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Preamble

The Internet plays a crucial role in today’s information society, making huge
amounts of data available to millions of worldwide users. Started as an aca-
demic experiment, in less than a decade, the Internet has indeed become a
driving force for economy, pushing the information revolution and changing
everybody’s life.

From a technical perspective, the Internet is a global network of networks,
which interconnects different Autonomous Systems (ASes). Each AS typically
corresponds to a different administrative entity. In turn, the network of each AS
can contain hundreds of heterogeneous and geographically-distributed network
devices. Several network protocols are used to regulate the communication
between devices, in order to deliver data packets and to offer higher-level ser-
vices to the Internet end users. Moreover, to achieve better performance and
optimize resources, protocol-specific parameters are typically fine-tuned, via
obscure and ambiguous device configuration languages.

Consequently, as the size of the network, the number of deployed proto-
cols and the complexity of device configurations grow, the behavior of each
AS network becomes hard to predict, transforming network management into
a nightmare. Even worse, management issues are amplified by the frequent
need for configuration changes dictated by evolving requirements, new oppor-
tunities for resource optimization, and availability of new technologies. Be-
cause of stringent Service Level Agreements (SLAs), configuration changes
have to be performed with no impact on both offered services and already
implemented requirements. Best practices and management methodologies
(e.g., [Opp04, Tea07]) suggest that each configuration modification undergo a
careful design process, encompassing accurate requirement identification, logi-
cal and physical design, and pre-deployment testing. Accommodation of both
already implemented and new requirement should be guaranteed as a result of
those phases. Also, in order to not disrupt offered services and not violate the

1
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Figure 0.1: Main phases in the network lifecycle.

SLAs, the deployment of new configurations on the production network should
cause no packet loss. Finally, the global behavior of the network should be
conveniently monitored during operation to have the possibility to promptly
react to performance problems and network faults. A sketchy representation
of a typical network lifecycle, along with main management activities required
in different phases, is depicted in Fig. 0.1.

Due to the complexity of today’s networks, careful network design, configu-
ration generation and deployment, and network monitoring are all challenging
tasks, each posing its own set of problems. Lots of research and industrial
efforts have been devoted to support network administrators in network and
configuration management. Unfortunately, recent studies (e.g., [jwp08]) report
human errors to still be the main cause for network downtime, which are, in
turn, responsible for significant economical losses.

In this thesis, we study how to govern routing in today’s Internet. The
routing problem consists in finding a path (optimal according to some criteria)
on which to forward data packets sent by a given source and targeted to a given
destination. Network devices, i.e., routers, exchange information to reach com-
mon routing decisions through routing protocols. However, configuring routing
is a much harder problem than it seems at a first glance. Indeed, routing is a
distributed problem by nature, mandating router configurations to be always
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CONTENTS 3

consistent network-wide. However, network administrators must specify router
configuration through vendor-dependent low-level languages, which makes all
the configuration generation process hard to automate and error-prone. Even
worse, routing decisions can depend on contingent factors, like message timing.
Such a feature makes simulations not always suitable for verification purposes,
nor static analysis always viable. Moreover, several routing protocols are typ-
ically deployed in the same network for different purposes. In particular, in a
classic AS network, Interior Gateway Protocols (IGPs) and the Border Gate-
way Protocol (BGP) provide reachability to intra and inter-domain destinations
respectively. However, different routing protocols can subtly interact, giving
rise to unexpected side effects (e.g., [GW02b]). Also, some protocol-specific
features, like BGP information-hiding and support for routing policies, must
be taken into account in order to avoid inconsistent routing and forwarding
decisions [GW99]. Hence, it is not surprising that router configuration errors
are pervasive [MWA02, FB05], threatening user traffic delivery and Internet
connectivity disruption.

In this thesis, we propose novel research contributions on routing problems
that affect different management tasks. We follow the typical network lifecy-
cle, from its initial deployment to operation and reconfiguration, focusing on
three common management activities: pre-deployment configuration testing,
network monitoring, and replacement of configurations in a running network.
After introducing some background in Part I, we tackle in Part II the problem
of statically checking a given network configuration for correctness. Such a
static check is meant to allow router configurations to be validated before their
deployment in a production network. In particular, we delve into static testing
of BGP configurations for dynamic stability, that is, guaranteed convergence
to a stable routing decision. After formally presenting different kinds of stabil-
ity problems in Chapter 2, we prove that statically assessing BGP stability is
computationally hard in Chapter 3. We adopt a more practical perspective in
Chapter 4, where we propose a heuristic for solving the BGP stability checking
problem, and we describe a convergence checker tool based on that heuristic.

In Part III, we propose advanced techniques to improve network monitoring.
We consider routing protocols monitoring in Chapter 5, where we compare
different approaches, and we describe a new solution based on the highly-
optimized packet cloning feature available on many commercial routers. In the
following Chapter 6, we explore possibilities opened by router programmability,
especially focusing on data-plane monitoring and traffic matrices.

In Part IV, we study how to evolve network-wide routing configuration with
no impact on traffic. Our vision is that network-wide reconfigurations should
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4 CONTENTS

become a network primitive in the Future Internet, enabling lossless replace-
ment or configuration fine-tuning of any network protocol without affecting
offered services. In Chapter 7, we analyze IGP reconfigurations, focusing on
the commonly deployed link-state IGPs. We formalize the problem of finding
an operational ordering which guarantee no packet loss, we prove its complex-
ity, and we propose algorithms and heuristics for solving it. Based on those
algorithms, we build a general methodology and a prototype system able to
automatically perform lossless reconfigurations. After, we turn to BGP recon-
figurations. In Chapter 8, we discuss how to improve BGP configurations, by
analyzing design proposals targeted to add flexibility. Regarding those propos-
als, we point out their risks of raising unexpected detrimental side effects, and
we propose design guidelines to fix them. In Chapter 9, we tackle the problem
of how to reconfigure BGP with no impact on both routing and forwarding.
After formalizing the problem, we show that an algorithmic approach to find
an operational ordering is not viable in the general case. Hence, we discuss a
solution which leverages Virtual Routing and Forwarding (VRF) in order to
run two BGP routing processes at the same time.

Finally, in the last part of this thesis, we draw conclusions, and we discuss
interesting directions for future research.
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Chapter 1

Routing in the Internet

The Internet provides connectivity among thousands of Autonomous Systems
(ASes), i.e., domains typically belonging to different administrative entities.

According to their role, ASes are typically partitioned in two main cate-
gories: stub ASes and Internet Service Providers (ISPs), also called transit
ASes. Stub ASes are exclusively interested in accessing or providing content
over the Internet. To this aim, however, they need to connect to ISPs. ISPs,
indeed, build the infrastructure for delivering packets from any source to any
destination in the Internet. The primary service they provide is connectivity
among ASes, that is, ISPs sells their ability of transiting packets to a remote
destination as a service. ISPs can, in turn, purchase and sell connectivity ser-
vices from and to other ISPs. In general, when an AS X provides connectivity
to another AS Y , the commercial relationship between the two ASes is classi-
fied as customer-provider. Also, X is said to be a provider of Y , while X is
called customer of Y .

The customer-provider relationship builds an AS hierarchy consisting of
many levels, or tiers. Stub ASes are the bottom tier, while ISPs that provide
connectivity only to stub ASes are at the penultimate tier, and so on. The top
layer, normally referred to as Tier-1, includes huge geographically distributed
ISPs, which own (possibly aggregated) information about all the destination
prefixes in the Internet. For sure, such an AS hierarchy represents a simplified
model of commercial relationships between ASes, as real-world commercial
relationships can be much more complicated [RWM+11]. For example, ISPs
can (even locally) exchange (some) traffic free of charge, establishing so-called
peer-to-peer relationships [Gao01]. Those relationships are far from being an

7
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8 CHAPTER 1. ROUTING IN THE INTERNET

Figure 1.1: High-level view of the topology of an ISP network.

exception. In particular, recent trend is to commonly establish peer-to-peer
relationships with big Internet players like Content Providers (like Google and
Facebook) and Content Delivery Networks (like Akamai and Limelight) which
attracts huge amount of user traffic [LIJM+10]. This allows to keep latency
as low as possible and increase the quality of end-user experience for popular
destinations.

In this thesis, we often take the perspective of a single ISP. Topologically,
the network of an ISP typically encompasses a backbone and several Point
of Presences, that can also be geographically distributed all over the world.
A Point of Presence (PoP) is a location where several border routers, also
called egress points, exchange traffic and interdomain routing information with
routers of other ASes. The backbone connects the PoPs together. In order to
route traffic, at least two kinds of routing protocols are deployed in a basic ISP
configuration: an Interior Gateway Protocol (IGP) for intra-domain routing,
and the Border Gateway Protocol (BGP) for inter-domain routing. The IGP
has to be run on all the routers in the ISP, and provide routing information
useful within a single AS. In addition, border routers are also required to speak
BGP in order to get information about remote destinations (i.e., inside other
ASes). Fig. 1.1 shows a high-level view of a typical ISP network topology,
providing indications of the scope of different routing protocols.

In the following, we briefly recall the most important features of the routing
protocols (link-state IGPs and BGP) we mainly refer to in this thesis.
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1.1. INTERIOR GATEWAY PROTOCOLS 9

1.1 Interior Gateway Protocols

Among all network routing protocols, Interior Gateway Protocols (IGPs) play
a critical role. An IGP enables end-to-end reachability between any pair of
routers within the network of a single AS. Many other routing protocols, like
BGP, LDP or PIM, rely on an IGP to work.

IGPs are roughly divided in two main families: distance-vector and link-
state protocols. Distance-vector IGPs are based on the Bellman-Ford algo-
rithm. In these protocols, each router takes routing (and forwarding) decisions
based on the information propagated by its neighbors. On the contrary, in a
link-state IGP, every router is aware of the entire network topology. Typically,
link-state IGPs rely on the Dijkstra algorithm, and guarantee faster conver-
gence. Although some enterprise networks still use distance-vector protocols,
most ISPs and large enterprises deploy link-state IGPs, namely OSPF [Moy98]
or IS-IS [Ora90]. Hence, we mainly focus on link-state IGPs in this thesis.

Link-state IGPs can be configured either in a flat or in a hierarchical mode.
In flat IGPs, every router is aware of the entire network topology and forwards
IP packets according to the shortest paths towards their respective destina-
tions. In hierarchical IGPs, routers are not guaranteed to always prefer the
shortest paths. Hierarchical IGP configurations break the whole topology into
a set of zones (called areas in OSPF and levels in IS-IS), which we denote as
B,Z1, . . . , Zk. B is a special zone, called backbone, that connects all the other
peripheral zones together, such that packets from a router in the network to a
destination inside a different zone always traverse the backbone. IGP routers
establish adjacencies over physical links, in order to exchange routing informa-
tion. Each adjacency belongs to only one zone. By extension, we say that a
router is in a zone if it has at least one adjacency in that zone. We call internal
routers the routers that are in one zone only. The Zone Border Routers (ZBRs)
(e.g., ABRs in OSPF and L1L2 systems in IS-IS) are the routers that are in
more than one zone, among which one must be the backbone. Both internal
routers and ZBRs prefer intra-zone over inter-zone paths. This means that,
to choose the path on which to forward packets towards a certain destination,
each router prefers a path traversing only one zone over a path traversing more
than one zone, no matter what is the length of the two paths.

Moreover, in hierarchical IGPs, ZBRs can be configured to perform route
summarization. In this configuration, ZBRs hide the internal topology of a
zone Z to routers in different zones, advertising aggregated prefixes outside Z.
In practice, they announce their ability to reach groups of destinations with
paths of a certain length. The length announced by a ZBR is the same for all
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10 CHAPTER 1. ROUTING IN THE INTERNET

the destinations in an aggregated prefix, and either it is customly configured or
it is decided on the basis of the actual lengths of the preferred paths towards
that destinations (e.g., picking the highest one [Moy98]).

1.2 The Border Gateway Protocol

Different ASes exchange routing information via the Border Gateway Protocol
(BGP) [RLH06]. For inter-domain traffic, BGP has the final say on routing and
forwarding decisions, and routing information exchanged via BGP can have a
dramatic impact on the quality of service actually provided by an ISP to its
customers. We now briefly recall how BGP works.

BGP routing information, i.e., routes, are exchanged on transport connec-
tions called BGP sessions, or peerings. Two routers are called BGP peers,
or simply peers, if a BGP session exists between them. On those sessions,
BGP speaking routers (which we will also call BGP routers or BGP speakers
throughout the present thesis) exchange routes to IP destination prefixes using
BGP messages. BGP messages provide information about reachability given
destination prefixes, and associate each route to a set of attributes. RFC 4271
defines the following attributes.

• AS-path (well-known, mandatory, transitive): it is the sequence of ASes
traversed by BGP message.

• origin (well-known, mandatory, transitive): it signals how the prefix has
been injected into BGP.

• next-hop (well known, mandatory, transitive): it contains the IP address
of the BGP next-hop, that is, the BGP speaking router that should be
used to forward traffic destined to the prefix.

• multi-exit-discriminator, also known as MED (optional, discretionary,
non-transitive): when present, it influences the choice among multiple
routes sent by the same AS.

• local-preference (well known, non-transitive): it allows a BGP router
to indicate the relative degree of preference that is locally associated with
the route contained in the BGP update.

• atomic aggregate (well-known, discretionary, transitive): when present,
it allows aggregation of contiguous IP prefixes that share the same at-
tributes.
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1.2. THE BORDER GATEWAY PROTOCOL 11

• aggregator (optional, discretionary, transitive): when present, it indi-
cates the AS number and the IP address of the last BGP router that
performed an IP prefix aggregation.

• community (optional, discretionary, transitive): this attribute does not
have any defined semantics. It is basically a way to associate a set of tags
(each tag consists of a pair of integer values) to a route. It is especially
useful to add information to the route, and set the local-preference.
For example, many ISPs allow their customers to set specific community
values for traffic engineering purposes.

Since the as-path attribute is carried inside each BGP message, BGP is said
to be a path-vector protocol.

BGP works on a per-prefix basis. From a very abstract point of view, for
each prefix, the behavior of a BGP router mainly consists of three phases.
In the first phase, the router collects routing information from neighboring
BGP routers, and possibly modifies the BGP message by editing some of its
attributes (input policy). Then, it selects its best route. Finally, the router
creates outgoing BGP messages by possibly changing BGP attributes in the
received message (output policy), and selectively announces its best route to its
peers through such messages. This process is locally repeated at each router in
the network each time it receives a new route (or a withdrawal of a previously
received route).

The best route is selected by running the deterministic BGP decision pro-
cess, summarized in Table 1.1. The BGP decision process consists of a set of
rules. Whenever there are ties for a rule, the next rule is applied to break the
tie. From a high-level point of view, a route for a destination prefix is selected
as the best based on the values of the attributes associated to it. To ensure the
BGP decision process to be deterministic, its last steps evaluate the identifier
(router-id) and the IP address (peer-id) of the BGP neighbor from which
the route is learned, respectively. We refer the reader to [ZB03] for a detailed
description of the BGP decision process.

Observe that BGP configuration languages allow operators to modify the
attributes carried by a message in order to influence the best route selection
and, therefore, control outbound traffic. Some commands can even force a
BGP speaker to skip some steps of the BGP decision process (see, e.g., Cisco
bgp bestpath as-path ignore command). Fine-tuning of the BGP decision
process outcome through attribute setting allow operators to deploy high-level
routing policies, that is, preference of a route over another. Indeed, BGP is
commonly referred to as a path-vector policy-based routing protocol.
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12 CHAPTER 1. ROUTING IN THE INTERNET

Step Criterion

1 Prefer routes with higher local-preference
2 Prefer routes with lower as-path length
3 Prefer routes with lower origin
4 Among the routes received from the same AS neighbor, prefer those

having lower MED
5 Prefer routes learned via eBGP
6 Prefer routes with lower IGP distance to the next-hop

7 Prefer routes having the lowest router-id
8 Prefer the route having the lowest peer-id

Table 1.1: BGP decision process.

BGP has two different modes of operations: external BGP (eBGP), which is
used between different ASes, and internal BGP (iBGP), which is used within a
single AS to distribute externally learned BGP routes. We separately describe
the most important features of eBGP and iBGP in the following.

eBGP

One of the key feature of BGP is to allow network operators to control inter-
domain routing at a fine-grained level, by specifying routing policies. Routing
policies are mainly targeted to reflect commercial relationships between ASes.

As noted in [FJB05, FJB07], BGP policies can be broken down in two
components: ranking and filtering. The roles of the ranking and filtering com-
ponents of routing policies are clearly distinguished. Ranking allows an AS
to specify preferences over multiple candidate routes to the same destination,
while filtering allows an AS to selectively accept and advertise specific routes
from and to specific neighbors. To further confirm their distinction, the rank-
ing and filtering components of routing policies are often specified in router
configurations by using separate statements. Fig. 1.2 shows a sample fragment
of a typical router configuration, highlighting the separation between filtering
and ranking components of routing policies. In this configuration, the filtering
component is such as to accept all the BGP announcements but those that
traversed AS 31337. The ranking component applies a higher preference to
BGP announcements that have been originated by AS 1.

BGP provides only few restrictions about routing policies that can be set.
In particular, BGP provides ASes with the autonomy to set routing policies
independently of each other, and with the expressiveness to specify extremely
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ip as-path access-list 1 deny 31337

ip as-path access-list 1 permit .*

route-map fooFilter permit 10

match as-path 1

← route filtering

ip as-path access-list 2 permit 1$

route-map fooRank permit 10

match as-path 2

set local-preference 120

route-map fooRank permit 20

! other paths have default pref.

← route ranking

Figure 1.2: Ranking and filtering components in a sample router configuration.

complex configurations. Unfortunately, autonomy and expressiveness come at
the cost of possibly setting conflicting route preferences between ASes. Such
conflicts can negatively affect BGP convergence, that is, BGP speakers are
not guaranteed to ever achieve a common routing decision in given configura-
tions [VGE00]. We dig into BGP convergence issues and we study the impact
of autonomy and expressiveness in Part II of this thesis.

iBGP

The basic role of iBGP is to provide consistency among inter-domain routing
information received by BGP speakers of the same AS.

Vanilla iBGP did not allow an iBGP router to relay messages to other
routers, hence a full mesh of iBGP sessions was needed to ensure correct route
distribution. This implies the number of iBGP sessions to be quadratic with re-
spect to the number of routers, hence affecting resource consumption at routers
and manageability of device configurations. As the network grows, a mecha-
nism to scale the number of iBGP sessions is needed. Two mechanisms were
proposed to allow iBGP topologies to scale: route reflection [BCC06] and BGP
confederations [TMS07]. Route reflection modifies iBGP propagation rules and
allows specic routers, the route-reflectors, to reflect routes to a set of clients.
BGP confederations divide an AS into several fully-meshed or RRed compo-
nents. Special eBGP sessions are then used between components to propagate
paths to other components. In this thesis, we focus on route reflection as it is
the most widely adopted mechanism.

When route reflection is used, the iBGP neighbors of each router are split
into three sets: clients, peers and route-reflectors. In the following, we refer
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14 CHAPTER 1. ROUTING IN THE INTERNET

Route learned from Reflect to clients Reflect to non-clients

eBGP yes yes

client yes yes

non-client yes no

Table 1.2: Best route propagation rules in iBGP with route reflection.

to a router that has one or more clients as a route-reflector. Also, we refer
to a session between iBGP peers as an OVER session. We denote a session
between a client and a route reflector as an UP session if it is traversed from
the client to the route-reflector, and as a DOWN session otherwise. A fully
meshed iBGP network corresponds to a degenerated route reflection topology
in which all iBGP routers are peers. However, organizing routers in a hierarchy
of clients and route-reflectors allows the iBGP topology to scale, since fewer
sessions are needed and clients learn most routing information from their route-
reflectors. Indeed, each iBGP speaker propagates its best route according to
the rules depicted in Table 1.2: if the best route is learned from a non-client
iBGP peer, then it is relayed only to clients, otherwise it is propagated to all
iBGP neighbors. In order to ensure that routes are correctly distributed within
the AS, there must be a full mesh of iBGP peerings at the top of the route
reflection hierarchy.

Practically, iBGP routers are organized in clusters. A cluster consists of
one or more route-reflectors and all their clients. Whenever not explicitly
stated, we assume that every cluster has a single route-reflector. Each cluster
is identified through a unique cluster-id. Messages carry a cluster-list

attribute, which accounts for the iBGP path and is used to avoid control-plane
loops. The length of the cluster-list is also considered in the BGP decision
process. Indeed, route reflection prescribes to change the last steps of the BGP
decision process as shown in Table 1.3. Throughout the thesis, we denote the
routers that receive an eBGP route for a given prefix as egress points for that
prefix. The egress-id of a route is the router-id of the egress point that
announces that route.

Observe that in the iBGP decision process a fundamental role is assumed by
the IGP metrics, which are used to locally discriminate among routes equally
preferred according to eBGP policies. From a theoretical point of view, tweak-
ing the IGP metrics allows network operators to specify intradomain routing
policies. However, expressiveness of iBGP policies is more limited with respect
to eBGP, because of both route propagation constraints (see Table 1.2) and
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Step Criterion

1 Prefer routes with higher local-preference
2 Prefer routes with lower as-path length
3 Prefer routes with lower origin
4 Among the routes received from the same AS neighbor, prefer those

having lower MED
5 Prefer routes learned via eBGP
6 Prefer routes with lower IGP distance to the next-hop

7 Prefer routes having the lowest egress-id
8 Prefer routes with shorter cluster-list
9 Prefer the route having the lowest peer-id

Table 1.3: BGP decision process.

possibility to rank routes only on the basis of the iBGP egress point. However,
route preference conflicts are also possible in iBGP, and routing convergence is
not guaranteed [GW02b], because of reduced route visibility (i.e., clients rely
on the information mirrored by their route-reflectors) traded for more scal-
ability in route reflection. Even worse, the coupling between BGP and the
underlying IGP can result in forwarding anomalies [GW02b], e.g., user packets
indefinitely bounced among a limited number of routers creating a forwarding
loop. We devote special attention to iBGP routing and forwarding anomalies
throughout this thesis, especially in Parts II and IV.
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Chapter 2

A Model for BGP Stability

Problems ∗

2.1 Introduction

BGP (in both the external and the internal flavors) is renowned [GW99] to
be prone to routing oscillations. Indeed, some BGP configurations can never
converge to a stable routing state, either because a stable state for that con-
figuration does not exist at all, or because the protocol gets trapped into bad
event timings. Routing oscillations can and do [Ber01, Car06] happen due
to BGP policy disputes, that can be due to different factors like conflicting
local-preference settings in eBGP [GW99] or IGP metrics in iBGP [GW02b].
In the following, we will refer to guaranteed convergence as stability.

Because of the central role that BGP has in the Internet routing, guaran-
teeing its convergence to a stable routing state, however, is highly desirable
for an ISP. Indeed, it has been observed that interdomain routing changes
can cause performance degradation and packet losses [WMW+06], and can

∗Part of the material presented in this chapter is based on the following publications L.
Cittadini, G. Di Battista, M. Rimondini, S.Vissicchio. Wheel + Ring = Reel: the Impact
of Route Filtering on the Stability of Policy Routing. In Proc. IEEE ICNP, 2009. and L.
Cittadini, G. Di Battista, M. Rimondini, S.Vissicchio. Wheel + Ring = Reel: the Impact of
Route Filtering on the Stability of Policy Routing. In Proc. IEEE/ACM Trans. on Netw.
19(4):1085 - 1096. Aug 2011.
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20 CHAPTER 2. A MODEL FOR BGP STABILITY PROBLEMS

severely affect the availability of services running over the Internet infrastruc-
ture [KKK07]. Moreover, in case of oscillations, precious router resources are
wasted in periodically reprocessing the same messages, and bandwidth is con-
sumed by unnecessary routing updates travelling back and forth.

In this chapter, we introduce BGP stability problems we wish to stati-
cally check for with static pre-deployment tests (i.e., before configurations are
deployed, possibly giving raise to hard-to-detect convergence issues). In Sec-
tion 2.2, we present the commonly-agreed SPP and SPVP models, which we
adopt to study BGP stability in the thesis. For the sake of simplicity, through-
out the thesis, we exclude from our analysis the MED attribute and the routing
instabilities caused by MED values [GW02a]. However, most of our studies
and findings can be extended to deal with MED, since known techniques can
be adopted to model MED behavior in the SPP and SPVP models [GW02a].
Then, we formally define the most important decision problems related to BGP
stability in Section 2.3. In particular, we focus on safety, suf, and robust-

ness problems. Intuitively, the safety problem consists in determining if a
BGP configuration is guaranteed to converge to a stable state, whatever the
message timing is; safety under filtering (suf) and robustness problems are
two natural extensions of safety dealing with the possibility of autonomously
configuring route filters on each BGP speaker and with link/router failures,
respectively. In the same section, we also review known sufficient conditions
and known necessary conditions for the considered BGP stability problems. In
particular, we recall the definition of dispute wheel and dispute ring.

In Section 2.4, we extend the state of the art by defining the no-dr condi-
tion, and proving that it is a necessary and sufficient condition for safety under
filtering. Our result is based on the presence of a static structure called dispute
reel (DR), which is both a special case of a dispute wheel and a generalization
of a dispute ring. Being static structures, dispute reels inherit from the dispute
wheels the interesting property of depending on routing policies alone. Hence,
checking for the presence of a DR does not require to delve into the details
of the BGP protocol dynamics. To the best of our knowledge, this is the first
characterization of stability in policy routing. Moreover, the no-dr condition
fills the large gap between previously known sufficient conditions and necessary
conditions. As a side effect, dispute reels can replace dispute wheels in several
results on different BGP stability problems.

In Section 2.5, we clarify the inclusion relationships between BGP stabil-
ity problems. In particular, we show that, in a network admitting multiple
stable routing states, safety under filtering is provably compromised. Thus,
the presence of the so-called BGP wedgies [TG05] is a sufficient condition for
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2.2. MODELING BGP 21

making a network unsafe under filtering. Moreover, we prove that robustness
does not necessarily imply safety under filtering. This means that, in a sense,
the autonomy of adding (possibly misconfigured) filters can do more harm than
network faults.

Finally, related work is discussed in Section 2.6, and conclusions are drawn
in Section 2.7.

2.2 Modeling BGP

In this section, we describe the well-known Stable Paths Problem (SPP) and
Simple Path Vector Protocol (SPVP) formalisms introduced in [GSW02] and
in [GSW99], respectively. Terminology and notation used in this section is
adopted in the rest of the thesis.

BGP Preferences: SPP

In order to vehiculate and exchange routing information (e.g., IP prefix reacha-
bility), BGP routers must establish adjacencies. Abstractly, those adjacencies
build a logical graph. SPP models a BGP network as an undirected graph
G = (V,E). V = {0, 1, . . . , n} is a set of vertices representing BGP speakers,
typically ASes in eBGP or routers in iBGP. Edges in E correspond to peerings
between BGP speakers. Vertex 0 is special since it is the destination every other
vertex attempts to establish a path to. Since different destinations are inde-
pendently handled by BGP [RLH06], 0 is assumed, without loss of generality,
to be the only destination. In the following, we often use paths on the logical
graph G to characterize the BGP routes that are propagated on that paths.
More formally, a path P is a sequence of k+1 vertices P = (vk vk−1 . . . v1 v0),
vi ∈ V , such that (vi, vi−1) ∈ E for i = 1, . . . , k. Vertex vk−1 is the next hop of
vk in P . For k = 0 we obtain the trivial path (v0) consisting of vertex v0 alone.
The empty path represents inability to reach the destination and is denoted
by ǫ. The concatenation of two nonempty paths P = (vk vk−1 . . . vi), k ≥ i,
and Q = (vi vi−1 . . . v0), i ≥ 0 is path PQ = (vk vk−1 . . . vi vi−1 . . . v0).
We assume that Pǫ = ǫP = ǫ, that is, the empty path can never extend or be
extended by other paths.

To represent the outcome of the BGP decision process, including input and
output policies, SPP introduces the concepts of permitted paths and rank-
ing function. SPP models the effects of both the ranking and the filtering
components in BGP route processing by explicitly listing all routes that are
not filtered out and defining their respective preference. More precisely, each
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10

120 210

201 2

0

0 1 2

π1 (0) (1 0) (2 1 0)

π2 (0) (1 2 0) (2 0)

Figure 2.1: The SPP instance Disagree [GW99] (on the left) and its two
distinct stable states π1 and π2 (on the right).

vertex u ∈ V is assigned with a set of permitted paths Pu representing the
paths that u can use to reach 0. All the paths in Pu are simple (i.e., without
repeated vertices), start from u and end in 0. The empty path, representing
unreachability of 0, is permitted at each vertex u 6= 0. Vertex 0 can reach
itself only directly, hence P0 = {(0)}. Let P =

⋃

u∈V P
u the set of permitted

paths on all the vertices. For each u ∈ V , a ranking function λu : Pu → N
determines the preference level λu(P ) assigned by u to path P . If P1, P2 ∈ P

u

and λu(P2) < λu(P1), then P2 is preferred over P1. Let Λ = {λu|u ∈ V }.
The following conditions hold on permitted paths of each vertex u ∈ V −{0}:

(i) ∀P ∈ Pu, P 6= ǫ: λu(P ) < λu(ǫ) (unreachability of 0 is the last resort);

(ii) ∀P1, P2 ∈ P
u, P1 6= P2 : λu(P1) = λu(P2)⇒ P1 = (u v)P ′

1, P2 = (u v)P ′
2,

(strict ranking is assumed on all paths but those with the same next hop).

An instance of SPP is a triple S = (G,P,Λ), where G = (V,E) is a simple
undirected graph, P is the set of permitted paths, and Λ is the set of ranking
functions. Fig. 2.1 shows an instance of SPP, called Disagree [GSW02]. The
graphical convention we use in this figure will be adopted for depicting SPP

instances throughout the thesis. Namely, each vertex v is equipped with a list
of paths representing Pv, sorted by decreasing values of λv (i.e., the higher in
the list the more preferred). The empty path and P0 are normally omitted for
brevity. In the Disagree instance, in particular, path preferences (according
to the BGP decision process) are set so that vertex 1 prefers the path announced
by 2 to reach the destination (i.e., vertex 0) and vice versa. We will refer to
this kind of conflicting policies as policy dispute.

Observe that the SPP model is general enough to model both eBGP and
iBGP. Indeed, path preferences can derive from eBGP policy setting (e.g.,
local-preference values reflecting commercial agreements), from iBGP at-
tributes (e.g., IGP metrics), or from a combination of the two.
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1: process(v):
2: while receive P from u do
3: rib-int(v ⇐ u) ← P
4: ribt(v) ← bestt(v)
5: if ribt(v) 6= bestt−1(v) then
6: for all v ∈ peers(v) do
7: send ribt(v) to v
8: end for
9: end if

10: end while

Figure 2.2: SPVP algorithm.

BGP Dynamics: SPVP

The dynamic behavior of BGP is modeled by a distributed asynchronous algo-
rithm known as Simple Path Vector Protocol (SPVP) [GSW99, GW00] run-
ning over an SPP instance. The SPVP algorithm is shown in Fig. 2.2. In
the SPVP algorithm, vertices exchange messages containing permitted paths
in order to establish a path to 0. It is assumed that message exchanges are
reliable and edges introduce an arbitrary finite delay. Communication between
vertices takes place in a totally asynchronous way.

To describe the SPVP algorithm in Fig. 2.2 we need a few more definitions.
Let peers(v) be the set of neighbors of v. Two data structures are used at each
vertex v to represent the information v is aware of at time t: the path ribt(v)
that is used to reach 0 and a table rib-int(v ⇐ u) that stores the latest path
received from neighbor u ∈ peers(v). Thus, vertex v can select a path to 0
among the choices available in

choicest(v) = {(v u)P ∈ Pv | P = rib-int(v ⇐ u)}

Let W be a subset of the permitted paths Pv at vertex v, such that each
path in W has a distinct next hop. Then the best path at v in W is

best(W, v) =

{

P ∈W |P = argmin λv(P ) (W 6= ⊘)

ǫ (W = ⊘)

and the overall best path v is aware of at time t is bestt(v) = best(choicest(v), v).
In SPVP, each vertex executes an instance of the algorithm in Fig. 2.2.

When a vertex v receives a path P from the neighboring vertex u, it stores
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P in the local data structure rib-int(v ⇐ u) and recomputes its best path. If
the computed best path Q differs from the previously selected path, u sends a
message containing P to all of its neighbors.

The order in which announcements are exchanged among vertices is mod-
eled in SPVP by activation sequences [GSW02]. We say that an edge (u, v) is
activated from u to v at time t if v executes the algorithm in Fig. 2.2 to pro-
cess the latest message received from u at time t. The order in which protocol
messages are exchanged does not need to be total, i.e., at a given time more
than one message can be processed. This partial order is represented using
activation sequences. An activation sequence σ is a (possibly infinite) sequence
of sets σ = (A0 A1 . . . Ai . . . ), in which each set At contains the edges that
are activated at time t. Each edge in At is considered oriented according to
the direction of its activation.

We say that an activation sequence is fair [GSW02] if, whenever vertex u
sends a message at time t (Step 7 of SPVP), there exists a time t′ > t at which
the message is delivered and processed by its recipient. This means that edge
(u, v) is eventually activated when u sends a message to v.

To model the BGP decisions made by different vertices at different times,
the concept of path assignment is defined. A path assignment is a function π
that maps each vertex v ∈ V to a path π(v) ∈ Pv. Observe that, at any time
t, the SPVP algorithm defines a path assignment πt where πt(v) = ribt(v) and
each vertex always selects the best available path. We have that ∀t πt(0) = (0).
Also, v 6= 0 cannot reach vertex 0 at time t if πt(v) = ǫ. Given an SPP instance
S, we say that an activation sequence σ on S leads to path assignment πt2

starting from path assignment πt1 , denoted by πt1
σ
 πt2 , if, after activating

edges according to σ, S changes its state from πt1 to πt2 .
In the following, we will refer to π (or πt) as a state of the SPP instance

(at time t). A state πt of an SPP instance is a stable state if ∀v ∈ V : πt(v) =
bestt(v). This means that every vertex has settled to the best available path
and will never change its selection. For example, two stable states π1 and π2

for Disagree are described in right part of Fig. 2.1. In the figure, each row
of the table represents a state, and each column specifies the path selected by
every vertex in that state.

Finally, we say that an instance S of SPP is consistent if, for any u ∈ V
and P ∈ Pu, we have that P = (u v)P ′ and P ′ ∈ Pv. We stress that the
presence of a path violating this condition cannot affect the behavior of the
SPVP algorithm on S. Therefore, we always assume, without loss of generality,
that all SPP instances are consistent, unless the contrary is explicitly stated.
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t At 1 2

1 {(0, 1), (0, 2)} (1 0 ) (2 0 )

2 {(1, 2), (2, 1)}
(1 2 0 )
(1 0)

(2 1 0 )
(2 0)

3 {(1, 2), (2, 1)} (1 0 ) (2 0 )

Table 2.1: A fair activation sequence for Disagree (Fig. 2.1) which can be
indefinitely repeated without settle to a stable state.

Observe that variants of the SPVP algorithm where only some classes of ac-
tivation sequences are allowed, have been proposed in literature (e.g., [GSW99,
GR00, BOR+02, FJB07]). For the sake of completeness, we base our study on
the original version of the algorithm, in which edges are activated independently
and simultaneous activations are allowed. Indeed, it has been shown [CDR08]
that any relaxed version of the original SPVP model is only able to capture a
strictly smaller set of routing oscillations.

2.3 BGP Stability Problems

The SPVP algorithm is not guaranteed to terminate, i.e., a stable state can-
not be reached in certain BGP configurations. For instance, consider again the
example presented in Fig. 2.1. In that configuration, it is possible to show that
the policy dispute between vertices 1 and 2 can prevent BGP from reaching a
stable state. An infinite fair activation sequence representing a routing oscilla-
tion is reported in Table 2.1. In the table, rows correspond to edge activations,
the first column represents time, the second column specifies activated edges,
and the remaining columns contain the current rib-int at each vertex, with the
currently selected best path highlighted using italic face. Intuitively, if BGP
messages are simultaneously exchanged among vertices 1 and 2 (see the last
two raws in the table), then they both try to use the route provided by the
other vertex. However, this results in an inconsistent state (third row in the
table), and forces both vertices to fall back on their direct path to 0. This
sequence of message exchange can be repeated indefinitely.

Among BGP stability problems, a basic problem is solvability [GSW99],
defined as follows.

Problem 2.1 Given an SPP instance S, solvability is the problem of de-
termining whether S admits a stable state.
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Figure 2.3: Bad-Gadget [GW99], an SPP instance with no stable states.

Indeed, there are SPP instances that do not have any stable state. An example
of instance with no stable states is Bad-Gadget [GW99], shown in Fig. 2.3.
Intuitively, this depends on the fact that all vertices prefer their clockwise
neighbor instead of their own direct path to 0, because of a cyclic structure of
preferences. An infinite fair activation sequence on Bad-Gadget is described
in Table 2.2. The initial state is assumed to be π0(v) = ǫ ∀v ∈ V − {0}. After
vertices 1 and 2 have succeeded in choosing their preferred path at t = 2, edges
(1, 2), (2, 3), and (3, 1) can be sequentially activated in counter-clockwise order,
while never converging to a stable state. Moreover, edges (0, 1), (0, 2), (0, 3),
(1, 0), (2, 0), (3, 0), (2, 1), (3, 2), and (1, 3) can be activated after time 8 in order
to ensure the fairness of the activation sequence, without changing the state
of any vertex in the instance. The activation sequence reported in Table 2.2
from time 3 to time 8 can be repeated indefinitely to obtain an infinite fair
activation sequence.

Even if a stable state exists, BGP can still get trapped [GW99, GSW02] into
routing oscillations. Indeed, we already showed that the Disagree instance is
guaranteed to converge to any of the two stable states it admits (see Fig. 2.1).
We then define the safety problem as follows.

Definition 2.1 An SPP instance S is safe if any fair activation sequence on
S eventually leads to a stable state, that is, SPVP is guaranteed to converge
on S.

Problem 2.2 Given an SPP instance S, safety is the problem of determin-
ing whether S is safe.

Also, we formally define the concept of safety under filtering [FJB05] and
robustness [GSW02], already presented in the Introduction of this chapter.
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t At 1 2 3

1 {(0, 1), (0, 2), (0, 3)} (1 0 ) (2 0 ) (3 0 )

2 {(3, 1), (1, 2)}
(1 3 0 )
(1 0)

(2 1 0 )
(2 0)

(3 0 )

3 {(1, 2)}
(1 3 0 )
(1 0)

(2 0 ) (3 0 )

4 {(2, 3)}
(1 3 0 )
(1 0)

(2 0 )
(3 2 0 )
(3 0)

5 {(3, 1)} (1 0 ) (2 0 )
(3 2 0 )
(3 0)

6 {(1, 2)} (1 0 )
(2 1 0 )
(2 0)

(3 2 0 )
(3 0)

7 {(2, 3)} (1 0 )
(2 1 0 )
(2 0)

(3 0 )

8 {(3, 1)}
(1 3 0 )
(1 0)

(2 1 0 )
(2 0)

(3 0 )

Table 2.2: A snapshot of an infinite fair activation sequence for Bad-Gadget

(Fig. 2.3).

Definition 2.2 An SPP instance S = (G,P,Λ) is safe under filtering if, for
any P ′ ⊆ P, the instance (G,P ′,Λ) is safe.

Problem 2.3 Given an SPP instance S, safety under filtering ( suf) is
the problem of determining whether S is safe under filtering.

Definition 2.3 An SPP instance S = (G = (V,E),P,Λ) is robust if the
instance (G′ = (V,E′),P ′,Λ) is safe, for any E′ ⊆ E, and P ′ = P except for
the paths removed by the modification of G.

Problem 2.4 Given an SPP instance S, robustness is the problem of de-
termining whether S is robust.

Intuitively, suf assesses whether a BGP configuration is guaranteed to converge
to a stable state after application of any combination filters applied by any
BGP speaker in the network. Observe that achieving safety under filtering also
guarantees that configuration changes cannot adversely impact the operation
of a running network. Moreover, robustness aims at determining whether an
SPP instance remains safe after the removal of any subset of the vertices or
edges, hence after any combination of network failures. Observe that we restrict
to consider link failures only in Definition 2.3. Such a restriction is without
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loss of generality, since the removal of a vertex v from an SPP instance has
the same effect of removing all the links incident on v.

Dispute Wheels and Dispute Rings

It has been shown in [GSW02, FJB07] that BGP stability problems can be
studied by analyzing structural properties of SPP instances, without the need
to deal with the details of protocol dynamics. The most known structural
properties are based on (the absence of) cyclic dependencies among routing
preferences. In the following, we recall the formal definition of those structures,
called dispute wheels and dispute rings.

Definition 2.4 A dispute wheel (DW) [GSW02] Π = (~U , ~Q, ~R) is a triple

consisting of a sequence of vertices ~U = (u0 u1 . . . uk−1) and two sequences of

nonempty paths ~Q = (Q0 Q1 . . . Qk−1) and ~R = (R0 R1 . . . Rk−1) such that for
each i = 0, . . . , k − 1 we have:

(i) Ri is a path from ui to ui+1

(ii) Qi ∈ P
ui

(iii) RiQi+1 ∈ P
ui

(iv) λui(RiQi+1) ≤ λui(Qi).

We refer to vertices ui as pivot vertices, to paths Qi as spoke paths, and to
paths Ri as rim paths. Throughout the thesis, we intend subscripts of vertices
and paths in a dispute wheel to be interpreted modulo k, where k = |~U|.

The elements that constitute a dispute wheel are graphically depicted in
Fig. 2.4a. Observe that the Disagree instance in Fig. 2.1 contains a simple
dispute wheel, with two pivot vertices ~U = (1 2), spoke paths ~Q = ((1 0) (2 0)),

and rim paths ~R = ((1 2) (2 1)). Also, the policy dispute in the Bad-Gadget

instance in Fig. 2.3 is generated by a dispute wheel having vertices 1, 2, and 3
as pivot vertices, and paths ((1 0) (2 0) (3 0)) and ((1 3 0) (2 1 0) (3 2 0)) as
spoke and rim paths, respectively. In the general case, however, dispute wheels
occurring in SPP instances can be much more complex, since spoke and rim
paths can arbitrarily cross each other. Fig. 2.4b shows a sketch of a complex
dispute wheel where there are intersections between spoke paths Q0 and Q1,
spoke path Q1 and rim path R0, and rim paths R0 and R1.

The absence of a dispute wheel, commonly referred to as the no-dw con-
dition, has been proved [GSW02, FJB07] to be a sufficient condition for safety,
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u0

Q0: spoke
path from
u0 to 0

R0: rim path
from u0 to u1

R1: rim path
from u1 to u2

u2

u1

pivot
vertex0

(a)

u0

Q0

R1

u2

u1

Q1

0

R0

(b)

Figure 2.4: (a) Ideal structure of a dispute wheel. (b) Spoke and rim paths of
a dispute wheel can intersect in real SPP instances.

no dispute ring

solvabilitysafetyno DW SUF

(a)

safety solvabilityNO DR ≡ SUF

(b)

Figure 2.5: Fundamental relationships between BGP stability problems and
sufficient and necessary conditions before (a) and after (b) our contribution.

safety under filtering, and robustness. We define the no-dw problem as follows.

Problem 2.5 Given an SPP instance S, the no-dw problem consists in de-
termining if S contains a dispute wheel.

Also, Feamster et al. show in [FJB07] that the absence of a particular class
of dispute wheels, called dispute rings, is a necessary condition for safety under
filtering. A dispute ring is a dispute wheel having at least three pivot vertices
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and such that each vertex appears only once in the wheel. In practice, a dispute
ring looks like the dispute wheel depicted in Fig. 2.4a. The dispute wheel in
the Bad-Gadget SPP instance is an example of dispute ring. However, the
absence of a dispute ring does not guarantee safety, and does not even imply
that the SPP instance admits a stable path assignment.

Fig. 2.5a shows how the no-dw and “no dispute ring” conditions relate
to solvability, safety, and suf. We stress the large gap between the two
conditions, highlighted in the figure by the gray zones with thick border.

2.4 Characterizing Safety Under Filtering

In this section, we introduce a particular type of the dispute wheels, which
we call dispute reels. Further, we show that the absence of dispute reels is a
sufficient and necessary condition for the suf problem. Figure 2.5b shows how
the relationship between BGP stability problems changes as a consequence of
this result. Robustness is separately discussed in the following section.

Wheels + Rings = Reels

Intuitively, a dispute reel, or simply reel, is a dispute wheel such that the spoke
paths form a tree T and each rim path Ri contains no vertex in T except ui

and ui+1. In other words, out of all the crossings represented in Fig. 2.4b, only
those between rim paths (R0 and R1 in the figure) are allowed in a dispute reel.
Hence, a dispute reel looks much like a dispute ring (see Fig. 2.4a), except that
it can contain arbitrary intersections between rim paths.

In order to formally define the concept of dispute reel, we use P [v] to denote
the subpath of P starting at vertex v, that is, P = (u . . . v)P [v]. This implies
P [0] = (0) for any P .

Definition 2.5 A dispute reel (DR) is a dispute wheel which satisfies the fol-
lowing conditions:

(i) (Pivot vertices appear in exactly three paths) – for each ui ∈ ~U , ui only
appears in paths Qi, Ri and Ri−1.

(ii) (Spoke paths do not intersect any rim path) – for each u 6∈ ~U , if u ∈ Qi

for some i, then no j exists such that u ∈ Rj.

(iii) (Spoke paths form a tree) – for each distinct Qi, Qj ∈ ~Q, if v ∈ Qi ∩Qj,
then Qi[v] = Qj [v].
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Figure 2.6: An SPP instance, showed in [FJB07], which is safe under filtering
but contains DWs. However, none of these DWs is a DR.

We stress that the existence of a DR does not depend at all on the protocol
dynamics, i.e., it is a structural property of the policy configuration that can be
statically checked. It is easy to verify thatDisagree (Fig. 2.1) is an example of
a DR. Conversely, the instance in Fig. 2.6, first used in [FJB07] to show that the
presence of a DW does not prevent an instance from being safe under filtering,
does not contain any DRs. Consider, for example, the DW Π in Fig. 2.6 having
pivot vertices are ~U = (1 2 3), spoke paths are ~Q = ((1 0) (2 0) (3 0)), and

rim paths are ~R = ((1 3 2) (2 1 3) (3 2 1)). Π is not a dispute reel since pivot
vertex 1 appears in all rim paths, thus violating Condition (i) of Definition 2.5.
The instance in Fig. 2.6 also contains DW Π′ where pivot vertices are u0 = 1
and u1 = 2, spoke paths are Q0 = (1 3 0) and Q1 = (2 0), and rim paths are
R0 = (1 3 2) and R1 = (2 1). Π′ too is not a DR because Condition (ii) is not
satisfied, as vertex 3 appears both in Q0 and in R0. Similar arguments can be
applied to the other DWs in the instance in Fig. 2.6.

We also define a particular family of simple dispute reels, which we call
dispute duo. Intuitively, dispute duos are a generalization of the DW in the
Disagree gadget.

Definition 2.6 A dispute duo is a dispute reel such that |~U| = 2 and R0∩R1 =
{u0, u1}.

The simple structure of DRs allows us to identify two classes of activation
sequences leading to two “natural” classes of path assignments. Given an
SPP instance S containing a DW Π, the supporting instance S[Π] of Π is
the minimal SPP instance which contains the vertices, edges and paths of Π.
Intuitively, S[Π] can be obtained from S by filtering all paths but those used
in the DW. Observe that, if Π is a DR, then in S[Π] pivot vertices have exactly
two permitted paths, and vertices along the spoke paths (except pivots) have
exactly one permitted path.
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Qi+1

Qi

ui

ui+1

Q0

u0

R0

Q1

u1

Ri

(a) All-spoke path assignment π̄.

Qi+1

Qi

ui

ui+1

Q0

u0

R0

Q1

u1

Ri

(b) One-rim path assignment π̄i.

Figure 2.7: Two special path assignments of a dispute reel. The selected paths
are highlighted using solid stroke. Note that in π̄i, ui is the only vertex in Qi

which is not selecting a subpath of Qi.

Let S be an SPP instance containing a DR Π and let S[Π] be the sup-
porting instance of Π. The all-spoke path assignment (see Fig. 2.7a) is a path
assignment π̄ such that π̄(u) = Qi[u] if u ∈ Qi, π̄(u) = ǫ otherwise. Since spoke
paths form a tree, by activating the edges of each spoke path Qi in reverse order
(starting from 0) it is easy to construct an activation sequence σspoke leading
to an all-spoke path assignment.

Similarly, we define the one-rim path assignment for pivot ui (see Fig. 2.7b)
as a path assignment π̄i such that:

π̄i(u) =











Qj [u] if u ∈ Qj , u 6= ui, ∀j

Ri[u]Qi+1 if u ∈ Ri

ǫ otherwise.

In order to build an activation sequence that leads to π̄i, we can extend
σspoke by activating the edges of Ri in reverse order (starting from ui+1). This
is always possible because rim paths never intersect spoke paths and, for each
non-pivot vertex along Ri, π̄(v) = ǫ.
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Figure 2.8: A generic dispute duo and four snapshots of the oscillation defined
in the proof of Lemma 2.1.

Throughout the thesis, we refer to the absence of dispute reels in an SPP

instance as the no-dr condition. Also, we define the no-dr problem as follows.

Problem 2.6 Given an SPP instance S, the no-dr problem consists in de-
termining if S contains a dispute reel.

Safety Under Filtering implies no DR

In this section we show that the absence of DRs is a necessary condition for
safety under filtering. We do this by showing that the presence of a DR in an
SPP instance S makes S not safe under filtering. The proof consists of three
parts. First, we show that if S contains a dispute duo, then S is not SUF
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(Lemma 2.1). Second, we generalize this result by stating that if S contains
a DR consisting of two pivot vertices, then S is not SUF (Lemma 2.2). Last,
we show that if an instance S contains a DR Π, then an oscillation can al-
ways be constructed, either by cycling through one-rim path assignments on Π
(Lemma 2.3), or by exploiting a different DR consisting of two pivot vertices
(Lemma 2.4). Thus, S is not safe under filtering.

Dispute Reels with 2 Pivots

We start by showing that the presence of a dispute reel having 2 pivot vertices
makes an SPP instance not safe under filtering. First, we generalize the routing
oscillation showed in Tab. 2.1 for Disagree to the broader class of dispute
duos.

Lemma 2.1 An SPP instance that contains a dispute duo is not safe under
filtering.

Proof: Let S be an SPP instance containing a dispute duo Π = (~U , ~Q, ~R) and
consider S[Π]. We now construct a fair activation sequence that induces an
oscillation on S[Π]. Fig. 2.8 depicts the most relevant path assignments in the
activation sequence we build on S[Π]. The main idea is that vertices u0 and
u1 can simultaneously select paths π(u0) = R0Q1 and π(u1) = R1Q0. Path
assignment π is clearly not stable, so the two pivot vertices will eventually fall
back on their spoke paths Q0 and Q1. By iterating this argument, we are able
to show an infinite fair activation sequence.

First of all, since Π is a DR, we can construct on S[Π] an activation sequence
that leads to the all-spoke path assignment πt1 at some time t1. The resulting
path assignment is shown in Fig. 2.8a. We now propagate the announcement
of path Q1 (respectively, Q0) by activating the edges along R0 (R1) in reverse
order. Since R0 and R1 have no shared vertices other than u0 and u1, the
two announcements cannot interfere with each other. We halt one hop before
the announcement of Q1 (Q0) reaches u0 (u1), obtaining the path assignment
represented in Fig. 2.8b. Formally, let R0 = (v0 v1 . . . vk), where v0 = u0 and
vk = u1. We activate edges in R0 in reverse order until we hit v1, that is,

σR0
= ({(vk, vk−1)} {(vk−1, vk−2)} . . . {(v2, v1)}).

Symmetrically, let R1 = (w0 w1 . . . wj), and consider the sequence

σR1
= ({(wj , wj−1)} {(wj−1, wj−2)} . . . {(w2, w1)}).



i

i

“main” — 2012/2/22 — 9:40 — page 35 — #45
i

i

i

i

i

i

2.4. CHARACTERIZING SAFETY UNDER FILTERING 35

We activate edges according to σR0
, and then according to σR1

. Then, we
simultaneously activate edges (v1, v0) and (w1, w0). Observe that the simulta-
neous activation of edges (v1, v0) and (w1, w0) makes path R0Q1 available at
u0, and path R1Q0 available at u1. It is easy to check that these activations
lead to a path assignment πt2 (see Fig. 2.8c) such that, for i ∈ {0, 1}:

πt2(u) =

{

Qi[u] if u ∈ Qi, u 6= ui

Ri[u]Qi+1 if u ∈ Ri

We now activate edges in R0 (R1) in reverse order, again halting at v1 (w1), thus
reaching the path assignment depicted in Fig. 2.8d, and then we simultaneously
activate edges (v1, v0) and (w1, w0). By doing so, vertex u0 (u1) withdraws
the availability of path Q0 (Q1). Since R0 and R1 do not have vertices in
common other than u0 and u1, the withdrawal will eventually reach vertex u1

(u0). Vertex u1 (u0) will then fall back on path Q1 (Q0). Observe that we
have now reached an all-spoke path assignment πt3 , which implies πt3(u) =
πt1(u) for every vertex u, as shown in Fig. 2.8a. Since we can iterate this
argument, it is clear that there exists an infinite activation sequence. Moreover,
no announcement is delayed indefinitely, i.e., the activation sequence is also fair
on S[Π]. The proof is completed by noting that S[Π] can be obtained by S
through path filtering, hence we conclude that S is not SUF. �

Lemma 2.1 can be generalized, as DRs having two pivot vertices always
imply the existence of a dispute duo. As an example, consider the instance in
Fig. 2.9. Clearly, this instance contains a DR having u0 = 1 and u1 = 2 as pivot
vertices, Q0 = (1 0) and Q1 = (2 0) as spoke paths, and R0 = (1 X Y Z 2) and
R1 = (2 Z X Y 1) as rim paths. Notice that both rim paths traverse vertices
X, Y , and Z. We now search for a dispute duo. Walk along R1 and stop at
the last vertex which is in R1 ∩ R0, that is, Y . By analyzing λY , it is easy
to see that there exists another DR having Y and 2 as pivot vertices, (Y 1 0)
and (2 0) as spoke paths, and (Y Z 2) and (2 Z X Y ) as rim paths. Note
that the rim paths of this DR do not intersect at vertex X. We now repeat
the process on the new DR, considering vertex Z. It is easy to see that there
exists a dispute duo having Z and Y as pivot vertices. The following lemma
generalizes the approach we just showed to any DR having two pivot vertices.

Lemma 2.2 An SPP instance that contains a dispute reel having exactly 2
pivot vertices is not safe under filtering.

Proof: Let S be an SPP instance containing a dispute reel Π = (~U , ~Q, ~R),

with |~U| = 2. First, we show that the presence of Π implies that S contains a
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Figure 2.9: An SPP instance containing a DR consisting of two pivot vertices
(1 and 2) and whose rim paths intersect at vertices X, Y , and Z.

dispute duo Π′, then we use Lemma 2.1 to argue that S is not SUF.
If R0 and R1 do not share any vertices except u0 and u1, then Π is a

dispute duo and the statement directly follows from Lemma 2.1. Otherwise,
let {v1, . . . vk} be the vertices in R0 ∩R1 − {u0, u1}, in the same order as they
appear in R0. That is, R0 = (u0 . . . v1 . . . vk . . . u1), where ∀i vi ∈ R1. Let
vj ∈ {v1, . . . , vk} be the vertex of R1 that is “farthest away” from u1, and let
P = R1[vj ]. More formally, vj is such that vi 6∈ P ∀i 6= j. We now show that
either there exists a dispute duo Π′ having u0 and vj as pivot vertices, or there
exists a DR Π′′ consisting of two pivot vertices vj and u1 and having strictly
less intersections between its rim paths than Π.

Refer to Fig. 2.10. Split R1 and R0 such that R1 = A(vj)P and R0 =
R(vj)Q.

Since we are considering S[Π] and vj ∈ R0 ∩ R1, P
vj = {PQ0, QQ1}.

Depending on the ranking at vertex vj and since (by construction) we cannot
have λvj (PQ0) = λvj (QQ1), we have two possible cases.

(i) λvj (PQ0) < λvj (QQ1). We now show that Π′ = ((u0 vj), (Q0 QQ1), (R P ))
is a dispute duo. By construction, Π′ has only two pivot vertices, and
P ∩R = {u0, vj}. Observe that u0 appears only in Q0, R and P , while vj
appears only in QQ1, R, and P . Therefore, Condition (i) of Definition 2.5
is satisfied. Condition (ii) is also satisfied, since Q0∩R = Q0∩P = {u0}
and Q1 ∩ R = Q1 ∩ P = ⊘ are guaranteed by the fact that Π is a DR.
Moreover, by construction, Q∩R = Q∩P = {vj}. Finally, Condition (iii)
holds for paths Q0 and Q1 since Π is a DR, and Q ∩Q0 = ⊘.

