest and to the families of models. With
respect to the first issue, let us give an example: if one wants to handle XSD
in full detail, then the metamodel and the supermodel need to be complex
at least as the XSD language is. In fact, the level of detail can vary greatly
and it can be chosen on the basis of the context of interest. With respect
to the second issue it is worth mentioning that the approach can be used to
handle metamodels in other contexts, with the same techniques. Indeed, we
have noticed preliminary experiences with semantic Web models [AD06], with
the management of annotations [PA07], and with adaptive systems [DT06]: for
each of them, we defined a new set of constructs (and so different metamodel
and supermodel) and new basic translations, but we used the same framework
and the same engine.

In summary, the point is that the approach is independent of the specific
supermodel. The supermodel we have mainly experimented with so far is a
supermodel for database models and covers a reasonable family of them. If
models were more detailed (as is the case for a fully-fledged XSD model) then
the supermodel would be more complex. Moreover, other supermodels can be
used in different contexts.
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Figure 2.13: Constructs and models.
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Figure 2.14: The relational model.

2.4 Supermodel Explained

In this section we show our representations of (families of) data models by
means of constructs, then we “merge” them all together and present our com-
plete supermodel.

Relational

We consider a relational model with tables constituted by columns of a specified
type; each column could allow null value or be part of the primary key of the
table. Moreover we can specify foreign keys between tables involving one or
more columns.

The Figure 2.14 shows an UML-style diagram of the constructs allowed in
the relational model with the following correspondences:

Table - Aggregation.

Column - Lexical. We can specify the data type of the column (type) and
whether it is part of the primary key (isIdentifier) or it allows null value
(isNullable). It has a reference toward an Aggregation.

Foreign Key - ForeignKey and ComponentOfForeignKey. With the
first construct (referencing two Aggregations) we specify the existence
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Figure 2.15: The binary entity-relationship model.

of a foreign key between two tables; with the second construct (referencing
one ForeignKey and two Lexicals) we specify the columns involved
in a foreign key.

Binary entity-relationship

We consider an entity-relationship model with entities and binary relationships
together with their attributes and generalizations (total or not); each attribute
could be optional or part of the identifier of an entity; for each relationship we
specify minimum and maximum cardinality and whether an entity is externally
identified by it.

The Figure 2.15 shows an UML-style diagram of the constructs allowed in
the model with the following correspondences:

Entity - Abstract.
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Attribute of Entity - Lexical. We can specify the data type of the at-
tribute (type) and whether it is part of the identifier (isIdentifier) or it is
optional (isOptional). It refers to an Abstract.

Relationship - BinaryAggregationOfAbstracts. We can specify mini-
mum (0 or 1 with the property isOptional) and maximum (1 or N with
the property isFunctional) cardinality of the involved entities (referenced
by the construct). Moreover we can specify the role (role) of the in-
volved entities and whether the first entity is externally identified by the
relationship (IsIdentified).

Attribute of Relationship - Lexical. We can specify the data type of the
attribute (type) and whether it is optional (isOptional). It refers to a
BinaryAggregationOfAbstracts.

Generalization - Generalization and ChildOfGeneralization. With
the first construct (referencing an Abstract) we specify the existence
of a generalization rooted in the referenced Entity; with the second con-
struct (referencing one Generalization and one Abstract) we specify
the children of the generalization. We can specify whether the general-
ization is total or not (isTotal).

We want to remark that we used in this presentation the “main” con-
struct Lexical with two mutually exclusive references, instead of two specific
construct, each one with a mandatory reference toward Abstract and Bina-
ryAggregationOfAbstracts, respectively.

N-ary entity-relationship

We consider an entity-relationship model with the same features of the afore-
mentioned binary ER except for n-ary relationships instead of binary ones.

The Figure 2.16 shows an UML-style diagram of the constructs allowed
in the model with the following correspondences (we omit details already ex-
plained):

Entity - Abstract.

Attribute of Entity - Lexical.

Relationship - AggregationOfAbstracts and ComponentOfAggre-
gationOfAbstracts. With the first construct we specify the existence
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Figure 2.16: The n-ary entity-relationship model.

of a relationship; with the second construct (referencing an Aggrega-
tionOfAbstracts and an Abstract) we specify the entities involved
in such relationship. We can specify minimum and maximum cardinal-
ity of the involved entities (0 or 1 with the property isOptional and 1 or
N with the property isFunctional, respectively). Moreover we can specify
whether an entity is externally identified by the relationship (IsIdentified).

Attribute of Relationship - Lexical. It refers to an AggregationOfAb-
stracts.

Generalization - Generalization and ChildOfGeneralization.
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Figure 2.17: The object-oriented model.

Object-oriented

We consider an object-oriented model with classes, simple fields, and reference
fields. We can also specify generalizations of classes.

The Figure 2.17 shows an UML-style diagram of the constructs allowed
in the model with the following correspondences (we omit details already ex-
plained):

Class - Abstract.

Field - Lexical.

Reference Field - AbstractAttribute. It has two references toward the
referencing Abstract and the referenced one.

Generalization - Generalization and ChildOfGeneralization.
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Figure 2.18: The object-relational model.

Object-relational

We consider a simplified version of the object-relational model. We merge the
constructs of our relational and object-oriented model, where we have typed-
tables rather than classes. Moreover we consider structured columns of tables
(typed or not) that can be nested. Reference columns must be toward a typed
table but can be part of a table (typed or not) or of a structured column.
Foreign keys can involve also typed tables and structured columns. Finally, we
can specify generalizations that can only involve typed tables.

The Figure 2.18 shows an UML-style diagram of the constructs allowed
in the model with the following correspondences (we omit details already ex-
plained):

Table - Aggregation.
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Typed Table - Abstract.

Structured Column - StructOfAttributes and Nest. The structured
column, represented by a StructOfAttributes can allow null values or
not (isNullable) and can be part of a simple table or of a typed table (this
is specified by its references toward Abstract and Aggregation). We
can specify nesting relationships between structured columns by means
of Nest, that has two references toward the top StructOfAttributes
and the nested one.

Column - Lexical. It can be part of (i.e. refer to) a simple table, a typed
table or a structured column.

Reference Column - AbstractAttribute. It may be part of a table
(typed or not) and of a structured column (specified by a reference) and
must refer to a typed table (i.e. it has a reference toward an Abstract).

Foreign Key - ForeignKey and ComponentOfForeignKey. With the
first construct (referencing two tables, typed or not, and a structured
column) we specify the existence of a foreign key between tables (typed
or not) and structured columns; with the second construct (referencing
one ForeignKey and two Lexicals) we specify the columns involved
in a foreign key.

Generalization - Generalization and ChildOfGeneralization.

Again we remark the use of “main” constructs (StructOfAttributes,
Nest, Lexical, AbstractAttribute, ForeignKey, and ComponentOf-
ForeignKey) in this presentation rather than consider a specific one for each
allowed combination of references.

XSD

We consider a simplified version of the XSD language. We are only interested
in XML documents that can be used to store large amount of data. Indeed we
consider XSD documents with at least one top element unbounded (i.e. with
maxOccurs = “unbounded” according to the syntax and the nomenclature of
XSD). Then we deal with elements that can be simple or complex (i.e. struc-
tured). For these elements we can specify whether they are optional or whether
they can be null (i.e. nillable according to the syntax and the nomenclature of
XSD). Simple elements could be part of the key of the element they belong to
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Figure 2.19: The XSD language.

and has an associated type. Moreover we allow the definition of foreign keys
(i.e. key and keyref according to the syntax and the nomenclature of XSD).

The Figure 2.19 shows an UML-style diagram of the constructs allowed
in the model with the following correspondences (we omit details already ex-
plained):

Root Element - Abstract.

Complex Element - StructOfAttributes and Nest. The first construct
represents structured elements that can be unbounded or not (isSet), can
allow null values or not (isNullable) and can be optional (isOptional). We
can specify nesting relationships between complex elements by means of
Nest, that has two references toward the top StructOfAttributes
and the nested one.

Simple Element - Lexical. It can be part of (i.e. refer to) a root element
or a complex one.

Foreign Key - ForeignKey and ComponentOfForeignKey.
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Figure 2.20: The Supermodel.

The Supermodel

The Figure 2.20 shows an UML-style diagram of the constructs allowed in the
supermodel, obtained as the merge of the constructs of the previous models.

2.5 The Translations

Section 2.1 gave a general idea of the specification of translations in our pro-
posal as a composition of basic steps. In this section we give some more details
on basic translations and their implementation in Datalog. We close the sec-
tion with a discussion about some issues related to the specification of complex
translations.
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Basic Translations

We have already shown the sequence of rules useful to eliminate many-to-many
relationships in an ER model. We recall that, in our programs, only a few of
their rules concern real translations, whereas most of them just copy constructs
from the source schema to the target one. In our example the rules concern-
ing transformation are those involving many-to-many relationships. The other
relationships (i.e. one-to-one and one-to-many) together with the other con-
structs need just to be copied.

Let us now go into more detail about our Datalog rules, with reference to
three of those involved in the aforementioned transformation. As an example of
a copy rule we show rule R2,1 that copies entities. The sample rules perform-
ing translations are rules R2,5 and R2,6. The first replaces a many-to-many
relationship with a new entity; the second adds a new relationship in order
to suitably “connect” the added entity with one of the entities originally in-
volved in the many-to-many relationship (we recall that there is a “twin” rule
to connect the other entity).

R2,1:
Abstract (OID: #abstract 0(absOID),

sOID: tgt,
Name: n)

←
Abstract (OID: absOID,

sOID: src,
Name: n)

R2,5:
Abstract (OID: #abstract 1(aggOid),

sOID: tgt,
Name: n)

←
BinaryAggregationOfAbstracts(

OID: aggOid,
sOID: src,
Name: n,
isFunctional1: false,
isFunctional2: false)
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R2,6:
BinaryAggregationOfAbstracts(

OID: #binaryAggregationOfAbstracts 1(absOid,aggOid),
sOID: tgt,
Name: absName+aggName,
Abstract1: #abstract 1(aggOid),
isOptional1: false,
isFunctional1: true,
isIdentified: true,
Abstract2: #abstract 0(absOid),
isOptional2: isOpt,
isFunctional2: false)

←
BinaryAggregationOfAbstracts(

OID: aggOid,
sOID: src,
Name: aggName,
Abstract1: absOid,
isOptional1: isOpt,
isFunctional1: false,
isFunctional2: false),

Abstract (OID: absOID,
sOID: src,
Name: absName)

We first comment on our syntax. We use a non-positional notation for
rules, so we indicate the names of the fields and omit those that are not needed
(rather than using anonymous variables). Our rules generate constructs for a
target schema (tgt) from those in a source schema (src)4. We note that, in
order to simplify the writing of rules, it is possible to refer to a construct of the
target schema also in the body of a rule (specifying that its sOID is equal to
tgt). We may assume that variables tgt and src are bound to constants when
the rule is executed. Each predicate has an OID argument, as we saw in the
examples. When a construct is produced by a rule, it has to have a “new”
identifier. It is generated by means of a Skolem functor, denoted by the # sign
in the rule.

4 We can also use temporary literals in the rule’s head, in order to perform a simple
selection of constructs for convenience, but it is just a technicality and we do not consider it
in this dissertation.
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We have the following restrictions on our rules. First, we have the standard
“safety” requirements [UW97]: the literal in the head must have all fields,
and each of them with a constant or a variable that appears in the body (in
a positive literal) or a Skolem term. Similarly, all Skolem terms in the head
or in the body have arguments that are constants or variables that appear in
the body. Moreover, our Datalog programs are assumed to be coherent with
respect to referential constraints: if there is a rule that produces a construct
C that refers to a construct C ′, then there is another rule that generates a
suitable C ′ that guarantees the satisfaction of the constraint. In the examples,
rule R2,6 is acceptable because there are rule R2,1, that copies abstracts, and
rule R2,5, that generates new abstracts, thus guaranteeing that references to
abstracts by R2,6 are not dangling.

The body of rule R2,5 unifies only with binary aggregations that have
false as a value for IsFunctional1 and IsFunctional2: this is the condition
that holds for all many-to-many relationships. Also the body of rule R2,6

unifies only with many-to-many relationships. For each of them it generates
a binary aggregation between the abstract generated by rule R2,5 and one
of the abstract originally involved in the many-to-many aggregation; the ab-
stract generated by rule R2,5 is externally identified by such new aggregation
(IsIdentified: true) and, obviously, has minimum and maximum cardinality
fixed to one (IsOptionl1: false and IsFunctional1: true); the abstract originally
involved in the many-to-many aggregation participates with unbounded maxi-
mum cardinality (IsFunctional2: false) while the minimum cardinality depends
on the corresponding value of the original many-to-many aggregation (this is
specified by means of the repeated variable isOpt).

These rules (together with rule R2,7) are designed to properly transform
many-to-many relationships. Conversely, the basic translation P3 of the ex-
ample of Section 2.1 is designed for models that do not have many-to-many
relationships: it replaces aggregations with references between abstracts and
this substitution is only feasible for one-to-many aggregations. If we apply this
rule to a model with many-to-many relationships, without applying a step that
removes them before (program P2 in the examples above and in Figure 2.3),
then we would lose the information carried by those relationships. We will
formalize this point later in Chapter 3 in such a way that we could say that
step P3 ignores many-to-many relationships.

Let us comment more on the presented rules. Rule R2,1 generates a new ab-
stract (belonging to the target schema) for each abstract in the source schema.
The Skolem functor #abstract 0 is responsible for the generation of a new
identifier. Skolem functors produce injective functions, with the additional
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constraint that different functions have disjoint ranges, so that a value is gen-
erated only by the same functor with the same argument values. For the sake
of readability (and also for some implementation issues omitted here), we in-
clude the name of the target construct (abstract in this case) in the name of
the functor, and use a suffix to distinguish the various functors associated with
a construct. The 0 suffix always denotes the “copy” functor.

Rule R2,6 replaces each binary many-to-many relationship (that is, in su-
permodel terminology, a BinaryAggregationOfAbstracts) with another
relationship. The rule has a variety of Skolem functors. The head has three
Skolem terms, which make use of three different functors. The first Skolem term
(#binaryAggregationOfAbstracts 1) generates a new value for the construct be-
ing created, as we saw for the previous rule. Indeed, this is the case for all the
Skolem functors appearing in the OID field of the head of a rule. The other two
terms correlate the element being created with elements created by rules R2,1

and R2,5, respectively. In fact, we use the same Skolem terms (#abstract 0 and
#abstract 1) previously used in those rules. The new BinaryAggregation-
OfAbstracts being generated involves the Abstract in the target schema,
generated as a copy of the Abstract (denoted by variable absOid in the source
schema and involved in a many-to-many aggregation), and the Abstract in
the target schema, generated to properly “substitute” the source many-to-
many BinaryAggregationOfAbstracts (denoted by aggOid in the source
schema).

Our approach to rules allows for a lot of reusability, at various levels. First
of all, we have already seen that individual basic translations can be used
in different contexts; in the space of models in Figure 2.3, each translation
can be used in many simple steps. For example, translation P2 can be used to
eliminate many-to-many relationships in every variant of the entity-relationship
model; with reference to Figure 2.3, it can be used to go from er1 to er4, from
er3 to er6, or from er5 to er7. Moreover, translation P3 can be used to
transform relationships into references, for going from different variants of the
entity-relationship model to homologous variants of the object-oriented model;
in Figure 2.3, it can be used to go from er6 to oo1 or from er7 to oo2.

Second, as each translation step is composed of a number of Datalog rules,
some of which are just “copy” rules, they can be used in many basic transla-
tions. This is easily the case for plain copy rules, but can be applied also to
“conditional” ones, that is, copy rules that are applied only to a subset of the
constructs. For example, the rule that eliminates many-to-many relationships
copies all the relationships that are not many-to-many; this can be done with
a copy rule extended with an additional condition in the body.
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In some cases, basic translations can be written with respect to a “core”
set of Datalog rules, with copy rules added automatically, given the set of con-
structs in the supermodel. In this way, the approach would become partially
independent of the current supermodel, especially with respect to its exten-
sions. For example, in our case, we assumed that initially the supermodel does
not include generalizations; in fact, in the specification of the basic translation
P2, which eliminates many-to-many binary aggregations, there are no rules to
deal with them. In this scenario, our basic translation P2 could be defined
by means of rules R2,5, R2,6, and R2,7, responsible of properly transforming
many-to-many aggregations, with rule R2,1, which copies abstracts, added au-
tomatically because of referential integrity constraint in the supermodel, and
rule R2,2, which copies attributes of abstract, added because attributes of ab-
stract are “compatible” with abstracts. Then, if the supermodel were extended
with generalizations, the basic translation would be extended with rules R2,9

and R2,10, which copy generalizations and child of generalizations, respectively.
Most of our rules, such two of those we saw (i.e. R2,1 and R2,6), are recursive

according to the standard definition. However, recursion is only “apparent”.
The same literal occurs in both the head and the body, but the construct
generated by an application of the rule belongs to the target schema, so the
rule cannot be applied to it again, as the body refers to a construct of the
source schema. A really recursive application may occur only for rules that
have atoms that refer to the target schema also in their body. In the following,
we will use the term strongly recursive for these rules.

In our experiments, we have developed a set of basic translations to handle
the models that can be defined with our current metamodel. They are listed
in Appendix Basic Translations. In the next chapter we will discuss arguments
to confirm the adequacy of this set of rules.