(ii) λvj (PQ0) > λvj (QQ1). We now show that Π′′ = ((vj u1), (PQ0 Q1), (QA))
is a dispute reel. Since vj 6= u0 by construction, Π′′ has strictly less in-
tersections between rim paths than Π. Observe that vj appears only in
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u1

0

P

A

Q

Q0 Q1

R

vi vj vku0

Figure 2.10: A dispute reel having 2 pivot vertices. Rim paths R0 = RQ and
R1 = AP are split as explained in the proof of Lemma 2.2. Different paths are
represented using different strokes. In particular, spoke paths Q0 and Q1 are
in thicker stroke.

PQ0, Q, and A, while u1 appears only in Q1, Q, and A. Hence, Condi-
tion (i) of Definition 2.5 is satisfied. Condition (ii) is also satisfied, since
Q0 ∩ Q = Q0 ∩ A = ⊘ and Q1 ∩ Q = Q1 ∩ A = {u1} are guaranteed by
the fact that Π is a dispute reel. By construction, P ∩Q = P ∩A = {vj}.
Finally, Condition (iii) holds for paths Q0 and Q1 since Π is a DR, and
P ∩Q1 = ⊘.

Hence, in the first case we find a dispute duo Π′. In the second case, we find
another dispute reel Π′′ having two pivot vertices and having strictly less inter-
sections between rim paths than Π. By iterating this argument, we eventually
end up finding a dispute duo. We then use the result from Lemma 2.1 to prove
that an instance containing a DR with two pivot vertices is not safe under
filtering. �

Dispute Reels with more than 2 Pivots

The next step is to show that the presence of a dispute reel having more than
two pivot vertices makes an SPP instance not safe under filtering. We prove
that in two parts. First, we introduce the concept of a “rim-by-rim” dispute
reel, that is, a DR for which it is easy to construct a routing oscillation. Second,
we show that the presence of a dispute reel which is not rim-by-rim implies the
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existence of a dispute reel having only two pivot vertices.
Given a DR Π = (~U , ~Q, ~R), with |~U| = k > 2, we say that Π is rim-by-

rim if ∀i ∈ {0, . . . , k − 1} there exists an activation sequence σi on S[Π] such

that π̄i σi
 π̄i+1. That is, starting from the one-rim path assignment for any

pivot ui, σi leads to the one-rim path assignment for pivot ui+1 (see Fig. 2.7b).
The following property is a straightforward consequence of the definition of
rim-by-rim DR.

Property 2.1 σi activates all the edges in Ri+1 at least once.

Observe that the well known instance Bad-Gadget, first defined in [GW99],
is a trivial rim-by-rim DR. More generally, any dispute ring can be viewed as
a special case of rim-by-rim DR. Feamster et al. show in [FJB07] that it is
particularly easy to find an oscillation on a dispute ring. We are now able to
generalize that result to the broader class of rim-by-rim DRs.

Lemma 2.3 An SPP instance containing a rim-by-rim dispute reel is not safe
under filtering.

Proof: Let S be an SPP instance containing a rim-by-rim dispute reel Π. Using
the fact that Π is rim-by-rim, we build an infinite fair activation sequence
in the supporting instance S[Π] that cycles indefinitely among one-rim path
assignments. The activation sequence is based on the convenient propagation
of announcements from one pivot vertex to its predecessor.

As we have already seen, since Π is a dispute reel there exists an activation
sequence on S[Π] that induces a one-rim path assignment π̄i for an arbitrary
pivot ui.

Since Π is rim-by-rim, there exist activation sequences σj such that π̄i σi
 

π̄i+1 σi+1

 · · ·
σi−1

 π̄i. Note that the initial and final path assignments are the
same, thus we can iterate the same set of activations in order to create an
infinite activation sequence σ on S[Π]. By Property 2.1, edges traversed by
rim paths are activated at least once per iteration. To ensure fairness, at the
end of each iteration we activate edges according to σspoke without altering
the current path assignment. This implies that there exists an infinite fair
activation sequence on S[Π], hence S is not safe under filtering. �

Now consider the instance in Fig. 2.11. Clearly, this instance contains a DR
Π where pivot vertices are u0 = 1, u1 = 2, and u2 = 3; spoke paths are Q0 =
(1 0), Q1 = (2 0), and Q2 = (3 0); and rim paths are R0 = (1 X Y W Z 2),
R1 = (2 Z W X Y 3), and R2 = (3 1). Π is not rim-by-rim: in particular,
no activation sequence exists that, starting from the one-rim path assignment
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Figure 2.11: A DR which is not rim-by-rim. Vertex 0 is omitted for brevity.

for pivot u0 (π̄0), makes path R1Q2 available at vertex 2. In fact, assume that
the instance is in state π̄0, that is, vertices 2 and 3 select their spoke paths,
while vertices on R0 select a subpath of R0Q1. In particular, vertex 1 selects
path (1 X Y W Z 2 0). We now explore how far the announcement of path
(3 0) can be propagated along rim path R1. Suppose that vertex 3 announces
path (3 0) to Y . Since path (Y 3 0) is preferred, Y selects the new path and
propagates the announcement to X. Observe that, even if X does not prefer
path (X Y 3 0), Y ’s announcement withdraws the availability of the previously
selected path (X Y W Z 2 0). Hence, X propagates the announcement further
to W . Now, W does not change its choice, since path (W X Y 3 0) is less
preferred. It is easy to see that there is no way to propagate the announcement
further than vertex W . Nevertheless, the rankings at vertex W are such that
there exists a DR having W and 2 as pivot vertices. The following lemma
shows that the presence of a DR having two pivot vertices is actually a general
property of any DR which is not rim-by-rim. By using Lemma 2.2, we are then
able to show an oscillation even on DRs that are not rim-by-rim.

Lemma 2.4 An SPP instance containing a dispute reel which is not rim-by-
rim is not safe under filtering.

Proof: Let S be an SPP instance containing a dispute reel Π = (~U , ~Q, ~R)

which is not rim-by-rim. If |~U| = 2, the statement follows from Lemma 2.2.
Otherwise, consider S[Π]. Since Π is not rim-by-rim by hypothesis, there are at

least π̄i and π̄i+1 such that ∄σ : π̄i σ
 π̄i+1. Assume, without loss of generality,

that i = 0.
Let {v1, . . . vk} be the vertices of R0∩R1, in the same order as they appear

in R0, that is, R0 = (u0 . . . v1 . . . vk), where vk = u1, as showed in Fig. 2.12.
Let Σ be the set of all the activation sequences that, starting from the one-

rim path assignment π̄0, make path Q2 available in the set of choices of some
vertex vm. More formally, ∀σ ∈ Σ, π̄0 σ

 πt, where R1[vm]Q2 ∈ choicest(vm)
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R0

R1

Q0

Q2

Q1

u0 vj

u2

0

vi vk−1 vk = u1

Figure 2.12: A portion of a dispute reel which is not rim-by-rim, used in the
proof of Lemma 2.4. Different paths are represented using different strokes.
Spoke paths Q0, Q1, and Q2 are in thicker stroke.

for some m and t. Note that Σ contains at least the activation sequence ob-
tained by activating the edges of R1 in reverse order. Such activation sequence
which would lead to R1[vj ]Q2 ∈ choicest(vj), where vj is the common vertex
that is “farthest away” from u1 in R1, that is, ∀i 6= j, vi 6∈ R1[vj ]. Consider the
activation sequence σ′ ∈ Σ such that vm has the highest index. We now show
that, if the announcement of path Q2 reaches vertex u1, then we have a con-

tradiction. In fact, if vm = u1, we would have π̄0 σ′

 πt, where πt(u1) = R1Q2.
This enable us to activate the edges in R0 in reverse order, withdrawing the
availability of path Q1 on all the vertices along R0, and eventually reaching
state π̄1. This contradicts the hypothesis that ∄σ : π̄0 σ

 π̄1.
Hence, vm 6= u1. We now prove that, if the announcement of path Q2

cannot be propagated further than vm, then we have a dispute reel having two
pivot vertices. Consider the path ranking at vertex vm. We have two possible
cases:

(i) λvm(R1[vm]Q2) ≤ λvm(R0[vm]Q1). We now show that there exists an
activation sequence σ̄ ∈ Σ that makes path Q2 available in the set of
choices of vm′ , with m′ > m, hence a contradiction. Intuitively, vm can
announce path R1[vm]Q2 to withdraw the availability of path R0[vm]Q1

to the vertices on R0. This allows the announcement of path Q2 to be
propagated beyond vertex vm. Observe that, since path R1[vm]Q2 is in
choicest(vm) and it is preferred, we must have πt(vm) = R1[vm]Q2 after
activation sequence σ′. Let σ1 consist of the activations of all the edges
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in R0 in reverse order, starting from vm. Let πt1 be the path assignment

after σ1, that is, πt
σ1
 πt1 . Note that πt1 is such that path R0[vh]Q1 has

been withdrawn at each vh, h < m. We now construct σ2 by activating
the edges along R1 in reverse order. In this way, vm propagates the
announcement of path R1[vm]Q2. Clearly, if a vertex vh, h < m, receives
the announcement, it will select path R1[vh]Q2, since the set of choices
at vh is currently empty. Hence, the announcement will be propagated
further. This implies that the message will eventually reach vertex vm′ ,
m′ > m.

(ii) λvm(R1[vm]Q2) > λvm(R0[vm]Q1). We now show that there exists a
dispute reel having vm and u1 as pivot vertices. Let R̄ be the subpath
of R1 from u1 to vm, that is, R1 = R̄R1[vm]. Now consider the dispute
wheel Π′ = ((vm u1), (R1[vm]Q2 Q1), (R0[vm] R̄)). We now show that
Π′ is a DR. Being Π a DR, Condition (i) of Definition 2.5 holds since
vm 6∈ Q1 and u1 6∈ R1[vm]Q2. Condition (ii) is trivially satisfied by
vertices on paths Q1 and Q2, because both are spoke paths in Π. By
definition, R̄ ∩ R1[vm] = {vm}. Moreover, R1[vm] ∩ R0[vm] = {vm},
since, by definition of vm, vj 6∈ R1[vm] if j > m, and vj 6∈ R0[vm] if
j < m. Again, being Π a DR, Condition (iii) holds for paths Q1 and Q2,
and we have R1[vm] ∩Q1 = ⊘.

We then conclude that if Π is not rim-by-rim, then it contains a dispute
reel having two pivot vertices. By Lemma 2.2, instance S is not safe under
filtering. �

By combining Lemmas 2.2, 2.3, and 2.4, we can state the following theorem.

Theorem 2.1 An SPP instance containing a dispute reel is not safe under
filtering.

Multiple Solutions and Safety Under Filtering

We now exploit Theorem 2.1 to show that networks admitting multiple sta-
ble states are not safe under filtering. Since multiple stable states happen in
practice (see, e.g., BGP wedgies [TG05]), this is especially interesting from an
operational perspective. We highlight that uniqueness of the stable state has
already been proved to be a necessary condition for safety [SSZ09]. Besides
independently asserting the necessity of this condition for safety under filtering
based on the presence of dispute reels in the SPP instance, we provide a way
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for network operators to pinpoint the portions of the BGP configuration that
are responsible for the potential instability.

Theorem 2.2 If an SPP instance S admits two stable states, then S is not
safe under filtering.

Proof: Theorem V.4 in [GSW02] proves that S must contain a dispute wheel Π.
Π is derived by merging two stable path assignments π1 and π2. Let T1 and T2

be the routing trees induced by π1 and π2, and let T = T1∩T2. Each spoke path
in Π is composed by a path along T plus a final edge which does not connect two
vertices in T . Hence, spoke paths form a tree (Condition (iii) of Definition 2.5).
Rim paths are built up by vertices which are not in the intersection of π1 and
π2, thus Condition (ii) is also satisfied. Each pivot vertex ui can only appear
in Qi, Ri, and Ri−1 (Condition (i)), since the dispute wheel is built using only
π1(ui) and π2(ui). Therefore, Π is a dispute reel. By Theorem 2.1, the presence
of a dispute reel in S is enough to conclude that S is not SUF. �

An important consequence of Theorem 2.2 is that observing multiple dif-
ferent stable routing states in a network indicates that its stability may be
definitively compromised by the application of route filters. Therefore, the ex-
istence of multiple stable states in a network constitutes an important alert
to consider for a network operator. As a final remark, we stress that the con-
struction presented in Theorem V.4 of [GSW02] can be exploited to identify a
portion of the network which can potentially lead to oscillations under filtering.
Moreover, given a set of stable routing states, implementing that construction
is straightforward and can be done efficiently without any knowledge of the
routing policies. Network operators can use the technique in [GSW02] to dis-
close a policy dispute in the routing configuration. Our results prove that the
presence of such a policy dispute makes the network not SUF.

No DR implies Safety Under Filtering

We now show that the absence of a dispute reel is a sufficient condition for
safety under filtering. Combined with the result from the previous section, we
can conclude that the presence of a DR characterizes safety under filtering.
We prove the sufficient condition by showing that if an SPP instance is not
SUF, then it contains a DR. First, we use the same technique as in [GSW02]
to show that a routing oscillation implies the existence of a particular kind of
dispute wheel, which satisfies a slightly different set of conditions than those
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in Definition 2.5. Then, we show that the presence of such a dispute wheel
implies the existence of a dispute reel.

Lemma 2.5 Consider an SPP instance S. If S is not safe under filtering,
then there exists a dispute wheel Π which satisfies the following conditions:

(i) Conditions (ii) and (iii) of Definition 2.5.

(ii) For all ui ∈ ~U , ui cannot appear in Qj, j 6= i.

(iii) If ui ∈ Rj, then Rj [ui]Qj+1 is preferred to Qi.

Proof: Since S is not SUF, there exists a combination of filters inducing an
instance S′ such that S′ is not safe. We can then apply the technique described
in Theorem V.9 of [GSW02] to show that S′ contains a dispute wheel Π satis-
fying the above conditions. The statement follows by noting that Π must also
be present in S. �

Observe that the dispute wheel of Lemma 2.5 is not a DR. In particular,
it could be the case that a pivot vertex ui appears in a rim path Rm with
m 6∈ {i−1, i}. The following lemma shows that such a DW implies the existence
of a DR.

Lemma 2.6 Given an instance S, suppose it contains a dispute wheel Π =
(~U , ~Q, ~R) satisfying the conditions in the statement of Lemma 2.5. Then, S
contains a dispute reel.

Proof: If Π is already a DR, the statement trivially holds. Otherwise, for
Π not to be a reel (while still satisfying the conditions in the statement of
Lemma 2.5), there must exist at least a pivot vertex ui such that ui ∈ Rm

with m 6∈ {i − 1, i}. Let Ri1 , . . . , Rik be the rim paths traversing ui, where
ij 6∈ {i− 1, i} (see Fig. 2.13). Without loss of generality, assume that ik < i is

the closest index to i in the order induced by ~U . Condition (iii) of Lemma 2.5
ensures that ui prefers pathRik [ui]Qik+1 toQi. Now consider the dispute wheel

Π′ = (~U ′, ~Q′, ~R′), where ~U ′ = (ui uik+1 . . . ui−1), ~Q′ = (Qi Qik+1 . . . Qi−1),

and ~R′ = (Rik [ui] Rik+1 . . . Ri−1). Intuitively, Π′ is obtained by “chopping”
Π, using path Rik [ui] as the new rim path associated with vertex ui. Observe
that every spoke path in Π′ is a also spoke path in Π. Moreover, every rim path
in Π′ except Rik [ui] is also a rim path in Π, and Rik [ui] is a subpath of Rik .
Therefore, Π′ trivially satisfies all the conditions of Lemma 2.5. Moreover, by
the definition of index ik, we know that Π′ is such that ui only appears in Qi,
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Rik Rij

ui
ui−1 ui+1

uik+1

uik

uij

uij+1

Qi

RiQi+1

. . .

. . .

Figure 2.13: A dispute wheel where pivot vertex ui appears in rim paths other
than Ri and Ri−1. By Lemma 2.6, another dispute wheel can be constructed
such that ui appears in exactly 3 paths.

Rik [ui] and Ri−1. By applying this construction, we force one pivot vertex at a
time to satisfy Condition (i) of Definition 2.5, even if Rik contains other pivot

vertices than ui. Hence, after iterating the construction at most |~U| times, we
eventually end up with a dispute reel. �

We stress that Condition (iii) of Lemma 2.5 is strictly necessary to apply the
construction in Lemma 2.6. As a counterexample, consider again the instance
in Fig. 2.6. The DW ((1 2 3), ((1 0) (2 0) (3 0)), ((1 3 2) (2 1 3) (3 2 1))) only
violates Condition (iii) of Lemma 2.5. In fact, rim path (1 3 2) traverses pivot
vertex 3, but λ3((3 2 0)) > λ3((3 0)). It is easy to check that, however, no DR
can be constructed starting from that DW.

Theorem 2.3 If an SPP instance S is not safe under filtering, then it con-
tains a dispute reel.

Proof: Lemma 2.5 ensures that S contains a dispute wheel satisfying some
particular constraints. We can then apply Lemma 2.6 to find a dispute reel in
S. �

By combining Theorems 2.1 and 2.3, we conclude that the absence of a
dispute reel is a sufficient and necessary condition for safety under
filtering.
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Researchers have deemed the dispute wheel concept important because it
only depends on the routing policies. As such, it allows us to prove funda-
mental properties of the SPVP protocol using just static analysis, i.e., without
having to cope with the details of routing dynamics. In fact, the absence of a
dispute wheel implies that an SPP instance is safe under filtering (Corollary
1 of [FJB07]) and has a unique stable state (Theorem V.4 of [GSW02]). Ob-
viously, as safety can be viewed as a special case of safety under filtering, the
absence of a dispute wheel also implies that an SPP instance is safe (also stated
in Theorem V.9 of [GSW02]). Fig. 2.5a effectively displays those implications.

As a side effect of our findings, we argue that the “no DR” condition can
replace the well known “no DW” one in all the above results. In fact, “no
DR” is a strictly less constraining condition to show that an SPP instance is
safe, SUF, and has a unique stable state (solvable). Moreover, dispute reels
still reflect the structure of routing policies only. In particular, the following
theorem holds.

Corollary 2.1 The absence of a DR in an SPP instance S implies that S has
a unique stable state, and is safe.

Proof: From Theorem 2.2 we know that S must have a unique stable state.
Since safety is a special case of safety under filtering, Theorem 2.3 proves the
rest of the statement. �

2.5 Robustness

Safety under filtering is a useful concept to study the impact of route filters on
routing stability. An interesting related problem is the impact of link and/or
router failures on the safety of BGP. The property of being safe after removing
any subset of the vertices or edges from an SPP instance is referred to as
robustness (see Section 2.3).

As pointed out in [FJB05, FJB07], the removal of edges and vertices has the
same effect as filtering all the paths that traverse those edges and vertices. As
a consequence, an instance that is SUF is also robust. Following the findings
of Section 2.4, we now show that the class of robust SPP instances is strictly
larger than the class of instances that are SUF. Consider instance Filthy-

Gadget in Fig. 2.14.

Lemma 2.7 Filthy-Gadget is not safe under filtering.
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Figure 2.14: Filthy-Gadget: an instance which is robust but not safe under
filtering. Vertex 0 is omitted for brevity.

Proof: The statement follows by Theorem 2.1, since Filthy-Gadget contains
a DR Π̄ = (Ū , Q̄, R̄), where Ū = (1 2 3 4), Q̄ = ((1 0) (2 0) (3 0) (4 0)), and
R̄ = ((1 X Y 2) (2 3) (3 Z X 4) (4 Y Z 1)). �

Yet, Filthy-Gadget is robust. We prove the latter statement in two
parts: first, we show that Filthy-Gadget is safe; second, we show that any
combination of link failures produces a safe instance.

To prove the first part, we need the following definition. A vertex v is said
to be prevented from selecting path P if, for every fair activation sequence, there
exists a time t′ such that v does not select P (i.e., πt(v) 6= P ) for any t > t′.

Lemma 2.8 Instance Filthy-Gadget is safe.

Proof: Let σ be any fair activation sequence. Given that πt(0) = (0) for all
t, by the fairness of σ each neighbor of 0 is prevented from selecting path ǫ.
In particular, after some time vertex 2 can only use paths (2 3 0) or (2 0).
Since Y accepts both paths from vertex 2, Y is prevented from selecting path
(Y Z 1 0), which is less preferred. Vertex 4 is therefore prevented from se-
lecting path (4 Y Z 1 0). Since 4 is a neighbor of 0, it is also prevented from
selecting ǫ. Hence, by the fairness of σ, vertex 4 will end up selecting path (4 0)
permanently, in turn forcing vertex X to permanently choose path (X 4 0).
Since path (X Y 2 0) will not be advertised by X, vertex 1 is prevented from
selecting path (1 X Y 2 0). Also, being 1 a neighbor of 0, it will end up
selecting path (1 0) permanently. Vertex Z, in turn, will be forced to select
path (Z 1 0), preventing vertex 3 from selecting (3 Z X 4 0). By applying the
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same argument as above, we conclude that vertex 3 will permanently select
path (3 0). Hence, vertex 2 will select path (2 3 0), in turn forcing vertex
Y to select (Y 2 3 0). It is easy to check that the path assignment induced
by σ is stable. Since we did not make any hypothesis on σ, we conclude that
Filthy-Gadget is guaranteed to reach this stable path assignment for any
fair activation sequences, that is, Filthy-Gadget is safe. �

Lemma 2.9 Instance Filthy-Gadget is robust.

Proof: By Lemma 2.8, we know that Filthy-Gadget is safe. We now show
that any instance S′ obtained by removing one or more links from Filthy-

Gadget contains no DR, hence it is safe. Recall that Filthy-Gadget con-
tains the DR Π̄ we described above. It is easy to see that its supporting instance
S[Π̄] is built on the same graph as Filthy-Gadget. Hence, removing one or
more links forcedly creates an instance where Π̄ does not exist anymore. In
order to complete the proof, we need to demonstrate that Π̄ is the only DR in
Filthy-Gadget. Observe that this is trivially true if vertices X, Y and Z are
not pivot vertices. We now show that no DR Π′ = (~U ′, ~Q′, ~R′) exists having
X, Y , or Z as a pivot vertex.

(i) Assume that X is a pivot vertex of Π′. Without loss of generality, we
say X = u′

0. Then Q′
0 = (X Y 2 0) and R′

0 = (X 4), which implies
u′
1 = 4. Since (Z 1 0) is the best ranked path at vertex Z, we have either

u′
2 = Y or u′

2 = 1. The former case results in a dispute wheel where
spoke path Q′

0 contains a pivot node u′
2 = Y . The latter case results in

a DW where spoke path Q′
0 shares vertex Y with rim path R′

1. In both
cases, Π′ cannot be a DR.

(ii) Consider vertex Y instead and assume it is a pivot vertex of Π′. Without
loss of generality, we say Y = u′

i. We have two cases, namely Q′
i =

(Y Z 1 0) or Q′
i = (Y 2 0).

• if Q′
i = (Y Z 1 0), then u′

i−1 = 4. We now have either u′
i−2 = X or

u′
i−2 = 3. The former case implies that Q′

i−2 contains pivot vertex
Y . The latter case implies that R′

i−2 intersects Q′
i at vertex Z.

Hence, Π′ cannot be a DR.

• if Q′
i = (Y 2 0), then u′

i−1 = 1. We now have either u′
i−2 = Z or

u′
i−2 = 4. The former case implies that Q′

i−2 and R′
i−1 share vertex

X. The latter case implies that pivot vertex Y also appears in R′
i−2.

In both cases, Π′ cannot be a DR.
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(iii) Last, for vertex Z we can apply a similar argument to that used for
vertex X. Assume that Z is a pivot vertex of Π′, namely Z = u′

0. Then
Q′

0 = (Z X 4 0) and R′
0 = (Z 1), which implies u′

1 = 1. As above, if
u′
2 = X or u′

2 = 2, we find that Π′ cannot be a DR. The only other
possibility is u′

2 = Y , i.e., Y is also a pivot vertex, which has already
been ruled out by the previous case.

We conclude that Π̄ is the only DR in Filthy-Gadget, hence the instance
is robust. �

We performed an exhaustive analysis which independently confirmed the
result of Lemma 2.9. Namely, we generated all the possible combinations of
failures of one or more links, and then ran the greedy algorithm introduced
in [GSW02] on the resulting instance. That algorithm is correct, that is, it
never misreports an instance as safe. Our brute force analysis confirmed that
removing one or more links from Filthy-Gadget results in a safe instance.
Unfortunately, the greedy algorithm is not smart enough to also prove the
safety of the original instance, because it does not fully exploit vertices that
are prevented from selecting specific paths.

Due to the existence of Filthy-Gadget, we can conclude that robustness
relates to other classes of SPP instances as shown in Fig. 2.15. In particular,
the following theorem holds.

Theorem 2.4 suf is strictly contained in robustness.

Proof: It has been already shown [FJB07] that any safe under filtering SPP

instance is also robust. Strict inclusion of suf in robustness is proved by the
existence of Filthy-Gadget, which is robust but not safe under filtering, as
shown by Lemmas 2.7 and 2.9. �

In a sense, Theorem 2.4 involves that improper handling of route filters can
impact the stability of BGP routing more than network faults could do.

Also, due to strict inclusion of suf in robustness, the absence of DRs is
a sufficient condition for an SPP instance to be robust.

Corollary 2.2 The absence of a DR in an SPP instance S implies that S is
robust.

Proof: The statement follows by Theorem 2.3, noting that robustness is a
special case of suf, as shown by Theorem 2.4. �
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safetyrobustness solvabilityNO DR ≡ SUF

Figure 2.15: Relationships between BGP stability problems, showing the strict
inclusion between SUF and robustness.

2.6 Related Work

The need to avoid disadvantages raised by BGP convergence has spurred sig-
nificant research efforts on BGP stability, over the last decade.

Varadhan et al. [VGE00] firstly showed that autonomy in configuring rout-
ing policies can lead to persistent routing oscillations, and proposed constraints
to be applied to routing policies in order to achieve safety, i.e., stability under
any timings of routing events. A number of fundamental contributions on this
topic are due to Griffin et al. [GW99, GSW99, GW00, GSW02]. Among the
results they presented, those works formalized the SPP and the SPVP models
(see Section 2.2) we adopt in this thesis, and showed how the dynamic behavior
of BGP can be related to characteristics of the BGP configuration that can be
statically analyzed. In particular, in [GSW02] it is shown that the absence of
a dispute wheel (DW) is sufficient to guarantee safety.

The “no DW” condition is a cornerstone in the literature on BGP stabil-
ity. As an example, Gao et al. [GR00, GGR01] used the absence of DWs to
prove that, if routing policies are specified consistently with the commercial
relationships between ASes (see, e.g., [Gao01, DEH+07]), then safety is guar-
anteed. In [Cha06] Chau took into account the general case in which non-strict
path rankings can be expressed. Even in this case, the absence of DWs is
fundamental to guarantee safety.

The popularity of DWs in the literature on the stability of policy-based
protocols is mostly due to the fact that the “no DW” condition implies the
existence of a unique stable routing state [GSW02], safety [GSW02], robust-
ness [GSW02], and safety under filtering [FJB07]. As a side effect of our find-
ings, we show that dispute reels can replace dispute wheels, giving raise to less
constraining sufficient conditions for all those properties (see Corollaries 2.1
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and 2.2).
Feamster et al. [FJB05, FJB07] explored the impact of autonomy and ex-

pressiveness on the stability of the BGP protocol. In those works, a crucial
question is posed about ranking and filtering (referring to eBGP): “provided
that each AS retains complete autonomy and complete filtering expressiveness,
how expressive can rankings be while guaranteeing stable routing?”. This ques-
tion is formalized by the concept of safety under filtering. A necessary condition
for safety under filtering is the absence of a particular subclass of DWs, called
dispute rings [FJB07]. However, such a condition is not sufficient for several
guarantee safety not even the presence of a stable state. In this chapter, we
presented a characterization of safety under filtering which closes the large gap
between previously known sufficient and necessary conditions (see Fig. 2.5).

In [SSZ09] it has been shown that the existence of a unique stable state
is a necessary condition for safety. Indeed, authors proved that the coexis-
tence of two stable states implies the existence of an oscillation. Policies are
modeled with SPP. Although the model for BGP dynamics is slightly different
from SPVP, the result also holds in SPVP [SSZ09]. Besides independently
asserting the necessity of this condition based on the presence of dispute reels
in the network, we take this result one step further. Namely, we show a simple
technique that, taking multiple stable states as input, pinpoints the portions
of the BGP configuration which define a DR (thus making the configuration
not safe under filtering).

Other models have been proposed in literature for problems related to the
stability of path-vector policy-based protocols. Several variants of the SPVP

algorithm where only some classes of activation sequences are allowed, have
been proposed in literature (e.g., [GSW99, GR00, BOR+02, FJB07]). However,
it has been shown [CDR08] that any relaxed version of the original SPVP

model is only able to capture a strictly smaller set of routing oscillations.
Also, a model has been recently proposed in [SFR11] to take into account
“spurious” BGP announcements of less-preferred routes. We argue that such
spurious announcements reflect specific implementation issues which are not
closely related to the BGP protocol itself and its original design. The model
can be hardly generalized to other policy-based protocols.

The safety problem has also been studied from a game theoretic perspec-
tive (e.g., in [GSW02, FP08, Cha08]), where BGP convergence is mapped to a
(pure) Nash equilibrium. [NRTV07] is a good introduction to the application
of game theoretical techniques to interdomain routing problems.

Algebraic approaches have been taken in [Sob05, Sob03, GS05, CGG06].
These works described convergence conditions that are based on properties of
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path rankings, and showed that the no DW condition finds a counterpart also
in algebraic models. In particular, in [GS05] the authors proposed a relaxation
of the guidelines presented in [GR00]. We plan to extend our studies to game
theoretic and algebraic models in the future.

2.7 Conclusions

In this chapter, we presented the formal models we adopt in this thesis to
study BGP stability. Moreover, we recalled the definition of the most relevant
BGP stability problems, and of known sufficient and necessary conditions for
guaranteed convergence of BGP configurations.

Further, we enriched the state of the art by providing the “No Dispute
Reel” condition that fills the large gap between currently known necessary and
sufficient conditions. We proved that the No Dispute Reel condition is a charac-
terization of the safety under filtering problem. As a side effect of our findings,
we also showed that dispute reels can replace the well-known dispute wheel
structure in the study of several BGP stability problems, since it provides a
looser sufficient conditions for many BGP stability problems. Moreover, we
deepened into the inclusion relationship between different BGP stability prob-
lems. In particular, we showed a robust BGP network that is not safe under
filtering. In a sense, this means that the autonomy of adding (possibly miscon-
figured) filters can be more harmful than network faults. Another interesting
consequence of our results is that a network admitting multiple stable routing
states (e.g., BGP wedgies [TG05]) is not safe under filtering. In this case, we
can also pinpoint the problematic portions of the policy configuration, starting
from the sole stable states and with no knowledge of the routing policies and
the outcome of the BGP decision process at any BGP speaker in the network.

Fig. 2.15 illustrates the inclusion relationship between different stability
problems after our findings. Also, Fig. 2.5 compares the state of the art before
(Fig. 2.5a) and after (Fig. 2.5b) our contributions, highlighting how dispute
reels close the large gap between existing sufficient and necessary conditions.

Still, a lot of theoretical problems are left open. We believe that finding a
characterization for the safety problem is among the most important ones.
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Chapter 3

Hard Times for Static Checks ∗

3.1 Introduction

As stressed in Chapter 2, side effects of BGP oscillations are serious and should
be avoided, since they negatively impact both router performance and quality
of offered services. For this reason, it is desirable to prevent routing oscillations
by configuration design.

In this chapter, we analyze the complexity of statically checking a BGP
configuration for guaranteed convergence, assessing computational complexity
of BGP stability problems defined in Chapter 2. We devote Section 3.2 to prove
the computational complexity of the safety problem, solving a long standing
open problem, firstly formulated in [GW99]. In Section 3.3, we study the com-
putational complexity of other stability problems, namely suf, robustness
and no-dr. Unfortunately, we find that all the considered stability problems
are computationally hard. In particular, we show that i) safety is coNP -

hard; ii) suf is coNP -complete; iii) robustness is coNP -hard. Even
worse, checking a BGP configuration for the absence of dispute reels is coNP -

complete. This implies that the no-dw condition is the only known sufficient
(but not necessary) condition that can be checked efficiently in SPP [GSW99].

∗Part of the material presented in this chapter is based on the following publication: M.
Chiesa, L. Cittadini, G. Di Battista, S.Vissicchio. Local Transit Policies and the Complexity
of BGP Stability Testing. In Proc. IEEE INFOCOM, 2011.
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Stimulated by the above list of negative results, we investigate whether
stability problems can be made tractable by sacrificing the expressive power
of routing policies, while preserving full autonomy of BGP speakers. To this
purpose, in Section 3.4, we extend the SPP model to arbitrary restrictions
of BGP policy expressiveness, formulating the k-SPP model. We instanciate
the k-SPP model to capture the so-called Local Transit policies [GGSS09],
a very common configuration paradigm adopted in eBGP, where policies are
functions only of the ingress and the egress points. We obtain as a result the
3-SPPmodel, also proposed in [CBE+10] as an effective model to capture com-
mon configurations in the Internet. The same model can be effectively applied
to iBGP route reflection configurations, where route propagation depends on
the previous and the next hop in the iBGP path (see Chapter 1). In the same
section, we also prove that the BGP stability problems remain computationally
intractable even if policies are restricted to exclusively be Local Transit Poli-
cies. Even worse, we show that the only problem which can be solved efficiently
in SPP [GSW99], i.e., the no-dw problem, is coNP -complete in 3-SPP.
This implies that no way currently exists to overcome the computational unfea-
sibility of directly solving safety in 3-SPP, since verifying if any of the known
sufficient conditions for safety is satisfied is also computationally hard.

In our search for policy expressiveness restrictions that enable an efficient
static assessment of BGP stability, we eventually find that safety is solvable
in polynomial time in 2-SPP. However, policies are so restricted in 2-SPP to
be completely unsuitable for practical uses. We describe an efficient algorithm
to check safety in the 2-SPP model in Section 3.5.

Related work is discussed in Section 3.6, and conclusions are drawn in
Section 3.7.

3.2 Safety is coNP-Hard

We recall that the safety problem is defined as follows (see Chapter 2): given
an SPP instance, is it safe, i.e., is it guaranteed to always converge to a stable
state?

We now prove that safety is coNP -hard in the SPP model using a
reduction from sat complement [Pap94]. In order to prove such a result,
we first need to show some technical properties regarding the SPP instance
of Fig. 3.1, which we call Twisted gadget. Twisted has vertex set V =
{0, x, x̄, a, b, c1, . . . , cm} and edge set E = {(0, a), (0, b), (a, x), (b, x̄), (x, x̄)} ∪
{(c1, x), (c1, x̄), . . . , (cm, x), (cm, x̄)}. Policies are as described in Fig. 3.1. Ver-
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...
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...
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1
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Figure 3.1: Twisted gadget.

tices ci, with i = 1, . . . ,m, also have links to another portion of the network
not explicitly shown in Fig. 3.1. Each path P j

i passes through the portion of
the network that is not shown and is ranked better than (ci 0).

We now prove two important properties of Twisted.

Lemma 3.1 For each activation sequence, there do not exist two instants t′

and t′′ such that πt′(x) = (x x̄ b 0) and πt′′(x̄) = (x̄ x a 0).

Proof: Suppose, for a contradiction, that there exists an activation sequence
such that πt′(x) = (x x̄ b 0) and πt′′(x̄) = (x̄ x a 0). Denote by tP the first
time when path P = (v . . . 0) is selected by vertex v. By definition of SPVP,
we have that ta0 < txa0 < tx̄xa0 and tb0 < tx̄b0 < txx̄b0. Since vertex 0 can
never withdraw path (0), vertex a (b, resp.) cannot select the empty path after
ta0 (tb0, resp.).

Suppose txx̄b0 ≥ txa0. Note that, after ta0, vertex a can withdraw path
(a 0) only by announcing path (a x x̄ b 0). However, a cannot select path
(a x x̄ b 0) because this would imply taxx̄b0 ≤ txa0 ≤ txx̄b0 < taxx̄b0, hence a
contradiction. On the other hand, if vertex a does not withdraw path (a 0)
then vertex x never selects path (x x̄ b 0) because of the availability of the
better ranked path (x a 0).

Then it must be txx̄b0 < txa0 and, by symmetry, tx̄xa0 < txb0. Hence,
txa0 < tx̄xa0 < tx̄b0 < txx̄b0 < txa0, that is a contradiction. �



i

i

“main” — 2012/2/22 — 9:40 — page 56 — #66
i

i

i

i

i

i

56 CHAPTER 3. HARD TIMES FOR STATIC CHECKS

Lemma 3.2 For each fair activation sequence, if a vertex cj and a time t′

exist such that ∀t > t′ πt(cj) = (cj 0), then a time t′′ exists such that ∀t > t′′

πt(x) = (x a 0) and πt(x̄) = (x̄ b 0).

Proof: By definition of fair activation sequence, there must exist a time t1 > t′

after which paths (x cj 0) and (x̄ cj 0) are always available to vertices x and x̄,
respectively. This indefinitely prevents vertex x from selecting path (x x̄ b 0)
and vertex x̄ from selecting path (x̄ x a 0).

As a consequence and because of the fairness, there must exist a time t2 > t1
such that vertex a can only select path (a 0) and vertex b can only select path
(b 0). Analogously, there must exist a time t3 > t2 after which paths (x a 0)
and (x̄ b 0) are always available at vertices x and x̄.

The statement follows by noting that (x a 0) is the most preferred by x and
(x̄ b 0) is the most preferred by x̄. �

We now use the Twisted gadget and the results from Lemmas 3.1 and 3.2
to reduce the opposite of the sat problem, namely sat complement, to
safety. Let F be a logical formula in conjunctive normal form with vari-
ables X1 . . . Xn and clauses C1 . . . Cm. We construct an SPP instance S in
polynomial time with respect to the size of the sat complement instance as
follows (see Figure 3.2).

For each clause Ci, add a vertex ci to S. For each variable Xi, add a
copy of the Twisted gadget with x, x̄, a, and b replaced by xi, x̄i, ai, and bi,
respectively. In the copy, for each clause Cj , (xi cj 0) ∈ P

xi and (x̄i cj 0) ∈ P
x̄i .

For each vertex cj , path (cj xi x̄i bi 0) ∈ Pcj if literal Xi is in Cj and path
(cj x̄i xi ai 0) ∈ Pcj if literal X̄i is in Cj . Path (cj 0) is the least preferred
path at each vertex cj , while the relative preference among other paths is not
significant.

Theorem 3.1 safety is coNP -hard in the SPP model.

Proof: Consider a logical formula F and construct the corresponding SPP

instance S = ((V,E),P,Λ) as described above. We now prove the statement
in two parts.

If F is unsatisfiable then S is safe.
Consider any fair activation sequence and assume that all vertices cj select

a path P 6= (cj 0) infinite times. Let W = {xi ∈ V | ∃cj , ∃t : πt(cj) =
(cj xi x̄i ai 0)} and Z = {x̄i ∈ V | ∃cj , ∃t : πt(cj) = (cj x̄i xi bi 0)}. Consider
the boolean assignment M such that Xi is assigned to TRUE if xi ∈ W , and
Xi is assigned to FALSE if x̄i ∈ Z. Lemma 3.1 ensures that Z ∩W = ⊘. By
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Figure 3.2: Reduction from sat complement to safety.

construction of S, each clause in F is satisfied by at least a variable in M , that
is a contradiction.

Then there must exist a time t′ and a vertex ck such that ∀t > t′ πt(ck) =
(ck 0). By Lemma 3.2, this implies that there exists a time t′′ > t′ after which
each vertex xi always selects path (xi ai 0) and each vertex x̄i always selects
path (x̄i bi 0). The fairness of the activation sequence guarantees that, even-
tually, each vertex cj permanently selects (cj 0), each vertex ai permanently
selects (ai 0), and each vertex bi permanently selects (bi 0). It is easy to check
that such a path assignment is stable. Since any fair activation sequence leads
to a stable path assignment, if F is unsatisfiable then S is safe.

If F is satisfiable then S is not safe.
Let M be a boolean assignment that satisfies F . We now show that S has

at least two stable path assignments.
Let π′ be a path assignment such that π′(xi) = (xi ai 0), π

′(x̄i) = (x̄i bi 0),
π′(ai) = (ai 0), π′(bi) = (bi 0), and π′(cj) = (cj 0), where i = 1, . . . , n and
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j = 1, . . . ,m. It is easy to check that π′ is a stable path assignment.
Also, consider path assignment π′′ defined as follows. For each variable

Xi such that M(Xi) = ⊤, let π′′(xi) = (xi x̄i bi 0), π′′(x̄i) = (x̄i bi 0),
π′′(ai) = (ai xi x̄i bi 0), π′′(bi) = (bi 0). For each variable Xi such that
M(Xi) = ⊥, let π′′(x̄i) = (x̄i xi ai 0), π′′(xi) = (xi ai 0), π′′(ai) = (ai 0),
π′′(bi) = (bi x̄i xi ai 0). Each vertex cj selects in π′′ the most preferred among
paths in set Rj = {(cj xi x̄i bi 0) ∈ Pcj |M(Xi) = ⊤} ∪ {(cj x̄i xi ai 0) ∈
Pcj |M(Xi) = ⊥}.

Observe that ∀j Rj 6= ⊘ since each clause is satisfied by at least one variable
in M . We now show that path assignment π′′ is stable. Each vertex cj ,
j = 1, . . . ,m, selects the best ranked path in Rj and, by construction, no
better alternative is available at cj . For each variable Xi such that M(Xi) = ⊤
(M(Xi) = ⊥) vertices ai (bi) and x̄i (xi) select their best ranked path, while
vertices bi (ai) and xi (x̄i) cannot select any other path except the one defined
by π′′.

We conclude that, if F is satisfiable, then S has two stable path assignments.
The statement follows by Theorem 3.1 of [SSZ09], which proves that any SPP

instance with two distinct stable path assignments is not safe. �

3.3 No-DR, Safety Under Filtering and Robustness are

Computationally Hard

In the following, we first study the computational complexity of checking a
BGP configuration for the absence of dispute reels. Then, we exploit the re-
sult of such a study for proving the computational intractability of suf and
robustness.

We now prove that no-dr is coNP -complete by reducing 3-sat com-

plement to sat in polynomial time. Refer to Fig. 3.3 for an example of the
reduction.

Let F be a logical formula, with variablesX1, . . . , Xn and clauses C1, . . . , Cm.
For each variable Xi, we add to the SPP instance a gadget consisting of three
vertices, namely ai, xi, and x̄i, and four edges, namely (xi 0), (x̄i 0), (ai xi) and
(ai x̄i). Vertices xi and x̄i have no permitted paths other than (xi 0) and (x̄i 0),
respectively. Permitted paths at vertex ai are P

ai = {(ai xi 0), (ai x̄i 0)} and
the ranking among them is not significant. Intuitively, ai represents variable
Xi. Gadgets corresponding to variables are at the bottom of Fig. 3.3.

For each clause Cj , we add to the SPP instance a gadget containing ver-
tices cj , cj,i, and edges (cj , cj,i) and (cj,i, cj+1), where i = 1, 2, 3. Intuitively,
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vertex cj (clause vertex ) represents clause Cj while vertex cj,i (literal vertex )
represents the i-th literal in Cj . Further, if Xl appears in the i-th literal in Cj ,
then we add an edge (al, cj,i), and we set Pcj,i = {(cj,i cj+1 0), (cj,i al xl 0)}
if literal represented by cj,i is Xl, P

cj,i = {(cj,i cj+1 0), (cj,i al x̄l 0)} other-
wise. Among the two paths in Pcj,i , (cj,i cj+1 0) is the most preferred. The
permitted paths at vertex cj are (cj 0) plus the extension of the longest path
permitted at each vertex cj,i, i = 1, 2, 3. Path (cj 0) is the least preferred path,
while the ranking of other paths can be arbitrary. Gadgets corresponding to
clauses are placed at the top of Fig. 3.3.

Observe that the SPP instance built in the reduction contains several DWs.
Vertices ai, xi, x̄i can not be pivot vertices of any dispute wheel, since they
only have direct paths to 0. In fact, by arbitrarily picking exactly one literal
vertex cj,i for each clause vertex cj , we construct a DW where pivot vertices
are all clause vertices and the selected literal vertices.

For any DW Π, each pivot appears in exactly three paths and spoke paths
never intersect rim paths, hence conditions (i) and (ii) of the definition of
DR are satisfied. However, spoke paths are not guaranteed to form a tree
(condition (iii) of the definition of DR), so DWs are not guaranteed to be
DRs.

Since spoke paths in Π only share vertices ai, condition (iii) is satisfied
only if there are no two distinct spoke paths Q1 and Q2 in Π such that Q1 =
(. . . ai xi 0) and Q2 = (. . . ai x̄i 0), which represents the fact that variable Xi

cannot be TRUE and FALSE at the same time.

Theorem 3.2 no-dr is coNP -complete in the SPP model.

Proof: Consider a logical formula F and construct the corresponding SPP

instance S as described above.
If F is unsatisfiable then S does not contain a DR.
Suppose, for a contradiction, that S contains a DR Π. Then, condition (iii)

ensures that, for each ai, either path (ai xi 0) or path (ai x̄i 0) is a subpath
of all spoke paths that traverse vertex ai. This property allows us to construct
a boolean assignment for F by setting variable Xi to TRUE if there exists
a spoke path Q′ = (. . . ai xi 0) or to FALSE if there exists a spoke path
Q′′ = (. . . ai x̄i 0).

As we already observed, Π contains exactly one literal vertex for each clause
vertex. By construction of S, we have that the boolean assignment correspond-
ing to Π satisfies at least one literal in each clause in F , contradicting the
hypothesis that F is unsatisfiable.
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If F is satisfiable then S contains at least one DR.
Consider a boolean assignment M that satisfies F . We will now show a DR

Π = (~U , ~Q, ~R) in S. Vertices cj must be pivot vertices, that is, u2j−1 = cj and
Q2j−1 = (cj 0) for j = 1, . . . ,m. For each literal vertex cj,i, if its least preferred
path is (cj,i ai xi 0) and M(Xi) = ⊤ then we set u2j = cj,i, Q2j = (cj,i ai xi 0),
R2j−1 = (cj cj,i), and R2j = (cj,i cj+1). We set u2j , R2j and R2j−1 to the same
values also if the least preferred path of cj,i is (cj,i ai x̄i 0) and M(Xi) = ⊥,
however in this case we set a different spoke path Q2j = (cj,i ai x̄i 0). Whenever
multiple literal vertices cj,i for the same clause vertex cj satisfy the above
conditions, we arbitrarily pick only one among them.

It is easy to see that, since each clause in F is satisfied by at least one
literal, Π is a DW. Moreover, by construction of Π we have that for each vertex
ai only one among (ai xi 0) and (ai x̄i 0) can be traversed by spoke paths in Π,
hence satisfying condition (iii) of the definition of DR. Conditions (i) and (ii)
are trivially satisfied by Π. Hence, Π is a DR.

Co-NP completeness follows from noting that a DR on S is a succinct dis-
qualification for no-dr. �

Since the absence of a DR is a characterization of suf in the SPP model
(see Chapter 2), we can state the following theorems.

Theorem 3.3 suf is coNP -complete in the SPP model.

Proof: The statement directly follows from Theorem 3.2 considering that the
absence of a DR is a necessary and sufficient condition for suf in the SPP

model. �

Also, observe that the SPP instance in Fig. 3.3 is safe under filtering iff it is
also robust. In fact, filtering a path P = (u v . . . 0) at vertex u is equivalent to
removing edge (u, v) from the graph. This property allows us to reduce 3-sat

complement to robustness using the same reduction used in Theorem 3.3.

Theorem 3.4 robustness is coNP -hard in the SPP model.

Proof: Observe that the SPP instance in Fig. 3.3 is safe under filtering if and
only if it is also robust. In fact, filtering a path P = (u v . . . 0) at vertex
u is equivalent to removing edge (u, v) from the graph. As a consequence,
it is possible to reduce 3-sat complement to robustness using the same
reduction used in Theorem 3.3, hence the statement. �



i

i

“main” — 2012/2/22 — 9:40 — page 61 — #71
i

i

i

i

i

i

3.4. RESTRICTING TO LOCAL TRANSIT POLICIES 61

a1

0

x1 x̄1
x10

a1x10
a1x̄10

x̄10

an

xn x̄n
xn0

anxn0
anx̄n0

x̄n0

c1

c1c1,1anxn0
c1c1,2a4x̄40
c1c1,3a1x̄10

c10

c1,1

c1,1c20
c1,1anxn0

c1,2

c1,2c20
c1,2a4x̄40

c1,3

c1,3c20
c1,3a1x̄10

c2

c2c2,1...

c2c2,2...

c2c2,3...

c20

cm

cmcm,1a3x̄30
cmcm,2a4x40
cmcm,3a5x̄50

cm0

cm,1

cm,1c10
cm,1a3x̄30

cm,2

cm,2c10
cm,2a4x40

cm,3

cm,3c10
cm,3a5x̄50

Figure 3.3: Reduction from sat complement to suf.

3.4 Restricting to Local Transit Policies

In this section, we assess whether BGP stability can be efficiently checked
with static analysis when policy expressiveness is restricted to Local Transit
Policies only. First, we introduce the variation of the SPP model, namely 3-

SPP, that we use for capture the Local Transit Policies. Then, we assess the
complexity of the BGP stability problems introduced in the previous chapter.
Observe that, the negative results we prove in this section can be extended to
the model in [GW99], since any 3-SPP configuration can be expressed in the
model proposed in [GW99] without changing the size of the input.
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Extending the SPP Model: 3-SPP and k-SPP

SPP can model every possible BGP policy specification, but it requires ex-
plicit listing and ranking of all paths. As a consequence, the size of an SPP

instance is bound to the size of P, which can be exponential in |V |. However,
in practice, BGP policies are not always specified on a per-path granularity
level, as imposed in the SPP model. For example, in eBGP network operators
configure BGP policies without knowing the entire network topology.

We now describe 3-SPP, a variant of SPP in which vertices are forced to
rank and filter announcements on the basis of the first 3 hops in the path.
This model allows BGP actors to specify Local Transit Policies [GGSS09], i.e.,
policies based on their neighbor pairs (e.g., paths received from neighbor x
should not be exported to neighbor y).

We now formally define the 3-SPP model. Let G = (V,E) be defined as
for standard SPP instances. Each vertex u ∈ V , with u 6= 0, is assigned a
set of permitted path fragments P̃u such that (u 0) can be in P̃u if (u, 0) ∈ E
and paths (u v w) can be in P̃u if u, v, and w are distinct vertices in V and
(u, v), (v, w) ∈ E. The only permitted path fragment at vertex 0 is P̃0 = {(0)}.
To reach 0, a vertex u ∈ V −{0} can use any path P = (u v1 . . . vn 0), starting
with a fragment in P̃u and obtained by concatenating any permitted fragment
at each vertex vi, with i = 1, . . . , n. Path fragments contain exactly 3 vertices
except for the case of 0 and of its neighbors, which can reach 0 directly. Let
P̃ =

⋃

u∈V P̃
u.

Each vertex u ∈ V −{0} ranks path fragments in P̃u according to a function
λ̃u : P̃u → N which assigns a level of preference to paths starting with a
fragment in P̃u. Namely, if λ̃u((u v w)) < λ̃u((u x y)) then any path starting
with (u v w) is preferred to any path starting with (u x y). Similarly to the
SPP model, the empty path is always permitted, i.e., ǫ ∈ P̃u, ∀u ∈ V − {0},
and unreachability is the last resort, i.e., ∀P ∈ P̃u, P 6= ǫ: λ̃u(P ) < λ̃u(ǫ).
Differently from the SPP model, two path fragments can have the same rank
even if they have a different next hop. Moreover, paths through the same
neighbor always have the same rank, i.e., if (u v w) and (u v z) are two path
fragments in P̃u then λ̃u((u v w)) = λ̃u((u v z)). Any deterministic criterion
can be used to break ties.

An instance S̃ of 3-SPP is a triple (G, P̃, Λ̃). An example 3-SPP instance
is depicted in Fig. 3.4 using a graphical convention similar to that used for
SPP instances (see Chapter 2). The list beside each vertex u represents the
permitted path fragments in P̃u sorted by increasing values of λ̃u. For example,
vertex 2 can use path fragments in P̃2 = {(2 1 0), (2 0)} to reach 0 and prefers
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Figure 3.4: An instance of the 3-SPP model.

(2 0). The empty path and P̃0 are omitted for brevity. Vertex 3 decides not
to propagate the path received from 0 to 2, and permitted paths fragments at
vertex 2 result from filtering action performed by 3 and ranking configured at
2. Observe that path fragment 432 at vertex 4 models two distinct paths from
4 to 0, namely 4320 and 43210, that have the same rank.

The 3-SPPmodel can be generalized to the k-SPPmodel, where permitted
path fragments defined at each vertex contain k hops. The number of path
fragments at each vertex is O(nk−1), where n = |V |, hence the size of an
instance of k-SPP is O(nk). It is easy to verify that, given a specific tie break
criterion, an instance of k-SPP can be uniquely translated to an instance of
SPP (e.g., by concatenating path fragments to generate permitted paths at
each node), while the opposite is in general not true. In other words, k-SPP
allows us to trade policy expressiveness for policy succinctness.

Safety, Safety Under Filtering and Robustness are still
Computationally Hard

We now state the complexity of the BGP stability problems in 3-SPP. First,
we consider safety.

Theorem 3.5 safety is coNP -hard in the 3-SPP model.

Proof: We can use the same reduction from sat complement to safety

applied in Theorem 3.1. In fact, the SPP instance constructed in the reduction
can be easily translated into a 3-SPP instance, since every permitted path at
each vertex is uniquely identified by the first three hops in the path. The
reduction proves the statement. �

Regarding suf, robustness and DR, all these concept are defined in the
SPP model. The definition of DR can be extended to k-SPP by translating
the considered k-SPP instance to SPP. suf and robustness are defined in
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3-SPP as the problems of determining if an input 3-SPP instance is safe even
under arbitrary filtering of path fragments or under arbitrary link failures,
respectively. It is easy to check that a 3-SPP instance is robust if and only if
the corresponding SPP instance is robust. On the contrary, it is not known
if a safe under filtering 3-SPP instance corresponds to a safe under filtering
SPP instance, nor if the absence of a DR is a characterization for suf in the
3-SPP model. However, the following theorem on the complexity of suf in
3-SPP holds.

Theorem 3.6 suf is coNP -hard in the 3-SPP model.

Proof: Let S be the SPP instance in Fig. 3.3 and construct the 3-SPP instance
S′ by truncating all paths in S with length greater than 3. Since each permitted
path in S is identified by its first three hops, there is a one-to-one mapping
between permitted paths in S and permitted paths in S′. This implies that
each filter in S can be mapped to a unique filter in S′. We conclude that S′ is
SUF if and only if S is SUF, hence a construction analogous to that described
in Section 3.3 can be applied to reduce from 3-sat complement to SUF in
3-SPP. �

We now state the complexity of no-dr in 3-SPP.

Theorem 3.7 no-dr is coNP -complete in the 3-SPP model.

Proof: Observe that all the permitted paths in SPP instance built in the re-
duction 3-sat complement to 3-SPP are entirely identified by the first three
hops. Hence, an analogous reduction can be applied from 3-sat complement

to 3-SPP. The statement follows from the fact that a DR on a 3-SPP instance
is a succinct disqualification for no-dr. �

Since a 3-SPP instance is robust if and only if the corresponding SPP

instance is robust, we can directly extend Theorem 3.4.

Theorem 3.8 robustness is coNP -hard in the 3-SPP model.

Complexity of No-DW

Since an instance of k-SPP can be uniquely translated into an SPP instance,
we can extend the definition of DW as follows: we say that an instance of
k-SPP contains a DW if its translation to SPP contains a DW.
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Figure 3.5: Reduction from 3-sat to path.

In the SPP model no-dw can be solved in polynomial time [GSW99] by
looking for a cycle in an auxiliary graph called dispute digraph, whose construc-
tion takes polynomial time. In the following, we analyze the computational
complexity of no-dw in the 3-SPP model. We do it in two steps. First, we
deal with the basic problem of deciding whether a given vertex of a given 3-

SPP instance can establish a path to 0. We call this problem path and we
show that it is NP -complete. Second, we exploit such a result to prove that
no-dw in the 3-SPP model is coNP -complete.

path is NP -complete since it is possible to reduce 3-sat to path. Let F
be a 3-SAT formula with variables X1, . . . , Xn and clauses C1, . . . , Cm. We
construct a 3-SPP instance as follows. For each variable Xi we insert vertices
vi, xi, and x̄i, and we build a gadget having edges (vi, xi) and (vi, x̄i). For each
clause Cj we build a gadget consisting of vertices cj and cj,k and edges (cj , cj,k),
(cj,k, cj+1) with k = 1, 2, 3. Also, we add to the instance vertices vn+1, cm+1
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and 0, and edges (cm+1, 0) and (vn+1, c1). Fig. 3.5 shows an example of the
construction, where variable gadgets are on the left side while clause gadgets
are on the right side.

Intuitively, vertex vi attempts to establish a path to 0 via xi (x̄i) if the
corresponding 3-sat variable Xi is TRUE (FALSE). Vertices cj,k are called
literal vertices because each of them represents one of the three literals that
appear in clause Cj .