Complex Translations

With many possible models and many basic translations, it becomes important
to understand how to find a suitable transformation given a source and a target
model. Intuitively, we could think of using a graph such as that in Figure 2.3,
with models as nodes and basic translations as edges. Here there are two
difficulties. The first one is how to verify what target model is generated by
applying a basic translation to a source model. For example, with reference
to Section 2.1, to verify that transformation P1 indeed generates schemas of
model er3 from schemas of er1 and that it generates schemas of er5 from
schemas of er2). The second problem is related to the size of the graph:
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due to the number of constructs and properties, we have too many models
(a combinatorial explosion of them, if the variants of constructs grow) and it
would be inefficient to find all associations between basic translations and pairs
of models.

We propose a complete solution to the first issue, as follows. We associate
a concise description with each model, by indicating the constructs it involves
with the associated properties (described in terms of propositional formulas),
and a signature with each basic translation. Then, a notion of application
of a signature to a model description allows us to obtain the description of
the target model. With our basic translations written in a Datalog dialect
with OID-invention, as we will see shortly, it turns out that signatures can
be automatically generated and the application of signature gives an exact
description of the target model.

With respect to the second issue, the complexity of the problem cannot be
completely circumvented, but we have devised algorithms that, under reason-
able hypotheses, efficiently find a complex translation given a pair of models
(source and target). So, for example, again with reference to Section 2.1, given
er2 and oo2, our algorithm properly finds the translation composed of steps
P1, P2, and P3, out of a library of many basic translations.

We have devoted Chapter 3 to a detailed description of our solutions.
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Chapter 3

A Formal System

3.1 Overview

In this chapter we give formal grounds to the notion of data model and to the
management of translations of schemas with reference to our approach to this
problem illustrated in Chapter 2. Such formal grounds are useful to answer
questions like the following ones: given a set of basic translations, how do we
build the actual translations we need? How do we verify that a given sequence
of basic translations produces the model we are interested in? And that it does
not “forget” any construct?

Let us give an idea of the result. First, we associate with each model a
description that specifies its constructs. We introduce a similar notion for
our Datalog programs, called signature: given a program, we can derive its
signature, and we have defined the application of signatures of programs to de-
scriptions of models. Then the result is that signatures completely describe the
behavior of programs on models, in the sense that the application of signatures
provides a “derivation” of models that is sound and complete with respect to
the schemas generated by programs. Let us describe the main results with the
help of Figure 3.1.

S1 ∈M1
-

Ppppp
?

M2 = rP(M1)M1 = desc(M1) -rP = sig(P)

ppppp?
M2 = rP(M1)

S2 = P(S1)

Figure 3.1: The formal system.

47
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48 Chapter 3. A Formal System

Let S1 be a schema for a modelM1, P a Datalog program implementing a
basic translation, and S2 the schema obtained by applying P to S1. Then, let
M1 be the description ofM1 and rP the signature of P, which corresponds to
a function (the application of rP) from descriptions of models to descriptions
of models. Soundness and completeness of signatures with respect to Datalog
programs can be claimed as follows, respectively:

1. the application of P to a schema S1 ofM1 produces a schema P(S1) that
belongs to the model whose description rP(M1) is obtained by applying
the signature rP of program P to the description M1 of M1;

2. among the possible schemas ofM1, there exists a schema S∗ such that the
application of P to S∗ produces a schema P(S∗) that (besides belonging
to rP(M1), as stated by the previous claim) does not belong to any model
that is “strictly more restricted” than rP(M1).

The two claims together say that the model we derive by means of the
application of signatures is exactly the model that allows the set of schemas
that can be obtained by means of the Datalog programs. Claim (1) says that
the derived model is liberal enough (soundness) and claim (2) says that it is
restricted enough (completeness).

This can be seen as a “syntactic” aspect of the correctness of rules to be
complemented by a “semantic” one.

3.2 Related Work

To the best of our knowledge, there is no approach in the literature that tackles
the problem we are considering here. There are pieces of work that consider the
translation of schemas in heterogeneous frameworks [ACB06, AT96, BMM05,
PT05], but none has techniques for inferring high level descriptions of trans-
lations from their specification. They all propose some way of generating a
complex translation plan but they either handle very simple descriptions of
models or have to rely on a hard coding of knowledge of behavior of transfor-
mations in terms of pattern of constructs removed and introduced. Bernstein
et al. [BMM05] and Papotti and Torlone [PT05] use some form of signature to
implement an algorithm based on a heuristic function (as A∗ [DP85, RN03])
that produces the shortest transformation plan (if it exists) in terms of number
of transformations between the source and the target model.
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Translations of schemas by means of Datalog variants have been proposed
by various authors [ACM02, BD03, DK97], but no explicit reference to models
and to the possibility of reasoning on models has been proposed. The lat-
ter work includes some reasoning on constraints, but without reference to the
features of models.

Various works exist on the correctness of transformations of schemas, with
reference to the well known notion of information capacity dominance and
equivalence [AH88, Hul86, MIR93]. Here we are not studying the correctness
of the individual translation steps, but the correctness of complex translations,
assumed that the elementary steps are correct, following an “axiomatic” ap-
proach [AT96].

3.3 Descriptions of Constructs and Models

In this section we formalize the description of models. We define models in
terms of their descriptions, blurring the distinction between a model and its
description, as descriptions are sufficient for the purpose of the formal system.

Let us consider a subset of the actual universe of constructs we will use in
the running examples of this chapter to explain the basic idea. We recall that
references are required to build schemas for meaningful models (for example, a
relationship without references to entities would make no sense), while proper-
ties could be restricted in some way (for example, we can think of models where
all cardinalities for relationships are allowed and models where many-to-many
relationships are not allowed). Formally, given a universe of constructs, each
with a set of associated properties:

U = {C1(P1), C2(P2), . . . , Cu(Pu)}

we can define (the description of) a model as a mapping that associates a
proposition with each construct in the universe:

M = {C1(f1), C2(f2), . . . , Cu(fu)}

where an fi is a proposition that can involve literals (possibly negated) corre-
sponding to the properties of Ci. The values of the properties of a construct
Ci of a schema in a model M , must satisfy the proposition fi associated with
Ci in M . If there are no constraints on the properties of a construct, then
the corresponding proposition is true. If a construct is not allowed, then the
corresponding proposition is false.
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Construct References Properties Abbreviation

Entity E()

AttributeOfEntity Entity isKey A(K,N)
isNullable

Relationship Entity1 isOptional R(O1, F1, I,O2, F2)
Entity2 isFunctional1

isIdentified
isOptional2

isFunctional2

AttributeOf Relationship isNullable AR(N)
Relationship

Table T()

Column Table isKey C(K,N)
isNullable

Figure 3.2: The universe of constructs for the examples.

The subset of interest is depicted in Figure 3.2, where in the last column
we indicate the abbreviated form we will use in the following1.

With this universe of constructs we can define, for example, the following
set of models to be used in the discussion:

• MRel: a relational model, with tables and columns (and no restrictions);

• MRelNoN: a relational model with no null values: all columns must have
a value false for property isNullable;

• MER: an ER model with all the available features;

• MERsimple: an ER model with no null values on attributes (all attributes
have a value false for isNullable) and no attributes on relationships;

• MERnoM2N: an ER model with no many-to-many relationships (all rela-
tionships have a value true for isFunct1 or isFunct2).

1For the sake of clarity, in this chapter, we use the specific names, such as “entity”,
instead of the generic ones, such as “abstract”.
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The corresponding descriptions of these models would be as follows:

• MRel = {E(false), A(false), R(false), AR(false), T(true), C(true)}

• MRelNoN = {E(false), A(false), R(false), AR(false), T(true), C(¬N)}

• MER = {E(true), A(true), R(F1 ∨ ¬F2), AR(true), T(false), C(false)}2

• MERsimple = {E(true), A(¬N), R(F1 ∨ ¬F2), AR(false), T(false), C(false)}

• MERnoM2N = {E(true), A(true), R(F1), AR(true), T(false), C(false)}

In the definition above, we have that all constructs are mentioned in every
model, possibly with a false proposition (meaning that the construct does not
belong to the model). In practice, to simplify the notation, we describe a model
by listing only the constructs that really belong to it (i.e. those that have a
satisfiable proposition); in this way, the descriptions would be as follows:

• MRel = {T(true), C(true)}

• MRelNoN = {T(true), C(¬N)}

• MER = {E(true), A(true), R(F1 ∨ ¬F2), AR(true)}

• MERsimple = {E(true), A(¬N), R(F1 ∨ ¬F2)}

• MERnoM2N = {E(true), A(true), R(F1), AR(true)}

We can define a partial order on models, as follows:

M1 v M2 (read M1 is more restricted than M2) if for every C ∈ U it is
the case that f1 ∧ f2 is equivalent to f1 (that is, f1 implies f2), where
C(f1) ∈M1 and C(f2) ∈M2

It can be shown that v is a partial order (modulo equivalence of proposi-
tions), as it is reflexive, antisymmetric, and transitive.

If models are described only in terms of the constructs that have satisfiable
properties, then the partial order can be rewritten as:

M1 vM2 if for every C(f1) ∈M1 there exist C(f2) ∈M2 such that f1 ∧ f2 is
equivalent to f1

2Without loss of generality, we assume that in a one-to-many relationship, it is the first
entity that has a functional role, and so F1 = true and F2 = false.
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In plain words, M1 vM2 means that M2 has at least the constructs of M1

and, for those in M1, it allows at least the same variants. For the example
models:

• MRelNoN v MRel (and MRel 6v MRelNoN): they have the same con-
structs, but MRelNoN has a more restrictive condition on construct C

than MRel;

• MERnoM2N v MER (and MER 6v MERnoM2N): they have the same con-
structs, but MERnoM2N has a more restrictive condition on construct R

than MER;

• MERsimple v MER (and MER 6v MERsimple): the constructs in MERsimple

are a proper subset of those in MER and, for each of them, the condition
in MERsimple is at least as restrictive as the respective one in MER;

• MERnoM2N 6v MERsimple, MERsimple 6v MERnoM2N: in fact MERnoM2N has
AR which is not in MERsimple, but has a more restrictive conditionon R.

We can define two binary operators on the space of models as follows:

M1 tM2 = {C(f1 ∨ f2) | C(f1) ∈M1 and C(f2) ∈M2}
M1 uM2 = {C(f1 ∧ f2) | C(f1) ∈M1 and C(f2) ∈M2}

If models are described only in terms of the constructs that have satisfiable
properties, then the operators can be rewritten as:

M1 tM2 = {C(f1) | C(f1) ∈M1 and there is no C(f2) ∈M2} ∪
{C(f2) | C(f2) ∈M2 and there is no C(f1) ∈M1} ∪
{C(f1 ∨ f2) | C(f1) ∈M1 and C(f2) ∈M2}

M1 uM2 = {C(f1 ∧ f2) | C(f1) ∈M1, C(f2) ∈M2 and f1 ∧ f2 6= false}

It can be shown that the space of models forms a lattice with respect to these
two operators (modulo equivalence of propositions). The proofs of the claims
that guarantee the lattice structure follow the definitions and the fact that the
boolean operators in propositional logic form a lattice. The supermodel (the
fictitious most general model mentioned in Chapter 1) is the top element of the
lattice (with the true proposition for every construct). It is worth noting that
models obtained as the result of these operators, especially the u, could have, in
some extreme cases, little practical meaning. For example, the bottom element
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of the lattice is the (degenerate) empty model, which has the false proposition
for every construct (or, in other words, no constructs).

We can also define a difference operator on models as:

M2 −M1 = {C(f2 ∧ ¬f1) | C(f1) ∈M1 and C(f2) ∈M2}

If models are described only in terms of the constructs that have satisfiable
properties, then the difference operator can be rewritten as:

M2 −M1 = {C(f2 ∧ ¬f1) | C(f1) ∈M1 and C(f2) ∈M2} ∪
{C(f2) | C(f2) ∈M2 and there is no C(f1) ∈M1}

This operator can also generate models with meaningless conditions, and
indeed we will see in Section 3.6 that we use it only for technical steps during
the search for translations.

3.4 Signatures of Rules and Their Application

In order to handle rules and to reason on them, in an effective way, we intro-
duce the notion of signature of a Datalog rule. The definition gives a unique
construction, so the signature can be automatically computed for each rule.

As a preliminary step, let us define the description of an atom in a Dat-
alog rule. Given an atom C(args), consider the fields in args that correspond
to properties (ignoring the others); let them be p1 : v1, . . . , pk : vk; each vi is
either a variable or a boolean constant true or false. Then, the description
of C(args) is a construct description C(f), where the proposition f is the
conjunction of literals corresponding to the properties in p1, . . . , pk that are
associated with a constant; each of them is positive if the constant is true and
negated if it is false. If there are no constants, then the proposition is true.

Let us see an example, recalling one of the rules we have seen in detail in
Chapter 2, modulo renaming of constructs. For the sake of clarity, we report
here rule R2,6 using the specific constructs names of the ER model.
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R2,6:
Relationship (

OID: #relationship 1(eOid,relOid),
sOID: tgt,
Name: entityName+relName,
Entity1: #entity 1(relOid),
isOptional1: false,
isFunctional1: true,
isIdentified: true,
Entity2: #entity 0(eOid),
isOptional2: isOpt,
isFunctional2: false)

←
Relationship (

OID: relOid,
sOID: src,
Name: relName,
Entity1: eOid,
isOptional1: isOpt,
isFunctional1: false,
isFunctional2: false),

Entity (OID: eOID,
sOID: src,
Name: entityName)

The description of the atom in the head of the rule is R(¬O1 ∧ F1 ∧ I∧¬F2)
because the properties isFunctional1 and isIdentified are bounded to true and
the properties isOptional1 and isFunctional2 are bounded to false in the atom.
Analogously, the description of the Relationship atom in the body of the rule
is R(¬F1 ∧ ¬F2). Conversely, the description of the Entity atom in the body
of the rule is E(true) because there are no properties bounded to constant in
the atom.

Let us now define the signature of a Datalog rule. Let R be a rule, with
a head C(args) and a body with a list of atoms referring to constructs which
need not be distinct 〈Cj1(args1), Cj2(args2), . . . , Cjh(argsh)〉; comparison
terms (with inequalities, according to our hypotheses) do not affect the signa-
ture, and so we can ignore them. The signature rR of R is composed of three
parts (B,H,map):
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- B (the body of rR) describes the applicability of the rule, by referring to
the constructs in the body of R; B is a list of descriptions of atoms,
〈Cj1(f1), Cj2(f2), . . . , Cjh(fh)〉, where Cji(fi) is the description of the
atom Cji(argsi).

- H (the head of rR) indicates the conditions that definitely hold on the result
of the application of R, because of constants in its head; H is defined as
the description C(f) of the atom C(args) in the head.

- map (the mapping of rR) is a partial function that describes where values of
properties in the head originate from. It is defined as follows. Its domain
is the set of properties of the construct in the head; map is defined for
the properties that are associated, in the head, with a variable. For our
assumptions, each variable in the head appears also in the body, and
only once. If a variable appears for a property p′ in the head and for a
property p of a construct Cjk in the body, then map is defined on p′ as
map(p′) = Cjk(p).

The body signature of rule R2,6 is B2,6 = 〈R(¬F1 ∧ ¬F2), E(true)〉; indeed,
the rule is applicable only to many-to-many relationships, that is, if both F1

and F2 are false. Similarly, for R2,3 we have B2,3 = 〈R(F1)〉, as the rule copies
one-to-many relationships.

The head signature of rule R2,6 is H2,6 = R(¬O1 ∧ F1 ∧ I ∧ ¬F2): all the
relationships produced by the rule have O1 and F2 equal to false and F1 and I

equal to true.
The mapping for rule R2,6 is map2,6 = 〈O2 : R(O1)〉 (we denote the function

as a list of pairs, including only the properties on which it is defined). The
name of the construct in the head is not mentioned, because it is known, but
let us note that it might be different from the one in the body; this is the case
for R2,8 (in the Appendix Rules) where map = 〈N : AR(N)〉 and the first N is a
property of A, the construct in the head.

Before defining the application of the signature of a rule to a model, we need
two preliminary notions. First, we say that the signature rR = (B,H,map)
of a rule R is applicable to a model M if, for each Cji(fi) in B, there is
Cji(f

M
ji

) ∈ M such that fMji ∧ fi is satisfiable. In plain words, each construct
in the body has to appear in the model, and the two propositions must not
contradict one another. For example, R2,6 is not applicable to MERnoM2N

because we have R(¬F1 ∧ ¬F2) in the body of the rule and R(F1) in the model:
the conjunction of ¬F1 ∧¬F2 and F1 is not satisfiable. Second, let us define the
transformation µmap induced by mapping map on literals. In plain words,
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we use µmap to “transfer” constraints on literals over properties in the body to
literals over properties in the head according to the map of the rule. Let l be
a literal for a property p of an atom Cji(. . .) in the body of a rule R. Then, if
Cji(p) belongs to the range of map, with map(p′) = Cji(p), we have that µmap(l)
is a literal for the property p′ with the same sign as l; if Cji(p) does not belong
to the range of map, then µmap(l) = true. Let us define µmap also on constants:
µmap(true) = true and µmap(false) = false. The notion can be extended to
conjunctions and disjunctions of propositions as follows: (i) µmap(f1 ∧ f2) =
µmap(f1)∧µmap(f2) if f1 ∧ f2 is satisfiable, otherwise µmap(f1 ∧ f2) = false; (ii)
µmap(f1 ∨ f2) = µmap(f1) ∨ µmap(f2).

We are now ready for the definition of the application rR(M) of the signa-
ture of a rule R to a model M . In practice, such function has to combine con-
straints expressed in the head of the rule, with constraints of the source model
that could be “transferred” to the output by means of repeated variables in
the head and the body of the rule. If rR is not applicable to M , then we define
rR(M) = {}. The interesting case is when rR is applicable to M . Let the signa-
tures of the body and of the head of R be B = 〈Cj1(f1), Cj2(f2), . . . , Cjh(fh)〉
and H = C(f), respectively. For every atom Cji(fi) in the body, let fMji be
the proposition associated with Cji in the model M .