Consider literal Xi, with i = 1, . . . , n. Let P = (vi xi cj1,k1
. . . cjn,kn

vi+1)
be the path from vertex vi to vertex vi+1 that traverses all the literal vertices
cjp,kp

such that the corresponding literal in clause Cjp is X̄i. If there are no
such literals, then path P simply consists of edges (vi, xi) and (xi, vi+1). We
add to the graph constructed so far all the edges of P . We apply exactly the
same procedure for literal X̄i. We then get from path P all the ordered triples
of consecutive vertices and add each triple (u v w) to P̃u. For example, in
Fig. 3.5 there is a path (v1 x̄1 c1,1 cm,1 v2) because we assume, without loss of
generality, that the first literal both in C1 and in Cm is X1. For each vertex
cj , set P̃

cj only contains paths (cj cj,k cj+1), with k = 1, 2, 3 and for each

vertex cj,k, we add to P̃cj,k paths (cj,k cj+1 cj+1,l), with l = 1, 2, 3. This
construction ensures that if vertex vi attempts to establish a path to 0 via xi

(x̄i), it cannot use a path including cj,k if and only if X̄i (Xi) is the k-th literal
in Cj , representing the fact that clause Cj cannot be satisfied by literal cj,k.

We define P̃vn+1 = {(vn+1 c1 c1,k)|∀k = 1, 2, 3} and P̃cm+1 = {(cm+1 0)}.
Function λcj,k , where j = 1, . . . ,m and k = 1, 2, 3, is such that paths

(cj,k cj+1 cj+1,l), with l = 1, 2, 3, are better ranked than others. Preferences
at vertices vi, xi, x̄i and cj , where i = 1, . . . , n + 1 and j = 1, . . . ,m + 1, can
be assigned arbitrarily. It is easy to check that the instance of 3-SPP can be
built in polynomial time.

Lemma 3.3 path is NP -complete in the 3-SPP model.

Proof: Consider the construction depicted in Fig. 3.5. We now show that
vertex v1 can establish a path to 0 if and only if the corresponding 3-SAT
formula F is satisfiable.

Observe that every path P from v1 to 0, if any, must be in the form P = AB
where A = (v1 . . . v2 . . . vn+1) and B = (vn+1 c1 c1,j1 . . . cm cm,jm0). Since
vertex vi must choose either xi or x̄i and there is only one path connecting
xi (x̄i) to vi+1, path A can be mapped to a boolean assignment for F . By
construction, only literal vertices cj,k can appear twice in P , since they can
appear both in A and in B.
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Now, if P = AB exists, then every cj can reach 0 via one of its neighbors
cj,1, cj,2 and cj,3 which is not traversed by path A. By construction, this implies
that the boolean assignment mapped to path A satisfies at least one literal in
every clause, hence F is satisfiable.

On the other hand, if there is no path P from v1 to 0, then for any choice
of path A there exists a vertex cj that is unable to reach 0 via any of its
neighbors because they all appear in A. By construction, this implies that
for each boolean assignment there exists a clause Cj that is false, hence F is
unsatisfiable.

The above arguments prove that path is NP -hard. NP -completeness fol-
lows by noting that a path P from v1 to 0 is a succinct certificate for path

because P has polynomial size and it takes polynomial time to check if P can
be generated by any fragment of v1. �

We now use the reduction as above for proving that no-dw is coNP -

complete. First of all, we the 3-SPP instance built in the reduction does not
contain any DW.

Lemma 3.4 The 3-SPP instance S constructed in the reduction from 3-sat

to path (see Fig. 3.5) contains no DW.

Proof: Suppose, for a contradiction, that S contains a DW and assume that no
vertex ci can appear in any rim path. We now show that rim paths of such a
DW do not form a cycle, that is a contradiction since concatenating rim paths
must result in a cycle by definition of DW (each rim path connects a pivot
vertex with its successor).

By construction, permitted paths of all the vertices in S are subpaths of
P = P1 . . . Pn (vn+1 c1) Q1 . . . Qm (cm+1 0). Paths Qi are such that
Qi = {ci ci,j ci+1}, where j is either 1, 2, or 3. Each path Pi starts at vi, ends in
vi+1, and traverses xi (x̄i) and all the vertices cj,k such that the corresponding
literal in clause Cj is X̄i (Xi). This implies that Pj ∩ Pj+1 = {vj+1} for each
j, and Pj ∩ Pk = ⊘, if k 6∈ {j, j + 1}. Since no rim path can contain a node ci,
all the rim paths must be subpaths of P1 P2 . . . Pn. However, since vertices
vi are ordered and all paths Pi intersects only at vertices vi, no cycle among
rim paths can be built, yielding a contradiction.

The proof is completed by showing that no vertex ci can appear in any rim
path of any DW Π. In fact, suppose that there exists a non empty set of vertices
Z = {cj , . . . , ck} such that each vertex ci ∈ Z appears in one or more rim paths.
Obviously, cm+1 cannot belong to Z. Consider, among all the vertices in Z,
the vertex ch with the highest index. Let R be a rim path in which appears
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ch and let R[ch] be the subpath of R starting from ch. By definition of ch and
by construction of S, R[ch] can only be (ch ch,h′), with h′ = 1, 2, 3. In fact, all
permitted paths at ch are sequences of vertices ci and ci,j , such that i > h and
ch+1 cannot appear in R[ch] by definition of ch. Hence, vertex ch,h′ must be a
pivot vertex of Π, and its spoke path must be a path (ch,h′ ch+1 . . . 0) since
it must be extended by a permitted path of ch. By definition of DW, the rim
path of ch,h′ should be one among paths (ch,h′ ch+1 . . . 0), that is, ch+1 is also
on a rim path. This leads to a contradiction, because ch is defined to be the
vertex with the highest index among those appearing in a rim path. �

Theorem 3.9 no-dw is coNP -complete in the 3-SPP model.

Proof: We prove the statement by reducing 3-sat complement to no-dw.
Let F be a logical formula with variables X1, . . . , Xn and clauses C1, . . . , Cm.
We construct an instance S̃ = ((V,E), P̃, Λ̃) of 3-SPP as follows. Let S̃′ =
((V ′, E′), P̃ ′, Λ̃′) be the 3-SPP instance constructed as above (see Fig. 3.5).
Then, V = V ′ ∪ {1, 2}, let E = E′ ∪ {(1, v1), (1, 2), (2, 0)}, let P̃ = P̃ ′ ∪
{(1 v1 x1), (1 v1 x̄1), (2 0), (1 2 0), (2 1 v1)} and let Λ̃ = Λ̃′∪{λ̃1, λ̃2}, where λ̃1

and λ̃2 are such that paths (1 2 0) and (2 1 0) are the most preferred permitted
paths at vertices 1 and 2 respectively.

Intuitively, we added two extra vertices 1 and 2, and defined policies such
that a DW exists in S̃ only if 1 can establish a path to 0. By applying the
same arguments as in the proof of Lemma 3.3 we therefore have that S̃ has
no dispute wheel if and only if F is unsatisfiable. This implies that no-dw is
coNP -hard in the 3-SPP model. The proof is completed by noting that a
DW on S̃ is a succinct disqualification for no-dw, that is, a succinct proof that
S̃ is a negative instance. �

3.5 Achieving Efficient Checking

The 2-SPP model is an instance of the k-SPP framework (see Section 3.4)
that allows ASes to only specify path fragments of length 2. In other words,
policies can be specified on a per-neighbor basis only: all paths from the same
neighbor are either accepted or filtered and are equally preferred. As in 3-SPP,
any arbitrary deterministic criterion can break ties.

2-SPP is similar to the model adopted in [FSS06] By applying the tech-
nique in [FSS06], it can be shown that every 2-SPP instance has at least a
stable path assignment π and π can be computed in polynomial time. Observe,
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however, that 2-SPP allows configurations that are not safe, e.g., the famous
SPP instance Disagree [GW99] (see Fig. 2.1) can be represented in 2-SPP.
Indeed, in the Disagree instance, all vertices do not filter any route, and rank
paths towards 0 on a per-neighbor basis only.

In the following, we show that BGP stability can be also checked in poly-
nomial time. Given a 2-SPP instance S̃ = (G = (V,E), P̃, Λ̃), a path fragment
(u v), with u, v ∈ V , is consistent if there exists a sequence of permitted path
fragments P1, P2, . . . , Pn in P̃ such that (u v)P1P2 . . . Pn(0) is a simple path
on G. Consistency of a given path fragment can be trivially checked in polyno-
mial time, since it boils down to check for the existence of a path in a directed
graph. For this reason, we consider in the following only 2-SPP instances in
which all permitted path fragments are consistent.

We now present an algorithm, which we called nh-greedy, that efficiently
solves safety in 2-SPP. nh-greedy is an adaptation of the greedy algorithm
in [GSW02]. nh-greedy incrementally grows a set of stable vertices for which
convergence is guaranteed. The set of stable vertices at iteration i of nh-

greedy is denoted by Vi. At iteration i nh-greedy also computes a partial
path assignment π∗

i , that is, a path assignment where ∀u 6∈ Vi π
∗
i (u) = ǫ. At

the beginning, V0 = {0} and π∗
0(0) = (0). Let Hi be the set of vertices u 6∈ Vi

such that the most preferred path fragment is either Bu = ǫ or Bu = (u v),
where v ∈ Vi. If Hi is not empty, then Vi+1 = Vi ∪ Hi, π

∗
i+1(u) = π∗

i (u) if
u ∈ Vi, and π∗

i+1(u) = Buπ∗
i (u) for each u ∈ Hi. Otherwise, if Hi is empty,

nh-greedy terminates. At each iteration, nh-greedy either inserts at least
one vertex in Vi or terminates, hence it terminates after at most |V | iterations.
If nh-greedy terminates after k iterations with Vk = V then we say that it
succeeds, otherwise it fails. Being derived from the algorithm in [GSW02], nh-
greedy inherits the correctness property from the original algorithm. This
implies that, after k iterations, each vertex v ∈ Vk is guaranteed to eventually
select path π∗

k(v) in any fair activation sequence. As a consequence, if nh-

greedy succeeds, then the 2-SPP instance is safe. In the following, we show
that if nh-greedy fails then the instance is not safe.

Let G′ = (V,E′) be the directed graph such that (u, v) ∈ E′ if and only
if (u v) ∈ P̃x. Given a partial path assignment π and a vertex u such that
P̃u 6= {ǫ} and π(u) = ǫ, the ideal path Pπ

u of u in π is the simple path from u to
0 obtained by performing a depth-first visit on G′ starting from u. Vertices are
visited according to Λ̃, i.e., the neighbor with the highest preference is visited
first. By definition, Pπ

u = (w1 . . . wn v1 . . . vm), where w1 = u, vm = 0,
n ≥ 1, m ≥ 1, (u w2) is the most preferred fragment in Pu, π(wi) = ǫ for
i = 1, . . . , n, and π(vj) = (vj . . . vm) for j = 1, . . . ,m. Intuitively, the ideal
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path Pπ
u from u to 0 which traverses the best-ranked neighbor of u; also, all the

vertices wi ∈ Pπ
u select the best-ranked simple path that extends a path in π.

Observe that such a path must exist because all path fragments are assumed
to be consistent, i.e., (u w1) generates at least a path on G.

Lemma 3.5 Assume that nh-greedy fails on a 2-SPP instance S̃ after k
iterations with partial path assignment π∗

k. Then, there exists a stable path

assignment π̄ on S̃ such that u selects its ideal path, i.e., π̄(u) = P
π∗
k

u .

Proof: We construct a sequence of partial path assignments π1, π2, . . . , π̄ by
iteratively growing π∗

k. In particular, we iteratively take any vertex in V − Vk

and we progressively extend π∗
k by adding the ideal path of considered vertex,

along with all the subpath of that ideal path. More formally, let u be any vertex

in V − Vk and let P
π∗
k

u = (u w1 . . . wn v1 . . . vm) be the ideal path of vertex

u in π∗
k. We construct π1 as follows. π1(u) = P

π∗
k

u . Also, for each wi ∈ P
π∗
k

u

let π1(wi) = (wi . . . wn v1 . . . vm) and for each v ∈ Vk let π1(v) = π∗
k(v).

Then, we consider any other vertex z such that π1(z) = ǫ and z ∈ V − Vk (if
one exists, otherwise stop). Given Pπ1

z the ideal path of z, we construct the
(partial) path assignment π2 by extending π1 with the same technique we used
for constructing π1. Since V is finite, we eventually find a path assignment π̄
defined for each v ∈ V .

We now show that π̄ is stable. Suppose, for a contradiction, that there
exists a vertex v that has an alternative path P̃ towards 0 that is preferred to
π̄(v). By construction, v must either be in Vk or be part of the ideal path of
some vertex x. In the former case, being π̄ an extension of π∗

k, v is guaranteed
to select path π̄(v), since nh-greedy is correct. In the latter case, by definition
of ideal path, v can not have a better-ranked alternative, since the depth-first
visit analyzes paths at each vertex in a decreasing order of preference. In both
cases, we have a contradiction, since P̃ cannot be more preferred to π̄(v). �

Theorem 3.10 safety can be solved in polynomial time in the 2-SPP model.

Proof: Given a 2-SPP instance S, S is safe if and only if nh-greedy succeeds.
We have already discussed that if nh-greedy succeeds S is safe. On the other
hand, if nh-greedy fails after k iterations, it is possible to build two distinct
stable path assignments. In fact, let u be any vertex in V − Vk. Lemma 3.5

ensures that there exists a stable path assignment π′ such that π′(u) = P
π∗
k

u .

Path P
π∗
k

u must be in the form P
π∗
k

u = P ′(z v)P ′′ where z 6∈ Vk and v ∈ Vk.
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Observe that z 6= u, since u 6∈ Vk. Consider the stable path assignment π′′ such

that π′′(z) = P
π∗
k

z , constructed as in Lemma 3.5. Obviously, π′ 6= π′′ at least
for vertex z since z 6∈ Vk. Since two distinct stable path assignments exist, S
is not safe as proved by Theorem 3.1 of [SSZ09]. �

3.6 Related Work

In [GW99], a BGP model is proposed where policies are described by means
of functions that implement import and export filters, similarly to real-world
BGP configuration languages. Several important complexity results are proved:
(i) checking if a BGP network has a stable routing (solvability) is NP -
complete, (ii) deciding whether a BGP network can be trapped in a permanent
oscillation is NP -hard, and (iii) solving solvability under any combination
of link failure is NP -hard. The complexity of safety in that model is left
open.

In [GSW02], the SPP model is introduced, and it is shown that solvabil-
ity is NP -hard also in SPP. This result could not be evinced from [GW99],
as the translation from one model to the other might take exponential time.
The complexity of safety and robustness in SPP is left open.

In the SPP model, no-dw can be solved in polynomial time [GSW99]
by checking for a cycle in an auxiliary graph called dispute digraph, whose
construction takes polynomial time.

In [JR04], a model is used in which BGP policies are applied consistently
network-wide based on a classification of neighbors into groups. In this setting,
a polynomial time algorithm is given to check whether the structure of the
classes can lead to specific BGP policies in which oscillations are possible. The
3-SPP model is similar to the one used in [JR04] in that it also limits the
expressiveness of BGP policies. However, the 3-SPP model is more general
since it allows each AS to preserve its autonomy, while a common filtering
policy that is applied consistently network-wide is assumed in [JR04].

In [FP08], safety is claimed to be PSPACE-complete. However, the
adopted model assumes that ASes are omniscient, that is, upon activation
they can immediately know the AS-paths that are being used by every other
AS, without the need to exchange BGP messages. This assumption makes it
very hard to apply the results to any realistic model of BGP.

In [FSS06], an economic-based model is proposed. solvability is studied
both in the general case of arbitrary BGP policies and in the restricted case in
which BGP policies are based on the next-hop only. The latter model is similar
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2-SPP 3-SPP SPP

safety P coNP -hard coNP -hard

no-dw ? coNP -complete P [GSW99]
no-dr ? coNP -complete coNP -complete

suf ? coNP -hard coNP -complete

robustness ? coNP -hard coNP -hard

Table 3.1: Complexity of BGP stability problems in different models.
P stands for Polynomial time solvable.

to the 2-SPP model we consider in this chapter. Beyond proving NP-hardness
of solvability in the general case, authors provide a polynomial algorithm
that can always find a stable state in the restricted case. The safety problem
is again left open.

3.7 Conclusions

The Border Gateway Protocol was originally designed to accommodate rout-
ing preferences autonomously expressed by different subjects participating in
the protocol. In this chapter, we studied the computational complexity of sev-
eral BGP stability testing problems, under the assumption that all the BGP
speakers preserve full autonomy in setting their routing preferences. Also, we
investigated how expressive routing policies can be in order to allow static
assessment of BGP stability to be performed efficiently.

Unfortunately, we found that the most interesting problems about BGP
stability are computationally intractable if BGP speakers preserve full auton-
omy and are allowed to specify policies as expressive as Local Transit Policies.
We stress that Local Transit Policies effectively models a common paradigm
used for configuring policies in eBGP as well as route propagation rules in
iBGP route reflection configurations. Table 3.1 summarizes our results and
highlights problems that remain open.

While such results are primarily related to BGP, they can be generalized to
any policy-based path vector routing protocol. Moreover, our findings suggest
that computational tractability of BGP stability can be achieved by restricting
the expressiveness of the policies alone (e.g., in the 2-SPPmodel). Determining
whether there exist restrictions that keep the policies expressive enough for
practical uses remains an interesting open problem.
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Our results on the complexity of BGP stability problems and computational
intractability of checking for sufficient conditions motivate a research effort
towards a heuristic approach for BGP stability testing. We will adopt this
approach in the next chapter, proposing a heuristic and a tool to efficiently
solve BGP stability problems.
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Chapter 4

A Heuristic-Based Approach to

Stability Testing ∗

4.1 Introduction

Started about one decade ago and still ongoing, lots of research efforts have
focused on the BGP convergence problem. However, a systematic methodology
that stands on the shoulders of this research to build techniques and tools for
practically checking BGP configurations is still missing. As a result, opera-
tors are often forced to “tweak and pray”, possibly discovering flaws in BGP
configurations during operation (e.g., after a misbehavior).

In this chapter we introduce a technique that enables operators to statically
check routing configurations for guaranteed convergence. Our approach may be
exploited to validate configurations before deployment and to assist operators
for improving the quality of routing. A relevant use case consists in performing
what-if analyses on the impact of route preference changes on the stability of
the BGP network. This especially makes sense in iBGP, where all the routers
are typically under control of the same administrative entity (see Chapter 1)

∗Part of the material presented in this chapter is based on the following publications L.
Cittadini, M. Rimondini, S. Vissicchio, M. Corea, G. Di Battista. From Theory to Practice:
Efficiently Checking BGP Configurations for Guaranteed Convergence. IEEE Transactions
on Network and Service Management. 8(4): 387 - 400. Dec 2011.
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and simple configuration changes (e.g., on the cost of one IGP link) can give
raise to BGP instabilities.

Because of the computational complexity of all BGP stability problems (see
Chapter 3), the technique we propose is based on a heuristic algorithm that
checks SPP instances for their safety. We prove that our algorithm has sev-
eral highly desirable properties: (i) it exceeds state of the art algorithms in
that it is able to correctly report more configurations as stable, (ii) it can be
implemented efficiently enough to enable static analysis of huge BGP config-
urations, (iii) it is free from false positives, meaning that configurations are
only reported as stable if they are not prone to routing oscillations regard-
less of message timing, and (iv) it can help in spotting troublesome points in
configurations that are not stable.

Further, we propose an architecture for a modular tool that exploits our
heuristic algorithm to process BGP configurations and return information about
the presence of sources of potential instabilities. The design of our tool is gen-
eral enough to support stability checking of both interdomain (eBGP) and
intradomain (iBGP) configurations. We validate the practical applicability of
our architecture using a prototype implementation. Although we are mainly
interested in the iBGP case, we report results of experiments on Internet-scale
eBGP networks [CAI]. This allows us to test the scalability of our approach in
extreme cases of thousands of BGP speakers. We find that both configuration
to SPP translation and convergence check algorithm run can be implemented
efficiently enough to analyze those huge BGP configurations.

The rest of the chapter is organized as follows. Our convergence check algo-
rithm is presented in Section 4.2. We discuss the architecture of a convergence
checker tool, together with the optimization techniques that make it scalable in
Section 4.3. A complete example of how the tool verifies a BGP configuration
is analyzed in Section 4.4. Results of Internet-scale experiments performed
using a prototype implementation are discussed in Section 4.5. Related work
is reviewed in Section 4.6, and conclusions are drawn in Section 4.7.

4.2 A New Greedy Algorithm

The inherent complexity of BGP stability problems pushed researchers to in-
troduce efficient heuristic algorithms.

In this section, we first briefly recall a greedy algorithm that we callGreedy,
proposed in [GSW02] to solve the safety problem. Second, we define a new
greedy algorithm, called Greedy+, which is able to correctly report as stable
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more configurations than Greedy and can be efficiently implemented. This
section also presents a qualitative comparison betweenGreedy andGreedy+.

A Known Greedy Algorithm

Given an SPP instance, algorithm Greedy proceeds by iteratively growing a
stable path assignment on it. If the algorithm terminates successfully, the path
assignment defines a spanning tree that is a solution for the safety problem on
the given SPP instance. Otherwise, Greedy is only able to identify a stable
path assignment for a subset of the vertices.

The algorithm maintains a stable set of vertices for which convergence is
guaranteed. The stable set at iteration i of the algorithm is denoted by Vi.
Vertex 0 is always in the stable set, i.e., V0 = {0}. As the stable set grows, a
path assignment π defined on the vertices in Vi is iteratively built. We say that a
path P is compatible with a path assignment π at iteration i if P = P ′(u v)π(v),
where P ′ does not contain vertices in Vi, (u, v) ∈ E, and v ∈ Vi.

Algorithm Greedy is as follows. At any iteration i > 0, let Pv be the
path compatible with π with minimum λv(P ) among the paths at any vertex
v /∈ Vi−1. If Pv = ǫ or Pv = (v u . . . 0) with u ∈ Vi−1, then construct Vi by
adding v to Vi−1 and set π(v) = Pv. If such a vertex v does not exist, then
stop. Intuitively, at each iteration a vertex v is stabilized because either its
best compatible path directly reaches an already stabilized vertex or has no
path to 0. The algorithm terminates after at most |V | iterations. A solution to
the SPP instance exists if, after k iterations, Greedy ends with Vk = V . The
solution is given by the stable path assignment π. On the contrary, if Vk 6= V ,
Greedy returns a partial path assignment, that is, a path assignment defined
on the vertices in Vk only.

Note that the description of Greedy we propose here slightly differs from
the one in [GSW02], since we admit only one vertex to enter the stable set
at each iteration. We explain in the following that this modified version is
equivalent to the original algorithm. We choose to apply this slight modification
of the original algorithm in order to better introduce the Greedy+ heuristic
and highlight the differences between the two algorithms.

Greedy can fail to find a solution even if the SPP instance under consider-
ation is guaranteed to converge. Consider, for example, the instance Di-safe-

gree in Fig. 4.1. As usual, permitted paths are listed next to each vertex in
decreasing order of preference. It can be easily verified that any fair activation
sequence of SPVP on this instance is finite. In fact, in any fair activation
sequence vertices 1, 2, and 3 learn about the direct path to 0. After that, edge
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Figure 4.1: Di-safe-gree: An instance of SPP for which algorithm Greedy

fails to find a solution.

(1, 2) is eventually activated, and 2 learns about (2 1 0). Henceforth, vertex
2 will permanently be unable to select (2 0), in turn preventing vertex 3 from
choosing (3 2 0). Finally, after edge (3, 2) is activated, 2 switches to its best
path (2 3 0) and SPVP terminates, as no other message is further generated.
Therefore any fair activation sequence is forcedly finite, and SPVP cannot
oscillate on this instance.

We now walk through the execution of Greedy on Di-safe-gree. At the
first iteration, vertex 1 enters the stable set V1, and π(1) = (1 0). At the second
iteration, the algorithm prematurely stops. In fact, path (2 3 0) is compatible
with π because 2, 3 /∈ V1, 0 ∈ V1, and (3, 0) ∈ E. However, even if (2 3 0) is the
best compatible path at vertex 2, its next hop is not in V1. A similar argument
applies to path (3 2 0). Therefore, no new vertex can be added to the stable
set and the algorithm stops without finding a solution, since V1 6= V .

Improving Greedy: the Greedy+ Algorithm

We now describe the Greedy+ algorithm, and we show how it is able to
successfully solve the Di-safe-gree instance.

Given an SPP instance (G = (V,E),P,Λ), we say that a path P belonging
to a set S of paths is consistent with S if either P = ǫ, P = (0), or P = (v u)P ′

where (v, u) ∈ E, P ′ ∈ S, and P ′ is consistent with S. For example, let
V = {0, 1, 2, 3}, E = {(1, 0), (2, 1)}, and S = {(0), (1 0), (2 1 3 0)}. Path (0)
is consistent with S by definition. Path (1 0) is also consistent with S, since
(1, 0) ∈ E and (0) is consistent with S. On the contrary, (2 1 3 0) is not
consistent with S. In fact, even if (2, 1) ∈ E, the subpath (1 3 0) is not in S
and cannot therefore be consistent with S.

Further, for each vertex v we define a set P̄v of paths called useful set. The
useful set P̄v is initialized with the paths in Pv that are consistent with P. Let
P̄ =

⋃

v∈V P̄
v.
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What follows is a description of Greedy+. As Greedy, the Greedy+

algorithm iteratively grows a set of stable vertices Vi and a path assignment π.
Let V0 = {0}. At iteration i > 0, Greedy+ performs the following steps:

(i) Prune paths that cannot be selected because a better ranked path is
offered by a neighbor in the stable set. For each vertex v ∈ V − Vi−1

such that v has a neighbor u ∈ Vi−1 and there exists a path P = (v u)P ′

such that P̄u = {P ′}, remove from P̄v all the paths Q such that λv(Q) >
λv(P ). Intuitively, since P will be always available at v, all the paths
that v ranks worse than P can be pruned from the instance since they
will never be selected by v.

(ii) Enforce consistency. For each vertex v /∈ Vi−1, remove from P̄v all the
paths that are not consistent with P̄. In a sense, this step extends the
pruning performed at Step (i) to vertices which are farest from any vertex
in Vi−1.

(iii) Grow the stable set or stop. Let Ci ⊆ V − Vi−1 be the set of candidate
vertices v such that the path P ∈ P̄v with minimum λv(P ) either has
a next hop in Vi−1, or P = ǫ. If Ci = ⊘, then set Vi = Vi−1 and stop.
Otherwise, if Ci 6= ⊘, then pick an arbitrary vertex u ∈ Ci, construct Vi

by adding u to Vi−1. When u is added to Vi−1, also set P̄u = {P}.

If Greedy+ stops after k iterations, its output consists of a stable set Vk

and sets P̄v ∀v ∈ V , with |P̄v| = 1 ∀v ∈ Vk. If Vk = V , Greedy+ computes a
stable path assignment π for the input instance such that P̄v = {π(v)} ∀v ∈ V .
Otherwise, Greedy+ returns a partial path assignment π on Vk, such that for
every v ∈ Vk P̄

v = {π(v)}, every vertex in π(v) is in Vk, and π is undefined for
vertices v 6∈ Vk. As for Greedy, this partial path assignment is stable in the
sense that every vertex v ∈ Vk is guaranteed to steadily select the path in P̄v.

Intuitively, Greedy+ differs from Greedy because it exploits the useful
set to prune those paths that, starting from a certain iteration, become perma-
nently unavailable. This operation is encoded in Step (i) of Greedy+. Indeed,
if we skip this step, the set P̄ is only used to filter out inconsistent paths, and at
each iteration j both Greedy and Greedy+ algorithms select the best path
among the consistent ones having a next hop in Vj .

Contrary to Greedy, Greedy+ is able to solve the Di-safe-gree in-
stance. A successful execution of Greedy+ on Di-safe-gree is shown in
Table 4.1. Note that, at iteration 2, path (2 0) is evicted from P̄2 because
(2 1 0) is preferred and permanently available (Step (i)). This action puts in
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i Vi Ci P̄1 P̄2 P̄3

0 {0} — {(1 0)} {(2 3 0), (2 1 0), (2 0)} {(3 2 0), (3 0)}
1 {0, 1} {1} {(1 0)} {(2 3 0), (2 1 0), (2 0)} {(3 2 0), (3 0)}
2 {0, 1, 3} {3} {(1 0)} {(2 3 0), (2 1 0)} {(3 0)}
3 V {2} {(1 0)} {(2 3 0)} {(3 0)}
4 V ⊘ {(1 0)} {(2 3 0)} {(3 0)}

Table 4.1: A successful execution of Greedy+ on Di-safe-gree (Fig. 4.1).

evidence the difference between Greedy+ and Greedy (recall that Greedy

stops after the first iteration). Step (ii) then removes (3 2 0) from P̄3 since it is
inconsistent with P̄. This allows vertex 3 to enter the stable set, and Greedy+

to solve the instance in four iterations.

Properties of Greedy+

We now prove thatGreedy+ exhibits the following highly desirable properties:
(i) it exceeds Greedy in that it is able to correctly report more configurations
as stable, (ii) it can be implemented efficiently enough to enable static analysis
of otherwise intractable Internet-scale BGP configurations, (iii) it is free from
false positives, meaning that configurations are only reported as stable if they
are guaranteed to converge to a stable routing, and (iv) it can help in spot-
ting the troublesome points in a detected oscillation. Properties (i) and (ii)
are unique to Greedy+. On the contrary, Greedy satisfies properties (iii)
and (iv), which are also inherited by Greedy+. In particular, Property (iv)
is a direct consequence of the fact that both algorithms return a partial path
assignment in case they fail.

We now prove Property 4.1 ensuring that algorithm Greedy+ can be ef-
ficiently implemented, and is therefore suitable to be adopted in a tool that
checks BGP configurations for routing stability.

Property 4.1 Let n =
∣

∣P̄
∣

∣ be the size of an SPP instance S. Greedy+ can
be implemented to terminate on S in time that is polynomial in n.

Proof: A trivial bound follows. Step (i) of Greedy+ applies to those
vertices v which extend a path P offered by some neighbor u in the stable set.
This step can be implemented by evaluating λv for all the paths in each P̄v and
comparing its value with λv((v u)P ). This takes O(n3) time, since the length
of a path is O(n). Step (ii) enforces consistency, and can be accomplished by
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comparing each path in P̄ with all the others, taking O(n3). At Step (iii),
candidate vertices can be found in O(n3) time. Since Greedy+ executes at
most |V | iterations and an instance of SPP can have O(n) vertices, Greedy+

can be implemented to run in O(n4) time. �

We now prove Property 4.2 which ensures that Greedy+ is deterministic,
namely at any time when multiple choices are possible, performing any of them
does not alter the output. To this purpose, we first prove the following four
Lemmas.

Lemma 4.1 If Greedy+ terminates after k iterations, its output is com-
pletely defined by sets Vk and P̄v ∀v ∈ Vk.

Proof: The missing portion of the output, P̄v ∀v ∈ V − Vk, can be uniquely
constructed starting from Vk and P̄v ∀v ∈ Vk. Consider a new instance S′ =
(G′,P ′,Λ′) of SPVP with G′ = G, Λ′ = Λ. For any v ∈ V , let P ′v = P̄v if
v ∈ Vk, and let P ′v = Pv if v 6∈ Vk.

Now, initialize the stable set V0 to Vk and execute Steps (i) and (ii) of
Greedy+ on S′. We now show that, after doing so, P̄ ′v = P̄v, ∀v ∈ V . This is
trivially true for vertices u ∈ Vk, as no path is ever removed from P̄ ′u. Observe
that the outcome of Step (i) of Greedy+ only depends on the topology of
the graph G′, the ranking functions Λ′, and the sets of useful paths P̄ ′v, with
v ∈ Vk. By the definition of S′, at Step (i), a path is removed from P̄v iff it is
removed from P̄ ′v. Hence, any possible difference must be due to Step (ii).

We prove by contradiction that the output coincides also for vertices in
V − Vk. Suppose that this is not the case, i.e., there exists some vertex v ∈
V − Vk such that P̄ ′v 6= P̄v. Then, there exists a path P such that either
P /∈ P̄ ′v ∧ P ∈ P̄v or P ∈ P̄ ′v ∧ P /∈ P̄v. In the first case, the execution of
Step (ii) on S′ has removed from P̄ ′v a path that the execution of Greedy+

on S regarded as consistent. But this is impossible, since ∀v ∈ V , P̄v ⊆ P ′v,
so there can be no path that is consistent with P̄ and is not consistent with
P ′. In the second case, the execution on S has removed from P̄v a path P that
the execution on S′ considered as consistent. Since it cannot be P /∈ Pv, then
for P to be inconsistent with P̄, it may only be the case that P = (v . . . u)Pu,
where Pu /∈ P̄u and Pu ∈ P̄

′u. In turn, this is only possible if there exists
a path Pw such that Pu = (u . . . w)Pw, with Pw /∈ P̄w and Pw ∈ P̄

′w. By
proceeding this way, we must eventually end up on a vertex x in Vk, possibly 0.
By recalling that P̄ ′v = P̄v ∀v ∈ Vk by construction, we have a contradiction
in that it should be Px /∈ P̄x and Px ∈ P̄

′x. �
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Lemma 4.2 Consider a path P that is inconsistent with P̄ at iteration i of
Greedy+. Then, P is inconsistent at any iteration j > i.

Proof: The property follows by observing that Greedy+ never adds new paths
to P̄. �

Lemma 4.3 At any iteration i of Greedy+, Ci ∩ Vi = Vi − Vi−1.

Proof: By construction, Ci ∩ Vi−1 = ⊘. Now, at iteration i a vertex is picked
from Ci and added to Vi−1 to construct Vi. Therefore, the property follows. �

The following Lemma states the fact that, once a vertex enters the candidate
set, it stays there until it is eventually moved to the stable set.

Lemma 4.4 Consider an arbitrary iteration i of Greedy+ and a vertex v ∈
Ci. Then there exists an iteration j such that v ∈ Ch for all i ≤ h ≤ j and
v ∈ Vk for all k ≥ j.

Proof: Let v ∈ Ci be a vertex such that the path P ∈ P̄v with minimum λv(P )
at iteration i either has a next hop in Vi−1, or P = ǫ. Since no better path
can enter P̄v during the execution of Greedy+ (Lemma 4.2) and P has the
minimum value of λv among the paths in P̄v that are consistent with P̄, P
can never be removed from P̄v at Step (i) of Greedy+. Moreover, if P = ǫ,
by definition P is a consistent path. Otherwise, if P = (v u)Q, u ∈ Vi−1,
{Q} = P̄u, then P will remain consistent with P̄ because its next hop is
u ∈ Vi−1, so P̄u will not be updated after iteration i. Thus, P cannot be
removed from P̄v at Step (ii). Overall, starting from iteration i, path P will
always be available in P̄v and will always have the minimum value of λv. In
other words, v satisfies the conditions of Step (iii) at any iteration h ≥ i, i.e.,
v ∈ Ch ∪ Vh.

Since ∀h ≥ i we have v ∈ Ch∪Vh, and Greedy+ only terminates when the
candidate set is empty, by Lemma 4.3 there must be an iteration j at which v
is picked from Cj and added to Vj−1 to construct Vj . The statement follows
by recalling that vertices never leave the stable set. �

Finally, we can prove guaranteed determinism of Greedy+ algorithm.

Property 4.2 Consider a set Cj of vertices satisfying the criteria of Step (iii)
at an arbitrary iteration j of Greedy+. The output of Greedy+ does not
change, regardless of the choice of vertex v ∈ Cj performed at iteration j.
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Proof: Assume that Greedy+ terminates at iteration k and consider that, by
Lemma 4.1, it is sufficient to prove the assertion for sets Vk and P̄u with u ∈ Vk.
Consider an arbitrary vertex v ∈ Cj at iteration j < k. By Lemma 4.4, we
know that v ∈ Ch for any iteration h ≥ j, until v eventually enters the stable
set. Also, as shown in the proof of Lemma 4.4, the best path (v w)P , w ∈ Vh,
is always in P̄v. Therefore, regardless of the iteration at which v is actually
selected, the set P̄v is always updated with path (v w)P . Moreover, the set of
paths that become inconsistent with P̄ after setting P̄v = {(v w)P} does not
depend on the iteration either.

Thus, a vertex v ∈ Ch can be picked by Step (iii) at any iteration h of
Greedy+ without affecting neither Vk nor P̄u ∀u ∈ Vk. Since this is true for
any vertex v ∈ Ch, Greedy+ can select an arbitrary candidate vertex at each
iteration h without affecting the output. �

Given the similarities between Greedy+ and Greedy, it is easy to check
that the same property also holds for Greedy. Moreover, this property con-
firms that the description of Greedy given in this section and the original
description given in [GSW02] are equivalent.

The following two properties, namely Properties 4.3 and 4.4, state that
Greedy+ can be used as a static, centralized, and deterministic algorithm
to efficiently emulate the behavior of SPVP in the long term, thus dealing
with non-determinism of SPVP. This feature of Greedy+ can be effectively
exploited, e.g., by a network administrator that wants to analyze what are the
paths steadily selected by BGP speakers in a given configuration.

We start with Property 4.3, that guarantees that every vertex thatGreedy+

puts in the stable set always selects the same path in any fair activation se-
quence of SPVP. Therefore, if Greedy+ terminates with Vk 6= V , the source
of potential oscillations must be searched in those vertices that are left out of
the stable set.

Property 4.3 Consider an SPP instance S and run Greedy+ on S. Let
P ∈ Pv be a path that Greedy+ deletes at iteration j. Then, for any fair
activation sequence σ of SPVP on S, there exists a time t′ such that ∀t > t′,
πt(v) 6= P .

Proof: The statement asserts that Greedy+ deletes only those paths that
would be discarded by any fair activation sequence of SPVP. The proof is by
induction on the iteration j of Greedy+. At iteration j = 1, since P̄u = Pu

for all u ∈ V , Greedy+ deletes a path P from P̄v at either Step (i) or Step (ii)
according to the following conditions.
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Deletion at Step (i): Since V0 = {0}, the deletion takes place if λv((v 0)) <
λv(P ). By the fairness of σ, there must exist a time t′ such that (0, v) is
activated at t′: this prevents v from selecting P after t′.

Deletion at Step (ii): It takes place if P is inconsistent with P, i.e., P =
Q(w)R and R 6∈ Pw. In this case, the statement trivially follows since πt(w) 6=
R ∀t.

Assume, by induction, that the assertion holds for a given iteration j − 1
of Greedy+. We now prove that the same property is true for the paths that
are deleted during iteration j. Again, during iteration j, Greedy+ deletes a
path P from P̄v at either Step (i) or Step (ii).

Deletion at Step (i): It takes place if there exists u ∈ Vj−1 such that (v, u) ∈
E and λv((v u)P ′) < λv(P ), where {P ′} = P̄u. Observe that the induction
hypothesis assures that previously deleted paths are eventually discarded after
time t′. Then, by the fairness of σ, there must exist a time t′′ > t′ such that
(u, v) is activated at t′′ and (v u)P ′ is made available at v ∀t > t′′. This
prevents v from selecting path P , i.e., πt(v) 6= P ∀t > t′′.

Deletion at Step (ii): It takes place if P is inconsistent, i.e., P = Q(w)R
and R 6∈ P̄w. By the induction hypothesis, there exists t′ such that ∀t > t′

πt(w) 6= R. Then, by the fairness of σ, v must receive a message that withdraws
the availability of R at a time t′′ > t′. Therefore, πt(v) 6= P ∀t > t′′. �

Property 4.4 guarantees correctness of the Greedy+ algorithm.

Property 4.4 If Greedy+ terminates successfully on an instance S of SPP,
then S is safe and has a unique solution.

Proof: Assume thatGreedy+ terminates successfully on S = (G = (V,E),P,Λ)
after k iterations, and let Vk = V be the stable set after the k-th iteration. By
Step (iii) of Greedy+ we know that for each vertex v ∈ Vk, P̄

v only contains
one path (possibly ǫ), because Greedy+ deleted all the permitted paths but
one. By Property 4.3, for each deleted path P = (v . . . ) there exists a time t′

after which vertex v is permanently unable to select P , i.e., πt(v) 6= P for each
t > t′. This implies that there exists a time t̄ after which all the deleted paths
are never selected. Therefore, for all v ∈ V and for all t > t̄, πt(v) = Pv, where
P̄v = {Pv}. �

Finally, Property 4.5 shows that Greedy+ exceeds existing algorithms that
can be used for stability check. In fact, we have already shown that Greedy+

can solve instances for which state-of-the-art sufficient conditions for safety do
not hold (instance Di-safe-gree in Fig. 4.1 is among these). We complete the
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proof in the Appendix by showing that Greedy+ also solves all the instances
solved by Greedy. We need the following lemma to prove Property 4.5.

Lemma 4.5 Let S be an instance of SPP. If Greedy terminates on S finding
a path assignment π∗, then Greedy+ also terminates on S finding π∗.

Proof: By Property 4.2 we know that, when multiple vertices can enter the sta-
ble set at a given iteration, the solution computed by Greedy+ is independent
on the order in which these vertices are considered. Therefore, we prove the
assertion by showing that Greedy+ can find π∗ by selecting vertices to put in
the stable set in the very same order as Greedy does. We show it by mapping
each iteration of Greedy to one iteration of Greedy+. In the following, we
will refer to Greedy’s stable set as Vj , and to Greedy+’s stable set as V +

j ,
and we will indicate with π the path assignment defined by Greedy at a given
iteration. The proof proceeds by induction on the iteration j. It is trivially
true that, at j = 0, Vj = V +

j = {0}. Assume that Vj−1 = V +
j−1 and, without

loss of generality, that the stable sets have been constructed by adding vertices
in the very same order by the two algorithms. Consider vertex u that Greedy

selects at iteration j. This implies that (u v)π(v) is the path with minimum
λu among those compatible with π, for some v ∈ Vj−1. By the induction hy-
pothesis, P̄v = {π(v)}, therefore path (u v)π(v) is consistent with P̄. We show
that path (u v)π(v) must still be in P̄u at iteration j. Lemma 4.2 ensures that
Step (ii) did not remove path (u v)π(v) from P̄u. That is, since path (u v)π(v)
is consistent with P̄ at iteration j, it was always consistent during the previous
iterations. By the induction hypothesis, ∀w ∈ Vj−1 P̄

w = {π(w)}, therefore
all the paths that are regarded as consistent by Greedy+ are necessarily com-
patible with π. Hence, since (u v)π(v) is consistent with P̄ and has minimum
λu among the paths compatible with π, it must also have minimum λu among
the paths consistent with P̄. Therefore path (u v)π(v) cannot be deleted at
Step (i) of Greedy+, and vertex u is a candidate to be inserted in the stable
set by Greedy+.

Since, by Property 4.2, the output of Greedy+ is unaffected by the order
in which vertices enter the stable set, we can assume without loss of generality
that Greedy+ too selects vertex u at iteration j. This in turn implies that
Greedy+ finds the same path assignment π∗. �

Property 4.5 The set of SPP instances that Greedy+ can successfully solve
is strictly larger than the set of instances that Greedy is able to solve.
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Proof: Lemma 4.5 proves the inclusion. The strictness is supported by Di-

safe-gree, which is not solved by Greedy, as we discussed above, while it is
solved by Greedy+ as shown in Table 4.1. �

Note that Greedy+ is not able to solve all the instances where Greedy

fails to find a solution. For example, Filthy-Gadget (see Fig. 2.14) cannot be
solved by Greedy+. Because of the computational complexity of the safety

problem (see Chapter 3), no efficient algorithm can be complete and correct
at the same time. However, given the particular nature of the problem, we
stress that the need to avoid false positives (i.e., networks that are mistakenly
reported as safe) outweighs the risk of allowing false negatives (i.e., networks
that are mistakenly reported as potentially unsafe). Characterizing the set of
additional instances thatGreedy+ can solve with respect toGreedy is still an
open problem. However, in Section 4.5 we empirically assess the effectiveness
of Greedy+ compared to Greedy by using a quantitative analysis on huge
BGP topologies.

4.3 An Automated Convergence Checker

Greedy+ exhibits several desirable properties. We now show that the ben-
efits of these properties exceed mere theoretical speculation. We propose a
design of a modular tool to automatically check whether a given set of BGP
configurations leads to guaranteed convergence.

The architecture of our tool is designed to support checking arbitrary BGP
configurations, regardless of whether they come from routers within a single AS
(iBGP) or from different ASes (eBGP). Therefore, the description of the tool
presented in this section is independent of whether we are considering eBGP
or iBGP.

Architecture of the Checker

An architectural overview of the tool we realized is shown in Fig. 4.2, where
sharp boxes represent data, and rounded boxes represent the main architectural
components. The checker processes input data along a pipeline from BGP
configurations to the final output, which tells the user whether the system is
safe or not. In the latter case, the tool returns a portion of the network that
can be responsible for potential oscillations.

Our architecture encompasses the following components.
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Figure 4.2: Architecture of the automated convergence checker.

• A Configuration parser, which parses input BGP configuration policies and
translates them into a custom format. Depending on the origin of policy
information, the input can be router configuration files, RPSL [AVG+99]
policy descriptions, or topologies obtained by monitoring projects such as
CAIDA [CAI]. This allows us to support and integrate different sources
of policy information by just changing the parser component.

• An SPP generator, which takes as input the BGP policies extracted by the
parser and builds an SPP instance that models the configurations.

• A Stability checker, which implements the Greedy+ algorithm and runs
it on the generated SPP instance in order to check it for safety.

The SPP generator is the most challenging component to design. In fact,
enumerating the permitted paths of an SPP instance may take exponential
space, since the number of paths in a graph is exponential with respect to the
number of vertices.

The first step performed by the checker consists in the translation of the
input BGP configuration policies into a custom input-independent format. Es-
pecially when the input policies are described using vendor-specific languages,
isolating this step has some important benefits: (i) even though configura-
tion languages continuously evolve and different vendors propose proprietary
constructions, the only component of the checker that needs to be updated
to accommodate these changes is the parser; and (ii) while most configura-
tion languages are designed with an event-condition-action approach in mind,
where specific actions are undertaken whenever a particular event takes place
and a set of conditions is found to hold, by using the SPP model we rely on
an explicit set of ordered paths, which allows us to disclose the network-wide
semantic that is hidden behind the policy configurations.

Next, an intermediate vendor-independent representation of the input BGP
configurations is built. Consider that, despite the variety of routing policies
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1: dissemination(v)
2: while receive (P,A) from w do
3: (P ′,A′) = Fv⇐w((P,A))
4: if (P ′,A′) 6= (ǫ,⊘) then
5: Rt(v) := Rt−1(v)∪{(P

′,A′)}
6: if Rt(v) 6= Rt−1(v) then
7: for all u | (u, v) ∈ E do
8: send Fv⇒u(((v)P

′,A′))
to u

9: end for
10: end if
11: end if
12: end while

Figure 4.3: The dissemination algorithm used by the checker to generate the
paths of the SPP instance.

contained in well-known data sets (e.g., the Internet Routing Registries) and
the number of constructions supported by router vendors, it is easy to see that
a full-blown configuration can be ultimately mapped to a set of filters. We
represent a BGP announcement with a pair (P,A), where P is a path and A
is a set of BGP attributes. Before a received announcement is processed by a
router u, an import filter Fu⇐v((P,A)) is applied to the announcement; simi-
larly, before a router u sends an announcement, an export filter Fu⇒v((P,A))
is applied. The specification of a filter contains a predicate and a sequence of
actions. The predicate is a boolean condition which can match BGP announce-
ments based on the path and the other attributes they carry. If the predicate
evaluates to true, the actions are undertaken. Possible actions include further
propagating the announcement or dropping it, as well as altering, adding, or
dropping the attributes carried by the announcement itself. The application of
a filter returns a BGP announcement with the pertinent attribute modifications
applied, or (ǫ,⊘) if the BGP announcement is discarded.

While we extract filters from BGP configurations, we also collect informa-
tion about the peerings established by each router. This allows us to build the
logical graph G = (V,E).

Similarly to [FB05], where the processing steps of BGP are sequenced into
a dissemination phase, a filtering phase, and a ranking phase, we distinguish
the generation of routing paths from the actual best route selection operated
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by BGP.
Regarding the path dissemination, vertex 0 first starts announcing ((0),⊘).

We then run on the other vertices of G the distributed algorithm in Fig. 4.3.
In this algorithm, vertices v ∈ G exchange routing messages containing the
full set of attributes (including, e.g., AS-path, next-hop, community, etc.),
apply all the configured filters, and store received announcements in sets R(v).
Every time a new, not previously observed announcement is received by v, it is
propagated over to v’s neighbors. The purpose of this step is to enumerate all
possible paths that comply with the import and export filters (we recall that an
explicit representation of the paths is required by the SPP model). It is easy
to verify that the algorithm in Fig. 4.3 ends in finite time, and a centralized
implementation can be easily realized. A set of permitted paths Pv for each
v ∈ V can then be constructed starting from sets R.

To compute path rankings, for each v ∈ V we apply the BGP decision
process to the announcements that v has collected in R(v) during the dissem-
ination. This operation also allows us to define the ranking functions λv.

After executing the above steps, we define an SPP instance S = (G,P,Λ)
with P =

⋃

v∈V P
v and Λ = {λv | v ∈ V }. We use instance S to study the

convergence of the network.

Optimizing for Scalability

In principle, mapping real-world BGP configurations (i.e., vendor specific con-
figurations) to a set of explicitly permitted paths is a step that requires expo-
nential space. On the other hand, hardcoding filter applications in the path
generation process allows us to avoid generating a large number of paths. How-
ever, this is still not enough to be able to efficiently process huge configurations:
we need to further reduce the paths to be generated. For this reason, during
the dissemination phase and before actually generating the SPP instance, we
run two pre-processing steps.

First of all, vertex 0 starts marking the path announcements it sends as
reliable. If a vertex v receives a reliable announcement (P,A) from a neighbor
u, v applies the import filter Fv⇐u((P,A)) and compares the resulting (P ′,A′)
with the best announcement that it could ever receive from its neighbors. If,
and only if, v considers (P ′,A′) as most preferred, v marks the announcement
as reliable and stops considering future incoming announcements (early sta-
bilization). In any case, v then applies the export filter Fv⇒w((P

′,A′)) and
further propagates the announcement to each neighbor w 6= u. Non-reliable
paths continue to be disseminated in the standard way. This step corresponds
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to precomputing a subset of the stable vertices computed by Greedy. Based
on Property 4.3, a vertex v marking an announcement (P,A) as reliable is guar-
anteed to select the corresponding path P . This allows us to only generate a
single path for each stabilized vertex. In order to maximize the number of early
stabilized vertices, we evaluate preferences based on the local-preference,
the AS-path length, and the router-id of the announcements.

Our experiments showed that early stabilization is not enough to make
Internet-scale configurations tractable. Therefore, we apply an additional opti-
mization step while generating the SPP instance: vertex v does not propagate
any announcement that it considers worse than a received reliable announce-
ment (P,A) (early suppression). In fact, since paths from reliable announce-
ments are always available, v will be unable to select an alternative path ranked
worse than (P,A). This step implements the optimizations found in Greedy+.

In order to finally generate the SPP instance, path rankings are computed
by running the complete BGP decision process.

As the last step, the SPP instance is checked for guaranteed stability, i.e.,
safety. Observe that an efficient implementation of this step can keep track of
the consistent paths in order to avoid recomputing them at each iteration.

4.4 Walking through the Operation of the Convergence

Checker

In this section we walk through a complete example showing how a BGP config-
uration is verified by our tool. Collection and parsing of the BGP configuration
are omitted.

For the sake of simplicity, we consider a simple eBGP network in which poli-
cies are specified via setting the local-preference attribute. The convergence
checker behaves in a similar way in the iBGP case. Throughout the example,
we always refer to a single network prefix originated by the AS modeled as
vertex 0.

BGP Configuration

Fig. 4.4 shows the BGP topology we consider in our example. The topology
consists of 7 ASes, plus the prefix originator 0. To make the example more
realistic, we labeled adjacencies between ASes with commercial relationships
(customer—◮provider, peer—peer, or sibling◭—◮sibling) that are supposed to
be honored in the configurations (see [Gao01, GR00, DEH+07]). For conve-
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Figure 4.4: The example topology we discuss in Sec. 4.4. Edges are labelled
according to the commercial relationships between the Autonomous Systems
(customer—◮provider, peer—peer, or sibling◭—◮sibling).

nience, vertices in Fig. 4.4 are laid out according to the customer-provider
hierarchy.

We assume that all the routers in each AS implement homogeneous routing
policies, so that a single BGP configuration describes the routing behavior of
the whole AS. In particular, ASes in Fig. 4.4 implement the policies described
in Fig. 4.5 (observe that the figure contains the policy specifications for all the 7
ASes). In order to provide a specification that is easier to read and independent
of a vendor’s specificities, we describe the policies using the Routing Policy
Specification Language (RPSL [AVG+99]).

In Fig. 4.5, lines 1 through 18 define so-called AS-set objects, which are
groups of ASes that will be reused later on in the policy specifications. The
policies adopted by each AS are described in the aut-num objects in lines 19
through 57. Each aut-num object states the policies applied to incoming
(import) and outgoing (export) announcements separately. For example,
AS0 (lines 19-22) only originates a prefix and has therefore no import poli-
cies specified. On the other hand, its export policies correctly state that it
must “announce AS0” to each of its neighbors AS1, AS2, and AS3. Note that
the exact semantic of “announce AS0” is “announce all the prefixes originated
by AS0”, which is what we would expect.

Policies may be more complex than AS0’s. For example, AS1 (lines 23-
26) applies different preference values to announcements that come from its
providers (note the practical use of the AS-set “AS1:PROVIDERS”) or directly
from AS0. Since in RPSL lower pref values correspond to higher preferences,
AS1’s policies in Fig. 4.5 implement the prefer-customer rule (see [GR00])
according to the topology in Fig. 4.4. The statement “accept ANY” implies
that no filter is being applied on incoming announcements. Most of the policies
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1 AS-set: AS1:PROVIDERS
2 members: AS2, AS3, AS4

3 AS-set: AS2:CUSTOMERS
4 members: AS0, AS1

5 AS-set: AS2:PROVIDERS
6 members: AS3, AS4

7 AS-set: AS3:NEIGHBORS
8 members: AS1, AS2, AS4, AS5, AS6, AS7

9 AS-set: AS3:RESTRICTED
10 members: AS5, AS6, AS7

11 AS-set: AS4:NEIGHBORS
12 members: AS1, AS2, AS3

13 AS-set: AS5:NEIGHBORS
14 members: AS3, AS6, AS7

15 AS-set: AS6:NEIGHBORS
16 members: AS3, AS5, AS7

17 AS-set: AS7:NEIGHBORS
18 members: AS3, AS5, AS6

19 aut-num: AS0
20 export: to AS1 announce AS0
21 export: to AS2 announce AS0
22 export: to AS3 announce AS0

23 aut-num: AS1
24 import: from AS0 action pref=50; accept ANY
25 import: from AS1:PROVIDERS action pref=100; accept ANY
26 export: to AS1:PROVIDERS announce AS0

27 aut-num: AS2
28 import: from AS2:CUSTOMERS action pref=50; accept ANY
29 import: from AS2:PROVIDERS action pref=100; accept ANY
30 export: to AS2:PROVIDERS announce <^AS2:CUSTOMERS>
31 export: to AS1 announce ANY

32 aut-num: AS3
33 import: from AS3:NEIGHBORS action pref=50;
34 accept community.contains(4:50)
35 import: from AS3:NEIGHBORS action pref=100;
36 accept NOT community.contains(4:50)
37 export: to AS3:RESTRICTED announce ANY AND NOT <^[AS0 AS4]>
38 export: to AS3:NEIGHBORS announce ANY

39 aut-num: AS4
40 import: from AS3 action pref=50; accept ANY
41 import: from AS2 action pref=100; accept ANY
42 import: from AS1 action pref=150; accept ANY
43 export: to AS3 action community.append(4:50); announce ANY
44 export: to AS4:NEIGHBORS announce ANY

45 aut-num: AS5
46 import: from AS6 action pref=50; accept ANY
47 import: from AS5:NEIGHBORS action pref=100; accept ANY
48 export: to AS5:NEIGHBORS announce ANY

49 aut-num: AS6
50 import: from AS7 action pref=50; accept ANY
51 import: from AS6:NEIGHBORS action pref=100; accept ANY
52 export: to AS6:NEIGHBORS announce ANY

53 aut-num: AS7
54 import: from AS5 action pref=50; accept ANY
55 import: from AS7:NEIGHBORS action pref=100; accept ANY
56 AND NOT <AS6>
57 export: to AS7:NEIGHBORS announce ANY

Figure 4.5: ASes in Fig. 4.4 are assumed to implement the policies described
in this fragment of BGP configuration. The fragment is described using RPSL.
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adopted at other ASes implement the same prefer-customer rule, with a few
exceptions. AS3 prefers announcements coming from its sibling AS4 (lines 33-
36) because they are marked by AS4 itself with a specific community value
(line 43). AS4 assigns an arbitrary ranking to its neighbors (lines 40-42). ASes
5 and 7 always prefer routes through customers (lines 46 and 54), while AS6
arbitrarily prefers one of its providers (line 50).

There are some policies that seem to have ambiguous neighbor specifica-
tions: for example, the AS-set “AS3:NEIGHBORS” is used in both the policies
at lines 33 and 35; “AS3:RESTRICTED” and “AS3:NEIGHBORS” have some ASes
in common (lines 37 and 38); similarly for AS6 and “AS5:NEIGHBORS” (lines 46
and 47), AS7 and “AS6:NEIGHBORS” (lines 50 and 51), AS5 and “AS7:NEIGHBORS”
(lines 54 and 55). In all these cases, the specification-order rule [AVG+99] ap-
plies to disambiguate the specification. For example, if AS3 receives from a
neighboring AS an announcement containing a community 4:50, it only ap-
plies the first matching import policy (lines 33-34), despite the existence of
other policies that address the same set of neighbors.

Observe that all the policies in Fig. 4.5 but the one implemented by AS 7 are
per-neighbor, meaning that each AS applies the same filter to all the announce-
ments coming from a certain neighbor. Also, export policies mostly implement
the selective export rules in [Gao01]: AS1 exports to its providers only the
direct route to AS0 (line 26); AS2 exports everything to its customer AS1
(line 31) and only its customer routes to its providers (line 37 – see [AVG+99]
for the syntax of regular expressions on AS-paths); AS3, AS4, and AS7 may
avoid applying any filters, but AS3 and AS7 still do: AS3, with respect to its
neighbors AS5, AS6, and AS7, filters out all the announcements that come
from AS0 or AS4 (line 37); AS7, with respect to its neighbors AS3 and AS6,
filters out all the announcements that have traversed AS6 (lines 55-56). No-
table exceptions to the selective export rule are AS5 and AS6, since they allow
routes received from a provider to be propagated to another provider.

All the violations to standard customer-provider policies discussed above
have been introduced in order to build oscillatory structures in the topology of
Fig. 4.4. In particular, ASes 3 and 4 mutually prefer each other, thus building
a Disagree [GSW02], while ASes 5, 6, 7 each prefer their counter-clockwise
neighbor, thus forming a Bad-Gadget [GSW02].

Policy Specifications

Following the architecture in Fig. 4.2, the next step performed by the checker is
to parse the configuration in Fig. 4.5 and construct an internal representation
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set((P,A), a, val) = (P,A′) | A′[a′] = A[a′], ∀a′ 6= a ∧ A′[a] = val
append((P,A), a, val) = (P,A′) | A′[a′] = A[a′], ∀a′ 6= a ∧ A′[a] = A′[a] ∪ {val}

F0⇐v,v∈{1,2,3}(·) : true ⇒ (ǫ,⊘)
F0⇒v,v∈{1,2,3}(·) : true ⇒ ((0),⊘)

F1⇐0((P,A)) :
true ⇒ set((P,A), local-preference, 100)

F1⇐v,v∈{2,3,4}((P,A)) :
true ⇒ set((P,A), local-preference, 50)

F1⇒v,v∈{2,3,4}(((1)P,A)) : true ⇒ ((1)P,A)

F2⇐v,v∈{0,1}((P,A)) :
true ⇒ set((P,A), local-preference, 100)

F2⇐v,v∈{3,4}((P,A)) :
true ⇒ set((P,A), local-preference, 50)

F2⇒v,v∈{3,4}(((2)P,A)) :
A[AS-path] = (v . . . ), v ∈ {0, 1} ⇒ ((2)P,A)
else ⇒ (ǫ,⊘)

F2⇒1(((2)P,A)) : true ⇒ ((2)P,A)

F3⇐v,v∈{1,2,4,5,6,7}((P,A)) :
4 : 50 ∈ A[community] ⇒

set((P,A), local-preference, 100)
4 : 50 /∈ A[community] ⇒

set((P,A), local-preference, 50)
F3⇒v,v∈{5,6,7}(((3)P,A)) :

P = (v . . . ), v /∈ {0, 4} ⇒ ((3)P,A)
else ⇒ (ǫ,⊘)

F3⇒v,v∈{1,2,4}(((3)P,A)) : true ⇒ ((3)P,A)

F4⇐3((P,A)) :
true ⇒ set((P,A), local-preference, 150)

F4⇐2((P,A)) :
true ⇒ set((P,A), local-preference, 100)

F4⇐1((P,A)) :
true ⇒ set((P,A), local-preference, 50)

F4⇒3(((4)P,A)) :
true ⇒ append(((4)P,A), community, 4 : 50)

F4⇒v,v∈{1,2}(((4)P,A)) : true ⇒ ((4)P,A)

F5⇐6((P,A)) :
true ⇒ set((P,A), local-preference, 100)

F5⇐v,v∈{3,7}((P,A)) :
true ⇒ set((P,A), local-preference, 50)

F5⇒v,v∈{3,6,7}(((5)P,A)) : true ⇒ ((5)P,A)

F6⇐7((P,A)) :
true ⇒ set((P,A), local-preference, 100)

F6⇐v,v∈{3,5}((P,A)) :
true ⇒ set((P,A), local-preference, 50)

F6⇒v,v∈{3,5,7}(((6)P,A)) : true ⇒ ((6)P,A)

F7⇐5((P,A)) :
true ⇒ set((P,A), local-preference, 100)

F7⇐v,v∈{3,6}((P,A)) :
P 6= (Q(6)R) ⇒ set((P,A), local-preference, 50)
else ⇒ (ǫ,⊘)

F7⇒v,v∈{3,5,6}(((7)P,A)) : true ⇒ ((7)P,A)

Figure 4.6: Custom representation of the policies in Fig. 4.5. Unspecified
announcement attributes are assumed to have their default values.

that is independent of the BGP configuration given as input. Fig. 4.6 shows
a possible representation of the policies in Fig. 4.5 in terms of the import and
export filters described in Section 4.3. In Fig. 4.6 we first define two handy
functions for manipulating BGP attributes: set((P,A), a, val) modifies the an-
nouncement (P,A) by setting attribute a to value val; append((P,A), a, val)
alters the variable length attribute a by appending val at its end (for conve-
nience, we handle a as a set of values).

Each filter has the following structure: upon matching a predicate on the
attributes of a BGP announcement (P,A) (left side of the ⇒), a sequence of
actions is performed and a new announcement is returned (right side of the
⇒). In Fig. 4.6, all the sequences consist of a single action, and the kind
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of action has been annotated in italics on the right margin. Observe that
local-preference values have been swapped because a lower pref in RPSL
corresponds to a higher local-preference in BGP. If a filter returns (ǫ,⊘),
the announcement is simply dropped.

Generated (reduced) SPP Instance

Once the import and export filters are known, an SPP instance that models
their effect can be easily built. First of all, the filters need to be analyzed in
order to extract the topology of the network under consideration. Since each
filter refers to a specific neighbor, we can simply enumerate the neighbors of
each vertex to accomplish this task.

After that, the filters are passed to the dissemination algorithm in Fig. 4.3
in order to generate the paths of the SPP instance. Barely running the dissem-
ination on the topology and filters collected from the configuration in Fig. 4.6
would result in the SPP instance in Fig. 4.7a. Despite filter applications be-
ing hardcoded in the dissemination process, it is evident that an exponential
number of paths still needs to be generated, leading to an overly large instance
even in the simple example we are considering.

Fig. 4.7b shows the effectiveness of our dissemination-time optimizations.
In particular, early stabilization allows to avoid generating and disseminating
all the dimmed paths in Fig. 4.7b. For example, at vertices 1 and 2 the direct
path to 0 is the overall most preferred, therefore the announcements of (1 0)
and (2 0) are marked as reliable and no other paths are generated at 1 and
2, which are considered stable vertices. As a consequence, none of the paths
that would be obtained by the dissemination of the worse path (2 1 0) are
available any longer. In this example there are no other vertices that can be
early stabilized, yet the gain in terms of generated paths is already noticeable.

On the other hand, early suppression prevents generating all the struck out
paths in Fig. 4.7b. For example, vertex 4 will be prevented from disseminating
any paths that are worse than (4 2 0), because this path extends the reliable
path (2 0). As a consequence, path (3 4 1 0) will no longer be generated
at 3. In a similar way, 3 will avoid disseminating paths that are worse than
(3 0), which extends the reliable path (0). As a consequence, all the paths that
extend (3 2 0) and (3 1 0) are not generated. Note that, after applying the two
optimization steps, only the empty path ǫ is left at vertices 5, 6, and 7. The
final SPP instance resulting after applying the optimizations is in Fig. 4.7c.
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(a) SPP instance obtained by running the dissemination algo-
rithm in Fig. 4.3 on the topology and policies extracted from the
policy specifications in Fig. 4.6.
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(b) Reduced SPP instance obtained by applying early stabiliza-
tion (dimmed paths) and early suppression (struck out paths)
during the dissemination.
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(c) Final SPP instance (same as (b) with removed paths).

Figure 4.7: SPP instance constructed from the policies in Fig. 4.6.
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i Vi Ci P̄1 P̄2 P̄3 P̄4 P̄5,P̄6,P̄7

0 {0} — {(1 0)} {(2 0)}
{(3 4 2 0), (3 0),
(3 2 0), (3 1 0)}

{(4 3 0), (4 2 0),
(4 1 0)}

{ǫ}

1 {0, 1}
{1, 2, 5,
6, 7}

{(1 0)} {(2 0)} {(3 4 2 0), (3 0)}
{(4 3 0), (4 2 0),
(4 1 0)}

{ǫ}

2 {0, 1, 2}
{2, 5, 6,
7}

{(1 0)} {(2 0)} {(3 4 2 0), (3 0)}
{(4 3 0), (4 2 0),
(4 1 0)}

{ǫ}

3 {0, 1, 2, 5} {5, 6, 7} {(1 0)} {(2 0)} {(3 4 2 0), (3 0)} {(4 3 0), (4 2 0)} {ǫ}

4
{0, 1, 2,
5, 6}

{6, 7} {(1 0)} {(2 0)} {(3 4 2 0), (3 0)} {(4 3 0), (4 2 0)} {ǫ}

5
{0, 1, 2,
5, 6, 7}

{7} {(1 0)} {(2 0)} {(3 4 2 0), (3 0)} {(4 3 0), (4 2 0)} {ǫ}

6
{0, 1, 2,
5, 6, 7}

⊘ {(1 0)} {(2 0)} {(3 4 2 0), (3 0)} {(4 3 0), (4 2 0)} {ǫ}

Table 4.2: Execution of Greedy+ on the SPP instance in Fig. 4.7c.

(Partial) Stable Path Assignment

The final step of our convergence checker consists in running on the generated
SPP instance the Greedy+ algorithm described in Section 4.2. Table 4.2
shows the steps of execution of Greedy+ on the instance in Fig. 4.7c. At step
i = 1 the candidate vertex 1 enters the stable set because its best path (1 0)
uses the stable vertex 0 as next hop. At the same time, paths (3 2 0) and
(3 1 0) are removed from the useful paths at 3 because they are worse than
(3 0), which will always be available at 3. In a similar way, at step i = 2 vertex
2 enters the stable set because its best path (2 0) has 0 as next hop. At step
i = 3 path (4 1 0) is removed from the useful paths at 4 because (4 2 0) will
always be available, since 2 is now stable. The algorithm then proceeds by
stabilizing vertices 5, 6, and 7, since their only useful path is ǫ.

At the end we have that all the vertices but 3 and 4 have been stabilized.
This means that the original BGP configuration may exhibit oscillations and
the cause lies in the policies at 3 and 4. This response is correct, since we
intentionally built a Disagree using vertices 3 and 4. Also notice that Bad-

Gadget, the other oscillatory structure we put in the configuration, is reported
as stable because the paths supporting its oscillation will never be available
after the SPVP algorithm (i.e., BGP) has exchanged a few messages. This
was, in some way, also suggested by the fact that all the paths at 5, 6, and 7
had been cleared by early stabilization and early suppression.
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4.5 Experimental Results and Applicability

Considerations

In Section 4.3 we described the optimization techniques we used to make our
tool efficient enough to process huge BGP networks. We also showed the po-
tential of these techniques in a realistic example in Section 4.4. However, it
is difficult to analytically assess the effectiveness of these optimizations, since
they strongly depend on configurations and network topology.

Hence, in order to validate our approach and to assess its practical appli-
cability, we experimented with a prototype implementation of the convergence
checker. Since we are interested in showing that our approach is extremely
scalable, in our experiments we focused on eBGP configurations and Internet-
scale BGP networks. Regarding the policies we chose to get the policies from
the largest publicly accessible source having reasonable worldwide coverage,
which is CAIDA [CAI]. Indeed, other sources, like the Internet Routing Reg-
istries, are known [DRR06] to contain partial, often inconsistent and out of
date information.

In the following, we describe the prototype and discuss the results of our
experiments.

Prototype Implementation

We developed a Java-based prototype implementation of the architecture in
Fig. 4.2. Our prototype has some limitations that restrict the set of BGP
configuration policies it can analyze. In particular: (i) a limited number of
BGP attributes is supported, namely only the AS-path, the next-hop, the
local-preference and the community, and (ii) filters can only be defined on
a per-neighbor basis. Limitation (i) is not really constraining, as the combined
use of local-preference and community leads to highly expressive policies,
and previous studies show the widespread use of these attributes [DB08]. Also
limitation (ii) is not constraining because, on one hand, BGP policies are often
analyzed using neighbor-specific models [GR00, SF04, CAI], and, on the other
hand, using a finer granularity would add little expressiveness at the expense of
manageability and performance, and we argue that these factors would impact
network operation, too.

Moreover, it should be considered that our architecture is designed to ac-
commodate every kind of filter. An improved version of the tool, adapted
for iBGP and able to process a wider set of BGP attributes, is presented in
Chapter 8.
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Degree Threshold Vertices Edges Degree Threshold Vertices Edges
1000 10 33 25 592 7403
500 25 209 10 1657 15672
250 48 603 5 3735 24388
100 125 1956 4 5113 28772
50 268 3953 2 21263 62756

35 397 5466
1 (complete
topology)

33508 75001

Table 4.3: Topologies used in our tests, obtained from CAIDA topologies by
pruning vertices with degree lower than a threshold.

Performance and Scalability

We ran our experiments using the AS-level topologies from CAIDA [CAI] as
input. While CAIDA datasets are unavoidably biased by the underlying infer-
ence algorithms by which they have been computed, we believe they are still a
valuable data source of large-scale policy-labeled interdomain topologies, which
is exactly what we need to verify the scalability of our approach. We extracted
from the CAIDA dataset collected on Jan 20th, 2010 a set of smaller topologies
by pruning vertices with degree lower than a threshold. We picked thresholds
in the values listed in Table 4.3, which also shows the number of vertices and
edges of the obtained topologies. The last line (threshold 1) corresponds to the
complete topology. All the generated graphs were connected. CAIDA datasets
are annotated with information about the commercial relationships established
between the ASes [Gao01]. In order to compare with state-of-the-art tools, we
implemented these relationships with BGP policies using the same approach
that is hardwired in the C-BGP simulator [QU05]. In our experiments we as-
sumed to originate a prefix from a given AS picked from a sample of 200 ASes
having very different degree values. In particular, we picked the top 100 and
the bottom 100 ASes according to CAIDA’s ranking algorithm, which ranks
ASes based on the size of their customer cone (number of direct and indirect
customers). Since there is a high correlation between the customer cone and
the position of an AS in the Internet hierarchy, essentially our sample is com-
posed of ASes ranging from tier-1 providers to small stubs. The median degree
of the ASes in our sample is 8, the average degree is 201, and 20% of ASes have
a degree higher than 264.

Our testing platform was a dual Xeon 2.66GHz with 16GB of RAM. We ran
the checker once for each combination of pruned topology and originator AS.
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From the theoretical 2,400 runs we had to exclude the cases when the originator
AS itself was removed by the pruning, dropping to 1,099 runs. For each run,
we assigned 4GB of RAM to the Java VM hosting the checker. Observe that,
despite the amount of memory reserved for the tool, there were cases in which
the checker ran out of memory because of the excessive number of paths to
be generated for the SPP instance. Every time this happened for a certain
originator AS and a certain threshold, we avoided attempting the check with
the same originator AS on topologies with lower threshold. Thus, we boiled
down to 540 successful runs. Note that, in many cases, the SPP instances
can only be generated using both our optimizations (Greedy+): with early
stabilization alone (i.e., Greedy) we could achieve only 105 successful runs.

The convergence check took a fraction of a second to complete in 24% of
the successful runs, and 16 seconds on average. The median of running times
was of 2 seconds, while the maximum was 13 minutes, recorded in 1 run only.
As a term of comparison, running our implementation using early stabilization
alone (i.e., Greedy) resulted in up to 64 minutes of computing time. We
could not find any correlations between the running time and other topological
features such as the pruning threshold and the originator AS degree. These
results already prove that our approach outperforms the state of the art: it can
successfully check a larger number of Internet-scale topologies and achieves this
in a very short time. These performance results show that the tool can be used
for online convergence checks performed right after a policy change.

Figs. 4.8 and 4.9 show the effectiveness of the optimizations in Greedy+.
Both figures refer to the experiments that considered the top 100 ASes as origi-
nators. In order to assess the feasibility of convergence checks for Internet-scale
BGP configurations, we associated an arbitrary value of 5M paths to each path
generation that ran out of memory. Fig. 4.8 plots the median number of paths
in the set P of the generated SPP instance. Each point corresponds to a value
of the degree threshold we used to prune the CAIDA topology. We used all
the values in Table 4.3 down to 2, since degree-1 vertices cannot make the
network unstable. It is clear that using both our optimizations (greedy+)
defeats early stabilization alone (greedy) and generation of paths without op-
timizations (naive). Note that, starting from threshold 100, the optimizations
in Greedy+ are necessary to successfully generate the SPP instance. The
plot for Greedy+ exhibits some irregularities (e.g., for degree threshold 35):
we ascribe this to the fact that generated paths are highly dependent on the
topology, since the presence of specific vertices can cause a large number of
additional paths to be generated. Fig. 4.9 shows the cumulative distribution
function of the number of generated paths, on the topology obtained with de-



i

i

“main” — 2012/2/22 — 9:40 — page 101 — #111
i

i

i

i

i

i

4.5. EXPERIMENTAL RESULTS AND APPLICABILITY

CONSIDERATIONS 101

1000 200 50 20 10 5 21
e

+
0

1
1

e
+

0
3

1
e

+
0

5

degree threshold

g
e

n
e

ra
te

d
 p

a
th

s
, 

m
e

d
ia

n

greedy+

greedy

naive

Figure 4.8: Median number of generated paths, considering the top 100 ASes
as originators. The plots show the values without optimizations (naive), with
early stabilization (greedy) and with early stabilization and early suppression
(greedy+). The X axis shows the threshold used to prune CAIDA topologies.
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Figure 4.9: Cumulative distribution function of the number of generated paths,
considering the top 100 ASes and fixing the degree threshold at 2.
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50 0

100

50

7046 704611486

701

11486

701

Figure 4.10: This triple of vertices, on which C-BGP was unable to converge,
has been pinpointed by our checker as potentially oscillating. On the left we
show the commercial relationships between the ASes. On the right we show the
propagation of BGP announcements and the local preference at each vertex.

gree threshold 2. Observe that early stabilization alone (greedy) allows us to
successfully generate the paths for less than 20% of the cases. On the other
hand, using both our optimizations (greedy+) allows us to successfully perform
the check on more than 50% of the topology-originator pairs, and for 40% of
them the check requires generating less than 200, 000 paths. Moreover, in 50%
of the successful runs our checker generated less than 1% of the paths generated
using early stabilization alone (greedy).

The results obtained with the bottom 100 ASes in the CAIDA ranking show
similar trends (plots are omitted for brevity) but different absolute values. We
were able to successfully perform the check on 38% of the topology-originator
pairs. This shows that the performance of our technique degrades when the
originator AS is placed at the bottom levels of the Internet hierarchy, which is
possibly due to the fact that stub ASes are reachable from the Internet through
a very high number of possible paths. However, we stress that the optimizations
of Greedy+ greatly benefit from the presence of peer-to-peer links, which are
typically not captured in AS-level topologies (see, e.g., [DKF+07]).

Interestingly, compared with similar experiments we performed few years
ago [CRCD09], our optimizations are still effective, despite the larger topology
(26% more vertices and 39% more adjacencies) we used as input.

Spotting Potential Oscillations

We finally looked at the percentage of vertices of the input topology that our
checker reported as safe. Interestingly, depending on the originator AS, our
checker reported up to 5% of vertices as potentially unstable.

We further investigated the portions of the network which our checker re-
ported as potentially unstable. In a separate experiment based on data used
in [CRCD09], our prototype was able to spot a triple of vertices that, if con-
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figured in accordance with the policies hardwired in C-BGP, generated a Dis-

agree [GSW02] (namely a potentially oscillating structure). The triple is
depicted in Fig. 4.10. The left part of the figure shows the commercial rela-
tionships between the ASes, adopting the same graphical convention used in
Fig. 4.4 (AS 11486 is a provider of AS 7046 and is a customer of AS 701,
while AS 701 and AS 7046 are siblings). The right part of Fig. 4.10 shows the
propagation of BGP announcements when AS 701 is the originator. Values
next to each vertex represent the local preferences assigned to the received an-
nouncements (the higher the preferred): 50 for announcements received from
a provider, 100 for announcements received from a customer, while announce-
ments from siblings retain the preference value assigned by the neighbor AS.
However, since AS 701 is the originator AS, there is no preference for its sib-
ling AS 7046 to retain, therefore the default value 0 is applied. This creates a
“policy dispute” between AS 11486 and AS 7046, which we are able to detect
but causes C-BGP to loop indefinitely. In a sense, this example shows how our
approach can also be useful to detect potential routing oscillations triggered
by implementation or vendor-specific choices.

4.6 Related Work

Routing convergence is renowned to be a fundamental problem in network
routing [FBR04]. As discussed in the previous chapter, deciding whether a
BGP network is stable is a computationally hard problem, and a bunch of
sufficient conditions to guarantee stable routing have been found. Based on
these results, two research directions have been explored.

On one hand, several modifications to the BGP protocol have been pro-
posed to dynamically detect and solve policy-induced oscillations (e.g., [GW00,
ERC+07]). Also, in [GS05] the authors introduce formal tools for the design
of inherently stable protocols. However, there are currently serious difficulties
in deploying substantial changes to BGP while guaranteeing service continuity.
By contrast, in this chapter we aim at checking whether a given BGP network
is stable by simply analyzing static properties of its configuration, without
considering protocol dynamics.

On the other hand, few techniques are available that address the conver-
gence problem considering the current implementation of the protocol. We
have already discussed and experimentally evaluated practical advantages of
Greedy+ with respect to Greedy in Sections 4.2 and 4.5.

In [GSW99], a correct and complete algorithm has been proposed to check
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for the absence of dispute wheels in a BGP configuration. We recall that the
absence of dispute wheels is a sufficient but not necessary condition for safety.
Indeed, the Di-safe-gree instance (see Fig. 4.1) is safe, despite the presence
of a dispute wheel in it. Although algorithm in [GSW99], Greedy+ is able to
solve it. Also, the technique proposed in [GSW99] is based on a data structure
called dispute digraph. Starting from an SPP instance S, time complexity
of constructing the corresponding dispute digraph is O(p2) = O(n4), where p
and n are the number of paths and the number of vertices in S, respectively.
Greedy+ is definitely more scalable, since its time complexity is O(n), where
n is the number of vertices in the SPP instance.

A heuristic that performs convergence checks of iBGP configurations is
presented in [FRBS08]. However, the algorithm assumes that the network
under consideration contains only one layer of route reflectors, and cannot be
easily extended to the case of eBGP configurations. Our approach is more
general in both respects.

A generalization of the technique in [FRBS08] is proposed in [FMS+10].
Such a generalization is based on the reliance graph concept. A reliance graph
is a data structure similar to a dispute digraph, which is built according to the
iBGP route reflection rules. Basically, reliance graphs are exploited to look for
dispute wheels. However, Greedy+ can solve a larger set of instances with
respect to the heuristic in [FMS+10], since the presence of a dispute wheel
does not imply a convergence problem. Indeed, contrary to Greedy+, the
algorithm in [FMS+10] is not able to solve simple variations of the Di-safe-

gree gadget. An example of such gadgets is depicted in Fig. 4.11. Also,
adapting the technique to configurations different from route reflection (e.g.,
BGP confederations) is not straightforward.

Existing configuration checkers (e.g., [QN04, FB05]) typically execute syn-
tactic checks and batch tests on BGP configurations. Our approach is comple-
mentary in that we explicitly focus on convergence, which also requires analyz-
ing configuration semantics. We also overleap simulators [QU05], in that we are
able to point out the converging portion of networks that could permanently
oscillate. For these reasons, we believe our technique can effectively integrate
existing checkers and visual analysis tools (e.g., [CDM+05]) to assist operators
in verifying configurations.
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Figure 4.11: A variation of the Di-safe-gree gadget which can be generated
in an iBGP route reflection configuration (2 and 3 can be route reflectors,
while 1, 4, and 5 are egress points). This instance is solved by Greedy+ while
the corresponding configuration cannot be solved by the technique described
in [FMS+10].

4.7 Conclusions

In this chapter we showed that an automated check for BGP convergence is
feasible in practice. We described a heuristic algorithm (Greedy+) that can
be used to check the convergence of BGP in the SPP model. We proved that
this algorithm has several desirable properties, among which the ability to
avoid false positives, i.e., configurations mistakenly reported as safe while they
are not. We used the Greedy+ algorithm as the basis for an automated tool
that is able to statically check BGP configurations (both eBGP and iBGP) for
guaranteed routing convergence. The tool models the configurations using the
SPP formalism. Since this choice may lead to an intractably large representa-
tion to be handled, we proposed optimizations that make it feasible to run the
convergence checker, even online, on huge BGP networks. We evaluated our
approach and its scalability by performing experiments on AS-level Internet
topologies from CAIDA. During such experiments, we spotted potentially os-
cillating portions of networks that cause state-of-the-art simulators (C-BGP)
to loop indefinitely. Our results show that Greedy+ outperforms the well-
known Greedy algorithm [GSW02]. We plan to test Greedy+ algorithm and
our prototype tool on real-world configuration as part of our future work.
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Chapter 5

Control-Plane Monitoring ∗

5.1 Introduction

ISP business mainly relies on forwarding paths on which customer traffic flows.
For inter-domain traffic, BGP has the final say on routing decisions, and
BGP messages received from neighboring ISPs can have a dramatic impact
on the quality of service actually provided by an ISP. Thus, BGP monitor-
ing enables ISPs to perform business-critical activities like troubleshooting and
anomaly detection [MYC08, RGMM+04]. Recently, it has been shown that
BGP data can be also exploited for business intelligence [Gao01], traffic en-
gineering [BL08], root cause analysis [CCD+08, FMM+04], oscillation detec-
tion [FRBS08], routing table analysis [Hus01] and Service Level Agreement
(SLA) compliance verification [FMR04].

Despite such a rich set of potential applications, current BGP monitoring
practices are quite limited: very often, they employ open source BGP daemon
implementations to establish extra BGP peerings with border routers. The
daemon acts as a route collector, in the sense that it collects information re-
ceived via those extra peerings, dumps it in some format, and stores it for future
analyses. For example, this is the approach adopted by RouteViews [Ore] to

∗Part of the material presented in this chapter is based on the following publications S.
Vissicchio, L. Cittadini, M. Pizzonia, L. Vergantini, V. Mezzapesa, M. Papagni . Beyond
the Best: Real-Time Non-Invasive Collection of BGP Messages. In Proc. Internet Network
Management Workshop/Workshop on Research on Enterprise Networking (INM/WREN
2010), USENIX, 2010.
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collect BGP data for the Internet community. Such a practice has two major
drawbacks: (i) it is only able to collect those routes that have been selected
as best by the routers that peer with the collector; and (ii) it is only able to
collect BGP messages after ingress policy application, which can modify the
messages. Unfortunately, these drawbacks prevent exploiting the monitoring
system for interesting applications like fine tuning of ingress policies, verifica-
tion of SLAs and analysis of what-if scenarios (e.g., what if one of my providers
goes down?). Recently, the BGP Monitoring Protocol [SFS10] has been pro-
posed to overcome those limitations, but it is still experimental and requires
software support on the routers.

In this chapter, we define a novel technique for building a BGP monitor-
ing system that overcomes limitations of state of the art solutions. We start
discussing, in Section 5.2, realistic scenarios demanding for an improvement in
existing BGP monitoring architectures. In Section 5.3, we define a set of re-
quirements that an ideal BGP monitoring system should satisfy so that an ISP
can take the biggest possible advantage from its deployment. In Section 5.4,
we describe our proposal for a BGP monitoring system, outlining its archi-
tecture and discussing the most relevant components. Our approach enables
real-time, non-invasive and scalable collection of all BGP messages received by
BGP border routers. For this purpose, we exploit a usually overlooked feature
that allows a router to selectively clone IP packets and send them to a remote
collector. We make use of such a feature to copy every incoming TCP segment
belonging to BGP sessions. After possibly reordering out-of-order segments,
our collector parses the BGP messages and stores them in the standard MRT
format [BKL09]. Based on the requirements defined in Section 5.3, we evaluate
our technique in Section 5.5. By means of experiments performed on one of
the cheapest commercial routers targeted to ISPs, we show that deploying our
solution negligibly affects the performance of border routers with respect to
traffic forwarding throughput, packet latency and router CPU usage. We also
show that our prototype implementation can monitor hundreds of BGP routers
on commodity hardware. We also check the accuracy of the collected data.

We compare our approach with existing solutions in Section 5.6, showing
that our solution better fulfills the requirements we identify for an ideal mon-
itoring system. Among the most important advantages of our proposal, we
also stress its flexibility. Indeed, the same approach can be adopted to monitor
other signaling protocols. In this light, we consider this work as a first step
towards a centralized monitoring solution for the whole control plane.

Finally, conclusions are drawn in Section 5.7.
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Figure 5.1: A simple network scenario wher collecting non-best routes can be
very useful for business intelligence activities and detection of SLA violations.

5.2 Motivating Scenarios

In this section, we show simple scenarios in which existing monitoring tech-
niques cannot be exploited to perform business-critical activities, as they do
not support monitoring of all BGP routes and collection of BGP messages
before ingress policy application.

What-If Analyses

We start by analyzing a case in which monitoring all BGP messages is necessary
for performing what-if analyses. We refer to the routes received by at least one
border router but not picked as best (hence, not propagated further inside the
AS) as non-best routes.

Consider the scenario depicted in Fig. 5.1. An ISP X configures one of its
border routers to peer with two different upstream providers A and B. For
economic reasons, X always prefers to send traffic to ISP A, and it is willing
to use the peering with B only as backup. To respect this policy, the router
is configured to assign a higher value of the local-preference attribute on
the route announcements received from A with respect to those received from
B. In this setting, collecting non-best routes enables X to perform analyses of
what-if scenarios, answering questions like the followings.

• What if the link with the upstream provider A goes down? Are all the
Internet prefixes reachable through B?
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• What happens to paying traffic if I set different values to some BGP
attributes (e.g., local preference or MED) on routes announced by ISP
A?

• What is the effective redundancy provided by the backup link? Does
B provide different paths to destination prefixes with respect to those
provided by A? Can a single failure on the Internet affect the capability
of X to reach some destination using both links with A and B?

SLA and Quality Monitoring

Monitoring only best routes prevents the BGP monitoring system from detect-
ing potential SLA violations and assessing the quality of the service offered by
upstream providers.

Refer again to Fig. 5.1. Assume that X has a SLA with both its providers
stating that a path for any prefix in the full Internet routing table must be avail-
able during 99.9% of the time. In this case, it would be impossible to verify
whether B complies with signed SLA, unless non-best routes are collected. In-
deed, non collecting non-best routes would provide information about provider
A only.

Moreover, collection and analysis of non-best routes is necessary to monitor
the quality (e.g., in terms of AS-path length) of the routes announced by both
A and B. Observe that quality monitoring can also trigger refined business-
intelligence activities, and help answering questions like “Is it convenient for
X to keep the link with A as primary or it is better to send the traffic relative
to some or all the prefixes to B?”.

Historical Data

BGP messages should be collected as they are before border routers apply
input policies.

Consider the scenario in which an AS X decides to maintain historical BGP
data for several months, in order to perform some analyses on the updates
received from its providers over time. In this case, a single change in the
policy applied by AS X on one of its border routers would invalidate the entire
historical dataset, since data collected in the past would be no longer consistent
with the new one. Indeed, in this case, differences in the attribute value within
some BGP message could be caused by a change in the policy enforced by X
or a change in the BGP announcements sent by one X’s neighbor or both.
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Notice that, even if the routing policy locally applied by the collector ISP
is known, the original BGP messages sent by neighboring ISPs can not be
reconstructed in the most general case, since policies are not always reversible
(e.g., if an attribute gets overwritten).

5.3 Requirements for a BGP Monitor

In the following, we describe a set of requirements that a BGP monitoring
system should ideally fulfill.

• Collection of non-best routes updates. BGP routers select a single
best route among a set of candidates. Although non-best routes have no
impact on where packets are forwarded, keeping track of them allows an
ISP to better engineer its traffic and analyze what-if scenarios.

• Policy independent data collection. An ideal collection system should
reconstruct the original BGP messages as sent by neighboring ISPs, with-
out being affected by the locally configured policies. This allows ISPs to
decouple BGP data from BGP policies, so that policy changes cannot
affect the consistency of historical data.

• Real-time data collection. A BGP monitoring system should be able
to collect data in real-time, or at least in near real-time. That is, a BGP
update should be available for applicative analysis within few seconds.
This is a crucial requirement for network management applications: net-
work administrators want to know what is going on while it is going on,
not hours later.

• Low impact on router resources. A typical constraint on manage-
ment systems is to have a small impact in terms of extra resource demand
(e.g., CPU usage, throughput and bandwidth) on the network infrastruc-
ture. This is especially true for BGP monitoring, given that BGP border
routers typically have to forward huge amounts of traffic.

• Cost-efficient deployment. To be realistically deployable in large net-
works, the monitoring system should be able to handle hundreds of border
routers employing few machines equipped with commodity hardware.
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Figure 5.2: A deployment scenario of the proposed monitoring system.

5.4 Proposed Architecture and Implementation

We now propose an architecture for a BGP monitoring system that aims at
satisfying all the requirements listed in Section 5.3. The key idea is to mandate
border routers to capture all the incoming TCP segments belonging to BGP
sessions with eBGP peers and forward them to a remote route collector. The
route collector is responsible for reassembling the TCP segments, decoding
BGP messages and storing them in MRT format [BKL09]. We show that this
technique can be implemented using a feature commonly available on routers
together with ad-hoc software employed on the collector side.

Fig. 5.2 depicts the architecture of our solution in a typical deployment
scenario. In this example, ISP A configures its border routers BR1 and BR2
to clone BGP packets and send copies to a remote Route Collector. Since
packet cloning is performed before applying local policies, the route collector
will receive BGP messages exactly as they are sent by eBGP peers. This feature
allows ISP A to monitor what routes are announced by its peers B, C, and
D. Of course, this approach supports private peerings between ISPs as well as
peerings at public Internet eXchange Points (IXPs).

Fig. 5.2 highlights the role of the two main architectural components: the
border router (BR) and the route collector (RC). We provide details on each
component in the remaining of the section.
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Border Routers: Cloning BGP Traffic

The majority of ISP-targeted commercial routers provides the feature to clone
IP packets and send copies to a remote machine. This is mostly used for
copying traffic to Intrusion Detection Systems [cisd]. Leading vendors also
provide filtering capabilities that allow operators to specify which packets must
be cloned. To maintain a vendor-independent terminology, we will refer to this
feature as Selective Packet Cloning (SPC). An SPC-enabled BR copies the
packets received from user-specified source interfaces and matching an optional
filter to another interface, which we call destination interface.

Depending on the capabilities of the device, a destination interface can be
either a physical interface (e.g., an Ethernet interface), a VLAN interface (via
802.1q encapsulation), or a tunnel interface (e.g., IP-in-IP encapsulation or
Generic Routing Encapsulation).

We now briefly describe the SPC feature as implemented in Cisco and Ju-
niper devices. The cheapest Cisco devices targeted to ISPs (e.g., Cisco 7200
and 7300 routers) provide the Router IP Traffic Export (RITE) feature [cisd].
A RITE-enabled router can select packets received on certain interfaces ap-
plying IP- and TCP-based filters, and forward cloned packets over a VLAN
interface. More expensive Cisco routers (i.e., 7600 series or greater) support
the Encapsulated Remote SPAN (ERSPAN) feature [cisa], which provides a
superset of the functionalities offered by RITE, e.g., the possibility to forward
cloned traffic over a tunnel. Both RITE and ERSPAN can be used to imple-
ment the SPC feature on Cisco devices. Juniper’s SPC support is called Port
Mirroring [junb]. Traffic received via user-specified ingress interfaces can be
cloned and forwarded over a VLAN or a tunnel (IP-in-IP or GRE) interface.

Enabling SPC feature on BRs requires a very small amount of extra config-
uration. For example, Fig. 5.3 shows how to configure RITE on Cisco routers.
Steps (i) and (ii) only need to be performed once, while Step (iii) has to be
repeated for each of the BR’s interfaces that are used for BGP peerings.

Route Collector: Receiving, Reconstructing, and Storing
BGP messages

Cloned TCP segments are sent from BRs to the RC which decodes and stores
BGP messages. The RC performs the following activities, as summarized in
Fig. 5.4.

• Packet reception. The RC receives cloned packets and buffers them
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RITE Configuration Steps

Step (i) - Define a filter to select BGP traffic
7201(config)#access-list 100 permit tcp any any eq bgp

Step (ii) - Define a destination interface
7201(config)#ip traffic-export profile myPr

7201(config-rite)#interface vlan1

7201(config-rite)#incoming access-list 100 mac-address <addr>

Step (iii) - Select one or more source interfaces
7201(config)#interface ge0/0

7201(config-if)#ip traffic-export apply myPr

Figure 5.3: Steps for configuring SPC on Cisco routers.

Figure 5.4: Main activities performed by the route collector software.

for further elaboration.

• TCP stream reconstruction. Since the RC does not establish a TCP
session with the BR, cloned TCP segments might arrive out of sequence.
Therefore, for each eBGP peering the RC needs to reorder packets to
extract the TCP stream. Duplicated segments are discarded. To keep
resource consumption at the BR as low as possible, the RC silently ignores
lost cloned TCP segments, if any.

• BGP message decoding. The reconstructed TCP stream is analyzed
to decode BGP messages and infer BGP session state changes.
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• BGP message storing. BGP messages and inferred state changes are
stored (e.g., in MRT format [BKL09]).

We developed a prototype RC that is based on the standard tcpdump utility
for receiving cloned packets. We used nice to schedule the receiving process
with high priority, and then send the received packets to a Perl script that is
able to perform TCP stream reconstruction in pipeline. Finally, another Perl
script takes the reconstructed stream in input and writes BGP messages in
MRT format on a file.

5.5 Evaluation

In this section, we evaluate the extent to which our proposal meets the re-
quirements we defined in Section 5.3. In particular, we measured performance,
accuracy and scalability of the proposed monitoring system.

In all the experiments we ran, we found that no cloned packet was
dropped and BGP messages were always correctly reconstructed and
stored on disk. Hence, we focus on the performance degradation at the BRs
and on the scalability of the RC component.

Border Router Performance

We evaluate the router load in terms of frame loss (throughput), average CPU
usage, and average packet latency. In our experiments, we used a Cisco 7201
router, referred to as device-under-test (DUT ) in the following. The router is
equipped with four Gigabit Ethernet ports, 1 Gigabyte of RAM, and a 1.67
GHz Motorola Freescale 7448 processor. The vendor’s datasheet states that
this router is able to route a maximum of 2 million packets per second. We
chose the Cisco 7201 because it is considered one of the cheapest router targeted
to ISPs.

Since the performance of the DUT is highly dependant on the total amount
of traffic it has to route, we evaluate the impact of SPC features in different
scenarios. In the following, we describe each scenario, discussing the results of
our tests.

Baseline Measurement

First of all, we measured the performance of the device without any special
configuration. We use the results of this experiment as a baseline for evaluating
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Figure 5.5: Baseline test topology.

the impact of enabling the SPC feature on the DUT.
Fig. 5.5 illustrates the baseline test topology. Our traffic generator (a

SmartBits 600B) only has two interfaces, and we connected both of them to
the router. Note that a unidirectional traffic flow on a full-duplex Gigabit Eth-
ernet link can generate a maximum of 1, 488, 095 packets per second [KP02],
which would not be enough to measure the maximum throughput of the router.
For this reason, we configured our traffic generator to send bidirectional traffic,
that is, traffic was sent from interface 1 to interface 2 and viceversa at the same
time.

To make the router work properly in this setting, we configured it with
20 static routes, 10 for each interface connected to the traffic generator. We
programmed the traffic generator to generate 100 unidirectional IP flows (i.e.,
source-destination pairs) by randomly picking a source address in each of the 10
prefixes configured on interface ge0/0 and a destination address in each of the
10 prefixes configured on interface ge0/1. The same was done in the opposite
direction (from ge0/1 to ge0/0), for a total of 200 simulated IP flows. Traffic
was sent at a fixed packet rate, evenly distributed among all flows (i.e., each
flow got 1/200 of the traffic). Each packet was 64 bytes long, the minimum
size allowed on Ethernet.

We measured packet loss at different packet transmission rates. Results
are summarized in Fig. 5.7, where we also show the results presented in the
next section for comparison. The x-axis represents packet rate, expressed as
the percentage with respect to maximum packet rate for full duplex Gigabit
Ethernet. The y-axis represents frame loss, expressed as the ratio between lost
frames and sent frames.

In our setting, the Cisco 7201 router can handle circa 1, 845, 000 packets per
second (near 60% of the maximum packet rate) experiencing a negligible frame
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device-under-test
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Route CollectorISP’s BGP router
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Cloned TCP segments over a VLAN

Real world updates over eBGP peering

Figure 5.6: Topology in the single peering scenario.

loss (less than 0.01%). The router was not able to handle the two million
packets per second that the vendor’s datasheet claims (vertical dashed line
in Fig. 5.7) without dropping frames. This is possibly a side effect of using
only two interfaces or it might be due to our flows setting. Nevertheless, this
fact does not affect the validity of this measure as a baseline for the following
experiments.

Single Peering Scenario

After having performed the baseline measurement described in the previous
section, we evaluated router performance in a single BGP peering scenario.
Namely, we set up a testbed using the topology depicted in Fig. 5.6.

The DUT was connected to the traffic generator as in the baseline exper-
iment. Also, the DUT was configured in the same way and the same 200 IP
flows were sent by the traffic generator to the router. On a third interface of
the router we set up a BGP peering with a medium sized ISP. From this BGP
peering, the router received the full routing table, containing 310, 000 prefixes,
and a continuous stream of real world BGP updates. We configured SPC such
that incoming traffic belonging to the BGP peering was cloned on the fourth
interface of the router over a VLAN. A packet sniffer was attached to the same
VLAN and acted as a RC, capturing the cloned packets.

We performed the same experiment described in Section 5.5, the only dif-
ference being the size of the routing table, which, in this case, was increased by
the full Internet routing table received over the BGP peering. We performed
the test both with the SPC feature enabled (test “BGP-updates-mirror”) and
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Figure 5.7: Frame loss versus packet rate in the
single peering scenario.

disabled (test “BGP-updates-no-mirror”). Results are presented in Fig. 5.7.
For convenience, we also report the baseline measurement results (test “base-
line”) on the same diagram. It is easy to see that activating the SPC feature
essentially has no impact on the throughput achieved by the router. Moreover,
we found that the presence of a single BGP peering does not cause more pack-
ets to be dropped. This can be explained by noting that, since the synthetic
traffic is routed using static entries, the portion of the FIB that is accessed
never changes, making BGP-induced FIB changes irrelevant to the test traffic.

Five Peerings Scenario

To verify the impact of enabling SPC in a more realistic situation, we performed
more in-depth tests in the five peerings scenario.

Fig. 5.8 shows the topology of this scenario. We interposed five BGP dae-
mons (i.e., five Quagga [Ish] processes) between DUT and the ISP, in order
to amplify the original stream five times. Each BGP daemon had a peering
session with the ISP and one iBGP peering session with the DUT. This way,
whenever a BGP update was sent by the ISP’s BGP router, each BGP daemon
sent an update to the DUT. The configuration of all the devices is analogous
to that we used in the single peering scenario, the only difference being the
exploitation of the BGP third-party next-hop mechanism instead of the static
routes at the DUT.
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Figure 5.8: Topology in the five peerings scenario.

In this scenario, we measured packet loss, average CPU usage and average
latency when the router is solicited by the traffic generator with traffic at
increasing packet rates. We ran tests both with SPC enabled and disabled
and then compared the results. Since packet rates higher than 60% causes the
router to drop non-negligible amounts of frames, we do not report results of
the tests made for higher packet rates. We structured our tests in iterations
of 5 minutes each, during which the SmartBits sends traffic to the DUT at
the same packet rate. We chose this threshold estimating the interarrival time
between BGP update bursts during daily hours of week days.

Fig. 5.9 reports the results of our tests. The y-axis shows the difference
(expressed as a percentage) between the performance of the router when SPC
is enabled with respect to when it is disabled. The x-axis represents packet
rate. It is easy to see that activating the SPC feature essentially has no impact
on the frame loss and on the average latency. The worst latency we recorded
was 375 µseconds with SPC enabled and 301 µseconds with SPC disabled.

Differences for CPU load are small and highly dependant on the presence of
BGP bursts. Anyway, activating SPC never affected CPU load for more than
2%.

Update Bursts Scenario

We set up another experiment to evaluate how SPC affects the performance of
the BRs under heavy BGP update bursts. The topology of the testbed is the
same of the previous experiment (see Fig. 5.10).
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Figure 5.9: Performance degradation induced by SPC
in the five peering scenario.
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Figure 5.10: Test topology in the update bursts scenario.
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Figure 5.11: Packet loss in the update bursts scenario.

In this experiment, however, we tore down and restored the BGP session
with the ISP’s BGP router, at regular intervals of 1 minute each. This way,
we were able to generate huge amounts of BGP updates. In fact, every time
the BGP session was tore down (restored), the entire Internet full routing
table was withdrawn (reannounced) by each of the five BGP daemons, and the
DUT received almost 1.5 million BGP route withdrawals (announcements).
Moreover, we configured our traffic generator to send a considerable amount
of traffic; namely the SmartBits generated traffic at the 45% of the maximum
packet rate obtainable on a full-duplex Gigabit Ethernet.

We highlight that such a scenario is unrealistic. Indeed, we stressed the
DUT with traffic sent at the 75% of the maximum throughput that can be
achieved by the device and routers of an ISP should not be (and typically are
not) so overloaded by regular traffic. Moreover, real-world routers typically do
not receive such huge amounts of BGP updates.

We run the experiment both with SPC disabled (test “reset no mirror”)
and enabled (test “reset mirror”). Fig. 5.11 summarizes our results: the x-
axis represents time, while the y-axis represents frame loss as measured by our
traffic generator. We found that the DUT lost a very small fraction of traffic,
about 0.001%, when working with SPC disabled, as shown by the red solid line
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in Fig. 5.11. As predictable, packet loss spikes correspond to the reception of
BGP update bursts. The spikes are higher when the SPC feature is activated
on the router, but the performance of the router is affected to a small extent,
as it is evident by observing that packet loss never exceeds 0.01%.

We also ran a 5 minutes experiment sending traffic at the 45% of the max-
imum packet rate, while repeatedly tearing down and bringing up the BGP
peering with the ISP’s router. We measured that, in these conditions, the
router dropped less than 0.005% of packets even when SPC was enabled on it.

Performance of the Collector Software

From a theoretical point of view, scalability of the RC component should not
be a problem. We now discuss the main factors that can affect the scalability
of the collector software.

• Receiving speed. To avoid dropping some TCP segments, the RC must
be able to receive packets at the speed they are sent on the network. Note
that cloned TCP segments are received by the RC at approximately the
same time when the BR received the original segments, the only difference
being the cloning delay introduced by the BR and the network latency
from the BR to the RC. The throughput of the TCP session between the
BR and its BGP peer is limited by the TCP flow control mechanism, and
it is roughly determined by the performance of the BGP software process
running on the BR. The BGP software process, in turn, is bounded to the
CPU speed of the BR. Given the current prices for commodity hardware,
we can safely assume that the CPU speed of the RC exceeds, or is at
least comparable with, the CPU speed of the BR. Moreover, the receiving
process on RC just needs to buffer packets, a much less CPU-intensive
task compared to what the BGP daemon on the BR needs to do. Hence,
as long as the receiving process on the RC is scheduled with a sufficiently
high priority, the receiving speed is not a problem.

• Processing and storing speed. TCP stream reconstruction, BGP
message decoding and data storage should be fast enough to sustain the
average BGP traffic rate. Peak traffic rates are easy to accommodate by
buffering received packets at the input of TCP stream reconstruction. All
these activities take a constant amount of time for each BGP message,
and the most critical with respect to processing time is the storage. A
key feature of those three activities is that they are trivial to parallelize
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across multiple CPUs, allowing us to achieve good scalability by simply
adding more processing resources to the RC. The possibility to improve
write throughput of disks adopting RAID 0 is bounded only by the cost
of additional disks.

We also performed some experimental tests to assess the amount of re-
sources actually required on the RC side. During these tests, we separately
measured the processing time needed for receiving the packets, reconstructing
the TCP stream, decoding BGP messages and storing them in MRT format.
All tests were performed on commodity hardware (a laptop equipped with a
dual-core 2.6 GHz CPU and 4G of RAM). We stress that summing the measures
we obtained in these experiments provides an upper bound on the performance
that can be achieved by a RC, since processing times can be greatly improved
by enabling pipelining and parallel processing, as all the activities are trivial
to parallelize across multiple processors.

We now present results of our experiments, reporting average values. We
captured five BGP sessions during the initial full table transfer (nearly 1.5
million prefix updates, 37, 157 TCP segments, most of them of the maximum
length). We re-played the capture file with tcpreplay using the topspeed
option on a 100Mbit ethernet link connected to our prototypical RC. Actual
throughput is about 80Mbit/sec, much higher than the throughput of regular
BGP sessions. Re-playing the capture file with tcpreplay took 3.38 seconds,
while originally the BGP sessions lasted slightly less than 2 minutes and a half.
A regular BGP session can reach such a high speed just sporadically. Even in
this extreme experiment, we were able to capture all the packets with tcpdump

and store them to an output file. TCP stream reconstruction from the output
file took 2.6 seconds, while BGP session decoding and storage in MRT format
took 1.7 seconds. Overall, a single prefix update was processed in less than 5.23
µseconds on average. Given that real world BGP sessions exhibit an average
of less than 100 prefix updates per second, our prototype implementation can
handle hundreds of BRs on commodity hardware.

Clearly, multiple route collectors can be deployed on the same network.
However, given our experimental results, we expect that even tier-1 ISPs will
only need a handful of collectors.

5.6 Related Work

Two naive approaches for BGP monitoring can be enabling debug option
on router devices and installing optical taps and ad-hoc filtering boxes near
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each BR. However, debugging output stream “might render the system un-
usable” [cise]. On the other hand, installing an optical tap and a dedicated
filtering box for each optical fiber of each BR would be too expensive.

Existing Solutions

Existing approaches can be broadly classified in two categories: those employ-
ing some kind of route collectors to which BGP messages are pushed by border
routers, and those adopting separate protocols to pull BGP information from
the routers.

The typical architecture of a BGP monitoring system belonging to the first
category essentially consists in a route collector, deployed inside the network,
that is configured to maintain iBGP peerings with every BR. Quagga [Ish],
OpenBGPd [BJ], BIRD [Fil] and PyRT [Mor] are probably the most famous
and widespread tools to set up a route collector this way. Essentially, Quagga,
OpenBGPd, and BIRD simulate the behavior of real routers, but they also
support dumping BGP messages in MRT [BKL09] format. The Python Route-
ing Toolkit (PyRT) [Mor], on the other hand, only implements a minimal set
of features, and is more lightweight and scalable.

BGP monitoring systems based on separate management protocols are de-
signed to pull information from routers. In particular, SNMP has a number of
MIB objects that are dedicated to BGP monitoring activities [HH06]. Often,
operators pull information by screen scraping, i.e., using software that connects
to the device, e.g., via Telnet or SSH, issues a specific command, e.g., show ip

bgp, and collects the output.
Recently, a new ad-hoc protocol has been proposed in the IETF (the BGP

Monitoring Protocol, or BMP) [SFS10]: it is based on the idea of sending
received BGP messages via a TCP connection with a monitoring station.

Comparison with Related Work

Table 5.1 summarizes the main differences between our approach and existing
solutions. In the following, we discuss them in more detail.

• Collection of Non-Best Routes Since Quagga, OpenBGPd, and PyRT
rely on an iBGP peering, updates for routes that the BR does not se-
lect as best routes will never be collected at the RC. Non-best routes
can be collected by screen scraping (e.g., via show ip bgp queries), and
there exist SNMP managed objects for every route received. BMP and
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Quagga PyRT SNMP BMP SPC

non-best route

collection
no no yes yes yes

policy independent

data collection
no no yes yes yes

real-time data

collection
no no no almost yes

impact on router

resources
very low very low heavy very low very low

cost efficient

deployment
no yes yes yes yes

Table 5.1: Comparison between our solution and related work with respect to
the requirements defined in Section 5.3.

the solution we present in this chapter are currently the only way to
continuously monitor non-best routes.

• Policy Independent Data Collection Quagga, Pyrt, and OpenBGPd
can only monitor routes selected as best, and they are forced to collect
BGP messages after ingress policy application. On the contrary, polling-
based mechanisms typically provide a way to gather BGP messages as
they are before BGP filters are applied (see [HH06] for SNMP based
mechanisms). Both BMP and our approach also allow an ISP to collect
policy independent data.

• Real-Time Collection Solutions that employ additional iBGP peerings,
such as Quagga, OpenBGPd and PyRT, are, in principle, capable of
collecting BGP messages in real time. However, if messages are dumped
periodically, additional delay is introduced before data are available for
an application to analyze. For example, Quagga can dump BGP data
not faster than one file per minute. Real-time is of course unfeasible with
SNMP and other polling-based mechanisms: their usage is restricted to
periodic snapshots of BGP routes received by BRs. The current BMP
specification asserts that BMP messages “are not real time replicated
messages received from a peer” [SFS10]. Section 5.5 shows that our
approach can collect data in near real-time.

• Low Impact on Router Resources Handling an iBGP peering is a
lightweight task for a BR, hence solutions based on Quagga, OpenBGPd,
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or PyRT do not put stress on routers. On the other hand, polling-based
solutions employing SNMP or screen scraping heavily affect the perfor-
mance at the BR, since it must process the whole BGP table and send a
snapshot to the monitor. Our experimental tests show that our approach
affects the performance of the BR only minimally, see Section 5.5. We
expect that also BMP has a low impact on router resources in most of
the cases. See Section 5.6 for a more detailed comparison between BMP
and our solution.

• Cost efficient deployment Since Quagga and OpenBGPd emulate a
real router, CPU cycles and memory are wasted at the route collector for
activities that are useless to a BGP monitoring system, e.g., performing
the best route selection process. This makes them unable to handle a
large number of peers providing a full Internet routing table. PyRT is
not affected by this problem since it only implements a minimal set of
features, disregarding activities that are not relevant to the monitoring
system. Since SNMP and screen scraping have no real-time constraint, a
single monitor could be able to handle hundreds of BRs. The performance
study in Section 5.5 ensures that our approach and, reasonably, also BMP
can handle hundreds of BRs on a single RC.

Comparison with BMP

Section 5.6 highlights that only our approach and BMP can reasonably be used
in a monitoring system which aims at satisfying all the requirements listed in
Section 5.3. However, BMP is not yet standardized and, currently, only JunOS
versions later than 9.5 support BMP.

The main technical difference between BMP and our approach is that BMP
relies on TCP while our solution forwards packets from BRs to the RC over
IP tunnels or VLAN. Our solution is based on enabling SPC at the BRs and
does not need any additional daemon to be run. SPC involves only switching
capabilities (either software or hardware) which are usually highly optimized.
On the contrary, BMP is not implementable using switching mechanisms, must
rely on conventional TCP implementation, and usually requires an additional
daemon.

Adopting TCP, BMP guarantees reliable delivery of copied BGP messages
to the collector. However, it is not clear what the router resource consumption
would be under extreme circumstances, e.g., when the RC tries to slow down
the BR by shrinking the TCP congestion window. Our proposal does not
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mandate the router to maintain any state. Observe that RCs can easily check
whether some TCP segments are missing by analyzing sequence numbers of
cloned traffic.

Essentially, our approach pushes as much complexity as possible to the
collector. The benefits are twofold: on one hand, a simpler router-side com-
ponent results in precious resource savings; on the other hand, our solution is
easy to extend to monitor other control-plane protocols than just BGP without
requiring changes on routers.

5.7 Conclusions

In this chapter, we defined requirements for an ideal control-plane monitoring
system. We especially referred to BGP monitoring, since it can allow ISPs to
take better high-level economic decisions about peerings and commercial agree-
ments as well as to improve troubleshooting and other business-intelligence
activities.

Given the limitations of existing solutions, we proposed a new technique
for real-time collection of all BGP messages sent by BGP peers, before the
application of input policies. Through several experiments, we showed that
our approach accurately records the BGP updates received, it is easy to con-
figure on current routers, it is scalable, and it has a negligible impact on the
performance of the monitored border routers.