Let us first give the definition in the special case where all the constructs
in the source model M have propositions that are just conjunctions of literals.
In this case:

rR(M) = {C(f ′)} where f ′ = f ∧ (
h∧
i=1

µmap(fMji ∧ fi))

Let us note that (fMji ∧ fi) is satisfiable, since the rule is applicable, and
that it is just a conjunction of literals, because this is the case for fi, by
construction, and for fMji , by hypothesis. In plain words, the condition in the
result is obtained as the conjunction of the proposition in the head, f , with
those obtained, by means of map, from those in the source model (the fMji ’s)
and those in the body of the rule (the fi’s).

If the fMji ’s include disjunctions, then let us rewrite fMji ∧ fi in disjunc-
tive normal form gi,1 ∨ . . . ∨ gi,qi

. Then f ′ is built as the conjunction of the
disjunctions of the applications of µmap to the disjuncts:

rR(M) = {C(f ′)} where f ′ = f ∧ (
h∧
i=1

(
qi∨
t=1

µmap(gi,t)))
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Let us see some examples. First, we have that rR2,6(MERnoM2N) = {}, as
the rule is not applicable to the model (as we already saw).

Second, we have rR2,6(MER) = {R(f ′)} = {R(¬O1 ∧ F1 ∧ I∧¬F2)}. The rule
is applicable since only construct R in the body of the rule has an associated
proposition and (F1 ∨ ¬F2) ∧ (¬F1 ∧ ¬F2) is satisfiable, as it is equivalent to
¬F1 ∧ ¬F2. Then, applying the definition, we have that the conjunction of the
disjunctions µmap(. . .) is true, since the only property in the body mapped to
the head is O1, which does not appear in the argument of µmap. Therefore, f ′

equals the condition f in the head of the signature: f ′ = f = ¬O1∧F1∧ I∧¬F2.
As a third example, to see map and µmap really in action, let us apply R2,6

to model M = {E(true), R((F1 ∨ ¬F2) ∧ ¬O1)}. The rule is applicable and we
have rR2,6(M) = {R(f ′)} = {R(¬O1 ∧ F1 ∧ I ∧ ¬F2 ∧ ¬O2)}, as:

f ′ = f ∧ µmap(((F1 ∨ ¬F2) ∧ ¬O1) ∧ (¬F1 ∧ ¬F2)) ∧ µmap(true ∧ true)
= f ∧ µmap((F1 ∧ ¬O1 ∧ ¬F1 ∧ ¬F2) ∨ (¬F2 ∧ ¬O1 ∧ ¬F1 ∧ ¬F2)) ∧ true
= f ∧ (µmap(F1 ∧ ¬O1 ∧ ¬F1 ∧ ¬F2) ∨ µmap(¬F2 ∧ ¬O1 ∧ ¬F1 ∧ ¬F2))
= f ∧ (µmap(false) ∨ (µmap(¬F2) ∧ µmap(¬O1) ∧ µmap(¬F1)))
= f ∧ (false ∨ (true ∧ ¬O2 ∧ true)) = ¬O1 ∧ F1 ∧ I ∧ ¬F2 ∧ ¬O2.

Let us define the signature of a Datalog program. Given a program P
consisting of a set of Datalog rules R1, R2, . . . , Rn, its signature rP is the set
of the rule signatures rRi ’s, with i in [1, n].

We are now ready for the definition of the application rP(M) of the sig-
nature of a program P to a model M . Let us first consider programs with no
strongly recursive rules; we will remove this assumption before the end of the
section. In this case the application is the least upper bound of the applications
of the rule signatures rRi ’s to M : rP(M) =

⊔n
i=1 rRi(M). In this way, we have

a construct for each applicable rule and, if a construct is generated by more
than one rule, the associated proposition is the disjunction of the propositions
associated to it by the various rules.

If we apply the program P2 in our running example to the ER model
MER, then all constructs get copied and maintain the true proposition, except
relationships, for which rules R2,3, R2,6, and R2,7 generate, respectively, R(F1),
R(¬O1 ∧ F1 ∧ I ∧ ¬F2) (as we saw above) and R(¬O1 ∧ F1 ∧ I ∧ ¬F2). Therefore,
as the disjunction of the three formulas is F1, the target model will have R(F1)
and so we can say that the application of the signature of the program to
MER produces MERnoM2N. The results in Section 3.5 will tell us that, as a
consequence, the application of P2 to schemas of MER produce schemas of
MERnoM2N.
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Let us now consider also strongly recursive rules, that is, according to our
definition, rules whose body includes atoms referring to the target schema.
These rules may be applied on the basis of constructs generated by previous
applications of other rules. As a consequence, the application of signatures is
also defined recursively, as a minimum fixpoint. We can redefine the application
of rP to have two arguments, the source model and the target one, and its
recursive application to a model M0 is the fixpoint of the recursive expression
M = rP(M0,M). Since it turns out that the application of rP is monotonic,
then, by Tarski’s theorem [Tar55], we have that the minimum fixpoint exists
and can be obtained by computing M1 = rP(M0,⊥) (where ⊥ is the empty
model), Mi+1 = rP(M0,Mi) and stopping when Mi+1 = Mi.

3.5 Soundness and Completeness

In this section we demonstrate the usefulness of the formal system, proving
that we can characterize the models obtained by applying Datalog rules by
means of the notion of application of the signature of a rule to a model.

We need a few preliminary concepts. A pseudoschema is a set of ground
atoms (called ground constructs hereinafter) each of which has the form
C(oid : o, p1 : v1, p2 : v2, . . . , pk : vk, r1 : o1, r2 : o2, . . . , rz : oz), where C is
the name of a construct that has exactly the properties p1, p2, . . . , pk and the
references r1, r2, . . . , rz, each vi is a boolean constant and each oi is an identifier.
A schema is a pseudoschema that satisfies the referential constraints defined
over constructs. That is, if a schema includes a ground construct C(. . .) with
a reference ri:oi and ri is subject to a referential constraint to a construct C ′,
then the schema has to include a ground atom of the form C ′(oid:oi, . . .).

Given a pseudoschema S0, a closure of S0 is a schema that contains all
the ground constructs in S0. It can be shown that a closure of a pseudoschema
can be obtained by applying a procedure similar to the chase for inclusion
dependencies [CK86], which has a finite result in our case as we have acyclic
referential constraints, and then replacing variables with “new”, distinct values.

A schema belongs to a model if its predicate symbols (that is, its con-
structs) belong to the model and, for each ground atom C(. . .), the boolean
values for its properties satisfy the proposition associated with C in the model.

Given a ground construct c with properties p1 : v1, p2 : v2, . . . , pk : vk, we
define the description of c, denoted with sig(c), as C(f) where f = l1∧. . .∧lk,
and each lj is a literal with the symbol pj , positive if vj = true and negated if
vj = false.
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As an example, R(oid :o, O1: false, F1: false, I: false, O2: true, F2: false, . . .)
is a ground construct (with references omitted as not relevant) describing a
many-to-many relationship, optional on one side and not optional on the other
and without external identification. Its description is R(¬O1∧¬F1∧¬I∧O2∧¬F2).

The notion of description can be extended to schemas: given a schema S,
we define sig(S) =

⊔
c∈S{sig(c)}. It is interesting to note (even if we will not

use this property) that sig(S) = u{M |S belongs to M} (that is, sig(S) is the
greatest lower bound of the models to which S belongs). Therefore, sig(S) vM
if and only if S belongs to M .

Lemma 1

Let M be a model and R a Datalog rule. For each ground construct c in the
pseudoschema R(S) produced by the application of R to a schema S of M , it
is the case that {sig(c)} v rR(M).

Proof
The proof is trivial if R is not applicable to S, because in this case the pseu-
doschema P(S) is empty and there is no ground construct c.
If R is applicable to S, let c be a ground construct generated by the application
of R to S with properties p1:v1, p2:v2, . . . , pk:vk.
The proof proceeds by first showing that rR is applicable to M : the idea is that
if the rule generates a new ground construct, then, for each of its body literals
there is some ground construct in the schema that unifies with it; therefore the
schema element satisfies both the condition in the body and that in the model
and so their conjunction is satisfiable.
Let be C(. . .) ← Cj1(. . .), Cj2(. . .), . . . , Cjh(. . .) the specification of R and let
〈Cj1(f1), Cj2(f2), . . . , Cjh(fh)〉 be the body B of R. As c was generated,
then rule R was applicable, hence S contains at least h ground constructs
ci = Cji(. . .) such that each of them unifies with an atom of the body of R.
Let be ϕi the assignment of values to properties corresponding to ci, for each
i in [1, h]. We have:

• ϕi satisfies fi because ci unifies with the ground constructs Cji(. . .);

• ϕi satisfies fMji (remember that fMji is the formula associated to Cji in
the model M) because the schema S belongs to M and ci belongs to S.

So we have an assignment of values to properties that satisfy both fi and fMji .
Indeed rR is applicable to M and following the definition of application it
results that rR(M) = C(f ′), with f ′ = f ∧ (

∧h
i=1 µmap(fMji ∧ fi)).
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Then, the proof shows that the assignment ϕ : (p1 = v1, p2 = v2, . . . , pk = vk)
(that is, the one with the constants in c) satisfies the proposition f ′, by showing
that it satisfies both f and

∧h
i=1 µmap(fMji ∧ fi).

• ϕ satisfies f because constants in the head of rule R are present also
in ground construct generated c by construction (in fact f is generated
using such constants of the head) and therefore in ϕ;

• ϕ satisfies
∧h
i=1 µmap(fMji ∧ fi); we show this by proving that ϕ satisfies

µmap(fMji ∧ fi), for i = 1, 2, . . . , h.
Since R is applicable to S, there exist h assignments ϕ1, ϕ2, . . . , ϕh to
properties of constructs Cj1 , Cj2 , . . . , Cjh that satisfy formulas fMj1 ∧ f1,
fMj2 ∧ f2, . . ., fMjh ∧ fh, respectively.
Let us consider an assignment ϕi satisfying fMji ∧ fi and rewrite this
formula in disjunctive normal form (if it is not the case), obtaining the
formula gi,1 ∨ gi,2 ∨ . . . ∨ gi,qi ; so we have fMji ∧ fi ≡

∨qi

t=1 gi,t, hence
µmap(fMji ∧ fi) ≡

∨qi

t=1 µmap(gi,t) and there exists at least one term gi,τ
(with τ in [1, qi]) satisfied by ϕi.
We prove that ϕ satisfies µmap(gi,τ ) = µmap(l1)∧µmap(l2)∧ . . .∧µmap(lw)
because it satisfies all terms µmap(lv) for v = 1, 2, . . . , w. We have the
following two cases:

1. if Cji(pv) (where pv is the property associated with literal lv) does
not belong to the codomain of the map of the rule, following the
definition of transformation it results that µmap(lv) = true and so
ϕ satisfies it;

2. if Cji(pv) belongs to the codomain of the map of the rule, ϕ assigns to
the property p∗ associated with pv via the map (map(p∗) = Cji(pv)),
by means of repeated variables in the head and the body of the rule,
the same value that ϕi assigns to pv; ϕi satisfies lv (because it
satisfies gi,τ ) and following the definition of transformation µmap(lv)
has the same sign of lv, therefore ϕ satisfies µmap(lv).

Lemma 2

Let M be a model and R a Datalog rule. If s is a construct description such
that {s} v rR(M) then there is a schema S of M such that the application of
R to S produces a pseudoschema R(S) that contains exactly one construct c
such that sig(c) = s.
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Proof
The proof proceeds by considering a construct c with description s = sig(c) and
showing that there is a set of ground constructs belonging to S corresponding
to the atoms in the body of R out of which c can be produced.
Let be R = C(. . .) ← Cj1(. . .), Cj2(. . .), . . . , Cjh(. . .) and consider a pseu-
doschema S0 that contains h ground constructs, with repeated OIDs for re-
peated variables in the body of R and distinct ones elsewhere.
Some values of boolean properties of these ground constructs are copied (ex-
tracted) from constants in the body of R or traced back from the formula in s,
by means of map (which gives no ambiguity, as there are no repeated boolean
values in the head); any other property can have an arbitrary value.
The values of properties induced by the body are needed to guarantee that R
is applicable to S0. So, given an atom Cji(fi) of the body of rR, we use fi
to initialize values of properties of ground construct ci corresponding to such
atom. In particular we assign a true value to properties corresponding to pos-
itive literals in fi and false value to those corresponding to negated literals.
Let us consider values induced by map; the assignment ϕ of values to properties
induced by s satisfies the formula f ′ of {C(f ′)} = rR(M) and, in particular,
it satisfies the conjunction

∧h
i=1 µmap(fMji ∧ fi). Each formula fMji ∧ fi of the

conjunction corresponds to an element of the body of the rule and so it is
associated with a ground construct ci among those h constructs of S0 previ-
ously introduced. Let us consider a formula fMji ∧ fi of the conjunction and
rewrite it in disjunctive normal form (if it is not the case), obtaining the for-
mula gi,1 ∨ gi,2 ∨ . . . ∨ gi,qi . Hence µmap(fMji ∧ fi) ≡

∨qi

t=1 µmap(gi,t) and ϕ,
obviously, satisfies at least one element µmap(gi,τ ) (with τ in [1, qi]), where
gi,τ = l1 ∧ l2 ∧ . . . ∧ lw; so ϕ satisfies all the terms µmap(lv) for v = 1, 2, . . . , w
and we can use value assigned to literal µmap(lv) by ϕ to initialize value of
property of ground construct ci corresponding to literal lv using µmap

−1.
Let us assign arbitrary values to other properties of ci not initialized yet: this
is possible because it means these properties are not directly involved in R.
Therefore we found h ground constructs ci, and each of them satisfies a for-
mula fMji ∧ fi (because they satisfy at least one element gi,τ by construction).
Consequently, pseudoschema S0, made of these ground constructs, belongs to
the model M (because of the fMji ’s) and rule R is applicable to S0.
Then, consider a closure S of S0, which is a schema. Applying R to S, we
obtain exactly a construct c′ such that s = SIG(c′) = SIG(c), that is the only
element of the pseudoschema R(S).
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Let us briefly comment on the latter lemma. Given our example model MER

and rule R2,6, we have that (as we saw) rR2,6(MER) = {R(¬O1 ∧ F1 ∧ I∧¬F2)}.
The lemma says that all construct descriptions s v rR2,6(MER) can be obtained
as a result of the application of R2,6 to some schema of MER. For example,
description s = {R(¬O1 ∧ F1 ∧ I ∧ ¬O2 ∧ ¬F2)}, which satisfies s v rR2,6(MER)
can be obtained by applying rule R2,6 to a schema which includes (together
with other constructs) at least a many-to-many relationship, and all of them
with O1 = false (this follows from map2,6 = 〈O2 : R(O1)〉).

Lemmas 1 and 2 can be synthesized as the following theorem, which de-
scribes the behavior of individual Datalog rules with respect to models and
schemas. It states that using the signature of a rule we can characterize the
descriptions of the constructs that can be generated by that rule out of a given
model.

Theorem 1

Let M be a model and R a Datalog rule. Then {s} v rR(M) if and only if
there is a schema S of M such that R(S) contains exactly one construct c such
that sig(c) = s.

Let us now extend the results to Datalog programs.

Lemma 3

Let M be a model and P a Datalog program. The application of P to a schema
S of M produces a schema P(S) that belongs to rP(M).

Proof
The result of the application of P to a schema S produces a pseudoschema that
is indeed a schema because the program is coherent with respect to referential
integrity constraints by hypothesis.
Then, this schema belongs to rP(M) because of: (i) Lemma 1; (ii) the definition
of application rP(M) as

⊔n
i=1 rRi

(M), where n is the number of rules Ri’s
composing P; (iii) the observation that, obviously, rRj

(M) v
⊔n
i=1 rRi

(M) for
each j in [1, n].
If a ground construct c is generated by a rule Rj of the program P applied to M ,
then {sig(c)} v rRj

(M), by Lemma 1. Moreover, since rP(M) =
⊔n
i=1 rRi

(M)
and rRj

(M) v
⊔n
i=1 rRi

(M), the assignment of values to properties induced
by the formula f of Cj(f) = rRj

(M) satisfies rP(M). Therefore all constructs
generated by rules of P satisfy rP(M) and so P(S) belongs to rP(M).
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Lemma 4

Let M be a model and P a Datalog program. If S′ is a schema that belongs
to rP(M), then there is a schema S of M such that sig(S′) v sig(P(S)).

Proof
Let us first consider non-recursive programs. The proof is essentially based on
Lemma 2: for every ground construct c in S′, we have (partly by hypothesis and
partly by definition) that {sig(c)} v sig(S′) v rP(M); so, there is a construct
description C(f) in rP(M) such that c has the predicate symbol C and its
assignment of values to properties satisfies f .
Now, by definition of rP(M), we have that f is obtained as the disjunction
of the formulas associated with the various rules that have C in the head and
therefore c (since it satisfies f) has to satisfy one of them. If R is such a rule, it
turns out that {sig(c)} v rR(M) v rP(M) and so, by Lemma 2 we have that
there is a schema Sc of M such that R(Sc) contains a construct c′ such that
sig(c) = sig(c′).
Then, for each construct c in S′, let us consider the corresponding schema Sc
of M claimed by Lemma 2 and consider the “union” of such schemas for the
various constructs, S =

⊔
c∈S′(Sc). A closure S+ of S is a schema for model M

by construction because obtained as the closure of union of schemas belonging
to M and sig(S′) v sig(P(S+)) by construction of S+ (i.e. by the definition
of closure of a schema of Section 3.5).
The proof for recursive rules proceeds by induction on the number of steps
needed to reach the fixpoint, with the induction step based on the arguments
above.