Among the most important benefits of proposed architecture, we recall
(i) leverage of efficient features, available on today’s routers, for selectively
cloning packets to a central monitoring station, and (ii) the possibility to ex-
tend our approach to monitor other control-plane protocols.

As future work, we plan to improve our collector prototype (e.g., for sup-
porting a bigger set of protocols) and deploy our solution in real networks.
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Chapter 6

Leveraging Router

Programmability for Traffic

Matrix Computation ∗

6.1 Introduction

After having tackled the control-plane monitoring problem in Chapter 5, we
now turn our attention to data-plane monitoring. In particular, we focus on
efficient and accurate computation of traffic matrices.

A traffic matrix (TM) quantifies the amount of traffic traversing a network
from every ingress point to every egress point in a given time interval. This
provides operators with a measure of the actual bandwidth demand. TMs are
practically used by Internet Service Providers (ISPs) as an input for several
business-critical activities related to the network design, e.g., capacity planning,
provisioning and traffic engineering [PTL04]. Computing TMs in real-time
would also enable anomaly detection and on-line diagnosis of routing events
and device failures [ZGWX06].

Computing TMs, however, is a challenging task, since direct measurement
is unpractical [ZGWX06], packet sampling forces a trade-off between the over-
head imposed on network devices and the accuracy of the TM, and estima-

∗Part of the material presented in this chapter is based on the following publications G.
Balestra, S. Luciano, M. Pizzonia, S. Vissicchio. Leveraging Router Programmability for
Traffic Matrix Computation. In Proc. Workshop on Programmable Routers for Extensible
Services of Tomorrow (PRESTO 2010), ACM, 2010.
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tion techniques rely on statistical assumptions and cannot be arbitrarily accu-
rate [MTS+02].

In [VE04], Varghese and Estan envision a new measurement approach,
which can lead to a superior trade-off, by carefully evaluating implementa-
tion costs, understanding real needs, and leveraging other system parts. We
believe that this challenge can now be tackled exploiting router programma-
bility features recently made available in commercial products. Following this
idea, we propose a new architecture for directly measuring TMs, founding on
the possibilities opened by router programmability. Because of their practical
importance for ISPs [BDJT01], we focus on PoP-to-PoP TMs, that account of
traffic between each pair of Points of Presence of an ISP. However, our solution
can be extended to other types of TMs. Contrary to existing approaches, we
develop a distributed solution for the TM computation. Indeed, our approach
is based on the possibility to program routers to autonomously compute parts
of TM and a central component is only used to trivially combine precomputed
data and display the TM. This allows us to limit the total overhead [PTL04].
Our architecture can be implemented using current technologies and avoids the
need for packet sampling since it leverages highly optimized packet counting
features already available on commercial routers.

In order to show the feasibility of our solution, we prototypically realized
our idea on a Juniper router and experimentally evaluated our prototype in a
testbed. Preliminary experiments show that our architecture has the potential
to enable accurate computation of TMs with a tunable time granularity and
limited router load.

The rest of the chapter is organized as follows. In Section 6.2, we describe
existing solutions for computing TMs along with their major limitations, fur-
ther motivating our research effort. In Sections 6.3 and 6.4, we describe our
proposed architecture and our prototypical implementation, respectively. In
Section 6.5, we report the results of our experimental evaluation. Finally, we
conclude in Section 6.6.

6.2 State of the Art

Because of their importance, TMs and TM computation attracted huge in-
dustrial and research effort. Different approaches have been proposed and
evaluated over the years.

Direct measurement of traffic data on network devices is probably the
most straightforward approach to compute TMs. Unfortunately, this approach
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is generally considered unpractical, or even unfeasible, because of the huge
amount of data to be managed and the lack of an appropriate measurement
infrastructure [ZGWX06].

To mitigate these problems, sampled flow data are typically collected on
routers and combined with routing information. In particular, Cisco NetFlow
v9 [net] allows collection of flow records that also include some routing infor-
mation (e.g., the BGP next-hop address). Techniques based on sampled flow
statistics are presented in [FGL+00, PTL04]. However, packet sampling forces
a trade-off between the overhead imposed on network devices and the accuracy
of the TM.

Estimation techniques based on indirect measures, e.g., aggregated link
loads that can be collected using SNMP [CFSD90], are proposed in literature
as an alternative approach. Most of these techniques are based on mathematical
and statistical methods and can combine multiple data sources (e.g., SNMP and
NetFlow data, BGP routing information, etc.) [MTS+02, ZRDG03, ZGWX06].
However, this approach generally relies on statistical assumptions and periodic
snapshots of routing information, resulting in a final estimation whose accuracy
cannot be arbitrarily high (error is typically about 10%) and also depends on
the absence of routing changes [MTS+02, ZGWX06, VE04].

A simulation approach is proposed in [UQLB06].
All the solutions listed above are centralized in that they require a central

component that gathers all necessary data and computes, or estimates, the TM.
A distributed solution is advocated in [PTL04] in order to improve efficiency
and lower total overhead. In this chapter, we propose an architecture that
enables the TM computation to be distributed, relying on current technologies.

An approach to directly collect statistics on routers is proposed in [XHB00],
but the technique can only be applied to MPLS networks. More recently,
a new approach to directly measure TMs, based on accounting capabilities
of switches, is proposed in [TGG10]. However, its applicability is limited to
OpenFlow networks and the usage of per flow counters would not scale to large
ISP networks.

Our solution philosophically conforms to the general proposal described
in [VE04], where authors suggest to map prefixes into equivalence classes (ac-
cording to the BGP next-hop) and set up per-class counters. However, lever-
aging router programmability, we do not require any support from routing
protocols. This makes our solution readily deployable.
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6.3 Leveraging Router Programmability

Nowadays, the vast majority of commercial devices implements a counting
mechanism (CM ) that can be configured to selectively count traversing traf-
fic. Such a counting mechanism allows operators to define a set of counting
rules, each responsible for incrementing a specific counter when traffic satisfies
a given matching condition. Being involved in packet forwarding, this mecha-
nism is tightly integrated within the data plane and is highly optimized [SDEK].
CMs usually track both number of packets and bytes.

A CM can be activated on real-world devices through simple configurations.
E.g., it can be enabled on Juniper routers using the count statement within
an appropriate firewall filter. On Cisco routers, statements policy-map
and class-map can be used for the same purpose. Current router architectures
do not allow arbitrary matching condition to be specified. Indeed, CMs can
match traffic only based on the information that is known by the data plane,
e.g., the IP next-hop, the IP destination address and other fields of the IP
packet. Unfortunately, computing a PoP-to-PoP TM requires to correlate, at
each ingress point, the destination address inside IP packets with the BGP
next-hop attribute [RLH06] as specified in the BGP Routing Information Base
(RIB) of traversed routers.

Since collecting per-prefix data does not scale up in common scenarios [VE04],
plain usage of counting mechanisms is not viable for computing TMs. We pro-
pose to conveniently configure the CM on routers located at each PoP, grouping
IP flows on the basis of the BGP next-hop. Router programmability is ex-
ploited to dynamically adapt counting rules to routing changes.

Architecture

Fig. 6.1 shows our proposed architecture and the interaction between compo-
nents. Router programmability allows us to add new modules to the standard
modules of a router.

Among standard modules, the BGP routing daemon computes the associa-
tion between each IP prefix p and the BGP next-hop to which traffic to p has
to be forwarded. Also, the counting mechanism (CM ) is used as a primitive in
order to install appropriate counting rules on the router.

Counting rules to be installed are defined by the counting rules computing
module (CRCM ), which is new with respect to the standard router modules.
The CRCM configures the CM as follows. One counter per BGP next-hop is
set on the router. The matching condition of each counting rule R matches the
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Figure 6.1: Proposed architecture.

IP destination address of traversing packets with the IP prefixes associated
to a specific BGP next-hop NH(R) in the RIB. The action performed by each
counting rule R in case of a match is to increment the counter associated to
NH(R). Note that the CM typically ensures that only the rule matching the
most specific IP prefix is applied, hence it is coherent with the longest prefix
match rule applied for packet forwarding.

The most important task of the CRCM is to guarantee consistency between
counting rules and BGP routing information over time. For this purpose,
it interacts with both the CM and the BGP routing daemon. Interaction
with the BGP routing daemon is performed using standard protocols, since
currently available API does not provide special hooks for BGP events. In our
architecture, CRCM maintains an iBGP session with the BGP routing daemon
in which the daemon is configured as route reflector [BCC06]. Over that iBGP
session, the CRCM receives all the BGP best routes chosen by the router.
After the reception of a BGP update, the CRCM modifies the set of counting
rules accordingly, and forwards information about the changes that has to be
performed to the CM.

A counters access interface is also added to standard router modules. It
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enables external systems to easily access the values of counters. In practice,
the counters access interface can be either designed from scratch or based on
other standard protocols like SNMP.

Practical Issues

A few issues must be handled when implementing the architecture depicted in
Fig. 6.1.

Firstly, the CM might take some time to activate a new counting rule or
to modify an existing one, since compilation and optimization steps may be
required. Moreover, routing events, like routing instabilities or BGP path ex-
plorations, can generate many short-lived routing updates that can force the
system to update rules at an unnecessarily high rate. Depending on imple-
mentative aspects, the continuous modification of single counting rules can be
time consuming and can introduce errors in the TM computation. For these
reasons, the CRCM can gather BGP updates and require the CM to update
the counting rules at tunable time intervals, e.g., periodically. This allows the
CM to use a single transaction for updating many rules and helps limiting the
impact of transient routing events. Time granularity at which counting rules
are updated on the device can be conveniently tuned according to specific needs
and device performance. Clearly, postponing rule updates can, in turn, intro-
duce errors, since the CM is not always aligned with the routing control plane.
To minimize such errors, the CRCM can assign a priority value to each count-
ing rule according to the amount of traffic handled by that rule, making the
system more responsive to updates that are more likely to introduce a larger
error, if postponed. Effectiveness of the priority mechanism is increased by the
fact that traffic distribution across the Internet is becoming more and more
skewed [LIJM+10]. To prioritize rule updates, the CRCM may also take into
account the values of counters stored by the CM (dotted line in Fig. 6.1).

Also, the CRCM can be implemented either totally inside routers or, at
least partially, outside them. Both options allow a distributed solution to be
deployed, mandating each router to autonomously compute a part of the TM,
thus significantly reducing the total overhead [PTL04]. On one hand, the first
option minimizes the communication overhead while forwarding capabilities of
routers should not be affected, since the CRCM only needs to use the control
plane CPU and memory (see Section 6.4). On the other hand, the latter option
would make the architecture suitable for more flexible measurement operations.
For instance, moving the CRCM outside routers allows the rule computation
logic to be centralized and easily modified, e.g., providing support for different
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kinds of what-if analyses. For example, an operator could compute the traffic
matrix resulting from applying a different BGP configuration to routers, using
a fictitious BGP RIB to feed the external CRCM. Such a flexibility comes at
the cost of re-introducing some communication overhead.

Key Benefits and Major Limitations

In order to efficiently manage huge volumes of traffic, the counting mechanisms
already available on routers are typically implemented in a highly optimized
way (e.g., using ASICs) [SDEK]. One of the major benefits of our architecture
is that it exploits these optimized mechanisms, making packet sampling unnec-
essary. It consumes a limited amount of memory, since no data on IP traffic
flows is stored but only a counter per BGP next-hop and a set of counting
rules. Also, the way counting rules are actually stored on devices depends on
the implementation of the CM, that, however, must be designed to be scalable
since packet forwarding is concerned.

Usage of highly optimized mechanisms can allow our architecture to ac-
curately measure TMs in near real-time. Indeed, results of our preliminary
experiments (see Section 6.5) are quite promising. A complete performance
study, however, is subject for future work. Our evaluation is based on a proto-
type deployed on a Juniper device. This also shows practical feasibility of our
architecture. Observe that such an architecture can, in principle, be deployed
at any router that allows to configure the CM using programmability features.
In this sense, our approach is vendor independent.

Nevertheless, our architecture relies on few reasonable assumptions concern-
ing the routing control plane. First of all, routing information is assumed to
be correct, i.e., network configuration is assumed not to be subject to routing
or forwarding anomalies [GW02b]. If such anomalies can arise in the network,
the computation of the TM cannot rely only on local BGP routing information
owned by single routers. We also assume that all destination network prefixes
are advertised in BGP. Finally, the association between each BGP next-hop

and the corresponding PoP is assumed to be known or to be easily derived
from known topological information.

6.4 Implementation

We developed a prototypical implementation of the proposed architecture. A
high-level diagram of our prototype is depicted in Fig. 6.2. In order to facili-
tate the installation of counting rules and the access to the values of counters,
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Figure 6.2: High-level view of the prototype.

we deployed a router application inside a programmable router. The router
application communicates with an external system that implements the core
functionalities of the CRCM. The choice of implementing the CRCM outside
the router is motivated by the possibility of rapidly prototyping the module
and easily experimenting different strategies. Of course, deploying the CRCM
inside the router is also possible and it is part of our future work. All the oper-
ations performed by the external system are CPU-bound and communications
between submodules happen over pipes. Thus, implementing the whole archi-
tecture inside the router should only affect the control plane CPU and memory
usage. Being forwarding and control plane typically separated in commercial
devices, we expect that device capability to route packets should not be con-
cerned by our application.

To realize the router application, we used the Junos SDK, which allows third
party developers to install custom applications inside Juniper routers [KAB09].
To define and modify counting rules, our prototype exploits the firewall filters
manipulation facilities provided by the Junos SDK API.

The counting rules installer component allows the external system to spec-
ify simple commands for adding and removing counting rules, using an ad-hoc
protocol based on TCP. Right after receiving a command, the counting rules
installer uses the Junos SDK API to instruct Junos to perform the operation
specified by the command. Access to counters is provided by the counter reader
component, which can print current values of counters on a plain text file.
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The external system realizing the core of CRCM consists of two submodules:
a BGP receiver and a commands generator.

The BGP receiver is realized as a customly modified version of the Python
Routeing Toolkit (PyRT) open-source software [Mor]. It maintains a BGP
session with a given BGP peer and dumps the association between each IP
prefix and the corresponding BGP next-hop as communicated by its peer. The
BGP receiver separately dumps data concerning the BGP RIB and successive
BGP updates.

The commands generator processes data dumped by the BGP receiver in
order to generate the commands to be sent to the router application. We use a
single firewall filter containing several terms to implement the counting rules.

To avoid redundancy and lower the number of terms as much as possible,
the commands generator reduces the size of the BGP RIB using a Patricia
Trie data structure and an algorithm similar to that described in [DKVZ99].
Among optimizations performed, only one counting rule, matching the 0/0 IP
prefix, is added for the BGP next-hop associated to the highest number of
IP prefixes. Since that rule is installed on the router as the last-evaluated
counting rule, it matches only the traffic that is not destined to any other
BGP next-hop. Notice that correctness of the traffic count is not affected by
the usage of the 0/0 IP prefix since we apply counting rules on output traffic,
i.e., traffic that is not routed by the device does not increment any counter.
The Patricia Trie data structure is also exploited to elaborate successive BGP
updates, avoiding the generation of unnecessary commands. For instance, a
command is not generated for a BGP update that specifies an association
between an IP prefix and a BGP next-hop if the association between a less
specific IP prefix and the same BGP next-hop is already known. However, from
an algorithmic point of view, no guarantee is provided on the optimality of the
data structure (and of the resulting counting rules) after arbitrary sequences
of BGP updates. To avoid progressive degradation of the data structure, the
counting rules computation algorithm can be periodically re-run (i.e., once per
day).

Generated commands are finally collected for a tunable time interval, in
order to send them to the router application in groups and to eliminate redun-
dant ones (e.g., sequences of add and delete operations for the same term). We
implemented the commands generator module using few Perl and Bash scripts
that run in pipeline.
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Figure 6.3: Testbed topology.

6.5 Evaluation

In this section, we evaluate the viability of our approach, discussing the results
of experiments we run. In particular, we performed a preliminary study on
the load our solution imposes on routers, and we estimated the accuracy our
prototype is able to achieve. We repeated each experiment several times in
order for the results to be statistically significant. In the following, we present
average data.

The topology of the testbed we used in all the experiments is depicted in
Fig. 6.3. We deployed the router application presented in Section 6.4 on an M7i
Juniper router. The device is equipped with an old generation of Forwarding
Engine Board (FEB) which is not designed to support a high rate of rule
updates. In the following, we refer to the M7i router as the device-under-test
(DUT). We connected the DUT to a traffic generator, a Smartbits 600B. The
traffic generator generated and collected IP traffic traversing the DUT, which
was configured to route all packets back to the traffic generator. Since the
DUT is equipped with only two FastEthernet interfaces, we were not able to
measure performance (e.g., switching throughput) degradation when the device
is stressed with huge amounts of traffic. However, since the CM is implemented
in hardware in the DUT and the majority of the operations performed by the
router application are CPU-bound, we expect the throughput of the DUT to
be marginally affected by our solution. Our prototypical CRCM was installed
on commodity hardware (a desktop PC equipped with a dual-core 2.4 GHz
CPU and 4G of RAM). It was configured to receive the full BGP RIB and a
stream of real-world BGP updates from the border router of a medium-sized
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Italian ISP and to send the corresponding commands to the router application
inside the DUT.

In the first experiment, the CRCM generated the commands associated to
the full BGP RIB (consisting of more than 310, 000 IP prefixes) of the medium-
sized ISP and the corresponding counting rules were installed inside the DUT,
sending all the commands in a single group. Using our optimizations, we needed
only 408 counting rules, each matching 2000 IP prefixes at most, to represent
the entire BGP RIB. The total number of counters is 370. The generation of
all the commands took about 8 seconds and the installation of the whole set
of counting rules on the device took less than 40 seconds, during which the
control plane CPU usage at the DUT was about 90%. Observe that, since the
BGP RIB must be processed only once (for each reboot), this computation is
independent from the number of peerings the DUT has, and depends on the
RIB entries only.

We then checked that counters were correctly installed and properly worked,
by configuring the traffic generator to send traffic (at top speed for a FastEther-
net interface) destined to several IP prefixes and comparing collected data with
the values of the counters on the DUT. In all the tests we run, we found that
every packet sent by the traffic generator incremented the right counter, i.e.,
the counter associated to the BGP next-hop matching the IP destination

address of the packet (as specified in the RIB).
As a second experiment, we configured the CRCM to run for 5 consecutive

minutes, sending commands to the DUT every 10 seconds. Such commands
corresponded to the processing of both the initial RIB and the stream of BGP
updates received from the ISP’s border router. The CRCM always spent few
millisecond to process BGP updates. The DUT control plane used no more
than 3% additional memory and the control plane CPU usage was always less
than 45%, with spikes of 35%− 40% typically for about 7 seconds.

Finally, we measured the responsiveness of our prototype to rule updates,
i.e., the time took by our system to update a single counting rule. We config-
ured the traffic generator to generate only traffic destined to specific IP prefixes.
While traffic traversed the DUT, at a certain time we sent a group of 17 ad-hoc
commands, which represents one of the bigger groups practically generated by
the CRCM in the previous experiment. Each command in the group modified
a term containing several IP prefixes. Among those modifications, commands
replaced the counters associated to the IP prefixes traffic is destined to, simu-
lating changes in the BGP next-hop associated to such prefixes. By comparing
actual values of the counters with their expected values, we found that the DUT
took about 8 seconds for replacing counters. Indeed, old counters, i.e., counters
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associated to monitored prefixes before changes required by ad-hoc commands,
are incremented for about 5 seconds more than expected, while a number of
packets corresponding to about 3 seconds is not accounted by any counter. In
our tests, the time taken by the DUT for replacing counters was independent
both on the number of commands in the group and on the amount of traffic
the DUT was loaded with.

We finally estimated the accuracy our prototype can achieve, computing
the maximum error made on single counters Emax = (tinst + tgroup)/tinter,
where tinst is the time took for installing rules at the DUT, tgroup is the time
interval configured at the CRCM, and tinter is the inter-arrival time between
consecutive BGP updates that changed the BGP next-hop associated to the
counter. Exploiting the BGP peering with the medium-sized ISP, we collected
data in different days between July 20th, 2009 and August 11th, 2009. We
found that for the 98% of IP prefixes, the 90th percentile of BGP updates that
contain a change of the BGP next-hop has an inter-arrival time always higher
than 15 minutes, resulting in a maximum error of 2% if commands are grouped
for 10 seconds. Such a maximum error falls to 0.89% if commands are sent
to the DUT as soon as they are generated. Since it is shown [RWXZ02] that
routing changes rarely affect large amounts of traffic, we expect average errors
on TM to be very limited in practice.

We consider experimental results on our prototype promising. Also, we
expect the responsiveness of our solution to be improved by usage of a new
generation FEB and optimization of our prototypical software.

6.6 Conclusions

We believe that router programmability has the potential to provide funda-
mental support for network management in the near future, paving the way
for a new generation of innovative monitoring solutions.

In this chapter, we showed the feasibility of a distributed architecture for
accurate computation of traffic matrices. The architecture is based on pro-
grammable routers which autonomously compute different parts of the matrix.
We realized a prototypical implementation of our architecture using current
technologies. Preliminary experiments we performed are promising.

We plan to improve the algorithms we adopted in our prototype and deeper
evaluate our solution through performance tests on up-to-date hardware. We
also plan to investigate opportunities opened by router programmability to
solve other monitoring and management problems as future work.
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Chapter 7

Enabling Network-Wide IGP

Reconfigurations ∗

7.1 Introduction

Network-wide reconfigurations of routing within a running network, such as
routing protocol replacement or the modification of its configuration, can im-
prove performance, scalability, manageability, and security of the entire net-
work. Also, as the network grows or when new services have to be deployed,
network operators often need to perform large-scale reconfigurations [Hv10].

However, reconfigurations are an important source of concern for network
operators as they can lead to long, service-disrupting outages. Reconfiguring a
routing protocol is a complex process since all the routers have to be reconfig-
ured in a proper manner. Restarting the network with the new configurations
do not work since most of the networks carry traffic 24/7. Therefore, reconfig-
urations have to be performed gradually, while the network is running. Such
operations can lead to significant traffic losses if they are not handled with
care. Unfortunately, network operators typically lack appropriate tools and
techniques to seamlessly perform large, highly distributed changes to the con-
figuration of their networks. They also experience difficulties in understanding
what is happening during a migration since complex interactions may arise
between upgraded and non-upgraded routers. Consequently, as confirmed by

∗Part of the material presented in this chapter is based on the following publications L.
Vanbever, S. Vissicchio, C. Pelsser, P. Francois, O. Bonaventure. Seamless Network-Wide
IGP Migrations. In Proc. SIGCOMM, ACM, 2011.
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many private communications with operators, large-scale configuration changes
are often avoided until they are absolutely necessary, thus hampering network
evolvability and innovation.

In this chapter, we aim at enabling seamless IGP migrations, that is, pro-
gressive modifications of the commonly used link-state IGP configuration of a
running network without losing packets. Our contribution is manifold. After
introducing an abstract model for link-state IGPs in Section 7.2, we discuss the
most common migration scenarios ISPs encounter in Section 7.3. In the same
section, we also formalize the IGP migration problem we tackle. In particu-
lar, we show that long-lasting forwarding loops can appear, both theoretically
and practically, when changes are made to the IGP hierarchy and when route
summarization is introduced or removed.

In Section 7.4, we introduce a methodology that enables seamless IGP mi-
grations while minimizing the number of reconfigurations per router. Our
methodology leverages the fact that several IGP processes can run at the same
time on a router. Each IGP process is assigned with a administrative distance
(AD), and the IGP process with the lowest distance controls the forwarding.
The reconfiguration consists in introducing the final IGP configuration at each
router with a high AD, wait for its convergence, and lower the distance router
by router so that it is used for forwarding. The crucial point of our methodol-
ogy consists in identifying the order in which to reconfigure the routers while
guaranteeing no packet loss. In particular, we focus on avoiding forwarding
loops throughout the reconfiguration process.

In Section 7.5, we show that finding such an ordering is an NP -complete
problem. Also, we propose an exponential algorithm and a heuristic which
can be used to find an lossless migration ordering. The exponential algorithm
always find the ordering when it exists, but completeness comes at the cost of
high time complexity. On the contrary, the heuristic trades completeness for
time efficiency. Indeed, it is correct (i.e., never outputs an ordering which is
not lossless), but it is not always able to find a lossless ordering even if it exists.

Based on these algorithms, we built a prototype provisioning system which
we describe in Section 7.6. The provisioning system automates the whole mi-
gration process according to our methodology: it generates router configura-
tions, assesses the proper state of the network and updates all the routers in
an appropriate sequence, while monitoring the entire reconfiguration process.
As shown in our evaluation and case study, such a provisioning system en-
ables faster and seamless IGP migrations, while avoiding human errors due to
manual design and application of new configurations on routers.

In Section 7.7, we evaluate algorithms and our system implementation on
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both inferred and real-world topologies. Our results suggest that, in real-
world networks, it is possible to find a ordering in which to reconfigure the
routers while guaranteeing no forwarding loop. We also show effectiveness of
our provisioning system by simulating a full reconfiguration of the GEANT
network [gea10] in a virtual environment.

In Section 7.8, we explain how to deal with network failures that can arise
during the reconfiguration. Indeed, we extend our algorithms to find a migra-
tion ordering which provides additional guarantees in case of network failures.

In Section 7.9 we present design guidelines that facilitate IGP migrations.
We review related work in Section 7.10, and we discuss limitations of our
techniques and future directions in Section 7.11. Finally, we conclude in Sec-
tion 7.12.

7.2 An Abstract Model for Link State IGPs

In this section, we aim at capturing IGP configurations and forwarding be-
havior of routers in a model that abstracts protocol-specific details. Transient
IGP behavior is not modeled since we ensure that both the initial and the final
IGPs have converged before starting the migration process (see Section 7.4).

We formally define an IGP configuration as a tuple (p,G,D,w,m). The
tuple reflects configuration knobs available to operators. In such a tuple, p
is the identifier of an IGP protocol, e.g., OSPF or IS-IS, and m is the mode
in which the protocol is configured, namely flat or hierarchical. G = (V,E)
is the logical graph, i.e., a directed graph that represents the IGP adjacencies
among routers participating in p. Each node in V represents an IGP router,
and each edge in E represents an adjacency between the two routers. Edges
are labeled with the name of the zones to which they belong. Moreover, the
function w : E → N associates a positive integer, called weight, to each edge in
G. Finally, D ⊆ V is the set of IGP destinations for traffic that flows in the
network. We associate each destination to a single node in G, assuming that
each IP prefix is announced by one router only. This assumption is without loss
of generality, as we can use virtual nodes and G can be transformed in a multi-
graph, in order to model peculiarities of the considered IGP. For example,
consider how to model the binding of each interface to a given area or the
redistribution of external prefixes in OSPF. For each router r that coincides
with a traffic destination, we can add a virtual node rj for each OSPF area j in
which r participates, and a virtual node rext for external destinations injected
by r in the IGP. For each rj , only one edge (r rj), belonging to zone Zj and
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weighted 1, is added to the graph. One edge ej for each OSPF area j is also
added between r and rext. Each ej is such that it is labeled as belonging to
zone Zj and w(ej) = 1. The destination set D will contain virtual nodes only.
Similarly, virtual nodes can be used to model IP prefixes announced by more
than one IGP router.

Packets destined to one router d ∈ D follow forwarding paths. A forwarding
path, or simply path, P from s to d is a path P = (s r1 . . . rk d) on G in
which ri, with i = 1, . . . , k, are routers traversed by the traffic flow. Several
forwarding paths can simultaneously be used for the same pair (s, d), e.g., in
case of Equal Cost Multi-Path (ECMP). The weight of a path is the sum of
the weights of all the links in the path.

According to the IGP configuration, each router chooses its preferred path
towards each destination and forwards packets to the next-hops in such pre-
ferred paths. To model this behavior, we define the next-hop function nh, and
the actual path function π(u, d, t). Both functions are derived from the IGP
configuration of a network, i.e., an IGP configuration univocally determines
the next-hop and the actual path functions. We denote the set of successors
(next-hops) of u in the paths router u uses at time t to send traffic destined
to destination d by nh(u, d, t). Notice that |nh(u, d, t)| is not guaranteed to
be equal to 1, since routers can use multiple paths to reach the same desti-
nation (e.g., in presence of ECMP). The paths actually followed by packets
sent by u towards d at time t can be computed as a function π: π(u, d, t) is
the set of paths resulting from a recursive concatenation of next-hops. More
formally, π(u, d, t) is a function that associates to each router u the set of
paths {(v0 v1 . . . vk)}, such that v0 = u, vk = d and ∀i ∈ {0, . . . , k − 1}
vi+1 ∈ nh(vi, d, t). Note that the actual path function does not always coin-
cide with the preferred path of each router, since deflections can happen in the
middle of a path [IFU05]. A series of deflections can even build a forwarding
loop, as shown in different examples described in Section 7.3. More formally,
there exists a forwarding loop, or simply a loop, for a given destination d at a
given time t if ∃r: π(r, d, t) = (r v0 . . . vj r), with j ≥ 0.

By appropriately tuning the next-hop function, our model is able to capture
specific details of IGP configurations such as the corresponding forwarding
rules in hierarchical and flat mode, and route summarization. In Section 7.3,
we provide some examples of next-hop functions, actual path functions, and
migration loops in different migration scenarios.
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7.3 The IGP Migration Problem

In this section, we study the problem of seamlessly migrating a network from
one IGP configuration to another. Both configurations are provided as input
(i.e., by network operators) and, by definition, are loop-free.

Problem 7.1 Given a unicast IP network, how can we replace an initial IGP
configuration with a final IGP configuration quickly, with minimal configuration
changes and without causing any forwarding loop?

Assuming no network failure and no congestion, solving this problem leads
to seamless migrations. Observe that our approach reduces the opportunities
for failures during the migration process, because of its time efficiency. Further,
in Section 7.8, we show how to extend our techniques to provide guarantees
even in case of network failures. Similar extensions may be used to avoid
congestion during the migration. We plan to fully investigate congestion-free
migration techniques in future work. However, we argue that congestion issues
are less critical, as they can be strongly mitigated by performing the migra-
tion during time slots in which traffic is low. Also, large ISPs are normally
overprovisioned [ICBD04], further reducing the risk of congestion.

In this chapter, we focus on issues generated by the IGPs themselves, while
leaving migration issues due to the presence of additional routing protocols in
the network (e.g., BGP) to future work. In the rest of the chapter, we call
router migration the replacement of the initial next-hop function nhinit with
the final next-hop function nhfinal on a given router. Formally, we define the
operation of migrating a router r at a certain time t̄ as the act of configur-
ing the router such that nh(r, d, t) = nhfinal(r, d), ∀d ∈ D and ∀t > t̄. We
call router migration ordering the ordering in which routers are migrated. A
network migration is completed when all routers have been migrated. In this
work, we focus on per-router migrations in which all the destinations are mi-
grated at the same time in order to limit the number of configuration changes
and to minimize the migration duration. However, such an ordering might not
always exist as described in Section 7.3. Only in such cases, we compute and
apply separate migration orderings for the troublesome destinations (see Sec-
tion 7.4). Results of our evaluation (see Section 7.7) suggest that troublesome
destinations are zero or few in realistic topologies.

Throughout the chapter, we focus on migration loops, that is, loops aris-
ing during an IGP migration because of a non-safe router migration ordering.
Migration loops are not protocol-dependent, and are more harmful than loops
that arise during protocol convergence as they last until specific routers are



i

i

“main” — 2012/2/22 — 9:40 — page 150 — #160
i

i

i

i

i

i

150
CHAPTER 7. ENABLING NETWORK-WIDE IGP

RECONFIGURATIONS

scenario IGP configuration changes
protocol protocol replacement
flat2hier zones introduction
hier2flat zones removal
hier2hier zones reshaping

summarization summarization introduction/removal

Table 7.1: IGP Migration Scenarios.

migrated (e.g., see Section 7.3). Observe that, if nhinit = nhfinal, the π func-
tion does not change either, hence any router migration ordering is ensured to
be loop-free.

IGP migration scenarios

Most of the time, network operators target three aspects of the IGP when
they perform large-scale migrations. First, they may want to replace the cur-
rent protocol with another. For example, operators may want to migrate to
an IGP that provides more guarantees against security attacks [GM03, nan08],
or that allows to integrate new equipments which are not compliant with the
adopted one [nan05], or that is not dependent on the address family (e.g.,
OSPFv3, IS-IS), e.g., to run only one IGP to route both IPv4 and IPv6 traf-
fic [gea03, nan08]. Second, when the number of routers exceeds a certain crit-
ical mass, operators often introduce a hierarchy within their IGP to limit the
control-plane stress [DRM08, Tho03]. Another reason operators introduce hi-
erarchy is to have more control on route propagation by tuning the way routes
are propagated from one portion of the hierarchy to another [Hv10]. On the
contrary, removing a hierarchy might be needed to better support some traf-
fic engineering extensions [RVB05]. Third, network operators also modify the
way the IGP learns or announces the prefixes by introducing or removing route
summarization. Route summarization is an efficient way to reduce the number
of entries in the routing tables of the routers as IGP networks can currently
track as many as 10,000 prefixes [LDF+11]. Route summarization also helps
improving the stability by limiting the visibility of local events. Actually,
some IGP migrations combine several of these scenarios, such as the migra-
tion from a hierarchical OSPF to a flat IS-IS [GM03]. Finally, operators may
be forced to revert back to a previous IGP configuration to meet technical
requirements [Tem09].
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In this chapter, we address all those three kinds of IGP reconfiguration
scenarios, which are summarized in Table 7.1. Observe that each scenario con-
cerns the modification of a specific feature of the IGP configuration. Moreover,
different scenarios can be combined if more than one feature of the IGP con-
figuration have to be changed. We do not consider the change of link weights
as a network-wide migration. Indeed, traffic matrices tend to be almost stable
over time [RWXZ02], and ISPs typically change the weights of a few links at a
time. Moreover, effective techniques have already been proposed for the grace-
ful change link weights [RZC11, FB07, FSB07, FSK08, SFF09]. Nevertheless,
our generalized model and the techniques we present in Section 7.5 are also
applicable to reconfigure link weights. Furthermore, since the addition and the
removal of links and devices can be modeled as a change of some link weights
from an infinite to a finite value or vice versa, our approach can also be used
to guarantee no packet loss during topological changes.

We now describe the issues that must be addressed in each migration sce-
nario we target, using the notation introduced in Section 7.2.

Protocol replacement

This migration scenario consists of replacing the running IGP protocol, but
keeping the same nh function in the initial and in the final configurations. A
classical example of such a scenario is the replacement of an OSPF configuration
with the corresponding IS-IS configuration [Hv10]. Since the nh function is the
same in both IGPs, routers can be migrated in any order without creating loops.

Hierarchy modification

Three migration scenarios are encompassed by the modification of the IGP
hierarchy. First, a flat IGP can be replaced by a hierarchical IGP by introducing
several zones. Second, a hierarchical IGP can be migrated into a flat IGP by
removing peripheral zones and keeping only one zone. Third, the structure of
the zone in a hierarchical IGP can be changed, e.g., making the backbone bigger
or smaller. We refer to these scenarios as flat2hier, hier2flat and hier2hier,
respectively.

Unlike protocol replacement, changing the mode of the IGP configuration
can require a specific router migration ordering. Indeed, the nh function can
change in hierarchy modification scenarios because of the intra-zone over inter-
zone path preference rule applied by routers in hierarchical IGPs (see Chap-
ter 1). Hence, forwarding loops can arise due to inconsistencies between already
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Figure 7.1: Bad Square Gadget. When the IGP hierarchy is modified, a given
migration ordering is needed between B1 and E1 to avoid forwarding loops.

migrated routers and routers that are not migrated yet. Consider for example
the topology depicted on the left side of Fig. 7.1. In a flat2hier scenario, some
routers change their next-hop towards destinations E1 and E2. In particular,
the right side of Fig. 7.1 shows the next-hop function for all the routers when
the destination is E2. During the migration process, a forwarding loop arises
for traffic destined to E2 if B1 is migrated before E1. Indeed, B1 reaches E2
via E1 in hierarchical mode, and E1 reaches E2 via B1 in flat mode. Hence, for
each time t where B1 is already migrated and E1 is not, the forwarding path
used by B1 is π(B1, E2, t) = {(B1 E1 B1)}, since nhfinal(B1, E2) = {E1}
and nhinit(E1, E2) = {B1}. Notice that such a loop lasts until E1 is migrated.
A symmetric constraint holds between routers B2 and E2 for traffic destined
to E1. A loop-free migration can be achieved by migrating E1 and E2 before
B1 and B2.

Nevertheless, there are also cases in which it is not possible to avoid loops
during the migration. Consider, for example, the topology represented in
Fig. 7.2. In this topology, symmetric constraints between B1 and B2 for traffic
destined to E2 and E3 imply the impossibility of finding a loop-free ordering.
We refer the reader to the central and the right parts of Fig. 7.2 to visualize
the next-hop functions in flat and hierarchical modes.

Similar examples can be found for hier2flat and hier2hier migrations. They
are omitted for brevity. Observe that problems in hierarchy modification sce-
narios are mitigated in protocols such as IS-IS that natively support multiple
adjacencies [Ora90]. In fact, multiple adjacencies belonging to different zones
decrease the number of cases in which the nh function changes during the mi-
gration. However, migration loops can still arise, depending on the initial and
the final configurations.
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Figure 7.2: Loop Gadget. No migration ordering is loop-free for flat2hier and
hier2flat scenarios because of contradictory constraints between B1 and B2.

Figure 7.3: Route summarization gadget. When summarization is introduced
or removed, a specific migration ordering is needed between B3 and B4 to
avoid forwarding loops.

Route summarization

Introducing or removing route summarization (i.e., summarization scenarios)
in a network can lead to forwarding loops. For example, consider the topology
represented in the left part of Fig. 7.3. The right part of the figure visualizes
the nh functions before and after the introduction of route summarization. In
this case, the introduction of route summarization on B1 and B2 can lead to a
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forwarding loop between B3 and B4 for traffic destined to E2. Indeed, before
summarizing routes, B3 and B4 prefer to send traffic destined to E2 via B2.
On the other hand, when summarization is introduced, B1 and B2 propagate
one aggregate for both E1 and E2 with the same weight. Hence, B3 and B4
change their next-hop since the path to B1 has a lower weight than the path
to B2.

As for hierarchy modifications, no loop-free ordering exists in some cases.
An example of such a situation can be built by simply replicating the topology
in Fig. 7.3 so that symmetric constraints on the migration order hold between
B3 and B4.

7.4 Methodology

Fig. 7.4 illustrates the main steps of our methodology. In the first step, we
pre-compute an ordering in which to seamlessly migrate routers with no packet
loss (Section 7.5). Migrating all the routers at once is not a viable solution in
practice as it can generate protocol-dependent loops and control-plane traffic
storms concerning all the protocols (BGP, LDP, PIM, etc.) that rely on the
IGP. Moreover, this approach prevents operators from controlling the migration
process and from falling back to a previous working state when a problem is
detected, e.g., when a router does not receive an intended command. All the
discussions that we had with network operators further confirmed that they
prefer to gradually migrate their network to have full-control of the process.
In the same step, when a per-router ordering does not exist, we identify the
set of problematic destinations for which contradictory ordering constraints
exists, and we compute a per-destination ordering for each of them. Then, we
compute a per-router ordering for the rest of the destinations.

The actual migration process begins in the second step. As basic operation,
we exploit a known migration technique called ships-in-the-night [Hv10, GM03,
gea03], in which both the initial and the final IGP configurations are running at
the same time on each router in separate routing processes. Routing processes
are ranked on the basis of their priority, the Administrative Distance (AD).
When a route for a given prefix is available in multiple processes, the one with
the lowest AD is installed in the Forwarding Information Base (FIB). In this
step, we set the AD of the routing process running the final IGP configuration
to 255, since this setting ensures that no route coming from that process is
installed in the FIB [BFCW09]. All ISP routers typically support this feature.

In the third step of the migration, we wait for network-wide convergence of
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Seamless IGP Migration Methodology

(i) Compute a lossless router migration order. In case no per-router or-
dering exists, compute a per-destination ordering for the troublesome
destinations.

(ii) Introduce the final IGP configuration. The final IGP configuration is
introduced on all the routers in the network. However, routers continue
to forward packets according to the initial IGP configuration.

(iii) Monitor the final IGP status. Wait for the convergence of the final
IGP configuration.

(iv) Progressively migrate routers. The pre-computed lossless router mi-
gration order is followed. In case no per-router migration ordering
exists, a per-destination ordering is also applied for the troublesome
destinations.

(v) Remove the initial IGP configuration. The initial IGP is removed from
all the routers in the network.

Figure 7.4: Proposed methodology for seamless IGP migrations.

the final IGP configuration. After this step, both IGPs are in a stable routing
state.

In the fourth step, we progressively migrate routers following the ordering
pre-computed in the first step of the methodology. For this purpose, we lower
the AD of the routing process running the final IGP such that it is smaller than
the AD of the process running the initial configuration. Doing so, the router
installs the final routes in its FIB. If a per-destination ordering is required
for some destinations, we prevent them from being routed according to the
final IGP by keeping the AD of these destinations to a high value. This could
be done by using tailored route-maps matching the problematic destinations
(see [cisc, juna]). After, we migrate the problematic destinations one by one,
by lowering their AD following the pre-computed per-destination orderings.
Since a routing entry change could take about 200ms before being reflected in
the FIB [FFEB05], we wait for a given amount time (typically a few seconds)
before migrating the next router in the ordering. This step ensures a loop-free
migration of the network. Notice that switching the AD and updating the FIB
are lossless operations on ISP routers [FMB+07].

In the last step, we remove, in any order, the initial IGP configuration from
the routers. This is safe since all of the routers are now using the final IGP to
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forward traffic.

7.5 Loop-Free Migrations

In this section, we study the problem of migrating a network from one link-
state IGP configuration to another without creating any loop. Firstly, we prove
that the problem is NP -complete. Then, we present the algorithms we use to
compute a loop-free router migration ordering. Finally, we describe how to
adapt the algorithms to compute a per-destination ordering to use as fallback
when a per-router ordering does not exist.

Router Migration Ordering Problem

We now study the following problem from an algorithmic perspective.

Problem 7.2 Given an initial and a final next-hop functions, a logical graph
G, and a set of destinations D, compute a router migration ordering, if any,
such that no forwarding loop arises in G for any d ∈ D.

Even the problem of deciding if a loop-free router migration ordering exists,
that we call Router Migration Ordering Problem (RMOP), is an NP -complete
problem. In order to prove the complexity of the RMOP problem, we use a
reduction from 3-SAT [Pap94]. In the following, we denote the fact that u is
migrated before v with u < v. Consider a logical formula F in conjunctive
normal form. Let C1, . . . , Cl be the clauses in F , X1, . . . , Xh be the variables,
and X1 and X̄1 the literals corresponding to X1. In the following, we build the
RMOP instance S = (G = (V,E), D, nhinit, nhfinal) corresponding to F .

As a basis, G contains a single vertex P . For each variable Xi in F , we add
to S a variable gadget as depicted in Fig. 7.5a. In practice, we add two vertices
di1, di2, xi and x̄i to G, along with edges (xi P ), (x̄i P ), and (xi x̄i). di1
and di2 are also added to D. Intuitively, node xi and x̄i represent literals Xi

and X̄i, respectively. In the following, we call nodes xi and x̄i literal vertices.
Assigning TRUE to Xi corresponds to migrate xi before P , while assigning
FALSE to Xi implies x̄i < P . For each clause Cj = (L1 ∨ L2 ∨ L3), we add a
clause gadget similar to that depicted in Fig 7.5b. For each literal in Cj , we add
the corresponding literal vertex, along with edges (l1 l2), (l2 l3), (l3 P ), and
(P l1). Moreover, a vertex d̃j is added to both V and D. After having added
all the vertices, one edge is added to E from any vertex to any destination.

Finally, we define the next-hop functions. For each di1, nhinit(u, di1) =
nhfinal(u, di1) = {di1} ∀u ∈ V , except nhinit(xi, di1) = {x̄i}, nhinit(x̄i, di1) =
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xi

di1 di1

di1

di2

di2 di2

x̄i

P

(a) Variable Gadget.

x1
dc̃ x̄2

P x3dc̃

dc̃dc̃

C̃ = (X1 ∨ X̄2 ∨X3)

(b) Clause Gadget.

Figure 7.5: Gadgets used in the reduction from 3-SAT to RMOP. Solid lines
represent nhinit, while dotted lines nhfinal. Edges are labeled with destinations
they refer to.

{P}, and nhfinal(xi, di1) = {x̄i}. Similarly, for each di2, nhinit(u, di2) =
nhfinal(u, di2) = {di2} ∀u ∈ V , except nhinit(P, di2) = {x̄i}, nhfinal(xi, di2) =

{x̄i}, and nhfinal(x̄i, di2) = {P}. Finally, for each d̃j corresponding to a clause

Cj = (Lj1 ∨ Lj2 ∨ Lj3), nhinit(u, d̃j) = nhfinal(u, d̃j) = {d̃j} ∀u ∈ V , ex-

cept nhfinal(P, d̃j) = {lj1}, nhinit(lj1, d̃j) = {lj2}, nhinit(lj2, d̃j) = {lj3}, and

nhinit(lj3, d̃j) = {P}.
Regarding destinations di1 and di2, it is easy to verify that only xi,x̄i, and

P can be part of a loop, since the next-hop of all the other vertices is the
destination in both the initial and the final next-hop functions. In particular,
a loop arises toward di1 or di2 if and only if P is the first node to be migrated
or P is the very last node to be migrated, respectively.

Property 7.1 A router migration ordering does not create a loop towards
destinations di1 and di2 if and only if

• xi < P → P < x̄i; or

• x̄i < P → P < xi

As a consequence, only the orders xi < P < x̄i and x̄i < P < xi are loop-free.
This prevents a variable to be TRUE and FALSE at the same time.

Analogously, for destinations dj , all the routers, except lj1, lj2, lj3, and
P , cannot be part of a loop, since their next-hop is dj in both the next-hop
functions. The following property holds for lj1, lj2, lj3, and P .
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Property 7.2 A loop arises toward a destination dj if and only if P is mi-
grated before all the vertices li, with i = 1, 2, 3, corresponding to a literal in
Cj.

It is easy to check that the reduction can be done in polynomial time. We
now use such a reduction to prove the complexity of RMOP.

Theorem 7.1 The Router Migration Ordering Problem is NP -complete.

Proof: Consider a logical formula F in conjunctive normal form. Let S be the
instance of the Router Migration Ordering Problem corresponding to F . Then,

• if F is satisfiable, then there exists a router migration order in S that
does not create any forwarding loop. In fact, if F is satisfiable, then
there exists at least one boolean assignment such that for each clause
Cj at least one literal Li is TRUE. This corresponds to li < P in the
migration order. Such a condition guarantees that no loop arises in the
clause gadget corresponding to Cj , by Property 7.2. The same argument
can be iterated on all the clauses in F . Since the boolean assignment that
satisfies F is a valid assignment, no variable is assigned both TRUE and
FALSE at the same time, hence no loop can be generated in the variable
gadget (Property 7.1).

• if F is not satisfiable, then there does not exist a router migration order in
S that does not create any forwarding loop. In fact, if F is not satisfiable,
then for each valid boolean assignment at least one clause Cn = (Lj1 ∨
Lj2 ∨ Lj3) is not satisfied by the boolean assignment. However, this
means that all the literals in Cn are FALSE. This corresponds to migrate
P before all the nodes lji, with i ∈ {1, 2, 3}. Hence, a loop arises for
destination dn by Property 7.2. The same argument can be iterated on
all the boolean assignment on the variables in F . As a consequence, every
router migration ordering on S contains at least one loop.

The proof is completed by noting that a loop-free router migration order is a
succinct certificate for S. �

Router Migration Ordering Algorithms

We now present a correct and complete algorithm to find a loop-free ordering.
Because of the complexity of the problem, the algorithm is inefficient and can
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take several hours to run on very large ISP networks (see Section 7.7). Hence,
we also propose an efficient heuristic that is correct but not complete.

We now describe our algorithms in absence of virtual nodes. However,
the algorithms can be simply extended to deal with virtual nodes, by enforc-
ing that the identified loop-free ordering contains no conflict between virtual
nodes and nodes that represent physical routers. In particular, it can be al-
ways guaranteed that any ordering found by our algorithms does not contain
virtual nodes, which indeed are not subject to reconfiguration as they do not
represent physical routers. This is possible since no virtual node is involved
in any ordering constraint generated by our algorithms. In fact, virtual nodes
never change their respective next-hop function, and our algorithms do not
generate constraints for nodes that keep the same next-hop function as they
cannot be responsible for any loop. We now show that the next-hop function
at each virtual nodes is guaranteed to remain the same for all the destinations.
Consider the logical graph on which the algorithms run. By construction, each
virtual node v has only one edge, connecting it to the node u representing the
corresponding physical router. Consequently, the next-hop of v is always v
when v itself is the destination and it is always u for any other destination.

Loop Enumeration Algorithm

The Loop Enumeration Algorithm (Fig. 7.6) enumerates all the possible
migration loops that can arise during a migration. Then, it outputs the suffi-
cient and necessary constraints that ensure that no loop arises. To identify all
possible migration loops, for each destination d, the algorithm builds the graph
Gd (line 4) as the union of the actual paths in the initial and in the final config-
uration. Gd contains all the possible combinations of paths followed by traffic
destined to d for any migration order. Then, all the cycles are enumerated and
for each cycle, the algorithm outputs the constraint (line 8) of migrating at
least one router that participates in the loop in the initial configuration before
at least one router that is part of the loop in the final configuration (lines 5-8).
In the example of Fig. 7.7, indeed, migrating c1 before at least one among c2
and c3 avoids the loop. In the algorithm, Vinit,L represents the set of routers
that participate in the loop when they are in the initial configuration (line 6),
and Vfinal,L contains only routers that participate in the loop when they are
in the final configuration (line 7). The constraints identified by the algorithm
are encoded in an Integer Linear Program (lines 12-22), where the variables
tui

represent the migration steps at which routers can be safely migrated (lines
14-19). Finally, the algorithm tries to solve the linear program and returns a
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1: loop enumeration run(G = (V,E),D,nhinit,nhfinal)
2: CS ← ∅
3: for d ∈ D do

4: Ḡd = (V, Ē), with Ē = {(u v)} such that v ∈ nhinit(u, d) or v ∈ nhfinal(u, d)
5: for each cycle L in Ḡd do

6: Vinit,L = {u ∈ L : ∃v, (u v) ∈ L, v ∈ nhinit(u, d) but v 6∈ nhfinal(u, d)}
7: Vfinal,L = {u ∈ L : ∃v, (u v) ∈ L, v ∈ nhfinal(u, d) but v 6∈ nhinit(u, d)}
8: CS ← CS ∪ {u0 ∨ · · · ∨ uk < v0 ∨ · · · ∨ vl}, where ui ∈ Vinit,L ∀i = 0, . . . , k,

and vj ∈ Vfinal,L ∀j = 0, . . . , l.
9: end for

10: end for

11: LP ← new LP problem
12: for u0 ∨ · · · ∨ uk < v0 ∨ · · · ∨ vl ∈ CS do

13: add to LP the following constraints
14: tu0

−MAX INT × Y1 < tv0
15: . . .

16: tu0
−MAX INT × Yl < tvl

17: tu1
−MAX INT × Yl+1 < tv0

18: . . .

19: tuk
−MAX INT × Yl×k < tvl

20: tu0
, . . . , tuk

, tv0 , . . . , tvl integer
21: Y1, . . . , Yl×k binary
22:

∑
1<i<=l×k

Yi < l × k

23: end for

24:

25: return solve lp problem(LP )

Figure 7.6: Loop Enumeration Algorithm.

loop-free ordering, if one exists (line 24).
We now show correctness and completeness of the Loop Enumeration Al-

gorithm.

Theorem 7.2 The Loop Enumeration Algorithm is correct and complete.

Proof: We prove the statement by showing that the linear program solved
in the Loop Enumeration Algorithm encodes all the sufficient and necessary
conditions for any migration loop to not arise. Indeed, let u0 ∨ · · · ∨ uk <
v0 ∨ · · · ∨ vl be the ordering constraint that the Loop Enumeration Algorithm
identifies for a given loop L = (c0 c1 . . . ck c0) concerning traffic destined to
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c0

c1

c3
c2

nhinit

nhfinal

LEGEND

c1 ∈ Vinit,L

c2, c3 ∈ Vfinal,L

Figure 7.7: Abstract representation of a migration loop.

d ∈ D. We now show that L does not arise at any migration step if and only
if the constraint is satisfied.

If the loop does not arise then the constraint is satisfied. Suppose by con-
tradiction that the constraint is not satisfied. Then, there exists a time t̄ such
that all the routers in Vfinal,L are migrated while all the routers in Vinit,L are
not migrated. Consider c0. If c0 ∈ Vfinal,L, then it is already migrated, i.e.,
nh(c0, d, t̄) = nhfinal(c0, d), hence c1 ∈ nh(c0, d, t̄), by definition of Vfinal,L. If
c0 ∈ Vinit,L, then nh(c0, d, t̄) = nhinit(c0, d) and c1 ∈ nh(c0, d, t̄). Finally,
if c0 6∈ Vinit,L and c0 6∈ Vfinal,L, then c1 ∈ nh(c0, d, t) ∀t. In any case,
c1 ∈ nh(c0, d, t̄). Iterating the same argument for all the routers in L, we
conclude that ci+1 ∈ nh(ci, d, t̄), with i = 0, . . . , k and ck+1 = c0. Thus, L
arises at time t̄.

If the constraint is satisfied then the loop does not arise. Assume, without
loss of generality, that cu ∈ Vinit,L is migrated at time t′, while at least one
router cv ∈ Vfinal,L is migrated at t′′ > t′. Then, L cannot arise ∀t < t′′,
since nh(cv, d, t) = nhinit(cv, d) implies that cv+1 6∈ nh(cv, d, t) by definition of
Vfinal,L. Moreover, L cannot arise ∀t > t′, since nh(cu, d, t) = nhfinal(cu, d)
implies that cu+1 6∈ nh(cu, d, t) by definition of Vinit,L. Since t′′ > t′, no time
exists such that L arises during the migration. �

It is easy to verify that the algorithm requires exponential time. Indeed,
the algorithm is based on the enumeration of all the cycles in a graph, and the
number of cycles in a graph can be exponential with respect to the number of
nodes.
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Routing Trees Heuristic

The Routing Tree Heuristic is illustrated in Fig. 7.8. Intuitively, it computes
ordering constraints separately for each destination, so that next-hop changing
routers are not migrated before their final forwarding path to each destination is
established (similarly to what proposed in [FSK08, FB07]). A router ordering
that satisfies all per-destination constraints is then computed. As the first
step, for each destination d ∈ D, the heuristic exploits a greedy procedure
to compute a set Sd of nodes that are guaranteed not to be part of any loop
(line 4). The greedy procedure (lines 20-32) incrementally (and greedily) grows
the set Sd, adding a node to Sd at each iteration if and only if all the next-
hops of the node in the initial and in the final configurations are already in
Sd (lines 27-28). After this step, the Routing Trees Heuristic builds directed
graph Gd, which is guaranteed to be acyclic since the final configuration is
loop-free. Gd contains only the actual paths followed by packets to reach d in
the final configuration (line 6). Then, it generates a constraint for each pair of
routers (u, v) such that (u . . . v . . . d) ∈ πfinal(u, d), and both u and v do not
belong to Sd and change at least one next-hop between the initial and the final
configuration (lines 7-15). In particular, among the routers that change one or
more next-hops during the migration (set V̄d at line 5), each router is forced
to migrate after all its successors in the actual path towards d (line 11). In the
final step, the heuristic tries to compute an ordering compliant with the union
of the constraints generated for all the destinations (lines 17-18).

It is easy to check that the algorithm is polynomial with respect to the size
of the input. We now prove that the algorithm is correct. First, we show that
the routers in Sd can be migrated in any order without creating loops towards
d, hence it is possible not to consider them in the generation of the ordering
constraints. Then, we prove that the constraints are sufficient to guarantee
that the ordering is loop-free.

Lemma 7.1 If the greedy procedure adds a router u to Sd, then u cannot be
part of any migration loop towards destination d ∈ D.