Again, Lemmas 3 and 4 can be synthesized as the following theorem,
which describes the behavior of Datalog programs with respect to models and
schemas. It states that using the signature of the rules composing a program
we can characterize the descriptions of the constructs that can be generated
by that program out of a given model.

Theorem 2

Let M be a model and P a Datalog program. Then a schema S′ belongs to
rP(M) if and only if there is a schema S of M such that sig(S′) v sig(P(S))
modulo equivalence of propositions.
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Theorem 2 synthesizes Lemmas 3 and 4 in a direct way. However, there
is another point of view, which is more interesting, stated by the following
theorem.

Theorem 3

Let M be a model and P a Datalog program. Then:

1. for every schema S of M , it is the case that sig(P(S)) v rP(M);

2. there is a schema S of M such that sig(P(S)) = rP(M).

Proof
Claim 1 is essentially Lemma 3.
Claim 2 follows from the application of Lemma 4 to the extreme case of a
schema S′ whose description sig(S′) is exactly rP(M) (this is possible because
the constraints we have on our schemas are only referential integrity ones): by
Lemma 4 we have that there is a schema S such that sig(S′) v sig(P(S)), that
is, rP(M) v sig(P(S)) and by Lemma 3 we have that sig(P(S)) v rP(M).

Theorem 3 is our main result. It states that the derivation of model de-
scriptions by means of the application of the signatures of Datalog programs
is sound and complete with respect to the models generated by the program:
a Datalog program can generate schemas with all and only the descriptions
generated by the application of the signature of rules. In other words, descrip-
tions completely characterize the models that can be generated by means of a
Datalog program.

3.6 Applications of the Results

The technical development of the previous sections can be used in various ways
to support the activities of an actual tool for schema translation, such as the
MIDST tool [ACB06, ACG07, ACT+08] we have developed.

A simple use of the result is the possibility offered to check which is the
model obtained as the result of the application of a program: the results in
Section 3.5 allow the “rule designer” to know the output model without running
(or inspecting) Datalog rules, but simply generating the signatures of rules
and the description of a schema (model) and applying those signatures to that
description.
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A related use, still in rule specification, is the possibility to check whether
a Datalog program takes into consideration all the constructs of a given source
model, that is whether the application of a Datalog program to a given source
model causes a loss of information. Let us say that the domain of a rule with
respect to a model is the set of constructs of such model that are considered
by the rule; formally, given a rule R and a model M , if R is applicable to M ,
the domain dom(rR,M) of R with respect to M is the set of the constructs
of M that unify with the atoms of body B of the signature of R; if R is not
applicable to M , then dom(rR,M) is the empty set. We can extend this notion
to Datalog programs. Given a program P and a model M , the domain of P
with respect to M , dom(rP,M) is

⊔
R∈P′ dom(rR,M) where P′ denotes the

program that includes only the rules in P that are applicable to M . Now,
constructs (or variants of them) ignored by a program P when applied to a
model M are those that do not unify with any atom of the body of any Datalog
rule of P, that is, those in the difference between M and dom(rP,M).

A more ambitious goal would involve the automatic selection of rules for
the generation of complex translations out of a library. A general approach for
this, followed also by other authors in similar contexts [BMM05, PT05], would
be based on the generation of a search tree and on the adoption of heuristics
(for example based on A∗-type algorithms) that, under certain hypothesis, is
optimal and complete. The formal system introduced allows the automatic
generation of concise description of translation steps, and then could be the
basis for the application of algorithms based on heuristics but it has several
drawbacks:

• it could be computationally unfeasible, because the number of basic steps
needed can be high;

• its termination in general need not be guaranteed, as multiple application
of rules could arise, with no bounds (i.e. a program could introduce and
eliminate the same constructs in turn, producing a loop);

• it could produce a translation plan driven for a specific criterion (it de-
pends on the heuristics adopted) and hence the result plan may differ
from the optimal one.

In the remainder of the section, we propose a different algorithm that,
under suitable assumptions, is effective and more efficient. The preliminary
assumptions are formalizations of some observations derived by our experience
with the tool, in terms of both definition of models and specification of rules.
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It can be observed that most translations, when applied to certain models,
return a schema that is more restricted than the input, because they just
eliminate a feature. Eliminations can be performed by dropping a construct
or reducing its variants. Other translations, instead, introduce new constructs,
besides eliminations of some constructs. So, we have two types of translations,
reduction and transformation. With reference to the examples of Chapter 2,
the elimination of generalizations is a reduction, performed by dropping the
constructs devoted to represent generalizations, substituting them with new
references or relationships (depending on the target model); the elimination of
many-to-many relationships is performed adding constraints to the formula of
the construct devoted to represent relationships; the replacing of relationships
with references is an example of the latter category of programs.

A second observation is that we have few “families” of models, such as ER,
OO and relational, and we manage many variations for each family. With re-
spect to the previous observation, reductions allow one to move within a family
(i.e. they return a schema or model of the same family), while transformations
allow to move toward another family. Again with reference to Chapter 2, the
elimination of generalizations is a reduction within the OO and ER families;
the elimination of many-to-many relationships is a reduction within the ER
family; the replacing of relationships with references is a transformation from
the ER to the OO family.

Formally, a family of models F is a set of models defined by means of a
model M∗ (the progenitor of F) and a set of models M∗,1,M∗,2, . . . ,M∗,k
(the minimal models of F). It contains all models that are subsumed by M∗

and subsumes at least one of the M∗,i’s:

F = {M |M vM∗ and M∗,i vM, for some 1 ≤ i ≤ k}

For example, the model MER of our previous examples should be the pro-
genitor of the ER family, and a model with only entities and relationships
should be one of the minimal models of such family.

Let us now formalize the notions of reduction and transformation. A
translation P is a reduction for a family F if, when applied to a schema S
of a model M ∈ F , it generates a schema that is subsumed by the input
(P(S) v S). The translations that are not reductions for a certain family
are indeed transformations for such family (i.e. they tipically eliminate one or
more constructs of the input and introduce new ones).

For example, translations P2 and P3 of Chapter 2 are a reduction and a
transformation for the ER family, respectively.

Now we can present our assumptions on the set of basic translations.
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Assumption 1

For each pair of families F1, F2 there are a model M1 in F1 and a translation
T such that, for each schema S1 of M1:

1. T does not ignore any construct of S1;

2. T produces a schema that belongs to the progenitor M∗2 of F2.

This hypothesis requires the existence of f2 translations, where f is the
number of different families. This is not a real problem, as f is reasonably
small and, whatever the approach, these rules would be needed in order to
allow transformations between any pair of families. In general there might be
pairs of families with more than one translation, but we ignore this issue, as it
would not add much to the discussion.

Assumption 2

For each family F , for each minimal model M∗,i of F , there is a translation
from the progenitor M∗ of F to M∗,i, entirely composed of reductions that do
not ignore constructs.

The satisfaction of this assumption can be verified by considering all the
reductions for a family (that is, the basic translations that are reductions for
the progenitor of that family) and performing an exhaustive search on them.
In principle, this may be inefficient, but in practice it can be done in a fast
way, as the number of reductions in a family is small, and most of them are
commutative.

We can prove that, if the set of basic translations satisfies Assumption 1
and Assumption 2, for each family and each pair of models M1, M2 of the same
family, there is a translation from M1 to M2 that does not ignore constructs.

Since each model in the family is subsumed by the progenitor M∗, we have
that M1 v M∗. Also, since the family has a set of minimal models, we have
that for each model M in the family there is a minimal model M∗ that is
subsumed by it: either M1 is minimal, in which case the statement is trivial, or
there is another model M ′ such that M ′ v M1, and we can recursively apply
the same argument, at most a finite number of times, as the set of models is
finite. By Assumption 2, there is a translation from M∗ to M∗ that does not
ignore any construct. This translation can be applied to every schema of M1,
producing a schema that belongs to M∗ (since M1 v M∗, we have that every
schema of M1 is also a schema of M∗).
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If M∗ is a minimal model subsumed by M2 then M∗ v M2 and the claim
is proved; otherwise, we can repeat the same procedure for M2, identifying
another translation from the progenitor M∗ to a minimal model M ′∗. This
translation can be applied to every schema of M∗, producing a schema that
belongs to M ′∗ (since M∗ v M∗, we have that every schema of M∗ is also a
schema of M∗) and so (as M ′∗ vM2) also to M2.

Exploiting these assumptions, we designed an algorithm, based on practical
application of the theoretical results provided in Chapter 3, that always find
a complete transformation from a source schema to a target model with the
following structure:

1. a reduction (composed of a sequence of translations that are reductions)
within the source family (i.e. the family of the source model);

2. a transformation from the source family to the target family (i.e. the
family of the target model);

3. a reduction (composed of a sequence of translations that are reductions)
within the target family (i.e. the family of the target model).

On the basis of Assumption 1, the transformation of step 2 always exists.
The first set of reductions (step 1) is needed to transform the source schema
into another schema belonging to the model M1 claimed in Assumption 1.
Applying the translations of steps 1 and 2 to the source schema, we obtain a
resulting schema that needs not belong to the target model, hence the second
set of reductions (step3) is needed to guarantee it.

The previous assumptions and arguments justify the following algorithm,
whose input is composed of a source schema S1 and a target model M2, and
refers to a given set of families and a given set of Datalog programs.

findCompleteTranslation(S1,M2)
1 F1 = family(S1)
2 F2 = family(M2)
3 T = getTransformation(F1,F2)
4 M ′1= getSource(T )
5 T1 = getReduction(F1,M

′
1)

6 T2 = getReduction(F2,M2)
7 return T1 ◦ T ◦ T2
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Lines 1 and 2 find the families to which the source schema and the target
model belong, respectively. In order to find the family to which a schema
(model) belongs, it is enough to test the “inclusion” of such schema (model)
against the progenitors of the families. This is feasible since the number of
families is small. Let S be a schema and M∗ the progenitor of a family F , if
S vM∗ than S ∈ F .

Line 3 finds the transformation T between the families F1 and F2, whose
existence is guaranteed by Assumption 1. A Datalog program P is a trans-
formation between families Fa and Fb, whose progenitors are M∗a and M∗b ,
respectively, if

⊔
R∈PBR v M∗a (where BR represents the body signature B

of rule R) and rP(Ma) vM∗b . It is interesting to note that this operation can
be performed off-line for each pair of families and not during a transformation
process.

Then, line 4 computes the source model M ′1 for transformation T . Here
we simply give a name to the already computed “union” of body signatures of
rules of the selected transformation,

⊔
R∈T BR.

Next, line 5 finds the sequence of reductions T1 needed to go from the
progenitor of F1 to M ′1 (on the basis of Assumption 2) and line 6 does the
same within the target family (leading to T2). The first step to find a reduction
(that is, a sequence of reduction programs) toward a model within a family is
the search for reductions for that family, testing if the application of a program
to the progenitor of such family returns a model subsumed by the progenitor.
Then we have to order the reductions to avoid that a program could introduce
a construct eliminated by a previous program. Given two Datalog programs P1

and P2, P1 precedes P2 if
⊔
R∈P1

HRu
⊔
R∈P2

BR 6= {} (where HR represents
the head signature H of rule R). Obviously we have also to check that, at
each step, no information gets lost. Finally, after we found a reduction, we can
optimize it with respect to the actual input, which need not be the progenitor
of a family. Again we note that the first two steps of this procedure can be
executed off-line for each family, thus performing just the optimization step at
run-time during the transformation.

Finally, the algorithm returns the needed translation that is the concatena-
tion of T1, T , and T2.

The algorithm is indeed used in our tool for the automatic generation of
translations. In the Appendix Basic Translations, we show that the list of basic
translations we used satisfies Assumptions 1 and 2 and so the translation can
be always generated.
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Chapter 4

Refactoring the Supermodel

4.1 Coherent and Cohesive

The usefulness of the MIDST proposal depends on the expressive power of
its supermodel, that is the set of models handled together with accuracy and
precision of their representations. In order to improve the expressive power of
the supermodel, it has been necessary to introduce new constructs, often just
variants of preexisting ones, leading to a growth in the number of constructs.

A key observation is the following: many constructs, despite differences in
their syntactical structures, are semantically similar or identical. For example,
in the ER model, attributes of entities and relationships show some similarity:
even if they have different references (toward entities and relationships, respec-
tively), and the first ones have an extra property (isKey), they both represent
a lexical value. Also attributes in the ER model and columns in the relational
model are very similar: they have different references (because first belong to
entities or relationships and latter to tables) but have the same properties. In
these cases, two or more constructs can be collapsed into a unique construct
with their common semantics and a structure obtained by the union of the
structures of the involved constructs. Clearly, constructs thus obtained have
some optional references, together with some mandatory ones. This observa-
tion leads us to obtain a more compact (i.e. smaller number of constructs)
and cohesive (i.e. one construct to represent all concepts with same semantics)
supermodel. This is what we implicitly have already done in Chapter 2 for the
sake of simplicity of presentation and figures, talking about “main” constructs.
Here we fully exploit such observation, refactoring again the supermodel.
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4.2 Refactoring the Formal System

Abstracting from the semantics of the refactoring of the supermodel, technically
such refactoring causes the introduction of optional references. This implies the
necessity to refactor the formal system introduced in Chapter 3 in order to keep
on reasoning on data models, because now we can not abstract from considering
references.

In this section we briefly illustrate how the concepts previously introduced
need to be changed. The intuition is that, now, for every construct, we have
to represent a formula over its properties and references, hence the universe is:

U = {C1(P1 ∪ Ref 1), C2(P2 ∪ Ref 2), . . . , Cu(Pu ∪ Ref u)}

For example, collapsing attributes of entities and relationships of the ER
model and columns of the relational model, the definition of attribute, in the
new approach, should be:

Attribute(isKey, isNullable, Entity,Relationship, Table)

The description of a model is still a set of constructs, each with an associated
formula. Without loss of generality, let us assume that the formula associated
with a construct C is a conjunction of literals:

p1 ∧ p2 ∧ . . . ∧ pn ∧ ref 1 ∧ ref 2 ∧ . . . ∧ ref m

where the pi’s are literals for properties and the ref j ’s are literals for refer-
ences. It states that construct C has non-null values exactly for the references
corresponding to positive refj ’s, and its properties must satisfy the constraints
expressed by the conjunctions of the pi’s. We want to remark that the meaning
of a literal for a reference in a formula is different from that of a literal for a
property: a positive literal for a reference states that such reference must be
non-null; a negated one states that such reference must be null.

Now formulas are more complex, but it is due to the increased complexity
of the structure of the constructs. On the other hand they are more expres-
sive, since with a single formula now we can express constraints not only on
properties but also on references. Moreover we can also express constraints on
the relationships between references of a construct, in the sense that, for each
construct, we can force the presence of specific combinations of references and
avoid other ones. For example we can state that both the references toward
entities of a relationship must be valued at the same time, while just one of
the three references of an attribute can be valued.
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Some of the models discussed in Chapter 3, would be as follows (using
the abbreviations E, R, T in the propositions for references toward entities,
relationships, and tables, respectively):

• MER = {E(true),R((F1∨¬F2)∧E1∧E2),A(E∧¬R∧¬T∨¬K∧¬E∧R∧¬T)}

• MERsimple = {E(true),R((F1 ∨ ¬F2) ∧ E1 ∧ E2),A(¬N ∧ E ∧ ¬R ∧ ¬T)}

In order to simplify the notation, in the following we omit the negated
references; hence, the previous model descriptions would be as follows:

• MER = {E(true),R((F1 ∨ ¬F2) ∧ E1 ∧ E2),A(E ∨ ¬K ∧ R)}

• MERsimple = {E(true),R((F1 ∨ ¬F2) ∧ E1 ∧ E2),A(¬N ∧ E)}

The notions of v, t, u and − go unchanged. For example, we can check
that also with this new formalism MERsimple v MER. In fact, it results that
for E and R the condition is trivially verified, since they have the same formula
associated in the two models. For A we have to consider the complete formulas
(i.e. with also the negated atom for references); simplifying the conjunction of
the two formulas in the two models, it results A(¬N ∧ E ∧ ¬R ∧ ¬T), since:

f = (¬N ∧ E ∧ ¬R ∧ ¬T) ∧ (E ∧ ¬R ∧ ¬T ∨ ¬K ∧ ¬E ∧ R ∧ ¬T)
= ¬N ∧ E ∧ ¬R ∧ ¬T ∧ E ∧ ¬R ∧ ¬T ∨ ¬N ∧ E ∧ ¬R ∧ ¬T ∧ ¬K ∧ ¬E ∧ R ∧ ¬T

= ¬N ∧ E ∧ ¬R ∧ ¬T

Regarding the signature of Datalog rules, we redefine the description of an
atom considering also the references. Given an atom C(args), the correspond-
ing construct description C(f) is computed as the conjunction of the formula
obtained on the basis of properties associated with a constant (as described
in Section 3.4) with one literal for each reference in args. For example, the
signatures of the two atoms in the body of rule R2,6 are R((¬F1∧¬F2)∧E1∧E2)
and E(true), respectively.

Then, the definitions of the three parts (B,H,map) of the signature rR of
a Datalog rule R go unchanged. For example, recalling rule R2,6: the body
signature is B2,6 = 〈R(¬F1 ∧ ¬F2 ∧ E1 ∧ E2), E(true)〉; the head signature is
H2,6 = R(¬O1∧F1∧ I∧¬F2∧E1∧E2); the mapping is map2,6 = 〈O2 : R(O1)〉. We
remark that references are not involved in the map and, hence, the application
of µmap to a literal for a reference always returns true. Also the application of
the signature of a rule R and of a program P to a model M goes unchanged.

The most important thing is that all the theorems can be still proved.
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Chapter 5

PolyDatalog

5.1 Overview

The main drawback of the refactoring of the supermodel is a general compli-
cation of Datalog rules. In fact now, for each predicate C in the body of a rule
we have to specify which variant of it (i.e. which subset of its references we
consider in the rule) we are interested in. This is done by adding a predicate
for each of the references of the variant of the predicate we consider. As a
consequence, it causes also a growth of the specificity of the single Datalog
rules, thus contrasting with one of the main features of the approach that is
genericity.

In this chapter, we report on our experience in extending Datalog with
features that handle inheritance and some form of polymorphism, and show
that in this way it is possible to increase the effectiveness of the language and
the degree of reuse of the individual rules.

We introduce hierarchies in the supermodel, based on structural similarities
of constructs, and extend Datalog in order to exploit such hierarchies: with our
extension (based on directives for the rule engine and on the use of polymorphic
variables) it is no longer necessary to write a specific rule for each variant of
each construct, but it is possible to write just one polymorphic rule for each
root construct of a generalization; it will be the rule engine that will compile
Datalog rules, substituting polymorphic variables, obtaining specific rules for
each variant of each root construct.
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5.2 Related Work

The idea of extending logics and rule based systems with concepts like poly-
morphism, typing, and inheritance goes back to the beginning of 80’s [MO84].
Recent approaches [DT93, DT94, ALUW93, AKM98, Jam97, LDL02, KLW95]
adapt theories and methodologies of object-oriented programming and sys-
tems, proposing several techniques to deal with methods, typing, overriding,
and multiple inheritance.

Gulog [DT93, DT94] is a deductive object-oriented logic (or, alternatively,
according to its creators, a deductive object-oriented database programming
language) with hierarchies, inheritance, overriding, and late binding; every Gu-
log program can be translated in an equivalent Datalog program with negation
(Datalogneg), where negated predicates are used to discern applicability of a
rule to a class or subclass. Many works proposed extensions of Datalog and
provided algorithms to translate their custom Datalog programs in “classic”
Datalog with negation. In Datalogmeth [ALUW93], a deductive object ori-
ented database query language, Datalog is extended with classes and methods;
its programs can be translated in Datalog with negation as well. Selflog is
a modular logic programming with non-monotonic inheritance. In [AKM98],
moving from SelfLog and Datalogmeth, Datalog is extended with inheritance
(there are explicit precedence rules between classes) with or without overriding;
programs can be rewritten in Datalog with an extra-predicate to mark rules
and make them applicable only for a certain class or subclass; they propose also
a fine grained form of inheritance for Datalog systems, where specialization of
method definitions in subclasses is allowed and, when a local definition is not
applicable, a class hierarchy is traversed bottom-up (from subclass to super-
class) until a class with an applicable method is reached. Datalog++ [Jam97]
is an extension of Datalog with classes, objects, signatures, is-a relationships,
methods, and inheritance with overriding; Datalog++ programs can be rewrit-
ten in Datalog with negation. A language with encapsulation of rule-based
methods in classes and non-monotonic behavioral inheritance with overriding,
conflict resolution, and blocking (two features missing in other languages, ac-
cording to the authors) is presented in [LDL02]. In f-logic [KLW95], limiting
to topics of interest, there are polymorphic types, classes, and subclasses; it is
possible to distinguish between two kinds of inheritance: structural, where sub-
classes inherit attributes of super-classes, and behavioral, where subclasses in-
herit methods of super-classes; three methodologies (pointwise, global-method,
user-controlled) to manage the overriding with behavioral inheritance are pro-
vided.
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Our approach differs from the aforementioned proposals. They introduce
concepts of object-oriented programming and, in particular, propose overriding
of methods for sub-classes, where needed; we have a different goal, we do not
need overriding and do not define anything for sub-classes (sub-predicates, in
our case). Instead, using object-oriented programming terminology, we define
a method (the rule) for the super-class (the polymorphic construct) and, mov-
ing from it, generate specific methods (other rules) for the sub-classes (child
constructs). From this point of view, our work has something in common
with [BI97] where reusing and modification of rules is allowed by defining “ad
hoc” rules to substitute name of predicates involved in other rules.

5.3 Extending Datalog

In this section we illustrate PolyDatalog, an extension of Datalog with concepts
of polymorphism and inheritance, that exploits structural similarities of pred-
icates and rules. In order to define a more expressive supermodel capable of
properly representing a large number of models, we introduced new constructs,
often just variants of preexisting ones. Despite the constructs are apparently
few in number, we remark (as we said in Chapter 4) that in our supermodel we
collapsed semantically identical constructs even if they are syntactically differ-
ent because of various references; hence the global number of “real” constructs
is high. Moreover, the need to represent complex concepts, like structured
elements or nested elements, triggered a higher structural complexity of the
supermodel. The growing number of predicates (i.e. constructs in our sce-
nario) and the increasing structural complexity of the supermodel triggered
two problems: hard scalability and low reuse of Datalog rules.

Changing perspective and using nomenclature of software analysis and de-
sign, it is possible to consider every variant of a construct as a child of a gener-
alization rooted in a generic construct with no references. The idea is that to
define an analogous transformation of all variants of the constructs it is no more
necessary to write a specific rule for each of them, but it is possible to write
just one polymorphic rule for each root construct of a generalization; it will be
the rule engine that will compile Datalog rules, analyzing the generalizations
defined in the supermodel and substituting polymorphic variables, obtaining
one specific rule for each variant of each root construct. In the general case, a
polymorphic rule designed for the transformation of a root construct C, with
n child constructs, when compiled, will be instantiated n times, producing a
specific Datalog rule for each child of the generalization rooted in C.
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Figure 5.1: A simplified object-relational model.

In the reminder of this section we introduce the main ideas with an exam-
ple involving a simplified version of the object-relational model (depicted in
Figure 5.1), where most of the constructs have optional references since they
were obtained by collapsing semantically similar constructs. In particular:

• Lexical has all its references (toward Abstract, Aggregation, and
StructOfAttributes) mutually exclusive;

• StructOfAttributes has all its references (toward Abstract and
Aggregation) mutually exclusive;

• AbstractAttribute has one mandatory reference (AbstractToOID, to-
ward Abstract) and the others (toward Abstract, Aggregation,
and StructOfAttributes, respectively) mutually exclusive;

• ForeignKey has two triples of references (toward Abstract, Aggre-
gation, and StructOfAttributes) ending with “FromOID” and with
“ToOID”, respectively, whose elements are mutually exclusive.
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Hence instances of Lexical and StructOfAttributes have just one
valued reference while instances of AbstractAttribute and ForeignKey
have two valued references. It results in a huge number of rules despite many
groups of them are very similar by syntactical and semantic point of view.

These constructs can therefore be “generalized”, each resulting in a hier-
archy whose parent is the generic construct with properties and no references
and whose children are the specific constructs, each with a set of mandatory
references (among the allowed ones) and no properties. This is shown in Fig-
ure 5.2.

In the following we show the benefits of using inheritance in this scenario
with an example: the transformation of a schema of the simplified object-
relational model of Figure 5.1 into a relational model with tables, columns and
foreign keys. This transformation could be composed by two steps:

1. eliminate typed tables;

2. eliminate structured columns.

A large number of sub-steps is required in order to perform the first step, as
the transformation of typed tables into simple tables causes many other trans-
formations, because all concepts (constructs) related in some way to a typed
table have to be transformed too. Some examples follow. Reference columns
have to be transformed into foreign keys and this can require the introduc-
tion of new key columns besides the creation of new columns to define foreign
keys on them. Structured columns of typed tables have to be transformed in
structured columns of tables and all the foreign keys involving typed tables as
source or destination have to be transformed conveniently.

In terms of constructs and rules, something else has to be done because also
components of foreign keys, columns of typed tables, and structured columns
need to be explicitly transformed. In detail, in order to eliminate typed tables,
we have to copy all elements not linked in any way with typed tables, like tables
and their columns, structured columns of tables, foreign keys involving tables
and their structured columns, and we have to properly transform typed tables
and elements linked to them, like structured columns of typed table and foreign
keys involving typed tables and their structured columns. The first step is quite
simple but the latter has some criticalities. The only way to transform typed
tables in the object-relational model without loss of information is to transform
them in tables and elements linked to them accordingly, and to generate key
columns for these new tables (to define foreign keys on them). All these steps
require about thirty Datalog rules.
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Figure 5.2: Generalizations of the object-relational model of Figure 5.1.
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It is a pretty obvious and correct guess that many of these rules are syntac-
tically very similar to one another and semantically identical. Two examples
follow. First, the semantics of rules involving lexicals of “something” is al-
ways the same whichever is that “something”: transport the values of various
elements to the target schema, according to their belonging elements. Sec-
ond, rules involving foreign keys have a unique goal: transport foreign keys
to the target schema, according to the transformations undergone by elements
linked by the keys themselves. Let us focus on the first example and show our
corresponding Datalog rules. Rules involving lexicals are three:

Ra copy lexicals of aggregations;

Rb transform lexicals of abstracts in lexicals of aggregations;

Rc copy lexicals of structures of attributes.

The rules are as follows, where we omit some non-relevant details:

Ra:
Lexical (OID: #lexical 0(lexOID),

aggregationOID: #aggregation 0(aggOID),
isIdentifier: isId,
. . . ,
type: type)

←
Lexical (OID: lexOID,

aggregationOID: aggOID,
isIdentifier: isId,
. . . ,
type: type),

Aggregation (OID: aggOID);

Rb:
Lexical (OID: #lexical 0(lexOID),

aggregationOID: #aggregation 1(absOID),
. . . )

←
Lexical (OID: lexOID,

abstractOID: absOID,
. . . ),

Abstract (OID: absOID);
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Rc:
Lexical (OID: #lexical 0(lexOID),

structOfAttributesOID: #structOfAttributes 0(structOID),
. . . )

←
Lexical (OID: lexOID,

structOfAttributesOID: structOID,
. . . ),

StructOfAttributes (OID: structOID);

Reasoning on these rules, we note that, despite some syntactical difference,
they have the same semantics. In fact, they are isomorphic modulo renaming
of constructs and Skolem functors and can be rewritten as:

Lexical (OID: #lexical 0(lexOID),
〈construct〉OID: 〈SkolemForConstruct〉(constructOID),
. . . )

←
Lexical (OID: lexOID,

〈construct〉OID: constructOID,
. . . ),

〈construct〉(OID: constructOID);

Let us comment on the syntax. This polymorphic rule states exactly the
semantics we are interested in for transformation of lexicals. In the body, it
abstracts from the specific construct referenced by Lexical, using the polymor-
phic variable 〈Construct〉 as a predicate name and referring to such predicate
by means of the polymorphic variable 〈construct〉 used as part of the field name
of the Lexical reference. Also in the head, it abstracts from the construct ref-
erenced by Lexical (〈Construct〉)), but, in order to preserve correspondences
of the source schema, it uses the polymorphic variable 〈SkolemForConstruct〉 as
functor name. The rule engine can compile this rule, exploiting the polimorphic
variables, thus producing the “standard” Datalog rules, Ra, Rb, and Rc).

Applying polymorphism to the whole program to eliminate typed tables,
it is possible to compress many other rules (two rules involving structures of
attributes, three rules to create lexicals to define foreign keys, three rules to
create foreign keys, three rules to create component of foreign keys, and nine
rules involving foreign keys) thus obtaining an abatement of number of rules
from twenty seven to ten.
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5.4 Implementation

There is a certain amount of theoretical and practical issues we have to deal
with when considering the semantics of a PolyDatalog rule. We devote the
following subsections to them.

Identifying the Translated Construct

First and foremost, the major critical issue is strictly bound to the PolyDatalog
semantics. In order to instantiate a polymorphic rule, we need to know how the
constructs referenced by a polymorphic construct have been translated within
previous rules in the translation process. In general, in a Datalog rule, we
therefore need to identify the “main”, or “translated”, construct within the
rule’s body, that is, establish which construct featured as a literal in its body
is the actually translated construct into the construct expressed by the literal
in its head. We found out three conditions a construct must satisfy in order to
be recognized as the “main” construct within a rule:

• it must be featured in the rule’s body;

• its own OID argument must be found as the argument of the Skolem
functor which is used to generate the destination construct’s OID;

• its own OID must not appear as an argument of a Skolem functor used
to reference some destination construct in the head literal. More gen-
erally, any destination construct (i.e. with sOID equal to tgt) explicitly
appearing in the rule’s body, will never be the translated construct of
that rule.

Let us refer to the examples of section 5.3. Using the aforementioned
conditions, we can discover that the three constructs referenced by Lexi-
cal in the considered model (i.e. Abstract, Aggregation, and Struct-
OfAttributes) have been turned into Aggregation, Aggregation, and
StructOfAttributes, respectively, during the elimination of typed tables.

It is worth noting that here we give just a quick glimpse at the various
Datalog rules in the simplest cases, but when dealing with more complex rules,
with many constructs in their bodies and a wider range of syntax elements
involved, things might get far more complicated.
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Multiple Translations for a Single Construct

The second issue is strictly bound to the identification process for the main
construct of a Datalog rule. As it results from our previous assertions, when we
proceed to check whether a given construct is actually the translated construct
of a rule, we are considering it in terms of its name. In other words, we check
whether a construct, having a certain name, is the main construct within a
set of scanned rules. At this high level of abstraction, though, a seemingly
critical scenario may occur: throughout a whole translation process, a given
kind of construct bearing a specific name may have multiple translations (i.e.
may result as the main construct of multiple rules). As an example, let us
consider the elimination of many-to-many relationships within the ER family:
many-to-many relationships have to be translated into entities, while others
relationships have to be copied. When compiling a polymorphic rule for the
copy of attributes of relationships, we have to consider both the translations
undergone by the relationships.

The key point is that multiple translations depend on the specific features
of the involved constructs (i.e. on some constraints on its properties). Hence,
in order to deal with this particular situation, the parameters used to discrim-
inate between the different instances of a construct must be included when
instantiating the polymorphic rule involving such construct (i.e. the construct
is referenced by the polymorphic one).

Multiple Polymorphic References within a Single Literal

The third issue is related to polymorphic constructs that allow for multiple
mandatory references among their optional ones (e.g. foreign keys).

From a superficial point of view, we could think it is enough for these
mandatory references to be handled separately. Actually, this is not the case:
since their simultaneous presence is a constraint for a construct, we will have
to generate every possible combination for the allowed references, when in-
stantiating the PolyDatalog rule involving that construct. The compiling of
such rules produce

∏k
i=1 ni rules, where ni is the number of translations for

the construct Ci pointed by a polymorphic reference and k is the number of
polymorphic references of the construct under examination.

It is rather evident that these particular cases allow for the most effective
use of the PolyDatalog rules, whereas a single polymorphic rule succeeds in
replacing several tens of classic Datalog rules.
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PolyDatalog Interpreter

The previous discussions and arguments justify the following algorithm, which
takes as input a basic translation P, and refers to a given set of generalizations
defined over the metaconstructs:

polyDatalogInterpreter(P)
1 for each R of P
2 if isPolymorphic(R) then {
3 rootC = getPolymorphicConstruct(R)
4 cList = getChildren(C)
5 for each Ci in cList {
6 ruleSeti = findRules(Ci)
7 IRi = instantiateRules(Ci, ruleSeti)
8 P = P−R+ IRi
9 }

10 }

It analyzes every rule of the program (line 1). If a polymorphic variable
is found (line 2), it finds out the polymorphic construct involved (line 3) and
then obtains the list of children of such construct (line 4), by analyzing the
generalizations. For each child of the generalization Ci (line 5), it looks out for
non polymorphic rules in P whose main construct is one of those referred by
Ci (line 6). Now it can produce the needed non polymorphic rules (line 7) and
substitute the polymorphic rule in P with them (line 8).

The rule engine of the MIDST tool has been updated according to the
presented algorithm. It is now capable of properly “compiling” polymorphic
rules, finding out polymorphic variables and recovering the needed information,
in order to produce a suitable set of standard Datalog rules.

5.5 Experimental results

In this section we present the experimental results obtained comparing the old
library of basic translations with the new one featuring polymorphic rules.

We have already seen in Section 5.3 the power of the proposed Datalog
extension with respect to the specific translation from the object-relational to
the relational model. By extending this approach to the whole set of schema
translations handled by our system, we have obtained significant advantages:



i
i

“main” — 2009/2/24 — 16:31 — page 86 — #100 i
i

i
i

i
i

86 Chapter 5. PolyDatalog

Figure 5.3: Experimental results.

an average 30% of Datalog rules (with peaks of 55%) have been replaced by
a handful of PolyDatalog rules. The summary of these results is shown in
Figure 5.3, where for each data model we indicate the number of rules before
and after the introduction of polymorphism, the number of replaced rules and
the percentage of such replacement. We collect in the supermodel row the
results for copy rules.