Proof: Suppose, by contradiction, that there exists a router u added to Sd by
the greedy procedure at a given iteration i, such that (u v0 . . . vk u) ∈ π(u, d, t),
with k ≥ 0, at a given time t and for a given migration ordering. By definition
of the algorithm, one router is added to Sd if and only if all its next-hops
w0, . . . , wn (in both the initial and final IGP configurations) are already in Sd,
since each node in {w0, . . . , wn} is added to Sd at a given iteration before i.
Hence, vk 6∈ Sd at iteration i, because u is one of the next-hops of vk and it
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1: routing trees run(G = (V,E),D,nhinit,nhfinal)
2: C ← ∅
3: for d ∈ D do

4: Sd ← greedy run(V ,d,nhinit,nhfinal)
5: V̄d ← {vi : nhinit(vi, d) 6= nhfinal(vi, d)}
6: Gd = (V,E′), with E′ = {(u, v) : v ∈ nhfinal(u, d)}
7: for P = (v0 . . . vk), with vk = d, (vi, vi+1) ∈ E′, and predecessors(v0) = ⊘

do

8: last← Null

9: for u ∈ P ∩ V̄d and u 6∈ Sd do

10: if last 6= Null then

11: C ← C ∪ {(u, last)}
12: end if

13: last← u

14: end for

15: end for

16: end for

17: Gc ← (V,C)
18:

19: return topological sort(Gc)
20:

21: greedy run(V ,d,nhinit,nhfinal)
22: Sd ← ∅
23: N ← {d}
24: while N 6= ∅ do
25: Sd = Sd ∪N

26: N = ∅
27: for u ∈ V , u 6∈ Sd do

28: if nhinit(u, d) ∪ nhfinal(u, d) ⊆ Sd then

29: N = N ∪ {u}
30: end if

31: end for

32: end while

33: return Sd

Figure 7.8: Routing Trees Heuristic.
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is added to Sd at iteration i by hypothesis. Iterating the same argument, all
routers vh 6∈ Sd at iteration i, ∀h = 0, . . . , k. As a consequence, Greedy+

does not add u to Sd at iteration i, which is a contradiction. �

Theorem 7.3 Let S = x1, . . . , xn be the sequence computed by the Routing
Tree Heuristic. If the routers are migrated according to S, then no migration
loop arises.

Proof: Suppose by contradiction that migration is performed according to S
but migrating a router u creates a loop for at least one destination d. In
that case, there exists a set of routers Ṽ = {v1, . . . , vk}, such that C =
(u v0 . . . vk u) ∈ π(u, d, t), at a certain time t. By Lemma 7.1, all vi 6∈
Sd. By definition of the heuristic, all routers vi are such that nh(vi, d, t) =
nhfinal(vi, d), with i = 0, . . . , k, because either they do not change their next-
hop between the initial and the final configuration or they precede u in S.
Hence, at time t, both u and all the routers vi ∈ Ṽ are in the final configura-
tion. This is a contradiction, since we assumed that the final IGP configuration
is loop-free. �

Note that the heuristic is not complete; while the constraints it generates
are sufficient to guarantee no forwarding loops, they are not necessary. Indeed,
for each destination d, it imposes specific orderings between all the routers
(not belonging to Sd) that change one of their next-hops towards d, even if it
is not needed. For instance, in the scenario of Fig. 7.9, the heuristic mandates
v to be migrated before u and u before z. However, no loop arises also if
v is migrated before z and z before u. Generating unnecessary constraints
prevents the heuristic from identifying a loop-free migration ordering every
time it exists. Nonetheless, in carefully designed networks [FFS+11], such
cases are rare. In Section 7.7, we show that the heuristic found an ordering in
most of our experiments on realistic topologies.

Per-Destination Ordering

If a per-router ordering does not exist or the Routing Tree Heuristic does not
find an ordering, a per-destination ordering can be computed for the problem-
atic destinations, that is, destinations for which contradictory constraints (i.e.,
a cycle in the constraint graph) exist. Per-destination orderings can be com-
puted directly from the per-destination ordering constraints identified by our
per-router ordering algorithms. Note that it may not be necessary to compute
an ordering for every problematic destination, as excluding a destination from
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d

u v z

nhinit

nhfinal

nhfinal

nhfinal

nhinit

nhinit

Figure 7.9: In some migration scenarios, the Routing Trees Heuristic generates
unnecessary constraints.

the per-router ordering may unlock the problem for a set of other problematic
destinations. The number of destinations for which a per-destination order-
ing is required can thus be minimized. However, our experimental evaluation
(see Section 7.7) suggests that potentially troublesome destinations are few in
practice, hence the need for minimizing problematic destinations is limited.

7.6 The Provisioning System

We implemented a software system which is able to compute and automate all
the required steps for a seamless migration. The main architectural components
of our system are represented in Fig. 7.10. In the following, we describe how
data flows through the system (dashed lines in the figure), by stressing the role
of each component.

The main purpose of the monitoring component is to assess properties of
intermediate configurations, that is, checking that given routers are correctly
migrated and the expected routing state is reached. The monitoring mecha-
nisms also enables failure detection. However, while we discuss how to prevent
packet loss due to network failures in Section 7.8, we plan to study effective
reactive strategies to unexpected failures in future work. The monitoring com-
ponent encompasses an IGP LSA Listener and an IGP State Asserter. The IGP
LSA Listener collects and parses the IGP Link-State Advertisements (LSAs)
exchanged by routers, storing IGP adjacencies, link weights, and announced IP
prefixes in a database. We chose to implement the IGP LSA Listener by using
packet-cloning features available on routers, as it is shown to be an effective
method to collect all control-plane messages with low resource consumption
on monitored routers (as described in Chapter 5). The IGP State Asserter
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Figure 7.10: The provisioning system automates all the reconfiguration process.
It computes the ordering, monitors the network and pushes the intermediate
configurations in the appropriate order.

queries the database and assesses properties of the monitored IGPs state. The
current implementation of the IGP State Asserter can check an IGP for con-
vergence completion. IGP convergence is deduced by stability, over a given
(customly set) time, of the expected IGP adjacencies and of the announced
prefixes. Moreover, the IGP State Asserter is able to verify the announcement
of a given set of prefixes in an IGP, and the equivalence of two IGPs, i.e., the
equivalence of the logical graph, and of the forwarding paths towards a given
set of destinations.

The IGP State Asserter is triggered at specific moments in time by the Mi-
gration Controller, which is the central component of the system, responsible
for tasks’ coordination. Before the actual migration process starts, it dele-
gates the computation of a loop-free router migration ordering to the Ordering
Component. This component implements the ordering algorithms described in
Section 7.5. Then, the Migration Controller runs the IGP LSA Listener. When
needed (see Section 7.4), the Migration Controller asks the IGP State Asserter
to assess whether it is possible to safely modify the configuration of the devices
in the network without incurring transient states. This boils down to check-
ing the stability of the current IGP. At each step of the migration process the
controller also requires the Configuration Manager to properly update the con-
figuration on the routers as described in Section 7.4. Based on a network-wide
model, the Configuration Manager generates the necessary commands to be
sent to routers for each migration step. The Configuration Manager is based
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on an extended version of NCGuard [VPB08].

7.7 Evaluation

In this section, we evaluate the ordering algorithms and the provisioning sys-
tem. The system is evaluated on the basis of a case study in which a network
is migrated from a flat to a hierarchical IGP.

Data Set and Methodology

Our data set contains both publicly available and confidential data relative to
commercial ISP topologies. Concerning publicly available topologies, we used
the inferred topologies provided by the Rocketfuel project [SMW02]. Rock-
etfuel topologies represent ISPs of different sizes, the smallest one having 79
nodes and 294 edges while the biggest one contains 315 nodes and 1944 edges.
In addition, some network operators provided us with real-world IGP topolo-
gies. In this section, we discuss the result of our analyses on all the Rocketfuel
data and on the anonymized topologies of three ISPs, namely tier1.A, tier1.B
and tier2. tier1.A is the largest Tier1, and its IGP logical graph has more
than 1000 nodes and more than 4000 edges. tier1.A currently uses a flat IGP
configuration. The other two ISPs are one order of magnitude smaller but use
a hierarchical IGP.

On this data set, we performed several experiments. We considered the in-
troduction of summarization, as well as flat2hier and hier2hier scenarios. Since
most of the topologies in our data set are flat, we artificially built a hierarchy
(i.e., the separation in zones) in order to consider scenarios in which hierarchi-
cal configurations are needed. In particular, we grouped routers according to
geographical information present in the name of the routers. Doing so, we built
two hierarchical topologies out of each flat topology. In the first one, zones are
defined per city. In the second one, zones are defined per-continent. In both
topologies, we built the backbone by considering routers connected to more
than one zone as ZBRs and routers connected only to ZBRs as pure backbone
routers. To simulate a hier2hier scenario, we artificially enlarged the backbone
by moving to it a fixed number (from 1 up to 32) of links. Such links were
randomly chosen among the links between a ZBR and a router that does not
participate in the backbone. For the summarization scenario, we aggregated
all the destinations inside the same zone into a single prefix. This was done for
all the zones but the backbone. Our hierarchy construction methodology and
the way prefixes are summarized follow the guidelines proposed in [Yu00]. All
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Figure 7.11: CDF of the number of loops that can arise on Rocketfuel topolo-
gies. In the worst case, up to 80 different forwarding loops can be created
during the reconfiguration.

the tests were run on a Sun Fire X2250 (quad-core 3GHz CPUs with 32GB of
RAM). We omit the results of some experiments due to space limitations.

Ordering Algorithms

We first evaluate the usefulness and efficiency of the Loop Enumeration Algo-
rithm and Routing Tree Heuristic. Fig. 7.11 shows the cumulative distribution
function of the number of loops that can arise in Rocketfuel topologies. Dif-
ferent migration scenarios are considered. Each point in the plot corresponds
to a specific topology and a specific scenario. In flat2hier, up to 80 different
loops can arise in the worst case and at least 30 loops can arise for 4 topologies
out of 11. Other scenarios follow similar trends. Observe that, in the hier2hier
scenario (curves “adding x links to the backbone”), the number of possible
loops significantly increases with the number of links which change zone. In all
the scenarios, almost all the loops involve two routers, with a few exceptions of
three routers loops. Also, the vast majority of loops concerns traffic destined
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to routers that do not participate in the backbone. These routers are at the
border of the network (e.g., BGP border routers or MPLS PEs) and normally
attract most of the traffic in ISP networks. Hence, computing an ordering in
which they are not involved in loops can be critical. The number of migration
loops is topology dependent, hence it can be influenced by our design approach.
However, these results clearly show that migrating routers in a random order
is not a viable option in arbitrary networks. Additionally, for practical and
coordination reasons, it is desirable that migrations of world-wide networks be
carried out on a per-zone basis, that is, migrating all the routers in the same
zone (e.g., a continent) before routers in other zones. We observe that this
is indeed possible since, in both Rocketfuel and real-world topologies, all the
loops arise between routers in the same zone or between backbone routers and
routers in a peripheral zone. Thus, it is often possible to compute and apply
per-zone orderings. These considerations further motivate our effort to find
a router migration ordering which is guaranteed to be loop-free. We found
slightly different results on the real ISP topologies we analyzed. For the two
hierarchical ISPs, none or few migration loops can arise in the considered sce-
narios. This is mainly due to a sensible design of the hierarchy by the ISPs.
We discuss simple design guidelines that ease IGP migrations in Section 7.9.
On the other hand, we found that huge number of problems could arise in a
migration from a poor design to a neat one. In the hier2flat scenario, more
than 2000 loops, involving up to 10 routers, might arise within the tier1.A.

As a second group of experiments, we ran the ordering algorithms on both
the real-world and the Rocketfuel topologies. In the following, we present re-
sults for the flat2hier scenario but similar results and considerations hold for
the other scenarios. Fig. 7.12 shows for each Rocketfuel topology the percent-
age of routers that need to be migrated in a specific order according to each
algorithm (implying that other routers can be migrated in any order). When
a point is missing, it means that the corresponding algorithm was not able to
find a loop-free ordering for the topology. The enumeration algorithm was al-
ways able to find a loop-free ordering in all situations (including the real-world
topologies). In the worst case, the computed ordering involves more than 20%
of the routers in the network. We believe that finding ordering constraints
for such a number of routers is not practical at a glance. This stresses the
importance of our algorithms. The Routing Trees Heuristic, instead, found a
loop-free ordering on 9 topologies out of 11. In the remaining two cases, the
heuristic was not able to find a solution because of contradictory (unnecessary)
constraints relative to 4 and 6 destinations, respectively. Because of the lim-
ited number of destinations involved in contradictory constraints, we propose
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Figure 7.12: Percentage of routers involved in the ordering in flat2hier (Rock-
etfuel topologies). Results for other scenarios are similar.

to apply a per-destination ordering in these cases. Fig. 7.12 also highlights
the gain of relying on the greedy sub-procedure, as the heuristic could find a
solution for only 6 topologies without it.

Finally, we evaluated the time taken by our ordering algorithms. Typi-
cally, time efficiency of ordering algorithms is not critical in our approach,
since a loop-free router migration ordering can be computed before actually
performing the migration. However, it becomes an important factor to sup-
port advanced abilities like computing router migration orderings that ensures
loop-free migrations even in case of network failures (see Section 7.8). Fig. 7.13
plots the median of the computation time taken by each algorithm over 50 sep-
arated runs. Standard deviation is always under 40 for the loop enumeration
algorithm, except for the two cases corresponding to topology 1239, in which
standard deviation is around 450. Moreover, the standard deviation of the time
taken by the Routing Trees Heuristic is always less than 25. Even if correct and
complete, the Loop Enumeration Algorithm is inefficient, especially for large
topologies. The heuristic is always one order of magnitude faster. In Fig. 7.13,
the low absolute value of the time taken by the Loop Enumeration Algorithm
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Figure 7.13: Time taken to compute an ordering in flat2hier (Rocketfuel topolo-
gies). Results for other scenarios are similar.

can be explained by the relatively small size of the Rocketfuel topologies. Nev-
ertheless, for the tier1.A topology, the Loop Enumeration Algorithm took more
than 11 hours to complete. To further evaluate the performance degradation
of the complete algorithm, we enlarged tier1.B’s and tier2’s topologies. The
operation consisted in replicating multiple times the structure of one peripheral
zone, and attaching these additional zones to the network in order to reach a
size similar to tier1.A. In such experiments, we found that the Loop Enumera-
tion Algorithm took several hours even if routers can be migrated in any order,
while the heuristics always took less than 1.5 minutes.

Provisioning System

We evaluated the performance of the main components of our provisioning
system by means of a case study. In the case study, we performed a flat2hier
migration of Geant, the pan-european research network, that we emulated by
using a major router vendor routing operative system image. In particular,
we simulated the migration from a flat IS-IS configuration to a hierarchical
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OSPF. Geant’s topology is publicly available [gea10]. It is composed of 36
routers and 53 links. For the case study, we artificially built zones on the basis
of the geographical location of the routers and their interconnections [com]. In
addition to the backbone (12 routers), we defined three peripheral zones: the
south west area (6 routers), the north east area (11 routers) and the south east
area (17 routers). We defined the IGP link weights to be inversely proportional
to the bandwidth of the links. By executing the Loop Enumeration Algorithm
(see Section 7.5), we found that 8 different loops towards 5 different destinations
could arise on that topology.

We ran two experiments. In the first experiment we relied on the ordering
computed by the Loop Enumeration Algorithm, while in the second experiment
we adopted an alphabetical order based on the name of the routers. The
second experiment mimics a naive approach in which ordering constraints are
not taken into account. In order to minimize the impact of factors beyond our
control (e.g., related to the virtual environment), we repeated each experiment
50 times. To measure traffic disruptions due to the migration, we injected data
probes (i.e., ICMP echo request) from each router towards the 5 troublesome
destinations. Fig. 7.14 reports the median, the 5th and the 95th percentiles of
ICMP packets lost that arose after each migration step.

The case study showed the ability of our provisioning system to perform
seamless IGP migrations. Following the ordering computed by the Loop Enu-
meration Algorithm, we were able to achieve no packet loss during the mi-
gration (the few losses reported in Fig. 7.14 should be ascribed to the virtual
environment). On the other hand, adopting the naive approach of migrating
routers in the random order, forwarding loops arose at step 6 and are only
solved at step 34. Thus, the network suffered traffic losses during more than
80% of the migration process. Finally, we observe that, even migrations on a
per-zone basis require the use of an ordering algorithm because all the ordering
constraints are among routers in the same zone.

Our system also enables faster migrations than known migration [GM03,
gea03]. The IGP LSA Listener is able to process IGP messages in a few millisec-
onds. The performance of the module is confirmed by a separate experiment
we ran. We forced the Listener to process messages from a pcap file containing
204 LSAs (both OSPF and IS-IS). On 50 runs, the monitor was able to decode
and collect each IGP message in about 14 milliseconds on average and 24 mil-
liseconds at most. We evaluated the performance of the IGP State Asserter
on the IS-IS and the OSPF DBs generated during the case study. The DBs
contained information about 106 directed links and 96 IP prefixes. The IGP
State Asserter took about 40 milliseconds to assess equivalence of the logical
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Figure 7.14: Our system guarantees that no packet is lost during migration
while long-lasting connectivity disruptions can happen with a naive approach.

graph, routing stability, and advertisement of the same set of prefixes in both
IGPs. Even if the code could be optimized, current performance is good, also
considering that the IGP Asserter does not need to be invoked more than once
in absence of network failures (see Section 7.4). On average, the Configuration
Manager took 8.84 seconds to push one intermediate configuration on a router.
The average size of an intermediate configuration is around 38 lines. The en-
tire migration process took less than 20 minutes. On the contrary, a similar
real-world Geant migration took several days to be completed [gea03].

All the intermediate configurations that our system generated in the case
study described above are available online [com].

7.8 Dealing with Network Failures

In this section, we show how to extend the algorithms described in Section 7.3
to deal with network failures.

IGP link and node failures modify the IGP topology which in turn could
affect both the nh function and the migration ordering to be followed. Con-
sequently, it may be necessary to adapt the migration ordering to be followed
when a failure has been detected in order to not incur long-lasting migration
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Figure 7.15: Link failures can change the reconfiguration ordering to be fol-
lowed. In a flat2hier scenario on this topology, a forwarding loop can appear
between E1 and B1 if B1 is migrated before E1 and link (B1 E3) fails.

loops. Consider, for example, the topology in Fig. 7.15 and assume a flat2hier
migration. The figure shows the initial and the final nh functions towards
B2, before (left side) and after (right side) the failure of the link between
B1 and E3. Before the failure, any reconfiguration ordering is loop-free since
nhinit = nhfinal. However, after the failure of the link between B1 and E3,
nhinit is no longer equal to nhfinal, and a migration loop can be created if
B1 is migrated before E1. To prevent forwarding loops exclusively due to link
failures, additional constraints need to be considered during the computation
of the migration ordering. For instance, in the example of Fig 7.15, E1 should
be migrated before B1 to guarantee loop prevention even in case of failure of
link B1− E3.

As a paradigmatic example of how to deal with network failures, we focus
on single-link failures. Other kinds of failures (e.g., node and shared risk link
group failures) can be similarly addressed. Also, note that single-link failures
have been shown to account for the majority of the failures typically occurring
in a network [MIB+08]. In the following, we refer to a router migration ordering
which prevents loop for any single-link failure in the network as a single-failure
compliant ordering.

For each IGP topology, we computed the additional set of constraints for
a single-link compliant ordering, by iteratively removing single links from the
initial topology and running the constraint generation portion of the Loop
Enumeration Algorithm or the Routing Trees Heuristic on the topology we
obtained. Fig. 7.16 shows the 50, 99 and 100-percentiles of the number of
additional forwarding loops that one single-link failure can trigger. Points that
do not appear on the figure are meant to lay on the x axis (i.e., no additional
loop due to single-link failures). Typically, very few single-link failures are
responsible for the vast majority of the additional forwarding loops and ordering
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Figure 7.16: Average number of additional forwarding loops created by a
single-link failure in flat2hier reconfiguration scenarios on Rocketfuel topolo-
gies. Missing points are equal to 0.

constraints. Observe that, in some cases (e.g., AS1239), a single link failure is
responsible for more than 500 additional loops. For every network of Fig. 7.16,
we also tried to find single-failure compliant ordering by running the resolver
part of either one of the two algorithms on the union of all the constraints. In
9 out of the 11 studied networks, we were able to find such a reconfiguration
ordering. Also, in one of the two remaining topologies (namely, AS1239, city),
we computed a migration ordering that prevents loops for 97% of the possible
single-link failures. Results on the real ISP topologies are similar. For tier1.2,
we have been able to find a single-failure compliant ordering, while on tier2.1,
we were able to find an ordering preventing loops for any single-link failure but
one. Given the size of the problem, we did not run our algorithm on tier1.11.
Our results suggest that finding a single-failure compliant ordering is typically
possible on small and medium-sized topologies. For huge networks, finding an
ordering is harder as the probability of generating contradictory constraints is
higher given the large number of links. In this case, a per-destination ordering
(see Section 7.4) can be pre-computed for a subset of the destinations thanks

1Note that the Routing Tree Heuristic is not usable here as it was not able to find an
ordering in the simple case, i.e. without single-link failures.
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to the efficiency of the heuristic approach.

7.9 Design Guidelines

In this section, we state simple design guidelines that make the entire IGP
migration process easier, since all the router migration orderings are loop-free.
In the following, we consider the design of zones in hierarchical IGPs, since the
most problematic migrations involve hierarchies.

Guideline A For each zone Z, the shortest path from each ZBR to any
destination in Z is an intra-zone path.

Guideline A enables easier flat2hier and hier2flat migrations. In fact, the
guideline enforces sufficient conditions to guarantee that the nh function does
not change for any router and any destination in any zone Z, since an intra-
zone path is preferred in both flat and hierarchical modes. Since no router in Z
changes its path, then nhinit(v, d) = nhfinal(v, d) also for all routers v 6∈ Z and
d ∈ Z. This implies that no loop can arise during the migration. Notice that
Guideline A refers only to ZBRs, since if they use intra-zone paths, then non-
ZBR routers cannot use inter-zone paths. Establishing multiple adjacencies
(e.g., L1L2 adjacencies in IS-IS) between ZBRs also guarantees the nh function
does not change, but backbone links could be unnecessarily traversed in this
case.

Guideline B In each zone Z, the weight of the path from any ZBR to any
destination in Z is the same.

Practically, Guideline B can be enforced by organizing routers in each periph-
eral zone Z in three layers: i) a core layer, containing ZBRs in Z; ii) an
aggregation layer, connecting the access and the core layers; and iii) an ac-
cess layer, containing destinations in Z. Each ZBR must connect to at least
one router in the aggregation layer, and each router in the aggregation layer
must connect to all destinations in Z. In addition, all core-to-aggregation links
must have the same weight w1; similarly, all aggregation-to-access layer link
weight must be set to the same value w2 (possibly w2 6= w1). Guideline B
guarantees easy IGP migrations when route summarization is introduced or
removed. We assume that aggregated prefixes are announced with a cost equal
to the highest weight among the destinations in the aggregate (as in OSPF,
by default [Moy98]). In this case, both with and without summarization, each
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backbone router chooses the closest ZBR in Z as entry point for destinations
in the aggregated prefix. It is easy to check that, as a consequence, the nh
function does not change with or without summarization, hence no specific
migration ordering is needed during the migration.

7.10 Related Work

Seamless IGP operation and maintenance have been the focus of several
previous studies. For example, several protocol extensions have been pro-
posed [SDV06, MPEL03, SG08] to gracefully restart a routing process. How-
ever, few research effort has been specifically devoted to network-wide seam-
less IGP migrations, and current best practices [Pep07, Hv10] are just rules of
thumb which do not apply in the general case, and do not guarantee lossless
reconfiguration processes.

In [RZC09] and [RZC11], Raza et al. propose a theoretical framework
to formalize the problem of minimizing a certain disruption function (e.g.,
link congestion) when the link weights have to be changed. The authors also
propose a heuristic to find an ordering in which to modify several IGP weights
within a network, so that the number of disruptions is minimal. Although
their work is close in spirit to ours, the migration scenarios we analyzed cannot
always be mapped to a reweighting problem. For example, in hierarchical IGP
configurations, both the weight of a link and the zone to which it belongs are
considered in the computation of the next-hop from a router to a destination
and a unique link weight assignment that generates the same next-hop for
each router-to-destination pair may not exist. A more abstract reconfiguration
framework on how to transform a feasible solution of a problem into another
solution of the same problem is also studied from a purely theoretical point of
view (e.g., [KMM11]).

In [KCF06], Keralapura et al. study the problem of finding the optimal way
in which devices and links can be added to a network to minimize disruptions.
Beyond addressing topological changes, our techniques can be used to address
several other migration scenarios.

In [CMMvdM09], Chen et al. describe a tool that is able to automate
status acquisition and configuration change on network devices according to
rules specified by domain experts. The tool can be used to automate the ships-
in-the-night approach, but not to compute a loop-free ordering. The authors
also provide a rule of thumb to avoid problems during IGP migrations, i.e.,
update edge routers before the backbone ones. However, this rule does not
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hold in general. For example, migrating E1 before B1 in Fig. 7.1 creates a
forwarding loop in a hier2flat scenario.

In [AWY08], Alimi et al. extend the ship-in-the-night approach by allowing
multiple configurations to run simultaneously on a router. They also describe
a commitment protocol to support the switch between configurations without
creating forwarding loops. While the technique is promising, it cannot be
exploited on current routers.

Recently, some techniques [WKB+08, KRvdM10] have been proposed to
enable virtual routers or parts of the configuration of routers (e.g., BGP session)
to be moved from one physical device to another. Their works differ from ours
as we aim at seamlessly changing network-wide configurations.

In [RFRW11], Reitblat et al. study the problem of consistent network
updates in “Software Defined Networking”. They propose a set of consistency
properties and show how these properties can be preserved when changes are
performed in the network. Unlike our approach, this work only applies to
logically-centralized networks (e.g., OpenFlow).

Regarding the problem of avoiding forwarding loops in IGPs during tran-
sient states, some previous work has also been done. Francois et al. propose
protocol extensions that allow routers to update their FIB without creating
a transient loop after a link addition or removal [FSB07]. Fu et al. [FSK08]
and Shi et al. [SFF09] generalize the results by defining a loop-free FIB update
ordering for any change in the forwarding plane and considering traffic con-
gestion, respectively. However, these approaches cannot be used effectively in
practice to perform IGP migrations since they only consider updating the FIB
on a per-destination basis. Our approach is different as it is aimed at minimiz-
ing the number of changes applied to the routers’ configurations by searching
for a per-router migration ordering. We only apply a per-destination ordering
when no per-router migration exists.

IGP migrations could also be performed by using route redistribution. Al-
though new primitives have been recently proposed [LXZ10], we believe that
relying on a ships-in-the-night approach (when possible) makes the entire mi-
gration process easier and more manageable.

7.11 Limitations and Future Work

In this section, we discuss limitations of our methodology, especially in terms
of its application to other types of migrations. Such limitations help us in
defining interesting research directions opened by this work.
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First of all, our methodology is adapted to link-state IGP migrations and it
cannot be directly applied to other IGPs (e.g., distance-vector IGPs). Contrary
to link-state protocols, where routers always have a global view of the topology
and can take decisions autonomously, in distance-vector protocols a change of
the next-hop of one router can affect the visibility other routers have of some
destinations. This is likely to pose different problems with respect to those
tackled by our techniques.

In this chapter, we have defined and evaluated extensions of our techniques
that deal with network failures. Intuitively, link congestion due to the applied
migration ordering can be avoided with similar extensions, i.e., adding con-
straints to the migration ordering research space. We plan to fully investigate
and evaluate provably congestion-free migration techniques in future work.

Moreover, our methodology does not take into account the interactions be-
tween the changing IGP and the protocols relying on it. In particular, our
approach is not suitable for all the possible scenarios in which BGP is deployed
on the migrated network. BGP uses the IGP to both discriminate among sev-
eral exit-points and to learn how to reach the preferred exit-point [RLH06].
Migrating the underlying IGP can thus cause BGP routers to change their pre-
ferred exit-point which can lead to forwarding loops. Currently, our algorithms
ensure that no loop occurs during the migration towards any internal destina-
tion of an AS. This property is sufficient to guarantee loop-free forwarding
towards inter-domain destinations as well in the following two cases: i) inter-
domain routes are redistributed (possibly in an aggregated form) in the IGP,
as may be the case in enterprise networks, and ii) forwarding is based on tun-
neling or encapsulation mechanisms, as for example in MPLS-based networks.
Though, in the migration of a pure IP network, the exclusive presence of BGP
can induce forwarding loops due to conflicting BGP decisions between updated
routers and non-updated routers.

Theoretically, our ordering algorithms can be adapted to deal with BGP-
induced loops due to IGP configuration changes. However, the ordering prob-
lem is much more complicated since it needs to consider: i) the fact that BGP
prefixes could be reached via any combination of exit-points, ii) the iBGP
topology and its relationship to the IGP [GW02b], and iii) BGP dynamism.
For these reasons, we expect that a loop-free migration ordering for all the
BGP prefixes does not exist in most of the cases.

We believe, however, that finding an effective technique to prevent BGP-
induced loops during the IGP migration of pure IP networks is an interesting
open problem raised by this work.
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CHAPTER 7. ENABLING NETWORK-WIDE IGP

RECONFIGURATIONS

7.12 Conclusions

Network-wide link-state IGP migrations are a source of concerns for network
operators. Unless carried with care, IGP migrations can cause long-lasting
forwarding loops, hence significant packet losses.

In this chapter, we proposed a migration methodology that enables oper-
ators to perform network-wide changes on an IGP configuration seamlessly,
rapidly, and without compromising routing stability. Our methodology relies
on effective techniques for the computation of a router migration ordering, and
on a provisioning system to automate most of the process. These techniques
encompass a complete, time-consuming algorithm and a heuristic. The evalua-
tion we performed on several ISP topologies confirms the practical effectiveness
of both the heuristic and the provisioning system. We also evaluated exten-
sions of our techniques that prevent long-lasting loops even in case of network
failures.

As future work, we plan to refine our techniques in order to deal with
link-state IGP migrations in advanced scenarios, like congestion-free reconfig-
urations and prevention of BGP-induced loops during IGP reconfigurations of
pure IP networks. Also, we plan to study reconfigurations of other IGPs, like
distance-vector IGPs or EIGRP.
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Chapter 8

Towards an Optimized iBGP

Configuration ∗

8.1 Introduction

iBGP configuration plays a key role in large ISP networks, as iBGP is used to
disseminate the interdomain routes received from other ISPs. Unfortunately,
iBGP configuration optimality depends on many factors, like IGP topology
and IGP metrics. Those factors, in turn, evolve with the network. Hence,
when new requirements appear or when router capabilities change, network
operators often need to redesign their iBGP configuration.

In this chapter, we analyze two design proposals to tweak iBGP route re-
flection. Those proposals are targeted to make iBGP more flexible, and adapt
it to practical needs of operators, like increasing route diversity and internally
engineering inter-domain traffic. We show the impact of such proposals on con-
figuration correctness properties, among which guaranteed convergence, and
absence of traffic blackholes and forwarding loops. In Section 8.2 we describe
the model for iBGP configurations we adopt in this chapter, and we formally
define correctness properties as formalized in [GW02b]. In particular, signaling

∗Part of the material presented in this chapter is based on the following publications L.
Cittadini, G. Di Battista, S. Vissicchio. Doing Don’ts: Modifying BGP Attributes within
an Autonomous System. In Proc. IEEE NOMS, 2010. and S. Vissicchio, L. Cittadini, L.
Vanbever, O. Bonaventure. iBGP Deceptions: More Sessions, Fewer Routes. TR, 2011
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correctness ensures that BGP will always converge to a single stable routing,
while forwarding correctness guarantees the absence of packet deflections along
the forwarding path. Also, we formally define known sufficient conditions for
iBGP configuration correctness.

Then, we devote the first part of the chapter to the first design proposal,
consisting in adding spurious iBGP sessions. We denote as spurious sessions
those iBGP sessions that do not entirely respect the neat hierarchical structure
of route reflection topologies as originally conceived in [BCC06]. Section 8.3
describes the main reasons for adding iBGP spurious sessions, among which
fixing route visibility issues due to route reflection and improving route di-
versity [PTOS08, PUT+10]. These reasons also justify the presence of some
spurious sessions in real world ISP networks as reported in [FB05, PCA+11].
We then study the impact of spurious sessions on iBGP correctness properties
in Section 8.4. We show that the additional spurious sessions can negatively im-
pact both iBGP stability and forwarding correctness. Also, we find that route
propagation rules play a fundamental role in ensuring correctness of iBGP
configurations with route reflection in this scenario. This contradicts the as-
sumption, made in most previous research work, that all routers are guaranteed
to receive a route to any destination prefix in iBGP topology if a stable state
is reached. Through simple examples, we show that traffic blackholes can be
created by the combined effect of iBGP route propagation rules and the route
selection algorithm. Even worse, our examples show that distinct destination
prefixes cannot be analyzed separately in the general case, as their interaction
can give rise to forwarding anomalies. Hence, we define a new correctness prop-
erty, called dissemination correctness, to model the absence of anomalies due to
iBGP route propagation rules, and we show how dissemination correctness fills
the gap between signaling and forwarding correctness. Unfortunately, checking
dissemination correctness is computationally intractable even when adding a
single iBGP session to an existing dissemination correct iBGP configuration,
as we prove in Section 8.5.

After, we switch to study the possibility of changing the attributes carried
by iBGP messages: we refer to this proposal as iBGP attribute changing (IAC ).
In Section 8.6, we discuss possible advantages of changing iBGP attributes.
Also, by analyzing BGP update traces collected at multiple vantage points in
the Internet, we estimate the number of ISPs that are actually changing iBGP
attributes. Our data show that this practice is adopted by some ISPs, especially
large transit providers. In Section 8.7, we study the impact of IAC on the
iBGP stability guarantees, proving that changing iBGP attributes makes iBGP
prone to new types of oscillations. Further, we re-apply techniques described



i

i

“main” — 2012/2/22 — 9:40 — page 183 — #193
i

i

i

i

i

i

8.2. A MODEL FOR IBGP CONFIGURATION 183

in Chapter 4 to build a prototype convergence checker. To the best of our
knowledge, this is the first tool able to statically check an iBGP configuration
for stability in case of iBGP attribute changing, given that state-of-the-art
algorithms to detect oscillations [FRBS08] assume that iBGP messages are
left untouched. Experimental results with a prototype implementation show
promising performance, hence we conclude that changing iBGP attributes does
not intrinsically prevent a network operator from debugging its routing policies
using advanced configuration analyses.

Further, we study sufficient conditions and we propose configuration guide-
lines that overcome drawbacks and establish fundamental tradeoffs (e.g., be-
tween stability guarantees and suboptimal routing likelihood) when operators
are willing to deploy the analyzed iBGP design proposals. Namely, in Sec-
tion 8.8, we study sufficient conditions that ensure both signaling and dissem-
ination correctness and we use them to define design guidelines. We find that
the absence of a special type of spurious iBGP sessions (i.e., spurious OVER
sessions) guarantees no iBGP route propagation anomalies. Also, we state
configuration guidelines to change iBGP attributes in a profitable way. Our
guidelines are easy to configure on routers, guarantee iBGP stability even un-
der faulty conditions, and ensure that reasonable traffic engineering policies
are enforced, regardless of the behavior of other ISPs.

Finally, related work is revised in Section 8.9, and conclusions are drawn in
Section 8.10

8.2 A Model for iBGP Configuration

We now present the model we use in this chapter for iBGP route reflection
configurations. We refer the reader to Chapter 1 for some background on iBGP
and route reflection.

We model an IGP graph as an undirect weighted graph I = (V,E), with a
weight associated to each edge (u, v) ∈ E. Also, we denote with dist(u, v) the
total weight of the shortest path from u to v.

We refer to the organization of iBGP sessions in an iBGP configuration as
iBGP topology. We model an iBGP topology as a directed labeled multigraph
B = (V,E) where nodes in V represent routers and edges in E represent
iBGP sessions. Each edge (u, v) is associated with a label which is either UP,
DOWN, or OVER. We use u← v, u→ v, and u↔ v to indicate that the label
of edge (u, v) is DOWN, UP or OVER, respectively. Because of the way iBGP
relationships are defined, we have that u← v ⇔ v → u, while u↔ v ⇔ v ↔ u.
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Due to the iBGP route dissemination rules (see Table 1.2), not every path
on B can be used to distribute a BGP message. We define a valid signaling path
as a path (u . . . v) on B that can be used to advertise routes from u to v (or
vice versa). A valid signaling path consists of zero or more UP sessions, followed
by zero or one OVER session, followed by zero or more DOWN sessions, that
is, it matches regular expression UP∗OVER?DOWN∗ [BUM08]. The presence
of a valid signaling path between u and v is a necessary condition for u to
learn routes announced by v, even if we show in Section 8.4 that it is not a
sufficient condition. Throughout the chapter, we assume that the iBGP graph
B is connected, that is, ∀u, v ∈ B there is a valid signaling path from u to v,
otherwise obvious forwarding anomalies can arise (routes are not propagated
network-wide). Whenever it is clear from the context, we use a signaling path
to refer to the route advertised over that signaling path (e.g., we say that a
router receives a path, or prefers a path over another).

Signaling paths can be concatenated. The concatenation of two non-empty
signaling paths P = (vk vk−1 . . . vi), k ≥ i, and Q = (vi vi−1 . . . v0), i ≥ 0,
is signaling path PQ = (vk vk−1 . . . vi vi−1 . . . v0). The concatenation of
two valid signaling paths can be a non valid signaling path. In the remainder
of this chapter, we use the word “path” to refer to an “iBGP signaling path”,
except when explicitly specified.

Route reflection topologies are usually organized in a hierarchy where there
are no cycles consisting of UP sessions only. Indeed, such cycles are a sign of
bad topology design and can create routing anomalies [GW02b]. In a hierarchy,
each BGP router can be assigned to a layer. We denote the set of routers in
the top layer of an iBGP topology B as TB . A router belongs to the top layer
TB if it has no route-reflectors. We also define a function L that maps a router
u to a hierarchical layer:

L(u) =







0 if u ∈ TB

max
{v|u→v}

(L(v)) + 1 otherwise

iBGP Configuration Correctness

It has been shown [GW02b] that the suboptimal route visibility introduced
by route reflection can cause both routing and forwarding anomalies. Routing
anomalies can prevent BGP to settle to a stable state because of routing oscil-
lations. Moreover, inconsistent routing decisions between the forwarding plane
and the control plane can create forwarding deflections and loops. A BGP
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configuration is said to be signaling correct if it is free from routing anomalies,
i.e., if BGP is guaranteed to converge to a single predictable stable state. A
signaling correct configuration is forwarding correct if it is free from forwarding
anomalies. Observe that there are no guarantees that all the routers have a
route towards all the prefixes even in a signaling correct BGP configuration.

The following set of sufficient conditions guarantees that an iBGP topology
B is both signaling and forwarding correct [GW02b].

(i) B has no cycles consisting of UP sessions only;

(ii) any route-reflector prefers paths propagated by its clients over paths
propagated by non-clients; and

(iii) all shortest paths must also be valid signaling paths.

Conditions (i) and (ii) ensure that the iBGP configuration is signaling cor-
rect, while Condition (iii) guarantees forwarding correctness. Although inter-
esting from a theoretical perspective, such conditions can be too constraining to
be applied in real networks. For example, Condition (iii) practically forces the
BGP topology to be congruent to the IGP one, in such a way that even a full-
mesh of iBGP sessions [RLH06] is not compliant. We discuss the applicability
of Condition (ii) in Section 8.8.

In [BMU07, BUM08] the concept of fm-optimality is introduced as a relaxed
sufficient condition to ensure forwarding correctness in a signaling correct iBGP
configuration. To understand fm-optimality, we need to define white routers
and white paths [BUM08]. Given an iBGP topology B, a router r and an egress
point e, a router r′ is said to be a white router for pair (r, e) if there is no egress
point e′ in B such that dist(r, e′) > dist(r, e) and dist(r′, e′) ≤ dist(r′, e). A
white path between a router r and an egress point e is defined as a valid signaling
path between r and e that contains only white routers for pair (r, e). An iBGP
topology is fm-optimal if for each router r and for each egress point e there
exists at least one white path.

8.3 Proposal 1: Adding Spurious iBGP Sessions

Consider the iBGP network depicted in Fig. 8.1. The iBGP topology con-
sists of route-reflectors a, b, and r (drawn in grey), and border routers: e1
and e2 which are clients of b, and e3 which is client of r. The route reflection
hierarchy is organized in three levels, the top layer being composed by a and
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Figure 8.1: A BGP network in which route-reflection can limit route visibility.
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(a) iBGP configuration
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(b) IGP topology

Figure 8.2: An abstract representation, drawn according to the graphical for-
malism we use in this chapter, of the network in Fig. 8.1.

r. Observe that the absence of a direct session between a and any egress point
forces a to rely on b’s and r’s routing decision. This involves that not all the
external routes received at the edge of the network, that is, a has a limited
route visibility. Depending on the IGP topology, limited route visibility can
also create forwarding issues.

In order to deeper understand route visibility and forwarding anomalies,
consider Fig. 8.2. Fig. 8.2a depends iBGP topology according to the graphical
convention we will use in the following. Circles represent clients, while dia-
monds represent route-reflectors. UP and OVER sessions are depicted with



i

i

“main” — 2012/2/22 — 9:40 — page 187 — #197
i

i

i

i

i

i

8.3. PROPOSAL 1: ADDING SPURIOUS IBGP SESSIONS 187

single and double arrow links, respectively. The dashed arrows labeled p1 en-
tering routers e1, e2 and e3 represent the fact that e1 and e2 are egress points
for prefix p1. Similarly, e3 is an egress points for both p1 and p2. The under-
lying IGP graph is depicted in Fig. 8.2b, where lines represent IGP links and
labels represent the IGP weight assigned to a link. Links without labels are
implicitly assumed to have IGP weight 1.

Consider prefix p1. Routers e1, e2 and e3 will select their external route R1,
R2 and R3, respectively, due to step 5 of the BGP decision process. Therefore,
they will advertise their best route to all their iBGP neighbors, namely b (for
e1 and e2) and r (for e3). Router b will collect route advertisements from its
clients, select its best route, and then propagate it to every other neighbor. By
step 6 of the BGP decision process, b will select route R2 because e2 is a closer
egress point than e1. Therefore, by iBGP propagation rules (see Table 1.2)
b will advertise R2 to its route-reflector a. Each router will keep performing
route collection, route selection and route dissemination until BGP converges
and no further messages are propagated. After convergence, router r will select
route R3 and router a will select route R2.

Observe that router a has no knowledge of route R1, because it only receives
route R2 from b and route R3 from r. In fact, route reflection introduces
suboptimal route visibility and limits the amount of route diversity available at
router a. Another side effect induced by route reflection is the packet deflection
that happens when a sends traffic to prefix p1. More precisely, a believes that
the traffic will exit from egress point e2 and forwards it to e1 because it is
the next hop to e2. However, e1 is itself an egress point for prefix p1, so it
will deflect traffic outside the ISP. The combination of multiple deflections can
result in forwarding loops [GW02b].

Whenever issues due to suboptimal route visibility arise, fixing them by
adding additional iBGP sessions may look like an easy and tempting solution for
a network operator. In our example, adding an iBGP session between routers
a and e1 will provide a with increased route diversity and will make it able
to select its optimal egress point. The addition of OVER sessions to increase
route diversity in iBGP has been already proposed in [PTOS08, PUT+10],
e.g., to support recently proposed techniques for reducing iBGP convergence
time [FMB+07]. Indeed, quantitative studies have already shown that route re-
flection leads to very poor route diversity [UT06]. This, in turn, can cause high
convergence time in case of failure or interdomain routing changes. Moreover,
additional sessions can provide better route visibility to routers, thus making it
easier for a network operator to fix its iBGP configuration in order to comply
with state of the art guidelines [BMU07].
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Figure 8.3: over-ride gadget

Observe that, in general, additional iBGP sessions do not need to be OVER
sessions, i.e., they could be UP sessions as well. However, network operators
might prefer OVER sessions due to the fact that they incur lower memory
overhead and lower update churn, because only a subset of reflected routes is
announced on OVER sessions (see Table 1.2).

Unfortunately, adding OVER sessions to an existing topology may have
undesirable side effects. Consider the iBGP network in Fig. 8.3 (over-ride
gadget), which is a simplified version of the one in Fig. 8.2. An additional
OVER session exists between routers a and e. Since e is the only egress point
available for prefix p, a will prefer the route that it learns on the OVER session
because of step 8 of Table 1.3. Then, since its best route was learned from a
peer, a will not propagate it to r, so r will have no route to prefix p.

Now if r has a route for a less specific prefix than p (e.g., a default route),
it will use that route for traffic destined to p, possibly generating forwarding
deflections and loops. As a consequence, it is not safe to assume that prefixes
are independent in iBGP. Otherwise, if r has no route for a less specific prefix
than p, r will create a traffic blackhole. Observe that both kinds of anomalies
are due to the iBGP topology alone: IGP topology is irrelevant because there is
only one egress point for p. For this reason, the over-ride gadget complies
with the conditions of [BMU07], yet it is subject to anomalies. Even worse,
such anomalies can be triggered by external events, e.g., if an egress point fails.
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8.4 The Impact of iBGP Spurious Sessions

In this section, we introduce the concept of spurious OVER sessions and
we show how their side effects can invalidate some simple assumptions that
apparently hold in any iBGP topology, and that have been used in previous
research work.

Definition 8.1 Given a BGP topology B, an OVER session x↔ y is spurious
if one of the two routers is not in the top layer, i.e., if x 6∈ T or y 6∈ T .

Spurious sessions are not common in Internet networks and vendor guide-
lines suggest to not deploy them [ZB03]. Nevertheless, spurious sessions have
been proposed to solve visibility issues [PTOS08, PUT+10], and previous work
shows that large ISPs sometimes use them [FB05, PCA+11]. Moreover, spu-
rious sessions can be unintentionally created during iBGP reconfigurations.
For example, current best practices to deploy route reflection from an iBGP
full-mesh [Hv10] are very likely to generate spurious OVERs in intermediate
configurations.

Route Dissemination Deceptions

As discussed in Section 8.3, the over-ride gadget provides an example of
how a spurious OVER improves egress point visibility at some routers, but
potentially worsens visibility at other routers. In the gadget, the side effect
of adding a spurious OVER is counter-intuitive because it induces a change in
the route dissemination process at router r without affecting the egress point
selected by r. This contradicts the intuition that a connected iBGP topology
guarantees that every router eventually learns at least one route for any given
prefix.

Unfortunately, some previous work is based on that intuition. In particu-
lar, [PTOS08] assumes that adding an OVER session can only improve route
visibility, while [BMU07, BUM08] assume that a route-reflector r can “hide” a
route to a neighboring router v only if it has a closer alternative egress point.

More generally, spurious OVER sessions show that the concept of valid
signaling path is not a good abstraction to study the actual ability of a router
to learn a route to a given prefix. In order to better understand this property,
we introduce the concept of dissemination correctness.

Definition 8.2 Let B be a signaling correct iBGP topology. Then, B is dis-
semination correct if all the routers in B are guaranteed to receive at least one
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Figure 8.4: Two cases in which adding a spurious OVER creates signaling and
forwarding anomalies.

route for prefix p in the stable state, for any non-empty set of egress points for
p.

Observe that dissemination correctness does not depend on interdomain rout-
ing nor on the set of egress points currently learning routes for given prefixes.
That is, it is a topological property. Dissemination correctness differs from
both signaling and forwarding correctness. Indeed, a signaling correct topol-
ogy is not guaranteed to be dissemination correct. Moreover, a dissemination
correct topology is not guaranteed to be forwarding correct. The three proper-
ties actually complement each other: signaling correctness deals with routing
anomalies that can prevent BGP from converging; dissemination correctness
deals with issues in the route propagation process; forwarding correctness deals
with forwarding anomalies caused by the interaction between iBGP and IGP.

Signaling and Forwarding Correctness Deceptions

Beside affecting dissemination correctness, a single spurious OVER can even
prevent an iBGP topology to be either signaling or forwarding correct, as shown
in Fig. 8.4.

Consider Fig. 8.4a. Every router is equipped with a list of valid signaling
paths, sorted in decreasing order of preference. Observe that (u1, e0) is a
spurious OVER session. We now show that iBGP cannot converge in this
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configuration. Assume by contradiction that a stable state exists, and consider
the routing choice at router u2. Since u2 receives a route directly from e2, it
is not possible that u2 does not select any route for prefix p1. Hence, we have
the following cases.

• u2 steadily selects (u2 e2). In this case, u1 will use its most preferred path
(u1 u2 e2), preventing u0 from selecting (u0 u1 e0). Thus, u0 will select
(u0 x e0), and eventually announce it to u2. Because of path preferences,
u2 should switch to (u2 u0 x e0), yielding a contradiction.

• u2 steadily selects (u2 u1 u0 x e0). This involves that u1 steadily selects
(u1 u0 x e0), leading to a contradiction, since path (u1 e0) is always
available at u1 and is more preferred than (u1 u0 x e0).

• u2 steadily selects (u2 u0 x e0). This implies that u0 steadily selects
(u0 x e0), and u1 is forced to select (u1 e0), since it does not receive path
(u2 e2) from u2. This leads to a contradiction, since u0 will eventually
learn and select path (u0 u1 e0), preventing u2 from steadily selecting
(u2 u0 x e0).

All the cases lead to a contradiction, hence a stable state does not exist in the
topology in Fig. 8.4a. Observe that the path preferences highlighted in the
figure can result from the standard BGP decision process (Table 1.3) if the
IGP topology is such that dist(x, e0) < dist(x, e2), dist(u0, e0) < dist(u0, e2),
dist(u2, e0) < dist(u2, e2), and dist(u1, e0) = dist(u1, e2). In this case, x, u0,
and u2 prefer paths based on the closest egress point, while u1 prefers eBGP
routes received from e2 over those received from e0 for egress-id. Ties are
broken by shorter cluster-list and peer-id criteria. Also notice that, in
such a configuration, the iBGP topology in Fig. 8.4a is fm-optimal [BMU07].
For each router, its white paths for both egress points e0 and e2 are marked
with an asterisk.

Forwarding correctness can also be affected by the presence of spurious
OVER sessions. Consider the topology in Fig. 8.4b, and assume that x steadily
selects path (x e2), while z steadily selects path (z e0), because of the IGP
distances. Since those paths are learned via an OVER session, x and z will not
propagate their best route to y, hence y will be forced to select the route from
e1. If If y is on x’s shortest path to e2 and x is on y’s shortest path to e1, then
a loop for p1 arises between x and y.



i

i

“main” — 2012/2/22 — 9:40 — page 192 — #202
i

i

i

i

i

i

192 CHAPTER 8. TOWARDS AN OPTIMIZED IBGP CONFIGURATION

8.5 Checking Dissemination Correctness is Hard

In this section, we study the computational complexity of deciding whether a
given iBGP topology is dissemination correct. Unfortunately, we find that such
a problem is computationally intractable. Even worse, we show that the prob-
lem of deciding if the addition of a single session can affect the dissemination
correctness of an iBGP topology is also computationally intractable.

More formally, we define the two problems we consider as follows.
Dissemination Correctness Problem (DCP): Given a signaling correct iBGP

topology B and the underlying IGP topology I, decide if B is dissemination
correct.

One More Session Problem (OMSP): Given a dissemination correct iBGP
topology B = (V,E), the underlying IGP topology I, and a spurious OVER
session o = (x, y), x, y ∈ V , decide if B′ = (V,E ∪ (x, y)) is dissemination
correct.

Observe that DCP is the iBGP equivalent of the reachability problem
defined on eBGP in [GW99].

We now prove that DCP is coNP -hard [Pap94]. Intuitively, computa-
tional complexity of DCP mainly depends on the fact that all the non-empty
sets of egress points have to be checked in the general case. In the following,
we show that the sat complement problem [Pap94] can be reduced to DCP
in polynomial time. Consider an instance of sat complement and let F be
a logical formula in conjunctive normal form. Moreover, let C1, . . . , Cn be the
clauses in F , and let X1, . . . , Xm be the boolean variables appearing in the
clauses. Each clause Ci is the logical disjunction of exactly 3 literals Lij with
j = 1, 2, 3. A literal Lij can be either a variable Xl or a negated variable X̄l.
The sat complement problem consists in deciding if F is unsatisfiable, that
is, if no boolean assignment makes F true.

We now build the corresponding instance of DCP (see Fig. 8.5), following an
intuition similar to that used in [GW02b] for proving that signaling correctness
is NP -hard. The skeleton of the iBGP topology B = (V,E) consists of 4 nodes,
e, s, r, and b connected as in the over-ride gadget. In particular, e → s,
s → r, and e ↔ r. Moreover, r ↔ b since b, r ∈ T . For each variable Xi, we
add two literal nodes xi and x̄i to V , representing the two literals associated
to Xi. For each clause Cj , we add a clause node cj and three nodes vj1, vj2,
and vj3. We add OVER sessions between cj and vji, i ∈ {1, 2, 3}. Also, each
cj ∈ T , hence it is in the top layer full-mesh. We also add an UP session from
e to cj . Moreover, two UP sessions (xk, vji) and (x̄k, vji) are added to E iff
either Xk or X̄k is the ith literal appearing in clause Cj . Finally, we add an
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Figure 8.5: Reduction from sat complement to DCP

UP session between each vji and r.
We set IGP metrics as follows. Consider any clause Cj . If variable Xi ap-

pears unnegated in the kth literal of Cj , then we set dist(cj , xi) < dist(cj , e) <
dist(cj , x̄i), and dist(vjk, x̄i) < dist(vjk, xi). For any router n 6= e, xi, x̄i, we
set dist(cj , x̄i) < dist(cj , n) and dist(vjk, xi) < dist(vjk, n). Otherwise, if vari-
able Xi appears negated in the kth literal of Cj , we set IGP metrics such that
xi is replaced with x̄i and vice versa in the above inequalities. Finally, we set
IGP metrics in such a way that r and s prefer routes announced by e over all
other routes. Fig. 8.5b shows an example of the IGP topology resulting from
a clause C1 in which Xj (Xl, resp.) appears negated (unnegated, resp.).

Intuitively, a boolean assignmentM corresponds to a set SM of egress points
for a given prefix p. Router xi (x̄i, resp.) belongs to SM iff Xi is true (false,
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resp.) in M . Also, router e always belongs to SM .
A sat complement instance can be reduced to a DCP one in polynomial

time, since each clause and each variable is mapped to a polynomial number
of routers and links. We now show that the reduction is correct.

Lemma 8.1 B is signaling correct. Moreover, if e is not an egress point for
a given prefix p, then all routers in B are guaranteed to receive a route to p.

Proof: Consider prefix p and let S 6= ⊘ be the set of egress points for p.
Abusing the notation a bit, we refer to routers xj and x̄i as to x-routers, and
similarly we refer to v-routers and c-routers. We have two cases.

First, assume e 6∈ S. In this case, all x-routers in S steadily select an eBGP
route to p because of step 5 of the BGP decision process. The v-routers that
have at least one client in S steadily select the route propagated by one of their
client, because of IGP metrics. Router r receives routes from all v-routers that
have at least one client in S. Since S 6= ⊘, we conclude that r is able to select
a route to p announced by a v-router. Router r’s best route is then forwarded
to all r’s neighbors, because it was learned from a client. Observe that all the
shortest paths from r to a router in S contain s, which implies that s will select
the same route as r. For this reason, e will receive the same route from s and
from r and will steadily select it. Every c-router learns a route from r and
possibly additional routes from its v-peers. In any case, c-routers’ best routes
can only be propagated to s due to iBGP route reflection rules. Moreover, this
cannot affect the route selected by s. Router b and v-routers having no clients
in S receive a single route, i.e., the one announced by r. This, in turn, implies
that x-routers that are not in S will also receive a single route. Hence, iBGP
is guaranteed to converge, and all routers in B learn at least a route to p in
the steady state.

We now consider the case in which e ∈ S. Again, all routers in S steadily
select their external route and announce it to their respective route-reflectors.
The v-routers that have at least one client in S steadily select the route propa-
gated by one of their client, because of IGP metrics. Let Re be the route learned
by e. Observe that IGP metrics imply that routers r and s will steadily select
Re. Every c-router learns at least Re from router s, and possibly additional
routes from their v-peers. In any case, c-routers’ best routes are propagated
to s only, which prefers Re due to IGP metrics. Again, v-routers having no
clients in S receive a single route from r, i.e., Re. This, in turn, implies that
x-routers that are not in S also receive a single route. Observe that router b
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may or may not learn a route to prefix p. Since b’s decision cannot influence
any other router, we conclude that iBGP is guaranteed to converge. �

Theorem 8.1 DCP is coNP -hard.

Proof: Consider a logical formula F and construct the corresponding DCP
instance B = (V,E), as described above. By Lemma 8.1, B is signaling correct.
Moreover, Lemma 8.1 implies that B is dissemination correct if router e does
not receive an external route. Hence, we focus on the case in which router e
receives an external route. We now prove the statement in two parts.

If F is unsatisfiable then B is dissemination correct.
Assume by contradiction that B is not dissemination correct, i.e., there

exists a set of egress points SM for prefix p such that at least one router in B
does not receive any route to p. By Lemma 8.1, we know that such a router
must be b. We now build a boolean assignment M that satisfies F , yielding a
contradiction.

Since b does not receive any route, each ci does not select the route received
by e, otherwise it would have propagated that route to b. Hence, all ci must
select a route learned by one of their peers vik, with k = 1, 2, 3.

Let Cj be a clause and assume that Xi appears unnegated in the kth literal
of cj . Then, router cj selects a route propagated by vjk only if vjk selects the
route originated by xi, since dist(cj , xi) < dist(cj , e) < dist(cj , x̄i). In turn,
router vjk selects the route originated by xi only if xi is an egress point for pM
and x̄i is not, since dist(vjk, x̄i) < dist(vjk, xi). Symmetrical considerations
hold if Xi appears negated in the kth literal of Cj . In both cases, we are able
to find a boolean assignment to variable Xi that makes clause Cj true.

Iterating the same argument on all the clauses, we map pM to a boolean
assignment M which satisfies F .

If F is satisfiable then B is not dissemination correct.
Let M be a boolean assignment that satisfies F . We now show that B is

not dissemination correct, since there exists a set SM of egress points such that
if a prefix p is learned at SM then b receives no route to p.

By definition of M , all clauses are satisfied in M , hence for any clause Cj at
least one literal must be true. Assume, without loss of generality, that the kth

literal of Cj is true. If the k
th literal of Cj is Xi, then we impose that router xi

receives an eBGP route Rk to prefix pM , while router x̄i does not receive any
eBGP routes to pM . Since dist(vjk, xi) < dist(vjk, e), router vjk selects route
Rk and propagates it to router cj . Similarly, since dist(cj , xi) < dist(cj , e),
cj selects route Rk. Otherwise, if the kth literal of Cj is X̄i, we can apply
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the same argument by replacing xi with x̄i. In both cases, cj selects a route
propagated by an iBGP peer.

Since the above argument applies to all clauses, we have that every cj selects
a route learned from an iBGP peer. Router r also selects a route learned from
an iBGP peer, because of the presence of OVER session (r, e) (see Section 8.3).
Hence, every router which is a neighbor of b selects a route learned from an
iBGP peer, thus b receives no route for prefix pM . �

A similar reduction can can also be used to show that OMSP is coNP-
Hard. Starting from a logical formula in conjunctive normal form, we build
the instance of the OMSP as follows. B coincides with the BGP topology
in Fig. 8.5a without OVER session (r, e), I is as depicted in Fig. 8.5b, and
o = (r, e).

Using the same arguments as in the proof of Lemma 8.1, it can be shown
that B is dissemination correct. However, deciding if B′ = (V,E′), with E′ =
E ∪ {o}, is dissemination correct is coNP -hard, because of Theorem 8.1. In
other words, we cannot exploit the knowledge that an input iBGP network is
dissemination correct to efficiently check whether adding an arbitrary OVER
session preserves dissemination correctness.

8.6 Proposal 2: iBGP Attribute Changing

Another possibility for achieving extended flexibility in iBGP is to conveniently
change attributes in BGP messages when they are passed to iBGP neighbors.
In the following we refer to the practice of changing attributes in iBGPmessages
as iBGP attributes changing (IAC ).

Fig. 8.6a provides a simple example of how operators can exploit this flex-
ibility for implementing policies which are otherwise almost impossible to en-
force. AS X spans over North America and Europe, and has public peer-
ings at Internet exchange points (IXPs) in Palo Alto (PAIX) and Amsterdam
(AMS-IX). Configurations described in the figures are expressed in an intuitive
vendor-independent pseudo-language and are trivial to translate to any vendor-
specific language. Since AS X has multiple border routers in geographically
distributed locations, it employs route reflectors in order to scale its iBGP con-
figuration. For the purpose of this example, we assume that AS X has, among
others, a route reflector somewhere in the US and another one in Europe, and
that route reflectors are connected in a full-mesh of iBGP peerings. Being a
large ISP, X is likely to exhibit high route diversity [MFM+06], that is, mul-
tiple routes for the same destination prefix p are likely available at multiple
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(a) Outbound traffic is routed via AMS-IX only, due to the as-path at-
tribute

(b) By changing iBGP attributes, AS X can exploit both AMS-IX and
PAIX as traffic egress points, achieving better load balancing.

Figure 8.6: A use case in which changing iBGP attribute can be leveraged for
traffic engineering purposes.
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border routers. Suppose that X receives two BGP routes for prefix p: (i) a
BGP route advertising path ABCD from a peer at PAIX, and (ii) another
BGP route advertising path Y ZD from a peer at AMS-IX.

Assuming that X assigns local-preference values according to business
relationships [GR00, CR05], the received routes are assigned the same value
since they both come from a peer. For this reason, the two routes are equally
ranked from the first step of the BGP decision process. The next step of the
process evaluates the length of the as-path attribute: since the path received at
AMS-IX is shorter than the path received at PAIX, every BGP router will prefer
the former, which implies that all the traffic directed to p will be forwarded to
Amsterdam.

Observe that AS X does not get any revenue from traffic transiting over
IXPs, so its best strategy would be to minimize the cost of traffic forwarding.
Since routers in the US must forward traffic towards Europe while they could
simply send traffic to Palo Alto, the high-level business objective of minimizing
costs seems to be not well implemented by the BGP configuration described
above. Such an objective would be better accomplished if X was able to send
traffic from US out of Palo Alto and from Europe out of Amsterdam, reducing
the usage of cables connecting US and Europe.

Unfortunately, this simple requirement cannot be implemented (within the
standard BGP decision process) unless X splits its network into multiple AS
domains. On the other hand, if X performs IAC , it is fairly simple to force the
route reflector in America to prefer American routes, and the route reflector
in Europe to prefer European routes, as shown in Fig. 8.6b. By conditionally
changing the value of the local-preference attribute (e.g., via route-maps),
this configuration enforces the high-level objective regardless of what as-paths
are announced by X’s neighbors.

We analyzed the BGP updates received from the border routers of a medium-
sized Italian ISP and we inferred that more than 135, 000 IP prefixes (almost
half routing table) were load-balanced across exit points just because of equal
as-path lengths. Should the as-path length vary on one of the available routes
(e.g., because of new connectivity or because the AS that originates the prefix is
performing inbound traffic engineering activities via as-path prepending), the
traffic balance would be immediately compromised. People that operate that
ISP were not aware that at least 20% of their traffic is actually load balanced
this way.

To better understand how a traffic shift would look like, recall the example
in Fig. 8.6a, and now suppose that the European peer of AS X started adver-
tising an as-path of length 5 or more. As soon as this new route is propagated
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ROUTE-SERVER.PHX1>SH IP BGP 189.90.12.0/24

BGP ROUTING TABLE ENTRY FOR 189.90.12.0/24

PATHS: (4 AVAILABLE, BEST #1)

  NOT ADVERTISED TO ANY PEER

  13878 15180 28189

     67.17.64.89 FROM 67.17.80.210 (67.17.80.210)

        ORIGIN IGP, METRIC 0, LOCALPREF 300, BEST

        COMMUNITY: 3549:4471 3549:30840

        ORIGINATOR: 67.17.81.221,

        CLUSTER LIST: 0.0.0.92

  13878 15180 28189

     67.17.64.89 FROM 67.17.82.130 (67.17.82.130)

        ORIGIN IGP, METRIC 0, LOCALPREF 300

        COMMUNITY: 3549:4471 3549:30840

        ORIGINATOR: 67.17.81.221,

        CLUSTER LIST: 0.0.0.92

  28189 28189 28189 28189 28189 28189 28189

     67.17.64.89 FROM 67.17.82.40 (67.17.82.40)

        ORIGIN IGP, METRIC 0, LOCALPREF 300

        COMMUNITY: 3549:4950 3549:34076

        ORIGINATOR: 200.186.0.67,

        CLUSTER LIST: 0.0.2.109, 0.0.5.2

  28189 28189 28189 28189 28189 28189 28189

     67.17.64.89 FROM 67.17.82.41 (67.17.82.41)

        ORIGIN IGP, METRIC 0, LOCALPREF 300

        COMMUNITY: 3549:4950 3549:34076

        ORIGINATOR: 200.186.0.67,

        CLUSTER LIST: 0.0.2.109, 0.0.5.2

Entry 

# 1

Entry 

# 2

Entry 

# 4

Entry 

# 3

Figure 8.7: A set of BGP routes that are simultaneously active within AS 3549.

within AS X, the American route is preferred, and all traffic destined to prefix
p is suddenly shifted towards Palo Alto.

A Quantitative Study

Given that changing iBGP attributes provides some advantages to ISPs, one
might ask whether this practice is common in the Internet, and to what extent.
Unfortunately, an exact answer to this question would require access to router
configuration files, which most ISPs refuse to grant as they do not want to
disclose their routing policies. However, in this section, we give a method to
roughly estimate the popularity of IAC using public data.

In [FR07] it is shown that applying policies only to routes announced by
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eBGP peers implies that only routes that are equally good up through the
first three steps of the BGP decision process (see Table 1.3) can be selected by
iBGP speakers as best routes in the steady state. The main intuition behind
our measurement approach is then to search for two BGP routers in the same
AS that are selecting distinct routes which are not equally good up through
to the first three decision steps. In such a case, assuming a connected iBGP
topology, we conclude that IAC is performed within the AS.

Fig. 8.7 shows a real-world example of the list of BGP routes available for
destination prefix 189.90.12.0/24 in the Global Crossing network (AS 3549), as
reported by a publicly available route server on August, 31st 2009, at 14 : 36
UTC. Each entry in the list (delimited by a box in the figure) represents a
BGP route. The first line of each entry represents the as-path attribute, then
other attributes follow, e.g., local-preference, origin, etc. Note that all
routes were received from iBGP peers, as they include iBGP-only attributes
like cluster-list. This implies that each route was selected as best by the
corresponding iBGP peer. Observe that the first and the third entries have
different as-path lengths (see the highlighted text in Fig. 8.7), so they are not
equally good up through Step 3 of the BGP decision process. Since the routes
are simultaneously active at two distinct iBGP routers, we conclude that the
ISP performs IAC . Of course, another possible explanation is that the iBGP
topology of the ISP is not connected. However, this sharply contrasts with the
objective iBGP is designed for.

For a quantitative analysis of how many ASes show this behavior in the
Internet, we used the technique described in [DRCD09] for computing the sets
of BGP routes for the same destination prefix which are simultaneously active
in the same AS, taking as input BGP routing tables and update traces provided
by RIS [RIP] and Routeviews [Ore] through May 2009. Then, when we found
routes having different as-path length among those that are simultaneously
active at AS A, we inferred that AS A was changing iBGP attributes within
its network. Our analysis estimated that 1, 838 ASes out of 32, 066 (5.73%)
change iBGP attributes.

Note that our estimate is actually a lower bound with respect to the real
number of ASes that change iBGP attributes in the Internet. First of all, since
we only have some hundreds of publicly available BGP monitors, our data do
not reliably represent the full route diversity that is available in the Internet [].
Secondly, we only focused on the as-path length, disregarding other attributes
that are involved in later steps of the BGP decision process.

Nevertheless, our estimate confirms that it is a common practice to apply
policies only to eBGP sessions and then rely on the iBGP topology just to
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distribute routing information within the network. We believe that the ma-
jority of ASes do not modify message attributes in iBGP in order to keep the
configuration of their network as simple and easy to understand as possible.
Indeed, applying the policy just on eBGP sessions ensures consistent AS-wide
BGP decisions, and significantly simplifies the task of translating business ob-
jectives into BGP configurations. Nevertheless, adopting the classification of
the ASes given in [DD08], we found that many of the 1, 838 ASes are transit
providers. This can be explained by the fact that provider ASes have traffic
engineering needs that are more complex to fulfill than those of customers.

8.7 More Flexibility Implies More Instability

Another important drawback of changing iBGP attributes is that it exacer-
bates the iBGP stability problem, as the added flexibility can translate into
the ability to create routing oscillations which would be impossible otherwise.

We now show how to construct an instance S(X, t, p) of SPP which models a
given iBGP configuration for ASX at time t, with respect to a given destination
prefix p, assuming that iBGP attributes can be changed within the AS. The
set of nodes consists of a special node (labeled 0) and one node for each iBGP
speaker in X. Observe that some of these iBGP speakers are border routers
while some others are route reflectors. There is an edge (u, v) for each iBGP
peering between iBGP speakers u and v. Moreover, there exists an edge (u, 0)
for each border router u that has an eBGP path to prefix p at time t. At node
u 6= 0, the set of permitted paths consists of the empty path ǫ and all paths
(u . . . v 0) where (v, 0) is an edge and (u . . . v) is a valid signaling path (see
Section 8.2) from u to v. If border router u has multiple eBGP paths to prefix
p at time t, permitted path (u 0) represents the best among them, according
to the standard BGP decision process. Permitted paths at node u are ranked
according to the iBGP configuration of router u and the BGP decision process.
Since Step 6 of the BGP decision process evaluates IGP metrics, we assume
that these metrics are known.

Observe that our construction is more general than the one proposed in
Section 5.1 of [GW02b], where rankings are determined by only relying on IGP
metrics, since iBGP attributes are supposed to be the same at every node.

Fig. 8.8a depicts a simple iBGP configuration, while Fig. 8.8b shows the
corresponding translation to SPP We recall that we draw each node u as
equipped with a list of paths representing Pu, sorted according to λu (better
paths are positioned higher in the list). For example, the list besides node
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AS X

default local-pref 100

if msg from b  :

    set local-pref 120

default local-pref 100

if msg from b  :

    set local-pref 120

b
1

b 2

2

1

(a)

10

120 210

201 2

0

(b)

Figure 8.8: (a) Configuration of two border routers that modify iBGP at-
tributes. (b) The corresponding translation to SPP.

b1 specifies that b1 can use paths (b1 b2 0) and (b1 0) to reach 0, and prefers
(b1 b2 0). The opposite happens at vertex b2. Observe that, by modifying
the local-preference attribute, we have been able to create a circular set of
preferences which cannot be satisfied at the same time: b1 prefers traversing
b2 rather than using the direct route to 0, and vice versa. This kind of policy
conflicts can lead to routing oscillations. In fact, the SPP instance in Fig. 8.8b
is the oscillation-prone Disagree gadget, already presented in Chapter 2.

However, the iBGP topology in Fig. 8.8a cannot oscillate if iBGP attributes
are not allowed to be changed within the AS. Let Pi be the best eBGP route
received by bi. We now walk through the BGP decision process at routers b1
and b2, examining all possible cases.

• P1 and P2 have different local-preference values. In this case, the one
with the highest value is eventually selected at both routers.

• P1 and P2 have different as-path lengths. Assuming a tie in the first
decision step (otherwise, we fall in the previous case), the route with the
shortest length is eventually selected at both routers.

• P1 and P2 have different origin values. Again, assuming a tie in the
previous decision steps, the route with the lowest origin is eventually
selected at both routers.

• P1 and P2 have the same origin value. In this case, Step 5 of the BGP
decision process implies that router bi eventually selects Pi, i ∈ {1, 2}.

In every case, no oscillations can be generated.
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Figure 8.9: Architecture of the stability checker tool.

The above discussion is an informal proof of the following theorem.

Theorem 8.2 BGP configurations that allow iBGP attribute changing can
generate a larger set of oscillations than BGP configurations where iBGP at-
tributes are not modified.

iBGP Stability Checker

The problem of deciding whether a given iBGP configuration and a routing
state at time t can lead to routing oscillations is computationally hard (see
Chapter 3). However, the algorithm in [FRBS08] shows that, in practice, the
complexity can still be manageable. Since this algorithm only works for two lev-
els hierarchies and under the assumption that iBGP attributes are not changed,
one might ask whether IAC prevents an operator from using smart techniques
to detect routing oscillations in his network. In this section, we show that this
is not the case.

We built a prototype tool according to the architecture and the technique
described in Chapter 4. The tool can translate iBGP configurations to SPP
instances in practice, enabling us to run a stability check on the SPP instance
using the Greedy+ algorithm. As a first step in the translation process, our
prototype parses BGP configuration files to extract the iBGP peering topology
and encodes this topology in a graph G according to the algorithm described
above in this section. Now, in order to compute the set Pu of permitted paths
at each node u in the graph, we need to know the eBGP routes injected by
border routers and to enumerate all valid signaling paths. To do that, we first
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extract eBGP routes from the BGP Routing Information Base (RIB) of each
border router. Second, we simulate the propagation of each route through
G. Observe that, during the simulation, iBGP attributes of a route might be
changed by traversed routers according to their BGP configuration. At the
end of this process, which we call the Dissemination phase, we end up with
a set of BGP routes at each router u, which are used to compute the set of
permitted paths Pu. As a final step, we need to define the ranking function
λu at each node u (Ranking phase). To this end, we run the full BGP decision
process at each node u, in order to obtain a sorted list of the BGP routes that
were collected during the Dissemination phase. The corresponding ranking is
used to define function λu. Notice that, to perform Step 6 of the BGP decision
process, we need to know the underlying IGP topology.

Fig. 8.9 summarizes the architecture of our tool. It takes BGP configura-
tion files, RIBs and a map of IGP weights as inputs, performs Dissemination
and Ranking, and produces an instance S of SPP which is then passed to the
Greedy+ algorithm. This algorithm either correctly reports the instance as
stable, or pinpoints a set of nodes that might be responsible for routing os-
cillations (see Chapter 4). Notice that there is a number of ways to obtain
the input data from a real network, including, e.g., SNMP [BCC06], screen
scraping, etc.

Our prototype tool has a core Java component which performs the Dissemi-
nation phase, computes rankings, creates an SPP instance, and runs Greedy+

on it. Besides that component our prototype currently features:

(i) a minimal parser for Cisco configuration files, which is able to parse the
most common BGP statements, based on some code from BGP2CBGP [Tan06];

(ii) an MRT [BKL09] parser for RIBs; and

(iii) an SNMP-based OSPF link weight parser, which computes the all-pairs
shortest distance matrix.

We tested our prototype on both in-vitro and real world iBGP configura-
tions. Namely, in order to evaluate how much our approach can scale to large
networks, we analyzed synthetic iBGP topologies consisting of up to 1100 iBGP
speakers and route reflection hierarchies having at least three levels. The most
time-consuming activity is the Dissemination phase, whose processing time de-
pends on the number of eBGP routes that need to be propagated. Since this
number is lower than 20 even for very large networks [FRBS08], we injected
20 eBGP routes for each prefix as a worst-case analysis. Fig. 8.10 shows the
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Figure 8.10: Processing time to check the stability of three-levels iBGP config-
urations with 20 injected eBGP routes.

processing time needed to run a worst-case analysis on three-levels hierarchies
and a varying number of iBGP speakers. We ran our experiments on a entry-
level server equipped with two 2.6 GHz quad-core CPUs and 16 GB RAM.
Observe that checking the stability for a single prefix in a large network (e.g.,
600 iBGP speakers) takes 0.3 seconds in the worst case. Running the analysis
for the whole Internet routing table would take several hours. However, the
stability check could be run only for the prefixes that experienced some change
in a given time frame, e.g., 15-30 minutes. Moreover, performance can still be
improved if prefixes can be grouped in equivalence classes, which is frequently
the case, since BGP policies are seldom specified on a per-prefix basis. The
number of equivalence classes is usually one or two orders of magnitude lower
than the number of prefixes (see, e.g., [FRBS08]).

8.8 Design Guidelines

In this section, we proposed design guidelines for adding spurious OVERs and
changing iBGP attributes without impacting iBGP configuration correctness.
Since dissemination correctness has been never studied before, we propose new
sufficient conditions, and we base our guidelines on them. Finally, we discuss
practical applicability of the guidelines.
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Sufficient Conditions for Dissemination Correctness

Either of the following conditions guarantees a signaling correct iBGP topology
B to be dissemination correct.

(i) prefer-client : all iBGP routers in B prefer routes propagated by clients
(on a UP* path) to any other route.

(ii) no-spurious-OVER: B contains no spurious OVER.

In order to prove our results, we need the following lemma.

Lemma 8.2 Given a signaling correct iBGP topology B, if for any prefix p
at least one router in the top layer T selects a route for p that was learned over
an UP* path, then B is dissemination correct.

Proof: Consider any prefix p, and let r̄ ∈ T be the router that selects a route
R̄ to p which was learned over an UP* valid signaling path (e . . . r̄) (possibly
e = r̄). By iBGP route propagation rules, r̄ propagates route R̄ to all routers in
T . Since B is signaling correct and all routers in T receive at least one route for
p, all routers in T will eventually select a route. Independent of the neighbor
from which the best route was learned, routers in T will propagate their best
route to all their clients, which are then guaranteed to receive a route for p.
These routers, in turn, will announce their own best route to their clients, and
so on until routers in the bottom layer are reached. Then, we conclude that
every router receives at least one route for prefix p, hence B is dissemination
correct. �

Now we are able to prove that prefer-client is a sufficient condition for
dissemination correctness.

Theorem 8.3 Given a signaling correct iBGP topology B, if B complies with
the prefer-client condition, then B is dissemination correct.

Proof: We now prove that for any prefix p at least one router in T selects a
route to p over an UP* path.

Let p be a prefix and ep be an egress point for p receiving an eBGP route
R. Because of step 5 of the BGP decision process, ep selects R. If ep ∈ T ,
then the statement trivially holds. Otherwise, there must exist a router r1
such that r1 ← ep, by definition of T . Because of iBGP dissemination rules,
r1 receives at least route R from ep. Let R′ (possibly R′ = R) be the route
that r1 selects in the stable state. Since r1 receives route R from a client,
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the prefer-client condition implies that route R′ is also received from a client.
Again, if r1 ∈ T the statement holds. Otherwise, iBGP dissemination rules
force r1 to propagate route R′ to all its route-reflectors. Let r2 be one of the
route-reflectors of r1, that is, r2 ← r1. Observe that r2 must exist since r1 6∈ T .
Again, r2 receives at least route R′ from its client r1, so we can apply the same
argument to r2. We can iterate the argument until we reach a router in T that
learns a route from one of its clients. Because of iBGP propagation rules, that
route must be learned over an UP* path. Then, the statement follows because
of Lemma 8.2. �

We now show that no-spurious-OVER guarantees dissemination correct-
ness.

Theorem 8.4 Let B be a signaling correct iBGP topology with no spurious
OVER. B is dissemination correct.

Proof: We now prove that for any prefix p at least one router in T selects a
route to p over an UP* path.

Let ep be a router that receives an eBGP route R towards p. Because of
step 5 of the BGP decision process, ep selects R. If ep ∈ T , then the statement
directly holds. Otherwise, there must exist a router r1 such that r1 ← ep.
Because of iBGP dissemination rules, r1 receives at least route R from ep. Let
R′ (possibly, R′ = R) be the route that r1 selects in the stable state. We have
the following cases:

• r1 ∈ T and r1 learned R′ from one of its clients. By the iBGP propagation
rules, R′ must be learned over an UP* path.

• r1 ∈ T and r1 learned R′ from a peer r2. In this case, r2 must receive R′

over an UP* path, otherwise it would not propagate it to r1.

• r1 6∈ T and r1 learned R′ from one of its clients. Then, r1 forwards route
R′ to all its route-reflectors.

• r1 6∈ T and r1 learned R′ from one of its route-reflectors.

Observe that the no-spurious-OVER condition implies that r1 cannot learn
R′ from a peer if r1 6∈ T .

In the first two cases, the statement holds as a consequence of Lemma 8.2.
In the last two cases, there must exist a router r2, with r2 ← r1, such that r2
learns a route for prefix p. Hence, we can iterate the same argument on r2.
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Since the number of layers in B is finite, we eventually find a router in T for
which one of the first two cases applies, yielding the statement. �

Applicability of the Sufficient Conditions

We now discuss how the sufficient conditions presented in the previous section
can be satisfied (or enforced) in real-world iBGP topologies.

In theory, the prefer-client condition can be enforced by carefully designing
iBGP topologies. However, we find that this condition is too constraining for
real-world topologies. In fact, in order to satisfy the prefer-client condition
each router should rank the routes it receives according to the first hop in the
iBGP signaling path, while the BGP decision process uses tie-breaking criteria
that are either based on the last hop in the signaling path (i.e., egress-id)
or on the length of the path itself (i.e., cluster-list). In particular, a direct
consequence of condition prefer-client is that, if a router r has a valid signaling
path P = (r s . . . e) with r ← s (possibly s = e), then any other valid signaling
path between r and e must either have a client of r as next-hop or be longer
than P . Hence, satisfying the prefer-client condition requires a deep evaluation
of all the decision steps in the iBGP decision process. For this reason, it
becomes a really hard task when deploying redundant route-reflectors, even on
very simple topologies. Consider, for example, the configuration in Fig. 8.11,
which is the simplest redundant route reflection topology designed according
to current best practices [ZB03, Smi10]. Underlined paths highlight violations
of the prefer-client condition. Indeed, clients e1 and e2 are connected to both
route-reflectors r1 and r2, and r1 and r2 belong to different clusters. Assume
that both e1 and e2 are egress points for a given prefix p1. Even in such a
simple scenario, the prefer-client condition does not hold, whatever the IGP
topology is. In fact, consider router r1 and assume that e2 is its closest egress
point according to IGP metrics. In this case, r1 prefers all the routes having
e2 as egress point to all the routes having e1 as an egress point, because of
step 6 in the BGP decision process. In particular, r1 is forced to prefer routes
propagated by its peer r2 via (r1 r2 e2) to routes propagated by its client e1 via
(r1 e1). Thus, the prefer-client condition is violated. This kind of violations
of the prefer-client condition can be solved by a wiser design of route-reflector
clusters. Indeed, if r1 and r2 belong to the same cluster, then r1 always discards
routes propagated by r2 and vice versa [BCC06].

Guideline C In redundant iBGP configurations, in order to enforce the prefer-
client condition, redundant route-reflectors must belong to the same cluster.
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e1

r1

e2

r2
r1 r2 e1
r1 e1
r1 r2 e2

r2 e2
r2 r1 e1
r2 e1

p1p1

r1 e2

r2 r1 e2

Figure 8.11: Redundant topologies hardly satisfy the prefer-client condition.

Observe that current best practices for cluster design [Smi10] do not comply
with Guideline C.

The no-spurious-OVER condition is relatively easier to enforce, since it only
imposes constraints on the iBGP topology and does not require to evaluate the
BGP decision process at every router. However, there might be cases in which
additional (spurious) sessions are desirable to locally fix forwarding issues or
to improve route diversity, as already discussed in this chapter. In such cases,
UP sessions can be deployed instead of spurious OVERs, without adversely
affecting the dissemination correctness of the iBGP configuration.

Guideline D Whenever an additional session is needed to solve visibility is-
sues, an UP session should be deployed, in order to enforce the no-spurious-
OVER condition.

Observe that using UP sessions is not free from possibly undesired side effects,
e.g., shortening the cluster-list of existing signaling paths, change the layering
of the hierarchy, impact router memory, etc. Some of these side effects can be
mitigated, e.g., by configuring route filters that only allow route propagation
in one direction.

Profitable iBGP Attribute Changing

Previous discussion on IAC pros and cons suggests that an ISP willing to
change iBGP attributes within its own network essentially faces a trade-off
between flexibility and stability. In this section, we define policy configuration
guidelines that safely exploit the flexibility of modifying iBGP attributes. The
main concern here is to obtain benefits in terms of traffic load balancing (see,
e.g., Fig. 8.6b), while ensuring routing stability and keeping the complexity of
BGP configuration manageable.
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In the following, we propose guidelines that are meant to fulfill two main
high level requirements: (i) Routes should be ranked according to revenues and
costs; and (ii) Internal transit cost, i.e., the cost of forwarding traffic within
the ISP network, should be minimized.

We assume that the neighbors of an ISP can be broadly classified, ac-
cording to commercial relationships among ISPs, into customers, peers, and
providers [GR00]. Selecting a route announced by a customer means forward-
ing traffic to that customer, which pays for it. Similarly, selecting a route
announced by a peer implies that traffic is exchanged free of charge between
the two ISPs. Selecting a route announced by a provider, instead, involves pay-
ing a cost. We then implement requirement (i) by mandating that customer
routes have an higher local-preference than peer routes that, in turn, have
an higher local-preference than provider routes. Moreover, to avoid offer-
ing transit service for free, routes learned from a peer or a provider are not
exported to other peers or providers. This is one of the most typical way of
expressing routing policies in BGP [CR05] and it provides the additional ben-
efit of ensuring global interdomain routing stability [GR00]. Requirement (ii)
is implemented by forcing each route reflector to prefer routes learned from
its own clients, assuming that the cost of sending traffic from a route reflector
to a client is less than the one of sending traffic to a non-client. This is very
frequently the case, as route reflection topology design should be congruent
with the network topology [BCC06].

Guideline E Every iBGP speaker assigns a local preference value LPcust to
the routes announced by customer ASes, LPpeer to the routes announced by
peer ASes, and LPprov to the routes announced by provider ASes, in such a
way that LPcust > LPpeer > LPprov.

Guideline F Route reflectors modify the local preference value with LPmod

when receiving a route R from one of their clients, in such a way that

• if R is from a customer AS, LPmod > LPcust

• if R is from a peer AS, LPcust > LPmod > LPpeer

• if R is from a provider AS, LPpeer > LPmod > LPprov

Fig. 8.12 shows a simple implementation of our guidelines. First, the
community attribute is used to tag routes according to our requirements. Then,
the local-preference attribute is modified according to the tags. Since a
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Configuration for Border Routers

(i) Tag routes according to commercial relationships
if msg from customer

add community comm_cust

if msg from peer

add community comm_peer

if msg from provider

add community comm_prov

(ii) Prefer customers to peers, and peers to providers
if comm_cust in community

set local-preference 200

if comm_peer in community

set local-preference 100

if comm_prov in community

set local-preference 50

Configuration for Route Reflectors

(i) Tag routes announced by clients
del community comm_client

if msg from client

add community comm_client

(ii) Prefer customers to peers, and peers to providers
Prefer clients to non-clients

if comm_cust in community

set local-preference 200

if comm_cust and comm_client in community

set local-preference 220

if comm_peer in community

set local-preference 100

if comm_peer and comm_client in community

set local-preference 120

if comm_prov in community

set local-preference 50

if comm_prov and comm_client in community

set local-preference 70

Figure 8.12: A simple configuration complying with Guidelines E and F.
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very similar technique is commonly used by ISPs to manage traffic from eBGP
neighboring ASes [CR05], we argue that our guidelines do not add significant
configuration complexity.

We now prove that our guidelines guarantee iBGP stability.

Lemma 8.3 If the configurations of all iBGP speakers of an AS comply with
Guidelines E and F, then eventually either: (i) all iBGP speakers select routes
learned from customer ASes, (ii) all iBGP speakers select routes learned from
peer ASes, or (iii) all iBGP speakers select routes learned from provider ASes.

Proof: Consider an AS in the steady state, and let W be the set of BGP
routes to a given destination prefix that are selected as best by at least one
iBGP speaker. Let C1 be the set (class) of customer ASes, C2 be the class of
peer ASes, and C3 be the class of provider ASes.

The statement is trivially true if |W | = 1 or if all routes in W are learned
from neighboring ASes belonging to the same class. Then, assume by contra-
diction that there exist at least two routes r1 and r2 in W such that r1 (r2)
is learned from a neighboring AS belonging to class Ci (Cj 6= Ci). Without
loss of generality, let i < j. Since each iBGP speaker only propagates its best
route, there must exist a border router u which selects r1 and a border router
v which selects r2.

Let P be a valid signaling path between u and v (P must exist, see Sec-
tion 8.2). Because of the iBGP propagation rules (see Table 1.2), there must
exist two speakers x and y in P such that x selects r1, y selects r2, and there
is an iBGP peering between x and y. We have the following cases:

• x acts as a route reflector for y (or vice versa). Then, according to iBGP
route propagation rules, x eventually announces r1 to y.

• x and y are peers. In this case, we have that x learned route r1 either
from an eBGP neighbor or from a client. In both cases, iBGP route
propagation rules ensure that x eventually announces r1 to y.

Hence, y is aware of r1 in the steady state. Guidelines E and F imply that
y eventually selects route r1 because it has a higher local-preference than
r2 (a contradiction). �

Moreover, it is easy to show that if every router configuration complies with
Guidelines E and F, then the resulting iBGP configuration is free from signal-
ing and dissemination anomalies under arbitrary link failures. In particular,
Guideline F enforces the prefer-client condition which we have already shown
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to be sufficient to guarantee signaling and dissemination correctness. Guide-
line F, however, can probably increase the likelihood of incurring suboptimal
routing, since IGP distances act as a tie-breaker for routes coming from clients
only.

8.9 Revisiting the State of the Art

BGP configuration languages allow iBGP routers to change iBGP attributes
that are relevant to the route selection process. However, both theoretical
and practical research contributions neglected this peculiar feature of iBGP.
Indeed, it is often assumed that BGP attributes which are relevant to the
BGP decision process (e.g., the local-preference attribute) are not changed
as the BGP message is passed to iBGP peers. Such assumption is originally
made in [GW02b], where issues related to reduced route visibility due to route-
reflection configuration is firstly presented along with a theoretical basis. The
assumption often remained in research work focused on sufficient conditions
that ensure correctness of a BGP configuration, e.g., [BMU07, BUM08]. Also,
state-of-the-art algorithms and tools to detect oscillations in iBGP [FRBS08,
FMS+10] assume that iBGP messages are left untouched.

Also, spurious iBGP sessions and the dissemination correctness concept
were mostly overlooked in past research work, so extra conditions (like the
ones shown in Section 8.8) are needed to keep the validity of the results.

Signaling and forwarding correctness have been introduced and analyzed
by Griffin et al. in [GW02b]. The authors show that checking either of the two
properties is NP -hard and give sufficient conditions to enforce both of them.
While the concept of dissemination correctness is not envisaged in [GW02b],
we find that the proposed sufficient conditions also guarantee dissemination
correctness, since they encompass the prefer-client condition as formulated in
Section 8.8. However, as discussed in Section 8.8, these conditions are very
constraining for real-world networks.

In [RS06], Rawat and Shayman give a set of sufficient conditions that guar-
antee signaling and forwarding correctness and also prevent MED-induced rout-
ing oscillations. In particular, one of the conditions in [RS06] imposes that,
for any router, IGP distances to clients must be shorter than IGP distances
to non-clients. While this conditions is intended to be a variant of the prefer-
client condition, it is not enough to prevent dissemination anomalies caused
by multiple valid signaling paths to the same egress point, as the over-ride

gadget demonstrates. Moreover, Fig. 8.4b shows an example which matches
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the conditions of [RS06] but is not forwarding correct.
In [FR09], Flavel and Roughan propose a modified BGP decision process

that evaluates the length of the cluster-list before comparing IGP weights.
Such a variant of iBGP is proved to always converge. However, no guarantee
is given for dissemination correctness. Actually, the over-ride gadget is a
simple example where the modified iBGP protocol cannot provide all routers
with a route for every prefix.

In [BMU07, BUM08], Buob et al. introduce the concept of fm-optimality,
which models the visibility issues that arise when two routers in a valid sig-
naling path disagree on which egress point is the closest one. Fm-optimality
is said to guarantee forwarding correctness. Unfortunately, the fm-optimality
concept does not account for visibility issues caused by iBGP route propaga-
tion rules, e.g., in presence of spurious OVER sessions. In other words, even
if all routers on the signaling path agree on which egress point is the closest
one, dissemination correctness is not guaranteed. As a counterexample, the
over-ride gadget is fm-optimal but not dissemination correct.

In [PTOS08, PUT+10], Pelsser et al propose to add spurious OVER sessions
to locally fix visibility issues. Our results show that such a local fix comes at
the cost of potential visibility issues on remote routers. Section 8.8 discusses
alternatives to spurious OVER sessions that provides similar benefits with no
impact on dissemination correctness.

A more general consequence of our work is that the presence of a valid
signaling path P between a router r and an egress point e is not sufficient to
ensure that r has visibility of routes announced by e (e.g., see Fig. 8.3). In
fact, depending on both the IGP and the iBGP topology, there might be some
routers in P that do not propagate to r the route announced by e. Observe
that such a counter-intuitive behavior affects Lemma 3 of [VVKB06], where the
presence of an UP*DOWN* path for each pair of routers is said to guarantee
full visibility. On the contrary, since only best routes are propagated, the
iBGP topology design technique proposed in [VVKB06] guarantees signaling
and dissemination correctness, but cannot guarantee forwarding correctness.
Also, conclusions drawn in [FB05] are similarly affected. Indeed, configuring a
top layer full-mesh (as prescribed by Theorem 4.1 in [FB05]) guarantees a valid
signaling path for each pair of iBGP routers, but does not imply dissemination
correctness.

All the research contributions analyzed so far neglected the IAC practice,
since they assume that the iBGP attributes which are relevant to the BGP
decision process (e.g., the local-preference attribute) are not changed as
the BGP message is passed to iBGP peers. Also, state-of-the-art algorithms
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and tools to detect oscillations in iBGP [FRBS08] assume that iBGP messages
are left untouched. To the best of our knowledge, the research work presented
in this chapter is the first study on pros and cons of IAC , and the prototype
tool we built (see Section 8.7) is the first automated convergence checker able
to deal with IAC practice.

Also, despite the concept of dissemination correctness had not been for-
malized so far, we find that some results in the literature guarantee it as a
side effect. Modifications to the iBGP protocol as proposed in [MC04] and
fine tuning of attributes of iBGP messages as we proposed in Section 8.8 can
be leveraged to enforced the prefer-client condition. In both cases, however,
the likelihood of incurring suboptimal routing increases, since client routes are
preferred, no matter what are the IGP distances of the corresponding egress
points.

Recently, BGP Add-Paths [WRCS11] has been proposed to allow routers
to propagate multiple routes. It is important to note that the advertisement
of multiple routes guarantees dissemination and forwarding correctness only
if all the routes that are equally preferred up to and including the first four
steps of the BGP decision process (so called AS dominant routes) are propa-
gated network-wide. However, the higher number of routes handled in iBGP
could cause router memory and update churn penalties [VFB10]. Raszuk et
al. [RFP+11] propose to add special route-reflectors in order to distribute mul-
tiple routes. Unfortunately, since this technique relies on additional route-
reflectors to propagate multiple routes, it does not guarantee the advertisement
of all the AS dominant routes, and thus it is not sufficient for dissemination
correctness. Moreover, some encapsulation mechanism is currently suggested
for solving forwarding anomalies in case of propagation of a subset of the AS
dominant routes [UvF+10]. Finally, observe that both proposals are still in the
development stage.

8.10 Conclusions

iBGP route reflection trades full route visibility at all iBGP routers for better
scalability. In turn, limited route visibility poses the basis for several correct-
ness (i.e., routing and forwarding anomalies [GW02b]) and performance (e.g.,
poor route diversity and slower convergence) problems.

In this chapter, we studied proposals to overcome limitations of iBGP by
accurately designing its configuration. Starting from simple use cases, we fo-
cused on two design proposals, namely addition of spurious iBGP sessions and
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changing of iBGP attributes. We showed that the extended flexibility achieved
by those design proposals generally exacerbates iBGP correctness problems,
potentially creating additional routing and forwarding issues. Also, they can
affect propagation of routes in the iBGP topology. In order to model anomalies
due to iBGP propagation rules, we introduced the new concept of dissemination
correctness. Finally, we proposed some guidelines for adding spurious sessions
and changing iBGP attributes with correctness guarantees.

In our opinion, this study shows that iBGP semantics are actually more
complex than what is commonly assumed, and provides new motivation to
recent efforts (e.g., [WRCS11, OMU+11]) for decoupling route propagation
from route selection in iBGP. Our findings also suggest that iBGP topology
design need extreme care, as even a single iBGP session or a wrong attribute
setting can create unexpected and counter-intuitive side effects.
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Chapter 9

Seamless BGP Reconfigurations

9.1 Introduction

As discussed in Chapter 8, network evolution requires BGP configuration to be
periodically modified. During the life of a network, both iBGP and eBGP con-
figurations evolve. New iBGP routers are introduced while older ones are either
decommissioned or moved to less data- or control-plane traffic intensive areas.
As the network grows, iBGP sessions may also need to be added or removed.
For example, as the number of iBGP routers increase, the full-mesh of iBGP
sessions dictated by the original BGP specification [RLH06] has to be replaced
by a route reflection [BCC06] configuration that keeps the number of iBGP
sessions manageable. Also, iBGP configuration changes may be triggered by
changes to the underlying IGP. IGP changes are often performed in ISPs, e.g.,
to optimize the usage of network resources by fine-tuning of IGP weights [FT02]
(see also Chapter 7). Unfortunately, IGP configuration adjustments can affect
iBGP routing choices, possibly leading to routing and forwarding inconsisten-
cies (see [GW02b, BMU07] and Chapter 8), as well as undesired side effects
on internal and external traffic flows [BL08, CEDFQ06]. Similarly, the eBGP
configuration may need to be changed from time to time. A typical use case
is the provisioning of a new customer, which requires to establish new eBGP
sessions on some border routers. As commercial relationships between ISPs
change, operators also need to modify their eBGP routing policies. Recent ex-
amples include the so-called “peering wars” that led to the depeering of large
ISPs [BHP09, BZP08].

As for IGP migrations (see Chapter 7), stringent SLAs force the reconfig-

217
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uration process to be performed on running networks and to not disrupt user
traffic and services provided by the reconfiguring ISP. However, due to the
nature of BGP itself, the impact of changes to either iBGP or eBGP configu-
ration is hard to predict, and techniques applied to IGP migrations cannot be
straightforwardly applied to BGP reconfigurations. The main reason is that
local changes on one BGP router can affect routing information as viewed by
remote routers in different ways depending on the routing choices of intermedi-
ate routers. Hence, signaling, dissemination, and forwarding anomalies can be
introduced in intermediate configurations. Moreover, outgoing traffic to single
prefixes can be shifted many times from one egress point to others, invalidat-
ing load-balancing policies and generating iBGP and eBGP churn. High eBGP
churn can in turn increase the likelihood of being dampened.

Despite importance and complexity of BGP reconfigurations, network ad-
ministrators lack methodologies and tools to perform reconfiguration tasks with
minimal impact on the traffic. Only a few best practices are available (e.g.,
[Smi10, Hv10]), but they tipically focus on simple reconfiguration cases. Even
worse, current best practices barely take into account the possibility of creating
routing and forwarding anomalies during the migration process.

In this chapter, we consider the problem of changing the BGP configuration
seamlessly, that is, with theoretical guarantees of experiencing no packet loss.
In Section 9.2, we introduce the model we use in this chapter, and we formally
state the BGP seamless reconfiguration problem. In order to model iBGP
topologies and mimic the iBGP decision process, we propose a variation of the
SPP model, which we call i-SPP. With respect to SPP, additional constraints
on paths allowed at each node and ranking of those path are added in i-SPP.
We formalize the concept of BGP configuration, so that eBGP policies are also
taken into account.

In Section 9.3, we review simple approaches and current best practices. We
show that simple approaches cannot avoid, both theoretically and practically,
long-lasting routing oscillations, dissemination anomalies, forwarding loops,
and unintended traffic shifts during BGP reconfigurations even when the initial
and the final BGP configurations are anomaly-free. To quantify such anomalies,
we simulated BGP reconfigurations in a Tier-1 network observing a significant
number of anomalies which persist for large parts of the reconfiguration process.

In Section 9.4, we study the BGP reconfiguration problem from an algo-
rithmic perspective. In particular, we aim at finding a seamless operational
ordering in which to perform BGP configuration changes that ensure inter-
mediate configurations to be anomaly-free. We show that there are cases in
which routing or forwarding anomalies cannot be avoided in every operational
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ordering. Even worse, the problem of deciding if a seamless operational order-
ing exists is computationally hard, as we prove in Section 9.5. The problem
remains hard (in both eBGP and iBGP reconfigurations) even if no eBGP
dynamicity is assumed, and only one prefix is considered.

Given the impossibility to algorithmically solve the reconfiguration prob-
lem, we argue that additional ad-hoc configuration is needed. In Section 9.6, we
propose a framework to achieve seamless migrations in any BGP reconfigura-
tion scenario. Our proposal is based on running two iBGP routing processes at
the same time, with an approach similar of the one adopted in Chapter 7. We
explain what are the limitations of current technologies and how to overcome
them. We describe a prototypical implementation of our approach. Further, in
Section 9.7, we show the effectiveness of our framework through a case study.

Finally, we review related work in Section 9.8, and we conclude in Sec-
tion 9.9

9.2 Seamless BGP Reconfigurations

In this section, we formally state the seamless BGP reconfiguration problem.
Intuitively, it consists in finding a way to progressively replace the BGP con-
figuration of a network with another without impacting data-plane traffic.

It is not uncommon for network operators to face such reconfiguration prob-
lems. To illustrate the frequency of BGP configuration changes, we analyzed
BGP configurations of approximately 20% of the routers of a Tier-1 ISP, from
April 2010 to July 2011. Considered routers were new generation routers pro-
gressively added to the network during the considered timeframe. Among those
routers, some have been replaced after their introduction by other routers of
a different brand: this happened 17 times in the 15 month period. We com-
puted 1, 337 BGP configuration changes in total. Addition and removal of
BGP sessions were the most common BGP changes. Note that such operations
correspond to iBGP topological changes and eBGP neighbor modifications.
Overall, the specification of a new BGP session was added to the configura-
tion of a router 5, 828 times, encompassing 976 additions of eBGP sessions
and 4, 852 additions of iBGP sessions. Session removals were less frequent but
still not rare, as they happened 236 for eBGP sessions and 1, 440 for iBGP
sessions. At each router, eBGP sessions were typically added in groups, while
iBGP sessions were mostly added in pairs of redundant client sessions with
two route-reflectors. However, iBGP sessions were added on several routers in
short time periods, during which we often registered the addition or, even more
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frequently, the replacement of a router. Beyond session addition and removal,
we accounted for 41 changes of inbound eBGP policy and 77 modifications of
outbound eBGP policy, by only looking at route-map names. A cluster ID
was added to a router configuration, indicating that the router has become
a route-reflector, 11 times in total. Since the type of the sessions (eBGP,
iBGP peer/client) never changed, this also means that clients were added to
the router, and a layer is added at the bottom of the route reflection hierar-
chy. Finally, we collected less frequent miscellaneous changes, encompassing
AS number modification on an eBGP peer (8 times), and address families en-
abling (3 times) and disabling (5 times) on eBGP sessions. These results testify
that reconfigurations of already established BGP sessions are also performed
by operators commonly, even if less frequently than addition and removal of
BGP sessions.

In the following, we first present the theoretical model we adopt in this
chapter. Then, we formally state the seamless BGP reconfiguration problem.

A Model for BGP Reconfigurations

In this section, we define the model and the notation we use in this chapter.
Most of the concepts we will refer to are already introduced in Chapter 8.
However, we now tailor the SPP formalism to model the outcome of the BGP
decision process at each iBGP router. We call such extension i-SPP model.

Intuitively, an i-SPP instance is a special SPP instance, in which a path is
permitted if and only if it is valid signaling path and path preferences reflect
the underlying IGP configuration. More formally, an i-SPP instance is a tuple
S = (B,U,P,Λ), where B accounts for the iBGP topology, U accounts for the
IGP topology, and P and Λ provide information on route preferences at each
iBGP router.

Graph B = (V,E) is a directed labeled graph where nodes in V represent
routers and edges in E represent iBGP sessions. Each edge (u, v) is associated
with a label which is either UP or OVER, according to the type of session that
the edge represents. Because of the way iBGP relationships are defined, for
each edge (u, v) labeled as OVER, an edge (v, u) labeled as OVER must be in
E. Also, edges labeled as UP are directed from the client to the route reflector.

The underlying IGP topology is modeled as an undirect weighted graph U ,
with a weight associated to each edge (u, v) ∈ U . We denote with dist(u, v)
the total weight of the shortest path in U from u to v.

Signaling paths (i.e., paths in B) that can be used by iBGP routers to reach
destination prefixes are modeled by P, while Λ accounts for path preferences
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(according to Table 1.3). In particular, P =
⋃

u∈V P
u is the set of permitted

paths, and ∀u ∈ V Pu represent the set of paths that u can use to reach external
destinations. In the following, we use path for indicating signaling paths and
not forwarding paths, unless differently specified. Also, whenever it is clear
from the context, we use a signaling path to refer to the route advertised over
that path (e.g., we say that a router receives a path, or prefers a path over
another). A path P on B is a permitted path (i.e., P ∈ P) if and only if P
is a valid signaling path terminating with an egress point. The empty path ǫ
represents destination unreachability, and is always permitted at any vertex in
V .

For each u ∈ B, the preference level of paths in Pu is expressed by a
ranking function λu : Pu → N. If P1, P2 ∈ P

u and λu(P1) < λu(P2), then P1

is preferred over P2. We define Λ = {λu|u ∈ V }. The following conditions hold
on Pu of each vertex u ∈ B:

(i) ∀P ∈ Pu, P 6= ǫ: λu(P ) < λu(ǫ) (unreachability is the last resort);

(ii) ∀P1, P2 ∈ P
u, P1 6= P2 ⇒ λu(P1) 6= λu(P2) (strict ranking of paths is

assumed1).

(iii) Let e1, e2 be two egress points, with dist(u, e1) < dist(u, e2). Then,
∀P1, P2 ∈ P

u, P1 = (. . . e1) ∧ P2 = (. . . e2) ⇒ λu(P1) < λu(P2) (prefer-
ences reflect the IGP topology)

(iv) ∀P1, P2 ∈ P
u, P1 = (. . . e), P2 = (. . . e), then |P1| < |P2| ⇒ λu(P1) <

λu(P2) (preferences privilege shorter iBGP paths)

Concepts like activation sequence, stable path assignment, and dispute
wheel, are analogous to SPP.

Observe that P and Λ are defined as all the possible egress points in the
network injected a route towards any destination. This is not true in general, as
routes injected in iBGP depends on the availability of eBGP routes at different
egress points and eBGP routing policies. We model the fact that only a subset
of egress points inject routes in iBGP for given prefixes by conveniently filtering
the set of permitted paths in the i-SPP instance. More formally, we call
egress set of a prefix p the set of egress points receiving routes to p equally
preferred according to the eBGP policies, i.e., according to the first four steps
of the BGP decision process (see Table 1.3). Also, given an i-SPP instance
I = (B,U,P,Λ) and an egress set S, we define the corresponding egress instance

1this models determinism of the BGP decision process
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as I[S] = (B,U,PI ,ΛI), with PI ⊆ P, P = (. . . e) ∈ PI ⇔ e ∈ S and
∀u ∈ V, ∀P ∈ Pu

I , λ
u
I (P ) = λu(P ).

An iBGP configuration is a triple (I,S,Υ), where I an i-SPP instance, S
is the set of egress sets, and Υ is a function that associates each destination
prefix p to its egress set S ∈ S. S and Υ take into account the eBGP policies.
We say that a configuration C is oscillation-free if ∀S ∈ S I[S] is guaranteed to
converge to a stable state (i.e., is safe). Similarly, C is dissemination correct,
deflection-free, and loop-free if ∀S ∈ S I[S] is dissemination correct, not subject
to deflections, and free from forwarding loops, respectively.

Since this chapter focuses on BGP reconfigurations, we deal with iBGP
configurations that change over time. Whenever it is not clear from the context,
we will add an index t to the notation to refer specifically to step t of the
migration. For example, Ct = (Bt, Ut,St,Υt) is the iBGP configuration at
step t of the reconfiguration. We define two special indexes i and f that refer
to the initial and the final iBGP topologies, respectively.

Problem Statement

We define a migration, or reconfiguration, as a sequence of configuration
changes that turn an initial BGP configuration Ci into a final one Cf . We
assume Ci and Cf to be given as input and to be anomaly-free. The underly-
ing IGP is supposed not to change during the reconfiguration.

Stringent Service Level Agreements deny the possibility to simply shut down
the network, and restart it with the new configuration. Also, simultaneously
overwriting configuration files on all the routers is unpractical, as it is likely
to generate huge control-plane churn, which, in turn, can overwhelm routers.
Moreover, the latter approach does not allow operators to keep the reconfigu-
ration process under control, turning misconfigurations or human errors (e.g.,
typos) into a management nightmare.

Hence, an incremental approach is needed. In order to speed up reconfig-
urations and be effective from a management point of view, we also aim at
lowering as much as possible the number of times the configuration of the same
router is modified, e.g., by establishing and shutting down groups of sessions
in a single step. Hence, we do not consider migrations in which router con-
figurations can be modified for one prefix at the time. Indeed, acting on a
per-prefix basis is not practical, given that the size of todays BGP RIBs (more
than 350, 000 prefixes) would force very slow and long migration processes.
Consider the following rough estimation. If we wait for protocol convergence
after each iBGP topological change is applied, a per-prefix migration will take
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O((tcomm + tconv) ∗ s ∗ p), where tcomm and tconv are time taken for configura-
tion commit and protocol convergence respectively, s is the number of affected
sessions, and p is the number of prefixes in the RIB. Assuming that the order
of magnitude of the commit time is 1 millisecond (it could be an unfair under-
estimation in case of big configuration files) and that the convergence time is
proportional to the number n of routers in the network, we have a lower bound
of O(n ∗ s ∗ p) milliseconds, i.e., almost 27 hours per session to modify on a
network of 100 routers.

Intuitively, we define a migration as seamless if it guarantees no routing,
dissemination, and forwarding anomalies in intermediate configurations. Also,
a seamless migration is free from unintended traffic shifts. More formally, let
Cj = (Ij ,Sj ,Υj) be the configuration at step j of the migration, with i ≤ j ≤ f ,
and assume that Cj is oscillation-free, LoV-free, and deflection-free. Also, let
πu
j (p) be the path steadily selected by router u in Ij [Υj(p)]. We say that Cj is

not subject to unintended traffic shifts if, for each prefix p and for each router
u,

• the egress point used by u to p is consistent with previous configurations,
that is, ∀k : i ≤ k ≤ j, then πu

j (p) and πu
k (p) end with the same egress

point; or

• the egress point used by u to p is consistent with the following configu-
rations, that is, ∀k : j ≤ k ≤ f , then πu

j (p) and πu
k (p) end with the same

egress point.

We formally define a migration as seamless if for any migration step j, with
i ≤ j ≤ f :

• Cj is oscillation-free;

• Cj is LoV-free;

• Cj is deflection-free;

• Cj is not subject to unintended traffic shifts.

Conversely, routing and forwarding anomalies occur in intermediate con-
figurations during migrations which are not seamless. These anomalies persist
until another intermediate configuration is reached, which might require several
additional migration steps. We refer to such persistent anomalies as migra-
tion anomalies. Migration anomalies can cause long-lasting disruptive effects,
among which forwarding deflections and loops, unintended traffic shifts, traffic
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blackholes, congestions, unnecessary iBGP churn, and unnecessary eBGP up-
dates which increase the risk of route dampening [VCG98]. On the contrary,
we do not consider short-lived protocol-dependent issues, like those occurring
transiently during protocol convergence, as they are unrelated to BGP recon-
figurations.

9.3 Current Solutions do not Work

In this section, we show that naive incremental approaches and current best
practices [Smi10, Hv10] risk, both theoretically and practically, to introduce
several migration anomalies. We propose and evaluate other approaches in
Sections 9.4 and 9.6.

Current Best Practices Provide No Guarantees

Operators can currently rely on a few rules of thumb that apply to simple topo-
logical changes. For example, regarding iBGP topological changes, current best
practice mainly apply to the replacement of a fully-meshed iBGP topology with
a two-layer route reflection hierarchy [Smi10, Hv10]. In that case, operators
are suggested to configure one cluster at the time, by establishing all UP ses-
sions ending in a route-reflector before removing the unnecessary OVERs. This
approach is difficult to generalize to other iBGP topological changes, like mod-
ifications of a pre-existing route reflection hierarchy. Current best practices do
not explicitly prescribe an ordering in which to reconfigure routers. We ar-
gue that simple operational ordering are followed in practice, e.g., bottom-up
or top-down approaches. According to private discussions with operators, it
seems that a bottom-up approach is typically followed, hence routers are recon-
figured on a per-layer basis, starting from the bottom layer up to the top one.
In the following, we assume that when a router is reconfigured the final config-
uration is directly installed on it. Our considerations, however, can be easily
extended to approaches in which routers are only partially reconfigured, e.g.,
by removing sessions only when both ends are already migrated. We now show
that, from a theoretical point of view, migration anomalies cannot be avoided
in the general case by only imposing a bottom-up reconfiguration ordering.
We describe cases in which there exists an operational ordering which prevents
migration anomalies raised by a bottom-up reconfiguration strategy. Other
simple operational orderings, like a top-down approach, has similar problems.

An example of migration oscillation created by bottom-up reconfigurations
is reported in Fig. 9.1. The graphical convention we adopt in the figure is
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Figure 9.1: An example in which the bottom-up strategy, suggested by the
current best practices, creates routing oscillations during the reconfiguration.

the same we will use throughout the chapter for iBGP topologies. Circles
represent routers having no clients, while diamonds represent route-reflectors.
UP sessions are drawn as lines terminating with an arrow on the side of the
route-reflector, while OVER sessions are represented by lines with an arrow
on both sides. Short dashed arrows entering a router r and labeled with a
prefix p represent the fact that r is an egress point for prefix p. Ranking of
permitted paths at each router is conveyed by a list of paths, ordered from the
most preferred to the least preferred, and drawn aside the router. Path ǫ is
omitted for brevity. Whenever it is clear from the context, we will replace the
list of path preferences with a list of egress point preferences, in which each
egress point represents all the paths terminating on that egress point. Also, in
the list besides any router u, some egress points can be omitted if paths from
them are guaranteed not to be selected from u. In particular, less preferred
egress points are omitted from u’s list if a more preferred egress point e exists
from which u is guaranteed to receive a path, e.g., if e is a direct client or a
direct route-reflector of u. We will omit the IGP topology whenever it is easy
to build starting from egress point preferences.

In the example of Fig. 9.1, a bottom-up approach requires to reconfigure
routers at the bottom layer, i.e., e1, e2, and e3, before all the others. However,
after reconfiguration of e2, session (e2 r3) is removed, and the resulting inter-
mediate configuration becomes subject to routing oscillations [GW02b]. The
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Figure 9.2: An example in which the bottom-up strategy, suggested by the
current best practices, creates a loop during the reconfiguration.

problem is fixed only when one of the routers belonging to the middle layer in
Bf are migrated. Observe that a seamless migration can be achieved in this
case by reconfiguring r3 before any other router in the network.