We want to remark that this is not just about a reduction in the amount
of rules necessary for each translation. For starters, easiness of developing is
increased, for a PolyDatalog rule is relatively easier to write than a classic Dat-
alog rule (where we should pay attention to the particular references for the
featured constructs). Besides, as we have early said, correctness and complete-
ness are assured, because the instances resulting from a polymorphic rule are
exactly identical to those rules we would have previously specified ourselves.
Furthermore, PolyDatalog’s inner parametricity in terms of the polymorphic
references greatly enhances scalability, reusability, and maintainability of rules
and whole translations: first, if the translation for a specific construct refer-
enced by a polymorphic one changed over time, the corresponding PolyDatalog
rule would not change at all; second, only a handful of polymorphic rules have
succeeded in removing hundreds of original Datalog rules within all the trans-
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lation processes handled by our system; and finally, we could anytime define
more PolyDatalog rules should the need arise, for instance when newer and
more complex hierarchies are introduced in the data dictionary, all the while
getting even larger benefits from our Datalog extension.
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Chapter 6

Toward an On-line Operator

6.1 Overview

In this chapter we illustrate a runtime (or on-line) approach to model-generic
translation of schema and data. The proposal is based on our previous work on
the MIDST platform, originally conceived to perform translations in an off-line
fashion. As seen in Chapter 2, in the original approach, the source database is
imported into a dictionary, where it is stored according to a universal model.
Then, the translation is applied within the tool as a composition of elementary
transformation steps, specified as Datalog programs. Finally, the result is
exported into the operational system1.

MIDST approach provides a general solution to the problem of schema
translation, with model-genericity (as the approach works in the same way for
many models) and model-awareness (in the sense that the tool knows models,
and can use such a knowledge to produce target schemas and databases that
conform to specific target models). However, as pointed out by Bernstein and
Melnik [BM07], this approach is rather inefficient for data exchange. In fact,
the necessity to import and export a whole database in order to perform trans-
lations is out of step with the current need for interoperability in heterogeneous
data environments.

Here we propose a new, lightweight, runtime approach to the translation
problem, where data is not moved from the operational system and translations
are performed directly on it. The tool needs only to know the model and the

1We use the term operational system to refer to the system that is actually used by
applications to handle their data.
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schema of the source database and generates views on the operational system
that transform the underlying data (stored in the source schema) according
to the corresponding schema in the target model. Views are generated in an
almost automatic way, on the basis of the Datalog rules for schema trans-
lation. The approach is model-generic and model-aware, as it was the case
with MIDST, because we leverage on MIDST dictionary for the description of
models and schemas and also on its key idea of having translations within the
supermodel, obtained as composition of elementary ones, each dealing with a
specific aspect (construct or feature thereof) to be eliminated or transformed.
The main difference is that the import process concerns only the schema of the
source database. The rules for schema translation are used here as the basis
for the generation of views in the operational system. In such a way data is
managed only within the operational system itself. In fact, our main contri-
bution is the definition of an algorithm that generates executable data level
statements (view definitions) out of schema translation rules.

A major difference between an off-line and a runtime approach to transla-
tion is the following. For an off-line approach, as translations are performed
within the translation tool (MIDST in our case), the language for expressing
translations can be chosen once, for all models. A significant difficulty is in the
import/export components, which have to mediate between the operational
systems and the tool repository, in terms of both schemas and data. In fact,
in the development of MIDST, a lot of effort was devoted to import/export
modules, whereas all translations were developed in Datalog. In a runtime
approach, the difficulties with import/export are minor, because only schemas
have to be moved, but the translation language depends on the actual oper-
ational systems. In fact, if there is significant heterogeneity, then stacks of
languages may be needed (e.g. SQL, SQL/XML, and XQuery), possibly with
different dialects, and our techniques need to cope with them.

In order to cope with the heterogeneity of the involved languages, we pro-
pose an approach based on two steps: first it generates views organized ac-
cording to the constructs in the target model, but independent of the specific
languages, and then actually concretises them into executable statements on
the basis of the specific language supported by the operational system.

In this chapter we provide a general solution to the language independent
step, whereas for the final one we concentrate on SQL, with respect to a set
of models that include many variations of the object-relational and of the re-
lational one. As a running example, we will see how relational views can be
generated to access an object-relational schema with references and inheritance.
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Figure 6.1: The runtime translation procedure.

6.2 Overall Approach

The goal of a tool for schema and data translation is to provide support to
the adoption of a wide family of heterogeneous data models. In a runtime
perspective, this means that application programs, designed to interact with a
specific data model Mt, would be allowed to work with another data model Ms

in a transparent way. The tool we propose supports this feature by translating
the schemas ofMs (which actually contain the data of interest for the programs)
in terms of views of model Mt. Then, the application programs would use these
views to access data organized according to Ms.

As we said, in our original approach translations are dealt with in an off-
line fashion, meaning that the import of both schema and data into MIDST
is needed as well as an export of the result. In this chapter we describe an
enhanced version of our platform that enables the creation of executable state-
ments generating views in the operational system.

Let us illustrate our approach, by following the main steps it involves, with
the help of Figure 6.1:
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1. given a schema Ss (of a source model Ms) in the operational system, the
user (or the application program) specifies a target model Mt;

2. schema Ss (but not the actual data) is imported into MIDST, and specif-
ically in its dictionary, where it is described in supermodel terms;

3. MIDST selects the appropriate translation T for the pair of models
(Ms,Mt), as a sequence of basic translations available in its library;

4. the schema-level translation T is applied to Ss to obtain the target schema
St (according to the target model Mt);

5. on the basis of the schema-level translation rules in T , the tool generates
views over the operational system, in three phases: first it generates an
abstract description of views that specify schema St (and so conform to
model Mt) in terms of the elements of the source schema in Ss; then, it
translates these abstract descriptions into system-generic SQL-like view
definitions; finally, it compiles statements that define the actual views in
the specific language available in the operational system.

Let us observe that steps 1-4 appear also in the previous version of MIDST,
whereas 5 is completely new, in all its phases, and clearly significant.

As a running example, consider the following. Assume we have an envi-
ronment where application programs are designed to interact with relational
databases while we have an actual database on the operational system based on
the object-relational model, with the following features: tables, typed tables,
references between typed tables, and generalizations over typed tables. In this
scenario, our tool generates relational views over the object-relational schema,
which can be directly used by application programs.

A concrete case for this example involves the OR schema sketched in Fig-
ure 6.2. The boxes are typed tables: employee (EMP) is a generalization for
engineer (ENG) and department (DEPT ) is referenced by employee.

The goal of the runtime application of MIDST is to obtain a relational
database for this, such as the one that involves the following tables2:

EMP (EMP OID, lastname, DEPT OID)
DEPT (DEPT OID, name, address)
ENG (ENG OID, school, EMP OID)

2As it is well known, there are various ways to map generalizations to tables, and this is
one of them.
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Figure 6.2: A simple object-relational schema.

Given the schema in Figure 6.2, our tool first imports it in its dictionary.
Then, given the specification of the target model, it selects an appropriate
schema-level translation, which is a sequence of basic translations. In this
case, the schema-level translation should perform the following tasks:

PA eliminate generalizations (replacing them with references);

PB eliminate reference columns (replacing them with foreign keys and gener-
ating new identifiers for the typed table, if needed);

PC transform typed tables into tables.

The major task of our new version of the tool is the generation of a set of
view statements for each of these Datalog programs. The following is a sketch
of a view definition generated in the first step.

CREATE VIEW ENG_A ... AS (
SELECT ... SCHOOL, ... EMP_OID
FROM ENG

);

It extends ENG (denoted as ENG A to distinguish the new version from
the original one) with a supplementary attribute, EMP OID. It implements a
strategy for the elimination of generalizations, where both the parent and child
typed tables are kept, with a reference from the child to the parent. In the
technical sections of this chapter we will see how we produce views of this kind
and we will show the missing details.
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6.3 Generating Views

In this section, we discuss the major ideas of our approach to the generation
of views for runtime translations. Then, in Section 6.4 we will discuss the
technical details and present a complete algorithm.

The General Approach

The core goal of the procedure is to generate executable statements defining
views. This is obtained by means of an analysis of the Datalog schema rules.
The analysis gives a system-generic statement. A system-generic statement is
a view defined by means of an SQL-like language that could be translated into
another language (e.g. SQL, SQL/XML, XQuery) in order to be executed by
the operational system.

A key idea in the procedure is a classification of MIDST metaconstructs
according to the role they play. There are three categories: container, content,
and support constructs. Container constructs are those corresponding to struc-
tured objects in the operational system (i.e. Aggregation and Abstract
corresponding to tables and typed tables respectively). Content constructs rep-
resent elements of more complex constructs3, such as columns, attributes or
references: usually a field of a record (i.e. Lexical and AbstractAttribute)
in the operational system. Support constructs do not refer to data-memorizing
structures in the system, but are used to model relationships and constraints
between them in a model-independent way. Examples are Generalization
(used to model hierarchies) and ForeignKey (used to specify referential in-
tegrity constraints).

Our Datalog rules, in turn, can be classified according to the construct fea-
tured as head predicate. Therefore we have container-, content-, and support-
generating rules (e.g. generating Abstract, Lexical, and ForeignKey,
respectively).

Exploiting the above observations, the procedure defines a view for each
container construct, with fields that derive from the corresponding content
constructs. Instead, as support constructs do not store data, they are not used
to generate view elements (while they are kept in the schemas). More precisely,
given a Datalog schema rule H ← B, if H refers to a container construct, we
will generate one view for each instantiation of the body of the rule. If H refers
to a content, we need to define a field of a certain view. The head predicates

3For the sake of simplicity in the examples we will refer only to flat models and hence
we do not consider contents of contents.
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of container-generating rules handle one OID, while the head predicates of
content-generating rules deal with more OIDs. In fact, the role corresponds
to an intrinsic structural difference between constructs. While containers have
only one OID (which identifies the construct), contents have at least two OIDs:
one identifying the field itself and one relating it to the owner container (other
OIDs may be needed when fields refer to complex construct, as it happens for
AbstractAttribute).

Two major issues in the procedure are the provenance of data (that is,
where to derive the values from or how to generate them) for the single field
and the appropriate combination of the source constructs (which is equivalent
to a join, from a relational point of view). In the next subsection we describe
possible approaches to the former issue and conclude the illustration of the
informal procedure by presenting examples of SQL statements in case we only
deal with one source construct (all attributes refer to it); then we will abandon
this assumption and comment on more general cases in which several source
constructs must be combined, facing the latter issue.

Let us discuss program PA in the example. There are various ways to
eliminate generalizations. Let us refer to the one that maintains both the
parent and the child typed tables and connects them with a reference. This
requires that we copy all typed tables with their columns and then add a new
column for each child typed table with a reference to the respective parent
typed table. The only container-generating rule is the one that copies the
typed tables (R1) and hence we generate a view for each typed table of the
operational system: EMP A, ENG A and DEPT A4.

The other rules are content-generating. From rules copying Lexical (R2)
the procedure infers owner view, name, and type for each field. For the copy
of AbstractAttribute (R3), the procedure works likewise with the addition
that it has to handle the values encoding the references between constructs in
an object-oriented fashion. Finally, for the rule that handles Generalization
together with ChildOfGeneralization (R4), maintaining both the parent
and the child and connecting the constructs with a reference, the problem of
data provenance for fields is evident: while in rules R2 and R3 the values are
copied from the source fields, in rule R4 an appropriate value that links the
child table with the parent one has to be generated.

In program PB we use a rule (R5) to generate a key attribute for each
typed table without identifier. It is a content-generating rule since it generates
a key Lexical for every Abstract without an identifier. Hence we add

4We use the suffix to distinguish the versions of tables and views in the various steps.
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another field to the views that correspond to those Abstracts. Then we
translate references into value-based correspondences (foreign-key)5. Before
defining such foreign keys, we need a rule (R6) that copies the identifier values
of the referred construct into the referring one in order to allow for the definition
of value-based correspondences. It implies the addition of a new field to the
view that corresponds to the referring Abstract.

Program PC is simpler. The only transformation involved turns typed
tables into tables once they do not have any generalizations nor references
and the presence of identifiers is guaranteed. The issue is then limited to
the internal representation of views handled by the operational system. Many
systems distinguish between views and typed views, then all we need is to handle
this distinction.

This procedure does not depend on the specific constructs nor on the op-
erational system or language. It is not related to constructs because we only
rely on the concepts of container and content to generate statements. Other
constructs may be added to MIDST supermodel without affecting the proce-
dure: it would be sufficient to classify them according to the role they play
(i.e. container, content, or support). Moreover, it is not related to the op-
erational system constructs or languages since the statements are designed as
system-generic. A specification step, exploiting the information coming from a
negotiation between MIDST and the operational system, will be then needed to
generate system-specific statements. Furthermore, this approach is extensible
because we might also consider (as we will see shortly) adding annotations to
functors whenever conditions get more complex and in order to handle specific
cases. The procedure is not bound to a single language and the generation of
statements could involve the integration of several dialects fetching data from
heterogeneous sources. This would not increase the complexity of the analysis
nor the system-generic statements.

The Provenance of Field Values

In this subsection we consider the problem of the data provenance of the single
field. It means that the procedure needs to know either a source field to derive
a value from or a generation technique. We devised an automatic procedure
that, for a given rule, collects information about the provenance of values by
analyzing the parameters of the Skolem functor used in the head of the rule.

5Notice that we refer to foreign-key values, as we use them, but not to foreign-key con-
straints because they are not usually meaningful in views.
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In case it has only one parameter, the OID of another field, then the value
comes from the instance of the construct having that OID. This is what happens
in programs PA and PB whenever a Lexical is copied (rule R2). Similarly,
if the Skolem functor has more than one parameter and one of them refers
to a field, then a source construct can be individuated as well. Instead, if
none of the functor parameters refers to a content (it only deals with container
or support constructs), the result value has to be generated somehow. This is
what happens in programs PA and PB with rules R4, R5, and R6, respectively.

These cases can be handled automatically as well. We introduce solutions
that are based on annotations which specify value generation techniques. Here
we present an informal description of this approach to give an intuition of the
adopted strategy while technical details will be pursued in Section 6.4.

In rule R4, the functor generates the OID for an AbstractAttribute (a
content construct) from the OID of a Generalization (a support construct).
In order to obtain a reference from the child table to the parent it is possible to
use the tuple OID6 as value for the reference field. A reason for this choice is
the fact that every instance of a child typed table is an instance of the parent
table too. Then for each tuple of the child container there is a corresponding
tuple in the parent one with a restricted set of attributes, but with the same
tuple OID. Therefore the reference can be made by means of an appropriate
casting of this OID.

The following system-generic SQL-like statement is generated for the elim-
ination of hierarchies (program PA) in the running example. The ENG typed
table is a specialization of EMP, so the rule copies its attributes and adds the
values for the field referencing the parent EMP by casting the tuple OID.

CREATE VIEW ENG_A ... AS (
SELECT ... SCHOOL, REF(ENG_OID) AS EMP_OID
FROM ENG

);

In rule R5, the functor generates the OID for a Lexical from the OID of an
Abstract therefore it conveys the fact that the value of the field corresponding
to that Lexical derives from a container. A possible strategy would involve
the transformation of the tuple OID into a value for this field. This solution
would guarantee the presence of a unique identifier.

6In OR systems, every typed table usually has a supplementary field, OID, treated as a
unique identifier which can be used to base reference mechanisms on. Notice that this OID
is not related to the OID used in MIDST which identifies the constructs.
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In rule R6, the functor indicates that the value of the field derives both
from the AbstractAttribute and the Lexical. Whenever a Lexical is
involved in the provenance of a value, such value comes from it independently
of the other involved constructs.

Combining Source Constructs

On the basis of the discussion in the previous subsection, it turns out that for
each field in a view, we have either a provenance or a generation. Provenance
can refer to different source constructs, in which case it is needed to corre-
late them. In database terms, a correlation intuitively corresponds to a join.
However, in practice, this need not be the case. If two fields can be accessed
from the same container it is wise to do it and to avoid joins. For instance if a
construct C has a reference toward a construct C ′ and the fields ci of C and c′j
of C ′ must be fetched, one can use that reference to get both the values from
C without using the join operator. Moreover, a simpler variant is possible if
all the fields of a given view derive from the same container, as it happens in
all the steps of our example.

In our paradigm, the information about the join conditions are encoded in
the Skolem functors. In fact we handle typed functors that generate OIDs for
specific constructs given the OIDs of a fixed set of constructs. Therefore we
may state that for a given set of contents, each of which is derived through the
application of a Skolem functor on other constructs, the collection of all the
used functors encodes the join conditions.

For instance, consider another way of eliminating generalizations: copy-
ing the child attributes into the parent and deleting the child. In this case,
we have a content-generating rule for the parent, copying Lexicals from the
child to the parent itself. The Skolem functor #lexical 2.1 (genOID, paren-
tOID, childOID, lexOID) creates OIDs for those Lexicals, relating one Gener-
alization (genOID), two Abstracts (parentOID, childOID) and one Lexical
(lexOID). Obviously the parent preserves its original Lexicals (i.e. attributes)
as well. The functor #lexical 5(lexOID) creates OIDs for those Lexical, using
the OID of another Lexical (lexOID).

The specific set of content-generating functors ({#lexical 2.1, #lexical 5})
encodes (by means of their parameters) the fact that we have a left join on OID
basis in such a way that all the instances of the parent that are also instances
of the child, appear in the result view as a single tuple. Moreover the left join
guarantees the inclusion of all the instances of parents that do not belong to
any child.
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In the running example we have EMP ; according to the lastly mentioned
strategy, it has to be merged with its child ENG. The general procedure es-
tablishes the presence of a join whose condition is encoded by the specific set
{#lexical 2.1, #lexical 5}.

CREATE VIEW EMP_A (..., LASTNAME, SCHOOL) ... AS (
SELECT ... EMP.LASTNAME, ENG.SCHOOL
FROM EMP LEFTJOIN ENG
ON (CAST (EMP.OID AS INTEGER) = CAST (ENG.OID AS INTEGER)

);

Notice that, in this statement, the pattern bases joins on the sharing of
tuple OIDs which takes place between parent and child instances.

As mentioned before, there might be cases in which fields of different con-
tainers can be accessed by just referring to a single container by means of
references. This is what happens in program PB where the values for the fields
in the referring typed table, must be derived from the key fields in the referred
one (rule R6). The following statement is among those generated for program
PB : EMP has references toward DEPT (which does not appear in the state-
ment) via the field dept and DEPT OID is the identifier for DEPT added in
rule R5. Then, we need to copy DEPT OID values into a field of EMP accord-
ing to the semantics of the rule. It is clear that there are two sources: EMP
and DEPT. However DEPT OID can be accessed via dept, therefore the join
between the two containers is not needed.

CREATE VIEW EMP_B ... AS (
SELECT ... LASTNAME, dept->DEPT_OID AS DEPT_OID
FROM EMP_A

);

So, source constructs are handled in a lightweight way: joins are avoided by
exploiting dereferencing (as in the example) when such a feature is supported
by the operational system. Otherwise, when they are necessary, their treatment
is globally encapsulated in Skolem functors that relate constructs in a strongly-
typed fashion. In general, we can provide a different combination of Skolem
functors for each needed join condition. The concept is that we exploit functor
expressivity and strong typedness to understand how to combine the containers
of the different fields.
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6.4 The View-Generation Algorithm

Let us now discuss with some detail the algorithm we adopt to generate views
at runtime from Datalog rules encoding schema-level translations.

The algorithm takes as input a schema-level translation expressed as a set
of Datalog rules, a classification for the involved constructs (i.e. container,
content, and support), and generates SQL statements defining views on the
basis of the translation. The algorithm is composed of three parts: an abstract
specification of the views; the generation of system-generic SQL-like statements
corresponding to those views; translation of the system-generic statements into
statements that are actually executable on the operational system.

We devote one subsection to each of the three parts of the algorithm to
illustrate their technical details.

Procedural Analysis

In our context, each Skolem functor Sk is associated with a given construct,
to which we refer as the type type(Sk) of the functor. Each functor always
appears with the same arity and with arguments that have each a fixed type.
The associated function is injective and function ranges are pairwise disjoint.

For example, let us consider rule R6 which replaces the references of typed
tables with simple fields, in order to allow for the definition of value-based
correspondences; in detail, for each reference (AbstractAttribute) it repli-
cates the key fields (Lexicals) of the referred typed table (Abstract) into
the referring one. The functor has the following structure:

Sk6 : AbstractAttribute× Lexical→ Lexical

meaning that it takes in input the OID of an AbstractAttribute and the
OID of a Lexical and generates a unique OID for another Lexical, as it can
be inferred from the head literal in which it is used. Moreover, it results that
type(Sk6) = Lexical.

Let us now investigate the relationship between the role of constructs and
the Skolem functors used to generate their OIDs. A container construct has
a single OID, which identifies it. Whenever a container is featured in a head
Hi, the functor Ski is responsible for the creation and for the uniqueness of
that OID. Conversely, a content construct is characterized at least by two
OIDs: one that identifies the construct itself and another one referring to its
container construct. The former plays the same role as in the containers and it
is determined by the application of the Skolem functor Ski; the latter denotes
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the container construct to which the content belongs and it is calculated by
another functor Skpi . Symbols Ski and Skpi will be used throughout the whole
explanation of the procedure to denote the two functors for a content construct.

For example, the head of rule R1 (which copies abstracts) has the form:

Abstract (OID: #abstract 0(absOID),
sOID: tgt,
Name: n)

It is evident that an Abstract (i.e. a container) is characterized only by
its OID. Conversely, a Lexical (i.e. a content), as confirmed by the head of
rule R2 (which copies Lexicals of Abstracts), is characterized by two OIDs:

Lexical (OID: #lexical 0(lexOID),
. . .
abstractOID:#abstract 0(absOID))

The functor #lexical 0 (i.e. Ski) is the one used to generate a unique
identifier for a Lexical from the OID (lexOID) of another Lexical; the functor
#abstract 0 (i.e. Skpi ) is the one used to connect each instance of a Lexical
(i.e. content) to the proper Abstract (i.e. container) by generating the OID
of the target Abstract (abstractOID) from the one of the source (absOID).

In order to formalize a classification of constructs on the basis of the number
of OIDs they have, similar considerations should be necessary also for support
constructs. Indeed, in a complex system there might be support constructs
as well as both containers and contents. However, this classification aims at
providing a mechanism to detect content- and container-generating rules on the
basis of the head predicate. Since support constructs do not contribute to the
generation of structures that handle actual data, we can limit our discussion
to the illustrated cases.

Therefore a container construct is a construct where only one OID (the
identifier), and the respective Skolem functor are meaningful, while a content
one needs at least two OIDs. Consequently, we distinguish between container-
and content-generating rules on the basis of the number of OIDs in the head
predicate.

Given a Datalog rule R we define an instantiated body Ib as a specific
assignment of values for the construct attributes appearing in it. It means that
for each construct in the body we have values for name, properties, references,
and OID that satisfy the predicates in the body of the rule itself with respect
to the considered schema.
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We define an instantiated head Ih for a given instantiated body Ib, as a
construct whose name, properties, references, and OID are instantiated as a
consequence of instantiation Ib of B.

Finally an instantiated Datalog rule Ir is a pair (Ih, Ib) where Ih is an
instantiated head for the instantiated body Ib of R.

Let us see an example considering rule R4, that replaces generalizations
with references. Notice that the rule is evaluated only against the MIDST
supermodel, where the preliminary import phase has generated a representation
for the schema of the operational system in terms of MIDST constructs. A
possible instantiated body is the following one:

Generalization (OID: 101,
. . .
parentAbstractOID: 1),

ChildOfGeneralization (
OID: 102,
. . .
generalizationOID: 101,
childAbstractOID: 2)

It states that the Abstract representing the typed table EMP (with OID
equal to 1 and used as value for the attribute parentAbstractOID) is the parent
of the Abstract representing the typed table ENG (with OID equal to 2 and
used as value for the attribute childAbstractOID). As it is possible to infer from
the example, the conditions expressed in the bodies of Datalog rules (which
are evaluated within MIDST supermodel) may refer to container and content
constructs as well as to support ones.

With reference to R4 and to the sample instantiated body, we have the
following instantiated head:

AbstractAttribute (
OID: #abstractAttribute 4(102),
. . .
AbstractOID: #abstract 0(2),
AbstractToOID: #abstract 0(1))

This head defines a new reference column for a typed table aimed at substi-
tuting a parent-child relationship; using supermodel terminology, it generates
an AbstractAttribute for a given ChildOfGeneralization (involving
two Abstracts and one Generalization).
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Let us introduce some notation and definitions that are useful to explain
how views are generated.

• Given a translation P, we denote the sets of content- and container-
generating rules in it as ContentGen(P) and ContainerGen(P), respec-
tively.

• Given a translation P and a container-generating rule R in P, we define
content(Ri,P) = {Rj ∈ ContentGen(P) | type(Skpj ) = type(Ski)}. In
plain words content(Ri,P) is the set of rules generating contents for the
construct generated by Ri.

• For each R ∈ ContainerGen(P) (that is, for each container generating
rule) we define an abstract view, as a pair Av = (R, content(R,P)), com-
posed of the rule itself and a set of rules defining contents for the container
generated by rule R. An abstract view is generic in the sense that it is
written with respect to types of constructs. The focus is on the type
of container construct generated and the same argument can be applied
to contents: the content-generating rules define types of contents (e.g.
columns, attributes, or references) and not specific instances of them.

Given an abstract view Av, we compute instantiated views over it. Each of
them is defined as V = (Ir, {col1, col2, ..., coln}). They are pairs composed
of an instantiation Ir of the container-generating rule R and of the set of all
the possible instantiations of rules in content(R,P) that are coherent with Ir.

Let us see an example considering program PA of Section 6.2. It follows
that ContainerGen(PA) = {R1} and ContentGen(PA) = {R2, R3, R4}. Con-
sequently we can determine the following abstract view: Av1 = (R1, {R2, R3,
R4}). Finally, it is possible to instantiate the abstract view Av1 according to
the constructs of the operational system. Then the instances may be repre-
sented as:

V1 = (EMPR1 , {EMP(lastName)R2 ,EMP(dept)R3})

V2 = (DEPTR1 , {DEPT (name)R2 ,DEPT (address)R2})

V3 = (ENGR1 , {ENG(school)R2 ,ENG(EMP)R4})

Let us comment the first instantiated view. It states that container EMP,
generated by rule R1, will have two contents (i.e. lastName and dept originally
belonging to EMP) generated by rules R2 and R3, respectively.
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An abstract view describes all the views that must be generated from a
container-generating rule and its instantiations correspond to the views that
will be generated.

View-generating Statements

The second part of the procedure involves the translation of each instantia-
tion V of every abstract view Av = (R, content(R,P)) into a view-generating
statement with the SQL structure:

CREATE VIEW name(col1, col2, . . .) AS (
SELECT a1(s1.col1), a2(s2.col2), . . .
FROM source(col1)s1 cond source(col2)s2 cond . . .

);

In the statement, name is the instantiated name of the head construct of R,
that denotes a container in the operational system. Then, col1, col2, . . . , coln
are the names of the constructs generated by all the possible instantiations of
the body of the rules in content(R,P), and so some of them may derive from
different instantiations of the same rule, while others may derive from different
rules.

Now we have to face two major issues to characterize the general statement:

(a) the determination of the source container (in the statement denoted by
source(col i)) and the actual value for each content (indicated with the
functional symbols ai); this problem has been informally discussed in
Section 6.3 and consists in establishing a way of computing the values for
fields in the result views, hence assigning a semantics to the functional
symbols ai in the statement;

(b) the determination of the appropriate form of combination needed for
the source containers of the various contents (indicated with the symbol
cond); this problem has been discussed in Section 6.3 and consists in
replacing cond with appropriate join conditions in the statement.

As for point (a), consider the Skolem functors of a given content-generating
rule Ri. Functor Skpi links the generated content with its source container and
its parameters are instantiated as a consequence of the instantiation of body
Bi of Ri. Functor Ski conveys information about the provenance of data (i.e.
the content to derive the value from) for the content under examination.
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The strategy we follow relies on a default case in which the functor has a
parameter whose type is content. If this happens, that container is the source
for the values. Otherwise, it is possible to specify annotations to force a specific
behavior. An annotation is a query (for example an SQL statement) that
specifies how to calculate the value for a field. Annotations must be written
at schema level, expressing transformations to be applied for each different
instantiation, as it happens for Datalog rules.

More precisely:

(a.1) if Ski is not annotated, at least one of its parameters must refer to a
content construct (a real one in the operational system, since the functor
is instantiated). Therefore, the value for the container instance is derived
from it without any further computation.

(a.2) if Ski is annotated with a query a, then a is applied in order to calculate
the needed value. Notice that the query can be written referring to all
the literals in the instantiated content-generating rule. Generally, these
queries are very simple and use a small number of parameters. In the
SQL statement above, a functional symbols ai denotes the application of
a query associated to an annotation (in the default cases this query has
no effect).

As an example of case (a.1), consider rule R6 of program PB which replaces
the references of typed tables with simple fields (in order to allow for the defini-
tion of value-based correspondences). The functor #lexical 6 is not annotated
and takes as input the OID of the AbstractAttribute and the OID of a
Lexical referred by it. This implies that values for the new field (generated to
represent a reference) have to be directly derived (namely, copied) from values
of the source Lexical.

On the other hand, as an example of case (a.2), consider rule R4 of program
PA which replaces the generalizations between two typed tables by adding a
specific reference field (AbstractAttribute) in the child table. The functor
#abstractAttribute 4 takes in input the OID of a ChildOfGeneralization
(childOID) and hence, in this case, it is correct to annotate the functor to
specify how the values for the field have to be calculated.

The following pseudo-SQL statement is an example of annotation defined
at schema level that helps calculate the value for the field:

SELECT INTERNAL_OID FROM childOID;
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It specifies that the value of the reference must coincide with the OID of
the tuple under examination for the childOID (which refers to the view that is
being populated).

A similar strategy should be followed to cope with rule R5 of program PB .
As we have seen, such a rule generates a key field for every typed table without
an identifier: thus the problem of generating a unique value at data level arises.
In the head of the rule, the functor #lexical 5 takes the OID of an Abstract
(absOID) as input parameter, meaning that there are no valid sources for the
values. A possible annotation could be the following one:

SELECT INTERNAL_OID FROM absOID;

It implies the adoption of the internal tuple identifiers (INTERNAL OID)
as values for the keys of typed tables.

As for point (b) two cases are indeed possible for an instantiated view Vi
depending on the instantiation of the functors Skpi ’s:

(b.1) there are contents deriving from the same container, let us call them
sibling contents. This corresponds to instantiated rules (not necessarily
referring to the same rule) where the values of the parameters of the
functors Skpi ’s are the same;

(b.2) there are contents deriving from different containers, let us call them
non-sibling contents. This corresponds to instantiated rules (not neces-
sarily referring to the same rule) where the values of the parameters of
the functors Skpi ’s are different.

Case (b.1) can be thought of as a default case, in which no further definitions
are necessary and the translation can be performed directly; conversely, case
(b.2) requires some decision and needs the definition of strategies to combine
the sources.

In fact, in (b.1) it is sufficient to copy the contents from the container Skpi
refers to. Thus, for each set of sibling contents, we have the specification of a
container in the FROM part of the SQL statement.

On the other hand, in (b.2) the conds in the SQL statement must be trans-
lated into appropriate join conditions. It is clear that there are several variants
for the joins, according to the semantics of the schema-level translation. The
key is that Skolem functors allow to specify this semantics at schema level in
such a way that it can be translated into join conditions at data level. We de-
fine a schema-join correspondence Sj such that Sj : Sn → cond , where Sn is a
tuple of Skolem functors and cond is a join condition, expressed as a statement
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at schema level. The correspondence Sj assigns a join condition to a specific
tuple of functors, which are the ones that generate the OIDs for the contents in
the container under examination. Then, for example, if a container has three
contents: two sibling contents and a non-sibling one, then the tuple will be
composed of two functors, one for the siblings and another one for the single
content. Then the correspondence Sj will specify how to combine the two as-
sociated source containers in terms of join conditions. As for annotations in
point (a), join conditions must be written at schema level (for example directly
with a pseudo-SQL formalism) and, when omitted, the Cartesian product be-
tween the source containers is implied.

Case (b.1) is rather simple and an example of it is the overall translation of
program PA where, for each typed table, the values are directly derived from
one source table and no joins are needed.

Conversely, as seen in Section 6.3, an occurrence of case (b.2) arises in the
elimination of generalizations consisting in copying the contents of child typed
tables into the parent. Obviously, since the parent maintains its contents, there
are contents coming from the child typed table and others from the parent
one. The involved functors are #lexical 2.1, the one responsible for the OIDs
of Lexicals copied from the children to the parents (school from ENG to
EMP in the example), and #lexical 5, responsible for the OIDs of the parent
Lexicals (lastName of ENG in the example). Here we define the schema-join
correspondence Sj : (#lexical 2.1(. . .),#lexical 5(. . .)) → cond1, where cond1

can be defined according to a pseudo-SQL formalism as follows:

parentOID LEFT JOIN childOID ON INTERNAL_OID;

This pseudo-SQL condition, together with the schema-join correspondence
definition, specifies that, whenever two non-sibling set of contents derive from
the combination of the functors #lexical 2.1 and #lexical 5, then the source
containers have to be combined with a left join on the basis of the internal
OID. The left join guarantees that instances of the parent that are not also
instances of the child are preserved in the result. It is clear that different
correspondences, in association with different join conditions, can be defined
to cover a wide range of cases.

Executable Statements

After a system-generic SQL statement has been generated for a Datalog trans-
lation, it is customized according to the specific language and structures of the
operational database system in order to be finally applied.
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With respect to a complex translation involving more than one program,
each system-generic SQL statement encoding an elementary step is translated
in terms of a system-specific and executable one. Then the views generated
by one step are used by the following one and all the statements represent a
pipeline of transformations yielding the desired output view.

The following SQL statements exemplify the elimination of hierarchies (rule
R4) which takes place in program PA, with reference to IBM DB2. This
DBMS adopts the concept of typed view, which is a view whose type has to
be defined explicitly. This motivates the presence of the two initial statements
defining the types EMP2 and ENG2 in the result schema. The statements
below implement the strategy consisting in using the internal OID to relate
a child with its parent. It is evident that a lot of technical details depending
on the operational system (i.e. DB2 in the example) are introduced in this
last phase (e.g. the use of type constructors, the various casting functions, or
explicit scope modifiers).

CREATE TYPE EMP2_t AS (
lastname varchar(50)

)
NOT FINAL INSTANTIABLE
MODE DB2SQL WITH FUNCTION ACCESS REF USING INTEGER;

CREATE TYPE ENG2_t AS (
toEMP REF(EMP2_t), school varchar(50)

)
NOT FINAL INSTANTIABLE
MODE DB2SQL WITH FUNCTION ACCESS REF USING INTEGER;

CREATE VIEW EMP2 of EMP2_t
MODE DB2SQL (REF is EMP2OID USER GENERATED) AS
SELECT EMP2_t(INTEGER(EMPOID)), lastname
FROM EMP;

CREATE VIEW ENG2 of ENG2_t
MODE DB2SQL (REF is ENG2OID USER GENERATED,

toEMP WITH OPTIONS SCOPE EMP2) AS
SELECT ENG2_t(INTEGER(ENGOID)),

EMP2_t(INTEGER(EMPOID)), school
FROM ENG;
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Discussion

The proposed algorithm represents the core step in translating schemas from a
model to another at runtime since it allows the translation of Datalog rules into
actually executable SQL statements on data. The original MIDST framework
is a model-independent implementation of the ModelGen operator. Here we
argue that the proposed algorithm extends the platform to a runtime context
and allows for the interaction with heterogeneous database systems, without
affecting model-independence feature. In fact the initial import of information
about the schema of the operational database supports the definition of system-
independent and model-independent translations. We manage to decouple the
technical details of the operational system and its model from translation rules,
by means of suitable import modules that allow to translate the internal rep-
resentations of the systems in terms of the constructs of the supermodel.