Similar examples can be found for other kinds of migration anomalies, like
forwarding loops and traffic shifts. Indeed, consider the example in Fig. 9.2,
which can look like as the introduction of route reflection into a Point of Pres-
ence of an ISP. Egress point preferences reflect the IGP topology depicted in
the figure. We assume that e2 has a lower egress-id with respect to e1, which
justifies r1’s routes ranking. Observe that conflicting egress point preferences
at l1 and r1 cannot result in routing oscillations in this example. Indeed, either
l1 is in full-mesh or r1 is the only iBGP neighbor of l1. In the former case l1
learns its best route via an OVER direct path, in the latter case l1 must agree
with r1’s choice as it does not receive routes from any other iBGP neighbor. A
similar argument can be applied to the egress point preference conflict between
l2 and rr1. Also, the initial and the final configurations are deflection-free, as
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Figure 9.3: An example in which the bottom-up strategy, suggested by the
current best practices, creates an unintended traffic shift during the reconfigu-
ration.

the absence of forwarding anomalies is guaranteed in a full-mesh (i.e., in Bi),
and the fact that all routers but e1 choose the route from e2 in Bf . Unfor-
tunately, if a bottom-up approach is followed, a forwarding loops between l1
and l2 will occur immediately after the reconfiguration of l1, as l1 will have
no visibility of routes from e1 while l2 still receive them via its OVER session.
This loop is interrupted only after reconfiguration of l2 or e2.

Fig. 9.3 depicts an example in which an unintended traffic shift at c1 is
created during a bottom-up reconfiguration. Indeed, c1 has only one route-
reflector in both Bi, hence it is forced to steadily select the route from e1
in the initial configuration. Moreover, the bottom-up approach prescribes to
reconfigure c1 before any router in the final middle layer. Consider the con-
figuration Cj generated immediately after the reconfiguration of c1. In Cj , c1
selects the route announced by e2 which is currently steadily selected by r3 as
it learns that route from r2. After the reconfiguration of r3 or r2, however, r3
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will switch to e3, forcing c1 to change again the egress point it uses for traffic to
p1. Observe that reconfiguring r3 before c1 would cause no unintended traffic
shift in this example.

Quantitative Analysis

To quantify issues that occur when simple migration approaches are used, we
performed several experiments on a Tier-1 network consisting of roughly 100
iBGP routers organized in three layers of route reflection. We performed two
kinds of experiments: iBGP topology changes and eBGP policy modifications.

The first kind of experiments consisted in reconfiguring an iBGP full-mesh
into the given route reflection hierarchy. We simulated per-router migrations
performed according to the current best practices: at each migration step, we
picked one router and we activated all its UP sessions before shutting down
the OVER sessions not belonging to the final configuration. In particular, we
evaluated completely random router migration orderings (e.g., the one gener-
ated by a script which simply iterates on all the routers), as well as random
orderings in which top layer routers are reconfigured at the end, and bottom-
up orderings. We denote these strategies as RND (Random), RBT (Random
But Top), and BTU (Bottom-Up), respectively. For each strategy, we run 50
different experiments, each experiment corresponding to a different ordering in
which routers are migrated. For each experiment, we used C-BGP [QU05] to
compute all the BGP routing tables in the intermediate configurations.

Fig. 9.4 plots the fraction of experiments during which different types of
anomalies occur when simple per-router migrations are applied. A data point
(x, y) in the graph means that (100∗y)% of the experiments for that particular
strategy exhibited a given anomaly for at least x% of the migration steps.
RND orderings almost always triggered Loss of prefix Visibility (LoV) at some
iBGP router, for some prefixes. This makes random orderings clearly not
viable in practice. RBT migrations were not subject to LoVs, however several
migration issues were raised. Indeed, in more than 90% of the experiments,
loops occurred during more than the 10% of the migration steps. Even worse,
traffic shifts occurred during more than 55% of the RBT migration process in
almost all the experiments. Surprisingly, BTU creates more forwarding loops
than RBT on average on the considered network. Indeed, in almost 60% of
the experiments, loops were raised during more than the 35% of the migration
steps. On the other hand, BTU performs better than RBT regarding traffic
shifts. Nevertheless, traffic shifts occurred during more than 40% of almost all
the BTU migrations.
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Figure 9.4: Percentage of the migration process affected by anomalies with
simple approaches, during a full-mesh to route reflection reconfiguration on a
Tier-1 topology.

In the second kind of experiments, we analyzed changes of eBGP poli-
cies, and we measured the amount of unintended traffic shifts created by
those changes. In each of those experiments, we modified the value of the
local-preference assigned to the routes received by a given neighboring ISP.
Our data set consisted of the C-BGP [QU05] model of the Tier-1 along with a
dump of all the Adj-RIB-In from the main route reflectors. In order to focus
on significant traffic shifts, we restricted our analysis to the 940 prefixes that
together were responsible for 80% of the traffic [UT06]. Given this input, we
identified all the neighboring ISPs announcing at least one of the 940 prefixes.
We further filter the list of ISPs by excluding those having only one eBGP peer-
ing with the Tier-1. After this process, we end up with 50 ISPs and 250 eBGP
sessions. For simplicity, we assumed the Tier-1 to initially apply the same
local-preference on all the eBGP peerings it keeps with the same neighbor-
ing ISPs. We used C-BGP to compute the BGP routing tables of every router
in the network before, during, and after the local-preference configuration
change. By comparing routing tables at different steps, we finally computed
the unintended traffic shifts caused by different reconfiguration processes. In
each experiment, we considered one among the 50 ISPs previously selected.
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Figure 9.5: Average number of unintended traffic shifts that each router expe-
rienced per-prefix during eBGP policy changes in a Tier-1 network.

For each ISP, we repeated traffic shift measurements for 5 different orderings
in which border routers are reconfigured. Also, we considered different final
values of local-preference (i.e., in Cf ), which we denote as LPf . Namely,
in different experiments, we set LPf to the minimum, maximum, and an inter-
mediate (median) value among those found in the initial configuration. These
scenarios correspond to turn a neighboring ISP into a provider, peer, customer,
respectively.

Fig. 9.5 shows the complementary cumulative distribution of the average
number of unintended traffic shifts per router. Each point in the plot cor-
responds to an experiment involving a different neighboring ISP, a different
value of LPf , and a different ordering. On average, 50% (20%, resp.) of the
routers experience at least 1 (1.5, resp.) unintended traffic shifts for each pre-
fix announced by the ISP considered in the experiment when LPf is set to the
median or maximum value. In some experiments, we recorded more than 2 and
2.5 unintended traffic shifts on average per router per prefix when LPf is set to
the maximum and the median value, respectively. This means that each router
in the network can change multiple times its egress point to each interdomain
destination, potentially violating load-balancing and traffic engineering policies
(e.g., forwarding packets to other continents over high-cost transoceanic cables)



i

i

“main” — 2012/2/22 — 9:40 — page 231 — #241
i

i

i

i

i

i

9.4. AN ALGORITHMIC APPROACH IS NOT VIABLE 231

and unleashing traffic congestion for many migration steps. Additionally, eBGP
churn can increase the likelihood of route damping. We expect these results
to scare network operators, especially if they have to change eBGP policies
applied to ISPs announcing the few prefixes that drive the vast majority of the
Internet traffic [LIJM+10]. Lowering the local-preference to the minimum
value creates less traffic shifts on average than setting LPf to the maximum
or the median value. In fact, contrary to the other two scenarios, routes af-
fected by setting LPf to the minimum value never attract additional traffic,
and can only be de-selected by routers that prefer them before. Still, in few
experiments, the average number of unintended traffic shifts is more than 2.5
per router per prefix.

9.4 An Algorithmic Approach is not Viable

In this section, we present examples in which the BGP seamless reconfiguration
problem cannot be solved by only adding sessions in Cf and removing sessions
in Ci. We first tackle iBGP topology changes, then we address the problem of
seamlessly changing eBGP policies.

iBGP Topology Changes

From an algorithmic point of view, the problem of changing the iBGP topology
can be formalized as follows. We refer to an ordering in which to reconfigure
iBGP sessions achieving a seamless migration as seamless ordering.

Session Ordering Computation Problem (SOCP): given Bi and Bf , com-
pute a seamless ordering in which to add sessions in Bf \ Bi and to remove
sessions in Bi \Bf .

Observe that, in SOCP, eBGP routes are assumed not to change through-
out the reconfiguration process. Indeed, given an initial configuration Ci =
(Bi, U,S,Υ), S and Υ are supposed to remain the same at any migration step.
In the following, we show that even if eBGP is totally static, there are cases in
which a seamless ordering does not exist. In the following, we refer to sessions
to be added or removed during the migration, that is, sessions in Bi∆Bf , as
affected sessions. Also, when non ambiguous, we use symbol < to denote rel-
ative ordering between two operations such as the addition or removal of an
affected session. For example, o1 < o2 means that operation o1 is performed
before o2, i.e., o1 and o2 are respectively performed at migration steps i and j,
with i < j. We use ≤,=,≥, > with similarly semantics.
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We consider per-session and per-router migrations. To be as flexible as pos-
sible, we allow multiple sessions involving the same router to be simultaneously
added or removed, at any migration step. Such an approach closely reflects the
degree of freedom that operators have. Indeed, multiple sessions involving the
same router r can be simultaneously reconfigured by changing the configuration
of r. On the contrary, assuming synchronism between changes on arbitrary ses-
sions is less realistic, since perfect synchronism between configuration commits
and BGP updates processing at multiple routers is hard to achieve. Moreover,
allowing simultaneous operations involving different routers overcomplicates
piloting the reconfiguration, e.g., in case of a single commit that fails.

In the following, we show that there are cases in which a seamless ordering
does not exist. Even worse, we show examples in which i) any reconfiguration
ordering is not oscillation-free; ii) any reconfiguration ordering is not dissem-
ination correct; iii) any reconfiguration ordering is not deflection-free; iv) any
reconfiguration ordering is subject to unintended traffic shifts. It is simple to
extend those examples to show cases in which no reconfiguration ordering is
free from different kinds of anomalies, e.g., some orderings creates migration
oscillations while others forwarding loops.

The graphical convention we adopt for iBGP topologies is the following
(e.g., see Fig. 9.6). Circles represent routers having no clients, while diamonds
represent route-reflectors. UP sessions are drawn as lines terminating with an
arrow on the side of the route-reflector, while OVER sessions are represented
by lines with an arrow on both sides. Short dashed arrows entering a router r
and labeled with a prefix p represent the fact that r is an egress point for prefix
p. Ranking of permitted paths at each router is conveyed by a list of paths,
ordered from the most preferred to the least, and depicted aside the router.
Whenever it is clear from the context, we will replace the list of path preferences
with a list of egress point preferences, in which egress point represents all the
paths terminating on that egress point. Also, in the list beside any router
u, some egress points can be omitted if u is guaranteed to never select routes
announced by them. In particular, less preferred egress points are omitted from
u’s list if a more preferred egress point ē exists from which u is guaranteed to
receive a path, e.g., if u is a direct client or a direct route-reflector of ē. Finally,
we will omit underlying IGP topologies when they are easy to build starting
from egress point preferences.
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Figure 9.6: Twice-Bad gadget. No iBGP reconfiguration ordering can prevent
routing oscillations in intermediate configurations.

Unavoidable Routing Oscillations

Fig. 9.6 depicts an example in which any reconfiguration ordering creates a
permanent oscillation at some reconfiguration step, even if the initial and the
final configurations are oscillation-free. Indeed, IGP metrics dictate preferences
on routers such that a Bad-Gadget Π′ (see Chapter 2) between routers r1
, r2, and r3 for p1 cannot be prevented from oscillating in absence of (e1, r3)

and (ex, r2). Spoke paths in Π′ are ~Q′ = ((r1 e1) (r2 e2) (r3 e3)), and rim

paths are ~R′ = ((r1 r2) (r2 r3) (r3 r1)). Moreover, another Bad-Gadget

Π′′ exists between r2, r3, and r4 for prefix p2 in presence of both (e1, r3) and

(ex, r2). Pivot vertices in Π′′ are ~U ′′ = (r2 r3 r4), spoke paths are ~Q′′ =

((r2 ex) (r3 e1) (r4 e4)), and rim paths are ~R′′ = ((r2 r3) (r3 r4) (r4 r2)).
Bi and Bf are oscillation-free. In Bi, Π

′ is prevented from oscillating be-
cause of the presence of session (ex, r2), and Π′′ does not exist because of the
absence of session (e1, r3) (i.e., one spoke path is missing in the dispute wheel).
Similarly, in Bf , Π

′ is prevented from oscillating because of the presence of
session (e1, r3), and Π′′ does not exist because of the absence of session (ex, r2)
(i.e., one spoke path is missing in the dispute wheel). However, Bi and Bf are
not signaling correct, i.e., correct for any combination of egress points [GW02b].
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Consider now any possible migration. Since sessions to add and remove
have no router in common, we have only two cases.

• add(e1, r3) < remove(ex, r2). In this case, immediately after add(e1, r3),
nothing prevents Π′′ from permanently oscillating. Such an oscillation is
interrupted only after that (ex, r2) is removed.

• remove(ex, r2) < add(e1, r3). Immediately after remove(ex, r2), nothing
prevents Π′ from permanently oscillating. Such an oscillation is inter-
rupted only after that (e1, r3) is added.

In both cases, an intermediate configuration exists which is subject to perma-
nent oscillations.

We experimentally confirmed that no oscillation-free ordering exists, by
emulating the four iBGP topologies (initial, final, and the two possible inter-
mediate topologies) in a virtual environment.

Unavoidable Dissemination Anomalies

Fig. 9.7 shows an example in which all the reconfiguration orderings cause a
dissemination anomaly. Observe that all the routers have a route to p in Bi

and Bf , as highlighted in the bottom part of the figure. However, in any
reconfiguration ordering, one of the following cases applies.

• add(e1, r2) < remove(e2, r1). Consider the configuration generated im-
mediately after add(e1, r2). Because of egress point preferences, r2 selects
path (r2 e1) while r1 keeps selecting (r1 e2). Hence, neither r1 nor r2
propagate their best route further, causing top layer routers to have no
route to p.

• remove(e2, r1) < add(e1, r2). Consider the configuration generated im-
mediately after add(e2, r1). Both r1 and r2 are forced to select the route
from their respective clients, and propagate that route to their route-
reflectors and peers. Because of egress point preferences, rr1 (rr2, resp.)
will select route (r2 rr1) ((r1 rr2), resp.). Hence, neither rr1 nor rr2
propagate any route to rr3, causing rr3 to have no route to p.

In both cases, we end up with a dissemination anomaly.
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Figure 9.7: Double-Cross gadget. No iBGP reconfiguration ordering can
prevent dissemination anomalies in intermediate configurations.

Unavoidable Deflections and Loops

Similarly to control-plane issues, there are cases in which forwarding deflections
and loops cannot be avoided by any reconfiguration ordering, even if the Bi

and Bf are deflection-free.
Consider, for example, Fig. 9.8. Both Bi and Bf are not subject to any

forwarding issue. Indeed, in Bi, all routers but s select e0 as an egress point,
since r1 does not receive the route announced by e1, and r2 prefers routes from
e0 over to those from e1. Similarly, in Bf , all routers but s select a path from
e1, since r2 does not receive the route announced by e0, and r1 prefers routes
from e1 over those from e0.

However, in any reconfiguration ordering one of the following cases apply.

• remove(e0, r2) < add(e1, r1). In the configuration generated immediately
after remove(e0, r2), r1 and r2 are forced to select (r1 e0) and (r2 e1)
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Figure 9.8: Pylon gadget. No iBGP reconfiguration ordering can prevent a
forwarding loop in intermediate configurations.

respectively, . Hence, a loop occurs between r1 and r2 (see the IGP
topology).

• add(e1, r1) < remove(e0, r2). In the configuration generated immediately
after add(e1, r1), r1 and r2 will select (r1 e1) and (r2 e0) respectively,
because of the IGP topology. As a consequence, rr1 and rr2 will select
(rr1 r1 e1) and (rr2 r2 e0) respectively, giving raise to a loop between
rr1 and rr2 (see the IGP topology).

In both cases, a forwarding loop occurs in an intermediate configuration.

Unavoidable Traffic Shifts

Consider the example in Fig. 9.9. In this example, unintended traffic shifts
happen for either p1 or p2, whatever the reconfiguration ordering is. Traffic
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Figure 9.9: Pyramid gadget. No iBGP reconfiguration ordering can prevent
unintended traffic shifts in intermediate configurations.

shifts happen at t. For prefix p1, t steadily selects (t e5) in Bi since it receives
no path from r1 and r2 whose best routes (r1 e2) and (r2 e1) are learned via an
OVER session. In Bf , r1 and r2 steadily selects (r1 e1) and (r2 e4) respectively,
hence t will select (t e1), because of egress point preferences. For prefix p2, t
steadily selects (t e5) in Bi since it receives no path from r1 and r2 whose best
routes (r1 e2) and (r2 e1) are learned via an OVER session. In Bf , r1 and
r2 steadily selects (r1 e3) and (r2 e2) respectively, hence t will select (t e2),
because of egress point preferences.

However, in any reconfiguration ordering, one of the following cases applies.

• remove(e1, r2) < remove(e2, r1). In this case, consider prefix p1. Im-
mediately after remove(e1, r2), r1 keeps selecting the route from e2, but
r2 switches to (r2 e4), and starts propagating that path to t. Because
of egress point preferences, t steadily selects (t r2 e4), i.e., the route an-
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nounced by an egress point to which t will not send traffic in Bi nor in
Bf .

• remove(e2, r1) < remove(e1, r2). In this case, consider prefix p2. Imme-
diately after remove(e2, r1), r2 keeps selecting the route from e1, while
r1 switches to (r1 e3), and starts propagating that path to t. Because of
egress point preferences, t will steadily select (t r1 e3), that is the route
announced by an egress point to which t will not send traffic in Bi nor
in Bf .

In both cases, an unintended traffic shift occurs during the reconfiguration.

eBGP Policy Changes

Modifying eBGP policies can affect the set of routes injected in iBGP. In our
theoretical model, changing an eBGP policy corresponds to temporarily change
the set of egress sets and the mapping between given prefixes and their cor-
responding egress sets during the reconfiguration process. On the other hand,
the iBGP topology is not modified. More formally, given Ci = (Bi, U,Si,Υi)
and Cf = (Bf , U,Sf ,Υf ), we have that Bi = Bf but possibly Υi 6= Υf . Also,
Υj at a given step j can be different from both the initial and the final ones,
i.e., Υj 6= Υi,Υf . The same applies to the set of egress sets, i.e., possibly
Si 6= Sf and for some migration step j Sj 6= Si,Sf .

Assuming again that eBGP routes do not change throughout the migration,
egress sets and the Υ function in intermediate configurations depends only
on the BGP reconfiguration ordering. Unless Bi and Bf are guaranteed to
be (signaling, forwarding and dissemination) correct for any possible set of
egress points (refer to [GW02b] and Chapter 8), reconfiguration orderings can
create signaling, dissemination, and forwarding anomalies during the migration.
Observe, however, that check for any correctness property to be enforced for
any combination of egress points has been shown to be an NP -hard problem.
Also, there are cases in which unnecessary traffic shifts cannot be avoided by
any configuration ordering.

Consider the example in Fig. 9.10, which we called Inconsistent gadget.
It represents a scenario in which preference of eBGP routes R1 and R2 has
to be modified, e.g., because a commercial relationship with a neighboring
ISP has changed. In this case, an unnecessary traffic shift occurs in every
migration ordering. Indeed, traffic towards p1 is load-balanced among e1 and
e2 in both Bi and Bf , since r1 and e1 exit through e1 while r2 and e2 use route
R2. However, if e1 is migrated first, then all iBGP routers start preferring R2
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Figure 9.10: Inconsistent gadget, an eBGP policy reconfiguration case in
which unintended traffic shifts occur in every reconfiguration ordering.

because the route is temporarily assigned a higher local-preference value
with respect to R1. Hence, r1 and e1 are subject to an unnecessary traffic shift
after the migration of e1 and before the migration of e2. A symmetrical traffic
shift occurs if e2 is migrated before e1.

9.5 Problem Complexity

We now study the computational complexity of the decision problem associ-
ated to SOCP. In particular, we restrict to oscillation-free orderings, and we
prove that deciding if an oscillation-free ordering exists for a given reconfigu-
ration is NP -hard. Observe that orderings cannot be seamless if they are not
oscillation-free. Also, our results can be generalized to LoV-free and deflection-
free orderings, as we discuss later in this section.

Safe Session Ordering Decision Problem (SODP): given Bi and Bf ,
decide if there exists seamless ordering in which to add sessions in Bf \Bi and
to remove sessions in Bi \Bf .

Unfortunately, we prove that SODP is computationally hard, even if eBGP
stability is assumed, and a single prefix is considered.
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Figure 9.11: Base topology for Bi and Bf in the reduction from 3-sat to
SODP.

SODP is NP-Hard

In the following, we show that SODP is NP -hard even for a single prefix
entering at given set of egress points. In particular, we show that the well-
known NP -hard 3-sat problem can be reduced to SODP in polynomial time.

Let F be a boolean formula in conjunctive normal form. Each clause Ci in
F contains three literals Lij , with j = 1, 2, 3. In turn, each literal is bound to
a variable and has either the same or the opposite value of the variable. We
say that a literal Lij is a positive literal if Li = Xk, for some Xk in F , and we
say that it is negative literal otherwise.

We now construct the SODP instance S = (Bi, Bf ). We refer to a single
prefix p. The base structure of both Bi and Bf is represented in Fig. 9.11. It
consists in four top layer routers, namely t1, t2, t3, tc, among which tc is also
an egress point for p. Vertices ez1, ez2, et2, ep1, ep2 are also egress points for
p, while xz and xp are two route reflectors outside the top layer full mesh. In
the figure, the edges in Bf \Bi are tagged as add, while Bi \Bf = ⊘. Observe
that t1, t2, t3 form a Bad-Gadget if ez1 is present and ep1 is not. This forces
any oscillation-free reconfiguration to add (ep1, xp) before (ez1, xz).

Property 9.1 A reconfiguration ordering is oscillation-free only if add(ep1, xp) <
add(ez1, xz).

The rest of Bi and Bf depends on F , and consists in variable and clause
gadgets that are connected at xz, xp, and tc. Observe that tc will always select
its eBGP route, while xz and xp always select a path from one direct client of
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Figure 9.12: Variable gadget corresponding to variable Xi.

its. This enforces no path exchange between vertices in Fig. 9.11 and vertices
in other parts of the topology. Also the following property holds.

Property 9.2 Vertices in the base topology (see Fig. 9.11) are guaranteed to
converge to a stable state in both Bi and Bf .

We now describe how to build variable and clause gadgets. Given F , we add
one variable gadget per variable in F , and one clause gadget for each clause in
F . The variable gadget for any variable Xi is depicted in Fig. 9.12. It consists
of two egress point, namely ei and ēi, and two route-reflectors, namely xi and
x̄i. Session (xi ei1) is in Bf \ Bi. We will map add(xi, ei1) < remove(xp, ep1)
to assign Xi = TRUE, while add(xi, ei1) > remove(xp, ep1) corresponds to
Xi = FALSE. This mapping prevents any variable from being simultaneously
i) TRUE and FALSE, and ii) not TRUE and not FALSE.

Egress point preferences are set as in figure. xi prefers routes from its tran-
sitive clients. Observe that xi is guaranteed to receive either ez1 or ez2, hence
we can disregard egress points which are less preferred than ez2. Moreover, xi

cannot be influenced by the routing choice of any of its route-reflectors unless
one of them has a direct iBGP path to either ez1, ez2, or 6 e1. Also, xi and x̄i

form a Disagree if xi does not receive any path to ez1 and x̄i does not receive
any path to ep2. Such a Disagree does not exist in Bi, since spoke path (xi ei)
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is missing, and is prevented from oscillating at Bf since xi is guaranteed to
select ez1.

Property 9.3 If none of xi’s route-reflectors has a valid iBGP path to ez1,
ez2, or ēi shorter than xi, vertices in each variable gadget (see Fig. 9.12) are
guaranteed to converge to a stable state in both Bi and Bf .

Property 9.4 If none of xi’s route-reflectors has a valid iBGP path to ez1,
ez2, or ēi shorter than xi and add(ei, xi) 6= add(ep, xp), vertices in each vari-
able gadget are guaranteed to converge to a stable state for any reconfiguration
ordering.

We now prove a couple of interesting properties of this variable gadget,
which we will use after for showing the correctness of the reduction. Intuitively,
they are based on the fact that the Disagree between xi and x̄i forces different
choices on xi and x̄i according to the relative order in which sessions (ei, xi)
and (ep1, xp) are added. In particular, the following Lemmas state that when
variable Xi is TRUE, router xi will advertise ei during the migration, namely
in migration steps between addition of (ep1, xp) and addition of add(ez1, xz).
Otherwise, if variable Xi is FALSE, router xi will advertise ēi in the same
migration steps.

Lemma 9.1 Assume that add(ei, xi) < add(ep1, xp) < add(ez1, xz). Then,
xi never selects ēi, and selects ei at every step after add(ei, xi) and before
add(ez1, xz).

Proof: Before add(ei, xi), x̄i steadily selects ep2, and xi steadily selects ez2,
because of egress point preferences and visibility. Consider now the steady
state immediately after add(ei, xi). Vertex xi switches to ei, because of egress
point preferences, and announces it to x̄i. As a consequence, x̄i also selects
ei, because of egress point preferences. Also, since ei is the most preferred
egress point at x̄i, x̄i will never change its choice until xi changes egress point.
In particular, add(ep1, xp) does not cause any change in path selection at x̄i,
hence at xi. Finally, after add(ez1, xz), xi switches to its most preferred egress
point, i.e., ez1, yielding the statement. �

Lemma 9.2 Assume that add(ep1, xp) < add(ez1, xz) and add(ep1, xp) <
add(ei, xi). Then, xi never selects ei, and selects ēi at every step after add(ep1, xp)
and before add(ez1, xz).
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Figure 9.13: Clause gadget corresponding to clause Ci.

Proof: Before add(ep1, xp), x̄i and xi steadily selects ep2 and ez2 respectively,
because of egress point preferences and visibility. When (ep1, xp) is added, xp

switches to ep1 and does not propagate ep2 to its neighbors any more. Hence,
x̄i switches to ēi, making it available at xi. Thus, xi also switches to ēi. Also,
xi will never change its choice until it receives and steadily selects ez1, that is,
after add(ez1, xz). �

Also, for each clause Ci in F , a clause gadget is added to both Bi and
Bf . An example of clause gadget is represented in Fig. 9.13. A clause gadget
contains three literal vertices lij , with j = 1, 2, 3, each corresponding to a
literal in Ci. In both Bi and Bf , each literal vertex lij is a route-reflector of
xk if and only if Lij = Xk or Lij = X̄k. In addition, a clause gadget also
contains auxiliary vertices ai1 and ai2, which are route-reflectors of xz and xp

respectively. Egress point preferences at auxiliary and literal vertices are such
that a Bad-Gadget Πi potentially exists in the clause gadget corresponding
to clause Ci. Pivot vertices in Πi are ~U = (ai1 li1 li2 li3 ai2), and rim paths

are ~R = ((ai1 li1) (li1 li2) (li2 li3) (li3 ai2) (ai2 ai1)). Spoke paths depend on
literals in Ci. In particular, for each positive literal Lij = Xk, the spoke path
at the corresponding vertex lij is (lij xk ēk). On the contrary, for each negative
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literal Lij = X̄k, the spoke path at lij is (lij xk ek). Spoke path at ai1 is always
(ai1 xz ez2), while spoke path at ai2 is (ai2 xp ep1). Intuitively, spoke paths at
every literal vertex are available only if the corresponding literal is FALSE in
Ci. On the contrary, spoke paths at auxiliary vertices are always available in
migration steps between add(ep1, xp) and before add(ez1, xz). Hence, if all the
three literals in a clause Ci are false, then all routers lij will be able to select
their spoke paths, hence the Bad-Gadget Πi will oscillate in migration steps
between add(ep1, xp) and before add(ez1, xz).

Observe that the connection points between each clause gadgets and the rest
of the topology are xz, xp, tc, and all xi corresponding to literal in the clause.
Because of egress point preferences and iBGP route propagation rules, all those
connection points always selects a route announced by one of its transitive
clients, except tc which will always choose the eBGP route it receives. This
provides isolation between each clause gadget and the rest of the network, that
is, both aik (with k = 1, 2) and lij (with j = 1, 2, 3) receive routes from any
other router that is not in the same clause gadget.

A possible IGP topology U enforcing given path preferences is built by the
following algorithm. Let Υ(p) be the set of egress points for p. For each pair
(r, e) with r 6∈ Υ(p) and e ∈ Υ(p), an edge is added to U . Edge weights are
asymmetric. The weight w(r, e) for r to traverse (r, e) is set according to path
preferences in Fig. 9.11, 9.12, and 9.13. That is, w(r, e) = 1 if e is the most
preferred egress point for r, w(r, e) = 2 if e is the second most preferred egress
point for r, and so on. On the contrary, weight w(e, r) for e to traverse (r, e)
is set an arbitrarily high value, e.g., 100. This ensures that all shortest paths
consist of a single edge.

We now prove that the reduction is correct. First of all, note that Bi and Bf

are not prone to routing oscillations. Indeed, vertices in the base topology and
in the variable gadgets are guaranteed to converge by Properties 9.2 and 9.3.
Also, the Bad-Gadget among literal and auxiliary vertices in each clause
gadget are prevented from oscillating in Bi and in Bf . Indeed, in Bi, ai2
cannot select its spoke path (ai2 xp ep1) since that path does not exist at
all. In Bf , since xz selects ez1, ai1 does not receive any path to ez2, hence
it does not receive its spoke path (ai1 xz ez2). Observe that Bi and Bf are
oscillation-free but not signaling correct, i.e., they are not safe for any possible
combination of egress points.

We denote with M a boolean assignment on variables in F . Also, we de-
fine O(M) as the partial ordering corresponding to M in which add(ep1, xp) <
add(ez1, xz). In the following, we show that O(M) does not create any oscil-
lation in a clause gadget G if and only if M satisfies the clause corresponding
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to G. Observe that we disregard orderings where add(ep1, xp) > add(ez1, xz)
because they cannot be oscillation-free (see Property 9.1).

Lemma 9.3 If M satisfies a clause Ci, then O(M) ensures that the corre-
sponding clause gadget does not oscillate at any reconfiguration step.

Proof: Let L∗ be one of the literals of Ci such that L∗ = TRUE in M . L∗ must
exist since M satisfies Ci by hypothesis. Assume, without loss of generality,
that X1 is the variable associated to L∗. We have two cases.

• L∗ = X1. Then,X1 = TRUE inM implies that add(x1, e11) < add(xp, ep1)
in O(M). By Lemma 9.1, x1 never selects ē1 in O(M).

• L∗ = X̄1. Then, X1 = FALSE in M implies that add(x1, e11) >
add(xp, ep1) in O(M). By Lemma 9.2, x1 never selects e1 in O(M).

In both cases, l∗ never receives its spoke in Πi, which is always prevented from
oscillating. �

Lemma 9.4 If a given reconfiguration ordering O(M) guarantees that a clause
gadget corresponding to Ci does not oscillate, then M satisfies Ci.

Proof: Let Bo be the intermediate configuration generated immediately after
the addition of session (xp, ep1), if O(M) is followed. Assume by contradiction
that M does not satisfy Ci. By construction, this implies the following ordering
constraints on O(M).

• For each positive literal Lij = Xk in Ci, we have add(xk, ek1) > add(xp, ep1).
By Lemma 9.2, xk selects ēk in Bo, and steadily propagates to lij .

• For each negative literal Lij = X̄k in Ci, we have add(xk, ek1) < add(xp, ep1).
By Lemma 9.1, xk selects ek in Bo, and steadily propagates to lij .

This means that all the spoke paths are available at all the literal vertices lij .
Also, spoke paths are available at auxiliary vertices ai1 and ai2, since (xp, ep1)
is already added, and (xz, ez1) is still not added in Bo. Hence, nothing prevents
Bad-Gadget Πi from oscillating, contradicting the hypothesis. �

Theorem 9.1 SODP is NP -hard.

Proof: Consider a logical formula F in conjunctive normal form. Let S be the
SODP instance corresponding to F (built as described above). We now prove
that the reduction is correct.
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• if F is satisfiable, then there exists an oscillation-free reconfiguration
ordering. LetM be a boolean assignment that satisfies F . By Lemma 9.3,
O(M) ensures that any clause gadget does not oscillate at any migration
step. Vertices outside clause gadgets are also guaranteed to converge to
a stable state by Properties 9.1 and 9.4.

• if F is not satisfiable, then there does not exist any oscillation-free config-
uration ordering. Assume by contradiction that an ordering O(M) which
preserves safety do exist. Since, by construction, vertices in different
clause gadget do not exchange routes between each other, then O(M)
must enforce that no routing oscillation can arise in any clause gadget at
any reconfiguration step. Then, by Lemma 9.4, M satisfies each clause
in F , contradicting the hypothesis.

�

The SODP instance built in the reduction is an example of an iBGP topol-
ogy change in which some egress points are added to the bottom level of the
route reflection hierarchy. The proof shows that migration anomalies can be
created even in this simple scenario. Note that the proof can be easily extended
to the case in which iBGP sessions are added to already connected routers. For
example, a link (or a path) can be added in Bi between each egress point at
the bottom layer and tc. In this case, the additional links will not cause any
router to change its best path, since tc will never propagate any route but the
one it receives from its eBGP neighbor.

Observe that, from a theoretical point of view, adding egress points to the
initial iBGP topology in the SODP instance reduced from 3-sat corresponds
to increase the local-preference that those egress points apply to the eBGP
routes they receive (without changing the iBGP topology). Hence, the frame-
work of the proof above can be reused to show that the problem of deciding
if a seamless reconfiguration ordering exists is NP -hard also in case of eBGP
policy changes. More precisely, we can build the corresponding instance Ĩ of
the eBGP policy change decision problem as follows. The iBGP topology in
Ĩ is the final one in I, and does not change during the reconfiguration. Let
L be the maximum value of local-preference assigned to any route to p in
the initial configuration in Ĩ. Each egress point added in I is configured in Ĩ
so that it sets a local-preference value strictly smaller than L in the initial
configuration and equal to L in the final one. This local-preference change
is equivalent to add new iBGP sessions since the effect of both operations is to
enrich the initial set of routes equally preferred AS-wide.
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Also, consider the main intuition behind the reduction: we can summarize
it as follows. During given migration steps, routers xi propagate to routers in
the clause gadgets one among two routes depending on the boolean assignment
of variables in the 3-sat problem. Combinations of routes which reflect boolean
assignments making some clause false cause routing oscillations in the clause
gadgets. It is easy to tweak the clause gadget in order to create forwarding and
dissemination anomalies when they are fed with given combinations of routes.
Hence, due to the modularity of the SODP instance built in the reduction,
the main intuition of the proof can be leveraged to show the computational
intractability of LoV-free and loop-free orderings.

Discussion

We have just shown that SODP is NP -hard. Observe that some NP -hard
problems can be solved by algorithms (e.g., 3-SAT solvers, or Linear Pro-
gram solvers) that work well in practice. Similarly, we presented a correct
and complete algorithm which efficiently solves the NP -hard IGP reconfigu-
ration problem real-world network topologies in Chapter 7. Unfortunately, at
the time of writing, designing an algorithm or a heuristic to compute seamless
BGP reconfiguration orderings in practice is not doable.

First of all, consider that checking an SPP (hence, an i-SPP) instance for
any kind of correctness (i.e., signaling, dissemination, or forwarding) is NP -
hard, and no complete algorithm is known for those problems.

Also, no sufficient and necessary condition is known that ensures a recon-
figuration ordering to be either oscillation-free, LoV-free, or deflection-free.
Moreover, no algorithm currently exists to pinpoint issues that are created by
the addition (or removal) of a single iBGP session. Thus, identifying ordering
constraints among sessions to be added and removed is not viable.

Exploring the research space of the reconfiguration problem seems the most
straightforward way. Such an approach however is highly inefficient, as the
number of orderings to be checked is equal to the permutations of the sessions
to be reconfigured, in the worst case. Even worse, for each ordering at least
one NP -hard problem must be solved at each migration step.

We expect that pruning the research space cannot be done efficiently as
well. Intuitively, if an efficient algorithm existed that discriminates promising
and non promising branches in the research space, it could be applied to Bi in
order to solve SODP, which however is NP -hard.

We argue that the fact that SODP belongs to NP is also questionable. Con-
sider that not even a seamless ordering can be considered a succint certificate
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for SODP, unless a polynomial-time checkable characterization of seamless or-
derings exists. Indeed, checking whether an ordering is seamless cannot be
done in polynomial time, as testing correctness of intermediate configurations
is computationally hard. For all those reasons, we conjecture that the problem
is even more complex than an NP -hard problem.

Conjecture 9.1 SODP is PSPACE-hard.

9.6 A General Solution for BGP Migrations

Section 9.4 shows that seamless iBGP reconfigurations cannot be always achieved
by just adding and removing sessions. Intuitively, the problem is that local
changes can unpredictably impact routing decisions at remote iBGP routers.

We argue that additional configuration tools are needed to build a general
approach guaranteeing seamless migrations in any reconfiguration scenario.
We propose to run two distinct control-planes on all routers in the ISP, as
it is normally suggested to perform IGP reconfigurations (e.g., [Hv10]). The
co-existing control-planes should work in isolation (no route leakage from one
plane to the other), and according to different configurations, e.g., one control-
plane working in the initial configuration Ci and the other one working in the
final configuration Cf . Ideally, we also would like to tell each router which of
the two control-planes should be used for forwarding in the data-plane. We
refer to this approach as BGP Ships-In-The-Night (SITN).

Requirements and Challenges for Two Control Planes

The main advantage of BGP SITN is that it allows us to reconfigure a sin-
gle router without affecting routing decision of other routers. Intuitively, we
would like to have both the initial and the final configurations up and running
network-wide, so that each router can compute both the initial and the final
BGP routing tables (RIBs). Under this assumption, reconfiguring a router
would be simply a matter of telling the router to start forwarding traffic ac-
cording to the final RIB instead of the initial one.

Unfortunately, current routers cannot natively support multiple BGP rout-
ing processes on the same set of eBGP routes.

From an abstract point of view, the following functionalities are needed in
order to implement BGP SITN:

• co-existence of multiple isolated routing processes on the same router;
and
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• independent propagation of all the routes to all the routing processes
within each router.

In order to simulate co-existence of multiple routing processes on the same
router, we can leverage the Virtual Routing and Forwarding feature [cisb] avail-
able on commercial devices. This feature is especially used as a basis for MPLS
L3VPNs and BGP multi-topology.

Basically, Virtual Routing and Forwarding creates isolated namespaces for
prefixes by tagging each set of prefixes with a route distinguisher. Two routes
having distinct route distinguishers cannot be compared, and can co-exist in
the routing table. By default, namespaces do not share any route, though route
import and export mechanisms enable leakage of best routes to given prefixes
from one namespace to another. Each network interface of the router can be
assigned to a single namespace in such a way that forwarding depends both
on the destination prefix and on the ingress interface. In the following, we will
refer to each namespace as VRF.

In order to simulate two control-planes running at the same time, we would
use an initial VRF to run the initial configuration, and a final VRF to run the
final configuration. Unfortunately, because of the one-to-one mapping between
interfaces and VRFs, routes learned from external peers are collected in a
single VRF. This prevents independent propagation of external routes to all the
VRFs. In fact, except for the best routes, external routes cannot be propagated
from one VRF to others, even with route import and export mechanisms. A
workaround to achieve propagation of external routes to all the VRFs could
be to configure multiple parallel eBGP peerings. However, this solution is not
practical as it unnecessarily duplicates eBGP peerings and requires coordinated
configuration changes on both sides of each of those peerings.

Forwarding in SITN

If two routers disagreed about which VRF a packet should be assigned to, the
network could experience forwarding deflections, loops and congestion, hence
packet loss. Thus, correct forwarding requires that every router on the data
path of a packet forwards it according to the same VRF. For this reason, packets
need to be tagged with VRF information.

We distinguish between explicit and implicit tagging. Explicit tagging in-
volves modifying the packet to encode additional information which is processed
at every router. Traffic encapsulation mechanisms, e.g. MPLS or GRE, are
examples of explicit tagging. Conversely, implicit tagging requires no change
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Figure 9.14: Architecture of our solution.

to data packets. Tags are inferred and assigned to packets on the basis of infor-
mation at lower layers in the protocol stack, e.g., the logical interface packets
are received on. An example of implicit tagging is what is commonly known
as VRF-lite. In a VRF-lite based network, routers are configured with multi-
ple logical interfaces on the same links and separate IGP instances are run in
each VRF. In this case, the VRF tag is implicitly assigned to each data packet
according to the destination MAC address of the frame.

Proposed Solution

The BGP SITN approach requires three key components: a dispatching mech-
anism to propagate all the external routes to multiple namespaces, a front-end
interface which propagates iBGP updates from one “active” namespace to the
eBGP neighbor, and a tagging mechanism, either implicit or explicit. While we
can leverage multiple tagging mechanisms (MPLS and VRF-lite, for instance),
we currently lack support for the other two key components.

To this end, we propose to interpose a proxy component between each
border router and its eBGP peers, as depicted in Fig. 9.14. The architecture of
the proxy is similar to the one of BGP-Mux [VF07] in that the proxy maintains
an eBGP peering with external neighbors and one iBGP client session per
VRF configured on the border router. However, we extend the architecture
proposed in [VF07] to support the concept of “active” namespace and the
selective propagation of iBGP updates to the eBGP neighbor. Indeed, the
proxy distinguishes one active VRF from several passive VRFs. All VRFs
receive external routes from eBGP peers, but only information in the active
VRF is considered when sending eBGP updates to external neighbors. While
the proxy can be implemented as a standalone device, its functionality could
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be built directly inside border router to facilitate reconfigurations.
Since the proxy maintains eBGP peerings on behalf of a border router, it

needs to be properly configured. However, the proxy configuration is simple as
it only needs the following information.

• the address of each eBGP peer;

• for each VRF, the name of the VRF and the address of the interface on
the border router which is assigned to that VRF; and

• the name of the active VRF.

Finally, the proxy must support a tagging mechanism that maps each VRF
to a label and tags data packets coming from eBGP neighbors with the label
associated to the active VRF.

Intuitively, reconfigurations are performed by dynamically switching VRFs
from active to passive and vice versa. A BGP migration can be achieved on a
per border router basis. Observe that when we change the active VRF on one
proxy, the tagging mechanism ensures that every router in the network will use
the same VRF to forward the data packet, avoiding forwarding anomalies.

The ability of switching a VRF from active to passive makes it easy to de-
ploy changes at border routers, e.g., changing eBGP policies. Reconfigurations
that involve iBGP topology changes need extra care. Whenever a reconfigu-
ration encompasses addition or removal of an iBGP session, we run multiple
iBGP sessions in parallel. By using route-maps, each router is mandated to
filter out routes belonging to the initial (final, resp.) VRF over iBGP sessions
that are not in the initial (final, resp.) configuration.

Implementation

In order to show the feasibility and effectiveness of our solution, we imple-
mented a prototype that can perform seamless reconfigurations. The system
is based on a Configuration Generator which, at each migration step, updates
router configurations. The Configuration Generator is based on an extended
version of the NCGuard tool [VPB08], to which we added support for VRFs
and route-maps.

We implemented the proxy component as a standalone script (about 400
lines in Perl). As a tagging mechanism, we exploit the third-party BGP next-
hop feature that implicitly maps packets from external neighbors to the active
VRF. More precisely, whenever the active VRF is changed, the proxy advertises
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to its eBGP peers a change of the BGP next-hop, forcing them to send data
packets to the interface bound to the new active VRF. For this reason, the proxy
does not need any packet forwarding ability. The proxy can be interposed
between a border router and an eBGP neighbor without disruptions taking
advantage of BGP graceful shutdown [FDP+11].

Our prototype proxy has some known limitations: first, it requires the
ability to define logical interfaces on the border router; second, it requires the
proxy, the external neighbor and the border router to share the same layer 2
infrastructure. However, these limitations could be easily avoided if the proxy
component were integrated directly in the router operating system. Given the
simple architecture of the proxy, we believe such an integration to be possible
on commercial routers.

Finally, a central component of the system coordinates the Configuration
Generator and the prototype proxy, and pilots BGPmigrations by reconfiguring
one border router at a time.

9.7 Case Study

Based on our prototype implementation, we simulated a full-mesh to route
reflection reconfiguration of Geant, the pan-european research network. We
run the simulation in a virtual environment on a Sun Fire X2250 (quad-core
3GHz CPUs with 32GB of RAM). Routers were emulated using a major router
vendor operating system image.

In our case study, we assumed Geant to offer MPLS L3VPN services, with
VRFs (one per customer) configured on the border routers, and MP-BGP run-
ning in the core of the network. We built the IGP and the iBGP configurations
founding on the layer 2 topology of Geant [gea10]. The IGP configuration con-
sists of a single area where link weights are inversely proportional to their
speed. The route reflection configuration was designed on the basis of the geo-
graphical position of the routers, a design practice commonly used by network
operators [ZB03]. The route reflection top layer is composed of four routers,
namely, DE, FR, NL, and UK. The routers having a fiber link to one top layer
router were assigned to the middle layer. The remaining routers were added
to the bottom layer. Each router in the middle and in the bottom layer was
assigned with two route reflectors belonging to the layer immediately above.

To identify the set of sites at which different customers connect to Geant,
we used real-world BGP updates. We found 16 different sets of egress points
that receive BGP routes for the same prefix. We mapped those sets on different
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Figure 9.15: Using our system, no packet was lost when converting the Geant
network from an iBGP full-mesh to a route-reflection hierarchy. On the con-
trary, significant traffic losses occurred with current best practices.

customers of Geant, and we injected through each of them a different summary
prefix, representing all the prefixes for the customer.

Then, we evaluated two different reconfiguration strategies. In the first
experiment, we reconfigured the network using our system. In particular, we
configured the initial and the final VRFs on each border router, and added
final UP/DOWN iBGP sessions to the iBGP configuration. Two route-maps
per router ensured correct propagation of routes on the initial and final iBGP
topologies. Then, to migrate a border router, we activated the final VRF
on the border router. We proceeded one border router at a time. When
the final VRF is used on all the border routers, we removed the initial iBGP
sessions, the initial VRFs and both route-maps from the routers. In the second
experiment, we followed the current best practices [Smi10, Hv10]. In particular,
for each router to be migrated, we firstly activated the sessions with its route
reflectors, then we waited for route propagation, and finally we removed the
initial sessions. We applied a bottom-up reconfiguration order. In the order
we applied, within each layer, we picked routers according to the alphabetical
order of their names. We repeated each experiment 30 times to minimize the
impact of factors beyond our control (e.g., related to the virtual environment).
To measure possible traffic disruptions, we injected ICMP echo request from
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each router towards each summary prefix throughout the migration process.
Fig 9.15 reports the median, and the 5th and 95th percentiles of ICMP pack-

ets lost during each migration step. No packet was lost using our framework,
while current best practices induced forwarding loops between reconfiguration
steps 13 and 20. As a consequence, packets were lost during approximately
30% of the migration time. We found that 7 routers lost traffic because of for-
warding loops to two summary prefixes. Together, these two summary prefixes
correspond to more than 60% of all the prefixes known by routers in Geant.
Even worse, discovered loops affected Equal Cost Multi-Path (ECMP) traffic,
which also overcomplicates possible debugging activities performed by network
operators in a realistic scenario. We think that this use case show the advan-
tage of relying on our framework, as it provably avoids packet losses that can
affect traffic to a significant portion of the full routing table during several
reconfiguration steps.

All the configurations that we generated, along with the IGP and iBGP
topologies, are available online [com].

9.8 Related work

Considerable effort has been devoted to BGP configuration correctness [MWA02,
GW02b, FB05] and iBGP topology design [RS06, VVKB06, BUM08]. However,
to the best of our knowledge, few works are specifically targeted to approaches
for modifying the iBGP configuration of a running network without impacting
traffic.

The closest work that deals with reconfigurations and can be applied to
BGP is [AWY08]. In that work, Alimi et al. propose firmware modifications
that enable routers to manage a shadow configuration beyond the active con-
figuration that devices use to forward data traffic. A shadow bit is set in IP
packets to discriminate which configuration to use for forwarding. Shadow
and active configurations can be switched using an ad-hoc commit protocol.
The entire approach could be seen as a way to implement two BGP control-
planes, hence close to our proposal. In this chapter, however, we evaluated
simpler solutions to reconfigure BGP, and we justified the need for an addi-
tional control-plane by a thorough theoretical study. Also, our solution is more
lightweight and easier to implement with respect to [AWY08], as it requires
no device modification, and no ad-hoc protocol for either tagging packets and
committing configuration changes.

Graceful session reset is tackled in [FDP+11, FBDC07]. Also, Route Refresh
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and BGP Soft-Reset capabilities are standardized in [Che00]. Contrary to these
approaches, in this work we aim at managing iBGP configuration changes which
encompass many sessions and affect several routers in the network.

Recently, some techniques [WKB+08, KRvdM10] have been proposed to
enable virtual routers or parts of the configuration of routers (e.g., BGP session)
to be moved from one physical device to another. Their works differ from ours
as we aim at seamlessly changing network-wide configurations.

In [RFRW11], Reitblat et al. study the problem of consistent network
updates in software defined networks. They propose a set of consistency prop-
erties and show how these properties can be preserved when changes are per-
formed in the network. Unlike our approach, this work only applies to logically-
centralized networks (e.g., OpenFlow).

Some recent work addressed network-wide IGP reconfigurations [RZC11]
(also see Chapter 7). They are based on the idea of running two IGPs on
the same network, and finding an operational ordering in which to reconfig-
ure routers without creating forwarding anomalies. Proposing to rely on two
BGP control-planes, we took inspiration from them in our solution. However,
algorithm proposed for avoid packet losses in IGP reconfigurations cannot be
extended to BGP, mainly because of the different nature of the protocols. In-
deed, contrary to the neat route visibility ensured by link-state IGPs, only best
routes are propagated from one BGP router to others, hence a single change
on one BGP router can have unexpected side effects on routing information
received by remote routers. We further discussed difficulties in building an
algorithm to compute an operational ordering that ensure lossless BGP recon-
figurations in Section 9.5.

9.9 Conclusions

Network operators regularly change router configurations. BGP reconfigura-
tions are not exceptions, as confirmed by our analysis of a Tier-1 ISP’s historical
configuration data. Since today’s SLAs are stringent, reconfigurations must be
performed with minimal impact on data-plane traffic and without affecting
service availability.

In this chapter we make three contributions. First, we show that routing
and forwarding anomalies can occur during BGP reconfigurations, possibly re-
sulting in high packet loss ratios. Unfortunately, current best practices do not
provide theoretical guarantees. Also, they do incur in long-lasting anomalies
even during common BGP reconfigurations, as we show by simulating a full-
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mesh to route reflection reconfiguration on a Tier-1 ISP. Second, we study the
problem of ordering router reconfigurations so that all intermediate configura-
tions are anomaly-free. We show several cases where such an ordering simply
does not exist. Even worse, the problem of deciding whether such an ordering
exists is computationally intractable. Third, we propose a framework which
overcomes those practical and theoretical limitations, and leverages existing
technology to perform provably lossless BGP reconfigurations. Our framework
allows routers to run multiple BGP control-planes in parallel. We describe
an implementation of this framework, and illustrate its effectiveness through a
case-study.

Several directions are left opened and may worth deeper study. From a the-
oretical point of view, at least two kinds of sub-problems can be investigated:
making additional assumptions on the initial and the final configurations (e.g.,
on their correctness for any combination of egress points), and restricting to
specific reconfiguration scenarios (e.g., cases in which the route reflection hi-
erarchy is not completely overturned). In both cases, it would be interesting
to understand whether the operational ordering problem remains intractable,
and if heuristics can be used to solve it. Also, other practical solutions to BGP
reconfiguration can be explored, e.g., by defining a tailored migration protocol.
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Conclusions and Open Problems

Network management is a challenging task. In order to satisfy stringent Service
Level Agreements and to accommodate the natural need for network evolution,
network administrators typically face hard-to-solve issues originated by com-
plex interactions among hundreds of heterogeneous devices running a variety
of network protocols. Moreover, the degree of automation in network manage-
ment is still limited, and operators must often deal with low-level and subtle
configuration languages that are not designed to prevent human errors.

In this thesis, we studied research problems related to governance and evo-
lution of routing in the Internet, mainly taking the perspective of a single
Autonomous System. We focused on three common management activities,
namely pre-deployment configuration validation, network monitoring, and con-
figuration deployment. Firstly, we deepened the configuration testing problem
of checking a set of BGP configuration for correctness properties. Indeed, it
has been shown that BGP configurations exist (in both iBGP and eBGP) that
are prone to control-plane and data-plane issues. In this context, we studied
how to statically assess guaranteed routing convergence to a stable routing
state. We showed the computational complexity of several decision problems
related to BGP guaranteed convergence, and we proposed new sufficient and
necessary conditions which relaxed the existing ones. Unfortunately, we found
that all the most important problems related to this kind of static configura-
tion testing are computationally intractable, as well as checking for sufficient
conditions. However, exploiting the insight we gained in our theoretical study,
we proposed a heuristic algorithm and we implemented a prototypical tool to
efficiently check BGP configurations for guaranteed stability. The tool never
misreports a BGP network that is guaranteed to converge to a stable state.

In the second part of the thesis, we studied novel approaches to moni-
tor routing in operational networks. In order to monitor control-plane traffic
generated by routing protocols, we designed a centralized architecture which
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leverages the possibility of today’s routers to selectively copy packets from one
network interface to a remote location. We developed code to implement a pro-
totypical central monitoring station able to decode, process, and dump BGP
messages. By experimental evaluation in a testbed, we ensured the perfor-
mance degradation at routers to be limited, and the central monitoring station
to be scalable. Regarding data-plane traffic, we analyzed the long-standing
problem of how to accurately and efficiently compute traffic matrices, to quan-
tify the amount of traffic entering and exiting a network at a given locations.
We proposed a decentralized architecture in which programmable routers au-
tonomously compute parts of the traffic matrix that they can directly measure.
Highly-optimized mechanisms are used for measuring traffic. Preliminary ex-
perimental evaluation of the additional workload on routers confirms that the
approach is promising.

The third part of the thesis deals with the problem of installing a new config-
uration in a running network, with theoretical guarantees on the ability to not
lose any data packet. We focused on network-wide configuration changes which
involve link-state IGPs and BGP. In both cases, we firstly showed long-lasting
routing and forwarding anomalies that can be created during the reconfigura-
tion process, and we experimentally evaluated the likelihood for them to occur
in practice, by using both inferred and private AS topologies. After assessing
the impossibility of simple approaches, we proposed reconfiguration methodolo-
gies that provably guarantee no traffic loss. Our proposals are mainly based on
the possibility of running two control-planes at the same time, and progressively
activate the final one on a per-router basis. In the case of IGP reconfigurations,
we described algorithms and heuristic to compute a lossless ordering in which
to apply configuration changes, and we implemented a provisioning system that
automates most of our methodology. We experimentally evaluated both pro-
posed algorithms and system, assessing their effectiveness, and we compared
our techniques with current best practices. Regarding BGP, we showed that
the operational ordering problem is much more complex. Hence, we discuss
how to leverage current technologies both to establish the two control-planes
and perform lossless reconfigurations. We are currently working on prototype
implementation and evaluation of proposed approach.

Yet, as pointed out in each chapter, there is plenty of room for further
research activities. In this thesis, we have only scratched the surface of the
configuration testing problem. In particular, we focused on checking routing
configurations for guaranteed convergence to a stable state. Despite improve-
ment of the state of the art, some theoretical problems remain open, among
which determining a characterization for the safety problem. Also, we think
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that the same approach we adopted in this thesis should be applied to other
correctness properties (e.g., absence of forwarding issues, and assessment of
requirements on routing after a network failure) to be checked before the de-
ployment of new configurations. Regarding network monitoring, our proposals
can be improved and conveniently tailored to specific settings or business needs.
For example, in Chapter 6 we focused on PoP-to-PoP traffic matrices, but our
approach can be adapted to take into account additional protocols (e.g., MPLS)
and protocol-specific features (e.g., BGP next-hop self), and to support ad-
vanced monitoring requirements (e.g., network tomography). More in general,
our monitoring solutions show that today’s routers are able to do more than
just route and forward packets, as features like router programmability and
selective packet cloning are available on them. We believe that such features
have the potential to open new opportunities for several network management
tasks. Finally, the reconfiguration work can be extended in many directions.
Beyond testing the approaches we proposed in the real-world, we plan to ex-
tend our study to other protocols (e.g., distance-vector IGPs and multicast
protocols), to problems arising from combined reconfigurations (e.g., involv-
ing more than one protocol at the time), and to other configuration aspects
(e.g., providing guarantees on security policies throughout the reconfiguration
process). Moreover, reconfigurations already highlighted theoretical problems
that are not deeply studied and deserve attention from the research community.
Among them, we recall effective modeling of the interaction between different
protocols, and proposal of algorithms and heuristics for ensuring correctness
properties throughout a reconfiguration process.
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