Then the schema-level rules are actually applied on the supermodel in or-
der to obtain schema information about the translated database, in such a way
that further operations are possible. What the algorithm performs is a proce-
dural analysis of translation on the basis of a generic whole-part (container-
content) classification of supermodel constructs and on the basis of the model-
awareness principle we foster in MIDST. It means that, although MIDST is
model-generic, in the sense that translations can be applied independently
of target and source models, we handle specific metadata about models by
adopting typed constructs which differ from one another, and strongly typed
Skolem functors, which can be applied on and return only specific types of con-
struct OIDs. Hence, as evident from the informal illustration of the algorithm,
model-awareness allows to evaluate the relationships between constructs and
their instances in the operational system without affecting the model-generic
approach of the whole process.

The whole-part classification of the constructs of the supermodel is not a
limitation because it is the essential relationship in most common data models.
Moreover, more complex structures of target systems (e.g. nested tables and
generalizations) are indeed treated by means of support constructs that can be
even used in translations to specify schema-level conditions.

The presented approach solves performance issues that affected MIDST
due to the necessity to import into the supermodel and export back the whole
database. Schema metadata are obviously much lighter than the actual data
and the time spent in importing them has no relevance in the performance of
the translation. Furthermore, the computation of the SQL-generating state-
ments is performed only once (and in advance) for each translation; then the
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optimization of the query and the performance issues are entirely devoted to
the operational database system. From our point of view, we showed that al-
though MIDST is model-independent, hence it handles translations between
any pair of models, the number of the needed steps is bounded and small.
Moreover, the number of the generated queries is minimal. In fact, due to the
detection of the appropriate join conditions, we generate one query for each
view needed in the operational system and do not need to unite results from
different statements.

6.5 Related work

In this chapter we have tackled the problem of enhancing MIDST with the
possibility of applying runtime translations in such a way that data exchange
queries are computed out of schema translation rules and are used to generate
views. Our approach toward data exchange is not formal, what we are inter-
ested in is the set of statements solving the data exchange problem between
the source schema and the wanted view; however we share many ideas with
characterizations by Fagin et al. [FKP05, FKMP03].

Mork et al. [MBM07] also adopt a runtime approach (based on [ACB06,
AT96]) to solve the specific problem of deriving a relational schema from an
extended entity-relationship model. They use a rule-driven approach and write
transformations that are then translated into the native mapping language.
However, although they face many issues such as schema update propagation
and inheritance, indeed they solve a specific subset of problems and provide
an object-relational mapping tool similar to Hibernate [Hib]. Terwilliger et
al. [TMB08] adopt a runtime approach to allow a developer to interact with
XML or relational data in an object-oriented fashion. On the one hand their
perspective is different since they only deal with a specific kind of heterogeneity;
in addition they address the problem by translating the queries while we aim
at generating views on which the original queries can be directly applied.

Our approach is aimed at providing a runtime support to the whole range
of translations allowed by MIDST that is not limited to OO-to-relational or
XML-to-OO, but involves any possible transformation between a pair of models
in our supermodel (i.e ER, OR, OO, XSD, and Relational, actually).

Our approach shares some analogies with Clio [FKMP03, FKP05, HHH+05,
MHH00, VMP03] too. It is aimed at building a completely defined mapping
between two schemas, given a set of user-defined correspondences. As for our
translations, these mappings could be translated into directly executable SQL,
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XQuery or XSLT transformations. However, in the perspective of adopting Clio
in order to exchange data between two heterogeneous schemas, the needed
mappings should be defined manually; moreover, there is no kind of model-
awareness in Clio, which operates on a generalized nested relational model.
Although it can be shown to subsume a considerable amount of models, in
a real application scenario a preliminary translation and adaptation of the
operational system should be performed, leading to the problems of the initial
MIDST approach.

The presented runtime extension of MIDST is a significant step with respect
to the process of turning the platform into a complete model management sys-
tem [ABBG08a]. In such a perspective, Datalog rules can be used to specify
model-to-model translations as well as more general transformations that im-
plement schema evolution and model management operators. Therefore the
possibility of applying translation, hence operators, at runtime allows for the
runtime solution to model management problems with model-independent ap-
proaches like those illustrated in [ABBG08b].
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Conclusions

Many problems facing data management and other areas of computer-aided
engineering involve the manipulation of models. Applications that manipulate
models are complicated and hard to build. The goal of generic model man-
agement is to support the productivity of developers by providing high-level
operators defined on schemas and mappings over them, thus reducing the cost
of developing such applications.

In this dissertation we focused on model-generic translation of schemas,
discussing our recent results and our contributions to the development of the
MIDST platform that allows the specification of the (data) models of interest,
with all relevant details, and the generation of translations of their schemas
from one model to another.

The usefulness of the MIDST proposal depends on the expressive power of
its supermodel, that is the set of models handled together with accuracy and
precision of their representations. In order to improve the expressive power of
the supermodel, we extended it with concepts like nesting relationships, com-
plex structured elements, collections, and substructures, in order to represent
recent complex data models like the object-relational and the XSD.

With many possible models and many basic translations, it becomes im-
portant to understand how to find a suitable translation given a source and
a target model. Here there are two difficulties. The first one is how to verify
what target model is generated by applying a basic step to a source model.
The second one is related to the dimension of the search space.

In order to solve these problems, we conceived a formal system to auto-
matically reason on models, based on the notions of description of a model
and signature of a basic translation. It allows to infer the model (description)
rP(M) obtained out of a model M by applying the signature rP of a Datalog
program P. We have proved that such derivation is sound and complete: the
application of P to schemas of M produces only schemas that belongs to rP(M)
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and potentially all of them. Moreover, the formal system has been the theo-
retical basis for the development of an algorithm for the automatic generation
of translations, that has been implemented within the MIDST framework.

Another drawback of the growth of the supermodel is a general complica-
tion of the specification of translations, by means of Datalog rules. We have
proposed an extension of Datalog, called PolyDatalog, based on the use of hi-
erarchies and a sort of polymorphism, that provides a significant simplification
in the definition of complete translations (Datalog programs) and a higher level
of reuse in the specification of elementary translations (Datalog rules) in sce-
narios with structural similarities of predicates and syntactical and semantical
similarities of rules. We have integrated such extension in our MIDST project
and the successful experiments have supported our claim, since PolyDatalog’s
inner parametricity in terms of the polymorphic variables greatly enhanced
scalability, reusability, and maintainability of rules and whole translation, be-
sides leading to an abatement of the number of Datalog rules constituting
complete programs.

The MIDST approach provides a general solution to the problem of schema
translation, with model-genericity (as the approach works in the same way for
many models) and model-awareness (in the sense that the tool knows models,
and can use such a knowledge to produce target schemas and databases that
conform to specific target models). Although, in its original version, it was
rather inefficient for data exchange. In fact, the necessity to import and export
a whole database in order to perform translations is out of step with the current
need for interoperability in heterogeneous data environments.

We presented a new, lightweight, runtime approach to the translation prob-
lem, where data is not moved from the operational system and translations are
performed directly on it. The new version of the MIDST tool needs only to
know the model and the schema of the source database and generates views
on the operational system that transform the underlying data (stored in the
source schema) according to the corresponding schema in the target model.
Views are generated in an almost automatic way, on the basis of the Datalog
rules for schema translation.

As stated by Melnik and Bernstein in [BM07], a midterm target of the model
management studies is the development of a reusable component (a model
management system) to be embedded in higher level applications in order to
provide runtime solutions to data programmability problems, transparent to
the user. We are following this direction and our next challenge is to provide
contributions toward the development of a model-independent but model-aware
approach to model management.
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The ambitious idea is to develop a general model management platform
that extends MIDST and is based on its principles. The metamodel approach
is binding to achieve model-independance and model-awareness with all the
advantages highlighted throughout the dissertation. The second key point is
represented by Datalog. In the MIDST proposal we used it in order to de-
fine rules conceived to perform transformations of schemas. Exploiting com-
pletely its expressive power, we can implement also model management op-
erators in Datalog. The intuition is that these operators could be generated
(semi)automatically exploiting the conceptual structure of the supermodel and
its corresponding fixed relational implementation, in such a way that if the
supermodel is extended, the operators can be extended as well.
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A. Basic Translations

This appendix lists the set of basic translations used in our experiments, for
the supermodel illustrated in Section 2.3 (and specifically in Figure 2.13).

1. eliminate multivalued structures of attributes in an abstract, by intro-
ducing new abstracts and foreign keys

2. eliminate (nested, monovalued) structures of attributes in an abstract,
by flattening them

3. eliminate (nested, monovalued) structures of attributes in an aggregation,
by flattening them

4. eliminate foreign keys involving abstracts, by introducing abstract at-
tributes

5. eliminate abstract attributes, replacing them with foreign keys involving
abstracts

6. eliminate lexicals of aggregations of abstracts, by moving them to ab-
stracts (possibly new)

7. eliminate lexicals of binary aggregations of abstracts, by moving them to
abstracts (possibly new)

8. eliminate many-to-many binary aggregations of abstracts, by introducing
new abstracts and binary aggregations of abstracts

9. eliminate n-ary aggregations of abstracts, by introducing new abstracts
and binary aggregations of abstracts

10. replace binary aggregations of abstracts with aggregations of abstracts
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11. nest abstracts and abstract attributes within referencing abstracts

12. eliminate generalizations, by keeping the leaf abstracts and merging the
other abstracts into them

13. eliminate generalizations, by keeping the root abstracts and merging the
other abstracts into them

14. eliminate generalizations, by keeping all abstracts and relating them by
means of (n-ary) aggregations of abstracts (that involve two abstracts)

15. eliminate generalizations, by keeping all abstracts and relating them by
means of binary aggregations of abstracts

16. eliminate generalizations, by keeping all abstracts and relating them by
means of abstract attributes

17. replace (one-to-many) binary aggregations with abstract attributes

18. replace abstract attributes with (one-to-many) binary aggregations

19. replace abstracts and binary (one-to-many) aggregations of them with
aggregations (of lexicals) and foreign keys

20. replace abstracts and abstract attributes with aggregations (of lexicals)
and foreign keys

21. replace aggregations (of lexicals) and foreign keys with abstracts and
binary aggregations of them

22. replace aggregations (of lexicals) and foreign keys with abstracts and
foreign keys over them

23. replace aggregations (of lexicals) and foreign keys with abstracts and
abstract attributes

We briefly comment on the completeness of this set of rules with respect
to the models used in our experiments showing that Assumptions 1 and 2 of
Chapter 3 are satisfied.

With respect to Assumption 1, we need to show that for each pair of families
we have a translation from one to the other, and viceversa. This is shown in the
table in Figure A.1, where each cell indicates the translation or the sequence
of translations needed to go from the model associated with the row to the
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Figure A.1: Translations between families.

model associated with the column. It is worth noting that, in some cases, the
cell contains two or even three basic translations; then, with reference to the
discussion we made in Section 3.6 after Assumption 1, we can think that the
system has a composition of these translations defined as a basic one.

With respect to Assumption 2, it suffices to list the minimal models in
each family and the sequences of reductions that form a translation from the
progenitor of the family to them, as follows:

Entity-relationship - one minimal model with no generalizations and no at-
tributes on aggregations; the reduction is 6, 14 (or 12 or 13);

Binary entity-relationship - one minimal model again, with no generaliza-
tions, no lexicals of aggregations and no many-to-many aggregations; the
reduction is 7, 15 (or 12 or 13), 8;

Object-oriented - one minimal model, with no generalizations and no struc-
tures of attributes: the reduction is 2, 16 (or 12 or 13);

Object-relational - three minimal models, the progenitors of the relational
model (with a reduction 2, 3, 16 (or 12 or 13), 20) and of the OO model
(4, 23) and a model with no structures of attributes in abstracts and no
generalizations, for which the reduction is 2, 16 (or 12 or 13);

Relational - the progenitor coincides with the minimal model;

XSD - one minimal model, where structures of attributes are only monovalued;
the reduction is just translation 1.
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B. Rules

This appendix lists the complete set of rules for the running example used in
Chapter 3. Apart from the names of constructs, it is the same set of rules of
step P2 of Section 2.1 and Figure 2.13.

Rule R2,1: copy entities

Entity( OID: #entity 0(eOid), sOID: tgt, Name: n)
←
Entity( OID: eOid, sOID: src, Name: n)

Signature:

H2,1 = 〈E(true)〉
B2,1 = 〈E(true)〉
map2,1 = 〈〉

Rule R2,2: copy attributes of entities

AttributeOfEntity( OID: #attributeOfEntity 0(aOid), sOID: tgt,
Name: n, isKey: isK, isNullable: isN, EntityOID: #entity 0(eOid))

←
AttributeOfEntity( OID: aOid, sOID: src,

Name: n, isKey: isK, isNullable: isN, EntityOID: eOid)

Signature:

H2,2 = 〈A(true)〉
B2,2 = 〈A(true)〉
map2,2 = 〈K : A(K),N : A(N)〉
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Rule R2,3: copy one-to-one and one-to-many relationships 1

Relationship( OID: #relationship 0(rOid), sOID: tgt, Name: n,
role1: r1, isOptional1: isOpt1, isFunctional1: true, isIdentified: isId,
role2: r2, isOptional2: isOpt2, isFunctional2: isFunct2,
Entity1: #entity 0(eOid1), Entity2: #entity 0(eOid2))

←
Relationship( OID: rOid, sOID: src, Name: n,

role1: r1, isOptional1: isOpt1, isFunctional1: true, isIdentified: isId,
role2: r2, isOptional2: isOpt2, isFunctional2: isFunct2,
Entity1: eOid1, Entity2: eOid2)

Signature:

H2,3 = 〈R(F1)〉
B2,3 = 〈R(F1)〉
map2,3 = 〈O1 : R(O1), I : R(I),O2 : R(O2), F2 : R(F2)〉

Rule R2,4: copy attributes of one-to-one and one-to-many relationships

AttributeOfRelationship( OID: #attributeOfRelationship 0(arOid),
sOID: tgt, Name: n, isNullable: isN,
RelationshipOID: #relationship 0(rOid))

←
AttributeOfRelationship( OID: arOid,

sOID: src, Name: n, isNullable: isN, RelationshipOID: rOid),
Relationship( OID: rOid, sOID: src, isFunctional1: true)

Signature:

H2,4 = 〈AR(true)〉
B2,4 = 〈AR(true),R(F1)〉
map2,4 = 〈N : AR(N)〉

1We recall that, without loss of generality, we assume that in a one-to-many relationship,
it is the first entity that has a functional role, and so F1 = true and F2 = false.
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Rule R2,5: generate an entity for each many-to-many relationship

Entity( OID: #entity 1(rOid), sOID: tgt, Name: n)
←
Relationship( OID: rOid, sOID: src, Name: n,

isFunctional1: false, isFunctional2: false)

Signature:

H2,5 = 〈E(true)〉
B2,5 = 〈R(¬F1 ∧ ¬F2)〉
map2,5 = 〈〉

Rule R2,6: for each entity generated by R2,5, generate a relationship between
it and the copy of the first entity involved in the many-to-many relationship

Relationship( OID: #relationship 1(eOid,rOid), sOID: tgt, Name: eN+rN,
isOptional1: false, isFunctional1: true, isIdentified: true,
isOptional2: isOpt, isFunctional2: false,
Entity1: #entity 1(rOid), Entity2: #entity 0(eOid))

←
Relationship( OID: rOid, sOID: src, Name: rN,

isOptional1: isOpt, isFunctional1: false, isFunctional2: false,
Entity1: eOid),

Entity( OID: eOid, sOID: src, Name: eN)

Signature:

H2,6 = 〈R(¬O1 ∧ F1 ∧ I ∧ ¬F2)〉
B2,6 = 〈R(¬F1 ∧ ¬F2), E(true)〉
map2,6 = 〈O2 : R(O1)〉
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Rule R2,7: for each entity generated by R2,5, generate a relationship between
it and the copy of the second entity involved in the many-to-many relationship

Relationship( OID: #relationship 1(eOid,rOid), sOID: tgt, Name: eN+rN,
isOptional1: false, isFunctional1: true, isIdentified: true,
isOptional2: isOpt, isFunctional2: false,
Entity1: #entity 1(rOid), Entity2: #entity 0(eOid))

←
Relationship( OID: rOid, sOID: src, Name: rN,

isFunctional1: false, isOptional2: isOpt, isFunctional2: false,
Entity2: eOid),

Entity( OID: eOid, sOID: src, Name: eN)

Signature:

H2,7 = 〈R(¬O1 ∧ F1 ∧ I ∧ ¬F2)〉
B2,7 = 〈R(¬F1 ∧ ¬F2), E(true)〉
map2,7 = 〈O2 : R(O2)〉

Rule R2,8: for each attribute of each many-to-many relationship, generate an
attribute for the entity generated by R2,5

AttributeOfEntity( OID: #attributeOfEntity 1(arOid), sOID: tgt,
Name: n, isKey: false, isNullable: isN, EnitityOID: #entity 1(rOid))

←
AttributeOfRelationship( OID: arOid, sOID: src,

Name: n, isNullable: isN, RelationshipOID: rOid),
Relationship( OID: rOid, sOID: src,

isFunctional1: false, isFunctional2: false)

Signature:

H2,8 = 〈A(¬K)〉
B2,8 = 〈AR(true),R(¬F1 ∧ ¬F2)〉
map2,8 = 〈N : AR(N)〉
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